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Foreword

David S. Moore

Purdue University

This unique book is very welcome, for at least three reasons. The first is that
teachers of statistics have much to learn from those whose primary expertise is the
study of learning. We statisticians tend to insist that we teach first of all from the
base of our knowledge of statistics, and this is true. Teachers at all levels must
understand their subject matter, and at a depth at least somewhat greater than that of
the content they actually teach. But teachers must also understand how students
learn, be aware of specific difficulties, and consider means to guide students toward
understanding. Unaided, we gain skill intuitively, by observing our own teachers
and by experience. Teachers below the university level receive specific instruction
in teaching—this is, after all, their profession—and this book will improve that
instruction where statistics is concerned. Teachers at the university level consider
themselves first of all mathematicians or psychologists or statisticians and are
sometimes slow to welcome pedagogical wisdom from other sources. This is folly,
though a folly typical of professionals everywhere. I have learned a great deal from
some of the editors and authors of this book in the past, and yet more from reading
this volume.

Second, this book is timely because data-oriented statistics has at last moved into
the mainstream of mathematics instruction. In the United States, working with data
is now an accepted strand in school mathematics curricula, a popular upper-
secondary Advanced Placement syllabus adds a full treatment of inference, and
enrollment in university statistics courses continues to increase. (Indeed, statistics is
almost the only subject taught by university mathematics departments that is
growing.) Similar trends, particularly in school mathematics, are evident in other
nations. The title of this volume, with its emphasis on “statistical literacy, reasoning,
and thinking” reflects the acceptance of statistics as a mainstream subject rather than

X



X FOREWORD

a technical specialty. If some degree of statistical literacy is now part of the
equipment of all educated people, then more teachers, and teachers of more varied
backgrounds, must be prepared to help students learn to think statistically. Here at
last is a single source that can inform our preparation.

Finally, statisticians in particular should welcome this book because it is based
on the recognition that statistics, while it is a mathematical science, is not a subfield
of mathematics. Statistics applies mathematical tools to illuminate its own subject
matter. There are core statistical ideas—think of strategies for exploratory data
analysis and the distinction between observational and experimental studies with the
related issue of establishing causation—that are not mathematical in nature.
Speaking broadly, as long as “statistics education” as a professional field was
considered a subfield of “mathematics education,” it was in fact primarily the study
of learning probability ideas. Understanding that statistics is not just mathematics is
giving rise to a new field of study, closely related to mathematics education but not
identical to it. The editors and authors of this volume are leaders in this new field. It
is striking that the chapters in this book concern reasoning about data more than
about chance. Data analysis, variation in data and its description by distributions,
sampling, and the difficult notion of a sampling distribution are among the topics
receiving detailed study.

It is not often that a book serves to synthesize an emerging field of study while
at the same time meeting clear practical needs. I am confident that The Challenge of
Developing Statistical Literacy, Reasoning, and Thinking will be seen as a classic.



Preface

Over the past decade there has been an increasingly strong call for statistics
education to focus on statistical literacy, statistical reasoning, and statistical
thinking. Our goal in creating this book is to provide a useful resource for educators
and researchers interested in helping students at all educational levels to develop
these cognitive processes and learning outcomes. This book includes cutting-edge
research on teaching and learning statistics, along with specific pedagogical
implications. We designed the book for academic audiences interested in statistics
education as well as for teachers, curriculum writers, and technology developers.

The events leading to the writing of this book began at the Fifth International
Conferences on Teaching Statistics (ICOTS-5), held in 1998 in Singapore. We
realized then that there are no consistent definitions for the often stated learning
goals of statistical reasoning, thinking, and literacy. In light of the rapid growth of
statistics education at all levels, and the increasing use of these terms, we realized
that it was important to clearly define and distinguish between them in order to
facilitate communication as well as the development of instructional materials and
educational research.

A small, focused conference bringing together an international group of
researchers interested in these topics appeared to be an important next step in
clarifying the terms, connecting researchers working in this area, and identifying
ways to move the field forward together. The first International Research Forum on
Statistical Reasoning, Thinking, and Literacy (SRTL-1) was held in Israel in 1999 to
address these needs. Due to the success of SRTL-1 and the strong feeling that this
type of forum should be repeated, SRTL-2 was held in 2001 in Australia, this time
with a focus on different types of statistical reasoning. Many of the papers from
these first two forums have led to chapters in this book. The forums continue to be
offered every two years, with SRTL-3 held in the USA in 2003, as interest and
research in this area steadily increase.

Xi



xii PREFACE
To get the most out of this book, readers may find the following points useful:

e Chapter 1 may be a good starting point. It offers preliminary definitions and
distinctions for statistical literacy, reasoning, and thinking. It also describes
some of the unique issues addressed by each chapter to help readers in their
journey within the book.

e The first part of this book (Chapters 2 through 5) is a comprehensive
overview of statistical literacy, reasoning, and thinking from historical,
psychological, and educational perspectives. In addition, cognitive models of
development in statistical reasoning are examined. Readers who wish to
examine the theoretical foundations upon which the individual studies in
subsequent parts are based are referred to these chapters.

e Many chapters that focus on a particular type of statistical reasoning follow a
unified structure, starting with a description of the type of reasoning studied
and ending with key practical implications related to instruction, assessment,
and research. Readers can examine these sections to quickly determine the
chapter’s contents.

e The closing chapter (Chapter 17) describes the current state of statistics
education research and its uniqueness as a discipline. It offers a summary of
issues and challenges raised by chapters in this book and presents
implications for teaching and assessing students.

The seventeen chapters in this volume by no means exhaust all issues related to
the development of statistical literacy, reasoning, and thinking. Yet, taken as a
whole, the chapters constitute a rich resource summarizing current research, theory,
and practical suggestions related to these topics. We hope that this volume will
contribute to and stimulate the scholarly discourse within the statistics education
community, and that in coming years additional publications will more closely
examine the many issues and challenges raised.

A project of this magnitude would have been impossible without the help of
numerous individuals and organizations. First and most importantly, we would like
to thank our many contributors, who remained focused on the goal of sharing their
experiences and insights with the educational community while enduring multiple
review cycles and editing demands. Their enthusiasm, support, and friendship are
valuable to us and have made this long process easier to complete.

Many thanks go to Kibbutz Be’eri (Israel), the University of New England
(Australia), and the University of Nebraska—Lincoln (USA) for hosting and
supporting the three SRTL Research Forums in 1999, 2001, and 2003. These
meetings, which we co-chaired, informed our work as well as the writings of some
of many contributors to this volume. In addition, numerous organizations and
institutions helped sponsor these forums: the University of Minnesota (USA), the
Weizmann Institute of Science (Israel), the International Association on Statistics
Education (IASE), the American Statistical Association (ASA) Section on Statistics
Education, and Vanderbilt University. This funding has been pivotal in enabling us
to sustain our extended effort through the years it took to complete this project.
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We are grateful to Kluwer Academic Publishers for providing a publishing
venue for this book, and to Michel Lokhorst, the humanities and social sciences
publishing editor, who skillfully managed the publication on their behalf. We
appreciate the support received from the University of Minnesota (USA) and the
University of Haifa (Israel) for copyediting and formatting this volume. We are
especially grateful for the contributions of our copy editor, Christianne Thillen, as
well as Ann Ooms and Michelle Everson, who under a tight production schedule
diligently and ably worked to prepare this book for publication.

Lastly, many thanks go to our spouses, Hava Ben-Zvi and Michael Luxenberg,
and to our children—Noa, Nir, Dagan, and Michal Ben-Zvi, and Harlan and
Rebecca Luxenberg. They have been our primary sources of energy and support.

Dani Ben-Zvi' and Joan Garfield”
University of Haifa, Israel' and University of Minnesota, USA?



PART I

INTRODUCTION TO STATISTICAL
LITERACY, REASONING, AND THINKING



Chapter 1

STATISTICAL LITERACY, REASONING, AND
THINKING: GOALS, DEFINITIONS, AND
CHALLENGES

Dani Ben-Zvi' and Joan Garfield”
University of Haifa, Israel'; University of Minnesota, USA®

INTRODUCTION

Over the past decade there has been an increasingly strong call for statistics
education to focus more on statistical literacy, reasoning, and thinking. One of the
main arguments presented is that traditional approaches to teaching statistics focus
on skills, procedures, and computations, which do not lead students to reason or
think statistically. This book explores the challenge posed to educators at all
levels—how to develop the desired learning goals for students by focusing on
current research studies that examine the nature and development of statistical
literacy, reasoning, and thinking. We begin this introductory chapter with an
overview of the reform movement in statistics education that has led to the focus on
these learning outcomes. Next, we offer some preliminary definitions and
distinctions for these often poorly defined and overlapping terms. We then describe
some of the unique issues addressed by each chapter and conclude with some
summary comments and implications.

THE GROWING IMPORTANCE OF STATISTICS IN TODAY’S WORLD

Quantitative information is everywhere, and statistics are increasingly presented
as a way to add credibility to advertisements, arguments, or advice. Being able to
properly evaluate evidence (data) and claims based on data is an important skill that
all students should learn as part of their educational programs. The study of statistics
provides tools that informed citizens need in order to react intelligently to
quantitative information in the world around them. Yet many research studies
indicate that adults in mainstream society cannot think statistically about important
issues that affect their lives.

D. Ben-Zvi and J. Garfield (eds.),
The Challenge of Developing Statistical Literacy, Reasoning and Thinking, 3—15.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



4 DANI BEN-ZVI AND JOAN GARFIELD

As former president of the American Statistical Association, David Moore
(1990) wrote, “Statistics has some claim to being a fundamental method of inquiry,
a general way of thinking that is more important than any of the specific techniques
that make up the discipline” (p. 134). It is not surprising, given the importance of
statistics, that there has been an increase in the amount of statistical content included
in the elementary and secondary mathematics curriculum (NCTM, 2000) and an
ever-increasing number of introductory statistics courses taught at the college level.

THE CHALLENGE OF TEACHING STATISTICS

Despite the increasing need for statistics instruction, historically statistics
education has been viewed by many students as difficult and unpleasant to learn,
and by many instructors as frustrating and unrewarding to teach. As more and more
students enroll in introductory statistics courses, instructors are faced with many
challenges in helping these students succeed in the course and learn statistics. Some
of these challenges include

e Many statistical ideas and rules are complex, difficult, and/or
counterintuitive. It is difficult to motivate students to engage in the hard
work of learning statistics.

e Many students have difficulty with the underlying mathematics (such as
fractions, decimals, algebraic formulas), and that interferes with learning the
related statistical content.

e The context in many statistical problems may mislead the students, causing
them to rely on their experiences and often faulty intuitions to produce an
answer, rather than select an appropriate statistical procedure.

e Students equate statistics with mathematics and expect the focus to be on
numbers, computations, formulas, and one right answer. They are
uncomfortable with the messiness of data, the different possible
interpretations based on different assumptions, and the extensive use of
writing and communication skills.

Amidst the challenges of dealing with students’ poor mathematics skills, low
motivation to learn a difficult subject, expectations about what the course should be,
and reliance on faulty intuitions and misconceptions, many instructors strive to
enable students to develop statistical literacy, reasoning, and thinking. There appears
to be a consensus that these are the most important goals for students enrolled in
statistics classes, and that these goals are not currently being achieved. The
dissatisfaction with students’ ability to think and reason statistically, even after
formally studying statistics at the college and graduate level, has led to a
reexamination of the field of statistics.
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EFFORTS TO CHANGE THE TEACHING OF STATISTICS

Today’s leading statisticians see statistics as a distinct discipline, and one that is
separate from mathematics (see Chapter 4). Some suggest that statistics should in
fact be considered one of the liberal arts (e.g., Moore, 1998). The liberal arts image
emphasizes that statistics involves distinctive and powerful ways of thinking:
“Statistics is a general intellectual method that applies wherever data, variation, and
chance appear. It is a fundamental method because data, variation, and chance are
omnipresent in modern life. It is an independent discipline with its own core ideas
rather than, for example, a branch of mathematics” (Moore, 1998, p. 1254).

As the discipline has evolved and become more distinct, changes have been
called for in the teaching of statistics. Dissatisfaction with the introductory college
course has led to a reform movement that includes focusing statistics instruction
more on data and less on theory (Cobb, 1992). Moore (1997) describes the reform in
terms of changes in content (more data analysis, less probability), pedagogy (fewer
lectures, more active learning), and technology (for data analysis and simulations).

At the elementary and secondary level, there is an effort to help students develop
an understanding and familiarity with data analysis (see Chapter 6) rather than
teaching them a set of separate skills and procedures. New K-12 curricular
programs set ambitious goals for statistics education, including developing students’
statistical reasoning and understanding (e.g., Australia—Australian Education
Council, 1991, 1994; England—Department for Education and Employment, 1999;
New Zealand—Ministry of Education, 1992; USA—National Council of Teachers
for Mathematics, 2000; and Project 2061°’s Benchmarks for Science Literacy,
American Association for the Advancement of Science, 1993).

Several factors have led to these current efforts to change the teaching of
statistics at all educational levels. These factors include

e Changes in the field of statistics, including new techniques of data
exploration

e (Changes and increases in the use of technology in the practice of statistics,
and its growing availability in schools and at home

e Increased awareness of students’ inability to think or reason statistically,
despite good performance in statistics courses

e Concerns about the preparation of teachers of statistics at the K—-12 and
college level, many of whom have never studied applied statistics nor
engaged in data analysis activities.

Many recommendations have been given for how statistics courses should be
taught, as part of the general reform movement. Some of these recommendations are
as follows:

e Incorporate more data and concepts.
e Rely heavily on real (not merely realistic) data.
e Focus on developing statistical literacy, reasoning, and thinking.
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e Wherever possible, automate computations and graphics by relying on
technological tools.

e Foster active learning, through various alternatives to lecturing.

e Encourage a broader range of attitudes, including appreciation of the power
of statistical processes, chance, randomness, and investigative rigor, and a
propensity to become a critical evaluator of statistical claims.

e Use alternative assessment methods to better understand and document
student learning.

There appears to have been some impact on teaching practices from these
recommendations at the college level (Garfield, Hogg, Schau,
& Whittinghill, 2002). However, despite reform efforts, many statistics courses still
teach the same progression of content and emphasize the development of skills and
procedures. Although students and instructors appear to be happier with reformed
courses, many students still leave the course perceiving statistics as a set of tools and
techniques that are soon forgotten. Pfannkuch and Wild (Chapter 2) discuss how
current methods of teaching have often focused on the development of skills and
have failed to instill the ability to think statistically.

STATISTICAL LITERACY, REASONING, AND THINKING:
DEFINITIONS AND DISTINCTIONS

It is apparent, when reading articles about recommendations to reform the
teaching of statistics, that there are no consistent definitions for the often stated
learning goals of literacy, reasoning, and thinking. Statistical literacy is used
interchangeably with quantitative literacy, while statistical thinking and reasoning
are used to define the same capabilities. This confusion of terms was especially
evident at the Fifth International Conference on Teaching Statistics, held in
Singapore in 1998. It became apparent that when statistics educators or researchers
talk about or assess statistical reasoning, thinking, or literacy, they may all be using
different definitions and understandings of these cognitive processes.

The similarities and differences among these processes are important to consider
when formulating learning goals for students, designing instructional activities, and
evaluating learning by using appropriate assessment instruments. A small, focused
conference consisting of researchers interested in these topics appeared to be an
important next step in clarifying the issues, connecting researchers and their studies,
and generating some common definitions, goals, and assessment procedures. The
first International Research Forum on Statistical Reasoning, Thinking, and Literacy
(SRTL-1) was held in Israel in 1999 to address these needs. At this first conference
some preliminary definitions were presented and discussed. A second forum (SRTL-
2) was held in 2001 in Australia, with a focus on different types of statistical
reasoning. Many of the papers from these first two forums have led to chapters in
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this book. The forums continue to be offered every two years (SRTL-3 in USA,
2003) as interest and research in this area steadily increase.

Although no formal agreement has been made regarding the definitions and
distinctions of statistical literacy, reasoning, and thinking, the following list
summarizes our current thoughts (Garfield, delMas, & Chance, 2003):

o Statistical literacy includes basic and important skills that may be used in
understanding statistical information or research results. These skills include
being able to organize data, construct and display tables, and work with
different representations of data. Statistical literacy also includes an
understanding of concepts, vocabulary, and symbols, and includes an
understanding of probability as a measure of uncertainty.

e Statistical reasoning may be defined as the way people reason with
statistical ideas and make sense of statistical information. This involves
making interpretations based on sets of data, representations of data, or
statistical summaries of data. Statistical reasoning may involve connecting
one concept to another (e.g., center and spread), or it may combine ideas
about data and chance. Reasoning means understanding and being able to
explain statistical processes and being able to fully interpret statistical
results.

o Statistical thinking involves an understanding of why and how statistical
investigations are conducted and the “big ideas” that underlie statistical
investigations. These ideas include the omnipresent nature of variation and
when and how to use appropriate methods of data analysis such as numerical
summaries and visual displays of data. Statistical thinking involves an
understanding of the nature of sampling, how we make inferences from
samples to populations, and why designed experiments are needed in order
to establish causation. It includes an understanding of how models are used
to simulate random phenomena, how data are produced to estimate
probabilities, and how, when, and why existing inferential tools can be used
to aid an investigative process. Statistical thinking also includes being able to
understand and utilize the context of a problem in forming investigations and
drawing conclusions, and recognizing and understanding the entire process
(from question posing to data collection to choosing analyses to testing
assumptions, etc.). Finally, statistical thinkers are able to critique and
evaluate results of a problem solved or a statistical study.

For more discussion of these definitions and distinction, see papers by Chance
(2002), delMas (2002), Garfield (2002), Rumsey (2002), and Chapters 2 through 4
in this book.
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RATIONALE AND GOALS FOR THIS BOOK

With the increasing attention given to the need to develop students’ statistical
literacy, reasoning, and thinking at all levels, it has become apparent that these
educational outcomes were not being adequately addressed in the research literature
and, therefore, not used as the foundation for curricular programs. In fact, research
studies on statistical reasoning are still evolving, and are just beginning to suggest
ways to help students develop these outcomes.

Our goal in creating this book is to provide a useful resource for educators and
researchers interested in helping students at all educational levels to develop
statistical literacy, statistical reasoning, and statistical thinking. Given the increased
attention being paid worldwide to the need for statistically literate citizens, the broad
inclusion of statistics in the K—12 mathematics curriculum, the increasing numbers
of students taking statistics at the secondary level (e.g., Advanced Placement
Statistics courses in high school in the USA), and the increasing numbers of students
required to take introductory statistics courses in postsecondary programs, it is
crucial that the cutting-edge research being conducted on teaching and learning
statistics be collected and disseminated along with specific pedagogical
implications.

This book offers a synthesis of an emerging field of study, while at the same
time responding to clear practical needs in the following ways:

e |t establishes a research base for statistics education by focusing on and
distinguishing between different outcomes of statistics instruction.

e It raises awareness of unique issues related to teaching and learning
statistics, and it distinguishes statistical literacy, reasoning, and thinking
from both general and mathematical literacy, reasoning, and thinking.

e [t provides a bridge between educational research and practice, by offering
research-based guidelines and suggestions to educators and researchers.

Although the word statistics is often used to represent both probability and
statistical analysis, the authors and editors of this book focus on reasoning and
thinking exclusively on the statistical analysis area, rather than on probability.
Although statistics as a discipline uses mathematics and probability, probability is
actually a field of mathematics. Since most of the early work in statistics education
focused on the teaching and learning of probability, we wanted to move away and
look at how students come to reason and think about data and data analysis.
However, because the two subjects are so interrelated, several chapters mention
issues related to learning probability as they relate to the focus of a particular
chapter.
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AUDIENCE FOR THIS BOOK

This book was designed to appeal to a diverse group of readers. The primary
audience for this book is current or future researchers in statistics education (e.g.,
graduate students). However, we encourage others who do not identify themselves
as researchers to read the chapters in this book as a way to understand the current
issues and challenges in teaching and learning statistics. By asking authors to
specifically address implications for teaching and assessing students, we hope that
teachers of students at all levels will find the research results directly applicable to
working with students.

SUGGESTED WAYS TO USE THIS BOOK

Given the different audiences for this book, we suggest several different ways to
use this book for researchers, teachers, curriculum writers, and technology
developers.

e Researchers Each chapter includes a detailed review of the literature related
to a particular topic (e.g., reasoning about variability, statistical literacy,
statistics teachers’ development), which will be helpful to researchers
studying one of these areas. The chapters also provide examples of current
research methodologies used in this area, and present implications for
teaching practice as well as suggestions for future research studies. By
providing cutting-edge research on statistical literacy, reasoning, and
thinking, the book as a whole outlines the state of the art for the statistics
education research community. In addition, the contributing authors may be
regarded as useful human resources for researchers who are interested in
pursuing studies in these areas.

e Curriculum writers By reading this book, people designing statistics
instructional activities and curricula may learn about current research results
in statistics education. Curriculum development involves tightly integrated
cycles of reviewing related research, instructional design, and analysis of
students’ learning, which all feed back to inform the revision of the design.
Many chapters in this book also give recommendations for appropriate ways
to assess learning outcomes.

e Technology Many chapters in this book offer discussion on the role of
technology in developing statistical reasoning. Types of technologies used
are presented and assessed in relation to their impact on students’ reasoning.

Given the different uses just listed, we believe that this book can be used in a
variety of graduate courses. Such courses include those preparing mathematics
teachers at the K-12 level; courses preparing teachers of statistics at the high
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secondary and tertiary level; and research seminars in mathematics, statistics
education, or psychology.

We advise readers focused on students at one level (e.g., secondary) not to skip
over chapters describing students at other levels. We are convinced that students
who are introduced to statistical ideas and procedures learn much the same material
and concepts (e.g., creating graphical displays of data, describing the center and
dispersion of data, inference from data, etc.) regardless of their grade level.
Furthermore, reasoning processes develop along extended periods of time,
beginning at early encounters with data in elementary grades and continuing through
high school and postsecondary education. Therefore, we believe that discussions of
reasoning issues couched in the reality of one age group will be of interest to those
working with students of other ages and abilities.

OVERVIEW OF CHAPTERS

All of the chapters in this book discuss issues pertaining to statistical literacy,
reasoning, or thinking. Some chapters focus on general topics (e.g., statistical
literacy) while others focus on the context of a specific educational level or setting
(e.g., teaching middle school students to reason about distribution). Whenever
possible, the chapter authors outline challenges facing educators, statisticians, and
other stakeholders. The chapters present many examples (or references to resources)
of activities, data sets, and assessment tasks suitable for a range of instructional
levels. This emphasis of connection to practice is a result of our strong belief that
researchers are responsible for translating their findings to practical settings.

All the chapters that focus on a particular type of student or teacher statistical
reasoning (Chapters 6 through 15) follow a unified and familiar structure to
facilitate their effective use by the readers. These chapters typically start with a
section introducing the key area of reasoning explored in the chapter. This is
followed by clear and informative descriptions of the problem (a description of the
type of reasoning studied, why it is important, and how this type of reasoning fits
into the curriculum); literature and background (prior and related work and relevant
theoretical background); methods (the subjects, methods used, data gathered, and
activities or interventions used); analysis and results (description of how the data
were analyzed, and the results and findings of the study); and discussion (lessons
learned from the study, new questions raised, limitations found). Finally, in the
implications section, each chapter highlights key practical implications related to
teaching and assessing students as well as implications for research.

The chapters have been grouped into three parts, each of which is summarized
here.
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Part I. Introduction to Statistical Literacy, Reasoning, and Thinking
(Chapters 2 through 5)

The first part of this book is a comprehensive overview of the three interrelated
but distinct cognitive processes (or learning outcomes) of statistical literacy,
reasoning, and thinking from historical, psychological, and educational perspectives.
This part is therefore the basis upon which the individual studies in subsequent parts
are built.

In the first chapter of this part (Chapter 2), Pfannkuch and Wild present their
paradigm on statistical thinking (part of their four-dimensional framework for
statistical thinking in empirical enquiry; Wild & Pfannkuch, 1999). The authors
identify five types of thinking, considered to be fundamental to statistics. They
follow the origins of statistical thinking through to an explication of what is
currently understood to be statistical thinking. They begin their historical
exploration with the early developers of statistics; move on to more recent
contributions from epidemiology, psychology, and quality management; and
conclude with a discussion of recent writings of statistics education researchers and
statisticians influential in the movement of pedagogy from methods toward thinking.

Gal proposes in Chapter 3 a conceptualization of statistical literacy and its main
components. Statistical literacy is described as a key ability expected of citizens in
information-laden societies, an expected outcome of schooling, and a necessary
component of adults’ numeracy and literacy. Statistical literacy is portrayed as the
ability to interpret, critically evaluate, and communicate about statistical information
and messages. Gal suggests that statistically literate behavior is predicated on the
joint activation of both a knowledge component (comprised of five cognitive
elements: literacy skills, statistical knowledge, mathematical knowledge, context
knowledge, and critical questions) and a dispositional component (comprised of two
elements: critical stance, and beliefs and attitudes).

The focus of delMas’s chapter (Chapter 4) is on the nature of mathematical and
statistical reasoning. The author first outlines the general nature of human reasoning,
which he follows with an account of mathematical reasoning as described by
mathematicians along with recommendations by mathematics educators regarding
educational experiences to improve mathematical reasoning. He reviews the
literature on statistical reasoning and uses findings from the general literature on
reasoning to identify areas of statistical reasoning that students find most
challenging. Finally, he compares and contrasts statistical reasoning and
mathematical reasoning.

The last chapter in this part (Chapter 5) is a joint work by Jones, Langrall,
Mooney, and Thornton that examines cognitive models of development in statistical
reasoning and the role they can play in statistical education. The authors consider
models of development from a psychological perspective, and then describe how
models of statistical reasoning have evolved historically from models of
development in probability. The authors describe and analyze comprehensive
models of cognitive development that deal with multiple processes in statistical
reasoning as well as models of cognitive development that characterize students’
statistical reasoning as they deal with specific areas of statistics and data
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exploration. The authors suggest that school students’ statistical reasoning passes
through a number of hierarchical levels and cycles.

Part II. Studies of Statistical Reasoning
(Chapters 6 through 13)

The chapters in this part focus on how students reason about specific areas of
statistics. The topics of these chapters include data analysis, distributions, measures
of center, variation, covariation, normal distribution, samples, and sampling
distributions. These studies represent the current efforts in the statistics education
community to focus statistical instruction and research on the big ideas of statistics
(Chapter 17) and on developing students’ statistical reasoning at all levels of
education.

In the first chapter of this part (Chapter 6), Ben-Zvi describes and analyzes the
ways in which middle school students begin to reason about data and come to
understand exploratory data analysis (EDA). He describes the process of developing
reasoning about data while learning skills, procedures, and concepts. In addition, the
author observes the students as they begin to adopt and exercise some of the habits
and points of view that are associated with statistical thinking. Ben-Zvi offers two
case studies focusing on the development of a global view of data and data
representations, and on design of a meaningful EDA learning environment that
promotes statistical reasoning about data analysis. In light of the analysis, the author
proposes a description of what it may mean to learn to reason about data analysis.

Bakker and Gravemeijer explore (Chapter 7) how informal reasoning about
distribution can be developed in a technological learning environment. They
describe the development of reasoning about distribution in seventh-grade classes in
three stages as students reason about different representations. The authors show
how specially designed software tools, students’ created graphs, and prediction tasks
supported the learning of different aspects of distribution. In this process, several
students came to reason about the shape of a distribution using the term bump along
with statistical notions such as outliers and sample size.

Chapter 8 presents an article by Konold and Pollatsek originally published in a
research journal; therefore, it does not follow the same format as the other chapters
in this part. Their chapter offers a conceptualization of averages as a stable feature
of a noisy process. To explore the challenges of learning to think about data as
signal and noise, the authors examine that metaphor in the context of three different
types of statistical processes. For each process, they evaluate the conceptual
difficulty of regarding data from that process as a combination of signal and noise.
The authors contrast this interpretation of averages with various other interpretations
of averages (e.g., summaries of groups of values) that are frequently encountered in
curriculum materials. They offer several recommendations about how to develop
and extend the idea of central tendency as well as possible directions for research on
student thinking and learning.

Understanding the nature of variability and its omnipresence is a fundamental
component of statistical reasoning. In Chapter 9, Reading and Shaughnessy bring
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together findings from a number of different studies, conducted in three different
countries, designed to investigate students’ conceptions of variability. The focus of
the chapter is on details of one recent study that investigates reasoning about
variation in a sampling situation for students aged 9 to 18.

In Chapter 10, Moritz investigates three skills of reasoning about covariation: (a)
speculative data generation, demonstrated by drawing a graph to represent a verbal
statement of covariation; (b) verbal graph interpretation, demonstrated by describing
a scatterplot in a verbal statement and by judging a given statement; and (c)
numerical graph interpretation, demonstrated by reading a value and interpolating a
value. The authors describe survey responses from students in grades 3, 5, 7, and 9
in four levels of reasoning about covariation.

Batanero, Tauber, and Sdnchez present (Chapter 11) the results of a study on
students’ learning of the normal distribution in a computer-assisted, university-level
introductory course. The authors suggest a classification of different aspects of
students’ correct and incorrect reasoning about the normal distribution as well as
giving examples of students’ reasoning in the different categories.

Chapter 12, written by Watson, extends previous research on students’ reasoning
about samples and sampling by considering longitudinal interviews with students 3
or 4 years after they first discussed their understanding of what a sample was, how
samples should be collected, and the representing power of a sample based on its
size. Of the six categories of response observed at the time of the initial interviews,
all were confirmed after 3 or 4 years, and one additional preliminary level was
observed.

Reasoning about sampling distributions is the focus of Chance, delMas, and
Garfield in the last chapter of this part (Chapter 13). In this chapter, the authors
present a series of research studies focused on the difficulties students experience
when learning about sampling distributions. In particular, the authors trace the 7-
year history of an ongoing collaborative classroom-based research project
investigating the impact of students’ interaction with computer software tools to
improve their reasoning about sampling distributions. The authors describe the
complexities involved in building a deep understanding of sampling distributions,
and formulate models to explain the development of students’ reasoning.

Part III. Curricular, Instructional, and Research Issues
(Chapters 14 through 16)

The third and final part of this book deals with important educational issues
related to the development of students’ statistical reasoning: (a) teachers’ knowledge
and understanding of statistics, and (b) instructional design issues.

Mickelson and Heaton (Chapter 14) explore the complexity of teaching and
learning statistics, and offer insight into the role and interplay of teachers’ statistical
knowledge and context. Their study presents an analysis of one third-grade teacher’s
statistical reasoning about data and distribution in the context of classroom-based
statistical investigation. In this context, the teacher’s statistical reasoning plays a
central role in the planning and orchestration of the class investigation.
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Makar and Confrey also discuss (Chapter 15) teachers’ statistical reasoning.
They focus on the statistical reasoning about comparing two distributions of four
secondary teachers addressing the research question: “How do you decide whether
two groups are different?” The study was conducted at the end of a 6-month
professional development sequence designed to assist secondary teachers in making
sense of their students’ results on a state-mandated academic test. The authors
provide qualitative and quantitative analyses to examine the teachers’ reasoning.

In Chapter 16, Cobb and McClain propose design principles for developing
statistical reasoning about data in the contexts of EDA and data generation in
elementary school. They present a short overview of a classroom design experiment,
and then frame it as a paradigm case in which to tease out design principles
addressing five aspects of the classroom environment that proved critical in
supporting the students’ statistical learning: The focus on central statistical ideas, the
instructional activities, the classroom activity structure, the computer-based tools the
students used, and the classroom discourse.

Summary and Implications
(Chapter 17)

In the closing chapter (Chapter 17) the editors summarize issues, challenges, and
implications for teaching and assessing students emerging from the collection of
studies in this book. We begin with some comments on statistics education as an
emerging research area, and then concentrate on the need to focus research,
instruction, and assessment on the big ideas of statistics. We address the role of
technology in developing statistical reasoning as well as the diversity of various
statistics learners (e.g., students at different educational levels as well as their
teachers). Next we present a summary of research methodologies used to study
statistical reasoning, along with comments on the extensive use of qualitative
methods and the lack of traditional experimental designs. Finally, we consider some
implications for teaching and assessing students and suggest future research
directions.

We hope that the articulated, coherent body of knowledge on statistical literacy,
reasoning, and thinking presented in this book will contribute to the pedagogical
effectiveness of statistics teachers and educators at all levels; to the expansion of
research studies on statistical literacy, reasoning and thinking; and to growth of the
statistics education community.
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Chapter 2

TOWARDS AN UNDERSTANDING OF
STATISTICAL THINKING

Maxine Pfannkuch and Chris Wild
The University of Auckland, New Zealand

INTRODUCTION

There has been an increasingly strong call from practicing statisticians for statistical
education to focus more on statistical thinking (e.g., Bailar, 1988; Snee, 1993;
Moore, 1998). They maintain that the traditional approach of teaching, which has
focused on the development of skills, has failed to produce an ability to think
statistically: “Typically people learn methods, but not how to apply them or how to
interpret the results” (Mallows, 1998, p. 2).

Solutions offered for changing this situation include employing a greater variety
of learning methods at undergraduate level and compelling students to experience
statistical thinking by dealing with real-world problems and issues. A major
obstacle, as Bailar (1988) points out, is teacher inexperience. We believe this is
greatly compounded by the lack of an articulated, coherent body of knowledge on
statistical thinking that limits the pedagogical effectiveness even of teachers who are
experienced statisticians. Mallows (1998) based his 1997 Fisher Memorial lecture
on the need for effort to be put into developing a theory for understanding how to
think about applied statistics, since the enunciation of these principles would be
useful for teaching.

This chapter focuses on thinking in statistics rather than probability. Although
statistics as a discipline uses mathematics and probability, as Moore (1992b) states,
probability is a field of mathematics, whereas statistics is not. Statistics did not
originate within mathematics. It is a unified logic of empirical science that has
largely developed as a new discipline since the beginning of the 20th century. We
will follow the origins of statistical thinking through to an explication of what we
currently understand to be statistical thinking from the writings of statisticians and
statistics educationists.
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Model for Interpretation of Literature

We will be interpreting the literature from our own paradigm (Figure 1) on
statistical thinking (Wild & Pfannkuch, 1999). The model was developed by
interviewing statisticians and tertiary students about statistical projects they had
been involved in; interviewing tertiary students as they performed statistical tasks;
and analyzing the literature below (see “Discussion and Summary” for more detail).
In our model we identified the types of thinking we consider to be fundamental to
statistics (Figure 1b). These five fundamental thinking types are now elaborated
upon.

Recognition of the Need for Data

The foundations of statistical enquiry rest on the assumption that many real
situations cannot be judged without the gathering and analysis of properly collected
data. Anecdotal evidence or one’s own experience may be unreliable and misleading
for judgments and decision making. Therefore, properly collected data are
considered a prime requirement for reliable judgments about real situations.

Transnumeration

For this type of thinking we coined the word transnumeration, which means
“changing representations to engender understanding.” Transnumeration occurs in
three specific instances. If one thinks of the real system and statistical system from a
modeling perspective, then transnumeration thinking occurs when (1) measures that
“capture” qualities or characteristics of the real situation are found; (2) the data that
have been collected are transformed from raw data into multiple graphical
representations, statistical summaries, and so forth, in a search to obtain meaning
from the data; and (3) the meaning from the data, the judgment, has to be
communicated in a form that can be understood in terms of the real situation by
others.

Consideration of Variation

Adequate data collection and the making of sound judgments from data require
an understanding of how variation arises and is transmitted through data, and the
uncertainty caused by unexplained variation. It is a type of thinking that starts from
noticing variation in a real situation, and then influences the strategies we adopt in
the design and data management stages when, for example, we attempt to eliminate
or reduce known sources of variability. It further continues in the analysis and
conclusion stages through determining how we act in the presence of variation,
which may be to either ignore, plan for, or control variation. Applied statistics is
about making predictions, seeking explanations, finding causes, and learning in the
context sphere. Therefore we will be looking for and characterizing patterns in the
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variation, and trying to understand these in terms of the context in an attempt to
solve the problem. Consideration of the effects of variation influences all thinking

through every stage of the investigative cycle.

[(a) DIMENSION 1 : THE INVESTIGATIVE CYCLE |

[(b) DIMENSION 2: TYPES OF THINKING]

(PPDAC)
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o Interpretation . .
+ Conclusions Conclusions Problem . Slrateglc_ o
o New ideas * Grasping system dynamics — planning, anticipating problems
¢ Communication * Defining problem — awareness of practical constraints
Analysis Plan « Seeking Explanations

Data exploration Planning
Planned analyses * Measurement system
Unplanned analyses “Sampling design”

Hypothesis generation Data ¢ Data management
¢ Data collection * Piloting & analysis
¢ Data management
¢ Data cleaning

[(c) DIMENSION 3 : THE INTERROGATIVE CYCLE]

* Modelling
— construction followed by use
« Applying Techniques
— following precedents
— recognition and use of archetypes
— use of problem solving tools

TYPES FUNDAMENTAL TO STATISTICAL
THINKING (Foundations)
* Recognition of need fordata

¢ Transnumeration
(Changing representations to engender understanding)

» — capturing “measures” from real system
- — changing data representations
.D"Z"f what to: Judge Generate  Imagine possibilities for: — communicating messages in data
. comtimse 1o entertain * plans of attack « Consideration of variation
o discard * explanations / models — noticing and acknowledging
Criticise Seel information requirements — measuring and modelling for the purposes of
Check against Information and ideas _p_redmlmn, ex.p]ana.lmn, or control
reference points: ) * internally — explaining and dealing with
o internal 'i" ¥ % * externally — investigative strategies
* external * T * Reasoning with statistical models
* Read/hear/see — aggregate-based reasoning
: ;,;;'L;’g;;‘ summarise « Integrating the statistical and contextual
« Compare — information, knowledge, conceptions
¢ Connect

[ @ DIMENSION 4: DisposITIONS |

¢ Scepticism

« Imagination

¢ Curiosity and awareness
— observant, noticing

* Openness
— to ideas that challenge preconceptions

A propensity to seek deeper meaning
Being Logical

Engagement

Perseverance

Figure 1. A four-dimensional framework for statistical thinking in empirical enquiry. (From
“Statistical Thinking in Empirical Enquiry,” by C. J. Wild and M. Pfannkuch, 1999,
International Statistical Review, 67, p. 226. Copyright 1999 by International Statistical
Institute. Reprinted with permission.)
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Reasoning with Statistical Models

The predominant statistical models are those developed for the analysis of data.
When we talk about “statistical models,” most people interpret the term as meaning,
for example, regression models or time-series models. Even much simpler tools such
as statistical graphs can be thought of as statistical models since they are statistical
ways of representing and thinking about reality. When we use statistical models to
reason with, the focus is more on aggregate-based rather than individual-based
reasoning, although both types are used. Proper individual-based reasoning
concentrates on single data points with little attempt to relate them to the wider data
set, whereas aggregate-based reasoning is concerned with patterns and relationships
in the data set as a whole. A dialogue is set up between the data and statistical
models. The models may allow us to find patterns in the data, find group
propensities, and see variation about these patterns via the idea of distribution. The
models enable us to summarize data in multiple ways depending on the nature of the
data. For example, graphs, centers, spreads, clusters, outliers, residuals, confidence
intervals, and p-values are read, interpreted, and reasoned with in an attempt to find
evidence on which to base a judgment. Different types of statistical models based on
the idea of “process” are starting to be used for reasoning with in the other stages of
the investigative cycle (e.g., see Joiner, 1994; Wild & Pfannkuch, 1999, Section 4).

Integrating the Statistical and Contextual

Although the above types of thinking are linked to contextual knowledge, the
integration of statistical knowledge and contextual knowledge is an identifiable
fundamental element of statistical thinking. The statistical model must capture
elements of the real situation; thus the resultant data will carry their own literature
base (Cobb & Moore, 1997), or more generally, their own body of context
knowledge. Because information about the real situation is contained in the
statistical summaries, a synthesis of statistical and contextual knowledge must
operate to draw out what can be learned from the data about the context sphere.

These ideas will be used to analyze and interpret the perspectives of different
fields on statistical thinking.

CONTRIBUTIONS FROM DIFFERENT FIELDS

Statistics has been like a tiny settlement taking root and steadily growing into a
large, rich country through continual two-way trade with the many neighbors on its
borders. Tracing all the contributions from all the fields that have fed and enriched
statistics would be an impossibly large undertaking; see, for example, the three
volumes of Kotz and Johnson (1992). We will just concentrate on some high points
in the development of statistical ways of thinking, and more recently of pedagogy
aimed at enhancing statistical thinking (see Scheaffer, 2001). Our account stresses
thinking that led to new ways of perceiving a world reality. We do not, for example,
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discuss how different schools of inference use probability models to draw inferences
from data. The big developmental step, as we see it, was to begin fo use probability
models to draw inferences from data.

We begin this section with the early developers of statistics; move on to much
more recent contributions from epidemiology, psychology, and quality management;
and conclude the section with a discussion of recent writings of statistics education
researchers and statisticians influential in the movement of pedagogy from methods
toward thinking.

Origins

Statistical thinking permeates the way we operate and function in everyday life.
Yet, it remains an enigma as to why even the most basic of the statistical
perspectives on the world—namely, reasoning from data—is less than 350 years old
(Davis & Hersh, 1986). Many have put forward explanations for the delay. The
current theory (Hacking, 1975) is that in the Renaissance two significant shifts in
thinking occurred about what was considered to be the nature of knowledge and the
nature of evidence. First, the concept of knowledge shifted from an absolute truth
toward a knowledge based on opinion, resulting in the thinking shifting toward a
probabilistic perspective. This required a skeptical attitude and inductive thinking.
Second, the nature of evidence shifted away from the pronouncements of those in
authority and toward making inferences from observations, resulting in the thinking
shifting toward reasoning from data. Both of these shifts initiated a new paradigm
for viewing and learning about the world.

Drawing Inferences from Data

The roots of such statistical thinking can be traced to John Graunt (David, 1962;
Kendall, 1970; Greenwood, 1970), who in 1662 published the book Natural and
Political Observations. Previously, official statistics had lain dormant as stored data.
Graunt’s new way of thinking is best illustrated with a centuries-old controversy
about whether the plague was carried by infection from person to person or carried
through infectious air. Most people believed both methods were true. They believed
sick people caused the air to be infectious. They also knew that the plague could
start at the dock since a ship from overseas brought with it foul and infectious air.
The practice and advice were to flee such sources of infection. But when Graunt
looked at the number of plague cases, he reasoned (Hacking, 1975, p. 105):

The contagion of the plagues depends more on the disposition of the air than upon the
effluvia from the bodies of men. Which we also prove by the sudden jumpings which
the plague hath made, leaping in one week from 118 to 927, and back again from 993
to 258, and from thence again the very next week to 852.

If the plague was passed from one person to another, then these statistics could
not be explained; but they could be explained by the infectious air theory. In this
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graphic example, we see Graunt taking mankind’s first steps in making inferences
from data. He uses some fundamental statistical thinking, such as noticing and
seeking to explain the differences in the numbers using his context knowledge.
Graunt also gave the “first reasoned estimate of the population of London”
(Hacking, 1975, p. 106) using arithmetical calculations. From knowing the number
of births, he inferred the number of women of childbearing age and hence estimated
the total number of families and the mean size of a family to produce an estimate of
the population. In his time Graunt was regarded by some of his peers as the
“Columbus” who discovered how to think and reason with data and hence opened
up a new world in which old and new demographic reports could be surveyed.

Similar ways of thinking arose independently in many parts of Western Europe
in the same decade. Other pioneers were Petty, King, Halley, Hudde, Huyghens, and
Davenant. According to Kendall (1970, p. 46), these political arithmeticians had an
inferential approach to data and “thought as we think today” since “they reasoned
about their data.” Their approach was to estimate and predict and then learn from the
data, not to describe or collect facts.

Recognition of the Need for Data

Graunt and these other political arithmeticians, besides calculating insurance
rates—which involved much discussion among them on producing realistic
mortality tables—were also promoting the notion that state policy should be
informed by the use of data rather than by the authority of church and nobility
(Porter, 1986). In these ideas we see fundamental statistical thinking operating—
there is a recognition that data are needed in order to make a judgment on a
situation. This notion was not a part of the mainstream consciousness until the late
1800s (Cline Cohen, 1982), when politicians were urged to argue for a policy based
on quantitative evidence since “without numbers legislation is ill-informed or
haphazard” (Porter, 1986, p. 37).

The Beginnings of Statistical Modeling

Even though the foundations of probability were laid down, by Pascal (1623—
1662) and later by Bernoulli (1654-1705) at the same time and in parallel with the
foundations of statistics, probability ideas were not incorporated into empirical data
or statistical analyses. There appeared to be stumbling blocks in (1) relating urn-
device problems to real-world problems; (2) a lack of equiprobability in the real-
world problems; (3) the notion that prediction is impossible when there is a
multitude of causes; (4) thinking tools such as graphs not being available; and (5)
the inevitable time lags in drawing disparate and newly developed strands together
into a coherent whole. According to Stigler (1986), the chief conceptual step toward
the application of probability to quantitative inference involved the inversion of the
probability analyses of Bernoulli and de Moivre (1667-1754).

This ground-breaking inference work of Bayes in 1764 was encouraged by two
critical key ideas. The first key idea was not to think in terms of games of chance.
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That is, instead of thinking of drawing balls from an urn, Bayes thought in terms of
a square table upon which two balls were thrown. This new thinking tool allowed
for continuous random quantities to be described as areas and for the problem to
assume a symmetric character. The second key idea was from Simpson, who in 1755
had a conceptual breakthrough in an astronomical problem. Rather than calculating
the arithmetic mean of the observations, Simpson focused on the errors of the
observations (the difference between the recorded observation and the actual
position of the body being observed) and assumed a specific hypothesis for the
distribution of the measurement errors. These critical changes in thinking opened the
door to an applicable quantification of uncertainty. Lightner (1991, p. 628) describes
this as a transition phase as “many concepts from probability could not be separated
from statistics, for statisticians must consider probabilistic models to infer properties
from observed data.”

Thus in astronomy and geodesy (surveying) the use of probability to assess
uncertainty and make inferences from data employing the mathematical methods of
Laplace (1749-1827) and Gauss (1777-1855) such as the normal distribution for
measurement errors and the method of least squares became commonplace. At this
stage we see the beginning of some more fundamental statistical thinking; there is a
movement from reasoning with arithmetic to reasoning with statistical models and to
the measuring and modeling of error. It is important to note that there was still no
concept of variation in nature. This concept and some other major conceptual
barriers had to be overcome before this thinking could spread to the social sciences.

