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Preface

Any living being is a reflection of its enzyme arsenal. We are and do what our enzymes

permit.

Christian de Duve

Enzymes are the lead actors in the drama of life. Without these molecular

machines the genetic information stored in DNA is worthless. With rising attention

to the fashionable fields like molecular biology, genetic engineering, and biotech-

nology, the techniques to manipulate DNA have occupied center stage. Being

popular, many concepts of molecular biology/genetic engineering are now

introduced to undergraduates. Unfortunately, this has happened at the cost of other

fundamental facets of biology, including enzymology. In the excitement to collate

volumes of data for Systems Biology (and the various “Omics” fashions), the beauty

and vigor of careful analysis – one enzyme at a time – is neglected. It is an

intellectual challenge to assay individual enzymes while avoiding complications

due to others – an almost forgotten activity in modern biology. Many in the present

generation assume that performing one standard assay will tell you everything about

that enzyme. While biochemists spent lifetimes on a single native enzyme, the notion

today is that one can characterize a mutant in the morning! Over the last three

decades devoted enzymologists have become a rare breed. Many Biology teaching

programs have expanded in the areas of molecular and cellular biology while they

manage with a makeshift enzymology instructor. New students who are attracted to

the study of enzymes do exist, but they find themselves in a very bleak teaching

environment. Not surprisingly their numbers are dwindling. Reservoirs that are not

replenished may soon run dry.

Purpose of This Book

Genes for enzymes are routinely fished out, cloned, sequenced, mutated, and

expressed in a suitable host. Characterizing the mutant enzyme, however, requires

a thorough mechanistic study – both chemical and kinetic. It is thus an exciting time

to do enzymology. Hopefully, this book provides enough basic exposure to make

this happen.
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The ease with which sophisticated data are collected nowadays has dispirited the

slow and burdensome approach of resolving and reconstituting a complex enzyme

system. Micro-arrays that measure the transcription of many genes at a time disclose

neither the abundance nor any attributes of the enzymes/proteins they encode. As

F.G. Hopkins wrote in 1931 “..the biochemist’s word may not be the last in

describing life, but without his help, the last word will never be said.” This is true

of enzymology as well. While the interest and expertise in teaching/learning enzy-

mology has declined exponentially, working knowledge of enzymology remains

indispensable. Enzymes have come to occupy vast areas of modern biology research

and the biotechnology industry. Enzymes whether used as popular kits, mere

research tools, or for their own sake require a minimal appreciation of their

workings. A tome on enzymology that focuses and logically connects theory of

enzyme action to actual experimentation is desirable. One objective of this book is to

bridge this gap and enable students to understand, design, and execute enzyme

experiments on their own.

Enzyme study can range from the simple to the most complicated. Approaches

that can be performed in a modest laboratory setup and with no fancy equipment are

needed. Conveying the excitement of enzymology within a modest budget and with

few experiments is desirable. And hence, equipment intensive approaches – such as

structural enzymology, sophisticated techniques like X-ray, NMR, ESR, fast

reactions, and isotope effects – have received a somewhat limited coverage. Readers

interested in them will yet find sufficient background material here.

Audience and Their Background

Reasons for the cursory coverage of enzymology in most contemporary biology

academic programs are twofold. Over-emphasis and glamorization of molecular

biology (later genetic engineering!) in the last few decades has captured a dispropor-

tionately large allocation of resources and time. Secondly, as a cumulative effect of

this attitude, very few well-trained specialists in enzymology are available today.

Therefore, study material that encourages students/researchers to understand, design,

and execute experiments involving enzymes on their own is needed. The contents of

the present book are expected to serve this purpose.

Most biochemistry and molecular biology students are introduced to enzymes as

commercial reagents and as faceless as buffers and salts. This has led to inadequate

appreciation of enzymology and its practices. Standards for reporting enzymology

data (STRENDA; available at http://www.strenda-db.org) are a recent effort to

prescribe the best approaches to generate and report enzyme data. With an ever-

increasing reliance on genomics and proteomics, enzymes are no longer isolated

and/or assayed for activity. Often their role is inferred from sequence data alone.

“Molecular biology falters when it ignores the chemistry of the products of DNA

blueprint – enzymes – the protein catalysts of the cellular machinery.” This philoso-

phy was beautifully reiterated by Arthur Kornberg in his “Ten Commandments of

Enzymology” (J Bacteriol. (2000) 182:3613–3618; TIBS (2003) 28:515–517). The
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present book is an attempt to sift through chemical sophistication and simplify it for

an audience with a biology background. It will serve the curricular needs of senior

undergraduates and postgraduates in Biochemistry, Biotechnology, and most

branches of modern biology.

Dealing with reaction rates, enzymology is a quantitative and analytical facet of

biological understanding. Appreciation of rate equations and their meaning therefore

becomes important. Minimal competence with algebra, logarithms, exponential

relationships, equations to fit straight lines, and simple curves is crucial. While one

need not be scared of fearsome equations, the essence of the physical models they

represent (or do not represent!) ought to be understood. To an extent, this book is my

response to oust the fear of the quantitative in the students of Biology. Because

enzymes catalyze chemical reactions, chemical mechanisms are of great concern.

They are best understood with adequate preparation in concepts like valency,

movement of electrons and charges in molecules, acids and bases, etc. The study

of mechanistic enzymology is meaningless without this background. We may recall

from Emil Fischer’s Faraday Lecture to the Chemical Society in 1907: “. . . the

separation of chemistry from biology was necessary while experimental methods

and theories were being developed. Now that our science is provided with a

powerful armoury of analytical and synthetic weapons, chemistry can once again

renew the alliance with biology, not only for the advantage of biology but also for

the glory of chemistry.” Enzymology without Chemistry (physical and organic) is a

limited descriptor of surface (superficial!) phenomena. This requirement obviously

puts some burden on students who have lost touch with chemistry for few years in

the pursuit of “Biology Only” programs.

Basic knowledge on amino acids, their reactivity, and protein structure is a

prerequisite to study enzymes. Protein (and hence enzyme) purification methods/

tools like various fractionation/separation techniques and chromatographies are not

explicitly covered here. Also, essential techniques of protein structure determination

do not find a dedicated treatment in this book. One may find such background

material in the standard text books of biochemistry. Lastly, the reader is expected to

be familiar with the concepts of concentrations, ionic strength, pH, etc. and exposure

to biochemical calculations is essential.

Organization

This book endeavors to synthesize the two broad mechanistic facets of enzymology,

namely, the chemical and the kinetic. It also attempts to bring out the synergy

between enzyme structures and mechanisms. Written with self study format in

mind, the emphasis is on how to begin experiments with an enzyme and subse-

quently analyze the data collected. Individual concepts are treated as stand-alone

short sections, and the book is largely modular in organization. The reader can focus

on a concept (with real examples) with minimal cross-referencing to the rest of the

book. Many attractive enzymes were consciously passed up in order to suit the

“Biology” audience. This error of omission painfully belongs to the author. A
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limited treatment on applied aspects of enzymes is deliberate as one fully subscribes

to Louis Pasteur’s dictum – “There are no applied sciences. . . .The study of the

applications of science is easy to anyone who is master of the theory of it.” The book

then would also have become unmanageably long.

Individual concepts (as chapters) are conveniently grouped into five broad parts.

It all begins with an overview of enzyme catalysis (Part I) followed by a section (Part

II) on kinetic practices and measurement of enzyme activity. Two major themes of

mechanistic enzymology, namely, the kinetic (Part III) and the chemical (Part IV)

occupy bulk attention. A short piece on integrating enzyme kinetic and chemical

mechanisms (in Part IV) is a novelty and should be of value. Aspects of enzymology

in vivo and frontier research themes form the last section (Part V).

The original literature for this book was collected up to year 2016. Fresh research

material, constantly being added to many topics, made it hard to draw this boundary.

Otherwise, the book would have been always under preparation! Besides listing

select text books and original publications, references to recent reviews on most

topics are provided. Wherever possible, literature is cited from easily available and

open-access resources.

How to Use This Book

The book contains a balance of physical and chemical fundamentals. Students of

modern biology come from many different backgrounds. Hopefully, those from

more physical and chemical background will enjoy the material as is. Many of the

physico-chemical concepts and mathematical material may be difficult to students

narrowly exposed to biological sciences alone. The essential theory to help such

audience is presented in Chaps. 9 and 10 (covering chemical kinetics) and 29, 30,

and 31 (covering organic reaction mechanisms). It is highly recommended that the

uninitiated read these chapters first. Chapter 24 arrives before a primer on acid-base

chemistry in Part IV; hence, it is suggested to read Chap. 30 before approaching the

material in Chap. 24. A complete mechanistic understanding of enzyme action is

possible only through a variety of experimental approaches. How these bits of

information are combined to arrive at the final description may be found in

Chaps. 28 and 36. Inclusion of regulation of enzyme activity (Chap. 37) under

Frontiers of Enzymology (in Part V) may not be such a revelation since novel

regulatory features are being discovered with remarkable regularity.

Mumbai, Maharashtra, India N. S. Punekar

x Preface



Useful Constants and Conversion Factors

Calorie (cal):

(Heat required for raising the temperature of 1 g water from 14.5 �C to 15.5 �C)

1 cal ¼ 4.184 J

1 kcal ¼ 1000 cal ¼ 4184 J

Joule (J):

1 J ¼ 0.239 cal ¼ 1 kg � m2
� s2 ¼ 2.624 � 1019 eV

Coulomb (C):

1 C ¼ 6.242 � 1018 electron charges

Avogadro’s number (N):

N ¼ 6.022 � 1023 mol�1

Faraday constant (F):

F ¼ 23.063 kcal � V�1
� mol�1

¼ N electron charges ¼ 96,480 C � mol�1

Boltzmann constant (kB):

kB ¼ 1.381 � 10�23 J � K�1
¼ 1.38 � 10�16 cm2

� g � s�2
� K�1

Plank’s constant (h):

h ¼ 6.626 � 10�34 J � s ¼ 6.626 � 10�27 cm2
� g � s�1

Gas constant (R):

R ¼ N kB ¼ 1.987 cal � mol�1
� K�1

¼ 8.315 J � mol�1
� K�1

Absolute temperature (degree Kelvin, K):

0 K ¼ absolute zero ¼ �273 �C; 25 �C ¼ 298 K

RT at 25 �C:

RT ¼ 2.478 kJ � mol�1
¼ 0.592 kcal � mol�1
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Units for ΔG, ΔH, and ΔS:

For ΔG and ΔH: cal � mol�1 (or J � mol�1)

For ΔS: cal�mol�1
� K�1 (or J � mol�1

� K�1)

Enzyme catalytic unit:

1 U ¼ 1 μmol � min�1
¼ 16.67 nkatal

1 katal ¼ 1 mol � s�1

Curie (Ci):

Quantity of a radioactive substance that decays at a rate of 2.22 � 1012

disintegrations per minute (dpm)
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Part I

Enzyme Catalysis – A Perspective



Enzymes: Their Place in Biology 1

One marvels at the intricate design of living systems, and we cannot but wonder how

life originated on this planet. Whether first biological structures emerged as the self-

reproducing genetic templates (genetics-first origin of life) or the metabolic univer-

sality preceded the genome and eventually integrated it (metabolism-first origin of

life) is still a matter of hot scientific debate. There is growing acceptance that the

RNA world came first – as RNA molecules can perform both the functions of

information storage and catalysis. Regardless of which view eventually gains accep-

tance, emergence of catalytic phenomena is at the core of biology. The last century

has seen an explosive growth in our understanding of biological systems. The

progression has involved successive emphasis on taxonomy ! physiology ! bio-

chemistry ! molecular biology ! genetic engineering and finally the large-scale

study of genomes. The field of molecular biology became largely synonymous with

the study of DNA – the genetic material. Molecular biology however had its

beginnings in the understanding of biomolecular structure and function. Apprecia-

tion of proteins, catalytic phenomena, and the function of enzymes had a large role to

play in the progress of modern biology.

Enzymes and catalytic phenomena occupy a central position in biology. Life as

we know it is not possible without enzyme catalysts. Greater than 99% of reactions

relevant to biological systems are catalyzed by protein catalysts. A few

RNA-catalyzed reactions along with all the uncatalyzed steps of metabolism occupy

the rest 1%. While it may do to explain living beings as open systems that exchange

matter and energy with their environment – thermodynamic feasibility alone is

insufficient to be living! Kinetic barriers have to be overcome. Reactions with

relatively fast uncatalyzed rates, like removal of hydrogen peroxide or hydration

of carbon dioxide, also need to be accelerated. Enzymes are thus a fundamental

necessity for life to exist and progress. The key to knowledge of enzymes is the study

of reaction velocities, not of equilibria. After all living beings are systems away from

equilibrium.
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Enzymology – the study of enzymes – has been an autocatalytic intellectual

activity. Apart from knowledge gained on their structure and function, the study of

enzymes is a driving force in advancing our understanding of biological phenomena

as diverse as intermediary metabolism and physiology, molecular biology and

genetics, cellular signaling and regulation, and differentiation and development.

The confidence in our experience with enzymes is so strong that they have found

applications in a variety of industries including food, pharmaceuticals, textiles, and

the environment.

We encounter enzymes in every facet of biology and are forced to admire their

exquisite roles. Enzymes were excellent models and earliest examples to understand

protein structure-function. These include enzymes like hen egg white lysozyme,

bovine pancreatic ribonuclease A (RNase A), trypsin, and chymotrypsin. A few of

these were encountered during the study of digestive processes. Selectivity of

proteases was exploited, and they served as useful reagents to cleave and study

protein structure. The field of molecular biology has benefited enormously from

enzymatic tools to cut, ligate, and replicate information molecules like DNA and

RNA. Metabolic and cellular regulation is unthinkable without involving enzymes

and their response to various environmental cues. The complexity associated with

life processes owes it largely to their catalytic versatility, exquisite specificity, and

ability to be modulated.

Current advances in crystallography, electron microscopy, NMR, mass spectrom-

etry, and genetic engineering have made it possible to view an enzyme closely while

in action. Reverse genetics and genomics have made enzymology more powerful.

Enzymology begins with a defined function and its purification; after which homing

on to the corresponding gene has become very easy. Picomoles of pure enzyme

protein are enough to determine its partial peptide sequence and obtain a fingerprint.

From here it is a well-beaten track of gene identification, cloning, overexpression,

and manipulation.

Enzymes are superbly crafted catalysts of nature, and they are at the heart of every

biological understanding. Life has literally preserved its past as chemistry. The book

of life is written in the language of carbon chemistry, and enzymes form a major

bridge between chemistry and biology. Enzymology is the domain where chemistry

significantly intersects biology and biology is at its quantitative best. From early

history the evergreen tree of enzymology was nurtured by chemical and biological

thought. We will take a look at this rich history in the next section.
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Enzymes: Historical Aspects 2

Historically, the field of enzymology was born out of practical and theoretical

considerations. A perusal of early enzyme literature indicates that the field has

evolved from fundamental questions about their function, their nature, and their

biological role. This chapter outlines the course of historical development of enzy-

mology, and some of these landmarks are listed in Table 2.1.

2.1 Biocatalysis: The Beginnings

Past human industry like cheese making provided insights into some properties of

enzymatic processes. The earliest recorded example of cheese making contains

reference to extracts of fig tree – a source of the proteolytic enzyme ficin. Only

later did rennet (a source of another protease chymosin) become popular in cheese

processing. Meat tenderizing is the other application that implicitly used enzymes

over the years. Apart from the fig tree extract, the fruit and other parts of papaya

(Carica papaya; contains the now well-known proteolytic enzyme papain) have

found early utility in meat tenderizing.

Indeed the work on gastric digestion of meat – proteases in particular – by Rene

Reaumur (1751) and Lazzaro Spallanzani (1780) laid a scientific foundation for the

study of enzyme catalysis. Reaumur’s experiments with digestion of meat represent

the first systematic record of the activity due to an enzyme. However the term

enzyme was yet to be coined then! Theodor Schwann used the word pepsin in

1836 for the proteolytic activity of the gastric mucosa. He also conducted careful

quantitative experiments, to establish that acid was necessary but not sufficient for

this reaction to take place. Among his many other contributions, Schwann also

coined the term metabolism.

Parallel to the work on proteolytic enzymes, developments with fermentation and

on starch hydrolysis have equally contributed to the initial growth of enzymology.
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Gottlieb Kirchhoff discovered plant amylase (later identified as α-amylase) activ-

ity while characterizing the hydrolysis of starch to sugar. He demonstrated the acid-

facilitated conversion of starch to sugar and clearly recognized that the formation of

sugar from starch during germination of grain is akin to chemical hydrolysis (1815).

The work of Kirchhoff on starch hydrolysis was extended by Anselme Payen and

Jean Persoz (1833). They enriched (first attempts of enzyme purification!) the

hydrolytic activity from malt gluten and termed it as diastase. The name diastase

(Greek; diastasis – to make a breach) has significantly influenced the development of

the field of enzymology since then (see below). Yet another source of a starch

hydrolyzing activity was identified in saliva by Erhard Leuchs (1931). Remarkably,

this report also invoked the possible practical utility of this activity.

Table 2.1 Landmarks in enzyme studies (enzymology classics)

Author(s)

Year (Discovery/

Publication) Contribution

R. Reaumur 1751 Gastric digestion in birds

L. Spallanzani 1780 Digestion of meat by gastric juice

A. Payen & J. Persoz 1833 Amylase (diastase) activity

J. Berzelius 1836 Catalysis as a concept

W. Kuhne 1867 “Enzyme” term defined

J. Takamine 1894 Patent on fungal diastase

E. Fischer 1894 Lock and key concept

G. Bertrand 1897 Co-ferment (coenzyme) conceived

P.E. Duclaux 1898 Enzyme names to end with suffix “ase”

V. Henri 1903 Hyperbolic rate equation

S.P.L. Sorensen 1909 pH scale and buffers

L. Michaelis & M. Menten 1913 Equilibrium treatment for ES complex

R.M. Willstatter 1922 Trager theory of enzyme action

G.E. Briggs & J.B.S. Haldane 1925 Steady-state treatment for ES complex

J.B. Sumner 1926 Urease – Purification and crystallization

H. Lineweaver & D. Burk 1934 Double reciprocal plot (1/v versus 1/[S])

K. Stern 1935 First ES complex observed

M. Doudoroff 1947 Radioisotope use in enzymemechanisms

A.G. Ogston 1948 Asymmetric interaction with substrate

L. Pauling 1948 Enzyme binds TS better than S

F. Westheimer 1951 Enzymatic hydride transfer (2H, 3H used)

D.E. Koshland Jr. 1958 Induced fit hypothesis

C.H.W. Hirs et al. 1960 First enzyme sequenced – RNase A

Enzyme commission 1961 Enzyme classification and nomenclature

D.C. Phillips et al. 1962 First enzyme structure – lysozyme

W.W. Cleland 1963 Systematization of enzyme kinetic study

J. Monod et al. 1965 Model for allosteric transitions

R.B. Merrifield 1969 Chemical synthesis of RNase A

S. Altman & T.R. Cech 1981 Catalysis by RNA molecules
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The two non-hydrolytic enzyme activities reported early include the peroxidase

activity from horseradish and catalase. These two enzymes were recognized much

ahead of the study of oxidative enzymes in early twentieth century. Work on catalase

by Louis Thenard (1819) is the first quantitative study of an enzymatic reaction. He

also anticipated that such activities may be found in other animal and vegetable

secretions.

Enzymology finds its roots in some of the greatest names since eighteenth

century, both in chemistry and biology. Clearly this subject is a true and sturdy

bridge between contemporary chemistry and biology. Among the greats who

contributed to its early development include Reaumur, Spallanzani, Thenard,

Schwann, Berzelius, Liebig, Berthelot, Pasteur, Buchner, and Fischer. Many funda-

mental contributions were made to enzymology by chemists of fame like Berzelius,

Liebig, and Berthelot. It is however important to note that historically, the idea of

catalysis arose because of the study of enzymes and their action. Jons Jacob

Berzelius was the first to define the term “catalyst” in 1836. In his view, a catalyst

was a substance capable of wakening energies dormant, merely by its presence. He

was also the first to recognize the similarity of catalysis in a chemical reaction and

inside a living cell. However, Berzelius made no distinction between the catalytic

phenomenon occurring in animate and inanimate world. He also used the now

famous words isomer, polymer, ammonium, protein, and globulin. Those were the

times when a “vital force” was associated with living cells and biocatalysts were part

of this explanation. Only much later did the concept take root that ordinary physical

and chemical principles apply to enzyme catalysis.

Pierre Berthelot was the first to derive a second-order rate equation which

influenced the publication by Guldberg and Waage on law of mass action leading

to chemical kinetics.

As a part of their study on catalytic phenomena, Wohler and Liebig discovered

“emulsin” (a β-glucosidase) from almonds in 1837. Indeed this enzyme was cleverly

used by Fischer subsequently (almost 50 years later!) to define enzyme specificity.

2.2 “Enzyme”: Conceptual Origin

Swedish chemist Berzelius (1779–1848) proposed the name catalysis (from the

Greek kata, wholly, and lyein, to loosen) in 1836. When Berzelius first invoked

the term “catalysis,” he did not make any distinction between the chemical catalysis

and catalysis in (or by) biological systems. He used a generic term “contact sub-

stance” for a catalyst. The origin of the word “enzyme” dedicated to biological

catalysts has a convoluted history. Much of this drama was played out during a

vigorous debate on whether there is special force (the “vital force”) associated with

reactions occurring in living systems. Ever since Payen and Persoz (1833)

introduced this name for the starch hydrolytic activity, “diastase” has often been

used to generally mean a catalyst of biological origin. In fact Victor Henri in his
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1903 book on enzyme kinetics (an early classic on enzyme action) used diastase to

mean an “enzyme.” Many other French scientists including Pierre Duclaux and

Gabriel Bertrand did use diastase to mean what we now call enzymes. The suffix

“ase” – arising out of diastase – was subsequently recommended for all enzyme

names (by Duclaux in 1898).

Ferment as a term was used to describe both living yeast and the action of its

cellular contents. Berthelot’s extraction of “ferment” (1860) from yeast cells marks

the beginning of action of enzymes outside of a living cell. This also dealt a blow to

vitalistic thinking in biochemistry. The analogy between ferment-catalyzed and acid-

catalyzed hydrolysis of starch was well-recognized by the successive contributions

of Kirchhoff, Payen and Persoz, and Berzelius. Schwann had used a similar analogy

for pepsin. Willy Kuhne in 1867 extended this further to pancreatic digestion of

proteins and called this activity trypsin in 1877. The essential meaning of “ferment”

was consolidated by Kuhne; subsequently the word enzyme (in yeast) was first used

by him in 1877. In fact trypsin was the first candidate “ferment” to be called an

enzyme.

The evolution and acceptance of word enzyme have taken its time. Both the

descriptions – “diastase” (mostly in French scientific literature) and “ferment” –

were used occasionally well into the early twentieth century.

The vitalistic theory was firmly laid to rest with Eduard Buchner’s conclusive

demonstration that suitable extract from yeast cells could convert sucrose to alcohol.

This was revolutionary in 1897 since fermentation was shown to occur “without

living yeast” for the first time. The activity was ascribed to a single substance which

was named “zymase” (and alcoholase by Emile Roux). It is now history that this

activity in fact represents the entire glycolytic sequence of reactions. Out of contro-

versy on the nature of alcoholic fermentation, the word “enzyme” was born. This

word reminds us that yeast (“zyme”) and its activities were resolved through the

prisms of biology and chemistry to create the rich domain of enzymology.

2.3 Key Developments in Enzymology

Protein Nature of Enzymes Early progress on enzymes was impeded because not

much was known on the chemical nature of proteins. Much less was known about

the chemical nature of enzymes. One approach to understand them was to purify

them for detailed analysis. Kuhne and Chittenden extensively used the technique of

protein fractionation by ammonium sulfate and also introduced the use of dialysis

and dialysis tubing (1883). Powerful methods to purify enzymes were developed by

Richard Willstatter – the first introduction of alumina Cγ gel was made. Peroxidase

was taken to such high level of purity that the preparation failed in then prevailing

tests for protein. This unfortunately led him to wrongly conclude that enzymes are

not proteins (1926). The seminal discovery by James Sumner, proving that urease is

a protein, therefore assumes great significance (Sumner 1933). This view was further

confirmed by purification and crystallization of three more enzymes – pepsin,

trypsin, and chymotrypsin – by Northrop and Kunitz (between 1930 and 1935). It
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must impress anyone to note that all this was accomplished by just two simple

purification techniques – fractional precipitation of proteins by ammonium sulfate

and pH changes.

Laccase is one of the early examples of an enzyme that was not a hydrolase.

Bertrand (1895) described it as an “oxidase” and suggested that this enzyme

contained a divalent metal. His description of “co-ferment” – a nonprotein compo-

nent of laccase – is the first descriptor of an enzyme cofactor.

More powerful yet gentler procedures of protein purification (and dialysis, etc.)

hastened the progress of enzymology by providing many pure enzyme preparations.

The end of the nineteenth century saw an increase in the number of reports on

enzymes. By 1955 the number of enzymes reported was so large that their proper

organization into categories became necessary. Under the auspices of the Interna-

tional Union of Biochemists, the International Commission on Enzymes was

established to systematize the classification and naming of enzymes. As a result,

the Enzyme Commission produced guidelines on enzyme nomenclature and brought

out its recommendations in 1961.

Kinetic Foundations Because they are excellent catalysts, enzyme kinetic behavior

could be studied regardless of meager knowledge of their composition. Even after

their protein nature was established, it has taken long to relate structural basis of

enzyme kinetic behavior.

As early as 1898, the reversibility of an enzyme reaction was reported. The

enzymatic synthesis of a glucoside (maltose from glucose) by the yeast maltase

established some key features: (a) an enzyme being a catalyst speeds up the reaction

in both directions of a reversible reaction, (b) at least some steps in metabolism may

go in either direction, and (c) enzymes may be involved in the cellular biosynthetic

processes.

The reversibility of enzyme catalysis brought it within the ambit of thermody-

namic analysis and physical chemistry. The thermodynamic constraints imposed

upon catalyzed and uncatalyzed reactions were set forth by J van’t Hoff. This

subsequently led JBS Haldane to relate enzyme kinetic parameters with reaction

thermodynamics and arrive at the famous Haldane relationship (Enzymes 1930).

Yeast invertase has the singular distinction as the working example for early work

on enzyme reaction kinetics and thermodynamics. AJ Brown (1902) deduced the

formation of invertase-sucrose complex (the ES complex) from initial rate

measurements. It was in 1903 that V. Henri for the first time derived the hyperbolic

rate equation for a single-substrate enzymatic reaction. He provided the general

process used to derive such rate equation – an exercise central to any enzyme kinetic

study. Henri also recognized that ‘the validity of a rate equation is necessary but not

sufficient to prove the postulated kinetic mechanism’. In fact the now famous

Michaelis–Menten equation, based on the equilibrium treatment of the system,

was published about 10 years later in 1913. A more general form of the Henri-

Michaelis-Menten equation to describe enzyme kinetics was derived by Briggs and

Haldane via the steady-state approach in 1925. We continue to use this fundamental

equation even today to describe the substrate saturation phenomenon of an
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enzyme reaction. A very popular linear form of this hyperbolic relation between

initial velocity and substrate concentration is attributed to Lineweaver and Burk

(1934).

A systematic study of enzyme reaction rates dictated that buffers be used to

control hydrogen ion concentrations. This was indeed the impetus to the work

published in 1909 by Sorenson on the pH scale and buffers. Subsequently Leonor

Michaelis and others emphasized the importance of pH on enzyme activity and

routinely controlled it in all their studies.

The ES complex formation was a kinetic concept to begin with. First direct

observation of an enzyme substrate complex of catalase was made by KG Stern

(1935); he monitored the catalase–HOOEt complex using spectroscopy.

Mechanistic Studies Emil Fischer was an unusual organic chemist of highest

caliber. He was responsible for establishing the rigor of synthetic and analytical

skills of organic chemistry to biological problems. As early as 1894, he observed that

substrates for invertin (now the invertase or sucrose hydrolase) are not substrates for

emulsin (a β-glucosidase) and vice versa. Fischer opined that “enzymes are fussy

about the configuration of their object of attack.” For example, the enzyme and the

glucoside on which it acts must fit each other like a “lock and key” to be able to

catalyze the chemical reaction. The future, as we know it, confirmed the genius of

Fischer. This laid the foundation for describing fundamental properties of enzyme

like specificity, stereoselectivity, and the famous lock-and-key analogy for enzyme–

substrate interactions.

In an attempt to explain how enzymes work, the “Trager” or carrier theory was

proposed by Willstatter (in 1922). According to him enzymes contained smaller

reactive groups that have affinity toward specific groups on the substrate – leading to

enzyme specificity. Of course, these reactive groups were thought to be attached to

an inert colloidal carrier to form the enzyme. Clearly the fact that enzymes are

proteins was not yet established then.

The hypothesis by AG Ogston (1948) attempted to explain how enzymes achieve

chemical asymmetry through three point contact with their substrates. This paved the

way for further experiments in elucidating enzyme chemical mechanisms. Redox

reactions involving pyridine nucleotides and the mechanism of hydride transfer

followed shortly thereafter. Frank Westheimer and his colleagues, working with

alcohol dehydrogenase and lactate dehydrogenase as examples, showed that the

substrate hydrogen was transferred selectively to one side of the nicotinamide ring.

This pioneering research in 1953 made use of deuterium- and tritium-labeled

substrates to establish the stereospecificity of these hydride transfers.

Work by Michael Duodoroff’s group (1947) on bacterial disaccharide

phosphorylases forms an early and brilliant example of use of radioisotopes (32P

phosphate) in the study of enzyme mechanisms. Two similar reactions involving

disaccharide phosphorolysis, namely, sucrose phosphorylase and maltose phosphor-

ylase, were shown to follow completely different mechanisms. This led directly to

the notion of single displacement versus double displacement reactions and subse-

quently the SN1 and SN2 reaction pathways.
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The theory of kinetic criteria to distinguish enzyme mechanisms was elaborated

byWWCleland in three seminal papers (1963). At the least, this provided a common

language to present enzyme kinetic data, for an otherwise confusing variety of

notations found in enzyme kinetic literature. The impact of systematizing enzyme

kinetics served two useful purposes – (1) it provided a common kinetic notation for

presentation and (2) provided a summary of criteria on how to relate kinetic data with

reaction mechanisms.

The rigidity of enzyme active site structure became untenable over time. Com-

plementarity of enzyme active site to accommodate the transition state structure

(rather than the substrate or the product) by Linus Pauling (1946) was prophetic; this

clearly anticipated the need for protein motion, however subtle, at enzyme active

sites. The idea of conformational flexibility of protein molecules as a prerequisite for

enzyme activity superseded the earlier lock-and-key concept. This theme further

matured into the concept of induced fit hypothesis as proposed by Koshland (1958).

The conformational flexibility of a protein and ligand binding through induced fit

later became key elements of allosteric transitions. The plasticity of protein structure

for regulation thus became inescapable (the famous Monod-Wyman-Changeux

model to explain cooperative interactions in oligomeric proteins).

Recognition that enzymes bring about enormous rate accelerations quickly led

to a search for underlying principles of such catalysis. Attempts to demystify and

explain enzyme catalysis in physicochemical terms were made. Different contrib-

utory factors were dissected out through model chemical reactions as well as

enzymes. The work of TC Bruice, WP Jencks, ML Bender, DE Koshland Jr.,

and others is significant in this query. A combination of factors – intermolecular/

conformational effects, general acid/base catalysis, nucleophilic/electrophilic

catalysis, etc. – contributed to accomplish remarkable rate accelerations observed

with enzymes. It is now well-recognized that a combination of many factors

produces an enzyme. However search for novel catalytic tools evolved by nature

continues unabated even today.

Structure and Synthesis The stamp of chemist’s contribution to the study of

enzymes is obvious from the progression – isolation and structure elucidation

followed by total synthesis. Insulin was the first protein whose complete chemical

structure was determined. However, among enzymes, this credit goes to bovine

pancreatic ribonuclease A (RNase A) – it was the first enzyme whose primary

sequence was elucidated. But lysozyme (this was followed later by RNase A) is

the first enzyme whose three-dimensional structure was made available through

X-ray crystallography. In a typical organic chemist’s approach, total synthesis of a

molecule completes the structure elucidation process. In this sense, RNase A was the

first enzyme whose total synthesis was achieved (RB Merrifield), and it culminated

in a catalytically active protein.

In summary, the history of enzymology is a rich source of factual and conceptual

discoveries. Developments in this field were accelerated by chemists and biologists

in equal measure. Once established, enzymology revolutionized both the parent
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disciplines – biology and chemistry. This is amply evident from the list of Nobel

laureates (Table 2.2) and their work recognized by the two scientific communities

that nurtured the study of enzymes.

Table 2.2 Nobel laureates who contributed to the growth of enzymology

Scientist Yeara Enzymology – topic of study

E. Fischer 1902-C Stereochemistry and lock-and-key concept

S. Arrhenius 1903-C Activation energy and catalysis

E. Buchner 1907-C Cell-free extracts and fermentation

A. Harden and H. von Euler 1929-C Coenzymes and fermentation

C. Eijkman and F.G. Hopkins 1929-M Vitamins, nutrition, and coenzymes

O. Warburg 1931-M Respiratory enzymes

A. Szent-Gyorgyi 1937-M Fumarate catalysis of TCA cycle

R. Kuhn 1938-C Vitamins and coenzymes

A. Fleming 1945-M Penicillin and lysozyme

J.B. Sumner, J.H. Northrop,

and M. Kunitz

1946-C Purification and crystallization of enzymes

C. Cori and G. Cori 1947-M Enzymes of glycogen metabolism

H.A. Krebs and F. Lipmann 1953-M TCA cycle and coenzyme A

L. Pauling 1954-C Secondary structure – α helix; concept that enzyme

binds the transition state

H. Theorell 1955-M Oxidative enzyme mechanisms

A.R. Todd 1957-C Nucleotides and nucleotide coenzymes

F. Sanger 1958-C Insulin sequence through proteases

S. Ochoa and A. Kornberg 1959-M Nucleic acid biosynthesis enzymes

M.F. Perutz and

J.H. Kendrew

1962-C Crystal structure of globular proteins

D. Crowfoot Hodgkin 1964-C Structure of vitamin B12

K. Bloch and F. Lynen 1964-M Cholesterol and fatty acid enzymes

F. Jacob, A. Lwoff, and

J. Monod

1965-M Genetic control of enzyme synthesis and allostery

L.F. Leloir 1970-C Sugar nucleotides and carbohydrate biosynthesis

E.W. Sutherland Jr. 1971-M Enzyme and metabolic regulation by cAMP

C.B. Anfinsen, S. Moore, and

W.H. Stein

1972-C Chemical structure – Catalytic activity of RNase A

J.W. Cornforth 1975-C Stereochemistry of enzyme reactions

W. Arber, D. Nathans, and

H.O. Smith

1978-M Restriction endonucleases

F. Sanger 1980-C DNA sequencing (ddNTP method) with enzymes

R.B. Merrifield 1984-C Chemical synthesis of RNase A

J.W. Black, G.B. Elion, and

G.H. Hitchings

1988-M Inhibitors (enzyme) as drugs

S. Altman and T.R. Cech 1989-C Catalysis by RNA molecules

E.H. Fischer and E.G. Krebs 1992-M Protein kinases and protein phosphorylation

K.B. Mullis 1993-C Polymerase chain reaction

(continued)
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P.D. Boyer, J.E. Walker, and

J.C. Skou

1997-C ATP synthase and Na/K-ATPase

A.H. Zewail 1999-C Detection/existence of transition state

I. Rose (and others) 2004-C Ubiquitin-protein degradation and isotope

exchanges in enzymology

A. Warshel (and others) 2013-C Computational enzymology

F.H. Arnold 2018-C Directed evolution of enzymes
aPrize awarded this year for C chemistry, M physiology and medicine
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Exploiting Enzymes: Technology
and Applications 3

Much before enzymes were identified as discrete biochemical entities, they found

favor through their useful properties. Early applications included use of enzyme

preparations in meat tenderizing and starch hydrolysis. From the very beginning,

commercial enzyme applications have largely belonged to a group of hydrolytic

reactions. But a few oxidative enzymes were also exploited. While this trend holds

even today, examples of designer enzymes and catalysts for more complex chemical

processes are being developed. The first application of diastase (α-amylase) was by

Jokichi Takamine. His 1894 patent (US Patent No. 525823) describes a process to

make Taka-diastase from Aspergillus oryzae. This α-amylase was useful as a

digestive aid, in eliminating starchy material from textiles and laundry. In a short

but succinct paper, E.F. Leuchs (in 1931) described “the action of saliva on starch.”

The possible practical utility of such activity was clearly anticipated by him. The last

line of his report reads “it will be possible to use saliva and gastric juice of killed

animals very successfully in cases of defective digestion.”

The quantity and quality of an enzyme are two critical parameters that define their

application and extent of use. Industrial scale processes require enzymes (often in

crude form) in tons, whereas precise clinical use mandates extreme purity and

minimal or no contaminating factors. Accordingly, the enzyme production costs

for different end objectives vary – they can be of high volume and low cost or low

volume but of high cost. For instance, medically valuable products like streptokinase

and asparaginase need to be very pure and are therefore expensive. Enzyme catalysts

of practical import are sought by industries in many different ways. Significant

among these are screening for useful activities from the naturally abundant diversity,

modifying already available enzyme properties to suit our requirements, and geneti-

cally engineering desirable properties into these catalysts. We will briefly touch upon

the applications of enzymes and industrial strategies with suitable examples in this

chapter. Applications of enzymes and enzyme technology can occupy volumes, and

many authoritative books are available for the interested reader.
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3.1 Exploiting Natural Diversity

The rich biodiversity on earth goes hand in hand with naturally vast array of catalytic

activities. A cleverly designed screen almost always leads to an enzyme with desired

properties. Thermostable protease (from Bacillus strains) and DNA polymerase

(from Thermus aquaticus) are two examples of enzymes chosen for high temperature

stability. The range of natural diversity is obvious from the number of enzymes that

have found niche applications in the processing of carbohydrate polymers, proteins,

and lipids.

Enzymes for Bioprocessing Polysaccharides are the major biomolecules that com-

prise biomass on this planet. They serve two important functions – energy storage

(such as starch) and structural rigidity (such as cellulose). It is therefore not

surprising that enzyme technology took its roots through processes to hydrolyze

these sugar polymers. Microbes (bacteria and fungi) constitute an abundant source of

amylases and cellulases. Controlled hydrolysis of starch to sweeteners (and sugar

substitutes) is a well-developed industry (Fig. 3.1). Various enzymes used in the

starch saccharification process are α-amylases, β-amylases, glucoamylases,

pullulanases, and glucose isomerase. Despite certain limitations, conversion of

glucose to fructose through glucose isomerase is central to many sucrose substitutes

– with distinct economic and manufacturing advantages.

Although there is an abundance of cellulose in nature, transforming cellulosic

biomass into sugar has been a challenge. Concerted action of a bunch of enzymes

(that constitute the “cellulase complex”) is required for this (Payne et al. 2015).

Significant advances in enzymatic processes to breakdown cellulose into ferment-

able sugars are being made. In the meanwhile, individual components (Table 3.1) of

the cellulase complex have found application in textile and paper industry.

Proteases and lipases are next in order of significance in enzyme industry. Apart

from the historical significance of papain and digestive enzymes (like trypsin and

chymotrypsin), this class of enzymes has found wide-ranging applications in foods,

detergents, and tanning of leather. Bacteria and fungi are ideal sources for the large-

scale production of proteases (Li et al. 2013). Most important alkaline protease

producers are Bacillus strains and fungi belonging to genus Aspergillus. Subtilisin is

the best known bacterial protease additive of modern detergents. It has been exten-

sively selected/modified for features like pH optimum and temperature stability.

Chymosin (also known as rennin) is a milk coagulating enzyme from calf stomach,

which is used for generations in cheese making. An equivalent enzyme from a

microbial source was sought, and severalMucor strains are chosen to produce rennin

substitutes.

Many other enzymes including lipases and pectinases are also available in

industrial scale. A representative list of enzymes commonly used in industry is

given in the table (Table 3.2).
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Enzymes in Pharma and Medical Applications Pharmaceutical industry is

another big beneficiary of applied enzymology. Enzymes isolated from natural

sources as well as those cloned and expressed (through genetic engineering) are in

use. Enzymes and their critical study serve multiple purposes in drug discovery and

development.

• Active principles of many effective drugs are enzyme inhibitors (Robertson 2005).

An enzyme, critically located in the intermediary metabolism, may provide an

excellent target to screen for such inhibitors. A few successful examples of drugs

have panned out from such enzyme screens.

Cyclodextrins

Glucose isomerase

Glucose

Glucoamylase

Cyclomaltodextrin-D

-glucotransferase

a–Amylase

b–Amylase
Pullulanase

a–D-Glucosidase

STARCH

Fructose

Fig. 3.1 Significant steps and enzymes employed in starch processing. Glucose residues of

starch are schematically represented as circles. Filled circles indicate glucose residues whose

C1-OH has not entered into a glycosidic linkage (free reducing ends). Besides glucose isomerase,

all the possible enzymatic modes of dismantling starch are shown. Some combinations of these

enzymes are commercially available as industrial formulation
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The concept of screening for enzyme inhibitors was first adopted by Hamao

Umezawa’s group in Japan (Umezawa 1982). Since then, many enzyme inhibitors

have been discovered (few are listed in Table 3.3) and are in use. For instance,

preventing absorption of dietary fat (triglycerides) can be a possible strategy to

control obesity. An appropriate lipase from the digestive juices could serve as a

target for this screening (Fig. 3.2).

Often the active chemical entity obtained from an enzyme screen may not find

direct application. These lead compounds (inhibitors) are suitably altered/derivatized

Table 3.1 Component activities of cellulase complex and their applications

Cellulase component Substrate specificity Application

β-Glucosidase

(Cellobiase)

Cellobiose!Glucose Saccharification

Cellobiohydrolase I

(CBH1)

Cellulose! Cellobiose (exo –

Nonreducing end)

Biomass conversion

Cellobiohydrolase II

(CBH2)

Cellulose! Cellobiose(both exo and endo) Biomass conversion

Endoglucanase I (EG1) Cellulose (endo) Textile/fabric

softening,

Biopolishing

Endoglucanase II (EG2) Cellulose (endo) Textile/fabric

softening,

Biopolishing

Xylanase Xylan Paper pulp deinking

All components Cellulose and Xylan Feed/fodder,

biomass

Conversion

Table 3.2 Large-scale use of enzymes in industry

Enzyme Application

Acting on carbohydrates

Amylases Starch processing

Cellulase complex Biomass conversion, textile industry

Pectinases, esterases Food industry, fruit juice, brewing

Glucose isomerase, invertase High fructose syrups, invert sugar

Acting on proteins

Papain, pepsin Meat and leather processing, treating dough

Rennin, chymosin Cheese making

Subtilisin Detergents, leather and wool processing

Acting on lipids and esters

Lipases Food and detergent industry, cocoa butter

Acting on antibiotics

Penicillin acylase Produce 6-aminopenicillanic acid (6-APA)
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to achieve better bioavailability and reduce toxicity. An in-depth kinetic analysis of

enzyme inhibition (concluded in Chap. 28) is at the heart of modern drug discovery

programs.

• Besides being targets for inhibitor screens, many enzymes are employed as

catalysts for synthesis. The whole range of β-lactam antibiotics available today

includes a large number of semisynthetic penicillins and cephalosporins. While

penicillin G is produced by fermentation, 6-aminopenicillanic acid – an important

precursor for semisynthetic penicillins – is derived from it (Fig. 3.3). Penicillin

acylase is a valuable commodity in the large-scale production of

6-aminopenicillanic acid.

• Because of their catalytic potential coupled with specificity, many enzymes are

used as exquisite analytical tools. Alkaline phosphatase and peroxidase are two

reporter enzymes of extensive history in ELISA (enzyme-linked immunosorbent

assay). Here the desired specificity of interaction (through antibodies) is coupled

to the signal amplification provided by enzyme catalysis. Enzymes as antibody-

conjugates find routine use in detection of DNA/RNA/protein on blots. Taq DNA

polymerase is extensively employed for DNA amplification through polymerase

chain reaction (PCR). A number of metabolites are analyzed (in a clinical setting)

Table 3.3 Examples of enzyme-targeted screens for active principles

Enzyme target Screening outcome End use

Pepsin Pepstatin Ulcers

Angiotensin converting enzyme Captopril Hypertension

HMG CoA reductase Lovastatin Hypercholesteremia

α-Amylase Acarbose Diabetes

Triacylglycerol lipase Orlistat (lipostatin) Obesity

Acetylcholine esterase Rivastigmine Alzheimer’s disease

β-Lactamase Clavulanic acid Combination therapy

Digestion of FAT

Lipase 

(involved in hydrolysis of triacylglycerols)

Inhibition

(lipase activity - enzyme assay)

Inhibitor Screen

(natural or synthetic chemical libraries) 

Lipostatin

(active principle)

Fig. 3.2 Flow chart

outlining the design of a

lipase inhibitor screen
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through assays involving enzymes. A list of more commonly used enzymes and

the corresponding analytes are given in Table 3.4. Some of these enzymes are also

employed as a component of biosensors (see below).

• Enzymes have found medical applications in terms of diagnosis as well as

therapy. A few enzymes find direct application as therapeutic agents in medicine.

Best known examples from the market include diastase (α-amylase, digestive

aid), asparaginase (leukemia, antitumor therapy), rhodanese (cyanide poisoning),

and streptokinase (medication to dissolve blood clots). However, a large number
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Penicillin G

Penicilloic acid
b–Lactamase

Penicillin acylase

+

6-Aminopenicillanic acid

Phenylacetic acid

Cephalosporins

Semisynthetic
         Penicillins

Fig. 3.3 Enzymes and steps relevant to penicillin (β-lactams) industry. Antibiotic resistance is

often due to a β-lactamase; better antibiotics may be evolved by screening for novel structures that

are not acted upon by the β-lactamase. Penicillin acylase is used to produce 6-aminopenicillanic

acid (6-APA). 6-APA is an important precursor to make semisynthetic penicillins, both through

enzymatic and chemical routes
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of enzymes are routinely monitored as clinical markers (Table 3.5). Enzyme

profiles from serum, amniotic fluid, urine, etc. are monitored, and their levels

are often correlated with disease conditions and aid in the diagnosis of disease.

Enzymes and Issues of Safety Industrial preparation and use of enzymes come

with its own safety and regulatory issues. Potential hazards from exposure to large

quantities of a given enzyme include allergenicity, functional toxicity, chemical

toxicity, and source-related contaminants. Large-scale manufacture of enzymes

often ends with partially pure yet enriched preparations. Such material could contain

potentially toxic chemicals (like mycotoxins) carried over from the source. Not all

microorganisms are safe, and their trace contamination in the final enzyme

preparations requires attention. For enzymes to be used in food ingredients, they

must be GRAS (generally recognized as safe). Some enzymes like proteases are

potentially dangerous – particularly upon exposure of sensitive tissues to

concentrated preparations. Since enzymes are proteins, they can be potent allergens.

Repeated exposure through inhalation or skin contact can trigger severe allergic

response. Enzyme preparations especially handled in the form of dust, dry powder,

or aerosol are harmful and must be avoided. Many issues of safety regarding free

enzyme preparations may be overcome by using them in the immobilized,

granulated, or encapsulated form.

Table 3.4 Examples of

enzymes for metabolite

analysis

Enzyme Analyte detected/estimated

Catalase Hydrogen peroxide

Glucose oxidase Glucose

Hexokinase Glucose

Alcohol dehydrogenase Ethanol

Lactate dehydrogenase Lactate/pyruvate

Luciferase ATP

Urease Urea

Cholesterol oxidase Cholesterol

Table 3.5 Examples of enzymes as clinical markers

Enzyme Used as marker for

Lactate dehydrogenase (H4 isoform) Heart diseases

Glutamate-oxoglutarate transaminase (SGOT), glutamate-

pyruvate transaminase (SGPT)

Liver function

Creatine kinase Myocardial infarction, skeletal

muscle damage

Lactase Lactose intolerance

Hexosaminidase A Tay-Sachs disease

Acid phosphatase Prostate cancer

Phenylalanine hydroxylase Phenylketonuria (PKU)

3.1 Exploiting Natural Diversity 21



3.2 Modifying Enzymes to Suit Requirements

Despite the vast natural diversity of biological catalysts, significant technology has

developed to alter the properties of available enzymes. This tinkering has involved

facets of their immobilization, chemical modification, genetic engineering, or their

use in nonaqueous solvents.

Immobilization for Better Use Most natural enzymes isolated are in water soluble

state. They cannot be stored in this form for long, often due to instability. Their

immobilization is one way to enhance their shelf life (Mateo et al. 2007). In addition,

immobilized enzymes are easy to recover and amenable to repeated use. This is an

important consideration when the cost of enzyme is very high. The characteristics of

the matrix are very critical in determining the performance of the immobilized

enzyme system. These supports may be inorganic or organic according to the nature

of their chemical composition. The physical characteristics like mean particle size,

swelling behavior, mechanical strength, etc. decide the technical conditions in which

the system is used. Enzymes may be quarantined on the matrix either irreversibly

(by covalent bonding, entrapment, microencapsulation, cross-linking, etc.) or

reversibly (by adsorption, ionic binding, affinity binding, disulfide bonds, or che-

late/metal binding). The cost associated with the process of immobilization

determines whether it is economically viable to do so.

Different means are adopted for enzyme immobilization in practice, and only a

few are represented in Fig. 3.4. The field of enzyme immobilization technology and

its applications has grown vastly over the years. Many books and volumes (Methods

in Enzymology series) are available for detailed reference (Brena and Batista-Viera

2006). This section covers very briefly on this applied aspect of enzymes, and the

reader is encouraged to refer the more specialized literature for the purpose.

The choice of immobilization method depends on the type of the enzyme and the

nature of applications in question. Non-covalent confinement (like physical entrap-

ment, microencapsulation, or electrostatic adsorption) methods at times may lead to

enzyme leaching during operation. Covalent anchoring of enzymes on the other

hand requires bifunctional cross-linking reagents and suitable functional groups on

the enzyme surface. These functional groups must not be critical for enzyme activity

however. A great deal of sophisticated chemistry has been developed to activate inert

organic/inorganic polymers for subsequent enzyme immobilization. Carrier-bound

(covalently linked to polymers; figure above) penicillin acylase is highly effective in

the preparation of 6-APA and permits economic recycling of the catalyst. Penicillin

acylase immobilized cassettes are available that function at >99% conversion effi-

ciency even after 1500 cycles of use. Glutaraldehyde is used to cross-link glucose

isomerase – the cross-linked material can be reused many times in the commercial

process for production of fructose syrups from glucose. Detergent protease

components act as allergens, and this problem was overcome through microencap-

sulation; the dustless protease preparations have reduced this risk. Some of the

enzymes successfully immobilized for application are shown in Table 3.6.
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Fig. 3.4 Four different modes of enzyme immobilization

Table 3.6 Industrial uses

of immobilized enzymes
Enzyme Product

Aspartate ammonia lyase L-Aspartic acid

Hydantoinase L- and D-Amino acids

Thermolysin Aspartame

Lactase Lactose-free milk and whey

Invertase Invert sugar

Glucose isomerase High-fructose syrup

Lipase Cocoa butter substitute

Penicillin acylase 6-APA and penicillins

Nitrile hydratase Acrylamide

3.2 Modifying Enzymes to Suit Requirements 23



It is expected that the substrate specificity and the catalytic potential of the

enzyme should not be unfavorably affected upon immobilization. The changed

microenvironment could affect the enzyme stability to heat, pH, and proteolytic

enzymes. A reduction in its activity may also occur due to associated conformational

changes in the enzyme. The pH optimum of an immobilized enzyme may change by

as much as 2.0 pH units due to microenvironment effects. It is observed that an

anionic carrier (matrix) pushes the pH optimum to a more alkaline value, while a

cationic carrier moves it to a more acidic value. These matrix (electrostatic field)

effects are due to changes in the degree of ionization of amino acid residues on the

enzyme; this effect is usually not observed in medium with high ionic strength – as

salt ions counter the charges on the carrier.

The kinetic behavior of an immobilized enzyme can differ significantly from

the free enzyme in solution. Both maximal velocity (Vmax) and Michaelis

constant (KM – apparent affinity for the substrate; see Chap. 15 for a detailed

treatment) of the enzyme may be affected. The apparent KM significantly decreases

when the carrier used is of opposite charge to that of the substrate – largely due to

electrostatic interactions causing the substrate to be at a higher concentration near the

carrier. In general, partition effects (arising from ionic, electrostatic, or hydrophobic

interactions) cause changes in the local concentration of the ligands/molecules which

in turn affect the kinetic constants. The apparent KM of an immobilized enzyme is

also affected by diffusion factors. Both the diffusion of the substrate to and the

diffusion of the product away from the enzyme influence enzyme activity. Restricted

diffusion of bulk substrate to the immobilized enzyme leads to significantly higher

KM value. Poor product diffusion, away from the enzyme, obviously results in an

inhibited enzyme. If diffusion constrains the highest substrate concentration achiev-

able, then the immobilized enzyme may display an apparent Vmax lower than the free

soluble enzyme.

The objective of using enzyme-catalyzed reactions in industry is to convert given

amount of the substrate maximally into the product. Integrated form of the rate

equation (Michaelis-Menten equation) is better suited to analyze such systems.

However, the integrated form of the rate equation is also valid only if (a) substrate

concentrations far exceed that of the enzyme, (b) the overall reaction is irreversible,

(c) enzyme is stable over the time period, (d) no product or substrate inhibition

occurs, and (e) the system remains properly mixed (see Chap. 17 for a detailed

treatment). Some of these factors can be tackled through choice of enzyme reactor

configuration and process design. Continuous industrial processes could employ

immobilized enzyme in stirred-tank, packed-bed, or fluidized-bed reactors or the

enzyme immobilized on membranes, hollow fibers, or tubes. The flow of the reaction

mixture may be exploited to input fresh substrate, remove the product formed, adjust

pH, etc. Membrane cassettes of penicillin acylase have made the production of

6-APA very efficient – the reaction mixture pH can be maintained by dosing

NaOH (pH stat) and continuously removing the product formed.

Enzyme Biosensors Biosensors are used to determine/monitor the concentration of

substances (often metabolites) of biological interest. Enzymes play a major role in
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such analytical devices – to convert a biological response into an electrical signal.

Specificity and signal amplification (catalysis) of an immobilized enzyme are ideally

suited for this purpose. Besides the fact that they may be reused, the immobilized

enzymes (with an elevated KM value) give proportional change in reaction rate over a

substantial linear range of the substrate concentrations. Also, often, these rates are

independent of pH, temperature, ionic strength, and inhibitors – features advanta-

geous in metabolite measurements in real analytical samples.

The critical component of the biosensor is the transducer which converts the

outcome of an enzyme reaction into a measurable signal. Biosensors may have a

transducer to exploit enzyme reactions with (1) heat generation (calorimetric bio-

sensor, to measure H2O2 with catalase), (2) release or absorption of ions (potentio-

metric biosensor, glucose with glucose oxidase and urea with urease), (3) production

of a current (amperometric biosensor – glucose with glucose oxidase, alcohol with

alcohol oxidase, and cholesterol with cholesterol oxidase), and (4) absorption or

emission of light (optical biosensor, peroxides with horseradish peroxidase and ATP

with luciferase). Paper enzyme strips are also in use to measure/detect substances

through colorimetry. Enzyme biosensors today occupy a substantial analytical

market in health care, food industry, and environmental monitoring.

Function in Organic Solvents – Nonaqueous Enzymology Living systems are

intimately linked with their aqueous environment. Being biological catalysts,

enzymes are exquisite products of long biological evolution. Enzymes are easily

denatured by organic solvents. However, some enzymes can tolerate high

concentrations of water-miscible organic solvents in their aqueous surroundings.

Even in a water-immiscible nonpolar solvent, enzymes do need a monolayer of water

molecules covering their exposed surfaces and the active site (Halling 2004). In this

arrangement – with an essential water layer – they can continue to function as

catalysts even in an organic solvent. The early work of Bourquelot and others

(since 1913) showed that few enzymes could act in the presence of >80% of organic

solvents such as ethanol or acetone. This example may very well be the forerunner of

nonaqueous enzymology and use of enzymes in organic solvents for synthetic

applications. The synthesis of a glucoside (by maltase in 1898) highlighted very

early the synthetic capabilities of an enzyme.

Enormous interest in biocatalysis in nonaqueous phase was triggered due to the

merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-

dependent side reactions. For most organic reactions, water is not an ideal solvent.

But enzymes have evolved for the catalysis of reactions in water. It would be very

useful to have enzymes perform catalysis in nonaqueous media. There are added

advantages if this is made possible:

• Many substrates are more soluble in organic solvents than in water. Large initial

concentrations can be achieved with hydrophobic substrates that are sparingly

soluble in water. They continuously diffuse into the active site from the bulk
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solution (which is nonaqueous). Some products are labile in aqueous media, and

thus water-dependent side reactions can be minimized.

• Enzymes naturally find themselves in an aqueous environment with 55.5 M of

water. Introducing them into nonaqueous environment means a drastically

reduced water concentration! There are important consequences of lower water

activity – particularly with reactions in which water is added or removed. For

instance, peptide bond synthesis involves elimination of water – a thermodynam-

ically uphill task in water. However, this step is favored in a nonaqueous

environment. As a consequence a hydrolytic enzyme could be endowed with

synthetic potential. Most hydrolytic reactions – generally irreversible in water –

can be made reversible. Esterases, glycosidases, and proteases can be used for

synthesis.

All water-soluble enzymes possess a small but significant amount of strongly

bound water – thereby resulting in a two-phase system within the nonaqueous bulk

medium. The water activity – aw – is defined as the partial vapor pressure of water in

a substance divided by the standard state partial vapor pressure of water. It is

indicative of the extent of water content around the enzyme molecules. Enzyme

activity in nonaqueous media depends on the magnitude of aw because it affects the

extent of this bound water. Lower aw may lead to a rigid enzyme with limited

thermal motion and associated thermal stability. The miniscule water pool around

the enzyme in an organic solvent (between 50 and 500 water molecules per enzyme

molecule) retains the pH of the last aqueous solution from where it is derived.

Therefore, it appears as if the enzyme remembers and functions in that pH (pH

memory).

The enzyme is inactivated if the tightly bound water layer is stripped off or diluted

by the organic solvent phase. The stability or inactivation of an enzyme is thus

dictated by the polarity of the solvent used. A useful measure of this polarity is log P

– the logarithm of the partition coefficient of the organic solvent (X) between

n-octanol and water. Log P, the partition coefficient, is a measure of hydrophobicity

of organic solvent. The lower the P value, the more polar (hydrophilic) is the solvent.

logP ¼ log
½XOctanol�

½XWater�

� �

As an empirical rule, enzymes are generally inactivated by solvents with log P < 2

but are little affected by more hydrophobic solvents with log P > 4.

Industrial focus on the use of enzymes in nonaqueous environments and reverse

micelles systems is on the rise, with applications in foods, medicine, and industry.

Being chiral catalysts, they are often valuable in resolving racemic mixtures of

important drugs and intermediates in pharmaceutical industry. In practice it is

common to find applications of nonaqueous enzymology in transglycosylation,

transesterification, and transpeptidation reactions. An important example of the

reversal of peptide bond hydrolysis is aspartame (α-L-aspartyl-L-phenylalanyl-O-

methyl ester) synthesis. The protease thermolysin is used to condense L-aspartic acid
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with the methyl ester of L-phenylalanine and produce aspartame (sweetener and a

sugar substitute). Similarly, suitable glycosidases are used to synthesize

cyclodextrins. Interesterification reactions with lipases in nonaqueous solvents

have found many applications. Consider an esterase catalyzing the hydrolytic

reaction:

R� COOXþ H� OH ! R� COOHþ X� OH

The same enzyme, in the presence of another alcohol (Y-OH), but in the absence of

water (low aw), can bring about efficient catalysis of an ester exchange shown below:

R� COOXþ Y� OH⇄R� COOYþ X� OH

For example, isoamyl acetate (a banana fruit flavor) is produced from ethyl acetate

and isoamyl alcohol. Yet another interesting patented example of transesterification

with a lipase is the preparation of cocoa butter substitute from palm oil.

3.3 Genetic Engineering and Enzymes

Large-scale production of enzymes is often a prerequisite for most applications.

Obtaining them from animal and plant material – though of historical importance –

has become progressively difficult for economic and ethical reasons. Therefore, the

extant microbial biodiversity is routinely screened for enzymes with similar/desir-

able properties. Microbial rennin (a substitute for chymosin) produced from Mucor

spp. is a case in point. Another exciting option is to produce the required enzyme

through recombinant DNA technology, preferably in a microbial host.

The formidable tools of genetic engineering have allowed the expression and

management of enzyme structures almost at will. Detailed recipes of recombinant

DNA techniques are available in many texts and protocol books, while we sketch a

brief outline of these steps here. Systematic manipulation of the DNA sequence at

the molecular level is the essence of genetic engineering. This means we can cut and

patch DNA fragments/ gene(s) for any enzyme protein from diverse living

organisms. These recombinant DNA molecules – capable of expressing a natural

or a mutant enzyme protein – can then be moved into a suitable host for protein

expression. When this genetic information is expressed (by transcription and trans-

lation) in the new host, it can produce an enzyme protein that is even foreign to it! A

general strategy for genetic engineering is outlined in Fig. 3.5. There are essentially

four stages to this powerful technique.

Isolation of the Gene/ORF/cDNA for the Enzyme Protein Restriction endonucleases

of different sequence specificities are employed to cut out the desired gene or the

ORF (open reading frame) encoding that enzyme from a given source of DNA. The

required DNA fragment may be amplified by PCR (polymerase chain reaction) or

the corresponding cDNA may be obtained through reverse transcriptase-PCR of the
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relevant mRNA. Alternatively, the required DNA may also be synthesized chemi-

cally – if the desired nucleotide or amino acid sequence is known.

Insertion of the Gene Into an Expression Vector The gene/ORF/cDNA/ is

integrated (linked) into another piece of DNA, the vector DNA, in order to promote

its uptake and replication in a suitable host organism. In general, the DNA vectors

are designed (engineered) to have a unique site for restriction endonuclease and carry

a marker to facilitate selection of genetically modified host cells (transformants). The

chimerical recombinant DNA is introduced in appropriate host for expressing the

enzyme protein. Typically, a bacterial plasmid vector is used to transform bacteria

(Fig. 3.5). For animal and plant cells, their respective viral DNAs are often used as

vectors.

Transformation of the Host Cell The recombinant DNA vector is introduced into a

host cell either directly (by the process of transformation) or by infecting it using a

viral vector.

Select and Express GFE

EcoRI

XhoI

Genomic DNA

Cut with RE

EcoRI

GFE

Amp

Join using ligase

GOI

XhoI

Recombinant 

Vector

Transform E. coli

Cut with RE

GFE

Vector

Amp

Amp
GOI

GFE

GFE

RE Sites

Fig. 3.5 A general genetic engineering strategy for enzyme expression
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Detection of the Inserted Gene The presence of the foreign DNA insert in the host is

detected by molecular tools like Southern blotting (DNA-DNA hybridization), PCR,

etc. The functional expression of the recombinant DNA may be directly monitored

through enzyme activity and the presence of the protein.

At its simplest level, genetic engineering tools allow us to produce any enzyme

protein in the common bacterium Escherichia coli. One could choose from bacteria,

yeast, plant, or mammalian cells as hosts for optimal expression and/or appropriate

posttranslational processing (like glycosylation, etc.) of the protein. Expression in a

homologous host is generally successful. One of the principal reasons that an

enzymologist manipulates DNA blueprint of an enzyme is to modulate the existing

feature or to create new ones. Approaches like site-directed mutagenesis (SDM) and

directed evolution of enzymes are routine nowadays. We will have more to say on

these genetic engineering strategies for enzyme design/redesign later in this book

(Chap. 39 “Future of Enzymology – An Appraisal”). In addition, genetic engineer-

ing has made optimal enzyme production possible in many different ways. We will

simply illustrate the field with a few examples:

1. Enzyme overproducing strains have been constructed by suitably overcoming

regulation at the level of feedback inhibition, transcription, translation, or secre-

tion of the enzyme protein. Expression of amylases is often under the control of

carbon catabolite repression (glucose repression). Yet another bottleneck with

respect to protease production is nitrogen metabolite regulation. Both bacterial

and fungal strains, with mutations for deregulation, constitutive expression, and

hypersecretion, find utility in enzyme production. Suitable genetically stable

mutant strains combining many such features have found their place in enzyme

industry.

Individual component activities of the cellulase complex and their specific

combinations find industrial applications (Table 3.1). Producer strains (like

Trichoderma reesei) overexpressing individual activities as well as deleted in

each one of them are available. Well-defined cocktail of cellulase components are

suitable in textile industry and in biomass conversion.

2. Heterologous expression, even of mammalian or plant enzymes, in a convenient

microbial host. The recombinant chymosin (bovine) was produced in a fungus by

introducing a stable expression construct. The difficult challenges however

include ability to obtain economically viable levels of secretion, stability of the

expressed protein, and attaining proper posttranslational modifications like gly-

cosylation, if any.

3. Once the structural gene for the enzyme is cloned and expressed, it is feasible to

generate mutant forms of this enzyme. Tinkering with enzyme properties like

stability, pH optimum, specificity, and regulatory features is possible. Protein and

enzyme engineering through site-directed mutagenesis has found direct

applications in the enzyme industry. Subtilisin was engineered for better stability.
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Glucose isomerase was improved for its metal preference, substrate specificity,

and pH optimum. DNA polymerase with high fidelity for PCR applications is

another fruitful example.

The impact of genetic engineering on the field of modern enzymology may be

further gauged by examples presented in Chap. 39 (“Future of Enzymology: An

Appraisal”).

3.4 Summing Up

Being superbly crafted catalysts of nature, enzymes found their use very early in the

game. The first patent for an enzyme application was in 1894, even before their

chemical nature was known! Subsequently, bioprospecting for enzymes with unique

properties has continued unabated. The entire industry to process starch has evolved

by exquisite use of enzymes from across the three domains of life. In the clinical and

pharmaceutical setting, enzymes have served as disease markers, analytical tools for

metabolite measurements, and biosensors and targets for drug discovery. In an

industrial process, the given amount of substrate has to be maximally converted to

product. Immobilized enzymes have reduced the cost by permitting their reuse and

reaction scale up. Although evolved essentially for catalysis in an aqueous environ-

ment few enzymes are able to function in organic solvents. This has expanded the

scope of their utility in terms of the types of reactions that can be carried out; many

hydrolases may now be used to drive the reactions in reverse for synthetic purposes.

Having tasted their potential in industry, enzymes are being genetically

engineered for desired features and also for efficient large-scale production. With a

better understanding of how these catalysts work, the range of their applications in

various industries has expanded. While it is beyond the scope for an elaborate

coverage, the present chapter has attempted to provide a focused overview. For

more detailed treatments, the reader may refer to the cited literature.
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On Enzyme Nomenclature
and Classification 4

4.1 What Is in the Name?

The word enzyme (ενζυμη meaning in yeast in Greek), first used by Kuhne in 1877,

is now well accepted to describe a biological catalyst. Majority of enzyme names

today carry the suffix “-ase” as recommended for all enzyme names by Duclaux in

1898. Proteolytic enzymes are a significant exception to this generally accepted

norm. Some of them have retained the older tradition of usually ending with “-in,”

for example, trypsin, chymotrypsin, papain, and subtilisin.

All enzymes are proteins but not all proteins are enzymes. Catalysis by RNA

molecules (the so-called ribozyme) has expanded the realm of biological catalysts to

beyond proteins. While few RNA catalysts have been recognized, the vast majority

of enzymes that we come across in biology are proteins. Evolution has selected

L-isomers of 20 amino acids to build proteins. This has put limits on the number and

nature of available reactive chemical groups/functions that could be recruited for

catalysis. Proteins are rich in nucleophilic groups, but electrophiles are poorly

represented. In some instances, the protein component alone is inadequate to cata-

lyze a given reaction. Nature therefore recruited many nonprotein components called

cofactors to generate a functional catalyst. In such enzymes, the inactive protein

component without the cofactor is termed the apoenzyme and the active enzyme,

including the cofactor, the holoenzyme. The cofactors may be either metal ions (e.g.,

Mn[II] in arginase, Ni[II] in urease, and Ca[II] in DNase I) or coenzymes (organic

molecules like pyridine nucleotides NAD+ and NADP+, flavin adenine dinucleotide

(FAD), pyridoxal phosphate (PLP), thiamine pyrophosphate (TPP), biotin,

cobamide, and heme). Binding of a cofactor to its cognate apoenzyme could exhibit

a range of binding strength. A very tightly bound cofactor – which is difficult to

remove without damaging the enzyme – is also known as a prosthetic group. Quite

often prosthetic groups are covalently bound to the apoenzyme – lipoamide of

transacylase is an example.
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Holoenzyme ¼ Apoenzymeþ Cofactor

Non-covalent interactions between a protein (such as an apoenzyme) and a

cofactor may be weak or strong. This is amply obvious from the list of enzymes

that require divalent metal ions for activity. For instance, enzymes with a tightly

bound metal ion are termed metalloenzymes (such as urease), while those with a

weakly bound metal ion are grouped as metal-activated enzymes (such as Fe

[II]-catechol dioxygenase). Enzymes with metal ion dissociation constants (KD) of

the order of 10�8 M or higher are generally grouped as metal-activated enzymes,

while those with KD values lower than 10�8 M are considered metalloenzymes. This

boundary is artificial, and obviously there is a continuum of binding strengths

observed in nature. It may be noted in passing that even non-covalent interactions

can be very strong – essentially irreversible in few cases like avidin–biotin complex

(KD ¼ 10�15 M; t1/2 of 2.5 years) or for that matter the two strands of a double-

stranded DNA!

4.2 Enzyme Diversity and Need for Systematics

The middle of the twentieth century saw an exponential increase in research on

enzymes. Sooner than later the number of new enzymes reported crossed manage-

able limits for an individual. As a consequence, in some cases, the same (or similar)

enzyme activities were given different names. Some names like catalase give very

little indication of the nature of the reaction they catalyze. Systematic classification,

cataloging, and nomenclature of enzymes therefore became a necessity. This was

easier recognized than done. Enzymes could be grouped according to any of the

following considerations:

(a) Occurrence and/or source of the enzyme: Laccase obtained from Japanese

lacquer tree, papain from papaya, and horseradish peroxidase are examples

of three such plant enzymes. Similarly a number of digestive enzymes are

isolated from pancreatic juice such as trypsin, chymotrypsin, carboxypepti-

dase, lipase, etc. the common source of lysozyme is from hen egg white

(HEW).

(b) Nature of the substrate on which the enzyme acts: They could be classified

into enzymes hydrolyzing (or acting on) proteins, carbohydrates, lipids, etc.

(c) Based on cofactor requirement: Typically many enzymes are simply pro-

teinaceous in nature. However those depending on a cofactor could be listed

into separate groups like thiamine pyrophosphate (TPP) enzymes, pyridoxal

phosphate (PLP) enzymes, metalloenzymes, etc.

(d) Common functional context: One could, in principle, group enzymes

belonging to discrete pathways like glycolytic enzymes, enzymes of histi-

dine biosynthesis, etc. they may also be grouped as soluble, membrane-

bound, or belonging to organelles such as mitochondria, etc.

34 4 On Enzyme Nomenclature and Classification



(e) Nature of the overall reaction catalyzed: An enzyme can be assigned to a

group by considering the type of the reaction it catalyzes. For instance, they

may catalyze oxidation, hydrolysis, etc.

(f) The mechanism of reaction: The intimate mechanism of the reaction at the

enzyme active site and the nature of intermediate complexes with the

enzyme may be considered. For example, proteases may be classified

depending upon whether an enzyme-bound acyl-enzyme intermediate is

formed or not.

It should be obvious from the above list that a systematic, meaningful classifica-

tion and cataloging of all the enzymes has not been easy. The problem is

compounded by the enormous diversity of enzyme structures and activities. A

typical RNA hydrolysis is achieved through a protein (RNase A), a protein-RNA

complex (RNase P) or RNA alone (ribozyme). The peptide bond hydrolysis is

possible with enzymes that are efficient in acidic pH or alkaline pH, require a

divalent metal ion, contain a serine -OH or cysteine -SH, etc. Enzymatic decarbox-

ylation of histidine may recruit pyridoxal phosphate or in a more primitive form may

simply use a bound pyruvate. Pyridoxal phosphate bound to glycogen phosphorylase

serves more of a structural role rather than function as a cofactor. Alkyl-

dihydroxyacetonephosphate synthase (an enzyme involved in the biosynthesis of

ether phospholipids) uses FAD for a non-redox reaction. Clearly, no single criterion

listed above would be satisfactory. To address these issues, an international com-

mission was set up in 1955 which presented its first report in 1961 (Table 2.1).

4.3 Enzyme Commission: Recommendations

Considering the diversity of enzyme sources, reactions, and mechanisms, it became

apparent that a formal system of nomenclature and classification was required.

“Enzyme Commission” was appointed by the International Union of Biochemistry

to address this issue. Its first report, published in 1964, forms the basis of present

system of classification. This system of classification is being updated periodically

with updates made in 1972, 1978, 1984, and 1992. There are also many electronic

supplements such as Supplement 14 of 2008 (Enzyme Nomenclature 1992). The

most recent information and guidelines on enzyme nomenclature may be found at

the official web site of the International Union of Biochemistry and Molecular

Biology (IUBMB) – http://www.chem.qmul.ac.uk/iubmb/enzyme/. The EC classifi-

cation is universally accepted with a unique name and EC number for each enzyme.

By this means names for every enzyme (listed with trivial name) could be

rationalized and also given an EC catalog number (McDonald et al. 2009).

The nature of the overall reaction catalyzed by the enzyme – expressed by the

formal equation – forms the basis of EC classification. Clearly the intimate mecha-

nism of the reaction and the formation of intermediate complexes with the enzyme, if

any, are not considered. The Enzyme Commission defined six general categories of

reactions, thereby assigning an enzyme to one of the six classes. A number of unique
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enzymes, represented in each of these six classes (BRENDA database release

January 2009), are shown in Fig. 4.1. Expectedly, enzymes for the redox and

hydrolytic reactions are the most represented group. These six classes are

oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases. Each of

these six classes is further divided into a number of subclasses and sub-subclasses,

according to the nature of the reaction catalyzed. In this classification each enzyme is

given a code number consisting of a four-number system. On this system the first

number indicates the main class and the second and third show the subclass and

sub-subclass, respectively, thus defining the type of reaction. The fourth number is

the actual number of that enzyme within its sub-subclass. For example, alcohol

dehydrogenase is given the code “EC 1.1.1.1.” The first number indicates that it

belongs to oxidoreductase class (EC 1.x.x.x). Within this class, enzymes acting on

CH-OH group of donors bear the same subclass number (EC 1.1.x.x). Within this

subclass, enzymes that use NAD or NADP as electron acceptor are given the number

EC 1.1.1.x. Since alcohol dehydrogenase is the first enzyme in this category, it gets

its fourth number (EC 1.1.1.1). Similarly, all carboxylesterases have the same first

three digits in their EC code (EC 3.1.1.x). The fourth digit however distinguishes

them by the actual carboxylic ester they hydrolyze.

Systematic name is assigned to each enzyme by the Commission, in addition to an

accepted trivial name. This name includes the name or names of substrates followed

by a reaction name that ends in “-ase.” Because such systematic names can at times

be too long and unwieldy, the Commission has also made recommendations for the

use of trivial names. However, for the group (EC 3.3.3.x) of common proteases like

pepsin, trypsin, papain, etc., it has not yet been possible to find acceptable systematic

names. Enzyme Commission nomenclatures for enzymes representative of each

class and those enzymes commonly referred to in this book are given in Table 4.1.

The universally accepted EC classification and enzyme codes are finding place

(and direct utility) in a number of databases describing enzymes, genes, genomes,

and metabolic pathways. Some of these databases are listed in Table 4.2.

Oxido-

reductases,

1295

Transferases,

1302

Hydrolases,

1476

Lyases, 462

Isomerases,

180

Ligases, 151Fig. 4.1 Distribution of

enzymes into six different

classes according to EC

classification. Data from

BRENDA database (January

2009 release) is shown

schematically
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4.4 Some Concerns

The EC system of classification and nomenclature was arrived from a broad consen-

sus with clear emphasis on the total reaction in question. The systematic names in a

given class may be based on a written reaction, even if only the reverse reaction is

experimentally demonstrated. This has created some situations that are less than

perfect. While all enzyme-catalyzed reactions are reversible in principle (at least

micro-reversibility at the active site!), the reaction-based classification for the for-

ward direction would not be the same as that for the reverse direction. This was

recognized very early by JBS Haldane, and according to him, calculation from

thermodynamic data shows that catalase may act in the direction of H2O2 synthesis

only under an O2 pressure of many billions of atmosphere! It would, therefore, be

perverse, if logical, to describe it as water oxidase or for that matter the peroxidase as

water dehydrogenase. To address such issues, the Commission has recommended

that the more important direction of the overall reaction, from a biochemical view

point, be used. It may be noted from Table 4.1 that reaction involving interconver-

sion of NADH and NAD+ is all written in the direction where NAD+ is reduced by

the other substrate. Also, when an overall reaction involves two types of reactions,

then the second function is indicated in brackets. For instance, an oxidoreductase

(decarboxylating) means the enzyme catalyzes an oxidation-reduction reaction in

which one of the substrates is being decarboxylated.

Apart from issues related to the direction of overall reaction considered, a major

concern is that the reaction mechanism is given less importance or completely

ignored! Functionally distinct reactions are catalyzed by the following four enzymes:

Table 4.2 Databases with enzyme EC numbers

Database Website

BRENDA (The Comprehensive Enzyme Information

System)

http://www.brenda-enzymes.info/

ExPASy (Enzyme nomenclature Database) http://www.expasy.ch/enzyme/

KEGG (Kyoto Encyclopedia of Genes and Genomes) http://www.genome.ad.jp/kegg/

kegg2.html

MetaCyc (Pathway/Genome Databases) http://metacyc.org/ and http://biocyc.

org/

SYSTERS (Protein Family Database) http://systers.molgen.mpg.de/

InterPro (database of protein families, domains, and

functional sites)

http://www.ebi.ac.uk/interpro/

Protein Mutant Database http://pmd.ddbj.nig.ac.jp/

BioCarta (Pathways of Life) http://www.biocarta.com/

ExplorEnz (The Enzyme Database) https://www.enzyme-database.org/

IUBMB (Enzyme Nomenclature) http://www.chem.qmul.ac.uk/iubmb/

enzyme/
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All four enzymes are part of an evolutionary super-family of proteins; mechanis-

tically they add elements of H-X to fumarate, using Michael reaction. This is a

typical case where EC classification matches both in terms of overall reaction and the

reaction mechanism. While UDP-glucose epimerase – based on the overall reaction

– rightfully belongs to “isomerases” (Class 5), its intimate reaction mechanism tells a

different story. The enzyme has tightly bound NAD+, and the reaction at C4 of the

hexose involves redox chemistry. The reaction mechanism of glucosamine

6-phosphate isomerase is similar to that of ketose-aldose isomerase:

D-Glucosamine 6-phosphateþ H2O⇄D-Fructose 6-phosphateþ NH3

It was therefore formerly grouped under Class 5 (with the code EC 5.3.1.10) as an

isomerase. Subsequently this reaction was recognized as a C-N bond hydrolysis and

reassigned as glucosamine 6-phosphate deaminase (EC 3.5.99.6).

Multiple Enzyme Forms and Isozymes At times we find that the same enzyme

activity in an organism (or different organisms) is displayed by different protein

forms. Enzymes that catalyze the same overall reaction but follow different mecha-

nistic paths are not uncommon. Some examples of different protein forms are listed

below (Table 4.3).

When these multiple molecular forms are coded by different but related genes

(having different primary structure – amino acid sequence!), they are termed isozymes.

Different isozyme forms of an enzyme are easily distinguished through their charac-

teristic electrophoretic mobilities. The muscle and the heart forms of lactate dehydro-

genase are the best studied examples of isozymes. All isozymes are examples of

multiple forms of an enzyme, but all multiple forms need not be isozymes.

Multiple molecular forms of the same enzyme may also arise due to other reasons.

They may occur as (a) interconvertible forms through covalent modifications (e.g.,

phosphorylation of glycogen phosphorylase and adenylylation of E. coli glutamine

synthetase), (b) proteolytic variants (chymotrypsinogen and chymotrypsin), (c) different

oligomeric states of the same monomer (e.g., bovine liver glutamate dehydrogenase and

avian liver acetyl CoA carboxylase), and (d) distinct conformational states of the same

enzyme protein (e.g., R and T states of aspartate carbamoyltransferase). Occurrence of

multiple enzyme forms is often associated with their role in metabolic regulation.

Fumarate + H2O ⇄ Malate (Fumarate hydratase; EC 4.2.1.2)

Fumarate + NH3 ⇄ Aspartate (Aspartate ammonia-lyase; EC 4.3.1.1)

Fumarate + Arginine ⇄ Argininosuccinate (Argininosuccinate lyase; EC 4.3.2.1)

Fumarate + AMP ⇄ Adenylosuccinate (Adenylosuccinate lyase; EC 4.3.2.2)
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All multiple enzyme forms share the same EC number and a formal name.

However these names need to be suitably prefixed or suffixed to indicate the

modification, organ source, or organelle source. Much effort goes into characterizing

any new enzyme. Therefore great care must be taken to define what it does and not

repeat the name or indicate another reaction. In the final outcome, one needs not get

bogged down by issues of semantics, for the excitement of enzymology beckons the

uninitiated and the specialist alike.
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Table 4.3 Enzyme examples with different mechanistic forms

Enzyme

EC

number Mechanistic difference

Ribonucleotide reductase EC

1.17.4.1

An iron protein

EC

1.17.4.2

Requires a cobamide coenzyme

Methionine synthase EC

2.1.1.13

Contains cobalamin

EC

2.1.1.14

Does not contain cobalamin

Proteases EC 3.4.4.x Serine, cysteine, carboxylate, or metal ion at active

site

Histidine decarboxylase EC

4.1.1.22

Pyridoxal-phosphate (mammalian)

Pyruvoyl prosthetic group (bacterial)

Fructose bisphosphate

aldolase

EC

4.1.2.13

Class I – Forms a protonated imine

Class II – Zinc polarized (microbial)

Dehydroquinase EC

4.2.1.10

Type I – Forms a protonated imine

Type II – Forms an enolate intermediate
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Hallmarks of an Enzyme Catalyst 5

All reactions relevant to biology belong to one of the two groups: those with a kinetic

barrier and those with a thermodynamic barrier. The kinetic barrier can be overcome

by employing a catalyst. Reactions with a thermodynamic barrier (uphill, endergonic

reactions) require provision of energy (such as ATP hydrolysis) in addition to a

catalyst. Regardless of the nature of barriers faced, greater than 99% of all the

reactions occurring in biological systems are catalyzed. With minor exception of a

few RNA catalysts (ribozymes), all the enzymes are built from a protein scaffold.

These catalysts par excellence are at the very foundation of life. The three hallmark

features of these biocatalysts are catalysis, specificity, and regulation.

5.1 Catalysis

First and foremost, an enzyme is a catalyst and is responsible for rate acceleration of

a reaction that is inherently slow. Some of the chemical reactions are relatively fast

even without a catalyst. For instance, reversible hydration of carbon dioxide,

dismutation of superoxide anions, and elimination of hydrogen peroxide are all

very rapid. These rates are however not fast enough, so nature has evolved enzymes

(carbonic anhydrase, superoxide dismutase, and catalase, respectively) to further

accelerate them. There should be – and indeed there is – nothing magical about how

enzymes bring about fantastic rate accelerations. They do obey the basic physical

and chemical principles but are simply better at it. An enzyme is a catalyst that:

(a) Achieves rate acceleration by bringing down the activation energy barrier. It

may convert a complex reaction into a number of simpler ones –With each step

having its own smaller activation energy barrier. But the tricks enzymes use to

do this are time-tested by evolution and are exquisite. We will describe these

tools a little later (Chap. 6).
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(b) Does not change the equilibrium constant for a particular reaction but hastens

the approach to equilibrium. Since the equilibrium position can be reached from

both directions (forward or reverse), in principle, enzymes can accelerate the

rates in either direction. At the least, micro-reversibility of catalytic steps (even

if the overall reaction is largely unidirectional and practically irreversible!) is

expected at the enzyme active sites.

Thermodynamics of Catalysis For any reaction to occur, it should be

accompanied by a decrease in free energy. Accordingly, the equilibrium constant

and the corresponding standard free energy of reaction are related by the equation:

ΔG�¼ �RT ln Keq. A catalyst cannot displace the equilibrium of the reaction, and

therefore Keq (and ΔG�) remains unaffected. Enzymes increase the rate at which

equilibrium is reached – by bringing down the activation energy barrier. Biological

catalysis obeys the same general rules observed for nonenzymatic catalysis.

Transition-state theory of reaction rates has been meaningfully extended to enzyme

catalysis. For a reaction going from reactant (S) to product (P), the highest point

along the imaginary reaction coordinate is called the transition state (TS in Fig. 5.1).

This transition state is of highest free energy and is an extremely unstable ephemeral

species, involving bond-breaking and bond-forming events. Thus by definition,

ΔG 6¼ is the standard free energy of activation for this reaction – schematically

represented in Fig. 5.1.

uncat

DG

DG°

DG

cat

S

P

Energy

Reaction coordinate

TS

≠

≠

Fig. 5.1 Free energy

diagram – schematic

comparing the catalyzed

versus uncatalyzed

reactions. The standard free

energy of reaction (ΔG�) and

free energy of activation for

uncatalyzed (ΔG6¼
uncat) and

catalyzed (ΔG6¼
cat) reactions

are shown
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Relation Between Rate Constant (k ) and Free Energy of Activation (ΔG 6¼)

Transition-state theory predicts that the rate of chemical reaction is related to the

transition-state concentration as

reaction rate ¼
kBT

h
½TS�

where kB is Boltzmann constant (1.38 � 10�16 cm2 � g � s�2 � K�1), h is Plank’s

constant (6.626 � 10�27 cm2 � g� s�1), and T is absolute temperature. By the very

definition of TS, its concentration is not a measurable. However, this can be

indirectly substituted by invoking a quasithermodynamic equilibrium between the

reactant and the TS, with a hypothetical equilibrium constant (K6¼
eq):

K 6¼
eq¼

½TS�

½S�
and ∴½TS�¼K 6¼

eq ½S�

On substituting the value of [TS] in the rate equation above we get

reaction rate ¼
kBT

h
K 6¼

eq S½ �

Comparing this equation with the equation for reaction rate, �(d[S]/dt) ¼ k[S], we

obtain

k ¼
kBT

h
K 6¼

eq

where k is the rate constant. By analogy to the relation between Keq and ΔG�, we

establish that

k ¼
kBT

h
e�

ΔG6¼

RT ¼
kBT

h
e�

ΔH 6¼

RT e�
ΔS 6¼

R

From this equation it is obvious that as free energy of activation increases (i.e., ΔG6¼

becomes larger), the rate constant (k) for the reaction will decrease in an exponential

fashion. Also, the value of the rate constant is directly related to temperature (T ). We

note that this equation is similar to the Arrhenius equation (from collision theory):

k ¼ A e�
Ea
RT

where A is the Arrhenius constant (pre-exponential factor) and Ea is activation

energy. A comparison of the two treatments (transition-state theory versus Arrhenius

theory) provides the following equivalences:

5.1 Catalysis 45



Ea ¼ ΔH 6¼ þ RT and A ¼
kBT

h
e�

ΔS 6¼

R

Although Arrhenius equation (and collision theory) is of great historical impor-

tance, most modern treatments of reaction rates follow the transition-state theory.

We can now appreciate how enzymes bring about rate accelerations by decreasing

the activation energy barrier. The magnitude of reduction in the free energy of

activation (see Fig. 5.1) can be translated quantitatively into the extent of rate

enhancement. This is shown with an example in the box below.

We know that k ¼ kBT
h

e�
ΔG 6¼

RT

Rearranging this equation and writing it for catalyzed as well as uncatalyzed

reactions, we get

kuncat ¼
kBT

h
e�

ΔG6¼uncat
RT and kcat ¼

kBT

h
e�

ΔG 6¼cat
RT

Taking ratios and simplifying

kcat

kuncat
¼ 10

ΔG6¼uncat�ΔG 6¼cat
2:303RT

For example, consider a reaction where ΔG 6¼
uncat ¼ 25.7 kcal/mol and ΔG6¼

cat ¼ 11.0 kcal/mol. Substituting (R ¼ 1.987 cal�mol�1�K�1) and

simplifying

kcat=kuncat ¼ 10 25:7�11:0ð Þ=1:36 ¼ 5� 1010

A decrease in free energy of activation (ΔΔG 6¼) of about 15 kcal/mol can

result in 1010-fold increase in rate accelerations. Catalase (with ΔG6¼
uncat of

18.2 kcal/mol and ΔG 6¼
cat of 7.2 kcal/mol) accelerates its reaction rate by a

factor of 108. This is how enzymes bring about their magic!

The question of how do enzymes achieve decrease in free energy of activation

(ΔG 6¼
uncat – ΔG 6¼

cat ¼ ΔΔG6¼) for a given reaction is detailed in the next chapter

(Chap. 6).

5.2 Specificity

Specificity, at the molecular level, is the hallmark of most biological interactions.

Molecules like receptors and antibodies specifically interact with their cognate

counterparts. But discrimination while performing catalysis is of paramount
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importance to biology and is unique to enzymes! Specificity is a virtue when two

similar reactions are to be kept separate, at times in the same compartment. Most

biosynthetic reactions are catalyzed by NADP+ requiring enzymes, while catabolic

reactions use NAD+. For instance, glutamate dehydrogenases (GDHs) with two

distinct specificities for pyridine nucleotide are known – the biosynthetic NADP-

GDH (EC 1.4.1.4) and the catabolic NAD-GDH (EC 1.4.1.2).

Range of Specificities Enzyme specificity has been the subject of study from the

beginning. Reiner (1959) pointed out that “Some enzymes are more discriminating

than others, but it seems fair to say that any enzyme can be fooled if one goes to

enough trouble.” The esterase activity (on p-nitrophenyl acetate) of chymotrypsin –

an endo-peptidase – is well known. While enzymes can be quite discriminatory with

respect to the substrates they act on, a range of specificity is observed with different

enzyme examples. At one extreme they can be absolutely specific like glucose

oxidase – acting on glucose but not on galactose or mannose. Glucokinase (acting

on glucose alone) and succinate dehydrogenase (acting on succinate) are other

examples of high substrate specificity enzymes. A comparison of glucokinase with

that of hexokinase is instructive. Hexokinase exhibits broad substrate specificity and

also acts on hexoses other than glucose; it is however less efficient in handling other

sugars. An enzyme catalyst may be selective in acting on specific groups. Examples

of group-specific enzymes include alcohol dehydrogenase (acting on primary as well

as secondary alcohols), esterases (hydrolyzing various carboxylic esters), and

phosphatases (hydrolyzing many phosphate esters). Stereoselectivity of enzyme

action was recognized very early by Emil Fischer (Table 2.1). Many enzymes act

on only one optical isomer, e.g., glucose oxidase acts on β-D-glucose (and not on

α-isomer), and β-galactosidase acts on β-galactosides alone. L-Amino acid oxidase,

specific to L-amino acids, is yet another example of a stereospecific enzyme. Even

identical groups on a prochiral center of a molecule can be discriminated by an

enzyme. Aconitase (the second enzyme from Krebs cycle) clearly distinguishes the

two – CH2COO
� groups of the prochiral citrate – selectively attacking the pro-R

carboxymethyl group. Similarly, yeast alcohol dehydrogenase distinguishes the two

H atoms on the -CH2- group of ethanol (CH3-CH2-OH); only the pro-R hydrogen is

transferred to NAD+.