Social Data and Reasoning with the Aggregate

At the beginning of the 19th century a new sense of dynamism in society, after
the French Revolution, produced a subtle shift in thinking when statistics was seen
as a science of the state. The statists, as they were known, conducted surveys of
trade, industrial progress, labor, poverty, education, sanitation, and crime (Porter,
1986). “The idea of using statistics for such a purpose—to analyze social conditions
and the effectiveness of public policy—is commonplace today, but at that time it
was not” (Cohen, 1984, p. 102). Into this milieu a pioneer in social statistics,
Quetelet (1796-1874), arrived. Quetelet argued that the foundations of statistics had
been established by mathematicians and astronomers. He looked at suicide rates and
crime rates and was amazed to find large-scale regularity. Through realizing that
general effects in society are produced by general causes and that chance could not
influence events when considered collectively, he was able to recast Bernoulli’s law
of large numbers as a fundamental axiom of social physics. Porter (1986, p. 55)
suggested that Quetelet’s major contribution was in: “persuading some illustrious
successors of the advantage that could be gained in certain cases by turning attention
away from the concrete causes of individual phenomena and concentrating instead
on the statistical information presented by the larger whole.” The effect of
Quetelet’s findings reverberated. Debates raged about the “free will of man.”
Politicians and writers such as Buckle and Dickens were impressed; they wrote
about these constant statistical laws that seemed to govern the moral and physical
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condition of people. For instance, the argument was promoted that if a particular
individual did not commit a crime, others would be impelled until the annual quota
of crime had been reached. Thus this new way of processing information was
catalyzing a new awareness of reality and a reevaluation of determinism.

Quetelet’s other major contribution occurred in 1844, when he announced that
the astronomer’s error law, or error curve, also applied to human traits such as
height. He viewed the “average man” (his findings about the average man became so
well known in his day that the phrase is still part of our language today) as the
perfect archetype. All men were designed according to this specification; but
because of nutrition, climate, and so forth failed to achieve the average man’s
measurements (Porter, 1986). He believed, therefore, that such human
measurements were indeed errors. Although too many of his data sets revealed
evidence of normality, he succeeded in creating a climate of awareness that
empirical social observations could be modeled by theoretical distributions. His
work provided “evidence” that there appeared to be an averaging of random causes
and “that nature could be counted on to obey the laws of probability” (Stigler, 1986,
p.- 220). Quetelet started to shift the interest within probability from measurement
error to variation and began the process by which the ‘“error curve” became a
distribution governing variation.

Variation as a Concept

Galton in the late 19th century provided the major conceptual breakthrough
(Stigler, 1986) for rationalizing variation in nature to the normal curve. To him the
curve stood as a denial of the possibility of inheritance. In other words, why did
population variability in height not increase from year to year, since tall parents
should have taller children and short parents should have shorter children? His
pondering on the size of pears (large, moderate, and small) in a garden and his
development of the quincunx as an analogy ‘“demonstrated” that the resulting
mixture of approximately normal conditional distributions was itself approximately
normal. This empirical theory, coupled with his work on reversion in sweet pea
experiments and his study of hereditary stature, eventually led to the theory of
regression to the mean. For the first time, statistical thinking had incorporated the
notion of variation rather than error.

Debates about the use of statistics in the social sciences continued. An argument
promoted was that statistical regularities proved nothing about the causes of things.
When Einstein declared in his famous quotation that “God did not play dice,” he
was stating the viewpoint of the late 19th century that scientific laws were based on
causal assumptions and reflected a causal reality. The defense of human freedom
inspired a wide-ranging reevaluation of statistical thought. Variation and chance
were recognized as fundamental aspects of the world in a way that they had not been
before. This acceptance of indeterminism constituted one of the noteworthy
intellectual developments of the time. According to Porter (1986, p. 319) the
evolvement of statistical thinking from 1662 to 1900 “has been not just to bring out
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the chance character of certain individual phenomena, but to establish regularities
and causal relationships that can be shown to prevail nonetheless.”

New Tools and Transnumeration Thinking

The use of abstract, nonrepresentational pictures to show numbers, rather than
tables of data, was not thought of until 1750-1800. Statistical graphics such as time-
series and scatter plots were invented long after the use of Cartesian coordinates in
mathematics. “William Playfair (1759-1823) developed or improved upon nearly all
the fundamental graphical designs, seeking to replace conventional tables of
numbers with the systematic visual representations of his ‘linear arithmetic’” (Tufte,
1983, p. 9). Another pioneer, Florence Nightingale (1820-1910), also developed
new graphical representations (Cohen, 1984). The representation of her tables of
data into new graph forms, for example, revealed the extent to which deaths in the
Crimea War had been preventable. This changing of data representation in order to
trigger new understandings from the data or to communicate the messages in the
data illustrates some fundamental statistical thinking.

Emergence of a New Discipline

Porter (1986, p. 315) states that “the intellectual character of statistics” had been
crystallized by 1900, and that modern statisticians perceived “the history of their
field as beginning with Galton, [(1822-1911)] if not Pearson [(Karl Pearson, 1857—
1936)].” The emergence of statistical thinking appears to have been based on four
main factors. The first factor is a fundamental realization that the analysis of data
will give knowledge about a situation. The basis to this factor is recognition that
knowledge acquisition can be based on investigation. The second factor is a
recognition that mathematical probability models can be used to model and predict
group (e.g., human group) behavior. Thus an interplay between the mathematical
probability model and the real situation resulted in a shift of thinking to include a
nondeterministic view of reality. The third factor is the application of mathematical
probability models to a variety of domains, resulting in new ways of thinking,
perceiving, and interpreting in the statistics discipline. For example, these new ways
of thinking occurred when mathematical error models were used by Quetelet in the
social science field, and by Galton in the biological sciences, and consequently
became reinterpreted in fundamentally different ways as variation or chance
statistical models. The fourth factor is the development of new tools for analysis,
arising from the new situations where statistics was being applied. These new tools
helped to aid the development of statistical thinking. Statistical thinking appears to
have arisen from a context-knowledge base interacting with a statistical-knowledge
base, with the resultant synthesis producing new ways of modeling and perceiving
the world.

At the beginning of the 20th century people such as Karl Pearson, Ronald A.
Fisher (1890-1962), Jerzy Neyman (1894-1981) and Egon Pearson (1885-1980)
built the foundations of modern statistics (see Salsburg, 2001). Their particular
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insights into principles such as randomization in experiments and surveys, coupled
with the development of theoretical statistics, promoted new ways of thinking in
many fields. In particular, Fisher’s work is regarded as providing the conceptual
underpinnings not only for the academic discipline of statistics but also for fields
such as plant and animal breeding, evolutionary biology, and epidemiology.
Krishnan (1997) believes that Fisher’s most important contribution to statistics and
science was his formulation of the basics of experimental design—randomization,
replication, and local control. Consideration of variation (e.g., variation in the
growing conditions for plants) is a core element in the thinking behind such
experimental design.

Fisher’s famous thought experiment on “the lady and the cup of tea,” on which
he based his discussion on experimental designs, was never undertaken. The idea
arose from an actual incident 12 years earlier, when a Dr. Muriel Bristol declined a
cup of tea on the grounds that the milk had not been poured in first. Fisher and her
fiancé immediately set out to test whether she could tell the difference. Her fiancé
declared she was able to prove her case. Box (1978, p. 134), however, thinks that
Fisher pondered on questions such as: “How many cups should be used in the test? .
.. What should be done about chance variations in the temperature, sweetness and
so on? What conclusions could be drawn from a perfect score or from one with one
or more errors?” Therefore, Fisher initiated his groundbreaking work by considering
questions relevant to designing an experiment for the following situation:

A lady declares that by tasting a cup of tea made with milk she can discriminate
whether the milk or the tea infusion was first added to the cup. We will consider the
problem of designing an experiment by means of which this can be asserted. (Fisher,
1935, cited in Box, 1978, p. 135)

Fisher’s two main innovations for the design of experiments were the
introduction of analysis of variance and randomization. According to Box (1997, p.
102), Fisher elucidated “the underlying theory and provided the statistical methods
that research workers urgently needed to deal with the ubiquitous variation
encountered in biological experimentation.” Fisher also played a pivotal role in the
actual use of randomization in controlled agricultural experiments (Fienberg and
Tanur, 1996). Randomization was described by Fisher as a method that was
necessary for the validity of any test of significance, since it “affords the means, in
respect of any particular body of data, of examining the wider hypothesis in which
no normality of distribution is implied” (1935; cited in Box, 1978, p. 151). Without
randomization, confounding factors would give biased estimates. Fisher’s work
contributed to the recognition that uncertainty could be captured by quantifiable
measures that led to a deeper appreciation and understanding of its nature (Box,
1997). Porter (1986) also observed that Fisher’s integration of statistics with
experimental design essentially changed the character of statistics by moving it
beyond observing patterns in data to demonstrating the existence of causal
relationships.
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Some Contributions from Epidemiology

Variation and Randomization

In accounts of statistical thinking in medicine, variation is never mentioned; yet
it is at the heart of the methodology and the thinking. Perhaps it is because medicine
has only recently accepted the quantification and objectification of its practice
(Porter, 1995). This awareness of the importance of statistical thinking and methods
in epidemiology can largely be attributed to the work of three statisticians—Austin
Bradford Hill, Jerome Cornfield, and Richard Doll (Gail, 1996)—during the mid-
20th century. They were the main statisticians behind the general acceptance by the
medical profession of (1) the randomized comparative clinical trial, starting with
Hill’s pioneering work with the whooping-cough vaccine in the 1940s; and (2)
acceptance of a code of practice for observational studies, through their data
analyses on the association between smoking and lung cancer. Before the technique
of randomized comparative trials could be applied to humans, however, there were
ethical issues to be overcome, as well as a largely innumerate profession (Gail,
1996). Another reason for this recent acceptance of randomized comparative clinical
trials is that the statistical methods for comparison were only invented in the 1920s
by Fisher (in the context of agricultural experiments). It is noteworthy that what are
now common practices and ways of thinking about what constitutes evidence only
began to be accepted by the medical profession during the 1960s.

Causal Inference

Fisher was a significant protagonist in the prolonged debate on whether smoking
causes lung cancer (Box, 1978). However, his insistence on raising other possible
causes for lung cancer—together with Cornfield, Doll, and Hill’s careful, logical
analyses of data—markedly increased awareness of the importance of statistical
thinking in medicine (Gail, 1996). Alternative explanations for the association
between lung cancer and smoking suggested by Fisher and others were
systematically refuted by Cornfield, Doll, and Hill until there could be no other
plausible interpretation of the data. The debate on the association between smoking
and lung cancer, which began in 1928, culminated in the 1964 publication of the
U.S. Surgeon General’s report, a landmark in the setting of standards of evidence for
inference of a causal relationship from observational studies.

Thus in epidemiology it was recognized that purely statistical methods applied to
observational data cannot prove a causal relationship. Causal significance was
therefore based on “expert” judgment utilizing a number of causal criteria such as
consistency of association in study after study, strength of association, temporal
pattern, and coherence of the causal hypothesis with a large body of evidence (Gail,
1996). It should be noted that whether the study is experimental or observational, the
researcher always has the obligation to seek out and evaluate alternative
explanations and possible biases before drawing causal inference.
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Causal inference is at the heart of epidemiology. Epidemiology laid down the
foundations for causal criteria as first enunciated by Hill (1965). According to Porter
(1995), these agreed-upon rules and conventions are paramount for trusted
communication globally. Thalidomide was originally considered safe according to
expert judgment. The resulting disaster led to more criteria being laid down for
scientific procedure and quantification of new knowledge. Gail (1996, p. 1) believes
that:

Statistical thinking, data collection and analysis were crucial to understanding the
strengths and weaknesses of the scientific evidence ... [and] gave rise to new
methodological insights and constructive debate on criteria needed to infer a causal
relationship. These ideas form the foundation for much of current epidemiologic
practice.

The statistical thinking that would seem to permeate epidemiology is a
synthesizing of contextual knowledge with statistical knowledge and the
consideration of variation at all stages of the investigative cycle for experimental
and observation studies. Statistical thinking in this context is about seeking causes
with a knowledge and understanding of variation.

Some Contributions from Psychology

The centrality of variation in statistical thinking was being recognized in
experimental design and in observational studies. In psychology in the late 1960s,
however, a link was recognized between statistics and how people think in everyday
situations.

Recognizing Statistical Thinking as a Way of Perceiving the World

In the early 1970s Kahneman and Tversky began publishing important work on
decision making under uncertainty (see Tversky and Kahneman, 1982). They
discovered that statistical thinking is extraordinarily difficult for people. These
researchers’ particular insights transformed the idea of statistical thinking from
making inferences from purposefully collected data, to making inferences from
everyday data that are not collected for any purpose nor seen as data. To illustrate
this concept, the story of how this field was started is related. According to McKean
(1985), Kahneman mentioned, in a psychology course to flight instructors, that from
research with pigeons there was evidence that reward was a more effective teaching
strategy than punishment. The flight instructors disagreed vehemently that this
research was applicable to humans. They knew from their experience that if they
praised a person for a good maneuver then invariably the next maneuver would be
worse, and that if they yelled at the person for a badly executed maneuver then the
next one would more than likely be an improvement. At that instant, Kahneman
made an insightful connection with Galton’s statistical principle of regression to the
mean.



UNDERSTANDING OF STATISTICAL THINKING 29

We can explain the idea as follows (Figure 2). If you look at a time-series plot of
data points independently sampled from a random distribution, say the normal as in
the figure, you will see that the observation that follows a fairly small value tends to
be larger, and the observation that follows a fairly large value tends to be smaller. It
tends to go back, or “regress,” toward the mean.

Thus if flight performance was a random process and praise for good
performance and censure for poor performance had absolutely no effect at all, flight
instructors would tend to have experienced students performing better after censure
and worse after praise. They would then come to exactly the same conclusion—that
censure was effective and praise was, if anything, counterproductive:

The student pilots, Kahneman explained, were improving their skills so slowly
that the difference in performance from one maneuver to the next was largely a
matter of luck. Regression dictated that a student who made a perfect three-point
landing today would make a bumpier one tomorrow—regardless of praise or blame.
But the flight instructors, failing to realize this, had underestimated the effect of
reward and overestimated the effect of punishment. (McKean, 1985, p. 25)
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Figure 2. Time-series plot of data independently sampled from a normal distribution
(u=0, o=1).

This type of statistical thinking we will label as understanding the behavior of
variation, though Kahneman and Tversky do not explicitly write in these terms. It
requires admitting the possibility of indeterminism. People were mistakenly
attributing each change to a cause rather than perceiving the students’ performance
as a random process with an underlying mean. Kahneman and Tversky became
sensitized to seeing regression to the mean everywhere. They developed a long list
of phenomena that people have found surprising that can be explained in terms of
regression to the mean.

This insight led to the two men thinking of other statistical principles that were
counterintuitive. One of these was that people believe that a small sample is a
representative sample, or that a small sample should reflect the characteristics of the
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population (Tversky & Kahneman, 1982). From a variation perspective there is
more variation in a small sample than in a large sample. Consequently, people often
put too much faith in the results of small samples. But there is an ambivalence here.
At other times people severely doubt results from small (i.e., small in proportion to
the size of the population) randomly selected samples (Bartholomew, 1995) and do
not believe that the sample will reflect the population.

Tversky and Kahneman’s work has revealed that statistical thinking is not
embedded in how people act and operate in the world, which is not surprising given
its youth. In fact the psychologists Falk and Konold (1992, p. 151) believe people
must undergo their own ‘probabilistic revolution’ and shift their perception of the
world from a deterministic view to one “in which probabilistic ideas have become
central and indispensable.” A complementary but very differently expressed view is
shared within the quality management field, where there is a belief that peoples’
conception of statistical thinking will alter their understanding of reality (Provost &
Norman, 1990).

Some Contributions from Quality Management

Statistical thinking is at the forefront of the quality management literature. Snee
(1999) believes that the development of statistical thinking will be the next step in
the evolution of the statistics discipline, while Provost and Norman (1990, p. 43)
state "the 21st century will place even greater demands on society for statistical
thinking throughout industry, government, and education.” Such strong beliefs about
the value of statistical thinking pervade the quality management field, which focuses
on systematic approaches to process improvement. At the heart of these approaches
is learning from and about processes so that changes can be made to improve them.
This has led to a literature and to a large numbers of courses in statistical thinking,
many of them concerned with the skill sets required of managers (e.g., Joiner, 1994).
What stands out immediately in their definitions of statistical thinking is the role of
variation. Process improvement, in large part, consists of controlling and minimizing
variation.

Controlling Variation

Hare, Hoerl, Hromi, and Snee (1995) state that statistical thinking has its roots in
the work of Shewhart, who in 1925 published a paper about maintaining the quality
of a manufactured product. This led to the development of the quality control field,
of which Deming was also at the forefront (Shewhart & Deming, 1939). The basis
of Shewhart and Deming’s work was that there are two sources of variation in a
process: special-cause variation and common-cause variation, or chance variation.
For quality control the prevailing wisdom for a long time had been to identify, fix,
and eliminate the special causes (thus bringing the process to ever-improved levels
of statistical stability) and to accept the inherent variability within a process (i.e., the
common cause or chance variation). So long as the observations fell within the
three-sigma limits, the rule was to leave the process alone. This attitude to variation
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has been changing due to a climate of continually shifting standards and higher
expectations. It is no longer quality control but continuous quality improvement that
is the focus of management.

Minimizing Variation
Pyzdek’s (1990, p. 104) approach to thinking about variation is summarized as:

e All variation is caused.
Unexplained variation in a process is a measure of the level of ignorance
about the process.

e [t is always possible to improve understanding (reduce ignorance) of the
process.

e As the causes of process variation are understood and controlled variation
will be reduced.

This understanding of variation enables not only the reduction of process
variation but also the changing of the average level of the process (Snee, 1999).
Thus in quality improvement it is believed that to truly minimize variability, the
sources of variation must be identified and eliminated (or at least reduced). The first
task, however, is to distinguish common-cause and special-cause variation. It is
recognized that variation from special causes should be investigated at once, while
variation from common causes should be reduced via structural changes to the
system and long-term management programs. The method for dealing with common
causes is to investigate cause and effect relationships using such tools as cause and
effect diagrams, stratification analysis, pareto analysis, designed experiments,
pattern analysis, and modeling procedures. In-depth knowledge of the process is
essential. Patterns in the data must be looked for, and depending on the question
asked, data must be aggregated, re-aggregated, stratified, or re-stratified. There is a
need to look at the data in many ways in the search for knowledge about common
causes. The context must also be known in order to ask good questions of the data.

Pyzdek (1990) gives a graphic example of how viewing “chance” as being
explicable and reducible rather than unexplainable but controllable in a system can
lead to improvements. In a manufacturing process the average number of defects in
solder-wave boards declined from 40 to 20 per 1,000 leads, through running the
least dense circuit pattern across the wave first. Another two changes to the system
later on reduced the average number of defects to 5 per 1,000 leads. Therefore
Pyzdek (1990, p. 108) repudiates the “outdated belief that chance causes should be
left to chance and instead presents the viewpoint that all variation is caused and that
many, perhaps most processes can be improved economically.” His perspective is on
the marketplace with its increasing emphasis on continuous improvement. Although
this may be considered a deterministic outlook, there is still an acceptance of
indeterminism—it is more about reducing the level of indeterminism by acquiring
more knowledge.
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In reality, variation is ever present. If patterns cannot be found in the data, then
the extent of the variability can be estimated and allowed for in the process. If
patterns are found, but the cause is not manipulable (e.g., gender), then the
identification of the cause enables better prediction for individuals and processes can
be designed to allow for the variation. If the cause is manipulable, then the process
can be changed to increase the “desirable” outcomes (Wild & Pfannkuch, 1999).
Therefore the thinking is to search for causes, for all possible explanations, but to
recognize that variation will be present. Coupled with this thinking is the cognition
that what may appear to be a pattern may in reality be random or unexplained
variation.

Variation as a Way of Perceiving the World

In the quality management area, common consensus is being developed on the
characteristics of the statistical thinking required for improving systems. As people
in the quality field have moved from quality control to quality management, the
nature of the thinking required has developed from an emphasis on stable variability
in manufactured products toward an emphasis on the way managers (from any
environment) should operate and think.

Snee (1990, p. 116) believes there is a need to acquire a greater understanding of
statistical thinking and the key is to focus on statistical thinking at the conceptual
level or from a “systems” perspective rather than focusing on the statistical tools:

I define statistical thinking as thought processes, which recognize that variation is all
around us and present in everything we do, all work is a series of interconnected
processes, and identifying, characterizing, quantifying, controlling and reducing
variation provide opportunities for improvement. This definition integrates the ideas
of processes, variation, analysis, developing knowledge, taking action and quality
improvement.

According to Hare et al. (1995, p. 55), “Statistical thinking is a mind-set.
Understanding and using statistical thinking requires changing existing mind-sets.”
They state that the key components of statistical thinking for managers are “(1)
process thinking; (2) understanding variation; (3) using data whenever possible to
guide actions.” In particular, they reinforce ideas like these: improvement comes
from reducing variation; managers must focus on the system, not on individual
people; and data are the key to improving processes. Kettenring (1997, p. 153)
supports this view when he states that managers need to have an “appreciation for
what it means to manage by data.”

Snee (1999, p. 257), however, contends that while data should be used for
effective statistical thinking, data are not essential to the use of statistical thinking.
He observes variation is present in processes without data being available. For
example, it is generally known that “decreasing the variation of process inputs
decreases the variation of process outputs.” Hence, without data, statistical thinking
would suggest, for example, that companies should significantly reduce their
number of suppliers. Britz, Emerling, Hare, Hoerl, and Shade (1997, p. 68) sum up
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this ability to use statistical thinking without data as follows: “the uniqueness of
statistical thinking is that it consists of thought processes rather than numerical
techniques. These thought processes affect how people take in, process, and react to
information.”

Tversky and Kahneman’s insights about how regression to the mean affects
people’s beliefs about the effects of reward and punishment are widely promulgated
in quality management as part of “understanding the theory of variation.” The
setting used to illustrate this is typically the reactions of sales managers to the highs
and lows in sales figures of their staff. According to Joiner and Gaudard (1990),
many managers fail to recognize, interpret, and react appropriately to variation over
time in employee performance data. These statisticians are attempting to get
managers to understand that looking at single time-interval changes and meting out
praise and censure is not conducive to improving performance. The way to improve
performance is to make some system change that will increase the average level of
performance. Managers need to recognize that there will always be variation, and
that unless there is a system change there will be regression to the mean. This
suggests that managers are being asked to take on a world view that allows for
indeterminism.

Statistical thinking in quality management is now seen not only as necessary for
gleaning information from data but also as a way of perceiving the world reality.
From quality management we learn that statistical thinking is, first and foremost,
about thought processes that consider variation, about seeking explanations to
explain the variation, about recognizing the need for data to guide actions, and about
reasoning with data by thinking about the system or process as a whole. Implicit in
their concepts about variation is that system (not people or individual) causal
thinking is paramount. Once the type of variation has been categorized as special-
cause or common-cause, then there are appropriate strategies for identifying the
causes of that variation. The quality management thinking approach is not to leave
variation to chance, but to reduce it in an attempt to improve processes and
performance.

Some Contributions from Statistics Education Researchers

The quality management approach to statistical thinking arose from the
confluence of a focus on empirical data and the need to improve processes. In
contrast, the statistics education field tended to have its origins in mathematics
education and in a deductive rather than inductive culture.

Statistics education research emerged in the late 1970s and focused mainly on
probability (e.g., Fischbein, 1975; Tversky & Kahneman, 1982). It has really only
been in the last decade that statistical thinking has begun to be addressed. We will
now discuss some of these developments.
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Integrating the Statistical and the Contextual

It emerged from the research of Biehler and Steinbring (1991) that the interplay
between data and context was essential for the generation and interpretation of
graphical representations. They used the term statistical detective work to describe
this process of questioning the data through to a judgment or decision about the
original situation. Shaughnessy, Garfield, and Greer (1996, p. 206) also suggested
that students need to set up a dialogue with data with the mind-set of a detective and
to “look behind the data” since data arise from a specific context.

Data are often gathered and presented by someone who has a particular agenda. The
beliefs and attitudes lying behind the data are just as important to include in the
treatment of data handling as are the methods of organizing and analyzing the data ...
it is mathematical detective work in a context ... relevance, applicability, multiple
representations and interpretations of data are lauded in a data handling environment.
Discussion and decision-making under uncertainty are major goals ... so too are
connections with other disciplines.

Transnumeration and Context Knowledge

From their research on students involved in statistical projects using technology,
Ben-Zvi and Friedlander (1997) emphasized, in their hierarchy of thinking modes,
the role of representation and implicitly the role of context. Students who were
handling multiple representations in a meaningful and creative way, and were using
graphs to search for patterns and to convey ideas—coupled with a critical attitude—
were considered to be thinking statistically. One of the main notions identified in
this hierarchy is the fundamental type of statistical thinking that we call
transnumeration.

Hancock, Kaput, and Goldsmith (1992, p. 339) view statistics from a modeling
perspective encapsulating the idea that data are a model of a real-world situation.
They identified data creation and data analysis as making up the domain of data
modeling. “Like any model it is a partial representation and its validity must be
judged in the context of the uses to which it will be put. The practical understanding
of this idea is the key to critical thinking about data-based arguments.” They state
that data creation has been neglected and includes:

Deciding what data to collect, designing a structure for organizing the data and
establishing systematic ways of measuring and categorizing ... data creation informs
data analysis because any conclusion reached through analysis can only be as reliable
and relevant as the data on which it is based. The most interesting criticisms of a
data-based argument come not from scrutinizing graphs for misplotted points ... but
from considering some important aspect of the situation that has been neglected,
obscured or biased in the data collection.

This is a good example of (1) transnumeration at the beginning of the problem
when relevant “measures” need to be captured from the real system and (2) bringing
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to the problem context knowledge of the situation and integrating it with statistical
knowledge to challenge the interpretation of the data.

Reasoning with Statistical Models

Hancock et al. (1992) and Konold, Pollatsek, Well, and Gagnon (1997)
conclude, from their research on students, that reasoning about group propensities
rather than individual cases is fundamental in developing statistical thinking. But,
according to research by Konold et al. (1997), students dealing with data find it very
difficult to make the transition from thinking about and comparing individual cases
to aggregate-based reasoning. For example, in mathematics one counterexample
disproves a conjecture or claim, whereas in statistics a counterexample (an
individual case) does not disprove a theory concerning group propensities.
Furthermore, for students to reason with a statistical graph they must “see” patterns
in the data set as a whole, with the proviso that patterns can be seen in randomness
and that individual-based reasoning may be required in some situations.

Recognition of the Need for Data

Hancock et al. (1992), Konold et al. (1997), and Watson et al. (1995) have
observed in their research that it was not unusual to find students who expected that
the collection and analysis of data would confirm their personal knowledge of the
situation. In fact, the students often ignored the graphs they had constructed and
wrote their conclusions based on their own beliefs. This fundamental statistical
thinking element, which some students seem to lack, is the recognition that data are
needed to judge a situation. This facet includes the recognition that personal
experience and opinions may be inadequate or possibly biased, and furthermore that
opinions may need to be revised in light of the evidence gained.

Statistical Thinking and Interacting with Statistically Based Information

Many mathematics curricula (e.g., Ministry of Education, 1992) have
incorporated the interpretation and critical evaluation of media and other statistically
based reports as a desirable outcome in a statistics course. This is not surprising
given the high level of statistical information present in the media (Knight et al.,
1993) and that the general aim of education programs is to produce literate citizens.

The ability to question claims in the media and to critically evaluate such reports
requires high-level thinking skills (Watson, 1997). When students are confronted
with having to form a judgment on a report, they have to weigh up what they are
willing to believe, what else should be done, or what should be presented to them to
convince them further. Gal (1997) suggests that evaluation of a report requires
students to have a critical list of “worry” questions in their heads, coupled with a
critical disposition. This list of worry questions is based on critiquing the
investigative cycle stages. This underlying thinking requires the students to place
themselves in the position of being the investigators and thereby determining the
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considerations that an investigator should give to such aspects as the measures,
design, alternative explanations, inference space, and so forth. In doing so, the
student checks for possible flaws in the design and reasoning. This evaluation
process requires the students to use not only their statistical knowledge, but their
contextual knowledge. Often when thinking of, for example, alternative explanations
for the meaning of findings, students must “consider other information about the
problem context or consult world knowledge they may have to help in ascribing
meaning to the data” (Gal, 1997, p. 50).

Gal and Watson, through their research, have alerted statistics educators to the
fact that involving students in statistical investigations does not appear to fully
develop statistical thinking. Gal et al. (1995, p. 25) believe the reason for this is
“both an issue of skill transfer, as well as the fact that a somewhat different set of
cognitive skills and dispositions is called for.” Therefore it would seem that specific
instruction in the evaluation of statistically based reports is required to fully develop
statistical thinking.

Probabilistic and Deterministic Thinking

Apart from Biehler’s (1994) work, educationists have not paid a great deal of
attention to explicating statistical thinking from a practitioner perspective. Biehler
(1994) believes there are two cultures of thinking in statistics, deterministic and
probabilistic. This deterministic thinking is demonstrated in the methods of
exploratory data analysis (EDA), which does not try to calibrate variability in data
against a formal probability model. Patterns are sought in an attempt to search for
causes; but there is the awareness that people often “see” patterns in randomness,
and a filter is needed for such a phenomenon. “EDA people seem to appreciate
subject matter knowledge and judgment as a background for interpreting data much
more than traditional statisticians seem to” (Biehler, 1994, p. 7).

Probabilistic thinking occurs when reasoning with theoretical probability
models, for example, in situations where the argument is based on the data being a
random sample from a particular model. Biehler (1999, p. 261) argues strongly that
the modeling of a system by a probability distribution can “reveal new types of
knowledge, new causes, explanations and types of factors that cannot be detected at
the individual level.” Systematic and random variation and their complementary
roles also need to be understood (Konold et al., 1991) in these situations. Therefore
Biehler suggests that statistical thinking requires both probabilistic and deterministic
thinking as well as both aggregate-based and individual-based reasoning. This shift
toward EDA in statistics, which was influenced by the 1962 landmark paper of
Tukey (Kotz & Johnson, 1992) and further developed by him (see Tukey, 1977), has
focused statistics educators’ attention on the fact that statistical thinking involves a
context knowledge base, a statistical knowledge base, variation as a core component,
a search for causes, and reasoning with statistical and probability models.
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Variation as Fundamental in Statistical Thinking

The notion that variation is fundamental in statistical thinking was not
recognized by educationists until recently (Shaughnessy, 1997; Pfannkuch, 1997),
although the idea was being vigorously promoted by statisticians with an interest in
education (e.g., Moore, 1990). Shaughnessy (1997) believes the lack of research and
mention of variation is that research largely reflects the emphasis in curricula
materials. This situation is now being addressed by Shaughnessy, Watson, Moritz, &
Reading (1999) who, in their research, have found a lack of clear growth in students’
conceptions of variability for a particular task.

From this brief overview of research into students’ thinking, we note that the
fundamental elements of statistical thinking have been identified in statistics
education research. The variation element has only recently been addressed. It is a
powerful underlying conception that allows us to relate behavior we can actually
observe to the abstract ideas of pattern, exceptions, and randomness. Statistics
education research has added important insights into statistical thinking by
identifying the way students think and by recognizing that statistical thinking is not
an innate, nor a community way of thinking. It must be specifically learned and
developed in an educational environment and in the statistics discipline. Statistics
education researchers have highlighted the difficulties students have in making the
transition to a statistical way of thinking. They have also promoted awareness that
statistical thinking involves a different set of cognitive skills in the arena of
empirical enquiry and in the arena of the evaluation of statistically based reports.

Some Contributions from Statisticians

In the last decade in the statistics literature, David Moore has been vigorously
promoting the idea that the development of a statistical way of thinking must be
central in the education process and that the variation-type thinking should be at the
heart of statistics education. By 1996 the board of directors of the American
Statistical Association (ASA) had approved recommendations that the curriculum
should emphasize the elements of statistical thinking (Moore, 1997) and adopted a
definition very similar to that given by Moore (1990, below).

Variation Is the Core of Statistical Thinking
Moore (1990, p. 135) summarizes statistical thinking as:

e The omnipresence of variation in processes. Individuals are variable;
repeated measurements on the same individual are variable. The domain of
strict determinism in nature and in human affairs is quite circumscribed.

e The need for data about processes. Statistics is steadfastly empirical rather
than speculative. Looking at the data has first priority.
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e The design of data production with variation in mind. Aware of sources of
uncontrolled variation, we avoid self-selected samples and insist on
comparison in experimental studies. And we introduce planned variation into
data production by use of randomization.

e The quantification of variation. Random variation 1is described
mathematically by probability.

e The explanation of variation. Statistical analysis seeks the systematic effects
behind the random variability of individuals and measurements.

Moore (1992a, p. 426) extends this notion of the centrality of variation by stating
that “pupils in the future will bring away from their schooling a structure of thought
that whispers ‘variation matters.”” What specifically that structure of thought is and
how it would be articulated or modeled in the teaching process is a matter of
conjecture. At the root of that structure appears to be ideas about determinism and
indeterminism.

There is a minefield of interrelated and overlapping concepts surrounding
variation, randomness, chance, and causation. Section 3 of Wild and Pfannkuch
(1999) attempts to explicate the distinctions.

Arguing with a Context Knowledge Base

Cobb and Moore (1997, p. 801) also believe that context plays an important role
in how to think with data: “statistics requires a different kind of thinking, because
data are just not numbers, they are numbers with a context.” They emphasize that
the data “literature” must be known in order to make sense of data distributions.
When looking for patterns, data analysts must ultimately decide “whether the
patterns have meaning and whether they have any value”; this will depend on “how
the threads of those patterns interweave with the complementary threads of the story
line,” since the “context provides meaning” (Cobb and Moore, 1997, p. 803).
Hawkins (1996) concurs, stating that students are statistically illiterate if they think
that the statistical distribution is the final product.

Context knowledge is also essential for judging (1) the quality of the data arising
from a particular data collection design and (2) the relevance of the data to the
problem. Mallows (1998, p. 2) believes that statisticians have not paid enough
attention to thinking about what he calls the zeroth problem: “considering the
relevance of the observed data, and other data that might be observed, to the
substantive problem.” He is concerned that thinking about the relevance of the data
to the problem should not be neglected when statisticians attempt to capture
measures from the real situation, since “statistical thinking concerns the relation of
quantitative data to a real-world problem, often in the presence of variability and
uncertainty. It attempts to make precise and explicit what the data has to say about
the problem of interest” (Mallows, 1998, p. 3). Moore (1997) and Hoerl, Hahn, &
Doganaksoy (1997) emphasize that attention should be paid to the design of the data
production process since context knowledge about the design will enable the quality
of the data to be assessed. Hawkins (1996) extends this notion further by suggesting
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students cannot acquire statistical reasoning without knowing why and how the data
were collected. Scheaffer (1997, p. 156) also emphasizes the importance of knowing
“how the data originated [and] what the numbers might mean.” Moore (1998, p.
1263) perhaps sums up these concerns: “effective use of statistical reasoning
requires considering the zeroth problem and interpretation of formal results in the
context of a specific setting.” The implication is that statistical thinking involves
going beyond and looking behind the data, and making connections to the context
from which they came.

Transnumeration

Data reduction and data representation are an essential requirement of dealing
with masses of data. Moore (1998, p. 1258) considers “statistical thinking offers
simple but non-intuitive tools for trimming the mass, ordering the disorder,
separating sense from nonsense, selecting the relevant few from the irrelevant
many.” Thus thought processes must be triggered for initiating the changing of the
data into a manageable form from which information can be gleaned. Hawkins
(1997, p. 144) coins the term informacy in an attempt to describe such reasoning and
thinking. To be informate means “one requires skills in summarizing and
representing information, be it qualitative or quantitative, for oneself and others.”
We believe this transnumeration type of thinking is fundamental for data-handling
processes.

The communication of messages in the data, transnumeration-type thinking, is
intimately linked with inferential thinking. Apart from considering the relevance of
the data to the problem, it is also important to consider the inferences that can be
made from the data. W. E. Deming first raised the important distinction between
enumerative and analytical studies in 1950 (for a detailed discussion, see Hahn &
Meeker, 1993). The aim of an enumerative study is to describe the current situation,
whereas the aim of an analytical study is to take actions on or make predictions
about a future population or process. The space for reliable statistical inference is
limited to the population or process actually sampled. For example, a public opinion
poll to assess the current view of U.S. voters on who they would vote for in the next
election is an enumerative study. Formal inference will provide reasonably reliable
answers. If the poll was used to predict the outcome of the next election (future
process), the study then becomes analytic. Many, if not most, important problems
require using data from current processes or populations to make predictions about
the likely behavior of future processes or populations. There are no statistically
reliable ways of doing this. Our measures of uncertainty reflect uncertainty about the
true characteristics of the current process, thus understating rational levels of
uncertainty about the future process. The validity of extrapolation to future
processes can be justified only by contextual knowledge of the situation.
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Statistical Thinking as a Way of Perceiving the World

Ullman (1995) perceives the framework in which statistical thinking operates as
being broadly based, to the extent that it could be used informally in everyday life.
“We utilize our quantitative intelligence all the time. ... We are measuring,
estimating and experimenting all without formal statistics” (p. 6). Ullman believes
this quantitative intelligence is unique to statistics. Some principles he suggests as a
basis for quantitative intelligence follow: “to everything there is a purpose; most
things we do involve a process; measurements inform us; typical results occur;
variation is ever present; evaluation is on going; decisions are necessary” (p. 5).
Quantitative intelligence allows a statistical perception of reality.

Statistical Thinking Is an Independent Intellectual Method

Statistics is an epistemology in its own right; it is not a branch of mathematics
(Moore, 1992b). Hawkins (1996) suggests that a mathematically educated person
can be statistically illiterate. Statistical thinking, states Moore (1998, p. 1263), “is a
general, fundamental and independent mode of reasoning about data, variation and
chance.” Ullman (1995, p. 2) concurs that statistical thinking or quantitative
intelligence is an inherently different way of thinking because the reasoning
involves dealing with uncertain empirical data: “I claim that statistical thinking is a
fundamental intelligence.”

The statistical thinking promulgated by these statisticians is encapsulated as an
independent intellectual method. Its domain is the empirical enquiry cycle, but the
domain should also be extended to a way of thinking about and perceiving the
world. Statistical thinking goes beyond the domain of mathematics, which
statisticians use simply as a means to help them achieve their own ends. The nature
of statistical thinking is explained by these statisticians as noticing, understanding,
using, quantifying, explaining, and evaluating variation; thinking about the data
“literature”; capturing relevant data and measurements; summarizing and
representing the data; and taking account of uncertainty and data variability in
decision making.

DISCUSSION AND SUMMARY

Statistical Thinking and Empirical Enquiry

The Wild & Pfannkuch (1999) four-dimensional model (Figure 1) was an
attempt to characterize the way experienced statistical practitioners think when
conducting empirical enquiries. As such it represents a goal for education programs
to strive for. The model was developed as a result of interviewing statisticians and
tertiary students about statistical projects they had been involved in; interviewing
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tertiary students as they performed statistical tasks; and analyzing the literature
described earlier. The research focused on statistical thinking at the broad level of
the statistical enquiry cycle, ranging from problem formulation to the
communication of conclusions. Our four-dimensional framework (Figure 1) for
statistical thinking in empirical enquiry describes a nonhierarchical, nonlinear,
dynamic way of thinking that encompasses an investigative cycle, an interrogative
cycle, types of thinking, and dispositions, all of which are brought to bear in the
solving of a statistically based problem. The thinker operates in all four dimensions
at once. For example, the thinker could be categorized as currently being in the
planning stage of the investigative cycle (Dimension 1), dealing with some aspect of
variation in Dimension 2 (types of thinking) by criticizing a tentative plan in
Dimension 3 (interrogative cycle) driven by skepticism in Dimension 4
(dispositions).

The investigative cycle (Figure 1a) describes the procedures a statistician works
through and what the statistician thinks about in order to learn more in the context
sphere. The dispositions (Figure 1d) affect or even initiate entry of the thinker into
the other dimensions. The interrogative cycle (Figure 1c) is a generic thinking
process that is in constant use by statisticians as they carry out a constant dialogue
with the problem, the data, and themselves. It is an interrogative and evaluative
process that requires effort to make sense of the problem and the data with the aim
of eventually coming to some resolutions about the problem and data during that
dialogue. The types of thinking (Figure 1b) are divided into generic types of
thinking, which are common to all problem solving, and fundamental statistical
types of thinking, which we believe are inherently statistical (see the section titled
“Model for Interpretation of Literature”). These types of thinking reflect that
thinking, when applied in a statistical context, will enable the statistician to abstract
a statistical question from the real situation; capture cogent elements of that reality
in measurements and statistical models; work within models using statistical
methods to draw out inferences from the data; and communicate what has been
learned from the data about the real situation.

This framework was an attempt to make explicit what has previously been
largely implicit—the thinking processes used by practitioners during data-based
enquiry. According to Resnick (1987, p. 35), “each discipline has [its own]
characteristic ways of reasoning,” and such thinking processes should be embedded
into the teaching and learning of that discipline. Statistical problem solving requires
holistic thinking informed by statistical elements. These peculiarly statistical
elements appear as the “Types Fundamental to Statistical Thinking” in Dimension 2
(Figure 1b).

From a survey of history, literature, and our own exploratory studies, we believe
our four-dimensional framework is one way of incorporating this knowledge into a
current explication of what we understand to be statistical thinking in the domain of
problem solving. This framework does not, however, address statistical thinking in
the arenas of evaluating enquiries and in everyday life, but it can shed light on them.

We want students to learn to interact with accounts of statistical investigations
performed by others—in “the information-using domain” (Barabba, 1991; Gal,
2000). Statistically based information will be used by students to obtain information
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about societal issues; to make decisions about their own lives in areas such as
medicine, gambling and insurance; and to make decisions in their occupations such
as marketing, manufacturing, and law. Major sources include technical reports
written by investigators and media reports, which are typically at least third-hand
summaries. Two main processes need to be invoked. One addresses the question,
“To what extent do I trust this information?” and the other extracts meaning from
the information. Critical appraisal of information in a report largely consists of
appraising the way in which the investigators have proceeded through the steps of
PPDAC (Problem, Plan, Data, Analysis, Conclusions) in Dimension 1. We often
find fatal flaws through inappropriate choices of the measures used, the study
design, and the analysis used; and have learned to beware, at the conclusions stage,
of extrapolations beyond the sampled inference space. Extracting meaning tends to
be given less emphasis in teaching than more peripheral issues such as misleading
graphics. (With a little knowledge, we can often extract correct information from a
“misleading” graph.) We argue that, apart from the use of reading strategies, the
extracting of meaning that goes on in the interpretation of reports is a subset of the
extracting of meaning that is required during investigation. Since knowledge about
investigations precedes the ability to criticize, this implies that statistical thinking in
empirical enquiry is an extremely basic form of statistical thinking. Even though the
evaluation of enquiries is based on knowledge of the investigation process, it still
requires specific instruction to enhance the links and connections.

In addition, there is statistical thinking that affects our interpretation of the
phenomena and happenstance information we come across in daily life; such
thinking skills can be valuable even in the absence of data. In particular, many
everyday lessons flow from an appreciation of variation, as described by Tversky
and Kahneman (1982), Snee (1999), and Britz et al. (1997). We know that our
statistical learning can sensitize us to such issues as bias, small sample size, and
variation in the “data” that we gain through our own experience, and it can alter the
way we think about risk and making decisions. It seems to us that there is potentially
valuable work to be done in assembling these ideas and giving them some coherence
(see Gigerenzer, Todd,& ABC Research Group, 1999; Gigerenzer, 2002). It also
occurs to us that coherence might not even be possible, since people experience
reality in their own unique ways. We might be dealing with inherently fragmentary
side benefits of an appreciation of investigation. But someone needs to make the
attempt. Unless the link is directly made, in the teaching process, to the “data”
gained through people’s own experience, statistical education will not help develop
the way people think in everyday life.

Statistical thinking is thought processes that are triggered (1) during data-based
enquiry to solve a practical problem, (2) during interaction with a data-based
argument, and (3) during interaction with data-based phenomena within one’s
operational environment. This “art” of thinking is new and is increasingly becoming
an integral part of many areas of human thought. Its importance should not be
underestimated. The development of statistical thinking should be seen by educators
as crucial for understanding and operating in today’s environment and for perceiving
a world reality. The challenge is to find ways to incorporate its explication into
pedagogical practice.



UNDERSTANDING OF STATISTICAL THINKING 43

Implications for Teaching and Assessing Students

The development of students’ statistical thinking presents four major challenges
in teaching. The first challenge for educators is to raise awareness about the
characteristics of statistical thinking, to reach a common consensus on their
understanding of it, and to develop a common language to describe and
communicate it. The second challenge is to recognize statistical thinking in a variety
of contexts and situations and be able to explain and justify how and why that type
of communication constitutes statistical thinking (e.g., Chance, 2002). When
educators themselves are sufficiently attuned to recognition of statistical thinking,
then the third challenge is to develop teaching strategies that will promote and
enhance students’ statistical thinking. It will also require mapping out a
developmental pathway for statistical thinking across the curriculum and learning
about and recognizing the intuitive statistical thinking that is already present in
students (e.g., Pfannkuch & Rubick, 2002). The final challenge is to implement
teaching and assessment strategies that focus on developing students’ statistical
thinking. This should include acculturating students to how statisticians reason and
work within the statistics discipline and developing new ways for them to view the
world.
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Chapter 3
STATISTICAL LITERACY'

Meanings, Components, Responsibilities

Iddo Gal
University of Haifa, Israel

INTRODUCTION AND NEED

Many curriculum frameworks and national and international educational initiatives,
including but not limited to those focusing on the mathematical sciences, underscore
the importance of enabling all people to function effectively in an information-laden
society (e.g., United Nations Educational, Scientific and Cultural Organization
[UNESCO], 1990; Australian Education Council, 1991; American Association for
the Advancement of Science (AAAS), 1995; European Commission, 1996; National
Council of Teachers of Mathematics [NCTM], 2000). The present paper focuses on
statistical literacy, one critical but often neglected skill area that needs to be
addressed if adults (or future adults) are to become more informed citizens and
employees.

Statements regarding the importance of statistical reasoning or statistical
knowledge in society have been eloquently made in the past. For example, Moore
(1998), in his presidential address to the American Statistical Association (ASA),
claimed that it is difficult to think of policy questions that have no statistical
component, and argued that statistics is a general and fundamental method because
data, variation and chance are omnipresent in modern life. Wallman (1993), in a
1992 ASA presidential address, emphasized the importance of strengthening
understanding of statistics and statistical thinking among all sectors of the
population, in part due to the various misunderstandings, misperceptions, mistrust,
and misgivings that people have toward the value of statistics in public and private
choices. Researchers interested in cognitive processes have emphasized the
contribution of proper judgmental processes and probabilistic reasoning to people’s

' This chapter is a reprint of “Adults’ statistical literacy: Meaning, components,

responsibilities,” from the International Statistical Review, 70, pages 1-52, copyright 2002,
and is reproduced here with the permission of the International Statistical Institute. All rights
reserved.
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ability to make effective decisions (Kahneman, Slovic, & Tversky, 1982) and
showed that training in statistics can aid in solving certain types of everyday
problems (Kosonen & Winne, 1995). Industry trainers and education planners have
pointed to the important role of statistical understanding and mathematical
competencies as a component of the skills needed by workers in diverse industries
(e.g., Carnevale, Gainer, & Meltzer, 1990; Packer, 1997).

While these and other sources have helped to highlight the centrality of
statistical literacy in various life contexts, few attempts to describe the nature of
adults’ overall statistical literacy have been published to date. It is necessary to first
grapple with definitional issues. In public discourse “literacy” is sometimes
combined with terms denoting specific knowledge domains (e.g., ‘“computer
literacy”). In such cases the usage of “literacy” may conjure up an image of the
minimal subset of “basic skills” expected of all citizens, as opposed to a more
advanced set of skills and knowledge that only some people may achieve. Along
these lines, statistical literacy may be understood by some to denote a minimal
(perhaps formal) knowledge of basic statistical concepts and procedures. Yet
increasingly the term literacy, when used as part of the description of people’s
capacity for goal-oriented behavior in a specific domain, suggests a broad cluster not
only of factual knowledge and certain formal and informal skills, but also of desired
beliefs, habits of mind, or attitudes, as well as general awareness and a critical
perspective.

In line with the expanding conception of the term literacy, Wallman (1993)
argued that statistical literacy is the ability to understand and critically evaluate
statistical results that permeate daily life, coupled with the ability to appreciate the
contributions that statistical thinking can make in public and private, professional
and personal decisions. Watson (1997) presented a framework of statistical literacy
comprised of three tiers with increasing sophistication: a basic understanding of
probabilistic and statistical terminology; an understanding of statistical language and
concepts when they are embedded in the context of wider social discussion; and a
questioning attitude one can assume when applying concepts to contradict claims
made without proper statistical foundation.

The complex and expanding meaning of domain-specific literacy can also be
illustrated by examining extant conceptions of “scientific literacy.” Shamos (1995)
reviews prior works on scientific literacy that suggest common building blocks:
basic vocabulary, understanding of science process, and understanding of the impact
of science and technology on society. Jenkins (1996) suggests that scientific literacy
can be characterized as scientific knowledge and attitudes, coupled with some
understanding of scientific methodology.

Shamos (1995) argues that it would be a simplification to assume that somebody
is either literate or illiterate in science, and suggests a continuum along which
scientific literacy can be described, comprised of three overlapping levels that build
upon each other in sophistication. The most basic one, “cultural” scientific literacy,
refers to a grasp of basic terms commonly used in the media to communicate about
science matters. Next, “functional” scientific literacy adds some substance by
requiring that “the individual not only have command of a science lexicon but also
be able to converse, read and write coherently, using such science terms in perhaps a
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non-technical but nevertheless meaningful context” (p. 88). This level also requires
that the person has access to simple everyday facts of nature, such as some
knowledge of the solar system (e.g., that the Earth revolves around the Sun, how
eclipses occur). Finally, “true” scientific literacy requires some understanding of the
overall scientific enterprise (e.g., basic knowledge of key conceptual schemes or
theories that form the foundation of science and how they were arrived at), coupled
with understanding of scientific and investigative processes. Examples are (see also
Rutherford, 1997): appreciation of the relativity of “fact” and “theory,” awareness of
how knowledge accumulates and is verified, the role of experiments and
mathematics in science, the ability to make sense of public communications about
scientific matters, and the ability to understand and discuss how science and
technology impinge on public life.

With the above broad usage of “literacy” and “statistical literacy” in mind, this
paper develops a conception of statistical literacy that pertains to what is expected of
adults (as opposed to students actively learning statistics), particularly those living
in industrialized societies. It is proposed here that in this context, the term statistical
literacy refers broadly to two interrelated components, primarily (a) people’s ability
to interpret and critically evaluate statistical information, data-related arguments, or
stochastic phenomena, which they may encounter in diverse contexts, and when
relevant (b) their ability to discuss or communicate their reactions to such statistical
information, such as their understanding of the meaning of the information, their
opinions about the implications of this information, or their concerns regarding the
acceptability of given conclusions. These capabilities and behaviors do not stand on
their own but are founded on several interrelated knowledge bases and dispositions
which are discussed in this paper.

Statistical literacy can serve individuals and their communities in many ways. It
is needed if adults are to be fully aware of trends and phenomena of social and
personal importance: crime rates, population growth, spread of diseases, industrial
production, educational achievement, or employment trends. It can contribute to
people’s ability to make choices when confronted with chance-based situations (e.g.,
buying lottery tickets or insurance policies, and comprehending medical advice). It
can support informed participation in public debate or community action. The need
for statistical literacy also arises in many workplaces, given growing demands that
workers understand statistical information about quality of processes (Packer, 1997),
and the contention that workers’ understanding of data about the status of their
organization can support employee empowerment (Bowen & Lawler, 1992).

The many examples of contexts where statistical literacy may be activated
indicate that most adults are consumers (rather than producers) of statistical
information. Yet, despite the centrality of statistical literacy in various life contexts,
the nature of the skills and dispositions that comprise adults’ statistical literacy have
not received detailed discussion in the literature (Gal, 1994; Watson, 1997), and are
thus the focus of this paper. Clarity on the characteristics of the building blocks of
statistical literacy is needed before other questions can be addressed in earnest
regarding assessment and instruction focused on statistical literacy.



50 IDDO GAL

A MODEL

This paper concerns itself with people’s ability to act as effective “data
consumers” in diverse life contexts that for brevity are termed here reading contexts.
These contexts emerge, for example, when people are at home and watch TV or read
a newspaper, when they look at advertisements while shopping, when they visit
Internet sites, when they participate in community activities or attend a civic or
political event, or when they read workplace materials or listen to reports at work.
They include but are not limited to exposure to print and visual media, and represent
the junctures where people encounter the much-heralded “information-laden”
environments (European Commission, 1996). In such contexts, statistical
information may be represented in three ways—through text (written or oral),
numbers and symbols, and graphical or tabular displays, often in some combination.
To simplify the presentation in this paper, the term readers will be used throughout
to refer to people when they participate in reading contexts as actors, speakers,
writers, readers, listeners, or viewers, in either passive or active roles.

Reading contexts should be distinguished from enquiry contexts, where people
(e.g., students, statisticians) engage in empirical investigation of actual data (Wild
and Pfannkuch, 1999). In enquiry contexts individuals serve as “data producers” or
“data analyzers” and usually have to interpret their own data and results and report
their findings and conclusions. Reading contexts may differ from enquiry contexts
in important ways that have not been sufficiently acknowledged in the literature on
statistical reasoning and are examined later.

This paper proposes a model, summarized in Table 1, of the knowledge bases
and other enabling processes that should be available to adults, and by implication to
learners graduating from schools or colleges, so that they can comprehend, interpret,
critically evaluate, and react to statistical messages encountered in reading contexts.
Based on earlier work such as cited above on statistical literacy and scientific
literacy, the model assumes that people’s statistical literacy involves both a
knowledge component (comprised of five cognitive elements: literacy skills,
statistical knowledge, mathematical knowledge, context knowledge, and critical
questions) and a dispositional component (comprised of two elements: critical
stance, and beliefs and attitudes).
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Table 1. A model of statistical literacy

Knowledge elements Dispositional elements
Literacy skills Beliefs and Attitudes
Statistical knowledge Critical stance

Mathematical knowledge
Context knowledge
Critical Questions

Statistical Literacy

As with people’s overall numeracy (Gal, 2000), the components and elements in
the proposed model should not be viewed as fixed and separate entities but as a
context-dependent, dynamic set of knowledge and dispositions that together enable
statistically literate behavior. Understanding and interpretation of statistical
information requires not only statistical knowledge per se but also the availability of
other knowledge bases: literacy skills, mathematical knowledge, and context
knowledge. However, critical evaluation of statistical information (after it has been
understood and interpreted) depends on additional elements as well: the ability to
access critical questions and to activate a critical stance, which in turn is supported
by certain beliefs and attitudes.

The model’s elements are described in subsequent sections, although some
overlap with each other and do not stand in isolation. The final section of the paper
discusses resulting educational and policy challenges and implications for needed
research. The expected contribution of this paper is to facilitate further dialogue and
action by educators, practicing statisticians, policy makers, and other professionals
who are interested in how citizens can be empowered to make sense of real-world
messages containing statistical elements or arguments.

KNOWLEDGE ELEMENTS OF STATISTICAL LITERACY

This section reviews the five elements listed in Table 1 as comprising the
knowledge component of statistical literacy. It is proposed that these elements
jointly contribute to people’s ability to comprehend, interpret, critically evaluate,
and if needed react to statistical messages.

To provide a context for some of the ideas presented below, Figures 1, 2, 3, and
4 illustrate key modes through which statistical concepts and statistics-related
information or arguments are communicated to adults in the printed media, a prime
reading context. Figure 1 contains six excerpts illustrating statistical messages in
daily newspapers and magazines from different countries. Figure 2 presents a
statistics-related table from an American newspaper. Figure 3 presents a bar graph
that appeared in a widely circulated Israeli newspaper. Figure 4 includes a pie chart
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used in the International Adult Literacy Survey (IALS; Statistics Canada and
Organization for Economic Co-operation and Development [OECD], 1996) to
simulate a newspaper graph.

Literacy Skills

A discussion of literacy skills opens the review of the knowledge bases needed
for statistical literacy, given that virtually all statistical messages are conveyed
through written or oral text, or require that readers navigate through tabular or
graphical information displays that require the activation of specific literacy skills
(Mosenthal & Kirsch, 1998).

The understanding of statistical messages requires the activation of various text-
processing skills in order to derive meaning from the stimulus presented to readers.
The written portion of a message may be quite long (as in some of the excerpts in
Figure 1) and demand complex text comprehension skills, or may sometimes
involve a graph with only a few words (Figures 3 or 4). Readers also have to
comprehend surrounding text (i.e., within which the statistical portion is embedded
or which explains a graph or chart presented) to place the statistical part in the
proper context. Depending on the circumstances, readers may have to communicate
clear opinions, orally or in writing, in which case their response should contain
enough information about the logic or evidence on which it is based to enable
another listener or reader to judge its reasonableness. Thus, statistical literacy and
general literacy are intertwined.

In the real world, readers have to be able to make sense of a wide range of
messages, formulated at different levels of complexity and in different writing or
speaking styles (Wanta, 1997). Messages may be created by journalists, officials,
politicians, advertisers, or others with diverse linguistic and numeracy skills.
Message originators may have diverse aims in terms of the presumed facts, images,
or conclusions they aim to create or instill in the mind of the reader. Some messages
may be created to convince the reader or listener to adopt a specific point of view or
reject another, and hence may use one-sided arguments or present selective
information (Clemen & Gregory, 2000), or may use modifiers (e.g., “a startling 5%
gain ...”) to shape a desired impression.

As several authors have pointed out (Laborde, 1990; Gal, 1999), coping with
mathematical or statistical messages presents various demands on readers’ literacy
skills. For instance, readers have to be aware that the meanings of certain statistical
terms used in the media (e.g., random, representative, percentage, average, reliable)
may be different than their colloquial or everyday meaning. Messages may use
technical terms in a professionally appropriate way but may also contain statistical
jargon that is ambiguous or erroneous. Some newspapers and other media channels
tend to employ conventions in reporting statistical findings, such as referring to
“sampling error” (or “margin of error”) when discussing results from polls, but
without explaining the meaning of terms used.

Space and time limitations or editorial decisions may force writers (or
professionals who speak on TV) to present messages that are terse, choppy, or lack
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essential details. Readers may need to make various assumptions and inferences,
given the absence of details or the inability in many cases to interrogate the creators
of messages encountered. Overall, these factors can make comprehension more
challenging, complicate the interpretation task, and could place heavy demands on
readers’ literacy skills. This is true for adults from all walks of life, but especially of
adults who are bilingual or otherwise have a weak mastery of the national/dominant
language (Cocking, & Mestre, 1988). However, results from the International Adult
Literacy Survey (IALS; Statistics Canada and OECD, 1996) suggest that in most of
the countries surveyed, a large proportion of adults have only basic comprehension
skills and are unable to cope effectively with a range of everyday literacy and
computation tasks. Hence, people’s literacy skills may be a bottleneck affecting their
statistical literacy skills.

#1: "The study found that wwomen of average weight inthe LS. had a S0 per cent higher chance of heart attack
than did women weighing 15 per cent belowy average." (Watson, 1997, p. 109 from Hokart Mercury, Tasmania,
February 10, 19957,

A2 "JUDGES COUNT CUT CEMSUS SAMPLIMG: . . . at issueis far more than the accuracy of sampling inthe
Census held every 10 years: Bilions of dollars in federal funds are allocated on the basis of how many people
live in each state and city, and shifts in populstion can lead to the redravwing of House districts. & boost in the
court of minarities wwould normally help Democrsts." (Philadelphia Inguirer, August 25, 1955].

#3 "POLL BACKS LIMITS O DRINKING BY TEENS: The survey of more than 7000 adults . . . which has a
margin of error of 2 percentage points, found that... more than half favored restrictions on alcohol advertising . .
. more than B0% would ban T ads for beer and wine" (US4 Today, October 5, 1998)

#4: "The human race held this vear many more sexual intercourses than last year; the waorld average was 112
per person this year, compared to 109 last year. This, according to & comprehensive survey intisted and
funded, for the second year, by Durex, a manufacturer of prophylactics. The survey was held in 14 countries
that according to experts represent all the world citizens . . " (Yediot &haronot, Israel, October 28, 19977,

A5 "The Department of Education is investigating whether state scores on a national reading test were inflated
by decisions states made on which students to exchude from the test . . | in both 1994 and 1935 . _ . the overall
exclusion rate was the same, about 6% .. . Kentucky, Connecticut and Louisiana were among states with
increazes in students left out of their 1998 testing sample—parimarily those with learning dizsbilities or limited
knowvledge of Englizh " (USA& Today, April 13, 1993).

A6 If you care about breast cancer, [a] neve risk assessment test | L will give vou a number that estimstes your
chances of developing breast cancer over the next 5 years. & score of 1.7 or above is considered high risk.
Most likely you wont be st high risk, but you owe it to yourself to find out. The proof? In a landmark study of
wamen 35 years or alder and &t high risk of breast cancer, women wwho took MNolvade:x had feweer breast
cancers than women taking sugar pills, Molvadex decreases but does not eliminate the risk of breast cancer,
and did not show an increase in survival .. In the study, women taking Molvadex were 2 to 3 times more likely to
develop uterine cancer or blood clots inthe lung and legs, athough each of theze occurred in less than 19% of
wamen... Y ou and your doctor must | discuss whether the potential benefit of Molvade:x will outweigh these
potential side affects. (Excerpt from a full-page commercial advertisement in People magazine, August 30,
19997,

Figure 1. Nlustrations of statistical texts in daily newspapers and magazines.
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‘Matrix’ a virtual lock at No. 1

The Keanu Reeves sci-fi thriller The Matrix remained the box office champ for the second
consecutive week. Newcomers had mixed results: The romantic comedy Never Been
Kissed opened fairly strong at No. 2, ... The top 10:

Box office (millions) Avg. Pct. Weeks
Film Wkd. Total Per site Chg. Out
1 The Matrix $22.6 $73.3 $7,772 -19% 2
2 Never Been Kissed $11.8 New $4,821 1
3 10 Things I Hate $5.05 $20.4 $2,218 -39% 2
About You
4 The out-of- $5.01 $16.2 $2,380 -39% 2
Towners
5 Analyze This $5.0 $85.8 $2,125 21% 6

* Re-creation of a selected portion of a table from USA Today (April 13, 1999). Some details omitted to
conserve space.

Figure 2. Illustration of a tabular display in a newspaper.

Graph in Yediot Aharonot, the daily
IR 0w newspaper with the largest circulation
10 nYaJwn in Israel, July 11, 2000. The title says:
“Women in Israel are more educated”.
The subtitle says: “Israel holds the
world record in the percentage of
women among students for Master
and Doctoral degrees”. The bars
represent percentages for (from top to
bottom): Israel (55.4%), United
States, Australia, Denmark, Great
Britain, Finland, Sweden,
Switzerland, and Japan (21.5%).
(Reprinted with permission).

Figure 3. Women'’s education in different countries.
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U.S. Oil Use 1970 and 1989

Electric Elaciric
Jtilities Resdential and Utilities
6.3% 4.3%

Residertial and
Commarcial
8.1%

Transporiation &
62.9%

Induistrial
24.7%

1989

Figure 4. Oil use in two years. Stimulus from an IALS item. (Reprinted with permission).
Document Literacy

The literacy skills needed for statistical literacy are not limited to those
involving processing of prose text. This subsection extends the preceding discussion
by examining Document Literacy skills, which pertain to reading various nonprose
texts, including graphs, charts, and tables. The growing literature on graph
comprehension examines various processes involved in making sense of graphs,
from simple graph-reading to making inferences based on graphs (Bright & Friel,
1998), but has seldom viewed graphs as a subtype of documents in general.

The notion of Document Literacy comes out of the influential work of Kirsch
and Mosenthal (Kirsch, Jungeblut, & Mosenthal, 1998), who view literacy as
comprised of three interrelated components: Prose Literacy, Document Literacy, and
Quantitative Literacy. This conceptualization of literacy served as a basis for several
large-scale studies, most recently the International Adult Literacy Survey (IALS;
Statistics Canada and OECD, 1996; OECD & Human Resources Development
Canada, 1997), and prior national studies of the literacy of adults and young adults,
mainly in the United States and Canada (e.g., Kirsch, Jungeblut, Jenkins, & Kolstad,
1993), but also in Australia.

Kirsch and Mosenthal (1990) claim that documents tend to be the predominant
form of literacy in nonschool settings, and serve as an important source of
information and a basis for enabling actions and decisions. Document Literacy tasks
require people to identify, interpret, and use information given in lists, tables,
indexes, schedules, charts, and graphical displays. The information in such displays
often includes explicit quantitative information, such as numbers or percentages, in
addition to the quantitative or statistical information conveyed by graphs and charts.
Mosenthal & Kirsch (1998) argue that documents, which include graphs and charts,
are usually arranged in arrays of varying degrees of complexity: they may include
“simple lists” or “combined lists,” as in a simple table or a simple bar graph or pie
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chart (Figures 3 and 4); or “intersecting lists” or “nested lists,” as in a two-way table
(Figure 2) or in a complex multielement graph.

An important aspect of the Kirsch and Mosenthal work (Kirsch, Jungeblut, &
Mosenthal, 1998) is the description (“grammar”) provided of the cognitive
operations required to locate information in documents, and the reading strategies
required to match information in a question or directive to corresponding
information in arrays of varying degrees of complexity. Key processes include
locating specific information in given texts or displays, cycling through various
parts of diverse texts or displays, integrating information from several locations
(e.g., across two graphs, as in Figure 4), and generating new information (e.g.,
finding the difference between percentages in different parts of a table or between
bars in a graph). Further, readers have to make inferences, quite often in the
presence of irrelevant or distracting information, and perhaps apply mathematical
operations as well to information contained in graphs or tables.

As Mosenthal and Kirsch (1998) argue, many types of common statistical
information can be displayed in both graphs and tables, and one form is often a mere
transformation of the other (e.g., when a table with a simple list is transformed into a
simple bar chart). Hence, putting aside specialized aspects of graph comprehension
(Tufte, 1997), their work provides a generalized way to understand literacy aspects
of interpreting multiple types of documents and displays, and enables us to embed a
discussion of statistical literacy within a broader framework of general literacy.

Statistical Knowledge Base

An obvious prerequisite for comprehending and interpreting statistical messages
is knowledge of basic statistical and probabilistic concepts and procedures, and
related mathematical concepts and issues. However, almost all authors who are
concerned about the ability of adults or of school graduates to function in a
statistics-rich society do not discuss what knowledge is needed to be statistically
literate per se, but usually focus on what needs to be taught in schools and argue that
all school (or college) graduates should master a range of statistical topics, assuming
this will ensure learners’ statistical literacy as adults. A recent example can be found
in Scheaffer, Watkins, and Landwehr (1998). Based on their extensive prior work in
the area of teaching statistics and on reviewing various curriculum frameworks,
these authors describe numerous areas as essential to include in a study of statistical
topics in high school:

Number sense

Understanding variables

Interpreting tables and graphs

Aspects of planning a survey or experiment, such as what constitutes a good
sample, or methods of data collection and questionnaire design

e Data analysis processes, such as detecting patterns in univariate or two-way
frequency data, or summarizing key features with summary statistics
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e Relationships between probability and statistics, such as in determining
characteristics of random samples, background for significance testing
¢ Inferential reasoning, such as confidence intervals or testing hypotheses

It is tempting to regard this list as a possible candidate for an “ideal” set of
mathematical and statistical knowledge bases that can guarantee statistical literacy.
(Indeed, this author would be happy if most adults possessed such knowledge.)
However, what is “basic” knowledge cannot be discussed in absolute terms, but
depends on the desired level of statistical literacy expected of citizens, on the
functional demands of contexts of action (e.g., work, reading a newspaper), and on
the characteristics of the larger societal context of living. Hence, the above list may
not be appropriate for all cultural contexts, may be an overspecification in some
cases, and other elements could be added to it.

Unfortunately, no comparative analysis has so far systematically mapped the
types and relative prevalence of statistical and probabilistic concepts and topics
across the full range of statistically related messages or situations that adults may
encounter and have to manage in any particular society. Hence, no consensus exists
on a basis for determining the statistical demands of common media-based
messages. To date, only a single comparative study (Joram, Resnick, & Gabriele,
1995) addressed this complex issue, by analyzing the characteristics of rational
numbers (especially fractions, percentages, and averages) that appear in weekly or
monthly magazines written for children, teenagers, and adults in the United States.
This study was based on the assumption that it is useful to view literacy not only as
a skill or ability but also as a set of cultural practices that people engage in, and
hence that it is important to examine the characteristics of the texts that people may
have to make sense of, and ask how these characteristics shape people’s literacy
practices.

Regarding adults, Joram et al. (1995) sampled seven widely -circulated
magazines that aim at different types of readers: Reader’s Digest, National
Geographic, Better Homes and Gardens, National Enquirer, Time, Consumer
Reports, and Sports Illlustrated. They applied a complex coding scheme to capture
the number of occurrences of rational numbers, especially fractions, percentages,
and averages, in the middle 20 pages of one issue. Some findings that are relevant
for the present paper were:

e The mean frequencies (per 20 pages) of fractions, percentages, and averages
were 4.86, 10.00, and 2.00, respectively.

e Regarding percentages found in these magazines, about half expressed
part/whole relations (“The nation’s 113 nuclear reactors already generate 20
percent of our electricity”), and one-third referred to increase/decrease (“If

. electricity consumption increases by 2.5 percent a year, we could be
headed for real problems”).

® Only 14% of statements regarding rational numbers in adult magazines were
modified by a part of speech such as an adjective (“An astonishing 35
percent of all ...”). This finding suggested to Joram et al. that authors in
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adult magazines do not provide a great deal of interpretation of numbers in
their immediate context and hence numbers are usually allowed to speak for
themselves.

¢ Four of the seven adult magazines contained within the pages sampled at
least one table or graph. Overall, the seven magazines included four tables,
four bar graphs, and one pyramid graph (used to show quantities).

These and other findings reported by Joram et al. suggest that percentages are
the most common rational number in magazines used to convey statistical
information (see also Parker & Leinhardt, 1995), and that numerical or statistical
information may appear in tables and not only in graphs. In order to make full sense
of statistical information appearing in magazines, adults should be able to
understand plain passages that provide the context for the rational numbers or
graphs shown, and relate different elements in given passages or displays to each
other. These conclusions agree with and complement the earlier discussion of
literacy skills needed for interpreting statistical messages.

Beyond the data provided by Joram et al. (1995), there is no comprehensive
research base from which to establish the statistical literacy requirements in the full
range of domains and environments where adults function. Five key parts of the
statistical knowledge base required for statistical literacy are proposed in this
subsection and summarized in Table 2. These building blocks were identified on the
basis of reviewing writing by mathematics and statistics educators (such as
Shaughnessy, 1992, Moore, 1990, 1997b; chapters in Steen, 1997; chapters in Gal &
Garfield, 1997; chapters in Lajoie, 1998; NCTM, 2000), sources on scientific
literacy (e.g., Shamos, 1995; AAAS, 1995), and on mathematics and statistics in the
news (e.g., Huff, 1954; Hooke, 1983; Crossen, 1994; Paulos, 1995; Kolata, 1997).

Table 2. Five parts of the statistical knowledge base

1. Knowing why data are needed and how data can be produced
Familiarity with basic terms and ideas related to descriptive statistics
Familiarity with basic terms and ideas related to graphical and tabular displays

Understanding basic notions of probability

woA » N

Knowing how statistical conclusions or inferences are reached

Knowing Why Data Are Needed and How Data Can Be Produced

Overall, adults should possess some understanding of the origins of the data on
which reported findings or displays are based, understand the need to know how
data were produced, and be aware of the contribution of a good design for data
production to the possibility of answering specific questions (Cobb & Moore, 1997).
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Adults should also be aware that public officials, organizations, employers,
advertisers, and other players in the public arena need to base claims or conclusions
on credible empirical evidence, and that properly produced data can inform public
debate and serve as a basis for decisions and allocation of resources, much better
than anecdotal evidence (Moore, 1998).

To enable critical understanding of reported findings or data-based claims, adults
should possess some knowledge, at least informal, of key “big ideas™ that underlie
statistical investigations (Garfield & Gal, 1999). First on the list of most statisticians
is the existence of variation (Moore, 1998). The need to reduce data in order to
identify key features and trends despite noise and variation should be understood by
adults as it provides the basis for accepting the use of statistical summaries (e.g.,
means, graphs) as tools for conveying information from data producers to data
consumers (Wild & Pfannkuch, 1999).

Further, adults should possess some understanding of the logic behind key
research designs commonly mentioned in the media, primarily experiments and the
reason for using experimental and control groups to determine causal influences (see
excerpt #6 in Figure 1); census (excerpt #2); polls/surveys (excerpts #3 and #4); and
perhaps the role and limitations of a pilot study. Given the prevalence of polls and
surveys, adults should also understand, at least intuitively, the logic of sampling, the
need to infer from samples to populations, and the notions of representativeness and
especially bias in this regard (Cobb & Moore, 1997; Wild & Pfannkuch, 1999).
Some specific ideas to be known in this regard are the advantages of probability
sampling, the dangers of convenience sampling, or the influence of the sampling
process, sample size, and sample composition on researchers’ ability to generalize
safely and infer about a population from sample data.

Familiarity with Basic Terms and Ideas Related to Descriptive Statistics

Assuming adults understand why and how data are produced, they need to be
familiar with basic concepts and data displays that are commonly used to convey
findings to target audiences. Two key types of concepts whose centrality is noted by
many sources are percentages (Parker & Leinhardt, 1995) and measures of central
tendency, mainly the arithmetic mean (often termed “average” in newspapers) but
also the median. Gal (1995) argues that it is desirable for consumers of statistical
reports to know that means and medians are simple ways to summarize a set of data
and show its “center”’; that means are affected by extreme values, more so than
medians; and that measures of center can mislead when the distribution or shape of
the data on which they are based is very uneven or bimodal, or when the data or
sample from which they are calculated is not representative of the whole population
under study (see excerpt #5 in Figure 1). More broadly, it is useful for adults to be
aware that different types of seemingly simple summary indices (i.e., percentage,
mean, median) may yield different, and at times conflicting, views of the same
phenomena.
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Familiarity with Graphical and Tabular Displays and Their Interpretation

Adults should know that data can be displayed or reported in both graphical and
tabular displays, which serve to organize multiple pieces of information and enable
the detection or comparison of trends in data (Tufte, 1997). In this regard, one hopes
that adults can first of all perform literal reading of data in tables or graphs, be
familiar with standard conventions in creating graphs and charts, and be attentive to
simple violations of such conventions (Bright & Friel, 1998) such as those in the
graph in Figure 3: The relative length of the bars is not proportional to the actual
percentages, and neither is the positioning of the boxes with percentages inside each
bar; the decision of the graphical artist to add a female figure on the left (probably
for decoration or to gain attention) masks the length of some bars and renders the
visual appearance misleading. In this case, one hopes that readers realize the need to
examine the actual percentages.

It is also expected that adults can do, on some level, what Curcio (1987) and
Wainer (1992) call “reading between the data” and “reading beyond the data,” such
as understand that projections can be made from given data, and that one should
look at overall patterns and not only specific points in a graph or a table (Gal, 1998).
Adults should also realize that different graphs and tables may yield different (and
possibly conflicting) views of the phenomena under investigation. Finally, adults
should be aware that graphs can be intentionally created to mislead or highlight/hide
a specific trend or difference. Various examples in this regard have been presented
by Huff (1954). (See also Orcutt & Turner’s [1993] analysis, discussed later, of how
Newsweek magazine manipulated survey data on drug use to advance a specific
point of view).

Understanding Basic Notions of Probability

Ideas regarding chance and random events are explicit or implicit in many types
of messages adults encounter. Many statistical reports make probabilistic statements
in the context of presenting findings from surveys or experiments, such as the
likelihood of obtaining certain results (see excerpts #1 and #6 in Figure 1).
Messages can also include probabilistic estimates made by various professionals
(weather forecasters, genetic counselors, physicians, admissions administrators in
colleges) regarding the likelihood of various events or the degree of confidence in
their occurrence (rain, risks, side effects, or acceptance, respectively). Some of these
claims may not be based on statistical studies, and could be couched in subjective
estimates of individuals.

It is safe to expect that at a minimum, adults should be sensitive to the problem
of interpreting correctly the “language of chance” (Wallsten, Fillenbaum, & Cox,
1986). Adults should have a sense for the many ways in which estimates of
probability or risk are communicated by various sources, such as by percentages,
odds, ratios, or verbal estimates. (Excerpt #6 illustrates how these combine in
complex ways within a single article.)
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Next, there is a need for adults to be familiar with the notion of randomness,
understand that events vary in their degree of predictability or independence, yet
also that some events are unpredictable (and hence that co-occurrence of certain
events does not mean that they are necessarily related or cause each other).
Unfortunately, while possible, it is difficult to present more advanced or explicit
expectations for adults in terms of understanding random processes without
appearing simplistic or naive. People from all walks of life have been shown to hold
many misconceptions and discontinuities in understanding and reasoning about
stochastic phenomena (Konold, 1989; Gal & Baron, 1996; Shaughnessy, Garfield, &
Greer, 1997). Further, understanding of random phenomena also takes part in
cognitive processes of judgment, decision making, and rationality, in which various
deficiencies have been documented as well (Baron, 1988; Mellers, Schwartz, &
Cooke, 1998).

Nonetheless, if adults are to understand and critically evaluate probabilistic
claims, they should at least recognize the importance of ascertaining the source for
probability estimates. Adults should realize that estimates of chance and risk may
originate from diverse sources, both formal (e.g., frequency data, modeling,
experimentation) and subjective or anecdotal, and that estimates may have different
degrees of credibility or accuracy. Thus, they should expect that the evidence or
information basis for statements of chance can be specified by those who make
claims, and that judgments of chance may fluctuate and forecasts may change when
additional data become available (Clemen & Gregory, 2000).

A final and more advanced expectation is that adults understand, at least
intuitively, the idea of a chance variability in (random) phenomena. As Cobb and
Moore (1997) explain, “When a chance mechanism is explicitly used to produce
data, probability ... describes the variation we expect to see in repeated samples
from the same population” (p. 813). Some understanding of probability is thus also a
gateway to making sense of statements about the significance of differences between
groups or likelihood of obtaining certain results, since standard statistical inference
is based on probability (Cobb & Moore, 1997).

Knowing how statistical conclusions or inferences are reached.

Whereas most adults are data consumers and not producers, they do need to have
a grasp on some typical ways to summarize data, such as by using means or
medians, percentages, or graphs. However, given that there are different designs for
collecting data, and that sampling processes or random processes may be involved,
adults also need to possess some sense of how data are analyzed and conclusions
reached, and be aware of relevant problems in this regard.

First, adults need to be sensitive to the possibility of different errors or biases (in
sampling, in measurement, in inference) and possess a healthy concern regarding the
stability and generality of findings. Second, it is useful to realize that errors may be
controlled through proper design of studies, and can be estimated and described
(e.g., by means of probability statements). One concept mentioned in the media in
this regard is “margin of error” (see excerpt #3 in Figure 1, and the implicit
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mentioning of inflated scores in excerpt #5). Third, it is useful to know that there are
ways to determine the significance or “trueness” of a difference between groups, but
that this requires attention to the size of the groups studied, to the quality of the
sampling process and the possibility that a sample is biased (understanding of these
notions is needed if one is to think critically of the claims in excerpts #1 and #6).
Finally, it is important to be aware that observed differences or trends may exist but
may not necessarily be large or stable enough to be important, or can be caused by
chance processes (as is the case with the reported increase in sexual intercourse in
excerpt #4).

Mathematical Knowledge Base

A determination of the types of mathematical knowledge expected of adults to
support statistical literacy should be made with caution. On the one hand, adults
clearly need to be aware of some of the mathematical procedures underlying the
production of common statistical indicators, such as percent or mean. At the same
time, expectations regarding the amount and level of formal mathematics needed to
comprehend basic statistical ideas taught at the introductory college level (or in high
schools) have been changing in recent years (Moore, 1998). A brief detour to
describe leading ideas in this regard is offered below to help frame later statements
about the mathematical knowledge base needed for statistical literacy.

Statisticians have gradually clarified over the last few years the nature of some
fundamental differences between mathematics and statistics (Moore & Cobb, 2000),
and have formulated some working assumptions about the general level of
mathematics one needs to learn statistics, at least at the introductory college level.
Cobb and Moore (1997) summarize recommendations of the ASA/MAA committee
on statistics instruction (Cobb, 1992), and suggest that while statistics makes heavy
use of mathematics, statistics instruction at the introductory college level should
focus on statistical ideas (need for data and importance of data production,
omnipresence of variability, need to explain and describe variability).

Understanding the mathematical derivations that underlie key ideas presented in
introductory statistics is of some importance but should be kept limited, since
computers now automate many computations. While there is no intention of leading
students to accept statistical derivations as magic (i.e., without knowing any of the
underlying mathematics), too much emphasis on mathematical theory is not
expected early on; it may disrupt the development of the necessary intuitive
understanding of key statistical ideas and concepts that often do not have
mathematical representations and are unique to the discipline of statistics (Moore,
1997a; Wild & Pfannkuch, 1999). Cobb and Moore (1997) further claim that
probability is conceptually the hardest subject in elementary mathematics, and
remind that psychological studies have documented confusion about probability
even among those who master the computational side of probability theorems and
can solve textbook exercises. Hence, even for understanding of the formal aspects of
inference or of probability, only a limited amount of mathematical knowledge is
expected.
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The above logic can help in determining the mathematical knowledge that adults
need to support statistical literacy. Given that most adults in any country do not
study statistics at the college level (Moore & Cobb, 2000; UNESCO, 2000), the
amount and level of formal knowledge of mathematics needed to support adult
statistical literacy can be restricted.

Perhaps the simplest knowledge expected of adults is the realization that any
attempt to summarize a large number of observations by a concise quantitative
statement (percentage, mean, probability, etc.) requires some application of
mathematical tools and procedures. Adults need to have numeracy skills at a
sufficient level to enable correct interpretation of numbers used in statistical reports.
“Number sense” is increasingly being touted as an essential skill for proper
understanding of diverse types of numbers (Paulos, 1995; Curry, Schmitt, &
Waldron, 1996; Scheaffer et al., 1998; NCTM, 2000), such as large numbers (e.g.,
trends in GNP) and small numbers, including fractions, decimals, and percents (e.g.,
estimates of risk or side effects).

Understanding of basic statistical findings pertaining to percentages or
“averages” requires familiarity, intuitive and to some extent formal, with underlying
mathematical procedures or computations used to generate these statistics (Garfield
& Gal, 1999). Citizens should know how an arithmetic mean is computed in order to
fully appreciate the meaning of the claim that an arithmetic mean can be influenced
by extreme values in a data set and hence may not represent the “middle” of a set of
values if the data are skewed. Excerpt #5 shows a variant on this demand, that is,
understanding of the impact of excluding a certain proportion of extreme
observations (6% in the example given) on the central tendency.

Many types of statistical information reported in the media are described in
terms of percentages (Joram et al., 1995) and are sometimes included in graphs.
Numerous examples can be found in Figures 1 and 2. Percentage is a seemingly
simple mathematical concept, commonly perceived as expressing a proportion or
ratio; it is presumably mastered in the middle grades, and hence it could be expected
that the vast majority of schooled adults will understand it. Yet, its understanding is
far from being simple. Parker and Leinhardt (1995) address the prevalence and
complexity of percentages, and also point to specific types of percentages that
normally are not encountered in routine classroom teaching but may appear in
newspaper statements, such as percentages larger than 100% or percentage of
percent. These authors argue that generations of students, including at the college
level, have failed to fully master percentage, in part because it is a multifaceted
concept that has multiple mathematical meanings and also statistical uses (e.g., a
number, an expression of a relationship, a statistic, a function, an expression of
likelihood). Understanding the mathematical and statistical meaning of a reported
percentage can be difficult. Readers may have to make inferences and assumptions,
for example, when a message does not specify the base for calculating a percentage.
Percentages may represent complex relationships (e.g., conditional probabilities)
and, as illustrated in Figure 1, may be linked to concepts that themselves have
multiple meanings (such as “15 percent below average,” “2% margin of error”).

The examples pertaining to percentages and computations of means and medians
imply that interpretation of even seemingly simple statistics reported in the media
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requires some familiarity with their derivation (though not always formal training in
this regard). It follows that adults should understand, at least informally, some of the
mathematics involved in generating certain statistical indicators, as well as the
mathematical connection between summary statistics, graphs, or charts, and the raw
data on which they are based.

Questions about the amount of mathematics one needs to know to understand
more sophisticated concepts are more difficult to answer and have been the source
of some debate among statistics and mathematics educators (Moore, 1997a). Terms
or phrases that appear in the media, such as “margin of error” or “statistically
significant difference” can be understood intuitively in a way that can help adults
without formal statistical training make a superficial sense of news items. After all,
such ideas are being successfully taught at an introductory level to children in
elementary or middle schools (Friel, Russell, & Mokros, 1990). However, deeper
understanding of the above or related concepts, and proper interpretation of their
exact meaning, requires more solid understanding of underlying statistical ideas
(quantification of variance, repeated sampling, sampling distributions, curves, logic
of statistical inference, etc). These ideas are hard to grasp for college-bound students
(Cobb & Moore, 1997; Watson & Moritz, 2000) even without the added
complication of the need to understand their mathematical underpinnings.

Context/World Knowledge Base

Proper interpretation of statistical messages by adults depends on their ability to
place messages in a context, and to access their world knowledge. World knowledge
also supports general literacy processes and is critical to enable “sense-making” of
any message. Moore (1990) has argued that in statistics, the context motivates
procedures; data should be viewed as numbers with a context, and hence the context
is the source of meaning and basis for interpretation of obtained results. In reading
contexts, however, people do not engage in generating any data or in carrying any
computations or analysis. Their familiarity with the data-generation process (e.g.,
study design, sampling plan, questionnaires used), or with the procedures employed
by the researchers or statisticians to analyze the data, depends on the details and
clarity of the information given in the messages presented to them. As passive
receivers of messages, they are at the mercy of message creators.

It follows that adults’ ability to make sense of statistical claims or displays will
depend on whatever information they can glean from the message about the
background of the study or data being discussed. Context knowledge is the main
determinant of the reader’s familiarity with sources for variation and error. If a
listener or reader is not familiar with a context in which data were gathered, it
becomes more difficult to imagine why a difference between groups can occur, what
alternative interpretations may exist for reported findings about an association
detected between certain variables, or how a study could go wrong.

The ways in which a study is reported in the media can easily mask or distort the
information available to the reader about the source of the evidence presented. An
example is when a reporter uses the term experiment in a way that enhances the face
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validity of a study that is nonexperimental in nature. Thus world knowledge,
combined with some literacy skills, is prerequisite for enabling critical reflection
about statistical messages and for understanding the implications of the findings or
numbers reported. Adults can be helped by having a sense for, and expectations
about, elements of good journalistic writing, such as for objective writing,
presentation of two-sided arguments, accuracy in reporting, or provision of
background information to orient readers to the context of a story.

Critical Skills

Messages aimed at citizens in general may be shaped by political, commercial,
or other agendas which may be absent in statistics classrooms or in empirical
enquiry contexts. Fred Mosteller said, “Policy implies politics, and politics implies
controversy, and the same data that some people use to support a policy are used by
others to oppose it” (cited in Moore, 1998, p. 1255). Not surprisingly, the need for
critical evaluation of messages to the public has been a recurring theme in writings
of educators interested in adults’ literacy and numeracy (Freire, 1972; Frankenstein,
1989).

As noted in discussing literacy skills, messages in the general media are
produced by very diverse sources, such as journalists, politicians, manufacturers, or
advertisers. Depending on their needs and goals, such sources may not necessarily
be interested in presenting a balanced and objective report of findings or
implications. A potent example is Orcutt and Turner’s (1993) analysis of how the
print media, especially Newsweek magazine, selectively analyzed and intentionally
manipulated trend data collected by the Institute for Social Research (ISR) regarding
drug use among American high-school students between 1975 and 1985. According
to Orcutt & Turner, the media attempted to created for the public an image of a
“drug plague,” by selecting at its convenience only some of the data collected as part
of a multiyear survey project, using graphical methods to augment small percentage
differences (after truncating and censorizing), to appear visually large.

Orcutt and Turner (1993) add that later in 1992, Newsweek attempted again to
create a sense of national danger by reporting that the use of LSD is “rising
alarmingly” and that for the first time since 1976, more high-school seniors used
LSD than cocaine. However, analysis of the ISR data on which Newsweek based this
argument showed that this argument had no empirical basis. Cocaine use decreased
from 6.5% in 1989 to 5.3% in 1990, a statistically significant change (given sample
size used), whereas LSD use increased from 4.9% to only 5.4%, which was within
the range of sampling error. The contrast between these figures, which were
available to Newsweek, and the narrative and graphs used in the articles published,
suggest an intentional misuse of data and highlights the media’s tendency for
sensational reporting practices.

Excerpts #4 and #6 in Figure 1 further illustrate how data can be tailored to serve
the needs of specific organizations (e.g., states and manufacturers), and how reports
about data are shaped to influence the opinions of the listener or reader in a specific
direction. Paulos (1995, p. 79) notes that originators of messages regarding diseases,
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accidents, or other misfortunes that afflict humans, depending on their interest, can
make them appear more salient and frightening by choosing to report absolute
numbers (e.g., 2,500 people nationwide suffer from X), or in contrast can downplay
them by using incidence rate (e.g., 1 in every 100,000 people suffer from X). Many
examples are also presented by Huff (1954) and Crossen (1994).

In light of such examples, and the possibility for biased reporting (Wanta, 1997),
adults have to worry about and examine the reasonableness of claims presented in
the media. They have to be concerned about the validity of messages, the nature and
credibility of the evidence underlying the information or conclusions presented, and
reflect upon possible alternative interpretations of conclusions conveyed to them. It
follows that adults should maintain in their minds a list of “worry questions”
regarding statistical information being communicated or displayed (Gal, 1994;
Moore, 1997b; Garfield & Gal, 1999). Ten such questions are listed in Table 3.
When faced with an interpretive statistical task, people can be imagined running
through this list and asking for each question, “Is this question relevant for the
situation/message/task I face right now?”

The answers people generate to these and related questions can support the
process of critical evaluation of statistical messages and lead to the creation of more
informed interpretations and judgments. This list can of course be modified, and
some of its elements regrouped, depending on the life contexts and functional needs
of different adults. It can expand beyond basic statistical issues to cover broader
issues of probability and risk, or job-specific statistical topics such as those related
to statistical process control or quality assurance.
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Table 3. Sample “worry questions” about statistical messages

1. Where did the data (on which this statement is based) come from? What kind of study
was it? Is this kind of study reasonable in this context?

2. Was a sample used? How was it sampled? How many people did actually participate?
Is the sample large enough? Did the sample include people/units which are
representative of the population? Is the sample biased in some way? Overall, could this
sample reasonably lead to valid inferences about the target population?

3. How reliable or accurate were the instruments or measures (tests, questionnaires,
interviews) used to generate the reported data?

4. What is the shape of the underlying distribution of raw data (on which this summary
statistic is based)? Does it matter how it is shaped?

5. Are the reported statistics appropriate for this kind of data? E.g., was an average used
to summarize ordinal data; is a mode a reasonable summary? Could outliers cause a
summary statistic to misrepresent the true picture?

6. Is a given graph drawn appropriately, or does it distort trends in the data?

7. How was this probabilistic statement derived? Are there enough credible data to justify
the estimate of likelihood given?

8. Overall, are the claims made here sensible and supported by the data? E.g., is
correlation confused with causation, or a small difference made to loom large?

9. Should additional information or procedures be made available to enable me to
evaluate the sensibility of these arguments? Is something missing? E.g., did the writer
“conveniently forget” to specify the base of a reported percent-of-change, or the actual
sample size?

10. Are there alternative interpretations for the meaning of the findings or different
explanations for what caused them, e.g., an intervening or a moderator variable
affected the results? Are there additional or different implications that are not
mentioned?

Interaction of Knowledge Bases

Five knowledge bases were described above separately for ease of presentation,
but they overlap and do not operate independently from each other. For example,
familiarity with possible language ambiguities and reporting conventions comprises
part of the literacy skills required of adults, yet they are also part of general world
knowledge, and related to the need for knowledge about intentional (and possibly
biased) reporting practices listed as part of critical skills. Some aspects of the
statistical knowledge base overlap with mathematical knowledge, for example
regarding the difference in the computational procedures used to find medians and
means and their implication for interpretation of such statistics under different
conditions.

The characteristics of certain real-world messages require that adults jointly
activate all the knowledge based described in order to manage tasks at hand (Gal,
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1997). Figure 2 exemplifies the complex task that may face readers of print media
with regard to interpreting information of a statistical nature, and illustrates the
interconnected nature of the knowledge bases that underlie people’s statistical
literacy.