Enzyme specificity is not just limited to the substrates on which they act.

Molecules which satisfy the specificity criteria for an enzyme – but do not possess

the susceptible chemical bond(s) – may act as potential inhibitors of that enzyme.

Structural variation among inhibitors can lead to different degrees of enzyme

inhibition.

Limits of Enzyme Discrimination (and Biological Specificity!) As seen in the

previous paragraph, enzyme specificity can be absolute or quantitative. It may be

useful to assess the levels to which enzymes (and hence biological systems!) can

resolve and discriminate molecules. Recognition at the molecular level is easy to

appreciate. Gross structural differences like those between glucose and galactose,
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cAMP and cGMP, and NAD+ and NADP+ provide sufficient molecular handles

to grip them differently by the enzymes.

With some enzymes the substrate to be selectively bound is a very small entity

indeed. They may be mere diatomic blobs of different atoms! Cytochrome oxidase

(EC 1.9.3.1) binds oxygen (O¼O) but cannot exclude carbon monoxide (C¼O) or

cyanide (CN�); these are however potent inhibitors of respiration. Guanylate cyclase

(EC 4.6.1.2) has to contend with accommodating nitric oxide (NO) or carbon monox-

ide (CO) at its regulatory site. Similarly, nitrogenase (EC 1.18.2.1) should receive and

reduce N2 but avoid the more reactive O2. This is quite a challenge as the two gases

predominate in the atmosphere and both are diatomic molecules of electronegative

atoms. In fact, nitrogenase can also bind and reduce acetylene to ethylene – a reaction

used to assay this enzyme. The inability of nitrogenase to keep oxygen away (from its

reaction center) often results in its inactivation (Gallon 1981). Nature has made

allowance for this loss by means other than nitrogenase specificity, however. Nitroge-

nase is (a) rapidly turned over and (b) protected by mechanisms to reduce the local

concentrations of oxygen and to eliminate reactive oxygen species formed.

It is fascinating to note that enzymes can be made to discriminate even at atomic

level. RuBP carboxylase (EC 4.1.1.39) is the key enzyme responsible for the entry of

CO2 into biosphere. Its acronym RubisCO stands for ribulose-1,5-bisphosphate

carboxylase-oxygenase, because the enzyme can confuse O2 for CO2 as its substrate.

Carbon dioxide is devoid of chemical hand- or footholds for the enzyme to grip it

and help in its reaction with a fickle enediol intermediate. The difficulties associated

with selectively binding a nearly featureless CO2 molecule are obvious. Both CO2

and O2 are gaseous electrophiles, and RuBP carboxylase struggles to discriminate

between them. This is particularly relevant when we consider that the solution

concentration of O2 (250 μM) far exceeds that of CO2 (10 μM). The oxygenase

activity of this catalyst is thus an expected outcome. Nevertheless the enzyme (from

C3 plants) selectively favors CO2 to O2 by 3:1. As a tradeoff however, this CO2/O2

specificity comes at the cost of relatively poor catalytic rates (Griffiths 2006).

The resolution/discrimination achieved in the above examples is the outcome of

single interaction event of the enzyme with its substrate. For higher stringencies,

nature resorts to building multiple recognition events and sieves. Amino acyl tRNA

synthetase is a good example of this. The amino acyl-AMP derivative is made first,

and then in a second event, the tRNA is charged. In all, the amino acid being charged

is discriminated twice by the same enzyme. Additional opportunities for specificity

are offered by proofreading processes, which remove incorrect products. All such

proofreading mechanisms cost energy but are well worth the effort in preventing an

error. All side chains of L-leucine and L-isoleucine are hydrophobic blobs of almost

similar volumes. Nevertheless leucine tRNA synthetase (EC 6.1.1.4) discriminates

against isoleucine by about 1000:1. This is the basis of high fidelity of the translation

machinery in ensuring that Ile and Leu are correctly incorporated into polypeptides.

Additional check for specificity is afforded by proofreading processes, which

remove incorrect entries. All such proofreading costs energy but is well worth the

effort in preventing errors.

48 5 Hallmarks of an Enzyme Catalyst



Cofactor Tuning An interesting aspect of specificity is the selective interaction of

the polypeptide component with its cognate cofactor. Each apoenzyme provides a

unique chemical environment to the cofactor, thereby modulating its reactivity. For

instance, the redox potential for the two electron reduction of free FAD is about

�200 mV. This value measured for flavoenzymes ranges from �450 mV to

+150 mV. The redox potential of flavin is thus fine-tuned at the active site. Catalytic

protein milieu achieves this by (a) placing suitable positive charge (increases redox

potential) or negative charge (decreases redox potential) and (b) possibly forcing the

FAD (tricyclic isoalloxazine ring system) to adopt a planar or non-planar conforma-

tion. Other examples of fine tuning of chemical properties include cofactors like

metal ions and heme. The reactivity of common heme cofactor (iron protoporphyrin

IX) is modulated and adjusted for specific biological functions by covalent attach-

ment, axial ligation, hydrogen bonding, and distortion from planarity imposed by

different protein environments. Cytochromes of various redox potentials

(participating in enzymatic electron transport) are a manifestation of this purposeful

fine-tuning by nature. Enzyme proteins control the active site metal ion reactivity by

selective provision of the number and nature of coordinating ligands.

Enzyme Promiscuity Enzymes display a range of substrate specificities – they can

be highly specific or broadly specific. By and large, enzymes are exquisitely specific

for their substrates and the reactions they catalyze. But examples of enzymes

diverging from this statement are accumulating over time. Such enzymes are some-

times called promiscuous, and their promiscuity may manifest as (a) relaxed sub-

strate specificity, (b) catalyzing distinctly different chemical transformations, or

(c) distinct catalytic activity under unnatural conditions of low water activity (anhy-

drous media) and extreme temperature or pH. Relaxed substrate and reaction

specificities can have an important role in divergent enzyme evolution. Nature

may exploit primordial enzymes to evolve and hence catalyze novel reactions in

metabolism; thus enzyme evolvability may be related to promiscuity (Copley 2003;

Gupta et al. 2011). Enzymes have been extensively used outside of their natural

context in the industry. For instance, reactions run under conditions of low water

activity favor ester synthesis instead of hydrolysis (see Chap. 3). Capacity to

promiscuously catalyze reactions other than the ones they evolved for can be an

advantage. Directed evolution of such enzymes (see Chap. 39) promises

improvements in existing catalysts and provides synthetic pathways (green chemis-

try) that are currently not available (Hult and Berglund 2007).

5.3 Regulation

The third important feature of enzymes is their ability to act as regulatory points of

metabolism. Marveling at the metabolic complexity, Jacques Monod observed that

“From a glance at the drawing condensing what is now known of cellular metabo-

lism we can tell that even if at each step each enzyme carried out its job perfectly, the

sum of their activities could only be chaos were they not somehow interlocked so as
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to form a coherent system.” A cell is not a bag of enzymes, and obviously regulating

their enormous catalytic potential is a necessity. We will discuss different strategies

to control reaction rates by regulating enzyme activity in a later section (Part V).

Each enzyme is a structural microcosm capable of catalysis, specificity, and

regulation. Chemical reactions performed by an enzyme occur at specific location

on the enzyme protein called the active site (or catalytic center). Enzyme active sites

are small relative to its total molecular volume. The architecture of active site is

responsible for imparting specificity and catalytic potency to each enzyme. Active

sites are usually clefts and crevices in the protein; they create a unique three-

dimensional microenvironment by (a) aligning an array of amino acid side chains

and cofactors and (b) excluding bulk solvent, i.e., water. Reactants (generally

referred to as substrates) are assembled at the enzyme active site (Bretz and

Linenberger 2012). Once the reaction is complete, the products leave the active

site. For a reversible reaction however, products become substrates and vice versa.

Enzyme active sites may also accommodate inhibitors – molecules structurally

resembling substrates or products.

Just as there may be a compromise between catalytic potency and specificity

(seen with RubisCO, above), the need to optimize regulation may also feature in

enzyme design. Very little comes free in nature; regulation too has its costs. Apart

from the active site, some enzymes may display an additional site – the allosteric site

(allos in Greek means another). Such sites serve a regulatory function when bound

by ligands (a general term used to describe small molecules like substrate, product,

inhibitor, or activator). Allosteric site and active site could exist on the same subunit

(e.g., phosphofructokinase) or on distinct subunits (e.g., aspartate transcarbamylase)

of an oligomeric protein. Ligand binding to an allosteric site may influence the active

site geometry and function. Communication between sites can be achieved by

conformational coupling across the protein matrix. A schematic representing all

these structural features of an enzyme is shown in Fig. 5.2.

We will end this chapter by recalling the performance of enzyme catalysts par

excellence. Reduction of N2 to ammonia serves as an exquisite example. The

conditions used in Haber’s chemical process for making ammonia, employed in
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I

Fig. 5.2 Schematic of an

enzyme showing different

ligand binding sites. Possible

binding to substrate (S),
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is shown. The susceptible

bond in the substrate is shown
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the fertilizer industry, is drastic to say the least! This direct reduction of N2 by

hydrogen gas to form ammonia requires a pressure of 300 atmospheres, a tempera-

ture of 500 �C, and an iron catalyst.

N2 þ H2 ���������������� !
300 atm, 500�C,Fe

2NH3

N2 þ 8Hþ þ 8e� þ 16ATP������������ !
Nitrogenase

2NH3 þ H2 þ 16ADPþ 16Pi

This difficult reaction is performed at ambient conditions of temperature and physi-

ological pH in the legume root nodules by nitrogenase. A fantastic achievement and

a catalytic fete indeed!
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Origins of Enzyme Catalytic Power 6

Understanding enzyme function is an exciting research because diverse and often

unpredictable solutions are developed to perform seemingly impossible tasks.

Enzymes are such powerful catalysts as they lower the height of the activation

energy barrier. How do enzymes bring about this decrease in ΔG6¼? Many excellent

attempts to dissect this into discrete enthalpic and entropic factors have been made.

Rate accelerations are favored when enzyme specifically binds and assembles

substrates at the active site and then provides optimal arrangement of catalytic

groups. This is clearly an entropic (ΔS 6¼) contribution. Stabilization of transition

state through enthalpic (ΔH6¼) factors like select hydrogen bonds, salt links, acid–

base groups, covalent interactions, etc., is another feature. Various tricks that

enzymes employ in achieving catalytic prowess are shown in Fig. 6.1. These

components are best understood through case studies, and we will do this through

representative examples for each.

6.1 Proximity and Orientation Effects

Entropic contributions in accelerating the enzymatic reaction rates are substantial.

This is described by enzymologists variously as approximation, coming together,

spatial relationship, pre-organization, propinquity effect, Circe effect (character from

Odysseus of Homer!), orbital steering, restricted motion, loss of degrees of

freedom, etc.

The reactants in solution have substantial degrees of rotational and translational

freedom. This means a given molecule is an ensemble of many conformational

states. Only one (or few) of these conformations is capable of reaching the transition

state and beyond. By selectively binding to the enzyme active site such a reactant,

conformation is frozen out of many. Clearly on binding to the enzyme active site, the

substrate loses many degrees of freedom – becomes ordered. Recall that entropy is a

measure of disorder or randomness. This entropy loss (ΔS 6¼) is reflected in the

# Springer Nature Singapore Pte Ltd. 2018

N. S. Punekar, ENZYMES: Catalysis, Kinetics and Mechanisms,

https://doi.org/10.1007/978-981-13-0785-0_6

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0785-0_6&domain=pdf


lowering of ΔG 6¼. This entropic cost is paid in part by the substrate binding energy –

the entropic cost of a chemical event is thus shifted to the binding (physical) event!

Apart from freezing the reactant conformation, other consequences of substrate

binding to enzyme active site are important. These are discussed below.

Every enzyme active site is endowed with functional groups (amino acid side

chains or from the cofactor or both) that are involved in catalysis. The three-

dimensional scaffold of the enzyme protein ensures that these groups create a

well-defined pre-organized active site. Binding to such a site brings these catalytic

groups in close proximity and proper orientation with the susceptible substrate

bonds. Any enzyme catalytic group acting on the substrate will now be an intramo-

lecular event. Intramolecular reactions generally proceed much more rapidly than

their intermolecular counterparts. An excellent application of this concept is Cleland

reagent (Cleland 1964). Dithiothreitol (HS-X-SH) is a better reducing agent than two

equivalents of a monothiol (X-SH). Here the oxidation is made intramolecular, and

formation of more number of product molecules (n ¼ 3) confers entropic advantage

(more degrees of freedom!) for the overall reaction.

R1 � S� S� R2 þ X� SHþ X� SH ! R1 � SHþ R2 � SHþ X� S� S� X

n ¼ 3ð Þ n ¼ 3ð Þ
R1 � S� S� R2 þ HS� X� SH ! R1 � SHþ R2 � SHþ X� S� Sð Þ
n ¼ 2ð Þ n ¼ 3ð Þ

Substrate tethering (proximity) and proper orientation of catalytic group(s) for

attack lead to large kinetic advantage. It appears as though the effective local

       Proximity and 
   Orientation Effects

Covalent Catalysis
  (Nucleophilic or
         Electrophilic)

     Stabilization of
   Transition State or
Reactive Intermediate

Metal ion Recruitment

Electrostatics

General Acid-Base
       Catalysis

Enzyme Catalytic 

       Power (∆∆G  )

Fig. 6.1 Various features that enzymes use to achieve reaction rate acceleration
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concentration of the catalytic group is raised enormously. Organic model reactions

have helped to understand many of these features of enzyme catalysis. Examples

illustrating these concepts are discussed below.

The first example in Fig. 6.2a is the typical hydrolysis of phenyl acetate by

sodium acetate (CH3COO
� ions). This is a bimolecular reaction where the ester

and the acetate ion are independent entities. Note that accordingly the rate constant

k1 has units of M
�1 s�1. However, when the –COO� group is built into the same

molecule (phenyl succinate), the reaction becomes intramolecular – and the absolute

value of rate constant (k2 with units of s�1) increases by a factor of 200! A direct

comparison of the two rate constants is difficult because they represent two different

orders of reaction (see Chap. 9 for details). By fixing the acetate concentration (say

[CH3COO
�] ¼ 1.0 M) and assuming pseudo-first-order condition in the first case,

this can be work out. An effective –COO� concentration of 200 Mmay be calculated

for phenyl succinate, while this would be an enormous number of 10,000 M for

phenyl maleate! Achieving such high concentrations by acetate addition is practi-

cally impossible – concentration of glacial acetic acid itself is around 17 M!

We know from the above discussion that when a reaction is made intramolecular,

rate accelerations take place as if the apparent reactive group concentration felt at the

A Carboxylate assisted hydrol ysis of phenyl esters and corresponding rate constants 

O
C

CH
3

O

O
C

O

O

O

O
C

CH
3

O

O
C

O

O

O

+

1 2 3Phenyl succinatePhenyl acetate Phenyl maleate

k1 = 0.002 M-1 s-1 k2 = 0.4 s-1 k3 = 20.0 s-1

B Ester hydrolysis by tertiary amine C Ester hydrolysis by imidazole

O O

NO
2

O
C

CH
3

NH

N

NO
2

O
C

NH

N

O
C

CH
3

O

O
C

N

CH
3

CH
3

O

N
CH

3
CH
3

CH
3

++
versus versus

Fig. 6.2 Organic model reactions exemplifying the proximity and orientation effects that lead

to rate accelerations. Hydrolysis of phenyl esters by carboxylate (A), tertiary amine (B), and

imidazole (C) is shown

6.1 Proximity and Orientation Effects 55



site is enormously raised. Reactions in examples 2 and 3 above are intramolecular;

then why is k3 50 times larger than k2? Because of two methylene groups (no double

bond), phenyl succinate has many rotational degrees of freedom. The cis double

bond in phenyl maleate restricts this motion, and the –COO� is always favorably

oriented for attack – the reaction is entropically more favorable. However, if the

double bond is trans (as with phenyl fumarate), no such rate acceleration occurs.

Two other examples of such rate accelerations due to intramolecular catalysis are

ester hydrolysis by tertiary amine (b in Fig. 6.2) and imidazole (c in Fig. 6.2). The

apparent concentrations felt, by making the reaction intramolecular in these two

cases, are 1300 M and 24 M, respectively.

Enzyme active site generally occupies a small region compared to the total

protein volume. With respect to reactions involving multiple substrates, their proper

assembly on to enzyme active site takes place by a series of bimolecular collisions.

Ultimately, when the reaction occurs at a fully occupied active site, it represents an

intramolecular chemistry. This is an entropically favored situation as more degrees

of freedom are lost! All the reactants (substrates) are bound very close to each other

with their appropriate groups suitably aligned. This proximity and orientation of

reactants effectively increase their local concentration, and profound rate

accelerations are achieved (Jencks 1975; Page and Jencks 1971).

We note that proximity and orientation of reactive groups (both from the

enzyme and the substrate) contribute substantially to rate enhancements. But

what tools are employed by nature to gain this advantage? The formation of a

non-covalent enzyme-substrate complex is the first step in enzymatic catalysis.

Substrates are bound to enzymes by multiple weak interactions – often mediated by

van der Waals forces, hydrophobic interactions, and hydrogen bonds. Hydrogen

bonds are prominent among these as they are directional (Fersht 1987). In fact

strength of a hydrogen bond is a function of its length, orientation, linearity, and

the microenvironment. When multiple hydrogen bonds occur, the effect can be

cooperative and dramatic! Apart from their cooperative effect observed between

two strands of DNA, five well-directed hydrogen bonds define the strength of

avidin–biotin complex. A special kind of hydrogen bond – the low-barrier hydro-

gen bond (LBHB) – has been implicated in some enzymic catalysis (Cleland et al.

1998). LBHBs are short, very strong hydrogen bonds formed when the partner

electronegative atoms sharing the hydrogen have comparable pKa values. Evi-

dence for LBHB formation exists for chymotrypsin catalysis, and this hydrogen is

shared between His57(NH) and Asp102(COO�). This is proposed to help stabilize

the tetrahedral intermediate. Similarly, a LBHB between -OH group (of the sub-

strate lactate) and His195(N, of the enzyme) is observed in lactate dehydrogenase

catalysis. Whatever be the individual pKa of such hydrogen-bonding partners, the

two pKas should transiently match (and the H is equally shared between the

partners!) during the course of each catalytic event for LBHB to form. The

transient formation of this LBHB may provide a convenient intermediate step for

the large pKa change (from +15 for >CHOH of lactate to �5 for >C¼O of

pyruvate) during the catalytic trajectory of lactate dehydrogenase reaction.

56 6 Origins of Enzyme Catalytic Power



6.2 Contribution by Electrostatics

Enzyme active sites are clefts, crevices, or pockets formed by the overall three-

dimensional structure of the protein. Substrate binding to active site accompanies

(a) de-solvation of substrate by replacing the water positions by the pre-organized

polar frame work and (b) exclusion of water from the pocket unless it is a reactant.

Active sites generally exclude bulk water and thus create unique local dielectric

environment. This has profound consequences to the functional group reactivity.

The pKa of a carboxylate may be elevated by low local dielectric constant (Glu35 of

lysozyme has a pKa of 6.3!). Similarly, the pKa of an amino group may vary by

several units from its normal value because of the proximity of charged groups in the

neighborhood (Lys-NH2 of acetoacetate decarboxylase displays an unusually low

pKa of 5.9). Triosephosphate isomerase exploits one of its α-helix dipole to modulate

the pKa of active site His95. Although not exhaustive, the following examples further

illustrate the contribution of electrostatics in enzyme catalysis (Warshel et al. 2006).

Decarboxylation of Hydroxyethyl Thiamine Pyrophosphate Adduct The decar-

boxylation of pyruvate is facilitated by the formation of initial hydroxyethyl thia-

mine pyrophosphate (HETPP) adduct, between thiamine pyrophosphate and

pyruvate. This HETPP adduct is charged, but the charge is diffused due to delocali-

zation of electrons (Fig. 6.3a). Since the active site of pyruvate decarboxylase is
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Fig. 6.3 Electrostatic effects at the enzyme active sites. (A) Hydrophobic active site of pyruvate

decarboxylase facilitates expulsion of CO2 from the HETPP adduct. (B) The oxyanion hole

stabilizes the tetrahedral intermediate in subtilisin catalysis. (C) Negatively charged groups of

glutamate dehydrogenase electrostatically stabilize the bound 2-iminoglutarate
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nonpolar (hydrophobic), this adduct tends to lose charges by expelling CO2. This

electrostatic feature is supported by studies with an analog of HETPP adduct. The

HETPP analog (Fig. 6.3a, where R1 ¼ CH3 and R2 ¼ H) was prepared; its

decarboxylation rate in ethanol is 105-fold faster than in water. This rate is even

faster in other polar aprotic solvents. The model decarboxylation reaction points to a

striking catalytic effect of de-solvation and subsequent charge destabilization at the

enzyme active site.

Oxyanion Hole of Subtilisin During each catalytic cycle, subtilisin (and all other

serine proteases like chymotrypsin, trypsin, etc.) goes through an attack of enzyme-

Ser-OH on to the carbonyl carbon (sp2 hybridized) of the scissile peptide bond. This

leads to an initial “oxyanion” formation where the carbon is sp3 hybridized

(Fig. 6.3b). Stabilization of the “oxyanion” in a special pocket (oxyanion hole) is a

strategy for rate acceleration. Site-directed mutagenesis was used to evaluate the

contribution of this oxyanion stabilization at the active site. Mutant enzyme forms

showed that even after a triple replacement (where the catalytically essential residues

– D32, H64, and S211 – were replaced by Ala), the mutant subtilisin retained the

ability to hydrolyze peptide bonds (at 103–104-fold above the uncatalyzed rates).

This significant residual rate is attributed to the stabilization of oxyanion intermedi-

ate. An Asn residue (N155) contributes significantly to this oxyanion hole of

subtilisin active site.

Selective Enrichment of 2-Iminoglutarate at the Glutamate Dehydrogenase

Active Site There is strong evidence that the reductive amination of

2-oxoglutarate catalyzed by glutamate dehydrogenase proceeds through an

enzyme-bound 2-iminoglutarate intermediate. However, the equilibrium

(2-oxoglutarate + NH3 ⇄ 2-iminoglutarate + H2O) in solution is largely in favor of

2-oxoglutarate. It follows that the enzyme electrostatically stabilizes the bound

2-iminoglutarate complex by utilizing negatively charged groups and hydrogen-

bonding basic groups at its active site (Fig. 6.3c). This results in substantially

increased levels of 2-iminoglutarate ready for reduction. The same negatively

charged enzyme groups while stabilizing the iminium ion (>C¼NH2
+) decrease

the population of bound 2-oxoglutarate (>C¼Oδ-) due to charge repulsion. Better

interaction with 2-methyleneglutarate (>C¼CH2, which is uncharged) at this pocket

may account for its efficacy as a good inhibitor (Choudhury and Punekar 2007).

Electrostatics permits glutamate dehydrogenase to discriminate between iminium

and carbonyl groups and thus forms the chemical basis of ammonia recognition by

the enzyme.

Guidance of Charged Substrates Charge distribution about the active site to

stabilize transition states and/or intermediates is termed electrostatic catalysis.

Besides this, in several enzymes the overall charge distribution of the protein matrix

serves to guide polar substrates to their active sites. Superoxide dismutase (SOD)

and acetyl cholinesterase are two well-studied examples of this “torch of charge

guidance” effect (Getzoff et al. 1992; Silman and Sussman 2008).
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The electrostatic contributions to SOD catalysis were analyzed through calculations

of electrostatic potential and the electrostatic field vectors in the active site channel.

Arrangement of global electrostatic charges in SOD promotes productive enzyme-

substrate interaction through substrate guidance and charge complementarities. The

extensive electrostaticfield directs the negatively charged superoxide (O2
�) substrate to

the bottom of the active site channel (Fig. 6.4). Charge guidance is also suggested from

studies of the enzyme’s dipole and overall electrostatic potential. The maximal rate of

SOD reaction is 2 � 109 M�1s�1, very close to diffusion-controlled limit. This is

remarkable since the active site channel forms only about 10% of the enzyme surface!

Electrostatic forces possibly guide the charged substrate and enhance oriented diffu-

sion. The electrostatic field vectors indicate that attraction of O2
� is a long-range

process, occurring even beyond the active site channel!

Similarly, acetyl cholinesterase also has a strong electrostatic dipole (but of

opposite orientation to that of SOD!). This dipole is aligned with the deep gorge

leading to its active site, so that the positively charged acetylcholine is drawn to the

active site by electrostatic field. By comparison, a structurally related lipase (from

Geotrichum candidum) has a poor and markedly different dipole orientation. Charge

guidance and electrostatics may not operate in the case of lipase because the lipase

substrate is neutral.

Electrostatic forces that are felt at the enzyme active site are the effects of the

extended environment of that protein – including dipoles from the second shell and

much beyond. Mutations at locations remote to active site, yet significantly affect

enzyme activity, implicate a role for electrostatics in catalysis.
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Fig. 6.4 Electrostatic torch of guidance effect in superoxide dismutase and acetyl cholines-

terase. The gray block arrows indicate the overall enzyme electrostatic field vectors with respect to

the active site present at the bottom of the channel/gorge. Small arrows represent various

contributing dipoles to the overall field vector
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6.3 Metal Ions in Catalysis

A third of all the known enzymes require metal ions for their function. Such metal

ions may function as determinants of protein structure, but more importantly they

could directly participate in the catalytic process. Metal ions may bind to substrate

and as a consequence enhance its interaction with the enzyme – by stabilizing and

presenting one specific substrate conformation for catalysis. Aspects of metal chem-

istry and various roles played by metal ions in redox biochemistry are found in Part

IV (Chaps. 32 and 33). In this section, however, the emphasis will be on their role in

rate accelerations. Metal ions may be viewed as “super acids” because they can

(a) have charge density greater than +1, (b) be present at concentrations higher than

those achieved by protons (H+ ions) around neutral pH, and (c) coordinate with

several groups to act as templates. They are recruited in enzyme active sites as tools

for electrostatic catalysis (see above). In terms of enzyme catalysis, metal ions

contribute to reaction rate accelerations in the following ways.

Charge Shielding A number of anionic (negatively charged) compounds act as

substrates only when present in their divalent metal ion complexes. Enzymes acting

on citrate, ATP, etc. are some examples of this kind. Requirement of Mg2+ for most

ATP reactions (nucleotide triphosphate reactions in general!) led to the recognition

that Mg-ATP complex is the true substrate for such enzymes (also see Chap. 32).

Apart from orienting the highly flexible oligomeric phosphates of ATP, the divalent

metal ion partly neutralizes (and shields!) the negative charges on the polyphosphate

chain. Charge shielding becomes particularly important when an anionic nucleophile

has to attack the substrate during catalysis. Charge repulsion is expected to reduce

the efficacy of negatively charged attacking groups, while neutral nucleophiles are

not always feasible (especially due to pH constraints). For example, a kinase active

site nucleophile (anionic) can easily approach the negatively charged polyphosphate

of ATP (or any other NTP) – when it is complexed with Mg2+ ions (Fig. 6.5).

Charge Stabilization An important role for metal ions in catalysis is to serve as an

electrophilic catalyst (Lewis acid), by stabilizing a negative charge on the reaction

intermediate. This is better achieved by multivalent metal cations than mere protons.
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Three different enzyme chemistries exemplify this aspect of metal catalysis:

(a) decarboxylation of oxaloacetate is catalyzed by divalent metal ions. For instance,

Mn2+ chelated by oxaloacetate electrostatically stabilizes the developing enolate ion

during reaction (Fig. 6.6a). Indeed most oxaloacetate-decarboxylating enzymes do

require a divalent metal ion for activity. Decarboxylation of oxalosuccinate by

isocitrate dehydrogenase similarly requires Mn2+. (b) Increased electron delocaliza-

tion to stabilize the enolate intermediate also occurs during aldol cleavage. Class II

aldolases (from fungi) usually contain Zn2+ to polarize the carbonyl oxygen of the

substrate (Fig. 6.6b). (c) Zn2+ ion of carboxypeptidase A is coordinated to the

carbonyl oxygen of scissile peptide bond (Fig. 6.6c). This facilitates the polarization
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of carbonyl group, and stabilizes negative charge on the oxygen, during reaction.

Zinc ion in carboxypeptidase A also enhances the nucleophilicity of coordinately

bound water for attack (see below).

Enhance Nucleophilicity of Water Metal ions may generate a nucleophile by

increasing the acidity of a nearby molecule. When this molecule happens to be

water, a reactive hydroxide is generated. Water molecule bound to a transition metal,

in its inner coordination sphere, is a better source of OH� than bulk water. Metallo-

hydrolases exploit this feature for catalysis and impart better nucleophilic nature to

water. Carbonic anhydrase provides a good example of this effect. When bound to

the positively charged Zn2+ ion, the pKa of water molecule is reduced from 15.7 to

7.0. Thus a substantial concentration of hydroxide ion (metal bound!) is generated at

near-neutral pH (Fig. 6.7a). Carbonic anhydrase utilizes the reactivity intrinsic to a

zinc-bound hydroxide ion in its catalysis.

Arginase employs a bimetallic (Mn2+) cluster to hydrolyze arginine to form

ornithine and urea. It appears that two metal ions are better than one in generating

the hydroxide. A water molecule is sandwiched between two Mn2+ ions (Fig. 6.7b)

and is made sufficiently nucleophilic to attack the guanidinium group. A variation on

this theme is the H. pylori enzyme with a bimetallic Co2+ cluster. In accordance with

differences in the chemical reactivity of Mn2+ and Co2+, this cobalt arginase has a

different pH optimum. Two other examples of bimetallic centers are jack-bean

urease with two Ni2+ ions and the E. coli alkaline phosphatase with two Zn2+ ions.

6.4 General Acid–Base Catalysis

Majority of the enzyme-catalyzed reactions involve one or more proton transfers and

hence general acid–base chemistry permeates most of enzymology. Almost all these

proton transfers are catalyzed. Regardless of what other tools an enzyme catalyst
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exploits, general acid–base catalysis is a common ploy. Rate accelerations effected

by this mode of catalysis may involve abstraction, donation, or movement of H+

ions. These proton transfers – the prototropic shifts –may involve (i) a single general

base or (ii) multiple ionizable groups that relay the proton from one atom to another.

Among numerous examples of general acid–base catalysis include glucose isomeri-

zation, enolization of pyruvate, lactam–lactim interconversion of purine–pyrimidine

bases, pyridoxal phosphate chemistry with amino acids. Etc. While almost every

enzyme recruits acid–base catalysis, the concept is best illustrated through a few case

studies.

Mutarotation in glucose is facilitated by an acid or a base. The interconversion of

α-D-glucose and β-D-glucose (via the linear form) is subject to acid–base catalysis

as shown in Fig. 6.8a. The ring closure to form the hemiacetal may occur through the

attack of oxygen on either face of the C1 carbonyl. Similarly a keto-enol

tautomerization is facilitated by general base, general acid, or both. For instance,

the developing negative charge on carbon (the carbanion-like transition state) can be

stabilized by the protonation of the oxygen (Fig. 6.8b). In both these examples

proton donation (acid catalysis) or proton abstraction (base catalysis) may occur
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independently. However, the two events could occur in concert. It is also possible

that the same acid–base group is involved in the prototropic shift – a net proton

transfer from one atom to the other. 1,3-prototropic shifts (where a proton is moved

from the first atom to the third) are quite common during enzyme catalysis.

Enolization of pyruvate (as represented in Fig. 6.8b) is one such case where proton

shifts between C3 of pyruvate and the carbonyl oxygen.

That biological catalysis has primarily/predominantly originated in an aqueous

environment is consistent with this. According to the Bronsted definition of acids

and bases, any species of a functional group that has a tendency to lose a proton is an

acid. This definition eminently suits our understanding of the role of acid–base

groups at the enzyme active site. Therefore, the pH dependence of enzyme activity

is a reflection of its ionizable groups involved in binding and/or catalysis (see Chap.

24 for a detailed treatment). Ionizable amino acid side chains of the enzyme protein

are typically involved in such catalysis. These could be through concerted action of

acid–base groups on the enzyme. Most hydrolytic enzymes rely on general acid–

base catalysis as a tool. Acid proteases (such as pepsin) and glycosidases (like

lysozyme, cellobiohydrolase, and amylase) are some well-documented examples.

In accord with two carboxylate groups as catalytic residues, these enzymes exhibit

acidic pH optima. The Glu35 (-COOH) and Asp52 (-COO�) form the catalytic

residues of lysozyme active site (Fig. 6.8c). Glu35 (acting as general acid) facilitates

bond cleavage by protonating the glycosidic oxygen. Ribonuclease A (RNase A)

active site however displays two His residues – His12 as general base and His119 as

the general acid (Fig. 6.8d). Their roles are reversed during 20,30-cyclic intermediate

hydrolysis, and the enzyme regains its original ionization state. RNA is alkali labile –

hydrolyzed by general base catalysis. However, the rate accelerations achieved by

the combined action of two His residues (at the RNase A active site) are many orders

of magnitude higher.

The nature and chemical reactivity of important acid–base groups in enzyme

catalysis are extensively covered in a later section (see Chap. 30).

6.5 Covalent Catalysis

In many reactions, at some stage during catalysis, an enzyme-substrate covalent

intermediate may occur. This catalytic trick may even follow a different, more facile

reaction path than the uncatalyzed one. An enzyme could break down a complex

reaction into two or more simple ones – each step with its own activation energy

barrier. However these new barriers are lower than that of the uncatalyzed reaction.

This is the crux of covalent enzyme catalysis.

A covalent bond could be established between the enzyme and the substrate in

one of the two ways – [a] an enzyme nucleophile may attack an electron-deficient

center on the substrate or [b] an enzyme-bound electrophile could be attacked by the

electron-rich center of the substrate. Side chains of many amino acid residues are

known to participate in nucleophilic catalysis by forming covalent enzyme-substrate
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intermediates (Table 6.1). It has been possible to trap and directly demonstrate the

existence of few of these intermediates. The role of nucleophilic catalysis by Ser195

(-OH) of chymotrypsin is very well-established (Carter and Wells 1988). Schiff base

formation in fructose 1,6-bisphosphate aldolase is another classic example. More

recently, the “Phillips mechanism” for lysozyme was revised based on the

electrospray ionization mass spectrometry (ESI-MS) evidence in combination with

a E35Q mutant of lysozyme (Kirby 2001). Active site residue Asp52 acts as a

nucleophile and forms a covalent bond to the C1 carbon of the substrate glycoside.

Enzymes (being proteins) have a choice of many nucleophilic groups (side chains

of amino acid residues) but have little to offer in terms of good electrophiles. This is

one of the reasons why a number of small molecules (cofactors and prosthetic

groups) are recruited by nature to complement an apoenzyme – resulting in a

functional holoenzyme. These molecules act as temporary electron sinks during

catalysis. Electrophilic recruitment may involve (a) cofactor molecules like pyri-

doxal phosphate, thiamine pyrophosphate, etc. or (b) simple apparatus like Schiff

base, protein-bound pyruvate, or dehydroalanine. The nature and chemical reactivity

of important nucleophiles and electrophiles are discussed in detail, in a later section

(Chaps. 31 and 35).

6.6 Transition State Binding and Stabilization

The substrate is held in a unique active site environment by enzyme groups through

proximity orientation and electrostatics. It may be argued on similar grounds that the

active site discriminates between the substrate and the transition state. Catalysis is

Table 6.1 Catalysis involving covalent enzyme-substrate intermediates

Amino acid [side

chain] Intermediate Examples

Ser [–CH2OH] Acyl-enzyme Chymotrypsin, lipase, acetylcholinesterase

Phospho-enzyme Phosphoglucomutase

Thr [–CH(CH3)

OH]

Phospho-enzyme Phosphotransferases

Tyr [–PhOH] Phospho-enzyme DNA integrase, topoisomerase

Cys [–SH] Acyl-enzyme Glyceraldehyde 3-phosphate dehydrogenase,

acyltransferases, papain

Asp/Glu [–

COOH]

Enzyme-ester Epoxide hydrolase, haloalkane dehalogenase

Glycosyl-enzyme Lysozyme

His [-imidazole-

NH]

Phospho-enzyme Glucose 6-phosphatase, succinyl-CoA synthetase

Lys [–NH2] Schiff’s base Acetoacetate decarboxylase, aldolase (type I),

transaldolase
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thus a consequence of the preferential binding (and therefore stabilization) of the

transition state. Linus Pauling lucidly stated it first: “I think that enzymes are

molecules that are complementary in structure to the activated complexes of the

reactions that they catalyze,. . .” in his 1948 discourse (Pauling 1948).

Enzyme may be viewed as a device that preferentially binds/stabilizes the transi-

tion state (TS) rather than the ground state of the reactant (substrate). Although the

TS is of highest free energy and is extremely unstable, we can visualize the

consequences of its preferential binding to the enzyme. The two binding equilibria

and relevant kinetic and thermodynamic parameters are shown in Table 6.2.

If an enzyme binds (and/or stabilizes) it’s TS better than S, then one expects that

ΔG�
TS is more negative than ΔG�

S. The two ΔG� values are related to their

corresponding ΔG 6¼ values, and the ratio of the rates of catalyzed versus the

uncatalyzed reaction (kcat/kuncat) is related to KS/KTS. More tightly an enzyme

binds its reaction TS relative to the substrate (i.e., the smaller the KTS compared to

KS) the greater is the rate acceleration. The magnitude of ΔG�
TS�ΔG�

S therefore

significantly contributes to the overall decrease in activation energy (�ΔΔG6¼)

during catalysis. Recalling (from Chap. 5) that kcat
kuncat

¼ 10
ΔΔG 6¼

2:303RT , a rate enhancement

factor of ~106 may be estimated for an enzyme that binds its TS complex with

8.0 kcal.mol�1 greater affinity at 25�C, than its substrate. This is worth two hydrogen

bonds that can form only in “E.TS” but not in the “ES” complex! LBHBs may be one

such tool for the TS to make better contacts with the enzyme. There are at least two

consequences of the tighter binding of an enzyme to its TS. Devices that are designed

to appreciably bind TS should catalyze the corresponding reaction! The concept of

antibodies against TS mimics – called abzymes or catalytic antibodies – arose from

the seminal idea of Linus Pauling. Secondly, TS analogs (stable molecules that

resemble the TS) should be potent competitive inhibitors of the enzyme. Such TS

analogs, as a corollary, provide insights into catalytic mechanism (Mader and

Bartlett 1997; Radzicka and Wolfenden 1995).

It is not necessary for a good substrate to have high affinity for the enzyme as

long as the corresponding TS form does so. The concept “underestimation of

binding energy (in substrate binding) is utilized for catalytic rate acceleration”

has also been variously recognized in the enzyme literature. These include

(a) destabilization of the ground state by the enzyme, (b) rack mechanism leading

to strain and distortion in the substrate molecule, (c) induced fit versus nonproduc-

tive binding, and (d) sequestration of the TS (intermediate) at the active site. The

following select examples illustrate the concept of transition state binding and

stabilization by the enzyme.

Table 6.2 Differential binding of enzyme to substrate and transition state

Equilibrium Dissociation constant ΔG� Rate constant

E + S Ð E.S KS ΔG�
S kuncat

E + TS Ð E.TS KTS ΔG�
TS kcat
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Strain and Distortion Ferrochelatase catalyzes the formation of heme by inserting

Fe2+ into protoporphyrin IX. The iron entry requires that the planar porphyrin be

bent. Indeed the enzyme binds the porphyrin substrate in a distorted form to facilitate

iron entry. Lysozyme is another example of this kind. The substrate glycosidic sugar

(the N-acetyl muramic acid, ring D) is bound by the enzyme in a distorted/strained

half-chair conformation (Fig. 6.9a). It is worth noting that the sugar residues at the

other five subsites of lysozyme are in the normal, chair conformation. Introducing

strain in the substrate glycosidic residue appears to be a feature of many

glycohydrolases.

Preferential TS Binding According to Richard Wolfenden, enzymatic reaction

transition state presents a “moving target.” The TS develops and disappears very

rapidly along the reaction coordinate. One could however build stable structures that

resemble the TS – enzyme may bind them in preference to either the substrate or the

product of that reaction (Radzicka and Wolfenden 1995). Seeking TS mimics as

powerful enzyme inhibitors is an active enterprise in drug discovery. Some of them

like the α-glucosidase inhibitor acarbose (Fig. 6.9b) have matured into useful drugs.

Pepstatin inhibits the aspartyl proteases (such as pepsin and rennin, in nM range)

because of the unusual amino acid statine in its structure. It is thought that the statine

structure mimics the tetrahedral intermediate (TS) formed during catalysis

(Fig. 6.9c). Pyrrole-2-carboxylate resembles planar TS of proline racemase and is a

competitive inhibitor (Fig. 6.9d); it binds the enzyme with 160-fold better affinity

than proline itself. Similarly, 20-carboxy-D-arabinitol 1,5-bisphosphate is a powerful

TS inhibitor of ribulose bisphosphate carboxylase (RubisCO) as it is the analog of

carboxyketone intermediate (Fig. 6.9e). As a last example, we consider adenosine

deaminase that catalyzes the irreversible deamination of adenosine to inosine. The

enzyme is strongly inhibited by analog of an unstable tetrahedral intermediate –

formed with a change of hybridization from sp2 to sp3 at C-6 of adenosine. Nebularine

1,6-hydrate (Fig. 6.9f) binds the enzyme with a KI of 3� 10�13M,whereas the KM for

adenosine is 3� 10�5M. In comparison, 1,6-dihydronebularin is a poor inhibitor with

a KI of 5.4 � 10�6 M. The lone –OH on the tetrahedral C-6 of the purine contributes

approximately 10 kcal/mol (at 25�C) in enzyme binding!

Protection of TS (Intermediate) Intermediates in some chemical reaction paths

are either reactive or unstable. Enzymes protect/stabilize such species by embed-

ding them in their active sites. One such reactive intermediate occurs during the

interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate.

The cis-enediol formed in the triose phosphate isomerase reaction has a tendency

to eliminate phosphate and form methyl glyoxal (Fig. 6.10). A short loop of

polypeptide closes the active site and protects the reactive intermediate from

bulk solvent – closing of this lid prevents methyl glyoxal formation. A mutant

enzyme without this loop is a poor catalyst and indeed produces significant

quantities of methyl glyoxal.
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Enzymes bring about rate accelerations by recruiting a number of tricks

highlighted in this chapter. They include features that bring down the activation

energy of the reaction by a combination of enthalpic and entropic factors; these

factors contribute in different measure for each enzyme. Two common examples are

used to illustrate this concept in the next chapter.
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Which Enzyme Uses What Tricks? 7

Enzymes bring about reaction rate acceleration through a number of tricks. Of the

tricks used to bring down activation energy, some are entropic, and others are

enthalpic in nature. Various tools are recruited and relied on by each enzyme in

different proportions. All these are within the realm of simple physical and chemical

explanations – the combined effect however is quite dramatic! While there is no

common formula, each enzyme uses a combination of these tricks to achieve

the objective (Fig. 7.1). Indeed, each enzyme is a biological experiment, just the

same way evolutionary biologist Ernst Mayr described evolution of each species.

Lysozyme Hen egg white lysozyme is a well-dissected example of catalytic

principles. A large number of contacts to the substrate (peptidoglycan) provide

good binding. Through these specific interactions, both Glu35 and Asp52 are

brought in proximity to the susceptible glycosidic bond and properly oriented

for catalysis. Being present at the same active site, the two –COOH groups

behave quite differently – Glu35 is a general acid–base, while Asp52 is a

nucleophile. The pKa of Glu35-COOH is attenuated to 6.0 (from the expected

pKa of 4.3). The notion of Asp52-COO� stabilizing the developing carbenium

ion on the C1-anomeric carbon was recently revised to indicate its role as a

nucleophile in covalent catalysis (see section 6.5 in the previous chapter) (Kirby

2001; Vocadlo et al. 2001). Straddling the -(NAM-NAG)n- polymer across the

lysozyme active site cleft involves binding sub-sites for each sugar residue

(Fig. 7.1). The binding of the fourth sugar residue is unfavorable and the

weakest. It is thought that interactions at other sub-sites are exploited to accom-

modate the D sugar in a distorted, half-chair conformation – resembling the

TS. Thus except for metal ion catalysis, all other tricks are brought to bear on its

substrate by lysozyme.

Proteases Each catalytic solution in biology is unique to the reaction in question.

But there can be different possible solutions to the same problem. Hydrolysis of a
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peptide bond is a case in point. Proteins and peptides constitute significant biomo-

lecular components in all life forms. Consequently, peptide bond hydrolysis is also a

universal requirement.

The problem associated with peptide bond hydrolysis is threefold: (a) water being

a poor nucleophile needs to be activated for attack, (b) the amine product resulting

from peptide hydrolysis is a poor leaving group, and (c) amide (peptide) bonds are

quite stable due to resonance (partial double bond character). In comparison, an ester

is about 3000 times more reactive, and a p-nitrophenyl ester is 300,000 times more

so! Nature has invented suitable tools to overcome these three hurdles. Rate

accelerations of up to 1010 times the uncatalyzed rates have been achieved. Peptide

bond hydrolysis is an addition–elimination reaction that goes through a tetrahedral

reaction intermediate. In fact, formation of tetrahedral intermediate ensures that the

peptide bond is weakened by eliminating resonance stabilization (no partial double

bond!). The chemical apparatus at the protease active site provides suitable func-

tional groups to interact with C, N, and O atoms of the peptide bond. These include

(1) a nucleophile-like water (H-OH), Ser-OH, or Cys-SH to attack the carbonyl

carbon, (2) a general base to accept the proton from the nucleophilic –OH, (3) an

electrophilic group(s) to stabilize the oxyanion formed, and (iv) a general acid to

protonate the amine – which is a poor leaving group. These features create the

catalytic forces common to all proteases and are schematically shown in Fig. 7.2.

As expected, protease active site extensively interacts with the substrate and

freezes one of its conformations. Some proteases have distinct sub-sites to accom-

modate and bind substrate amino acid residues around the scissile peptide bond. The

binding specificity may feature binding pockets for aromatic (chymotrypsin),

DGbinding=  -1.79    -2.94   -5.69   +2.89   -1.69    -1.69

                                      (in kcal mol-1)
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Fig. 7.1 Substrate binding
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positively charged (trypsin), small R (elastase) groups or C-terminal (carboxypepti-

dase A) and N-terminal (leucine aminopeptidase) amino acid residues. Protease

active sites typically include features that allow for the activation of water or another

nucleophile, polarization of the peptide carbonyl group, and subsequent stabilization

of a tetrahedral intermediate. Table 7.1 lists the different catalytic forces acting at the

active sites of four major protease classes.

The problem of peptide bond hydrolysis has been solved ingeniously by nature.

The result is different protease classes, namely, serine proteases, cysteine proteases,

metallo-proteases, and acid proteases. The non-isolable high-energy intermediate –

the tetrahedral transition state – is generated and stabilized in different ways in these

enzymes. The catalytic triad (Asp!His!Ser-OH) of serine proteases must be an

effective apparatus to hydrolyze peptide bonds (Hedstrom 2002). It has been inde-

pendently selected, three different times throughout evolution. Chymotrypsin, sub-

tilisin, and carboxypeptidase II exhibit very different protein architecture. But they

all contain the active site catalytic triad – an excellent example of convergent

evolution (the intrinsic chemical constraints to build a catalyst has led evolution to

converge on equivalent solutions independently and repeatedly). Serine proteases

like chymotrypsin, trypsin, and elastase, on the other hand, represent similar ancestry

and are examples of divergent evolution (all three derived from a common ancestral

homologous gene but diverged to perform different functions).

Table 7.1 Catalytic tricks in four different protease groups

Feature Serine protease

Cysteine

protease

Aspartyl

protease Metallo-protease

Proximity and orientation

Yes Yes Yes Yes

Electrostatics

Oxyanion hole Oxyanion

hole

Asp-COOH

to polarize

carbonyl

Zn2+ to polarize carbonyl

Acid–base catalysis

Yes Yes Yes Yes

Nucleophile used

DHS catalytic triad;

Ser-OH

His-Cys-SH H-OH

activated by

asp-COO�

H-OH activated by Zn2+

(or Glu-COO�)

Covalent catalysis

Acyl enzyme Acyl

enzyme

No No (Yes)

Transition state binding

Tetrahedral

intermediate

Tetrahedral

intermediate

Tetrahedral

intermediate

Tetrahedral intermediate

Examples Chymotrypsin,

subtilisin,

carboxypeptidase II

Papain,

caspase,

cathepsin C

Pepsin, renin,

HIV-1

protease

Carboxypeptidase A,

thermolysin, leucine

aminopeptidase
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Structure and Catalysis: Conformational
Flexibility and Protein Motion 8

While enzymes can be studied from the viewpoint of (a) the active site environment,
(b) kinetic mechanism, and (c) chemical mechanism, the enzyme is a unit, and all
these approaches tell valid but partial tales. A complete understanding of enzyme
mechanism requires a correlation of these and other information, like enzyme
structure and its dynamics. Although chemical mechanisms have been elucidated
for many enzymes, how they achieve a catalytically competent state has become
approachable only recently through experiments and computation. Synergy between
structure and plasticity results in the unique power of enzymes. Structural enzymol-
ogy aims to address these catalytic motions in detail.

Structural Enzymology This aspect of enzymology is concerned with molecular
architecture of enzymes, especially how they acquire their unique catalytically
competent structures and how alterations in these structures affect their function.
This subject is of great interest to enzymologists because it is only when proteins
fold into specific three-dimensional shapes that they are able to perform catalytic
function. Amino acids are joined via peptide bonds; this bond has partial double
bond characteristics and is almost always in the trans conformation. The primary
structure (amino acids covalently joined in a particular order through peptide
bonds in the polypeptide) dictates the higher-order structures – as elegantly
demonstrated with RNase A folding by C. Anfinsen (see Table 2.2) (Anfinsen
1973). The polypeptide sequence locally folds into secondary structures like
α-helices, β-sheets, or random coils. These in turn fold into the polypeptide tertiary
structure. The complete tertiary structure of an enzyme may consist of a single
domain or a few domains juxtaposed in a suitable arrangement. Many proteins are
oligomers consisting of subunits, and this defines their quaternary structure.
Hemoglobin is a α2β2 tetramer (Fig. 8.1), while aspartate transcarbamoylase has
a 3R2-2C3 architecture (with 12 subunits where R is regulatory subunit and C is a
catalytic subunit; see Chap. 37 for more details).
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Structural details of an enzyme, the largely unchanging three-dimensional forms
as also the conformational flexibility with associated mechanical motions, provide
valuable clues in understanding the basis of catalysis. Toward this end, structure
determination methods contribute immensely to the understanding of enzyme
mechanisms. The X-ray crystallography has provided many insights to enzyme
structure function, and a few historically important ones are listed below.

• Lysozyme (from hen egg white) was the first enzyme whose crystal structure
(X-ray diffraction) was solved by D. Phillips in 1965. Co-crystallization with its
substrate analog (GlcNAc)3 provided considerable insight into the enzyme mech-
anism. This was the first example of structure providing clues to the mechanism
of enzyme action. The so-called Phillips mechanism proposed the role of Glu-35
and Asp-52 in catalysis. This “Phillips mechanism” was further sorted and
revised after almost 50 years using another structural technique (electrospray
ionization mass spectrometry, ESI-MS) in combination with a E35Q mutant of
lysozyme (Kirby 2001; Vocadlo et al. 2001). It was shown that active site residue
Asp52 acts as a nucleophile and forms a covalent bond to the C1 carbon of the
substrate glycoside.

• Another model enzymewhose three-dimensional structure was established (in 1967
by David Blow’s group) was bovine pancreatic α-chymotrypsin (Matthews et al.
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Fig. 8.1 Range of conformational changes relevant to enzyme function. (A) A LBHB between
Asp102 and His57. (B) Flexible loop of triose phosphate isomerase to lock up the substrate.
(C) Domain movement and substrate-induced fit. (D) The R (oxy) and T (deoxy) states of
hemoglobin tetramer with two distinct positions of its α1β1 dimer relative to the α2β2 dimer
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1967).With this structure, the catalytic triad (Asp-His-Ser) typical of somany serine
proteases was discovered (Perona and Craik 1995). Whether the N-3 hydrogen on
the imidazole of His-57 is actually transferred to Asp-102 during catalysis could not
be ascertained by X-ray crystallography – because H atoms are too small to be
resolved by this technique. Additional structural tools – like neutron diffraction
studies with deuteriated His-57 and 15N NMR analysis – confirmed later that N-3
hydrogen actually remains attached to His-57. It is this H atomwhich participates in
the low-barrier hydrogen bond during chymotrypsin catalysis.

• A super-secondary structure consisting of a parallel sheet formed by three
extended parallel β-sheets connected by α-helices (the β-α-β fold) was first
discovered in 1970 in M Rossmann’s Laboratory. This motif forms the nucleotide
binding domain of NAD-dependent lactate dehydrogenase. Similar alternating
motif of β-α-β-strand secondary structures (known as the Rossmann fold) is found
in most enzyme proteins that bind nucleotide cofactors FAD, NAD+, and NADP+

(Laurino et al. 2016).

Over the years, many more enzyme structures have been solved and mechanisms
better understood. Improvements in X-ray diffraction methodology and the ease of
heterologous expression of almost any protein in E. coli (with or without an affinity
tag for purification!) have accelerated the enzyme structure elucidation since 1980s.
Besides X-ray crystallography, other structural methods have also significantly
contributed to our understanding of enzymes. Many proteins do not always crystal-
lize easily, especially when parts of the structure are flexible or the complex has
structural heterogeneity. In such cases, methods like cryoelectron microscopy (cryo-
EM) were developed to obtain high-resolution 3-D images of proteins, and structures
of many enzymes like glutamine synthetase, β-galactosidase, isocitrate dehydroge-
nase, and glutamate dehydrogenase are available now (Vonck and Mills 2017). It is
beyond the scope to cover extensively on all the tools available to study the structural
aspects of enzymology. However, Table 8.1 lists the more commonly used methods
along with comments on their strengths and constraints.

Many of the structural methods listed above provide snapshots of the enzyme
protein. Catalysis being a dynamic kinetic process of such information is of limited
value. Therefore, time-resolved spectroscopic tools are being developed with many
of these methods to capture the dynamics of the enzyme catalysis.

Conformational Flexibility and Enzyme Catalysis The native structure of a
protein is simply the most thermodynamically stable conformation accessible to
the folding polypeptide chain. As such polypeptide chains have many degrees of
freedom, it is likely that the molecule has several other accessible conformations
with almost as low ΔG� of formation as the native structure. Consequently a
population of rapidly equilibrating stable conformations for the same protein is
possible. For instance, a protein could have two conformations – the native structure
and another conformation – in equilibrium with each other. Crystallographic evi-
dence is available for two conformational states of hemoglobin, aspartate
transcarbamylase, hexokinase, citrate synthase, and triose phosphate isomerase.
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Table 8.1 Methods for structural analysis of enzymes

Technique/method Information/outcome Constraints

High resolution

X-ray diffraction Complete 3-D structure at atomic
resolution

Requires high purity crystalline
protein; snapshots with limited
time resolution

Cryoelectron
microscopy

3-D structure with detailed subunit
arrangement; works with soluble
proteins, without crystallization
needs

Resolution of small protein
structures; need further
improvement

Nuclear magnetic
resonance (NMR)
spectroscopy

Complete 3-D structure at atomic
resolution; structural dynamics,
loop flexibility; side-chain
movements and ionization of
residues; ligand binding

Limited to small-sized proteins;
larger sample size; kinetics
possible but at longer timescales

Global features

UV-Visible
spectroscopy

Gross structural changes and ligand
binding; kinetics possible

Sample purity and composition
(availability of intrinsic
chromophores)

Fluorescence
spectroscopy

Gross structural changes and ligand
binding; kinetics possible; excellent
sensitivity

Sample purity and composition;
availability of fluorophores
(intrinsic or extrinsic)

Circular dichroism
(CD) spectroscopy

Overall secondary structure details
and dynamics; environment change
effects

Sample purity and size

Mass spectrometry High-resolution molecular mass
characterization and sequencing of
proteins

Sample processing and purity

Dynamic light
scattering

Size distribution profile;
aggregation behavior; effective
particle diameter

Presence of small impurity

Calorimetry Protein folding (differential
scanning calorimetry, DSC);
thermodynamic parameters of
interactions in solution (isothermal
titration calorimetry, ITC)

Only overall interaction data

Hydrodynamic

Analytical
ultracentrifugation

Shape and molecular mass of the
enzyme protein

Only gross hydrodynamic
information

Gel filtration
chromatography

Molecular weight of the native
enzyme protein

Only gross hydrodynamic
information

Gel
electrophoresis

Molecular weight and gross
quaternary structure (native,
denatured, and cross-linked
proteins)

Only gross hydrodynamic
information

Chemical

Chemical
modification

Amino acid residues relevant for
structure/function

Supporting evidences required

Supporting evidences required

(continued)
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Often the two states represent the unliganded conformation (most stable in the
absence of a specific ligand) and liganded conformation (most stable with one or
more specific ligands bound to it). In any case, if two conformations of a protein
exist in a definite equilibrium, then we could also define an equilibrium constant
for the same. This was invoked as one of the mechanisms for allostery in
regulating enzyme activity (the R and T states of the Monod–Wyman–Changeux
model; see Chap. 37).

An enzyme active site can accommodate either the substrate or the product of the
reaction it catalyzes. Also, S and P are distinct chemical entities but are structurally
related. For instance, glucose and glucose-6-phosphate (in hexokinase reaction) differ
by a phosphate group – the rest of the sugar structure is by and large identical.
Whatever be their individual affinities, S and P have to interact with (and hence be
complementary to) the enzyme pocket. Therefore, an enzyme cannot be a rigid
structure (“lock for a key”) but exhibit local conformational changes – in the vicinity
of the active site at least! In order for the enzyme to participate in catalysis, protein
motion (however small!) and conformational plasticity are a must. Most enzymes
handle a substrate that is larger than an electron (with the exception of cytochromes!).
In all these cases the space-filling needs of reactants and products are obviously
different in the enzyme active site. Since the enzyme has to reach the TS, starting
from either reactant or product, some things have to move. Conformational flexibility
and mechanical motion of the enzyme protein are thus a necessity. Enzymes may
therefore be also viewed as dynamic mechanical devices.

For many enzymes, snapshots of conformations that are sampled during cataly-
sis have been obtained using ligands, substrates, and inhibitors. The protein
motions promoted by such ligand binding are most interesting. Intrinsic motions
along an enzymatic reaction trajectory could be monitored through X-ray
crystallography, NMR, single-molecule FRET (fluorescence resonance energy
transfer) and molecular dynamic simulations. A range of conformational changes

Table 8.1 (continued)

Technique/method Information/outcome Constraints

Site-directed
mutagenesis

Amino acid residues important in
structure, active site binding, etc.

Hydrogen–
deuterium
exchange

Solvent accessibility of various
parts of the enzyme molecule;
protein tertiary structure; folding
pathways characterization

Involved experimentation

Computational

Protein structure prediction Tools improve with better database
and availability of computational
time

Molecular dynamics simulation;
molecular docking

Computational time intensive
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are observed and are relevant to enzyme function (Table 8.2). These differ in the
extent to which the changes transmit and extend from the active site.

Orbital Steering and Small Structural Changes Local protein motion at the
enzyme active site must occur. Consequences of small conformational changes are
profound and are easily detected by the discriminatory power of enzymes. Orbital
overlap produced by optimal orientation of reacting orbitals play major quantitative
role in the catalytic power of enzymes. In a large measure, the ability of enzyme to
maximize orbital steering contributes to catalysis. Often such conformational
changes are barely detectable by the best physical tools and structure elucidation
methods! An interesting question was posed by Koshland – “How small a confor-
mational change is big enough?” A fraction of an Å shift in an active site group of
NADP-isocitrate dehydrogenase is “big enough” to be functional through large
catalytic consequences (Koshland 1998; Mesecar et al. 1997). Chymotrypsin active
site has a catalytic triad of Asp-His-Ser. The normal hydrogen bond between His57
and Asp102 goes through a low-barrier hydrogen bond (LBHB) during the catalytic
cycle (Fig. 8.1). A short contact distance is necessary for an LBHB to form. Thus the
two heteroatoms (N of His and O of Asp) are drawn close together. This is again an
example of movement, of atoms/groups during catalysis, in sub-Angstrom scale.
Ketosteroid isomerase binds to its substrate through hydrogen bonds that tighten up
as the TS is approached. One of them is a LBHB. Tiny variations of the order of
10 picometer (about 0.1 Å) make a remarkable difference in efficiency of enzymatic
catalysis (Kirby and Hollfelder 2008).

Flexible Loops Examples of enzymes in this group display movement of a
relatively small loop upon ligand binding. This movement encloses the ligand
in a cage-like structure and excludes it from the bulk solvent water. Often such
loop regions are ill-defined in the X-ray or 2D NMR data indicating their
conformational flexibility. Best example of this type of conformational motion
may be found in triose phosphate isomerase (Table 8.1). Upon substrate binding, a
short loop (residues 168–177) of this protein closes over the substrate to lock it in

Table 8.2 Conformational flexibility and enzyme catalysis

Conformational
change Effect Example

Orbital steering and
small structural
changes

Large changes in
kinetic property,
cooperativity

Chymotrypsin, NADP-isocitrate
dehydrogenase, ketosteroid isomerase, most
enzymes

Flexible loops Hold or protect the
substrate (ligand)

Triosephosphate isomerase; adenylate
kinase; HIV protease

Domain movements Induced fit, generation
of active site

Hexokinase; citrate synthase;
transglutaminase; cAMP-dependent protein
kinase; calcium/calmodulin-dependent
kinase II; adenylate kinase

Subunit
communications

Allostery,
cooperativity

Aspartate transcarbamylase; hemoglobin
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the active site – unstable intermediate formed during the enzymatic reaction is
protected from decomposition by solvent water. This lid has to open for the
product to leave the active site after each catalytic cycle. In fact, this conforma-
tional change (closing and opening motion of the loop) has to be much faster than
the overall rate of catalysis. Similar functionally significant motions occur in some
proteins containing nuclear localization signals. Here the signal sequence may
occur in exposed state or be tucked in to prevent nuclear entry.

Domain Movements Member enzymes of this group show large-scale structural
movements. Two large domains of the same polypeptide chain may move in relation
to each other about a flexible hinge region. Subsequent substrate binding and
rearrangement of various amino acid residues occur to produce a functional active
site. This induced fit and productive binding are an important manifestation of
protein flexibility (Koshland 1958). Hexokinase active site is functionally assembled
by closing two large domains, only upon binding glucose (Fig. 8.1). This ensures
that ATP cleavage and phosphate transfer to glucose are strictly coupled – transfer to
water cannot occur (nonproductive binding). Similar domain closure is observed
when oxaloacetate binds to citrate synthase.

Adenylate kinase is yet another classic example of “induced fit” and is a repre-
sentative member of NMP kinases. These enzymes contain a glycine-rich sequence
(known as Walker A motif) forming the P-loop. The P-loop typically contains an
amino acid sequence of the form Gly-X-X-X-X-Gly-Lys-(S/T) and interacts with the
phosphoryl groups of the bound nucleotide. Interaction of the nucleotide substrate
with adenylate kinase results in the movement of P-loop – this in turn closes the two
domains to engulf the substrate. The P-loop NTPase domains (and Walker motifs)
are encountered in a number of enzymes (Laurino et al. 2016) that undergo substan-
tial conformational changes on NTP binding and/or hydrolysis.

Subunit Communications It is possible, but not necessary, that the conformational
change observed upon ligand binding may be restricted to in/around the enzyme
active site. In multimeric enzyme proteins, conformational changes may be
communicated across the subunits. These may lead to profound biochemical
consequences such as cooperativity and regulation. Examples of subunit
communication of this kind are observed in hemoglobin (an honorary enzyme!)
and aspartate transcarbamylase. Apart from conformational changes within a
subunit, an alteration in the spatial relationship among the subunits in an oligomer
is also possible (Fig. 8.1).

Precise orientation of catalytic groups is required for enzyme action. Substrate
binding causes an appreciable change in the three-dimensional relationship of amino
acids of the protein – at least at/around the active site. In contrast to the rather rigid
key-lock concept of Emil Fischer, induced fit theory by Koshland proposes protein
flexibility as an essential characteristic of enzymes (Koshland 1958). Such a perspec-
tive for an enzyme explains many important phenomena like the ability of enzymes to
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exclude omnipresent water, regulation outside the active site, and noncompetitive
inhibition. Clearly, conformational changes are at the root of feedback inhibition,
enzyme activation, cooperativity, etc. (refer to Chap. 37 for a detailed treatment on
these topics). Small conformational changes having large effects explain the process of
evolution of proteins and why enzymes are large.
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Part II

Enzyme Kinetic Practice and Measurements



Chemical Kinetics: Fundamentals 9

Any given step of metabolism is in essence a chemical reaction. The vast majority of

reactions in living systems are catalyzed. The complex web of metabolism is made

possible through enzymes. Whether enzyme catalyzed or not, a chemical reaction is

best understood through fundamental tenets of chemical kinetics. Therefore an

overview of this field is provided here.

For a given reaction A! Products, where exactly this system is located at a given

point in time is determined by thermodynamic and kinetic considerations (Fig. 5.1).

Thermodynamics does not inform us about the rate at which a chemical change will

occur or how this rate will vary with conditions. The magnitude of ΔG (free energy

of reaction) tells us how far the reaction can go, while ΔG 6¼ (free energy of

activation) gives an indication of how fast this reaction can go! Chemical kinetics

deals with rates of chemical reactions and the mechanism by which they occur.

9.1 Measurement of Reaction Rates

The speed with which a chemical reaction takes place is called the reaction “rate.”

For a hypothetical reaction A! Products, we may define the change occurring in the

reactant or product per unit time. It may therefore be expressed as the change in their

concentration during the time interval Δt as:

Rate of reaction ¼
�Δ A½ �

Δt
¼

Δ P½ �

Δt

where –Δ[A] is the decrease in concentration of A and Δ[P] is the increase in

concentration of P. By convention, square brackets are used to express molar

concentration (moles/liter) of the reactant or product. Also, since the concentration

of the reactant decreases with time, a negative sign is used to denote this. The
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reaction rate may be best visualized schematically (Fig. 9.1). If [A]1 and [A]2 are

the concentrations of reactant at time t1 and t2, then the average rate may be

expressed as:

Average reaction rate ¼
A½ �2 � A½ �1
t2 � t1

¼
�Δ A½ �

Δt

This is similar to expressing mechanical speed. However as the reaction proceeds,

the concentration of reactant(s) keeps decreasing. Because of this, the rate of reaction

may not be constant in the time interval between t1 and t2. Therefore a better

representation of reaction rate may be instantaneous rate – the rate of change of

reactant (or product) concentration at a given time.

We obtain the instantaneous rate by making the time interval (Δt) as small as

possible. Mathematically (according to differential calculus) this is represented by

Instantaneous reaction rate ¼ �
d A½ �

dt
¼

d P½ �

dt

Here d[A] or d[P] means infinitesimally small changes in the concentration of A or P,

in infinitesimally small interval of time, dt. Graphically, this is nothing but the slope

of a tangent drawn to the “[A] versus t” curve at that time point (Fig. 9.1).

Reaction rates can be measured by plotting a graph between the concentration of

the reactant (or product) as a function of time. In practice, the changing concentra-

tion is recorded by corresponding changes in a measurable property such as volume,

pressure, pH, UV/visible absorbance, optical rotation, refractive index, etc. For

instance, the time course of sucrose hydrolysis by invertase is monitored through

changes in optical rotation.
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Fig. 9.1 Depiction of average rate and instantaneous rate for a reaction
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9.2 Factors that Influence Chemical Reaction Rates

A number of factors influence the rate of a reaction. Significant among them include:

1. Concentration of the reactant

2. Temperature of the system

3. Presence of a catalyst

4. Available surface area, radiation, etc.

The larger the available surface area of reactant(s), the faster is the reaction rate. As

the particle size decreases, the total surface area increases. This permits more

reactant molecules to participate in the reaction. Most biological reactions occur in

solution, and therefore their reaction rate is directly proportional to the concentration

of the reactant. In certain reactions, interaction of reactant species with photons

(radiation of suitable energy; E ¼ h � ν) leads to rate enhancement. As enzymes are

exquisite catalysts, catalytic phenomena form the central theme in enzymology and

recur throughout this book! How chemical reaction rate is affected by reactant

concentration and by temperature forms an important basis in understanding enzyme

catalysis. These two aspects will therefore be dealt with in some detail here.

9.3 Reaction Progress and Its Concentration Dependence

Reactant(s) get converted to product(s) in a chemical reaction. As a result, the

concentration of reactant decreases while that of product increases with time.

Concentration changes that occur as a function of reaction progress are shown in

Fig. 9.2 Two representative examples, namely, isomerization of glucose and hydro-

lysis of sucrose, are considered.

Inspection of such data gives important information – about the stoichiometry and

the end point of the reaction. At any time point after t¼ 0, the molar concentration of

fructose formed equals (and corresponds) to the molar concentration of glucose

disappeared. This permits us to establish the reaction stoichiometry and hence the

balanced equation (glucose ⇄ fructose) for the reaction. On the other hand, at t ¼ /,

this reaction reaches equilibrium, and the ratio of [product]/[reactant] gives us the

equilibrium constant. For glucose isomerase reaction, the Keq is close to one

(actually, [glucose] to [fructose] ratio at equilibrium is 51:49). No matter how

much time passes, one cannot fully convert glucose to fructose, unless of course

the product (fructose here) is removed from the system. A similar analysis of sucrose

hydrolysis is also revealing. For every molecule of sucrose hydrolyzed, one mole-

cule each of glucose and fructose is formed. A balanced equation would therefore be

sucrose ! glucose + fructose. At the end point of this reaction however, there is no

sucrose left – the equilibrium is far to the right. The reaction is unidirectional and

sucrose is completely converted to products! Why water has not figured in the

equation (as a reactant) will become obvious from the discussion below.
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Typically, at time zero, only the reactant is present, while the product concentra-

tion is zero. The concentrations of various species change rapidly in the beginning,

but this slows down at later time points. It thus follows that reaction rate is largest in

the beginning and decreases with passage of time. The reaction rate is directly

proportional to the concentration of the reactant(s). As early as in 1867 Guldberg

and Waage proposed a quantitative relationship between the molar concentration of

the reactant(s) and the reaction rate (Voit et al. 2015). According to this law of mass

action, “the rate of chemical reaction is directly proportional to the product of the

molar concentration of the reactants.” Obviously, all other factors (including tem-

perature) must be kept constant for this proportionality to hold.

Consider the balanced reaction for the hydrolysis of sucrose:

Sucroseþ H2O ! Glucoseþ Fructose

We can write the rate expression for this reaction according to the law of mass action as

Reaction rate / Sucrose½ � H2O½ �

Reaction rate ¼ k [Sucrose] [H2O]

The constant of proportionality “k” is called the reaction rate constant. This rate

constant is nothing, but the rate of reaction when concentration of each of the

reactants is unity (i.e., rate ¼ k � 1 � 1). The magnitude of “k” depends on the
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Fig. 9.2 Concentration changes as a function of reaction time. Isomerization of glucose to

fructose (left) and hydrolysis of sucrose (right) are shown. Decrease in the concentration of water in

sucrose hydrolysis is negligible compared to its bulk concentration (55.5 M)
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type (nature) of reaction and temperature; it is however independent of the reactant

concentration. The law of mass action gives the rate expression on the basis of

overall balanced equation for the reaction. It therefore provides us with the

molecularity of that reaction – which cannot be zero. It can only be whole numbers

like 1,2,3. . ., etc. On the other hand, rate equation (or the rate law) gives the

experimentally observed dependence of rate on the concentration of reactants. This

concentration dependence may be expressed in terms of order of the reaction. A

reaction order (denoted as “n”) is the sum of powers to which the concentration

terms are raised in the rate equation. The order of a reaction is thus an experimentally

determined parameter and is reflected in the rate equation. Reaction order can be zero

(as in catalyzed reactions) or a positive number including fractional value (as in

mixed-order reactions). We will come across such examples when dealing with

enzyme-catalyzed reactions (Chap. 15) and the Henri–Michaelis–Menten rate

equation.

Order of a reaction is an important descriptor in defining the mechanism of that

reaction. There are a number of methods to determine the order of a reaction (and

hence to define the rate equation). These are briefly described below.

Graphical method is useful when the reaction involves a single reactant. For such

reactions we can write a general rate equation of the type, rate¼ k [A]n. If we obtain a

straight line by plotting a graph of rate versus [A]n, then the order of the reaction is

“n.”Graphical analysis of data for zero-order (n¼ 0), first-order (n¼ 1), and second-

order (n ¼ 2) reactions are schematically summarized in Table 9.1. A variation of

this is to determine reaction order based on the half-life period. One determines the

time interval by which the concentration of reactant is reduced to half of its initial

value. Subsequently, such data is analyzed graphically or by best fit to the relevant

equation (Table 9.1).

Initial rate method is suitable for reactions involving more than one reactant.

Here the initial rate (rate at the beginning of the reaction – instantaneous rate

extrapolated to time zero) is measured. At a time, only one reactant concentration

is varied (while keeping all others constant), and the order with respect to that

particular reactant is calculated. The same procedure is repeated with all other

reactants. The individual orders so obtained are summed up to obtain the reaction

order. As we will see later (Part III), most enzyme kinetic experiments are designed

this way.

Ostwald’s isolation method exploits the fact that the concentration of the limiting

reactant maximally influences the reaction rate. Here except one reactant all others

are taken in excess – so that the order so determined will be for that reactant alone.

This process is repeated for each reactant and the order determined. The overall order

of the reaction will then be the sum of individual orders.

The rate expression (according to law of mass action) and rate equation for a

given reaction may or may not be same. For example, sucrose hydrolysis is a

bimolecular reaction. However water is in large excess (55.5 M in aqueous phase),

and hence its concentration change does not figure in the rate equation. Experimen-

tally, this hydrolysis follows a first-order rate with respect to [sucrose]. We call such

a reaction pseudo-first-order reaction.
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Reaction rate ¼ k � H2O½ � � Sucrose½ �
¼ k0 � Sucrose½ �

where k ¼ second-order rate constant and k0 ¼ k � [H2O] ¼ pseudo-first-

order rate constant.

It is obvious that in most hydrolytic reactions in biology, water is a reactant (and

counts in the molecularity of that reaction). But being present in such a large excess,

it hardly contributes to the reaction order. It is a different matter, however, when the

same hydrolytic reaction is conducted in a nonaqueous solvent where water is

limiting!

Table 9.1 Reactions of different order: a kinetic summary

Feature Zero order First order Second order

Reaction type A ! Products A ! Products A + A ! Products

Rate expression Rate ¼ k [A]0 Rate ¼ k [A]1 Rate ¼ k [A]2

Direct plot

Rate

[A]

Rate

[A]

Rate

[A]2

Integrated rate

equation

[A] ¼ � k t + [A]0 log ½A�¼ �k t
2:303þlog ½A�0

1
A½ � ¼ k t þ 1

A½ �0

Linear plot

[A]

t

-k

[A]
0

log [A]

t

-k/2.303

log [A]
0

1/[A]

t

1/[A]
0

k

Half-life expression t1=2 ¼
A½ �0
2k

t1=2 ¼
0:693
k

t1=2 ¼
1

k A½ �0

t1/2 plot

t1/2

[A]

t1/2

[A]

t1/2

1/2[A]

Units for k (M1�n s�1) M1 s�1 M0 s�1 M�1 s�1
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9.4 Temperature Dependence of Reaction Rates

We have seen earlier that reactant concentration is a significant factor in determining

the reaction rates. Accordingly, reactant concentration does feature in the rate

equation. Then how does temperature influence the reaction rates? Rate constant

(k), by definition, is independent of reactant concentration. However, it is strongly

dependent on temperature. In general, the higher the temperature, the greater is the

rate of reaction. Reaction rate is approximately doubled for every 10-degree rise in

temperature. We may thus define the temperature coefficient (Q10) of a reaction as

Q10 ¼
kat Tþ10ð Þ�C

kat T�C

An early explanation for the effect of temperature on reaction rates came from

Collision theory for reactions. This approach had its origin in the kinetic theory of

gases, and its theoretical basis may be summarized as follows.

Reactant molecules must collide with each other (come together!) for the reaction

to take place. However not every collision that occurs at a given temperature is

fruitful. Only a fraction of these are effective collisions – and actually produce

products. Two important barriers for effective collisions are an energy barrier

(largely enthalpic in nature) and the orientation barrier (mostly entropic in nature).

Accordingly, the colliding molecules must possess a minimum amount of energy

(called threshold energy) for them to react. Further, these colliding molecules must

come together in a proper orientation to achieve effective collisions. Rise in temper-

ature increases the number of effective collisions and hence leads to increased rate of

a reaction.

All reactant molecules do not possess the same energy. Instead there is a

distribution of energy among reacting molecules. This Maxwell’s distribution of

energies (Fig. 9.3) explains the effect of rise in temperature on reaction rate.

The energy distribution curve shifts to the right at higher temperatures (T1 ! T2).

Because of this the number of molecules possessing threshold energy is increased

(shaded region in Fig. 9.3). The more the number of such molecules, the greater is

the number of effective collisions – and the higher the reaction rate. The excess

energy, over and above the average energy of the reactants, must be supplied to reach

threshold energy. This is called the activation energy. It is denoted as Ea and

represents Ethreshold–Eaverage. A purely empirical relation for the temperature depen-

dence of reaction rates was deduced by Svante Arrhenius. He showed that activation

energy is the parameter that relates temperature dependence of the rate constant.

According to Arrhenius equation,

k ¼ A e�
Ea
RT and ln k ¼ ln A�

Ea

RT

where A is the Arrhenius constant (pre-exponential factor) and Ea is activation

energy. This equation tells us that (a) the rate constant k increases exponentially
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with the increase in temperature and (b) a smaller value of Ea corresponds to an

increase in k (and therefore an increased reaction rate). Lastly, for a reaction with

Ea ¼ 0 or when T ¼ /, the rate constant equals the pre-exponential factor “A.”

We can calculate the activation energy for a given reaction in couple of ways. A

plot of ln k against 1/T gives a straight line (Fig. 9.4). In practice, the value of

activation energy is obtained from the slope (Ea ¼ �R � slope) of this line.

Extrapolation to 1/T ¼ 0 (i.e., T ¼ /) is not feasible as most reactions are studied

in a limited range of temperature. Therefore the value of “A” has to be calculated by

plugging in the value of Ea in the equation.

Alternatively, the values of Ea and “A” can be calculated by solving the simulta-

neous equations:

Effective
collisions

Energy Threshold energy

Ea

T1

T2

Frequency
       of
Molecules

Fig. 9.3 Distribution of

molecular energies at two

different temperatures. The

number of molecules

possessing threshold energy

increases with temperature

(shaded region)

ln k

1/T

Slope = -Ea/R

Fig. 9.4 Plot of ln k versus

1/T to obtain the value of

activation energy. The gas

constant R ¼ 8.31 J mol�1

K�1 (or 1.98 cal mol�1 K�1)
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ln k1 ¼ ln A�
Ea

RT1

and ln k2 ¼ ln A�
Ea

RT2

And hence,

ln
k2

k1

� �

¼
Ea

R

1

T1

�
1

T2

� �

This can be evaluated by substituting the values of two rate constants (k1 and k2) at

temperatures T1 and T2, respectively. For a typical reaction with activation energy of

12 kcal/mol (~50 kJ/mol), a 10-degree rise in T (i.e., T2–T1) will result in approxi-

mate doubling of the rate (Q10 ¼ k2/k1 � 2).

We have come across Arrhenius equation once before (Chap. 5) while dealing

with barriers for catalysis. Collision theory and the Arrhenius equation are useful in

the understanding of simple gas phase reactions. For reactions involving more

complex molecules (and in solution), transition state theory provides a better con-

ceptual framework. According to this theory, the reactant molecules must come

together to form an activated complex – the unstable transition state (also

see Fig. 5.1). Subsequently, a relationship between rate constant (k) and free energy

of activation (ΔG6¼) is established:

k ¼
kBT

h
e�

ΔG6¼

RT ¼
kBT

h
e�

ΔH 6¼

RT e�
ΔS 6¼

R

In this sense, ΔG6¼ is a composite term that reflects on the overall ease of forming

the activated complex. It conveys the same information as the rate constant to which

it is directly related by the transition state theory. We will refrain from further

repetition as this has already been dealt with before (in Chap. 5). The contribution

to ΔG 6¼ by ΔH6¼ and ΔS 6¼ may however be evaluated through a variant of this

equation, the Eyring equation:

ln
k h

kBT
¼

ΔS 6¼

R
�
ΔH 6¼

RT

A plot of ln k h
kBT

! 1/T is linear, and one gets ΔH6¼ (from slope) and ΔS 6¼ (from

intercept) by this analysis. The lower the value ofΔH 6¼, the faster is the reaction – the

easier the bond-breaking/ bond-forming step. The more negative theΔS 6¼, the slower

is the reaction rate; entropy of activation plays a less prominent role in unimolecular

reactions. In bimolecular reactions, however, ΔS 6¼ is always negative and unfavor-

able. This has to be compensated by a favorable and negative ΔH 6¼.
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9.5 Catalysis

The reaction A ! Products may proceed by more than one reaction mechanism

under given experimental conditions. An alternative route with lower activation

energy will exhibit a faster reaction rate. Many reactions are known where rates ca

be enhanced by the addition of a reagent. Such entities that increase the reaction rates

but are not included in the stoichiometry of that reaction are called catalysts. Thus a

catalyst provides a facile, additional route to the formation of the same products.

Catalysis can occur with the catalyst and the reaction occurring in the same phase

(homogeneous catalysis) or in different phases (heterogeneous catalysis). Heteroge-

neous catalysis on metal surfaces is common in many industrial processes. Most

biological catalysis (by enzymes) is homogeneous catalysis in solution. This forms

the main focus of this book. In some cases, like the conversion of chymotrypsinogen

to chymotrypsin, the reaction product also acts as a catalyst. This is an example of

autocatalysis. With membrane-bound enzymes we often encounter interfacial

catalysis.

9.6 Purpose of Kinetic Studies: Reaction Mechanism

Elucidation of the mechanism of a chemical reaction is the most important purpose

of kinetic analysis. A reaction mechanism may be understood at many different

levels.

1. Determination of reaction stoichiometry from the number of moles of each

reactant consumed to give the number of moles each of final products. For simple

reactions, this is usually followed by writing a balanced equation and assigning

molecularity.

2. Experimental confirmation of the predicted kinetic order provides strong support

to the proposed chemical mechanism. Since several hypothetical mechanisms

could lead to the same rate equation (and reaction order), such kinetic evidence

may not be unambiguous. Nevertheless kinetic data permits us to exclude many

plausible alternatives and helps narrow down the choice of mechanism.

3. Complex reaction mechanisms may include a sequence of two or more consecu-

tive steps. These individual steps – elementary processes – Are almost always

either unimolecular or bimolecular. Often in a complex reaction, the rate of the

overall reaction is determined by the slowest step in the sequence. Such a step is

called rate-determining step. If a rate constant and kinetic order can be ascribed to

a complex reaction, then the composition of the most unstable activated complex

(TS of the rate limiting step) can be deduced from the overall rate equation.

However such a rate equation does not tell us how many intermediates or steps

are involved before or after this rate-determining step. It is also not possible to

determine the number of solvent molecules involved in the activated complex in

solution (solvent large excess!).

94 9 Chemical Kinetics: Fundamentals



It is obvious from the above discussion that there are severe limitations to kinetics as

a method to study reaction mechanism. While kinetic evidence does not provide

clinching evidence for a mechanism, it does provide excellent support. More impor-

tantly, it is frequently possible to exclude many alternative schemes by the kinetic

approach. The kinetic study has to be supplemented and buttressed with various

techniques to confirm the presence of intermediates and steps in the overall reaction

mechanism.

Insights Into Transition State Structure The transition state is defined as the state

corresponding to the highest energy along the reaction coordinate (Fig. 5.1). Any

small displacement leads to its conversion into a more stable entity – the population

at that point is zero. The transition state cannot be captured or directly observed.

Chemical kinetics does provide an empirical approach to the characterization of this

transition state structure. An early qualitative guide was the Hammond–Leffler

postulate derived from transition state theory – the structure of the transition state

more closely resembles either the product or the reactant, depending on which is

higher in enthalpy (Fig. 9.5). According to this structure-correlation principle, TS

will be more product-like for an endothermic reaction (and occurs late on the

reaction coordinate). Conversely, for an exothermic reaction, it will be reactant-

like and occurs early.

On a quantitative (but semiempirical) level, correlations between rate constants

(kinetics) and equilibrium constants (thermodynamics) for a given reaction type

have helped develop this approach further. Two important linear free energy

relationships of this type are the Bronsted relationship and Hammett equation.

Reaction coordinate

H

Reaction coordinate

H

DH is negative

Reactant

Product

Late TS

Reactant

Product

Early TS

DH is positive

Fig. 9.5 Schematic energy diagram illustrating the Hammond–Leffler postulate. Profiles

shown for an exothermic (left) and endothermic (right) reaction with early and late transition states,

respectively
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Transition state theory similarly relates ΔG 6¼ with the rate constant for that reaction.

In a typical physical organic chemistry approach, reaction rates and corresponding

equilibrium constants are determined for a series of substituted reactants. These

structural variations are chosen so that they do not lead to gross chemical mechanism

changes. Such data provides a measure of the location of the transition state along the

reaction coordinate. Locating transition states by computational chemistry

techniques has also gained ground recently.

Finally, the determination of substitution effects for enzyme-catalyzed reactions

is only possible with enzymes of broad substrate specificity. For others, however, a

systematic study of isotope effects would provide insights into the transition state.

This is dealt in some details in Chap. 27 (Part III).
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Concepts of Equilibrium and Steady State 10

The key to understand catalytic action of an enzyme is the study of reaction

velocities and not equilibria. Nevertheless, equilibrium and steady state are two

important states of any dynamic system. Both have much relevance to the under-

standing of enzyme mechanisms and hence metabolism. This chapter will elaborate

on these concepts. There are many analogies/models to describe these states which

include ponds and rivers. We will look at two simple setups to understand what is

meant by equilibrium and steady state, before going into details.

Imagine two beakers connected via a stopcock. Suppose the stopcock is kept

closed and water is filled into one of the beakers. What will happen if the stopcock is

opened now? Water will move into the second beaker until the levels in the two

beakers are the same (Fig. 10.1). Once the two water levels become equal, there is no

net flow of water, and the system as a whole becomes stable (and attains equilib-

rium). While water molecules continue to diffuse from one beaker into the other –

the water level in the two beakers remains same. This is an example of dynamic

equilibrium. What happens if the stopcock is now closed? The water level on the two

sides remains the same, but there is no free exchange of water molecules across the

two beakers. This stable state is an example of static equilibrium. We can distinguish

between the static and the dynamic equilibrium by a simple test. A dye introduced in

any one beaker will diffuse into the other over time only in the case of dynamic

equilibrium. This two-beaker setup is an excellent analogy to “glucose ⇄ fructose”

isomerization. Equilibrium mixture of glucose and fructose defines a static equilib-

rium, as no interconversion occurs due to the prevailing activation energy barrier.

Addition of glucose isomerase (enzyme catalyzing this interconversion, equivalent

to opening the stopcock and open a path to mix the two compartments!) makes it a

dynamic equilibrium.

Let us now consider another situation. Suppose we have a beaker fitted with an

inlet and an outlet for water as shown (Fig. 10.1). We start filling the beaker by

letting water in (through the inlet) at a constant rate. Initially water drains out
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(through the outlet) more slowly than it enters because of lower water level (and

lower hydrostatic pressure). However, this will cause water level to rise in the beaker

– generate more pressure – consequently water will drain more quickly. When the

inflow of water becomes equal to the outflow, the water level in the beaker is

maintained – and it reaches a steady state. There is constant flow of matter (and/or

energy) through the system in a steady state.

A thermodynamic equilibrium indicates total randomness (heat death), while

living beings represent systems at steady state that are maintained away from

equilibrium. Because biological systems are open systems, exchanging energy and

matter with their surroundings, they are best represented by a steady-state model

than an equilibrium one. Although an equilibrium assumption is simplistic, it is often

invoked to approximate many living processes.

10.1 Chemical Reaction Equilibrium

All chemical reactions are reversible in principle. Consider the following

equilibrium:

A P

k1

k-1

where k1 and k�1 are rate constants for the forward and reverse reactions,

respectively. The position of this equilibrium is defined by the equation

Keq ¼
P½ �eq
A½ �eq

steady stateLevel

Inflow

Outflow

Inflow>Outflow

Outflow>Inflow

Inflow=Outflow

Equilibrium Steady state

Fig. 10.1 Equilibrium and steady state. When the stopcock is opened, water flows into the

empty beaker until the two levels become equal – equilibrium is attained (left panel). Water level is

maintained as long as the inflow equals the outflow – steady state (right panel)
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where Keq is the equilibrium constant, while [A]eq and [P]eq represent the concentra-

tion of A and P at equilibrium, respectively. At any given instant, the overall rate of

change in [A] will be the sum of its rate of disappearance and the rate of formation.

This can be written as

d A½ �

dt
¼ �k1 A½ � þ k�1 P½ �

The reverse reaction rate becomes negligible when either [P] ¼ 0 or k�1 is much

smaller than k1. Under these conditions essentially a unidirectional reaction (A! P)

is defined with the rate equation –d[A]/dt ¼ k1[A]. We have already come across a

detailed kinetic treatment for such reactions (Chap. 9).

For a reversible reaction at equilibrium, the forward and the backward reactions

cannot take different paths. This follows from the principle of detailed balance and

microscopic reversibility of such phenomena. The forward and the reverse rates must

be identical for a reaction at equilibrium. Accordingly

k1 A½ �eq ¼ k�1 P½ �eq

(We note that, at equilibrium, the two rates are equal and not the rate constants!).

Rearranging and by definition of Keq (as above), we obtain

[ ]

[ ] 1

1
eqK

-

==
k

k

A

P

eq

eq

This equation links the equilibrium constant (Keq, a thermodynamic parameter) with

the corresponding rate constants (kinetic parameters) for a given reaction. “Haldane

relationship” is one such equation that relates enzyme kinetic constants with the

corresponding reaction equilibrium constant (Chap. 15).

ΔG and equilibrium: For any reaction to occur, it should be accompanied by a

decrease in free energy. The change in free energy (ΔG) for a reaction at equilibrium

is zero. During the course of a reaction, the composition of the reaction mixture

changes with time (Fig. 9.2), and ΔG decreases. The actual ΔG is thus related to

composition of the reaction mixture and the standard free energy (ΔG�) of the

reaction by the following expression:

ΔG ¼ ΔG
�

þ RT lnΓ

where Γ, the mass action ratio, is the ratio of product concentration to substrate

concentration (Γ ¼ [P]/[A]). At equilibrium, Γ ¼ Keq and ΔG ¼ 0. Therefore

ΔG∘ ¼ �RT ln Keq and Keq ¼ e�
ΔG∘

RT
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This is an important relationship – we can determine the value of ΔG� for a reaction

if its Keq is known (or vice versa). A small difference in ΔG� makes a big difference

in Keq – this is because of the log term in the equation (Table 10.1). Thus for a given

reaction with a favorable ΔG� of �4.0 kcal/mol, there will be 1000 times more

molecules of P than A at equilibrium. Finally, ΔG� informs us about the position of

equilibrium (Table 10.2).

In thermodynamic terms, ΔG of a given reaction is a state function. It is

independent of the path (or molecular mechanism) of the reaction. For instance,

ΔG for oxidation of glucose to CO2 and water is the same regardless of whether it

occurs by combustion in a bomb calorimeter or through cellular metabolism. Hence

ΔG provides no information about the rate of a reaction. A negative ΔG simply

indicates that the reaction can occur spontaneously.

Lastly, all the rate constants (e.g., k1 for forward and k�1 for reverse) contributing

to the equilibrium (and the reaction mechanism) vary independently with tempera-

ture. It follows that Keq for a reaction need not be the same at different temperatures;

for example, it is 1.00 at 55 �C and 1.17 at 80 �C for glucose isomerase reaction.

ΔG and ΔG�: It is important to recall that ΔG for a given reaction depends on the

concentration of reactants and products. It can be numerically larger, smaller, or the

same asΔG�. We will illustrate this with two examples (Fig. 10.2). (1) Isomerization

of glucose to fructose (Fig. 10.2) has a Keq of one, i.e., [Glucose]eq ¼ [Fructose]eq.

The standard free energy change for this reaction can be calculated by substitution

(ΔG� ¼ �RT ln Keq ¼ 0). Therefore at equilibrium no net reaction takes place.

Table 10.1 Variation of Keq with ΔG
�

Keq ([P]eq/[A]eq) Percent [A] at equilibrium

ΔG� (at 25 �C and pH 7.0)

kcal/mol kJ/mol

10�5 99.99 +6.82 +28.5

10�3 99.90 +4.09 +17.1

10�1 90.91 +1.36 +05.7

100 50.00 00.00 00.0

101 09.09 �1.36 �05.7

103 00.09 �4.09 �17.1

105 0.001 �6.82 �28.5

Table 10.2 ΔG
� and its relation to the position of [P] ⇄ [A] equilibrium

ΔG� Keq At equilibrium Reaction

Positive <1.0 [P]eq < [A]eq Reactant(s) favored; endergonic

Negative >1.0 [P]eq > [A]eq Product(s) favored; exergonic

Zero ¼1 0 [P]eq ¼ [A]eq At equilibrium; no net change
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However, with 1.0 M glucose and 0.1 M fructose as initial concentrations and at

25 �C, we obtain

ΔG ¼ ΔG∘ þ RT ln Keq ¼ 0þ RT ln
Fructose½ �

Glucose½ �

¼ 0þ RT ln 0:1ð Þ

¼ 2:303� 1:987� 10�3 � 298� �1ð Þ

¼ �1363:67� 10�3 ¼ �1:364kcal=mol

Since the ΔG is negative, under these conditions the reaction glucose ! fructose is

exergonic and can occur spontaneously. For initial concentrations of 0.1 M glucose

and 1.0 M fructose, however, the ΔG will be +1.364 kcal/mol. Therefore, glu-

cose ! fructose is now endergonic, while fructose ! glucose is exergonic and

becomes spontaneous.

(2) Isomerization of dihydroxyacetone phosphate (DHAP) to glyceraldehyde

3-phosphate (GA3P) occurs in glycolysis and has a Keq of 0.0475. Corresponding

ΔG� for this reaction (at 25 �C) is +1.80 kcal/mol. Therefore, DHAP will not

spontaneously convert to GA3P. However, when the initial concentration of

DHAP is 200 μM and the initial concentration of G3P is 3 μM, ΔG becomes

DHAP GA3P

DHAP GA3P

Equilibrium

Glucose Fructose

FructoseGlucose

Equilibrium

G
(Free 
energy)

Fig. 10.2 Free energy and equilibrium constant of reaction. The equilibrium composition of

reaction mixtures correspond to the lowest point on the curve for each reaction. Gray arrows

indicate the direction of spontaneous reaction
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�0.69 kcal/mol. At these concentrations (see Fig. 10.2) DHAP ! GA3P becomes

exergonic and can occur spontaneously.

The two examples drive home the message – the criterion of spontaneity for a

reaction is ΔG and not ΔG�. Continuous depletion of GA3P maintains the ΔG

negative for DHAP ⇄ GA3P reaction and feeds DHAP into glycolysis. Nature has

exploited this principle to couple reactions of metabolic pathways; reactions are

made spontaneous by adjusting the concentration of reactants and products. The

direction of an equilibrium reaction is decided by suitably adjusting the mass action

ratio (Γ).

10.2 Binding Equilibrium

Yet another type of equilibrium relevant to biological phenomena (including enzyme

catalysis) is the binding equilibrium. To illustrate this let us consider the reversible

interaction between an enzyme (E) and a small molecular ligand (L ). Binding of L to

E proceeds until an equilibrium is reached:

E + L EL

kon

koff

As discussed before (for reaction equilibrium), at equilibrium the rates of forma-

tion of EL and dissociation of EL are equal:

Association rate ¼ kon E½ � L½ � and

Dissociation rate ¼ koff EL½ �

At equilibrium

Association rate ¼ Dissociation rate

kon E½ � L½ � ¼ koff EL½ �
kon

koff
¼

EL½ �

E½ � L½ �
¼ Keq

This binding equilibrium is maintained by a balance between the two opposing

reactions. The ratio of the rate constants for the association (kon) and the dissociation

(koff) reactions is equal to the equilibrium constant (Keq). Molecules of E and Lmust

collide with each other in order to produce EL. Hence this bimolecular association

rate is proportional to the product of [E] and [L].

Traditionally, the equilibrium constant is so defined that the concentration of product

(s) appear in the numerator and the concentration of the reactant(s) appear in the

denominator. In this sense, Keq for “E + L ! EL” reaction is an association constant
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(KA), also known as affinity constant. It has the units of M
�1. The larger the value ofKA,

the stronger is the binding betweenE andL.Wemay also define theKeq for “EL!E+L”

reaction” – accordingly called the dissociation constant (KD). TheKD is the reciprocal of

KA and has the units of M. Obviously the smaller the value of KD, the stronger is the

binding between E and L. This is illustrated with an example in the box below.

Suppose a fungal cell contains an enzyme with [E] ¼ 10�9 M and its ligand

with [L] ¼ 10�6 M; suppose the KD for their binding be 10�7 M. Then

E½ � L½ �

EL½ �
¼ KD

The ratio of unbound to bound [E] will be [E]/[EL] and therefore

E½ �

EL½ �
¼

KD

L½ �
¼

10�7M

10�6M
¼

1

10

Inside the cell, we thus expect one molecule of E to be free for every

10 molecules of E in the bound (EL) form. What if for some reason (mutations

or regulation!) the KD changes to 10�4M? We see that [E]/[EL] will then be

100; only one molecule of E in a hundred is present as EL.

In most enzyme literature, the equilibrium constant is presented as dissociation

constant (KD). Unless otherwise required, we will follow this convention for KD

throughout this book.

10.3 Complex Reactions Involving Intermediates

If the reaction A ! P goes through several steps, then it is described as a complex

reaction. Complex reactions may include one or more reversible steps and

intermediates. Therefore the kinetic investigation of such reactions is an analytical

problem to determine the nature and number of constituent steps. Complex reactions

are often described by complicated rate equations that are not amenable to direct

analysis. It is useful to introduce certain assumptions in order to simplify them. We

will explore some of these approximations through examples.

Consider a reaction involving two first-order consecutive steps:

A X P

k1 k2

An intermediate X is produced in the first step and is consumed in the next. In

other words, A yields P not directly but through X. Representative concentration

10.3 Complex Reactions Involving Intermediates 103



versus time curves for A, X, and P are shown in Fig. 10.3. As the reaction proceeds,

we note that:

– [A] decreases to zero at completion.

– [P] increases from its initial value of zero.

– [X] builds up first, reaches a maximum, and then decreases to zero.

The position of the maximum in [X] – the extent of accumulation of X – depends on

the relative magnitudes of k1 and k2. If k2 >> k1 then significant accumulation of

intermediate X will not occur. However if k1 >> k2 then X is a relatively long-lived

intermediate, an appreciable concentration of it may develop during the time course.

This brings us to the concept of slow and fast steps of a complex reaction. We recall

that rates and rate constants of an elementary step are not the same. Actual rates for

the two consecutive reactions are as follows:

For A ! X, rate ¼ k1 [A] and

For X ! P, rate ¼ k2 [X]

The actual rates of the two steps therefore depend both on the rate constants and the

concentration of the reactant species. When compared, the actual rate of the first

step may be slower than the second or vice versa. If the first step (A! X) is slower

than the second (X ! P), then the barrier for the first step must be higher than that

for the second (Fig. 10.4, black curve) (Sudi 1991). The overall reaction A! P can

only be as fast as the slowest step in the sequence. Hence the first slow step acts as a

“bottleneck” and becomes the rate-determining (or rate-limiting) step of the

reaction (see box below for a simple analogy). Consequently the overall rate

equation in such cases gets simplified to the rate equation for the slowest step

itself. In general, the slowest step of a complex reaction mechanism will control the

overall reaction rate.

0

[A]0

Time

A

P

X

A X P
k1 k2

Fig. 10.3 Concentration

versus time curves for a

reaction involving two first-

order consecutive steps
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There are many interesting ways of illustrating the concept of rate-limiting

step in a sequence of operations. These include passing the baton during a

relay race, assembling cycles in factory, sequential steps in a laundry, liquid

flow in pipes of different diameters, etc. We will use dish washing as an

example (Last 1985). Consider two significant operations in washing of dirty

dishes – scrubbing and rinsing.

Dirty Dishes ! Scrubbed Dishes ! Clean Dishes

In this sequence of operations, if rinsing (second step) is faster than

scrubbing, then (a) there will be very few scrubbed dishes at any given time

and (b) overall dish-washing activity cannot be faster than that of scrubbing.

For every ten dishes scrubbed in 10 minutes, we cannot have more than ten

dishes cleaned – even if rinsing is done much faster. On the other hand, if

scrubbing (first step) is faster than rinsing, then (a) a pile of scrubbed dishes

accumulates over time, and (b) overall dish-washing process cannot be faster

than rinsing. For every ten dishes rinsed in 10 min, we cannot clean more than

ten dishes – even if scrubbing is done much faster.

As reactions become more complicated, their exact kinetic solution becomes

increasingly difficult. Some modifications to the reaction setup can simplify the

situation to an extent. For instance, by taking large excess of one reactant, the

working reaction order may be reduced (such as pseudo-first-order reactions).

Introducing certain assumptions can also make the problem manageable. Two

generally useful tools are the application of the equilibrium assumption and the

A X P
k1 k2

Reaction coordinate

G
A

P

X

A X

k2>>k1 k1>>k2

Fig. 10.4 Reaction profile

for a sequential two-step

overall process. When

k2 >> k1 (the black curve), the

first step is rate-limiting. But if

k1 >> k2 (the gray curve), then

the second step is rate-limiting
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steady-state approximation. They are helpful in deriving rate equation for complex

reactions that involve simultaneous changes in three (or more) concentrations and

two (or more) rate constants. In the case of reaction A ! X ! P, deducing the rate

equation is hampered by the fact that [X] is a continuous variable and often difficult

to measure directly. This is overcome either by assuming a rapid equilibrium

between A and X (with a slow X ! P step) or a steady state for [X] (after an initial

induction period, the rate of formation and rate of disappearance of X are just

balanced). When either of these assumptions are valid, we can express [X] in

terms of initial [A]. The overall rate equation can then be deduced in terms of initial

concentration of A, the two rate constants (k1 and k2), and the single independent

variable, time.

Equilibrium and steady state are general concepts broadly applicable at various

scales of biological systems. They help us appreciate/analyze multistep rate pro-

cesses at the level of ecosystems, population growth, metabolic pathways, and

enzyme forms along the reaction mechanism. We will revisit the two assumptions

(equilibrium assumption and the steady-state approximation) and their utility in

deriving the rate equation describing an enzyme catalyzed reaction (Chap. 15,

Henri–Michaelis–Menten equation). The trick in employing these assumptions

however is in appreciating their limitations and conditions under which they may

not be used!
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ES Complex and Pre-steady-state Kinetics 11

Enzymes are well-defined chemical structures at the molecular level. They cannot

perform their “catalytic fete” from a distance – enzymes have to come in intimate

contact with their substrates (reactants). Interaction of an enzyme (E) and its cognate

substrate (S) begins the moment the two come together through diffusion. Specific

interactions and binding result in the formation of enzyme-substrate (ES) complex.

All the transition state(s) and intermediate(s) are represented in this simplified

version of ES complex:

E þ S !
“ES” ! E þ P

Changes in the concentrations of reaction participants with time, for an enzyme-

catalyzed reaction, are shown in Fig. 11.1. When E and S are brought together, there

is an initial buildup of ES complex. The ES complex breaks down to form product

(P) and regenerates E. Being a catalyst, normally there will be fewer enzyme

molecules in the reaction compared to those of substrate. This sets up a distribution

of enzyme molecules between E and ES forms. The amount of P formed increases

with time. Eventually the reaction equilibrium is attained. Although the enzyme

continues to convert S! P and back, there will be no net change in the concentration

of S or P, at equilibrium.

The system is more complicated as there may be many more intermediate forms

present within the ‘ES’ complex. The two-step scheme of enzyme catalysis in

Fig. 11.1 is a grossly simplified picture. It is reminiscent of consecutive reactions

(A ! X ! P) discussed in Chap. 10. We then noted that an intermediate cannot

accumulate after the slowest step has been accomplished. However, when a step

proceeds more slowly than the preceding ones, intermediate(s) do accumulate. The

amount and buildup of ES complex will thus depend on the relative rates of the two

individual steps (E + S! ES versus ES! E + P) and the ratio of [S]total/[E]total. Two

distinct phases of an enzyme-catalyzed reaction are seen with time. Immediately

upon mixing E and S, we see a buildup of ES complex (gray box in Fig. 11.1);
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thereafter a steady state will be established where [ES] remains essentially constant

with time – [ES] is maintained as long as its inflow equals the outflow (see Fig. 10.1,

right panel). The steady-state region occupies increasing fraction of the total reaction

time as the [S]total/[E]total ratio increases. Indeed most valuable information on

enzymes has accrued through rigorous kinetic analysis in this steady-state region.

Short time frame before the steady state is reached – the pre-steady-state – is

obviously of great importance in observing ES complex(s), transient species, and

intermediate(s).

Analysis of steady-state kinetics and the pre-steady-state kinetics complements

each other in the complete understanding of an enzyme reaction mechanism.

11.1 ES Complex, Intermediates, and Transient Species

An ES complex was invoked in describing the enzyme-catalyzed reaction above.

What is the compelling experimental evidence for this ES complex formation?

Among many clues the earliest of them was the saturation effect. At a constant

[E], the reaction rate increases with increasing [S] until it reaches a limiting,

maximum value (Fig. 11.2). All the enzyme molecules occur as ES complex at

very high [S]. As product is formed from ES complex alone, the rate of formation of

P cannot be further increased by increasing [S]. In this sense, although indirect,

saturation effect provides strong evidence for the existence of the ES complex.

[E]total

Time

[S] [P]

[ES]

[E]

[S]total

Pre-steady-state Steady-state (d[ES]/dt = 0)

Equilibrium

E + S ES E + P

Fig. 11.1 Enzyme-catalyzed reaction – changes in the concentration of various participants

as a function of reaction time

108 11 ES Complex and Pre-steady-state Kinetics



Expectedly, such a saturation effect is not observed with uncatalyzed reactions

(Fig. 11.2).

Apart from the characteristic saturation effect (discussed above), other lines of

evidence have established the existence of ES complex. At times, a direct spectro-

scopic observation of complexes and intermediates may be possible. Spectral

properties of many enzymes (and substrates) change upon binding. Catalase and

peroxidase (and their heme prosthetic groups) were the earliest examples studied; a

catalase-H2O2 complex was first observed by spectroscopy. Yet another example is

where the enzyme-bound pyridoxal phosphate (PLP) acted as a reporter. Tryptophan

synthase upon L-serine (substrate) binding shows a marked increase in its PLP

fluorescence. The E-serine complex was thus inferred from fluorescence spectros-

copy. An “E-NADH-acetaldehyde” complex of alcohol dehydrogenase was deduced

by monitoring the NADH absorbance. The presence of ES complex (and

intermediates) may similarly be inferred through other forms of spectroscopy such

as nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and

Mössbauer. It is thus left to the imagination of the researcher to exploit one of the

many forms of spectroscopy and the corresponding spectral property of the sub-

strate, enzyme, or both.

High-resolution X-ray images of the enzyme active site bound to substrates,

substrate analogs, or inhibitors are now available in public domain database

(http://www.wwpdb.org/). Such structures provide a snapshot of what an ES com-

plex may look like. Enzyme catalytic turnover (average time taken by an enzyme

molecule to convert a single substrate molecule to its corresponding product)

normally occurs in a fraction of a second, while collection of X-ray diffraction

data usually takes several hours. This limits the value of X-ray crystallography to

certain extent. Newer technical developments (such as time resolved X-ray crystal-

lography) however permit the study of ES intermediates within seconds.

It is possible to trap or stabilize the enzyme-bound reaction intermediate in some

cases. The Schiff base complex formed between muscle fructose-bisphosphate

aldolase and dihydroxyacetone phosphate (its keto-substrate) was trapped by reduc-

ing the bound imine with sodium borohydride. This classic experiment also

implicated Lys as the active site residue. Dehydroquinase (3-dehydroquinate

hydro-lyase) provides yet another example of trapping the ES complex as a Schiff

[S]

Rate

Catalyzed

Uncatalyzed

Maximal rate

Fig. 11.2 Substrate

saturation effect is a

distinguishing characteristic

of enzyme catalysts.

Enzymatic reaction reaches a

maximal velocity, while the

uncatalyzed rate (in gray)

continues to increase with

increasing reactant (substrate)

concentration
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base between the enzyme and its substrate. The acyl-enzyme intermediate of chy-

motrypsin was stabilized at acidic pH. Its rate of breakdown is so slow that the acyl-

enzyme can be isolated and crystallized. According to X-ray data, the acyl group

resides on Ser-195 of chymotrypsin. Information regarding ES complexes may also

be obtained by deliberately slowing down the enzyme catalytic rates. Hydrolysis of

4-nitrophenyl acetate (a poor substrate for chymotrypsin) provides a case study.

Because the formation of acyl-enzyme is fast (as compared to its breakdown!), the

reaction exhibits a burst phase of 4-nitrophenyl acetate release followed by the

slower steady state. It may be possible to force one or more intermediate to

accumulate. Tricks used for this purpose include (a) rapidly changing the reaction

pH after the enzyme and substrate are mixed, (b) lowering the reaction temperature

(cryo-enzymology), and (c) creating suitable mutant enzyme forms through site-

directed mutagenesis.

11.2 Kinetic Competence of an Intermediate

In the course of catalytic cycle, the ES complex may go through one or more

intermediates. Occasionally such species may be stable enough to be isolated and

characterized. Whether an enzyme reaction intermediate is stable or short-lived, it

must be kinetically competent. The rates of formation and decay of a true reaction

intermediate must be consistent with the overall reaction rate. The slowest step

controls the overall rate of the reaction. Therefore, a true reaction intermediate

cannot form or disappear at a rate slower than the overall reaction rate. If a postulated

intermediate is so stable that it disappears more slowly than the overall rate of

reaction, then that intermediate is not kinetically competent. Such intermediates

can at best be artifacts and are not part of the actual reaction mechanism.

11.3 Pre-steady-state Kinetics

A great deal of kinetic insight was obtained by studying enzymes under steady-state

conditions. Here we work with conditions that permit manual addition of enzyme to

start the reaction and usually observe its progress in a spectrophotometer. This is

normally carried out in a timescale of several minutes. The pre-steady-state region

however is of great importance in observing ES complex(s), transient species, and

intermediate(s). Although exaggerated in Fig. 11.1 (gray box), it normally lasts for a

very short time – often much less than a second. Timescales of various events

associated with enzyme catalysis in general are shown in Fig. 11.3. Any event/

phenomenon is best studied by a detection technique whose response time (and the

dead time of the instrument) is much shorter than the timescale of that event/

phenomenon itself. For instance, if a spectral tool (like NMR) takes several minutes

to record a kinetic process, then we will miss all those events that may have occurred

within few seconds. We cannot clock a 100 m sprint using a stopwatch marked with
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a least count of 5 min (Olympics record is under 10 s!). In order to observe processes

that occur in the timescale of seconds, faster methods of observation are needed.

Interconversion of the reaction intermediates reflects the essential chemical steps

of catalysis. Most often the steady-state kinetics is insensitive to these steps. Fast

reaction kinetics is however are well suited for this purpose. Ephemeral reaction

intermediates that occur in the pre-steady-state stage are best monitored by suitably

rapid techniques. For this reason, pre-steady-state kinetics is often synonymous with

fast reaction kinetics. Special techniques are needed to examine processes that occur

within seconds.

(a) Detection methods – In order to monitor fast events, suitable detection methods

are required. Large absorbance changes, at a convenient wavelength, are often

used for this purpose. Similarly, fluorescence or pH (via a pH indicator) may

also be exploited. Rapid response time of detection is a prerequisite in fast

reaction studies.

(b) Techniques to reduce experimental dead time – Technical advancements desir-

able to avoid manual steps are automated mixing and observation. Even with

automation there is an obvious time lapse between the first mixing of reactants

(enzyme and substrate) and the arrival of the mixture in the observation

chamber. This dead time is of the order of a millisecond.

Fig. 11.3 Various events associated with enzyme catalysis. The timescales of these processes

are indicated as approximate ranges
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In a stopped-flow apparatus, enzyme and the substrate(s) are held in separate

syringes. The two components are quickly brought together and mixed in an

observation chamber. Change in absorbance or fluorescence is recorded and the

kinetic trace analyzed to obtain appropriate rate constants. This stopped-flow

approach yields a complete time course of events as the reaction is continuously

monitored. At times continuous monitoring may be difficult. In such cases the

reaction may be quickly quenched after mixing and the relevant components subse-

quently measured. Rapid cooling or denaturing agents may be used to quench the

reaction. The quenched-flow technique is a discontinuous method because each run

yields only one point on the time course – larger amounts of enzyme are required for

such experiments.

Mixing, stopping, and quenching are all steps that require finite time. A dead time

of at least 0.5 ms cannot be escaped. Consequently processes that are completed

within 0.5 ms are beyond the observation limits of flow methods. We notice that

some enzymes complete their single catalytic cycle within one millisecond

(Fig. 11.3). Flash photolysis and relaxation methods however provide us access to

sub-millisecond timescale (Table 11.1). In flash photolysis approach, the active

reactant form is generated in situ using a high-energy pulse of radiation (like a

high intensity laser beam). Suitable photosensitive precursors need to be prepared for

this purpose. Caged ATP (2-nitrophenylethyl ester of ATP γ-phosphate group) is a

well-documented photosensitive precursor of ATP. Another approach to overcome

limitations of long dead times (related to mixing related issues) is through relaxation

methods. Here the reaction mixture at equilibrium is subjected to a perturbation that

alters its equilibrium constant. One then observes how the system relaxes to reach a

new equilibrium. Temperature is the most common perturbation tool used. A relation

between Keq and temperature is given by the van’t Hoff equation:

d lnK

dT
¼

ΔH
�

RT2

Therefore, position of equilibrium will change due to T-jump provided the ΔH� of

the reaction is not equal to zero. It is possible to produce (through electric discharge)

an increase in temperature of the reaction mixture by 10�C in 1 μs. Other less

Table 11.1 Fast reaction

kinetic techniques: a

comparison

Technique Dead time Timescale of operation

Flow methods

Continuous flow 1 ms Several seconds

Stopped flow 1 ms Several seconds

Quenched flow 1 ms Several seconds

Relaxation methods

Temperature jump 1 μs Up to few seconds

Pressure jump 1 μs Up to few seconds

Flash photolysis 1 ps Few μ seconds

Steady-state kinetics 15–30 s Several minutes/hour
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common relaxation methods employ pH jump, pressure jump, etc. Relaxation

kinetics is an elegant approach, and rigorous mathematical treatment of such data

is feasible. But experimental observation of all the relevant steps may become

difficult – as they might overlap. Two exponential terms (representing first-order

decays!) that differ by a factor of seven or less cannot be distinguished. Unfortu-

nately, enzyme-catalyzed reactions could contain many such steps. Assumptions of

equilibrium or steady state (Chap. 10) are often used to simplify and analyze

relaxation kinetic data – a treatment that may not always be valid.

Rapid mixing techniques are useful both in the determination of rate constants

and detection of transient species during enzymatic turnover. An early application of

flow method was to study binding of hemoglobin to oxygen. NADH binding to

lactate dehydrogenase was studied by following NADH fluorescence enhancement.

A t1/2 of 2 ms was obtained for this event. This slowest step of the overall reaction

was subsequently correlated to a loop movement that closes the lactate dehydroge-

nase active site. On the other hand, interaction of NADH with malate dehydrogenase

was titrated by a T-jump study. The magnitude of this association constant was

closer to the diffusion rate – NADH binding was not rate-limiting. A complete

description of all the transient intermediates occurring in the dihydrofolate reductase

(reduction of dihydrofolate to tetrahydrofolate by NADPH) reaction was made

through stopped-flow experiments.

In summary, pre-steady-state kinetics provides valuable information on ES com-

plex(s), transient species, and intermediate(s) of an enzymatic process (Fig. 11.1,

gray box) (Barman et al. 2006; Fisher 2005). This however comes at a cost –

requirements of specialized apparatus and lots of pure enzyme protein

(Table 11.2). These are usually beyond the reach of most researchers. Fast reaction

kinetics (and pre-steady-state experiments) are seldom used until after basic under-

standing of the reaction mechanism has been obtained through steady-state kinetics,

and critical tests can be designed to elucidate the mechanism further. For these

reasons, only an overview of fast reaction kinetics is given here. The practice of

steady-state kinetics on the contrary is much simpler and is feasible in an average

biochemistry laboratory. Therefore, steady-state kinetic tools are elaborately covered

in this book. All one needs are catalytic amounts of the enzyme of interest and a

robust method to assay it.

Table 11.2 Comparison of pre-steady-state kinetics with steady-state kinetics

Pre-steady-state kinetics Steady-state kinetics

Follows events leading up to the first enzyme

turnover

Reports on many enzyme turnovers

These events are fast and kinetics tricky to

interpret – Many kinetic events may be

superimposed (overlaid) on each other

Reasonable timescales, can be manipulated by

suitably selecting conditions like [E], [S],

and T, etc.; results simpler to interpret

Expensive to perform and reports on the events

indirectly

Cheap and directly monitors the reaction

progress as it occurs

Enzyme is viewed as reactant, and its

concentrations are comparable to [S]

Enzyme in catalytic amounts and its

concentration negligible compared to [S]
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Principles of Enzyme Assays 12

Enzymology is a quantitative and exact science. Therefore it is important to under-

stand how enzyme activity is measured and presented. A robust and reliable measure

of the progress of an enzyme-catalyzed reaction is first and foremost requirement.

Like with any other chemical reaction, progress of an enzyme-catalyzed reaction can

be monitored either by the product formed (d[P]/dt) or by the substrate consumed

(�d[A]/dt). The two rates are of course related by the reaction stoichiometry. It is

desirable and often safe to follow the formation of product – a substance is better

estimated when it is formed in a background where very little (or none) of it exists.

On the other hand, to measure a decrease in the concentration of a reactant as it

disappears – a small change in a large background – becomes daunting. In practice, a

small decrease in substrate is relatively more difficult to observe than to follow a

buildup of product from nothing. This is particularly relevant when we wish to

record the initial rate (rate during very early time after the reaction is initiated,

abbreviated as “v”), which is given by d[A]/dt when [P] � 0. This is the rate at the

beginning of the reaction or the instantaneous rate extrapolated to time zero.

12.1 Detection and Estimation Methods

Reliable methods of detection and estimation, of product formation or substrate

depletion, are at the heart of a successful enzyme assay. Designing convenient and

reliable assays is the first important step in studying a new enzyme activity. This in

turn is limited by the creativity of the investigator alone. In principle, any signal that

differentiates the substrate(s) or product(s) from other reaction components can form

the basis for an enzyme assay. One usually looks for some physicochemical property

of the substrate or product as a handle. Spectral properties (unique to substrate or

product) are most often exploited for this purpose. The great majority of enzyme

assays are based on absorption measurements. Detection methods available to follow

the course of an enzymatic reaction are listed in Table 12.1. For many enzyme
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assays, these detection methods cannot be directly applied if the method does not

discriminate between the substrate, product, or any of the reaction components. Then

their prior separation becomes necessary. One of the many separation techniques like

chromatography or electrophoresis may be combined with one of the detection

techniques. We shall refrain from describing separation techniques any further.

However, a detailed treatment on this topic may be found in any text covering

analytical biochemistry.

Two very commonly used tools are absorption spectroscopy and fluorescence

spectroscopy. Absorption of a molecule at a particular wavelength can be related to

its concentration by the Beer–Lambert law:

I ¼ I0e
�εcl and A ¼ εcl

where A is the absorbance (�log I/I0) of the sample at a fixed wavelength (in nm), c

is the sample concentration (in molar units), and l is the path length of the light

passing through the sample (usually 1 cm). The intrinsic property of a molecule ε is a

constant known as extension coefficient or molar absorption coefficient. This has

typically the units of M�1 cm�1. The larger the value of ε, the greater is the

Table 12.1 Detection methods used in enzyme assays

Technique Detection of Enzyme assay for

Optical measurements

UV spectroscopy NADH, A340nm Alcohol dehydrogenase; lactate

dehydrogenase; malate dehydrogenase

Visible spectroscopy p-Nitrophenol, A405nm Alkaline phosphatase

Polarimetry Optical rotation, [α] Invertase

Turbidimetry

(Nephelometry)

Attenuation of incident light

(intensity of scattered light)

Lysozyme

Fluorimetry Fluorescein; #at 470 nm and

"at 510 nm

Cholinesterase; acylase; chymotrypsin

Luminometry Luciferin; "at 562 nm Luciferase

Electrochemical measurements

pH meter/pH-stat [H+] change Lipase; cholinesterase; urease; glucose

oxidase

Carbon dioxide Carbonic anhydrase

Potentiometry Fe2+/Fe3+ Oxidase reactions (cytochromes)

Amperometry O2 Oxygenases; glucose oxidase

Manometric measurements

Warburg manometer O2 consumed, CO2 released Respiratory enzymes; decarboxylases

Radiotracer measurements

Scintillation counter β-Emission Dehydrogenases (3H); glutamate

decarboxylase (14C); protein synthesis

(35S); kinases; enzymes of nucleic acid

metabolism (32P)
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sensitivity of that detection method. Knowing the value of ε for a given molecule and

the path length (commonly the UV-visible spectrophotometer cuvettes have a path

length of 1 cm), absorbance values can be directly related to concentration. For

instance, many enzymes of biochemical importance involve interconversion of

oxidized (NAD+) and reduced (NADH) forms of NAD. We can devise a spectro-

photometric assay based on the large absorbance difference at 340 nm (ε ¼ 6220 M
�1 cm�1) between them (Fig. 12.1). Suppose the absorption at 340 nm decreases

(oxidation of NADH) by 0.0622 in a cuvette of 1 cm path length, in 1 min. The

reaction velocity may then be expressed and calculated as shown:

v ¼
�d S½ �

dt
¼

�ΔA

εl
�

1

Δt
¼

0:0622

6220� 1
�
1

1
¼ 10�5Mmin�1

The enzyme velocity is expressed here as molar per minute. By accounting for the

total volume of the reaction mixture, this can also be given in units of moles per

minute.

Suitability of a Detection Method Each one of the methods listed in Table 12.1

has its own merits and demerits. Let us analyze them in some detail.

1. A common drawback associated with absorption measurements is deviation from

Beer-Lambert law. The linear relationship between absorption of the sample and

its concentration holds only over a finite range of absorbance values. This has to

be firmly ensured for accuracy of analysis. It is generally more difficult to

measure a small absorption change for a sample with high initial (background)

absorbance. Sample turbidity is another problem. Turbid samples show light

scattering and vitiate the measurements – they need to be filtered beforehand.

Fig. 12.1 Ultraviolet absorption spectra of reduced and oxidized NAD. Corresponding spectra

for NADPH and NADP+, respectively, are almost identical
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2. Fluorimetric assays are relatively more sensitive (at least by a factor of about 100)

than the absorption-based methods. While absorption is measured at a single

wavelength, fluorescence inherently exploits two distinct wavelengths – excita-

tion wavelength (normally at the absorption maximum of a molecule) and an

emission wavelength. Many fluorophores have large Stokes shifts – the fluores-

cence emission maximum is farther away (toward longer wavelengths) from the

excitation maximum. For this reason there will be fewer components that inter-

fere with a unique fluorescence signal. Since not all molecules fluoresce, it may

be necessary to attach a fluorescent tag to the substrate in order to develop a

fluorescence-based enzyme assay. While most limitations of absorption spectros-

copy also apply to fluorescence measurements, there are additional caveats.

Sources of interference in accurate fluorescence detection include particulate

matter, photodecomposition, polarity of the environment, temperature, and vari-

ous quenching effects. Lastly, while the quantum yield of the fluorophore is an

intrinsic constant for that molecule, the signal obtained from a fluorimeter is

relative and cannot be directly compared.

3. Any reaction leading to pH changes can be followed using a pH meter or a

pH-stat. Precautions are in order since enzyme reactions are strongly

pH-dependent.

4. The oldest but a cumbersome manometric analysis is often substituted by other

tools. For instance, decarboxylations are best measured by monitoring the release

of 14CO2 from a suitably labeled substrate.

5. The use of radioisotopes in enzyme assays invariably makes it a discontinuous

method (see below). Since both the substrate and the product are radioactive, an

appropriate technique (chromatography or electrophoresis) to separate them

becomes mandatory. Most common radioisotopes that find application in enzyme

assays are β-emitters (3H, 14C, 32P, and 35S). Radiotracer analysis can be very

sensitive but requires that suitably labeled substrates are available. Also, handling

radioactivity requires experimental rigor and much care. The radioactivity is

measured in a scintillation counter; the readout (in counts per min, cpm) can be

converted into disintegrations per min (dpm), and this is related to concentration

through specific radioactivity (such as μCi/μmol). Since scintillation counting

measures light emission problems, and precautions associated with fluorimetry

also apply to this technique.

6. Whatever the detection method, before trusting the output provided by any

instrument/machine, it is important for an experimenter to be certain that those

numbers are properly calculated and are reliable.

Direct or Indirect Detection In many enzyme assays the detection techniques

described in Table 12.1 can be directly applied. For example, lactate dehydrogenase

catalyzes the oxidation of NADH while stoichiometrically reducing pyruvate to

lactate. Concomitantly, NADH absorption (at 340 nm) decreases as a function of

reaction time. Such assays are called direct assays because NADH (substrate)

disappearance is directly measured. We may not always be lucky to devise such a

direct enzyme assay. Neither the substrate nor the product of an enzymatic reaction
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may provide a distinct signal, convenient for measurement. It may, however, be

possible to chemically convert the product into a convenient signal. Such a detection

strategy is known as an indirect assay. Monitoring arginase and glutamate dehydro-

genase activities provides two such examples. Firstly, urea, a product of arginase

reaction, is converted to a yellow-colored complex (and measured at 478 nm) by

reacting with dimethylglyoxime reagent. Secondly, the electrons generated through

glutamate oxidation (captured as NADH and transferred via phenazine methosulfate)

are made to stoichiometrically reduce 2,6-dichlorophenolindophenol (DCPIP).

Decrease in blue color (DCPIP absorbs at 600 nm, but its reduced product does

not!) with time is thus a good, indirect measure of glutamate dehydrogenase activity.

The above examples of indirect assays generate a detectable signal from the

product by coupling to a nonenzymatic, chemical reaction. However it may be

possible to couple a second (sometimes even a third!) enzyme to the reaction to be

observed. In such coupled-enzyme assays, the second enzymatic reaction is chosen

for its convenience of measurement. Monitoring hexokinase reaction provides a

succinct example of how coupled assays are designed. These approaches are shown

in Fig. 12.2. Neither glucose-6-phosphate nor Mg-ADP provides any direct means of

detecting them in the background of the hexokinase assay. However, glucose-6-

phosphate is a substrate for glucose-6-phosphate dehydrogenase (G6P dehydroge-

nase); NADP+ is reduced to NADPH in the presence of this coupling enzyme, and

Glucose-6-phosphate ADP-Mg+

6-Phosphogluconoloactone

NADP+

NADPH

Pyruvate

PEP

ATP-Mg

Lactate

G6P dehydrogenase Pyruvate kinase

Lactate 

dehydrogenase

NAD+NADH

Glucose ATP-Mg+

Hexokinase

DA
340

DA
340

Fig. 12.2 Coupled-enzyme assays to monitor hexokinase reaction. (1) Glucose-6-phosphate is

detected indirectly as an increase in A340nm due to NADPH formed. (2) Mg-ADP is converted to

Mg-ATP, while phosphoenolpyruvate (PEP) forms pyruvate. In the second coupled step, pyruvate

is detected indirectly as a decrease in A340nm due to NADH oxidized
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indirectly glucose-6-phosphate can be monitored at 340 nm. At times, it may be

desirable to follow the other product of hexokinase reaction. Mg-ADP can be

detected by coupling to two enzymes – pyruvate kinase and lactate dehydrogenase

– and oxidation of NADH to NAD+ (Fig. 12.2).

Because they involve multiple enzymes in the same reaction mixture, coupled-

enzyme assays are tricky to perform and require utmost care when high kinetic rigor

is necessary. The following conditions have to be met for a successful coupled-

enzyme assay: (a) it is necessary to identify conditions (such as a common pH) that

are compatible for all the enzymes involved, (b) the reaction to be monitored should

be the sole rate limiting step and not the subsequent steps used for coupling, and

(c) effects of inhibitors and other assay conditions to be tested on the enzyme of

interest (like hexokinase above) should not interfere with the coupling reactions. For

these reasons, rigorous kinetic analysis with coupled-enzyme reactions is difficult.

However coupled assays are convenient and simple to routinely follow enzyme

activity when high accuracy is not needed – say during stages of purification. A final

aspect of using coupled-enzyme assays is the quality and cost of coupling enzyme

(s) used. While it may be required in high amounts (this adds to cost) for an efficient

assay, its purity cannot be compromised. Simply stated, an enzyme chosen for

coupling cannot have certain impurities that catalyze unwanted reactions. For

instance, estimation of glucose by glucose oxidase–peroxidase pair involves H2O2

as the stoichiometric intermediate. Presence of catalase as an impurity severely

compromises this assay.

Nowadays, developing a method of detection from scratch is rarely required.

Assays for almost every known enzyme may be found in the dedicated series

Methods in Enzymology (Academic Press). Simplicity of operation is an important

criterion for choosing a method of detection. After that, techniques that permit

continuous monitoring of an enzyme reaction are desirable (see below).

12.2 Enzyme Reaction Time Course

Armed with a convenient detection method, time courses for an enzymatic reaction

are easy to conduct. Progress curves for the product formation may be generated in

two distinct modes (Fig. 12.3). Reaction progress could be monitored continuously

with a suitable signal and an automatic recorder. For example, formation

(or disappearance) of NADH is easily followed in a recording spectrophotometer

at 340 nm. Such continuous assays are very desirable as they provide the safest mode

of determining initial reaction rates. We may not always be lucky to establish a

continuous assay for the enzyme of interest. Then the reaction/assay has to be

quenched (stopped) at preselected time intervals to allow for subsequent product

measurement. This second strategy of generating a progress curve is called discon-

tinuous assay (or end-point assay). An enzyme assay based on radioactivity invari-

ably makes it a discontinuous assay. One has to separate the product from the

remaining substrate, as both of them will contain the label.
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Whenever used, the method of stopping (quenching) the reaction should be such

that it completely stops the reaction. And it must not interfere with the subsequent

product determination step.

A reliable progress curve is particularly relevant when we wish to record the

initial rate, i.e., �d[A]/dt when [P] � 0. This is the rate at the beginning of the

reaction or the instantaneous rate extrapolated to time zero. It is possible to evaluate

reaction velocity from the slope of a plot of signal versus time (Fig. 12.3). Obtaining

perfectly linear initial velocity for an enzyme-catalyzed reaction is a challenge.

Progress curves are often nonlinear. This is because the reaction rate changes –

usually decreases – due to consumption of substrate(s), accumulation of product(s),

loss of enzyme activity with time, etc. An uninterrupted monitoring (a continuous

assay) gives a clear picture of the extent of nonlinearity. One attempts to find the

initial rate (and not the average rate!) from such progress curves (Fig. 12.3). If there

is nonlinearity, then precise extrapolation to zero time is the only way out. This is

done by drawing a tangent (and not a chord!) as close to the origin as possible.

Manually, the tangent for a curve is best drawn using a glass rod. A straight line at

right angles to the curve can be drawn (by aligning the glass rod such that when seen

through it, the curve appears continuous and without the two breaks), and then the

required tangent is obtained as a line perpendicular to the first one. However, most

recording spectrophotometers are equipped with programs to analyze the progress

curves and provide best estimates of initial velocity.

00

Initial linear rate

[NADH]  
  (A340)

10 20 30

[P]

Initial linear rate

Continuous assay Discontinuous assay

chord

chord

40

Time (min)Time (min)

Fig. 12.3 Progress curve for an enzyme-catalyzed reaction. Estimation of initial rate from a

continuous assay is possible by aligning a tangent to the early phase of the progress curve. Tangents

at any other point on the curve or a chord always underestimate the true initial velocity. In

discontinuous assays any data point beyond linear portion of the plot (such as data beyond

10 min; open circles in the right panel) is unsuitable for rate measurements. Velocity estimates

from a single-point assay after 40 min (data point in gray; as defined by the chord) are just half of the

true initial velocity
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While continuous assays are desirable, discontinuous assays can be resorted to

with due precautions. Ensuring linearity of a reaction progress curve is much more

demanding with discontinuous assays. The reason being product measurements are

made at preselected time points, and this data is interpolated/extrapolated to generate

the entire progress curve. The problem is severe when single end-point assays are

used. It is therefore necessary to exercise great care and attention – to ensure that the

assay is indeed linear for the entire period. For example, proper initial velocity will

not be estimated for any data point beyond 10 min in Fig. 12.3 (right panel)! If

attempted, almost invariably this will be an underestimation of true initial velocity

(i.e., �d[A]/dt when [P] � 0). It is therefore mandatory to establish the extent of

linearity before extracting rate information from such data.

Reasons for Nonlinearity Time course of an enzyme-catalyzed reaction is initially

linear, but the rate (slope of the curve!) starts to decline at later time points

(Fig. 12.3). Since true initial velocity is best obtained from linear time courses, it

is important to understand the reasons for departure from linearity. Many of these

were succinctly listed by Haldane in his early classic (Haldane 1930). If the velocity

falls off during the reaction, then one or more of the following may be occurring:

1. As the substrate is continuously consumed, the actual [S] falls with time. The

period of linearity would therefore be expected to be longer at higher initial [S]

values. Nonlinearity is more pronounced at low [S] and with high S!P conver-

sion. In order to obtain linearity at lower [S], however, highly sensitive assays are

required so that smaller values of [P] can be detected.

2. Increasing [P] with time leads to increase in backward reaction (P!S) rates. The

net forward rate will continue to fall until the forward and backward rates become

equal, and the equilibrium is reached.

3. Product, by virtue of being derived from the cognate substrate, often interacts and

reversibly binds to the enzyme to form inactive species. For instance, when

NADH is a substrate for an enzyme, the corresponding product NAD+ retains

significant affinity to bind and inhibit the enzyme.

4. The assay pH may change during the course of the reaction. For instance, pH will

decrease when an esterase will continuously liberate an acidic product from a

neutral substrate. Unless the assay system is adequately buffered, this change of

pH results in nonlinearity of the reaction time course.

5. Irreversible loss of one of the assay components may be occurring during the

assay. It could be an unstable enzyme or a less stable substrate. By isolating the

effect of one component at a time, the probable cause of nonlinearity can be

identified and excluded.

Increasing the straightness of a progress curve may be attempted by addressing

the above issues. Fortunately, in many cases, the reaction initial velocity remains

constant for a relatively long period and hence can be measured accurately. It is

desirable to observe the progress curve for a longer time period to discern the

curvature properly. This helps better estimate the initial linear rate.

122 12 Principles of Enzyme Assays



Despite taking precautions to overcome the different reasons for nonlinearity

listed above, some enzymes show either a burst or a lag in the product formation rate

before the linear phase is attained. When they are not artifacts of the assay, such a

burst phase or a lag phase can give valuable information about the enzyme reaction

mechanism. An excellent example of burst kinetics is the hydrolysis of p-nitrophenyl

acetate by chymotrypsin. When p-nitrophenol formation is monitored, there is an

initial rapid formation (burst phase) followed by a slower linear (steady-state) rate.

The slower linear rate is governed by the rate of hydrolysis of the acetyl-enzyme.

The burst kinetics here provides useful kinetic evidence for the occurrence of an

acyl-enzyme reaction intermediate during catalysis.

12.3 Precautions and Practical Considerations

Reliable kinetic data is a direct outcome of clean experimental design and good

kinetic practices. In order to obtain meaningful results without artifacts and/or

interferences, certain practical considerations are important. Although not meant to

be exhaustive, some of these are listed below with suitable examples.

Purity of Assay Components The purity of substrates, buffers, and other assay

components plays a crucial role in the final outcome of an enzyme assay. At the least,

unaccounted impurities result in overestimating the concentration of that component.

For example, samples of NAD+ purchased from suppliers often contain extraneous

matter like buffer salts, moisture, etc. Obviously the substance is not 100% NAD+. A

sample of NAD+ from a vendor may be 95% NAD+ and the rest made up of alcohol,

water, and phosphate buffer (carried over from the method of its preparation). While

making stock solutions of such components, one should exercise precaution. NAD+

stocks may be routinely calibrated in a spectrophotometer directly at 259 nm and

also by reducing the same to NADH (ε ¼ 6220 M�1 cm�1 at 340 nm). Obtaining

accurate concentrations may require the use of primary standards – just the same way

we make primary standards for acid-base titrations.

At times the impurity may be a potential inhibitor or activator. Vanadate (VO4
3�)

present in ATP samples was identified as an inhibitor of ATPase activity. It is thus

desirable to use vanadate-free ATP for unbiased ATPase assays.

Mg-ATP is the true substrate of most kinases. Many of them are discriminatory

and respond to sub-micromolar concentrations of Mn2+ in the presence of millimolar

concentration of Mg2+ ions. Magnesium salts quite often contain low levels of Mn2+

� this trace impurity may significantly interfere in Mg2+ studies.

Stability of Assay Components Instability of substrate, product, or the enzyme

itself can vitiate the outcome of an assay. If the substrate is unstable and is destroyed

during the course of the assay, then the effect [S] would be significantly different

from what is actually added. Accurate representation of the actual concentration is
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difficult with inherently labile molecules like superoxide anion (O2
�), carbamyl

phosphate, etc. Ferrous ions are inserted into porphyrins by ferrochelatase; Fe2+

species is susceptible to oxidation under assay conditions, while Fe3+ is not a

substrate. Measuring oxaloacetate reduction rates can be affected by its instability

and loss due decarboxylation. Similarly if the product is labile, we may underesti-

mate the true reaction rate. Many molecules like inorganic pyrophosphate (PPi),

H2O2, etc. are unstable in the conditions of the assay – their actual concentration may

be underestimated unless this loss is accounted for.

Nature of the True Substrate The true substrate for a number of enzymes is a

complex of the substrate and a divalent metal ion. Most widely studied example is

Mg-ATP, the true substrate of most enzymes that are ATP-dependent. Similarly,

other chelating substrates like citrate, isocitrate, etc. can exist in free or complexed

form – the two forms may be differently accepted by an enzyme. Citrate binds Mg2+

much more tightly than isocitrate. The presence of Mg2+ ions alters the apparent

aconitase equilibrium since only the uncomplexed forms serve as substrates.

A compound in solutionmay exist inmore than one form, and only one of these is an

effective substrate for the enzyme. The substrate aldehyde, of glyceraldehyde-3-phos-

phate dehydrogenase, also occurs as a hydrate. In fact most of it in solution is in the

form of the hydrate – the remaining 3% free aldehyde is the true substrate. Glutamate

γ-semialdehyde (GSA) – an intermediate in the biosynthesis and catabolism of gluta-

mate, proline, and ornithine – is another interesting example of this kind. Glutamate

γ-semialdehyde exists in unfavorable equilibrium (Fig. 12.4) with its intramolecular

cyclization product pyrroline-5-carboxylate (P5C). The aldehyde form itself suffers

another equilibrium between the free and hydrated state. So, for an enzyme interacting

with glutamate γ-semialdehyde, only a small fraction (0.05%) of the total is available in

solution (Beame and Wolfenden 1995). Oxidation of glucose by glucose oxidase

provides yet another illustration of substrate inter-conversions. In solution three

forms of D-glucose exist in equilibrium – linear chain (traces), the α-anomer (36%),

and the β-anomer (64%). Only the β-anomer is acted upon by glucose oxidase.

Many enzymes act on substrates that are optically active. Racemic mixtures

cannot be treated as the true substrate – only one stereoisomer (either D(R) or L(S)

substrate) may be acted upon by the enzyme. It cannot be just assumed that effective

substrate concentration is half of the total; in some cases the wrong stereoisomer may

inhibit the enzyme and complicate the kinetic data.

Heterogeneity and nonspecificity of substrates should be carefully considered.

Many protein kinases are routinely assayed by their capacity to phosphorylate

casein; in almost all such cases, the true physiological substrate is unknown.

As long as the nature of the true substrate (or inhibitor) for an enzyme is known,

the actual concentration can be and should be evaluated for accurate representation

of data.

Contribution by Nonenzymatic Rates A number of substrates are inherently

unstable and hence disappear with time. As long as the reaction rate is measured
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as disappearance of substrate, this contributes to the enzymatic rate. Substrates like

NAD(P)H, tetrahydrofolate, O2
�, H2O2, thiol (RSH), p-nitrophenylacetate,

p-nitrophenylphosphate, etc. are unstable in solution. They get converted to the

same end product as that formed by the corresponding enzymatic reaction. Reaction

between different components of an assay mixture can also contribute to blank rates.

For example, the nonenzymatic reaction of thiols with hydrogen peroxide is signifi-

cant even in the absence of the peroxidase. Such nonenzymatic rates have to be

accounted for and suitably subtracted from the measured values to obtain true

enzymatic rates. For instance, significant hydration of carbon dioxide occurs

(CO2 + H2O ⇄ HCO3
� + H+) in water; only after subtracting this rate from the
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Fig. 12.4 Compounds that show inter-converting forms in solution. The true substrate for

glyceraldehyde-3-phosphate dehydrogenase (G3P), glutamate γ-semialdehyde dehydrogenase

(GSA), and glucose oxidase (β-anomer of D-glucose) forms only a fraction of the total concentra-

tion present
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rates obtained in presence of carbonic anhydrase, actual enzyme-catalyzed rates are

obtained.

Careful Examination of Interferences Apart from their direct action on the

enzyme, substrate, or product, reagents of an indirect assay can interfere in the

measurements. Enzyme assay strategies based on indirect (and discontinuous)

methods necessitate many controls. For instance, glucose assay using glucose

oxidase–peroxidase coupled-enzyme system is sensitive to many reducing/oxidizing

compounds. Redox-active compounds, other than glucose, may interfere in a perox-

idase reaction. Thiourea drastically reduces the color yield of Chinard’s ninhydrin

method (of ornithine estimation) thereby appearing as if it is an arginase inhibi-

tor (Sudarshana et al. 2001). Therefore, a careful examination of all possible

interferences in the chosen assay method becomes important.

Control of Assay pH, Temperature, and Ionic Strength Activities of most

enzymes are sensitive to changes in the assay parameters like pH, temperature,

ionic strength, etc. Unless these are strictly maintained, the results of such enzyme

assays are useless. We will have more to say later (Chap. 13, Good Kinetic Practices)

on how to control these parameters and design good enzyme experiments.

Nature of Enzyme Preparation Several aspects of the enzyme sample used in the

assay influence the measured rates. Some component may be inadvertently carried in

to the assay along with the enzyme – this may be an activator or inhibitor. One

possible outcome of their interference is nonlinear enzyme concentration curve. Few

illustrative examples of how the nature of enzyme sample matters are listed below:

1. Ammonium sulfate used to precipitate the enzyme protein may affect the enzy-

matic rates. While ammonium is a substrate/product of some enzymes, the high

ionic strength (μ) contributed by it may activate/inhibit the enzyme activity.

2. The enzyme may have been so prepared that significant fraction of it is in the

apoenzyme form. Such subsaturated enzymes show sub-optimal activity in the

assay. For instance, yeast pyruvate decarboxylase loses thiamine pyrophosphate

during purification, and addition of this cofactor is required to reconstitute full

enzyme activity. It is not uncommon to find an enzyme which binds loosely to

other cofactors like pyridoxal phosphate, divalent metal ion, etc.

3. A bound activator/inhibitor may be associated with or have co-purified with the

enzyme. Despite extensive studies on glycolysis and phosphofructokinase over

the century, an important allosteric effector (fructose-2,6-bisphosphate) was

discovered only recently (in early 1980s). While the loss of activator by dilution

may decrease the measured enzymatic rate, removal of an inhibitor from the

enzyme preparation results in perceptible increase in observed rates.

4. Activities of contaminating enzyme(s) at times interfere in the assay of enzyme of

our interest. There may be other activities in the preparation that compete for the

same substrate or product. For instance, a nonspecific ATPase in a kinase

preparation contributes to excess ATP hydrolysis. Similarly, assay of
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dehydrogenases in crude tissue preparations becomes difficult because of the

presence of nonspecific NADH oxidase activity. Monitoring glucose through

glucose oxidase–peroxidase coupled system requires that the two enzymes used

are devoid of catalase contamination. Otherwise the H2O2 formed is destroyed by

catalase. In some cases the contaminating enzyme may simply exploit the assay

conditions and add its own rate to the true rate. Pyruvate decarboxylase activity is

determined by measuring the reduction of acetaldehyde (coupled to alcohol

dehydrogenase and conversion of NADH to NAD+). Since reduction of pyruvate

by NADH can also occur, this assay system does not distinguish pyruvate

decarboxylase from lactate dehydrogenase. The observed activity therefore

should be corrected for controls performed in an identical manner but omitting

alcohol dehydrogenase.

5. The discovery of DNA replication (and of DNA polymerase) is an interesting

historical case of the nature of enzyme preparation leading to discovery. While

the [14C]thymidine incorporation into an acid-insoluble form led Severo Ochoa to

polynucleotide phosphorylase, a similar approach with an E. coli extract steered

Arthur Kornberg to DNA polymerase I. A purified enzyme and his command-

ment V (– Do not waste clean enzymes on dirty substrates (Kornberg 2000))

eventually resulted in the discovery of RNA priming for DNA synthesis.

Finally, one should be aware that in some cases the same enzyme may exhibit

additional catalytic activities. This can be experimentally confirmed, however (see

Chap. 14, Quantification of Catalysis and Measures of Enzyme Purity). For instance,

the oxygenase activity of RuBP carboxylase is not due to a contamination; but the

two reactions are catalyzed at the same active site.

Enzyme Stability Proteolysis often leads to enzyme inactivation over time. Apart

from inactivation due to contaminating endogenous proteases, an enzyme prepara-

tion may lose its activity for other reasons. For instance, presence of heavy metal

ions (Hg2+, Ag+, or redox-active metal ions like Cu2+, Fe2+, etc.) may inhibit/

inactivate the enzyme. Activation of fructose-1,6-bisphosphatase by EDTA (chelat-

ing agent) could be ascribed to its ability to chelate inhibitory heavy metal ions.

Enzyme instability during the time course of the assay interferes and complicates

initial velocity measurements. Whatever be the reason, it is of interest to know

whether enzyme activity is being lost during the assay. Such enzyme inactivation

can be detected by a simple test described by Selwyn (see Chap. 13).

12.4 Summing Up

A robust and reliable assay method is fundamental to the measurement of enzyme

activity. It is often necessary to use different assay methods for characterizing the

behavior of a single enzyme. The choice of a method also has to take into account

key features like sensitivity, convenience, economy, and reliability. Students are

often initiated into an enzyme study by providing them a published assay procedure.
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In most cases the literature is so presented as to highlight on the strengths of a

method. The controls are taken for granted, and on rare occasions explicit mention is

made of interfering factors. Careful controls therefore are “not extra” but absolutely

essential in the use of an existing assay procedure as well as those being newly

established.

While arriving at a suitable method to quantify enzyme activity, the following

points are borne in mind. (a) It is convenient to measure precisely a finite increase

(in the product concentration) from zero than a small decrease (in the substrate

concentration) from a large initial concentration. (b) Continuous assay methods

score over stopped assays. They provide a continuous readout as the reaction

proceeds, thereby enabling one to detect any deviations from linearity. For single-

time point assays, it is mandatory to establish reaction linearity with time and

enzyme concentration (c) A detection method that directly measures the changing

reactant concentration is desirable. Alternative assay strategies based on indirect

measurements necessitate many more controls.

Developing an assay to make reliable initial velocity measurements is a prerequi-

site for scientific and meaningful characterization of any enzyme activity. It is

critical to collect good enzyme data in the first place; because any degree of

sophisticated analysis later will not transform bad data into good data. Keeping in

view all aspects described in this chapter (and the next!), a robust assay should be

chosen. The next most logical step is to generate a reliable time course for the

enzyme-catalyzed reaction. From this data, at as early time points as possible, initial

velocity (linear rates) may be obtained. Collecting initial velocity data at low [S] is

always a challenge – as nonlinearity sets in early under these conditions. A plot of

initial velocity versus [E] (the enzyme concentration curve) should then be

constructed (Fig. 12.5). A linear relationship between initial velocity and [E] is a

Time (min)0

[P]

[E]

d[P]/dt

0

d[P]/dt

[E] (ng/ml)

Fig. 12.5 Enzyme concentration curve. This may be constructed by plotting linear initial

velocity (d[P]/dt) data at different [E] values
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good control and a measure of the reliability of the assay. From all the iterated

information, excellent data can be gathered for enzyme kinetic analysis.

Additional experimental measures that constitute good kinetic practices are

described in the next chapter.
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Good Kinetic Practices 13

Generating reliable enzyme data requires clean experimental design and good kinetic

practices. Certain practical considerations are important in this quest. This chapter

will describe many such aspects of experimentation.

13.1 How to Assemble Enzyme Assay Mixtures

Stock Solutions and Dilutions Enzyme reaction rate, like any other chemical

reaction rate, depends on the concentration of reactant(s), effector(s), pH, and

ionic strength. Measurements therefore have to begin with precise definition of

various concentrations involved. Solutions for enzyme assays must be prepared

accurately. Analytical precision may be achieved by good experimental practices

like (a) differential weighing of chemicals in a calibrated balance, (b) volumetric

transfers using precision pipetting aids, and (c) use of reliable primary standards. A

few standard solutions commonly employed in enzyme assays are listed in

Table 13.1. Various buffers used to maintain reaction pH will be discussed a little

later. Many assay components are required in very low concentrations; some of them

may be hygroscopic. This necessitates the calibration of stock solutions before use.

For instance, once prepared, the concentration of a stock NADH solution may be

standardized by measuring its absorbance at 340 nm. From the knowledge of its

molar extinction coefficient (ε ¼ 6220 M�1 cm�1), the actual concentration can be

ascertained.

Good quality water (double distilled or deionized) is always used to prepare

solutions for enzyme assays. Most dilutions are also made in water. Few assay

components are not readily soluble in water. They may have to be added to the assay

as solutions in an organic solvent. In such cases, it is necessary to take suitable

controls to check whether the solvent itself affects the enzyme activity or the assay

method.
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It is generally desirable to prepare concentrated stock (from 5� to 200�)

solutions. The idea is to provide sufficient space (volume) in the assay mixture to

permit further additions. Concentrated stock solutions are also useful in minimizing

significant changes (such as in terms of pH, temperature, buffer content, etc.) to the

reaction mixture upon their addition. Too large a dilution of buffer affects pH since

Table 13.1 Standard solutions frequently used in enzyme assays

Component Preparation/sourcea Comments

NaOH 1.0 M, sodium hydroxide

pellets (4.0 g) in 100 ml

Store in plastic (not glass!) bottle

Saline 0.9% NaCl (0.9 g in

100 ml)

Isosmotic with blood; commonly

used as phosphate buffered saline –

With 20 mM Na, K phosphate,

pH 7.4

Ammonium sulfate Saturated solution is 3.9 M

(at 0�C)

Used to precipitate proteins;

highest ionic strength of 23.4 in

water

Potassium chromate Potassium chromate

(20 mg) and KOH (1.6 g)

to make 500 ml solution

Spectroscopic standard with

A375nm of 0.991

Bovine serum albumin

(BSA)

Crystalline BSA solution

(1.0 mg per ml)

Protein standard with A280nm of

0.66

Glycerol 5–50% solution

(by volume)

Viscous, difficult to pipette;

stabilizer, cryoprotectant

Ethylenediaminetetraacetic

acid (EDTA)

100 mM stock; 373.2 mg

of disodium salt in 10 ml

Chelating agent, typically used at

0.1–1.0 mM

2-Mercaptoethanol Pure liquid is 14.3 M Thiol protectant; typically used at

1–5 mM

Dithiothreitol (DTT) 100 mM stock; 154.3 mg

in 10 ml

Thiol protectant; typically used at

1–5 mM

Phenylmethanesulfonyl

fluoride (PMSF)

10 mM; 1.74 mg per ml

isopropanol

Stock store at �20 �C; typically

used at 0.1 mM

NAD+ 1.0 mM; 6.63 mg in 10 ml

NADH 1.0 mM; 7.09 mg in 10 ml On 1:10 dilution should give

A340nm of 0.622

ATP 10 mM; 60.5 mg of the

disodium salt in 10 ml

Kinase/synthetase substrate; used

along with excess of MgCl2

Oxygen (O2) 375 nM; solubility at

25�C, 12 mg in 1000 ml

Substrate for oxidation and

oxygenases; solubility depends on

temperature and ionic strength

p-Nitrophenol 10 mM; 13.9 mg in 10 ml Formed as hydrolysis product of

esterase and phosphatase; at

pH 10.0 p-nitrophenol has

ε ¼ 18,700 at 405 nm

5,50-Dithiobis-

(2-nitrobenzoic acid)

(DTNB)

10 mM; 39.6 mg DTNB in

10 ml; prepare fresh,

unstable in alkaline pH

Thiol estimations; 5-thio-2-

nitrobenzoic acid formed with

ε ¼ 13,600 at 412 nm
aAll solutions are in water unless mentioned otherwise
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ionization itself is concentration dependent. Component additions made should not

be more than 5–10% of the total reaction volume. Otherwise, special care is required

to ensure that they are well mixed and equilibrated for pH, temperature, etc. It is

usual to start the reaction by the addition of 10–20 μl of the enzyme per assay. Such

volumes can be easily pipetted and do not essentially change the total reaction

volume. A 10 μl addition to 1.0 ml reaction corresponds to 1% increase in volume.

Often, it may be required to add different amounts of a component (such as while

performing substrate or inhibitor saturation studies). This can be done in different

ways once a stock solution is prepared. (1) Directly add different required volumes

by precision pipettes. This procedure should be discouraged because (a) different

volume additions lead to volume changes, however small, and (b) pipettes come with

volume ranges and are not uniformly accurate, particularly at the lower ranges.

(2) Prepare a dilution series from the stock solution – such that a constant volume

is added to the rest of the assay mixture. While making dilutions, it is desirable to

independently pipette increasing amounts of stock solutions to each tube and make

up the volumes. Serial dilution (stepwise from one dilution to the next!) should be

avoided because a mistake in one tube is carried over to all the subsequent dilutions.

Use of Cocktails An enzyme assay mixture may consist of several components like

substrate(s), cofactor(s), metal ion, buffer, and protective agent (thiol compounds

such as DTT or 2-mercaptoethanol). It makes practical sense to prepare a bulk

mixture of many (or all) of these and take suitable aliquots for individual assays.

Such assay cocktails should contain all components with the exception of one (quite

often this is enzyme) that is used to start the reaction. Assay methods employing

cocktails are particularly useful (a) to avoid pipetting mistakes and related scatter and

(b) if a number of assays are to be performed under identical conditions. They are

valuable when monitoring enzyme fractions from a chromatography column.

While the use of cocktails to assay enzymes can be convenient, certain

precautions are in order. Adequate controls are required to ensure that (a) there

are no instabilities or incompatibilities of various assay components and

(b) pre-incubation with and the sequence of addition of some components have no

significant contributions to the outcome of the assay.

However mundane it may appear, accurate pipetting is a crucial determinant for

good enzyme experiments. Largest contributions to measurement errors arise from

pipetting mistakes.

Assay Dead Time and Mixing In a multicomponent reaction, it is essential to

ensure that all the components are properly mixed at the start of the assay. Mixing in

smaller volumes is not trivial. Too vigorous a shaking may lead to enzyme denatur-

ation. When one of the components is more viscous (like a glycerol stock of an

enzyme), mixing does require an effort. The contents can be satisfactorily mixed by

covering the top with Parafilm and inverting the tube (or the cuvette) a few times.

Some enzymes (like BamH I) are supplied as 50% glycerol stocks – repeated

pipetting/ejecting of such samples into the small volume of an assay mixture

facilitates their quick mixing. Otherwise, the dense enzyme solution settles quickly
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to the bottom of the tube. One other way to achieve gentle but complete mixing is to

add the initiating component to the side of the reaction vessel – as droplet (of about

50 μl or less). At time zero, the reaction can now be initiated by simple repeated

inversions of the closed vessel.

Regardless of how we mix the components to initiate the reaction, the process of

mixing should be completed in a short period of time. With some practice, the fastest

mixing time can be as short as 10 s. This is the dead time of any manual assay – we

cannot make any meaningful measurements before this! One can however adjust

temperature and enzyme concentration to ensure that the reaction rate is slow enough

to allow convenient (longer) timescales for measurement. In a spectrophotometric

continuous assay, the reaction is started by mixing the solution, placing the cuvette

in the holder, and then starting the detector by pressing a button. The time lapse

between mixing and actually starting the measurement can be up to 20 s. For reaction

rates occurring below the seconds scale, fast reaction kinetic tools (see Chap. 11)

may be employed.

Order of Component Addition and Pre-incubations Assays are routinely

initiated by the addition of enzyme – as the last component – to the rest of the

reaction mixture. However, this may not always be the best option. The reaction can

also be initiated by adding (at time zero) other components like substrate(s) or

cofactor(s). Actual choice of how to start the reaction will depend on one or many

of the following factors:

(a) If the enzyme is unstable in the assay mixture, it should be the last component to

be added.

(b) Due to compatibility issues, a component may not be suitable for inclusion in

the assay cocktail. The assay format then would require that such a component

be added last and made the initiating component.

(c) There may be significant blank rates – in one or more combinations of the

incomplete reaction mixtures. Such combinations offer the best controls and

should be used to measure blank rates.

(d) An enzyme may need enough time to establish a binding (and/or conforma-

tional) equilibrium with one or other substrate, cofactor, or inhibitor. This is

best achieved by pre-incubating the enzyme with appropriate ligand(s) before

starting the reaction with the missing component. Many enzymes bind their

cofactors loosely. Therefore significant proportion of it upon purification is

present as apoenzyme. Interaction of pyridoxal phosphate with serine

hydroxymethyltransferase is one such example. Pre-incubation with the requi-

site cofactor is necessary to convert the apoenzyme fraction into fully active

holoenzyme. The NADP-glutamate dehydrogenase from A. niger offers a

different example. Upon pre-incubated with NADPH plus 2-ketoglutarate

(and not individually!) and when the reaction started with ammonia, enhanced

initial rates are observed. Clearly, ligand-dependent conversion to a more active

form occurs during the pre-incubation step.
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About Blanks and Controls We have earlier mentioned that a common practice is

to start the reaction by the addition of the enzyme. This however assumes that all

controls and blanks have been taken into account. An assay system where all the

components are present except the enzyme – whose volume is made up for with

buffer – allows the measure of nonenzymatic rates, for example, the CO2 hydration

rate in the absence of carbonic anhydrase in the assay. Any nonenzymatic rate has to

be corrected for – actually subtracted from the rate recorded for the complete assay.

Thus, enzyme minus blank is an important and useful control. If blank rates occur in

the absence of added enzyme, failure to subtract this blank rate results in an enzyme

concentration curve that intersects Y-axis above zero – implying finite enzyme

activity when no enzyme is present!

A substrate minus control should always be included. The substrate blank rate

allows us to detect any time-dependent changes in the assay that are independent of

substrate conversion step (oxidation of NADH in the absence of pyruvate, in lactate

dehydrogenase assay, for instance). In principle, for multi-substrate reactions, “sub-

strate minus” controls (and blanks) may be measured for each one of them. It is

possible that a blank rate will only occur with certain components of an incomplete

assay mixture. It is thus necessary to test for all such rates using different possible

combinations.

A typical experimental design to meaningfully measure enzyme activity is shown

in Table 13.2. This includes the two important controls mentioned above. While

measuring change in absorbance (ΔA) as a function of time, ΔA/t would represent

the rate. Experimentally we obtain the three rates, namely, (ΔA/t)Test, (ΔA/t)�S, and

(ΔA/t)�E. The true enzymatic rate would then be given by

ΔA

t

� �

enzymatic

¼
ΔA

t

� �

Test

�
ΔA

t

� �

�S

�
ΔA

t

� �

�E

The two types of controls and blanks (substrate blank and enzyme blank) are

essential so that their contributions can be corrected for.

Enzyme Stability During Storage, Pre-incubation, and Assay Enzymes are

prone to inactivation like any other protein. They are optimally stable under specific

conditions of temperature, pH, ionic strength, and presence or absence of ligands.

These parameters differ from enzyme to enzyme. Furthermore, conditions are not

Table 13.2 Design of a typical 1.0 ml enzyme assay with controls

Component

Addition in μl

Enzyme blank Substrate blank Test

Substrate (20�) 50 0 50

Buffer (10�) 100 100 100

Water 850 890 840

Enzyme 0 10 10

Rate measured (ΔA/t)�E (ΔA/t)�S (ΔA/t)Test
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necessarily the same for optimal stability when compared to optimal enzyme activ-

ity. Hence enzyme stocks should be maintained under conditions of their maximal

stability. But enzyme assays should be conducted under the conditions of optimal

activity. Enzyme stocks are best stored at low temperatures but without repeated

freezing and thawing. Their stability is greatly enhanced by additives like sucrose or

glycerol (at 20–50% level). It is also useful to maintain suitable aliquots so that just

enough enzyme is taken out to thaw before use.

At high enzyme concentrations, one may observe the “Zulu” effect – where

inactivation of significant proportion of the total enzyme may apparently go unno-

ticed; but below a critical concentration, there may be a sudden decrease.

Immobilized enzymes may behave in this manner due to limits on substrate diffusion

rates.

There are several reasons why an enzyme loses activity during the assay. The

irreversible loss of enzyme may be due to specific adverse conditions of assay like

pH, temperature, ionic strength, ligands, etc. Apart from these, possible inactivation

due to proteolysis (by contaminating protease activity, however minor!) of the

enzyme protein may occur. Enzymes, especially the intracellular kind, are found

naturally at high concentrations. On dilution to much lower concentrations in an

assay mixture, many of them lose activity rapidly. In dilute protein solutions,

normally found in an assay with pure enzyme preparations, concentration effects

come into play. Proteins bind avidly to glass or polystyrene (plastic) surfaces.

Adsorption onto surfaces of containers, assay tubes, and pipette tips is a serious

concern – particularly when the assay contains a dilute solution of the enzyme

protein. Adsorbed enzyme may reflect as loss of enzyme activity – with an enzyme

concentration curve intersecting the X-axis rather than passing through the origin.

Therefore, it is prudent to use assay tubes and pipette tips made of low protein

binding material. Silicone-coated glassware may also be used. Another option is to

add an inert carrier protein to pure enzyme samples. This ensures that potential

protein binding surfaces are coated/saturated by the carrier protein. Non-interfering

carrier proteins like bovine serum albumin (BSA) or gelatin (lacks aromatic amino

acid residues!) are preferred as additives to enzyme stock solutions and/or assay

mixtures. Many restriction enzymes are best used in a buffer fortified with BSA. For

example, BamH I is supplied as a 50% glycerol solution with 0.01% BSA.

Inactivation of the enzyme during assay could be a likely cause for nonlinearity.

Addition of fresh enzyme aliquot, to an ongoing assay, should proportionately

enhance the rate before it again falls off with time (Fig. 13.1). Enzyme inactivation

makes estimation of the initial rate difficult and inaccurate. The possibility of

enzyme inactivation can be ruled out by a simple test described by Selwyn (1965).

It is based on the fact that the value of [P] formed in an enzyme assay is determined

solely by the product of time and enzyme concentration (that is: [P]/ [E]� t). A set

of progress curves may be generated in which all the parameters are kept constant –

except the amount of enzyme. These time courses when plotted with normalized [E]

should be superimposable. The data points from all progress curves (at different [E]),

when plotted as [P] versus [E] � t, should fall on a single curve (Selwyn plot, right

panel in Fig. 13.1). This implies in order to form certain [P] in a standard assay,
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twice the amount of enzyme (i.e., 2 � [E]) should take half the time (i.e., t/2). If the

enzyme is getting inactivated during the course of the assay, then the value of [E]

itself decreases with time. Therefore the data for different [E] should fall on different

curves.

13.2 pH and Ionic Strength Considerations

Enzyme activity is profoundly affected by pH, buffer species used, ionic strength,

and the dielectric constant of the solution. Enzyme-catalyzed reactions almost

always involve ionizable groups on the enzyme and/or on the substrate. As proton

transfers are crucial, maintaining a well-defined pH (H+ concentration) for an

enzyme assay is important. Since a range of pH values (between 0 and 14 in an

aqueous environment) are in use, more than one kind of buffer ion may be required

in an experiment. This is achieved by the judicious use of suitable buffers; some

useful buffer components and their characteristics are listed in Table 13.3. Apart

from the desired pH, and hence its pKa, choice of a buffer depends on many other

factors. Some buffer components may have additional effects. For instance, phos-

phate may be an enzyme substrate/inhibitor or may chelate metal ions. Tris is known

to inhibit some enzymes like succinic semialdehyde dehydrogenase. Amine buffers

may form unwanted Schiff bases with substrate/product carbonyl groups.

Counterions (like SO4
2�, Cl�, K+, Na+, NH4

+, etc.) may influence the enzyme

directly or through ionic strength effects.

Enzyme replenishment test

0

[P]

Time (min)

Fresh enzyme
    added

10 20 30 40

0

[P]

Selwyn test

[E]xt (ng.min)

Fig. 13.1 Enzyme inactivation during assay. This may be tested by fresh addition of enzyme

(left panel) and by Selwyn test (right panel). The curves for two different enzyme concentrations

(● and □) superimpose when there is no inactivation. With inactivation however, the curve for

lower enzyme concentration (○) is distinct and falls off much faster
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Buffering of metal ion concentration is also a consideration in design of enzyme

assays. Besides substrates like ATP, many buffer species (for instance, phosphate

and citrate) are significantly chelate divalent metal ions. This has to be accounted for,

and suitable buffers that do not bind metal ions (like Mg2+) should be used.

Several buffer components were designed and synthesized (like HEPES) to

minimize interference effects and provide a range of pH values (Good et al. 1966).

Effective buffering capacity is limited to �1.0 pH unit about the pKa value of a

given buffer species. The strength and choice of buffer used should take into account

the required pH range and the nature of the reaction. Strong buffering is necessary to

maintain pH with reactions that generate or consume H+ ions (like urease, glucose

oxidase, etc.). Buffers are usually prepared by dissolving the buffering component in

a small volume, adjusting the pH, and then making up the desired volume – the pH of

this solution is confirmed finally. Two considerations are very important in the use of

stock buffer solutions: (a) ionization is affected upon dilution; it is therefore prudent

to measure the final assay mixture pH and ensure that the required pH is reached, and

(b) pKa of a buffer species is temperature dependent; Tris is notorious for this

(Table 13.3). It is thus necessary to measure/adjust the buffer pH at the same

temperature at which it will be used. Finally, pKas of ionizable species are subject

to perturbation by ionic strength and dielectric constant changes. Extra caution is

needed to measure/report pH values in aqueous-organic solvent mixtures (see

Chap. 24).

Because of pKa limitations, a single buffer system cannot be used over a wide

range of pH values. Further, buffer-specific effects (see above) may also exist.

Effects on the enzyme due to switching of buffer species, if any, have to be

eliminated. This is achieved by using either single buffers with overlap or mixed

buffer systems. Two different buffers with overlapping pH ranges may be used to

make measurements at the same pH. This informs us about the effects of buffer

components other than those due to pH alone. Since different buffers contribute

Table 13.3 Buffers frequently used in enzyme studies

Component (and its full name)

pKa

(at 25 �C)

ΔpKa/

Δ �C

Acetate (with its Na or K salt) 4.76 +0.0002

MESa; 2-(N-morpholino)ethanesulfonic acid 6.15 �0.0110

Maleate (with its Na or K salt) 6.26 (pKa2) –

PIPESa; piperazine-N,N0-bis(2-ethanesulfonic acid) 6.80 �0.0085

Imidazole (with HCl) 6.95 �0.0200

Phosphate (with its Na or K salt) 7.21 (pKa2) �0.0028

HEPESa; N-(2-hydroxyethyl)piperazine-N0-(ethanesulfonic acid)

(with NaOH)

7.55 �0.0140

Tris, tris(hydroxymethyl)aminomethane (with HCl) 8.06 �0.0310

Glycine (with NaOH) 9.78 (pKa2) �0.0250

Carbonate (with its Na or K salt) 10.33

(pKa2)

�0.0090

aThese pKa values are reported at 20 �C
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different ionic strengths, it is desirable to use mixed buffer systems (Table 13.4) that

also provide for constant ionic strength.

Most enzymes display a bell-shaped pH-activity curve with maximal activity

around neutral pH. However, there are enzymes with an extreme pH optimum in the

acidic (such as pepsin) and alkaline (such as arginase) range as well. The decrease of

activity on either side of pH optimum may result from (a) instability of the enzyme

and/or (b) changes in the kinetic parameters of the enzyme due to pH. It is important

to know whether the effects of pH on enzyme activity are reversible or they result

from irreversible changes leading to inactivation. Activity data in a pH range where

the enzyme is rapidly losing activity is difficult to interpret – often meaningless.

Enzyme pH stability can be evaluated by incubating it at different pH values (with

and without substrate, effector, etc.) before readjusting to a pH where it is known to

be stable. Subsequently, the activity remaining in these samples can be determined in

a standard assay. Information about the stability of the enzyme over the pH range

studied is necessary in designing correct kinetic studies (more on this in Chap. 24).

Meaningful pH dependence of enzyme activity may be sought within a range of pH

defined for stability.

Experimental determination of pH optimum (plots of pH versus activity) serves

two purposes: firstly, it is of practical importance in enzyme assay optimization, and

secondly, the ascending and descending limbs of such profiles give some idea about

the range of pKas and hence possible ionizable groups involved. Different enzymes

have different pH optima – this pH optimum may be different from the physiological

pH in which the enzyme functions. If in vitro data are to be related to in vivo

situation, then it is relevant to assay the enzyme at physiological pH values.

13.3 Temperature Effects

Rate of chemical reaction is directly affected by temperature. Normally the rate

doubles for every 10 �C rise in temperature (Chap. 9). While this is also true for

enzymatic reaction rates, there is one major difference. Like any other protein, an

enzyme undergoes thermal denaturation at higher temperatures. Beyond a particular

temperature, enzyme-catalyzed rate starts to decline – due to inactivation of the

catalyst. Hence temperature optimum is a practically convenient expression with no

absolute significance. It suggests something about the heat stability of the enzyme

preparation but is not a definite characteristic of the given enzyme sample, much less

of the enzyme itself. At the temperature optimum, enzyme activity and enzyme

Table 13.4 Mixed buffer systems that span a broad pH range

pH range Components of the mixed buffer

5.2–8.5 MES (50 mM) PIPES (50 mM) HEPES (50 mM)

5.2–8.6 Maleate (50 mM) Tris (50 mM) –

6.0–10.0 Acetate (25 mM) Tris (25 mM) Ethanolamine (50 mM)

5.0–9.0 Acetate (25 mM) MES (25 mM) Tris (50 mM)
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inactivation rates compete – leading to a maximum in the curve. Temperature

optimum (Topt) is a consequence of these two competing processes. Optimal temper-

ature for the same enzyme may vary depending on the presence of stabilizers,

pH, etc.

A temperature-dependence curve (Fig. 13.2a) is more of practical value in

designing enzyme assays. Enzymes should be assayed at temperature that is conve-

nient, supports high activity, and does not significantly denature it. Most enzyme

activities are measured at a standard temperature of 25 �C or 30 �C. However in

some cases it may be desirable to use an appropriate physiological temperature. It is

usually 37 �C for mammalian enzymes and is upward of 72 �C for Thermus

aquaticus DNA polymerase used in polymerase chain reaction (PCR), for example.

Assay temperatures are normally maintained by keeping the reaction mixture in a

water bath. Temperature equilibration takes time and depends on the starting tem-

perature of the mixture and also the nature of the reaction vessel used. Frequently, for

reasons of stability, enzyme (or some other labile component of the assay) is stored

on ice. Adding such a cold component can lead to a drop in the effective temperature

of the assay and therefore a slower reaction rate. Adequate time should be given in

such cases for the assay mixture to reach the required temperature. Poor temperature

equilibration can cause nonlinear reaction rates, and spurious lags may be observed.

Temperature dependence of enzyme activity data can also be analyzed according

to Arrhenius equation (Chap. 9). In a temperature range over which inactivation is

insignificant – a plot of ln V against 1/T gives a straight line (Fig. 13.2b). From its

slope we obtain the value of activation energy (Ea ¼ �R � slope). A break in the

Arrhenius plot is observed when data at higher temperatures, with loss of catalytic

activity, is also included (open symbols, Fig. 13.2b). It should be possible to

compare activation energies (Ea) for enzyme-catalyzed reaction with the

T (degree C)

10 20 40 5030

Relative
 enzyme 
activity

A

ln V

1/T (degree K-1)

Slope = - Ea/R

Break (Topt)

B

(Topt)

Fig. 13.2 Temperature dependence of enzyme activity. (A) Temperature optimum of an

enzyme. Inactivation rate predominates in the descending limb (open symbols). (B) Arrhenius

plot. The velocity data (V is maximal enzyme activity at a fixed enzyme concentration) is plotted against

absolute temperature (�K) in ln V versus 1/T format. The gas constant R ¼ 8.31 J � mol�1
�K�1

(or 1.98 cal � mol�1
�K�1)
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corresponding uncatalyzed reaction. As expected, the catalyzed reactions have much

lower Ea (also see Chap. 5).

Temperature stability of an enzyme can be characterized kinetically (rate of

inactivation) or thermodynamically (inactivation treated as a reversible process

with an equilibrium). For kinetic characterization of enzyme stability, enzyme

solutions are incubated at different temperatures and aliquots removed at suitable

time intervals. The enzyme activity in these samples is then measured (usually

immediately), in a standard assay at its optimal temperature. A plot of relative

activity versus temperature can be informative (Fig. 13.3). The temperature at the

midpoint of inactivation (Tm) corresponds to the temperature at which half the

enzyme has lost its activity. A high Tm implies a more thermostable enzyme form.

Thermal stability could arise due to (a) protection by a ligand or a stabilizing agent or

(b) an inherently more stable enzyme (mutant form).

13.4 Summing Up

Many factors and a variety of artifacts influence the accuracy of enzyme activity

measurements. Properly defined assay conditions of pH, temperature, and ionic

strength go a long way in collecting reliable primary data on the enzyme of interest.

Enzyme data without due attention to quantitative aspects is meaningless. Quality of

this data begins with good kinetic practices and forms the foundation of further

sophisticated analysis – with or without the use of computational support. Finally,

the quality and completeness of enzyme data depend on reporting the essential

metadata details (such as temperature, pH, ionic strength, concentrations of E

and S, presence and concentrations of inhibitors/activators, etc.), conditions under

which the kinetic parameters were obtained. Standards for reporting enzymology

T (degree C)

20 40 80 10060

Fractional
 activity

1.0

0.5

0.0

Tm

Fig. 13.3 Decrease in the

fraction of enzyme activity

as a function of increase in

temperature. The

temperature at the midpoint of

inactivation is shown as Tm.

For an enzyme with higher

thermal stability (curve with

open symbols) the Tm is

higher
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data (STRENDA; available at http://www.strenda-db.org) is an effort to prescribe

and follow best approaches for reporting data in enzyme research (Tipton et al.

2014).
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Quantification of Catalysis and Measures
of Enzyme Purity 14

Exactness cannot be established in the arguments unless it is

first introduced into the definitions

Henri Poincare

Numerical precision is the very soul of science

Sir D’Arcy Thompson

This is more so in enzymology, as it is a quantitative and exact branch of biology. It

is necessary to understand how enzyme activity is measured, calculated, and

presented.

14.1 Enzyme Units, Specific Activity, and Turnover Number

The molar concentration of an enzyme in a sample (at times even in the pure

enzyme!) is often not known. However, with the help of a robust and reliable

assay method, reaction rates can be recorded for any enzyme sample. Assay

conditions like concentration of the substrate, pH, and temperature should be well

defined to obtain a reproducible initial velocity (v) (Halling and Gupta 2014). The

relationship “v/[E]” holds only when true initial velocities are measured. Therefore

the first objective in any quantitative assay (and kinetic study) is to establish the two

limits of linearity. These are the maximum [P] that can accumulate before the two

responses, namely, [P]!t and v![E], become nonlinear. Within these limits, the

measured initial velocity (v) can be used to express [E], the catalyst concentration.

Enzyme Unit To facilitate comparison of enzyme activities from various samples

(and from values reported in the literature), an international unit is recommended.
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The standard enzyme unit (U) is the amount that catalyzes the formation of one

micromole of product per minute, under defined assay conditions. This unit has the

dimensions of μmol�min�1. The more the number of units in a sample means the

more enzyme catalyst present in that sample. While one U of enzyme in a standard

assay produces one μmol of product per min, two U of the same enzyme gives

2.0 μmol�min�1 of the product – and so on. The enzyme concentration in a given

sample is then expressed in terms of U�ml�1. A sample containing 2.0 U�ml�1 is

four times more concentrated enzyme than a sample with 0.5 U�ml�1. We should

note that, as defined, the catalysis unit by itself does not indicate anything about the

purity of the enzyme sample.

The enzyme activity unit may also be expressed in terms of μmol substrate

consumed per min. For any reaction with a defined substrate–product stoichiometry,

this can be converted to the standard unit (U) described above. Some enzyme-

catalyzed reactions may be relatively slow or fast. Accordingly, the unit may be

redefined for convenience by suitably changing either the units for product formed

(from μmol to nmol, mmol, etc.) or the unit of time (from min�1 to h�1, sec�1, etc.).

If such changes are adopted for convenience, then they should be clearly

documented. We find most enzyme literature in clearly defined units. However,

the International Union of Biochemistry has recommended the use of katal –

according to SI units. A katal corresponds to the amount of enzyme that produces

one mole of product per second. From the calculations (see box below), it is obvious

that katal is a very large unit and hence is not in common use.

1 katal ¼ 1 mol� sec �1

¼ 106μmol� 60 min�1

¼ 6� 107μmol�min�1

¼ 6� 107U

Similarly, 1 U ¼ 16:67 nkatal

Specific Activity A way to express the amount and concentration of enzyme is

through U and U�ml�1, respectively. These units reflect on the enzyme content of

the given sample but do not tell us anything about the purity of the enzyme. The units

of enzyme in a sample can be same regardless of the quantity and diversity of other

proteins present. We could however present the quantity (U) of enzyme present in a

known amount of protein. Specific activity is thus defined as the number of units per

mg of protein. It is an index of the purity of the enzyme sample – the higher the

proportion of enzyme protein in a given protein sample, the greater will be its

specific activity. The purer the enzyme sample, the higher is its specific activity. If

this is extended logically to the stage of highest enzyme purity, then that sample

must have every protein molecule representing only that enzyme. Beyond this point

(of limit of highest U�mg�1 protein!), it is not possible to enhance the specific

activity by any method of purification. Conversely, achieving highest constant

specific activity is considered a necessary criterion of enzyme purity.
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Turnover Number The specific activity of an enzyme sample is expressed as

U�mg�1 protein (note that 60 U � mg�1 corresponds to 1 katal � kg�1). This is

nothing but velocity per unit amount of catalyst protein – i.e., μmol product formed

per min per mg protein. With a pure enzyme (possessing highest limiting specific

activity), the amount of enzyme protein (say in mg) can also be expressed as number

of moles of that enzyme (say in μmol). However, to do this we need to know one

additional bit of information – the molecular mass of the enzyme. When this is

available, we can present the specific activity (see box) of the pure enzyme.

Specific activity ¼U�mg�1

¼ μmol product formed�min�1
�mg�1

¼ μmol product formed�min�1
� μmol�1of enzyme

This quantity – called the turnover number – has the units of dimension “time�1
”

(more commonly, sec�1). It indicates the number of times a single enzyme molecule

converts substrate into product in 1 min. In this definition it is assumed that substrate

is saturating and that the enzyme has one active site per molecule. For enzymes with

multiple active sites per molecule (such as lactate dehydrogenase, a tetramer

with one active site per monomer), one could define a catalytic center activity

by accounting for the number of active sites per subunit in the calculation. The

turnover numbers of different enzymes (Table 14.1) could be compared under the

best and optimal assay conditions (in terms of pH, temperature, saturating [S], etc.).

For instance, an enzyme with a turnover number of 60 min�1 is ten times sluggish

in comparison to another of 10 s�1. The turnover number of catalase is among

the highest known (1.0 � 107 s�1). The reciprocal of the turnover number

(sometimes given as kcat) actually indicates the time required for a single catalytic

cycle – and for catalase this is 100 nanoseconds! (Which is nothing but reciprocal

of 107 s�1).

Table 14.1 Range of

enzyme turnover

numbers

Enzyme (substrate) Turnover number (s�1)

Catalase (for H2O2) 1.0 � 107

Carbonic anhydrase (for CO2) 0.6 � 106

Ketosteroid isomerase 0.7 � 105

Urease 1.0 � 104

Triosephosphate isomerase 4.3 � 103

DNA polymerase I (E. coli) 6.0 � 102

Adenosine deaminase 3.7 � 102

Chorismate mutase 5.0 � 101
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14.2 Enzyme Purification and Characterization

Most kinetic studies do not require a pure enzyme preparation provided there are no

interfering activities. However, as we have noted for turnover number calculations

above, there are significant benefits of working with pure enzymes. The famous

quote by Efraim Racker – “Don’t waste clean thinking on dirty enzymes” – is at the

core of molecular enzymology and good chemical practice. The availability of pure

enzyme is very valuable in determining its molecular, mechanistic, and regulatory

properties.