Figure 2 recreates a portion of a table that appeared in USA Today (a nationally
circulated daily newspaper) in 1999. This table combines an offbeat opening passage
with a tabular display of several simple lists, each containing information of a
different nature: absolute numbers, averages, percentages. Interpretation of the table
requires not only basic familiarity with averages and percentages, but also literacy
skills and access to different kinds of background knowledge. Some details needed
to make complete sense of the mathematical information are not fully stated, forcing
the reader to perform inferences, based on his or her general world knowledge:
averages are denoted as “avg.” and percentages as “pct. chg,” both nonstandard
abbreviations; the averages are “per site,” but it is not explained what is a “site” nor
if the average is calculated for a whole week or a weekend only; percentages
describe change in negative numbers, yet the base is not given, only implied.

DISPOSITIONAL ASPECTS OF STATISTICAL LITERACY

The notion of “critical evaluation,” highlighted in several of the conceptions of
statistical literacy cited earlier (e.g., Wallman, 1993), implies a form of action, not
just passive interpretation or understanding of the statistical or probabilistic
information available in a situation. It is hard to describe a person as fully
statistically literate if this person does not show the inclination to activate the five
knowledge bases described earlier or share with others his or her opinions,
judgments, or alternative interpretations.

Statistically literate action can take many forms, both overt and hidden. It can be
an internal mental process, such as thinking about the meaning of a passage one
read, or raising in one’s mind some critical questions and reflecting about them. It
can be extended to more external forms, such as rereading a passage, scanning a
graph one encountered in the newspaper, stopping a game of chance after one
remembers reading an article about the Gambler’s Fallacy, or discussing findings of
a survey one heard about on TV with family members at the dinner table or with co-
workers. However, for any form of action to occur and be sustained, certain
dispositions need to exist and be activated.

The term dispositions is used here as a convenient aggregate label for three
related but distinct concepts—critical stance, beliefs, and attitudes—which are all
essential for statistical literacy. These concepts are interconnected (McLeod, 1992),
and hence are harder to describe in a compartmentalized way, unlike the description
of the five knowledge bases above. This section first describes critical stance, and
then examines beliefs and attitudes that underlie a critical stance.
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Critical Stance

A first expectation is that adults hold a propensity to adopt, without external
cues, a questioning attitude toward quantitative messages that may be misleading,
one-sided, biased, or incomplete in some way, whether intentionally or
unintentionally (Frankenstein, 1989). They should be able and willing to
spontaneously invoke their personal list of worry questions (see Table 3) when faced
with arguments that purport to be based on data or with reports of results or
conclusions from surveys or other empirical research (Gal, 1994).

It is important to keep in mind that willingness to invoke action by adults when
they encounter statistical information or messages may sometimes be required under
conditions of uncertainty. Examples are lack of familiarity with the background of
the issues discussed or estimates conveyed, partial knowledge of concepts and their
meanings, or the need to cope with technical terms that “fly above the head” of the
Reader. This may be the case for many adults without much formal education or
effective literacy skills, who constitute a sizable percentage of the population in
many countries (Statistics Canada and OECD, 1996; UNESCO, 2000). Action or
reaction in such situations may involve taking some personal risks, i.e., exposing to
others that one is naive about, or unfamiliar with, certain statistical issues, and
possibly suffering some embarrassment or the need to argue with others.

Beliefs and Attitudes

Certain beliefs and attitudes underlie people’s critical stance and willingness to
invest mental effort or occasionally take risks as part of acts of statistical literacy.
There is a definitional challenge in discussing “beliefs” and “attitudes,” as the
distinction between them is somewhat murky. (Researchers, for example, often
implicitly defined statistics attitudes or beliefs as whatever their favorite assessment
instrument measures in the context of a specific target population, such as school
students, college students, or adults at large).

Based on McLeod’s (1992) work on affective aspects of mathematics education,
a distinction should be made between emotions, attitudes, and beliefs (see also
Edwards, 1990; Green, 1993). Emotions are transient positive and negative
responses triggered by one’s immediate experiences (e.g., while studying
mathematics or statistics, or while facing a certain probabilistic situation, such as
receiving medical information about the chances of side effects of a proposed
treatment). Attitudes are relatively stable, intense feelings that develop through
gradual internalization of repeated positive or negative emotional responses over
time. Attitudes are expressed along a positive—negative continuum (like—dislike,
pleasant—unpleasant), and may represent, for example, feelings toward objects,
actions, or topics (“I don’t like polls and pollsters, they always confuse me with
numbers”). Beliefs are individually held ideas or opinions, such as about a domain
(“government statistics are always accurate”), about oneself (“I am really naive
about statistical information,” “I am not a numbers person”), or about a social
context (“The government should not waste money on big surveys”; see Wallman,
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1993). Beliefs take time to develop and cultural factors play an important part in
their development. They have a larger cognitive component and less emotional
intensity than attitudes, and are stable and quite resistant to change compared to
attitudes.

Adults should develop a positive view of themselves as individuals capable of
statistical and probabilistic reasoning as well as a willingness and interest to “think
statistically” in relevant situations. This assumes that adults hold some appreciation
for the power of statistical processes, and accept that properly planned studies have
the potential to lead to better or more valid conclusions than those obtained by
relying on anecdotal data or personal experiences (Moore, 1998). Broader
metacognitive capacities that are considered part of people’s general intellectual
functioning can further support statistically literate behavior, such as having a
propensity for logical reasoning, curiosity, and open-minded thinking (Baron, 1988).

Gal, Ginsburg, and Schau (1997) examined the role of attitudes and beliefs in
statistics education, and argued that to enable productive problem solving, learners
need to feel safe to explore, conjecture, and feel comfortable with temporary
confusion or a state of uncertainty. It was argued earlier that reading contexts, where
people are data consumers, differ in several ways from those encountered in inquiry
contexts such as those addressed by Gal et al. (1997). Yet, some commonality
between these two contexts does exist regarding the required beliefs that support
action. Even in reading contexts adults have to feel safe to explore and hypothesize,
feel comfortable being in the role of a critical reader or listener, and believe in their
ability to make sense of messages (Gal, 1994), as a condition for developing and
sustaining their motivation for critical action.

Finally, we come to a point where “critical stance” and “beliefs and attitudes”
mesh together. For a critical stance to be maintained, adults should develop a belief
in the legitimacy of critical action. Readers should uphold the idea that it is
legitimate to be critical about statistical messages or arguments, whether they come
from official or other sources, respectable as they may be. Adults should agree that it
is legitimate to have concerns about any aspect of a reported study or a proposed
interpretation of its results, and to raise pertinent “worry questions,” even if they
have not learned much formal statistics or mathematics, or do not have access to all
needed background details.

DISCUSSION AND IMPLICATIONS

This paper’s main goal was to propose a conceptualization of statistical literacy
and describe its key components. Given the patchy literature on statistical literacy,
the availability of such a model was seen as a necessary prefatory step before further
scholarly discussion can ensue regarding the issues involved in developing or
studying adult statistical literacy. Statistical literacy was portrayed in this paper as
the ability to interpret, critically evaluate, and if needed communicate about
statistical information, arguments, and messages. It was proposed that statistically
literate behavior requires the joint activation of five interrelated knowledge bases
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(literacy, statistical, mathematical, context/world, and critical), yet that such
behavior is predicated on the presence of a critical stance and supporting beliefs and
attitudes.

The proposed conceptualization highlights the key role that nonstatistical factors
and components play in statistical literacy, and reflects the broad and often
multifaceted nature of the situations in which statistical literacy may be activated.
That said, several observations should be made. First, the five knowledge bases
discussed in this paper were sketched in broad strokes to clarify the key categories
of knowledge to be considered when thinking of what adults need to know to be
statistically literate. Each could be modified or elaborated, depending on the cultural
context of interest, and on the sophistication of statistical literacy expected of
citizens or workers in a given country or community. As with conceptions of other
functional skills, the particulars viewed as essential for statistical literacy in a
specific country will be dynamic and may have to change along with technological
and societal progress.

Secondly, although five knowledge bases and a cluster of beliefs, attitudes, and a
critical stance were proposed as jointly essential for statistical literacy, it does not
necessarily follow that a person should fully possess all of them to be able to
effectively cope with interpretive tasks in all reading and listening contexts.
Following current conceptions of adult literacy (Wagner et al., 1999) and numeracy
(Gal, 2000), statistical literacy should be regarded as a set of capacities that can exist
to different degrees within the same individual, depending on the contexts where it
is invoked or applied. Descriptions of what constitutes statistical literacy may differ
in work contexts, in personal/home contexts, in public discourse contexts, and in
formal learning contexts.

In light of the centrality of statistical literacy in various life contexts, yet also its
complex nature, educators, statisticians, and professionals interested in how well
citizens can interpret and communicate about statistical messages face numerous
challenges and responsibilities. Below is a preliminary discussion regarding two key
areas, education for statistical literacy, and suggested research in this area.

Educational Challenges

Several countries and organizations have introduced programs to improve
school-level education on data analysis and probability, sometimes called data
handling, stochastics, or chance (Australian Education Council, 1991; NCTM,
2000). Yet, at the school level, where most individuals will receive their only formal
exposure to statistics (Moore, 1998), these topics overall receive relatively little
curricular attention compared to other topics in the mathematical sciences. The most
credible information in this regard comes from the curriculum analysis component
of TIMSS, the Third International Mathematics and Science Study (Schmidt,
McKnight, Valverde, Houang, & Wiley, 1997), which examined curriculum
documents and textbooks and consulted with expert panels from over 40 countries.
TIMSS data also pointed to an enormous diversity in curricular frameworks.
Various gaps have been documented by TIMSS between the intended and
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implemented curriculum, (i.e., between curriculum plans and what actually appears
in mainstream textbooks, which tend to be conservative).

TIMSS tests included few statistics items; hence, it was not possible to create a
separate scale describing student performance in statistics. However, achievement
on individual statistical tasks was problematic. For example, Mullis, Martin, Beaton,
Gonzalez, Kelly, & Smith (1998) reported performance levels of students in their
final year of schooling (usually grade 12) on a task directly related to statistical
literacy: Explain whether a reporter’s statement about a “huge increase” was a
reasonable interpretation of a bar graph showing the number of robberies in two
years that was manipulated to create a specific impression. The graph included a bar
for each year but a truncated scale, causing a small difference between years to
appear large. Performance levels varied across countries; on average, less than half
of all graduating students appeared to be able to cope (at least partially) with this
task that exemplifies one of the most basic skills educators usually use as an
example for a statistical literacy skill expected of all citizens—the ability to detect a
discrepancy between displayed data and a given interpretation of these data.
Keeping in mind that in many countries a sizable proportion of students drop out or
leave before the final year of high school, the overall percentage of all school
leavers who can cope with such tasks is bound to be even lower.

Efforts to improve statistics education at the secondary or postsecondary levels
examine needed changes in a range of areas, including in content and methods,
teacher preparation and training, assessments, and the use of technology (e.g., Cobb,
1992; Pereira-Mendoza, 1993; Gal & Garfield, 1997; Lajoie, 1998). Yet a crucial
question is, to what extent can such efforts develop students’ interpretive and
statistical literacy skills? To appreciate the complexity of the issues implicated by
this question, consider the situation in the related area of scientific literacy.
Eisenhart, Finkel, & Marion (1996) have argued that the broad, progressive, and
inclusive vision of scientific literacy in reform proposals is being implemented in
narrow and conventional ways; hence reform efforts may not lead to significant
changes in national scientific literacy. To help define educational goals, it may be
possible to identify levels of statistical literacy (Watson, 1997; Watson & Moritz,
2000) in a similar fashion to the continuum proposed to describe levels of scientific
literacy (Shamos, 1995).

This paper argues that statistical literacy depends on possession of elements
from all five different knowledge bases; and that literacy skills, contextual
knowledge, critical skills, and needed dispositions play a significant role in this
regard. It is not at all clear that learning statistical facts, rules, and procedures, or
gaining personal statistical experience through a data-analysis project in a formal
classroom enquiry context can in itself lead to an adequate level of statistical
literacy.

Calls to change traditional approaches to teaching statistics have been repeatedly
made in recent years, and met with some success (Moore & Cobb, 2000). Yet,
educators have to distinguish between teaching more statistics (or teaching it better)
and teaching statistics for a different (or additional) purpose. Literacy demands
facing students who are learning statistics are more constrained than those described
in the section on “Literacy skills” as characterizing reading contexts. When students
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who learn statistics read or listen to project reports created by their fellow students
(Starkings, 1997), or when they read academic research papers, findings and
conclusions are likely to be shared through language that is less varied than what
appears in real-world sources. This may happen because academic conventions
inhibit or channel the type of expressions and styles that authors, students, and
teachers are expected to use, or due to logistical limitations in large introductory
statistics courses that restrict the richness and scope of classroom discourse that
teachers can afford to conduct (Wild, Triggs, & Pfannkuch, 1997). Unlike
consumers of the media, when students encounter an unfamiliar or ambiguous term,
they can clarify its interpretation by talking with their teacher. The upshot is that the
literacy demands in statistics classes do not necessarily represent the heterogeneous
communicative environment within which adults in general have to cope with
statistical messages.

To develop statistical literacy, it may be necessary to work with learners, both
younger students and adults, in ways that are different from, or go beyond,
instructional methods currently in use. To better cover all knowledge bases
supporting statistical literacy, topics and skills that are normally not stressed in
regular statistics modules or introductory courses, for lack of time or teacher
preparation, may have to be addressed. Some examples are

e Understanding results from polls, samples, and experiments (Landwehr,
Swift, & Watkins, 1987; MacCoun, 1998) as reported in newspapers or
other media channels

e Understanding probabilistic aspects of statements about risk and side effects
(Clemen & Gregory, 2000) as reported in newspapers or other media
channels

e Learning about styles, conventions, and biases in journalistic reporting or
advertisements

e Gaining familiarity with “worry questions” (Table 3), coupled with
experience in applying them to real examples (such as one-sided messages,
misleading graphs), or seeing someone else (e.g., a teacher) model their
application

e Developing a critical stance and supporting beliefs, including positive beliefs
and attitudes about the domain (usefulness of statistical investigations) and
oneself

TIMSS reports on curriculum planning and other school-related variables imply
that young people who will be leaving schools in coming years may continue to
have insufficient preparation in data analysis and probability. An important and
presently much larger population is that of adults in general. The majority of the
current adult population in any country has not had much if any formal exposure to
the statistical or mathematical knowledge bases described earlier, given known
education levels across the world (Statistics Canada & OECD, 1996; UNESCO,
2000). As TALS (OECD & Human Resources Development Canada, 1997) and
other studies have shown, even in industrialized countries, literacy levels of many
adults are low. This paper argues that literacy skills, including document literacy
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skills, are an important component of the knowledge base needed for statistical
literacy. It follows that achieving the vision of “statistical literacy for all” will
require a concerted effort by various educational and other systems, both formal and
informal.

Large numbers of adult learners receive important educational services from
adult basic education centers, adult literacy programs, workplace learning and
union-based programs, and continuing education or tertiary institutions. These
services have an important role in promoting statistical literacy of adults, and some
have began to formally recognize the need to attend to statistical issues and to
critical evaluation of messages as part of designing curricula for adult learners
(European Commission, 1996; Curry et al., 1996; Stein, 2000). Yet, media
organizations and media professionals (Orcutt & Turner, 1993), public and private
agencies and institutes that communicate with the public on statistical matters, such
as national statistical offices (Moore, 1997b), and even marketers and advertisers
(Crossen, 1994), all have some responsibility in this regard. All the above
stakeholders will have to devise innovative and perhaps unorthodox ways in order to
jointly reach and increase statistical literacy in the general population.

Research and Assessment Challenges

As pointed out earlier, the current knowledge base about statistical literacy of
school or university students and of adults in general is patchy. In the absence of
solid empirical information, the speculative ideas raised in this paper may not
translate into action by decision makers who are in a position to allocate resources to
educational initiatives. Three related areas where further research is needed are as
follows.

Research on Students’ and Adults’ Statistical Literacy Skills

Studies such as TIMSS (aimed at school students) and TALS (aimed at adults)
provided useful but only preliminary data on restricted aspects of people’s statistical
literacy, mainly because their main thrust was planned to address other mathematical
topics. Many knowledge elements basic to statistical literacy were left out of these
assessments (e.g., understanding of averages and medians, knowledge about
sampling or experimental designs, or understanding of chance-related statements).
New international large-scale assessments, such as OECD’s Program for
International Student Achievement (http://www.pisa.oecd.org), or the Adult Literacy
and Lifeskills survey (http://nces.ed.gov) will include broader coverage of statistical
matters, in line with expanded notions of mathematical literacy and numeracy
developed for these projects. However, given the restrictions on testing time in
large-scale studies and the number of domains competing for item coverage, focused
studies are needed that can provide more comprehensive information on statistical
literacy skills and related attitudes, and on gaps in this regard. Qualitative studies
should further enable in-depth examination of thinking processes, comprehension,
and effects of instruction in this regard.
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The Joram et al. (1995) findings reported earlier shed some light on the range of
ways in which selected statistical and numerical information can be conveyed to
readers of magazines, and point to the strong linkage between literacy and statistical
elements in print media. Yet, little is known about the demands facing consumers of
other media channels, such as daily newspapers, workplace materials, or TV
broadcasts, and with regard to a range of statistical and probabilistic topics beyond
rational numbers. The absence of credible data from which to establish the statistical
literacy requirements in the full range of domains where adults have to function is
alarming. Research in this area, taking into account variation both within and
between countries, is a prerequisite for designing effective and efficient instruction
that aims at different levels of statistical literacy.

Research on Dispositional Variables

This paper argued that a view of statistical literacy as an action-oriented set of
interrelated knowledge bases and skills, one which people will actually use in
everyday contexts, must consider people’s inclination to apply a critical stance and
the motivations, beliefs, and attitudes that affect or support statistically literate
behavior. However, the conceptualization and assessment of these variables present
many challenges (Gal et al., 1997). Development of research methods in this regard
is essential for understanding the forces that shape statistically literate behavior in
different contexts. Changes in dispositions should be measured as part of evaluating
the impact of educational interventions aimed at improving statistical literacy of
people in all walks of life.
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Chapter 4

A COMPARISON OF MATHEMATICAL AND
STATISTICAL REASONING

Robert C. delMas
University of Minnesota, USA

INTRODUCTION

The focus of this chapter is on the nature of mathematical and statistical reasoning.
The chapter begins with a description of the general nature of human reasoning.
This is followed by a description of mathematical reasoning as described by
mathematicians along with recommendations by mathematics educators regarding
educational experiences to improve mathematical reasoning. The literature on
statistical reasoning is reviewed and findings from the general literature on
reasoning are used to identify areas of statistical reasoning that students find most
challenging. Statistical reasoning and mathematical reasoning are compared and
contrasted, and implications for instruction and research are suggested.

THE NATURE OF HUMAN REASONING

While human beings are very intelligent and have produced notable advances of
mind over the millennia, people are still prone to systematic errors of judgment.
Wason and Johnson-Laird (1972) reported on a variety of studies that systematically
explored conditions under which people make reasoning errors. One of the
difficulties faced by researchers of human reasoning is a lack of agreement in the
definition of the phenomenon. Wason and Johnson-Laird (1972) state, “There is, of
course, no clear boundary surrounding this topic. ... In our view, it is fruitless to
argue about definitions of terms, and we shall be concerned with how humans draw
explicit conclusions from evidence” (p. 1). In a review of the literature on reasoning
research, Galotti (1989) argues that this lack of agreement on what constitutes
reasoning produces some problems for the interpretation of results. Galotti points
out that “reasoning” is often used interchangeably with terms such as thinking,
problem solving, decision making, critical thinking, and brain storming. The
confusion is compounded in that these different types of thinking are considered to
involve common processes and mental activity, such as the transformation of given
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information on the basis of stored knowledge in order to draw an inference or a
conclusion.

Galotti (1989) offers a definition of reasoning that attempts to distinguish it from
other forms of thinking. According to Galotti, reasoning involves mental activity
that transforms given information, is focused on at least one goal (typically to make
an inference or draw a conclusion), is consistent with initial premises (modified or
unmodified), and is consistent with systems of logic when all premises are specified.
She also adds some caveats: The mental activity does not have to be self-contained
(i.e., the premises may be modified by the reasoner) and the conclusions do not have
to be deductively valid. Therefore, when conducting research on reasoning, it is
important to determine whether or not a person has modified the premises and to
judge the quality of the reasoning accordingly.

Errors in Human Reasoning

Despite the potential for disagreement on the phenomenon being investigated,
there has been a long history of research on the degree to which humans are
naturally rational thinkers. Most of the studies have looked at performance on
abstract, formal reasoning tasks (e.g., syllogisms; tasks solved by propositional or
predicate calculus) where all necessary information is provided (Evans, 1989;
Evans, Newstead, & Byrne, 1993; Oaksford & Chater, 1998; Wason & Johnson-
Laird, 1972). Some studies have looked at practical and informal reasoning where
the purpose is more functional and situation specific (Evans et al., 1993; Galotti,
1989). Some general findings that can be summarized from reviews of the literature
(e.g., Evans, 1989; Evans et al., 1993; Galotti, 1989; Gilovich, Griffin, &
Kahneman, 2002; Wason & Johnson-Laird, 1972) are as follows:

e People have difficulty with drawing a valid conclusion by denying a
negatively stated assumption. In general, people find it hard to track the
effect of double negation in an argument (Evans, 1989; Evans, Newstead, &
Byrne, 1993; Galotti, 1989).

® People often change the nature or meaning of premises, even when explicitly
trained in the interpretation of premises (Galotti, Baron, & Sabini, 1986).

e When presented with a conditional statement, people act as if a causal
relationship is implied between the antecedent (“If the skies are clear
tonight”) and consequent (“it will be cold tomorrow morning”). Therefore,
they incorrectly believe the antecedent is true if the consequent is affirmed:
“It is very cold this morning, therefore, the skies must have been clear last
night” (Wason & Johnson-Laird, 1972).

® Human reasoning is deductive, but it tends to be of a practical nature.
People, in general, do not reason well with purely abstract information.
People show impressive reasoning abilities with complex tasks, but primarily
when they are highly familiar with the materials and situation (Evans,
Newstead, & Byrne, 1993; Kahneman & Tversky, 1982; Wason & Johnson-
Laird, 1972).
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e When given an abstract task, people inadvertently modify the given
information or premises by including personal knowledge that may or may
not be relevant (Wason & Johnson-Laird, 1972).

e  While human reasoning is deductive in nature and quite powerful, it does not
seem to act in full accordance with the truth-functional relations of the
propositional calculus in formal logic (Galotti, 1989).

e People do not tend to consider all possible interpretations of a premise
(Erickson, 1978; Johnson-Laird, 1983) or multiple ways of combining
premises (Johnson-Laird, 1983). This leads to a consideration of information
and implications that are not exhaustive, which in turn may lead to erroneous
conclusions (Baron, 1985). One particular example of this is confirmation
bias (Evans, 1989; Nisbett & Ross, 1980; Ross & Anderson, 1982; Wason,
1977), which is the tendency to look only for confirmatory evidence and not
to consider evidence that could potentially discredit an argument. People
readily accept conclusions they believe to be true and have difficulty
accepting conclusions they believe to be false.

e There is evidence that some biases in reasoning can be overcome if feedback
produces a conceptual inconsistency for an individual (Nisbett & Ross,
1980). People tend to adjust their reasoning when they encounter
contradictory evidence, although not all the time.

e Reasoning is easily affected by factors that, from a logical standpoint, should
not have an effect. For example, people provide higher frequency estimates
if asked to recall only a few instances (e.g., 3) of an event and lower
estimates when asked to recall many instances (e.g., 9 to 12) relative to just
being asked for a frequency estimate. These effects can be further mediated
by having people consider their level of expertise in an area or by
manipulations that increase or decrease motivation (Schwarz & Vaughn,
2002).

e Possibly as a result of confirmation bias and recall effects, people tend to be
overconfident in the validity of their reasoning (Fischhoff, 1982;
Lichtenstein, Fischhoff, & Phillips, 1982).

These general observations have implications for the nature of mathematical and
statistical reasoning. Of most importance are the observations that people have
difficulty with abstract reasoning, that people can reason well in highly familiar
situations, that personal knowledge often intrudes when reasoning, and that people
often fail to consider all possibilities. One possible explanation for biases in human
reasoning is offered by two-system theories of reasoning (Evans, 1995; Evans &
Over, 1996; Sloman, 2002). These theories propose that two separate but interactive
systems of reasoning are employed for most reasoning tasks. One system is
associative in nature and uses regularities in perceived characteristics and temporal
structures to produce automatic responses. The other system, being rule-based in
nature, is more deliberate and systematic (Evans & Over, 1996), which allows it to
override some output from the associative system (Stanovich & West, 2002). When
a person is faced with a problem, both systems may be activated and arrive at
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separate responses. While the two responses may be the same (or at least supportive)
in most cases, it is possible for the responses to conflict. In addition, the more
automatic associative system may finish first, producing a response before the rule-
based system has a chance to check its validity. Even when both systems run to
conclusion, the associative response can interfere with the output of the rule-based
system (Sloman, 2002). In this way, first impressions can govern a decision before
more rule-based, logical operations are brought into play, producing invalid or
irrelevant conclusions under certain conditions. Evidence for systematic,
nonnormative biases in reasoning that are consistent with predictions from a two-
system reasoning process is found even when factors such as cognitive ability are
accounted for (Stanovich & West, 2002).

THE NATURE OF MATHEMATICAL REASONING

It has been argued that mathematical ideas are essentially metaphorical in nature;
therefore mathematics should not be taught only as methods of formal proof or a set
of calculation techniques. According to Lakoff and Nunez (1997), mathematics “is
all about ideas, and it should be taught as being about ideas” (p. 85). They argue that
the metaphorical nature of mathematics must be taught if instruction is to affect
students’ mathematical reasoning. Lakoff and Nunez believe that an emphasis on
metaphorical thinking can counter the idea that mathematics exists independent of
human minds (because reasoning by metaphor is a characteristic of human
intelligence). However, equating mathematical reasoning solely with metaphorical
reasoning can be taken as evidence that mathematics is a product of mind, a product
that does not necessarily have to correspond to objects or events in the objective
world.

Mathematics, Symbols, and Language

As a discipline, mathematics can be viewed as the study of patterns; therefore,
mathematical reasoning involves reasoning about patterns. Devlin (1998) notes that
mathematics deals with abstract patterns that are distilled from the real world or
“from the inner workings of the human mind” (p. 3). Adding to the level of
abstraction is a reliance of modern mathematics on the use of abstract notation (e.g.,
algebraic expressions). Mathematical fields develop abstract notation systems in
order to work with patterns in efficient and facile ways, but at the cost of added
complexity and a high degree of remoteness from everyday experience and
knowledge. Modern computers can help students visualize some of the notational
representation, but only to a certain extent since a relatively small portion of modern
mathematics lends itself to computer simulation.

Symbolic notation, in and of itself, is not mathematics. To have meaning, the
symbols require mental models of real mathematical entities to serve as referents
(Devlin, 1998). This aspect of mathematics, Devlin argues, is often overlooked
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because of an emphasis on procedures and computations in mathematics instruction.
Nonetheless, he sees mathematics as a purely human creation built of entities that do
not exist in the physical world for they are “pure abstractions that exist only in
humanity’s collective mind” (p. 9). Working with the highly abstract content of
mathematics has proven difficult even for talented mathematicians. Devlin notes that
Newton and Leibniz developed the calculus because they were able to represent
processes of motion and change as functions, and then work with those functions as
mathematical entities. The calculus was derived from a process of successive
approximations and the idea of a limit, a concept for which they could not provide
an acceptable definition. It took some 200 years of development in mathematical
thinking before Weierstrauss conceived of the process of successive approximations
as an entity and presented a precise definition for a limit.

Both language and mathematics can be considered abstract artifacts of human
intellect and culture. Devlin (2000) argues that the mental facilities that humans use
to process language are the very facilities needed to carry out abstract mathematical
thought. Even if this is the case, there may be several reasons why a facility with
language does not directly translate to a facility with mathematics. While language
is abstract in nature (e.g., references can be made to objects in the past and future),
its reference base is often concrete. Even when abstract concepts are the referents
(e.g., love, happiness, despair), there are still human counterparts in emotion and
experience that provide a foundation for meaning. Mathematical thought seems to
require the individual to create mental referents, a process that can result in mental
entities with no physical counterparts. Another factor that may add to difficulties in
mathematical thinking is that it often requires the use of a mathematical proof. The
study of mathematical proof has essentially produced systems of formal logic,
which, as noted earlier, many people find difficult to employ.

Instruction and Mathematical Reasoning

Due to the highly abstract nature of mathematics, modern researchers in
mathematics education place a strong emphasis on instructional methods that help
students learn abstract mathematical concepts by relating them to familiar concepts
and processes. The importance of image-based reasoning in mathematics is well
documented (Devlin, 1998; English, 1997). Mathematicians often find that image or
graphic representations facilitate their reasoning more than other types of symbolic
representation do. However, the ultimate goal is to move the student from ‘“actual
reality” to what Sfard (2000) calls “virtual reality” discourse. Actual reality
discourse can be bounded and mediated by real-world referents. For example,
someone could state, “Her name is Cedar” and point to his dog. By pointing to his
pet the speaker makes it clear that he is not referring to a tree that he thinks is
female. The discourse object exists independent of the concept and can be used to
perceptually mediate the discussion. However, Sfard (2000) argues that a statement
such as Y, is equal to 3, is an instance of virtual reality discourse because
perceptual mediation is enacted, at best, with real-world objects that substitute for,
but do not fully represent the concept under discussion. Sfard sees virtual reality
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discourse as the primary mode of mathematical communication. As such,
mathematical discourse may not carry a direct impact on human action or reality.
This can create a setting of freedom and exploration for some; but it can also render
mathematics as meaningless, of little importance, and of little interest to others
(Sfard, 2000).

Modern mathematics curriculums recognize that human reasoning is pragmatic
and incorporates real-world problems as devices for making mathematical concepts
and structures meaningful. English (1997) states that “mathematical reasoning
entails reasoning with structures that emerge from our bodily experiences as we
interact with our environment” (p. 4). According to English, four “vehicles of
thought” are used in mathematical reasoning: analogy, metaphor, metonymy, and
imagery. They constitute generic mental devices that are not exclusively used in
mathematical reasoning. All four of the mental devices provide a way to map
concrete experience to mental models or representations of the environment. She
argues that humans require experience with mapping structural information from
concrete experience to a mathematically abstract mental representation (the
foundation of analogy and metaphor) in order to develop mathematical reasoning.
Stard (2000) notes that both actual and virtual reality discourse are object mediated.
She sees virtual reality discourse as emerging from actual reality discourse in a
process that reminds one of object-oriented programming in computer science; if
actual reality discourse is considered the root for all other discourse, then virtual
reality discourse is seen to inherit templates and properties from real-world referents
through iterative extensions of a concept to abstract contexts. This is similar to
Thompson’s (1985) development of instructional approaches that go beyond
teaching skills and procedures and motivate students to develop abstract, figurative
imagery that encapsulates the structural relationships, operations, and
transformations that apply to mathematical objects. As such, mathematical discourse
can be difficult because there may be no physical referent to serve as the focus of
reasoning and communication. Ultimately, the purpose of mathematical inquiry is to
develop an understanding of mathematical objects that is independent of real-world
contexts (Cobb & Moore, 1997).

Statistical Reasoning and Thinking

In recent years, statisticians have pointed out distinctions between statistics and
mathematics in order to establish statistics as a separate and unique discipline (e.g.,
Moore, 2000; Cobb & Moore, 1997). Statistics may be viewed as similar to
disciplines such as physics that utilize mathematics, yet have developed methods
and concepts that set it apart from mathematical inquiry. Unlike mathematical
reasoning, statistical inquiry is dependent on data (Chance, 2002) and typically
grounded within a context (Cobb & Moore, 1997; Moore, 1998; Pfannkuch & Wild,
2000; Wild & Pfannkuch, 1999). A practicing statistician may use mathematics to
assist in solving a statistical problem, but only after considerable work has been
done to identify the question under investigation, explore data for both patterns and
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exceptions, produce a suitable design for data collection, and select an appropriate
model for data analysis (see Chapter 2).

Statistical thinking and statistical reasoning have often been used
interchangeably to represent the same types of cognitive activity. If reasoning in
general is considered a type of thinking, then how are statistical reasoning and
statistical thinking related? Recent work by Wild and Pfannkuch (1999) has helped
provide a model for statistical thinking that allows it to be distinguished from
statistical reasoning. Lovett (2001) defines statistical reasoning as “the use of
statistical tools and concepts ... to summarize, make predictions about, and draw
conclusions from data” (p. 350). This definition does not distinguish statistical
reasoning because it is too similar to the depiction of statistical thinking offered by
Pfannkuch and Wild (see Chapter 2) and Chance (2002). Garfield (2002) offered a
similar definition, but with more emphasis on the “ways” statistical knowledge is
used to make sense of data. Nonetheless, Garfield found that there is very little
consensus on what is involved in statistical reasoning and that research on statistical
reasoning is still in a state of development.

It can be argued that both statistical thinking and reasoning are involved when
working the same task, so that the two types of mental activity cannot necessarily be
distinguished by the content of a problem (delMas, 2002). However, it may be
possible to distinguish the two by the nature of the task. For example, a person who
knows when and how to apply statistical knowledge and procedures demonstrates
statistical thinking. By contrast, a person who can explain why results were
produced or why a conclusion is justified demonstrates statistical reasoning. This
treatment of statistical reasoning is consistent with the definition presented earlier by
Galotti (1989). Examples of statistical reasoning are likely to be found at stages in
people’s thinking where they are asked to state implications, justify a conclusion, or
make an inference. Given this perspective, statistical reasoning is demonstrated
when a person can explain why a particular result is expected or has occurred, or
explain why it is appropriate to select a particular model or representation. Statistical
reasoning is also expressed when a selected model is tested to see if it represents a
reasonable fit to a specified context. This type of explanation typically requires an
understanding of processes that produce data. When students develop an
understanding of processes that produce samples and, consequently, statistics
derived from samples, they may be better prepared to predict the behavior of
sampling distributions and understand procedures that are based on the behavior of
samples and statistics (see Chapter 13).

With this type of understanding, the student can provide reasons and justification
for the statistical methodology that is applicable in a context (i.e., they can think
statistically). These justifications, however, are not context free, and require an
interplay between the concrete and the abstract as the statistical thinker negotiates
the best approach to take in solving a problem. In this way, statistics differs from
mathematical reasoning in that the latter is most often context free (i.e., independent
of the objective world).
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DIFFICULTIES IN STATISTICAL REASONING

It seems reasonable to argue that because statistical thinking always occurs
within a concrete context, students should have very little difficulty with statistical
reasoning. This might be expected given the general findings from research on
reasoning that people tend to draw valid conclusions when working with familiar
and concrete materials even when they draw invalid conclusions for isomorphic
problems rendered purely in the abstract (see Evans et al., 1993). Yet, most
instructors of statistics find that students have difficulty with statistical content, let
alone statistical reasoning. Why is this the case?

The Abstract Nature of Statistical Content

The answer may be that many of the concepts used in statistics are abstract in
nature, let alone unfamiliar, and reasoning about abstract content is difficult for
many. One source of abstraction comes from the mathematical content of statistics.
For example, mathematical procedures that are used to calculate the mean for a set
of data are likely to produce a value that does not exist in the data set. Many
students may find it difficult to develop an understanding for something that does
not necessarily exist. Just as in mathematics, statistics instruction can use analogies,
metaphors, and images to represent abstract concepts and processes to help students
foster meaning. A common metaphor for the mean is the process of moving a
fulcrum along a beam to balance weights, where the fulcrum plays the counterpart
of the mean. Just as in mathematics, developing an appropriate mental model of the
statistical mean may require extensive experience with the balance beam metaphor.
This type of understanding, therefore, is akin to the mathematical reasoning
presented in the previous section. It should not be surprising that statistics students
have as much difficulty with these aspects of their statistical education as they do
with the abstract content of mathematics.

Even though statistical reasoning may involve an understanding of data and
context, this does not mean that all statistical concepts are concrete and accessible.
A great deal of statistical content requires the type of virtual reality thinking
described by Sfard (2000). It has been suggested that statistics instruction begin with
exploratory data analysis because its hands-on, concrete nature is more accessible
(Cobb & Moore, 1997). Even at this elementary level, students are expected to
understand and reason with numerous abstractions. Instruction in exploratory data
analysis presents a variety of graphical techniques that are used to represent and
explore trends and patterns in data. While many aspects of these graphical
techniques are nonmathematical, using them to identify patterns may require a level
of abstraction that students find just as difficult as the abstract patterns encountered
in mathematics. Although graphic representations are based on real data imbedded
within a context, they are nonetheless abstractions that highlight certain
characteristics of the data and ignore others.

Data analysis is dependent on data that is generated by taking measurements. A
measurement can be a very abstract entity (e.g., what does IQ measure?) or very
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unfamiliar (e.g., nitrous oxide concentrations in the blood), so it can be important to
begin instruction with concrete or familiar measurements (e.g., city and highway
miles per gallon [mpg] ratings of automobiles). Even when the data are familiar, a
measurement is an abstraction that represents only one aspect of a complex entity.
Focusing attention on only one “measurement of interest” may be difficult for some
students who are familiar with a context and find it difficult not to consider aspects
they see as more important or more interesting.

Students move to another level of abstraction when asked to graph the data. A
stem-and-leaf plot often requires students to separate the data from the context (e.g.,
the car make and model are not represented in a graph of mpg), and they often lose
some of the measurement detail in order to construct a visual picture of the
distribution. Stems are separated from leaves, and leaves often do not represent all
of the remaining information in a numerical value (e.g., the stem represents the digit
in the one-hundreds place, the leaf represents the digit in the tens place, and the digit
in the ones place is not used at all). Further abstraction can result if the graph is
expanded or contracted in order to search for a meaningful pattern in the data. This
is likely to be a very unfamiliar type of representation for many students, and the
level of abstraction may compound difficulties with attempts to reason from graphic
displays.

Another level of abstraction is created when students are asked to further explore
a data set with a box plot. The box plot is a graphic display commonly used for the
comparison of two or more data sets (see Cobb & Moore, 1997 [p. 89] for an
illustrative example). Box plots remove much of the detail from a data set to make
certain features stand out (e.g., central tendency, variability, positive or negative
skew). Understanding how the abstract representation of a “box” can stand for an
abstract aspect of a data set (a specific, localized portion of its variability) is no
small task. The student must build a relationship between the signifier and the
signified as described by Sfard (2000), yet both the signifier and the signified are
based on abstract constructions of mind. It seems reasonable to expect that many
students will find it difficult to understand graphical representations, even though
the devices appear basic and elementary to the seasoned statistician.

Logic Errors and Statistical Reasoning

As noted earlier, people do not tend to generate multiple possibilities for a given
situation and are prone to confirmation bias. It is reasonable to expect, therefore,
that some students will find it difficult to identify exceptions to trends in order to
test a model, an ability that is associated with sound statistical thinking. This same
difficulty is likely to express itself when students are asked to generate alternatives
during the interrogative cycle of statistical thinking as described by Wild and
Pfannkuch (1999), as well as when instructors try to promote a disposition of
skepticism in their students.

Cobb and Moore (1997) identify several other areas of statistics instruction that
are nonmathematical and uniquely define statistics as a discipline. Experimental
design is a topic found in statistics (and other disciplines) that is typically not part of
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the mathematics curriculum. This is an area requiring very little mathematical
background, and it is highly dependent on context. Experimental design does,
however, follow a particular logic. Typically, several assumptions (i.e., premises)
are adhered to; for example, a control condition and a treatment condition differ on
only one characteristic, with all other aspects of the two conditions being equal. If a
reliable difference between two conditions is found in a controlled experiment, then
the difference is attributable to the difference in the characteristic on which the
conditions vary. Although the preceding is certainly an oversimplification of the
details that go into the design of any experiment, it is sufficient for considering how
conclusions are drawn from experimental results. If a reliable difference between
conditions is found, affirmation of the antecedent occurs from which the conclusion
follows that the varied characteristic was responsible. In formal logic this is known
as modus ponens (see Evans et al., 1993). Conversely, if the characteristic that is
varied is not a causal agent, then logic dictates that a reliable difference between the
two conditions will not be found. This is referred to as modus tollens. While people
appear to handle modus ponens reasoning naturally, many have difficulty with
modus tollens (Evans et al., 1993). Students are likely to have similar difficulty
understanding the logic of experimental design.

Formal Inference in Statistics

Formal inference is typically introduced in a first course of statistics. Formal
inference involves rules for drawing conclusions about the characteristics of a
population based on empirical observations of samples taken from the population.
This is often taught using one (or both) of two approaches: confidence intervals or
significance tests (Cobb & Moore, 1997). Either approach requires the disposition
that Wild and Pfannkuch (1999) refer to as “being logical.” Both approaches derive,
in part, from probability theory; but they also involve a logic that is statistical in
nature. Because a complete understanding of these approaches requires logical and
mathematical thinking, many students will find this topic difficult to understand.
The type of logical thinking involved may provide additional insight as to why
formal inference is problematic for many students. As described by Cobb and Moore
(1997), a significance test starts by assuming that an effect of interest is not present
in a population. The reasoning goes something like this: If there is no effect in the
population, then the probability for the size of the effect observed in the sample data
will be high. Conversely, if the effect in the sample data is determined to be of a
sufficiently low probability, this is taken as evidence that the original premise is
false and that the effect does exist in the population.

Mathematics provides knowledge about the expected probability distribution of
observed sample effects when there is no effect in the population. Statistics adds a
probabilistic determination for the cutoff point that establishes when a probability is
sufficiently low. The reasoning that follows is provided by the formal logic of
predicate calculus. The logic of significance tests involves a negative statement in
the premise, a situation that typically results in poorer performance on formal
reasoning tasks. The logical reasoning that establishes evidence of an effect in the
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population follows from modus tollens (i.e., negation of the consequent validates
negation of the antecedent). As noted earlier, people find modus tollens to be a
difficult type of reasoning. On both accounts, students will find the logic of
significance tests difficult to follow. The logic could be made easier by using an
example where negation of the consequent matches commonsense understanding for
a very familiar setting. However, under this condition people may draw a valid
conclusion simply because they “know it is so” and not because they understand the
underlying logic.

Reasoning with Confidence Intervals

A confidence interval takes a different approach to formal inference by
providing an interval estimate of a population characteristic. The interval is based on
data from a single sample and, therefore, is not guaranteed to capture the true value
of the population characteristic due to sampling variability. Probability theory can
provide an estimate of how likely (or how often) a random sample drawn from a
population will capture the population value. This probability is taken as the level of
confidence. Therefore, the meaning of a 95% confidence interval is based on the
understanding that there is a 95% chance that a single randomly selected sample will
be one of the samples that provides a confidence interval that captures the
population characteristic. This understanding requires a complex mental model of
several related concepts, which alone may make reasoning from confidence intervals
difficult. In addition, formal inference based on confidence intervals appears to
follow the same logic as significance tests. The confidence interval has a reasonably
high probability of capturing the true population characteristic. Under the
assumption of no effect in the population (e.g., two groups really come from the
same population, so the difference between the two groups should be zero), the
confidence interval is very likely to contain no effect (i.e., to capture zero). The
conclusion that there is an effect in the population follows if the confidence interval
does not contain zero (i.e., the consequent is negated). Once again, the situation
requires reasoning based on a negated premise and modus tollens.

COMPARISON OF STATISTICAL REASONING AND MATHEMATICAL
REASONING

It is reasonable to ask at this point how mathematical and statistical reasoning
compare and contrast with each other. Mathematical and statistical reasoning should
place similar demands on a student and display similar characteristics when the
student is asked to reason with highly abstract concepts and relationships. When
students are asked to reason primarily with abstract concepts, a great deal of
concentration and persistence may be required to find relationships among the
concepts. This can lead to erroneous judgments and conclusions if a student is
unable to sustain the effort. Solutions may be based on the output of associative
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processes that fall short of the reflection and integration needed for a complete
understanding.

A statistical problem can provide an illustrative example for both mathematical
and statistical reasoning. A problem on a statistics exam might present a bivariate
plot, summary statistics including the value of the correlation, and formulas for
calculating the slope and ordinate of the y-intercept. When asked to find the slope
and y-intercept, many students will not use the formulas that are provided. Instead,
they may pick two plotted points that seem “typical” of the bivariate plot, derive a
value for the slope using procedures learned in linear algebra, and subsequently
calculate a value for the ordinate of the y-intercept. This “reasoning” may not be
reasoning at all, but merely the result of well-rehearsed associative memory where
“find the slope” retrieves a familiar procedure without questioning the fit of the
procedure to the context. A student acting in this fashion seems to lack either a
rudimentary mathematical understanding (e.g., that the model requires all points to
form a straight line) or statistical understanding (e.g., that the model must take into
account the inherent variability in the bivariate plot).

When students work within very familiar contexts or with well-rehearsed
concepts and procedures, very few difficulties and errors are expected to occur,
regardless of whether the content is statistical or mathematical. The previous
example illustrates a common misunderstanding among students that, when
recognized, provides an opportunity to help students develop a deeper understanding
of both mathematical and statistical concepts by promoting an understanding of the
contexts under which it is appropriate to apply the respective models. Once ample
opportunity is provided to distinguish between the mathematical and statistical
contexts, and to apply the respective procedures, errors are more likely to be
mechanical than rational in nature.

While mathematical and statistical reasoning appear similar, there are some
differences in the common practices of each discipline that may result in different
sources of reasoning difficulty. Model abstraction is a general task that is common
to both disciplines. The nature of the task, however, is somewhat different between
statistics and mathematics. In mathematics, context may or may not play a large
role. Initially, mathematics instruction may use familiar contexts to motivate and
make accessible the underlying structure of abstract concepts. During this period of
instruction, students might be misled by aspects of the context that are familiar yet
irrelevant to an understanding of the underlying mathematical concept. Through
guided inquiry or constructivist approaches that require the student to test models
and assumptions against feedback derived from the context, students may eventually
develop well-structured mental models of the mathematical object. At that point, the
student may no longer require problem contextualization to reason with the
mathematical concept. Further work with the concept may be conducted in a purely
imaginary, figurative, and abstract way that does not require the student to relate
back to any of the original contexts used to promote understanding. At this point, the
student manipulates mathematical concepts and coordinates multiple relationships in
a purely mental world that may have no real-world referents other than symbolic
representations. This can produce significant cognitive demands that make the
mathematical reasoning quite difficult.
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In the practice of statistics, model abstraction always begins with a context.
When this practice is taught in the statistics classroom, the student is dependent on
the characteristics of the context to guide model selection and development. In some
respects, this may be a more difficult task than the purely mental activity required in
mathematical reasoning. During model selection and construction, the student faces
some of the same cognitive demands that are required by abstract reasoning while
having to check the model’s validity against the context. As demonstrated in
numerous studies, reasoning from a context can produce a variety of errors.
Therefore, no matter how practiced and skilled the student (or statistician), she must
always guard against the intrusion of everyday knowledge that is irrelevant or
misleading. She must also guard against the use of heuristic, associative processes
that may naturally come into play, yet lead to erroneous interpretations or the
perception of relationships that do not actually exist. If the student successfully
navigates these pitfalls, statistical analyses suggested by the model can be
conducted. The student must then take the results and relate them back to the
original context. This translation or mapping represents another potential source of
error as multiple relationships must be tracked and validated, and context once again
has an opportunity to influence reasoning.

In summary, it is likely that many aspects of statistical and mathematical
reasoning are highly similar. The task demands of each discipline, however, may
produce different sources of reasoning error. While instruction can be driven and
facilitated by contextualization in both disciplines, statistical practice is highly
dependent on real-world context whereas mathematical practice tends to be removed
from real-world context (Cobb & Moore, 1997). The dependence on context in
statistical reasoning may lead to errors in reasoning, some of which are difficult to
overcome even for well-educated and experienced professionals.

IMPLICATIONS FOR STATISTICS EDUCATION AND RESEARCH

Instruction

Statistical reasoning needs to become an explicit goal of instruction if it is to be
nourished and developed. Just as in mathematics instruction, experiences in the
statistics classroom need to go beyond the learning of procedures to methods that
require students to develop a deeper understanding of stochastic processes. Given
that there is mathematical content in statistics along with the abstract nature of many
statistical concepts, research on the use of analogy, metaphor, and imagery by
mathematics educators should not be overlooked (e.g., English, 1997a; Thompson,
1985). Such approaches may help students map data and processes between abstract
representations and context, and help them to generate and test their own
representations. Both mathematics (e.g., Kelly & Lesh, 2000) and statistics
educators (Cobb & Moore, 1997) recommend instruction that is grounded in
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concrete, physical activities to help students develop an understanding of abstract
concepts and reasoning.

To promote statistical reasoning, students must experience firsthand the process
of data collection and explore the behavior of data, experiences that everyday events
do not readily provide (Moore, 1998). This should help students gain familiarity and
understanding with concepts that are difficult to experience in everyday life (e.g.,
the sampling distribution of a statistic). These experiences should include the
opportunity to ask why and how data is produced, why and how statistics behave,
and why and how conclusions can be drawn and supported (delMas, 2002). Students
will more than likely need extensive experience with recognizing implications and
drawing conclusions in order to develop a disposition for “being logical.” Methods
for presenting statistical content in ways that match natural ways of thinking and
learning should be sought. One promising approach involves instruction that is
based on frequency representations of situations (e.g., Sedlmeier, 1999), which can
be seen as a natural extension of incorporating data and data production into
instruction. Another promising approach is the use of predict-and-test activities
(e.g., delMas, Garfield, & Chance, 1999), which provide students the opportunity to
confront and correct misunderstandings about stochastic processes.

Statistics Education Research

The past decade witnessed the initiation of a reform movement in statistics
education that focuses on statistical thinking, conceptual understanding, use of
technology, authentic assessment, and active learning (e.g., Cobb, 1992). Much of
this movement has been motivated by research in mathematics education, education,
and psychology (e.g., Garfield, 1995), and there appears to have been significant
impact on teaching practices from these recommendations (Garfield, Hogg, Schau,
& Whittinghill, 2002). Statistics is being taught to increasing numbers of students at
all ages as quantitative reasoning is seen as essential for effective citizenship (e.g.,
National Council of Teachers of Mathematics [NCTM] Standards, 2000). The
content, pedagogy, and use of technology in introductory statistics courses have
been modernized to focus on concepts, real data, effective use of technology, and
statistical thinking (e.g., Cobb, 1992; Moore, 1997). New resources are now
available to enable instructors to implement these changes (e.g., Moore, 2001).

However, while statistics instruction has seen dramatic growth and attention,
research devoted exclusively to issues in statistics education has not. One of the
most neglected areas is research devoted to understanding students’ statistical
reasoning. For example, a great deal is known about the errors and misconceptions
that students make when reasoning about problems in probability (e.g., Gilovich,
Griffin, & Kahneman, 2002; Kahneman, Slovic, & Tversky, 1982; Sedlmeier, 1999;
Shaughnessy, 1992). Most of these studies use forced-choice items in comparative
studies as measures of students’ thinking. Very few studies use clinical methods to
document and model students’ thought processes as they reason (Shaughnessy,
1992), although there are certainly some exceptions (e.g., Konold, 1989; Mokros &
Russell, 1995).
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The research programs presented at the Statistical Reasoning, Thinking, and
Literacy forums (SRTL-1 and SRTL-2) indicate that classroom research and clinical
interview methodologies are starting to be utilized in the study of students’
statistical thinking. These methodologies have developed to a point where they can
provide considerable insight into students’ reasoning (e.g., Kelly & Lesh, 2000).
Future research needs to go beyond the documentation of errors and
misunderstandings to probing for an understanding of the processes and mental
structures that support both erroneous and correct statistical reasoning. The previous
section discussed areas of statistics instruction where students are likely to encounter
difficulty in understanding the expected statistical reasoning. While it may make
sense to expect such difficulties, empirical evidence is needed to establish if
difficulties exist and to explicate their nature. A deeper understanding of students’
mental models and processes will improve the design of educational approaches for
developing students’ statistical reasoning. More detailed descriptions of the
cognitive processes and mental structures that students develop during instruction
should provide a richer foundation from which to interpret the effects of
instructional interventions.
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Chapter 5

MODELS OF DEVELOPMENT IN STATISTICAL
REASONING

Graham A. Jones', Cynthia W. Langrall’, Edward S. Mooney?,
and Carol A. Thornton
Griffith University, Gold Coast Campus, Australia’,and Illinois State University, USA 2

OVERVIEW

In recent years, key reform groups in school mathematics (e.g., Australian Education
Council [AEC], 1994; National Council of Teachers of Mathematics [NCTM], 1989,
2000; Department of Education and Science and the Welsh Office [DFE], 1995)
have focused on the importance of students’ thinking and reasoning in all areas of
the mathematics curriculum including statistics. Consistent with this perspective, our
chapter examines cognitive models of development in statistical reasoning and the
role they can play in statistical education. The cognitive models we will describe and
analyze examine statistical reasoning processes like decision making, prediction,
inference, and explication as they are applied to the exploration of both univariate
and multivariate data.

As a preface to our analysis of models of development in statistical reasoning we
consider models of development from a psychological perspective and then look at
how models of statistical reasoning have evolved historically from models of
development in probability. Our survey of the research literature begins with
comprehensive models of cognitive development that deal with multiple processes in
statistical reasoning and suggest that school students’ statistical reasoning passes
through a number of hierarchical levels and cycles. Subsequently, the chapter
focuses on models of cognitive development that characterize students’ statistical
reasoning as they deal with specific areas of statistics and data exploration: data
modeling, measures of center and variation, group differences, bivariate
relationships, sampling, and sampling distributions.

The models of development in statistical reasoning documented in this chapter
have been formulated through structured interviews, clinical studies, and teaching
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experiments. Research studies involving teaching experiments are especially
powerful because they enable researchers and teachers to trace students’ individual
and collective development in statistical reasoning during instruction. Because the
cognitive models provide a coherent picture of students’ statistical reasoning, they
have implications for curriculum design, instruction, and assessment. We will
discuss these implications, particularly those relating to the role that models of
statistical reasoning can play in providing a knowledge base for teachers in designing
and implementing instruction.

THE MEANING OF MODELS OF DEVELOPMENT IN STATISTICAL
REASONING

The psychology of cognitive development has focused on understanding the
structure and dynamics of change in people’s understanding of mathematics and
other domains since the time of Piaget (1954, 1962). This strong psychological focus
on the dynamics of change in people’s understanding of the world has been
accompanied by controversial debate on the issue of whether children’s intellectual
growth passes through a sequence of stages. More specifically, there has always been
tension in Piagetian theory between its constructivist framework and its structuralist
stage model. On the one hand, constructivism characterizes the acquisition of
knowledge as a product of the child’s creative self-organizing activity in particular
environments. In other words, Piaget’s perspective on constructivism affords some
recognition of the presence of environment and of educational intervention. On the
other hand, the stage model depicts knowledge in terms of biologically driven
universal structures that are independent of specific contexts or are context neutral.
That is, environment and educational intervention seemingly have no role in the
evolving cognitive developmental stages.

Subsequent research by neo-Piagetian cognitive development theorists (Bidell &
Fischer, 1992; Biggs & Collis, 1982, 1991; Case, 1985; Case & Okamoto, 1996;
Fischer, 1980) has strengthened the place of stage-theory models but has also
resulted in the replacement of Piaget’s universal stage model with domain-specific
theories. According to domain-specific theories, knowledge is not organized in
unitary structures that cut across all kinds of tasks and situations; rather, knowledge
is organized within specific domains defined by particular content or tasks such as
those involved in data exploration and statistical reasoning. Moreover, contemporary
neo-Piagetian theories connect rather than separate organism and environment. For
example, the research studies of Biggs and Collis and those of Case have examined
the process of cognitive development as it occurred in everyday environments
including school settings.

The discussion of cognitive models of development in this chapter recognizes
that contemporary models of cognitive development deal with domain-specific
knowledge such as statistical reasoning and are essentially seamless with respect to
organism and environment. Hence our use of the term cognitive models of
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development will incorporate both organism and environmental effects; or as Reber
(1995) states, “maturational and interactionist effects” (p. 749). For us, the term
cognitive model of development in statistical reasoning refers to a theory suggesting
different levels or patterns of growth in statistical reasoning that result from
maturational or interactionist effects in both structured and unstructured learning
environments.

AN INFLUENTIAL GENERAL MODEL OF COGNITIVE DEVELOPMENT

In the previous section we referred to several neo-Piagetian models that focus on
the development of domain-specific knowledge, including various aspects of
mathematical knowledge. For example, models like Biggs & Collis (1982, 1991),
Case (1985), Case & Okamoto, (1996), and Fischer (1980) have been consistently
used as the research base for studying students’ mathematical thinking and reasoning
in number, number operations, geometry, and probability. In this section we examine
the Biggs and Collis model in more detail because it has been widely used in
developing cognitive models of development in students’ statistical reasoning (e.g.,
Chance, delMas, & Garfield, Chapter 13 in this text; see also Jones et al., 2000;
Mooney, 2002; Watson, Collis, Callingham, & Moritz, 1995).

The Biggs and Collis model has been an evolutionary one beginning with the
structure of observed learning outcomes (SOLO) taxonomy (Biggs & Collis, 1982).
The SOLO taxonomy postulated the existence of five modes of functioning
(sensorimotor—from birth, ikonic—from around 18 months, concrete-symbolic—
from around 6 years, formal—from around 14 years, and postformal—from around
20 years) and five cognitive levels (prestructural, unistructural, multistructural,
relational, and extended abstract) that recycle during each mode and represent shifts
in complexity of students’ reasoning. Later extensions to the SOLO model (Biggs &
Collis, 1989, 1991; Collis & Biggs, 1991; Pegg & Davey, 1998) acknowledged the
existence and importance of multimodal functioning in many types of learning. That
is, rather than earlier-developed modes being subsumed by later modes, development
in earlier modes actually supports development in later modes. In fact, growth in
later modes is often linked with actions or thinking associated with the earlier ones.
As the models of statistical reasoning discussed later in this chapter cover students
from elementary through college, we will be interested in all modes of functioning
and interactions between these modes.

As noted earlier, this multimodal functioning also incorporates, within each
mode, a cycle of learning that has five hierarchical levels (Biggs & Collis, 1982,
1989, 1991; Biggs, 1992; Watson, Collis, & Callingham et al., 1995). At the
prestructural (P) level, students engage a task but are distracted or misled by an
irrelevant aspect belonging to an earlier mode. For the unistructural (U) level, the
student focuses on the relevant domain and picks up on one aspect of the task. At the
multistructural (M) level, the student picks up on several disjoint and relevant
aspects of a task but does not integrate them. In the relational (R) level, the student
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integrates the various aspects and produces a more coherent understanding of the
task. Finally, at the extended abstract (EA) level, the student generalizes the structure
to take in new and more abstract features that represent thinking in a higher mode of
functioning. Within any mode of operation, the middle three levels are most
important because, as Biggs and Collis note, prestructural responses belong in the
previous mode and extended abstract responses belong in the next.

The levels of the Biggs and Collis learning cycle have provided a powerful
theoretical base for situating research on students’ statistical reasoning from the
elementary school years through college (Chapter 13; Jones et al., 2000; Mooney,
2002; Watson, Collis, & Callingham et al., 1995). Even though Biggs and Collis
highlight the importance of the three middle levels, some researchers have developed
characterizations of students’ statistical reasoning that are consistent with the first
four levels (Jones et al., 2000, Mooney, 2002) while others have characterized
students’ statistical reasoning according to all five levels (Chapter 13). These studies
also reveal that statistical reasoning operates across different modes in accord with
the multimodal functioning of the Biggs and Collis model; this is especially
noteworthy in relation to the modal shifts associated with the ikonic and concrete-
symbolic modes.

Recent studies in mathematics, science, and statistical reasoning have identified
the existence of two U-M-R cycles operating within the concrete-symbolic mode
(Callingham, 1994; Campbell, Watson, & Collis, 1992; Levins & Pegg, 1993; Pegg,
1992; Pegg & Davey, 1998; Watson, Collis, & Campbell, 1995; Watson, Collis, &
Callingham et al., 1995). More specifically, these researchers have identified two
cycles when students engage in reasoning about fractions, volume measurement, and
higher order statistical thinking. The first of these cycles is associated with the
development of a concept and the second with the consolidation and application of
the concept (Watson, Collis, Callingham et al., p. 250).

At opportune times in later sections of this chapter, we refer to the Biggs and
Collis model in considering various models of development in statistical reasoning.
Other authors in this book (e.g., Reading & Shaughnessy, Chapter 9; Watson,
Chapter 12) will also elaborate on how their research has been situated in the work
of Biggs and Collis.

A HISTORICAL PERSPECTIVE ON MODELS OF DEVELOPMENT IN
STOCHASTICS

Cognitive models of development have frequented the literature on stochastics (a
term commonly used in Europe when referring to both probability and statistics
[Shaughnessy, 1992]) from the time of Piaget and Inhelder’s (1951/1975) seminal
work on probability. As their clinical studies demonstrated, probability concepts are
acquired in stages that are in accord with Piaget’s more general theory of cognitive
development. Since the Piaget and Inhelder studies, there has been a strong focus on
cognitive models in stochastics, most of them focused on probabilistic rather than
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statistical reasoning (Fischbein, 1975; Fischbein & Gazit, 1984; Fischbein &
Schnarch, 1997; Green, 1979, 1983; Jones, Langrall, Thornton, & Mogill, 1997;
Olecka, 1983; Polaki, Lefoka, & Jones, 2000; Tarr & Jones, 1997; Watson, Collis,
& Moritz, 1997, Watson & Moritz, 1998). Some of these models on probabilistic
reasoning have been situated in neo-Piagetian theories such as those of Biggs and
Collis (e.g., Jones, Langrall, Thornton, & Mogill; Watson, Collis, & Moritz; Watson
& Moritz) and Case (e.g., Polaki, Lefoka, & Jones). Scholz (1991) presented a
review of psychological research on probability that included developmental models
like those of Piaget and Fischbein. He also described his own information-processing
model of probabilistic thinking that was predicated on giving students time to solve
and reflect on probability tasks. Scholz’s emphasis on reflection rather than on
intuitive probabilistic reasoning seems to have influenced research on probabilistic
reasoning in the latter part of the 1990s, and it may well have influenced the research
on statistical reasoning that we discuss later in this chapter.

One cognitive development model (Shaughnessy, 1992) described stochastic
conceptions in a way that has relevance for both statistical and probabilistic
reasoning. Shaughnessy’s broad characterization identified four types of
conceptions: non-statistical (responses are based on beliefs, deterministic models, or
single-outcome expectations); naive-statistical (nonnormative responses based on
judgmental heuristics or experience that shows little understanding of probability);
emergent-statistical (responses are based on normative mathematical models and
show evidence that the respondent is able to distinguish between intuition and a
model of chance); and pragmatic-statistical (responses reveal an in-depth
understanding of mathematical models and an ability to compare and contrast
different models of chance). Shaughnessy did not claim that these four conceptions
are linearly ordered or mutually exclusive; however, he did see the third and fourth
conceptions resulting from instructional invention, and he noted that few people
reach the pragmatic-statistical stage.

The research on cognitive models in probabilistic reasoning was undoubtedly the
forerunner to research on models of development in statistical reasoning. However,
research endeavors in statistical reasoning have also been stimulated by instructional
models postulating that teachers can facilitate mathematical thinking and learning by
using research-based knowledge of how students think and learn mathematics
(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989). Such instructional models
have led researchers like Cobb et al. (1991) and Resnick (1983) to advocate the need
for detailed cognitive models of students’ reasoning to guide the planning and
development of mathematics instruction. According to Cobb and Resnick, such
cognitive models should incorporate key elements of a content domain and the
processes by which students grow in their understanding of the content within that
domain. Hence, in the case of statistical reasoning, it appears that we should be
focusing on cognitive models that incorporate processes like decision making,
prediction, and inference as they occur when students collect and explore data and
begin to deal with the existence of variation, data reduction through summaries and
displays, population parameters by considering samples, the logic of sampling
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processes, estimation and control of errors, and causal factors (Gal & Garfield,
1997).

COMPREHENSIVE MODELS OF DEVELOPMENT IN STATISTICAL
REASONING

Several researchers have formulated models of cognitive development that
incorporate multiple statistical processes (Jones et al., 2000; Mooney, 2002, Watson,
Collis, Callingham, & Moritz, 1995). Jones et al. (2000) and Mooney (2002)
characterize elementary and middle school students’ statistical reasoning according
to four processes: describing data, organizing and reducing data, representing data,
and analyzing and interpreting data. Watson, Collis, & Callingham et al. (1995)
characterize middle school students’ higher order statistical reasoning as they engage
in a data-card task that incorporated processes like organizing data, seeking
relationships and associations, and making inferences.

Jones et al. and Mooney Models

The related research programs of Jones et al. (2000, 2001) and Mooney (2002)
have produced domain-specific frameworks characterizing the development of
elementary and middle school students’ statistical reasoning from a more
comprehensive perspective. These researchers’ frameworks are grounded in a
twofold theoretical view. First, it is recognized that for students to exhibit statistical
reasoning, they need to understand data-handling concepts that are multifaceted and
develop over time. Second, in accord with the general developmental model of Biggs
and Collis (1991), it is assumed that students’ reasoning can be characterized as
developing across levels that reflect shifts in the complexity of their reasoning. From
this theoretical perspective, Jones et al. and Mooney describe students’ statistical
reasoning with respect to the four statistical processes listed earlier. They assert that
for each of these four processes, students’ reasoning can be characterized as
developing across four levels of reasoning referred to as idiosyncratic, transitional,
quantitative, and analytical.

The four key statistical processes described in the Jones et al. (2000, 2001) and
Mooney (2002) frameworks coincide with elements of data handling identified by
Shaughnessy, Garfield, and Greer (1996) and reflect critical areas of research on
students’ statistical reasoning. These four processes are described as follows.

Describing Data

This process involves the explicit reading of raw data or data presented in tables,
charts, or graphical representations. Curcio (1987) considers “reading the data” as
the initial stage of interpreting and analyzing data. The ability to read data displays
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becomes the basis for students to begin making predictions and discovering trends.
Two subprocesses relate to describing data: (a) showing awareness of display
features and (b) identifying units of data values.

Organizing Data

This process involves arranging, categorizing, or consolidating data into a
summary form. As with the ability to describe data displays, the ability to organize
data is vital for learning how to analyze and interpret data. Arranging data in clusters
or groups can illuminate patterns or trends in the data. Measures of center and
dispersion are useful in making comparisons between sets of data. Three
subprocesses pertain to organizing data: (a) grouping data, (b) summarizing data in
terms of center, and (c) describing the spread of data.

Representing Data

This process involves displaying data in a graphical form. Friel, Curcio, and
Bright (2001) stated that the graphical sense involved in representing data “includes
a consideration of what is involved in constructing graphs as tools for structuring
data and, more important, what is the optimal choice for a graph in a given situation”
(p. 145). Representing data, like the previous two processes, is important in
analyzing and interpreting data. The type of display used and how the data are
represented will determine the trends and predictions that can be made. Also,
different data displays can communicate different ideas about the same data. Two
subprocesses underlie representing data: (a) completing or constructing a data
display for a given data set and (b) evaluating the effectiveness of data displays in
representing data.

Analyzing and Interpreting Data

This process constitutes the core of statistical reasoning. It involves recognizing
patterns and trends in the data and making inferences and predictions from data. It
incorporates two subprocesses that Curcio (1987) refers to using the following
descriptors: (a) reading between the data and (b) reading beyond the data. The
former involves using mathematical operations to combine, integrate, and compare
data (interpolative reasoning); the latter requires students to make inferences and
predictions from the data by tapping their existing schema for information that is not
explicitly stated in the data (extrapolative reasoning). Some examples of tasks that
relate to reading between and beyond the data are presented in the next few pages
when we examine the elementary and middle school statistical reasoning
frameworks.

With regard to levels of statistical reasoning, the Jones et al. (2000, 2001) and
Mooney (2002) statistical reasoning frameworks characterize students’ reasoning
across four levels: idiosyncratic, transitional, quantitative, analytical. At the
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idiosyncratic level, students’ reasoning is narrowly and consistently bound to
idiosyncratic or subjective reasoning that is unrelated to the given data and often
focused on personal experiences or subjective beliefs. This level corresponds to the
prestructural level described by Biggs and Collis (1991). Students reasoning at this
level may be distracted or misled by irrelevant aspects of a problem situation. At the
transitional level students begin to recognize the importance of reasoning
quantitatively, but are inconsistent in their use of such reasoning. Students reasoning
at this level engage a task in a relevant way but generally focus on only one aspect of
the problem situation. In the Biggs and Collis model, this is the unistructura/ level.
At the quantitative level, students’ reasoning is consistently quantitative in that they
can identify the mathematical ideas of the problem situation and are not distracted or
misled by the irrelevant aspects. However, students who reason at this level do not
necessarily integrate these relevant mathematical ideas when engaged in the task.
Biggs and Collis consider this the multistructural level. At the analytical level,
students’ reasoning is based on making connections between the multiple aspects of
a problem situation. Their reasoning at this level can integrate the relevant aspects of
a task into a meaningful structure (e.g., creating multiple data displays, or making a
reasonable prediction); this is what Biggs and Collis refer to as the relational level.

The Jones et al. (2000) framework characterizes the development of elementary
school children’s statistical reasoning across the four levels just described. For each
of the four statistical processes, their framework provides specific descriptors of
children’s reasoning at each level. In Figure 1, we have shown that part of the Jones
et al. framework that pertains to analyzing and interpreting data. There are four
descriptors, relating to each of the four levels, for the two subprocesses reading
between the data and reading beyond the data. For reading between the data, a
relevant task is to compare the number of students who attended a butterfly garden
display before 1 p.m. with those who attended after 1 p.m., when we know each
student’s name and the time she attended. In the case of reading beyond the data, a
relevant task is to predict the number of friends who would visit a boy named Sam in
a month, when the students are given data on the number of friends who visited Sam
each day of one week.

Mooney’s framework (Mooney, 2002; Mooney, Langrall, Hofbauer, & Johnson,
2001) characterizes the development of middle school students’ statistical reasoning
across the same four levels and processes as described in the Jones et al. framework.
The part of Mooney’s framework that pertains to analyzing and interpreting data is
presented in Figure 2. There are descriptors pertaining to the two subprocesses
reading between and beyond the data as well an additional subprocess involving the
use of relative and proportional reasoning. For reading between the data, a relevant
task is to compare the number of medals won by five countries when given data on
the number of gold, silver, and bronze medals won by each country. A reading
beyond the data task is to ask students to compare the concert tours of several groups
when given the number of cities where they performed, number of shows performed,
and total concert earnings (see Figure 3). This latter inferential task requires
proportional reasoning.
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Process Level 1 Level 2 Level 3 Level 4
Idiosyncratic Transitional Quantitative Analytical
Reading Between the Data
Gives an Makes some Makes local or Makes both local
idiosyncratic or comparisons global and global

eje(q Sunpadiduy 3 Suizdfeuy

invalid response
when asked to

between single data
values, but does not

comparisons, but
does not link

comparisons and
relates comparisons

make comparisons. | look at global comparisons. to each other.
trends.
Reading Beyond the Data

Gives an
idiosyncratic or
invalid response
when asked to
make predictions.

Gives vague or
inconsistent
predictions that are
not well linked to
the data.

Uses the data in a
consistent way to
engage in sense-
making
predictions.

Uses both the data
and the context to
make complete and
consistent

predictions.

Figure 1. Elementary framework descriptors for analyzing and interpreting data.

Process Level 1 Level 2 Level 3 Level 4
Idiosyncratic Transitional Quantitative Analytical
Reading Between the Data

ele(q Sunpadiduy 3 SuizAfeuy

Makes incorrect
comparisons within
and between data
sets.

Makes a single
correct comparison
or a set of partially
correct
comparisons within
or between data
sets.

Makes local or
global comparisons
within and between
data sets.

Makes local and
global comparisons
within and between
data sets.

Reading Beyond the Data

Makes inferences
that are not based
on the data or
inferences based on

Makes inferences
that are partially
based on the data.
Some inferences

Makes inferences
primarily based on
the data. Some
inferences may be

Makes reasonable
inferences based on
data and the
context.

irrelevant issues. may be only only partially
partially reasonable.
reasonable.
Using Proportional Reasoning Where Necessary
Does not use Uses relative Uses relative and Uses relative and
relative thinking. thinking proportional proportional
qualitatively. reasoning in an reasoning.

incomplete or
invalid manner.

Figure 2. Middle school framework descriptors for analyzing and interpreting data.

To illustrate these descriptors of students’ statistical reasoning and to contrast the
statistical reasoning of elementary students with middle school students, we look at
student responses to the Best Concert Tour problem—a task that required students to
analyze and interpret data. The task is presented in Figure 3; typical responses for
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elementary and middle school students at each of the four levels of the respective
frameworks are presented in Table 1.

Task: Here are three graphs showing information on concert tours for Barbra
Streisand, the Rolling Stones, Boyz II Men, and the Eagles. Who had the most
successful concert tour? Justify your decision.

Total Concert Earnings

$140

$120

$100

$80

$60 1
$40 1
$0 . .

Barbra Streisand Boyz Il Men Eagles Rolling Stones
Performers

Millions of Dollars

Number of Shows Performed

120
100
60
40
) :-
0 T T

Barbra Streisand Boyz Il Men Eagles Rolling Stones
Performers

Number of Shows
®
8

Number of Cities Shows Were Performed

Number of Cities

} .
o +—

Barbra Streisand Boyz Il Men Eagles Rolling Stones
Performers

Figure 3. Best concert tour problem.
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Table 1. Typical student responses at each level of reasoning on the best concert tour task

Level Elementary Responses Middle School Responses
Idiosyncratic = Boyz II Men, I went to If you took these bars [for each performer]
one of their concerts and put them on top of each other and you
stacked them all up, Boyz Il Men would be
the tallest and most successful.
Transitional Boyz II Men, the bars are  The Rolling Stones performed three times as
tall. many shows as Barbara Streisand but only
make twice as much money as she did. I
think she did better.
Quantitative I looked at each of the For Barbara Streisand it was 60 [total
graphs and picked this concert earnings] to 20 [number of shows]
one [the total concert or 3 to 1. I don’t need to look at Boyz II
earnings graph] and Men. The Eagles is about 2 to 1. For the
decided that the Rolling Rolling Stones it is exactly 2 to 1. That
Stones are best because makes Barbara Streisand the best.
they got more money.
Analytical Boyz II Men performed a I calculated the earnings per show for each
lot of shows but they of the performers. Streisand is about 2.8

didn’t make much
money. The Rolling
Stones made a lot of
money but didn’t
perform as many shows.
I’d go with the Rolling
Stones.

million dollars per show. Boyz II Men is
about 0.3 million, the Eagles are about 1.45
million, and the Rolling Stones are about 2
million. I'd go with Barbara Streisand but
there are some other things you would want
to know, like how many people are in the
band and the size of the audience.
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At the idiosyncratic level, elementary students tend to base their reasoning on
their own data sets (I went to one of their concerts), while middle school students
often use the given data but in an inappropriate way (combine all the bars).
Elementary and middle school students who exhibit transitional reasoning tend to
focus on one aspect of the data, for example, the height of the bars in the case of the
elementary student and ratios that are not fully connected in the case of the middle
school student. The middle school student applies more sophisticated mathematical
ideas than the elementary student, but neither student provides a complete
justification. At the quantitative level, both elementary and middle school students
make multiple quantitative comparisons but have difficulty linking their ideas. For
example, the elementary student compares the data in the three graphs and then
makes a local comparison within the “best” data set (total concert earnings); the
middle school student makes multiple comparisons based on total earnings versus
number of shows, but does not actually link the ratios to the context. The main
difference between the elementary and middle school students’ responses at this
level is that the middle school student has access to proportional reasoning. Students
who exhibit analytical reasoning use local and global comparisons of data and
knowledge of the context to make valid inferences. For example, both the elementary
and the middle school students recognize the need to relate money earned with
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number of shows performed; the main difference is that the middle school student
actually determines and compares appropriate rates derived from the context. In fact,
the middle school student even raises some additional factors that may act as
limitations to the solution presented.

The differences between the responses of typical elementary and middle school
students, at the four levels of the frameworks, can be related to the SOLO model
(Biggs & Collis, 1991). These differences seem to reflect statistical reasoning that is
associated with two different cycles in the concrete-symbolic mode (see Pegg &
Davey, 1998; Watson, Collis, & Callingham et al., 1995). In essence, the cycle
associated with the elementary students’ statistical reasoning deals with the
conceptual development of statistical concepts while the second cycle, demonstrated
in the reasoning of the middle school students, deals with the application of
statistical and mathematical concepts and procedures that have already been learned.
Watson and her colleagues examine statistical reasoning associated with two
developmental cycles in more detail in the next comprehensive model.

Watson et al. Model

Watson, Collis, Callingham, & Moritz (1995) used the Biggs and Collis (1991)
cognitive development model to characterize middle school students’ higher order
statistical reasoning. More specifically, these researchers hypothesized that students’
higher order statistical reasoning could be characterized according to two
hierarchical unistructural-multistructural-relational [U-M-R] cycles, the first dealing
with the development of statistical concepts and the second with the consolidation
and application of these statistical concepts.

There were two parts to the study: clinical interviews with six 6th-grade students
and one 9th-grade student and three instructional sessions with two 6th-grade classes
working largely in groups. An interview protocol based on a set of 16 data cards
containing information like student’s name, age, favorite activity, eye color, weight,
and number of fast-food meals per week was developed by the authors for use in
both parts of the study.

In the clinical interview, students were asked to think of some interesting
questions that could be answered using the cards; they were further prompted to
imagine they were doing a school project with the cards. Following the analysis of
the interview data, the researchers adapted the data-card task for use in the
instructional setting. In the first class session, the students were introduced to ideas
about looking for statistical associations and were then given a project that asked
them to look for interesting questions and connections in the data. During the second
session, the students were introduced to methods of displaying data (e.g., graphs)
using examples that were unrelated to the data cards. The students continued
working on their projects during the rest of the session and for part of the third
session. They then presented their projects in the form of reports and posters.

The findings from this study demonstrated that the statistical reasoning of all 7
students in the interviews could be characterized according to the first U;-M-R,
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cycle: students at the U; level focused on individual data with imaginative
speculation on what caused certain data values; students at the M, level sorted the
cards into different groups, focused on one variable at a time, and described that
variable; students at the R; level sorted the cards into different groups, focused on
more than one variable at a time, and appreciated the need to relate variables. Three
students were classified as reasoning at Uj, 3 students at My, and 1 student at R; By
contrast, during the instructional program, two U-M-R cycles were needed to
characterize students’ statistical reasoning. Moreover, all of the group or individual
projects were classified beyond U;. The characterizations of the second U,-M;-R,
cycle moved into reasoning that involved justification and application: students at
the U, level recognized the need to justify conjectured associations but did not
proceed beyond that; students at the M, level used tables or graphs to support claims
of association or cause, and students at the R, level used statistics such as the mean
to support claims of association. Watson, Collis, & Callingham et al. (1995) also
noted some evidence of multimodal functioning with ikonic intuitions and
perceptions supporting students’ reasoning and decision making in the concrete-
symbolic mode. Both the learning cycle model and multimodal functioning have
implications for informing instruction and enhancing teachers’ knowledge of how
students might respond to contextual data exploration tasks.

From a research perspective, it is interesting that Watson, Collis, & Callingham
et al. (1995) uncovered two learning cycles in building models of higher order
statistical reasoning; whereas Jones et al. (2000), working with elementary students,
and Mooney (2002), working with middle school students, each found that one
learning cycle was sufficient to characterize students’ statistical reasoning. On the
one hand, this difference may result from Watson and her colleagues’ intimate
knowledge of the Biggs and Collis model and their caveat that the additional cycles
appear “when student understanding is viewed in considerable detail” (p. 250). On
the other hand, it is possible that the two learning cycles identified by Jones et al.
and Mooney represented two different cycles within the concrete symbolic mode—
the first focusing on conceptual development of statistical concepts and the second
incorporating applications of statistical concepts. Notwithstanding these possible
rationalizations, there is clearly a need for researchers involved in formulating
models of development in statistical reasoning to be aware of emerging research that
suggests the existence of multiple learning cycles within a mode of operation like
concrete-symbolic or formal (Callingham, 1994; Campbell, Watson, & Collis, 1992;
Pegg & Davey, 1998; Watson, Collis, & Campbell, 1995).

COGNITIVE MODELS OF DEVELOPMENT FOR SPECIFIC STATISTICAL
CONCEPTS AND PROCESSES

In this section we survey the research literature focusing on models of cognitive
development that relate to specific statistical concepts. In particular, we focus on the
following key concepts and processes: data modeling, measures of center and
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variation, group differences, covariation and association, and sampling and sampling
distributions. In examining these models we do not claim to have exhausted all
models of development in the field; rather, our review presages the concepts and
processes that are considered in more detail in the following chapters of this book.

Data Modeling

Many researchers have examined patterns of growth in statistical reasoning when
students have been engaged in data-modeling problems or model-eliciting problems
that involve data (Ben-Zvi, Chapter 6; Ben-Zvi & Arcavi, 2001; Doerr, 1998; Doerr
& Tripp, 1999; Lehrer & Romberg, 1996; Lehrer & Schauble, 2000; Lesh, Amit, &
Schorr, 1997; Wares, 2001). Because of their inherent nature, data-modeling
problems provide a distinctive context for observing students’ statistical reasoning in
open-ended situations. Modeling problems focus on organizing and representing
data, pattern building, and seeking relationships (Lesh & Doerr, 2002), and they
involve students in statistical reasoning such as decision making, inference, and
prediction. Moreover, data-modeling problems often reveal students’ innermost
conceptual ideas about statistical reasoning—especially fundamental processes like
dealing with variation, transforming data, evaluating statistical models, and
integrating contextual and statistical features of the problem (Wild & Pfannkuch,

1999).

Measures of Center and Variation

Most of the research pertaining to measures of center has focused on the
concepts of average, representativeness, or mean. Several studies have described
students’ varying conceptions of measures of center (Bright & Friel, 1998; Konold
& Pollatsek, 2002; Konold & Pollatsek, Chapter 8; Morkros & Russell, 1995;
Strauss & Bichler, 1988) but have not necessarily traced the development of
students’ understandings. Two studies that have addressed developmental aspects of
students’ reasoning with measures of center are the work of Reading and Pegg
(1996) and Watson and Moritz (2000a). The few studies that have addressed the
concept of variation or spread have examined the development of students’
reasoning about variation (Shaughnessy, Watson, Moritz, & Reading, 1999; Reading
& Shaughnessy, 2001; Reading & Shaughnessy, Chapter 9; Torok & Watson, 2000).

Comparing Two Data Sets

Making statistical inferences is a key aspect of statistical reasoning, and the
importance of statistical inference is acknowledged in several curriculum documents
(AEC, 1991; NCTM, 2000; DFE, 1995). One way that students can be introduced to
statistical inference is by having them compare two or more sets of numerical data in
contexts where the number in each set may be equal or unequal. Various researchers
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(Cobb, 1999; McClain & Cobb, 1998; Mooney, 2002; Watson & Moritz, 1999) have
produced models of development that characterize students’ reasoning as they make
statistical inferences involving the comparison of two data sets.

Bivariate Relationships

The study of correlation (association) and regression is important in statistics
because these processes are used to identify statistical relationships between two or
more variables and, where appropriate, to seek causal explanations. Accordingly, an
understanding of association and regression has become important in the school
mathematics curriculum (e.g., AEC, 1994; NCTM, 1989, 2000); thus, some
researchers have examined the development of students’ conceptions in relation to
association and regression (Batanero, Estepa, Godino, & Green, 1996; Ross &
Cousins, 1993; Wavering, 1989; Mevarech & Kramarsky, 1997). These studies have
foreshadowed the more definitive cognitive models of Moritz and Watson (2000),
Moritz (2001), and Mooney (2002).

Sampling and Sampling Distributions

The notion of sample is one of the most fundamental ideas in statistics, since
samples enable us to gain information about the whole by examining the part
(Moore, 1997). More specifically, sampling is used to make inferences about
populations, that is, to predict population parameters from sample statistics.
Processes like inference and prediction are grounded in the concept of sampling
distributions, which is a complex idea for students to grasp. Research in this area has
examined the development of students’ statistical reasoning, not only in relation to
the concept of sample, sample size, and sampling procedures (Watson, Chapter 12;
Watson & Moritz, 2000b) but also in relation to more sophisticated ideas like
sampling distributions (Chapter 13; Saldanha & Thompson, 2001) and the Central
Limit Theorem (Chapter 13; delMas, Garfield, & Chance, 1999).

IMPLICATIONS FOR STATISTICAL EDUCATION

In statistical education, as in mathematics education, there is a continuing drive
toward research that makes connections between the learning process and the
teaching process. This has been brought into even sharper focus with the advent of
constructivist approaches to learning and the need for pedagogies that facilitate
students’ mathematical constructions. The importance of this connection between
teaching and learning is evident across the international scene; curriculum
documents (AEC, 1991; NCTM, 1989, 2000; DFE, 1995) espouse reforms in
mathematics education that encourage teachers to focus on “understanding what
students know and need to know” and advocate that learners should “learn
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mathematics with understanding, actively building new knowledge from experience
and prior knowledge” (NCTM, 2000, p. 11).

Due to this increased emphasis on teaching and learning and the need to have
students actively building mathematical and statistical knowledge, powerful new
instructional models have emerged during the last 15 years: Realistic Mathematics
Education (RME; Gravemeijer, 1994), Cognitively Guided Instruction (CGI;
Carpenter et al., 1989), and the Mathematics Teaching Cycle (MTC; Simon, 1995).
Although these instructional models have many differences, they share the common
perspective that students’ learning is not only central to the instructional process; it
must drive the instructional process. For example, RME evolved in order to create a
shift from a mechanistic orientation to teaching and learning to an approach that
emphasized student learning through reconstructive activity grounded in reality and
sociocultural contexts (Streefland, 1991); CGI has as its major tenet the need to use
research-based knowledge of students’ reasoning to inform instruction; and MTC
stresses “the reflexive relationship between the teacher’s design of activities and
consideration of the reasoning that students might engage in as they participate in
those activities” (Simon, p. 133). All of these instructional theories highlight the
need for teachers to understand and use the reasoning that students bring to
mathematics classes.

Given these directions in teaching and learning, models of development in
statistical reasoning have a key role in statistical instruction. Because these models
incorporate domain-specific knowledge of students’ statistical reasoning across key
statistical concepts and processes, they arm teachers with the kind of knowledge that
can be used in the design, implementation, and assessment of instruction in statistics
and data exploration.

With respect to the design of instruction, cognitive models of development
provide a coherent picture of the diverse range of statistical reasoning that a teacher
might expect students to bring to the classroom. The use of cognitive models in
designing instruction can be amplified by examining Simon’s (1995) notion of
hypothetical learning trajectory. By hypothetical learning trajectory, Simon means
the formulation of learning goals, learning activities, and a conjectured learning
process. In the first instance, many of the cognitive models discussed in this chapter
identify key processes and concept goals, by their very nature indicating where
children might be in relation to these goals. For example, the Jones et al. (2000)
model identifies key processes like describing data, organizing data, representing
data, and analyzing and interpreting data; it also documents, through the level
descriptors, the kind of goals that might be appropriate for individual children or the
class as a whole. In considering learning activities, the research on cognitive models
invariably incorporates tasks and activities that have been used to engage students’
statistical reasoning. For example, tasks like those incorporated in the technology
simulation on sampling distributions (Chapter 13) have widespread potential in
college and high school instructional settings. Finally, in relation to conjecturing the
possible direction of the classroom learning process, the cognitive model provides a
database for the teacher on the range of statistical reasoning that he or she might
expect to find during instruction. For example, in Grade 3 instruction dealing with
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sampling, the Watson and Moritz (2000b) model suggests that all children would be
small samplers with more than 50% of them using idiosyncratic methods of selecting
samples.

With respect to the implementation of instruction, models of development can
serve as a filter for analyzing and characterizing students’ responses. In our teaching
experiments (Jones et al., 2001), we have found that filtering students’ responses
using a model of development helps teachers to build a much richer knowledge base
than they would without such a filter. In particular, a model helps teachers to frame
questions and written tasks that accommodate the diversity of reasoning reflected in
a group or class. Such accommodation and sensitivity by the teacher may enable
children to develop more mature levels of reasoning. For example, a teacher who
was aware from earlier group work that one student was reasoning about the
dimensions of the sampling process in an integrated way (Level 5; see Chapter 13)
might use that student’s response as a focal point for a formative or summative
discussion on the dimensions of the sampling. Alternatively, the teacher might use
the response of a student who was using transitional reasoning (Level 2; see Chapter
13) on the dimensions of sampling as a means of focusing on the need for
completeness and connections.

Finally, we believe that models of development in statistical reasoning can be
helpful in assessing and monitoring students’ performances over time, as well as in
evaluating the effectiveness of classroom instruction. We are not suggesting that
middle school students, for example, might move in a linear way through the four
levels of Mooney’s (2002) model of development in relation to analyzing and
interpreting data. However, we are suggesting that teachers can observe differences
in middle school students’ collective and individual statistical reasoning that are
recognizable based on the levels of the Mooney model. In a similar way, teachers
can evaluate their instruction or instructional technology using models of
development. For example, Chance et al. (Chapter 13) have used their cognitive
model to evaluate and refine the simulation technology on sampling distributions. By
assessing and observing changes in students’ reasoning according to the model, they
have identified weaknesses in the technology, have further refined and changed the
technology, and have then reassessed the students’ reasoning. This cycle of
assessment and refinement has great potential in evaluating the pedagogical
effectiveness of technology, in particular the use of microworlds.

As the research in this chapter reveals, students’ statistical reasoning from
elementary through college is diverse and often idiosyncratic. Moreover, students’
statistical reasoning is constantly changing and hence is dynamic rather than static.
Notwithstanding the diversity and dynamics of students’ statistical reasoning,
recurring patterns or levels of statistical reasoning are consistently observable when
students are involved in key statistical processes like decision making, inferring, and
predicting; and when they deal with concepts like sampling, organizing and
representing data, center and variation, and analysis and interpretation. These
recurring patterns of statistical reasoning, and the models of development that have
evolved from them, offer a powerful resource for informing instructional programs
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that focus on having students learn statistical reasoning by building on or
reformulating the statistical ideas they bring to the classroom.
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STUDIES OF STATISTICAL REASONING



Chapter 6
REASONING ABOUT DATA ANALYSIS

Dani Ben-Zvi
University of Haifa, Israel

OVERVIEW

The purpose of this chapter is to describe and analyze the ways in which middle
school students begin to reason about data and come to understand exploratory data
analysis (EDA). The process of developing reasoning about data while learning
skills, procedures, and concepts is described. In addition, the students are observed
as they begin to adopt and exercise some of the habits and points of view that are
associated with statistical thinking. The first case study focuses on the development
of a global view of data and data representations. The second case study
concentrates on design of a meaningful EDA learning environment that promotes
statistical reasoning about data analysis. In light of the analysis, a description of
what it may mean to learn to reason about data analysis is proposed and educational
and curricular implications are drawn.

THE NATURE OF EXPLORATORY DATA ANALYSIS

Exploratory data analysis (EDA), developed by Tukey (1977), is the discipline
of organizing, describing, representing, and analyzing data, with a heavy reliance on
visual displays and, in many cases, technology. The goal of EDA is to make sense of
data, analogous to an explorer of unknown lands (Cobb & Moore, 1997). The
original ideas of EDA have since been expanded by Mosteller and Tukey (1977) and
Velleman and Hoaglin (1981); they have become the accepted way of approaching
the analysis of data (Biehler, 1990; Moore, 1990, 1992).

According to Graham (1987), and Kader and Perry (1994), data analysis is
viewed as a four-stage process: (a) pose a question and formulate a hypothesis, (b)
collect data, (c) analyze data, and (d) interpret the results and communicate
conclusions. In reality however, statisticians do not proceed linearly in this process,
but rather iteratively, moving forward and backward, considering and selecting
possible paths (Konold & Higgins, 2003). Thus, EDA is more complex than the
four-stage process: “data analysis is like a give-and-take conversation between the
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hunches researchers have about some phenomenon and what the data have to say
about those hunches. What researchers find in the data changes their initial
understanding, which changes how they look at the data, which changes their
understanding” (Konold & Higgins, 2003, p. 197).

EDA employs a variety of techniques, mostly graphical in nature, to maximize
insight into a data set. Exploring a data set includes examining shape, center, and
spread; and investigating various graphs to see if they reveal clusters of data points,
gaps, or outliers. In this way, an attempt is made to uncover underlying structure and
patterns, test underlying assumptions, and develop parsimonious models. Many
EDA graphical techniques are quite simple, such as stem-and-leaf plots and box
plots. Computers support EDA by making it possible to quickly manipulate and
display data in numerous ways, using statistical software packages such as Data
Desk (Velleman, 2003), Fathom (Finzer, 2003), and Tabletop (TERC, 2002).