The objective of enzyme purification is to retain and enrich the enzyme protein of

interest while eliminating most other proteins (and other biological macromolecules

like DNA). This is typically achieved by a combination of protein separation

techniques including fractional precipitation, ion exchange, size exclusion, and

affinity chromatography. An enzyme is best isolated from a source where it is

abundant, for instance, lysozyme from egg white and chymotrypsin from the pan-

creas. With the advent of powerful molecular biology tools, most enzymes can now

be produced in a suitable heterologous overexpression system, such as in E. coli. We

also have the option of producing the protein/enzyme with or without a tag – and tags

make purification a routine chore. Every tag is designed with a purification strategy

in mind. A His6-tagged enzyme is best purified on a metal affinity (Ni-NTA) column.

It is a different matter however to ensure that enzymes with tags are (a) active or not

and (b) retain the original properties or are significantly altered. Clearly, for instance,

His6 tag introduces the property to bind a divalent metal ion (such as Ni2+, Co2+, or

other similar metal ion); this complicates further analysis whenever enzyme–metal

ion interactions are to be studied. Proteolytic cleavage of the tag after purification is

one solution but adds an extra technical step in the process.

The theory and practice of protein (and hence enzyme) purification is a mature

subject, and much literature has accumulated over the years. As the reader may

access these tools through suitable books and references (e.g., Deutscher 1990;

Burgess and Deutscher 2009), they are not covered here. However, it must be

borne in mind that whatever steps/protocols are used to purify them, it is highly

desirable to consistently obtain a stable, concentrated enzyme preparation with well-

defined cofactor content, etc.

Wherever possible, it is desirable to start with a sample that is intentionally

enriched. Arginase is 10–15-fold induced in Aspergillus niger mycelia grown on

L-arginine as the sole nitrogen source. Provided the induced enzyme form is not

different, it would be prudent to start the purification with induced cells. The

summary of a successful strategy for the purification of A. niger arginase (induced

on L-arginine) is shown in Table 14.2 as an example. Excellent bookkeeping

through a purification table is a must in monitoring the course of purification

process. Both the amount of protein (in mg) and activity (in U) are estimated in

every step. With these experimentally measured data (given in Table 14.2, in black),

all other parameters may be easily calculated. These derived parameters, after each

step of purification, are shown in gray in the table.
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Obtaining meaningful information about enzyme purification from primary data

is at the heart of all calculations. An example of how the derived parameters

(specific activity, fold purification, and yield) are obtained from experimental data

(Table 14.2) is shown in the box below.

The crude protein extract was obtained from 15 g of wet mycelial mat.

Suppose 10 μl of this sample produced 0.194 μmol of ornithine (product) in

1 min, in a standard assay. It thus contained 19.40 units of arginase per ml and

had a protein concentration of 2.47 mg � ml�1.

19:40 U�ml�1
� 72:5 ml total volume ¼ 1406:5 total U

and 2:47 mg�ml�1
� 72:5 ml total volume ¼ 179:1 mg total protein

The specific activity of the crude extract will be:

19:40 U�ml-1

2:47 mg�ml-1
¼ 7:85U�mg-1 protein

(Same number is obtained when we divide total U by total protein)

After the final step, the specific activity of the purified arginase was:

16:40 U�ml-1

0:08 mg�ml-1
¼ 205:0U�mg-1 protein:

The number of folds this enzyme got purified from the crude sample was:

(continued)

Table 14.2 Purification of arginase from A. niger myceliaa

Step

Total

volume

(ml)

Activity

(U�ml�1)

Protein

(mg�ml�1)

Specific

activity

(U�mg�1)

Yield

(%)

Fold

purified

Crude protein

extract

72.5 19.4 2.47 7.85 100.0 1.0

(NH4)2SO4

(30–60%)

fraction

50.0 28.8 3.15 9.14 102.0 1.2

DEAE-

Sephacel

4.0 36.2 0.35 103.43 10.3 13.2

Hydroxylapatite 3.0 16.4 0.08 205.00 3.5 26.1

aTypically this purification is initiated with 15 g of mycelia (wet weight); U of arginase is defined as

the amount that produces 1 μmol of ornithine (product) in 1 min
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205:00 U�mg-1

7:85 U�mg-1
¼ 26:1 fold

The final yield of pure enzyme was:

Total U in pure fraction

Total U in crude extract
� 100 ¼

16:4U�ml-1 � 3:0 ml

19:4U�ml-1 � 72:5 ml
� 100 ¼ 3:5%

Couple of additional features can be gleaned from the purification data – provided

the arginase sample after the final step is pure. If we know that all the protein is

extracted from the cell mass, then the cellular abundance of arginase can be

evaluated. A protein to be pure after 26.1-fold enrichment must form 3.83% of the

total protein pool of A. niger. Secondly, knowing that arginase is a homohexamer

(molecular mass of 219 kDa), we can calculate its turnover number. From Table 14.2,

the specific activity of pure arginase is 205 U�mg�1 (or μmol�min�1
�mg�1). One

milligram of arginase protein corresponds to 4.57 � 10�3 μmol of arginase (because

219 mg � 1.0 μmol). The turnover number for arginase is therefore:

205:0 μmol�min-1 �mg-1

4:57� 10�3
μmol

¼ 44858 min�1
¼ 748 sec �1

Since there are six active sites (per hexamer), the catalytic center activity should be

one sixth, i.e., 125 s�1.

14.3 Interpreting a Purification Table: Criteria of Enzyme Purity

Reading a well-compiled purification table is very informative. The data provides a

bird’s-eye view on the efficiency of each step and the progress of purification.

Table 14.2 reports a small but significant increase in total activity (yield goes up

from 100% to 102%). This may be because (a) the (NH4)2SO4 carried over from the

fractionation process may be an activator of the enzyme, or (b) some inhibitors from

the crude extract are removed by this step. The objective of each step is to take the

enzyme to higher level of purity (increase in specific activity). While this is

achieved, the yield drops significantly in the DEAE-Sephacel step (leading to �

90% loss). A good purification step should do both – recover most of the enzyme

originally present and also to enrich it. However, one may sacrifice yield for the sake

of an excellent purification step. At times a good purification step is avoided because

of poor yield. As a whole, a well-established purification protocol should be robust

and reproducible and provide the enzyme of desired purity.

As the enzyme gets purified, its specific activity will increase to a limiting value.

No matter what additional steps of purification are used, this limiting specific activity
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cannot be bettered. A pure enzyme usually elutes from a chromatographic column as

a symmetric peak with each fraction showing constant specific activity. This pure

enzyme – of highest specific activity – is a preparation where all protein molecules

present in the sample are of that enzyme alone. Native polyacrylamide gel electro-

phoresis is very popular among many criteria used to test the purity of an enzyme

protein. Owing to its excellent resolution (based on charge and size), native PAGE is

able to resolve closely similar proteins – even isozymes. Often the presence of a

single protein band (on native PAGE gels) is used to describe the electrophoretic

homogeneity of the purified sample. An enzyme found to be electrophoretically pure

however does not necessarily guarantee that all the molecules present are active. An

active homogeneous enzyme means only enzyme molecules are present and every

protein molecule in the sample is enzymatically active. For example, in a sample

containing 100 molecules of protein of which 50 are of the enzyme – then in

principle – specific activity of this sample can be doubled by eliminating those

molecules which are not enzyme. Similarly, even if a given enzyme sample is

homogeneous, it can in principle contain both active and inactive forms of the

same enzyme. There is thus scope to increase the specific activity of this sample

by eliminating the inactive enzyme molecules from it. One way of achieving this is

to use a functional affinity separation that selectively binds only the active enzyme

species. Subsequently, bound molecules (of active enzyme) may be collected by

suitable elution protocols. In many cases, it is possible to estimate the amount of

active enzyme in the given sample by active site titration. Any agent that stoichio-

metrically reacts with the active site may be used to determine the number/concen-

tration of active sites. The number of active molecules in an acetylcholinesterase

preparation was determined using 32P-labeled diisopropylfluorophosphate (DIFP).

The size of the burst observed, when chymotrypsin acts on p-nitrophenylacetate, can

also be used as a measure of active enzyme in a homogeneous preparation of

chymotrypsin.

Homogeneous, pure enzyme sample allows us to infer about the molecular details

of the catalyst. Their oligomeric state can be deduced by a combination of techniques

including denaturing PAGE (such as SDS-PAGE). Enzymes come in different

designs. Lysozyme, RNase A, and chymotrypsin are straightforward examples of

single subunit–single active site enzymes. Not every subunit of an oligomeric

protein may contain one active site. HIV protease (and possibly proline racemase)

is dimeric but contains a single active site. The active site of the homodimeric

mammalian ornithine decarboxylase spans both the subunits. The lone active site

of E. coli RNA polymerase is generated from a holoenzyme made up of five (α2ββ´σ)

subunits. Mitochondrial ATP synthase consists of 22 subunits made from 8 distinct

polypeptide chains. It is thus possible to define an enzyme equivalent weight – it is

the mass of a protein expressed in grams per mole of active sites. For lysozyme it is

the same as its molecular mass whereas it will be the mass of each subunit in the case

of lactate dehydrogenase tetramer.
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14.4 Unity of the Enzyme

It should be obvious from the above discussion that enzyme specific activity is an

important measure of enzyme purity. Highest attainable specific activity coupled with

electrophoretic homogeneity tells us that the enzyme sample is pure. There are limits to

know howmuch of a protein contamination is present. A contaminant which is less than a

fraction of a percent may not be noticed on native PAGE gels. Enzyme activity assays are

inherently more sensitive, and hence contaminating proteins may still be detected as

additional interfering activities in the sample. It is equally possible that the

“contaminating” activity may be an intrinsic property (side reaction!) of the enzyme itself

(Table 14.3). There are documented examples where a single enzyme protein displays

multiple activities – either at the same active site or on distinct sites (Kirschner and

Bisswanger 1976). These also include multifunctional polypeptides (a single polypeptide

harboring more than one distinct enzyme activity) and multienzyme complexes (many

polypeptides form oligomeric structures with more than one distinct enzyme activity).

Table 14.3 Enzymes exhibiting multiple activities

Enzyme example Activities

One active site with many activities

Glutamine synthetase Glutamine synthesis

γ-Glutamyl transfer

RuBP carboxylase (RubisCO) Carboxylase

Oxygenase

Hexokinase Phosphate transfer to sugar

ATP hydrolysis (very weak)

Sucrose phosphorylase Sucrose phosphorylase

Transglucosylase

Fructose-1,6-bisphosphate (FBP) aldolase/

phosphatase (from Archaea)

FBP aldolase

FBP phosphatase

One enzyme with many active sites

A. Multifunctional polypeptides

Aspartokinase-homoserine dehydrogenase Aspartokinase

Homoserine dehydrogenase

DNA polymerase I (E. coli) 50-3’ DNA polymerase

30-50 exonuclease (proofreading)

50-30 exonuclease (repair)

Fatty acid synthase (type I; mammalian) Seven different activities

The arom complex Five different activities (aromatic amino

acid biosynthesis)

B. Multienzyme complexes

Pyruvate dehydrogenase Pyruvate decarboxylase

Transacetylase

Dihydrolipoamide dehydrogenase

Fatty acid synthase (type II; E. coli) Seven different activities

150 14 Quantification of Catalysis and Measures of Enzyme Purity



Although not simple, it should be possible to demonstrate that the same polypep-

tide (or multienzyme complex) is responsible for the main reaction as well as the

other reaction(s), if any. The criteria of unity of an enzyme may be confirmed by one

or more of the following protocols:

(a) All the different activities exhibited by the same enzyme (with one or

more active sites) co-purify during various chromatographic separations. The

ratio of their specific activities remains constant through various steps of

purification. Since a pure enzyme elutes as a symmetric peak of constant

specific activity, other activities of the same protein also behave similarly.

A contaminating activity can be resolved, in principle, by one or the other

separation step.

(b) The two activities displayed by the same active site are not purely additive

because one substrate becomes competitive inhibitor of the other.

(c) A potent inhibitor affects two activities in parallel if they are due to the same

active site. Inactivation (by heat, chemical agents, etc.) studies demonstrate a

simultaneous loss of both the activities. Similarly, both activities are affected in

the same way by the presence/absence of cofactors, if any.

(d) Differential proteolysis sometimes provides clues to the relationship between

various activities of an enzyme. If they are due to the same active site,

their kinetics of inactivation will be superimposable. Activities residing in

different domains of a protein (e.G., multifunctional polypeptide) may

be separated by limited proteolysis. For instance, various activities of

mammalian fatty acid synthase can be released as separate fragments. Also,

the Klenow fragment (corresponding to 324–928 amino acid residues) from

E. coli DNA polymerase I is obtained by the release of the first 323 residues.

Accordingly, Klenow fragment is missing the 50-30 exonuclease (repair)

function.

(e) Replacement of an essential amino acid residue from the enzyme active site,

through a site-directed mutagenesis (SDM) approach, should in principle affect

all the activities due to that active site. For instance, both the carboxylase and the

oxygenase activities of RuBP carboxylase are knocked off simultaneously by

replacement of a single active site residue. With respect to enzymes having

separate active sites, however, the situation will be different. The homoserine

dehydrogenase activity of aspartokinase-homoserine dehydrogenase can remain

unaffected by SDM at the aspartokinase site and vice versa. The SDM tool thus is

a powerful approach in establishing the nature of multiple activities of the same

protein – On the same active site or on different active sites.

Moonlighting and Promiscuous Enzymes A single enzyme protein could have

multiple activities – either at the same active site or on sites distinct from the active

site. Such activities are closely related to each other – either as part of the same
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function or as related reaction steps in the metabolism (see Table 14.3). Many

enzymes are known to “moonlight” and found to serve additional functions that

are not related to their catalytic aptitude. The protein structural features outside of the

enzyme active site often participate in their moonlighting action. The moonlighting

functions of enzymes/proteins were usually discovered by chance. Otherwise normal

members of the intermediary metabolism, the “moonlighting” activities of enzymes

may involve structural and/or regulatory role(s) within or outside the cell. Enzymes

known to display moonlighting activities with well-defined functions include

transcriptional/translational regulation, differentiation and maturation, DNA repair

and maintenance, as well as growth factors and structural components. A few well-

known examples are listed in Table 14.4, and more may be found at the website

http://moonlightingproteins.org/ and the reviews on this subject (Sriram et al. 2005;

Gancedo and Flores 2008).

Besides their moonlighting activities, it is being recognized that many enzymes

are also catalytically promiscuous. Due to their catalytic promiscuity, such enzymes

are capable of catalyzing secondary (unrelated) reactions at an active site that is

specialized to catalyze a primary reaction. The potential for catalytic promiscuity

(see Chap. 5) can be an advantage in generating novel catalysts for industry. Both

moonlighting by and catalytic promiscuity of enzymes are valuable playing fields for

evolution to work (Copley 2003, Khersonsky et al. 2006). They also help in our

understanding of enzyme structure/function relationships and in the directed evolu-

tion of new functions from existing protein scaffolds (see Chap. 39).

Table 14.4 Moonlighting activities of common metabolic enzymes

Enzyme example Moonlighting activity

Structural components

Lactate dehydrogenase, argininosuccinate

lyase, enolase, GSH S-transferase

Lens crystallins

Transcriptional/translational regulation

Aconitase Iron-responsive element binding protein

(IRE-BP)

E. coli thioredoxin Subunit of T7 DNA polymerase

Proline dehydrogenase (PutA) Transcriptional repressor

DNA repair and maintenance

Glyceraldehyde 3-phosphate dehydrogenase,

aconitase, fumarase

Cytosolic/nuclear component of the DNA

damage response

Differentiation and maturation

Phosphoglucose isomerase Neuroleukin, autocrine motility factor,

differentiation and maturation mediator

Ribonuclease 5 (angiogenin) Angiogenesis (new blood vessel formation)
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14.5 Summing Up

Quantitative tools to measure the amount of catalyst (enzyme) present in a given

sample are a prerequisite to all of enzymology. Well-defined units allow us to

express the amount of enzyme in a sample and its relative purity. With good

bookkeeping practices, it is possible to follow the course of enzyme purification.

A qualitative and quantitative analysis of a pure enzyme gives us the first description

of its molecular features. While it is desirable, a homogeneous preparation of an

enzyme is not an absolute necessity for kinetic analysis. Ensuring that the

contaminants are not interfering is sufficient. In fact, cell extracts are by their nature

“dirty enzymes”; they contain other enzymes that act before and after the enzyme of

our interest acts. Study of enzymes in intact cells and organisms is ultimately

necessary to take the in vitro enzyme data into in vivo situations (see Chap. 38).
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Henri–Michaelis–Menten Equation 15

A rate equation (or the rate law) gives the experimentally observed dependence of

rate on the concentration of reactants. Rate equations are at the heart of any kinetic

study as they help us describe the system in a mathematical formalism. This is true

for enzyme catalysis as well. Besides its aesthetic beauty, the compact mathematical

description of reaction kinetics serves the twin purposes of qualitative description of

the system and quantitative evaluation of rate constants. An early attempt to capture

the kinetics of enzyme catalysis was made by Victor Henri (in 1903, Chap. 2), and

this was subsequently developed by Leonor Michaelis and Maud Menten (in 1913).

The rate equation so described is a fundamental equation of enzyme kinetics and

goes by the name Henri–Michaelis–Menten equation. It is more commonly referred

to as Michaelis–Menten equation. The derivation of the rate equation for a simple,

single-substrate enzymatic reaction is especially instructive. In the process, it

describes the general logic used to derive such rate equations – an exercise central

to any enzyme kinetic study. This chapter will describe the development, signifi-

cance, and salient features of the Michaelis–Menten equation.

15.1 Derivation of the Michaelis–Menten Equation

Initial clues to understand enzyme-catalyzed reaction rates came from the saturation

effect. At a constant [Et], the reaction rate increases with increasing [S] until it

reaches a limiting, maximum value (Fig. 11.2). In contrast, reaction rate increases

linearly with increasing [S] in uncatalyzed reactions. The saturation effect observed

with enzyme-catalyzed reactions led to the postulation of an enzyme–substrate (ES)

complex – formed when enzyme and substrate come together through diffusion. The

product is formed and released from ES complex (this means, ES ! E + P) and not

directly from the substrate. We can then represent the simplest general scheme for

one substrate-one product reaction as shown (Fig. 15.1).
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According to this representation, the enzyme-catalyzed rate will be directly

related to [ES] and indirectly related to [S]. Taking this into account, we may write

the rate of enzyme-catalyzed reaction (velocity “v”) in terms of ES concentration as

shown:

v ¼
d P½ �

dt
¼ k2 � ES½ �

Deriving the Rate Equation Thus Becomes an Exercise in Evaluating [ES]. In order

to obtain a useful rate equation, it is necessary to obtain [ES] in terms of [S] at any

given instance. But this is not a trivial matter, because, as we have noted earlier,

concentrations of S, P, E, and ES are all changing as a function of reaction time

(Fig. 11.1, Chap. 11). A conceptual breakthrough in simplifying this difficulty was

made by setting up well-defined initial conditions and making certain clear

assumptions. Three important experimental conditions are as follows:

1. All experimental conditions like pH, temperature, ionic strength, etc. remain

constant throughout the course of experiment.

2. Enzyme being a catalyst, its concentration is very much lower than the concen-

tration of substrate. Typically, concentration of the substrate is at least 1000 times

higher than that of the enzyme. This permits us to approximate [St] � [S],

although [St] ¼ [S] + [ES].

3. Strictly the initial rate (velocity “v”) is recorded. This is the rate at the beginning

of the reaction or the instantaneous rate extrapolated to time zero. This will be the

unbiased rate when [P] � 0.

Obviously, additional assumptions are clearly needed to evaluate [ES] and then to

obtain the rate equation.

The Equilibrium Assumption Michaelis and Menten (and of course Victor Henri

before them!) provided the conceptual breakthrough and derived the now famous

rate equation for an enzyme-catalyzed reaction. They assumed that the formation of

E + S ES E + P

k1 k2

k-1 k-2

Fig. 15.1 Simplest enzyme reaction scheme for S! P conversion invoking the formation of a

single ES complex. The forward rate constants for the first and the second step are shown as k1 and

k2, respectively. Reverse rate constants for the corresponding steps are shown as k�1 and k�2
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ES complex from E and S is at equilibrium; accordingly k2 is considered to be much

smaller in magnitude when compared to k1 and k�1 (Fig. 15.1). With this equilibrium

assumption and the experimental conditions listed above, it was possible to evaluate

[ES] as below:

Keq ¼
E½ � S½ �

ES½ �
¼

k�1

k1
and hence k1 E½ � S½ � ¼ k�1 ES½ �

However, [Et] ¼ [E] + [ES] and therefore substituting for [E] we get

k1 Et½ � S½ � � k1 ES½ � S½ � ¼ k�1 ES½ �

On simplification,

ES½ � ¼
k1 Et½ � S½ �

k�1 þ k1 S½ �ð Þ
¼

Et½ � S½ �

k�1

k1
þ S½ �

� �

Substituting this value of [ES] in the rate equation, v ¼ k2�[ES], we get.

v ¼
k2 Et½ � S½ �

k�1

k1
þ S½ �

� �

By defining Vmax (as k2 � [Et]) and KS (as k�1/k1), this takes the original form of

Michaelis–Menten equation:

v ¼
Vmax S½ �

KS þ S½ �

It is obvious that when all the enzyme is in ES form (i.e., [ES] ¼ [Et]), the reaction

velocity reaches a limiting maximum value (i.e., v ¼ Vmax). Also, the constant KS

(the Michaelis constant) is nothing but the equilibrium (dissociation) constant – in

accordance with the equilibrium assumption. Rate constant k�2 (see Fig. 15.1) does

not appear in the final form of the rate equation. The rate “k�2�[P]” equals zero as

long as [P] � 0 (initial velocity conditions are met!).

The Steady-State Assumption In the equilibrium assumption (described above),

the binding step (E + S⇄ ES) was set at equilibrium, by explicitly assuming that k2 is

quite small. It may not be always true that k2 is negligible (when compared to k1 and

k�1 in Fig. 15.1). In such situations, “equilibrium assumption” is invalid and cannot

be used to evaluate [ES]. Briggs and Haldane (1925) overcame this limitation by

suggesting a more general approach. They viewed the [ES] to be at steady state (see

Chap. 10 and Fig. 11.1). As the [St]/[Et] ratio increases, the steady-state region

occupies increasing fraction of the total reaction time. Accordingly, concentration of
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ES remains unchanged – because its formation and disappearance rates are equal

(i.e., d[ES]/dt � 0). With this assumption and from Fig. 15.1, we can set up a

balanced equation and solve for [ES].

Rate of ES formation ¼ rate of ES disappearance

and therefore,

k1 E½ � S½ � ¼ k�1 ES½ � þ k2 ES½ �

However, [Et] ¼ [E] + [ES] and therefore substituting for [E], we get

k1 Et½ � S½ � � k1 ES½ � S½ � ¼ k�1 ES½ � þ k2 ES½ �

On simplification,

ES½ � ¼
k1 Et½ � S½ �

k�1 þ k2 þ k1 S½ �
¼

Et½ � S½ �

k�1þk2
k1

� �

þ S½ �

Since velocity (v) is ¼ k2�[ES] and substituting for [ES],

v ¼
k2 Et½ � S½ �

k�1þk2
k1

� �

þ S½ �

v ¼
Vmax S½ �

KM þ S½ �
Michaelis�Mentenequation

As before, we define Vmax (as k2 � [Et]); however KM ¼ (k�1 + k2)/k1 is a lumped

up constant (commonly referred to as “Michaelis constant”) arising from the three

rate constants.

Equilibrium Assumption Is a Limiting Case of Steady-State

Assumption Regardless of whether one uses equilibrium assumption or steady-

state assumption (or considers d[ES]/dt as very small!), we arrive at an equation

that is isomorphic with the original Michaelis–Menten equation – which is an

equation describing a rectangular hyperbola. The two representations of the

enzyme rate equation differ in the nature/composition of the Michaelis constant.

According to steady-state assumption, we see that
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KM ¼ k�1 þ k2ð Þ=k1
¼ k�1=k1ð Þ þ k2=k1ð Þ
¼ KS þ k2=k1ð Þ

For an enzyme KM ¼ KS, whenever the k2 is very small compared to k1 (i.e., k2/

k1 � 0). Clearly, the equilibrium assumption is a limiting case of steady-state

assumption.

15.2 Salient Features of Michaelis-Menten Equation

The derivation of Michaelis–Menten equation describes the general logic used to

derive enzymatic rate equations. It establishes the rate law for an isolated enzyme-

catalyzed reaction under clearly specified conditions. Despite the assumptions

involved, this elegant equation has stood the test of time. We will analyze the salient

features and limits of this equation.

Anatomy of the Equation and its Limits The v ! [S] plot form of Michaelis–

Menten equation is a rectangular hyperbola. This adequately describes the charac-

teristic saturation effect (Fig. 11.2) observed with enzyme catalysis. Enzyme behav-

ior at the two limiting cases of [S] may also be visualized.

(i) When [S] is very small compared to KM (i.e., KM+[S]� KM, in the denominator),

the equation takes the form

v ¼ Vmax=KMð Þ � S½ �1

For very small values of [S], therefore, the reaction is of first order with respect to

“S.” By analogy, Vmax/KM represents the first-order rate constant for this reaction

(Table 15.1).

(ii) When [S] is very large compared to KM (i.e., KM+[S]� [S], in the denominator),

the equation takes the form

v ¼ Vmaxð Þ � S½ �0

For very large values of [S], therefore, the reaction is of zero order with respect to

“S.” By analogy, Vmax represents the zero-order rate constant for this reaction.
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Obviously, the reaction order for an enzyme-catalyzed reaction changes when we

move from sub-saturating to saturating levels of [S]. As we go from very low to very

high [S], it follows the sequence, first order!mixed (fractional) order! zero order,

as shown schematically in Fig. 15.2.

Enzyme Kinetic Constants and Their Units Both Vmax and KM (and therefore

Vmax/KM) are constants for a given enzyme. The units for KM and Vmax will be those

in which [S] and v, respectively, are measured.

Since velocity “v” can reach a maximum of Vmax (as [S]!/, see Fig. 15.2), they

have similar units. Just like enzyme reaction velocity, Vmax is expressed as μmol

product formed�min�1�mg�1 protein or U�mg�1 protein. By definition,

Vmax ¼ k2 � [Et], and therefore Vmax is a constant provided the amount of enzyme

catalyst ([Et]) is fixed. We notice that the constant k2 is an intensive property and is

intrinsic for a given enzyme. However, [Et] is an extensive property whose magni-

tude can be adjusted. The amount of enzyme protein can also be expressed as

number of moles of that enzyme (Chap. 14). In this form, the constant k2 (which

equals Vmax/[Et]) is more generally denoted as kcat – the turnover number. It has the

units of time�1 as expected of a zero-order rate constant (Table 15.1).

The units for KM and [S] are the same (i.e., concentration such as mM, μM, etc.).

This is expected when we consider KM purely as a dissociation constant (recall the

[S]

v

Vmax

First

Mixed

(Fractional)

Zero

1/2 Vmax

KM

Fig. 15.2 Order of an

enzyme-catalyzed reaction

gradually changes from first

order to zero order as [S]

increases from zero to

infinity. A schematic

representation is shown

Table 15.1 Order of an enzyme-catalyzed reaction changes with increasing [S]

[S] Reaction order Rate constant Units

[S] < < KM First Vmax/KM M0 � sec�1

[S] around KM Fractional – –

[S] > > KM Zero Vmax M
1 � sec�1
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KS of equilibrium assumption). Numerically, KM is equal to [S] at which the

reaction rate is half its maximal value. This is obvious when we substitute velocity

by Vmax/2 and simplify the Michaelis–Menten equation. By corollary, bothKM and [S]

are expressed in concentration units.

Relation to Rectangular Hyperbolic Geometry The Michaelis–Menten equation

describes an equation for rectangular hyperbola. Enzyme reactions that follow such a

rate law display v ! [S] curves tracing a rectangular hyperbola (Fig. 15.3).

It is a geometric property of rectangular hyperbola (from mathematics) that,

despite the absolute magnitudes of X- and Y-axis scales, the ratio of X-axis

coordinates corresponding to any two Y-axis coordinates remains constant. There-

fore, regardless of absolute values of the kinetic constants (viz., Vmax and KM), the

ratio of [S] taken at any two fixed fractional saturations (v/Vmax) remains same. For

example, the ratio of [S] at 0.9 saturation (i.e., [S] when v ¼ 0.9 Vmax) to [S] at 0.1

saturation (i.e., [S] when v ¼ 0.1 Vmax) is 81 – a constant (as shown in the box

below). We can demonstrate this for many other substrate saturation ratios such as

[S]0.8/[S]0.2 ¼ 16 and [S]0.9/[S]0.2 ¼ 36, etc.

Fig. 15.3 The v ! [S] curve described by the Michaelis–Menten equation is part of a

rectangular hyperbola. The highlighted short arc (dark line) is the actual region where experi-

mental observations for an enzyme are physically possible. The two limbs of this rectangular

hyperbola form asymptotes of an infinite curve as shown. This makes direct estimation of both

KM and Vmax values difficult
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Calculating [S]0.9/[S]0.1
The Michaelis–Menten equation may be rearranged for [S] as shown:

S½ � ¼
v

Vmax � v
KM

Substituting v by 0.9 Vmax and solving for [S]0.9,

S½ �0:9 ¼
0:9Vmax

Vmax � 0:9Vmax

KM ¼
0:9

0:1
KM ¼ 9KM

Similarly, substituting v by 0.1 Vmax and solving for [S]0.1,

S½ �0:1 ¼
0:1Vmax

Vmax � 0:1Vmax

KM ¼
0:1

0:9
KM ¼

1

9
KM

Taking ratios,

S½ �0:9= S½ �0:1¼81

If [S]0.9/[S]0.1 ¼ 81, then that enzyme kinetic data fits the Michaelis–Menten

equation. What if [S]0.9/[S]0.1 is not 81? Obviously such an enzyme does not obey

the Michaelis–Menten kinetics, and the data points do not trace a rectangular

hyperbola (Choudhury and Punekar 2009). There are several possible causes

of such behavior. Common examples of non-hyperbolic substrate saturation

include inhibition by high [S] and cooperative kinetics (Fig. 15.4). Such departures

from simple hyperbolic behavior (as predicted by Michaelis–Menten equation)

are also very informative. They are helpful in (a) deducing the kinetic mechanism

involved (Chap. 23; Substrate Inhibition) or (b) establishing the phenomenon

of cooperativity and allosteric regulation (Chap. 37; Regulation of Enzyme

Activity).

Cooperative Kinetics E and S interactions are considered cooperative when the

binding of one molecule of substrate to the enzyme can either facilitate (positive

cooperativity) or hinder (negative cooperativity) the binding of subsequent

molecules of the same substrate. Binding of oxygen to hemoglobin (an honorary

enzyme!) is an early example of positive cooperativity (Hill 1910). A sigmoid

saturation curve (unlike the rectangular hyperbola traced by Michaelis–Menten

equation) is better described by the Hill equation:
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v ¼
Vmax S½ �h

K0:5
h þ S½ �h

Hill equation

where [S] is the substrate concentration, v is the corresponding initial velocity, and

h (also denoted as nH) is the Hill coefficient. The constant K0.5 is analogous to KM of

the Michaelis–Menten equation. It defines the value of [S] at which v¼ Vmax/2, but it

is not a Michaelis constant. The Hill coefficient is widely used as a measure of

cooperativity. If the enzyme exhibits no cooperativity, then h ¼ 1, and the above

equation reduces to simple Michaelis–Menten eq. A Hill coefficient of greater than

unity (h > 1) implies positive cooperativity, whereas negative cooperativity is

indicated if it is less than unity (h < 1). A schematic of v! [S] curves for cooperative

enzymes is depicted in Fig. 15.5.

For cooperative enzymes, we can show numerically that [S]0.9/[S]0.1 does not equal to

81. The [S]0.9/[S]0.1 ratio (also known as cooperativity index, R) itself can be used as an

alternative measure of cooperativity. The R values for positively cooperative enzymes

are less than 81, while for negative cooperativity, it is greater than 81. The two indices of

cooperativity, namely, h and R, are related to each other as shown in the box below.

Fig. 15.4 Two examples of non-hyperbolic substrate saturation. NADP-glutamate dehydroge-

nase from Aspergillus niger [●] shows sigmoid 2-oxoglutarate (substrate) saturation. The same

enzyme from Aspergillus terreus [○] however exhibits substrate inhibition. A theoretical curve

(in gray) describing the Michaelis–Menten kinetics is included for comparison
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h and r: The Two Cooperativity Indices

The Hill equation may be rearranged as shown:

v

Vmax

¼
S½ �h

K0:5
h þ S½ �h

For v/Vmax ¼ 0.9, we obtain S½ �0:9 ¼ 9
1=h � K0:5

Similarly, for v/Vmax ¼ 0.1, we get S½ �0:1 ¼
1

9
1=h
� K0:5

Taking ratios,

S½ �0:9= S½ �0:1¼R¼811=h

We can relate the two indices by substituting different values for h in this

equation. For example, when a hyperbolic (Michaelian) kinetics is described

h ¼ 1 gives R ¼ 81.

(continued)

Fig. 15.5 The v ! [S] curves for enzymes with different cooperativity indices. Schematic

curves for positive cooperativity (solid line; R < 81), negative cooperativity (dashed line; R > 81),

and Michaelis–Menten kinetics (dotted line; R ¼ 81) are shown. The [S]0.9 value for negative

cooperative enzyme lies far to the right (outside the X-axis scale) and is not shown. The two axes are

plotted as dimensionless quantities with fractional velocity (Y-axis) and substrate concentration

relative to K (X-axis). Here K denotes KM for the Michaelis–Menten kinetics and K0.5 for the two

cases of cooperativity
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Many cooperative enzymes also exhibit allostery and vice versa. Such enzymes

have important roles in metabolic regulation. For instance, positive cooperativity

enables them to respond with exceptional sensitivity to changes in metabolite

concentration. We will revert to this topic in a later section (Chap. 37; Regulation

of Enzyme Activity).

15.3 Significance of KM, Vmax, and kcat/KM

In the Michaelis–Menten world of the enzyme catalysis, KM and Vmax are the

fundamental constants. As long as the equilibrium assumption is valid (i.e., KM �
KS), KM may be viewed as an apparent dissociation constant for ES. Otherwise it is

not. It is observed that Michaelis constants recorded for most enzymes are in the

range of their corresponding physiological substrate concentrations. Each metabolite

(substrate) concentration in vivo is optimized by the evolutionary process for

efficient functioning of cellular metabolism. This in turn drives enzyme evolution

to achieve a Michaelis constant of the same magnitude. The KM therefore provides

an approximation of [S] in vivo. In general, biosynthetic enzymes have much lower

KM values than their corresponding catabolic counterparts (more on this may be

found in Chap. 37). As a thumb rule, enzymes best operate as catalysts with [S]

around or above their Michaelis constants – otherwise their catalytic potential is

underutilized. Also, the substrate concentration region around the KM is where the

system exhibits fractional order!

The other constant Vmax is the maximal velocity at saturating concentrations of

substrate. In the classical derivation of Michaelis–Menten equation, it was equated to

k2 � [Et]. Recall that k2 was the rate constant for the “formation and release” of

product from ES complex (Fig. 15.1). This simplistic mechanism involved a single

ES complex. For more general cases, with many more intermediates and steps, k2
may be replaced by kcat (and therefore, Vmax¼ kcat� [Et]). Regardless of the number

of steps/constants it describes, kcat has the units of a first-order rate constant (i.e.,

time�1). This is also known as turnover number – and it defines the number of

turnovers (catalytic cycles) – the enzyme can undergo in unit time when the enzyme

Type of v ! [S] curve h (or nH) R

Michaelis–Menten kinetics 1.0 81

Positive cooperativity (h > 1) 2.0 9

4.0 3

Negative cooperativity (h < 1) 0.5 6560
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is fully saturated with substrate (also see Chap. 14). Whereas Vmax depends on the

enzyme concentration ([Et]), kcat does not. Therefore, kcat is a fundamental property

of the enzyme.

In light of the steady-state concept, a clean separation of binding (KM) and rate of

catalysis (Vmax) may not be possible. The kinetic parameters KM and kcat (and

therefore Vmax) are algebraic aggregates of microscopic rate constants associated

with many reaction steps. Recall that only in a simple mechanism (Fig. 15.1) k2
equals kcat. Otherwise, kcat may also contain many more rate constants within

it. Michaelis constant is a complex of at least three (and may be more if it is viewed

as (k�1 + kcat)/k1) rate constants and is conceptually difficult to grasp. Cleland

therefore suggested that Vmax/KM (first-order rate constant) and Vmax (zero-order

rate constant) are the two fundamental kinetic constants for an enzyme-catalyzed

reaction (Table 15.1). They represent apparent rate constants at very low and very

high [S], respectively. According to this view, KM is merely a derived constant

obtained from the ratio of two rate constants (viz., Vmax/(Vmax/KM)).

Kinetic Perfection and the Diffusion Limit Enzymes are exquisite catalysts of

nature. Nevertheless, can the catalytic efficiency of an enzyme be improved further?

(Albery and Knowles 1976) What then is a “perfect” enzyme? Which fundamental

kinetic constant(s) provide this information? We shall now attempt to answer these

interesting questions. Imagine the events during enzyme catalysis as shown in

Fig. 15.6.

In this depiction, the chemical steps in a single catalytic cycle – including all the

bond breaking and forming events and conformational changes – are sandwiched

between two physical steps. The physical events of substrate colliding with the

enzyme molecule and product dissociating from the enzyme surface are diffusion

controlled. As a catalyst, an enzyme can do very little to overcome this diffusion-

imposed limit. Regardless of how well an enzyme accelerates the chemical steps, the

upper bound for catalytic rate acceleration is the prevailing diffusion-limited

on-rate.

What kinetic parameter(s) of the enzyme should then be compared with diffusion-

limited on-rate to evaluate its efficiency? At least under low [S] conditions, the

Michaelis–Menten equation reduces to v ¼ (kcat/KM) � [E] � [S]. The reaction is

now effectively a bimolecular collision between free E and free S. The ratio kcat/KM

Product

RELEASE

Bonds

BREAK - FORM

Substrate

BINDING

PHYSICAL PHYSICALCHEMICAL

Fig. 15.6 Simplified view of events during a single cycle of enzyme catalysis. The chemical

bond breaking/forming steps are sandwiched between two diffusion-controlled physical events
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is therefore a good measure of enzyme’s kinetic perfection. It has the same units as

bimolecular diffusion on-rate constant, namely, M�1 � s�1.

kcat

KM

¼
kcat

k�1þkcat
k1

¼
kcat

k�1 þ kcat
� k1 �

s�1

M
¼ M�1 � s�1

� �

Consider a situation where every collision between the enzyme and a substrate

molecule is productive: that is kcat (product formation rate) is much larger than k�1

(dissociation of ES back to E and S). Under these conditions, kcat/KM approximates

to k1 in the above equation. Thus the upper limit to kcat/KM is set by k1 – the rate of

formation of ES complex! Since k1 is the bimolecular association rate constant

between E and S, this rate cannot be faster than the rate of diffusion-controlled

encounter of E and S. Notice that the units for k1 (M
�1 � s�1) are the same as those

for the diffusion on-rate constant. Obviously, the upper bound for k1 (and hence for

kcat/KM, by the above argument) is diffusion-limited on-rate constant (Eisenthal et al.

2007). In this sense, kcat/KM becomes diffusion controlled in a perfect enzyme. For

many enzymes, as noted by Cleland in 1975, the kcat/KM values approach the

diffusion limit (between 108 and 109 M�1 � s�1). Triose phosphate isomerase was

one of the early candidates to be characterized and termed “perfect” by this criterion.

The kcat/KM ratios of superoxide dismutase and acetylcholinesterase are also

between 108 and 109 M�1 � s�1. Any further gain in catalytic rate requires that

the time for diffusion should decrease. The catalytic efficiencies (as kcat/KM) for a

few representative enzymes are shown in Table 15.2. As can be seen, most of them

have nearly attained kinetic perfection.

The concept of a kinetically perfect enzyme begs the question – how to check

whether an enzyme is diffusion limited? We can probe this by varying the rate of

diffusion through viscosity adjustments. Viscosity of aqueous solutions can be

controlled by the addition of solutes like sucrose or glycerol. For instance, 30%

Table 15.2 Enzyme catalytic efficiency (kcat/KM) compared to uncatalyzed reaction rate

constant (kuncat)

Enzyme

Catalytic efficiencya

(kcat/KM), M
�1 � s�1

Uncatalyzed

rate (kuncat), s
�1

Catalytic proficiency

(kcat/KM)/kuncat, M
�1

OMP decarboxylase 5.6 � 107 2.8 � 10�16 2.0 � 1023

Ketosteroid

isomerase

3.0 � 108 1.7 � 10�7 1.8 � 1015

Triose phosphate

isomerase

2.4 � 108 4.3 � 10�6 5.6 � 1013

Carbonic anhydrase 8.3 � 108 1.3 � 10�1 9.2 � 108

Fumarase 1.6 � 108 – –

Acetylcholinesterase 1.4 � 108 – –

β-Lactamase 1.0 � 108 – –

aThese values are compared with corresponding bimolecular diffusion on-rate constant in water of

about 108 and 109 M�1 � s�1, in water
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sucrose increases the viscosity of water by a factor of 3 – the diffusion rate also is

decreased by the same factor. A decrease in the kcat/KM of an enzyme with increasing

medium viscosity is indicative of a diffusion-limited enzyme. If the magnitude of

kcat/KM is smaller, then the bimolecular collisions occur faster and diffusion is not

rate limiting. For such enzymes, kcat/KM is independent of viscosity changes. When

such a study was conducted on carbonic anhydrase, indeed the hydration-

dehydration rate of CO2 decreased with increase in viscosity; the esterase function

displayed by this enzyme was however unaffected. Clearly, the chemical step (and

not the diffusion) is rate limiting for the nonphysiological esterase function of

carbonic anhydrase (Hasinoff 1984). Experimentally sucrose or glycerol may be

used to raise the medium viscosity. Such viscosogens raise the micro-viscosity of

water and influence diffusion rates. Whereas polymers like Ficoll or polyethylene

glycol (PEG) increase macro-viscosity (also termed bulk viscosity) but have no

effect on micro-viscosity, they cannot be used to test if an enzyme is diffusion

limited because they do not slow down diffusion. A word of caution with viscosity-

dependence experiments: Viscosogen used and/or viscosity change may have more

complex effects on the enzyme itself. Such effects (other than on kcat/KM) require

more careful interpretation.

Proton diffusion on-rates in water are in the order of 1011 M�1 � s�1. Diffusion

on-rates for bimolecular collisions in an aqueous environment are in the range of 10
10 M�1 � s�1. When one of them is larger in size (say an enzyme), this is further

diminished to 108–109 M�1 � s�1. Additional effects of local micro-viscosity and

macromolecular crowding in vivo may reduce this rate further (see Chap. 38 for

details). What then may be the meaning of observed kcat/KM values that are higher

than the physiologically relevant diffusion-limited on-rate constant? Such abnormal

high kcat/KM values could indicate one of the following:

(a) There may be something wrong with our interpretation or the estimation of

second-order diffusion on-rate constant.

(b) Special enzyme features like charge guidance may be operating. For instance,

strong electrostatic field gradients near the active site may cause an increase in

the rate of association of superoxide dismutase with its anionic substrate (see

Chap. 6, section 6.2: Contribution by electrostatics).

(c) The enzyme may be operating as a component of multienzyme aggregate.

Enzyme catalyzing a step in a multienzyme sequence may directly transfer its

product to the next enzyme. Bulk is minimized, and local concentrations of

metabolites are enhanced by channeling. Such channeling may lead to apparently

high kcat/KM values than for those enzymes acting on freely diffusible substrates.

Multienzyme complexes and multifunctional polypeptides may lead to physio-

logically relevant regulation (Chap. 37) by confining substrates and products in a

limited volume (Chap. 38).

If an enzyme reaction is diffusion rate limited, then its kinetic efficiency cannot be

further improved. We see that individually both kcat and KM can take a range of

values but their ratio (kcat/KM) can only reach the upper limit of diffusion rate. A
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tighter binding to the substrate (lower KM; smaller denominator) has to be offset by a

smaller turnover number (lower kcat; smaller numerator). Conversely, large kcat
values are associated with poor substrate binding by that enzyme. Recall that

enzymes are devices that utilize part of the substrate binding energy to accelerate

reaction rates (Chap. 6). An example of this KM-kcat compensation, within the

bounds of diffusion-limited rates, is shown in the box below.

The Tradeoff Between kcat and KM

Two small molecules diffuse toward each other in an aqueous environment

with a bimolecular rate constant of 1010 M�1 � s�1. When one of the partners

is large (an enzyme protein!), this rate constant is lowered to 108–109 M�1 �
s�1. Now examine the kinetic parameters for triose phosphate isomerase:

KM for glyceraldehyde-3-phosphate ¼ 10�5 M and kcat ¼ 103 s�1.

Accordingly,

kcat=KM ¼ 108 M�1 � s�1

Triose phosphate isomerase therefore is almost at the “plateau of perfection.”

Now consider I-PpoI endonuclease. This intron-encoded endonuclease has

a KM of 4 nM for its substrate (42-bp duplex DNA). Then what should be the

kcat of this enzyme? Suppose if its kcat value is same as that for triose phosphate

isomerase (i.e., 103 s�1), then we obtain

kcat=KM ¼ 103 s�1
� �

= 4� 10�9 M
� �

¼ 2:5� 1011 M�1 � s�1

Such a value is beyond the limit set by diffusion-limited on-rate and hence is

not feasible. A realistic kcat for this enzyme at best should therefore be 4 s�1.

Clearly a smaller value of KM in the denominator (of kcat/KM) constrains the

upper limit that kcat can approach. Both the enzymes will have reached kinetic

perfection because their kcat/KM values are close to the diffusion limit. It is just

that triose phosphate isomerase has evolved for a higher kcat (10
3 s�1) but with

a reasonable KM (10 μM), while I-PpoI endonuclease is set to a lower kcat but

with tighter interaction with substrate (a lower KM of 4 nM). In fact, this kcat-

KM compensation forms the basis for the functional existence of isozymes

(discussed later in this chapter).

Other Interpretations of kcat/KM

Specificity, besides excellent catalysis, is hallmark of an enzyme catalyst (Chap. 5). How

then should we define specificity of an enzyme? Without question, the ratio kcat/KM

provides insight into this aspect of an enzyme. This ratio has been referred to as the

specificity constant – because it describes the relative velocities of two substrates

15.3 Significance of KM, Vmax, and kcat/KM 169



competing for a single enzyme (Koshland Jr 2002). This competition between S1 and S2
is given by

v1

v2
¼

kcat1

KM1

S1½ �

� �

=
kcat2

KM2

S2½ �

� �

Specificity constant, therefore, is the parameter that determines the ratio of rates

when competing substrates are vying for the same enzyme. Thus kcat/KM expresses

the ability of an enzyme to discriminate in favor of any one substrate over the others.

It can rank structurally similar substrates with respect to catalytic power of an

enzyme. This is illustrated by the kinetic data (Table 15.3) for fumarase and its

substrates (Teipel et al. 1968).

Since its kcat (zero-order rate constant) is higher (compared to other fumarates) at

saturating concentrations, fluorofumarate appears to be a better substrate. And at

lower concentrations (kcat/KM; first-order rate constant condition), fumarate is better.

However, when the two are present together, kcat/KM best expresses the ability of

fumarase to discriminate in favor of fumarate. In a similar analysis, the specificity

constants for peptide bond hydrolysis by chymotrypsin are as follows: R group of

Gly < Val < Tyr.

The kcat/KM goes up as the enzyme shows higher affinity for the substrate and/or

higher catalytic rates. In general, higher the kcat/KM better is the enzymatic perfor-

mance. This is true for one enzyme acting on many substrates (for instance, fumarase

data in Table 15.3 above) but is also valid when many mutant forms of the same

enzyme, acting on a single substrate, are compared. Therefore, Koshland preferred

the term performance constant to describe kcat/KM.

The catalytic power of an enzyme was related to the corresponding uncatalyzed

reaction rate by Radzicka and Wolfenden (1995). The second-order rate constant for

enzyme action on its substrate (i.e., kcat/KM) may be compared to the corresponding

uncatalyzed rate. Catalytic proficiency defined this way measures an enzyme’s

ability to lower the activation energy barrier (ΔG6¼) for that reaction (Chap. 5).

The spontaneous, uncatalyzed rate constants (kuncat values) vary over 15 orders of

magnitude (Table 15.2). The kcat/KM values for the corresponding enzyme reactions

however fall within a narrow range of three orders. And none cross the ceiling of �
109 M�1 � s�1

– the diffusion rate limit!

Table 15.3 Specificity constants for competing fumarase substrates

Substrate KM (μM) kcat (s
�1) kcat/KM (μM�1 � s�1) (specificity constant)

Fumarate 5 800 160

Fluorofumarate 27 2667 99

Chlorofumarate 110 22 0.20

Bromofumarate 110 2.8 0.025
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There is one other descriptor for kcat/KM. According to Northrop, kcat/KM

(or Vmax/KM) actually provides a measure of the rate of substrate capture – by the

free enzyme – into a productive complex (Northrop 1998). Thus kcapture is the rate of

substrate capture into ES complex (Fig. 15.1). Given this, kcat (or Vmax) may be

viewed as a measure of the rate of release of product (krelease), from the captured

complex. The ratio krelease/kcapture now defines KM as a derived parameter. The

perception of kcat/KM as kcapture (and its physiological relevance!) is beautifully

demonstrated by antibiotic resistance in bacteria (Radika and Northrop 1984).

When present, aminoglycoside acetyltransferase confers antibiotic resistance to the

host bacterium. This enzyme inactivates aminoglycoside antibiotics by acetylating

them. A correlation between MIC (minimal inhibitory concentration) and the kinetic

characteristics of this enzyme (i.e., Vmax, KM, and Vmax/KM) was attempted. No

robust relationship exists between MICs of different aminoglycosides with their

corresponding Vmax or KM values. But a very tight correlation (R2 ¼ 0.995) is seen

between their MIC values and Vmax/KM for the enzyme. Executing a successful

capture (meaning a large kcapture) is vitally important for antibiotic resistance and

hence bacterial survival. Once captured, the fate of the antibiotic is sealed – it does

not matter how long it actually takes for the enzyme to form and release the product.

Rates of product release (krelease) are not very impressive for these enzymes.

15.4 Haldane Relationship: Equilibrium Constant Meets Kinetic
Constants

The classic form of Michaelis–Menten equation (earlier in this chapter) was derived

for a reaction proceeding in a single direction (S ! P). For reasons practical and

otherwise, rate of P! S was set to zero. Many reactions of metabolism however are

reversible, and significant amounts of both substrate and product are present at any

given time. Therefore it is important to include the reverse reaction as well. Although

a bit more complicated, it is possible to derive the rate equation for a reversible

reaction. Figure 15.1 describes the simplest case where k�2 is finite and [P] 6¼ 0. For

a single ES complex example of the reversible enzyme reaction (S⇄P; Fig. 15.1), we

can derive the following Michaelis–Menten equation (for the actual derivation, see

Chap. 16):

v ¼

Vmaxf S½ �
KMS

� Vmaxr P½ �
KMP

1þ S½ �
KMS

þ
P½ �

KMP

This equation is a more general form of the Michaelis–Menten equation where

both forward and reverse reaction rates are considered. It collapses to the simple

form (for S ! P reaction) by putting [P] ¼ 0 in this equation. The equation is

symmetric with respect to S ! P and P ! S. If we put [S] ¼ 0, then the equation

collapses to the classic form of Michaelis–Menten equation for the reverse direction.
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However, when both S and P are present and when the system has reached equilib-

rium (see Chap. 10), the net velocity is zero. Putting v ¼ (vf - vr) ¼ 0 in the general

rate equation above and simplifying,

v ¼

Vmaxf S½ �
KMS

� Vmaxr P½ �
KMP

1þ S½ �
KMS

þ
P½ �

KMP

¼ 0

Therefore,

Vmaxf S½ �

KMS

�
Vmaxr P½ �

KMP

¼ 0

and

Vmaxf S½ �

KMS

¼
Vmaxr P½ �

KMP

Substituting the corresponding equilibrium concentrations and rearranging, we get

Vmaxf � KMP

Vmaxr � KMS

¼
kcatf � KMP

kcatr � KMS

¼
P½ �eq
S½ �eq

¼ Keq Haldane relationship

This equation relates enzyme kinetic constants to the overall equilibrium constant

of that reaction. This relationship was first shown by JBS Haldane and hence the

name. The first-order rate constants for the forward (Vmaxf/KMS) and reverse (Vmaxr/

KMP) direction of a reversible enzyme-catalyzed reaction are not independent. But

they are related to the equilibrium constant (Keq) of the overall reaction. The

following conclusions may be drawn from the Haldane relationship:

(a) Both Vmaxf and Vmaxr may be written as their corresponding kcat � [Et] terms.

Further, Vmax depends on the enzyme concentration ([Et]) and kcat does not. Since

the [Et] appears both in the numerator and the denominator, the equilibrium

constant (Keq) is independent of enzyme concentration.

(b) Haldane equation can be conveniently written as

kcatf

KMS

� �

=
kcatr

KMP

� �

¼ Keq
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The equilibrium constant is then nothing but the ratio of kcat/KM values of the

forward and reverse reactions. Reaction equilibrium constant is a thermodynamic

constant and cannot change merely because an enzyme is present. Therefore, Keq

puts a constraint on what values the enzyme kinetic constants (both kcat and KM)

could take. This is yet another case where kcat/KM for an enzyme assumes

importance.

Kinetic Feasibility of Isozymes Effectively there are two constraints operating on

the kinetic constants of an enzyme catalyst. One is the diffusion rate barrier (on kcat/

KM value) and the other is thermodynamic – set by the Haldane relationship. The

reaction Keq dictates only that the ratio (Vmaxf/KMS)/(Vmaxr/KMP) remains a constant.

Within these constraints, many numerical solutions are possible – giving the same

Keq but with different kcat and KM values. This is very interesting because enzymes

with different Vmax (or kcat) and KM values could be constructed for the same reaction

– without violating the two constraints mentioned above. One such example is

shown in the box below.

Haldane Relationship and Isozymes

Consider a reversible reaction “S ⇄ P” catalyzed by two distinct enzymes,

namely, Enz-I and Enz-II. Suppose their kinetic constants are as shown:

Enz-I: Vmaxf ¼ Vmaxr ¼ 100 KMS ¼ 5 mM Vmaxf/KMS ¼ 20

KMP ¼ 5 mM Vmaxr/KMP ¼ 20

Enz-II: Vmaxf ¼ Vmaxr ¼ 100 KMS ¼ 100 mM Vmaxf/KMS ¼ 1

KMP ¼ ??

We infer the following from this data:

(a) Enz-I is relatively more efficient in the forward direction. Its Vmaxf/KMS is

20 times that of Enz-II.

(b) The Keq for this reaction (S ⇄ P) may be calculated from the given data for

Enz-I.

Vmaxf � KMP

Vmaxr � KMS

¼
100� 5

100� 5
¼ 1

(c) We now predict that the KMP for Enz-II should be 100 mM! Why so?

Because it is the only numerical solution that gives an equilibrium constant

of unity (i.e., Keq ¼ 1).

(continued)
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Keq ¼
Vmaxf � KMP

Vmaxr � KMS

¼
100� 100

100� 100
¼ 1

Any other value (including a KMP of 5 mM, like for Enz-I) will yield a

different Keq – recall that reaction equilibrium constant is a thermodynamic

parameter that the catalyst cannot tinker with.

Multiple catalytic designs for the same reaction are possible – this is the

basis for the existence of isozymes in nature. Isozymes will have compensated

for differences in their forward kinetic constants (Vmaxf and/or KMS) by

suitable adjustments in their reverse kinetic constants (Vmaxr and/or KMP) –

thereby resulting in an identical Keq value. The isozyme with a lower Vmaxf/

KMS could either have an appropriately lowered Vmaxr, an elevated KMP

or both.

A consequence of multiple kinetic solutions for the same reaction is that isoforms

of an enzyme catalyst are possible. Nature has exploited these solutions in the form

of isozymes (or isoenzymes). Isozymes are multiple molecular forms that catalyze

the same chemical reaction. Among others, lactate dehydrogenases (the heart and the

muscle isoforms) and alcohol dehydrogenase (yeast ADH-I and ADH-II) are excel-

lent examples. Bacteria elaborate two distinct isoforms of threonine deaminase for

biosynthesis (with higher affinity for Thr; low KM) and catabolism (with lower

affinity for Thr; high KM). Isozymes play critical roles in cellular metabolic regula-

tion. We will have more to say on this later (in Chap. 37).

Although Haldane relationship places limits on the kinetic constants, a wide

range of enzyme kinetic behavior is still allowed. As a result, we can expect an

enzyme evolved to be more effective catalyst for one direction of a reaction than the

other. Indeed such one-way enzymes are possible. For instance, limiting rate of the

forward reaction catalyzed by methionine adenosyltransferase is about 105 times

greater than its reverse reaction rate. The enzyme efficiency can be improved for one

direction, at the expense of the other, by optimizing kcat/KM values to suit prevailing

concentrations of substrate and product. One-way enzymes also make physiological

sense – they may never be required to catalyze the reaction in the reverse direction

in vivo. There may be no evolutionary pressure to achieve catalytic perfection in that

direction! If the active site is strictly complementary to the transition state, then the

enzyme will be an optimized catalyst for both directions. Efficiency in one direction

could however be preferentially improved by evolving an active site that binds either

S or P relatively better, with nearly the same transition state. Finally, since Vmaxf ¼
kcatf�[Et], any unfavorable kcatf changes (arising out of thermodynamic constraints)

during catalyst design/evolution can be compensated by the system. A cell can

maintain the desired Vmaxf by increasing [Et] (increased cellular abundance!) despite

having a lower kcatf. Therefore, the cellular concentrations of various isozymes (and

enzymes in general!) are not necessarily maintained at the same level (Futcher et al.

1999).
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15.5 Use and Misuse of Michaelis–Menten Equation

Apart from its historical importance, Michaelis–Menten equation undoubtedly

remains a very important tool in enzyme kinetics. It is the first useful approximation

for any new enzyme to be studied. One must however be confident that the

Michaelis–Menten equation is obeyed by that enzyme – for not all enzymes adhere

to Michaelis–Menten kinetics. Careful analysis of kinetic measurements may indi-

cate possible deviations, such as substrate inhibition. There is no need to force

Michaelis–Menten equation on every enzyme – after all data dictates!

At some level all scientific representations are approximations. In this sense,

Michaelis–Menten equation is an outcome of explicit postulates and assumptions

made in its derivation. The most elementary consideration is that all the v![S]

kinetic data used are initial velocities. The general applicability of the Michaelis–

Menten model also requires that [St]� [S] and that [Et] << [St]. If any one or more of

these stipulated conditions are not met, then the model is unsuitable for use. Other

relevant modifications to the Michaelis–Menten equation become necessary before

adopting such a kinetic model.

Both Vmax (which is kcat�[Et]) and KM are intrinsic constants for a given enzyme.

The Vmax in principle may be adjusted by varying the total enzyme present, whereas

kcat is unique for that catalyst. The Michaelis constant (the KM) is a constant defined

according to the Michaelis–Menten model (and hyperbolic kinetics). Any interpre-

tation of KM becomes irrelevant the moment Michaelis–Menten model is not

obeyed. Even within these confines, the KM provides only an apparent measure of

substrate affinity. That implies “KM ¼ KS” is not always true (especially when kcat is

not negligibly small in comparison with k�1) and should not be taken for granted

without sufficient evidence.

Despite the divergent views on interpreting kcat/KM as “specificity constant,”

“performance constant” (Koshland), “catalytic proficiency” (Wolfenden), or “rate

of substrate capture” (Northrop), we note that kcat/KM is of great practical signifi-

cance. When the magnitude of kcat/KM is comparable to the diffusion-limited on-rate

constant, the steady-state approximation operates. For all lower values (i.e., kcat/KM

< k1), the equilibrium mechanism is more appropriate. Lastly, catalytic perfection

may not be the only constraint worked on the enzyme by evolution! Regulation and

cost efficiency may be two others, at the least.
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More Complex Rate Expressions 16

Henri–Michaelis–Menten equation is the simplest rate law for an isolated enzyme-

catalyzed reaction under clearly specified conditions. Not all enzyme reactions are

this simple. More complex mechanisms may involve (a) multiple intermediates/

complexes (not just one ES complex) and (b) more than one substrate and/or product.

Indeed most common enzyme mechanisms found in metabolism are reactions with

two substrates and two products. The remarkable success of Michaelis–Menten

formalism over the last century has led to extension of this classical approach to

more complex systems.

16.1 Investigating Enzyme Mechanisms Through Kinetics

Kinetic description of a complex enzyme-catalyzed reaction provides insights into

its mechanism. Traditionally, kinetic studies are closely associated with the

investigations of enzyme mechanism. They are primarily used to understand reaction

mechanisms. The process of elucidating reaction mechanisms through kinetics is an

excellent example of the scientific method in practice. The sequence of steps,

involved in this process of mechanism building, is shown in the box below.

Mechanism Building: The Process

(a) Collate all the available data that describes the enzyme reaction in

question.

(b) Postulate a minimal mechanism that accounts for all the enzyme behavior

and accommodates available data.

(c) Analyze the proposed mechanism by deriving a rate equation for it.

(d) Predict distinctive kinetic outcomes from the analysis.

(continued)

# Springer Nature Singapore Pte Ltd. 2018

N. S. Punekar, ENZYMES: Catalysis, Kinetics and Mechanisms,

https://doi.org/10.1007/978-981-13-0785-0_16

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0785-0_16&domain=pdf


(e) Test these predictions by performing critical experiments.

(f) Accept or reject the proposed mechanism based on these results.

(g) If rejected, suitably modify the proposed mechanism and iterate.

The usual general practice in arriving at any enzyme mechanism is to set up a

tentative reaction scheme on the basis of initial, often preliminary, evidence and

subsequently to test whether this describes the experimental results. If it does not, the

initial scheme has to be modified or replaced. The process is repeated until some

enzyme mechanism has been developed which accounts for all the experimental

results – rates, complexes, substrates, and product stoichiometries. The provisional

mechanism is further strengthened by any new supporting data. However, a single

piece of contradictory evidence is enough to discredit the mechanism. The mecha-

nism that survives this scrutiny is considered consistent with the experimental data.

In this sense, even an attractive mechanism – which is always a hypothesis – can

never be proven beyond doubt.

There is no panacea for coming up with the correct model for a complex enzyme

mechanism. Model building exercise and mechanism validation are legitimate part

of most kinetic analysis. This is iterated till a satisfactory explanation (mechanism!)

is in place. Other chemical and physical methods may help bolster the case – but

kinetic data should be the ultimate arbiter of mechanism – because it reports on the

behavior of an enzyme while in action. Rate equations are at the heart of any kinetic

study. They capture the essence of a mechanism in a mathematical form. If an

enzyme reaction is well described by a rate equation, then the data should fit that

equation well. While proposing a kinetic mechanism and describing a rate equation

for it, the following points need to be kept in mind.

• Keep the proposed mechanism as simple as possible. Complexity should not be

assumed unnecessarily (“Pluralitas non est ponenda sine necessitate” – the

Occam’s razor, William of Occam) (Wildner 1999). According to this principle

of parsimony, hypotheses should not be multiplied beyond necessity (“Entia non

sunt multiplicanda praeter necessitatem”). For example, it is meaningless to

propose a complex mechanism and invoke many intermediates (ES complexes)

without actual evidence. This simplicity paradigm of scientific inquiry was also

invoked by Newton when he said – “We are to admit no more causes of natural

things than such as are both true and sufficient to explain their appearances. To

this purpose the philosophers say that Nature does nothing in vain, and more is in

vain when less will serve; for nature is pleased with simplicity, and affects not the

pomp of superfluous causes” (Newton’s Principia).

• Process of elucidating enzyme mechanisms works best when alternative

mechanisms are postulated. Start with multiple working hypotheses (alternative

mechanisms). It is easier to disprove a mechanism (falsification strategy of

Popper) than to prove a mechanism with certainty. Kinetics is of great value as

it can be used to test and eliminate putative mechanism(s). Beautiful mechanisms
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need not necessarily be true. After all, the proposed mechanism is just a model,

not data. Also, just because experimental data fits, a particular rate equation is not

a proof that the assumptions made to derive that rate equation were correct.

• Different mechanisms may display the same kinetic behavior. Therefore kinetic

methods alone cannot be used to unambiguously identify a mechanism. For

example, a mechanism with one intermediate (ES complex) with four rate

constants (Fig. 14.1) and a mechanism with two intermediate complexes (and

six rate constants) result in the same general rate expression. Their Vmax and KM

terms may however be composed of different individual rate constants. Steady-

state kinetics (and Michaelis–Menten formalism) therefore cannot establish the

nature and number of intermediates. For that, other methods/techniques (such as

pre-steady-state tools) are required.

16.2 Notations and Nomenclature in Enzyme Kinetics

Rate equations and reaction equilibria are two complementary bits of information

describing the kinetic mechanism of an enzyme. Representing both these becomes a

challenge with increasing mechanistic complexity. A major difficulty in following

the enzymology literature is the variety of abbreviations and notations used by

different research groups. Beginners are bound to be confused by the diversity of

nomenclature. A comprehensive and uniform nomenclature was set forth by WW

Cleland in three landmark papers published in Biochimica Biophysica Acta

(in 1963) (Cleland 1989). The following table lists (Table 16.1) the most common

notations in the enzyme kinetics literature, and these are used throughout this book.

An enzyme mechanism may involve a number of different enzyme forms and

various steps of reaction equilibrium. These need to be properly represented for clear

Table 16.1 Notations commonly used in enzyme kinetics

Item Notation

Substrates A, B, C, and D, in the order of their addition to the enzyme (S, for a single

substrate)

Products P, Q, and R, in the order of their release from the enzyme

Inhibitors I, J, etc.

Enzyme forms E, F, etc.

Forward rate

constants

k1, k2, k3, etc.

Reverse rate

constants

k�1, k�2, k�3, etc.

Michaelis

constants

KA, KB, KC, etc. (KM, in general)

Dissociation

constants

KiA, KiB, KIC, KI, KJ, KP, etc. (KS or KD, in general)
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A P Q

E EEQ(EA EPQ)

A P

(EA EEP)E

P Q

E E

EP

EQ

PQ

(EA EPQ)

A

Alanine racemase (EC 5.1.1.1)
A= L-Alanine

P= D-Alanine

Isocitrate lyase (EC 4.1.3.1)
A= Isocitrate

P= Succinate, Q= Glyoxylate

Cytidine deaminase (EC 3.5.4.5)
A= Cytidine (+H2O)

P/Q= Uridine/NH3

Enzyme reactions with one substrate

(EABC EPQ)

A B C P

EAE E

Q

EAB EQ

(EABC EPQR)

A B C P Q R

EAE EREAB EQR E

A B P Q

E E(FC ER)

C R

EA FQ(EAB FPQ) F

Glutamate dehydrogenase (EC 1.4.1.4)

A= NADPH, B= 2-Oxoglutarate, C= NH3

P= Glutamate, Q= NADP+

Glutamine synthetase (EC 6.3.1.2)
A= ATP-Mg, B= Glutamate, C= NH3

P= Pi, Q= Glutamine, R= ADP-Mg

Acetyl CoA carboxylase (EC 6.4.1.2)
A= ATP-Mg, B= HCO3

-, C= Ace CoA

P= PPi, Q= ADP-Mg, R= Mal CoA

Enzyme reactions with three substrates and two products

A P B Q

(EA FFP)E E(FB EQ)

A B P Q

E EEA EQ(EAB EPQ)

A B P Q

E EEA EQ

E E

EA EP

EB EQ

PQ

P Q

(EAB EPQ)

A B

AB

Enzyme reactions with two substrates and two products

Malate dehydrogenase (EC 1.1.1.37)

A= NAD+, B= Malate
P= Oxaloacetate, Q= NADH

ADP-glucose pyrophosphorylase (EC 2.7.7.27)

A= ATP-Mg, B= Glucose 1-phosphate
P= Pyrophosphate, Q= ADP-glucose

Alcohol dehydrogenase (EC 1.1.1.1)

A/B= NAD+/2-Propanol
P/Q= NADH/Acetone

Nucleoside-diphosphate kinase (EC 2.7.4.6)

A= ATP-Mg, B= NDP-Mg
P= ADP-Mg, Q= NTP-Mg

Fig. 16.1 Common enzyme mechanisms and their equilibria according to Cleland notations.

All enzyme forms are in gray, and central complexes are in brackets. Enzymes with their substrates/



understanding. The mechanistic scheme indicating various enzyme forms and the

rate constants for individual step(s) can be shown in different ways. Correctly

displaying a complex mechanism, with large number of enzyme forms and/or

steps, poses a challenge. Cleland notations are often preferred for their simple yet

clear presentation of enzyme mechanisms. In this depiction, (a) the reaction

sequence is written from left to right; (b) the enzyme surface is denoted by a

horizontal line; (c) various enzyme forms are denoted below this horizontal line,

while the central complexes (where bond breaking/forming chemistry takes place)

are given in brackets; (d) vertical downward arrows represent substrate addition to

that enzyme form; and (e) upward arrows from the enzyme surface indicate product

dissociation. Even though the binding and release arrows are single-headed, these

steps are viewed as reversible steps. For reactions in aqueous solutions, water is in

large excess (55.5 M) and its concentration usually remains constant. Therefore

water is not explicitly shown (either as substrate or product) in these mechanisms.

Many enzyme reactions are freely reversible. In these cases, the reactants

(substrates) become products, and products become substrates for the reverse direc-

tion. For instance, NADP-glutamate dehydrogenase (EC 1.4.1.4) in the forward

(reductive amination) reaction has three substrates (viz., NADPH, 2-oxoglutarate,

and NH3) and two products (viz., glutamate and NADP+) (Fig. 16.1). However, the

same enzyme is an example of two substrate and three product reaction in the reverse

(oxidative deamination). A few more common enzyme equilibria are depicted in

Fig. 16.1 according to Cleland notations. The first case (and also the simplest)

corresponds to a single substrate – single product equilibrium, used earlier to derive

the Michaelis–Menten equation (see Fig. 14.1). All others are more complex.

Addition of multiple substrates (or release of more than one product) may occur in

various ways as shown. In a sequential mechanism, all the substrates must add on to

the enzyme before any product can leave. This addition may be either ordered (e.g.,

malate dehydrogenase and glutamine synthetase) or random (e.g., alcohol dehydro-

genase). In a ping–pong mechanism (also known as substituted-enzyme mechanism

or double-displacement reaction), the substrate addition sequence is broken by the

release of one or more products (e.g., nucleoside-diphosphate kinase and acetyl CoA

carboxylase).

Appropriate rate expressions can be derived for every mechanism shown in

Fig. 16.1 (and for many others that may be proposed!). How to study these

mechanisms with the help of suitable rate equations is discussed later (see Part

III). Different methods to derive rate equations, starting with postulated enzyme

equilibria, will be discussed next.

�

Fig. 16.1 (continued) products and EC numbers are shown. Note that the same enzyme from a

different organism, tissue, or organelle could have a different kinetic mechanism
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16.3 Deriving Rate Equations for Complex Equilibria

The first step in obtaining a suitable rate expression for any reaction is to set up

appropriate equilibria with relevant steps and corresponding rate constants. Once the

equilibria with various steps and enzyme forms are set up to represent the mecha-

nism, derivation of an appropriate rate equation is straightforward. Recall that

deriving the rate equation is an exercise in evaluating the concentration of the

productive (ES) complex (Chap. 15). It is necessary to obtain [ES] in terms of [S] at

any given instance. As the ES form alone breaks down to products, the velocity is

proportional to [ES]. The fraction of total enzyme ([Et]) that is present in the ES form

is the key.

Fraction of the total enzyme in the ES form,

f ¼ ES½ �= Et½ � ¼ v=Vmax

Apart from the direct algebraic method (as originally used to derive the Michaelis–

Menten equation), there are other ways of deriving rate equations for more complex

equilibria. A few of these approaches (with relevant short cuts and simplifications)

are briefly described below.

16.3.1 Algebraic Method

This method involves the following steps: (1) Set up proper equilibria for various

reaction steps and enzyme forms, (2) make use of steady-state assumption and

conservation equations, (3) evaluate the concentration of the ES complex, and

finally, (4) present it in terms of [Et]. As an example, we will derive the rate equation

for the equilibria involving two enzyme forms (Fig. 14.1); however, we will also

consider the reversible reaction, with [P] 6¼ 0.

Rate Equation for the Equilibria Involving Two Enzyme Forms

Assuming steady state, we get

d ES½ �

dt
¼ k1 E½ � S½ � þ k�2 E½ � P½ � � k�1 þ k2ð Þ ES½ � ¼ 0

Rearranging for [E] in terms of [ES],

E½ � ¼
k�1 þ k2

k1 S½ � þ k�2 P½ �

� �

ES½ �

Substituting for [E] in the enzyme conservation equation ([Et] ¼ [E] + [ES])

and then solving for [Et], we get

(continued)
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Et½ � ¼
k�1 þ k2

k1 S½ � þ k�2 P½ �
þ 1

� �

ES½ � and then ES½ � ¼
Et½ �

k�1þk2
k1 S½ �þk�2 P½ � þ 1

� �

From the above two equations, we have both [E] and [Et] expressed in terms of

[ES]. Now consider the reaction velocity “v” expressed as substrate disappear-

ance. This may be written as

v ¼ �
d S½ �

dt
¼ k1 E½ � S½ � � k�1 ES½ �

Substituting for [E] in terms of [ES] and then rearranging, we obtain,

v ¼ k1 S½ �
k�1 þ k2

k1 S½ � þ k�2 P½ �

� �

ES½ � � k�1 ES½ �

v ¼
k1 S½ � k�1 þ k2ð Þ

k1 S½ � þ k�2 P½ �
� k�1

� �

ES½ �

Substituting for [ES] in terms of [Et], we get

v ¼

k1 S½ � k�1þk2ð Þ
k1 S½ �þk�2 P½ � � k�1

� �

k�1þk2ð Þ
k1 S½ �þk�2 P½ � þ 1

� � Et½ �

Simplifying this equation one obtains,

v ¼
k1k2 S½ � � k�1k�2 P½ �

k�1 þ k2 þ k1Sþ k�2P

� �

Et½ �

Further simplification by dividing both the numerator and the denominator by

(k�1 + k2), and then rearranging, we get

v ¼

k2 Et½ � S½ �

k�1þk2
k1

� �� k�1 Et½ � P½ �

k�1þk2
k�2

� �

1þ S½ �

k�1þk2
k1

� �

þ
P½ �

k�1þk2
k�2

� �

v ¼

Vmaxf S½ �
KMS

� Vmaxr P½ �
KMP

1þ S½ �
KMS

þ
P½ �

KMP

As mentioned before (see Haldane relationship, Chap. 15), this rate equation is

symmetric with respect to S!P and P!S. It is a more general form of the

Michaelis–Menten equation. If we put [P] ¼ 0, then the equation collapses to the

classic form of Michaelis–Menten equation, as derived in the previous chapter.
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The algebraic method, exemplified above, is good for a mechanism with few

enzyme forms. The complexity of derivation increases with more enzyme forms, and

the algebra involved becomes daunting. One needs to solve “n” simultaneous

equations for as many enzyme forms – to get their unknown concentrations. This

is best achieved by solving the simultaneous algebraic equations by determinants

(of nth order) method. While the method is time-consuming for complex enzyme

mechanisms, it is quite useful in computer-assisted derivation of rate equations.

Further details may be found in specialist books on enzyme kinetics.

16.3.2 King–Altman Procedure

Complex equilibria with many enzyme forms are best handled by this method. The

King–Altman method exploits the topological approach (King and Altman 1956).

Various enzyme forms are set up with proper equilibria in the form of a figure. Care

is taken to ensure that each enzyme form occurs only once in this figure. The fraction

of [Et] present in each enzyme form is then evaluated using this representation. To do

this, one lists all the possible patterns that interconnect all enzyme forms, but without

forming closed loops. For example, for “n” enzyme species, each pattern should

contain “n�1” lines. A partition equation can now be written for each form – which

defines the proportion of the enzyme in that form, in terms of individual rate

constants and relevant concentrations. A partition equation for any enzyme form

(En) can be written in terms of [Et] generally as

½En� ¼
Dn

D1þ D2þ � � � þ Dn
½Et�

where D1 through Dn are numerators for respective enzyme forms while their sum

(∑) is the denominator. Thus, for each enzyme form, there is an expression which

when divided by the sum of all such expressions (∑) gives the partition equation –

describing the fraction of that enzyme form present in steady state. Suitable partition

equations are then used to evaluate the rate in the forward direction. Derivation of the

rate equation, for equilibria involving two enzyme forms (Fig. 14.1), by this

approach is shown in the box below.
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King–Altman Procedure for Equilibria with Two Enzyme Forms

The equilibria shown in Fig. 14.1 may be rewritten in the form of a figure as

shown.

k1[S]

E

k-2[P]

k2

k-1

ES k1[S]

E

1

k-1

ES 2

E

k-2[P]

k2

ES

Two possible patterns that interconnect both enzyme forms, without

forming closed loops, are shown in 1 and 2. With their help, partition

equations corresponding to E and ES forms can now be written. Consider

the formation of E for instance. It gets formed with a rate constant of k�1

(in box 1) and k2 (in box 2). Accordingly its partition equation may be written

as

E½ �

Et½ �
¼

k�1 þ k2

Σ

Similarly, for ES we get

ES½ �

Et½ �
¼

k1 S½ � þ k�2 P½ �

Σ

From enzyme conservation equation ([Et] ¼ [E] + [ES]), we observe that ∑ is

the sum of all the numerator terms.

E½ �

k�1 þ k2
¼

ES½ �

k1 S½ � þ k�2 P½ �

¼
E½ �t
Σ

and hence Σ ¼ k�1 þ k2 þ k1 S½ � þ k�2 P½ �ð Þ

Further, solving for [Et] in terms of [ES] we get

Et½ � ¼
k�1 þ k2

k1 S½ � þ k�2 P½ �

� �

ES½ � þ ES½ � ¼ 1þ
k�1 þ k2ð Þ

k1 S½ � þ k�2 P½ �

� �

ES½ �

On rearranging, this equation allows us to present [ES] in terms of [Et] as

(continued)
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ES½ � ¼
k1 S½ � þ k�2 P½ �

k�1 þ k2 þ k1 S½ � þ k�2 P½ �

� �

Et½ �

Note that the denominator (i.e., k�1 + k2 + k1[S] + k�2[P]) of the above

equation is the sum of all numerators (∑) mentioned above. Next, we write

an analogous expression for [E] in terms of [Et] as

E½ � ¼
k�1 þ k2

k�1 þ k2 þ k1 S½ � þ k�2 P½ �

� �

Et½ �

Considering the reaction velocity “v” in terms of product formed, we write

v ¼
d P½ �

dt
¼ k2 ES½ � � k�2 E½ � P½ �

Upon substituting for [E] and [ES] obtained from the above partition

equations,

v ¼ k2
k1 S½ � þ k�2 P½ �

k�1 þ k2 þ k1 S½ � þ k�2 P½ �

� �

Et½ � � k�2

k�1 þ k2

k�1 þ k2 þ k1 S½ � þ k�2 P½ �

� �

Et½ � P½ �

Simplifying further,

v ¼
k1k2 S½ � Et½ � � k�1k�2 P½ � Et½ �

k�1 þ k2 þ k1 S½ � þ k�2 P½ �

Dividing both the numerator and the denominator by (k�1 + k2) and

rearranging, we get

v ¼ k1
k�1þk2

k2 Et½ � S½ � � k�2

k�1þk2
k�1 Et½ � P½ �

1þ k1
k�1þk2

S½ � þ k�2

k�1þk2
P½ �

By appropriate substitutions for Vmax and KM terms, the equation takes the

following form:

v ¼

Vmaxf S½ �
KMS

� Vmaxr P½ �
KMP

1þ S½ �
KMS

þ
P½ �

KMP

Notice that the above equation is identical to the one derived by the algebraic

method. King–Altman procedure is schematic in nature, and one can write down the

rate equation by inspecting patterns connecting the different enzyme forms. It can be

used for more complex schemes than the example described above. The procedure

however becomes complicated with multi-substrate random mechanisms as it gives
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squared substrate terms. Also, if more than one closed loop is present, the precise

number of unique patterns to be considered becomes nontrivial.

16.3.3 Net Rate Constant Method

This method is a useful shortcut developed by W Cleland (1975). It is ideal to derive

rate equations for simple kinetic mechanisms without branched pathways. The

protocol involves the following steps:

1. Set up appropriate equilibria with all enzyme forms.

2. Represent steady-state flux at each step as unidirectional (net rate) constants

(denoted by k0 values) such that flux values in each step along with the distribu-

tion of enzyme species remain the same.

3. Begin with an irreversible step in the original scheme, where the net rate constant

and the real rate constant are the same (kn
0 ¼ kn), and evaluate each net rate

constant by going backward.

4. Substitute net rate constants in a suitable equation to obtain the rate expression.

How this procedure works is shown for a linear mechanism with three enzyme

forms (see box below).

Net Rate Constant Method for Linear Equilibria

Consider the mechanism with three enzyme forms E, ES, and EP, as shown.

Although the actual rate constants are different, for each step we substitute a

net rate constant (kn
0) such that kn

0 ¼ kn� partition ratio. Note that kn is the true

forward rate constant for the step in question.

E ES EP
k1' k2'

E
k3'

E ES EP

k1[S] k2

k-1 k-2

E

k3

k-3[P]

Corresponding Net-rate constants:

If steady-state conditions operate, then by definition net rates for all the steps

are equal. That is, at steady state:

v ¼ k1
0 E½ � ¼ k2

0 ES½ � ¼ k3
0 EP½ �

Therefore,

(continued)
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E½ �

v
¼

1

k1
0 and

ES½ �

v
¼

1

k2
0 and

EP½ �

v
¼

1

k3
0

Since [Et]¼[E]+[ES]+[EP], we know that

E½ �

v
þ

EA½ �

v
þ

EP½ �

v
¼

1

k1
0 þ

1

k2
0 þ

1

k3
0 ¼

Et½ �

v

And this can be suitably rearranged to get

v ¼
Et½ �

1
k1

0 þ 1
k2

0 þ 1
k3

0

The concept of “net rate constant” is thus similar to “conductance” in electrical

systems. Reciprocal of net rate constant then becomes resistance, and the sum

of resistances (denominator term above) dictates what fraction of [Et] is in the

productive from.

It now remains to plug in the values of individual net rate constants and

simplify to obtain the rate expression. If we consider initial velocity conditions

(i.e., [P] ¼ 0), then the last step of the above linear mechanism becomes

irreversible. And therefore k3
0 ¼ k3. We now go backward sequentially, to

evaluate the net rate constant for the previous steps. For instance,

k2
0 ¼ k2 � Partition ratio for EP

The net rate constant thus is the real forward rate multiplied by the partition

ratio for that enzyme form. For EP form,

Partition ratio ¼
Rate of EPgoing forward

Rate of EPgoing forwardþ Rate of EP returning toEA

This can be represented as,

Partition ratio for EP ¼
k3

0

k�2 þ k3
0 ¼

k3

k�2 þ k3
ðbecause k3

0 ¼ k3Þ

We now substitute this value of partition ratio to obtain k2
0 as shown below:

k2
0 ¼ k2 �

k3

k�2 þ k3
¼

k2k3

k�2 þ k3

In a similar manner k1
0 (step previous to k2

0 step) may now be evaluated.

Finally, by substituting for k2
0 from above and simplifying,

(continued)
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k1
0 ¼ k1 S½ � �

k2
0

k�1 þ k2
0 ¼

k1 S½ � k2k3
k�2þk3

k�1 þ
k2k3

k�2þk3

¼
k1k2k3 S½ �

k�1k�2 þ k�1k3 þ k2k3

This is how all the net rate constants (k1
0 through k3

0, in the given mechanism)

are evaluated. These can now be substituted in the general form of the rate

expression obtained earlier:

v ¼
Et½ �

1
k1

0 þ 1
k2

0 þ 1
k3

0

The following equation is thus obtained.

v ¼
Et½ �

1
k1k2k3 S½ �

k�1k�2þk�1k3þk2k3

þ 1
k2k3

k�2þk3

þ 1
k3

This equation can now be rearranged and simplified into the rate expression as

shown below.

v ¼
Et½ �

k�1k�2 þ k�1k3 þ k2k3

k1k2k3 S½ �
þ
k�2 þ k3

k2k3
þ

1

k3

¼
k1k2k3 Et½ � S½ �

k�1k�2 þ k�1k3 þ k2k3 þ k2 þ k�2 þ k3ð Þk1 S½ �

v ¼

k2k3
k2þk�2þk3

� �

Et½ � S½ �

k�1k�2þk�1k3þk2k3
k2þk�2þk3ð Þ k1

� �

þ S½ �

We recognize that the final form of the rate equation derived by net rate constant

method resembles the typical Michaelis–Menten equation. Remarkably the expres-

sion contains all the individual rate constants and thus allows us to obtain Vmax/KM

and Vmax in terms of these individual rate constants. The method therefore (a) is best

suited for deriving rate expressions for isotope exchange, isotope partitioning, and

positional isotope exchange studies and (b) shows good promise in interpreting

isotope effects on Vmax/KM and Vmax of the enzyme.

Another advantage of net rate constant method is that expressions for Vmax/KM or

Vmax may be obtained without deriving the entire rate equation. Consider Vmax/KM

first. From the basics of Michaelis–Menten formalism, we know that v ¼ (Vmax/

KM) � [S], at low [S]. By inspecting the above linear mechanism, we see that k1
0 is

rate limiting at low [S]. And therefore,
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v ¼ k1
0 � Et½ � ¼

k1k2k3 S½ �

k�1k�2 þ k�1k3 þ k2k3
� Et½ �

In comparison with the equation “v ¼ (Vmax/KM)�[S],” we can write

Vmax

KM

¼
k1k2k3 Et½ �

k�1k�2 þ k�1k3 þ k2k3

Similarly now consider Vmax. At saturating [S], v ¼ Vmax and k1
0 can be neglected.

Therefore,

v ¼
Et½ �

1
k2

0 þ 1
k3

0

¼
Et½ �

1
k2k3

k�2þk3

þ 1
k3

¼
k2k3 Et½ �

k2 þ k�2 þ k3
¼ Vmax

We can compare these expressions for Vmax/KM and Vmax with the full rate expres-

sion above and identify the relevant terms contributing to them.

16.3.4 Other Methods

There are a few other variations, in addition to the three methods described above, to

derive a rate expression. A method described by Sangman Cha simplifies the rapid

equilibrium segment containing many enzyme forms as though it were a single

enzyme species (Cha 1968). A single lumped up rate constant is then used to

represent this segment, and a rate equation is derived. This is a useful tool when

random addition of substrates occurs in the mechanism – as it avoids squared terms.

The assumption of rapid equilibrium is a useful simplification and need not actually

be true for the method to work.

16.4 Enzyme Kinetics and Common Sense

It should be obvious from the general theme of this chapter that enzyme kinetic

analysis provides valuable mechanistic insights. A minimal mathematical ability is

required to meaningfully appreciate and use this tool. Although an added advantage,

mathematical proficiency is not mandatory to apply kinetic methods to enzyme

mechanisms. As ascribed to Einstein: We should make things as simple as possible,

but not simpler. Derivation of a few rate equations was deliberately included to bring

home this point. However it is not a prerequisite to appreciate the subject matter of

this book.

The kinetic methods described above allow us to derive and appreciate the

connection between a mechanism and its corresponding rate equation. But the

correctness of such an equation is only as valid as the assumptions made in deriving

it. Some mechanisms may be quite complex and equations formidable. Nevertheless
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doing kinetics can be fun so long as one understands what these equations mean. For

most examples, the hard work (of deriving them!) has already been done; a lot can be

accomplished by judicious use of these equations found in the literature. One needs

only to develop a sense of discrimination and understand the conceptual meaning of

the equation to be used. Appropriate use of equations found in the enzyme literature

is as important as deriving new ones. As Cleland stated, “All the mathematics in the

world is no substitute for a reasonable amount of common sense.”

This common sense approach coupled with elementary mathematical ability

forms the basis of enzyme mechanisms described in this book. The emphasis will

therefore be more on conceptual framework of kinetic description and analysis.
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Enzyme Kinetic Data: Collection
and Analysis 17

Michaelis–Menten formalism undoubtedly is a very important first approximation

for any new enzyme to be studied. Although simple and elegant, it has only a limited

range of applicability. Not all enzymes adhere to Michaelis–Menten kinetics, and

there are notable exceptions. Appropriate kinetic experimental design allows us to

make this judgment. Collating good quality kinetic data is the first task in enzyme

characterization.

17.1 Obtaining Primary Data: Practical Aspects

A reliable and robust assay method is a prerequisite for obtaining enzyme data.

Good kinetic practices also ensure that best quality primary data is collected.

Extensive coverage on both these aspects may be found in Chaps. 12 and 13.

Additional considerations of importance, in generating primary kinetic data, are

discussed below.

17.1.1 Reductionism in Experimental Design

The kinetic experimental design almost always takes a reductionist approach –

varying one parameter at a time while keeping all others constant. The parameters

that may be varied include [S], [P], pH, ionic strength, buffer species, activators,

inhibitors, etc. Perhaps the most important and informative data set is the change in

initial velocity versus substrate concentration (the v! [S] plot). Recall that even in a

multi-substrate reaction, a series of bimolecular collisions take place to assemble the

productive enzyme complex. Further, such reactions can be treated as pseudo-

unimolecular with respect to one substrate by holding all others constant. In this

sense, the primary data set is a v ! [S] curve having six to ten data points for every

substrate (see below). Complete kinetic analysis of a bi-substrate reaction (n ¼ 2)
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therefore requires approximately 102 independent assays to be performed. As the

number of reactants and modifiers increases, experimental data to be collected

becomes enormous. Typically, the data volume increases as a power function of

“n,” where “n” is the number of reactants (substrate/product) and modifiers (activa-

tor/inhibitor) associated with that enzyme. For instance, E. coli glutamine synthetase

is affected at least eight reactants/modifiers. Accordingly as many as 108 assays may

be necessary to fully define its kinetics!

17.1.2 Choice of Substrate Concentrations

A major objective in the kinetic profiling of any enzyme is to determine its kinetic

constants Vmax (and hence kcat) and KM. Initial velocity measurements made at

different [S] are the original data required to achieve it. Table 17.1 provides a sample

of v ! [S] data for arginase (initial velocities obtained under steady-state

conditions). We shall use this data to demonstrate various aspects of subsequent

kinetic analysis. The first and most straightforward way of analyzing the original

data is to plot a graph of v! [S] as shown in Fig. 17.1. Reasonable estimates of Vmax

and KM may be obtained from such plots – provided the data covers a broad range of

[S].

Table 17.1 Variation of initial velocity with substrate concentration: original v ! [S] data

for A. niger arginase

[S]

(Arginine,

mM) ΔA478

[P] (Urea,

mM)

v (μmol Urea �
min�1 � mg�1)

[S]

depleted

(%)

[�S] (([St] + [Sf])/2)

(mM)

6.3 0.173 0.86 15.7 13.7 5.8

12.5 0.329 1.65 30.1 13.2 11.7

14.2 0.348 1.74 31.7 12.2 13.3

16.2 0.402 2.01 36.7 12.4 15.2

20.0 0.413 2.06 37.7 10.3 19.0

35.0 0.634 3.17 57.9 9.1 33.4

50.0 0.650 3.25 59.4 6.5 48.4

100.0 0.842 4.21 76.9 4.2 97.9

150.0 0.975 4.88 89.0 3.3 147.6

Urea formed due to arginase action on L-arginine was estimated asΔA478 by colorimetry (Archibald

method). The original raw data is shown in black where [S] is independent variable (decided by the

experimenter) and ΔA478 (reflecting urea formed) is the dependent variable. All other parameters

are derived from this primary data set. For majority of kinetic analysis, [S] and v data (shown in bold

face) are used

Concentration of urea in the 200 μl reaction (after a 10 min assay) is calculated from a urea standard

curve (slope, 0.16). Initial velocity (v) is calculated (see Chap. 14 for details) from here using the

amount of enzyme protein (0.35 μg per 200 μl assay). The percent of [S] depleted is obtained as

follows: For example, 2.06 mM of urea is formed stoichiometrically from 20 mM of arginine. This

amounts to 10.3% of substrate converted to product. Accordingly, [�S ] will be calculated as

[20 mM + (20.0–2.06) mM]/2 ¼ 19 mM
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A broad range of [S] must be used to obtain reliable estimates of Vmax and KM.

The two extreme cases [S] < < KM and [S] > > KM, respectively, define Vmax/KM and

Vmax (Table 15.1) from this data set. One usually begins with the definition of Vmax –

the data representing high [S] (as will be discussed later). If only the lower [S] is

covered, then the data will appear to be the first order with respect to [S]. This is

defined by v ¼ (Vmax/KM) � [S]1, the limiting case of Michaelis–Menten equation

(Fig. 15.2). On the other hand, measurements made only at higher [S] are biased

toward Vmax. From such data, Vmax may be estimated but there is no way to

determine KM. Clearly a range of substrate concentrations, between 0.1 KM and

10 KM (0.33 KM to 3 KM, at the least!), should be used to accurately determine the

kinetic constants. The v! [S] graph around KM is the region of maximum curvature

for a rectangular hyperbola (Fig. 15.3). It is therefore wise to choose data points on

both sides of KM so that the curve is best defined!

17.1.3 Pilot Experiments and Iteration

A new enzyme study often begins with a reliable assay method but no prior

knowledge of its kinetic constants. How to choose the appropriate [S] range then?

It is a common practice to conduct pilot experiments with data points spanning a

broad range of [S]. From these preliminary data, a rough estimate of Vmax and KM is

obtained. More reliable estimates can then be obtained by narrowing the [S] range

from 0.33 KM to 3 KM (using a rough value of this KM got from the pilot experiment).

Finally, a large number of data points are generated within this range to calculate

Fig. 17.1 A v versus [S] plot of arginase data from Table 17.1. The line drawn through the data

points is the nonlinear least-squares best fit to Michaelis–Menten equation, representing a rectan-

gular hyperbola
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Vmax and KM values. Obtaining reliable and useful v! [S] data set for an enzyme is

thus an iterative process. Within couple of rounds, we should be able to reach the

best range of substrate concentrations required.

17.1.4 Importance of Measuring Initial Velocities

Precise measurement of initial velocity is of prime importance in kinetic analysis.

Underestimation of initial velocity is a common problem when nonlinear time

courses are observed. Data obtained using a “continuous assay” is therefore more

reliable. One practical remedy against nonlinear time course is to use dilute enzyme

solutions. Working with suitably diluted enzyme also helps to (a) reduce rates to

manageable levels, (b) conserve the precious enzyme, and (c) eliminate unwanted

interactions, if any. Other difficulties in experimental measure of initial velocity at

higher [S] may be due to reasons of limited solubility, interference in measurements,

sensitivity of detection method, etc. An example of one such limitation and how to

overcome it is shown in the box below.

Monitoring NADP–Glutamate Dehydrogenase Reaction Progress

NADP-glutamate dehydrogenase reaction can in principle be continuously

monitored by increase in absorption at 340 nm. This is due to the reduction

of NADP+ to NADPH during the reaction. The enzyme (from A. niger)

exhibits a KM of about 10 μM for its substrate NADP+. A maximal absorbance

difference at 340 nm (ε ¼ 6220 M�1 cm�1) of 0.06 is obtained when all of

10 μM NADP+ is converted to NADPH. If only 10% substrate conversion is

permissible, this value can be 0.006. The ΔA340nm values obtainable for

NADP+ concentrations below KM (<10 μM) are even smaller! Attempts to

achieve a larger ΔA340nm will surely lead to higher substrate depletion,

nonlinear time course, and erroneous initial velocity. The poor sensitivity of

the spectrophotometric assay, particularly in this example, makes it unsuitable

for use. Switching to a more sensitive detection method is a better option. For

instance, fluorimetric estimation of the product (NADPH) allows precise

initial velocity measurements, (a) even at NADP+ concentrations below

10 μM and (b) with permissible (less than 10%) substrate depletion.

The elementary consideration in measuring the “[S] versus v” data is that true

initial rates be recorded, at every substrate concentration tested. This, in practice, is

however easier said than done – particularly at low [S] values. In the Michaelis–

Menten formalism, we assume that [St] � [S]. In practice therefore, up to 5–10%

depletion of [St] may be tolerated over the assay period. This is because experimental

errors (and variation) itself often contributes more than this substrate depletion

effects. Depletion of substrate is a significant problem at lower [S] ranges tested

(Table 17.1). One should therefore ensure that less than 5–10% substrate is
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converted to product(s) while assaying the enzyme at the lowest [S] chosen. Any

higher level of S! P conversion quickly results in deviation of rates from linearity –

and underestimation of v. Since experimental errors are large at low [S] and it is

desirable to limit substrate conversion to under 10%, many replicate measurements

may be required at low [S] values.

Lee andWilson suggested a modification to analyze kinetic data where significant

substrate conversion (as high as 40% depletion) has occurred (Lee and Wilson 1971).

Suppose the substrate concentration decreases from [St] to [Sf] by the end of the

assay. Instead of using initial substrate concentration added ([S] total, i.e., [St]), the

arithmetic mean of [St] and [Sf] is recommended. The enzyme does not see [St]

throughout the assay period. Therefore the arithmetic mean ([�S] ¼ ([St] + [Sf])/2) is a

more appropriate measure of substrate concentration in v ! [S] plots. For instance,

suppose the initial substrate concentration of 5.0 mM reduces to 4.0 mM (at the end

of the assay) because of a 20% conversion. The effective average substrate concen-

tration ([�S]) felt by the enzyme during the assay is 4.5 mM (and not 5 mM!). This

difference is even larger when substrate depletion becomes higher (for instance, see

analysis of arginase data in Table 17.1). Finally, a word of caution is in order

however. The Lee–Wilson modification works well only when substrate and product

do not significantly inhibit the enzyme. This procedure is not suitable for enzymes

where substrate inhibition is observed or significant product inhibition occurs at low

[P] levels.

17.1.5 Utility of the Integrated Form of Michaelis–Menten Equation

A complete time course (the reaction progress curve) is actually more robust source

of kinetic information. It allows us to characterize the rate behavior at different

extents of substrate depletion and product accumulation. Kinetic analysis of a time

course is possible with the integrated form of the corresponding rate equation.

Integrated rate equations are commonly used in chemical kinetics but rarely in

enzyme kinetics (of course with the exception of fast reaction kinetics – analysis

of transients). Michaelis–Menten equation can be integrated, and this may be written

as shown

St½ � � S½ �

t
¼ �KM �

1

t
� ln

St½ �

S½ �
þ Vmax

where [St] and [S] are substrate concentrations at time zero and time t, respectively.

Therefore, product formed after time t is ([St]�[S]). A plot of ([St]�[S])/t versus

1/t � ln([St]/[S]) should give a straight line with Vmax as its intercept and KM its

slope. In principle, with this integrated form of the equation, a single extended

reaction time course analysis should suffice to obtain all the enzyme kinetic

parameters. This also avoids mixing errors associated with initial rate methods.

Then why is it that initial rate studies are popular in enzyme kinetics? One reason

is historical. Second, the integrated form (as shown above) does not incorporate
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effects of product accumulation. When incorporated, however, the system quickly

gets complicated – even for a single substrate–product example. Lastly, initial

velocity measurement method is advantageous in that individual variables like [S],

[P], [Et], etc. can be manipulated individually and at will.

17.2 Analyzing Data: The Basics

Investigating the kinetic properties of an enzyme implies learning how it responds to

changes in the environment. Most common variable is [S], and it is essential to work

over a wide range of [S] where the rate changes appreciably. Provided an enzyme

obeys Michaelis–Menten equation, good design of kinetic experiments requires that

[S] values should extend on both sides of the KM. Typically three to five data points

below and an equal number above KM are desirable. The data set for a well-

represented v ! [S] plot should thus have at least six to ten well spread points.

17.2.1 Variation, Errors, and Statistics

Whether Michaelis–Menten formalism operates or not, the v ! [S] data for an

enzyme represents a nonlinear relationship. Experimental data occupies only a

segment of the rectangular hyperbola described by the equation (Fig. 15.3). There-

fore one must start the kinetic analysis with high quality, original v! [S] data. Large

errors are associated with measurements of v at lower [S]. This is because the initial

velocity responds steeply in this [S] range. And many replicates may be required.

This however requires care and attention especially when working with unstable

enzyme preparations. For instance, suppose we wish to vary one parameter ([S]) at

four different values of the other (say the second substrate). For ten points per

v ! [S] data set, a total of 40 assays need to be performed. The enzyme may lose

significant activity toward the end of this lengthy experiment. This should be

checked of course. It is possible to pool original v ! [S] data from separate

experiments while evaluating kinetic constants (like Vmax and KM). But it is best to

use a full set of v ! [S] data generated in a single experiment – this minimizes

“between experiments” variation. Repeat measurements should be performed to

obtain a reliable data set because any degree of sophisticated analysis will not

transform bad data into good data!

Errors cannot be avoided while obtaining kinetic data. It is important to appreci-

ate the nature of these errors and their scatter. Due to error scattering, it becomes

difficult to decide whether the measured data fits the assumed rate equation (such as

Michaelis–Menten equation and hyperbolic curve). Analysis of such data requires

statistical tools and regression methods in particular. This treatment is very helpful

for nonlinear curves where systematic deviations are more difficult to detect by the

eye. The correlation coefficient indicates the consistency of the data with the

assumed model (and rate equation). Residual plots are used to measure the deviation

of each value from the assumed function (as per the rate equation). Rigorous
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statistical analysis reduces the dangers of subjectivity in interpretation. Nevertheless

it is worth remembering that accuracy of calculation cannot compensate for the lack

of accuracy in collecting or recording data.

Best curve fitting can be generated by nonlinear least-squares fit of the data to the

rate equation, such as the Michaelis–Menten equation. Many graphics programs are

available today to perform nonlinear curve fitting. A few common examples are

listed in Table 17.2. One should be reasonably familiar with the limitations of such

programs however. The two unknowns Vmax and KM are solved iteratively in such

programs. Direct analysis of the untransformed data provides the most reliable

estimates of Vmax and KM.

One objective of kinetic studies is to get an estimate of the intrinsic kinetic

constants such as Vmax (and hence kcat) and KM for the enzyme. Different means

of analyzing enzyme kinetic data are discussed below.

17.3 Plotting v Versus [S] Data

17.3.1 The v Versus [S] Plot

Most valuable insight on enzyme kinetic behavior is found in the original v ! [S]

plot (e.g., Fig. 17.1). It is important to critically examine this plot before attempting

to transform the original data into linear plot forms (e.g., Lineweaver–Burk plot,

discussed later in this chapter). From the first look, the data may appear to follow a

rectangular hyperbola. This can be easily checked as follows: obtain estimates of

Vmax and KM from this data set as if the data fits a Michaelis–Menten equation; using

these two constants, generate the rectangular hyperbola, and compare this computed

Table 17.2 Software available to analyze enzyme kinetic data

Name Software details

Cleland’s

package

Suite of FORTRAN programs;Methods in Enzymology 63:103 (1979); Open

source

SigrafW Microsoft[R] Visual Basic Studio program; Biochemistry and Molecular

Biology Education 33:399 (2005); Open source

Hyper and

Median

Hyper.exe is a program for the analysis of enzyme kinetic data; http://

homepage.ntlworld.com/john.easterby/abouthyp.html; Open source

Leonora Steady-state enzyme kinetics by A. Cornish–Bowden; Supplement to

Analysis of Enzyme Kinetic Data, Oxford University Press (1995)

DynaFit BioKin, Ltd.; Analytical Biochemistry 237, 260- (1996); http://www.biokin.

com/; Open source/commercial

VisualEnzymics Softzymics, Inc. 623 Brickhouse Road, Princeton, NJ 08540; http://www.

softzymics.com/; Commercial

SigmaPlot Enzyme Kinetics Module; Systat Software Inc.; http://www.sigmaplot.com/;

Commercial

EnzFitter BIOSOFT, PO Box 1013, Great Shelford, Cambridge, CB22 5WQ GB -

United Kingdom; http://www.biosoft.com/w/enzfitter.htm; Commercial
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curve with the original curve. Within the limits of error, any systematic deviations

become obvious by this comparison. Software exists to do this nonlinear curve

fitting exercise (curve in Fig. 17.1 fitted to data in Table 17.1).

Reasonable estimates of Vmax and KM may be obtained manually from the

original v ! [S] plot – provided the data covers a broad range of [S]. One plots

the data on graph paper and draws a curve by simply connecting the data points by

straight lines. A horizontal line is drawn at the apparent plateau value of v and its

point of intersection with Y-axis then defines Vmax. The point on the Y-axis where

v ¼ Vmax/2 is then located. A horizontal line is drawn from this Vmax/2 point to the

point of intersection with the data curve. A vertical line from this intersection to the

X-axis then defines the value of KM (for instance, see Fig. 15.2).

Extraction of the two constants from a straight forward v! [S] plot is error-prone

because of the nonlinear relationship. Vmax has to be obtained from the value of the

asymptote to the X-axis. But this involves geometrical extrapolation, which is

difficult. In practical terms, it may also not be feasible to test higher [S] values –

substrate solubility being one major consideration. KM is nothing but [S] at Vmax/2,

and therefore errors of estimation in Vmax are carried over into evaluation of KM.

Thus KM directly determined from v ! [S] plots is also subject to significant errors.

Finally, a direct comparison of a group of hyperbolas obtained from different

experiments is difficult. A number of data analysis procedures and manipulations

of the Michaelis–Menten equation were therefore evolved and are in use over the

years. Some of these important transforms are considered below.

17.3.2 Direct Linear Plot

This plot was suggested by Eisenthal and Cornish–Bowden (1974) where a series of

“v�[S]” data pairs are directly plotted. For each “v�[S]” pair of data, we can

generate a straight line by marking v on the Y-axis (the Vmax axis) and [S] on the

negative side of the X-axis (the KM axis). All these lines (n lines for as many “v�[S]”

pair of data!) must intersect at a point in the first quadrant with KM and Vmax as its

coordinates. This result follows from the following transformation of the original

Michaelis–Menten equation. Taking reciprocals on both sides,

1

v
¼
KM þ S½ �

Vmax S½ �
and then on rearranging we obtain,

Vmax

v
¼
KM

S½ �
þ 1

According to this equation, when KM ¼ 0, we get Vmax ¼ v and again for Vmax ¼ 0,

we obtain KM ¼ �[S]. Therefore, (a) we plot [S] on the negative side of the X-axis,

and (b) the point of intersection of all the lines has KM and Vmax as its coordinates. A

direct linear plot of the data from Table 17.1 is plotted, for example, in Fig. 17.2. The
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lines in practice do not neatly converge but intersect over a range of values – a clear

reflection of experimental errors. This in itself is very useful in revealing poor data

points. If it is certain that (a) the enzyme obeys Michaelis–Menten formalism and

(b) nonlinear curve fitting is not feasible, then the direct linear plot provides the best

estimates of KM and Vmax from v ! [S] data.

17.3.3 v Versus log[S] Plot

Apart from the simple v! [S] plot in the original paper, Michaelis and Menten also

plotted their data as v versus log[S]. This plot is based on the rearrangement of the

classical Michaelis–Menten equation as shown

v ¼
Vmax S½ �

KM þ S½ �
may be rearranged to

Vmax

v
¼

KM

S½ �
þ 1

0

50

100

150

-160 -80 0 80KM

Vmax

v

[S]

0
KM

0
KM

v

Fig. 17.2 Direct linear plot of Eisenthal and Cornish–Bowden. The graph of v ! [S] data for

arginase from Table 17.1 is shown
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Taking logarithms,

log
Vmax

v
� 1

� �

¼ logKM � log S½ �

The following variation of the above equation may appear more familiar:

p S½ � ¼ pKM þ log
Vmax � v

v

� �

This is comparable to dissociation of a weak electrolyte versus pH curve and takes a

form very similar to the Henderson-Hasselbalch equation relating pH to pKa.

Advantage of a v ! log[S] plot is that the points corresponding to lower [S] are

not crowded together. This semilog plot is particularly useful in (a) comparing

velocities over a large range of substrate concentration and (b) plotting initial

velocity data for enzymes with vastly different KM values, on a single graph. For

instance, substrate affinities of different liver hexokinase isozymes and glucokinase

span from μM to mM (KM for glucose). Plotting this on the same X-axis would

require a very long graph paper! A v! log[S] plot, with fractional velocity (v/Vmax)

on Y-axis, allows a convenient comparison on the same graph. The point of inflection

(where log KM¼ log[S] as seen by putting v¼ Vmax/2 in the above equation) provides

a good estimate of KM. Thus it is only required to identify the midpoint (inflection

point) of the curve to determine KM (Fig. 17.3). However, it is better to analyze

v ! log[S] plot by nonlinear curve fitting tools rather than manually.

Fig. 17.3 The plot of v ! log[S]. 2-Oxoglutarate (substrate) saturation of NADP-glutamate

dehydrogenases from Aspergillus niger [●] and Aspergillus terreus [○] (redrawn from the original

data in Fig. 15.4). Fractional velocity (v/Vmax which is dimensionless) is plotted on the Y-axis and

arrows point to the inflection point on the two curves. The curve for A. niger enzyme is steeper

(higher h value)
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The v ! log[S] plot is a useful method to diagnose the presence of cooperativity

in enzyme kinetics. While such graphs are always sigmoid, the steepness of the

curve at the inflection point provides a measure of cooperativity. The steepness (and

hence cooperativity) is much more obvious in this semilogarithmic plot than the

original v! [S] curve. Its steepness is also directly related to h – the Hill coefficient

(Cooperative kinetics, Chap. 15). Such a graph for two NADP-glutamate

dehydrogenases (with distinct h values) in Fig. 17.3 succinctly illustrates the point.

In fact, dose–response curves for enzyme inhibition also take a similar semiloga-

rithmic form. More on dose–response curve and the graphical determination of IC50

value (inhibitor concentration giving 50% inhibition) is discussed in a later section

(Fig. 22.8, Chap. 22). Effective range for binding in general extends over two

logarithms of the ligand concentration. We may recall that acetic acid (pKa of 4.8)

is mostly in the ionized state (CH3COO
�) at pH 5.8 and is mostly in the unionized

state at pH 3.8.

17.3.4 Hill Plot

We noted earlier (Cooperative Kinetics, Chap. 15) that Hill equation (and not

Michaelis–Menten equation) better describes the effect of cooperative interactions

on the measured enzyme rate. The Hill coefficient h is a convenient and commonly

used index of cooperativity. For Michaelian enzymes h is one. It however takes other

values (including non-integers) for cooperative enzymes. Hill coefficient is consid-

ered to represent the minimum number of interacting binding sites on an oligomeric

enzyme (Hill 1910). Constant K0.5 is similar (not same!) to KM but also contains

terms related to the effect of substrate binding at one site to the binding at other sites.

The Hill equation represents a nonlinear relationship between v and [S] of an

enzyme. The v ! [S] data can be directly fit to this equation (through nonlinear

curve fitting protocols) to extract the three parameters – Vmax, K0.5, and h. Otherwise,

the velocity data can be analyzed by using the linear form of the Hill equation shown

below. Taking logarithms after rearranging the Hill equation we obtain,

log
v

Vmax � v

� �

¼ h� log S½ � � logK0:5

A plot of log[v/(Vmax�v)] as a function of log[S] should therefore yield a straight line

graph with a slope of h and a Y-axis intercept of –logK0.5. Hill plots for three

different enzymes are illustrated in Fig. 17.4.

A precise Vmax value should be known beforehand to plot log[v/(Vmax�v)]! log

[S] graph. This is not easily obtained because of the nonlinear v! [S] relation in the

first place. If present, errors in Vmax get carried further. Lastly, the linear region of

this plot is the most meaningful portion of the curve (Fig. 17.4); and linearity

prevails only over a limited region of substrate concentration (around [S] ¼ K0.5).

For these reasons, it is desirable to determine Vmax, K0.5, and h from direct nonlinear

curve fits to the Hill equation itself.
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17.4 Linear Transforms of Michaelis–Menten Equation

Accurate extraction of kinetic constants directly from v ! [S] plots is error-prone

because these graphs are nonlinear. There are several ways to transform the hyper-

bolic relation into linear form. This is often attempted because linear relations are

Fig. 17.4 The Hill plot. The log[v/(Vmax�v)] ! log[S] plots for (A) arginase (v ! [S] data from

Table 17.1) and (B) two NADP-glutamate dehydrogenases (data from Fig. 15.4) are shown. Note

that in both cases axes are marked in the logarithmic scale. Only the data points in the linear portion

of the curves are used to obtain the Hill coefficient (h) and K0.5
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better amenable to extrapolations – and hence extraction of kinetic constants. The

standard transforms of original v ! [S] data for arginase (from Table 17.1) for

linearization are listed in Table 17.3. These will be used to demonstrate various plots

described subsequently.

17.4.1 Lineweaver–Burk Plot

The Lineweaver–Burk plot (also known as double-reciprocal plot) is a historically

important, often-used linear transform of the Michaelis–Menten equa-

tion (Lineweaver and Burk 1934). This is done by taking reciprocals on both sides

to obtain,

1

v
¼

KM

Vmax

1

S½ �
þ

1

Vmax

This equation describes a straight line and is of the form y ¼ mx + C. A graph of

1/v ! 1/[S] should be linear with slope m ¼ KM/Vmax and intercept C ¼ 1/Vmax.

When [S]¼1 (and hence 1/[S] on X-axis is zero), the Y-axis intercept should relate

to maximal velocity and zero-order rate constant (1/Vmax, as expected). While

achieving [S] ¼ 1 may be nearly impossible in practice, extrapolation ([S] ¼ 1)

is possible due to this linear transform, and Vmax is conveniently evaluated. The

value of KM can be obtained from the slope and intercept (dividing m by C) of such a

plot. A representative double-reciprocal plot (of the data from Table 17.3) is shown

in Fig. 17.5.

The double-reciprocal plot overcomes the analysis difficulties due to nonlinear

(hyperbolic) v ! [S] relation. The plot should however be used with much discre-

tion. Casual evaluation of Vmax and KM from this plot can be flawed. The practical

considerations associated with Lineweaver–Burk plot can be serious and need

attention. These aspects are described in the box below.

Table 17.3 A few standard transforms of original v ! [S] data for arginase

[S] (Arginine, mM) v (μmol � min�1 � mg�1) 1/[S] 1/v v/[S] [S]/v

6.3 15.7 0.159 0.0637 2.492 0.401

12.5 30.1 0.080 0.0332 2.408 0.415

14.2 31.7 0.070 0.0315 2.232 0.448

16.2 36.7 0.062 0.0272 2.265 0.441

20.0 37.7 0.050 0.0265 1.885 0.531

35.0 57.9 0.029 0.0173 1.654 0.604

50.0 59.4 0.020 0.0168 1.188 0.842

100.0 76.9 0.010 0.0130 0.769 1.300

150.0 89.0 0.007 0.0112 0.593 1.685

The original v ! [S] data from Table 17.1 is shown in bold
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Practical Aspects of Double-Reciprocal Analysis

• Common practical problem encountered with Lineweaver–Burk plot is the

data spread. One should carefully choose [S] values such that they lead to

evenly spaced points on the 1/[S] axis.

With evenly spaced [S] values used for saturation, the data points as their

reciprocals tend to cluster toward the Y-axis (see Fig. 17.5). A good experi-

mental design and careful choice of initial [S] values can take care of this

problem. One approach could be as follows: first, decide on the highest [S] to

be used. Accordingly prepare a 10� stock solution – on adding 0.1 ml of this

to a reaction mixture (1.0 ml final volume), desired highest [S] is obtained.

Second, dilute the original 10� substrate solution into 1:2, 1:3, 1:4, 1:5, 1:6,

1:7, 1:8, etc., to generate working stock solutions of 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,

1/8, etc. strengths. When these are used (by adding 0.1 ml to 1.0 ml reaction), a

decreasing concentration series of 0.500, 0.333, 0.250, 0.200, 0.167, 0.143,

0.125, etc. is obtained. On plotting their reciprocals (1/[S]), the data points will

now be equally spaced at intervals of 1, 2, 3, 4, 5, 6, 7, 8, etc. For arginase

example – starting with the highest concentration of 150 mM (Table 17.1) –

data spread for an ideal Lineweaver–Burk plot would be to use 150 mM,

(continued)

Fig. 17.5 The double-reciprocal plot. A graph of 1/v! 1/[S] data for arginase from Table 17.3 is

shown. The curved dotted lines (schematic and in gray) represent the nonlinear plots that may be

obtained when cooperativity of substrate binding is manifest

206 17 Enzyme Kinetic Data: Collection and Analysis



75 mM, 50 mM, 37.5 mM, 30 mM, 25 mM, 21.4 mM, 18.8 mM, 16.7 mM,

15 mM, etc. This range should also satisfy the additional important condition

of data points on both sides of the KM.

Another approach is to exploit the rough estimate of KM from a pilot

experiment. Using this as a point in the middle, prepare a series of relative

substrate concentrations of 1.0, 1.11, 1.25, 1.43, 1.67, 2.0, 2.5, 3.33, 5.0, and

10.0. Supposing the KM is around 1.0 mM, then we can have the range as

0.5 mM, . . .0.1.0 mM, . . .0.5.0 mM. In this arrangement, the relative substrate

concentration of “2” corresponds to 1.0 mM.

• Second important issue with Lineweaver–Burk analysis is the way experi-

mental errors are reflected in this plot. Errors are unevenly weighted in the

form of reciprocals. Appropriate weighting to data points is best achieved

by reliable curve fitting programs (Table 17.2) that account for the nonlin-

ear error distribution. Small errors in lower v values lead to substantial

errors in 1/v, whereas similar errors in large v values lead to barely

noticeable errors in 1/v. A linear regression method cannot recognize this

distortion because the errors themselves are nonlinear. This problem can be

sorted by using suitable weighting factors – less importance to data points

with large errors.

Lineweaver–Burk analysis is possible even in the absence (nonavailability

rather) of programs that incorporate nonlinear error distribution. The proce-

dure involves the following steps: original v ! [S] data is first directly fit to

Michaelis–Menten equation. The KM and Vmax values so obtained are then

plugged into the double-reciprocal equation (given above) to obtain a straight

line. This straight line fit is without the systematic errors arising from improper

weighting of data points. The trick therefore is to avoid the temptation of

directly fitting a straight line to 1/v ! 1/[S] values.

Finally, it is best to obtain data of such good quality that the result is also

obvious without statistical analysis. Quoting Henry Clay, “Statistics are no

substitute for judgment.”

Despite its limitations (mentioned above), Lineweaver–Burk plots are of consid-

erable value. Of the various approaches to linearize the Michaelis–Menten equation,

only the Lineweaver–Burk plot permits the individual display of v and [S] on the two

axes. In all others (see below), at least one coordinate is a composite of both v and

[S]. The second big advantage of this plot is our ability to follow changes in the first-

order and zero-order rate constants of an enzyme-catalyzed reaction simply by

inspection. Recall that the reciprocal of its slope is Vmax/KM (first-order rate constant)

while the reciprocal of its intercept is Vmax (zero-order rate constant). An increase in

slope or intercept indicates a decreased first-order or zero-order rate constant,

respectively. We live in real time, and reciprocal analysis (of this type) makes it
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difficult to grasp the reality. Beginners in enzymology may find it awkward to

appreciate the reciprocal relationship. Nevertheless, this information is particularly

useful (a) in diagnosing the mechanistic details of multi-substrate enzymes and (b) to

probe the mode of interaction between an enzyme and its inhibitor (see Chap. 18).

If and when Lineweaver–Burk plots of enzyme kinetic data are nonlinear, then it

is obvious that the original assumptions inherent in the Michaelis–Menten equation

do not hold! Failure to measure true initial velocity, a common problem, should be

quickly checked. Further, the kinetic data should not be forced to fit a straight line.

Instead, other kinetic models should be explored to address deviations from hyper-

bolic kinetics. Nonlinear Lineweaver–Burk plots result if multiple enzyme forms

acting on the same substrate (isozymes with distinct kinetic characteristics) exist in

the assay. With pure enzyme samples, however, curved double-reciprocal plots

could mean any of the following: (a) substrate activation, (b) substrate inhibition,

(c) multiple binding of substrate molecules, or (d) cooperativity of substrate binding.

Some of these will be elaborated at appropriate places later. The curvature in the

double-reciprocal graph is concave upward for positive cooperativity and concave

downward for negatively cooperative enzymes (gray dotted lines schematically

shown in Fig. 17.5). Departures from linearity are less obvious in a Lineweaver–

Burk plot but are better viewed in others like the Eadie–Hofstee plot and the Hanes–

Woolf plot described below.

17.4.2 Eadie–Hofstee Plot

This plot (Eadie 1942; Hofstee 1952) is one other way to transform the hyperbolic

relation into a linear form for further analysis. The classical Michaelis–Menten

equation can be rearranged by cross multiplying as shown

v KM þ S½ �ð Þ ¼ Vmax S½ �

Dividing both sides by [S] and rearranging, we obtain,

v ¼ �KM

v

S½ �
þ Vmax

This is again of the form y ¼ mx + C when v is plotted against v/[S]. A graph of

v ! v/[S] should be linear with negative slope m ¼ KM and the Y-axis intercept

C ¼ Vmax. The arginase data from Table 17.3 is plotted in this form in Fig. 17.6, for

example. This method of plotting original v ! [S] data is a linearization through a

single reciprocal; only [S] is in the reciprocal form. Since the X-axis represents a

composite value (v/[S]), it is conceptually more difficult to appreciate the velocity

changes as a function of [S] in this plot. Because of different spread of data points

and error distribution, the Eadie–Hofstee plot is better suited to track departures from

the typical Michaelis–Menten kinetics. The nonlinearity arising due to cooperativity

is better viewed in this plot. However, actual quantitative analysis of cooperativity

should be done through a Hill plot.
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Another version of the Eadie–Hofstee plot is obtained when the two axes are

interchanged (Fig. 17.6). Thus a plot of v/[S] against v is equivalent to a Scatchard

plot (normally used in binding analysis) (Scatchard 1949). The linear form of the

Michaelis–Menten equation corresponding to this plot is

v

S½ �
¼ �

1

KM

vþ
Vmax

KM

In this representation, the ratio of [S]bound/[S]free (corresponding to v/[S]) is plotted

against [S]bound (corresponding to v). Also, the KM becomes the equivalent of KD in

Scatchard analysis for ligand binding.

17.4.3 Woolf–Hanes Plot

Woolf–Hanes plot is a single-reciprocal analysis of v ! [S] data where [S]/v is

plotted against [S] (Haldane 1957). It is derived simply by multiplying the

Lineweaver–Burk transformation throughout by [S]. The following linear transform

of the Michaelis–Menten equation is thus obtained:

S½ �

v
¼

1

Vmax

S½ � þ
KM

Vmax

This is again of the form y ¼ mx + C when [S]/v is plotted against [S]. The kinetic

parameters are extracted from the slope (1/Vmax) and intercept (KM/Vmax) of such a

plot (Fig. 17.7). Since the Y-axis represents a composite value ([S]/v), the plot is

conceptually more difficult to appreciate. This plot is not so commonly used in

enzyme literature.

Fig. 17.6 The single-reciprocal plot according to Eadie–Hofstee. Arginase data from

Table 17.3 was graphed. Both the Eadie–Hofstee (v ! v/[S]; left panel) and Scatchard (v/

[S] ! v; right panel) versions of the plot are shown
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Salient features of the common linear transforms of classical Henri–Michaelis–

Menten equation are collated and compared in the tabular form below (Table 17.4).

Fig. 17.7 The Woolf–Hanes single-reciprocal plot. Arginase data from Table 17.3 was graphed

as [S]/v ! [S] plot

Table 17.4 Linear transforms of Henri–Michaelis–Menten equation: a summary

Plot

Lineweaver–Burk

(1934)

Eadie–Hofstee

(1942)

Scatchard

(1949)

Woolf–

Hanes

(before

1932)

Plot of

(Y ! X)

1/v ! 1/[S] v ! v/[S] v/[S] ! v [S]/v ! [S]

Y-axis

intercept

1/Vmax Vmax Vmax/KM KM/Vmax

X-axis

intercept

�1/KM Vmax/KM Vmax �KM

Slope KM/Vmax �KM �1/KM 1/Vmax

Features Individual display of v

and [S] on two axes;

rate constants directly

visualized from

intercept and slope

View nonlinearity

due to

cooperativity and

departure from

hyperbolic kinetics

Same as Eadie–

Hofstee but axes

interchanged;

ligand binding

studies

Weighting of

errors from

original data

is least

distorted

Note Vmax and Vmax/KM, respectively, correspond to zero-order and first-order rate constants in the

Michaelis–Menten formalism
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17.5 Summing Up

A very fundamental piece of enzyme kinetic insight is the primary initial velocity

versus substrate concentration data set. The v ! [S] data is a gold mine of kinetic

information. Therefore, it is prudent to obtain reliable data in the first place – because

any degree of sophisticated analysis will not transform bad data into good data!

While collecting and analyzing enzyme kinetic data, the following key issues should

be critically considered:

• Ensure that true initial velocities are measured at all the concentrations of

substrate tested, particularly at lower [S] values.

• Use the untransformed data to figure out whether it actually fits the Michaelis–

Menten kinetics or this model is being imposed/forced on the data.

• A sufficiently broad range of substrate concentration should be tested to obtain

the original v! [S] data. And ensure that the data is not biased to either low [S] or

high [S].

• Use suitable and rigorous statistical analysis to account for experimental errors

and data scatter.

Analysis of enzyme kinetic data must involve the relevant statistical analysis.

Fancy statistical packages should not be used without clearly understanding what

they can and cannot do! Statistics should be used as a lamp post – to illuminate but

not to lean on to poor data.
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Part III

Elucidation of Kinetic Mechanisms



Approaches to Kinetic Mechanism:
An Overview 18

The order of addition of substrates to and release of products from the enzyme active

site, along with establishment of relative rates of various events, defines the kinetic

mechanism. These mechanisms fall into two broad groups – those where the full

complement of substrates have to assemble on the enzyme active site before the

reaction occurs are termed “sequential mechanisms.” In the other category, a product

(s) is released between additions of two substrates and are called “ping–pong

mechanisms.” In this category, substitution on the enzyme active site groups occurs

and hence is also known as double displacement mechanism. Study of these

mechanisms is best approached by rigorous experimental design where data is

collected by systematically varying one parameter at a time. This method of reduc-

tion is in full display in enzyme kinetics. In fact, elucidating enzyme kinetic

mechanisms offers the best example of how scientific hypotheses are tested.

Elements of scientific method in sequence include problem recognition ! collation

of available information ! hypothesis building ! experimentation ! reasoning

and deduction ! and refining the hypothesis. These steps are iterated in arriving at

an enzyme mechanism. Finally when experiments and measurements agree with the

theory, truth is secured. In practical enzyme kinetics, this exercise translates into

following steps (Table 18.1) for the elucidation of mechanisms.

A very important aspect of kinetic mechanism elucidation is that a given set of

data, at times, may fit/describe more than one unique kinetic scheme. For instance,

all the available kinetic evidence could not distinguish between a SN1 (carbonium

ion formation) mechanism or a covalent catalysis (involving the active site carbox-

ylate). The SN1 mechanism predicts retention of stereochemical configuration (at C1

of the glycosidic sugar) in the product, whereas covalent catalysis (via the acylal)

passing through two Walden inversions also predicts a retention. Often other

methods (other than steady-state kinetics!) may have to be resorted to in such

cases. More recent MALDI-TOF evidence for a lysozyme-acylal favors the covalent

catalysis mechanism. Resolution of kinetic equivalence invariably requires more

incisive experimentation to cleanly distinguish between different possibilities. If
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there are no unique testable differences between rival mechanisms, then it may never

be possible to resolve the kinetic ambiguity (the so-called black box).

18.1 Which Study Gives What Kind of Information?

All those ligand (substrate, inhibitor, activator, etc.) interactions which result in

altered enzyme reaction rates may be exploited to understand the kinetic mechanism.

Enzyme-ligand interactions that are kinetically silent are of no consequence to this

study. For example, a molecule may bind to the enzyme without changing any of its

kinetic properties. Such binding may be potentially useful in enzyme purification

and/or stability studies but is useless in defining the kinetic mechanism. The nature

of mechanistic information that can be gleaned from various kinetic studies is

summarized in the Table 18.2 below.

Of these, pre-steady-state kinetics was introduced in an earlier section (Chap. 11).

The remaining approaches form the subject matter of subsequent chapters and will

be discussed in greater details.

Table 18.1 Steps to kinetic mechanism elucidation

1. Write a minimal mechanism based on available information

2. Experimentally obtain kinetic parameters/constants involved

3. Build a probable mechanism through diagnostic experimentation involving:

(a) A study of initial velocities

(b) Use of different inhibitions (product, dead end, substrate, alternate substrate)

(c) Isotopic studies (both, exchange analysis and isotope effects)

(d) pH-dependence studies

This is a desirable order for experimentation but one need not necessarily be rigid

4. Review the mechanism by reasoning and deduction

5. Confirm and/or refine the mechanism by designing more experiments

Table 18.2 Nature of information obtained from experiments

Experimental approach Nature of information obtained

1. Pre-steady-state kinetics Detection of enzyme complexes/intermediates, rate-

limiting k values

2. Variation of [S]; analysis of initial

velocity patterns

Kinetic constants; sequence of complexes; binding

order

3. Inhibition analyses; variation of [P],

[I], etc.

Active site definition; sequence of complexes;

binding order

4. Substrate/product structures Map of the active site and geometry

5. Isotope exchange study Partial reactions; distinction between mechanisms

6. Isotope effects Individual rate constants; chemical mechanism; TS

structure

7. pH variation and kinetics Relevant pKas for catalysis and/or binding; nature of

functional groups
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18.2 Two Thumb Rules

There are two component activities to any kinetic study – one qualitative and the

other quantitative. From a systematic analysis of the kinetic data by different plots

and replots and slope and/or intercept changes, various kinetic constants like Vmax,

kcat, KM, KiA, KP, etc. are evaluated. At the qualitative level, inspection of slopes and

intercepts of a double-reciprocal plot is very informative. We are thus looking at the

two limiting cases – sub-saturating (slope) and saturating (intercept) concentrations

of the varied substrate. Any change in slope (which is KM/Vmax) points to a change in

the first-order rate constant. An effect on the intercept (1/Vmax) similarly reflects on

the zero-order rate constant (see Chap. 15 in Part II). The presence of an inhibitor

brings about an increase in the magnitude of intercept, slope, or both. On the other

hand, increasing substrate (other than the one whose saturation is being studied)

concentration leads to lower intercept, slope, or both (Fig. 18.1).

A careful interpretation of slope and intercept changes is at the heart of under-

standing and postulating a kinetic mechanism. Let us therefore attempt to make some

generalizations on how this can be done. We have seen earlier (derivation of rate

equations) that along the reaction path, few distinct kinetically significant enzyme

forms may occur. The total enzyme ([E]t) is distributed into these forms depending

on the extant equilibria (and/or steady state). A corresponding rate equation was

derived from this description by evaluating for the fraction of [E]t present as ES (the

productive complex). Factors (such as substrate, inhibitor, activator, or pH) that

perturb this equilibrium result in a redistribution of [E]t into various enzyme forms.

Any consequent change in the concentration of ES leads to change in reaction

velocity. Intuitively, we can therefore predict how the slopes and intercepts of

Lineweaver–Burk plots are affected by any substance (substrate, product, etc.)

based on the distribution of enzyme forms and their equilibria. The converse of

this exercise is of course of great practical value – we can set up appropriate

equilibria from the slope and intercept effects caused by any substance. This is the

crux of enzyme kinetic mechanism. From the expected redistribution of [E]t into

different enzyme forms, two thumb rules may be stated here. These rules were

framed by the famous enzymologist WW Cleland, to predict slope and intercept

effects for product and dead-end inhibitors. However we generalize and extend them

to any substance that binds and perturbs the enzyme equilibrium (of [E]t
distribution).

Rule I. A ligand (substrate, product, or inhibitor) affects the intercept (zero-order

rate) of the double-reciprocal plot when it combines reversibly with an enzyme

form other than that with which the varied substrate combines.

Rule II. The slope (first-order rate) of the double-reciprocal plot is affected when

(a) the ligand and the varied substrate combine reversibly with the same enzyme

form or (b) the ligand and varied substrate bind reversibly to two different

enzyme forms that are connected by a series of reversible steps along the

reaction path.

18.2 Two Thumb Rules 217



1

v

b

Slope change

Intercept change a

1

[S]

b

a

1

v

1

[S]

1

v

1

[S]

Both change
b

a

Fig. 18.1 Possible changes

in the slope and intercept of

double-reciprocal plots.

Direction of change with

increasing concentrations of

(a) other substrate, activator,

etc. and (b) product, inhibitor,

etc. is indicated by respective

arrows
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It goes without saying that once the slope and intercept effects have been

independently predicted, they can be combined to generate the whole picture

(pattern). The rule II.b above requires that we know whether two enzyme forms,

along the reaction path, are reversibly connected or not. Seeking such reversible

connectivity with dead-end inhibitors (Chap. 20 Enzyme Inhibition Analysis) is

tricky since they do not form the part of normal reaction sequence. A step becomes

irreversible when it involves (i) addition of substrate at saturation ([S] ! 1),

(ii) release of product under initial velocity conditions ([P] ¼ 0), or (iii) some

irreversible chemical event (with a large negative ΔG) like CO2 release, oxidation

of an aldehyde to acid or aromatization of a ring, etc. Logical connections between

(a) prediction of slope and intercept effects from a given kinetic scheme and

(b) arriving at a kinetic mechanism from experimentally observed slope and intercept

effects are better understood with suitable examples. A few case studies are therefore

included in a concluding section of the elucidation of kinetic mechanism (Chap. 28;

From kinetic data to mechanism and back).
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Analysis of Initial Velocity Patterns 19

One could in principle study the full time course of an enzyme-catalyzed reaction

until the equilibrium is reached. This is not practiced because (a) the equations soon

become very complex to handle; (b) with reasonable progress of the reaction,

inhibition by product(s) sets in; and (c) it is difficult to follow the many, simulta-

neously changing reactant concentrations. For these reasons experiments are best

conducted under steady state and initial velocity conditions. Employing the method

reduction approach, data is generated almost always by systematically changing one

variable at a time.

Nature of experiments conducted and the information sought from the initial

velocity data are as follows:

1. Monitor initial velocity “v” by varying the concentration of one substrate at

different fixed concentrations of the others. If the enzyme reaction in question

involves single substrate, then there is not much information to be had other than

obtaining kinetic constants (Vmax and KM).

2. The v ! [S] data are plotted in the double reciprocal format (Lineweaver-Burk

plots), and the patterns are analyzed qualitatively.

3. If the plots are nonlinear, then they suggest that the enzyme under study may

exhibit (a) substrate inhibition, the curve being concave upward, or

(b) cooperativity in its interaction with its substrates – Concave upward for

positive cooperative and concave downward for negative cooperative

interactions. We will have more to say on these nonlinear plots later.

4. Gradual changes in the slope and/or intercepts, as a function of the fixed substrate

concentration, are noted. It may be recalled that change in slope points to a

change in Vmax/KM (which in turn reflects on the first-order rate constant). An

effect on the intercept is similarly related to Vmax and the zero-order rate constant.

5. On quantitative analysis of slope and intercept changes, various kinetic constants

are evaluated.
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Several interesting variations of the initial velocity patterns are possible and are

indeed observed. However we will restrict ourselves to some of the more common

patterns observed in such studies.

19.1 Intersecting Patterns

This is indicative of sequential combination of the two substrates considered in the

study. The equilibria representing such a general case are given below (Fig. 19.1):

Three individual situations commonly encountered could include (a) random,

(b) preferred ordered, and (c) ordered addition of A and B. In an ordered sequential

mechanism (the upper path, E ! EA ! EAB ! Products), only EA is formed,

whereas in the random case (both paths leading to EAB, E! EA! EAB! Products

as well as E ! EB ! EAB ! Products), both EA and EB are formed. A general

equation derived for a two-substrate sequential case will look like:

v ¼
Vmax A½ � B½ �

K iAKB þ KA B½ � þ KB A½ � þ A½ � B½ �

This rate equation will be identical, and it cannot distinguish between the ordered

and random mechanism. Remember that as long as we reach the same EAB complex

from the two routes, the equation will be symmetric. This is what is expected of any

state function (path-independent property). Therefore, KiAKB ¼ KiBKA in the ran-

dom mechanism. We note that KiA is the kinetic dissociation constant of A from EA

(and KiB for the dissociation of B from EB) (Frieden 1957).

19.1.1 Determination/Evaluation of Kinetic Constants and Replots

On double reciprocal analysis, one obtains slope and intercept values at different

fixed concentrations of B (Fig. 19.2). Similar plots can also be obtained with B as the

varied substrate but at different fixed concentrations of A.

E

A

EA

EAB ProductsEB

KiB

BB

KA

A

KB

KiA

Fig. 19.1 Equilibria

representing sequential

interaction of substrates in a

bi-reactant mechanism
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1

[A]

1

v

Fig. 19.2 Double reciprocal

plot for sequential

mechanism with A as the

varied substrate. Replots

of slope!1/[B] and

intercept!1/[B] are shown

below
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They are further evaluated from the following relationships:

slope ¼
KA

Vmax

þ
K iAKB

Vmax B½ �

intercept ¼
1

Vmax

þ
KB

Vmax B½ �

A replot of intercept!1/[B] is linear with (a) reciprocal of intercept giving Vmax and

(b) dividing slope by intercept gives KB. Substituting these values in the slope!1/

[B] equation, we can extract values of KA and KiA. Although useful, this is not of

course the best way to evaluate these constants; one should use statistical fits to the

entire data set, and user-friendly software/programs are available for the purpose.

19.1.2 Interpretation

Intersecting Lineweaver–Burk patterns arise because both slope (first-order rate) and

intercept (zero-order rate) change as a function of different fixed [B] values. Note

that A and B bind two different enzyme forms at equilibrium, and hence both slope

and intercepts change. These are indicative of sequential mechanisms, but we cannot

distinguish various subsets ranging from “random” to “ordered” by initial velocity

pattern analysis alone. We need to perform other types of experiments to get there.

These include (a) direct substrate-binding experiments with radiolabels, e.g., LDH

(from bovine heart muscle) binds NAD+ (E-NAD+ forms) but not lactate (E-lactate

does not form); it binds lactate only in the presence of NAD+. Ordered addition of

substrates is indicated – NAD+ followed by lactate; (b) direct monitoring of binary

and/or ternary complexes by MALDI-TOF; (c) ordered versus random binding

through product inhibition and isotope exchange studies (Chap. 26; Isotope

exchanges at equilibrium and Chap. 28; From kinetic data to mechanism and back).

Coordinates for the point of intersection depend upon the relative values of KA

and KiA. The X-axis coordinate corresponds to �1/KiA (which is �1/KiB when

analyzing for B), while the ordinate intercept value is
1
v
¼ 1

Vmax
1� KA

K iA

� �

(which is ¼ 1
Vmax

1� KB

K iB

� �

when B is studied). How the

expressions for these coordinates are obtained may be found in the appendix to this

chapter.

The position of the crossover point depends on the relative magnitudes of KA and

KiA (the kinetic dissociation constant of A from EA). These are illustrated in the

Fig. 19.2. For example,

KA ¼ KiA then the lines intersect on X-axis

KA < KiA then the lines intersect above X-axis

KA > KiA then the lines intersect below X-axis

There are examples (like Mg-ATP binding to creatine kinase) where KiA > > KA.

This indicates a tighter binding of A to the enzyme when B is bound and is termed

synergistic binding. Clearly, the KiA (the kinetic dissociation constant of A from
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EA) may not be a simple dissociation constant but may contain additional rate

constants – such as for enzyme conformational change – within it.

19.2 Parallel Patterns

Parallel initial velocity patterns are suggestive of a ping-pong (double displacement)

mechanism. The equilibria representing such a general case are given below

(Fig. 19.3):

Two situations commonly encountered include (a) single-site ping-pong and

(b) multisite ping-pong mechanisms. In a two-substrate ping-pong mechanism, no

ternary complex (EAB) is formed. A general equation derived for a two-substrate

ping-pong case will look like

v ¼
Vmax A½ � B½ �

KA B½ � þ KB A½ � þ A½ � B½ �

Notice that no KiA term appears in the denominator of this rate equation (compare

with the expression for sequential mechanism above). This is same as puttingKiA¼ 0

and is consistent with the absence of EAB from of the enzyme and an absence of

slope effect in the double reciprocal plots. Now the question is – what may appear

parallel – is it really parallel? Here we should quickly note that KiA may have a very

small value; and if so, it becomes quite difficult from measured data to decide

whether the slope is really changing or not. The lines may appear parallel but

actually intersect far away to the left of the origin – this is what happens with

brain hexokinase with glucose as substrate. We are thus relying on quantitative

information to answer a qualitative question. While it is easy to conclude that a set of

lines intersect (i.e., KiA 6¼ 0), we need additional lines of evidence to ensure that a

pattern is genuinely parallel (i.e., KiA ¼ 0). For instance, D-amino acid oxidase

showed “almost” parallel lines in initial velocity analysis. It was originally thought

E

A

F

A P B Q

Cleland notation

(EA FFP)

E

P B Q

Enzyme equilibria

E E(FB EQ)

Fig. 19.3 Equilibria

representing a bi-reactant

ping-pong mechanism
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that the imino acid (oxidized amino acid that leads to pyruvate formation) is released

from E-FADH2 prior to O2 binding. Subsequently, pyruvate was found to compete

with alanine. This product inhibition pattern clearly showed the reaction to be

sequential and not ping-pong. We will revisit the question “How parallel is parallel?”

while dealing with reversible enzyme inhibition analysis (Chap. 22; Reversible

inhibitions).

The difficulty of concluding whether a set of lines are parallel (in double recipro-

cal plots) may be sorted by employing Woolf–Hanes plot (see Chap. 17). For a ping-

pong reaction, plots of [A]/v! [A] at various fixed [B] values will converge on [A]/v

axis. Such a convergence (and any deviation from the common point of interaction)

is readily recognized.

19.2.1 Determination/Evaluation of Kinetic Constants and Replots

The double reciprocal form of the above equation will be.

1

v
¼

KA

Vmax

1

A½ �
þ

1

Vmax

1þ
KB

B½ �

� �

Upon inspection and analysis, one obtains no change in slope (as expected with a

parallel set of lines), while the intercept values at different fixed concentrations of

B do change (Fig. 19.4).

They are evaluated from the following relationships:

slope ¼
KA

Vmax

intercept ¼
1

Vmax

þ
KB

Vmax B½ �

A replot of intercept!1/[B] is linear with (a) reciprocal of intercept giving Vmax and

(b) slope divided by intercept gives KB. Substituting for Vmax in the slope!1/[B]

equation, we can assign a value for KA. The best way of course is to evaluate these

constants by suitable statistical fits to the entire data set.

19.2.2 Interpretation

Parallel patterns (in a two-substrate case) are normally indicative of a ping-pong

mechanism. Consider the two-substrate two-product classical ping-pong mechanism

(Fig. 19.3 above). Employing the thumb rules listed earlier (see Chap. 18;

Approaches to kinetic mechanism – An overview), the following predictions on

the initial velocity patterns can be made (Table 19.1).
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These predictions are based on an understanding of different enzyme forms and

their equilibria. A binds to E and B binds the F form of the enzyme; the two forms are

not reversibly connected as product P release is irreversible when [P] ¼ 0. The

arguments for the situation where [A] is varied are as follows:

1

v

1

[A]

Intercept

1

[B]

[B]

Fig. 19.4 Double reciprocal

plot for a ping-pong

mechanism with A as the

varied substrate. Replots of

intercept!1/[B] is shown

below

Table 19.1 Expected initial velocity patterns for a two-substrate ping-pong mechanism

Substrate

varied

Fixed substrate

at

Enzyme parameter affected

Initial velocity

pattern

Intercept

(1/Vmax)

Slope (KM/

Vmax)

A B ¼ 1 Yes No Parallel

A B ¼ KB Yes No Parallel

B A ¼ 1 Yes No Parallel

B A ¼ KA Yes No Parallel

B ¼ 1 implies saturating [B]; B ¼ KB implies subsaturating [B]
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(a) At low [A] we are looking at slope effect (first-order rate), and any level of [B]

cannot affect the interaction of Awith E; conversion of E! F is rate limiting and

not F ! E, hence no slope effect in double reciprocal plots.

(b) At A ¼ 1 we are looking at intercept effect (zero-order rate), and all enzyme is

captured into EA form; because F ! E becomes rate limiting, any level of [B]

affects the overall reaction rate and intercept is affected.

(c) Summing up the results of a and b above, only intercept (zero-order rate) of the

double reciprocal plot changes as a function of different fixed [B] values; we

obtain parallel set of lines as a consequence.

(d) E and F enzyme forms get reversibly connected when finite levels of P are

present. At low [A], now F can go back by binding with P or go forward on

interacting with B. Therefore varying [B] will affect the rate (and slope). With

A ¼ 1 situation, B affects the rate as before (in b above). The net result is an

intersecting pattern.

Thus a parallel pattern turns intersecting (and a slope effect is introduced!) if one

of the products (say P) is deliberately included in the experiment. Such a change is

diagnostic of P release interrupting the sequential addition of A and B (scheme for

the ping-pong mechanism above). Addition and presence of P establish a reversible

path between the two forms of the enzyme to which A and B bind, respectively.

Notice that initial velocity measurements in the presence of added P can be made by

estimating the other product Q.

It is not necessary that parallel patterns always mean a ping-pong mechanism.

There are occasions where one obtains parallel patterns, but the mechanism is not

ping-pong: (a) In a three-substrate fully ordered sequential mechanism, intersecting

A! C pattern is observed when [B] is subsaturating. This pattern turns parallel with

saturating levels of B. This is actually diagnostic of B being the middle substrate. The

slope effect disappears because saturating B introduces an irreversible step

(by forcing all the enzyme forward to EAB form) in between the additions of

A and C. Saccharopine dehydrogenase is an example of this kind with lysine as

the middle substrate. Similar study with a three-substrate partly ordered sequential

mechanism (first substrate ordered, e.g., ATP citrate lyase) gives two parallel

patterns. No parallel patterns are observed in the case of fully random or

C-ordered three-substrate mechanisms. Three-substrate ping-pong mechanisms gen-

erally give at least two parallel patterns. A detailed analysis of all such cases may be

found in Viola and Cleland (1982). (b) In a Theorell–Chance mechanism, A ! B

pattern appears parallel (see below).

19.3 Few Unique Variations

The relative magnitudes of various kinetic constants in a given mechanism, some-

times lead to interesting examples. In such cases the patterns appear distinct from the

two typical cases described in A and B above. We will look at two unusual variations

of initial velocity patterns in this section.
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A two-substrate ordered mechanism where the addition of A is at equilibrium is

called an equilibrium-ordered mechanism. As expected of a sequential mechanism,

both patterns are intersecting. However two unusual features arise due to the

equilibrium addition of A. (a) The slope replot of 1/v ! 1/A pattern passes through

origin indicating that 1/KA tends to infinity (i.e., KA� 0). Since A gets trapped on the

enzyme to form EAB complex at infinite [B], the corresponding double reciprocal

plot is a horizontal line (zero slope). (b) For the same reason, 1/v ! 1/B pattern

intersects on the Y-axis (saturating [B]) giving no intercept effect. Both these

features, diagnostic of an equilibrium-ordered mechanism, also define the first

substrate to add – that is A.

The second example is Theorell–Chance mechanism. Here sequential ordered

addition of A and B occurs, while the central complexes (EAB$EPQ) are found in

insignificant levels. At any subsaturating level of [A], B takes it quickly forward to

release P. Because of this apparent irreversibility, the slope effect is quite small, and

the A ! B pattern looks nearly parallel. However if we run the reaction in the slow

reverse direction (with P and Q as substrates), the pattern definitely intersects.

Alcohol dehydrogenase from horse liver follows Theorell–Chance mechanism.

Because parallel patterns could appear outside of ping-pong mechanisms, further

proof of ping-pong mechanism will come from demonstration of (a) relevant partial

reactions and (b) the substituted form (the F form) of the enzyme. Partial reactions

are best evidenced through isotope exchange studies (Chap. 26; Isotope exchanges at

equilibrium). Substituted (F form) of enzyme is often characterized by isolating

and/or trapping it. We will have more to say on these forms with respect to their

chemical mechanisms (in Part IV).

Appendix

Coordinates for the point of intersection in the Lineweaver–Burk plots for sequential

mechanism.

These coordinates can be readily evaluated from the general rate equation above

by a bit of tedious algebra. Consider the double reciprocal form of the above

equation for sequential mechanism.

1

v
¼

KA

Vmax

1þ
K iAKB

KA B½ �

� �� �

1

A½ �
þ

1

Vmax

1þ
KB

B½ �

� �

At two different values of [B], i.e., [B]1 and [B]2, we obtain the same 1/v only at the

crossover point (point of intersection). We can thus equate the two rates and simplify

the equation:
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KA

Vmax

1þ
K iAKB

KA B½ �1

� �

1

A½ �
þ

1

Vmax

1þ
KB

B½ �1

� �

¼
KA

Vmax

1þ
K iAKB

KA B½ �2

� �

1

A½ �
þ

1

Vmax

1þ
KB

B½ �2

� �

And therefore K iA

A½ � þ 1
� �

1
B½ �1

� 1
B½ �2

� �

¼ 0

Since 1
B½ �1

� 1
B½ �2

� �

term cannot be zero by experimental design, we have

K iA

A½ � þ 1 ¼ 0 and hence 1
A½ � ¼ � 1

K iA
. At the crossover point, therefore 1/[A] corresponds

to �1/KiA (accordingly for B it is �1/KiB). We can now substitute �1/KiA for 1/[A]

in the equation above and simplifying.

1

v
¼�

KA

Vmax

1þ
K iAKB

KA B½ �

� �� �

1

K iA

þ
1

Vmax

1þ
KB

B½ �

� �

1

v
¼

1

Vmax

�
KA

K iA

1

Vmax

1

v
¼

1

Vmax

�
KA

K iA

1

Vmax

¼
1

Vmax

1�
KA

K iA

� �

In a similar manner, we can obtain the ordinate intercept in the case of B.
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Enzyme Inhibition Analyses 20

Enzymes are delicate protein catalysts with subtle conformational flexibilities. This

makes them vulnerable, and a number of environmental conditions and/or ligands

could bring about decline in the net catalytic activity. An enzyme may be irreversibly

killed (inactivation by high temperature, extremes of pH, nonaqueous solvent, etc.)

or inhibited by ligands that bind to them. Inhibitors are usually small molecular

weight ligands that bring about a decrease in the rate of enzyme-catalyzed reaction.

For a molecule to act as an inhibitor, it must physically interact with the enzyme.

Interactions with the enzyme that do not affect its catalytic activity (that are kineti-

cally silent) are of no inhibitory consequence. For example, a molecule may bind to

the enzyme without changing any of its kinetic properties. Although such ligands

may serve as potential baits in enzyme purification but are useless in study of kinetic

mechanisms.

A study of enzyme inhibition provides powerful insights into their reaction

mechanisms. Utility of such an inhibitor kinetic analysis with detailed description

is covered in the subsequent sections. We can classify inhibitors based on their

chemical nature and also the unique features of inhibition exhibited by them. The

nature of enzyme inhibition may be reversible or irreversible. Some more common

forms of inhibition and terminology are given in the table below (Table 20.1).

20.1 Reversible Versus Irreversible Inhibition

Reversible inhibitors are excellent tools to study enzyme kinetic mechanisms. It is

important to establish the reversible nature of inhibition before embarking on its use

to study enzyme mechanisms. A diagnostic test of reversibility is to physically

separate E and I from their complex and show full recovery of the added enzyme
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activity. Dialysis, ultrafiltration, and gel filtration chromatography are useful

techniques in separating enzyme molecules from their small molecular weight

inhibitors. These techniques may not be able to differentiate between tight-

binding inhibition and true irreversible inactivation. In such cases one can look

for the release of the original inhibitor molecule after denaturing the enzyme

protein. An additional approach is to study the effect of inhibitor on v ! [Et]

curve for the enzyme (also refer to Chap. 12 in Part II). Increasing concentrations

of the enzyme are incubated in the absence or presence of a fixed concentration of

the inhibitor. Subsequently the enzyme activity remaining is measured in each

case (Fig. 20.1).

An irreversible inhibitor would stoichiometrically (and depending on the rate of

inactivation) inactivate and titrate out enzyme molecules. The active enzyme

molecules remaining however will be kinetically indistinguishable from the native

enzyme molecules. Therefore the curve will be parallel to the control v! [Et] curve

but will not pass through origin. The point of intersection on the X-axis represents

the amount of enzyme irreversibly inactivated by the concentration of the inhibitor

used. In the presence of a reversible inhibitor, all the enzyme molecules will be

active but are kinetically less efficient. Hence the corresponding v ! [Et] curve will

have a lower slope but still passes through the origin. This is a simple and quick way

to establish the reversible nature of an inhibitor. A word of caution – the enzyme–

inhibitor incubation conditions – should be carefully chosen; significant enzyme

inactivation has to occur in the given time of incubation with an irreversible

inhibitor.

Table 20.1 Common

inhibitor types

encountered

Enzyme inhibition category Nomenclature

Irreversible Active site directed Affinity labels

Suicide substrates

Tight binding

Reversible Site of binding Isosteric

Allosteric

Extent of inhibition Partial

Complete

Ligand types Product

Substrate

Dead end

Kinetic features
a Competitive

Uncompetitive

Noncompetitive
aEach one of these may further be grouped as linear, hyperbolic, or

parabolic with respect to their slope and/or intercept changes
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20.2 Partial Versus Complete Inhibition

A simple inhibition experiment involves monitoring rates of an enzyme-catalyzed

reaction in the presence of increasing concentrations of inhibitor. The resultant

v ! [I] curve is nonlinear and asymptotic to X-axis. At saturating values of a

complete inhibitor, the enzyme activity tends to zero (Fig. 20.2, panel A). On the

other hand, the enzyme activity plateaus to a nonzero limiting value by increasing

concentrations of a partial competitive inhibitor (Whiteley 2000a). However due to

the nonlinear, asymptotic nature of such curves and for reasons of experimental

feasibility (unable to achieve very high concentration of the inhibitor in practice), it

is difficult to determine the limiting value.

Fractional inhibition analysis is a convenient tool to distinguish between partial

and complete inhibitors (Whiteley 2000b). For this, a relative quantity termed

fractional inhibition (denoted i) is defined as shown.

i ¼ 1�
vi

v
¼

v� vi

v

Here vi is the inhibited rate in the presence of inhibitor. If the inhibition is complete,

then i will take a value of unity (because at saturating concentration of the inhibitor,

viwill be zero). For a partial inhibitor, however, viwill never reach zero, and iwill be

always less than one. The inhibition data is plotted as 1/i ! 1/[I] to obtain a linear

plot (this is analogous to the Lineweaver–Burk treatment of v ! [S] plot!). The

Y-axis intercept of such a double reciprocal plot is unity for a complete competi-

tive inhibitor, whereas it will be greater than one for partial inhibitors (Fig. 20.2;

panel B).

v

Etotal
EX

None

Irreversible

inhibitor

Reversible

inhibitor

Fig. 20.1 Influence of an

inhibitor on the enzyme

concentration versus initial

velocity curve. Amount of

enzyme (Ex) titrated by the

irreversible inhibitor is shown
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20.3 Other Inhibitor Types

Inhibitors are often structurally related to the product(s) or substrate(s) of that

enzyme. It is easy to appreciate that molecules structurally similar to a substrate/

product can occupy the same space (pocket!) at the enzyme active site. Such

inhibitors are called isosteric inhibitors. In some metabolic pathways, a terminal

metabolite without any chemical analogy/reactivity to an earlier step is a powerful

inhibitor of its own synthesis (Part V, Chap. 37; Regulation of enzyme activity).

Obviously such structurally unrelated molecule cannot occupy the isosteric enzyme

active site but inhibits by binding to a site distinct from the active site. Such

inhibitors are called allosteric inhibitors, and the site where they bind is called an

allosteric site. Binding of an inhibitor at the allosteric site is communicated to the

active site through the protein matrix – as a conformational change.

[I]

1

[I]

v
Partial

Complete

1

i

4

3

2

1

0

Partial

Complete

(i = 0.5)

(i = 1.0)

1.0

0.5

0.0

A

B

Fig. 20.2 Fractional

inhibition analysis. A relative

value of velocity is plotted in

the v ! [I] plot (panel A).

A double reciprocal plot of

1/i ! 1/[I] is shown in

panel B
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Product of the enzyme reaction can act as an inhibitor. Product inhibition may

result due to reversal of the forward reaction since it will be the substrate for the

reaction backward. This mode of action will obviously be possible only if the full

complement of products is present in the assay. In a multiproduct reaction, however,

presence of a single product may lead to inhibited rates by playing musical chair with

substrates. Let us consider an example to illustrate these modes of inhibition. Lactate

dehydrogenase catalyzes the following reversible reaction.

Pyruvateþ NADHþHþ
⇄Lactateþ NADþ

In the presence of pyruvate and NADH, only the forward reaction occurs. If the assay

also contains lactate and NAD+, then the reverse reaction also becomes significant. The

net forward rate will then be reduced (inhibition is seen) because of a certain backward

reaction rate. In this sense product inhibition is a result of reversal of the reaction.

However, presence of NAD+ alone can inhibit this reaction. Since there is no reversal of

the reaction possible (because lactate is missing from the assay!), inhibition by NAD+

occurs because it can displace NADH from the enzyme active site and prevents E.

pyruvate.NADH complex formation. Logically, because of their structural similarity,

NAD+ and NADH are expected to compete for the same active site pocket on the

enzyme. We note that E.pyruvate.NAD+ complex, if at all formed, is not productive.

Such a combination is termed dead-end complex – implying that this enzyme form is not

on the normal reaction path of the catalytic turnover.

The dead-end combination (exemplified for NAD+ with lactate dehydrogenase

above) may also occur with substrate/product analogs that are not substrates/

products themselves for the enzyme. Such inhibitors are typical dead-end inhibitors;

their complexes with the enzyme do not form the part of normal reaction sequence –

hence no catalysis occurs. Examples of some dead-end inhibitors and their target

enzymes are shown in Fig. 20.3.

Dead-end inhibitors are excellent tools in the study of enzyme kinetic mechanism.

Apart from initial velocity analysis and product inhibition (discussed above), one

could use dead-end inhibitors to help deduce kinetic mechanisms. The thumb rules

to predict dead-end inhibition patterns are similar to those employed for product

inhibitions (Chap. 18; Approaches to kinetic mechanism – An overview) but with

one exception. Being dead-end inhibitors, they cannot bring about the partial

reversal of the reaction; hence they give more number of uncompetitive inhibition

patterns.

Alternate products or substrates can be viewed as inhibitors of the enzyme

reaction with their normal counterparts. In rare instances, substrate itself acts as an

inhibitor at higher concentrations. These cases and their relevance to the study of

enzyme mechanisms will be discussed a little later (Chap. 23; Alternate substrate

(product) interactions). Reversible inhibitors, especially the product and dead-end

inhibitors, provide valuable insights to establish enzyme kinetic mechanisms.
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Fig. 20.3 Structures of few dead-end inhibitors. The enzyme inhibited and the corresponding

substrates which they mimic are shown. Key structural differences are shown in bold
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Irreversible Inhibitions 21

Irreversible inhibition of enzyme activity often results from covalent modification of

the enzyme protein. Once the enzyme is covalently bound to an irreversible inhibi-

tor, it is permanently incapacitated. The inhibition is time-dependent and not freely

reversible by procedures like dilution, dialysis, or gel filtration. Such inhibitors are

often referred to as enzyme inactivators. Irreversible inhibition effectively decreases

the concentration of the enzyme present – the net result being a reduced Vmax

(because Vmax ¼ kcat [E]total and that [E]total is actually reduced) – while the KM of

the remaining active enzyme is unaltered. This is reminiscent of a reversible

noncompetitive inhibition pattern where both Vmax and Vmax/KM are affected (see

Chap. 22, Noncompetitive inhibition). Therefore, for any new inhibitor, it is prudent

to first establish whether that inhibitor is reversible or not! Without much hairsplit-

ting on their nomenclature, we will consider three broad categories of enzyme

inactivators in terms of their mechanism.

21.1 Chemical Modification Agents

A number of reagents are known in protein chemistry to modify specific types of

amino acid side chains (de Gruyter et al. 2017). Historically, these group-specific

reagents have been extensively used to define residues that are essential for protein

function – enzyme active site residues in particular. Table 21.1 lists some of the most

commonly used chemical modification reagents. They covalently modify the

proteins and are irreversible. In some cases (like diethylpyrocarbonate), it may be

possible to reverse this modification by using a stronger nucleophile (like

hydroxylamine!).

By virtue of their ability to react with functionally important residues on the

enzyme, these chemical modifiers act as irreversible inhibitors. They are useful in the

identification of enzyme groups relevant for binding and/or catalysis. Chemical

modification can become quite specific at times – especially when the residue in
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question enjoys a unique microenvironment in the protein (Eyzaguirre 1987).

Histidine residues at the active site of ribonuclease A are susceptible to modification

by diethylpyrocarbonate. Most kinases display a reactive arginine side chain at the

active site to anchor substrate phosphate group(s). The case of super-reactivity of

Ser-195 at the active site of chymotrypsin is well known. Ser-195 is the only residue

titrated by diisopropyl fluorophosphate among a total of 28 serines found in chymo-

trypsin. Yet another example is the reactivity of Lys-126 (an anchor for substrate

carboxylate) of bovine glutamate dehydrogenase to trinitrobenzene sulfonic acid.

Such fortuitously selective chemical modification of active site residues was very

valuable in defining them even before enzyme crystal structures were available.

Although modern techniques like site-directed mutagenesis have largely supplanted

this approach, it has its value in enzyme kinetic analysis. Protection experiments in

particular provide a direct measure of true dissociation constant for a substrate (see

below). As this approach requires only catalytic amounts of the enzyme, it has been

often applied to those cases where sufficient amount of sample is not available for

binding studies.

Despite its elegance and simplicity, interpretation of chemical modification data

requires caution. If a modification is actually occurring at the active site residue then

(a) there should be a stoichiometric relation between the extent of modification and

extent of inactivation, and (b) substrate/product/inhibitor that mask the residue on

binding should protect against inactivation. By the same token, the caveats include

(a) an essential residue titrated by this method may not be involved in binding,

catalysis, or both! Irreversible inactivation may occur due to modification of struc-

turally important enzyme residues, (b) difficulty in pinpointing the role of one

particular residue – the method cannot by itself distinguish between residues of

equal reactivity. This has not however reduced the practical utility of such irrevers-

ible modifying reagents.

Interpretation of chemical modification data can be made tight by additional

experiments. The number and position of amino acid residues modified can be

tracked through radio-labeled reagents (e.g., 14C-labeled iodoacetamide or

Table 21.1 Chemical modification reagents as irreversible enzyme inhibitors

Amino acid (functional

group) Commonly used reagents

Arginine (guanidinium) 2,3-Butanedione, phenylglyoxal

Cysteine (thiol) Iodoacetamide, N-ethylmaleimide (NEM),

4-chloromercuribenzoate, disulfides

Histidine (imidazole) Diethylpyrocarbonate (DEPC)

Lysine (amino) 1-Fluoro-2,4-dinitrobenzene (FDNB), trinitrobenzene sulfonic acid

(TNBS)

Serine (hydroxyl) Diisopropyl fluorophosphate (DIFP), phenylmethanesulfonyl

fluoride (PMSF)

Tryptophan (indole) N-Bromosuccinimide (NBS)
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N-ethylmaleimide). Isolation and sequence characterization of the labeled peptide

can be routine protein chemistry. Chemical modification in combination with high-

resolution mass spectrometry (like MALDI-TOF) is a powerful tool in recent times.

A differential labeling strategy of comparing the inactivated enzyme, in the presence

and absence of a suitable ligand (substrate or inhibitor), can further qualify the

essentiality of that amino acid residue.

Chemical modification reagents irreversibly inactivate by reacting with groups on

the enzyme surface. This happens without the prior formation of a specific

non-covalent enzyme-inhibitor complex (Rakitzis 1984). Consequently the inacti-

vation follows a second-order reaction and is not a saturable phenomenon. We can

treat the inactivation kinetics as shown below.

E þ I ! EI∗

where EI* is inactive and the rate of inactivation (with k1 as the second-order rate

constant) given by

�
d E½ �

dt
¼

d EI∗½ �

dt
¼ k1 E½ � I½ �

When [I]> > [E], one can experimentally set up pseudo-first-order conditions (Part

II; Chap. 9, Chemical kinetics revisited) with respect to fixed [E], then we have

�
d E½ �

dt
¼

d EI∗½ �

dt
¼ kobs E½ � where kobs ¼ k1 I½ �

n

The following equation may be written for a general case where “n” number of

irreversible inhibitor molecules accounts for the inactivation and exponential decay

of [E].

logkobs ¼ logk1 þ nlog I½ �

Experimentally one follows inactivation of a fixed amount of [E] at different [I]

values. This data is first plotted as percent enzyme activity remaining versus time and

then also as log percent activity remaining versus time. From each straight line, we

obtain a set of kobs – the pseudo-first-order rate values. A replot of log kobs ! log[I]

should result in a straight line; number of essential residues required to be modified

for inactivation (stoichiometry from slope “n”) and the second-order inactivation rate

constant (k1, from the intercept) are thus obtained. Typical results, for example, on

N-ethylmaleimide inactivation of glutamine synthetase are shown in

Fig. 21.1 (Punekar et al. 1985). Besides the caveats mentioned above, these

experiments require that large excess of [I] over [E] and pseudo-first-order

conditions are satisfied.

The way to perform protection experiments is as follows. The concentration of

the inactivating agent and enzyme is fixed to achieve a suitable maximal rate of

inactivation (ko). The decreasing inactivation rates (kp values) are monitored as a

function of increasing protecting ligand concentration [P]. Without belaboring
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on the detailed derivation, the equation for kinetics of protection by a ligand

against inactivation is as shown:

log
ko � kp

kp
¼ nlog P½ � � logKP

Here ko and kp are pseudo-first-order rate constants in the absence or presence of

protecting molecule P. A plot of log[(ko�kp)/kp]! log[P] provides the values of “n”

and the dissociation constant KP (Tian and Tsou 1982). Such an approach has been

extensively used as an independent probe for establishing binding of ligands to

enzymes. Figure 21.2 depicts protection afforded to glutamine synthetase activity by

Mn2+ ions, against N-ethylmaleimide inactivation (Punekar et al. 1985).

Conceptually, “n” gives number of molecules of P required to interact with the

enzyme for affording protection. The KP obtained from this route is purely a physical

dissociation constant. It is distinct from those obtained by enzyme kinetic studies –

(a) the KM which is a composite of rate constants or (b) the KI which is a kinetic
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parameter obtained in the presence of full complement of substrates. Nevertheless, a

comparison of these values gives useful insights into various ligand–enzyme

interactions like synergistic binding, etc.

21.2 Affinity Labels

Also known as active site-directed irreversible inhibitors, they combine the reactivity

of chemical modification agents (see above) along with a structural moiety to

provide specificity (Eyzaguirre 1987). They are covalent inactivators resembling

the substrate but also contain a reactive functional group, such as an α-haloketone or

a reactive ester. The best known example of this category is the chymotrypsin

inhibitor, N-4-toluenesulfonyl-L-phenylalanine chloromethyl ketone (TPCK)

(Fig. 21.3). They act as specific irreversible inhibitors – for instance, TPCK does

not inactivate trypsin whereas TLCK does.

Penicillins (beta-lactam antibiotics) also act on their target enzyme by this mode –

a penicilloyl enzyme is formed by blocking the active site Ser residue. Affinity labels

differ from chemical modification agents in that a specific non-covalent EI complex

is formed before the actual inactivation event. This mechanism, similar to the

Michaelis–Menten formalism with Briggs–Haldane steady-state assumption (Part

II; Chap. 15, Henry–Michaelis–Menten equation), may be represented as

E þ I⇄EI ! EI∗
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mine synthetase. Pseudo-first-order plots (A) and the corresponding replot (B) of log[(ko�kMn)/

kMn] ! log[Mn2+] are shown
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where EI represents the non-covalent enzyme-inhibitor complex, EI* the irreversibly

inhibited covalent adduct and k2 the first-order rate constant for EI ! EI* conver-

sion. By analogy to the Michaelis–Menten equation, we write

kobs ¼
k2 I½ �

KI þ I½ �

A plot of kobs ! [I] is hyperbolic; this is unlike the second-order rate for chemical

modification agents where the kobs ! [I] plot is linear. As expected, saturation

kinetics for the inactivation process are observed, and from a plot of 1/kobs ! 1/[I]

we can evaluate both k2 and KI.

The chemistry of affinity labels is very amenable, and given the substrate

structural details, such labels can be synthesized for almost any enzyme. Enzyme

literature is rich with such examples (De Cesco et al. 2017). Apart from their utility

as inhibitors, they can be used to tag and identify key residues involved in the

catalytic process of that enzyme. Incorporation of groups that are activated by light

of specific wavelength makes affinity labels into useful photo-affinity labels.

21.3 Suicide Substrates

These are normally unreactive molecules recognized as substrates by the enzyme,

but during the catalytic turnover, the target enzyme coverts them into a reactive

entity. The reactive species traps an essential catalytic group at the active site and

kills the enzyme (Alston et al. 1983; Silverman 1995). At least part of the enzyme

catalytic action is required for the reactive species to be generated. Therefore such

inhibitors are variously referred to as kcat inhibitors, Trojan horse inactivators, trap
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substrates, enzyme-activated irreversible inhibitors, etc. The reaction scheme for

these mechanism-based inhibitors may be represented as shown:

E þ I⇄EI ! EI
∗ ! E� I

#
Eþ P

where a non-covalent complex (EI) is first converted to an activated species (EI*);

this can either inactivate the enzyme by trapping it or go through complete catalytic

cycle to release the corresponding product and free enzyme. It is of course desirable

that the partitioning (shown in bold) of EI* be more toward E�I than a full cycle of

catalysis (and P release).

Inactivation by suicide substrates is a first-order process and shows saturation

kinetics with respect to inhibitor concentration. Since they interact at the enzyme

active site, substrates competitively protect against such inhibitors. In the absence of

the respective enzyme target, they are unreactive molecules, and hence nonspecific

modifications of other proteins are minimized. This property makes them eminently

suited as potential designer drugs. A short, representative list of suicide substrates is

given in the table above (Table 21.2).

21.4 Tight-Binding Inhibitors

Some ligands/inhibitors may bind the enzyme reversibly but very tightly. Such tight-

binding inhibitors may be difficult to distinguish from true irreversible inhibitors.

The tightness of interaction may appear as irreversible although there is no covalent

bond established to the enzyme. The non-covalent reversible but very tight interac-

tion in the formation of avidin–biotin complex (with a half-life of 2.5 years and an

incredibly small dissociation constant of 10�13 M) is well known. Similarly, metho-

trexate is a high affinity inhibitor of dihydrofolate reductase. Another example of

such tight-binding interaction is between purine nucleoside phosphorylase and

immucillin-H (a TS inhibitor with an equilibrium dissociation constant of 23 pM).

Besides other non-covalent forces, the strength for such interactions comes from

well-directed hydrogen bonds; often some of these are low-barrier hydrogen bonds.

Table 21.2 Suicide substrates and their target enzymes

Suicide substrate Enzyme acted upon Application

Gabaculine γ-Aminobutyrate transaminase Anticonvulsant

5-Fluorodeoxyuridylate Thymidylate synthase Anticancer

Penicillin DD-Transpeptidase Antibacterial

Clavulanic acid β-Lactamase β-Lactam synergist

Exemestane Aromatase Breast cancer

Allopurinol Xanthine oxidase Gout

α-Difluoromethylornithine Ornithine decarboxylase Antiprotozoal
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In some ways this tight binding reflects the slow dissociation of the inhibitor.

How does this tightness of binding come about? For a simple binding equilibrium,

E þ A⇄EA

the equilibrium dissociation constant is given by KD ¼ ([A][E])/[EA]. This KD may

also be written as the ratio of the off and on rate constants (koff/kon). Larger the

denominator (kon) smaller will be the KD – tighter is the binding. However there is an

upper limit for kon – the diffusion limit – of about 108 M�1 s�1 (see in Chap. 15,

Kinetic perfection and the diffusion limit). This implies that for a koff value of unity,

the best KD achievable is 10�8 M (¼1 s�1/108 M�1 s�1 or about 10 nM). We have

seen that many drugs, acting as enzyme inhibitors, bind more tightly than this. Since

this cannot happen only by increasing kon (because diffusion limits it!) such tight-

binding inhibitors do so by decreasing the numerator (koff value). Clearly these

inhibitors dissociate more slowly from their enzyme complexes (Morrison and

Walsh 1988; Schloss 1988).

A major consequence of tight binding by an inhibitor is that steady-state kinetic

analysis becomes complicated. It has been suggested that whenever KD/[E]total is less

than 1000, the steady-state and related assumptions should be abandoned. For KD

values in sub-micro molar range, the assumption that [I]> > [E]total is no more valid.

One needs to use tight-binding inhibitors at concentrations around (or lower than)

that of the enzyme itself. In this sense, we cannot assume that [I]free � [I]total.

On a positive note, tight-binding inhibitors provide a convenient means of

accurately determining the proportion of active enzyme in a given enzyme sample.

The number of binding (active) sites in a given sample can be titrated with the tight-

binding inhibitor.
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Reversible Inhibitions 22

Reversible inhibitors, especially the product and dead-end inhibitors, provide valu-

able insights to establish enzyme kinetic mechanisms. We have acknowledged

earlier (Chap. 18) that reversible nature of inhibition has to be established before

embarking on its use to study enzyme mechanisms. How these reversible inhibitors

are employed in enzyme kinetic analyses is discussed in this chapter.

The nature of kinetic experiments conducted and the information sought from

reversible enzyme inhibition data are as follows:

1. Monitor initial velocity “v” by varying the concentration of one substrate at

different fixed concentrations of the inhibitor. If the enzyme reaction in question

involves more than one substrate, then the concentration of all other substrates

(other than the one whose concentration is varied) is fixed.

2. The v ! [S] data are plotted in the double reciprocal format (double reciprocal

plots) to generate a series of curves – one for each fixed concentration of the

inhibitor. These patterns are analyzed qualitatively.

3. Gradual changes in the slope and/or intercepts, as a function of the fixed inhibitor

concentration, are noted. An inhibitor may affect the first-order rate constant

(Vmax/KM which is reflected in slope changes) or the zero-order rate constant

(Vmax as reflected in intercept changes) or both.

4. On quantitative analysis of slope and intercept changes, various kinetic constants

including KI values are evaluated. Depending upon whether the slope/intercept

increases as a linear function of [I] or not, the inhibition may also be classified as

linear, hyperbolic, or parabolic.

Inhibition analyses through double reciprocal plots are most useful as their slope

and/or intercept effects tell directly about the effect of that inhibitor on the rate

constants. At times the Dixon plot is a useful alternative (Dixon 1953). Like before,

we monitor initial velocity “v” but by varying the concentration of the inhibitor at

different fixed concentrations of the substrate in question. If the enzyme reaction
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involves more than one substrate, then the concentration of all substrates (other than

the one whose concentration is varied) is fixed. The 1/v ! [I] data are plotted for

every fixed concentration of the substrate. There are a few advantages of Dixon

analysis. Since we are primarily varying [I], relatively high, fixed [S] values could be

used. For the double reciprocal analysis however, data at lower [S] values are very

essential for accuracy of analysis (see Chap. 17 Enzyme Kinetic Data: Collection

and Analysis, in Part II). Dixon plots are diagnostic for nonlinear inhibitions (see

below). A drawback of the Dixon plot patterns is, unlike the double reciprocal

analysis, slope and intercept effects cannot be directly interpreted. It is also difficult

to infer which of them is/are nonlinear. Finally, these plots are the best way to study

the interaction of different inhibitors of the same enzyme through multiple inhibition

analysis. This is particularly valuable in the analysis of enzymes regulated by

multiple inhibitors such as glutamine synthetase (see Chap. 37 Regulation of

Enzyme Activity, in Part V).

Three common inhibition patterns (as double reciprocal plots) observed in

reversible inhibition studies are described below. An understanding of these

concepts through cartoons is also informative (Tayyab 1990).

22.1 Competitive Inhibition

The scheme representing interaction equilibria for a competitive inhibitor with the

enzyme is given below (Fig. 22.1).

A competitive inhibitor affects only the slope of a double reciprocal plot. There-

fore, a series of lines that intersect on the Y-axis are obtained (see Fig. 22.2 below).

Using the equilibrium assumption (Chap. 16, More Complex Rate Expressions, in

Part II), a rate equation may be derived to represent this situation:

v ¼
Vmax S½ �

KM 1þ I½ �
KI

� �

þ S½ �

This equation is identical to classical Michaelis–Menten equation except that

(1 + [I]/KI) term multiplies the KM in the denominator. The equation and the

equilibria do not make explicit as to whether the inhibitor binds to the active site

or a site elsewhere on the enzyme. Both isosteric and allosteric inhibitors behave

identical kinetically. It is natural to expect that a competitive inhibitor structurally

related to either a substrate or a product occupy the active site. Malonate and

E

S

ES Products

EI

KI

I

Fig. 22.1 Equilibria

representing interaction of a

competitive inhibitor with

the enzyme
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fumarate are well-characterized succinate dehydrogenase competitive inhibitors of

this kind. In all other cases, therefore, additional data are required to establish where

a competitive inhibitor binds.

22.1.1 Determination/Evaluation of Kinetic Constants and Replots

The double reciprocal form of the rate equation

1

v
¼

KM

Vmax

1þ
I½ �

KI

� �

1

S½ �
þ

1

Vmax

may be used to determine the KI for the competitive inhibitor. Only the slope of the

double reciprocal plot changes as a function of inhibitor concentration:

slope ¼
KM

Vmax

1þ
I½ �

KI

� �

In a simple competitive inhibition as represented in the scheme above, the replot of

slope![I] yields a straight line; analysis of its slope and intercept (actually

intercept/slope of this line) gives the KI. The slope replot may not be linear

however. While such nonlinear slope replots are diagnostic of inhibitor interaction,

extracting a KI from such analysis is not straightforward. The nonlinearity of

inhibition is better visualized by Dixon analysis. These Dixon plots of 1/v ! [I]

are based on the rearranged format of the following double reciprocal form for

competitive inhibition:

[I]

1

[S]

1

v

Fig. 22.2 Double reciprocal

plots for the competitive

inhibition of the enzyme

with S as the varied

substrate
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1

v
¼

1

Vmax

KM

S½ �KI

I½ � þ
1

Vmax

1þ
KM

S½ �

� �

22.1.2 Interpretation

The presence of a competitive inhibitor affects only the first-order rate constant

(Vmax/KM; 1/slope of Lineweaver-Burk plot). The Vmax is not affected and the lines

intercept on the Y-axis (where [S]!/).

This is expected according to the equilibria described in the competition scheme.

While S and I compete for the free enzyme (form E), at infinite [S], all the enzyme

will be in the ES form – hence no inhibition by I occurs. At any finite level of [S]

however, there is a proportion of E available for I to bind, and inhibition results.

These arguments do not assume anything about the equilibrium dynamics – leading

to mutually exclusive binding of I and S to the enzyme form E. Clearly the kinetic

consequence is the same whether (a) I displaces S at the active site (isosteric

competitive) or (b) I binds elsewhere on E but changes its conformation such that

S cannot access the active site (allosteric competitive). In any case, inhibition

completely overcome by large excess of substrate is a hallmark of competitive

inhibition. Finally, with competitive inhibitors that are nonlinear, slope replots

may either be hyperbolic or parabolic. Such nonlinear competitive inhibition is

indicative of more complex scheme of interaction between the inhibitor and the

enzyme. For instance, a hyperbolic inhibition may result when a ternary complex of

IES also forms where this complex is active but is less productive than the ES

complex. A parabolic competitive inhibition may occur due to multiple inhibitor

molecules binding to the substrate binding site.

22.2 Uncompetitive Inhibition

The scheme representing interaction of an uncompetitive inhibitor with the enzyme

is shown below (Fig. 22.3). An inhibitor affecting only the intercept of a double

reciprocal plot yields a series of lines that are parallel to each other (see Fig. 22.4

below). Using the equilibrium assumption (Chap. 16, More Complex Rate

Expressions, in Part II), a rate equation may be derived to represent this situation:

E
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ES

ESI

Products

I
K I

Fig. 22.3 Equilibria

representing interaction of

an uncompetitive inhibitor

with the enzyme
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v ¼
Vmax S½ �

KM þ S½ � 1þ I½ �
KI

� �

This equation is identical to the Michaelis–Menten equation except that the [S] term

in the denominator is multiplied by a factor (1 + [I]/KI). From the way the equilibria

are represented, it is obvious that an uncompetitive inhibitor binds to ES complex but

not to E (free enzyme). It is however conceptually challenging to imagine how an

inhibitor can bind only the enzyme–substrate complex.

22.2.1 Determination/Evaluation of Kinetic Constants and Replots

The double reciprocal form of the rate equation

1

v
¼

KM

Vmax

1

S½ �
þ

1

Vmax

1þ
I½ �

KI

� �

could be used to determine the KI for the uncompetitive inhibitor. The intercept of

the double reciprocal plot changes with the inhibitor concentration according to the

relation:

intercept ¼
1

Vmax

1þ
I½ �

KI

� �

The replot of intercept![I] data for an uncompetitive inhibitor gives a straight line;

analysis of its slope and intercept (actually intercept/slope of this line) gives the KI. If

the intercept replot is nonlinear, then extracting a KI from such analysis is not

1

v

1

[S]

[I]

Fig. 22.4 Double reciprocal

plots for uncompetitive

inhibition of the enzyme

with S as the varied

substrate
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straightforward; nonlinear curve fitting for the data could be resorted to. The non-

linearity of inhibition is better visualized by Dixon analysis based on the following

double reciprocal form of equation for uncompetitive inhibition:

1

v
¼

1

Vmax

1

KI

I½ � þ
1

Vmax

1þ
KM

S½ �

� �

22.2.2 Interpretation

An uncompetitive inhibitor affects only the zero-order rate constant (Vmax; 1/inter-

cept of LB plot). Since Vmax/KM is not affected, a pattern with parallel set of lines

(with no slope change) is obtained (Fig. 22.4).