However, the focus of EDA is not on a set of techniques, but on making sense of
data, how we dissect a data set; what we look for; how we look; and how we
interpret. EDA postpones the classical “statistical inference” assumptions about
what kind of model the data follow with the more direct approach of “let the
numbers speak for themselves” (Moore, 2000, p. 1), that is, allowing the data itself
to reveal its underlying structure and model.

This complete and complex picture of data analysis should be reflected in the
teaching of EDA and in the research on students’ statistical reasoning. Simplistic
views can lead to the use of recipe approaches to data analysis instruction and to
research that does not go beyond the surface understanding of statistical techniques.

EDA in School Curriculum

EDA provides a pedagogical opportunity for open-ended data exploration by
students, aided by educational technology. Allowing students to explore data is
aligned with current educational paradigms, such as, teaching and learning for
understanding (Perkins & Unger, 1999), inquiry-based learning (Yerushalmy,
Chazan, & Gordon, 1990), and project-based learning (Evensen & Hmelo, 2000).
However, the complexity of EDA raises numerous instructional challenges, for
example, how to teach methods in a new and changing field, how to compensate for
the lack of teachers’ prior experience with statistics, and how to put together an
effective K—12 curriculum in statistics that incorporates EDA.

Elements of EDA have been integrated into the school mathematics curriculum
in several countries, such as Australia (Australian Education Council, 1991, 1994),
England (Department for Education and Employment, 1999), New Zealand
(Ministry of Education, 1992), and the United States (National Council of Teachers
of Mathematics, 1989, 2000). In recently developed curricula—for example, Chance
and Data (Lovitt & Lowe, 1993), The Connected Mathematics Project (Lappan,
Fey, Fitzgerald, Friel, & Phillips, 1996), Data: Kids, Cats, and Ads (Rubin &
Mokros, 1998), Data Handling (Greer, Yamin-Ali, Boyd, Boyle, & Fitzpatrick,
1995), Data Visualization (de Lange & Verhage, 1992), Exploring Statistics
(Bereska, Bolster, Bolster, & Scheaffer, 1998, 1999), The Quantitative Literacy
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Series (e.g., Barbella, Kepner, & Schaeffer, 1994), and Used Numbers (e.g., Friel,
Mokros, & Russel, 1992)—there is growing emphasis on developing students’
statistical reasoning about data analysis; on graphical approaches; on students
gathering their own data and intelligently carrying out investigations; on the use of
educational software, simulations, and Internet; on a cross-curricular approach; and
on the exploration of misuses and distortions as points of departure for study.

Research on Reasoning about Data Analysis

Research on reasoning about data analysis is beginning to emerge as a unique
area of inquiry. In a teaching experiment conducted with lower secondary school
students by Biehler & Steinbring (1991), data analysis was introduced as “detective”
work. Teachers gradually provided students with a data “tool kit” consisting of
tasks, concepts, and graphical representations. The researchers concluded that all
students succeeded in acquiring the beginning tools of EDA, and that both the
teaching and the learning became more difficult as the process became more open.
There appears to be a tension between directive and nondirective teaching methods
in this study. A study by de Lange, Burrill, & Romberg (1993) reveals the crucial
need for professional development of teachers in the teaching of EDA in the light of
the difficulties teachers may find in changing their teaching strategy from expository
authority to guide. It is also a challenge for curriculum developers to consider these
pedagogical issues when creating innovative EDA materials. Recent experimental
studies in teaching EDA around key concepts (distribution, covariation) in middle
school classes have been conducted by Cobb (cf., 1999) with an emphasis on
sociocultural perspectives of teaching and learning.

Ben-Zvi and Friedlander (1997b) described some of the characteristic reasoning
processes observed in students’ handling of data representations in four patterns: (a)
uncritical thinking, in which the technological power and statistical methods are
used randomly or uncritically rather than “targeted”; (b) meaningful use of a
representation, in which students use an appropriate graphical representation or
measure in order to answer their research questions and interpret their findings; (c)
meaningful handling of multiple representations, in which students are involved in
an ongoing search for meaning and interpretation to achieve sensible results as well
as in monitoring their processes; and (d) creative thinking, in which students decide
that an uncommon representation or method would best express their thoughts, and
they manage to produce an innovative graphical representation, or self-invented
measure, or method of analysis.
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THE CURRENT STUDY

Theoretical Perspectives

Research on mathematical cognition in the last decades seems to converge on
some important findings about learning, understanding, and becoming competent in
mathematics. Stated in general terms, research indicates that becoming competent in
a complex subject matter domain, such as mathematics or statistics, “may be as
much a matter of acquiring the habits and dispositions of interpretation and sense
making as of acquiring any particular set of skills, strategies, or knowledge”
(Resnick, 1988, p. 58). This involves both cognitive development and “socialization
processes” into the culture and values of “doing mathematics” (enculturation).
Many researchers have been working on the design of teaching in order to “bring the
practice of knowing mathematics in school closer to what it means to know
mathematics within the discipline” (Lampert, 1990, p. 29). This chapter is intended
as a contribution to the understanding of these processes in the area of EDA.

Enculturation Processes in Statistics Education

A core idea used in this study is that of enculturation. Recent learning theories in
mathematics education (cf., Schoenfeld, 1992; Resnick, 1988) include the process of
enculturation. Briefly stated, this process refers to entering a community or a
practice and picking up their points of view. The beginning student learns to
participate in a certain cognitive and cultural practice, where the teacher has the
important role of a mentor and mediator, or the enculturator. This is especially the
case with regard to statistical thinking, with its own values and belief systems and its
habits of questioning, representing, concluding, and communicating. Thus, for
statistical enculturation to occur, specific thinking tools are to be developed
alongside collaborative and communicative processes taking place in the classroom.

Statistical Thinking

Bringing the practice of knowing statistics at school closer to what it means to
know statistics within the discipline requires a description of the latter. Based on in-
depth interviews with practicing statisticians and statistics students, Wild and
Pfannkuch (1999, and Chapter 2) provide a comprehensive description of the
processes involved in statistical thinking, from problem formulation to conclusions.
They suggest that a statistician operates (sometimes simultaneously) along four
dimensions: investigative cycles, types of thinking, interrogative cycles, and
dispositions.

Based on these perspectives, the following research questions were used to
structure the case studies and the analysis of data collected:
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e How do junior high school students begin to reason about data and make
sense of the EDA perspective in the context of open-ended problem-solving
situations, supported by computerized tools?

e How do aspects of the learning environment promote students’ statistical
reasoning about data analysis?

METHOD

This study employs a qualitative analysis method, to examine seventh-grade
students’ statistical reasoning about data in the context of two classroom
investigations. Descriptions of the setting, curriculum, and technology are followed
by a profile of the students, and then by methods of data collection and analysis.

The Setting

The study took place in three seventh-grade classes (13-year-old girls and boys)
in a progressive experimental school in Tel-Aviv. The classes were taught by skillful
and experienced teachers, who were aware of the spirit and goals of the curriculum
(described briefly later). They were part of the CompuMath curriculum development
and research team, which included several mathematics and statistics educators and
researchers from the Weizmann Institute of Science, Israel. The CompuMath Project
is a large and comprehensive mathematics curriculum for grades 7-9 (Hershkowitz,
Dreyfus, Ben-Zvi, Friedlander, Hadas, Resnick, Tabach, & Schwarz, 2002), which
is characterized by the teaching and learning of mathematics using open-ended
problem situations to be investigated by peer collaboration and classroom
discussions using computerized environments.

The Statistics Curriculum (SC)—the data component of the CompuMath
Project—was developed to introduce junior high school students (grade 7, age 13) to
statistical reasoning and the “art and culture” of EDA (described in more detail in
Ben-Zvi & Friedlander, 1997b). The design of the curriculum was based on the
creation of small scenarios in which students can experience some of the processes
involved in the experts’ practice of data-based enquiry. The SC was implemented in
schools and in teacher courses, and subsequently revised in several curriculum
development cycles.

The SC was designed on the basis of the theoretical perspectives on learning and
the expert view of statistical thinking just described. It stresses: (a) student’s active
participation in organization, description, interpretation, representation, and analysis
of data situations (on topics close to the students’ world such as sport records,
lengths of people’s names in different countries, labor conflicts, car brands), with a
considerable use of visual displays as analytical tools (in the spirit of Garfield, 1995,
and Shaughnessy, Garfield, & Greer, 1996); and (b) incorporation of technological
tools for simple use of various data representations and transformations of them (as
described in Biehler, 1993, 1997; Ben-Zvi, 2000). The scope of the curriculum is 30
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periods spread over 2-1/2 months, and it includes student book (Ben-Zvi &
Friedlander, 1997a) and teacher guide (Ben-Zvi & Ozruso, 2001).

Technology

During the experimental implementation of the curriculum a spreadsheet
package (Excel) was used. Although Excel is not the ideal tool for data analysis
(Ben-Zvi, 2000), the main reasons for choosing this software were:

e Spreadsheets provide direct access that allows students to view and explore
data in different forms, investigate different models that may fit the data,
manipulate a line to fit a scatter plot, etc.

e Spreadsheets are flexible and dynamic, allowing students to experiment with
and alter representations of data. For instance, they may change, delete or
add data entries in a table and consider the graphical effect of the change or
manipulate directly data points on the graph and observe the effects on a line
of fit. Spreadsheets are adaptable by providing control over the content and
style of the output.

e Spreadsheets are common, familiar, and recognized as a fundamental part of
computer literacy (Hunt, 1995). They are used in many areas of everyday
life, as well as in other domains of mathematics curricula, and are available
in many school computer labs. Hence, learning statistics with a spreadsheet
helps to reinforce the idea that this is something connected to the real world.

Participants

This study focuses mainly on two students—A and D (in the first case), and on A
and D and four of their peers (in the second case). A and D were above—average
ability students, very verbal, experienced in working collaboratively in computer-
assisted environments, and willing to share their thoughts, attitudes, doubts, and
difficulties. They agreed to participate in this study, which took place within their
regular classroom periods and included being videotaped and interviewed (after
class) as well as furnishing their notebooks for analysis.

When they started to learn this curriculum, A and D had limited in-school
statistical experience. However, they had some informal ideas and positive
dispositions toward statistics, mostly through exposure to statistics jargon in the
media. In primary school, they had learned only about the mean and the uses of
some diagrams. Prior to, and in parallel with, the learning of the SC they studied
beginning algebra based on the use of spreadsheets to generalize numerical linear
patterns (Resnick & Tabach, 1999).

The students appeared to engage seriously with the curriculum, trying to
understand and reach agreement on each task. They were quite independent in their
work, and called the teacher only when technical or conceptual issues impeded their
progress. The fact that they were videotaped did not intimidate them. On the
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contrary, they were pleased to speak out loud; address the camera explaining their
actions, intentions, and misunderstandings; and share what they believed were their
successes.

Data Collection

To study the effects of the new curriculum, student behavior was analyzed using
video recordings, classroom observations, interviews, and the assessment of
students’ notebooks and research projects. The two students—A and D—were
videotaped at almost all stages (20 hours of tapes), and their notebooks were also
collected.

Analysis

The analysis of the videotapes was based on interpretive microanalysis (see, for
example, Meira, 1991, pp. 62-63): a qualitative detailed analysis of the protocols,
taking into account verbal, gestural and symbolic actions within the situations in
which they occurred. The goal of such an analysis is to infer and trace the
development of cognitive structures and the sociocultural processes of
understanding and learning.

Two stages were used to validate the analysis, one within the CompuMath
researchers’ team and one with four researchers from the Weizmann Institute of
Science, who had no involvement with the data or the SC (triangulation in the sense
of Schoenfeld, 1994). In both stages the researchers discussed, presented, and
advanced and/or rejected hypotheses, interpretations, and inferences about the
students’ cognitive structures. Advancing or rejecting an interpretation required: (a)
providing as many pieces of evidence as possible (including past and/or future
episodes, and all sources of data as described earlier); and (b) attempts to produce
equally strong alternative interpretations based on the available evidence. In most
cases the two analyses were in full agreement, and points of doubt or rejection were
refuted or resolved by iterative analysis of the data.

Case Study 1: Constructing Global Views of Data

The first case study concentrates on the growth and change of the students’
conceptions as they entered and learned the culture of EDA and started to develop
their reasoning about data and data representations. This study focused on the shift
between local observations and global observations. In EDA, local understanding of
data involves focusing on an individual value (or a few of them) within a group of
data (a particular entry in a table of data, a single point in a graph). Global
understanding refers to the ability to search for, recognize, describe, and explain
general patterns in a set of data (change over time, trends) by naked-eye observation
of distributions and/or by means of statistical parameters or techniques. Looking
globally at a graph as a way to discern patterns and generalities is fundamental to
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statistics, and it includes the production of explanations, comparisons, and
predictions based on the variability in the data. By attending to where a collection of
values is centered, how those values are distributed or how they change over time,
statistics deals with features not inherent to individual elements but to the aggregate
that they comprise.

Learning to look globally at data can be a complex process. Studies in
mathematics education show that students with a sound local understanding of
certain mathematical concepts struggle to develop global views (cf., Monk, 1988;
Bakker, Chapter 7). Konold, Pollatsek, and Well (1997) observed that high school
students—after a yearlong statistics course—still had a tendency to focus on
properties of individual cases rather than on propensities of data sets.

The interplay between local and global views of data is reflected in the tools
statistics experts use. Among such tools, which support data-based arguments,
explanations, and (possibly) forecasts, are time plots, which highlight data features
such as trends and outliers, center, rates of change, fluctuations, cycles, and gaps
(Moore & McCabe, 1993). For the purpose of reflection (or even dishonest
manipulation), trends can be highlighted or obscured by changing the scales. For
example, in Cartesian-like graphs the vertical axis can be “stretched,” so that the
graph conveys the visual impression of a steep slope for segments connecting
consecutive points, giving a visual impression that the rate of change is large.
Experts propose standards in order to avoid such visual distortions (cf., Cleveland,
1994, pp. 66-67).

The Task

In the first activity of the SC, the Men’s 100 Meters Olympic Race, students
were asked to examine real data about the winning times in the men’s 100 meters
during the modern Olympic Games. Working in pairs, assisted by the spreadsheet,
they were expected to analyze the data in order to find trends and interesting
phenomena. This covariation problem concerned tables and graphical
representations (time plots) and formulating verbal statements as well as translating
among those representations. In the second part of this activity, a problem is
presented to students in the following way:

Two sports journalists argue about the record times in the 100 meters. One of them
claims that there seems to be no limit to human ability to improve the record. The
other argues that sometime there will be a record, which will never be broken. To
support their positions, both journalists use graphs.

One task of this investigation asks students to design a representation, using a
computer, to support different statements, such as: (a) The times recorded in the
Olympic 100 meters improved considerably; and (b) Throughout the years, the
changes in the Olympic times for the 100 meters were insignificant.



REASONING ABOUT DATA ANALYSIS 129
Analysis: Toward an Expert Reasoning

Students started their introduction to EDA by learning to make sense of general
questions normally asked in data exploration. They often offered irrelevant answers,
revealed an implicit sense of discomfort with these answers, asked for help, and
used the teacher’s feedback to try other answers. They worked on EDA tasks with
partial understanding of the overall goal. By confronting the same issues with
different sets of data and in different investigational contexts, they overcame some
of their difficulties. The teacher’s role included reinforcing the legitimacy of an
observation as being of the right “kind” despite not being fully correct, or simply
refocusing attention on the question. These initial steps in an unknown field are
regarded as an aspect of the enculturation process (e.g., Schoenfeld, 1992; Resnick,
1988).

At the beginning stage, students also struggled with how to read and make sense
of local (pointwise) information in tables and in graphs. This stage involved learning
to see each row in a table (Table 1) with all its details as one whole case out of the
many shown, and focusing their attention on the entries that were important for the
curricular goal of this activity: the record time, and the year it occurred. This view of
each single row, with its two most relevant pieces of information, was reinforced
afterward when students displayed the data in a time plot (Figure 1), since the graph
(as opposed to the table) displays just these two variables. Also, this understanding
of pointwise information served later on as the basis for developing a global view, as
an answer to “how do records change over time?”

Table 1. Part of the table of the men’s 100 meters winning times in the 23 Olympiads from
1896 to 1996

Year City Athlete’s name Country Time (sec.)
1896 Athens Thomas Burke USA 12.0
1900 Paris Francis Jarvis USA 10.8
1904 St. Louis Archie Hahn USA 11.0
1908 London Reginald Walker South Africa 10.8
1912 Stockholm Ralph Craig USA 10.8
1920 Antwerp Charles Paddock USA 10.8

1924 Paris Harold Abrahams UK 10.6
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Figure 1. Time plot showing winning times for men’s 100 meters.

Instead of looking at the graph as a way to discern patterns in the data, students’
response focused first on the nature and language of the graph as a representation—
how it displays discrete data, rather than as a tool to display a generality, a trend.
When invited to use the line connecting the dots in the dot plot (Figure 1) as an
artifact to support a global view, they rejected it because it lacked any meaning in
light of the pointwise view they had just learned, and with which they felt
comfortable.

When A and D were asked to describe what they learned from the 100 meters
table (Table 1), they observed that “There isn’t anything constant here.” After the
teacher reinforced the legitimacy of their observation, they explained more clearly
what they meant by constancy in the following dialogue (the dialogues are translated
from Hebrew, therefore they may not sound as authentic as in the original):

Let’s answer the first question: “What do you learn from this table?”

There are no constant differences between ...

We learn from this table that there are no constant differences between the
record times of ... [looking for words]

The results of ...

The record times of the runners in ...

There are no constant differences between the runners in the different

Olympiads ...

o >0

FITIS

The students’ attention focused on differences between adjacent pairs of data
entries, and they noticed that these differences are not constant. These comparisons
presumably stemmed from their previous knowledge and experiences with a



spreadsheet in algebra toward finding a formula. In other words, one of the factors
that moved them forward toward observation of patterns was their application of
previous knowledge. Thus, the general pattern the students observed and were able
to express was that the differences were not constant. Maybe they implicitly began
to sense that the nature of these data in this new area of EDA, as opposed to algebra,
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is disorganized, and it is not possible to capture it in a single deterministic formula.

After the two students had analyzed the 100 meters data for a while, they worked
on the next question: to formulate a preliminary hypothesis regarding the trends in
the data. They seemed to be embarrassed by their ignorance—not knowing what

trends mean, and asked for the teacher’s help.
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The students were unfamiliar with the term frends, and they were vague about
the question’s purpose and formulation. In response, the teacher gradually tried to
nudge the students’ reasoning toward global views of the data. Once they
understood the intention of the question, the students—who viewed the irregularity

What are trends? What does it mean?
What is a trend? A trend is ... What’s the meaning of the word trend?
Ah ... Yes, among other things, and what is the meaning in the question.
O.K. Let’s see: We are supposed to look at what?
At the table.
At the table. More specifically—at what?
At the records.
At the records. O.K. And now, we are asked about what we see: Does it
decrease all the time?
No.
No. Does it increase all the time?
No.
No. So, what does it do after all?
It changes.
It changes. Correct.
It generally changes from Olympiad to Olympiad. Generally, not always.
Sometimes it doesn’t change at all. Very nice! Still, it usually changes. And,
is there an overall direction?
No!
No overall direction?
There is no overall declining direction, namely, improvement of records.
But, sometimes there is deterioration ...
Hold on. The overall direction is? Trend and direction are the same.
Increase, Increase!
The general trend is ...
Improvement in records.
What is “improvement in records”?
Decline in running times.
Yes. Decline in running times. O.K. ... But ...
Sometimes there are bumps, sort of steps ...
. But, this means that although we have deviations from the overall
direction here and there, still the overall direction is this ... Fine, write it
down.
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as the most salient phenomenon in the data—were somehow bound by the saliency
of local values: They remained attached to local retrogressions, which they could not
overlook in favor of a general sense of direction/trend.

The teacher, who did not provide a direct answer, tried to help them in many
ways. First, she devolved the question (in the sense of Brousseau, 1997, pp. 33-35
and 229-235), and when this did not work, she rephrased the question in order to
refocus it: “We are supposed to look at what?”” and “more specifically at what?” She
then hints via direct questions: “Does it increase all the time?”” and “So, what does it
do after all?” In addition, she appropriated (in the sense of Moschkovich, 1989) the
students” answers to push the conversation forward by using their words and
answers, for example: “It changes. Correct”; “increase”; “decrease.” At other times
she subtly transformed their language, such as changing bumps to deviations; or by
providing alternative language to rephrase the original question to: “Is there an
overall direction?”

After the interaction just presented, A and D wrote in their notebooks the
following hypothesis: “The overall direction is increase in the records, yet there
were occasionally lower (slower) results, than the ones achieved in previous
Olympiads.” At this stage, it seems that they understood (at least partially) the
meaning of trend, but still stressed (less prominently than before) those local
features that did not fit the pattern.

In the second part of the activity, the students were asked to delete an “outlying”
point (the record of 12 sec. in the first Olympiad, 1896) from the graph (Figure 1)
and describe the effect on its shape. The purpose of the curriculum was to lead
students to learn how to transform the graph in order to highlight trends. It was
found that by focusing on an exceptional point and the effect of its deletion directed
students’ attention to a general view of the graph. This finding seems consistent with
Ainley (1995), who also describes how an outlier supported students’ construction
of global meanings for graphs.

The following transcript describes the students’ comments on the effect of
changing the vertical scales of the original 100 meters graph from 0-12 (Figure 2) to
0-40 (Figure 3) as requested in the second part of the activity.

A Now, the change is that the whole graph stayed the same in shape, but it went
down.

D  The same in shape, but much, much lower, because the column [the y-axis]
went up higher. Did you understand that? [D uses both hands to signal the
down and up movements of the graph and the y-axis respectively.]

A Because now the 12, which is the worst record, is lower. It used to be once the
highest. Therefore, the graph started from very high. But now, it [the graph] is
already very low.
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Figure 2. The original 100 meters graph. Figure 3. The 100 meters graph after the
change of the y-scales.

The change of scales also focused the students’ attention on the graph as a
whole. They talked about the change in the overall relative position of the graph,
whereas they perceived the shape itself as “the same.” Their description included
global features of the graph (“The whole graph ... went down”), attempts to make
sense of the change via the y-axis (“Because the column went up higher”), and
references to an individual salient point (“Because now the 12, which is the worst
record, is lower”). Student A wrote the following synthesis in his notebook: “The
graph remained the same in its shape, but moved downward, because before, 12—
the worst record—was the highest number on the y-axis, but now it is lower.”

However, the purpose of the rescaling was to enable the students to visualize the
graph as a whole in a different sense. In order to take sides in the journalists’ debate,
the transformation was aimed at visually supporting the position that there are no
significant changes in the records. Although the students’ focus was global, for them
the perceptually salient effect of the rescaling was on relative “location” of the
whole graph rather than on its trend.

When A and D were asked to design a graph to support the (opposite) statement:
“Over the years, the times recorded in the Olympic 100 meters improved
considerably,” they did not understand the task and requested the teacher’s help:

T [Referring to the 0—40 graph displayed on the computer screen—see Figure 3.]
How did you flatten the graph?

A [Visibly surprised.] How did we flatten it?

T  Yes, you certainly notice that you have flattened it, don’t you?

D No. The graph was like that before. It was only higher up [on the screen].

The teacher and the students seemed to be at cross purposes. The teacher
assumed that the students had made sense of the task in the way she expected, and
that they understood the global visual effect of the scaling on the graph’s shape.
When she asked, “How did you flatten the graph?” she was reacting to what she
thought was their difficulty: how to perform a scale change in order to support the
claim. Thus, her hint consisted of reminding them of what they had already done
(scale change). However, the students neither understood her jargon (“flatten the
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graph”) nor regarded what they had done as changing the graph’s shape (“The graph
was like that before”). Although this intervention is an interesting case of
miscommunication, it apparently had a catalytic effect, as reflected in the dialogue
that took place immediately afterward—after the teacher realized what might have
been their problem.

T  How would you show that there were very very big improvements?

A [Referring to the 0-40 graph; see Figure 3.] We need to decrease it [the
maximum value of the y-axis]. The opposite of ... [what we have previously
done].

D No. To increase it [to raise the highest graph point, i.e., 12 sec.].

A The graph will go further down.

D No. It will go further up.

A No. It will go further down.

D What you mean by increasing it, | mean—decreasing.

A Ahhh ... Well, to decrease it ... O.K., That’s what I meant. Good, I understand.

D As a matter of fact, we make the graph shape look different, although it is

actually the same graph. It will look as if it supports a specific claim.

When the teacher rephrased her comment (“How would you show that there
were very very big improvements?”) the students started to make sense of her
remarks, although they were still attached to the up-down movement of the whole
graph. Student D began to discern that a change of scale might change the
perceptual impressions one may get from the graph. The teacher’s first intervention
(“How did you flatten the graph?”), although intended to help the students make
sense of the task, can be considered unfortunate. She did not grasp the nature of their
question, misjudged their position, and tried to help by reminding them of their
previous actions on scale changing. The students seemed comfortable with scale
changing, but their problem was that they viewed this tool as doing something
different from what the curriculum intended.

The miscommunication itself, and the teacher’s attempt to extricate herself from
it, contributed to their progress. At first, A and D were surprised by her description
of what they had done as flattening the graph. Then, they “appropriated” the
teacher’s point of view (in the sense of Moschkovich, 1989) and started directing
their attention to the shape of the graph rather than to its relative position on the
screen. They started to focus on scaling and rescaling in order to achieve the “most
convincing” design. Briefly stated, they transferred and elaborated, in iterative steps,
ideas of changing scales from one axis to the other until they finally arrived at a
satisfying graph (Figure 4) with no further intervention from the teacher. (See Ben-
Zvi, 1999, for a detailed description of this rescaling process.) Students A and D
flexibly and interchangeably relied on pointwise observations and global
considerations (both in the table and in the graph) in order to fix the optimal
intervals on the axes so that the figure would look as they wished.
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Figure 4. Graph designed to support the statement that the 100 meters times improved
considerably.

In summary, at the beginning of this episode the students interpreted the effect
of changing scales as a movement of the graph downward rather than as an effect on
its shape. Following the teacher’s intervention, they started to consider how scaling
of both axes affects the shape of the graph. Moreover, they were able to develop
manipulations for these changes to occur in order to achieve the desired shape. In
the process, they began to move between local and global views of the data in two
representations.

It is interesting to notice the students’ persistent invocation of “differences”
between values (“This way we actually achieved a result that appears as if there are
enormous differences”). However, their focus here is on the way these differences
are “blown up” by the scaling effect, rather than on them not being constant, as was
the case earlier when differences were invoked. The importance of their prior
knowledge appears to have been adapted to a new use and for a new purpose. The
differences, which were used to drive the way the students made sense of patterns in
the data, were being successfully used here as a powerful tool to evaluate their
success in designing a graph to visually support a certain claim about a trend in the
data.

Case Study 2: Students Taking a Stand

The second case study focused on the role of the SC learning environment in
supporting students’ reasoning about data analysis. The students in this study were
observed as they engaged in taking a stand in a debate on the basis of data analysis.
The purpose of the analysis was to advance the understanding of (a) how students
learn in such an environment, and (b) how can we be more aware of student
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reasoning, in order to design “better” tasks. Better tasks are situations in which
students engage seriously, work and reflect, and advance their statistical reasoning
about data.

One SC activity was the Work dispute in a printing company. In this activity, the
workers are in dispute with the management, which has agreed to an increase in the
total salary amount by 10 percent. How this amount of money is to be divided
among the employees is a problem—and thereby hangs the dispute. The students
were given the salary list of the 100 employees, along with an instruction booklet to
guide them in their work. They also received information about the national average
and minimum salaries, Internet sites to look for data on salaries, and newspaper
articles about work disputes and strikes. In the first part of the activity, students
were required to take sides in the dispute and to clarify their arguments. Then, using
the computer, they described the distribution of salaries and used statistical
measures (e.g. median, mean, mode, and range) to support their position in the
dispute. The students learned the effects of grouping data and the different uses of
statistical measures in arguing their case. In the third part, the students suggested
alterations to the salary structure without exceeding the 10 percent limit. They
produced their proposal to solve the dispute, and designed representations to support
their position and refute opposing arguments. Finally the class met for a general
debate and voted for the winning proposal. The time spent on the full activity was
about seven class periods, or a total of six hours.

This task context was familiar to students since it provided interesting, realistic,
and meaningful data. The data were altered so that they were more manageable and
provided points of departure for addressing some key statistical concepts. For
example, the various central tendency measures were different, allowing students to
choose a representative measure to argue their case. It was arranged that the mean
salary (5000 IS) was above the real national averages (4350 IS—all employees,
4500 IS—printers only).

Students were expected to clarify their thoughts, learn to listen to each other, and
try to make sense of each other’s ideas. But, most importantly students were asked
to take sides in the conflict situation. Their actions (e.g. handling data, choosing
statistics, creating displays, and arguing) were all motivated, guided, and targeted by
the stand they chose. However, their actions sometimes caused them to change their
original stand.

The following transcript from a video recording of one of the experimental
classes illustrates the use of concepts, arguments, and statitical reasoning that the
task promoted. It is based on a group of students who chose to take the side of the
workers. After clarifying their arguments, they described the distribution of the
current salaries, guided by their position in the dispute. The student pairs prepared
various suggested alterations to the salary structure to favor workers (as opposed to
management), and then held a series of meetings with fellow student pairs (about 10
students in all), in which they discussed proposals, designed graphical
representations to support their position, and prepared themselves for the general
debate. This transcript is taken from the second “workers’ meeting.” It includes the
students A and D from the previous case study along with four other students
(referred to as S, N, M, and H).
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D  OK, we have this pie [chart] and we plan to use it [See Figure 5]. Everybody
agrees?

Students Yes, yes.

D Let’s see what should we say here? Actually we see that ... 60 percent of ...

A 60 percent of the workers are under the average wage [4500 IS]. Now, by
adding 12 percent — there are far fewer [workers under the national average].

S OK, but I have a proposal, that brings almost everybody above the average
wage. If we add 1000 shekel to the 49 workers, who are under the average ...

N  It’s impossible. Can’t you understand that?

S This [my proposal] will leave us with 1000 shekel, that can be divided among
the other workers, who are over [the average].

A Then each of them will get exactly five shekel! ...

M  But we don’t have any chance to win this way.

D What is the matter with you? We’ll have a revolt in our own ranks. Do you
want that to happen at the final debate?

S Anyway, this is my opinion! If there are no better proposals ...

D  Of course there are: a rise of 12 percent on each salary [excluding the
managers] ...

H  OK. Show me by how much will your proposal reduce the 60 percent.

N 1 am printing now an amazing proposal—everybody will be above the

[national] average: No worker will be under the average wage! This needs a
considerable cut in the managers’ salaries ...

Current salaries (IS)

11500-15000  15000-18500
3%
3%

8000-11500
7%

4500-8000
21%

1000-4500
66 %

Figure 5. The “workers” description of the current salary distribution.

In this exchange, three different proposals for the alteration of the salary
structure were presented. The first, offered by A and D, suggested an increase of 12
percent for all workers but the managers’ salaries remained unchanged. The second
proposal, originated by S, suggested an equal (1000 IS) increase for each of the 49
workers earning less than the national average (4350 IS), the small remainder to be
divided among the other workers. Again the managers’ salaries remained
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unchanged. The third proposal, presented by N, suggested a considerable cut in
managers’ salaries, and an increase for all workers under the national average, to
bring them above the average.

Central to students’ actions and motives is the stand to be taken by the workers.
For example, Figure 5 is grouped to emphasize the large proportion of salaries
below the printers’ national average. Moreover, the workers’ explanations for
choosing representative measures and graphical displays emerged from their stand in
the dispute. Taking a stand also made students check their methods, arguments, and
conclusions with extreme care. They felt it natural to face criticism and
counterarguments made by peers and teacher, and to answer them.

These observations suggest that students’ reasoning about data as well as their
interactions with data were strongly affected by the design of the problem situation,
which includes taking a stand. The students were able to:

e Deal with a complex situation and the relevant statistical concepts (averages,
percentages, charts, etc.).

e Select among measures of center, in relation to looking at graphs, which is
an important component of EDA reasoning.

e Use critical arguments to confront conflicting alternatives.

e Use statistical procedures and concepts with a purpose and within a context,
to solve problems, relying heavily on visual representations and computer.

e Demonstrate involvement, interest, enthusiasm, and motivation in their
learning.

e (Create their own products (proposals and their representations).

DISCUSSION

The two case studies focused on students’ reasoning about data analysis as they
started to develop views (and tools to support them) that are consistent with the use
of EDA. Sociocultural and cognitive perspectives will now be considered in a
detailed analysis of the case studies. The sociocultural perspective focuses on
learning (of a complex domain, such as EDA) as the adoption of the viewpoint of a
community of experts, in addition to learning skills and procedures. Thus, this study
looked at learning as an enculturation process with two central components: students
engaged in doing, investigating, discussing and making conclusions; and teachers
engaged in providing role models by being representatives of the culture their
students are entering through timely interventions. The cognitive perspective
focuses on the development and change in students’ conceptions and the evolution
of their reasoning. Learning is perceived as a series of interrelated actions by the
learner to transform information to knowledge—such as collecting, organizing, and
processing information—to link it to previous knowledge and provide
interpretations (Davis, Maher, & Noddings, 1990).

It is not easy to tease out the two perspectives for this analysis. Conceptions and
reasoning evolve within a purposeful context in a social setting. On the other hand,
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developing an expert point of view, and interacting with peers or with a teacher,
implies undergoing mental actions within specific tasks related to complex ideas.
These actions over time are a central part of the meaningful experience within which
the culture of the field is learned and the reasoning is developed. These perspectives
contribute to the analysis of the data, which revealed the following factors in the
process of developing students’ reasoning about data in the EDA environment.

The Role of Previous Knowledge

One of the strongest visible pieces of knowledge A and D applied and repeatedly
referred to was the difference between single pairs of data, which came from their
practices in the algebra curriculum. This background knowledge played several
roles. On the one hand, it gave these students the differences lens, which
conditioned most of what they were able to conclude for quite a while. On the other
hand, looking at differences helped them to refocus their attention from ‘“pure”
pointwise observations toward more global conclusions (that the differences are not
constant). Also, looking at differences helped the students, in implicit and subtle
ways, to start getting accustomed to a new domain in which data do not behave in
the deterministic way that the students were used to in algebra, in which regularities
are captured in a single exact formula.

A and D’s focus on the differences served more than one function in their
learning. It was invoked and applied not only when they were asked to look for
patterns in the data but also in a very fruitful way when they spontaneously
evaluated the results of rescaling the graph. There, they used the differences in order
to judge the extent to which the re-scaled graph matched their goal of designing a
graph to support a certain claim about trends.

Thus A and D’s previous knowledge not only conditioned what they saw—
sometimes limiting them—but also, on other occasions, empowered them.
Moreover, their previous knowledge served new emerging purposes, as it evolved in
the light of new contextual experiences. In conclusion, this analysis illustrates the
multifaceted and sometimes unexpected roles prior knowledge may play, sometimes
hindering progress and at other times advancing knowledge in interesting ways.

Moving from a Local-Pointwise View toward a Flexible Combination of Local and
Global Views

In the first case study, A and D persistently emphasized local points and adjacent
differences. Their views were related to their “history” (i.e., previous background
knowledge about regularities with linear relationships in algebra). The absence of a
precise regularity in a set of statistical data (understanding variability) was their first
difficulty. When they started to adopt the notion of trend (instead of the regular
algebraic pattern expected), they were still attentive to the prominence of “local
deviations.” These deviations kept them from dealing more freely with global views
of data. Later on, it was precisely the focus on certain pointwise observations (for
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example, the place and deletion of one outlying point) that helped them to direct
their attention to the shape of the (remaining) graph as a whole. During the scaling
process, A and D looked at the graph as a whole; but rather than focusing on the
trends, they discussed its relative locations under different scales. Finally, when they
used the scaling and had to relate to the purpose of the question (support of claims in
the journalists’ debate), they seemed to begin to make better sense of trends.

It is interesting to note that the local pointwise view of data sometimes restrained
the students from seeing globally, but in other occasions it served as a basis upon
which the students started to see globally. In addition, in a certain context, even
looking globally indicated different meanings for the students than for an expert
(i.e., noting the position of the graph rather than noticing a trend).

Appropriation: A Learning Process That Promotes Understanding

The data show that most of the learning took place through dialogues between
the students themselves and in conversations with the teacher. Of special interest
were the teacher’s interventions, at the students’ request (additional examples of
such interventions are described in Ben-Zvi & Arcavi, 2001). These interventions,
though short and not necessarily directive, had catalytic effects. They can be
characterized in general as “negotiations of meanings” (in the sense of Yackel &
Cobb, 1996). More specifically, they are interesting instances of appropriation as a
nonsymmetrical, two-way process (in the sense of Moschkovich, 1989). This
process takes place, in the zone of proximal development (Vygotsky, 1978, p. 86),
when individuals (expert and novices, or teacher and students) engage in a joint
activity, each with their own understanding of the task. Students take actions that are
shaped by their understanding; the teacher “appropriates” those actions—into her
own framework—and provides feedback in the form of her understandings, views of
relevance, and pedagogical agenda. Through the teacher’s feedback, the students
start to review their actions and create new understandings for what they do.

In this study, the teacher appropriated students’ utterances with several
objectives: to legitimize their directions, to redirect their attention, to encourage
certain initiatives, and implicitly to discourage others (by not referring to certain
remarks). The students appropriate from the teacher a reinterpretation of the
meaning of what they do. For example, they appropriate from her answers to their
inquiries (e.g., what trend or interesting phenomena may mean), from her
unexpected reactions to their request for explanation (e.g., “How did you flatten the
graph?”), and from inferring purpose from the teacher’s answers to their questions
(e.g., “We are supposed to look at what?”).

Appropriation by the teacher (to support learning) or by the students (to change
the sense they make of what they do) seems to be a central mechanism of
enculturation. As shown in this study, this mechanism is especially salient when
students learn the dispositions that accompany using the subject matter (data
analysis) rather than its skills and procedures.
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Curriculum Design to Support Reasoning about Data

The example described in the second case study illustrates how curriculum
design can take into account new trends in subject matter (EDA)—its needs, values,
and tools—as well as student reasoning. Staging and encouraging students to take
sides pushed them toward levels of reasoning and discussion that have not been
observed in the traditional statistics classroom. They were involved in selecting
appropriate statistical measures, rather than just calculating them, and in choosing
and designing graphs to best dispaly their views. They showed themselves able to
understand and judge the complexities of the situation—engaged in preparing a
proposal that in their view was acceptable, rational, and just—and were able to
defend it.

Furthermore, students realized that data representations could serve rhetorical
functions, similar to their function in the work of statisticians, who select data,
procedures, tools, and representations that support their perspective. Thus, the
development of students’ reasoning about data is extended beyond the learning of
statistical mathods and concepts, to involve students in “doing” statistics in a
realistic context.

IMPLICATIONS

The learning processes described in this chapter took place in a carefully
designed environment. It is recommended that similar environments be created to
help students develop their reasoning about data analysis. The essential features of
such learning environments include

e A curriculum built on the basis of EDA as a sequence of semi-structured (yet
open) leading questions within the context of extended meaningful problem
situations (Ben-Zvi & Arcavi, 1998)

¢ Timely and nondirective interventions by the teacher as representative of the
discipline in the classroom (cf., Voigt, 1995)

e Computerized tools that enable students to handle complex actions (change
of representations, scaling, deletions, restructuring of tables, etc.) without
having to engage in too much technical work, leaving time and energy for
conceptual discussions

In learning environments of this kind, students develop their reasoning about
data by meeting and working with, from the very beginning, ideas and dispositions
related to the culture of EDA. This includes making hypotheses, formulating
questions, handling samples and collecting data, summarizing data, recognizing
trends, identifying variability, and handling data representations. Skills, procedures
and strategies (e.g., reading graphs and tables, rescaling) are learned as integrated in
the context and at the service of the main ideas of EDA.
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It can be expected that beginning students will have difficulties of the type
described when confronting the problem situations posed by the EDA curriculum.
However, what A and D experienced is an integral and inevitable component of their
meaningful learning process with long-lasting effects (cf., Ben-Zvi 2002). These
results suggest that students should work in environments such as the one just
described, which allows for:

e Students’ prior knowledge to be engaged in interesting and surprising
ways—possibly hindering progress in some instances but making the basis
for construction of new knowledge in others

e Many questions to be raised—some will either make little sense to them, or,
alternatively, will be reinterpreted and answered in different ways than
intended

e Students’ work to be based on partial understandings, which will grow and
evolve

This study confirmed that even if students do not make more than partial sense
of the material with which they engage, appropriate teacher guidance, in-class
discussions, peer work and interactions, and more importantly, ongoing cycles of
experiences with realistic problem situations, will slowly support the building of
meanings and the development of statistical reasoning.

Multiple challenges exist in the assessment of outcomes of students’ work in
such a complex learning environment: the existence of multiple goals for students,
the mishmash between the contextual (real-world) and the statistical, the role of the
computer-assisted environment, and the group versus the individual work (Gal &
Garfield, 1997). It is recommended that extended performance tasks be used to
assess students’ reasoning about data, instead of traditional tests that focus on
definitions and computation. Performance tasks should be similar to those given to
students during the learning activities (e.g., open-ended questions, “complete” data
investigations), allowing students to work in groups and use technological tools.

In EDA learning environments of the kind described in these case studies,
teachers cease to be the dispensers of a daily dose of prescribed curriculum and must
respond to a wide range of unpredictable events. They can play a significant role in
their interactions with students by encouraging them to employ critical reasoning
strategies and use data representations to search for patterns and convey ideas;
expanding and enriching the scope of their proposed work; and providing reflective
feedback on their performance. Thus our challenge is to assist statistics educators in
their important role of mentors and mediators, or the enculturators.

Given that EDA is a challenging topic in statistics education and is part of the
mathematics curriculum in many schools today, it is important that teaching efforts
be guided not only by systematic research on understanding the core ideas in data
analysis but also by how reasoning about data analysis develops. Without this
research and the implementation of results, statistics classes will continue to teach
graphing and data-collection skills that do not lead to the ability to reason about data
analysis.
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Many research questions need to be addressed, including those pertaining to the
development of students’ understanding and reasoning (with the assistance of
technological tools), the student-teacher and student-student interactions within
open-ended data investigation tasks, the role of enculturation processes in learning,
and the impact of learning environments similar to those described here. The
refinement of these ideas, and the accumulation of examples and studies, will
contribute to the construction of an EDA learning and instruction theory.
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Chapter 7

LEARNING TO REASON ABOUT
DISTRIBUTION

Arthur Bakker and Koeno P. E. Gravemeijer
Freudenthal Institute, Utrecht University, the Netherlands

OVERVIEW

The purpose of this chapter is to explore how informal reasoning about distribution
can be developed in a technological learning environment. The development of
reasoning about distribution in seventh-grade classes is described in three stages as
students reason about different representations. It is shown how specially designed
software tools, students’ created graphs, and prediction tasks supported the learning
of different aspects of distribution. In this process, several students came to reason
about the shape of a distribution using the term bump along with statistical notions
such as outliers and sample size.

This type of research, referred to as “design research,” was inspired by that of
Cobb, Gravemeijer, McClain, and colleagues (see Chapter 16). After exploratory
interviews and a small field test, we conducted teaching experiments of 12 to 15
lessons in 4 seventh-grade classes in the Netherlands. The design research cycles
consisted of three main phases: design of instructional materials, classroom-based
teaching experiments, and retrospective analyses. For the retrospective analysis of
the data, we used a constant comparative method similar to the methods of Glaser
and Strauss (Strauss & Corbin, 1998) and Cobb and Whitenack (1996) to
continually generate and test conjectures about students’ learning processes.

DATA SET AS AN AGGREGATE

An essential characteristic of statistical data analysis is that it is mainly about
describing and predicting aggregate features of data sets. Students, however, tend to
conceive a data set as a collection of individual values instead of an aggregate that
has certain properties (Hancock, Kaput, & Goldsmith, 1992; Konold & Higgins,
2002; Ben-Zvi & Arcavi, 2001; Ben-Zvi, Chapter 6). An underlying problem is that
middle-grade students generally do not see “five feet” as a value of the variable
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“height,” but as a personal characteristic of, say, Katie. In addition to this view,
students should learn to disconnect the measurement value from the object or person
measured and consider data against a background of possible measurement values.
They should furthermore develop a notion of distribution, since that is an organizing
conceptual structure with which they can conceive the aggregate instead of just the
individual values (Cobb, 1999; Petrosino, Lehrer, & Schauble, 2003).

These learning goals formed the motivation to explore the possibilities for
students in early secondary education with little or no prior statistical knowledge to
develop an informal understanding of distribution. Such understanding could then be
the basis for more formal statistics in higher grades. The main question in this study
is therefore: How can seventh-grade students learn to reason about distribution in an
informal way?

DISTRIBUTION

To answer this question, we first analyze the relation between data and
distribution. Distinguishing between data as individual values and distribution as a
conceptual entity, we examine aspects of both data sets and distributions such as
center, spread, density, and skewness (Table 1). Measures of center include mean,
median, and midrange. Spread can be quantified with, for instance, range, standard
deviation, and interquartile range. The aspects and measures in the table should not
be seen as excluding each other; outliers and extreme values, for instance, influence
skewness, density, spread, and even most measures of center.

Table 1. Between data and distribution

distribution
(conceptual entity)

center spread density skewness
mean, median, range, standard (relative) frequency,  position majority of
midrange, ... deviation, inter- majority, quartiles data

quartile range, ...

data
(individual values)

This structure can be read upward and downward. The upward perspective is
typical for novices in statistics: Students tend to see individual values, which they
can use to calculate, for instance, the mean, median, range, or quartiles. This does
not automatically imply that they see mean or median as a measure of center or as
representative of a group (Mokros & Russell, 1995; Konold & Pollatsek, Chapter 8).
In fact, students need a notion of distribution before they can sensibly choose
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between such measures of center (Zawojewski & Shaughnessy, 2000). Therefore,
students need to develop the downward perspective as well: conceiving center,
spread, and skewness as characteristics of a distribution, and looking at data with a
notion of distribution as an organizing structure or a conceptual entity. Experts in
statistics can easily combine the upward and downward perspectives. We might say
that the upward perspective leads to a frequency distribution of a data set. In the
downward perspective, we typically use probability distributions such as the normal
distribution to model data.

The table shows that the concept of distribution has a complex structure, but this
concept is also part of a larger structure consisting of big ideas such as variation and
sampling (Reading & Shaughnessy, Chapter 9; Watson, Chapter 12). Without
variation, there is no distribution, and without sampling there are mostly no data.
We therefore chose to deal informally and coherently with all these big ideas at the
same time with distribution in a central position. As Cobb (1999) notes, focusing on
distribution as a multifaceted end goal of instruction might bring more coherence in
the statistics curriculum. The question is how. Our answer is to focus on the
informal aspects of shape.