According to the scheme for uncompetitive inhibition, at low [S] most of the

enzyme will be in E; very little ES exists for I to bind. Hence this inhibitor will not

affect the slope (first-order rate constant). However the Y-axis intercepts (where

[S]!/) do change because all enzymes will be in ES form and I binds to it. This also

means uncompetitive inhibition (unlike competitive inhibition) cannot be overcome

by increasing [S]. Intercept replots, whenever nonlinear, may either be hyperbolic or

parabolic. Such nonlinear uncompetitive inhibition is indicative of more complex

scheme of interaction between the inhibitor and the enzyme.

Inhibition of (a) arylsulfatase by hydrazine and (b) 5-enolpyruvylshikimate-3-

phosphate synthase (EPSP synthase) by glyphosate are two interesting examples of

uncompetitive inhibition. Uncompetitive inhibitors do not bind free enzyme but only

the ES complex (Cornish-Bowden 1986). To visualize the physical picture of how

this happens is quite a challenge – particularly with single-substrate enzyme

reactions. The problem is how to imagine that the inhibitor has no affinity to

(or binding site on) the free enzyme but one gets created in the ES form. A

conformational change in the enzyme to reveal this site may be invoked. Alternately,

the inhibitor may bind the enzyme-bound substrate itself. Uncompetitive inhibitions,

more common in multi-substrate enzyme mechanisms, are of diagnostic value in

elucidation of the kinetic mechanism. An uncompetitive dead-end inhibition by an

analog of B, with A as the varied substrate, is diagnostic of an ordered mechanism.

22.3 Noncompetitive Inhibition

Interaction of a noncompetitive inhibitor with the enzyme may be represented by the

following equilibria (Fig. 22.5). A noncompetitive inhibitor affects both slope and

intercept of a double reciprocal plot. Normally such a pattern shows a common point

of intersection by a series of lines (see Fig. 22.6 below). Using the equilibrium

250 22 Reversible Inhibitions



assumption (Chap. 16, More Complex Rate Expressions, in Part II), a rate equation

may be derived (appendix to this chapter) to represent this situation:

v ¼
Vmax S½ �

KM þ S½ �ð Þ 1þ I½ �
KI

� �

Again, this equation is similar to the Michaelis–Menten form except that the entire

denominator (KM + [S]) is multiplied by a factor of (1 + [I]/KI). It is obvious that a

noncompetitive inhibitor combines the virtues of both a competitive (binds E) and an

uncompetitive (binds ES) inhibition. Hence both slope and intercept effects are,

respectively, observed.

22.3.1 Determination/Evaluation of Kinetic Constants and Replots

The double reciprocal form of the rate equation

E

S

ES

ESI

Products

EI

KIS

II

S

KII

Fig. 22.5 Equilibria

representing interaction of a

noncompetitive inhibitor

with the enzyme
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Fig. 22.6 Double reciprocal plots for noncompetitive inhibition of the enzyme with S as the

varied substrate
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1

v
¼

KM

Vmax

1þ
I½ �

KI

� �

1

S½ �
þ

1

Vmax

1þ
I½ �

KI

� �

could be used to determine the KI for the noncompetitive inhibitor. From the way the

noncompetitive inhibition equilibria are represented, it is not necessary that the

inhibitor affinity to E and ES be identical. Therefore the KI obtained from the

slope (termed more specifically as KIS) and the intercept (termed KII) may have

different numerical values. In this sense, the slope and intercept of the double

reciprocal plots change with the inhibitor concentration as shown below:

slope ¼
KM

Vmax

1þ
I½ �

K IS

� �

intercept ¼
1

Vmax

1þ
I½ �

K II

� �

The two secondary plots (i.e., replots of slope![I] data and intercept![I] data)

for a simple noncompetitive inhibitor give straight lines. The two sets of data may be

now analyzed for KI values, just the way we did before for competitive and

uncompetitive inhibitors, respectively. It is possible that the slope replot, the inter-

cept replot, or both of themmay be nonlinear; such nonlinearity of inhibition is better

visualized by Dixon analysis. A nonlinear curve fitting strategy will also be needed

to obtain relevant KI values.

22.3.2 Interpretation

A noncompetitive inhibitor affects both the zero-order rate constant (Vmax; 1/inter-

cept of the double reciprocal plot) and the first-order rate constant (Vmax/KM; 1/slope

of the double reciprocal plot). According to the scheme for noncompetitive inhibi-

tion, the inhibitor binds an enzyme form both at low [S] (where form

E predominates) and high [S] (where form ES predominates) conditions. Since

Y-axis intercepts (where [S]!1) do change, noncompetitive inhibition (unlike

competitive inhibition) cannot be overcome by increasing [S].

Noncompetitive inhibition (with few exceptions, see below) is manifested as an

intersecting set of lines in the double reciprocal analysis. The coordinates of the point

of intersection when evaluated (also refer to intersecting patterns in Chap. 19,

Analysis of Initial Velocity Patterns) are

Vertical (1/v) coordinate of the cross-over point ¼ 1
Vmax

1� KIS

KII

� �

and

horizontal (1/[S]) coordinate of the cross-over point ¼ �KIS

KII
.
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The point of intersection is determined by the relative magnitudes of KIS and KII. If

KIS/KII ¼ 1, then the intersection is at the left of origin and on the X-axis at 1/v ¼ 0.

This is a situation where KIS ¼ KII and is often known as pure noncompetitive

inhibition. It is perfectly possible that KIS 6¼ KII, and such cases are at times referred

to asmixed inhibition! Thus depending on the relative values of KIS and KII, the point

of intersection is located above, on or below the X-axis (arrows in Fig. 22.6 indicate

how the point of intersection moves).

Noncompetitive inhibition may also be viewed as a combination of two extremes,

i.e., competitive (slope effect alone) and uncompetitive (intercept effect alone).

When KIS/KII ! 0, it ends up being competitive (KII is infinite; I has no affinity

for ES), but with KIS/KII!1, it simply collapses to being uncompetitive (KIS is

infinite; I has no affinity for E). However, if KIS is very large (but not infinity!), then

the lines in a noncompetitive pattern may appear parallel but actually intersect far

away to the left of the origin. While it is easy to conclude that a set of lines intersect,

we need to be cautious in concluding that a pattern is really parallel.

Whenever intercept/slope replots are nonlinear, they may either be hyperbolic or

parabolic. So long as either slope or intercept (or both) replots are linear, a crossover

point is observed in the noncompetitive pattern. If no crossover point is observed,

but a series of “magic lines” are observed, then the inhibition is nonlinear in both

slope and intercept effects.

22.4 Reversible Inhibition Equilibria: Another Viewpoint

The equilibria between the enzyme, substrate, and the inhibitor may be treated by

one other approach. It is useful to appreciate this kinetic representation as one also

finds some enzyme kinetic literature presented in this way. While different sets of

nomenclature and/or representation are no doubt confusing, they need to be under-

stood in order to fully savor the richness of enzyme kinetic literature. In this

equilibrium treatment, dissociation constants for ES complex (KS), EI complex

(KI), and kcat are as shown in Fig. 22.7.

Two additional factors included in this scheme are (i) α is the factor by which

I changes the affinity of S to E and (ii) β is the factor by which I alters the rate of

product formation from ES complex. In the equilibrium scheme, both KS and KI are

affected by the same α value by the presence of the other ligand. On thermodynamic
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grounds, ΔG� is a path-independent function, and equilibrium constants (KS, KI,

αKS, and αKI) are directly related to corresponding ΔG
� values. As long as E goes to

form the same ESI complex, by either route, the constant α multiplying KS and KI

will be identical.

22.4.1 Significance of a and b Values

The values of α and β provide useful information on the binding interactions and

catalysis. Their relationship with the earlier classification of inhibitor types is

summarized in the table above (Table 22.1).

This representation is particularly suited to describe enzyme activation and partial

inhibition. A complete inhibitor will prevent the breakdown of ESI to products, and

therefore β ¼ 0. A partial block of this step is described by a value of β between

0 and 1. On the other hand, an activator will have a value of β greater than 1. We note

that depending on the value of α, partial inhibitors and activators can also be

classified. The inhibition constants obtained from the slope (KIS) and the intercept

(KII) effects for a noncompetitive inhibitor (see the earlier discussion at noncompeti-

tive inhibition and Fig. 22.6) are related to the α value as KIS/KII ¼ α. The

corresponding rate equation will be

v ¼
Vmax S½ �

KM 1þ I½ �
KI

� �

þ S½ � 1þ I½ �
αKI

� �

For nonzero values of α other than unity, the lines do not intersect on the X-axis;

these cases are denoted as mixed inhibitors in this treatment (see Table 22.1 above).

22.5 IC50 and Its Relation to KI of an Inhibitor

The magnitude of KI value for an inhibitor reflects its strength of interaction with the

enzyme. The KI being dissociation constant – the smaller its value, the more potent is

the inhibitor. At times it is not feasible to rigorously determine the KI value for an

Table 22.1 Kinetic significance of α and β values

Effect Nature Lines intersect Parameter value

Complete inhibition Competitive On Y-axis α ¼ 0 β ¼ 0

Noncompetitive On X-axis α ¼ 1 β ¼ 0

Mixed Above X-axis α < 1 β ¼ 0

Mixed Below X-axis α > 1 β ¼ 0

Uncompetitive α > > 1 β ¼ 0

Partial inhibition α ¼ any 0 < β < 1

Activation α ¼ any β > 1
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inhibitor. One other measure of relative inhibitory potency is the IC50 value. This is

the concentration of inhibitor required to achieve 50% inhibition of enzyme activity

under a defined set of assay conditions. The enzyme reaction velocity, IC50, and the

inhibitor concentration are related as shown:

vi

v
¼

1

1þ I½ �
IC50

where vi is the rate in the presence of inhibitor I and v is the control rate in the

absence of I. One plots fractional activity (vi/v) as a function of log[I]. The IC50 can

be graphically gleaned from such a dose-response curve (Fig. 22.8).

In practice, the inhibitor concentration is varied over several log values (at a

single fixed [S]) to obtain estimates of IC50. Presenting inhibitory potency of

molecules as IC50 values is very popular in pharmaceutical research. For instance,

a series of potential inhibitors against a particular enzyme target may be screened and

ranked quickly and conveniently according to their IC50 values.

It is possible to relate IC50 values of an inhibitor to its corresponding KI provided

the type of inhibition is known (Brandt et al. 1987). For example, the relationship

between the KI, KM, [S], and IC50 value can be derived for a competitive inhibitor as

shown.

By definition, when [I] ¼ IC50, we have vi ¼ v/2. Substituting respective velocity

equations

Vmax S½ �

KM 1þ IC50

KI

� �

þ S½ �
¼

Vmax S½ �

KM þ S½ �

1

2

log [I], M

v

Vmax

1.0

0.8

0.6

0.4

0.2

-9 -6 -3 0

0.0

IC50

Fig. 22.8 Dose-response

curve of enzyme activity as a

function of inhibitor

concentration. In this semi-

log plot, fractional enzyme

activity is plotted versus

logarithm of inhibitor

concentration
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On simplifying we get

KM

KI

IC50 ¼ KM þ S½ � and therefore IC50 ¼ KI 1þ
S½ �

KM

� �

This equation represents the Cheng-Prusoff relationship for a competitive inhibi-

tor (Cheng and Prusoff 1973). It can be used to calculate KI for an enzyme (at any

given [S]) from the corresponding IC50 value. Although the IC50 determinations

are popular for their experimental simplicity, two precautions are mandated.

1. It is important to maintain and report the assay conditions along with the IC50

value. Otherwise, different IC50 values are not comparable. Among other things,

the substrate concentration used in the assay influences the measured IC50 value

(see from equation above).

2. Cheng-Prusoff relationships for different inhibitor types (e.g., uncompetitive and

noncompetitive) are not the same. Therefore IC50 values may be compared

strictly between compounds exhibiting same mode of inhibition. When in doubt

the IC50 values must be cross-checked by performing a rigorous double reciprocal

analysis.

IC50 values and Cheng-Prusoff relationships are commonly used for high-

throughput inhibitor screening of a series of structurally related molecules. Such

analysis is of immense practical value in quantitative structure activity relationship

(QSAR) studies (see Chaps. 23 and 28). In the final analysis, however, there is no

substitute for a rigorously determined KI value of an inhibitor.

Appendix

The rate equation for noncompetitive inhibition may be derived starting from an

equilibrium assumption (hence KS replaces KM) and the scheme shown in Fig. 22.5.

In this equilibrium E, ES, EI, and ESI are the four different enzyme forms, and ESI

form is nonproductive. Defining any three equilibrium constants will automatically

define the fourth (note: state function). In order to evaluate the concentration of the

ES complex, we use the following relations:

ES½ � ¼
E½ � S½ �

KS

; EI½ � ¼
E½ � I½ �

KIS

; and ESI½ � ¼
ES½ � I½ �

KII

¼
E½ � S½ � I½ �

KSKII

Evaluating the fraction of total enzyme ([Et]) present in the ES form, we get

f ¼
ES½ �

Et½ �
¼

ES½ �

E½ � þ ES½ � þ EI½ � þ ESI½ �
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Substituting for the concentrations of all enzyme forms from the three equilibrium

relationships in terms of [E],

f ¼

E½ � S½ �
KS

E½ � þ E½ � S½ �
KS

þ E½ � I½ �
KIS

þ E½ � S½ � I½ �
KSKII

¼

S½ �
KS

1þ S½ �
KS

þ
I½ �

K IS

þ
S½ � I½ �

KSKII

Simplifying (multiplying both the numerator and the denominator by KS) further, we

obtain

f ¼
S½ �

KS þ S½ � þ KS

KIS

I½ � þ
1

KII

S½ � I½ �:

This fraction ( f ¼ [ES]/[Et]) may be now plugged in to obtain the rate equation:

v ¼ f :Vmax ¼
Vmax S½ �

KS þ S½ � þ KS

KIS

I½ � þ
1

KII

S½ � I½ �

This equation can be easily rearranged to the more familiar form:

v ¼
Vmax S½ �

KS 1þ I½ �
KIS

� �

þ S½ � 1þ I½ �
KII

� �

Of course, if KIS ¼ KII, then this simply becomes

v ¼
Vmax S½ �

KS þ S½ �ð Þ 1þ I½ �
KI

� �
:
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Alternate Substrate (Product) Interactions 23

We have so far noted that a substrate molecule normally forms a productive complex
at the enzyme active site. However there are cases where substrate also interacts with
the enzyme (or the ES complex) in a nonproductive fashion. If this interaction is
kinetically silent, it will not show up in routine steady-state kinetic analysis. Other
methods (like equilibrium dialysis, fluorescence difference spectroscopy, or
MALDI-TOF) may however be able to detect such binding phenomena. Most
often nonproductive interactions of substrate are not considered at all – except
when they also interact with the same enzyme either as activators or as inhibitors.

23.1 Substrate Inhibition

A decrease in enzyme activity as a consequence of high substrate concentration is
termed substrate inhibition. Substrate inhibition may be observed due to one or more
of the following reasons:

(a) The presence of a second set of low-affinity binding sites for S; and when so
bound, can lead to nonproductive, inefficient enzyme forms.

(b) Unproductive binding of substrate by partial sub-site occupancy.
(c) Removal of an essential active site metal ion or cofactor by high [S].
(d) The presence of excess uncomplexed substrate such as ATP; note that in most

cases Mg-ATP is the true substrate. It is therefore important to use proper
concentration ratios of ATP and Mg2+ (Chap. 32, Phosphoryl Group Chemistry
and Importance of ATP, in Part IV).

A simple binding equilibrium (where excess substrate acts as an uncompetitive
inhibitor) and the corresponding rate equation for substrate inhibition are shown
below:

# Springer Nature Singapore Pte Ltd. 2018
N. S. Punekar, ENZYMES: Catalysis, Kinetics and Mechanisms,
https://doi.org/10.1007/978-981-13-0785-0_23

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0785-0_23&domain=pdf


v ¼
Vmax S½ �

KM þ S½ � 1þ S½ �
KI

� � ¼
Vmax S½ �

KM þ S½ � þ S½ �2

KI

It is thus expected that an SES complex does form. Because of the [S]2 term, the
v! [S] relationship is nonlinear even when double reciprocals are taken. The nature
of v ! [S] plot (describing substrate inhibition) will depend on the relative
magnitudes of KM and KI; an optimum is apparent in these plots. This is illustrated
in Fig. 23.1.

23.1.1 Determination of Kinetic Constants and Their Significance

The double reciprocal form of the rate equation for substrate inhibition is as shown:

1
v
¼

KM

Vmax

1
S½ �
þ

1
Vmax

1þ
S½ �

KI

� �

¼
KM

Vmax

1
S½ �
þ

1
Vmax

þ
1

Vmax

S½ �

KI

This equation may also be rearranged to

Vmax

v
¼ 1þ

KM

S½ �
þ

S½ �

KI

The [S]/KI term becomes significant at high [S] values and a small KI – leading
substrate inhibition to set in. At low [S] (and relatively large KI values), this equation
collapses to a regular Michaelis-Menten equation. An estimate of KM can be made

1.0
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2 4 6 8 10

increasing KI/KM

v

Vmax
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Fig. 23.1 Typical v ! [S]

plots for substrate inhibition

of the enzyme. Enzyme
activity (plotted as
dimensionless v/Vmax) as a
function of substrate
concentration (plotted as
dimensionless [S]/KM) at four
different KI/KM values are
shown
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from v ! [S] data at lower substrate concentrations by extrapolating the apparent
linear region of a normal double reciprocal plot (dashed line tangent in Fig. 23.2).
Graphically the value of 1/Vmax may be obtained by drawing a line bisecting the
angle made by the two limbs of the 1/v ! 1/[S] curve (dotted line bisector;
Fig. 23.2). The estimated Vmax and KM values may be subsequently substituted in
the rate equation to obtain KI. Best way to extract all the kinetic parameters (Vmax,
KM and KI) is to fit the data to the equation.

Substrate inhibitions are not usually important if [S] is kept relatively low – below
its physiological levels. The evolutionary process normally eliminates dead-end
combination of substrate that leads to substrate inhibition. However, if physiologi-
cally [S] does not reach inhibitory levels (for instance, aldehyde substrates that can
be toxic to the cell!), then dead-end combinations do persist. This often manifests as
substrate inhibition in kinetic studies, particularly in the nonphysiological direction.

Substrate inhibition may be induced by an inhibitor in an ordered sequential
mechanism. In most cases such induced substrate inhibitions are partial (and not
complete) because the inhibitor does escape from the EIB complex at a reduced but
finite rate. Inhibition of hexokinase by Mg-ATP is an example of this kind. Lyxose
(an inhibitor resembling glucose, the first substrate) induces a competitive substrate
inhibition by Mg-ATP. Such induced substrate inhibition occurs because much of
the enzyme is trapped as E.Lyxose.Mg-ATP complex, from which lyxose cannot
dissociate.

23.2 Use of Alternate Substrates in Enzyme Studies

Alternate products or substrates compete with the normal substrates for the same
enzyme form(s). They may also be viewed as inhibitors of the normal reaction. Such
an analysis does enrich our kinetic understanding of enzyme action. Glucose and

1

v

1

[S]

1

Vmax

Fig. 23.2 Double reciprocal

plot of v ! [S] data for an

enzyme showing substrate

inhibition. Graphical
estimates of Vmax and KM are
indicated as extrapolations
through broken lines
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galactose compete for the same form of hexokinase enzyme (Fig. 23.3). Therefore,
galactose may be seen as a competitive inhibitor of glucose reaction with hexokinase
and vice versa.

Two useful areas of application of alternate substrates (and alternate products –
because they are substrates in the reverse direction) in the kinetic study of enzymes
are enumerated below.

23.2.1 Information About the Active Site Shape, Geometry,
and Interactions

Enzymes are specific catalysts and hence can accommodate a narrow range of
substrate structures in their active sites. Conversely, testing different structural
variants of the natural substrate for catalysis by the enzyme defines the active site.
This was an attractive but simple option to probe active sites much before the use of
X-ray structural data. Excellent insight into mammalian glutamine synthetase active
site was adduced by Meister and his colleagues by this approach (Table 23.1).

E

E.Glucose

Galactose 6-phosphate
Galactose

Glucose

E.Galactose
MgATP

Glucose 6-phosphate
MgATPFig. 23.3 Glucose and

galactose compete for the

same enzyme. Enzyme
hexokinase is represented as E

Table 23.1 Interaction of different structural variants of L-glutamate with glutamine

synthetase

Compound Substrate activity (%)a Competitive inhibitiona

α-Aminomalonate 00 No
L-Aspartate 00 No
D-Aspartate 00 No
L-Glutamate 100 Yes
D-Glutamate 54 Yes

β-Glutamate 46 Yes
α-Methyl-L-glutamate 67 Yes
β-Methyl-D-glutamate (threo) 46 Yes
γ-Methyl-L-glutamate (threo)b 63 Yes
γ-Hydroxy-L-glutamate (threo) 89 Yes
γ-Hydroxy-D-glutamate (threo) 02 –

L-α-Aminoadipate 22 –

D-α-Aminoadipate 11 –

Adapted with permission from A. Meister, Adv Enzymol, 31:183–218. Copyright (Meister 1968)
John Wiley & Sons Inc
aBoth substrate activity and inhibition are scored against L-glutamate, the natural substrate
bOf the four possible isomers only this is a substrate
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While some molecules may not be substrates, they may interact at the active site
and inhibit the enzyme. A quantitative structure–activity analysis for different
substrates and non-substrates taken together succinctly defines the active site
perimeters (Fig. 23.4). Molecular models were used to map the enzyme active site
space occupied by L-glutamate. Arguments are based on steric hindrance by various
substitutions on the glutamate structure, and the active site occupancy of this
substrate was elegantly worked out. Accordingly, ovine brain glutamine synthetase
binds L-glutamate in a fully extended conformation in which the carboxyl groups are
as far apart as possible. The intercarboxyl carbon distance of about 5 Å is required,
and the molecule is anchored at the active site through two carboxyl groups and an
amino group.
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Fig. 23.4 Different substrate structural variants used to define glutamine synthetase active

site geometry. (A) Systematic variations in glutamate structure at α, β, or γ carbon (corresponding
to data in Table 23.1). (B) Variation of chain length separating the two carboxylates. (C) The
γ-glutamyl phosphate enzyme-bound intermediate. Arrows indicate the potential phosphorylation
position on the two tight-binding inhibitors, namely, L-phosphinothricin and L-methionine-DL-
sulfoximine
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It must be noted that glutamine synthetases from other sources possess much
higher degree of substrate specificity; many of the structures described above are not
accepted, while only L-glutamate serves as a substrate. On the other hand, L-
phosphinothricin and L-methionine-DL-sulfoximine (Figure above) markedly inhibit
all glutamine synthetases. The two potent tight-binding inhibitors may be
phosphorylated and resemble the γ-glutamyl phosphate intermediate of the enzyme
reaction.

A number of biologically relevant guanidinium group-containing compounds
occur in nature. Life has solved the chemistry of guanidinium group hydrolysis by
recruiting metal ions for activating water attack. Majority of these ureohydrolases
exhibit an alkaline pH optimum (greater than pH 9.0) and contain a bimetallic Mn2+

cluster at the active site. While the apparatus to hydrolyze guanidinium group
(to release urea) is more or less conserved, members of ureohydrolase superfamily
display exquisite substrate specificity (Table 23.2). Indeed they are classified based
on this feature.

The substrate specificity of human arginase was extensively probed by site
directed mutations. Arginase specificity could be changed (in the N130D variant),
to recognize and accommodate agmatine in place of arginine, thereby converting it
into an agmatinase. Exploring the arginase active site with substrates, substrate

Table 23.2 Substrate structural requirements for three ureohydrolasesa

Compound Structure
Used as substrate by
Arginase Agmatinase 4-Guanidinobutyrase

L-Arginine

NH
2

O

N
H

NH

NH2

OH

Yes No No

Agmatine

NH
2

N
H

NH

NH2

No Yes No

4-Guanidinobutyrate
O

OH

N
H

NH

NH2

No No Yes

D-Arginine

NH
2

O

N
H

NH

NH2

OH

No No No

L-Homoarginine

NH
2

O

N
H

NH

NH2

OH

2

No No No

aEnzyme sources: arginase from Aspergillus niger, agmatinase from Escherichia coli, and
4-guanidinobutyrase from Pseudomonas putida
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analogues, and non-substrates has gained importance. Potent, selective arginase
inhibitors (like NOHA) have found therapeutic application in channeling arginine
pools into NO synthesis.

Most enzymes bind an otherwise conformationally flexible substrate, at their
active sites, in a fixed geometry. As seen above, an extended L-glutamate conforma-
tion is frozen out at their active sites by glutamine synthetase and NADP-glutamate
dehydrogenase. Alternate substrate structures with rigid geometry are useful in
extracting such information. Phosphofructokinase phosphorylates the 1-position of
D-fructose 6-phosphate in its furanose form. Because its two anomers (α-D-fructose
6-phosphate and β-D-fructose 6-phosphate) equilibrate very rapidly in water, it is
hard to tell which anomer is the substrate. The β-anomeric structure may be frozen
out as its corresponding 2,5-anhydro-D-mannitol-6-phosphate (Fig. 23.5). It is an
ether (-OH missing on C-2!) and cannot undergo mutarotation; this is accepted as an
alternate substrate by phosphofructokinase and not the α-isomer. The conclusion is
inescapable that β-D-fructose 6-phosphate is the natural substrate for this enzyme.
Similar studies with fructokinase showed that the β-furanose form of D-fructose is its
substrate.

Substrate structures with fixed geometry may also be used to determine (a) which
conformational isomer of ATP is the substrate for a given enzyme and (b) whether
the α-phosphate of ATP is ever coordinated to the divalent metal ion during reaction.
Further treatment on the biochemistry of ATP and its reactivity may be found in a
later section (Chap. 32; Phosphoryl Group Chemistry and Importance of ATP).

Finally, the vast diversity of semisynthetic β-lactam structures (Chap. 3,
Exploiting Enzymes: Technology and Applications, in Part I) provides practical
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Fig. 23.5 Structural

similarity between α-D-

fructose 6-phosphate, β-D-

fructose 6-phosphate, and

2,5-anhydro-D-mannitol-6-

phosphate. Note that
2,5-anhydro-D-mannitol is an
ether; the –OH on C2 carbon
is missing and hence cannot
mutarotate
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examples of how the knowledge of their binding to the active sites of D-Ala-D-Ala
carboxypeptidase (the target) and β-lactamase (that confers resistance) has been
successfully exploited in new antibiotic discovery.

23.2.2 Understanding Kinetic Mechanism

Alternate substrates and substrate analogues provide useful kinetic information. We
will discuss two of their possible applications.

(a) Dead-end inhibition by an analogue of substrate B can be used as diagnostic of
an ordered bi-reactant mechanism. This inhibition is uncompetitive with A as the
varied substrate for the ordered case.

(b) A sticky substrate (high commitment to catalysis upon binding to E – see
Chap. 25 for details) often leads to complex rate equations in the analysis of
pH kinetics and isotope effects. A slow substrate with a KM in the mM range will
usually be not sticky. The binding of such slow alternate substrates will be in
rapid equilibrium. Fructose 6-sulfate, being a mono-anion, binds
6-phosphofructokinase poorly. It therefore is a non-sticky, slow substrate when
compared to fructose 6-phosphate (a di-anion!). Substrate affinity may also be
lost by changing the reaction pH due to incorrect protonation states. For instance,
creatine kinase loses affinity for creatine as the pH is decreased from 8 to 7; and it
becomes non-sticky. In both these kinases, the loss of substrate affinity also leads
to a change in the kinetic mechanism. A normal random mechanism changes to
equilibrium ordered (Chap. 19; see 19.3 Few Unique Variations) with Mg-ATP
binding before the other substrate.
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pH Studies with Enzymes 24

Enzyme-catalyzed reactions involve one or more proton transfers. Acid–base chem-

istry permeates most of enzyme chemical mechanisms. Ionizable amino acid side

chains of the enzyme protein are typically involved in such catalysis. Each ionizable

group can be viewed as an acid and also a conjugate base. A general exposure to

acid–base chemistry and catalysis may be found in Chap. 30 of the book. The reader

is well advised to read that background material to better appreciate the subject

covered in this chapter.

Interactions of enzyme with its substrate (or any ligand for that matter) involve at

least one or few groups whose correct ionization is necessary for its optimal function.

The ionization state of acid–base groups on the enzyme, substrate, and inhibitor

directly affects catalytic activity. These ionizable groups may affect the enzyme

activity by influencing the binding or catalysis or both. Almost all protonation–

deprotonation events occurring in an enzyme reaction are catalyzed. The relevant

acid–base groups on the enzyme may be identified with the help of techniques such

as:

(a) Group specific chemical modifications (see Chap. 21, Irreversible Inhibitions),

(b) pH dependence of kinetic parameters,

(c) Structure–activity correlations through physical techniques like X-ray, nuclear

magnetic resonance (NMR) spectroscopy, etc.

(d) Site-directed mutation analysis (discussed later in Part V; Chap. 39, Future of

Enzymology: An Appraisal).

All the four approaches give useful complementary information; however,

pH-dependence of enzyme kinetics gives the best insight as it reports on the reaction

being catalyzed while it occurs. The pH dependence of kinetic parameters provides

information on kinetic as well as chemical mechanism. The kinetic aspects will be

the main focus here, while the other approaches pertaining to pH are dealt with in

later sections (see Part IV; Chap. 30, Acid–Base Chemistry and Catalysis).
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24.1 Enzyme pH Optimum

Determination of activity as a function of pH is the first and simplest experiment one

conducts to determine the effect of H+ ions on the enzyme. In all enzymatic studies,

maintaining a well-defined pH (H+ concentration) of the system is very crucial. Since

a range of pH values (between 0 and 14 in an aqueous environment) are to be used,

more than one kind of buffer ion may be required in the experiment. Effects on the

enzyme due to switching of buffer species and change in ionic strength, if any,

become important and have to be eliminated. This is achieved by the judicious use of

suitable buffers (refer to Part II; Chap. 13, Good Kinetic Practices). Most enzymes

display a bell-shaped pH-activity curve with maximal activity around neutral

pH. However there are enzymes with a pH optimum in the acidic (such as pepsin)

and alkaline (such as arginase) range as well (Fig. 24.1).

The decrease of activity on either side of pH optimum may result from

(a) instability of the enzyme and/or (b) changes in the kinetic parameters of the

enzyme due to pH. Enzyme stability over broad pH ranges is a desirable feature for

industrial application. Information about the stability of the enzyme over the pH

range studied is also necessary in designing correct kinetic studies.

In order to establish the pH stability profile, the enzyme is preincubated at

different pH values. For each pH of preincubation, aliquots are withdrawn as a

function of time, and activity remaining is assayed. In this process it must be ensured

that the active enzyme remaining is stable after taking the preincubation sample into

assay mixture. A plot of percent activity remaining versus pH (after a fixed time of

preincubation) gives a fair idea about enzyme’s pH stability. Meaningful pH depen-

dence of enzyme activity is then sought within this range of pH defined for stability.

Experimental determination of pH optimum (plot of pH versus activity; Fig. 24.1)

serves two purposes. It is of practical importance in enzyme assay optimization.

Secondly, the ascending and descending limbs of such profiles give some idea about

the range of pKas and hence possible ionizable groups involved.

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

Relative 
enzyme 
activity

pH
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The pH behavior of an enzyme is a complex outcome of all the ionizable groups

present on the enzyme and the substrate. A simplistic treatment of bell-shaped

activity curve is to compare it to the ionization of a dibasic acid. Examples of

enzymes in which at least two active site ionizable groups have been assigned for

function are ribonuclease A (H12 and H119) and lysozyme (E35 and D52). Of many

ionizable groups present on the enzyme and the substrate, two may be considered

kinetically significant with the enzyme represented as HEH. The ascending limb

defined by the ionization of the first proton (HEH⇄EH� + H+) and the descending

limb by the other (EH�
⇄E2� + H+). The active enzyme species is the singly

deprotonated form EH�. In such a simplistic model representation, the pH behavior

of Vmax/KM (the first-order rate constant) is given by the following equation:

Vmax

KA

¼

Vmax

KA

� �0

Hþ½ �
KH1

þ 1þ
KH2

Hþ½ �

where KH1 and KH2 are the acid dissociation constants for the two groups and (Vmax/

KM)
0 is the pH-independent value when the two groups are correctly protonated. At

lower pH values (i.e., high [H+]) the KH2/[H
+] term in the denominator is insignifi-

cant, while at higher pH values (i.e., low [H+]), the [H+]/KH1 term becomes insignif-

icant. Although much oversimplified, this equation does capture the essence of pH

dependence of enzyme kinetic parameter (Vmax/KM in this case).

24.2 pH Kinetic Profiles

Best mechanistic information can be obtained by performing substrate saturation at

different pH values. It must be borne in mind, however, that the kinetic mechanism

may itself change with change in pH of the reaction. For instance, the normal random

mechanism exhibited by creatine kinase changes to an equilibrium ordered one

(Chap. 19, Analysis of Initial Velocity Patterns; Mg-ATP binding first) as the pH

is decreased from 8.0 to 7.0. Such effects have to be checked up beforehand. The

pH-kinetic experiments are so conducted that effects of ionic strength and changing

buffer species are properly controlled. With this data one can simultaneously

determine the effects of pH on the kinetic constants such as Vmax, Vmax/KM, and

also KM. Similarly, one can determine the pH dependence of (a) KI for a competitive

inhibitor and (b) Kactivator for an activator. The variation of kinetic parameters with

pH is best plotted as log–log plots; this makes sense as pH is a logarithmic scale

(�log[H+]). While the horizontal axis is always pH, the Y-axis could be logVmax,

logVmax/KM, pKI (-logKI), pKactivator (�logKactivator), pKmetal ion (�logKmetal ion), etc.

Profiles typically schematized to indicate such log–log plots are shown in Fig. 24.2.

Interpretation of pH Profiles Any singly ionizable group can access either a

protonated or a deprotonated state. As fractional proton cannot be transferred, one

encounters line segments with zero or unit slopes. Rarely, ionization of two protons
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at a single pH may however appear as lines with a slope of 2. A curve with a unit

positive slope followed by a plateau (i.e., zero slope; Fig. 24.2 top panel) indicates

that the protonation of that group results in decreased activity/binding. The point of

intersection (extrapolated to pH axis) gives the pKa of the group involved. At higher

pH values, a group may lose a proton, and this may lead to decreased activity/

binding (line segment with zero slope followed by one with slope � 1; Fig. 24.2

middle panel). The presence of both an ascending and a descending limb with a

plateau in the middle (Fig. 24.2 bottom panel) represents an enzyme example with

two kinetically significant group protonations. Going from the left to right,

deprotonation of the first group increases activity/binding, while the deprotonation

of the second group decreases activity/binding. We have already come across an

equation describing such a pH behavior of Vmax/KM above. The observed pKa values

of the two groups give a glimpse of their possible identity.

If one encounters two ionizable groups with their pKa values not sufficiently

apart (more than two pH units), then it is difficult to distinguish the two and identify

which one is protonated. We can further imagine an unusual situation: going up the

pH scale, a group behaving like that in Fig. 24.2 middle panel may occur before a

second group with a profile like that in Fig. 24.2 top panel. This is an example of a

reverse protonation state, and the plateau in Fig. 24.2 bottom panel is suppressed

(to much less than the true value). For an active enzyme, therefore, the group with

lower pKa is required in the protonated state, while the group with higher pKa has to

be in the deprotonated form. For example, fumarase catalysis requires an active site

carboxylate in the deprotonated state and a protonated imidazole. Such reverse

protonation cases are not uncommon. It is however conceivable that the catalyst

may be locked into an inactive state – possibly because of the proximity of two

oppositely charged groups (they may form a salt bridge). Mother nature may have

therefore selected suitable pairs of ionizable groups to avoid such thermodynamic

wells; lysozyme active site recruits two carboxylates – alternately acting as a general

base and general acid for catalysis.

We make a few general observations on the pKas and acid–base groups obtained

from pH kinetics studies. Groups that titrate in the logVmax ! pH profiles are mainly

implicated in the catalytic step, and their ionization occurs in the ES complex

(saturating concentration of all reactants). Since Vmax/KM signifies first-order rate

constant and interaction of S with E, logVmax/KM ! pH data reflects on essential

ionizable groups on the free substrate and the enzyme form with which it combines.

Such groups therefore are important for substrate binding as well as catalysis. This

interpretation is further simplified if ionization of acid–base group(s) on the substrate

molecule is accounted for or they do not exist (like in glucose). An example of this is

glucose isomerase (actually a xylose isomerase from Actinoplanes spp.) and its site-

directed mutant (H54Q) form. This imidazole group (pKa around pH 6.0) of His54 is

titrated in the logVmax ! pH profile of the native glucose isomerase but not in the

H54Q mutant (the profile with open circles, Fig. 24.2 top panel).

The Michaelis constant – KM for the substrate – is not an independent kinetic

parameter but may be viewed as a ratio of Vmax and Vmax/KM. Therefore its pH
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dependence is a composite of logVmax ! pH and logVmax/KM ! pH plots. The

pKM ! pH profile is rarely plotted. Such profiles are useful indicators of acid–base

groups involved in binding (found either on the enzyme or on the substrate) provided

KM approximates KS (see Chap. 15, Henry-Michaelis-Menten Equation, in Part II).

The simplest pH profile to interpret however is that for the pH dependence of KI for a

competitive inhibitor. In these pKI ! pH profiles, ionizable groups responsible for

binding alone are titrated. The KI being equilibrium dissociation constant, the pKa

values obtained from such plots are actual pKa values. They can be meaningfully

compared with the group pKas obtained from logVmax ! pH and logVmax/KM ! pH

profiles. pH studies on bovine glutamate dehydrogenase provide an excellent exam-

ple for such analysis. Glutamate dehydrogenase titrates an ionizable group around

pH 8.0 – both in the pKM profile for 2-oxoglutarate (substrate) and pKI profile for

oxalylglycine (competitive inhibitor). However, this group is not seen in the pKM

profile for 2-oxovalerate – an alternate substrate but missing the γ-COOH

(Fig. 24.3).

Since –COOH group is fully deprotonated at this alkaline pH, a positively

charged group on the enzyme is clearly implicated. Deprotonation of this enzyme

Lys side chain adversely affects 2-oxoglutarate binding but not that of 2-oxovalerate;

indeed this Lys-NH2must stay unprotonated for 2-oxovalerate binding. The involve-

ment of this group (K90) anchoring the γ-COOH of 2-oxoglutarate was clearly borne

out much later, by X-ray structural data on this enzyme.

Lastly, pKI and pKactivator profiles provide information about the ligands provided

by the enzyme that bind the metal ion. The pKa for the ionization of metal ion-bound

water may also be seen in such profiles.

24.3 Identifying Groups Seen in pH Profiles

X-Ray, NMR, and chemical modification information on active site functional

groups are useful but are limited by the fact that (1) they represent one of the

many protein conformations and (2) even when active site pictures with a substrate
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or inhibitor bound are available, one may be looking at nonproductive complexes.

An analog/inhibitor may bind differently from the way a productive substrate

interacts at the active site. Site-directed mutations are useful in ruling out important

role for a particular group, but mere loss of activity may result from structural

changes and not necessarily due to specific role in catalysis.

The pKa values of functionally important acid–base groups are usually signifi-

cantly shifted from corresponding pKa for groups on free amino acids. Such

perturbation of normal pKas is due to unique active site environment – created by

the protein – and shielding of these groups from the bulk aqueous phase. Neverthe-

less, the comparison of experimentally determined enzyme pKa values with reported

pKas of amino acid side-chain functional groups can help in identifying their

chemical nature. Regardless of our knowledge on exact nature of the acid–base

group, its role in catalysis and/or binding can often be assigned from pH-kinetic

profiles. Two different techniques may be useful in identifying the functional group

whose pKa is observed in enzyme pH profiles.

Inspection of Their Enthalpy of Ionization (ΔHion) The temperature dependence

of equilibrium ionization constant is different for different acid–base groups

(Table 24.1). These may be broadly categorized into three groups: groups with

low ΔHion (carboxylate and phosphate), groups with moderate ΔHion (imidazole,

thiol, and phenolic OH), and groups with high ΔHion (amino, metal-bound water,

and guanidinium). In practice, pH profiles are generated at different temperatures,

and the pKa values so obtained are plotted against respective 1/T values. The slope

of such a plot gives ΔHion/2.303R. Typical ΔHion values of 6 kcal/mol and 12 kcal/

mol correspond to a ΔpKa (between 0 �C and 25 �C) of 0.4 and 0.8 pH units,

respectively. A potential identification of groups from their characteristic pKa and

ΔHion is thus feasible. A word of caution – unusual ΔHion values – may be obtained

when the ionization of the group is coupled with protein conformational

change (Knowles and Jencks 1976). In such cases experimentally observed ΔHion

may include a component for that as well.

Through Solvent Perturbation According to the Bronsted definition of acids and

bases, any species of a functional group that has a tendency to lose a proton is an

acid. This definition eminently suits our understanding of the role of acid–base

groups at the enzyme active site. We can classify all ionizable functionalities on

the enzyme (including side chains of amino acid residues) into two groups – cationic

acids and neutral acids (Table 24.2).

Table 24.1 Range of ΔHion values for ionizable groups on the enzyme

Group pKa range (at 298 K) ΔHion (kcal�mol�1)

Carboxylate, phosphate 2–5 0 � 1.5

Imidazolium, thiol, phenolic OH 5–10 6 � 1.5

Amine, metal-bound water, guanidinium 8–12 12 � 1.5
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A clear difference between the two Bronsted acid classes is in the net charge

generated upon dissociation. Two charges are generated (one proton and a –ve ion)

on dissociation of a neutral acid, while there is one +ve charged species on either side

of the dissociation equilibrium for a cationic acid (see Table 24.2 above). This has

implications to their differential behavior upon solvent perturbation (altered dielec-

tric constant, etc.). The pKa values of neutral acids are elevated by adding water

miscible organic solvents like different alcohols, formamide, dioxane, dimethyl

sulfoxide, or N,N-dimethylformamide. Cationic acid pKas are largely unaffected

by such solvent addition. In practice, pH profiles are generated with and without the

solvent, and the relevant group pKas are compared. The groups whose pKas are

elevated in the presence of an added solvent are all neutral acids. The two histidine

residues (H12 and H119) at the active site of ribonuclease A were identified by such

a study. There are two limitations of solvent perturbation approach. Groups that are

not exposed to solvent will not be affected or accounted for. Secondly, since 30–50%

of the solvent may have to be used, it becomes important to ensure that the enzyme is

not inactivated by such addition.

Reference

Knowles JR, Jencks WP (1976) The intrinsic pKA-values of functional groups in enzymes:

improper deductions from the pH-dependence of steady-state parameter. CRC Crit Rev

Biochem 4:165–173

Table 24.2 Different Bronsted acid groups on the enzyme

Acid type Functional group

Neutral acids (X-H ⇄ X� + H+) Carboxylate, phosphate, thiol, phenolic OH, metal-

bound water

Cationic acids (X-H+
⇄ X: + H+) Imidazolium, amine, guanidinium
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Isotopes in Enzymology 25

Isotopes are atoms of an element that contain different number of neutrons in their

atomic nucleus. They have the same atomic number, i.e., same number of protons

(of course an equal number of electrons), but differ in their atomic mass due to the

neutron numbers. For example, the three isotopes of hydrogen have one proton and

one electron each but contain zero (hydrogen), one (deuterium), or two (tritium)

neutrons. Chemical properties of any element are determined by its electronic

configuration (and atomic number), and therefore all the isotopes of that element

react similarly. Isotopes provide an excellent tool for the study of reactions because

they are isoelectronic and isosteric. This feature makes isotopes eminently suitable

as tracers in enzyme research. Both radioactive and stable isotopes commonly used

in enzymology are listed in Table 25.1. While remarkably similar in their chemical

reactivity, their mass differences inflict subtle but definite changes in the rate of

bond-forming/bond-breaking events involving them. These “isotope effects” – valu-

able in understanding enzyme mechanisms – are discussed in a subsequent section

(Chap. 27 Isotope Effects in Enzymology).

Substrates/products labeled with radioactive isotopes are used in enzyme assays.

Stable isotopes are less commonly used to monitor enzyme reactions. Their detec-

tion is either inherently less sensitive or requires involved instrumentation like NMR

spectroscopy or mass spectrometry. Such nonradioactive methods are not easily

amenable for routine assays. NMR active labels (like 15N and 13C) are of value in

solution dynamic studies of enzymes. These heavy isotopes (13C in particular) are

very valuable also in the study of metabolism (metabolic flux measurements and

metabolomics). Coupled with accurate mass measurements, substrates appropriately

labeled with heavy isotopes provide the necessary data for kinetic isotope effect

analysis.
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25.1 Enzyme Assays with a Radiolabeled Substrate

Radioisotope measurements are particularly resorted to when other simpler methods

of assay like colorimetry, spectrophotometry, fluorimetry, or polarography are not

feasible. A substrate bearing one or more radioisotopes is used in enzyme kinetic

measurements so that the product formed is radioactive. Almost always enzyme

assays with radiolabeled substrates are fixed-time, end-point assays – the reaction is

stopped, and using an appropriate technique, labeled product is separated from the

remaining substrate. A chromatographic step is often employed for this purpose. For

example, galactokinase reaction is monitored by using 14C-galactose as substrate;

the labeled galactose-1-phosphate formed is resolved from unreacted 14C-galactose

by a suitable ion exchange resin and its radioactivity counted. The amount of

radioactivity in the product, as a function of time, gives the measure of reaction

progress. While using radiolabels to monitor reaction rates, following considerations

are important:

1. The position of the radiolabel in the substrate should be carefully chosen. Atomic

positions away from and not involved in bond-breaking/bond-forming steps must

be used. Such remote labeling ensures that no “isotope effects” are introduced.

2. Sensitivity of radiotracer detection requires that a good post-reaction separation

of labeled substrate from the product formed be achieved. This is critical in

obtaining satisfactory blanks and controls.

3. In enzyme kinetic studies, the labeled substrate is usually mixed with “cold”

(unlabeled) substrate to achieve required substrate concentration without having

to use high quantities of radioactivity. The specific radioactivity is so adjusted

that minimal amount of the radiolabel will provide good signal-over-background

readings.

Commonly used radioisotopes are β-emitters, and the radioactive decay process

follows first-order kinetics (Chap. 9, Chemical Kinetics: Fundamentals, in Part II).

Each radioisotope is associated with a characteristic half-life (Table 25.1). The

standard unit for radioactivity is the Curie (Ci) – the quantity of any substance that

decays at a rate of 2.22 � 1012 disintegrations per minute (dpm). The proportion of

Table 25.1 Isotopes commonly used in enzyme studies

Element (most

abundant form)

Radioactive isotope

NMR

active isotopes Heavy isotopesIsotope

β-Emission

(MeV) Half-life

Hydrogen (1H) 3H 0.018 12.3 years 1H, 2H 2H

Carbon (12C) 14C 0.154 5700 years 13C 13C

Nitrogen (14N) – – –
15N 15N

Oxygen (16O) – – –
17O 17O, 18O

Phosphorus (31P) 32P 1.718 14.3 days 31P –

Sulfur (32S) 35S 0.167 87.1 days – –
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radiolabeled molecules in the given substrate sample is expressed as specific radio-

activity. Convenient units for specific radioactivity are dpm/μmol and μCi/mmol.

In practice, one cannot directly measure radioactivity in a given sample because

the efficiency of counting the number of disintegrations (in a scintillation counter) is

never 100%. Therefore the counts per minute (cpm) are measured, and using a factor

for counting efficiency, the sample radioactivity can be calculated in dpm units.

Going from cpm to dpm to specific radioactivity, one can easily convert the data into

conventional enzyme velocity units.

25.2 Isotope Partitioning

Apart from their use as tools in enzyme assays (as mentioned above), radiolabels are

employed to probe the reaction mechanism (Boyer 1978; Rose 1995). Exchange of

label from the product to its cognate substrate can be followed even while the

reaction is actually proceeding in the forward direction. For example, in a reaction

catalyzed by glucose-6-phosphatase, the reverse flow of label from 14C-glucose back

to glucose-6-phosphate was monitored even while the net forward reaction was

occurring. Such experiments provide insights into order of product release.

Radioisotopes are also used to probe the fate of a substrate molecule sitting on the

enzyme as EA complex. Recall the earlier Michaelis-Menten formalism (Chap. 15,

in Part II) employed to derive the rate equation. We can now imagine the same

enzyme-substrate complex but with a radiolabeled substrate (A*). Once formed, this

EA* has two possible fates – A* gets converted to product (catalysis and product

release with a forward rate constant kcat) or A
* is released from the complex (with a

rate constant k�1) even before catalysis can occur (Fig. 25.1).

With suitable experimental design, it should be possible to measure the ratio of

two rate constants – kcat/k�1. This ratio – without units – is a measure of commit-

ment-to-catalysis; it is also variously referred to as partition coefficient (also see

Chap. 16, More Complex Rate Expressions, in Part II) or stickiness ratio. This ratio

is negligible when kcat is very small compared to k�1 – the commitment-to-catalysis

is very low – the EA complex has greater tendency to dissociate rather than to

convert A to P. If kcat is much greater than k�1, then commitment-to-catalysis is very

high – the substrate is very sticky, and all the substrate that binds E goes on to form

E + A* EA* E + P*

k1 kcat

k-1

Fate (partitioning) of A* once it is bound as EA* complex

A* EA* P*

Fig. 25.1 Equilibria showing the fate of enzyme-bound isotopically labeled substrate
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product. It should however be clear that stickiness (given by kcat/k�1) and affinity

(the association constant, k1/k�1) are not the same.

The commitment-to-catalysis can be experimentally measured by the substrate-

trapping procedure (called Rose experiment). A schematic of this elegant but

powerful protocol is shown below.

1. Generate EA* complex in a small volume (say 20 μl) by mixing known amount of

enzyme and labeled substrate.

2. Dilute this with rapid mixing into a cocktail containing other reaction components

also containing >1000 fold excess of unlabeled A.

3. Incubate briefly (10–15 s) for the enzyme to go through several catalytic

turnovers and permit enzyme bound A* to react.

4. Quench the reaction (usually with acid) and measure radiolabel in A* and P*.

5. The steps 1 through 4 are repeated at several concentrations of the other substrate

(other than A, say B). The label trapped as P*, at several concentrations of B, is

recorded. Suitable controls are taken each time.

From a double reciprocal analysis of the isotope trapping data (1/P*
! 1/[B]), we

obtain (a) maximal labeled P* formed in the first turnover and (b) the apparent KM

for B, for the trapping process. The commitment-to-catalysis is determined at

saturating [B]. Such an isotope trapping strategy was first described for yeast

hexokinase by Irving Rose, to show that glucose was very sticky. Isotope

partitioning analysis of inosine phosphorylase (reaction shown below) provides an

excellent example of this procedure.

Inosineþ Phosphate ⇄ Hypoxanthineþ Ribose-1-phosphate

Of the 30 μM of enzyme-[8-14C]inosine complex, almost 20 μM was trapped and

recovered as [8-14C]hypoxanthine at saturating phosphate concentration. The

remaining 10 μM of the EA* complex dissociated back to release the bound

substrate, [8-14C]inosine. A commitment-to-catalysis of about 2 was calculated

from this data (kcat/k�1 ¼ 20 μM/10 μM ¼ 2).

There are practical limits as to when an isotope partition study is feasible. For

single-substrate enzymes, for example, the reaction begins as soon as enzyme and

substrate are mixed together. Measuring partition coefficient (stickiness) then

requires rapid mix, chemical quench approaches – this is equipment and technique

intensive (Chap. 11 ES Complex and Pre-steady-state Kinetics, in Part II). A simpler

alternative in such cases is to measure stickiness by monitoring micro-viscosity

effects on the Vmax/KM of the enzyme (refer to Chap. 15 in Part II and Chap. 38 in

Part V, relating to significance of kcat/KM).

One other variation of isotope partitioning experiment is positional isotope

exchange (PIX). This method measures the rate of internal isotope exchange within

a substrate molecule. PIX rate is usually expressed as a ratio to the overall reaction

rate. The PIX analysis of argininosuccinate lyase reaction is a good example of this

approach.
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Argininosuccinate ⇄ Fumarateþ Arginine

The PIX rate was measured by 15N NMR, while its overall reaction was

progressing toward arginine formation. The enzyme mobilizes the bond between

the bridge nitrogen and the second carbon of the dicarboxylic acid (Fig. 25.2).

The bridge to non-bridge 15N exchange rate, as a function of fumarate concentra-

tion, was hyperbolic. It could thus be concluded that (a) the guanidinium group of

arginine can freely rotate in the active site and (b) fumarate leaves much faster than

arginine from the enzyme surface. A similar PIX study (of the β-γ bridge oxygen of

Mg-ATP) provided crucial mechanistic evidence for γ-glutamyl phosphate as an

intermediate in glutamine synthetase reaction (Chap. 36 Integrating Kinetic and

Chemical Mechanisms: A Synthesis, in Part IV).
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Isotope Exchanges at Equilibrium 26

In the previous chapter, we saw the utility of isotopes (radioisotopes in particular) in

elucidating enzyme mechanisms. They were examples when the net chemical reaction

was occurring in one direction. Isotope exchange kinetics is also possible in a system at

equilibrium. Isotope exchange experiments at equilibrium are useful for defining

kinetic mechanisms. Data from carefully executed isotope exchange studies are power-

ful supplement to steady-state kinetic analysis (Boyer 1978; Rose 1995). More impor-

tantly, they provide excellent evidence in discriminating ordered and random sequential

mechanisms. We recall that, in some cases, steady-state kinetic data gives quantitative

information, and this is used to answer qualitative questions. For example, the presence

of a KiA term with finite value is used to conclude against parallel initial velocity

patterns (Chap. 19 Analysis of Initial Velocity Patterns). However when these values

are extremely small, a clear-cut decision becomes difficult. In such cases isotope

exchange data gives unambiguous yes–no answers (see below).

We can assemble together substrates and products in their equilibrium

concentrations (Keq ¼ [products]/[substrates]); but a net flow of matter (either

substrates ! products or products ! substrates) will not occur if the activation

energy barrier is very high – the system is said to be at static equilibrium. Addition of

an enzyme catalyst opens the channel so to speak and makes it dynamic. In a

dynamic equilibrium, there are both forward and backward fluxes, but no net

reaction takes place because the two rates match (Chap. 10 Concepts of Equilibrium

and Steady State, Part II). Isotope exchange between reactant–product pairs in the

presence of the enzyme is the first evidence of the dynamic nature of equilibrium.

Glucose isomerase provides a simple example of this concept (Chap. 10 Concepts of

Equilibrium and Steady State, in Part II). Similar label transfer experiments can also

be performed for a multiple substrate/product reactions.

Nature of Experiments Conducted Equilibrium isotope exchanges are conducted

with the help of a suitably labeled substrate or a product. Most often such

experiments are analytical – used to decide reaction types (ping-pong, ordered, or
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random) and not to obtain kinetic constants. Nevertheless, the following points are

worth considering in the design of a clean isotope exchange study:

(a) Label should be incorporated into a remote position of the reactant such that

isotope effects are negligible. The label should serve only as a marker and should

not lead to a different mechanism altogether.

(b) The reaction mixture at equilibrium is so assembled that a very small quantity of

the tracer with high specific radioactivity is introduced. The concentration of the

labeled component added should be insignificant and not perturb the equilibrium

set up.

(c) Apart from the purity of the radiolabeled reactant, it is critical to ensure functional

purity of the enzyme. High sensitivity of tracer detection makes the interference by

contaminating enzyme activities problematic. ATP $ ADP exchange rate for a

kinase (such as hexokinase) is wrongly estimated if the enzyme sample contains

another ATPase as a contaminant. It must be ensured that additional activities, if

any, exhibited by the enzyme sample are due to the same enzyme. For instance, the

γ-glutamyl transferase activity is catalyzed by the same glutamine synthetase

active site where glutamine synthesis occurs. One can ascertain that two different

activities are due to the same enzyme (Chap. 14 Quantification of Catalysis and

Measures of Enzyme Purity, in Part II), if they co-purify to a constant ratio of

specific activities during various stages of purification.

(d) Since isotope exchanges are set up with all the reactants (substrates and products)

present, abortive dead-end complexes (see Chap. 20 and later in Chap. 28,

Fig. 28.3) may be formed. Their formation influences and severely impedes

the interpretation of exchange data.

26.1 Partial Reactions and Ping-Pong Mechanism

Ping-pong mechanisms involve double displacements, and a substituted form of the

enzyme (denoted as F form) occurs during the catalytic cycle (Chap. 19, Analysis of

Initial Velocity Patterns). This implies that atom/group transfer onto the enzyme

from a particular substrate can occur even in the absence of the rest of the substrates.

Because of this partial reaction, isotope exchange can be demonstrated between a

reactant and product in the absence of other reactants and products. In fact an early

and brilliant example of this work was by H.A. Barker and colleagues on bacterial

sucrose phosphorylase. Sucrose phosphorylase catalyzes the following reaction.

Sucroseþ Phosphate ⇄ Fructoseþ Glucose-1-phosphate

The isotope exchanges arising out of its two partial reactions are:

(a) Glucose-1-phosphate + [32P]Phosphate ⇄ Glucose-1-[32P]phosphate

+ Phosphate

(b) Sucrose + [14C]Fructose ⇄ [14C]Sucrose + Fructose.
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Notice that sucrose is not required for the first exchange and phosphate is not

required for the second exchange. Such isotope exchanges are best evidence of

ping-pong mechanism, and glucosyl-enzyme as an essential covalent intermediate is

indicated in this case. The following kinetic scheme (Fig. 26.1) adequately accounts

for the observed exchanges.

The enzyme form “F” is the glucosyl-enzyme intermediate of sucrose phosphor-

ylase. Either sucrose or glucose-1-phosphate can charge the enzyme with glucose to

form the glucosyl enzyme. This glucosyl group can be picked up either by [32P]

phosphate (B $ Q exchange, “a” in the box above) or by [14C]fructose (A $ P

exchange, “b” in the box above) from the medium.

Other examples involving partial reactions include enzymes that transfer amino

groups (such as aspartate transaminase), acyl groups (such as 3-oxoacid

CoA-transferase, serine transacetylase, and transpeptidase), carboxyl group (like

transcarboxylase), a three-carbon unit (a transaldolase), a two-carbon unit

(a transketolase), phosphate group transfer (nucleotide diphosphokinase), phosphate

group migration (phosphoglyceromutase), two-electron transfer (like in

methylenetetrahydrofolate reductase), etc. As expected, in all these cases, isotope

exchanges between the first substrate and the product occur in the absence of other

substrate and/or product. The different F-forms for these reactions may be referred to

in a later section (Chap. 31 Nucleophilic Catalysis and Covalent Reaction

Intermediates, in Part IV).

26.2 Sequential Mechanisms

The full complement of substrates needs to assemble at the enzyme active site for

any chemistry to take place in a sequential mechanism. Therefore as expected, no

partial reactions are possible. In such situations isotope exchanges are possible only

when all reactants and products are present. Accordingly the design of experiments

is somewhat involved so as to maintain equilibrium condition.

Typically, in a two substrate–two product enzyme reaction of the type,

Aþ B ⇄ Pþ Q

(EA FFP)E E(FB EQ)

Sucrose
     (A)

Fructose
      (P)

Phosphate
       (B)

Glucose 1-phosphate
        (Q)

Fig. 26.1 Kinetic scheme for sucrose phosphorylase. The two enzyme forms E (free enzyme)

and F (glucosyl-enzyme) are shown
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the A $ Q isotope exchange rate is monitored as a function of increasing

concentrations of B�P pair. The concentrations of B and P are simultaneously raised

to maintain the [B]/[P] ratio and hence the position of equilibrium Keq ¼ ([P][Q]/[A]

[B]). For the converse experiment, B $ P isotope exchange is measured as [A] and

[Q] are simultaneously raised while maintaining the [A]/[Q] ratio. For other possible

combination of exchanges (viz., A$ P and B$ Q) to occur, atoms/groups must be

transferred between the respective substrate–product partners. With hexokinase

reaction, for example, there is nothing common between ADP and glucose, and a

study of ADP$glucose exchange is not possible. Therefore which exchanges are

experimentally observable depends on the reaction chemistry under consideration.

Ordered Mechanism With the addition of substrates and release of products being

ordered, only the outer pair – A andQ – can interact (respectively, bind or leave) with

the E form of the enzyme:

Aþ E ⇄ EAþ B ⇄ EAB Ð EPQð Þ ⇄ EQþ P ⇄ E þ Q

Increasing the concentrations of B�P pair (but maintaining the [B]/[P] ratio) will

initially increase the rate of A $ Q isotope exchange (hyperbolic). At higher

concentrations however, most of the enzyme gets locked up into central complexes,

and very little E form will be available for interaction. Therefore, A $ Q isotope

exchange rate is inhibited as the concentration of B�P pair is raised. In a fully

ordered mechanism, this inhibition can drive the A $ Q exchange rate to zero. This

profile for A$Q exchange rate is shown in Fig. 26.2 (panel I). The exchange profile

for the inner pair – B and P – is quite different however. Increasing concentrations of

the A�Q pair facilitates B$ P isotope exchange by driving more and more enzyme

into central complexes. Ultimately the B $ P exchange rate reaches a plateau and a

hyperbolic profile results (Fig. 26.2, panel III).

From the rates of exchange between cognate pairs of reactants, Silverstein and

Boyer (Boyer 1978) showed that lactate dehydrogenase follows an ordered mecha-

nism with the coenzymes (NAD+ and NADH) forming the outer Michaelis

complexes. Malate dehydrogenase also shows such exchange patterns and is an

example of fully ordered mechanism (Fig. 26.3).

The NAD+ $ NADH exchange rate increased and eventually fell to zero when

[malate-oxaloacetate] was raised; whereas malate $ oxaloacetate exchange rate

followed hyperbolic pattern and reached a plateau with increasing [NAD+-NADH].

The substrate inhibition of exchange rate is typical for the outer pair, and thus we

conclude that NADH is the first substrate to add, while NAD+ is the last product to

leave the enzyme.

While Theorell-Chance mechanism is an example of ordered mechanism (but

without central complexes), it is not possible to pile up central complexes. Therefore

no substrate inhibition (by alcohol–aldehyde pair) of NAD+ $ NADH exchange

rate occurs with liver alcohol dehydrogenase.
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[B-P]
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A Q
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A Q
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B P

0

1

B

I

II

III

Fig. 26.2 Equilibrium isotope exchange profiles observed with enzymes. Schematic isotope

exchange data for complete inhibition (panel I), partial inhibition (panel II), and hyperbolic (panel

III) patterns of exchange is shown
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Random Mechanism As random addition of substrates (and release of products) can

occur, no fixed inner and outer pairs can be defined. The E form of the enzyme can

bind to all the reactants. Because of this the enzyme is not locked up into central

complexes, and the A$Q isotope exchange rate is not inhibited as the concentration

of B�P pair is raised. In effect the rates of exchange between both cognate pairs of

reactants (A$ Q as well as B$ P) follow hyperbolic kinetics (Fig. 26.2, panel III).

The three isotope exchanges possible with hexokinase reaction – glucose$glucose-

1-phosphate, ATP $ glucose-1-phosphate, and ADP $ ATP – are hyperbolic and

show no substrate inhibition. Other examples of sequential random mechanisms

where such exchange data is available include creatine kinase and yeast alcohol

dehydrogenase.

Formation of a ternary complex in random mechanisms can follow both the

routes, namely, E ! EA ! EAB and E ! EB ! EAB (see Chap. 19 Analysis of

Initial Velocity Patterns). It is however not necessary that these alternative paths are

used equally by an enzyme. If one of the routes is taken most of the time, then such a

random mechanism is termed as preferred ordered sequential mechanism. In such

cases (say E ! EA ! EAB is preferred), one observes an inhibition of A $ Q

isotope exchange. However even at very high concentrations of B�P pair, the

A $ Q exchange does not go to zero but reaches a limiting value (Fig. 26.2, panel

II). This partial inhibition of exchange is characteristic of a preferred-order in the

random mechanism, and the relative magnitude of inhibition gives the extent to

which the two paths are followed. In fact isotope exchange is a very sensitive tool to

detect minor reaction pathways.

In summary, (a) isotope exchange in the absence of the second (other) substrate is

diagnostic of a ping-pong mechanism, (b) isotope exchanges at equilibrium are

possible for sequential mechanisms only when the full complement of reactants

(all substrates and all products) are present, and (c) substrate inhibition of A $ Q

exchange is observed by raising B–P levels only in an ordered mechanism.
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EAE EEQ

    NAD+

     (A)

   Malate

      (B)
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       (P)

      NADH

        (Q)

(EAB EPQ)

Fig. 26.3 Kinetic scheme

for malate dehydrogenase.

The coenzymes form the outer

substrate–product pair
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Isotope Effects in Enzymology 27

So far we saw how chemically identical behavior of isotopes is exploited in
elucidating enzyme mechanisms. Despite their remarkable chemical similarity,
isotopic substitution does affect reaction rates that directly involve them. Isotopic
substitution can influence the equilibrium position, affect reaction rate, or both. The
former (affecting the equilibrium constant) is termed equilibrium isotope effectwhile
the latter (affecting the rate constant) kinetic isotope effect (KIE). Commonly
encountered types of isotope effects in enzyme study are given with examples
below.

Equilibrium Isotope Effect Consider the following exchange reaction where D+ is
exchanged with two hydrogen atoms (as H+ ions) of water:

2Dþ þ H2O⇄D2Oþ 2Hþ

The equilibrium constant for this reaction is 8.2. The D–O bond is stiffer (shorter by
0.04 Å and stronger) than the H–O bond because of the heavy deuterium atom.
Thermodynamic stability of D2O is relatively higher (hence has a lower zero-point
energy) than H2O. Therefore, at equilibrium there will be much more of D2O than
H2O. For the same reasons, D2O as a solvent can affect the ionization of an acid
group. The dissociation of acetic acid in D2O is relatively less favored than in H2O.

CH3COOD⇄CH3COO
� þ Dþ

The acid dissociation constant (itself an equilibrium constant!) is given by the ratio
of the two rate constants, k1/k�1. We can consider k�1 (reverse) as a simple
bimolecular collision rate constant; as this process is purely diffusion controlled,
it is unaffected by the isotopic substitution. However k1 (forward) involves break-
ing of the CH3COO–D bond, is affected by isotopic substitution and is higher for
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CH3COO–H. As a direct consequence of this, pKa of acetic acid is raised in D2O
(and therefore, pD ¼ pH + 0.4). These two simple examples describe how an
equilibrium isotope effect comes about. It should be mentioned that equilibrium
isotope effect is presented as a non-unity ratio of the equilibrium constants (Klight

isotope/Kheavy isotope).

Solvent Isotope Effect Isotopic substitution of solvent protons by the heavy iso-
tope (such as in D2O) can affect the ionization of an acid group and more importantly
the rate of the enzyme reaction itself. Such solvent isotope effects are particularly
important when solvent protons participate directly or are exchanged via the ioniz-
able groups on the enzyme/substrate during catalysis. Solvent isotope effects are
often useful in distinguishing between nucleophilic versus general base catalysis
(Chap. 6 Origins of enzyme catalytic power, in Part I and Chap. 31 Nucleophilic
Catalysis and Covalent Reaction Intermediates, in Part IV).

Kinetic Isotope Effect The KIEs reflect changes in the vibrational frequencies of
reactants as they pass through the rate-determining transition states to form products.
Because they directly report on the kinetic reaction path, the KIE is perhaps the most
powerful tool available for a mechanistic enzymologist. A KIE is usually written as a
ratio of rate constants for the light and heavy isotopic reactants. For example, the
isotope effect for a C-H bond versus C–D bond cleavage may be written as kC-H/kC-D
(or simply kH/kD). When the isotopic substitution is at the reaction center (and
directly participates in bond-breaking/bond-making events), then the observed KIE
is termed as primary isotope effect (1�KIE). Consider the following schematic
example:

X� Cα � Cβ � Cγ�

The effect due to isotopic substitution at X – in the X-Cα bond-breaking event – is a
primary KIE. Secondary kinetic isotope effect (2�KIE) arises when the isotopic
substitution is further removed from the scene of action. Accordingly they are
denoted as α-secondary or β-secondary KIEs, etc. – where α and β denote the
position of the isotopic substitution relative to the atom undergoing bond cleavage.
KIEs typically decrease in magnitude as the point of isotopic substitution lies further
from the reaction center. Most enzyme KIE studies are confined to primary and
α-secondary effects – expectedly these are the ones giving most useful information
on the enzyme mechanisms.

Normal Versus Inverse Kinetic Isotope Effect An isotopic substitution by a
heavier atom (like H by D) makes that bond stiffer and stronger. If this bond is to
be broken during reaction, then that isotope will have less restrained bonding
environment in the transition state when compared to the reactant state. In such
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cases, the reactant bearing the heavy isotope reacts less rapidly and a normal isotope
effect is observed – the KIE value is above unity. An inverse isotope effect (and KIE
value below unity) results in case the isotope in question experiences a more
restricted bonding environment in the transition state. It is obvious that such
information provide valuable insights into the nature of the transition state itself.

27.1 Magnitude of the Observed Isotope Effect

As full theory of the origin of KIEs is quite complex and involves many factors, we
will consider a simple approximation to evaluate it from first principles. The
elementary theory for the case of C–H bond versus C–D bond cleavage step is
considered below. In this treatment, the C–H and C–D bonds have very little
difference in terms of their electronic, translational, and rotational properties. Their
vibrational motion is considered harmonic and that one of these stretching modes
becomes the bond-breaking event in the transition state. The vibrational frequencies
(as seen in the infrared region) representing their respective zero-point energies are
distinct for the two bonds; this is the major factor contributing to KIEs because the
energy level of the transition state for both the reactions is approximately same.
These conditions are schematically represented in the Fig. 27.1.

Bond Vibrational frequency 

C-H around 2,900 cm
-1

C-D around 2,100 cm
-1

C-H

C-D

P

Progress of reaction

S

Relative 
free
energy

G
C-H DG

C-D

DG

C-H

C-D

D

Fig. 27.1 Reaction coordinate diagram for the C–H bond cleavage in an exergonic reaction.
The heavier isotopomer (C–D) lies at lower energy as expected for a shorter bond length. However
the transition state for both C–H and C–D bond cleavages are of similar energy. Therefore ΔZPE
significantly contributes to the difference between ΔG6¼ for C–H and C–D bonds. The
accompanying table gives the vibrational frequencies (observed in infrared region) for the C–H
and C–D bonds
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The zero-point energy (ZPE) for a C–X bond (considered as a harmonic oscilla-
tor) is given by

ZPE ¼
1
2
hν ¼

1
2
hcν

where h is the Plank’s constant (6.64 � 10�34 J.s), c is the velocity of light
(3 � 1010 cm.s�1), and ν is the vibrational frequency in cm�1. Based on these
definitions, we could write the ZPE for the C–H and C–D bonds as follows:

ZPEC�H ¼
1
2
hcνC�H and ZPEC�D ¼

1
2
hcνC�D

and hence the energy difference between the two bonds as

ΔZPE ¼
1
2
hcνC�H �

1
2
hcνC�D

From Hook’s law, the vibrational frequency is given by:

ν ¼
1
2πc

ffiffiffi

κ

μ

r

where κ is the force constant of the bond and μ is reduced mass ¼ m1m2
m1þm2

� �

. The

difference between the C–H and C–D bonds thus boils down to differences in their
reduced masses. Therefore,

νC�H ¼
1
2πc

ffiffiffiffiffiffiffiffiffiffi

κ

μC�H

r

and νC�D ¼
1
2πc

ffiffiffiffiffiffiffiffiffiffi

κ

μC�D

r

We thus obtain

νC�H

νC�D
¼

ffiffiffiffiffiffiffiffiffiffi

μC�D

μC�H

r

and νC�D ¼ νC�H

ffiffiffiffiffiffiffiffiffiffi

μC�H

μC�D

r

and the ZPE difference between the two bonds is obtained by substituting these
values in the equation above.

ΔZPE ¼
1
2
hcνC�H �

1
2
hcνC�H

ffiffiffiffiffiffiffiffiffiffi

μC�H

μC�D

r

¼
1
2
hcνC�H 1�

ffiffiffiffiffiffiffiffiffiffi

μC�H

μC�D

r
� �

290 27 Isotope Effects in Enzymology



We can evaluate ΔZPE from this equation (in fact, for any two isotopic pairs) by
substituting respective parameters. Typical νC�H is obtained from IR frequency data
(2900 cm�1, from table in the Fig. 27.1 above) and the respective reduced masses are
calculated [where μC–H ¼ (12 � 1)/(12 + 1) ¼ 0.923 and (μC–D ¼ (12 � 2)/
(12 + 2) ¼ 1.714]. Therefore,

ΔZPE ¼
1
2
� 6:64� 10�34 � 3� 1010 � 2900 1�

ffiffiffiffiffiffiffiffiffiffiffi

0:923
1:714

r

 !

¼ 7955� 10�24J

This corresponds to 4789 J.mol�1 (when multiplied by the Avogadro number,

6.02 � 1023 mol�1). Since the reaction rate constant is given by k ¼ kT=hð Þ e�
ΔG 6¼

RT ,
we can find the ratio:

kC�H

kC�D
¼

e�
ΔG6¼C�H

RT

e�
ΔG6¼C�D

RT

¼ e
ΔG6¼C�D�ΔG6¼C�H

RT ¼ e
ΔZPE
RT

At 25 �C, this value is around 7.0 ¼ e
4789

8:314x298

� �

. When a deuterium isotope effect is

fully manifest, one obtains a kC–H/kC–D value of around 7.0. Most often this value
ranges from 2 to 15 and if no isotope effect is observed then it will be unity. As a rule
of thumb, an observed kC–H/kC–D value between (a) 4–7 is indicative of a symmetric
TS for that C-H bond cleavage event and (b) 1–4 means an asymmetric TS (for
cleavage of this bond) or it is a secondary effect (2�KIE with no bond cleavage).

The magnitude of any KIE thus depends on the following factors that influence
the bond-breaking/forming events at the transition state:

(a) The actual mass difference (in terms of reduced mass – μ) due to the isotopic
substitution. We have noted that the reduced mass for C-D bond is almost double
than that for C–H bond. For other isotopic substitutions, this difference is much
smaller and consequently the KIE is smaller. For example, the reduced mass for
12C-12C bond is 6.00 [μC–C ¼ (12 � 12)/(12 + 12)] while for 12C–13C bond it is
just 6.24 [μC–C ¼ (12 � 13)/(12 + 13)]. Therefore a maximum KIE of 1.06 may
be observed for 12C–13C bond cleavage. The expected KIEs for other examples
are –k12C/k14C ¼ 1.09–1.15; k14N/k15N ¼ 1.04; and kO16/kO18 ¼ 1.08.

(b) The force constant – that is how tightly the atom is held. This has a bearing on the
bond order (and in turn bond length) associated with that bond.

(c) Whether any other step, other than due to the isotopic substitution, is more rate-
limiting. If another step is significant in determining the reaction rate, then the
anticipated isotope effect may be either small or not observed at all. Indeed such
information can be actually used in elucidating enzyme reaction mechanisms.
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27.2 Experimental Approaches to Measure Isotope Effects

It is obvious, from the theory on how the isotope effects are manifest, that very
sensitive and accurate methods are required to measure them. Three different
experimental approaches may be taken to measure KIEs.

27.2.1 Direct Comparison

A common strategy is to synthesize many different substrate molecules, each with a
specific position isotopically labeled. Then the various kinetic constants (Vmax and
Vmax/KM) can be measured for the normal as well as the suitably isotope-labeled
substrate. These rate constants can be directly compared to note the isotope effects
on different kinetic parameters. In the case of lactate dehydrogenase, for example,
the hydrogen on the C2 (asymmetric) carbon of lactate (Fig. 27.2a) can be
substituted by deuterium.

Using the two kinds of substrates, the deuterium isotope effect on Vmax and Vmax/
KM can be directly measured (Fig. 27.2b, below). This approach of direct compari-
son is excellent as it measures all the required kinetic parameters in one go. However
the method suffers in that it requires very high degree of label substitution.
Impurities in the labeled substrate affect the measurement of Vmax effect whereas
accurate measurement of substrate concentration is crucial as it influences the KIE
on Vmax/KM. Apart from the factors listed before, in practice, the extent of isotopic
labeling possible at the given position (of substrate structure) also determines the
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Fig. 27.2 Deuterium

isotope effects in lactate

dehydrogenase reaction. (A)
Lactate structure with two
different isotopic substitutions
on its C2 carbon and (B)
Schematic double reciprocal
plots when these two
isotopomers are used
separately as lactate
dehydrogenase substrates
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actually measured effect. 90% label enrichment at the C2–H of lactate (by C2–D)
gives only 90% of the maximal KIE. While high degree of isotopic enrichment at
one position may be possible with deuterium, this is almost always not feasible for
other isotopes.

27.2.2 Equilibrium Perturbation

In this approach, labeled substrate (S*) and unlabeled product are mixed at a
calculated equilibrium ratio in the presence of the enzyme. One observes a tempo-
rary displacement of this equilibrium with time as S* ! P conversion is slow
compared to that from S ! P. The system thus takes time to reach equilibration of
the label on both sides; and from this time, transient KIE can be obtained. This
method is useful only for reversible reactions. Further, high label substitution in the
substrate is required and temperature maintenance is crucial as it affects the
equilibrium.

27.2.3 Internal Competition Method

This method exploits the fact that S and S* (labeled S) compete with each other to
form ES complex and subsequently for turnover. There are different ways one can
set this competition, but we will exemplify this with glucose-6-phosphate dehydro-
genase reaction.

Glucose-6-phosphateþ NADþ ! 6-Phosphogluconateþ NADH

The natural abundance of 13C at C1 of glucose-6-phosphate is 1.1%. If there is
discrimination by the enzyme (say 13C glucose-6-phosphate is slowly converted),
then with time the substrate remaining is enriched with 13C at C1 of glucose-6-
phosphate; its abundance rises above 1.1%. Simultaneously, the abundance of 12C in
the product (6-phosphogluconate) increases. The C1 of 6-phosphogluconate can be
quantitatively converted into carbon dioxide by oxidation (enzymatic or chemical
method). The corresponding enrichment of 12C in carbon dioxide (actually the ratio
of 12C/13C in the CO2 gas) can be directly measured in an isotope ratio mass
spectrometer. This protocol can be used to measure the KIE due to 13C at the C1
position, for glucose-6-phosphate dehydrogenase reaction.

Use of an additional remote label in the reactant, apart from the atom expected to
experience KIE, has made this method much more versatile.
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27.3 Applications of KIEs in Enzymology:

The value of KIE studies in enzymology can be better appreciated through specific
examples. Rather than giving a mere list of these applications, we shall simply
present them as selected case studies. Therefore, in no way such a treatment can be
exhaustive but can only be representative. For more details, the reader may wish to
look up recent literature on this enzyme frontier (Cleland 2003).

27.3.1 Elucidating Kinetic Mechanism

Enzymes achieve catalytic power by setting up multiple steps, often of comparable
energetic barriers, along the reaction coordinate. The isotope-sensitive chemical step
may be buried between other rate-limiting enzymatic steps like a rate-limiting
product release, a rate-limiting enzyme conformational change, etc. A large magni-
tude of the observed primary isotope effect on Vmax is indicative of the fact that the
isotopic substitution is part of a major rate-limiting step. A full deuterium isotope
effect of 7.0 on Vmax suggests that bond cleavage to that hydrogen determines the
overall rate of the reaction; no isotope effect indicates that some other step is rate-
limiting. Often a single step is not rate-limiting and hence deuterium isotope effects
on Vmax are in the range 1.5–2.0; the KIEs are between 2.0 and 4.0 for hydrolytic
reactions in water. Physical binding steps are insensitive to isotope effects; hence no
isotope effect on the KM is expected whenever KM equals KS. As KM is a complex of
rate constants – effect of isotopic substitution on any one of its contributing rate
constants will manifest as a KIE on KM. As expected, only when the KM is altered by
heavy isotopic substitution the KIEs on Vmax and Vmax/KM are different. From such
studies, it should be possible to tease out some of the individual rate constants along
the enzyme reaction scheme.

There are a few examples of how KIEs are influenced by the presence of allosteric
regulators. The mammalian glutamate dehydrogenase is allosterically activated by
ADP and inhibited by GTP. The presence of ADP increases the deuterium isotope
effects on Vmax and Vmax/KM from 1.05 to 1.3. AMP nucleosidase is activated by
Mg-ATP and more bond order remains to the leaving group (a C10-N9 bond order of
0.16 versus 0.21), in the presence of this activator.

27.3.2 Deciding Chemical Mechanism

KIEs provide valuable information into the chemical mechanism of the enzyme
reaction under consideration. As enzyme chemical mechanisms are covered in detail
later (Part IV), only a reference to applications of isotope effects is made here. A
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major use of isotope effects is to decide whether the given reaction follows a
concerted or stepwise mechanism. We will take two examples to demonstrate this
concept.

Malic Enzyme The reaction catalyzed by malic enzyme is as shown:

Malateþ NADPþ⇄Pyruvateþ CO2 þ NADPH

Mechanistically, this oxidative decarboxylation of malate involves two bond-
breaking events – the cleavage of the C2–H bond with concomitant hydride transfer
to NADP+ and the cleavage of C3–C4 bond leading to CO2 release (see Fig. 27.3
below).

Respective isotopic substitutions, namely, C2–H by C2–D and C3–C4 by C3–13

C4, give expected primary isotope effects indicating that both these bond cleavages
contribute toward determining the overall rate of this reaction. We may wish to know
whether the two bond cleavage events occur simultaneously (concerted) or follow
one after the other (sequential). This can be verified by a double kinetic isotope effect
study. Here we monitor the change in observed 13C KIE due to a deuterium
substitution (at C2). With malic enzyme, a 13C KIE (for C3–13C4) of 1.0302 was
found. However, when the substrate C2–H was replaced by C2–D, this 13C KIE
decreased to 1.0250. This is indicative of the fact that hydride transfer and decar-
boxylation occur in different steps of the kinetic mechanism. If they were to occur in
the same step (i.e., if concerted), then replacement of C2–H by C2–D should have
made that step more rate-limiting and increased the size of the observed 13C KIE. As
the mechanism is stepwise, the C2–H to C2–D substitution made some other step
rate-limiting and hence decreased the size of the observed 13C KIE. In the reaction
sequence therefore, the 13C-sensitive step comes later than the deuterium-sensitive
step – the hydride transfer occurs first and is followed by decarboxylation
(Fig. 27.4).

This means, on the enzyme, malate is first oxidized to oxaloacetate and then
decarboxylated! It goes with the same intuition that such double isotope effects are
not symmetric – in the reverse direction (reductive carboxylation of pyruvate), 13C-
sensitive step arrives before the hydride transfer.

C O
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O
C

C
O

CH
2

O

H
HEnz-B:

NADP+

Fig. 27.3 The malic enzyme

reaction mechanism where

hydride transfer and

decarboxylation occur in

concert. The atoms of malate
where isotopic substitutions
are used are shown in bold
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Glycosyltransferases Secondary isotope effects are very useful in determining the
enzyme chemical mechanism in many cases. Two possibilities exist in the
glycosyltransferase chemistry (Fig. 27.5 above). One can visualize a SN1 reaction
(a stepwise mechanism involving first the formation of an oxycarbonium intermedi-
ate; the upper path) or a SN2 reaction (second-order nucleophilic substitution; the
lower path). A detailed treatment on nucleophiles and nucleophilicity may be found
in a later section (Chap. 31 Nucleophilic Catalysis and Covalent Reaction
Intermediates, in Part IV).

In the SN1 mechanism, because the outgoing nucleophile (outNu:) leaves first, the
C1 carbon of the sugar changes from a tetrahedral (sp3) arrangement to a flattened sp2

configuration. This is subsequently attacked by the incoming nucleophile (inNu:).
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Fig. 27.4 Deuterium- and 13C-sensitive steps in the reaction mechanism of malic enzyme. The
dotted arrows indicate the sequence of events in the direction of reverse reaction
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Fig. 27.5 Mechanism of glycosyl transfer: The two possible paths for this reaction are a

stepwise mechanism (via an oxycarbonium; upper route) or a SN2 mechanism (second-order

nucleophilic substitution; lower route). The atoms where α-secondary KIE is measured are
in bold
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During reaction, the hybridization state of glycosidic C1 goes from sp3! sp2! sp3.
The SN2 mechanism (as shown) always results in an inversion of configuration at C1
(the Walden inversion). Also the C1 atom simultaneously experiences the effects of
incoming and outgoing nucleophiles. Clearly by comparison, the bond order changes
around the C1 atom are different for SN1 and SN2 mechanisms. This is exploited,
through α-secondary isotope effects, to distinguish the two reactions. The
α-secondary KIE can be measured by an isotopic substitution in the substrate C1–H
(to C1–D). Typically, such an effect for SN1 reaction (oxycarbonium ion mechanism)
is larger (between 1.07 and1.13) than that observed for SN2 reaction (1.00 � 0.06).
The observed α-secondary isotope effect (a kH/kD ¼ 1.11) for lysozyme-catalyzed
hydrolysis is best accommodated by an oxycarbonium ion mechanism. In this sense,
isotope effects serve as a guide in choosing the most likely mechanism.

27.3.3 Understanding Enzyme Transition State

By definition, the transition state (TS) is the highest energy point on the lowest
energy path between reactants and products. We have seen earlier (Chap. 6 Origins
of Enzyme Catalytic Power, in Part I) that one of the major reasons enzymes catalyze
reactions is by binding/stabilizing the TS in preference to either the substrate or the
product. Rate accelerations are attributed to tightness of TS binding by an enzyme.

Enzymatic transition states are dynamic entities with lifetimes defying direct
physical/experimental observation. Early work on analysis of TS and reaction
mechanism relied on the introduction of various chemical substituents near/around
the reaction center and monitor their effects on the reaction rates. This information
was interpreted through linear free energy relationships – like Hammett equation and
Bronsted relation – to arrive at mechanistic details about the reaction and its TS. Such
a chemical approach through systematic use of structural homologues is not suitable
for the study of enzyme TS. The substrate selectivity/specificity of an enzyme
severely limits the number of structural variants that can be employed.

Isotopic substitutions lead to more subtle changes and are eminently suited to
probe the active site chemistry. In this background, kinetic isotope effects have the
potential to provide direct information on the enzymatic TS. However this path has
been less traversed by researchers and for very few enzyme reactions. A major
problem is that the intrinsic KIE for the chemical step, whose TS we wish to
understand, may be difficult to access. Enzymes achieve catalytic power by setting
up multiple steps, often of comparable energetic barriers, along the reaction coordi-
nate. The isotope-sensitive chemical step may be buried between other rate-limiting
enzymatic steps which could be rate-limiting product release, rate-limiting enzyme
conformational change, etc. It would therefore be necessary to understand and
uncover or account for them in order to obtain relevant intrinsic KIE from the
observed KIE. For instance, a high commitment-to-catalysis (Chap. 25) results in
underestimation of intrinsic KIE. Over the last three decades, these difficulties are
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being surmounted, and it is now possible to approach the TS of almost any enzyme
with some preparation.

Once the intrinsic KIEs are available for an enzyme reaction, then the TS structure
can be deduced in the usual physical organic chemistry sense. The experimental
steps involved in TS analysis through KIEs are as follows.

(a) Synthesize substrates with appropriate isotopic labels at every position around
the reaction center.

(b) Accurately measure the KIEs using these substrates. Correct them to get intrinsic
values.

(c) A truncated TS is computed by fixing bond lengths and bond angles to match the
observed KIEs.

(d) From this partial structure, generate the complete TS structure by optimization
through semiempirical methods (best fit to data by trial and error) and computa-
tional enzymology.

In effect, isotopic substitution at different positions in the substrate structure
reports (via KIEs) on what actually happens there during reaction. If an atom remains
in the same binding environment, both in the substrate and in the TS, then there will
be no KIE observed. Atoms that become vibrationally less constrained in the TS give
normal KIE (klight/kheavy > 1) with the heavier isotopic substrate reacting more
slowly. Conversely, atoms more constrained at the TS cause inverse KIE (klight/
kheavy < 1) with the heavy isotope-labeled substrate reacting more rapidly. A
qualitative picture of the TS can be constructed based on all such observed KIEs.
Taken together, KIEs and computational chemistry provide a conceptually complete
picture of the TS.

Arriving at the nature of enzyme TS complex is challenging, as typically positions
of more than 10,000 atoms would have to be determined. A two-pronged approach is
needed to decipher the features of enzyme transition states: (a) measuring KIEs
(as mentioned above) and (b) computational quantum chemistry. The KIEs give
information about the geometry (the shape of the electron cloud surrounding the
atoms – van der Waals surface of the TS) and the electrostatic charge distribution.
The two together lead us to the atomic structure of the TS. Computational chemistry
is then used to sift through many possible TSs to find the one that matches the
experimentally observed KIEs. The best fit structure contains the information about
both geometry and electrostatic charge – the complete description of the TS.

Apart from a clear understanding of the reaction chemistry involved, TS analysis
has a practical value. Knowledge of the TS for an enzymatic reaction provides
information to design stable analogs as TS inhibitors (Schramm 1998, 2011). A
comparison of molecular electrostatic potential surface of the substrate with the TS is
possible. It may then be feasible to design molecules bearing electrostatic potential
surfaces similar to the TS. They can be synthesized and tested for their potential for
enzyme inhibition. More recently, through the observed KIEs and computational
chemistry, TS-like structures for several N-ribosyltransferases were defined. For

298 27 Isotope Effects in Enzymology



example, a potent inhibitor of purine nucleoside phosphorylase (9-deazainosine
iminoribitol with a KI of 20 pM) was achieved by this approach (Fig. 27.6).

Drug design using TS analysis is in its infancy but has much to promise. This
approach differs from the two traditional methods, namely, structure-based drug
design and screening of chemical and/or natural product libraries. These two are
general in that they can be used against most pharmaceutical targets of interest –
including ion channels, receptors, and enzymes. However, the TS analysis approach
to drug discovery is limited to enzyme targets. But then enzyme catalysis is at the
heart of life processes.
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From Kinetic Data to Mechanism and Back 28

We conclude our forays into enzyme kinetic mechanisms by summarizing three

practical aspects. Some examples of relating mechanism with steady-state kinetic

data are detailed. Secondly, a general scheme that one should follow in orderly

collection of kinetic data is given. This last section (in Part III) is an attempt to bring

home the point that enzyme kinetic study is not just “blue sky” research – but has real

practical value.

28.1 How to Relate Mechanisms with Steady-State Kinetic Data

A product inhibits the enzyme-catalyzed reaction by virtue of its binding to one or

more enzyme forms. The product inhibition patterns offer useful inputs in deciding

the kinetic mechanism of a multi-substrate and/or multiproduct enzyme. In a

bi-reactant mechanism, information on the slope and intercept effects due to a

product is normally obtained in a systematic manner. For example, concentration

of one substrate (say A) is varied at different fixed levels of product inhibitor (say P).