The shape of a distribution is influenced by various statistical aspects. A high
peak, for example, is caused by a high frequency of a certain class and long tails on
the left or right with the hill out of center indicate skewed distributions. This implies
that by reasoning with informal terms about the shape of a distribution, students may
already reason with aspects of that distribution. And indeed, students in this study
used informal words to describe density (crowded, empty, piled up, clumped, busy),
spread (spread out, close together), and shape (hill, bump). If students compare the
height distributions of two different grades, they might realize that the graphs have
the same shape but are shifted in location (Biehler, 2001). And they might see that
samples of different sizes still have similar shapes. We envisioned that reasoning
with shapes forms the basis for reasoning about distributions.

METHODOLOGY AND SUBJECTS

To answer the main question of how students can develop a notion of
distribution, we carried out developmental research, which is also called design
research (Freudenthal, 1991; Gravemeijer, 1994; Edelson, 2002; Cobb & McClain,
Chapter 16). Design research typically involves the design of instructional materials,
teaching experiments, and retrospective analyses. In line with the principles of
Realistic Mathematics Education (Freudenthal, 1991; Gravemeijer, 1994) and the
National Council of Teachers of Mathematics (NCTM) Standards (2000), we looked
for ways to guide students in being active learners dealing with increasingly
sophisticated means of support.

To assist students in exploring data and developing the concept of distribution,
we decided to use some specially designed Minitools (see Cobb, 1999). These web
applets were developed by reasoning backward from the intended end goal of
reasoning about distribution to possible starting points. One aspect of distribution,
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shape, can be inferred from stacked dot plots. To understand what dots in a dot plot
stand for, students need to realize that a dot represents a value on some variable.
One way to help students develop this insight is to let them start with case-value
bars, which range from O to the corresponding value on the horizontal axis. We
presume that bars representing values are closer to students’ daily life reality than
dots on an axis, because they are used to bar graphs and because horizontal bars are
natural ways to symbolize certain variables such as the braking distance of cars, the
life span of batteries, or the wingspan of birds. For that reason, each case in Minitool
1 (Figure 1) is signified by a bar whose relative length corresponds to the value of
the case, and each case in Minitool 2 (Figure 2) is signified by a dot in a dot plot.
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Figure I. Minitool 1 (sorted by size and color).

To identify a baseline of what Dutch seventh-grade students already know about
statistics and how easily they would solve statistical problems using the two
Minitools, we interviewed 26 students about these issues. The students had
encountered no statistics before except the arithmetic mean and bar graphs. They
had almost no problems in reading off values from the Minitools, but they focused
on individual data values (Section 2). We then did a small field test and conducted
teaching experiments in 4 seventh-grade classes, which worked through a complete
sequence of 12 to 15 lessons of 50 minutes each. The experiments were carried out
during the school year 1999-2000, in a public school in a small town near Utrecht
(the Netherlands) that prepared about 800 students for university (vwo) or higher
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vocational education (havo). At that time about 15% of the Dutch students went to
the vwo level, 20% to the havo level, about 40% to the mavo level (for middle
vocational education), and the remaining 25% to lower vocational education (in the
meantime the last two levels have been merged). These percentages indicate that the
learning abilities of the vwo and havo students of our teaching experiments were
above average.
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Figure 2. Minitool 2 (split colors and with vertical value bars).

The collected data include audio recordings, student work, field notes, and final
tests in all classes, as well as videotapes and pretests in the last two experiments (see
Table 2). The pretests were meant to find out if students already knew what we
wanted them to learn (they did not).

An essential part of the data corpus was a set of mini-interviews that were held
during lessons. Mini-interviews varied from about 20 seconds to 4 minutes and were
meant to find out what concepts and graphs meant for the students. We realize that
this influenced their learning, because the mini-interviews often stimulated
reflection. In our view, however, the validity of the research was not in danger: Our
aim was to find out how students could learn to reason with distribution, not whether
teaching the sequence in other seventh-grade classes would lead to the same results.

For the retrospective analysis of the fourth teaching experiment, we have read
the transcripts, watched the videotapes, and formulated conjectures on students’
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learning based on the transcript and video episodes. The generated conjectures were
being tested at the other episodes and the rest of the collected data (student work,
field observations, and tests) in the next round of analysis (triangulation). Then the
whole generating and testing process was repeated. This method resembles Glaser
and Strauss’s constant comparative method (Strauss & Corbin, 1998; Cobb and
Whitenack, 1996). Important transcript fragments, including those in this chapter,
have been discussed with colleagues (peer examination).

Table 2. Overview of subjects, teaching experiments, data collection, number of lessons, and
levels of education

Subjects Type of Experiment Data Collection No. of Level
(grade 7) Lessons
26 students Exploratory interviews | audio — mavo,
(1999) (15 minutes for two havo,
students) VWO
Class A (25) Exploratory field test student work, final test, 4 havo
Class F (27) First teaching field notes, audio 12 VWO
experiment
Class E (28) Second teaching 15 VWO
experiment
Class C (23) | Third teaching idem plus pretest and 12 havo
(2000) experiment video
Class B (23) Fourth teaching 12 havo
experiment
12 classes Implementation e-mail reports of two 144 havo
(2000-2002) teachers, field notes from and
incidental visits VWO

Furthermore, we have identified patterns of student answers that were similar in
all teaching experiments, and categorized the evolving learning trajectory in three
stages according to students’ reasoning with the representations used. The sections
describing stages 1 and 2 describe observations that were similar for all four
observed classes. In the first stage, students worked with graphs in which data were
represented by horizontal bars (Minitool 1, Figure 1). In the second stage, from
lesson 5 to 12, students mainly worked with dot plots (Minitool 2, Figure 2). In the
third stage students used both Minitools and came to reason with bumps; the
examples stem from the second teaching experiment. The students in this class had
good learning abilities (vwo) and had 15 lessons—three more than in the other
classes. The specific stages began to overlap each other when we started to stimulate
comparison of different graphs during the last two teaching experiments.

STAGE 1—DATA ARE REPRESENTED BY BARS

The aim of the first activities was to let students reason about different aspects of
distributions in an informal way such as about majority, center, extreme values,
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spread-out-ness, and consistency. In the second lesson, for example, students had to
prepare reports to Consumer Reports (a consumers’ journal) on the quality of two
battery brands. They were given a data set of 10 battery life spans of two brands in
Minitool 1; using different computer options, they could sort the data and split the
data, for instance of the two brands. In the beginning they used the vertical value bar
(Figure 3) to read off values, but later sometimes to estimate the mean visually.
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Figure 3. Estimating the mean of brand D with the movable vertical value bar (life span in
hours).

During this battery activity, students in all teaching experiments could already
reason about aspects of distributions. “Brand K has outliers, but you have more
chance for a good one,” was one answer. “Brand D is more reliable, since you know
that it will last more than 80 hours,” was another. This notion of reliability formed a
good basis for talking about spread. Our observations resemble those of Cobb
(1999) and Sfard (2000), who analyzed students’ spontaneous use of the notion of
“consistency.”

The activities with Minitool 1 afforded more than informal reasoning about
majority, outliers, chance, and reliability; they also supported the visual estimation
of the mean (Figures 3 and 4). After this strategy had spontaneously emerged in the
exploratory interviews, we incorporated instructional activities to evoke this strategy
in other classes as well (Bakker, 2003). Minitool 1 supported the strategy with the
movable vertical value bar. Students said that they cut off the longer bars, and gave
the bits to the shorter bars. Several students in different classes could explain that
this approach was legitimate: The total stays the same, and the mean is the total
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divided by the number. When students said that brand D is better because its mean is
higher, they used the mean to say how good the brand is. In that case, the mean is
not just a calculation on a collection of data, but refers to a whole subset of one
brand. As we intended, they learned to use the mean as a representative value for a
data set and to reason about the brand instead of the individual data values.
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Figure 4. Scribblings on a transparency during class discussions after estimating means of
both brands. The mean of brand D is slightly higher than that of K.

To assess students’ understanding of distribution aspects and to establish a
tighter relationship between informal statistical notions and graphs, we decided to
“reverse” this battery task. In the last two teaching experiments, during the fourth
lesson, we asked students to invent their own data according to certain
characteristics such as “brand A is bad but reliable; brand B is good but unreliable;
brand C has about the same spread as brand A, but it is the worst of all brands.”
Many students produced a graph similar to the one in Figure 5 (in this case, the
variation of C is less than that of A). A sample response was:

Why is brand A better. Because it lives long. And it has little spread. Brand B is good
but unreliable. Because it has much spread. But it lives long. Brand C has little spread
but the life span is not very long.
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Figure 5. Invented data set according to certain features: Brand A is bad but reliable; brand B
is good but unreliable; brand C has about the same spread as brand A, but it is the worst of all.

With hindsight, we have come to see this back-and-forth movement between
interpreting graphs and constructing graphs according to statistical notions as an
important heuristic for instructional design in data analysis, for a number of reasons:

e Students can express ideas with graphs that they cannot express in words
(Lemke, 2003). If students invent their own data and graphs, teachers and
researchers can better assess what students actually understand.

e If students think of characteristics such as “good but not reliable,” the lack of
data prevents them from focusing on individual data, because it is
cognitively impossible to imagine many individual data points. With this
reverse activity, we create the need for a conceptual unity that helps in
imagining a collection of data with a certain property. The notion of
distribution serves that purpose (Section 3).

¢ In many schoolbooks, students mainly interpret ready-made graphs (Friel et
al., 2001; Moritz, Chapter 10). And if students have to make graphs, the goal
is too often just to learn how to produce a particular graph. De Lange,
Burrill, Romberg, & van Reeuwijk (1993) and Meira (1995) strongly
recommend letting students invent their own graphs. We may assume that
students’ own graphs are meaningful and functional for them.

e The importance of the back-and-forth movement between data and graphs
(or different graphs) is also indicated by the research on symbolizing.
Steinbring (1997), for example, distinguishes reference systems and symbol
systems. Students interpret a symbol system in the light of a better-known
reference system. Reference systems are therefore relatively well known and
symbol systems relatively unknown. In learning the relationship between a
symbol system and a reference system, students must go back and forth
between the two systems. A next step can then be that students use the
symbol system they have just learned to reason with (Minitool 1, for
example) as a reference system for a new symbol system (Minitool 2, for
example), and so on.
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From the examples of the first stage, it is clear that students informally reasoned
about different aspects of distribution from the very start. They argued about the
mean (how good the battery is), spread (reliability), chance for outliers or extreme
values, and where the majority is (skewness). Without the bar representation the
students would probably not have developed a compensating strategy for finding the
mean. Their reasoning, however, was bound to one representation and two contexts.

STAGE 2—DOTS REPLACE BARS

Our next aim was to let students reason about shapes of distributions in suitable
representations and in different contexts. Additionally, we strove for quantification
of informal notions such as frequency and the majority and to prepare students for
using conventional aggregate plots such as histograms and box plots.

As mentioned in the previous section, Minitool 1 can be seen as a reference
system for the new symbol system of Minitool 2. When solving problems with
Minitool 1, the students reasoned with the endpoints of the bars. In Minitool 1,
students could hide the bars, which they sometimes preferred, because “it is better
organized.” The dot plot of Minitool 2 can be obtained by hiding the bars of
Minitool 1 and imaginatively dropping the endpoints on the horizontal axis or on the
other dots that prevent them from dropping further down (cf. Wilkinson, 1999).
Note that the dots are stacked and do not move sideways to fill up white areas in the
graph (Figure 6). The advantages of this dot plot representation are that it is easy to
interpret, it comes closer to conventional representations of distributions than
Minitool 1, and students can organize data in ways that come close to histogram and
box plot, for instance.

Minitool 2 has more options to organize data than Minitool 1. Apart from sorting
by size and by subgroup (color), students can also group data into their own groups,
two equal groups (for the median), four equal groups (for a box plot, Figure 7a),
equal interval width (for a histogram, Figure 7b), and fixed group size (Figure 6b).
This last option turned out to be useful for stimulating reasoning about density.

A particular statistical problem that students solved with Minitool 2 was the one
on jeans sizes. Students had to report to a factory the percentage of each size that
should be made, based on a data set of the waist measurements (in inches) of 200
men. This activity, typically done during the ninth lesson, was meant to distract
students’ attention away from the mean and toward the whole distribution.
Furthermore, it could be an opportunity to let students reason about absolute and
relative frequencies.

We expected that students would reason about several aspects of distribution
when comparing different grouping options. The option of fixed group size (Figures
6b and 6¢) typically evoked remarks such as “with the thin ones [the narrow bins]
you know that there are many dots together.” We interpret such expressions as
informal reasoning about density, which we see as a key aspect of distribution.
Many students used the four equal groups option to support their conclusion that
“you have to make a lot of jeans in sizes 34-36, and less of 44-46.” Generally, a
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skeptical question was needed to provoke more exact answers: “If the factory hired
you for $1,000, do you think the factory would be satisfied with your answer?” Most
students ended up with the fixed interval option and a table with percentages, that is,
relative frequencies.
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Figure 6. (a) Minitool 2 with jeans data set (waist size in inches, n = 200). (b) Fixed group
size with 20 data points per group. (c¢) Minitool 2 with “hide data” function.
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Figure 7. (a) Four equal group option with and without data. Box plot overlay was added after
these seventh-grade teaching experiments. (b) Fixed interval width option with and without
data. Histogram overlay was added after these seventh-grade teaching experiments.

An instructional idea that emerged during the last teaching experiment was that
of “growing samples.” Discussing and predicting what would happen if we added
more data appeared to lead to reasoning about several aspects of distribution in a
coherent way. For the background to this activity, we have to go back to a problem
from the beginning of the instructional unit:

In a certain hot air balloon basket, eight adults are allowed [in addition to the driver].
Assume you are going to take a ride with a group of seventh-graders. How many
seventh-graders could safely go into that balloon basket if you only consider weight?
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This question was meant to let students think about variation of weight,
sampling, and representativeness of the average. A common solution in all classes
was that students estimated an average or a typical weight for both adults and
children. Some used the ratio of those numbers to estimate the number of children
allowed, but most students calculated the total weight allowed and divided that by
the average student weight. The student answers varied from 10 to 16.

This activity formed the basis for a class discussion on the reliability of the
estimated weights, during which we asked for a method of finding more reliable
numbers. A student suggested weighing two boys and two girls. The outcome of the
discussion was that the students decided to collect weight data from the whole class.
(In the second teaching experiment, they also collected height data.)

In the next lesson, we first showed the sample of four weight data in Minitool 2
(Figure 8a) and asked what students expected if we added the rest of the data.
Students thought that the mean would be more precise. Because we did not want to
focus on the mean, we asked about the shape and the range. Some students then
conjectured that the range would be larger, and others thought the graph would grow
higher. After showing the data for the whole class (Figure 8b), we asked what would
happen if we added the data for two more classes (Figure 8c). In this way, extreme
values, spread, and shape became topics of discussion. The graphs that students
made to predict the shape if sample size were doubled tended to be smoother than
the graphs students had seen in Minitool 2 (Figure 8d). In our interpretation,
students started to see a pattern in the data—or in Konold and Pollatsek’s words, a
“signal in the noise” (Chapter 8). We concluded that stimulating reasoning about
distribution by “growing samples” is another useful heuristic for instructional design
in statistics education.

A conjecture about students’ evolving notion of distribution that was confirmed
in the retrospective analyses was that students tend to divide unimodal distributions
into three groups of low, “average,” and high values. We saw this conceptual
grouping into three groups for the first time in the second teaching experiment when
we asked what kind of graph students expected when they collected height data.
Daniel did three trials (Figure 9). During his second trial, he said: “You have smaller
ones, taller ones, and about average.” After the third trial he commented: “There are
more around the average.” Especially in the third trial, we clearly see his conceptual
organization into three groups, which is a step away from focusing on individual
data points.

One step further is when students think of small, average, tall, and “in between.”
When in the final test students had to sketch their class when ordered according to
height, Christa drew Figure 10 and wrote: “There are 3 smaller ones, about 10
average, 3 to 4 taller, and of course in between.”

The “average” group, the majority in the middle, seems to be more meaningful
to students than the single value of the mean. Konold and colleagues (2002) call
these ranges in the middle of distributions modal clumps. Our research supports their
view that these modal clumps may be suitable starting points for informal reasoning
about center, spread, and skewness. When growing samples, students might even
learn to see such aspects of distribution as stable features of variable processes.
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Figure 8. Growing samples (weight data in kg): (a) Four students; (b) one class; (c) three
classes; (d) a student’s smoother prediction graph of larger sample.
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Figure 9. Three prediction trials of height data; the second and third show three groups.
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Figure 10. Class ordered by height. Christa’s explanation: “There are 3 smaller ones, about 10
average, 3 to 4 taller, and of course in between.”

STAGE 3—SYMBOLIZING DATA AS A “BUMP”

Though students in the first two teaching experiments started to reason with
majorities and modal clumps in the second stage, they did not explicitly reason with
shape. We had hoped that they would reason with “hills,” as was the case in the
teaching experiment of Cobb, Gravemeijer, and McClain (Cobb, 1999), but they did
not. A possible reason is that their teaching experiment lasted 34 lessons, whereas
ours lasted only 12 or 15 lessons. In the second teaching experiment, we decided to
try something else. In line with the reasons to let students invent their own data
(Section 5), we asked students to invent their own graphs of their own data. As a
follow-up of the balloon activity mentioned earlier, the students had to make a graph
for the balloon rider, which she could use in deciding how many students she could
safely take on board.

The students of the second teaching experiment drew various graphs. The
teacher focused the discussion on two graphs, namely, Michiel’s and Elleke’s
(Figure 11).
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Figure 11. Michiel’s graph (left) and Elleke’s graph.
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The shorter bars represent students’ weights; the lightest bars signify girls’

weights. Though all students used the same data set, Michiel’s graph on a
transparency does not exactly match the values in Elleke’s graph on paper. Michiel’s
graph is more like a rough sketch.
Michiel’s graph is especially interesting, since it offered the opportunity to talk
about shape. Michiel explained how he got the dots as follows. (Please note that a
translation of ungrammatical spoken Dutch into written English does not sound very
authentic.)

Michiel: Look, you have roughly, averagely speaking, how many students had that
weight and there I have put a dot. And then I have left [y-axis] the number
of students. There is one student who weighs about 35 [kg], and there is
one who weighs 36, and two who weigh 38 roughly.

And so on: the dot at 48, for example, signifies about four students with weights
around 48. After some other graphs had been discussed, including that of Elleke, the
teacher asked the following question.

Teacher: What can you easily see in this graph [by Michiel]?

Laila: Well, that the average, that most students in the class, uhm, well, are
between 39 and, well, 48.

Teacher: Yes, here you can see at once which weight most students in this class
roughly have, what is about the biggest group. Just because you see this
bump here. We lost the bump in Elleke’s graph.

It was the teacher who used the term bump for the first time. Although she had
tried to talk about shapes earlier, this was the first time the students picked it up. As
Laila’s answer indicates, Michiel’s graph helped her to see the majority of the
data—between 39 and 48 kg. This “average” or group of “most students” is an
instance of what Konold and colleagues (2002) call a modal clump. Teachers and
curriculum designers can use students’ informal reasoning with clumps as
preparation for using the average as a representative value for the whole group, for
example.

Here, the teacher used the term bump to draw students’ attention to the shape of
the data. By saying that “we lost the bump in Elleke’s graph,” she invited the
students to think about an explanation for this observation. Nadia reacted as follows.

Nadia:  The difference between ... they stand from small to tall, so the bump, that
is where the things, where the bars [from Elleke’s graph] are closest to one
another.

Teacher: What do you mean, where the bars are closest?

Nadia: The difference, the endpoints [of the bars], do not differ so much with the
next one.
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Eva added to Nadia’s remarks:

Eva: If you look well, then you see that almost in the middle, there it is straight
almost and uh, yeah that [teacher points at the horizontal part in Elleke’s
graph].

Teacher: And that is what you [Nadia] also said, uh, they are close together and
here they are bunched up, as far as [...] weight is concerned.

Eva: And that is also that bump.

These episodes demonstrate that, for the students, the bump was not merely a
visual characteristic of a certain graph. It signified a relatively large number of data
points with about the same value—both in a hill-type graph and in a value-bar
graph. For the students, the term bump signified a range where there was a relatively
high density of data points. The bump even became a tool for reasoning, as the next
episode shows, when students revisited the battery task as one of the final tasks.

Laila: But then you see the bump here, let’s say [Figure 3].

llona: This is the bump [pointing at the straight vertical part of the lower 10
bars].

Researcher: Where is that bump? Is it where you put that red line [the vertical value
bar]?

Laila: Yes, we used that value bar for it [...] to indicate it, indicate the bump.

If you look at green [the upper ten], then you see that it lies further, the
bump. So we think that green is better, because the bump is further.

The examples show that some students started to reason about density and shape
in the way intended. However, they still focused on the majority, the modal clump,
instead of the whole distribution. This seemed to change in the 13th lesson of the
second teaching experiment

In that lesson, we discovered that asking students to predict and reason without
available data was helpful in fostering a more global view of data. A first example
of such a prediction question is what a graph of the weights of eighth-graders would
look like, as opposed to one of seventh-graders. We hoped that students would shift
the whole shape instead of just the individual dots or the majority.

Teacher: What would a graph of the weights of eighth-graders look like?

Luuk: I think about the same, but another size, other numbers.

Guyonne: The bump would be more to the right.

Teacher: What would it mean for the box plots?

Michiel: Also moves to the right. That bump in the middle is in fact just the box

plot, which moves more to the right.

It could well be that Luuk reasoned with individual numbers, but he thought that
the global shape would look the same. Instead of talking about individual data
points, Guyonne talked about a bump, in singular, shifted to the right. Michiel
related to the box plot as well, though he just referred to the box of the box plot.

Another prediction question also led to reasoning about the whole shape, this
time in relation to other statistical notions such as outliers and sample size. Note that
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students used the term outliers for extreme values, not for values that are
questionable.

Researcher: 1f you would measure all seventh-graders in the city instead of just
your class, how would the graph change, or wouldn’t it change?

Elleke: Then there would come a little more to the left and a little more to the
right. Then the bump would become a little wider, I think. [She
explained this using the term outliers.]

Researcher: s there anybody who does not agree?

Michiel: Yes, if there are more children, than the average, so the most, that also
becomes more. So the bump stays just the same.
Albertine: I think that the number of children becomes more and that the bump

stays the same.

In this episode, Elleke relates shape to outliers; she thinks that the bump grows
wider if the sample grows. Michiel argues that the group in the middle also grows
higher, which for him implies that the bump keeps the same shape. Albertine’s
answer is interesting in that she seems to think of relative frequency: for her the
shape of the distribution seems to be independent of the sample size. If she thought
of absolute frequency she would have thought that the bump would be much higher.
Apparently, the notion of a bump helped these students to reason about the shape of
the distribution in hypothetical situations. In this way, they overcame the problem of
seeing only individual data points and developed the notion of a bump, which served
as a conceptual unity.

There are several reasons why predictions about shape in such hypothetical
situations can help to foster understanding of shape or distribution. First, if students
predict a graph without having data, they have to reason more globally with a
property in their mind. Konold and Higgins (2002) write that with the individuals as
the foci, it’s difficult to see the forest for the trees. Our conclusion is that we should
ask questions about the forest, or predict properties of other forests—which we
consider another heuristic for statistics education. This heuristic relates to the
cognitive limitations mentioned in Section 5: If there are no available data and
students have to predict something on the basis of some conceptual characteristic, it
is impossible to imagine many individual data points.

A second reason has to do with the smoothness of graphs. Cobb, McClain, and
Gravemeijer (2003) assume that students can more easily reason about hills if the
hills are smooth enough. We found evidence that the graphs students predict tend to
be smoother than the graphs of real data, and we conjecture that reasoning with such
smoother graphs helps students to see the shape of a distribution through the
variation or, in other words, the signal through the noise (Konold & Pollatsek,
Chapter 8). If they do so, they can model data with a notion of distribution, which is
the downward perspective we aimed for (Section 3).

A last example illustrates how several students came to reason about
distributions. These two girls were not disturbed by the fact that distributions did not
look like hills in Minitool 1. The question they dealt with was whether the
distributions of the battery brands looked normal or skewed, where normal was
informally defined as “symmetrical, with the median in the middle and the majority
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close to the median.” The interesting point is that they used the term hill to indicate
the majority (see Figure 3), although it looked straight in the case-value bar graph.
This indicates that the hill was not a visual tool; it had become a conceptual tool in
reasoning about distributions.

Albertine: Oh, that one [battery brand D in Figure 3] is normal [...].

Nadia: That hill.

Albertine: And skewed if like here [battery brand K] the hill [the straight part] is
here.

DISCUSSION

The central question of this chapter was how seventh-grade students could learn
to reason about distributions in informal ways. In three stages, we showed how
certain instructional activities, supported by computer tool use and the invention of
graphs, stimulated students to reason about aspects of distributions. After a summary
of the results we discuss limitations of this study and implications for future
research.

When solving statistical problems with Minitool 1, students used informal words
such as majority, outliers, reliability, and spread out. The examples show that
students reasoned about aspects of distribution from the very start of the experiment.
The students invented data sets in Minitool 1 that matched certain characteristics of
battery brands such as “good but not reliable.” We argued that letting students
invent their own data sets could stimulate them to think of a data set as a whole
instead of individual data points (heuristic 1). The bar representation of Minitool 1
stimulated a visual compensation strategy of finding the mean, whereas many
students found it easier to see the spread of the data in Minitool 2.

When working with Minitool 2, students developed qualitative notions of more
advanced aspects of distribution such as frequency, classes, spread, quartiles,
median, and density. The dot plot representation in combination with the options to
structure data into two equal groups, four equal groups, fixed group size, and fixed
interval width supported the development of an understanding of the median, box
plot, density, and histogram respectively. Like Konold and colleagues (2002), we
expect that modal clumps are useful to help students reason with center and other
distribution aspects. Growing samples is a promising instructional activity to let
students reason with stable features of variable processes (heuristic 2). The big ideas
of sampling and distribution can thus be developed coherently, but how this could
be done is a topic of future research.

In the third stage, students started to reason with bumps in relation to statistical
notions such as majority, outliers, and sample size in hypothetical situations and in
relation to different graphs. We argued that predictions about the shape and location
of distributions in hypothetical situations are useful to foster a more global view and
to let students see the signal in the noise (heuristic 3).
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IMPLICATIONS

The results of this research study suggest that it is important to provide
opportunities for students to contribute their own ideas to the learning process,
which requires much discussion and interaction during class. We believe that formal
measures such as median and quartiles should be postponed until intuitive notions
about distribution have first been developed. We also encourage teachers to allow
students to use less than precise statistical definitions as students develop their
reasoning, and then make a transition to more specific definitions as students are
able to comprehend these details. We are convinced that teachers should try to learn
about how students are reasoning about distribution by listening and observing as
well as by gathering assessment data. A type of assessment that we found useful
asked students to create a graph representing statistical information. One such task
that was very effective asked students to make graphs that were compatible with a
short story with both informal and statistical notions related to running practice.
There were no restrictions on the type of graph students could use. We had
deliberately incorporated characteristics in the story that ranged from easy (the
fastest runner needed 28 minutes) to difficult (the spread of the running times at the
end was much smaller than in the beginning but the range was still pretty big). This
is the item we used:

A seventh grade is going to train for running 5 km. To track their improvement
they want to make three graphs. One before training starts, one halfway through, and
one after ten training sessions. Draw the graphs that belong to the following story:

e Before training started some students were slow and some were already very
fast. The fastest ran the 5 km in 28 minutes. The spread between the other
students was large. Most of them were on the slow side.

e Halfway through, the majority of the students ran faster, but the fastest had
improved his time only a little bit, as had the slowest.

e After the training sessions had finished, the spread of the running times was
much smaller than in the beginning, but the range was still pretty big. The
majority of the students had improved their times by about 5 minutes. There
were still a few slow ones, but most of the students had a time that was
closer to the fastest runner than in the beginning.

We found that students were able to represent many elements in their graphs and
we learned more about their thinking and reasoning by examining their
constructions.

Although we conclude that it is at least possible for seventh-graders to develop
the kind of reasoning about distribution that is shown in this chapter, it should be
stressed that the students in these experiments had above-average learning abilities
and had been stimulated to reflect during mini-interviews. Other students probably
need more time or need to be older before they can reason about distribution in a
similar way.
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Another limitation of this study is that the examples of the third stage were to a
certain extent unique for the second teaching experiment. What would have
happened if Michiel had not made his “bump” graph? This research does not
completely answer that question (there was some reasoning with bumps in the third
and fourth teaching experiment), but it shows what the important issues are and
which heuristics might be useful for instructional activities.

In addition, we noticed that making predictions graphs without having data is not
a statistical practice that automatically emerges from doing an instructional
sequence such as the one described here. We concluded this from observations
during the two subsequent school years, when two novice teachers used the
materials in 12 other seventh-grade classes. When we asked prediction questions,
the students seemed confused because they were not used to such questions. An
implication for teaching is that establishing certain socio-mathematical norms and
certain practices (Cobb & McClain, Chapter 16) are as important as suitable
computer tools, carefully planned instructional activities, and skills of the teacher to
orchestrate class discussions.

These teachers also reported that some of the statistical problems we had used or
designed were too difficult and not close enough to the students’ world of
experience. The teachers also needed much more time than we used in the first year,
and they found it difficult to orchestrate the class discussions. We acknowledge that
the activities continually need to be adjusted to local contingencies, that the mini-
interviews probably had a learning effect, and that the teachers needed more
guidance for teaching such a new topic. Hence, another question for future research
is what kind of guidance and skills teachers need to teach these topics successfully.
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Chapter 8

CONCEPTUALIZING AN AVERAGE
AS A STABLE FEATURE OF A NOISY PROCESS'

Clifford Konold and Alexander Pollatsek
University of Massachusetts, Amherst, USA

INTRODUCTION

Until recently, the study of statistics in the United States was confined to the
university years. Following recommendations made by the National Council of
Teachers of Mathematics (NCTM, 1989; 2000), and building on the ground-
breaking Quantitative Literacy series (see Scheaffer, 1991), statistics and data
analysis are now featured prominently in most mathematics curricula and are also
appearing in the K-12 science standards and curricula (Feldman, Konold, &
Coulter, 2000; National Research Council, 1996). Concurrently, university-level
introductory statistics courses are changing (e.g., Cobb, 1993; Gordon & Gordon,
1992; Smith, 1998) in ways that pry them loose from the formulaic approach copied
with little variation in most statistics textbooks published since the 1950s." At all
levels, there is a new commitment to involve students in the analysis of real data to
answer practical questions. Formal inference, at the introductory levels, is taking a
less prominent place as greater emphasis is given to exploratory approaches (a la
Tukey, 1977) to reveal structure in data. This approach often capitalizes on the
power of visual displays and new graphic-intensive computer software (Biehler,
1989; Cleveland, 1993; Konold, 2002).

Despite all the criticisms that we could offer of the traditional introductory
statistics course, it at least has a clear objective: to teach ideas central to statistical

" This article originally appeared as “Data Analysis as the Search for Signals in Noisy
Processes,” in the Journal for Research in Mathematics Education, 33 (4), 259-289,
copyright 2002, and is reproduced here with the permission of the National Council of
Teachers of Mathematics. All rights reserved. The writing of this article was supported by
National Science Foundation (NSF) grants REC-9725228 and ESI-9818946. Opinions
expressed are those of the authors and not necessarily those of NSF.

169

D. Ben-Zvi and J. Garfield (eds.),
The Challenge of Developing Statistical Literacy, Reasoning and Thinking, 169—199.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



170 CLIFFORD KONOLD AND ALEXANDER POLLATSEK

inference, including the Law of Large Numbers and the Central Limit Theorem. For
the students now learning more exploratory forms of data analysis, the objective is
less clear. There are various proposals about which core ideas we should target in
early instruction in data analysis. Wild and Pfannkuch (1999), for example, view
variation as the core idea of statistical reasoning and propose various subconstructs
that are critical to learning to reason about data. Recently designed and tested
materials for 12- to 14-year-olds aim at developing the idea of a distribution (Cobb,
1999; Cobb, McClain, & Gravemeijer, 2003). According to the supporting research,
this idea entails viewing data as “entities that are distributed within a space of
possible values,” in which various statistical representations—be they types of
graphical displays or numerical summaries—are viewed as different ways of
structuring or describing distributions (see Cobb, 1999, pp. 10-11). Others have
argued the centrality of the idea of data as an aggregate—an emergent entity (i.e.,
distribution) that has characteristics not visible in any of the individual elements in
the aggregate (Konold & Higgins, 2003; Mokros & Russell, 1995).

In this article, we build on these ideas of variation, distribution, and aggregate to
offer our own proposal for the core idea that we believe should guide statistics and
data analysis instruction, beginning perhaps as early as age 8. In short, that idea
involves coming to see statistics as the study of noisy processes—processes that
have a signature, or signal, which we can detect if we look at sufficient output.

It might seem obvious that a major purpose of computing statistics such as the
mean or median is to represent such a “signal” in the “noise” of individual data
points. However, this idea is virtually absent from our curricula and standards
documents. Neither NCTM’s Principles and Standards for School Mathematics
(2000) nor the American Association for the Advancement of Science (AAAS),
Science for All Americans (1989), explicitly describes an average as anything like a
signal. Our search through several middle school and high school mathematics
curricula has not uncovered a single reference to this idea. Nor does it appear in
earlier research investigating students’ ideas about averages and their properties
(Mokros & Russell, 1995; Pollatsek, Lima, & Well, 1981; Strauss & Bichler, 1988).
The idea is evident, however, in a few recent studies. In their investigation of
statistical reasoning among practicing nurses, Noss, Pozzi, and Hoyles (1999) refer
briefly to this interpretation; one nurse the authors interviewed characterized a
person’s average blood pressure as “what the normal range was sort of settling down
to be.” The idea of signal and noise is also evident in the work of Biehler (1994),
Wild and Pfannkuch (1999), and Wilensky (1997).

OVERVIEW

We begin by describing how statisticians tend to use and think about averages as
central tendencies. We then contrast this interpretation with various other
interpretations of averages that we frequently encounter in curriculum materials.
Too frequently, curricula portray averages as little more than summaries of groups
of values.” Although this approach offers students some rationale for summarizing
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group data (for example, to see what is “typical”), we will argue that it provides
little conceptual basis for using such statistical indices to characterize a set of data,
that is, to represent the whole set. To support this claim, we review research that has
demonstrated that although most students know how to compute various averages
such as medians and means, few use averages to represent groups when those
averages would be particularly helpful—to make a comparison between two groups.
We recommend beginning early in instruction to help students develop the idea of
central tendency (or data as a combination of signal and noise). To explore the
conceptual underpinnings of the notion of central tendency, we briefly review its
historical development and then examine three types of statistical processes. For
each process, we evaluate the conceptual difficulty of regarding data from that
process as a combination of signal and noise. Finally, we outline some possible
directions for research on student thinking and learning.

In this article, we focus our discussion on averages, with an emphasis on means
(using the term average to refer to measures of center collectively, including the
mean, median, and mode). By focusing on averages, we risk being misunderstood
by those who have recently argued that instruction and public discourse have been
overemphasizing measures of center at the expense of variability (e.g., Shaughnessy,
Watson, Moritz, & Reading, 1999; also see Gould, 1996). A somewhat related but
more general critique comes from proponents of Tukey’s (1977) exploratory data
analysis (EDA) who advocate that, rather than structure our curricula around a
traditional view of inferential statistics, we should instruct young students in more
fluid and less theory-laden views of analysis (e.g., Biehler, 1989; 1994).

Those concerned that measures of center have been overemphasized as well as
proponents of EDA may misread us as suggesting that instruction should aim at
teaching students to draw conclusions by inspecting a limited number of simple
summaries such as means. In fact, we agree wholeheartedly with Shaughnessy et al.
(1999) and with EDA proponents that we should be teaching students to attend to
general distributional features such as shape and spread, and to look at distributions
in numerous ways for insights about the data. We do not view the decision to focus
our analysis here on measures of center as being at odds with their concerns. Our
decision is partly pragmatism and partly principle.

On the pragmatic side, we wanted to simplify our exposition. Almost all
statistical measures capture group properties, and they share an important property
with good measures of centers: They stabilize as we collect more data. These
measures include those of spread, such as the standard deviation, interquartile range,
percentiles, and measures of skewness. But switching among these different
measures would needlessly complicate our exposition.

The deeper reason for focusing our discussion on measures of center is that we
believe such measures do have a special status, particularly for comparing two sets
of data. Here, some proponents of teaching EDA may well disagree with us. Biehler
(1994), for example, maintained that the distribution should remain the primary
focus of analysis and that we should regard an average, such as the mean, as just one
of many of its properties. We will argue that the central idea should be that of
searching for a signal and that the idea of distribution comes into better focus when
it is viewed as the “distribution around” a signal. Furthermore, we claim that the
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most basic questions in analyzing data involve looking at group differences to
determine whether some factor has produced a difference in the two groups.
Typically, the most straightforward and compelling way to answer these questions is
to compare averages. We believe that much of statistical reasoning will elude
students until they understand when a comparison of two averages makes sense and,
as a corollary, when such a comparison is misleading. If they do not understand this,
students’ explorations of data (i.e., “data snooping”) will almost certainly lack
direction and meaning.

SIGNALS IN NOISY PROCESSES

A statistician sees group features such as the mean and median as indicators of
stable properties of a variable system—properties that become evident only in the
aggregate. This stability can be thought of as the certainty in situations involving
uncertainty, the signal in noisy processes, or, the descriptor we prefer, central
tendency. Claiming that modern-day statisticians seldom use the term central
tendency, Moore (1990, p. 107) suggests that we abandon the phrase and speak
instead of measures of ‘“center” or “location.” But we use the phrase here to
emphasize conceptual aspects of averages that we fear are often lost, especially to
students, when we talk about averages as if they were simply locations in
distributions.

By central tendency we refer to a stable value that (a) represents the signal in a
variable process and (b) is better approximated as the number of observations
grows.3 The obvious examples of statistics used as indicators of central tendency are
averages such as the mean and median. Processes with central tendencies have two
components: (a) a stable component, which is summarized by the mean, for
example; and (b) a variable component, such as the deviations of individual scores
around an average, which is often summarized by the standard deviation.

It is important to emphasize that measures of center are not the only way to
characterize stable components of noisy processes. Both the shape of a frequency
distribution and global measures of variability, for example, also stabilize as we
collect more data; they, too, give us information about the process. We might refer
to this more general class of characteristics as signatures of a process. We should
point out, however, that all the characteristics that we might look at, including the
shape and variability of a distribution, are close kin to averages. That is, when we
look at the shape of a particular distribution, we do not ordinarily want to know
precisely how the frequency of values changes over the range of the variable.
Rather, we tame the distribution’s “bumpiness.” We might do this informally by
visualizing a smoother underlying curve or formally by computing a best-fit curve.
In either case, we attempt to see what remains when we smooth out the variability.
In a similar manner, when we employ measures such as the standard deviation or
interquartile range, we strive to characterize the average spread of the data in the
sample.
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Implicit in our description of central tendency is the idea that even as one speaks
of some stable component, one acknowledges the fundamental variability inherent in
that process and thus its probabilistic nature. Because of this, we claim that the
notion of an average understood as a central tendency is inseparable from the notion
of spread. That average and variability are inseparable concepts is clear from the
fact that most people would consider talking about the average of a set of identical
values to be odd. In addition, it is hard to think about why a particular measure of
center makes sense without thinking about its relation to the values in the
distribution (e.g., the mean as the balance point around which the sum of the
deviation scores is zero, or the median as the point where the number of values
above equals the number of values below).

Not all averages are central tendencies as we have defined them above. We
could compute the mean weight of an adult lion, a Mazda car, and a peanut, but no
clear process would be measured here that we could regard as having a central
tendency. One might think that the mean weight of all the lions in a particular zoo
would be a central tendency. But without knowing more about how the lions got
there or their ages, it is questionable whether this mean would necessarily tell us
anything about a process with a central tendency. Quetelet described this distinction
in terms of true means of distributions that follow the law of errors versus arithmetic
means that can be calculated for any assortment of values, such as our hodgepodge
above (see Porter, 1986, p. 107).

Populations versus Processes

In the preceding description, we spoke of processes rather than populations. We
contrast these two ways of thinking about samples or batches of data, as shown in
Figure 1. When we think of a sample as a subset of a population (see the left
graphic), we see the sample as a piece allowing us to guess at the whole: The
average and shape of the sample allow us perhaps to estimate the average and shape
of the population. If we wanted to estimate the percentage of the U.S. population
favoring gun control, we would imagine there being a population percentage of
some unknown value, and our goal would be to estimate that percentage from a
well-chosen sample. Thinking in these terms, we tend to view the population as
static and to push to the background questions about why the population might be
the way it is or how it might be changing.

From the process perspective (as depicted in the right graphic of Figure 1), we
think of a population or a sample as resulting from an ongoing, dynamic process, a
process in which the value of each observation is determined by a large number of
causes, some of which we may know and others of which we may not. This view
moves to the foreground questions about why a process operates as it does and what
factors may affect it. In our gun control example, we might imagine people’s
opinions on the issue as being in a state of flux, subject to numerous and complex
influences. We sample from that process to gauge the net effect of those influences
at a point in time, or perhaps to determine whether that process may have changed
over some time period.
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For many of the reasons discussed by Frick (1998), we have come to prefer
thinking of samples (and populations, when they exist) as outputs of processes.* One
reason for this preference is that a process view better covers the range of statistical
situations in which we are interested, many of which have no real population (e.g.,
weighing an object repeatedly). Another reason for preferring the process view is
that when we begin thinking, for example, about how to draw samples, or why two
samples might differ, we typically focus on factors that play a role in producing the
data. That is, we think about the causal processes underlying the phenomena we are
studying. Biehler (1994) offered a similar analysis of the advantages of viewing data
as being produced by a probabilistic mechanism—a mechanism that could be altered
to produce predictable changes in the resultant distribution. Finally, viewing data as
output from a process highlights the reason that we are willing to view a collection
of individual values as in some sense “the same” and thus to reason about them as a
unity: We consider them as having been generated by the same process.
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Figure 1. Data viewed as a sample of a population (left) versus data viewed as output of a
noisy process (right).

This notion of process is, of course, inherent in the statistician’s conception of a
population, and we expect that most experts move between the process and
population perspectives with little difficulty or awareness.” However, for students
new to the study of statistics, the choice of perspective could be critical. To illustrate
more fully what we mean by reasoning about processes and their central tendencies,
we discuss recent results of the National Assessment of Educational Progress
(NAEP).
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NAEP Results as Signals of Noisy Processes

NAEDP is an assessment of student capabilities in Grades 4, 8, and 12, conducted
every 4 years in the United States. On the 1998 assessment, eighth graders averaged
264 on the reading component.® What most people want to know, of course, is how
this compares to the results from previous assessments. In this case, the mean had
increased 4 points since the 1994 assessment. The 12th graders had also gained 4
points on average since 1994, and the fourth graders, 3 points. Donahue, Voelkl,
Campbell, and Mazzeo (1999) interpreted these differences as evidence that
children’s reading scores were improving.

Reports such as this are now so commonplace that we seldom question the logic
of this reasoning. But what is the rationale in this case for comparing group means
and for taking the apparently small difference between those means seriously? We
will argue that to answer these questions from a statistical perspective requires a
well-formed idea of a central tendency.

Interpreted as a central tendency, the mean of 264 is a measure of a complex
process that determines how well U.S. children read at a given point in time. An
obvious component of this process is the reading instruction that children receive in
school. Another component of the process is the behavior of adults in the home:
their personal reading habits, the time they spend reading to their children, and the
kind and quantity of reading material they have in the home. A third component
consists of factors operating outside the home and school, including determinants of
public health and development, such as nutrition levels and the availability and use
of prenatal care; genetic factors; and the value placed on literacy and education by
local communities and the society at large.

Using a statistical perspective, we often find it useful to regard all these
influences together (along with many others that we may be unaware of) as a global
process that turns out readers of different capabilities. In the sense that we cannot
know how these various factors work together in practice to produce results, the
global process is a probabilistic one, unpredictable at the micro level. However,
even though readers produced by this process vary unpredictably in their
performance, we can regard the entire process at any given time as having a certain
stable capability to produce competent readers. The average performance of a large
sample of readers produced by this process is one way to gauge the power of that
process (or its propensity) to produce a literate citizenry. As Mme. de Staél
explained in 1820, “events which depend on a multitude of diverse combinations
have a periodic recurrence, a fixed proportion, when the observations result from a
large number of chances” (as quoted in Hacking, 1990, p. 41). And because of the
convergence property of central tendencies, the larger the data set, the better the
estimate we expect our sample average to be of the stable component of the process.

Given the huge sample size in the reading example (about 11,000 eighth graders)
and assuming proper care in composing the sample, we expect that the sample mean
of 264 is very close to this propensity. Assuming that the 1994 mean is of equal
quality, we can be fairly certain that the difference between these two means reflects
a real change in the underlying process that affects reading scores. Note that the
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important inference here does not concern a sampling issue in the narrow sense of
randomly sampling from a fixed known population. That is, assuming no changes in
the system, we would expect next year’s mean to come out virtually the same even
though the population of eighth graders would consist of different individuals.
Focusing on the process rather than the population helps make the real intent of our
question clear.

The mean is not necessarily the best single number to serve as an index of such a
change. The median is also a good index, and changes in the 25th percentile, the
percent above some minimal value, the standard deviation, or the interquartile range
could also be valid indicators of changes in the underlying educational process. As
long as a process remains stable, we expect the mean, or any of these other statistical
indices obtained from that process, to remain relatively unchanged from sample to
sample. Conversely, when a statistic from a large sample changes appreciably, we
assume that the process has changed in some way. Furthermore, these expectations
are crucial in our attempts to evaluate efforts to alter processes. In the case of
reading, we might introduce new curricula, run an advertising campaign
encouraging parents to read to their children, expand the school free lunch program
in disadvantaged areas, and upgrade local libraries. If we do one or more of these
things and the mean reading scores of an appropriate sample of children increases,
we have grounds for concluding that we have improved the process for producing
readers. Again, we emphasize that though we have specified the mean in this
example, we might be as happy using the median or some other measure of center.

The above example, however, indicates a way in which a measure of center is
often special. That is, the practical issue in which we are usually interested is
whether, overall, things are getting better or worse, a question most naturally
phrased in terms of a change of center. It is much harder to think of examples where
we merely want to increase or decrease the variability or change the shape of the
distribution. We could imagine an intervention that tried only to narrow the gap
between good and poor readers, in which case we would compare measures of
spread, such as the standard deviation. Although there are questions that are
naturally phrased in terms of changes in variability or distribution shape, such
questions are typically second-order concerns. That is, we usually look at whether
variability or shape have changed to determine whether we need to qualify our
conclusion about comparing measures of center. Even in situations where we might
be interested in reducing variability, such as in income, we are certainly also
interested in whether this comes at the expense of lowering the average.