This experiment itself should be performed at two distinct fixed concentrations of

B – once with saturating (noted as B ¼ 1) and again with subsaturating (noted as

B ¼ KB). As P is the inhibitory product used in this case, the reaction rates may be

followed by formation of Q. For Q as the inhibitor, we need to monitor P however.

Thus there are eight different product inhibition patterns possible for a bi-reactant

mechanism.

We recall here that saturation with a fixed substrate (a) may result in an irrevers-

ible step in the mechanism (see Chap. 18) and (b) leads to no inhibition by the

product that competes for the same enzyme form. Armed with an understanding of

equilibria, irreversible steps, how slope (Vmax/KM; 1/slope of Lineweaver-Burk plot)

and intercept (Vmax; 1/intercept of Lineweaver-Burk plot) are affected, and the

thumb rules (described in Chap. 18), we can predict various product inhibition

patterns for any given mechanism. Converse of this is what we do in practice –
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experimentally obtain various slope/intercept effects and from these data arrive at the

enzyme kinetic mechanism. The expected product inhibition patterns for three

common bi-reactant mechanisms are given below.

28.1.1 Ordered Mechanism

Lactate dehydrogenase is an example of ordered bi-substrate reaction. The substrate–

product pair of NAD+/NADH is the outer pair and binds the free enzyme according

to the scheme (Fig. 28.1):

The predicted slope/intercept effects and the product inhibition patterns are given

in Table 28.1.

28.1.2 Random Mechanism

Hexokinase is an example of random bi-substrate reaction. The substrates and

products bind various enzyme forms according to the scheme (Fig. 28.2):

The predicted slope/intercept effects and the product inhibition patterns are given

in Table 28.2.

The prediction of product inhibition patterns (for both ordered and random

mechanisms) shown above is made with the understanding that the EBQ dead-end

E.NAD+E EE.NADH

NAD+

(A)

Lactate

(B)

Pyruvate

(P)

NADH

(Q)

(EAB EPQ)

Fig. 28.1 Ordered

bi-substrate reaction of

lactate dehydrogenase

Table 28.1 Product inhibition patterns for an ordered bi-reactant mechanism

Product

inhibitor

Substrate

varied

Fixed

substrate at

Enzyme parameter affected

Inhibition

pattern

Intercept

(1/Vmax)

Slope

(KM/Vmax)

P A B ¼ 1 Yes No Uncompetitive

P A B ¼ KB Yes Yes Noncompetitive

P B A ¼ 1 Yes Yes Noncompetitive

P B A ¼ KA Yes Yes Noncompetitive

Q A B ¼ 1 No Yes Competitive

Q A B ¼ KB No Yes Competitive

Q B A ¼ 1 No No No inhibition

Q B A ¼ KA Yes Yes Noncompetitive
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complex is possible and is formed. Here Q is not only acting as a product inhibitor

but is also combining with EB in a dead-end fashion. We can rationalize occurrence

of such complexes from the physical picture of the enzyme active site and how

substrates and products occupy their respective places there. Consider a kinase

reaction where the γ-Ⓟ from ATP is transferred to an acceptor R–OH. This could

be hexokinase where acceptor R–OH is nothing but glucose.

Ado�ⓅⓅⓅþ HO� R⇄Ado�ⓅⓅþⓅO� R

Besides their respective single occupancy on the enzyme (EA, EB, EP, and EQ), the

following four ternary complexes (Fig. 28.3) could be anticipated in principle.

Two of these (complexes 3 and 4 in Fig. 28.3) are dead-end complexes. The EAP

complex (complex 3) is expected to be observed as one Ⓟ (the γ-Ⓟ) is missing.

However the formation of complex 4 (the EBQ complex) depends on whether the

extra piece (Ⓟ group here) can be accommodated at the active site or not. We now

can generalize this to other enzyme examples – (a) EBQ should form for smaller

Glucose MgATP

GlucoseMgATP

(A) (B)

(B) (A)

(P) (Q)

(Q) (P)

MgADP

MgADP

Glucose 6-P

Glucose 6-P

E E

EA

EB (EAB EPQ)

EQ

EP

Fig. 28.2 Random bi-substrate reaction of hexokinase

Table 28.2 Product inhibition patterns for a random bi-reactant mechanism

Product

inhibitor

Substrate

varied

Fixed

substrate

Enzyme parameter affected

Inhibition

pattern

Intercept

(1/Vmax)

Slope

(KM/Vmax)

P A B ¼ 1 No No No inhibition

P A B ¼ KB No Yes Competitive

P B A ¼ 1 No No No inhibition

P B A ¼ KA No Yes Competitive

Q A B ¼ 1 No Yes Competitive

Q A B ¼ KB No Yes Competitive

Q B A ¼ 1 No No No inhibition

Q B A ¼ KA Yes Yes Noncompetitive
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groups (like hydride from NADH), (b) EBQ may form with reduced affinity for

groups like acetyl or phosphoryl, and (c) not at all for larger ones like glycosyl or

adenosyl group. The above predictions (Tables 28.1 and 28.2) will obviously change

if dead-end complexes other than EAP (like EBQ) also are formed.
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Fig. 28.3 Different ternary complexes possible with the enzyme in a kinase mechanism. The

scheme is for hexokinase with glucose and is simplified by not showing Mg2+ in Mg-ATP. The four

complexes are (1) EAB (E.Mg-ATP.glucose), (2) EPQ (E.Mg-ADP.glucose 6-phosphate), (3) EAP

(E.Mg-ADP.glucose), and (4) EBQ (E.Mg-ATP.glucose 6-phosphate)
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28.1.3 Ping-Pong Mechanism

4-Aminobutyrate transaminase (GABA transaminase) is an example of ping-pong

bi-substrate reaction. GABA and succinic semialdehyde form one substrate–product

pair for partial reaction that defines the ping part, and 2-oxoglutarate and L-glutamate

form the other pair (defining the pong part). Schematically this may be shown as

(Fig. 28.4).

The predicted slope/intercept effects and the product inhibition patterns are given

in Table 28.3.

These product inhibition patterns are predicted for a ping-pong mechanism

involving a single active site – both the half reactions occurring in the same site.

However with multisite ping-pong mechanism, the product inhibition patterns are

distinct. Transcarboxylase is an interesting example of two-site ping-pong mecha-

nism involving a biotin shuttle.

Oxaloacetateþ Propionyl CoA⇄PyruvateþMethylamlonyl CoA

Reactions on the transcarboxylase enzyme surface with two sites are shown in

Fig. 28.5. Since the thioesters (propionyl CoA and methylmalonyl CoA) combine

at one site, they compete with each other while oxaloacetate and pyruvate compete

(EA FFP)E E(FB EQ)

GABA

  (A)

     Succinic

semialdehyde

           (P)

2-Oxoglutarate

          (B)

Glutamate

     (Q)

Fig. 28.4 Ping-pong bi-bi

mechanism of GABA

transaminase. The two

enzyme forms E (pyridoxal

phosphate-enzyme) and

F (pyridoxamine phosphate-

enzyme) are shown

Table 28.3 Product inhibition patterns for a ping-pong bi-reactant mechanism

Product

inhibitor

Substrate

varied

Fixed

substrate

Enzyme parameter affected

Inhibition

pattern

Intercept

(1/Vmax)

Slope

(KM/Vmax)

P A B ¼ 1 No No No inhibition

P A B ¼ KB Yes Yes Noncompetitive

P B A ¼ 1 No Yes Competitive

P B A ¼ KA No Yes Competitive

Q A B ¼ 1 No Yes Competitive

Q A B ¼ KB No Yes Competitive

Q B A ¼ 1 No No No inhibition

Q B A ¼ KA Yes Yes Noncompetitive
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for the other site. Because of this, the product inhibition patterns are reverse of the

patterns for the classical ping-pong mechanism.

In multisite ping-pong mechanisms, the group to be transferred is moved from

one site to the other. This movement may involve a swinging arm attached to the

enzyme such as biotin (transcarboxylase), lipoic acid (pyruvate dehydrogenase

complex), phosphopantetheine (fatty acid synthase), or a protein channel connecting

the two sites (glutamate synthase).

28.2 Assigning Kinetic Mechanisms: An Action Plan

Various lines of kinetic experimentation (presented in earlier sections) provide

different bits of information on the overall enzyme mechanism. The tools range

from steady-state kinetics to isotopic analysis to tracking enzyme intermediates.

Obviously, no single line of practical enquiry provides all the details needed to set

down the complete mechanistic scheme. It is therefore essential to decide when to

undertake which type of experiment(s) – studying a new enzyme – requires an action

plan. A logical sequence of collecting data is thus an important part of this experi-

mental strategy. An organized decision tree capturing this mental process is outlined

below (Fig. 28.6).

It is much more demanding to distinguish among the possible sequential

mechanisms (Leskovac et al. 2004). Isotope exchange study is powerful enough to

tell the subtle differences between various sequential Schemes. A parallel initial

velocity pattern quickly leads one to ping-pong mechanism, but the caveat of “how

parallel is parallel” requires considerable care. The apparently parallel initial velocity

pattern for brain hexokinase (with glucose as substrate) became unambiguously

intersecting with fructose as alternate substrate. Collecting confirmatory evidence

adequately settles such issues however.

    Lys
Enzyme

Oxaloacetate

         (A)

Pyruvate
    (P)

Propionyl CoA

        (B)

Methyl-

malonyl CoA
     (Q)

X X(CO2)

S1 S2

Fig. 28.5 Schematic

representation of the

transcarboxylase reaction.

Oxaloacetate (A) and pyruvate

(P) interact with site S1 while

the thioester pair (propionyl

CoA and methylmalonyl

CoA, shown as B and Q,

respectively) interacts at the

S2 site. The swinging arm

with biotin (X) shuttles the

carboxyl group from S1 to S2
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28.3 Practical Relevance of Enzyme Kinetics

Apart from the intellectual satisfaction of having understood the inner workings of a

remarkable catalyst, there are many direct benefits of a detailed kinetic analysis. This

aspect of enzyme kinetic mechanism is often underappreciated by many. We will

enumerate three important areas where the knowledge of enzyme kinetics directly

becomes relevant.

28.3.1 Affinity Chromatography and Protein Purification

Moderate affinities encountered with substrates, products, or their analogs hinder

their use as ligands for affinity purification. The intrinsic ligand affinity may be

further compromised upon chemical cross-linking for immobilization on the matrix.

Transition-state analogs offer useful affinity ligands; they often exhibit tighter

binding and therefore are promising candidates. They can also be used as eluents

for conventional substrate affinity chromatography.

Creatine kinase was conveniently purified with one such strategy. The transition

state of creatine kinase involves a flat phosphate intermediate (see Fig. 28.4 in

Chap. 32). Nitrate ion (NO3
�) mimics this flat phosphate moiety. This knowledge

was used to purify creatine kinase by immobilizing it on ADP column. The enzyme

binds tightly to this column in the presence of creatine and NO3
�
– a tight transition-

state complex is formed. The bound enzyme could be released selectively by adding

free ADP to compete with the column bound ADP.

Secondly, prior knowledge of kinetic mechanism permits judicious development

of binding/elution strategies in enzyme purification. Enzyme interaction with a

substrate analog affinity matrix can be strengthened by suitably including another

A robust and convenient assay

(monitor enzyme activity)

Ø
Initial velocity analysis - double reciprocal plots

Parallel pattern Intersecting pattern

(Ping-pong) (Sequential)

Ø Ø
Isotope exchanges Inhibition analysis:

(partial reactions) -product, dead-end, alternate substrate

(ordered or random)

Ø Ø
Product inhibitions Direct binding study

(single or multi site) (substrate binding order)

Ø Ø
Detection/isolation of F form Isotope exchanges

(substituted enzyme) (order, preferred-order or random)

Fig. 28.6 Flow chart outlining the mental process leading to enzyme kinetic mechanism from

experiments. Conclusions reached after each data generated is given in parenthesis in bold
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substrate in the binding buffer. This may be achieved on the matrix itself, either by

exploiting a synergistic binding or through kinetically locking the ternary (EAB)

complex. For instance, glutamate dehydrogenase binds poorly to NAD-Sepharose;

inclusion of glutarate (substrate mimic and a dead-end inhibitor) in the developing

buffer retards the enzyme significantly on this column. Bound enzyme may be

released simply by excluding the second ligand (e.g., glutarate) from the elution

medium. Enzyme mechanism and substrate analogs can be used to arrive at best

conditions for retardation/binding/elution from substrate analog affinity matrices.

Such kinetic lock-in strategies hold much promise in large-scale enzyme

purifications.

28.3.2 Dissection of Metabolism

Specific enzyme inhibition serves a very valuable tool in teasing out metabolism.

Competitive inhibition of succinate dehydrogenase by malonate is a classic example

in the discovery of citric acid cycle. Attempts to define the glycolytic sequence and

mitochondrial electron transport chain also made use of specific inhibitors. Inhibi-

tion of an enzyme in vivo may be seen as a metabolic cross-over at that step of

metabolic pathway.

Starting from kinetic properties of individual enzymes, it may be possible to

reconstruct the characteristics of an entire pathway. Capturing metabolic complexity

and structure through such a bottom-up approach is one of the objectives of “systems

biology.” Lastly, the kinetic characterization of the key enzymes around a metabolic

branch point provides some indications of relative in vivo flux to competing

pathways. Everything else being equal, the enzyme with lower KM for the common

substrate (metabolite) dictates the pathway direction (refer to Chap. 38 In vitro

versus in vivo – Concept and consequences, in Part V). For an example, arginase

and nitric oxide synthase compete for the cellular pool of arginine; the knowledge of

their inhibition kinetics was exploited to design specific inhibitors and augment flux

through nitric oxide synthase.

The disadvantage of a competitive inhibitor is that higher concentrations of the

substrate can nullify its effect. Noncompetitive inhibitors could be more effective as

they cannot be overwhelmed by more substrate.

28.3.3 Enzyme–Targeted Drugs in Medicine

Enzymes are catalysts that make and break specific covalent chemical bonds. They

bind as well as catalyze – while other protein classes including receptors,

transporters, antibodies, and even DNA only bind – thereby offering unique features

for drug design. A number of enzyme targets have been exploited and the

corresponding inhibitors are in the market as drugs (Alexander et al. 2017). Many

of the drugs are natural compounds whose molecular basis of action was clarified ex

post facto. With excellent understanding of enzyme action over time, rational drug
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design has arrived. Experimental access to transition-state features of a target

enzyme is an excellent opportunity to design potent drugs. We have already come

across some cases of tight binding and suicide enzyme inhibitors in use (Chap. 21).

Few more representative examples of successful drugs, their target enzyme, and the

nature of inhibition are given in Table 28.4. Enzyme activators have not had much

practical success so far. Activators of glucokinase may yet find applications in the

future diabetes therapy.

Captopril was the first rationally designed enzyme-targeted drug. It may be

viewed as a transition-state inhibitor of angiotensin-converting enzyme (ACE;

peptidyl dipeptidase A). Similarly HIV retropepsin inhibitors were developed

through detailed kinetic knowledge and a variety of structure-assisted drug design

techniques. Saquinavir contains a hydroxyethylamine isostere moiety and functions

as a transition-state analog. It is quite clear from the current state of art that rational

drug design through a thorough understanding of enzyme kinetics, transition state,

and active site structure is here to stay. It has overtaken the traditional serendipity-

based screening approach in pharmaceutical industry (De Cesco et al. 2017).

Finally, enzyme targets are also valuable in other applications. Few organophos-

phorus compounds inhibiting acetyl cholinesterase are in the market as insecticides/

pesticides. Three successful herbicides act via potent inhibition of their respective

target plant enzymes. Phosphinothricin is activated on phosphorylation by glutamine

synthetase to a tight-binding inhibitor which mimics its transition state.

N-Phosphonomethyl glycine (glyphosate) acts as an herbicide by preventing aro-

matic amino acid biosynthesis in plants (Boocock and Coggins 1983). It acts as an

uncompetitive inhibitor and is thought to resemble the transition state of

5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase) belonging to the

shikimate pathway. Branched chain amino acid biosynthesis is blocked by

sulfonylureas. Sulfonylurea herbicides inhibit in a time-dependent manner, bear no

Table 28.4 Examples of enzyme-targeted therapy

Enzyme target Drug example Mode of inhibition End use

Dihydropteroate synthase Sulfanilamide Competitive Antibacterial

Dihydrofolate reductase Methotrexate Tight binding Leukemia

Cyclooxygenase Ibuprofen Tight binding Anti-inflammatory

HMG CoA reductase Atorvastatin Substrate analog Hypercholesteremia

Xanthine oxidase Allopurinol Mechanism based Gout

α-Amylase Acarbose Transition state Diabetes

Angiotensin-converting

enzyme

Captopril Transition state Hypertension

HIV retropepsin Saquinavir Transition state AIDS

Alanine racemase D-

Cycloserine

Covalent PLP

adduct

Tuberculosis

Tracylglycerol lipase Orlistat Covalent adduct Obesity

D-Ala-D-Ala carboxypeptidase β-Lactams Covalent adduct Antibacterial

28.3 Practical Relevance of Enzyme Kinetics 309



resemblance to acetolactate synthase (the target enzyme in plants) substrates, and are

noncompetitive inhibitors. The first two of the above herbicides are interesting

molecules in that they contain a direct C–P bind in them. In all the three cases,

genes expressing inhibitor resistance have been isolated. These herbicides in con-

junction with their resistance genes have found direct use in developing genetically

modified crops.
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Part IV

Chemical Mechanisms and Catalysis



Chemical Reactivity and Molecular
Interactions 29

Every step of metabolism is in essence a chemical reaction. The vast majority of
these reactions in an organism are catalyzed. Enzymes act as catalysts to facilitate the
bond forming and/or breaking steps of these chemical transformations. Enzyme
catalyzed or not, chemical reactions proceed mainly through the formation and
cleavage of chemical bonds. In some cases, the catalyst itself participates covalently
in the overall chemical Scheme. A reaction is therefore best understood through an
appreciation of chemical reactivity and how molecules interact with each other. The
nature of chemical bonds and associated molecular interactions is reviewed in this
chapter. A thorough understanding of these basic chemical mechanisms is essential
to appreciate how enzymes facilitate chemical reactions.

29.1 Atoms, Molecules, and Chemical Bonding

All the elements in the periodic table (with the exception of inert gases!) display
various degrees of reactivity. Consequently they occur in nature as their compounds.
The reactivity of an element is the reflection of its atomic structure and electronic
configuration (Table 29.1). Hydrogen, carbon, nitrogen, oxygen, phosphorus, and
sulfur dominate the reactions in biochemistry and hence are the elements we most
often encounter in enzyme chemistry. The valence electrons of these atoms partici-
pate in chemical reactions; they belong to the s and p orbitals of highest energy level.
For instance, carbon has four electrons in its 2 s and 2p orbitals – defining its valency
as four.

A chemical bond may be defined as the force that holds the atoms together within
a molecule. The valence electrons are available for the formation of covalent bonds.
When two atoms with appropriate electronic configuration approach each other at
close enough range, they can enter into bond formation. Bonding between atoms
leads to molecules.

# Springer Nature Singapore Pte Ltd. 2018
N. S. Punekar, ENZYMES: Catalysis, Kinetics and Mechanisms,
https://doi.org/10.1007/978-981-13-0785-0_29
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29.1.1 Covalent Bonds

Among the different explanations of chemical bonding, molecular orbital theory has
found a wide acceptance. According to this theory when two atoms approach each
other for bonding, their respective valence atomic orbitals (one from each atom) can
combine to form two molecular orbitals. Distribution of valence electrons among
these molecular orbitals (the bonding and antibonding molecular orbitals) is called
the electronic configuration of the molecule. Valence electrons from atoms entering
into bond formation are distributed between bonding and antibonding (shown with
an asterisk) orbitals – according to their order of energy levels.

σ1s < σ∗1s < σ2s < σ∗2s < π2petc:

Since bonding orbitals occur at a lower potential energy, electron occupancy in them
stabilizes the bond. Electrons occupying the antibonding orbitals destabilize the
bond. As long as there are more number of valence electrons in the bonding orbital
than in the antibonding orbital, the bond (and the molecule) is stable. We then define
the bond order as follows:

Bond order ¼
1
2
ðnumber o f bonding electrons � number o f antibonding electronsÞ

For instance, if the bonding molecular orbitals contain a pair of electrons more than
the antibonding molecular orbitals, then the bond order is one. Integral bond order
(n) values of 1, 2, or 3 correspond to single, double, or triple covalent bonds,
respectively. A single bond thus means the bonding atoms share a pair of electrons
between them. Fractional bond orders are possible and may be encountered in a
resonance stabilized molecule (see below).

Two different atoms can approach each other to the extent permitted by their van
der Waals radii (Fig. 29.1). This takes into account the overall size of the two atoms
including their valence shells. Any closer approach is sterically not feasible. How-
ever when the two atoms enter into covalent bonding, their valence atomic orbitals
overlap – then the two atoms are closer than their van der Waals radii can allow. The

Table 29.1 Electronic structure of elements encountered in enzyme mechanisms

Element
Atomic
number

Radius
(Å)

Electronic
configuration

Valency (most
relevant)

Electronegativity
(Pauling scale)

H 1 1.2 1s1 1 2.20
C 6 2.0 1s2,2s22p2 4 2.55

N 7 1.5 1s2,2s22p3 3 3.04
O 8 1.4 1s2,2s22p4 2 3.44
P 15 1.9 1s2,2s22p6,3s2

3p3
5 2.19

S 16 1.9 1s2,2s22p6,3s2

3p4
2 2.58
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equilibrium internuclear separation distance of the covalently bonded atoms is called
bond length. The bond length is the sum of the covalent radii of the two participating
atoms (Fig. 29.1). The two atoms participating in a covalent bond cannot approach
closer than the bond length due to repulsive forces between them. However their
separation by a distance longer than the bond length leads to weakening of the
covalent bond – due to less than optimal overlap of their atomic orbitals.

An empirical relation (according to Linus Pauling) between bond order (n) and
bond length (R) may be given as shown.

Rn ¼ R1 � 0:3� log n

With increasing bond order, the bond length decreases. Accordingly, a carbon-
carbon double bond is shorter than the corresponding single bond. A few bond
lengths relevant in biochemical reactions are listed in Table 29.2. Bond lengths in a
molecule can be measured by spectroscopy, X-ray, and electron diffraction methods.

While covalent bonds are quite stable (bond enthalpy of about 90 kcal � mol�1;
Table 29.3, below), electrons from these bonds can get displaced – leading to
reactivity of a particular molecule. The atoms with larger electronegativity
(Table 29.1) tend to pull more electron density toward them. A covalent bond may
be affected and/or polarized due to different electronegativities of the participating
atoms and their neighbors. These influences are variously ascribed to inductive

effect, electromeric effect, hyperconjugation, and resonance. Some molecules can-
not be represented by a single covalent structure. Instead they are better shown as

A BA-B

rA rB
wA

wB

Covalent bond Physical contact

Fig. 29.1 Covalent radius, van der Waals radius, and bond length. In a covalent diatomic
molecule A–B, the bond length is the sum of the two covalent radii (R ¼ rA + rB). This distance is
shorter than the sum of their respective van der Waals radii (¼ wA + wB)

Table 29.2 Average covalent bond lengths relevant to enzyme chemistry

Bond type Bond length (Å) Bond type Bond length (Å)

C–H 1.14 C–O 1.43
C–C 1.54 C¼O 1.24
C¼C 1.34 C–N 1.51
C�C 1.20 C¼N 1.32
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equivalent to a combination of two or more simple structures. Such resonance
structures tend to stabilize the overall molecular structure by delocalization of
electron density. Examples include the peptide bond, the aromatic benzene nucleus,
and the carboxylate group. One measurable outcome of resonance stabilization is the
unusual bond lengths (and bond orders). The peptide bond has a partial (40%)
double bond character. The C–N bond length of a peptide bond is shorter than a
typical C–N bond but longer than the C¼N bond (Table 29.2). The carbon-carbon
bond length between the adjacent carbon atoms of benzene is 1.45 Å, which is
intermediate between the expected lengths for single and double bonds. Similarly,
the negative charge on the carboxylate group is equally shared between the two
oxygen atoms – both the oxygens and the C–O bonds are equivalent.

When two atoms sharing electrons in a covalent bond are of equal electronega-
tivity, the resulting bond is nonpolar. A carbon–carbon bond is one such example.
However when the two participating atoms are of different electronegativities, the
covalent bond is polarized. Covalent bonds acquire degrees of polar character
depending on the electronegativities of the bonding atoms. Proportionately more
electron density resides with the more electronegative partner of the covalent bond.
For example, the carbon of a C–O covalent bond will carry a δ+ charge while the
oxygen will carry a corresponding δ-charge.

29.1.2 Directional Property of Covalent Bonds

Biochemical reactions often involve establishing or cleaving covalent bonds at the
carbon atom in a molecule. The electronic configuration of carbon atom either in its
ground state (1s2,2s22p2) or in the excited state (1s2,2s12px

12py
12pz

1) suggests that
the four valence electrons are not identical and hence the four bonds should not be
equivalent. However the four single bonds around a tetravalent carbon (such as in
methane) are equivalent. This is due to hybridization of 2 s and 2p orbitals of carbon.
The similar energies of the 2s and 2p orbitals can interact to form hybrid orbitals of
equivalent energy and shape. In fact, three types of hybrid orbitals (Fig. 29.2) are
possible with carbon: (a) Combination of one 2s orbital with three 2p orbitals yields
four sp3 orbitals. The four sp3 orbitals are equivalent and are capable of forming four
σ bonds along the apices of a regular tetrahedron. In this tetrahedral geometry, the

Table 29.3 Strengths of

covalent and non-covalent

chemical bonds
Bond type

Bond strengtha

(kcal � mol�1)

van der Waals attraction 0.1 (per atom)
Hydrogen bond 1–3
Ionic 3–80
Covalent 90
aBond strength is given as the energy required for breaking
it. Hydrogen bonds and ionic interactions are weakened in an aque-
ous environment as water competes in such interactions
(kJ ¼ 0.24 kcal)
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four bonds on the carbon are equally separated from each other. (b) It is possible that
one s and two p orbitals mix to give three new hybrid orbitals. In this sp2

hybridization, the new hybrid orbitals allow for three trigonal planar σ bonds to be
formed. The two lobes of the remaining p orbital are perpendicular to this plane
(Fig. 29.2) and are capable of a π bond through a lateral overlap. A double bond at
carbon thus is in effect a combination of a σ bond and a π bond. (c) When a single
p orbital combines with the 2 s orbital, two equivalent sp. orbitals result. With this
linear hybridization, the remaining two p orbitals are placed perpendicular to each
other. They can enter into π bonds through lateral overlaps. A triple bond at carbon is
therefore a combination of one σ bond and two π bonds.

Different hybridization modes of s and p orbitals clearly accounts for the direc-
tional property of covalent bonds around carbon. From the second row of the
periodic table, nitrogen and oxygen are the other two elements of importance in
enzyme reactions. Both of them can exist in sp3 or sp2 hybridization states
(Fig. 29.2). The lone pair of nitrogen occupies one of the hybrid orbitals whereas
oxygen has two such orbitals bearing a pair of electrons each. The bond angles in sp3

hybridized nitrogen and oxygen are smaller than those in carbon due to lone pair
repulsions.

Hybridization Orbitals and Geometry Bond 

angle

Covalent 

bonds

Shape and 

example

sp3 carbon; 

tetrahedral
109.5° 4 ss bonds Tetrahedral;

Methane

sp2carbon; 

trigonal
120.0° 3 s bonds 

and 1 p

bond

Planar; 

Ethylene

sp1carbon; 

linear
180.0° 2 s bonds 

and 2 p

bonds

Linear:

Acetylene

sp3 nitrogen; 

tetrahedral
107.3° 3 s bonds 

(1 lone 

pair)

Trigonal 

pyramid;

Ammonia

sp3 oxygen; 

tetrahedral
104.5° 2 s bonds 

(2 lone 

pairs)

Bent;

Water

Fig. 29.2 Types of hybridization leading to directionality of covalent bonds. A covalent σ
bond is formed due to maximal overlap of participating orbitals. A lateral overlap of p orbitals
(dumbbell shaped, shaded gray) results in a π bond. A double bond is made of one σ bond and one π
bond while a triple bond consists of one σ bond and two π bonds
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29.1.3 Non–covalent Interactions and Intermolecular Forces

Apart from the strong covalent bonds discussed above, molecules can interact with
each other through different non-covalent forces. They include van der Waals
interactions, hydrogen bonding, and ionic interactions. These are generally weaker
than the covalent bonds (Table 29.3). Both ionic and hydrogen bonds are further
weakened in aqueous environments. These three weak attractive forces are very
important in enzyme catalysis, particularly due to their readily reversible nature.

The fact that noble gases can be liquefied suggests that even they display
molecular interactions. Weak van der Waals interactions do occur between all
molecules. These are contributed by (a) dipole-dipole interactions, (b) dipole-
induced dipole interactions, and (c) London dispersion forces. Although weak, a
large number of them can produce significant cooperative interactions. They are
important in protein structure, hydrophobic recognition, and enzyme catalysis.

A hydrogen atom bonded to an electronegative atom (like N or O) can interact
with another electronegative atom (like N or O) bearing a lone pair of electrons. This
weak charge interaction is called a hydrogen bond. The atom to which the hydrogen
is covalently bonded is referred to as the hydrogen bond donor and the other
electronegative atom is called the hydrogen bond acceptor. In a hydrogen bond
(shown as dotted line) of the type “>N–H�����O¼C<,” N is the donor and O is the
acceptor. Typically the length of a hydrogen bond is longer than the corresponding
covalent bond. Strength of a hydrogen bond depends on distance, direction (angle),
and the nature of the participating electronegative atoms. The more nonlinear a
hydrogen bond (bend at the H atom!), the weaker it gets – bond directionality
matters. While Cl and N are of comparable electronegativity, chlorine cannot form
a hydrogen bond due to its larger size. Hydrogen bonds are central to the structure
and the catalytic apparatus of an enzyme molecule. A very strong hydrogen bond
results when the H atom is equally shared and strongly bonded to both the donor and
acceptor atoms. Such low-barrier hydrogen bonds (LBHBs) do occur and form part
of the catalytic strategy of many enzymes (see Chap. 6).

That quintessential scientist, JBS Haldane, once famously said “even the Pope is
70% water!” Water is the universal protic solvent and most life processes have
evolved around the unique properties of water (Table 29.4). It is the smallest and

Table 29.4 Properties of

water
Property H2O D2O

Molecular mass 18.015 20.028
Melting point 273.0 K 276.8 K
Boiling point 373.0 K 374.4 K
Density at 298.0 K 1.000 1.106
Maximum density at 277.0 K 284.2 K
Viscosity (centipoise) 0.89 1.11

Dielectric constant 78.39 78.06
O-H/O-D bond length 0.958 Å 0.918 Å
[H+] measure (as �log [H+]) pH pD (¼pH + 0.41)

318 29 Chemical Reactivity and Molecular Interactions



most abundant molecule in a cell. But for its ordered hydrogen bonded network,
water would not be in liquid form under ambient conditions. All biological (and
biochemical) processes (and reactions) are either directly or indirectly under the
influence of characteristic features of water. That biological catalysis which has
primarily/predominantly originated in an aqueous environment is consistent with
this.

Hydrogen bonds play a major role in the structure and solvent properties of water.
The unusually high boiling point, melting point, and density behavior are the
manifestations of strong intermolecular hydrogen bonding in water (Fig. 29.3).
Because of difference in the electronegativity of O and H, water also has a large
dipole moment. A substitution of H by D (heavy isotope of hydrogen) significantly
changes the solvent properties of water. Some of these differences are listed in
Table 29.4. Most acids are 3–5 times weaker in D2O than in H2O. The shorter O–
D bond (by about 0.04 Å or 0.004 nm) leads to changes in polarizability and solvent
structure. Because of this, hydrogen bonds and hydrophobic interactions are also
affected. Even proton transfers rates may be affected leading to what is known as
solvent isotope effects.

Two oppositely charged atoms/groups attract each other – these electrostatic
forces are called ionic interactions or salt bridges. The strength of this Coulombic
attraction depends directly on the two charges involved (Q1 andQ2) and is inversely
proportional to the square of the distance (r) between them.

F ¼
Q1 �Q2

r2 � D
where D is dielectric constant

Ionic interactions also depend on the dielectric constant (D) of the medium. They are
nearly as strong as a covalent bond in vacuum but are greatly weakened by the
aqueous environment (with typical bond energies in water of the order 3–-
5 kcal � mol�1). Therefore salt bridges are stronger in the hydrophobic interior of
a protein than on the solvent-exposed surface. Charged ligands often form salt
bridges with their charged counterparts at the enzyme active site. For instance,
negatively charged phosphate group is bound through positively charged active
site arginine residue (the guanidinium group).
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H

H

HO

H

HO

H

1.76 

1.0

1.0

1.76 
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H H

d–

d+

A

B

Fig. 29.3 Attributes of

water molecule. (A)
Hydrogen bonding and the
structure of water. Dashed
lines represent hydrogen
bonds and all the bond lengths
are in Å. (B) Dipole moment
of water molecule

29.1 Atoms, Molecules, and Chemical Bonding 319



29.2 Chemical Reaction Mechanisms

Living beings depend on a myriad of chemical reactions – the sum total of metabo-
lism. These chemical transformations are almost invariably brought about by
enzyme catalysts. Many biochemical reactions may appear quite complex but are
not. Their apparent complexities are largely due to the variety of reactant structures
involved. However at the mechanistic level, these reactions are simply the elemen-
tary reactions of organic chemistry. Relevant description of some of these reaction
types and the principles of underlying chemical mechanisms will follow.

29.2.1 Cleaving and Forming Covalent Bonds

Enzymes utilize many of the same mechanisms that are well known to chemists – for
the synthesis and degradation of organic compounds. There are two possible ways of
forming and cleaving a carbon-carbon single bond. Upon homolytic cleavage, the
participating carbon atoms depart with one electron each from the C-C bond (of the
two electrons shared by them). This type of fragmentation results in two radicals
(Fig. 29.4). Two carbon atoms (with one unpaired electron each) come together to
establish a covalent bond – in the reverse of homolytic fission. Free radicals are
generally very reactive and unstable species. The larger the number of alkyl
substituents on the carbon carrying the unpaired electron, the more stable is that
free radical (due to hyperconjugation). The carbon atom (bearing the lone electron in
a free radical) is sp2 hybridized (trigonal) with the third p orbital bearing the lone
electron. Although not common, enzymes catalyzing reactions with free radical
reaction intermediates are known. Ribonucleotide reductase, involved in the biosyn-
thesis of deoxyribonucleotide precursors of DNA, is an important example of this
type.

C C C C+
Homolytic 
   fission

Free Radicals (trigonal - sp2)

CC C C
+ +

Heterolytic 
   fission

 Carbocation 
(trigonal - sp2)

       Carbanion 
(tretrahedral - sp3)

Fig. 29.4 Homolytic versus heterolytic fission of a carbon-carbon covalent bond
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The second mode of C–C bond cleavage is the heterolytic cleavage (Fig. 29.4).
Fragmentation by heterolytic cleavage generates a pair of oppositely charged ionic
species. The species carrying the positively charged carbon atom is carbocation. The
other product of heterolytic cleavage is the carbanion, with a negatively charged
carbon atom. The combination of a carbocation with a carbanion leads to the
formation of a covalent C–C bond – which is the exact reverse of a heterolytic
cleavage. Both forms of the charged carbon species, namely, carbocations and
carbanions, are extremely unstable. The carbon bearing the positive charge in the
carbocation is sp2 hybridized (trigonal) with an empty unhybridized p orbital. The
more the number of alkyl substituents on the carbon bearing the positive charge, the
more stable the carbocation. The order of stability for carbanions is the exact reverse
of carbocations. Furthermore, carbanion carbon is sp3 hybridized with the lone pair
occupying one of the vertices of a tetrahedron.

Enzymes make use of the ionic mechanism in most C–C bond cleavage and
formation events. Since both carbocations and carbanions are unstable, how are they
generated and stabilized during reaction? A carbocation is generated/stabilized in the
context of the overall molecular structure. The positive charge may be distributed
and stabilized through resonance. For instance, the carbonyl carbon (>C¼O) can be
a suitable carbocation for reaction. It has a large dipole moment with significant
negative charge on its oxygen atom while the carbon atom bears an equal amount of
positive charge. In effect the carbonyl group is a resonance hybrid of charged and
uncharged structures, imparting a carbocation character to the carbon atom
(Fig. 29.5). Similarly, any molecular arrangement that stabilizes the negative charge
on carbon, in principle, supplies a carbanion. Quite often the carbanion is attached to
a functional group that allows the negative charge to be delocalized by resonance.
Distribution of negative charge over several atoms, in addition to the carbon atom in
question, stabilizes the carbanion. An adjacent β-carbonyl group (and not an -
α-carbonyl group!) often provides such an apparatus (Fig. 29.5). Due to such
resonance stabilization, the reactivity of the bond β to carbonyl becomes �1033

times greater than a typical hydrocarbon bond. This unique reactivity underlies every
C–C bond-breaking reaction of central metabolism (Rabinowitz and Vastag
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O
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Carbanion
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O

CarbocationCarbonyl group
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Fig. 29.5 Stabilization of

carbocations and

carbanions. The carbonyl
group can act as a device to
present carbocations (top) and
carbanions (bottom) for
reaction. The carbanion
shown in effect is also an
enolate
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2012). Resonance delocalization of negative charge allows the carbon atom to react
as a carbanion – without letting full formal negative charge to develop on that
carbon. Chemistry involving enolates (such as with pyruvate) is an excellent exam-
ple of this concept.

The unequal heterolytic cleavage of a covalent bond brings us to yet another
important definition of electron-rich and electron-deficient groups/centers. A nucle-

ophile (literally nucleus lover) is a species that forms a covalent bond to its reaction
partner (the electrophile – electron lover) by donating both bonding electrons. All
molecules or ions with a free pair of electrons can act as nucleophiles. Because
nucleophiles donate electrons, they are by definition Lewis bases (see
Chap. 30 Acid–Base Chemistry and Catalysis). A nucleophile is thus an electron-
rich chemical reactant that is attracted by electron-deficient compounds. Examples of
nucleophiles are anions such as COO� or a compound with a lone pair of electrons
such as –NH2 (amine), NH3 (ammonia), or H2O (water). In the same sense,
carbanions are nucleophiles and carbocations are electrophiles. The chemistry of
formation of the C–C bond thus involves the nucleophilic attack by carbanion on to a
carbocation. The carbonyl group in a molecule, for instance, often sets up the
electrophilic (carbocation) or nucleophilic (carbanion) center required for many
enzyme chemistries. A detailed discussion on nucleophiles, nucleophilic chemistry,
and its role in catalysis is available in a subsequent chapter (Chap. 31).

29.2.2 Logic of Pushing Electrons and Moving Bonds

To appreciate how enzymes work, familiarity with two languages is necessary. One
is the kinetic/thermodynamic description of reactions – that formed the significant
thrust of earlier two sections (Part II and Part III). Second is the description of the
reaction mechanism – which involves moving electrons and making/breaking of
bonds. The first is physical and the second is chemical (largely organic chemistry!).
The vast majority of organic reactions are polar in nature, where nucleophile and
electrophiles participate. Electron flow is the key to molecular reactivity –

nucleophiles donating electrons to the electrophiles. Curly arrows (shown in color
in each reaction) are used to describe reaction mechanisms. A curly arrow represents

the movement of a pair of electrons with the result that a bond is formed between a
nucleophile and an electrophile. A simple example would be the association/disso-
ciation equilibrium of a Bronsted acid. The lone pair electrons on the carboxylate
oxygen of acetate are transferred to empty 1s orbital of H+ (Fig. 29.6). Exact
opposite of this electron pair movement occurs during dissociation of the acid –

which is a bond cleaving event.
Charge is conserved in each step of a reaction – net charge cannot be created or

destroyed. If we start with neutral molecules (like acetic acid) and make a cation (like
H+), we must make a corresponding anion (like acetate). Protonation of ammonia is
yet another example of this conservation of charge concept (Fig. 29.6). There is one
net positive charge on either side (H+, reactant and NH4

+, product). Curly arrows are
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also used to show movement of electrons within molecules. Enolization is an
example where two lone pair shifts (two curly arrows; Fig. 29.5) occur.

Curved arrows are vital to understand reaction mechanisms. Curly arrows are
important conceptual representation of electron pair movements in a chemical
mechanism. Such arrows always represent the movement of electrons and not

atoms. The tail of the arrow shows the source of electron pair – usually from a
lone pair, a π bond or a σ bond. The arrowhead indicates the ultimate destination of
the electron pair – often to an electronegative atom that can harbor a negative charge.
Oxygen of a carbonyl group is one such atom (see Fig. 29.5).

A tricky question is to know where to begin the first arrow. It is usual to start
pushing electrons (first curly arrow!) from the nucleophile, anion, or a lone pair. But
some mechanisms are better understood as electron pulling – generally by a reagent
(electrophile) such as a cation, an acid, or a Lewis acid. All the curly arrows in a
given mechanism move in the same direction. However, we may a) either draw the
first arrow from a nucleophile (electron pushing) or b) end the first arrow into an
electrophile (electron puling).

The conventions and concepts used to write proper chemical mechanisms are
summarized in the box below.

Guidelines to a Chemical Mechanism

In writing and understanding chemical reaction mechanisms, the following
broad guidelines operate:

• Identify the nucleophilic and electrophilic atoms taking part in the reaction.
• Decide whether the mechanism involves electron pushing (arrow to begin

from the nucleophile) or electron pulling (beginning at the electrophile).
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Fig. 29.6 Curly arrows are

used to show the movement

of electron pair. Ionization
equilibrium of acetic acid
(top) and protonation of
ammonia (bottom) are shown
as examples

29.2 Chemical Reaction Mechanisms 323



• Mark the lone pair of electrons on the nucleophilic atom.
• Draw curly arrow(s) to show the flow of electrons from an electron-rich

center to an electron-deficient center.
• Multiple curly arrows always move in the same direction – they never meet

head on or end up in a single atom.
• C, N, and O atoms can have a maximum of eight electrons in the outer

valence shell (2s, 2px, 2py, 2pz) while H has two (1s). Carbon has a valency
of 4.

• If you make a new bond to uncharged H, C, N, or O, you must break one of
the existing bonds in the same step.

• Define the charges clearly and ensure that overall charge is conserved
(before and after) in the mechanism.

Drawing curly arrows and writing reaction mechanisms are like learning
swimming. Once you have mastered the skill (of course with some practice!),
it is difficult to forget or make mistakes.

29.3 Stereochemical Course of Reaction

Majority of biomolecules are chiral compounds. The presence of a carbon atom
bonded to four different groups (abcd) leads to chirality (asymmetry), and such
atoms are termed stereo-centers or chiral centers. Consider alanine, for example. It
is chiral because the α-carbon is bonded to four different groups, namely, –COOH, –
NH2, –CH3, and –H. There can be two distinct three-dimensional arrangements
(configuration) of the four groups around the α-carbon. The two nonsuperimposable
mirror-image forms are called enantiomers – the L- and D-forms of alanine. In
modern nomenclature, the two are designated as 2S-alanine and 2R-alanine, respec-
tively. The L- and D-forms of alanine are identical in their physical properties except
for their interaction with plane-polarized light. Hence such structural isomers are
also commonly called optical isomers. It is possible that a molecule may have more
than one chiral carbon in it. For instance, threonine has two asymmetric centers – one
at the α-carbon and the other at β-carbon.

Glycine, unlike alanine, does not have a chiral α-carbon and is optically inactive.
Apart from –COOH and –NH2 groups, the other two substituents on its α-carbon are
hydrogen atoms. However these two –H atoms are stereochemically distinct. Carbon
centers that are surrounded by aabc groups are known as prochiral centers. For
instance, the α-carbon of glycine or the C-1 of ethanol is prochiral. In general, a
molecule is said to be prochiral if it can be converted from achiral (such as aabc) to
chiral (abcd) in a single chemical step. Numerous biological reactions involve
prochiral compounds. Nevertheless, the two identical substituents are selectively
recognized by enzymes. The two H atoms attached to C-1 of ethanol are
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distinguished by alcohol dehydrogenase. In the chiral active site, environment
ethanol is held in a fixed orientation – so that only proR-hydrogen is removed
(Fig. 29.7). Other examples of such chiral discrimination at a prochiral center
include aconitase (acting on citrate) and fumarase (acting on fumarate to form L-
malate). Such discrimination is possible because by themselves enzymes are chiral
catalysts. Enzyme active sites almost always provide a chiral environment and act in
a stereo-specific manner. When this is not the case, then a nonenzymatic step may be
involved.

The stereochemical course of an enzyme reaction may be determined by suitable
isotopic labeling of substrate. The fate of this label is subsequently monitored to
deduce the reaction path. For instance, the deuterium label in proR position of
ethanol alone is removed by alcohol dehydrogenase – proS-hydrogen is retained in
the product acetaldehyde (Fig. 29.7). In principle, one can construct chiral methyl
groups with the three different isotopes (H, D, and T) of hydrogen. Similar stereo-
chemical strategy is used to analyze the stereochemistry of phosphoryl transfer
reactions. Notably, phosphates contain three apparently identical oxygen
substituents and they can be labeled with 16O, 17O, and 18O, the three isotopes of
oxygen (we will have more on phosphate chemistry in a subsequent chapter).

It is important to know the exact chirality relationship between the reactant and
the product. The absolute configuration of a compound (e.g., the reaction product)
can be assigned by (a) converting it chemically into a compound of known stereo-
chemistry and then measuring its optical activity, (b) complexing it with a known
chiral reagent and then determining its relative configuration by NMR spectroscopy
or X-ray crystallography, and (c) using an enzyme of known chiral specificity. For a
more detailed treatment on stereochemistry, the reader is encouraged to consult
elementary texts on organic chemistry.

29.4 Common Organic Reaction Types

Enzyme reactions involve breaking/making covalent bonds in their substrates. Such
events involving covalent bonds are greatly influenced by the surrounding chemical
environment and functional groups. A functional group is a group of atoms within
a molecule that has a characteristic chemical behavior, such as a carboxylate

CH
3

C
OH

HH

CH
3

C
O

H      Alcohol
dehydrogenase

NAD+ NADH

Fig. 29.7 Stereochemistry of alcohol dehydrogenase reaction. Only the proR-hydrogen of
ethanol is selectively removed by the enzyme. The C-1 of ethanol is an example of prochiral
carbon with aabc arrangement of groups around it. The proR-hydrogen is shown in black and
proS-hydrogen is in gray
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(–COOH) group in acetic acid or a thiol (–SH) in cysteine. A functional group that
makes off with a pair of electrons (of the σ bond that is broken) is called an outgoing
nucleophile or a leaving group. In a given reaction, we may come across an
incoming nucleophile (inNu:) that replaces an outgoing nucleophile (outNu:).
Although a vast variety exists, we will restrict ourselves to more common organic
reaction types encountered in enzyme reactions here.

29.4.1 Nucleophilic Displacements

In a nucleophilic substitution (SN type) reaction, one nucleophile (the leaving group)
is substituted by another on a saturated sp3-hybridized carbon atom. In an SN1

(Substitution, Nucleophilic, 1st order) reaction, the substrate undergoes a spontane-
ous dissociation to generate a carbocation intermediate. After this rate-determining
first-order event, the carbocation reacts with the substituting nucleophile to form the
product. Thus SN1 reactions occur in two steps and usually take place with tertiary or
allylic carbon of the substrate. Conversion of geranyl diphosphate to geraniol is an
example of SN1 reaction (Fig. 29.8).

An SN2 (Substitution, Nucleophilic, 2nd order) reaction takes place in a single
step – where the incoming nucleophile attacks the electrophilic carbon with its
electron pair. Because the incoming and outgoing nucleophiles are on opposite
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Fig. 29.8 Nucleophilic substitution reaction mechanisms. Examples of SN1 (geraniol synthase;
left panel) and SN2 (phenylethanolamine N-methyltransferase; right panel) type reactions are shown
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sides (180� apart), the stereochemistry at the reacting center is inverted during an
SN2 reaction. Methylation of norepinephrine to epinephrine by S-
adenosylmethionine is one such reaction. The amine nitrogen of norepinephrine
(incoming nucleophile) displaces S-adenosylhomocysteine (outgoing nucleophile or
the leaving group) on the electrophilic methyl carbon atom (Fig. 29.8). Many other
important examples of nucleophilic displacement include acyl, phosphoryl, and
glycosyl transfer reactions. We will revisit few of them as specific cases in the
later chapters.

29.4.2 Elimination Reactions

Reactions involving elimination of HX to yield an alkene are important in many
biochemical pathways. Particularly common are dehydration (removal of H2O) and
deamination (removal of NH3) reactions. An elimination reaction in the reverse
direction simply describes an addition reaction. Addition and elimination reactions
generally occur adjacent (at α,β position) to a carbonyl group. The substrates are
normally thioesters, carboxylic acids, ketones, or aldehydes. Mechanistically elimi-
nation reactions are more complex and may be classified into E1, E2, or E1cB
reaction types. The elimination of HX involves the cleavage of a C–H bond and the
cleavage of C–X bond. The timing of C–H and C–X bond cleavages in the reactant
determines the type of elimination reaction (Fig. 29.9). In E1 (Elimination 1st order)
mechanism, first the C-X bond breaks to generate a carbocation. This carbocation
then undergoes base abstraction of H+ (C-H bond break) to form the double bond.
The E1 reactions, found in organic chemistry, are rarely encountered in enzymology.

C C

NH
3

+

C

C

O

O

O

O

C C
C

C

O

O

O

O

H

C C

X

H

C C
+

C C

C CC C

X

H

C C

X

C C

H

C C

X

E1cB

E1

E2

X- BH+

(E1cB) + NH4
+

Aspartase

B:

H+ X-

B:

B:

BH+X-,

Fig. 29.9 Three possible

elimination reaction

mechanisms. While the E1
reaction goes through a
carbocation intermediate, the
E1cB mechanism involves a
carbanion intermediate. In the
E2 mechanism, breaking of
C–H and C–X bonds is
simultaneous. Aspartase
reaction (shown below)
follows E1cB mechanism
where the C–N bond breaks to
eliminate ammonium
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In the E1cB (Elimination 1st order, conjugate Base assisted) reaction, the C-H bond
cleavage occurs first to give a carbanion intermediate. This carbanion in a
subsequent step loses X� to give the alkene. Eliminations with E1cB mechanism
are quite common in biological chemistry – the carbanion intermediate being
stabilized by the functional residues at the enzyme active site. A single-step E2

(Elimination 2nd order) mechanism is followed when C–X and C–H bond cleavages
are concerted, i.e., occur simultaneously (Fig. 29.9). When E2 mechanism operates,
the H and X are eliminated from opposite faces of the molecule (anti elimination).
With E1cB reaction however, reaction stereochemistry may be anti or syn (same
side) – depending on the active site geometry.

A well-documented case of E1cB mechanism is aspartase reaction (Fig. 29.9).
Aspartases from different organisms show high sequence homology, and this
homology extends to functionally related enzymes such as the class II fumarases,
the argininosuccinate, and adenylosuccinate lyases. Others examples include
dehydratases like 3-dehydroquinate dehydratase (shikimate pathway) and
β-hydroxyacyl ACP dehydratase (fatty acid biosynthesis). Since addition/elimina-
tion reactions are reversible, a dehydratase performs hydration in the opposite
direction. For instance, trans-2-enoyl CoA hydratase adds water across a double
bond during fatty acid oxidation.

The dehydration of a β-hydroxycarboxylic acid by aconitase (citrate ! cis-
aconitate ! isocitrate) is likely an example of E2 elimination (Fig. 29.9).

29.4.3 Carbon–Carbon Bond Formation

Reactions that lead to formation or cleavage of C–C bonds are central to metabolic
logic. They are the key steps in building (synthesis) and degradation (catabolism) of
diverse cellular metabolites. Some of the most fundamental reactions of this type
involve carbon dioxide as substrate (carboxylation) or product (decarboxylation).
These reactions will be discussed a little later (Chapter 34). A few less widely
distributed C–C bond formation reactions include steps in terpene synthesis (via
carbocation intermediate) and lignin biosynthesis (via free radical intermediate).
Besides carboxylation/decarboxylation, two other C–C bond-forming reactions are
of great importance. Significantly both of them are carbonyl condensation reactions.
A carbonyl condensation results in bond formation between the carbonyl carbon of
one partner and the α carbon of the other carbonyl partner. This reactivity is because
the α hydrogen of a carbonyl compound is weakly acidic and susceptible to base
capture. The enolate so formed (in its carbanion form; see Fig. 29.5) functions as a
nucleophile.

The aldol reaction is the condensation of two carbonyl compounds (aldehyde or
ketone) via an enolate intermediate. It yields a β-hydroxy carbonyl compound from
two molecules of aldehyde or ketone. This is an example of nucleophilic addition
reaction. One molecule reacts with base to generate a nucleophilic enolate, which
then attacks the carbonyl carbon of the second molecule (Fig. 29.10). Reverse of
aldol condensation is also possible and constitutes a C–C bond cleavage reaction.
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The enzymes which catalyze aldol reactions are known as aldolases. Fructose-1,6-
bisphosphate aldolase reaction from glycolysis is a prototype. Other examples
include citrate synthase (aldol condensation) and ATP citrate lyase (aldol cleavage).
A few amino acids can also undergo aldol-type cleavage. The carbanion formed
from such C–C bond breaks is stabilized through a cofactor like pyridoxal phosphate
(e.g., serine hydroxymethyltransferase).

Carboxylic esters can react to form β-keto-esters, via an ester enolate intermedi-
ate. Such reactions are known as Claisen condensation reactions. Claisen ester
condensation is more difficult than an aldol reaction because the C–H bond adjacent
to an ester is significantly less acidic than the proton next to a ketone. The carbonyl
group of a thioester is more ketone-like and better suited for Claisen condensation.
Therefore we often encounter thioesters of coenzyme A (CoA) in biological
reactions. In principle, one molecule of ester reacts with base to give a nucleophilic
enolate ion. This enolate adds to the second molecule in a nucleophilic acyl
substitution reaction (Fig. 29.10). The initial alkoxide expels the leaving group
(thiolate is a better leaving group – hence thioesters!) to regenerate a carbonyl
group and form the β-keto-ester product. There are many examples of Claisen
reactions involving acetyl CoA in biological systems. These include condensation
reactions in the biosynthesis and assembly of fatty acids, polyketides, and steroids.
Two acetyl CoA units condense to form 3-ketobutyryl CoA, which in turn condenses
with another molecule of acetyl CoA to give hydroxymethylglutaryl CoA (HMG
CoA – onward to cholesterol biosynthesis).

Claisen condensation reaction is reversible; a β-keto-ester can be cleaved by a
suitable base to yield two ester molecules. It is worth noting that an essential reversal
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of Claisen condensation reaction occurs in fatty acid catabolism. For example,
thiolysis of β-ketoacyl CoA each time releases one molecule of acetyl CoA.

29.5 Summing Up

The variety of chemical reactions catalyzed by enzymes is vast. Indeed some of the
chemistry – like the formation of a C–P bond – was novel even to organic chemists.
Nature of the reaction catalyzed by enzymes forms the basis of EC classification. The
six general reaction categories include oxidation–reduction reactions, group
transfers, hydrolysis, lyase steps, isomerizations, and synthetic steps. At the mecha-
nistic level, nucleophiles, nucleophilic attack, and general acid–base catalyzed
proton transfers permeate most of bioorganic chemistry and enzymology. A basic
understanding of their reactivity is essential to appreciate enzyme chemical
mechanisms. These aspects will be elaborated in the two subsequent chapters.
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Acid–Base Chemistry and Catalysis 30

Acids and bases are enormously important in enzyme chemistry. A thorough

knowledge of acid–base chemistry is crucial to understand reaction mechanism

and catalysis. According to the Bronsted (1923) definition of acids and bases, any

substance (or a functional group) that has a tendency to lose a proton is an acid.

Correspondingly, a base will then be a proton (H+) acceptor. This definition, as we

will see below, eminently suits our understanding of the role of acid–base groups at

the enzyme active site. However, Lewis provided a broader definition of acids and

bases. Accordingly, a Lewis acid is a substance that accepts an electron pair from a

base while a Lewis base is a substance that donates an electron pair to an acid. Lewis

acids are involved in enzyme-catalyzed processes as cofactors. Metal cations such as

Mg2+, Mn2+, Zn2+, and iron–sulfur clusters are Lewis acids. One way of visualizing

this acidity is to consider water molecule coordinated to Zn2+, for instance. Because

a lone pair of oxygen is donated to Zn2+ (the Lewis acid), the O-H bond of bound

water is better polarized and therefore more readily loses a proton (i.e., H+). While

the definition of base is practically same in the two definitions, the concept of Lewis

acids is much broader and goes beyond just the H+ donors.

30.1 Acids and Bases

Bronsted Acid–Base and Context of Water The Bronsted–Lowry concept of

acids and bases best describes the proton transfers during enzyme catalysis –

reactions occurring in water. Every Bronsted acid has a conjugate base associated

with it – while every base has a conjugate acid form. Consider the following proton

transfer reaction:
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AHþ B ! A� þ BHþ

The acid AH upon losing H+ ion becomes its conjugate base A�. Similarly, the

base B by accepting a proton becomes its conjugate acid BH+. Being the universal

protic solvent, water can behave as an acid or as a base. It can accept a proton from

an acid or donate a proton to a base. Therefore it is no surprise that naked H+ species

never occur in aqueous solutions. They invariably are found as solvated hydronium

ions (H3O
+; and we will always mean H3O

+ when we talk of protons in water). The

equilibrium extent of these reactions depends on the relative strengths of the acids

and bases involved:

AHþH2O⇄A� þH3O
þ

BþH2O⇄BHþ þOH�

With a strong acid, water acts as a base and becomes protonated to H3O
+. A base

on the other hand would deprotonate water to give hydroxide ion (OH�) – here water

is acting as an acid. Such compounds that act either as an acid or a base are called

amphoteric.

Acids differ in their ability to donate protons. They can be simply compared by

measuring the ease with which they transfer a proton to the solvent – water. The

strength of an acid in an aqueous solution is expressed by its acid dissociation

constant Ka, as defined in the box below. The stronger the acid, the larger is its Ka.

Acid Dissociation Constant

Ka ¼
H3O

þ½ � � A�½ �

AH½ �

This equation can be rearranged to.

H3O
þ½ � ¼

Ka� AH½ �

A�½ �

Taking logarithms on both sides and changing the sign,

�log H3O
þ½ � ¼ �logKa� log

AH½ �

A�½ �
¼ �logKaþ log

A�½ �

AH½ �
pH

¼ pKaþ log
A�½ �

AH½ �

(continued)
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This equation is known as the Henderson–Hasselbalch equation (Po and

Senozan 2001). When the concentrations of acid and its conjugate base are

equal, the value of [A�]/[AH] is 1.0. Therefore the log ([A�]/[AH]) is zero and

at this point pH is exactly equal to pKa. Thus the pKa of a Bronsted acid is the

pH at which it is half dissociated to its conjugate base.

The Two pKas of Water

The pKa for H3O
+ may be calculated from the following acid dissociation

equilibrium:

H3O
þ
⇄H2Oþ Hþ

Accordingly, Ka ¼ ([H2O] � [H+])/[H3O
+]. However another molecule of

water accepts this proton to form H3O
+. Therefore Ka¼ [H2O]¼ 55.56 M and

pKa for H3O
+ will then be –log (55.56) ¼ �1.74.

The pKa for the ionization of H2O will follow from its acid dissociation

equilibrium:

H2O⇄OH
� þ Hþ

The Ka for H2O will be¼ ([OH�]� [H+])/[H2O]. This can be evaluated by

plugging in the values for the three concentrations. Therefore Ka ¼ (1.0 � 10
�14)/55.56 ¼ 1.80 � 10�16 and then –log(1.80 � 10�16) ¼ 15.74.

The two pKas of water should not be confused with the pH of water. The

pKa of H2O is 15.74 and the pKa of H3O
+ is �1.74. The pH of pure water at

25 �C is 7.0 and this is not its pKa!

In order to compare a wide range of acidities (acid strengths), the negative

logarithm of Ka (i.e., �log Ka) is more convenient. Obviously, a stronger acid

will then have a smaller pKa. It also follows from the Henderson–Hasselbalch

equation that when [AH] ¼ [A�], we get pH ¼ pKa. Thus by mapping their pKa

values on to the pH scale in water, different Bronsted acids/bases can be compared. It

also follows that the ionization of a strong acid generates a weak conjugate base; and

the protonated form of a strong base is a weak conjugate acid. Finally, when two

bases compete for H+, the stronger base wins the hand of a proton.

Besides being both a proton donor and a proton acceptor, water dissociates to

produce H+ and OH�. The ionization of water due to different states of

deprotonation is as shown:

H3O
þ

_

!
pKa¼�1:74

H2O
_

!
pKa¼15:74

HO�
_

!
pKa¼21:00

O2�
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Of these, the first two conjugate acid–base forms of water (namely, H3O
+/H2O

with a pKa of �1.74 and H2O/OH
� with a pKa of 15.74) are responsible for its

amphoteric nature in aqueous solutions. They also define the limits of pH scale in

aqueous solutions. The concentration of H+ ions (same as H3O
+) in pure water is 10

�7 M. In terms of pH scale (negative logarithm of [H+]), this corresponds to a pH of

7.0. In fact, pH¼�log ([H+]/1 M) implies that pH is a unitless quantity (for standard

state is considered as 1 M). From the concept of pH and the ionic product of water

(Kw), the pH scale in aqueous solution spans from 0 to 14. While a pH of 7.0 is

neutral (i.e., equal number of H+ and OH� ions), acidic solutions have a pH of less

than 7.0; and the lower the pH, the more acidic the solution. Similarly, the higher the

pH, the more basic is the solution.

Factors Affecting Bronsted Acid–Base Strength Broadly three factors influence

the strength of a Bronsted acid (or a base).

First, the chemical structure defines the reactivity of a molecule. The number of

chlorine atom substitutions on the methyl group of acetic acid influences the acidity.

Trichloroacetic acid is a much stronger acid than acetic acid. Similarly, the acidic

nature of the phenolic OH increases in the order phenol < p-nitrophenol < picric acid

(2,4,6-trinitrophenol). With respect to basicity, aniline is a weaker base than

ethylamine, for instance. As a rule, the more stable the conjugate base (e.g., F� > OH
� > NH2

�), the stronger the acid (HF > H2O > NH3). Also, the more electronegative

the element on which the negative charge resides, the more stable is the

conjugate base.

Second, the medium by virtue of its solvation effects greatly influences the

strength of an acid–base. Dissociation of HCl in gas phase is strongly endothermic

– and it does not dissociate. The same molecule readily ionizes in water and is a very

strong acid. This is due to favorable solvation of the dissociated charged species.

Consider acetic acid as a solvent in place of water. Since acetic acid is more acidic

than water, HCl is a weaker acid when acetic acid is the solvent. Similarly, ammonia

is more basic than water, and therefore acetic acid (normally a weak acid) behaves as

a strong acid in ammonia. The converse is true for the Bronsted bases. In solvents

more acidic than water, all bases behave as stronger bases, and in solvents less acidic

than water, they appear as weaker bases. When a base stronger than the hydroxide

ion is added to water, it will be converted into its conjugate acid with equimolar

release of OH� ions. A natural outcome of this solvent influence is the leveling effect

observed in water. All acids with pKa values below �2.0 (note: pKa of H3O
+ is

�1.74) appear as equally strong acids. This is because, in water, such acids readily

protonate the solvent and generate H3O
+ equivalents. Therefore there cannot be a

stronger proton donor than H3O
+. In the same way, all bases with pKas greater than

16.0 (note: pKa of OH� is 15.74) appear equally strong because they are virtually

completely protonated by the solvent – water. The solvent properties of water are a

reflection of its O-H bond strength. A substitution of H by D makes it more rigid and

hence most acids are 3–5 times weaker in D2O than in H2O.
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Lastly, the microenvironment of a Bronsted acid–base greatly influences its

ionization and pKa. Consider ionization of the two carboxylate groups of glutamic

acid in water. The pKa of the α-COOH is 2.19 while that of its γ-COOH is 4.25. The

amino group (α-NH2) is a good proton acceptor and thus facilitates the ionization of

the adjacent α-COOH – its pKa is lowered. The γ-COOH experiences no such effect

and hence shows a pKa similar to that of acetic acid (pKa of 4.76). Similarly the

α-NH2 becomes less basic (pKa of 9.67) than the isolated amino group of a primary

amine (e.g., ethylamine has a pKa of 10.75). In general, the pKa of a group would be

altered if it is involved in a salt bridge formation with an oppositely charged residue

or is surrounded by like charges (Fig. 30.1). Ionization (and separation of charges) is

not favored in a hydrophobic environment. The nonaqueous hydrophobic microen-

vironment (often found at enzyme active sites) destabilizes the charged species and

shifts the equilibrium toward a thermodynamically more favorable unionized state.

For instance, acetic acid is a weak acid in benzene than in water; pKa of the –COOH

group is elevated in a hydrophobic environment.

All the three factors have been brought to bear by nature in fine-tuning pKa values

– in order to optimize acid–base catalysis at enzyme active sites.

Ionizable Groups Relevant to Enzyme Structure and Function The pH depen-

dence of enzyme activity is a reflection of the acid–base groups involved in substrate
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binding and catalysis. Ionizable amino acid side chains of the enzyme protein are

typically involved in such catalysis (see Chap. 24). Typical pKa values of such acid–

base groups that populate the 0–14 pH range in water are listed in Table 30.1. Very

few acid–base groups other than those of the polypeptide contribute to enzyme

function. Water bound to a metal ion (cofactor) on the enzyme can also ionize with

characteristic pKa of around 8.0–9.0. The actual value of course will depend on the

nature of the metal ion (such as Mg2+, Mn2+, Zn2+or Co2+) and the other ligands it is

coordinated to.

The relevance of the acid–base properties of functional groups must be in the

context of water and the physiological pH of around 7.0. Enzyme active site bases

must therefore be deprotonated around pH 7.0 but have pKa values just below 7.0.

The imidazole side chain of histidine residue is one such ideal acid–base group. It is

a versatile reagent for enzymatic acid–base chemistry. Many of the pKas listed in

Table 30.1 can be shifted by the microenvironment in the vicinity of the enzyme

active site. Because of such perturbations, it is often difficult to unambiguously

assign an acid–base group to experimentally observed pKas. For instance, (a) the

active site lysine –NH2 of acetoacetate decarboxylase exhibits unusually low pKa of

6.0 (Ishikita 2010), (b) the pKa of the active site glutamate –COOH of lysozyme is

attenuated to 6.0 from its typical pKa of 4.3, and (c) papain has a histidine whose

imidazole side chain pKa is 3.4. Factors that influence the pKa of such groups

include the neighboring charged groups and shielding from bulk solvent by the

surrounding hydrophobic residues (e.g., see Fig. 30.1).

Proton transfer from a group with lower pKa to a group of higher pKa (and not its

reverse) is thermodynamically favored. When it is fully transferred to the hydrogen

bond acceptor atom, we call it a proton transfer. In a normal hydrogen bond, the H

atom is usually found on the hydrogen bond donor but is weakly bonded to the

hydrogen bond acceptor atom. Low barrier hydrogen bonds (LBHB) are short, very

strong hydrogen bonds – the H atom equally shared between two electronegative

atoms of nearly equal pKas. The pKas of the two participating groups have to match

for a normal hydrogen bond to become LBHB. Such transitions are demonstrated in

many enzymes. This pKa matching, albeit ephemeral, is associated with catalytic

events. Thus LBHBs represent one aspect of transient pKa perturbation of acid–base

groups that participate in a hydrogen bond.

Some of the groups (included in Table 30.1) have pKas far from 7.0 and are

unlikely to contribute to enzyme catalysis by acting as acid–base groups. These

include the guanidinium group of Arg and hydroxyl groups of Ser and Thr. Their

participation cannot be categorically ruled out – as their pKas could be sufficiently

perturbed through microenvironmental effects. The active site serine-OH of chymo-

trypsin functions at about 5 pH units below its pKa – around 8.0. However, it acts as

nucleophile during catalysis (see next Chapter for details). Guanidinium group of

arginine has a very high pKa (>12.0); around neutral pH, where most enzymes

function, this group remains fully protonated. It thus cannot be a good acid–base but

presents a permanent positive charge. The guanidinium group provides a site

through which carboxylate or phosphate can be bound as a cyclic, bi-dentate,
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hydrogen-bonded ion pair (Fig. 30.2). Arginine side chain is thus ideally suited to

hold substrates in position at the active site. There is growing evidence that

guanidinium group of arginine residue may act as a specific anchor for carboxylate

(e.g., carboxypeptidase A) and phosphate (e.g., hexokinase) groups in many

enzymes.

Table 30.1 pKa values of Bronsted acid–base groups found on enzymes

Functional group

Structural form Typical pKa

(Range)

Acts at

pH 7.0 asAcid Base

Carboxylate Base

α-COOH

(C-terminal)

OH

OR

O

OR
3.4 (2.0–7.0)

β-COOH (Asp) 3.9 (2.0–7.0)

γ-COOH (Glu) 4.3 (2.0–7.0)

Imidazole (His)

R N

H
+

N
H

R N

N
H

6.5 (6.0–8.0) Acid or

base

α-Amino (N-terminal)

NH
3

+
O

R
NH

2

O

R

7.5 (6.0–8.0) Acid

ε-Amino (Lys)

R

NH
3

+

R

NH
2

10.5

(6.0–10.5)

Acid

Sulfhydryl (Cys)

R

SH

R

S
8.3 (7.5–9.0) Acid

Hydroxyl (Tyr)

R

OH

R

O
10.0

(8.5–10.5)

Acid

Guanidinium (Arg)

R

N

NH
2

+

NH
2 R

N

NH

NH
2

>12.0 Positive

charge

Hydroxyl (Ser, Thr)

R

OH

R

O
13.5

(9.0–13.5)

Acid (?)

Me2+-H2O (Mg2+, Mn2+

, Zn2+, etc.) OH
2 OHMe2+

Me2+

8.0 (7.0–9.0) Acid
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30.2 General Acid–Base Catalysis

Rates of many reactions are accelerated in the presence of an acid or base. In a

simplest form, H+ or OH� may directly participate (act as the acid or the base) in

catalysis. When H+ (or H3O
+) directly acts as the catalytic acid group, then it is

called specific acid catalysis. Similarly, when the catalytic base is OH�, it is termed

specific base catalysis. Other components of an aqueous solution (other than H+ or

OH�) including buffer species may act as Bronsted acid–base catalyst. Reaction rate

acceleration due to a Bronsted acid (other than H+) is referred to as general acid

catalysis. Participation of a Bronsted base (other than OH�) similarly defines the

general base catalysis.

Hydrolysis of esters is catalyzed by both acids and bases. This reaction is an

excellent example of specific acid–base catalysis in water. The contribution of

specific acid catalysis decreases with increasing pH while that of specific base

catalysis increases with increasing pH. This is expected as [H+] decreases with

increasing pH while [OH�] is increasing. Both [H+] and [OH�] are very low at

pH ¼ 7.0. Accordingly, the contribution by specific acid–base catalysis is minimal

and the experimentally observed hydrolysis rate constant (kObs) is the lowest at

pH 7.0 (Fig. 30.3).

O

P

O

O

O

R
Arg

N

N
+

NH

H

H

H

O

OR

Arg

N

N
+

NH

H

H

H

phosphate anchor carboxylate anchor

Fig. 30.2 The guanidinium group of arginine residue provides an excellent site to strongly

bind carboxylate and phosphate groups through a cyclic, bifunctional, hydrogen-bonded ion

pair (gray lines)

Specific acid catalysis

7.0 9.05.0

Specific base catalysis

pH

logkObs

Fig. 30.3 Influence of pH

on the rate of ester

hydrolysis in water. The

logarithm of kObs is plotted on

Y-axis as pH (on the X-axis)

is a logarithmic scale
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Contributions of Specific and General Acid Catalysis

Consider an acid-catalyzed hydrolysis of a reactant (S).

S!
H2O, Hþ, AH

kObs

Products

The hydrolysis rate of S can be written as.

�
d S½ �

dt
¼ kObs � S½ �

where kObs is the experimentally observed pseudo-first-order rate constant

for hydrolysis. This acid catalysis rate constant in turn has the following

components:

kObs ¼ k0 þ kH � Hþ½ � þ kAH � AH½ �

where,

k0 ¼ first-order rate constant for uncatalyzed reaction

kH ¼ second-order rate constant for H+ catalyzed reaction (specific acid

catalysis),

and

kAH ¼ second-order rate constant for the reaction catalyzed by AH (general

acid catalysis).

For specific acid catalysis kAH ¼ 0 and therefore kObs ¼ k0 + kH�[H+]. At a

constant pH, this term itself will be a constant and independent of [AH]. The

plot of kObs against [AH] at constant pH results in a linear plot with slope zero

(Fig. 30.4). In practice, k0 and kH are better estimated by using a very strong

acid alone (which is fully ionized, i.e., [AH] ¼ 0, and so is its contribution to

catalysis). Since [H+] is very small, specific acid catalysis constant can be

safely ignored at or above neutral pH.

With general acid catalysis however, the component of specific acid

catalysis will always be there. The linear plot of kObs versus

[AH] (at constant pH) will show a gradient (slope ¼ kAH) and the intercept

of this plot equals “k0 + kH�[H+]” (Fig. 30.4).

Note: The above analysis focuses on contributions to the reaction rate by

specific and general acid catalysis. Catalysis by base can also be treated

similarly. But this is deliberately not shown to avoid repetition of the concept.
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A general acid (or base) catalysis always comes with the specific acid (or base)

catalysis component. Consider a reaction catalyzed by the general acid AH. Since

AH dissociates into A� and H+ in water, both AH (a general acid) and H+ (a specific

acid) species are available for participation in catalysis. The two contributions can be

distinguished by the effects of pH and the acid group concentration (i.e., [AH]) on

the rate of chemical reaction. Dependence of the reaction rate on the overall

concentration of H+ ions indicates that specific acid catalysis is occurring. We can

also conduct the reaction at various buffer strengths but keeping the pH (i.e., [H+])

constant. In such cases, the ionic strength difference can be overcome by suitable salt

addition. A linear dependence of reaction rate on the buffer concentration (but the

ratio [A�]/[AH] remaining same) indicates general acid catalysis (Fig. 30.4). Such a

rate dependence on buffer concentration is not observed with specific acid catalysis.

Effectiveness of a General Acid Catalyst The effectiveness of a general acid

catalyst depends on its acid strength. This is given by the empirical relation known

as the Bronsted relationship (Chap. 9). According to this relation:

logkAH ¼ α� logKAH þ C

where,

kAH ¼ rate constant of the catalytic step

KAH ¼ dissociation constant (Ka) of the acid AH

α ¼ Bronsted parameter

C ¼ a constant

kObs

[AH] (at constant pH)

Slope = kAH

Intercept 
= k0+kH[H+]

General acid catalysis

Specific acid catalysis

Fig. 30.4 Effect of buffer

(general acid) concentration

on the rate of an acid-

catalyzed reaction. By

simultaneously adjusting

[AH] and [A�], the pH is held

constant (according to

Henderson–Hasselbalch

equation) while molarity of

the buffer is varied. General

acid catalysis will almost

always contain the specific

acid catalysis component in it

(intercept ¼ k0 + kH � [H+])
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The Bronsted parameter α indicates the sensitivity of the catalytic step for

changes in acid strength (pKa) of AH. A plot of log kAH against log KAH (this is

nothing but “-pKa”) gives a slope ¼ α. Conceptually, the Bronsted parameter (also

known as Bronsted coefficient; normally ranges between 0 and 1) indicates to what

extent a proton is transferred from the acid (AH) to the substrate in the transition

state. When α¼ 1, every change in acid strength fully affects catalysis. The proton is

(almost) completely transferred to the substrate in the transition state (see acid

catalysis; Fig. 30.5). However, when α ¼ 0, the reaction is insensitive to changes

in acid strength – all acids catalyze the reaction equally strongly (because α � log

KAH ¼ 0 and logkAH equals the constant C). Here the proton is hardly transferred in

the transition state of the reaction. Lastly, when α ¼ 0.5, the proton is transferred

halfway between the acid anion A� and the substrate in the transition state –

indicating a symmetrical TS for the reaction.

There is also a Bronsted relation for general base catalysis which may be similarly

written as logkB: ¼ �β� logKBHþ þ C. Here the coefficient β has the same mean-

ing as α for general acid catalysis but a negative sign as we are using the acid

dissociation constant for the conjugate acid of the base (B:).

The Hammett equation (log(kx/ko)¼ ρ� σX) is yet another empirical relationship

similar to Bronsted relation. It is more general and may be used to assess the effect of

structure (such as any group X) on reactivity; here kx and k0 are rate constants for the

reactant structure with substituent X and standard (where X ¼ H), respectively. The

Hammett constant ρ (analogous to Bronsted coefficient, α) measures the sensitivity

of the reaction to electronic effects. Generally, a positive ρ value means more

electrons in the TS than in the reactant and a negative ρ value means fewer electrons

in the TS. More details on linear free energy relationships (like Bronsted relationship

and Hammett equation) and their utility may be found in specialized texts.

O

O

CH
3

CH
3

O

HH

A H

O

O

CH
3

CH
3

O

HH

B B

O

O

CH
3

CH
3

O

HH

A H

Acid catalysis Base catalysis Concerted Acid-Base catalysis

Fig. 30.5 Acid–base-catalyzed hydrolysis of ethyl acetate. Ester hydrolysis may be facilitated

by the acid AH (acid catalysis), the base B: (base catalysis), or both (in concert). In water, when

AH ¼ H+, it is specific acid catalysis and when B: ¼ OH�, it is specific base catalysis. Concerted

acid–base catalysis involves simultaneous presence and action of a general acid (AH) and a general

base (B:). Such an arrangement of groups is best provided at enzyme active sites shielded from the

bulk aqueous medium
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Ester Hydrolysis – An Example Hydrolysis of carboxylate esters is frequently

encountered both in organic chemistry and enzymology. Both share acid–base

catalysis as a common reaction feature. It is therefore instructive to make a compari-

son of the two in terms of mechanism of acid–base catalysis. Consider the hydrolysis

of ethyl acetate, for instance (Fig. 30.5). The mechanism of ester hydrolysis involves

the formation of a transition state with (a) further polarization of the carbonyl group

and (b) partial charge transfer between the ester and water molecule. Such a

transition state can be stabilized through proton transfer by an acidic group

(AH) to the carbonyl oxygen of the ester. Alternatively, the same transition state

may be stabilized by a base (B:) accepting a proton from the attacking water

molecule.

Ethyl acetate hydrolysis in water is subject to specific acid (where AH is H+ and

kObs ¼ k0 + kH�[H+]) or specific base (where B: is OH� and kObs ¼ k0 + kOH�[OH�

]) catalysis. Therefore kObs will not contain contributions due to general acid or

general base catalysis (kAH or kB: terms, respectively; see box above). Ester hydro-

lysis at enzyme active sites is different, however. Since both [H+] and [OH�] are

quite small at physiological (near neutral) pH, the contribution of specific acid–base

catalysis is marginal. Active sites of esterases (such as lipases, cutinases, and acetyl

cholinesterase) contain general acid–base groups for catalysis. Simultaneous and

appropriate positioning of both a general acid and a general base greatly facilitates

the reaction (Fig. 30.5). Thus enzyme-catalyzed ester hydrolysis is an excellent

example of general acid–base catalysis.

30.3 Summing Up

That “enzyme-catalyzed reactions involve one or more proton transfers” is an

understatement. General acid–base chemistry permeates most of enzyme chemical

mechanisms. General acids and bases, respectively, will function only below or

above their pKa values (see Chap. 6). Ionizable amino acid side chains of the enzyme

protein are typically involved in such catalysis. Each ionizable group can be viewed

as an acid and also a conjugate base. Around neutral pH, as is evident from

Table 30.1, the carboxylate groups (of C-terminal, aspartate/glutamate side chain)

are present in the deprotonated form and act as bases. Imidazole group of histidine

can act either as an acid or as a base under physiological conditions. The protonated

amino group (of lysine), phenolic OH (of tyrosine), and thiol (of cysteine) all can

function as general acids around neutral pH.

Some of the acid–base chemistries that take place at the enzyme active site seem

almost impossible – particularly because the available acid–base groups on an

enzyme are of moderate pKa values. However enzymes have the ability to carry

out bifunctional catalysis. Protonation of the substrate molecule occurs at one

location at the same time as deprotonating it in another region (concerted acid–

base catalysis; Fig. 30.5). Such simultaneous H+ donation/abstraction events make it

possible to deprotonate substrate groups with apparently very high pKa. Ketosteroid
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isomerase is one such example: a proton is abstracted from a C-H bond adjacent to a

keto group by simultaneous protonation of >C¼O to form an enol. Such 1,3-

prototropic shifts (where a proton is moved from the first atom to the third) are

quite commonly observed during enzyme catalysis. These proton transfer events

may involve a single or two different acid–base groups. When the same acid–base

group shuttles a proton from one atom to another, that proton is not easily lost to the

solvent. This can be checked by incorporating a suitable isotope (tritium) label in the

substrate.

Finally, a Bronsted base is a species that accepts a proton – forms a bond with H+.

This is equivalent to the base making a nucleophilic attack on to a proton. The

Bronsted base could attack an electrophile other than H+, in principle. If this

happens, then we call that same base a nucleophile. How such nucleophilic (and

electrophilic) reactions contribute to catalysis forms the subject of next chapter.
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Nucleophilic Catalysis and Covalent
Reaction Intermediates 31

The concept of nucleophiles and electrophiles is closely related to bases and acids of

the acid–base chemistry. Electrophiles are essentially the same as Lewis acids, while

the nucleophiles are equivalent to Lewis bases. In practice however, acid–base

concept involves electron donation to H+, and the terms “electrophile” and “nucleo-

phile” are normally used to indicate electron donation to a carbon atom.

Nucleophiles contain a pair of electrons in a high-energy-filled orbital that they

can donate to an electrophile. As a complement, electrophiles are species with an

empty atomic orbital of lower energy that can accept a lone pair (from a nucleo-

phile). Nucleophiles can be neutral (like the amino group) or negatively charged

(like –S�, the thiolate ion), while the electrophiles can be neutral or positively

charged (like the carbocation or a divalent metal ion). If the electrophile is a proton,

then the nucleophile in question is a base by definition (see previous chapter).

31.1 Nucleophiles and Electrophiles Available on the Enzyme

Enzymes as proteins have a range of nucleophilic groups available to them. Some R

groups of amino acid residues are excellent nucleophiles. In fact most ionizable

groups (see Table 30.1) available on the enzyme can in principle act as nucleophiles

in their deprotonated state. Enzyme active site acid/base groups that exist in the

deprotonated form around pH 7.0 are potential nucleophiles for catalysis. Some of

the more commonly encountered nucleophiles are the carboxylate (-COO� of Asp,

Glu, and the C-terminus), the amino (-NH2 of Lys and the N-terminus), the imidaz-

ole (of His), the thiolate (-S� of Cys), the phenolic group (-ArO� of Tyr), and the

alkoxide (-O� of Ser and Thr). The reactivity of these nucleophilic groups may be

further modified by the active site microenvironment. Metal ions (like Zn2+) enhance

the reactivity of bound water molecule making it a better nucleophile than bulk

water. Clearly, there is no scarcity of functional groups on the enzyme surface for

nucleophilic catalysis. These side chains attack electrophilic portions of substrates to
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form a covalent bond between enzyme and substrate. We will address these covalent

reaction intermediates a little later. The identity of the actual nucleophile (of the

enzyme) involved in the catalytic mechanism may be ascertained by a combination

of tools like chemical modification, pH dependence of enzyme kinetics, X-ray

structural data, site-directed mutation studies, etc.

The availability of electrophilic groups on a protein is a different matter. Poly-

peptide enzymes are very poorly endowed with good electrophilic reagents/groups

for catalysis. Therefore nature has recruited many small molecules to fill this need. A

number of coenzymes form covalent adducts with substrates. These covalent

intermediates in turn generate new electrophilic groups, and they function as electron

sinks during catalysis. Since much of enzyme chemistry is carbanion chemistry,

coenzymes (like pyridoxal phosphate and thiamine pyrophosphate) function to

stabilize them as their electrophilic adducts. Apart from divalent cations, organic

molecules serve this purpose as cofactors and prosthetic groups. Table 31.1 lists

some of the more commonly encountered nonprotein components employed by

enzymes for chemistry. The list includes both electrophilic and redox reagents. A

detailed discussion on their role in redox chemistry (Chap. 33) and electrophilic

catalysis (Chap. 35) may be found in later chapters.

Nucleophilicity Versus Basicity A nucleophile is a Lewis base that uses an

available electron pair to bond to (electrophilic) carbon. All nucleophiles are also

bases – as they can abstract a proton. Then are basicity and nucleophilicity inter-

changeable? Not really. However one factor that correlates well with nucleophilicity

is basicity – a strong base is usually a strong nucleophile. The phenoxide of

4-nitrophenol (a strong acid whose conjugate base is weak) is a poor nucleophile

in comparison to that of phenol (relatively weak acid). This correlation is not obeyed

when two nucleophiles that attack through different atoms are compared. For

instance, thiophenate (C6H6-S
�) is a stronger nucleophile than phenoxide (C6H6-O

�) by four orders of magnitude but is a weaker base (Table 31.2). Similarly, alkoxide

ions are strong bases but not very good nucleophiles, while their thiolate analogs are

weak bases but good nucleophiles. The small and electronegative oxygen keeps its

nonbonding electron pairs close to itself, whereas sulfur is lot larger and less

electronegative than oxygen. Thus, sulfur lone pairs are more easily available to

form a bond with an electrophile reflecting on the greater nucleophilicity of sulfur

relative to oxygen.

Clearly nucleophilicity and basicity are related but also they differ in the follow-

ing way. Base strength depends on the position of the equilibrium for that base to

accept a proton from water. Nucleophile strength, however, is based on relative rates

of reaction with a common electrophile. A good nucleophile is one that rapidly forms

a new bond with carbon. Nucleophilicity is a kinetic property while basicity a

thermodynamic property (pKa, the proton ionization equilibrium). Nucleophilicity

order is structure dependent as well as solvent dependent. A number of factors

determine the nucleophilic power of a functional group. Among others, these include

(a) the strength of the carbon-nucleophile bond, (b) solvation energy of the
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nucleophile, (c) steric hindrance if any, and (d) the electronegativity and polarizabil-

ity of the nucleophilic atom. Certain nucleophiles have two adjacent electronegative

atoms (such as NH2OH, NH2NH2, HOO
�, etc.). Because of this α-effect, they are

more reactive than expected from their pKas alone.

While a well-defined nucleophilicity scale is elusive, few empirical equations

(also see Table 31.2) have attempted to quantify it.

According to Edwards equation,

Nucleophilic power ¼ log
k

k0
¼ αPþ β pKaþ 1:74ð Þ

where.

k ¼ rate constant of the reaction with that nucleophile

k0 ¼ rate constant of the reaction with standard nucleophile (water)

P ¼ polarizability, related to refractive index ratio (Nu/water)

α and β ¼ constants dependent on the reaction.

The Edwards equation relates nucleophilic power to basicity (pKa term). While

basicity is closely related to nucleophilicity, this is not the full story! A change in the

nucleophilic atom can dramatically affect the nucleophilicity. This atom change is

reflected through the polarizability factor (P in the equation). For example, O is less

polarizable than S; the value of P is large for a soft nucleophile like –S�. On the other

hand, pKa of a hard nucleophile (like –O�) is larger. In general and particularly at

physiological (near neutral) pH, –S� (thiolate) is therefore a better nucleophile than

–O� (an alkoxide or a phenoxide). The thiolate anion of cysteine (pKa of ~8.0;

Table 30.1) exists in appreciable concentrations at physiological pH ranges. This

anion (–S�; due to its electronic and polarizability properties) is 10–100 times more

nucleophilic than normal oxygen or nitrogen bases of comparable pKa values.

Concept of Good Leaving Group Another aspect related to the concept of nucle-

ophilicity is the notion of a better leaving group. Leaving groups are the fragments

Table 31.2 Nucleophilicity and basicity are related but different

Nucleophile Structural form Nucleophilicity (n) pKa

Phenol (phenolate)
O

5.75 10.0

4-Nitrophenol (4-nitrophenoxide)
N

+
O

O

O

(<5.75) 7.2

Thiophenol (thiophenoxide)
S

9.92 6.6

The nucleophilicity parameter n is from the Swain–Scott relationship: log (k/k0) ¼ s � n wherein

s is a sensitivity parameter, k is the rate constant of the reaction with that nucleophile, and k0 is the

rate constant of the reaction with standard nucleophile
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that retain the electrons in a heterolytic bond cleavage. Since they keep the electron

pair, leaving groups are quite often nucleophiles (and bases). Weaker bases are more

stable with the extra pair of electrons and therefore make better leaving groups.

Furthermore, the effectiveness of a leaving group increases with the group’s ener-

getic stability after it has left. Thus a weak base is a better leaving group than a

strong base. Similarly, a molecule that is neutral after leaving is generally a better

leaving group than one that is negatively charged after leaving. A good leaving

group can be recognized as being the conjugate base of a strong acid. It thus makes

perfect sense that R–S� (thiolate; the conjugate base of a stronger acid) is therefore a

better leaving group than R–O� (alkoxide; the conjugate base of a weaker acid). This

may be one good reason why nature chose thiols in many enzyme chemistries.

Nature has repeatedly exploited the “better leaving group” feature in its synthetic

designs. An otherwise energetically difficult reaction is driven forward by its

departure. Often a high energy intermediate is built with a good leaving group for

this purpose. A number of reactions coupled to ATP hydrolysis (see Chap. 32) work

on this principle.

Nucleophilic acyl substitution reactions are an important class of reactions

catalyzed by enzymes. These include acyl transfer chemistry of amide, ester, and

thioester bonds. The reaction involves substitution of the leaving group (outNu:)

bonded to the carbonyl carbon by an attacking nucleophile (inNu:).

R�CO�outNu : þinNu : ⇄R�CO�inNu : þoutNu:

The greater the stability of the carbonyl compound, the less reactive it

is. Consequently we find that amides are the least reactive because of resonance

stabilization. There is much resonance in esters (R-CO-OR0) than in thioesters

(R-CO-SR0). Thioesters therefore have little or no double bond character in their

C-S bond while esters have appreciable double bond character. In terms of reactivity,

these compounds may be ranked as amide < ester < thioester < acyl phosphate. In

addition, breaking up is easy with esters and thioesters as they provide better leaving

groups (R–O� and R–S�, respectively). Such “good leaving group” chemistry is

indeed exploited in enzyme reactions involving peptide bond hydrolysis (e.g.,

subtilisin and papain) and transpeptidation (e.g., intein-mediated protein splicing).

31.2 Nucleophilic (Covalent) Catalysis

Nucleophilic catalysis, whenever recruited by an enzyme, makes important

contributions to its catalytic power (Chap. 6). In nucleophilic catalysis the catalyst

reacts with an electrophilic center of the reactant to form a covalent intermediate in

the reaction mechanism. Therefore, it is sometimes also referred to as covalent

catalysis. Catalysis involves lowering the energy of activation for that reaction.