DIFFERENT INTERPRETATIONS OF AVERAGES

We have argued that statisticians view averages as central tendencies, or signals
in variable data. But this is not the only way to think about them. In Table 1, we list
this interpretation along with several others, including viewing averages as data
reducers, fair shares, and typical values. We consider an interpretation to be the goal
that a person has in mind when he or she computes or uses an average. It is the
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answer that a person might give to the question, “Why did you compute the average
of those values?” Some of these interpretations are described in Strauss and Bichler
(1988) as “properties” of the mean. Mokros and Russell (1995) described other
interpretations as “approaches” that they observed elementary and middle school
students using.” In Table 1, we also provide an illustrative problem context for each
interpretation. Of course, any problem could be interpreted from a variety of
perspectives. But we chose these particular examples because their wording seemed
to suggest a particular interpretation.

Table 1. Examples of contexts for various interpretations of average

Interpretation/ Example context
meaning

Data reduction ~ Ruth brought 5 pieces of candy, Yael brought 10 pieces, Nadav brought
20, and Ami brought 25. Can you tell me in one number how many
pieces of candy each child brought? (From Strauss & Bichler, 1988)

Fair share Ruth brought 5 pieces of candy, Yael brought 10 pieces, Nadav brought
20, and Ami brought 25. The children who brought many gave some to
those who brought few until everyone had the same number of candies.
How many candies did each girl end up with? (Adapted from Strauss &
Bichler, 1988)

Typical value The numbers of comments made by eight students during a class period
were 0, 5, 2, 22, 3, 2, 1, and 2. What was the typical number of
comments made that day? (Adapted from Konold & Garfield, 1992)

Signal in noise A small object was weighed on the same scale separately by nine
students in a science class. The weights (in grams) recorded by each
student were 6.2, 6.0, 6.0, 15.3, 6.1, 6.3, 6.2, 6.15, 6.2. What would you
give as the best estimate of the actual weight of this object? (Adapted
from Konold & Garfield, 1992)

Data Reduction

According to this view, averaging is a way to boil down a set of numbers into
one value. The data need to be reduced because of their complexity—in particular,
due to the difficulty of holding the individual values in memory. Freund and Wilson
(1997) draw on this interpretation to introduce averages in their text: “Although
distributions provide useful descriptions of data, they still contain too much detail
for some purposes” (p. 15). They characterize numerical summaries as ways to
further simplify data, warning that “this condensation or data reduction may be
accompanied by a loss of information, such as information on the shape of the
distribution” (p. 16). One of the high school students interviewed by Konold,
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Pollatsek, Well, and Gagnon (1997) used this as a rationale for why she would look
at a mean or median to describe the number of hours worked by students at her
school:

We could look at the mean of the hours they worked, or the median. ... It would go
through a lot to see what every, each person works. I mean, that’s kind of a lot, but
you could look at the mean. ... You could just go through every one ... [but] you're
not going to remember all that.

Fair Share

The computation for the mean is often first encountered in elementary school in
the context of fair-share problems, with no reference to the result being a mean or
average. Quantities distributed unevenly among several individuals are collected and
then redistributed evenly among the individuals. The word average, in fact, derives
from the Arabic awariyah, which translates as “goods damaged in shipping.”
According to Schwartzman (1994), the Italians and French appropriated this term to
refer to the financial loss resulting from damaged goods. Later, it came to specify
the portion of the loss borne by each of the many people who invested in the ship.
Strauss and Bichler (1988) provided 11 problems as examples of tasks that they used
in their research, and we would regard all but three of them as involving the idea of
fair share. We can view many commonly encountered rates, such as yearly
educational expenditure per student, as based on the fair-share idea, since we tend to
think most naturally about these rates as distributing some total quantity equally
over some number of units. In such cases, we do not ordinarily think of the
computed value in relation to each individual value; nor do we worry, when
computing or interpreting this fair share, about how the component values are
distributed or whether there are outliers.

Typical Value

Average as a typical score is one of the more frequently encountered
interpretations in current precollege curricula. What appears to make values typical
for students are their position (located centrally in a distribution of values) and/or
their frequency (being the most frequent or even the majority value). Younger
students favor the mode for summarizing a distribution, presumably because it can
often satisfy both of these criteria (Konold & Higgins, 2003). Mokros and Russell
(1995) speculated that those students they interviewed who used only modes to
summarize data may have interpreted fypical as literally meaning the most
frequently occurring value. Researchers have also observed students using as an
average a range of values in the center of a distribution (Cobb, 1999; Konold,
Robinson, Khalil, Pollatsek, Well, Wing, & Mayr, 2002; Mokros & Russell, 1995;
Noss, Pozzi, & Hoyles, 1999; Watson & Moritz, 1999). These “center clumps” are
located in the heart of the distribution and often include a majority of the
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observations. In this respect, these clumps may serve as something akin to a mode
for some students.

Signal in Noise

According to this perspective, each observation is an estimate of an unknown but
specific value. A prototypical example is repeatedly weighing an object to determine
its actual weight. Each observation is viewed as deviating from the actual weight by
a measurement error, which is viewed as “random.” The average of these scores is
interpreted as a close approximation to the actual weight.

Formal Properties of Averages

Many school tasks involving averages seem unrelated to any of the particular
interpretations we describe above. For example, finding the average of a set of
numbers out of context seems intended only to develop or test students’
computational abilities. Other school tasks explore formal properties of averages,
which we also would not view as directly related to particular interpretations. Such
tasks include those meant to demonstrate or assess the idea that (a) the mean of a set
of numbers is simply related to the sum of those numbers, (b) the mean is a balance
point and the median a partition that divides the cases into two equal-sized groups,®
(c) the mean and median lie somewhere within the range of the set of scores, and (d)
the mean or median need not correspond to the value of an actual observation. In
their longitudinal study of the development of young students’ understandings of
average, Watson and Moritz (2000) focused in particular on these relations, asking
students, for example, how the mean number of children per family could possibly
be 2.3 rather than a whole number. We consider most of the properties enumerated
by Strauss and Bichler (1988, p. 66) to be formal relations of this sort. We are not
arguing that these are unimportant or trivial ideas, but rather that they are usually not
tied to particular interpretations of averages.

Applying Interpretations to the Problem of Group Comparison

In the NAEP example, we explored the notion of central tendency and showed
how it provides a basis for using averages—means, in that case—to compare
groups. Because the mean is a very stable estimator in large samples, we can use it
to track changes in a process even though the output from that process is variable
and unpredictable in the short run.

What bases do the other interpretations of average provide for evaluating the two
NAEP results by comparing means? Consider the data reduction interpretation: Data
are distilled to a single value, presumably because of our inability to consider all the
values together. We argue that nothing in this interpretation suggests that any new
information emerges from this process; indeed, a considerable loss of information
seems to be the price paid for reducing complexity. By this logic, it would seem that
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as a data set grows larger, any single-value summary becomes less representative of
the group as increasingly more information is lost in the reduction process.

The typical-value interpretation is nearer to the central tendency interpretation
since it may involve the idea that the value, in some sense, represents much of the
data in the group. However, as with the data reduction interpretation, it is not clear
why one ideally would like to have typical values from large samples rather than
from small ones. Indeed, it would seem as reasonable to regard a typical score as
becoming less (rather than more) representative of a group as that group became
larger and acquired more deviant values.

The fair-share interpretation may provide some basis for using means to
compare groups. One could think of the mean in the 1998 NAEP data as the reading
score that all students sampled that year would have if reading ability were divided
evenly among all the students sampled. Based on this reasoning, one might
reasonably conclude that the 1998 group had a higher reading score than the 1994
group. Cortina, Saldanha, and Thompson (1999) explored the use of this notion by
seventh- and eighth-grade students and concluded that these students could use the
idea of fair share to derive and compare means of unequal groups. However, we
would guess that many students would regard such reasoning skeptically unless it
were physically possible to reallocate quantities in the real-world situation. If, for
example, we were thinking about the number of boxes of cookies sold by different
scout troops (as in the study by Cortina et al.), redistributing the cookie boxes
evenly makes some sense. In contrast, if we were reasoning about mean weight,
height, or IQ of a number of individuals, we would have to think of these pounds,
inches, or IQ points being shared metaphorically.’

Furthermore, we are skeptical about whether the fair-share interpretation is a
statistical notion at all. It seems to ignore, in a sense, the original distribution of
values and to attend only to the total accumulation of some amount in a group.
Consider, for example, the value we would compute to decide how the different
numbers of candies brought by various children to a party could be equally
redistributed among the children (see Table 1). In this context, the particulars about
how the candies were originally distributed seem irrelevant. That is, the number that
constitutes a fair share is not viewed as a representation or summary of the original
distribution but rather as the answer to the question of how to divide the candies
equitably.

In conclusion, whereas some of the interpretations may be useful to summarize a
group of data, it is quite another thing to take a statistic seriously enough as to use it
to represent the entire group, as one must do when using averages to compare
groups. We claim that viewing an average as a central tendency provides a strong
conceptual basis for, among other things, using averages to compare two groups,
whereas various other interpretations of average, such as data reducers and typical
values, do not.

We acknowledge that our analysis of these alternative interpretations has been
cursory and that it should thus be regarded skeptically. However, our primary
purpose is to highlight some of the questions that should be asked in exploring
different approaches to introducing students to averages. Furthermore, there is good
evidence that whatever interpretations students do have of averages, those
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interpretations usually do not support using averages to compare one group to
another. Many studies have demonstrated that even those who know how to
compute and use averages in some situations do not tend to use them to compare
groups.

Students’ Tendency Not to Use Averages to Compare Groups

Gal, Rothschild, and Wagner (1990) interviewed students of ages 8, 11, and 14
about their understanding of how means were computed and what they were useful
for. They also gave the students nine pairs of distributions in graphic form and asked
them to decide whether the groups were different or not. Only half of the 11- and
14-year-olds who knew how to compute the mean of a single group (and, also, to
some extent, how to interpret it) went on to use means to compare two groups.
Hancock, Kaput, and Goldsmith (1992) and, more recently, Watson and Moritz
(1999) have reported similar findings.

This difficulty is not limited to the use of means. Bright and Friel (1998)
questioned 13-year-old students about a stem-and-leaf plot that showed the heights
of 28 students who did not play basketball. They then showed them a stem-and-leaf
plot that included these data along with the heights of 23 basketball players. This
latter plot is shown in Figure 2. Heights of basketball players were indicated in bold
type, as they are here. Students had learned how to read this type of display and had
no difficulty reading values from it. Asked about the “typical height” in the single
distribution of the non-basketball players, the students responded by specifying
middle clumps (e.g., 150-160 cm), a reasonable group summary. Yet, shown the
plot with both distributions, they could not generalize this method or find another
way to determine “How much taller are the basketball players than the students who
did not play basketball?”

We found similar difficulties when we interviewed four high school seniors
(ages 17-18) who had just completed a yearlong course in probability and statistics
(Biehler, 1997; Konold et al., 1997). During the course, the students had frequently
used medians (primarily in the context of box plot displays) as well as means to
make group comparisons. However, during a postcourse interview in which they
were free to use whatever methods of comparison seemed appropriate, they seldom
used medians or means for this purpose. Instead, they tended to compare the number
of cases in each group that had the same value on the dependent variable. For
example, to decide if males were taller than females, they might inspect the sample
for all individuals who were 6 feet tall and argue that males were taller because there
were more males than females of that height. In making these comparisons, students
typically did not attend to the overall number of individuals in the two groups (in
this case, to the overall number of males vs. females). Other researchers, including
Cobb (1999) and Watson and Moritz (1999), have reported students using this same
“slicing” technique over a range of different problems to compare two groups.
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Note. The row headed by 13 (the stem) contains four cases (leaves)—three students of 138 centimeters
and a fourth student of 139 centimeters.

Figure 2. Stem-and-leaf plot of heights of students and basketball players (boldface) from
“Helping Students Interpret Data,” by G. Bright and S. N. Friel, in Reflections on Statistics:
Learning, Teaching, and Assessment in Grades K-12 (p. 81), edited by S. P. Lajoie, 1998,
Mahwah, NJ: Lawrence Erlbaum Associates. Copyright 1998 by Lawrence Erlbaum
Associates.

In short, even though instruction in statistics usually focuses on averages, many
students do not use those measures of central tendency when they would be
particularly helpful—to make comparisons between groups composed of variable
elements. We suggest that this pattern is symptomatic of students’ failure to interpret
an average of a data set as saying something about the entire distribution of values.
To address this problem instructionally, we believe that we should be encouraging
students early in statistics instruction to think of averages as central tendencies or
signals in noisy processes. We acknowledge that this is a complex idea and one that
is particularly difficult to apply to the type of processes that we often have students
investigating. We explore these conceptual difficulties below.

THREE TYPES OF PROCESSES AND THEIR CONCEPTUAL CHALLENGES

Hints about the cognitive complexity of central tendency are found in the
historical account of its development. It was Tycho Brache in the late 1500s who
introduced the use of means as central tendencies to astronomy (Plackett, 1970). He
used them to address a problem that had long troubled astronomers: What to take as
the position of a star, given that the observed coordinates at a particular time tended
to vary from observation to observation. When early astronomers began computing
means of observations, they were very cautious, if not suspicious, about whether and
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when it made sense to average observations. In fact, before the mid-eighteenth
century, they would never combine their own observations with those obtained from
another astronomer. They were fearful that if they combined data that had anything
but very small errors, the process of averaging would multiply rather than reduce the
effect of those errors (Stigler, 1986, p. 4). Taking the mean of multiple observations
became the standard solution only after it had been determined that the mean tended
to stabilize on a particular value as the number of observations increased.

It was another hundred years before Quetelet began applying measures of central
tendency to social and human phenomena (Quetelet, 1842). The idea of applying
means to such situations was inspired partly by the surprising observation that
national rates of birth, marriage, and suicides—events that at one level were subject
to human choice—remained relatively stable from year to year. Some, including
Arbuthnot and De Moivre, had taken these stable rates as evidence of supernatural
design. Quetelet explained them by seeing collections of individual behaviors or
events as analogous to repeated observations. Thus, he regarded observing the
weights of 1,000 different men—weights that varied from man to man—as
analogous to weighing the same man 1,000 times, with the observed weight varying
from trial to trial. The legitimacy of such an analogy, of course, has been a heated
controversy in statistics. Even at the time, Quetelet’s ideas brought stiff rebukes
from thinkers such as Auguste Comte, who thought it ludicrous to believe that we
could rise above our ignorance of values of individual cases simply by averaging
many of them (Stigler, 1986, p. 194). To Comte, statistics applied to social
phenomena was computational mysticism.

We think that the way these early thinkers reacted to different applications of the
mean is not merely a historical accident but instead says something about the “deep
structure” of these different applications. To explore the challenges of learning to
think about data as signal and noise, we examine the metaphor in the context of
three types of statistical processes: repeated measures, measuring individuals, and
dichotomous events.

Repeated Measures

Consider weighing a gold nugget 100 times on a pan balance, a prototypical
example of repeated measurement. It almost goes without saying that the purpose of
weighing the nugget is to determine its weight. But how does one deal with the fact
that the observed weight varies from trial to trial? We assume that statisticians and
nonstatisticians alike would regard these fluctuations as resulting from errors in the
measurement process. But given this variation, how should we use the 100
measurements to arrive at the object’s weight? Should all the measurements be
used? Perhaps not, if they are all not equally accurate. A novice might attempt to
deal with this question by trying to separate the 100 measurements into two classes:
those that are truly accurate versus those that are not. The problem then becomes
how to tell which observations are truly accurate, because the actual weight is not
known.
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One aspect of this situation that makes using a mean of the observations
particularly compelling is that, conceptually, we can separate the signal from the
noise. Because we regard an object as having some unknown but precise weight, it
is not a conceptual leap to associate the mean of several weighings with this actual
weight, while attributing the trial-by-trial variations to a distinctly different thing:
chance error produced by inaccuracies of the measurement instrument and by the
process of reading values from it. Indeed, we can also regard each individual
weighing as having two components—a fixed component determined by the actual
weight of the nugget and a variable component attributable to the imperfect
measurement process.

The relative clarity of this example hinges on our perception that the weight of
the nugget is a real property of the nugget. A few philosophers might regard it
(possibly along with the nugget itself) as a convenient fiction. But to most of us, the
weight is something real that the mean weight is approximating closely and that
individual weighings are approximating somewhat less closely. Another reason that
the idea of central tendency is compelling in repeated measurement situations is that
we can easily relate the mean to the individual observations as well. To help clarify
why this is so, we will make some of our assumptions explicit.

We have been assuming that the person doing the weighing is careful and that
the scale is unbiased and reasonably accurate. Given these assumptions, we expect
that the variability of the weighings would be small and that the frequency
histogram of observations would be single-peaked and approximately symmetric. If
instead we knew that the person had placed the nugget on different parts of the
balance pan, read the dial from different angles, or made errors in transcribing the
observations, we would be reluctant to treat the mean of these numbers as a central
tendency of the process. We would also be hesitant to accept the mean as a central
tendency if the standard deviation was extremely large or if the histogram of weights
was bimodal. In the ideal case, most observations would be close to the mean or
median and the distribution would peak at the average, a fact that would be more
apparent with a larger data set because the histogram would be smoother. In this
case, we could easily interpret the sample average as a good approximation to a
signal or a central tendency and view the variability around it as the result of random
error.

These assumptions about the procedure and the resulting data may be critical to
accepting the mean of the weighings as a central tendency, but they are not the only
things making that interpretation compelling. As indicated earlier, we maintain that
the key reason the mean observation in this example is relatively easy to accept as a
central tendency is that we can view it as representing a property of the object while
viewing the variability as a property of a distinctly independent measurement
process. That interpretation is much harder to hold when—rather than repeatedly
measuring an attribute of a single object—we measure an attribute of many different
objects, taking one measurement for each object and averaging the measurements.
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Measuring Individuals

Consider taking the height of 100 randomly chosen adult men in the United
States. Is the mean or median of these observations a central tendency? If so, what
does it represent? Many statisticians view the mean in this case as something like
the actual or true height of males in the United States (or in some subgroup). But
what could a statement like that mean?

For several reasons, an average in this situation is harder to view as a central
tendency than the average in the repeated measurement example. First, the gold
nugget and its mass are both perceivable. We can see and heft the nugget. In
contrast, the population of men and their average height are not things we can
perceive as directly. Second, it is clear why we might want to know the weight of
the nugget. But why would we want to know the average height of a population of
men? Third, the average height may not remain fixed over time, because of factors
such as demographic changes or changes in diet. Finally, and perhaps most
important, we cannot easily compartmentalize the height measurements into signal
and noise. It seems like a conceptual leap to regard each individual height as partly
true height, somehow determined from the average of the population, and partly
random error determined from some independent source other than measurement
error.

For all of these reasons, it is hard to think about the average height of the group
of men as a central tendency. We speculate, however, that it is somewhat easier to
regard differences between the averages of two groups of individual measurements
as central tendencies. Suppose, for example, we wanted to compare the average
height of U.S. men to the average height of (a) U.S. women or (b) men from
Ecuador. We might interpret the difference between averages as saying something in
the first case about the influence of genetics on height and in the second, about the
effects of nutrition on height. When making these comparisons, we can regard the
difference in averages as an indicator of the “actual effect” of gender or of nutrition,
things that are easier to imagine wanting to know about even if they are difficult to
observe directly.'”

Some support for this speculation comes from Stigler (1999), who claims that
Quetelet created his infamous notion of the “average man” not as a tool to describe
single distributions, but as a method for comparing them: “With Quetelet, the
essential idea was that of comparison—the entire point was that there were different
average men for different groups, whether categorized by age or nationality, and it
was for the study of the nature and magnitude of those differences that he had
introduced the idea” (p. 61). Although we concede that the notion of a “true” or
“actual” value is still a bit strained in these comparison cases, we believe that one
needs some approximation to the idea of true value to make meaningful
comparisons between two groups whose individual elements vary. To see why, let
us look more closely at the comparison of men versus women.

Suppose we compute a mean or median height for a group of U.S. men and
another for a group of U.S. women. Note that the act of constructing the hypothesis
that gender partly determines height requires us to conceive of height as a process
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influenced by various factors. Furthermore, we cannot see how comparing the two
groups is meaningful unless we have (a) an implicit model that gender may have a
real genetic effect on height that is represented by the difference between the
average for men and the average for women, and (b) a notion that other factors have
influences on height that we will regard as random error when focusing on the
influences of gender on height.'' Thus, we claim that the concept of an average as
approximating a signal, or true value, comes more clearly into focus when we are
considering the influence of a particular variable on something (in this case, gender
on height). Such a comparison scheme provides a conceptual lever for thinking
about signal (gender influences) and noise (other influences). We return to this point
later.

Discrete Events

Another measure that is often used as an index of central tendency is the rate of
occurrence of some event. As a prototypical example, consider the rate of
contracting polio for children inoculated with the Salk vaccine. Even though
individual children either get the disease or do not, the rate tells us something about
the ability of inoculated children, as a group, to fight the disease.

How can we view a rate (or probability) as a measure of central tendency? First,
a probability can be formally viewed as a mean through what some would regard as
a bit of trickery. If we code the event “polio” as a 1, and the event “no polio” as a 0,
then the probability of getting polio is merely the mean of these Boolean values.
Producing a formal average, however, does not automatically give us a measure of
central tendency. We need to be able to interpret this average as a signal related to
the causes of polio. Compare the distribution of values in the dichotomous case to
the ideal case of the weighing example. In the dichotomous case, the mean is not a
value that can actually occur in a single trial. Rather than being located at either of
the peaks in the distribution, the mean is located in the valley between, typically
quite far from the observed values. Thus, it is nearly impossible to think about the
rate or probability as the true-value component of any single observation and the
occurrence or nonoccurrence of an individual case of polio as the sum of a true
value and a random error component. We suspect this is largely why the idea of a
central tendency in dichotomous situations is the least tangible of all.

It might help in reasoning about this situation to conceive of some process about
which the rate or probability informs us. In the disease example, the conception is
fairly similar to the earlier height example: A multitude of factors influence the
propensity of individuals to get polio—level of public health, prior development of
antibodies, incident rate of polio, age—all leading to a rate of getting the disease in
some population. So even though individuals either get polio or do not, the
propensity of a certain group of people to get polio is a probability between O and 1.
That value is a general indicator of the confluence of polio-related factors present in
that group.

As with our height example, although an absolute rate may have some meaning,
we think it is much easier to conceptualize the meaning of a signal when we are
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comparing two rates. In the polio example, this might involve comparing the rate in
an inoculated group to the rate in a placebo control group. Here, as with the height
example, most people would consider the difference in rates (or the ratio of the
rates) to be a valid measure of the efficacy of the vaccine or as a reasonable way to
compare the efficacy of two different vaccines.

The Role of Noise in Perceiving a Collection as a Group

We have argued that the idea of central tendency, or data as signal and noise, is
more easily applied to some types of processes than to others. But other factors, to
which we have alluded, may affect the difficulty of applying this idea. Consider the
case of comparing the heights of men and women. We would expect that the shape
and the relative spread of the distributions would affect how easy it is to conceive of
each distribution as a coherent group and, consequently, to be able to interpret each
group’s average as an indicator of a relatively stable group characteristic.

Indeed, perhaps the most critical factor in perceiving a collection of individual
measurements as a group is the nature of the variability within a group and how it
relates to the differences between groups. In general, we expect that these individual
measurements are easier to view as belonging to a group (and thus as having a
central tendency) when the variability among them is relatively small. To explain
what we mean by relatively small, we find the idea of natural kinds helpful.
According to Rosch and Mervis (1975), people often mentally represent real-world
concepts as prototypes and judge particular instances as “good” or “bad” depending
on how closely those instances match the category prototype. For example, a
prototypical bird for most North Americans is a medium-sized songbird, something
like a robin. The closer an instance is to the category prototype, the less time it takes
to identify that instance as a member of the category. North Americans can
categorize a picture of a starling as a bird faster than they can a picture of an ostrich.

In this theory of natural kinds, prototypes function much as averages do:
Instances of the category are single observations that can be some distance from the
average (or prototype). In fact, some competing theories of natural kinds (e.g.,
Medin & Schaffer, 1978) claim there is no actual instance that functions as a
prototype, but that the effective prototype is simply a mean (in some
multidimensional feature space) of all the instances in memory. What makes some
categories, such as birds, natural kinds is that there is little variability across features
within the category relative to the variability of those features between various
animal categories. So, even though there are some non-prototypical instances of
birds, such as penguins and ostriches, the distributions of features of birds overlap
little with those of other natural kinds such as mammals, so that the groups cohere.
This research suggests that it might be easier to accept, for example, the mean
heights of the men and women as representing group properties if there were no
overlap in heights of the men and women, or if at least the overlap were small
relative to the spread of the distributions.'?
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Applying Central Tendency to Nonstandard Cases

In the foregoing examples, we focused on relatively ideal cases. We tacitly
assumed that our histograms of people’s heights, for example, were single-peaked,
approximately symmetric, and, configured as two histograms, had approximately
equal spread. In such cases, most experts would accept some average as a
meaningful measure of central tendency. Is the idea of central tendency applicable
only to these ideal cases, or is it more generalizable than that? In this section, we
consider several nonstandard examples to make the case that we can and do apply
the idea of central tendency to less ideal situations, in which there is some doubt
about whether a single measure of center is adequate to describe the data. We argue
that statistical reasoning in these situations still rests to a large extent either on the
conception of an average as a central tendency or on its cousin, a single measure that
describes the variability of a group of observations.

Distributions with Outliers

Consider cases where there are outliers that we decide should be removed from
the data set. In the case of weighing, suppose a typical observation differs from the
mean weight by something like 1 mg. If one of our observations was 5 mg away
from the mean, most people might think it sensible to omit that value in calculating
the mean. Two ideas seem implicit in this thinking: (a) that “true” measurement
error is associated with weighing on that scale and (b) that some different process
can sometimes generate observations with unusually high measurement error. Only
with such an implicit model can we consider, let alone decide, that an extremely
deviant observation must have been due to nonrandom error (e.g., misrecording the
observation or having a finger on the pan). Similarly, if we had one or two height
observations that were 60 cm from the mean, we might disregard them in certain
analyses as resulting from a process different from the process producing the rest of
the data (e.g., from a mutation or birth defect). Here again, this makes sense only if
we have some implicit model of a fypical (male or female) height from which
individual observations differ by something like “random genetic and/or
environmental variation.” We can then regard extremely tall or short people as not
fitting this model—as resulting from a somewhat different process and therefore
calling for a different explanation. For these same reasons, Biehler (1994, p. 32)
suggested that “symmetrical unimodal distributions are something distinctive,” and
deviations from them require additional modeling.

Distributions with Unusual Shape

Continuing with the example of men’s heights, consider the case perhaps
furthest from the ideal, where the histogram of men’s heights is bimodal. We would
be reluctant in this case to interpret any average as a central tendency of men’s
heights. Why? With a bimodal histogram, we would be doubtful that the men we
were looking at comprised a simple process, or “natural kind.” Rather, we would
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suspect that our batch of men consisted of two distinct groups and that we could not
make any useful statements unless we uncovered some underlying variable that
distinguished the two. A similar but somewhat less severe problem would result if
the histogram was unimodal but the variability in the group seemed enormous (e.g.,
if men’s heights from an unknown country varied from 60 cm to 900 cm with a
mean of 450 cm). Given the huge variability in this case, we would question
whether the data came from a coherent process and whether it made sense, therefore,
to use an average to represent it. Of course, people’s intuitions about whether
variability is enormous may differ and are likely to depend on the model they have
of typical variability (or indeed whether they have any conceptual model for
thinking about sources of variability).

Comparing Groups with Skewed or Differently Shaped Distributions

When comparing two histograms, say of men’s and women’s heights, we run
into difficulties when the histograms are of different shape. Imagine, for example,
that the men’s heights were positively skewed and the women’s heights negatively
skewed. Because there is clearly something different about the variability in each
group, we would be reluctant to compare the two groups using their averages. That
is, unless we could generate a model of why the groups’ histograms differed in
shape and, as a result, conclude that the different shapes were just two versions of
random error, we would probably be wary of viewing the difference between the
two averages as representing something like the “gender effect on height.”

Consider the comparison of differences in income from one decade to another,
where both histograms are highly skewed with long tails out to the right. If the
histograms have the same variance and the same shape, we claim it is reasonable to
accept the shift in central tendency as an estimate of the actual change in income for
the group, even though we might have misgivings about using the average for either
group as the best measure of actual income. That is, even though the variability in
each group may not match our ideal view of “noise,” we can at least convince
ourselves that it is the same noise process in both groups. Of course, even though
one histogram is a horizontal translation of the other, it does not necessarily mean
that income has improved the same amount for each individual (or each type of
individual), give or take random error. Indeed, a finer analysis could indicate that
certain groups have become better off while other groups have not changed or have
even become worse off. It is worth noting, however, that many such arguments
about why looking at the differences between group averages is inappropriate or
misleading rely on the perception that the groups are, in some sense, not “natural
kinds” (e.g., that the processes determining incomes of poor people are different
from those determining incomes of rich people). Nonetheless, these arguments are
usually most compelling when we can identify natural subgroups in the larger group
and can show that the changes in the averages in these subgroups differ from each
other (e.g., the rich got richer and the poor got poorer, or different things happened
to Blacks and Whites).
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Another classic difficulty involves comparing two averages when the
distributions differ in spread. For example, what if Country A not only has a higher
mean income than Country B but also has a higher standard deviation? This would
call for more serious modeling of the variability. A special case that would make it
conceptually easier to compare the averages of the two groups would be the
situation in which the difference in standard deviations was commensurate with the
difference in means (ideally, the ratio of standard deviations would be equal to the
ratio of the means). In that case, we could view the effect as multiplicative rather
than additive, since Country A’s typical income would be equal to Country B’s
multiplied by a factor that represents the effect(s) that distinguish A from B. And it
would be reasonable to assume that the same multiplicative factor also applied to the
noise process.

Summary of Analyses of Nonstandard Cases

As we have implied in our argument above, we do not necessarily see these
nonstandard cases as problems for the type of framework that we are advocating.
Indeed, we think that the idea of central tendency of a process allows us to (a)
decide to eliminate an outlier or break data into suitable subsets, (b) come up with a
conceptual model that explains why the groups are asymmetric or differ in spread or
shape, or (c) decide that there is little we can sensibly conclude about the differences
between the two sets of data.

Let us summarize by asking what we could conclude about the difference in
men’s and women’s heights from the distributions we described earlier that were
skewed in opposite directions. We assert that we could conclude nothing without
some conceptual model. If we were trying to make a statement about genetic gender
differences, for example, we would have to be convinced that everything else was
random and that, for instance, we could not explain the mean height difference as
resulting from gender differences in diet. In other words, there is virtually nothing
about analyzing data that is model-free. Some may regard this as a radical proposal,
but we claim that a mean or median has little heuristic value (and is likely to have
little meaning or heuristic value for the student) unless we can conceive of the data
coming from some coherent process that an average helps to elucidate.

IMPLICATIONS FOR STATISTICS EDUCATION

The idea of noisy processes, and the signals that we can detect in them, is at the
core of statistical reasoning. Yet, current curricula do not introduce students to this
idea, instruments meant to assess student reasoning about data do not include items
targeting it, and statistics education researchers have not given it much attention. If
our argument is valid, then critical changes are called for in education research, the
formulation of education objectives, curriculum materials, teacher education, and
assessment. These are tightly interrelated components of educational reform. If we



CONCEPTUALIZING AN AVERAGE 191

fail to advance our efforts on all these fronts, we run the risk of continuing to lose
the small ground gained on any one of them.

Accordingly, we describe here what we see as essential components of a signal-
versus-noise perspective and offer suggestions about how we might help students
(and future teachers) develop these ideas. We do not aim our speculations at
curriculum designers or teachers in the hope that that they will implement them.
Instead, we intend them for researchers and others who are considering what big
ideas should guide our standards and curriculum objectives, for those designing and
running teacher institutes, and for those developing assessment frameworks and
instruments.

Using Repeated Measures

According to our analysis, processes involving repeated measures are easier than
other types of statistical processes to view as part signal and part noise. This
suggests that to establish the signal-versus-noise interpretation of various statistical
measures, we initially involve students in investigations of repeated measures.

Current curricula make little use of repeated measures. Perhaps this is because
many of the prototypical situations, such as our weighing example, can be somewhat
boring and seemingly pointless unless they are introduced in meaningful ways.
There are many suitable and potentially interesting contexts. In the later grades,
these include a number of high-stakes scientific and political issues. For informed
public policy, we need good estimates of the thickness of the ozone layer, of
dissolved oxygen in rivers, of concentrations of atmospheric CO,. Statistical control
of manufacturing processes provides another context in which it is relatively clear
why we need to track a process by looking at its outputs. Of course, time-series
analyses are complex, and we need more research to help determine the kinds of
questions regarding them that introductory students can fruitfully explore.

Lehrer, Schauble, and their colleagues have employed some interesting repeated
measure contexts with younger students. For example, students in a second-grade
class designed cars to race down a track (Lehrer, Schauble, Carpenter, & Penner,
2000). During trial runs, students became unhappy about a decision to base a claim
about a car’s speed on a single trial. Frequently, something would happen to impede
a car—for example, it would run up against the track’s railing. The agreed-on
remedy was to race each car five times. Not surprisingly, the students could not
agree later on how to get a single measure of speed from the five trials. However,
their proposal of multiple trials was, by itself, suggestive of some notion of signal (a
car’s actual top speed on that track) and noise (its observed times resulting from
unpredictable events).

This classroom episode suggests an important distinction. That is, a student
might perceive data as comprising signal and noise and yet not necessarily view a
statistical measure such as an average as an acceptable indicator of signal. We
would expect that with processes involving repeated measures, students would tend
to think of each measurement as a combination of signal and noise, particularly if
sources of measurement error were easy to identify, as in measuring length with a
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ruler. But these same students might not be likely to think of an average of repeated
measures as indicative of signal (any more than the early astronomers were). Thus,
the instructional challenge is how to help students interpret measures such as
averages as indicators of central tendency. Taking a clue from the historical
development of the concept, it would seem fruitful to have students explore the
relative stability of various indicators in different samples.

Explorations of Stability

The idea of stability is closely related to the idea of signal. If the weight of an
object is not changing from trial to trial, it seems reasonable to expect that a good
indicator of its weight should also not vary much from sample to sample. Recall that
it was observing the stability from year to year of such things as birth and death
rates that led Quetelet to begin regarding these rates as indicators of prevailing and
relatively stable societal conditions, and to make the analogy to means of repeated
measures. Similar investigations by students could set the stage for interpreting
averages as indicators of signal.

A method frequently used to demonstrate stability is to draw multiple samples
from a known population and evaluate particular features, such as the mean, across
these replications. However, we expect that these demonstrations are often
conducted prematurely—before students have understood why one is interested in
the mean. Furthermore, in real sampling situations we never do these repeated
samplings, which leaves many students confused about what we can possibly learn
from this hypothetical exercise. The following three alternative methods of
exploring stability appear promising on the basis of their use in classrooms with
students as young as 8 years old.

Comparing Different Measures

In this approach, students compare the relative accuracy of different
measurement methods. Lehrer, Schauble, Strom, and Pligge (2001) used this
approach with third and fifth graders, who measured weights and volumes as part of
a study of densities of different materials. The students explored several different
ways to measure each attribute. They did this by using each method repeatedly to
measure the same object. The students came to favor those methods that produced
less variability in these repeated measures. Having established what measurement
technique they would use, students then considered various proposals of what to use
as, for example, the volume of a particular object. The problem, of course, was that
even with the same measurement method, repeated measuring gave the students a
range of values. They ultimately decided to discard outliers and compute the means
of the remaining observations as their “best guess” of the weights and volumes of
these objects.
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Another way of exploring stability is to have students observe a distribution as
the sample gets larger. We tested this approach recently in a seventh-grade
mathematics class. Students had conducted an in-class survey to explore whether
boys and girls were paid similar allowances. While comparing the two distributions,
one student expressed reservations about drawing conclusions, arguing that she had
no idea what the distributions might look like if they collected more data. Her
classmates agreed.

To help the class explore this issue, we constructed an artificial pond filled with
two kinds (colors) of paper fish. According to our cover story, a farmer wanted to
determine whether a new type of genetically engineered fish grew longer, as
claimed, than the normal fish he had been using. Students “captured” fish from the
pond, reading off fish type and length (which was written on the fish.) On an
overhead display, we constructed separate stacked dot plots for each type of fish as
students read off their data. After about 15 fish had been sampled, we asked students
what the data showed so far. Students observed that the data for the normal fish
were clustering at 21-24 cm, whereas the data for the genetically engineered fish
were clustering at 25-27 cm. Then we asked them what they thought would happen
as we continued to sample more fish, reminding them of their earlier reservations
with the allowance data. Some said that the stacks would become higher and the
range would get bigger, without mentioning what would happen to such features as
the general shape or the location of the center clump. However, other students did
anticipate that the center clusters would “grow up” but would nevertheless maintain
their approximate locations along the horizontal axis. The latter, of course, is what
they observed as they continued to add more fish to the sample distributions. After
the sampling, we showed them both population distributions along with their sample
data, calling their attention to the fact that the centers of their sample distributions
were quite good predictors of the centers of the population distributions—that these
stable features of the samples were signals.

Simulating Processes

A third way to explore stability is to investigate why many noisy processes tend
to produce mound-shaped distributions. Wilensky (1997) described a series of
interviews that he conducted with graduate students who were exploring this
question through computer simulations. We conducted a similar investigation with
fifth-grade students in an after-school program on data analysis. In analyzing a data
set on cats (from Rubin, Mokros, & Friel, 1996), students noticed that many
frequency distributions, like tail length and body weight, were mound shaped. As
part of exploring why this might be, students developed a list of factors that might
cause a cat’s tail to be longer or shorter. Their list included diet, being in an
accident, and length of father’s and mother’s tails. Using this list, we constructed a
spinner to determine the value of each factor for a particular cat’s tail. One student
might spin +2 inches for diet, +3 inches for mother’s contribution, —2 inches for an
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accident, and so on (Of course, each student wanted his or her cat to have the
longest tail.) Before they began spinning, students predicted that if they built 30 cat
tails in this way, they would get about equal numbers of cats with short, medium,
and long tails. After several trials they noticed they were tending to get medium
tails, which they explained by pointing out that you would have to be “real lucky” to
get a big number every spin, or “real unlucky” to get a small number every spin. As
this was our last session with these students, we could not explore what they might
have generalized from this experience; but we believe that understanding why such
processes produce normal-shaped distributions is a critical part of coming to trust
how process signals rise up through the noise.

Group Comparison

We have speculated that it is often easier to regard the difference between two
averages as a central tendency than it is to think of a single average that way. This
suggests, perhaps somewhat counterintuitively, that rather than beginning
instruction by having students explore single distributions of individual values, we
instead might fruitfully start with questions involving group comparison. Some
support for the benefit of having even young students grapple with comparison
problems comes from accounts from teachers of data analysis in the elementary
grades (Konold & Higgins, 2003). Similarly, all the problems in the middle-school
materials developed by Cobb, McClain, and Gravemeijer involve group comparison
(Cobb, 1999; Cobb, McClain, & Gravemeijer, 2003). As Watson and Moritz (1999)
pointed out, some of the benefits of comparison contexts are undoubtedly related to
their being more interesting and allowing students to see more clearly why the
question matters and why averages might be useful. But in addition, we expect that
in a comparison situation, students can more easily view averages of the individual
groups as summary measures of processes and can readily perceive the difference
between those measures as some signal rising through the din of variability.

Conducting Experiments

Many educators have touted the benefits of students’ collecting their own data
(e.g., Cobb, 1993). Among the expected advantages are increased student interest
and the rich source of information that students can draw on as they later analyze
and reason about the data. There may be additional benefits to having students
design and run simple, controlled experiments. One benefit derives from the fact
that experimental setups involve group comparison. In addition, we speculate that
data from experiments are easier than observational data to view as coming from a
process. As experimenters, students take an active role in the process—for example,
by fertilizing one group of plants and comparing their growth to that of an
unfertilized group of plants. Even quite young students can understand the
importance in such cases of treating both groups of plants the same in all other
respects (Lehrer, Carpenter, Schauble, & Putz, 2000; Warren, Ballenger,
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Ogonowski, Rosebery, & Hudicourt-Barnes, 2001). They then observe firsthand that
not every plant in the fertilized group responds the same and that the effect of the
fertilizer becomes evident, if at all, only when comparing the two groups. With
observational data, students must reason backwards from observed differences to
possible explanations for those differences, and their tendency in explaining the data
is to offer different causal accounts for each individual value. With the experimental
setup, students first see the process and then the data resulting from it, a difference
in perspective that may help them focus on the class of causes that apply uniformly
at the group, as opposed to the individual, level.

CONCLUSIONS

We fear that some readers will hear in our analysis and recommendations a call
to abandon the teaching of noninferential exploratory methods of data analysis and
to eschew data from other than well-defined samples. In fact, we believe that we
should begin teaching informal methods of data analysis in the spirit of EDA to
students at a young age. Moreover, we are not recommending that the teaching of
data analysis should be grounded in, or necessarily headed toward, the technical
question of drawing formal inferences from carefully constructed samples.

We agree with Tukey (1977) that we should not, as a rule, approach data with
the knee-jerk desire to model them mathematically. Rather, our objective should be
more general—to learn from them. For this purpose, being able to display data
flexibly and in various ways can lead to interesting insights and hypotheses, some of
which we may then choose to model more formally (Cleveland, 1993). It is this
sensible approach to the general enterprise—not only to how but also to why we
collect and explore data—that we believe is most important to convey to students in
early introductions to statistics.

It is important that we keep in mind, however, that most of us who regularly use
exploratory methods of data analysis have strong backgrounds in inferential
methods. When we approach data exploration with fewer assumptions, we often set
aside, for the moment, much of the power of the mathematical models of statistics.
But to play data detective, we have a host of tools and experiences to draw on, many
of which stem from our knowledge of the mathematical models of statistics. As
Cleveland (1993) observes, “Tools matter (p. 1).” The tools that he was referring to
were methods of displaying data. We would add that underlying the skillful use of
such graphical tools is the skillful use of conceptual ones, which matter even more.

Our references to the pioneering work of Quetelet were meant to point out that
the early users of means did not regard them simply as ways to describe centers of
distributions, which is how some today (misleadingly) characterize them. Recent
histories of the development of statistics (Hacking, 1990; Porter, 1986; Stigler,
1986) portray the early innovators of statistics as struggling from the beginning with
issues of interpretation. In this regard, Quetelet’s idea of the “average man” was a
way to take the interpretation of a mean as a “true value” of repeated measures and
bootstrap it to a new domain—measurements of individuals—for which the mean
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did not initially make much intuitive sense. We believe that learning to reason about
data requires students to grapple with the same sorts of interpretation issues; in the
process, they need to develop conceptual (not necessarily mathematical) models of
data that can guide their explorations. The idea of data as signal and noise,
physically embodied in the workings of the Galton Board (see Biehler, 1994), is
perhaps the most fundamental conceptual model for reasoning statistically. Future
research should help us learn how the idea develops and how we can foster that
development in our students.

NOTES

1. As George Cobb (1993) remarked, “If one could superimpose maps of the routes taken by
all elementary books, the resulting picture would look much like a time-lapse night
photograph of car taillights all moving along the same busy highway” (p. 53).

2. David Krantz (personal communication, December 13, 2001) shared with us his response
to the question, “Do we really need the mean in descriptive stats?” which had appeared
on a data analysis listserv. “I’m not very clear on what is meant by ‘descriptive statistics.’
To be honest, I don’t think there is any such thing, except as a textbook heading to refer
to the things that are introduced prior to consideration of sampling distributions. Any
description must have a purpose if it is to be useful—it is supposed to convey something
real. The line between ‘mere description’ and suggesting some sort of inference is very
fuzzy.”

3. Many use the term central tendency as a synonym for average or center. When referring
to central tendency in this article, we have in mind the particular definition specified here.

4. Adopting this perspective, we will generally refer to processes rather than to populations,
to signals or central tendencies of processes rather than to population parameters, and to
estimates of signals rather than to sample statistics. We use the term process to refer both
to processes that remain relatively stable over time as well as to stochastic processes,
which can change quickly over time.

5. However, Frick (1998) argues that the difference between processes and populations is
more than terminology, claiming that the tension between theoretical descriptions of
random sampling and what we actually do in practice could be resolved if we thought
explicitly of sampling from processes rather than from populations.

6. The maximum score on the reading component was 500, and the standard deviation was
50.

7. See Bakker (2001) for a review of the historical origins of various types of averages and a
discussion of parallels between these ideas and the development of student thinking.

8. There are good grounds for considering the idea of mean as balance point as an
interpretation. This interpretation figures centrally in mechanics, where the mean is a
measure of center of mass. But in the statistics texts that we examined, the idea of mean
as balance point seemed to be used solely as a way to visualize the location of the mean
in a distribution of values and not as an interpretation as we have defined it.

9. We have to be careful using this logic. For example, mean income would be a different,
and probably better, indicator of the power of the economic system to take care of its
citizens if the wealth were in fact distributed equally.



CONCEPTUALIZING AN AVERAGE 197

10. Of course, both differences may reflect both nature and nurture.

11. It is possible that genetic differences may also (or instead) be reflected by differences in
variability in the groups. Thinking about such differences, however, also requires
thinking about some sort of measure (e.g., the standard deviation or the interquartile
range) as a signal reflecting the typical variability in a group.

12. However, we should note that in the Bright and Friel (1998) study cited earlier, the two
distributions were non-overlapping, yet students did not use averages to compare them.

13. For several good examples of activities written around such processes, see Erickson
(2000).
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Chapter 9
REASONING ABOUT VARIATION
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OVERVIEW

Variation is the reason why people have had to develop sophisticated statistical
methods to filter out any messages in data from the surrounding noise” (Wild &
Pfannkuch, 1999, p. 236). Both variation, as a concept, and reasoning, as a process,
are central to the study of statistics and as such warrant attention from both
researchers and educators. This discussion of some recent research attempts to
highlight the importance of reasoning about variation. Evolving models of cognitive
development in statistical reasoning have been discussed earlier in this book
(Chapter 5). The focus in this chapter is on some specific aspects of reasoning about
variation.

After discussing the nature of variation and its role in the study of statistics, we
will introduce some relevant aspects of statistics education. The purpose of the
chapter is twofold: first, a review of recent literature concerned, directly or
indirectly, with variation; and second, the details of one recent study that
investigates reasoning about variation in a sampling situation for students aged 9 to
18. In conclusion, 