One way to do this is to change the reaction mechanism in ways which introduces

new steps with lower activation energy. Typically the original reaction is broken

down into two or more steps. The catalytic nucleophile first forms a covalent
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intermediate with the reactant. The original nucleophile then attacks this intermedi-

ate to displace the catalytic nucleophile – in a nucleophilic substitution reaction. In

the final analysis, the catalytic nucleophile does not end up in the product but is

regenerated. Hydrolysis of 4-nitrophenyl acetate catalyzed by imidazole (Fig. 31.1)

is an excellent example of this mode of catalysis.

Hydrolysis of acetic anhydride by pyridine is another such example. Yet another

interesting nonenzymatic model for nucleophilic catalysis is the decarboxylation of

acetoacetic acid catalyzed by aniline. Here the decarboxylation reaction is facilitated

by the formation of an aniline-acetoacetate covalent adduct (the imine intermediate).

Criteria for Nucleophilic Catalysis

The following conditions have to be met in order to ascertain that nucleophilic

(covalent) catalysis is involved. The relevant covalent intermediate:

• Must be detected, isolated, chemically characterized, and shown to be

present during the reaction.

• Should be kinetically competent – its reactivity rate should be faster than

the overall reaction rate.

• If demonstrated through the use of model reactions, then it is crucial to

show that the same mechanism is operating in the actual reaction.

In addition to these lines of direct evidence, one can obtain much indirect

support through kinetic and other data. These will be discussed in some detail

later in this chapter.
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Fig. 31.1 Imidazole-catalyzed hydrolysis of 4-nitrophenyl acetate. Both acetylation of imidaz-

ole (Step 1) and hydrolysis of acetyl imidazole (Step 2) are faster than the direct interaction of

4-nitrophenyl acetate with water (uncatalyzed reaction). Imidazole is a true nucleophilic catalyst

since it is recovered intact after the reaction and acetyl imidazole forms during catalysis
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Measures of a Good Nucleophilic Catalyst The features that make a good cata-

lytic nucleophile include the following: (a) the catalytic nucleophile should be a

better nucleophile (react faster) than the reactant and more nucleophilic than the

solvent, (b) it must be a better leaving group in the covalent intermediate, and (c) the

covalent intermediate should be thermodynamically less stable than the final product

under the reaction conditions. According to these requirements, the catalyst has to be

both a very effective nucleophile and also a good leaving group. All these criteria are

well satisfied by imidazole in the example shown in Fig. 31.1. Imidazole is a better

nucleophile than water in attacking the carbonyl carbon of 4-nitrophenyl acetate.

The covalent intermediate (N-acetyl imidazole) was isolated and is more susceptible

to water attack than the reactant, 4-nitrophenyl acetate. The N-acetyl imidazole

formed is less stable than the reaction products; otherwise it would not be kinetically

competent and hence would accumulate. It reacts with water several orders of

magnitude faster than 4-nitrophenyl acetate. This would not be possible if imidazole

was a poor leaving group. In summary, imidazole makes 4-nitrophenyl acetate

hydrolysis a two-step event. It thus provides a lower-energy (ΔG6¼) reaction path –

the hallmark of a catalyst.

Nucleophilic Catalysis Versus General Base Catalysis Almost invariably

nucleophiles can also act as good general bases. They can act directly (nucleophilic

attack) or by abstracting a proton (general base) from the solvent (water) or substrate.

Then how are we to distinguish between the two? Nucleophilic attack leads to a new

bond established between the nucleophile and the carbon atom. Detection of this

covalent intermediate is a proof for nucleophilic catalysis. The intermediate must of

course satisfy the criteria laid out (see box above). When a covalent intermediate is

unstable, it may sometimes be possible to show its existence by trapping it

chemically. Detecting or trapping a covalent intermediate may not necessarily be

easy or trivial. Our inability to track/trap such an intermediate, however, does not

constitute as proof against nucleophilic catalysis. As the golden rule of scientific

method goes, absence of evidence is not evidence of absence! (after Carl Sagan). As

mentioned above, the intermediate may be very unstable or short-lived. We recall

that the mechanism of lysozyme was revised when the covalent adduct between

Asp52 (acting as a nucleophile and not a base) and C1 of the substrate glycoside was

detected (recently by electrospray ionization mass spectrometry – ESI-MS).

Catalysis by Nucleophile or Base?

Since a nucleophile can also act as a base (and vice versa), it is tricky to decide

which role the catalytic group is actually playing. For instance, an active site

carboxylate group (Glu) is thought to function as a base (in thermolysin) or a

nucleophile (in carboxypeptidase A) in amide bond hydrolysis. How to tell

them apart is illustrated with the help of two cases involving hydrolysis of

4-nitrophenyl acetate.

(continued)
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Catalysis by Acetate

4-Nitrophenyl acetate ���������������� !
H2O, CH3COO2

kObs

4-Nitrophenolþ Acetic acid

The hydrolysis of 4-nitrophenyl acetate by acetate anion may be viewed

both as a general base catalysis and/or nucleophilic catalysis (Fig. 31.2). The

two are kinetically identical and the same rate expression

(kObs ¼ k0 + kAcetate � [CH3COO
�]) fits them both. However, mechanistically

the two are different. Acetic anhydride is an obligate covalent intermediate

with nucleophilic catalysis. It can be trapped by reacting it with aniline to form

acetanilide. Since acetanilide is not formed – no acetic anhydride is formed –

nucleophilic catalysis may be ruled out (with caution, of course). In the case of

acetate-catalyzed 4-nitrophenyl acetate hydrolysis, therefore, evidence points

to general base catalysis (Fig. 31.2; top left box).

(continued)
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Fig. 31.2 Acetate-catalyzed hydrolysis of 4-nitrophenyl acetate. Acetanilide is not

trapped during the catalyzed reaction implying that no acetic anhydride is formed. Nucleo-

philic catalysis (top right) may thus be ruled out in favor of general base catalysis by acetate

(top left)
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Catalysis by Imidazole

4-Nitrophenyl acetate ���������������� !
H2O, Imidazole

kObs

4-Nitrophenolþ Acetic acid

Imidazole can be a base as well as a nucleophile. Both general base

catalysis and nucleophilic catalysis lead to the same rate expression

(kObs ¼ k0 + kImidazole � [Imidazole]). While there may be contribution by

imidazole to general base catalysis, nucleophilic catalysis does occur. The

covalent intermediate – N-acetyl imidazole – is detected spectroscopically and

is trapped by aniline as acetanilide (Fig. 31.3). What is more, the rate of

4-nitrophenol formation shows an initial burst phase followed by steady

state. This indicates step 1 is faster than step 2 for this reaction (see Fig. 31.1).
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Fig. 31.3 Imidazole-catalyzed hydrolysis of 4-nitrophenyl acetate. Acetanilide is

trapped in the presence of aniline; thus N-acetyl imidazole is formed (and detected by UV

spectroscopy) during the catalyzed reaction. The reaction definitely occurs by nucleophilic

catalysis (top right), but some extent of general base catalysis may not be ruled out (top left)
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Corroborating evidence for nucleophilic catalysis may be obtained from addi-

tional experiments:

1. Solvent isotope effects (see Chap. 27) are often useful in distinguishing between

nucleophilic versus general base catalysis. One conducts the reaction in water and

D2O to measure the deuterium kinetic isotope effect on the rate. General base

catalysis involves proton abstraction steps and the cleavage of an O-H (O-D)

bond; substantial isotope effect in D2O may therefore be observed. No such O-H

bond weakening is expected for a nucleophilic attack. Therefore, nucleophilic

catalysis will not show a solvent isotope effect. Whereas absence of significant

solvent deuterium kinetic isotope effect supports nucleophilic catalysis, the data

needs to be interpreted with caution. Solvent isotope effects (in D2O) may also

arise when “base-catalyzed attack of water” is the rate determining step. In some

cases the solvent isotope effect may be masked (or is borderline) due to other rate

determining events, thereby making the interpretation difficult.

2. Basicity and nucleophilicity are related but different. This gets clearly reflected in

the Bronsted relation. A linear Bronsted plot (good correlation) implies a general

base involvement. Groups with different polarizability but the same pKa can be

compared. Strong deviations in the Bronsted plots (and large β values) thus

suggest the involvement of nucleophilic catalysis. Similarly, steric hindrance is

not important for general base catalysis (proton transfer) but is critical for a

nucleophilic attack.

3. Competition by a nucleophile (same or similar to the leaving group) slows down

the nucleophilic catalysis. This is because the extra nucleophile addition drives

the equilibrium backward to form the covalent intermediate. However if the

added nucleophile acts as a general base catalyst, then the reaction rate is further

accelerated.

These approaches are well suited to probe and analyze nonenzymatic models of

nucleophilic catalysis. They differ from each other in the simplicity of approach and

the strength of evidence in subsequent data interpretation. For the very reasons, their

utility in analyzing enzyme mechanisms may be limited.

31.3 Covalent Reaction Intermediates

Electrophiles have a positively polarized, electron-poor atom that can accept an

electron pair from a nucleophile. On the other hand, nucleophiles are electron rich

and can donate a pair of electrons to an electrophile. In a large majority of reactions,

this complementarity leads to nucleophile donating an electron pair to electrophile,

with the formation of a covalent bond. Recall the formation of N-acetyl imidazole

(Fig. 31.3) during imidazole-catalyzed hydrolysis of 4-nitrophenyl acetate. Covalent

reaction intermediate(s) is thus a feature of nucleophilic attack during a reaction.

Enzyme catalysis is no exception to this rule. Reversible noncovalent binding of

substrate(s) to the enzyme is a precondition for catalysis. In some enzyme reactions,
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however, one or more discrete covalent intermediates are formed after these binding

events. The reactive covalent intermediates assist catalysis by (a) constraining the

reactants within the active site (entropic contribution), (b) providing better leaving

group (nucleophile) options, and (c) moving them on a leash between different

subsites.

How Covalent Reaction Intermediates Are Formed?

Enzyme-bound covalent intermediates can be formed in three different ways:

• An enzyme nucleophile attacks the substrate electrophilic center to form the

covalent bond. The acyl-enzyme intermediate of chymotrypsin is a classic

example of this kind. The enzyme Ser195 bonds to the carbonyl carbon of

the scissile peptide bond and releases the amino group (of first product).

• A substrate nucleophilic group attacks an electrophilic center on the

enzyme. The substrate amino acid (via its amino group) attacks the car-

bonyl carbon of enzyme-bound pyridoxal phosphate (PLP) forming a

covalent adduct (Schiff’s base). In transaminases the amino group is held

on to the enzyme (as pyridoxamine phosphate).

• A nucleophilic group of one substrate may attack the other substrate to

generate a covalent intermediate physically enclosed in the enzyme active

site. For instance, γ-COO� of glutamate makes a nucleophilic attack on the

γ-phosphate of ATP to form enzyme-bound γ-glutamyl phosphate interme-

diate in glutamine synthetase. Closed active site environment serves to

protect and direct such reactive intermediates to desired chemistry. At no

stage in the reaction substrate (or portion of it) is covalently attached to

glutamine synthetase. In contrast, a portion of the substrate is covalently

held on to the enzyme in the first two cases.

There are many instances where the substrate (or a part of it) is covalently held on

to the enzyme (few examples are listed in Table 31.3). These covalent enzyme

adducts may arise by the attack of an enzyme group (either nucleophilic or electro-

philic) on to the substrate.

Such reactions involving transfer of groups may be generally represented as

follows:

Eþ A-X⇄E-Xþ A followed by E-Xþ B⇄E þ B-X

There is a net transfer of group “-X” from one substrate to the other via the enzyme-

bound covalent intermediate (E-X). Often such reactions follow ping-pong kinetics

with the substituted enzyme (E-X) representing the “F” form of the enzyme (see

Chaps. 19 and 26). Most common examples of group transfer reactions involve

acylation, phosphorylation, or glycosylation of an enzyme nucleophile. These groups
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are subsequently transferred from the enzyme covalent adduct to another incoming

nucleophile. However hydrolysis ensues whenever the second nucleophile is water.

31.4 Detecting Intermediates and Establishing Their Catalytic
Competence

A major objective in understanding how enzymes function is to look at all the

reaction steps. Regardless of whether the covalent intermediates are formed between

(a) enzyme and substrate or (b) between two substrate molecules, they provide

important mechanistic clues. Proving the existence of covalent intermediates and

showing that they indeed participate in the catalytic process (i.e., their kinetic and

chemical competence) requires multiple lines of evidence. We will look at each of

these briefly, with suitable examples.

Steady-State Kinetics This approach provides relatively limited information about

covalent intermediates and their kinetic competency. Often the initial rate equation is

identical for different chemical mechanisms (see box above – “Catalysis by nucleophile

Table 31.3 Examples of reaction intermediates covalently linked to enzyme

Covalently linked to Intermediate Enzyme examples

Enzyme provides the nucleophile

Serine (-OH) O-Acyl enzyme Acetylcholinesterase, chymotrypsin

Cysteine (-SH) S-Acyl enzyme Papain, glyceraldehyde-3-phosphate

dehydrogenase, glutamate synthase

Serine (-OH) O-Phospho enzyme Alkaline phosphatase,

phosphoglucomutase; phosphodiesterase

(via Thr-OH)

Histidine (-imidazole) N1-Phospho enzyme Glucose-6-phosphatase, nucleoside

bisphosphate kinase, succinyl-CoA

synthetase

Tyrosine (-OH) O-Sulfo enzyme Arylsulfate sulfotransferase

Lysine (-NH2) Imine adduct (Schiff’s

base)

Fructose-1,6-bisphosphate aldolase,

acetoacetate decarboxylase, transaldolase

Lysine (-NH2) AMP enzyme DNA ligase (NAD+)

Glutamate (-COOH?) Glycosyl enzyme Sucrose phosphorylase, β-galactosidase

Enzyme provides the electrophile

Pyruvoyl group Imine adduct (Schiff’s

base)

Histidine decarboxylase (bacterial)

Pyridoxal phosphate Aldimine (Schiff’s

base)

Glutamate decarboxylase, L-alanine

aminotransferase

Biotin N-Carboxy-biotin Acetyl-CoA carboxylase, transcarboxylase,

pyruvate carboxylase

Thiazolium ring of

thiamine

pyrophosphate

Hydroxyethyl TPP;

1,2-dihydroxyethyl

TPP

Pyruvate decarboxylase; transketolase

31.4 Detecting Intermediates and Establishing Their Catalytic Competence 357



or base?”). In two substrate ping-pong mechanisms, the active site retains a portion of the

first substrate. The “F” form of the enzyme is obtained when the product of the first

substrate departs. Ping-pong kinetics (parallel lines obtained in initial velocity analysis;

Chap. 19) of this type is indicative of a covalent enzyme intermediate. The

phosphorylated form of nucleoside bisphosphate kinase and pyridoxamine phosphate

form of a transaminase are well-known examples (Table 31.3).

Burst-phase kinetics (chymotrypsin catalysis with a poor substrate like

4-nitrophenyl acetate being a classic example) is suggestive of a covalent intermedi-

ate participation. Rapid release of 4-nitrophenol (colored yellow) is proportional to

the active enzyme present and forms the initial burst phase. This is followed by

linear, slower steady state because the acyl-enzyme intermediate breaks down slowly

(Fig. 31.4). The initial burst would be seen only if the second deacylation step is

slow. With good substrates (like amides), this is not the case and burst is hardly

visible.

Enzyme-bound intermediates were also inferred from burst kinetics in catalysis

by alkaline phosphatase, glyceraldehyde-3-phosphate dehydrogenase, and

aminoacyl-tRNA synthetase.

Isotope Exchange Studies Ping-pong mechanisms involve double displacement,

and a substituted form (the “F” form) of the enzyme occurs during the catalytic

cycle. Group transfer from an appropriate substrate can occur even in the absence of

the other(s). Corresponding isotope exchanges can therefore be detected (Chap. 26).

Consider L-alanine transaminase reaction, for example.

L-Alanine
Að Þ

þ 2-Oxoglutarate
Bð Þ

⇄Pyruvate
Pð Þ

þL-Glutamate
Qð Þ

Upon incubating labeled pyruvate (product P) and L-alanine (substrate A), label

exchange ensues in the presence of the enzyme. That is, L-alanine becomes labeled

with time, and a partial reaction, even in the absence of B orQ, is thus detected. Most

likely explanation is that the amino group is held on to the enzyme (covalent

pyridoxal amine phosphate intermediate), while pyruvate can freely enter/exit the

active site to react. With caution, such partial exchanges constitute an operational

test for the covalent reaction intermediate.

Mechanism of glutamine synthetase offers a different example of reaction inter-

mediate. In this three substrate sequential mechanism, γ-glutamyl phosphate is

formed at the active site. Nucleophilic attack by ammonia to this intermediate

displaces phosphate to form glutamine (Fig. 31.5). The covalent intermediate

(γ-glutamyl phosphate) is inferred by the positional isotope exchange (PIX; for a
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detailed treatment see Chap. 25) study. The 18O-labeled β,γ bridge oxygen of ATP

exchanges with non-bridge β-phosphate oxygens – for this exchange to occur,

glutamate must be present. However this 18O-label scrambling can occur in the

absence of ammonia. This PIX data is consistent with glutamate-dependent revers-

ible mobilization of ATP γ-phosphate group.

Inference from Analogs and Side Reactions Geometric analogs of substrate-

substrate covalent intermediates (formed at the active site) are expected to achieve

tight binding. Examples of this kind include analogs of γ-glutamyl phosphate (for

glutamine synthetase) and aminoacyl adenylate (for aminoacyl tRNA synthetase).
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Fig. 31.4 Burst-phase kinetics observed with hydrolysis of 4-nitrophenyl acetate by chymo-

trypsin. Formation of 4-nitrophenol is monitored as increase in A405 with time. The extent (its

amplitude – gray arrows on Y-axis) and the slope of burst are proportional to the total catalytically

active enzyme. This property can indeed be used to determine the concentration of active enzyme

present in a given preparation
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Fig. 31.5 Glutamine synthetase catalysis proceeds via γ-glutamyl phosphate as the obligate

covalent reaction intermediate. (A). Glutamine synthetase reaction. (B). Scrambling of 18O-label

evidenced by PIX. (C). Trapping γ-glutamyl phosphate by NaBH4 reduction and 5-oxproline

forming side reaction. (D) Phosphorylation of L-methionine-S-sulfoximine
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Here the enhanced binding affinity is taken to indicate the similarity of the interme-

diate analog to the true covalent intermediate. Such evidence however is suggestive

but not decisive.

The same active site (of many enzymes) also exhibits side reactions. Analyzing

these side reactions often provides clues to the covalent intermediates formed.

Again, glutamine synthetase offers an excellent example of this concept. Apart from
18O-label exchange (β,γ bridge to non-bridge PIX in ATP), the enzyme is capable of

the following additional side reactions: (1) synthesis of pyroglutamate

(5-oxoproline) from ATP and L-glutamate in ammonia-depleted conditions, (2) for-

mation of ATP by the enzyme when incubated with synthetic acyl phosphate and

ADP, and (3) ATP-dependent covalent phosphorylation of L-methionine-S-

sulfoximine (an irreversible inhibitor of glutamine synthetase) on its sulfoximine

nitrogen. All these side activities are consistent with the formation of γ-glutamyl

phosphate – an activated covalent intermediate – during the normal reaction of

glutamine synthetase (Fig. 31.5).

Direct Observation and/or Trapping Direct observation of covalent

intermediates may be possible whenever they are sufficiently stable and they possess

readily detectable spectral properties. It is practically difficult to observe/isolate any

intermediates for enzyme reactions with their usual turnover numbers (>1 s�1).

Either one resorts to fast reaction kinetic methods (Chap. 11) or attempts to slow

down the rate of their breakdown by reducing the temperature (thermal trapping). In

any case, the intermediates are best detected when they possess coenzyme

chromophores like NAD+, FAD, pyridoxal phosphate, and cobalamin. Electron

spin resonance (ESR; for radical intermediates), nuclear magnetic resonance

(NMR; for structural information), and X-ray crystallography (for structures and

distances of “frozen” intermediates) are some of the specialized but powerful tools

that provide information on intermediates.

Reactive intermediates when present may be trapped by suitable chemical

reagents. Identifying covalent intermediates by chemical trapping is a time-tested

tool for the enzyme chemist. Although very powerful, trapping has two limitations –

it is a destructive method and what is trapped may be an artifact of the procedures

employed. Methods to trap intermediates include (a) acid/base treatment to stabilize

the ephemeral intermediate, (b) intercepting the reactive species with nucleophiles

like hydroxylamine to form a stable derivative, (c) reducing the intermediate chemi-

cally with sodium borohydride or lithium aluminum hydride, or (d) oxidation to

detect thiol esters and vicinal diol intermediates. We have already seen an example

of an activated carbonyl intermediate (e.g., N-acetyl imidazole in Fig. 31.3) captured

by aniline (acting as intercepting nucleophile). Chemical trapping of intermediates

by NaBH4 is very valuable in probing enzyme reaction mechanisms (Table 31.4).

Such trapping studies lend implicit experimental support to the proposed reaction

mechanism.
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Stereochemical Evidence Examining the stereochemical course of a reaction is yet

another approach to probe the formation of a covalent intermediate (Tanner

2002, Rose 2006). It lends direct support to the formation of covalent intermediates,

if any. We note that an SN2 reaction always involves an inversion of configuration

(Fig. 29.8). If two discrete SN2 steps occur one after the other, then overall retention

of configuration is seen – due to two consecutive inversions (one from the donor to

the enzyme and the other from the enzyme to the acceptor). If no covalent interme-

diate is formed in the course of a reaction cycle, then the product should show

inverted configuration with respect to the substrate. A product with an inversion thus

indicates – (a) that covalent intermediate may not form during the reaction and (b) a

direct in-line transfer between the substrates.

Glycosidases provide elegant examples to demonstrate this concept. In case of

lysozyme, hydrolysis of the glycosidic linkage occurs with retention of stereochem-

istry at the glycosidic carbon. An enzyme nucleophile (Asp52-COO�) covalently

attaches to the glycosidic carbon, while the departing sugar leaves from the other

side (Kirby 2001). Upon subsequent attack of water, the product is formed with

retention of stereochemistry at the glycosidic center (Fig. 31.6). Similar retention of

stereochemistry was observed with sucrose phosphorylase. The two enzymes are

thus retaining glycoside transferases. Evidence of retention of stereochemistry

implies the presence of a covalent intermediate during reaction.

There are also glycosidases (e.g., some cellulases) where the inversion of stereo-

chemistry occurs at the glycosidic center. A covalent intermediate may not form

in such cases (Fig. 31.6). These enzymes also contain an active site carboxylate

(-COO�) but its role is different. X-ray crystallography data indicates that it is not

near enough to form a covalent bond. Instead, it assists in the direct nucleophilic

attack of water.

A final word of caution on the interpretation of stereochemical evidence is in

order. We have seen earlier that steady-state kinetics can never prove a mechanism –

it can only rule out alternative pathways and narrow down the choice. Similarly,

stereochemical criteria by themselves cannot solve a reaction mechanism. Consider

Table 31.4 Enzyme reaction intermediates trapped by borohydride reduction

Enzyme example Intermediate Intermediate trapped as

Fructose-1,6-

bisphosphate

aldolase

Imine adduct

(Schiff’s base)

Nε-Dihydroxyisopropyl derivative of active site lysine

Histidine

decarboxylase

(bacterial)

Imine adduct

(dehydroalanine)

Nα-Carboxyethyl derivative of histidine and

histamine (formed from enzyme pyruvoyl group and

α-amino group of substrate)

Lactate racemase Lactyl thiolester Lactaldehyde (formed by reducing thioester of

enzyme cysteine)

Glutamine

synthetase

γ-Glutamyl

phosphate

δ-Hydroxy-α-aminovalerate (–CO~OP reduced to –

CH2OH)

In the first three examples, the intermediate is covalently bound to the enzyme. In the last case, the

intermediate is non-covalently held at the active site
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this. Inversion of configuration can arise from a single nucleophilic displacement

reaction – but it can also arise from three, five, or any odd number of successive

displacements. Likewise, retention of configuration implies not necessarily just two

successive displacements but any even number. Therefore, a direct observation of a

competent intermediate alone constitutes an unambiguous proof if its existence.

Catalytic Competence of an Intermediate It is always a major challenge to

conclusively establish the identity of a chemical reaction intermediate (Purich

2002). Maybe, existence of the postulated species is supported by a small subset

of experiments listed above. Multiple lines of evidence are required to make strong

inference on its existence (metaphorically, a minimum of three legs are required for a

stool to be stable!). Whenever feasible it should be isolated, synthesized, and

characterized for the two criteria. An intermediate once proposed (through direct

and indirect experimental reasoning) should still satisfy the twin criteria of chemical

competence and catalytic competence.

The postulated intermediate is chemically competent only if it is converted by the

enzyme to go to products. It should also serve to go back to the substrate in the case

of reversible enzyme reactions. γ-Glutamyl phosphate satisfies this standard and

qualifies as a chemically competent intermediate of glutamine synthetase reaction
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OH H

C
H

O

HO-Sugar

C

O

H

OHH

C
HO

OH

C

O

H

Retention of stereochemistry at C1 - Covalent glycosyl intermediate

Inversion of stereochemistry at C1 - No covalent glycosyl intermediate
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E-COO-

Fig. 31.6 Stereochemistry at the C-1 carbon of glycosidases. Formation of covalent intermedi-

ate is associated with retention of stereochemistry (top panel), while its absence results in inversion

(bottom panel) at the glycosidic carbon. Only relevant structural details are shown for the sake of

clarity
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(Fig. 31.5). Intermediates that are artifacts of the analysis itself most likely do not

satisfy this condition.

The proposed (may be isolated) intermediate should react to form products

(in either direction) at rates at least as fast as the rate of overall reaction. Further,

not one but all of the actual intermediates in the mechanism of an enzyme must be

kinetically competent. The kinetic competence implies that the intermediate has the

capacity to be formed and discharged at rates equal to or greater than the overall rate

of the normally occurring reaction. The acyl-enzyme of chymotrypsin is a true

covalent intermediate during its catalytic cycle (Fig. 31.4). For a good substrate,

acylation and deacylation rates are comparable with no net accumulation of the acyl-

enzyme intermediate. With a poor substrate like 4-nitrophenyl acetate, however,

acyl-chymotrypsin accumulates significantly as the deacylation step becomes rate-

limiting. It is important to note that correspondingly the overall rate of the reaction

itself slows down with the poor substrate – still satisfying the role of acyl-enzyme as

a kinetically competent intermediate. Phosphoglucomutase is another example

where the phospho-enzyme intermediate was shown to be both kinetically and

chemically competent.

In conclusion, any exceptions to the two criteria of catalytic competence rule out

that species as an intermediate on the main pathway of an enzymatic mechanism.

31.5 Summing Up

Nucleophilic catalysis is an important weapon in the armory of enzymes. While not

all enzymes employ covalent intermediates during their catalytic cycle, the actual

number is quite large. By dividing the overall reaction into a suite of partial

reactions, covalent catalysis achieves an energetically easy path. Enzymes partici-

pate in covalent catalysis – often by themselves becoming covalent partners. For

this, they employ a range of nucleophilic groups provided by their amino acid side

chains.

Nature has carefully chosen active site nucleophiles for their reactivity. In fact

they may be further modulated by the microenvironment effects of the active site.

Consider subtilisin for example. The imidazole side chain of histidine (with pKa

around 7.0) is an effective base at neutral pH. By correlation, its unprotonated form

should be the most effective nucleophile. A stronger base like the Ser-O� however

makes a better nucleophile. But its concentration in the bulk aqueous phase

(at pH 7.0) will be very small. The active site microenvironment ensures that it is

generated and stabilized. While both are essential active site residues for subtilisin,

nature has chosen Ser-OH as the nucleophile and His (imidazole) as the general base

for catalysis. Subtilisin – like all other serine proteases – bears Ser-OH as its active

site nucleophile.

When compared to the native form, the Ser!Ala mutant is a very poor catalyst.

This identifies active site Ser-OH as a valuable nucleophilic tool. The residual

activity of the Ser!Ala mutant of subtilisin then, by default, must use OH� for

the initial attack. Papain – a cysteine protease – bears a Cys-SH as its active site
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nucleophile. But the Ser!Cys mutant of subtilisin (called thio-subtilisin) is inactive.

This is contrary to the fact that generally –S� (thiolate) is a better nucleophile than –

O� (alkoxide). Clearly modulation of reactivity, nucleophilicity, and geometry at the

active site are important.

Covalent reaction intermediates are the direct manifestation of nucleophilic

catalysis. Because of their short-lived nature, it is a challenge to track them down.

A solid proof of their existence therefore requires multipronged data – chemical,

kinetic, spectroscopic, and stereochemical. Ultimate proof of their involvement in

the enzyme mechanism must ensure that they are kinetically and chemically

competent.
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Phosphoryl Group Chemistry
and Importance of ATP 32

Reactions involving transfer of phosphoryl groups are central to the metabolism of

all living beings. This chapter brings out the unique features that make phosphate

and its derivatives ideal candidates for driving metabolism. Chemistry at the phos-

phorus atom is almost always catalyzed by a suitable enzyme. Reaction mechanisms

pertaining to these enzymes are presented. Aspects of high-energy compounds like

ATP and their role in group transfer reactions are highlighted.

32.1 Why Nature Chose Phosphates

Phosphoric acid esters and anhydrides are cardinal players in metabolism and enzyme

chemistry Westheimer 1987). They are found uniformly in the pathways of all

biomolecules – nucleic acids, proteins, carbohydrates, and lipids. A few important

phosphate compounds representing a range of linkages are listed in Table 32.1.

Phosphoric acid, its esters, and anhydrides are particularly selected by biological

systems on the following counts. First, even as its diester (read genetic material like

DNA!), phosphate retains one negative charge and is thus noticeably stable to

nucleophilic attack. Consider this with 55.5 M of water as a reasonable nucleophile

around. Second, the permanent negative charge serves to retain phosphate

compounds inside – as they cannot cross the phospholipid bilayer without assis-

tance. Third, negative charges on phosphates are excellent specificity/recognition

entities of phosphorylated substrates in binding to enzymes. Lastly, phosphate (and

at times pyrophosphate) is usually a good leaving group in many nucleophilic

displacement reactions.

Phosphoric acid is a tribasic acid. Its successive ionization constants differ by

factors of greater than 105. The three pKas of phosphoric acid are well spaced –

pKa1 ¼ 2.12, pKa2 ¼ 7.21, and pKa3 ¼ 12.32. Not many other poly-anionic

compounds are endowed with this feature. Therefore, phosphoric anhydrides exhibit

many favorable properties. They are protected by these negative charges from rapid
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attack of water and other nucleophiles. Thus, even though thermodynamically

unstable, they are kinetically quite stable in aqueous environment. This remarkable

combination of thermodynamic instability and kinetic stability makes them stand out

as potentially energy-rich compounds (like ATP, see below). They can drive uphill

chemical reactions in the presence of a suitable catalyst. Nature prefers phosphate

esters because they are stable yet they can be attacked and cleaved by enzymatic

hydrolysis.

32.2 Chemical Mechanisms at the Phosphoryl Group

Phosphoryl group (-PO3
�) transfers are ubiquitous in intermediary metabolism. And

they are invariably enzyme-catalyzed reactions (Knowles 1980, Cleland and Hengge

2006). Every thermodynamically uphill step of metabolism involves a displacement

at the phosphorous atom of a phosphoric monoester or anhydride. Mechanistically

phosphoryl group transfer reactions can be studied at three levels: (a) whether a

phospho-enzyme is formed during the reaction, (b) which is the rate-limiting step

and the nature of the transition state, and (c) whether the displacement at phosphorus

atom is associative or dissociative in nature.

Bond Cleavage at Phosphorus Atom In all phosphoryl and pyrophosphoryl group

transfers, the phosphorus atom reacts as an electrophilic center. It is therefore handed

over from one nucleophile to the other. All enzymatic phosphoryl transfers proceed

with the cleavage of the phosphorus–oxygen bond, and a nucleophile forms a bond

to phosphorus. During phosphoryl ester hydrolysis, for instance, the oxygen of water

appears in phosphate – implying a nucleophilic attack by “O” of water on P. This is

easily demonstrated by performing the hydrolysis in 18O-labeled water. Whenever

phosphorylation serves to activate a group, the situation is different. The acyl group

transfer and glycosyl group transfer reactions are illustrative. In both these cases, the

carbon–oxygen bond is cleaved and a nucleophile forms a bond to carbon. We will

discuss about activation of groups and the concept of a good leaving group later on.

Table 32.1 Phosphate derivatives in metabolism

Nature of linkage to phosphoric

acid Examples

Monoester Glucose-6-phosphate, dihydroxyacetone phosphate

Diester DNA, RNA, and phospholipids

Enolic ester Phosphoenolpyruvate

Amide Phosphocreatine

Anhydride ATP, pyrophosphate, and acetyl phosphate

Pyrophosphate ester Isopentenyl pyrophosphate, 5-phosphoribosyl-1-

pyrophosphate
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Phosphoryl group transfer reactions broadly fall into three types (Fig. 32.1).

These differ in the mechanism of bond cleavage/formation at the phosphorus atom.

1. In the dissociative mechanism, a meta-phosphate (PO3
�) intermediate is formed

prior to attack by the incoming nucleophile (Fig. 32.1). The outgoing nucleophile

dissociates in the first step (DN), while the incoming nucleophile attacks the meta-

phosphate in the second (AN). In the IUPAC nomenclature, it is denoted as

DN + AN mechanism and is analogous to the SN1 reaction mechanism in carbon

chemistry (see Chap. 29). Evidence (through kinetic isotope effects; Chap. 27) for

a meta-phosphate-like transition state (loose TS) was obtained for the bovine

protein tyrosine phosphatase. Similarly, stabilized meta-phosphate entity has

been experimentally observed with fructose-1,6-bisphosphatase and Lactococcus

lactis β-phosphoglucomutase.

2. The concerted mechanism proceeds via a penta-coordinate transition state. In this

case (which is SN2 like and is also known as DNAN mechanism), the attacking

nucleophile enters opposite the leaving group. In this in-line mechanism, no
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Fig. 32.1 Mechanisms of phosphoryl group transfer. The trigonal plane defining the phospho-

ryl group is shown as gray triangle. (1). Dissociative pathway goes through an unstable metaphos-

phate intermediate. While a racemic product is expected in solution, the spatial arrangements of

substrates at the enzyme active site govern the stereochemical outcome. (2). The concerted (in-line)

reaction between the two substrates leads to inversion. (3). The associative (adjacent) mechanism

always leads to retention of configuration. The pathway goes through pseudo(ψ)-rotation at the

penta-coordinate intermediate stage. Subsequently, the leaving group (R1OH) always leaves from

an apical position of the trigonal bipyramid
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reaction intermediate is involved. Adenylate kinase is an example of this type. Its

mechanism involves an inversion at the P atom; this can be tested using a chiral

phosphate ester and examining the stereochemical outcome of the overall reaction

(see below).

3. The third possibility is of an associative mechanism. Here the incoming nucleo-

phile attacks first to give a penta-coordinated phosphorane intermediate

(Fig. 32.1). It is therefore shown as AN + DN mechanism. The penta-covalent

intermediate is of trigonal bipyramid geometry; the five substituents therefore are

found either at equatorial or at apical position. In this adjacent mechanism, the

nucleophile enters on the same side as the leaving group. Since groups can enter

or leave only from the apical position, the trigonal bipyramid formed has to

rearrange. This movement – termed pseudorotation – brings the originally equa-

torial leaving group to apical position for expulsion. A well-characterized exam-

ple of associative mechanism is bovine pancreatic ribonuclease A. The 20-OH of

ribose sugar attacks the phospho-diester via an associative mechanism to form a

divalent transition state stabilized by Lys-41.

We know that tetravalent carbon compounds are stable. But phosphorus can form

stable trivalent (planar), tetravalent (tetrahedral), and pentavalent (a trigonal bipyra-

mid with three equatorial and two axial bonds to P) compounds. This has a bearing

on the relevant bond orders to P atom, possible during reaction. Concerted mecha-

nism of phosphoryl transfer reactions straddles the two outer limits of an associative

(five bonds to P) to a fully dissociative (three bonds to P) transition state. The

character of the transition state thus ranges from (a) being associative with the sum of

the axial bonds between one and two, (b) to SN2 with the sum of the axial bonds

equal to one, (c) to dissociative with the sum of the axial bonds less than one. As a

general rule, at least with nonenzymatic phosphoryl transfer reactions, the trend is

loose transition states for monoesters, a synchronous reaction for diesters, and a tight

transition state for triesters. As the phosphate is more esterified (like in

phosphodiesters and phosphotriesters), these stabilized phosphoesters require addi-

tional bond order from the nucleophile to achieve transition state. In reality, progres-

sively more associative mechanisms occur on a continuum. This also depends on

whether a good leaving group is found on the P atom (such as a concerted mecha-

nism) or not (such as in a fully associative mechanism).

Stereochemistry of Phosphoryl Transfer Stereochemical course of a reaction

provides excellent clues to the reaction mechanism. This is true as well with the

chemical mechanisms at P atom. Phosphates contain three apparently identical

oxygen substituents. And it is convenient that three isotopes of oxygen are available

–
16O, 17O, and 18O. Chiral phosphate esters can be prepared to act as enzyme

substrates. Upon reaction, chiral phosphate ester products may be generated

(Fig. 32.1). Absolute configuration of such products can be analyzed, albeit with

some chemical (technical) skill and spectroscopy. In the final outcome, we can
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clarify whether the enzymatic reaction proceeds with retention or inversion of

configuration at the P atom.

Defining the stereochemical course for phosphate (when compared to its ester) is

a bit tricky. The phosphate has four equivalent oxygen atoms, while only three

isotopes of oxygen are available to mark them. This limitation can be overcome by

using sulfur as the fourth substituent (Fig. 32.2). Fortunately, many enzymes do

accept substrates with corresponding thiophosphate groups. Analyzing the configu-

ration of [16O,17O,18O]-thiophosphate product formed is all that is needed.

Stereochemical evidence is the most diagnostic of mechanistic pathway of phos-

phoryl group transfer. This is particularly true in cases where a phosphorylated

enzyme intermediate cannot be isolated and characterized. A single displacement

at phosphorus generally results in inversion of stereochemistry. Reactions with no

phosphoryl enzyme intermediate (a direct in-line attack leading to phosphoryl

transfer) usually go with inversion. Phosphokinases proceed with inversion at P

suggesting a direct transfer between the two substrates. Phosphomutases – viewed as

internal kinases – proceed with retention. This results from two inversions because

of a double displacement involving a phosphoryl enzyme intermediate. In enzymes

such as alkaline phosphatase –where a phosphoryl enzyme form exists – the reaction

ends up with retention. Presence of a phospho-enzyme intermediate (for E. coli

alkaline phosphatase) was demonstrated by incorporation of 32P from the labeled
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substrate on to the enzyme Ser residue. The associative (adjacent) mechanism

always leads to retention as the configuration is retained in each step.

Phosphoryl Transfer Mechanism: Single or Double Displacement?

The transfer of a phosphoryl group (from the donor substrate to the acceptor

substrate) in principle can occur in two different ways. (1) The phosphorylium

group may be directly transferred from the donor substrate to the acceptor

substrate – a single displacement route. (2) The phosphoryl group is first

transferred to a suitable group on the enzyme (phosphoenzyme covalent

intermediate is formed) and is then transferred from the enzyme to the acceptor

substrate in the second step – a double displacement route.

Examples to illustrate the two different modes of phosphoryl transfer are

adenylate kinase and nucleoside bisphosphate kinase. The chemical reactions

catalyzed by the two enzymes are apparently similar.

Adenylate Kinase

AMPþMg-ATP⇄ADPþMg-ADP

Nucleoside Bisphosphate Kinase

Mg-GDPþMg-ATP⇄Mg-GTPþMg-ADP

However adenylate kinase follows a single displacement mechanism, while

nucleoside bisphosphate kinase operates through a double displacement mech-

anism. A kinetically competent phospho-enzyme (see Table 31.4) has been

demonstrated for the latter enzyme. The types of experimental evidence to

support and contrast these two mechanisms are tabulated below.

Single displacement (adenylate

kinase)

Double displacement (nucleoside bisphosphate

kinase)

Phospho-enzyme intermediate not

formed

Phospho-enzyme intermediate is formed

Stereochemical inversion at P center Stereochemical retention at P center

Sequential kinetic mechanism Ping-pong kinetic mechanism

No partial exchange reactions occur Partial exchange reactions are observed

372 32 Phosphoryl Group Chemistry and Importance of ATP



32.3 Adenosine Triphosphate: Structure Relates to Function

The most common phosphoryl group donor in metabolism is adenosine triphosphate

– commonly abbreviated as ATP (Ramasarma 1998). It was identified as a derivative

of adenosine with three phosphates by Fiske and SubbaRow in 1929. ATP is a

derivative of adenosine-50-phosphate with two more phosphates attached to its

50-phosphate via anhydride linkages. Todd et al. confirmed this by chemical synthe-

sis in 1949. As noted above, and in contrast to carboxylic anhydrides, phosphoric

anhydride groups in ATP are protected by their negative charges from rapid attack

by water (and other nucleophiles). Fritz Lipmann’s observation was prescient in

ascribing the kinetic stability of ATP to the negative charges in ATP. This makes

hydrolysis of ATP thermodynamically favorable (large �ΔG�) but kinetically

unfavorable (large ΔG6¼) – a virtue exploited by nature to use ATP as an ideal free

energy currency.

ATP Is a High-Energy Compound Combination of kinetic stability and thermo-

dynamic instability imparts ATP its energy-rich nature. Hydrolysis of ATP can

therefore be coupled to drive uphill chemical reactions in the presence of a suitable

enzyme catalyst. ATP provides energy by group transfer and not by simple hydroly-

sis. The term energy rich implies that (a) it has a high phosphate group transfer

potential and (b) on hydrolysis of its phosphoric anhydride bonds, sufficient ΔG

(free energy) is available for the formation of other bonds. The ΔG� for ATP

hydrolysis (ATP ⇄ ADP + Ⓟ) is negative and very large (around 7.0 kcal/mol, at

25 �C and pH 7.0). This corresponds to an equilibrium constant for hydrolysis of

about 140,000 M!

What makes ATP a high-energy compound and confers it high phosphate group

transfer potential? Several factors that contribute include (a) electrostatic repulsions

between neighboring negative charges of ATP, (b) relative bond energies of the

reactants and products, and (c) better solvation and relative resonance stabilization of

the products (ADP + Ⓟ) of hydrolysis. Other compounds (listed above ATP in

Table 32.2) may also be recognized as high-energy compounds on similar grounds.

Since negative charges on ATP are a function of phosphate group ionization, pH and

ionic strength have a significant effect on ΔG� for ATP hydrolysis. ATP invariably

occurs as a complex with divalent metal ions – Mg2+ in particular (see below). For

these reasons, the likelyΔG� for ATP hydrolysis in vivo may be as high as 12.0 kcal/

mol (and not 7.3 kcal/mol).

Like ATP, several phosphorylated compounds can transfer their phosphoryl

groups to water. The associated free energy changes (ΔG� of hydrolysis) are listed

in Table 32.2. The larger the negative ΔG� for a phospho-compound, the greater is

its phosphoryl group transfer potential. This sets up a nice hierarchy of energy

transfer in coupled reactions. Under standard conditions, for instance, compounds

above ATP (in Table 32.2) can transfer phosphoryl group to ADP. And those below

cannot. Phosphoenolpyruvate has the highest negative ΔG�; this is because the enol

formed quickly converts to the keto form making the reaction further exergonic.
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Table 32.2 ΔG
� of hydrolysis for important phospho-compounds

Phospho-compound Structurea
�ΔG� (kcal/mol)

(25�C, pH 7.0)
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aThe ΔG� of hydrolysis for high-energy bond (shown in gray) is listed in the last column

(1.0 kcal¼ 4.184 kJ). Note that glucose-1-phosphate and glucose-6-phosphate are phosphate esters

that do not contain a high-energy bond. Whenever abbreviated, the phosphoryl group is shown as

“Ⓟ” throughout this book
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Phosphoenolpyruvate has a higher phosphoryl transfer potential than ATP; it can

therefore phosphorylate ADP to ATP.

Complexes of ATP with Metal Ions Metabolically relevant ATP occurs as a

divalent metal ion complex. Most often this metal ion is Mg2+. The shielding of

ATP-negative charges (Chap. 6) is important for access to nucleophiles. Mg-ATP2�

is the true substrate of most enzymes that are generally described as ATP-dependent.

In reality, there is nothing like a pure solution of Mg-ATP2�. An equimolar mixture

of ATP and MgCl2 at pH 7.0 contains the following species at different

concentrations (in their decreasing order!): Mg-ATP2�, ATP4�, HATP3�, Mg2+, Cl
�, Mg-HATP�, Mg2-ATP, and MgCl+. Moreover their proportions vary with (a) the

total [ATP] and [MgCl2], (b) the pH and buffering species present, and (c) the ionic

strength. For these reasons studying interactions of Mg-ATP2� with an enzyme

obviously requires much care. Otherwise phenomena like spurious cooperativity

(Fig. 32.3) may occur (Punekar et al. 1985). To avoid such kinetic artifacts, it is

important to accurately evaluate the true concentration of Mg-ATP2� at a given total

[ATP] and [MgCl2]. The stability constants for many of the metal complexes of

biochemical interest have been measured. It is thus possible to calculate the concen-

tration of any complex given the concentrations of free components. There are

simple computer programs to do such iterative calculations.

Three common experimental designs are found in literature – while deciding

[ATP] and [MgCl2] to fix Mg-ATP2� concentration. It does not help to either

(a) vary [ATP] and [MgCl2] at equimolar ratios or (b) fix [MgCl2] at a very high

value (say 10 mM) while [ATP] is varied. The third and the best option is to keep the

total [MgCl2] in constant excess over the total [ATP]. One final factor to consider is

the variation in ionic strength as the component (MgCl2 and ATP) concentrations are

Fig. 32.3 Mg2+ saturation

profile of glutamine

synthetase. Mg-ATP is the

true substrate of this enzyme

(see Table 32.3 later, for the

reaction). A small fraction of

total ATP is present as

Mg-ATP at lower [Mg2+]. The

higher the initial [ATP] used,

the curve is shifted further to

the right (arrow). This

apparent sigmoidicity is a

manifestation of equilibrium

between free [ATP], free

[Mg2+], and their various

complexes and does not

reflect cooperative enzyme

kinetics
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increased. It is desirable to maintain the ionic strength constant. A value of about

0.15 M may be appropriate since it approximates the ionic strength in vivo.

A method of continuous variation may also be used to arrive at the best ratio of

[ATP] and [MgCl2]. This protocol – called the Job plot – provides useful informa-

tion in optimizing the assay under a standard set of conditions. Mole fractions of

[ATP] and [MgCl2] are varied such that the total molarity remains constant. If the

enzyme prefers a 1:1 complex, then the enzyme activity will be maximal at mole

fraction of 0.5 (as shown in Fig. 32.4). However, if the active species is a 1:2

complex (of ATP:Mg2+), then the enzyme will be most active at mole fraction of

0.33.

Free ATP in solution (when not in a complex with divalent metal ion) takes a

linear extended conformation. It is a flexible molecule because P-O single bonds

enjoy many degrees of freedom. As a metal complex, however, ATP conformation is

frozen. ATP assumes specific folded forms when so complexed. Different divalent

metal ions interact differently with ATP; variations include interactions with α-, β-,

and γ-phosphates and N7 of adenine (Fig. 32.5). This has a bearing on which

ATP-metal ion complex can serve as substrate for a given enzyme.

Both tri-dentate and bi-dentate (Mg2+ bonded to O atoms of β- and γ-phosphate)

complexes of Mg-ATP are formed in solution. Furthermore, β,γ-bi-dentate Mg-ATP

exists as a rapidly equilibrating mixture of Λ and Δ screw-sense isomers (Fig. 32.6).

These two isomers have opposite CD spectra. It is tricky to determine which of the

three Mg-ATP forms the true substrate for a given enzyme. This can be attempted in

the following ways:

0.50 0.750.250.0 1.0

0.50 0.250.751.0 0.0

Mole Fraction

ATP

Mg2+

v

Fig. 32.4 Job plot for an

enzyme requiring Mg-ATP

as substrate. The maximal

enzyme activity is at the mole

fraction of 0.5 (1:1 ratio of

ATP:Mg2+; the long vertical

gray arrow). The peak activity

would move to the left for an

optimal mole fraction of 0.33

(1:2 ratio of ATP:Mg2+; short

gray arrow)
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1. ATP coordination complexes of ATP with Cr3+, Co3+, and Rh3+ are inert in water

– their stable screw-sense isomers can be separated as pure Λ and Δ forms and

tested as possible substrates. For instance, hexokinase uses the Λ isomer of

β,γ-bi-dentate Cr-ATP, while adenylate kinase prefers the Δ isomer.
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Fig. 32.5 Each divalent

metal ion interacts

differently with ATP.

Different combinations of

phosphate oxygens (αO, βO,

and γO) and/or 7N of adenine

coordinate to the metal ion are

shown in the accompanying

table
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Three forms of ATP-Mg

Thio-substituted ATP-Me complexes

ATPbS-Mg ( -isomer) ATPbS-Cd ( -isomer) 
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Tridentate
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ATPaS-Cd
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Fig. 32.6 Various forms of Me-ATP complexes in solution. The screw-sense isomers (Λ and Δ

forms) of Mg-ATP are in rapid equilibrium. The α-phosphate of ATPαS is coordinated to Cd

through the S atom. The β-phosphate of ATPβS becomes chiral as one O is replaced by S atom. The

screw-sense isomers formed with Mg and Cd are reversed when the other stereoisomer of ATPβS is

used. The adenosine moiety is abbreviated as Ado
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2. Chiral sulfur substituted ATP complexes differently with Mg2+ and Cd2+. Mg2+

prefers to coordinate to O over S by a factor of 31,000, whereas Cd2+ prefers S

over O by a factor of 60. And when sulfur replaces one of the two non-bridge

oxygens of β-phosphate, the resulting ATPβS becomes chiral (Fig. 32.6). There-

fore with ATPβS the two metal ions form distinct (predominant) screw-sense

complexes. Specific preference of an enzyme for Mg2+ or Cd2+ complex of

ATPβS is thus indicative of its screw-sense isomer specificity. The two Λ

screw-sense complexes shown in Fig. 32.6 are substrates for yeast hexokinase,

for example.

3. ATPαS is useful in deciding whether or not the α-phosphate is coordinated to the

metal ion during reaction. If α-phosphate coordination is significant for enzyme

catalysis, then a reversal in the α-S isomer specificity is expected when Mg2+ is

replaced by Cd2+. The Mg2+ to Cd2+ switch affects α-S isomer specificity of

creatine kinase but not of hexokinase. Thus, β,γ-bi-dentate Mg-ATP is the

substrate for hexokinase, whereas it is the tri-dentate Mg-ATP for creatine kinase.

ATP Binding to Enzymes Negative charges of ATP tend to protect it from the

attack by incoming nucleophiles. Then how is it handled at the enzyme active site?

ATP exists in vivo largely as a complex with Mg2+. Typically Mg2+ neutralizes two

of the negative charges. Ion pair interactions with active site Arg (guanidinium

group) and Lys (ammonium group) residues contribute to binding (also hydrogen

bonds) and further negative charge neutralization. Together such interactions gener-

ally define the productive binding of ATP to the enzyme active site. While many

subtle variations on this theme are possible, there is a degree of active site conserva-

tion to accommodate ATP. The sequence popularly known as Walker motif-A (also

called P loop) is thought to be the nucleotide binding site in many proteins. It

consists of the sequence A/GX4GKT/S (in one-letter code) and is flanked by a

β-strand and an α-helix. Walker motif loops around the triphosphate moiety of

ATP. The Walker motif-B, on the other hand, consists of X4D (where X is almost

exclusively a hydrophobic residue), occurs at the end of a β-strand, and interacts with

the Mg2+ ion coordinated to the triphosphate moiety of ATP.

Different Modes of ATP Cleavage ATP is a versatile molecule serving as a free

energy source as well as a donor of its constituent groups, namely, phosphate (Ⓟ),

pyrophosphate (Ⓟ-Ⓟ), and AMP. Accordingly, ATP hydrolysis may occur at its γ-,

β-, or α-phosphate group (Fig. 32.7).

The ATP α-bond is cleaved in nucleotidyltransferase reactions, the γ-bond is

cleaved in kinase (phosphotransferase) reactions and both the α and γ bonds are

mobilized in S-adenosylmethionine synthesis (Frey and Magnusson 2003, Struck

et al. 2012). Cleavage at the β-bond is rare. Both α- and β-bonds are thought to

proceed through an associative transition state – as it is crowded at the P atom. With

its two negative charges and because it is a good leaving group, a dissociative
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transition state is expected when the γ-bond of ATP is cleaved. Representative

examples of all these modes of ATP cleavage are listed in Table 32.3.

Table 32.3 Different modes of ATP cleavage in metabolism

ATP cleavage pattern Enzyme and reaction Commenta

ATP ! ADP + Ⓟ Glutamine synthetase Bond between

β-γ-phosphates is

split
Glutamate

+NH3 + ATP ! Glutamine

+ADP + Ⓟ

ATP + X ! ADP + X-Ⓟ Hexokinase The γ-phosphate is

transferred to

acceptor
Glucose+ATP ! Glucose

6-Ⓟ + ADP

ATP ! AMP + Ⓟ-Ⓟ Aminoacyl-tRNA synthetase Bond between

α-β-phosphates is

split
Amino acid

+ATP + tRNA ! Aminoacyl-

tRNA+AMP + Ⓟ-Ⓟ

ATP + X ! AMP + X-Ⓟ-Ⓟ 5-Phosphoribosyl-1-

pyrophosphate synthetase

Bond between

α-β-phosphates split

with pyrophosphate

transfer to acceptor
Ribose-5-Ⓟ + ATP ! 5-

Phosphoribosyl-1-pyrophosphate

+AMP

ATP + X ! X-AMP + Ⓟ-Ⓟ FAD synthetase Bond between

α-β-phosphates split

with AMP transfer to

acceptor

FMN + ATP ! FAD+Ⓟ-Ⓟ

ATP +

X ! X-Adenosine + Ⓟ-Ⓟ + Ⓟ

S-Adenosylmethionine synthetase Bonds at α- and

γ-phosphates split

with adenosine

transfer to acceptor

Methionine + ATP ! S-

Adenosylmethionine + Ⓟ-Ⓟ + Ⓟ

aRefer to Fig. 32.7 to visualize which bond(s) of ATP are mobilized

OP

O

O

OP

O

O

OP

O

O

O

N
O

N

N

OH OH

N

NH
2

AMP + X- P - P

ADP + X- PX-AMP +  P - PX-Ado +  P - P  +  P

Fig. 32.7 Different modes of ATP cleavage. The electron movements (gray arrows) indicate the

bond cleaved when a nucleophile (X:) attacks one of the P or C atoms of ATP. Some representative

enzyme examples of these may be found in Table 32.3
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32.4 Investing Group Transfer Potential to Create Good Leaving
Groups

The group transfer potential of a compound is defined as the negative of free energy

of its hydrolysis. The transfer of a group (such as γ-phosphate from ATP) to water

(hydrolysis) provides a standard for use in comparing such reactions. The more

positive the group transfer potential, the greater is the tendency to transfer the group

to an acceptor. (This concept is similar to how we define standard reduction potential

and rank reducing agents.) Thus a comparison of group transfer potentials provides

the means for establishing the direction of group transfer among various donor-

acceptor molecules. Recall that since phosphoenolpyruvate has higher phosphoryl

transfer potential, it can phosphorylate ADP to ATP (Table 32.2). The concept of

group transfer potential is not just limited to phosphoryl transfers but may be

extended to others like acyl group transfers. Some relevant examples of compounds

with high group transfer potential are listed in Table 32.4.

Leaving groups in a reaction are quite often nucleophiles (see Chap. 31). And a

good leaving group is one that is stable in solution. Generally, the lower the base

strength, the greater the ease of expulsion. In keeping with this, the leaving group

order is acetate (pKa, 4.76) > phosphate (pKa, 7.00) > hydroxyl (pKa, 15.8).

Alkoxides (RO�; pKa, 16.0) and amide ions (RNH�; pKa, 30) are difficult to

expel because they are strongly basic. They need to be protonated to leave from a

reaction center – enzymes provide suitable acid groups to donate protons and help

them leave. More importantly, a poor leaving group has to be activated for expul-

sion. This is done through energy-rich compounds that exhibit high group transfer

potential (Table 32.4). A major objective of investing phosphate transfer potential of

ATP into different recipient substrates is thus to achieve better leaving group

chemistry for the reaction. Tagging poor leaving groups with different parts of

ATP serves to activate them. For instance, methyl transfer from methionine is

difficult because basic thiolate anion has to be expelled. But when methionine is

activated as S-adenosylmethionine (see Table 32.3), a facile leaving group is created.

This is S-adenosyl-homocysteine – a neutral, nonbasic sulfur compound. In this

sense, high group transfer potential is used to craft a good leaving group. We will

elaborate this concept below by describing acyl group activation, frequently encoun-

tered example in metabolism.

Table 32.4 Compounds with high group transfer potential

Group transferred High-energy compound Examples

Acetyl (acyl) group Oxygen-ester Aminoacyl tRNA, acylcarnitine

Thioester Acyl CoA, acyl carrier protein

Mixed anhydride Acetyl phosphate

Phosphoryl groupa Acid anhydride ATP, Ⓟ-Ⓟ

Phosphoramidate (P-N bond) Phosphocreatine
aMore examples of high phosphoryl group transfer potential may be found in Table 32.2
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Activating Carboxylate for Acyl Group Transfer Nucleophiles need to approach

and attack the carboxylate carbon to form various products. Important examples

include ester synthesis (R-OH as the incoming nucleophile), peptide/amide bond

formation (R-NH2 as the incoming nucleophile), and reduction of carboxylate to

aldehyde (hydride as the incoming nucleophile). But the free carboxylate (�COO�)

group in water is not reactive toward a nucleophilic attack. This is because the

incoming nucleophile has to displace O2� from the carbonyl carbon (Fig. 32.8). The

O2� species is a very poor leaving group making the event thermodynamically

unfavorable. Therefore, a modifying group must be built and tagged to the leaving

carboxylate oxygen. Upon activation, this oxygen first becomes part of a good

leaving group (Perler 1998). Subsequently, the incoming nucleophile displaces

this group to establish a bond with the carbonyl carbon (Fig. 32.8).

Different representative examples of acyl activation in enzyme reactions are

summarized in Table 32.5.

R
C

Nu

O

O
2-

R
C

X

O

R
C

H

O

R
C

O-R

O

R
C

NH
2

O

R
C

NHR

O

R
C

S-R

O

R
C

O

O

Nu:

X

H X

RNH
2

X

RS-

X

RO-

X

NH
3

Acyl group transfer with free carboxylate is difficult

Reactions of activated carboxyl where X =  P  or  AMP

+

Aldehyde

Amide 
Peptide

Ester
Thioester

Fig. 32.8 Activating

carboxylate for acyl group

transfer. Since O2� is a very

poor leaving group, the

carboxylate is first tagged with

a better leaving group (shown

as X) like Ⓟ or AMP. This

can be easily displaced by the

incoming nucleophile
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32.5 Summing Up

Inorganic phosphate, phosphorylated metabolites, and high-energy phosphate

compounds play pivotal yet universal roles in cellular metabolism. Phosphoric

acid, a tribasic acid with unique ionization properties, is well exploited by nature.

Phosphorylation imparts charge and polarity to compounds. Such tags prevent

them from escaping out of the cellular compartments.

Enzyme substrates are often derivatized with phosphate, adenosine, or AMP.

Presence of an additional group like this provides molecular features for better

recognition/discrimination at the enzyme active site. They in turn contribute to

binding energy that can be exploited for catalysis.

The phosphate group has the same tetrahedral geometry as that of a saturated

carbon center. Substitution by four different groups on a P atom generates a chiral

center.

Phosphorus atom provides an electrophilic center in most reactions involving

nucleophilic attack. Whenever group transfer occurs, phosphorylium (phosphoryl

group, PO3
�) is transferred and not the phosphate (PO4

3�).

Group transfers are best achieved in a reaction with good leaving groups. High-

energy compounds are used to modify the reactants so that a better leaving group is

created. Phosphate, pyrophosphate, and AMP are examples of leaving groups

derived from ATP.

Table 32.5 Enzyme reaction mechanisms involving acyl activation

Activated acyl group

Nucleophile which accepts the

acyl group Enzyme example

Acyl phosphate – phosphate as leaving group

γ-Glutamyl

phosphate

NH3 Glutamine synthetase

γ-Glutamyl

phosphate

NH2 of cysteine γ-Glutamylcysteine synthetase (GSH

biosynthesis)

γ-Glutamyl

phosphate

Hydride (H�) γ-Glutamyl phosphate reductase

Aspartyl-β-phosphate Hydride (H�) Aspartate β-semialdehyde

dehydrogenase

1,3-

Bisphosphoglyceratea
Enzyme-Cys-SH Glyceraldehyde-3-phosphate

dehydrogenase

Acyl adenylate – AMP as leaving group

Fatty acyl-AMP CoA-SH Fatty acyl-CoA synthetase

Amino acyl-AMPb NH2 of amino acid Non-ribosomal peptide synthetase

Amino acyl-AMP tRNA-CCA-OH Amino acyl-tRNA synthetase
aThe acyl group is first transferred to enzyme-Cys-SH. This thioester is later reduced to aldehyde
bIn the non-ribosomal peptide synthetase, the amino acyl group is first transferred to a thiol (Cys-SH

and 40-phosphopantetheine-SH) on the enzyme. This thioester is then attacked by the next incoming

amino acid to form the peptide bond
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In the final analysis, the ester/amide bond synthesis is an example of dehydration

reaction. And ATP, being an effective anhydride, acts as a remarkable dehydrating

agent. In this sense, high-energy compound nature of ATP is employed to drive

uphill reactions. ATP provides chemical energy by group transfers and not by simple

hydrolysis.
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Enzymatic Oxidation–Reduction Reactions 33

Life is interposed between two energy levels of the electron.

Albert Szent Gyorgyi

The driving force, for all life as we know it, is derived from reduction–oxidation

(redox) reactions. Most biological oxidations are often coupled to cellular energy

production. Typically carbon compounds (such as carbohydrates) are oxidized to

carbon dioxide, while oxygen is reduced to water. Enzymes play a significant role in

connecting the series of redox reactions ultimately involving oxygen. In mitochon-

drial electron transport chain, electrons are passed from NADH along a series of

electron acceptors/donors (oxidants and reductants) to O2. Molecular oxygen is the

final oxidant (terminal electron acceptor) of aerobic metabolism. Biological

reductions, on the other hand, are employed to store energy in chemical forms for

later use. In photosynthetic organisms, reduction of carbon dioxide

(to carbohydrates) is powered by sunlight, while water is oxidized (to oxygen).

This broad canvas of redox reactions serves to drive pumps, maintain concentration

gradients across membranes, and generate metabolites that have high group transfer

potential and/or are energy rich. Not surprisingly, oxidoreductases form a significant

group (EC 1.x.x.x) of well-represented enzymes (Chap. 4).

33.1 What Are Oxidation–Reduction Reactions?

Oxidation–reduction reactions involve transfer of electrons between two chemical

species. A compound which loses electron(s) is oxidized while the compound that

gains electron(s) is reduced. A compound that donates its electron(s) is called a

reductant or a reducing agent. Conversely the electron-accepting molecule is the

oxidizing agent or oxidant. The oxidation and reduction events must occur together –
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that is, an oxidant has to be present to accept the electron(s) from a reductant. In other

words, for a molecule to be reduced, some other molecule has to get oxidized. In this

sense redox reactions may be compared to proton transfers in acid–base chemistry.

An acid can lose/donate a proton only when a base accepts it. No oxidant can gain

electrons without another substance (reductant) losing electrons. A complete

oxidation–reduction reaction is thus a combination of two half reactions (redox

couples). When the two half reactions are combined, the component with greater

tendency to gain electrons (the oxidant) gets reduced at the expense of the other (the

reductant – which loses electrons).

Reduction Potential – Measure of Tendency to Lose Electrons We rank acid

strengths based on their pKas; the lower the pKa, the stronger is that acid (Chap. 30).

Similarly, the tendency to gain/lose electrons may be used to rank order compounds.

The strength of an oxidizing agent can be measured electrochemically by dissolving

it in water and measuring the voltage required to reduce it. This in fact defines a scale

of standard reduction potentials (or redox potentials) for each oxidant/reductant.

Table 33.1 contains a selective list of redox couples and their standard reduction

potentials. A large positive standard reduction potential indicates high electron

affinity of that compound and that it is a strong oxidant. Its conjugate reductant is

a poor electron donor and a weak reducing agent. For example, the conjugate redox

pair of ½O2/H2O has the highest positive standard reduction potential (+0.816 V;

where V denotes volts). This makes O2 the strongest available oxidizing agent and

H2O (its conjugate reductant) the weakest reducing agent. At the other end of the

spectrum, 2H+/H2 redox pair (�0.421 V) has a large negative standard reduction

potential.

Table 33.1 Standard reduction potentials for few biologically relevant redox couples

Redox couples (shown in the direction of reduction) E0� (V)

½O2 + 2H+ + 2e� ! H2O +0.815

O2 + 2H+ + 2e� ! H2O2 +0.300

Cytochrome c (Fe3+) + 1e� ! Cytochrome c (Fe2+) +0.254

Dehydroascorbate +2H+ + 2e� ! Ascorbate +0.060

2H+ + 2e� ! H2 0.000a

Oxaloacetate +2H+ + 2e� ! Malate �0.170

FAD +2H+ + 2e� ! FADH2 �0.180b

Pyruvate +2H+ + 2e� ! Lactate �0.185

GSSG +2H+ + 2e� ! 2 GSH �0.230

Lipoate +2H+ + 2e� ! Dihydrolipoate �0.290

NAD+ + 2H+ + 2e� ! NADH + H+ �0.320

NADP+ + 2H+ + 2e� ! NADPH + H+ �0.320

2H+ + 2e� ! H2 �0.421a

All the E0� values are for standard conditions of unit activity (1 M concentration) at 25�C and pH 7.0

([H+] ¼ 10�7 M); Gases are at 1 atmospheric pressure. aBy convention, the standard hydrogen

electrode at pH 0 ([H+] ¼ 1 M) has an E� of zero. However, at pH 7.0 its measured E0� value

is� 0.421 V. b This E0� value is for free FAD/FADH2 redox couple. Depending upon the active site

microenvironment in a given flavoprotein, this value varies from � 0.450 V to + 0.150 V
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Reduction Potentials and Reaction Thermodynamics Reduction potentials mea-

sure the affinity for electrons. The standard reduction potential is measured in volts

(V) and denoted as E�. The hydrogen electrode (representing 2H+/H2 redox pair) is

assigned an arbitrary E� value of 0.00 V (Table 33.1), and all others are ranked

relative to it. Many redox couples of biological interest involve protons. Standard

reduction potentials for biological redox couples are thus more meaningful when

expressed at pH 7.0 (near physiological conditions and not at pH¼ 0). And therefore

such reduction potentials (defined at pH 7.0 and 25 �C) are shown as E0� (and not as

E�). Accordingly, when [H+] is 10�7M (i.e., pH is 7.0), the E0� of 2H+/H2 redox pair

(the hydrogen electrode) becomes 0.421 V.

The reduction potential (E) not only depends on the chemical nature of a given

redox couple (E0� as listed in Table 33.1) but also on their relative concentrations

(activities). This relationship is described by the Nernst equation:

E ¼ E∘ þ
RT

nF
ln

electron acceptor½ �

electron donor½ �

where n is the number of electrons transferred per molecule and F is the Faraday

constant (23.063 kcal�V�1�mol�1). The actual E value thus depends on the

concentrations of oxidized and reduced species of the redox couple. We note that

Nernst equation and the free energy relationship between ΔG, ΔG� and the compo-

sition of the reaction mixture (ΔG ¼ ΔG� + RT ln Γ; see Chap. 10) are analogous.

Electrons spontaneously flow from a compound with lower reduction potential to

that with a higher reduction potential. Therefore, under standard conditions, they are

transferred from reduced component of any conjugate redox pair in Table 33.1 to the

oxidized component of any conjugate redox pair above it. By convention, the

tendency of electron flow (indicated by ΔE0�) for any oxidation–reduction reaction

between two redox couples may be calculated as follows:

ΔE
0� ¼ E0�

electron acceptor � E0�
electron donor

For example, electrons can spontaneously flow from H2 (�0.421 V) to O2

(+0.816 V) – i.e., the process is thermodynamically feasible (ΔE0� ¼ +1.237 V).

The more positive the ΔE0�, the greater is the tendency for electron flow between the

two redox couples. In this sense, ΔE for a redox reaction and its corresponding ΔG

are related by

ΔG
�

¼ �n� F � ΔE0
�

and also;ΔG ¼ �n� F � ΔEð Þ

where, again, n is the number of electrons transferred per mole (equivalents per

mole) in the redox reaction and F is the Faraday constant (23.063 kcal � �V�1

� mol�1). A positive ΔE therefore means that ΔG is negative and the reaction is

spontaneous (i.e., thermodynamically favorable; Chap. 10). By analogy, the
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criterion of spontaneity for a given oxidation–reduction reaction is ΔE (and not

ΔE0�). All these concepts are illustrated with the help of lactate dehydrogenase

reaction in the box below.

Redox Chemistry of Lactate Dehydrogenase Reaction

The following reversible reaction is catalyzed by lactate dehydrogenase:

Pyruvateþ NADHþHþ
⇄Lactateþ NADþ

Viewed from left to right, pyruvate is reduced to lactate, while NADH is

oxidized to NAD+ in this reaction. In the reverse direction (from right to left),

NAD+ is reduced to NADH at the expense of lactate oxidation. Oxidation–

reduction reactions are thus always coupled. For convenience, however, we

can describe them as two half reactions (redox couples), both written in the

direction of reduction as shown below:

Reduction of pyruvate : Pyruvateþ 2Hþ þ 2e� ! Lactate

Reduction of NADþ
: NADþ þ 2Hþ þ 2e� ! NADHþ Hþ

The E0� values for these two redox couples, under standard conditions, may be

obtained from Table 33.1. The electrons flow from NAD+/NADH couple

(�0.320 V) to pyruvate/lactate couple (�0.190 V) because the latter is at

higher positive standard reduction potential. This means pyruvate/lactate half

reaction goes as shown while the NAD+/NADH couple undergoes oxidation.

The NADH is the reducing agent and pyruvate is the oxidizing agent. The

ΔE0� for this reaction may be accordingly calculated:

ΔE
0
∘

¼ E
0
∘

pyruvate=lactate � E
0
∘

NAD=NADH

¼ �0:190 V�ð�0:320 ÞV
¼ þ0:130

The ΔG� for the reaction may now be obtained as the two are related. It is a

two-electron reduction (n ¼ 2) and therefore

ΔG
�

¼ �n� F � ΔE
�

¼ �2� 23:063� 0:130 ¼ �5:996kcal�mol�1

Since the ΔG� is negative (�5.996 kcal�mol�1), reduction of pyruvate by

NADH is a spontaneous process under standard conditions (at 25�C and

pH 7.0 and with pyruvate, lactate, NAD+, and NADH all at 1.0 M).

Lactate dehydrogenase (rat skeletal muscle) is exclusively cytosolic. The

approximate concentrations of lactate (5.0 mM), pyruvate (0.5 mM), NAD+

(0.5 mM), and NADH (0.001 mM) in this compartment are reported.

(continued)
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Reduction potentials for the two redox couples under these conditions

(at 25�C) may now be calculated as shown.

EPyr=Lac ¼ E
0� þ

RT

nF
ln

Pyruvate½ �

Lactate½ �
¼ �0:190Vþ

2:303� 1:987� 298

2� 23063
log

0:5½ �

5:0½ �

� �

V

¼ �0:190Vþ 0:0296� log 0:1ð ÞV ¼ �0:190V� 0:0296V ¼ �0:2196V

Similarly,

ENAD=NADH ¼ E
0� þ

RT

nF
ln

NADþ½ �

NADH½ �

¼ �0:320Vþ
2:303� 1:987� 298

2� 23063
log

0:5½ �

0:001½ �

� �

V

¼ �0:320Vþ 0:0296� log 500ð ÞV ¼ �0:320Vþ 0:0799V ¼ �0:240V

The NAD+/NADH couple (�0.240 V) has a more negative reduction potential

than that of pyruvate/lactate couple (�0.2169 V). Accordingly, NADH

reduces pyruvate but the ΔG for this reduction (n ¼ 2) is different. This may

now be calculated as before:

ΔG ¼�n� F � ΔE ¼ �2� 23:063� �0:2196Vþ 0:240Vð Þ
¼�0:941kcal�mol�1

This ΔG value is different from ΔG� (�5.996 kcal�mol�1; the standard free

energy change) for this redox reaction – it indicates the actual free energy

change at the physiological concentrations of the redox couples prevailing in

the muscle.

If the pyruvate/lactate ratio in the liver is 1:100, then EPyr/Lac will be

�0.249 V. This is more negative than that of NAD+/NADH couple

(�0.240 V), and hence lactate now reduces NAD+ (ΔG for the reaction as

written above will be +0.415 kcal�mol�1). The redox reaction actually goes

from right to left in the liver! It may be reiterated that the criterion of

spontaneity for a reaction is ΔE (or ΔG) and not ΔE0� (or ΔG�). Reversible

feature of lactate dehydrogenase reaction forms the basis of functional Cori’s

cycle.

Effect of pH on Standard Reduction Potentials We noted that the standard

hydrogen electrode at pH 0 ([H+] ¼ 1 M) has an E� of zero by convention

(Table 33.1). And at pH 7.0, its measured E0� value is �0.421 V. In general, pH

does influence the E� value of all redox couples that involve H+ ions in their half

reactions. The NAD+/NADH couple is a common example of this kind. As long as

the pH of the reaction is maintained (recall that at standard condition, pH is 7.0), its
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E0� value is �0.320 V. At any other pH, the reduction potential of NAD+/NADH

couple will change. We can calculate the effect of pH on E by suitably including [H+

] term in the Nernst equation. For unit increase in pH, the E becomes more negative

by 0.059 V (for one electron reduction). For NAD+/NADH couple (where n ¼ 2),

however, the ΔE will be 0.0295 V for each pH unit change.

33.2 How Enzymes Influence Redox Reaction Rates

We noted above that reduction of pyruvate by NADH is a spontaneous process under

standard conditions. However, when pyruvate and NADH are mixed together, no

reaction occurs. While this reaction is thermodynamically allowed (i.e., spontaneous

with ΔG negative), there exists a kinetic barrier. This is where enzymes come into

picture. As with any other reaction, an enzyme can facilitate and catalyze redox

reactions. Overcoming kinetic barriers of redox reactions is their foremost feature.

At times the reduction potential difference between two reactants (redox couples)

may be large – making the reaction difficult. Redox couples with intermediate

reduction potentials – mediators – often facilitate such reactions. They act as “go

between” the two reactants. Obviously such mediators themselves are redox-active

groups/compounds. Except for the thiols (reversible oxidation–reduction of

cysteine⇄cystine; Table 33.1), there is not much on the polypeptide chain for an

enzyme to offer. Further, when a substrate is oxidized, electrons have to be moved

out. There are no obvious electrophilic groups in the amino acid side chains of

proteins. Thus redox enzymes without exception show obligate requirements for

either (a) an organic coenzyme to act as an electron acceptor or (b) a redox-active

transition metal to pass the parcel of electrons to another acceptor molecule. A

number of nonprotein coenzymes, cofactors, and prosthetic groups are recruited

for this purpose. This is the second feature through which enzymes contribute to

redox catalysis. More common examples of these are listed in Table 33.2.

Enzymes are able to modulate redox potentials of bound substrates and/or

cofactors. This is done by virtue of their ability to create unique microenvironments

– the third important feature of redox enzymes. Two examples of redox modulation

illustrate this point well. The E0� value of bound FAD/FADH2 couple varies from

�0.450 V to +0.150 V, depending upon the flavoprotein active site (Table 33.1).

When the active site preferentially binds FAD over FADH2, then the E0� of this

redox couple becomes more negative. Conversely, if FADH2 is favored over FAD,

the E0� tends to become more positive. These conclusions simply follow from the

Nernst equation (see box above – Redox chemistry of lactate dehydrogenase reac-

tion – for a similar calculation). Cytochromes provide yet another example where

enzyme protein brings about a shift in the reduction potential by differential binding.

They all contain heme – an iron atom stuck between four N atoms of a porphyrin.

But the fifth and the sixth ligands donated by the polypeptide greatly influence the

reduction potential of the bound heme. This forms the basis for the “bucket brigade”
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Table 33.2 Cofactors participating in enzymatic oxidation–reduction reactions

Cofactor/prosthetic group (enzyme

example) Reduced form ! oxidized forma

Nicotinamide adenine dinucleotides

(lactate dehydrogenase)

R

N

CONH
2

HH

R

N
+

CONH
2

H

2e-

NAD(P)H      NAD(P)
+

Biopterin (phenylalanine

hydroxylase)
N
H

8
7

6

N
H

5N

N

OH

NH
2

C

OH

OH

N
H

N
N

N

OH

NH
2

C

OH

OH

2e-

5,6,7,8-Tetrahydrobiopterin    7,8-Dihydrobiopterin

Glutathione (glutathione

peroxidase)

N
H

O

N
H

O

SH

NH
3

+

O
O

O

O 2e-

N
H

O

N
H

O

S

NH
3

+

O
O

O

O

2

2 GSH                GSSG

Lipoamide (dihydrolipoyl

dehydrogenase)
S

S
CONH-Enz

SH

SH
CONH-Enz

2e-

Dihydrolipoate            Lipoate

Flavins (FAD and FMN) (succinate

dehydrogenase, glutathione

reductase)

R

N

N N

NH

O

O

R

N
H

5

N
10

N
H

1
2

NH
3

4

8

7

6

9
O

O

R

N
H

C

N N

NH

O

O

1e-1e-

1,5-Dihydroflavin Flavin semiquinone  Oxidized flavin

Ascorbic acid (vitamin C) (prolyl

hydroxylase; 2-ketoglutarate

decarboxylating)

O

OHOH

O
OH

OH
O

OHO

O
OH

OH
O

OO

O
OH

OH

1e- 1e-

Reduced  Ascorbate radical Oxidized 

Iron–sulfur clusters (Fe-S)n (where

n ¼ 2 or 4) (dihydroxylating

dioxygenase; ferredoxins)

1e-

S

Fe
2+

Fe

S

SS

EnzEnz S

Fe
3+

Fe

S

SS

EnzEnz

(Fe-S)2 cluster

Heme (cytochrome oxidase)
1e-

N

N

N

N

X

Y

N

N

N

N

X

Y

Fe3+Fe2+

Transition metal ions (like Cu, Fe,

and Mo) (laccase; catechol

dioxygenase)

1e-1e-

Fe2+ Fe3+Cu1+ Cu2+ ;

aThe number of electrons transferred in oxidation step(s) is shown. While proton transfers may

accompany oxidation, this inventory is not explicitly shown. Groups/atoms relevant to oxidation are

marked in gray. See Table 31.1 (Chap. 31) for details of R groups in NAD(P), FAD, and FMN.

Amino acid side chains, water, O2, etc. provide the fifth and sixth ligands (X and Y) to heme iron
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of cytochromes lining up the electron transport chains. Cytochrome a3 (+0.385 V) of

cytochrome oxidase can easily steal an electron from cytochrome c (+0.235 V) in the

mitochondria.

33.3 Mechanisms and Modes of Electron Transfer

The carbon encountered in an enzyme substrate exists in a range of oxidation states.

For example, various oxidation states of a one-carbon compound are shown

below (Fig. 33.1). Considering their electronegativities (H < C < O), the notional

number of electrons present on carbon decreases by two in each step. More reduced

compounds are richer in H than O, and conversely more oxidized compounds are

richer in O than H.

Biological oxidation reaction may be broadly viewed as (a) removal of electrons

from a substrate molecule or (b) its direct combination with oxygen, where oxygen

atom accepts the electron(s). We will look at reactions involving molecular oxygen a

little later. A substrate molecule is oxidized when electrons are transferred from it to

an acceptor. Such transfers occur in multiples of single-electron currency – the

reducing equivalent. In practice this may be through 1e� transfers or 2e� transfers. A

vast majority of organic substrate oxidations are 2e� transfer events. The two

electrons may be transferred in a single step or they may be moved one at a time

(two 1e� transfer steps). Single-electron transfers generally have high-energy

barriers and require stabilization of a radical. If two 1e
�
steps are involved, then a

free radical intermediate must form. Free radicals may be detected by their typical

EPR signals. Few structures like flavins and ascorbic acid (Table 33.2) help stabilize

such reactive species. Other chemical apparatus available for enzymes to do this are

quinoid structures of some coenzymes (vitamins E and K and coenzyme Q) and

redox-active transition metals (like Fe, Cu, and Mo). Quinoproteins are a recently

characterized group of enzymes (quinoproteins, copper-quinoproteins, and

quinohemoproteins) whose catalytic mechanisms involve free radical intermediates

on quinone-containing prosthetic groups. Pyrroloquinoline quinone (PQQ) is one

such prosthetic group found in a number of bacterial dehydrogenases and

oxidases (Duine 1999; Klinman 1996).

The more common 2e� transfers can occur by two distinct mechanisms: a)

Enzymatic dehydrogenations offer the first example where hydride (H�, a proton

HC

H

H

H
OHC

H

H

H OC

H

H

OC

H

OH

OCO

8  6  4   2 0

Notional number of electrons on C atom

Fig. 33.1 Various oxidation states of one carbon compounds. Oxidation state of carbon

increases from left (methane) to right (carbon dioxide)
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with two electrons) transfer may be the oxidation step. Reactions of nicotinamide

cofactors (NAD and NADP) apparently go through hydride transfer step(s). b) In the

second option, a substrate proton is first abstracted. A substrate carbanion is there-

fore expected to form, at least transiently. In a subsequent step, 2e� transfer from the

carbanion to an acceptor takes place. Some of the flavoenzymes operate through this

mechanism.

33.4 Pterine and Folate Cofactors

Pterines and folic acid derivatives (Table 33.2) in their many forms perform

diverse roles in nature ranging from pigments (butterfly colors) to cofactors for

numerous redox and one-carbon transfer reactions (Benkovic 1980). The unique

chemistry of the pteridine heterocycle is responsible for this extraordinary

diversity of function. The pteridine ring system resembles the isoalloxazine

ring of the flavine coenzymes (see Table 33.2). Pterines are important redox

cofactors (and include folic acid, tetrahydrobiopterin, and molybdopterin). The

active form of biopterin is 5,6,7,8-tetrahydrobiopterin. This is oxidized to

7,8-dihydropterin during hydroxylation of the aromatic ring of phenylalanine

by phenylalanine hydroxylase (see Table 33.4 below). A similar role is played

by biopterin during the formation of 3,4-dihydroxypheylalanine from tyrosine.

Folate differs structurally from biopterin in that the substituent on C6 of the

pteridine ring (see Table 33.2) consists of p-aminobenzoic acid further linked to

polyglutamic acid. Tetrahydrofolate (THF) is a versatile cofactor that

participates in redox chemistry and also functions to transfer “one-carbon”

units in several oxidation states (Table 33.3). The “one-carbon” units are

covalently attached to THF at its N5, N10, or both N5 and N10

positions (Matthews and Drummond 1990). The one-carbon units enter the

THF pool from serine, by the action of serine hydroxymethyltransferase (see

Table 35.4 in Chap. 35), at N5,N10-methylene-tetrahydrofolate. The only other

one carbon (methyl group) transfer chemistry involves coenzyme B12.

Table 33.3 Enzyme reactions of different “one-carbon” tetrahydrofolate derivatives

Tetrahydrofolate (THF)

derivativea Enzyme reaction

N5-Methyl-THF Homocysteine methyltransferase

N5,N10-Methylene-THF Serine hydroxymethyltransferase, thymidylate synthase

N5-Formyl-THF, N10-

Formyl-THF

Formylmethionyl-tRNA synthase, GAR transformylase, AICAR

transformylase

N5-Formimino-THF Glutamate formiminotransferase

N5,N10-Methenyl-THF N5,N10-Methenyl-THF cyclohydrolase
aThe oxidation states of “one-carbon” units correspond to methanol (methyl-THF), formaldehyde

(methylene-THF), and formate (formyl-THF, formimino-THF, and methenyl-THF) as shown in

Fig. 33.1
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The importance of folate as a cofactor is obvious as it participates in the

biosynthesis of several amino acids and nucleotides. Both 7,8-dihydropterin and

7,8-dihydrofolate are reduced back to their active tetrahydro-states by dihydrofolate

reductase. This enzyme is a key target for cancer chemotherapy (inhibited by

methotrexate; see Chap. 21 Irreversible inhibitions). Similarly, sulfanilamide

(a sulfa drug and a structural analog of p-aminobenzoic acid) is a medically valuable

antibacterial agent (Table 28.4 in Chap. 28).

Nicotinamide and riboflavin are by far the most common redox cofactors used by

enzymes in nature. We will describe the salient features and associated chemical

mechanisms for them in some detail below. The support for their proposed

mechanisms has come from actual enzyme reactions as well as from corresponding

model reactions.

33.5 Nicotinamide Cofactors

Nicotinamide cofactors frequently participate in enzymatic redox reactions. They

take part in oxidations and reductions via their pyridine ring (of the nicotinamide)

and hence are sometimes also termed pyridine nucleotides. Change in absorbance

(at 340 nm) associated with their oxidation–reduction is a convenient way of

monitoring these enzyme reactions (Chap. 12). Nicotinamide adenine dinucleotide

(NAD+) was the first enzyme cofactor to be discovered in the conversion of glucose

to ethanol by yeast (by Harden and Young in 1904). Subsequently, nicotinamide

adenine dinucleotide phosphate (NADP+) was identified (by Warburg and Christian

in 1934) as the redox cofactor responsible for glucose-6-phosphate oxidation in

erythrocytes. Total chiral synthesis of NAD+ was accomplished in 1957 by Todd’s

group. NADP+ differs from NAD+ in having an extra phosphate group (see

Table 31.1 for structures). NADP+ sports the additional phosphate group on its

20OH of adenosine moiety. Despite this structural difference, both NAD+/NADH

Table 33.4 Enzyme active sites for molecular oxygen to react

Prosthetic group Examples

Heme iron Cytochrome oxidase, cytochrome P450

Non-heme iron Monooxygenases and dioxygenases, prolyl hydroxylase (2-oxoglutarate

dependent), superoxide dismutase

Copper

(monometallic)

Amine oxidase

Copper

(bimetallic)

Laccase, oxidases, superoxide dismutase

Manganese Photosystem II (oxygen-evolving complex), superoxide dismutase

Flavin (FAD or

FMN)

D-Amino acid oxidase, oxygenases, oxidases

Biopterin Phenylalanine hydroxylase
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and NADP+/NADPH redox pairs have identical reduction potentials (�0.320 V,

Table 33.1). Physiologically, however, NAD+/NADH redox couple functions

largely as an electron acceptor (oxidizing agent) and is preferred in catabolic

reactions. NADP+/NADPH couple on the other hand is the choice reductant (elec-

tron donor) in biosynthetic steps of metabolism.

Enzymes display a conserved structural motif to bind NAD+ � called the

Rossmann fold. Active sites of many dehydrogenases bind NAD+ in an extended

conformation. In the bound state, the orientation of nicotinamide group can be either

anti (away from; as in malate dehydrogenase) or syn (toward; as in glyceraldehyde-

3-phosphate dehydrogenase) position with respect to its N-glycosidic bond. In a

majority of enzymes, the pyridine nucleotide cofactor is bound reversibly (more like

a substrate). However UDP-galactose epimerase is known to contain stoichiometric,

tightly bound NAD+ at its active site.

NAD(P)H is a powerful biological reducing agent but is stable in air. Reduced

pyridine nucleotides (both NADH and NADPH) do not react with oxygen – in this

sense they are distinct from reduced flavins which do (see below). The NAD+/

NADH couple is a common participant in all dehydrogenases wherein >CH-XH is

oxidized to >C ¼ X (where X is N or O). As with some reductase reactions, this

redox couple also is used to reduce C ¼ C double bonds. The redox chemistry with

NAD+/NADH couple is believed to proceed with a hydride transfer step. Oxidation

of the C-H bond is often shown as its heterolytic cleavage – accompanied by a

hydride transfer to C-4 position of NAD+. Failure to equilibrate this transferable

hydrogen with solvent (water) protons is suggestive of this mechanism. However

this does not constitute a final proof of hydride transfer – because some enzymes can

exclude water from their active site during catalysis. When a hydride from NAD(P)H

is transferred to carbon atom, acid–base dissociation of the resultant C-H bond is

exceedingly slow. But whenever the hydride is transferred to a hetero-atom (which is

electronegative), then it exchanges rapidly with solvent protons. Isotopic labeling

studies coupled with observed deuterium kinetic isotope effects have led to the

general acceptance of a hydride transfer mechanism. Such a mechanism for lactate

dehydrogenase reaction is depicted in Fig. 33.2

The pyridine ring is puckered and non-planar in the reduced state (NADH or

NADPH), whereas it is planar when oxidized. The C-4 of NADH has two nonequiv-

alent hydrogens (labeled A and B); either one can move out as a hydride during its

oxidation. As shown in Fig. 33.2, lactate dehydrogenase is A-side specific. Techni-

cally this means the H from proR position of C-4 of NADH is selectively transferred

to pyruvate by this enzyme. In the reverse direction, the hydride is transferred to the

re face of NAD+ (which is planar). With respect to their choice of C-4 hydrogen on

pyridine nucleotides (either NAD or NADP), dehydrogenases may be either A-side

specific or B-side specific. For instance, glyceraldehyde-3-phosphate dehydrogenase

is B-side specific – it picks up the H from proS position of C-4 of NADH (this

corresponds to si face of NAD+, in the reverse reaction). The trans-hydrogenase of

animal mitochondria – transfers hydride between NADH and NADP+ � is proR

specific (A-side) for one and proS specific (B-side) for the other substrate.
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Lastly, it is worth noting that pyridine nucleotides (and NAD+ in particular) have

important non-redox roles in metabolism as well. It is the substrate for poly

(ADP-ribose) polymerase (PARP), E. coli DNA ligase, and toxins of diphtheria

and cholera. In all these cases, ADP-ribose of NAD+ is transferred to different

acceptors.

33.6 Flavins and Flavoenzymes

The two common flavin coenzymes (FMN and FAD) are chemically modified

versions of riboflavin (vitamin B2). The ribitol side chain when phosphorylated is

FMN or when attached through a diphosphate to adenosine gives FAD (see

Table 31.1 for structures). Riboflavin itself was first isolated from eggs and its

structure elucidated in 1935. Extensively conjugated, tricyclic isoalloxazine ring

system of riboflavin imparts it (and its cofactors) the bright yellow color. More

importantly, this isoalloxazine ring system forms the redox-active structure of FMN

and FAD. The oxidized cofactor absorbs in the visible region with one peak around

450 nm (Fig. 33.3). This 450 nm peak is absent in the corresponding 2e� reduced

form (1,5-dihydroflavin). The oxidized form of flavin is planar, while the

R

N

CONH
2

H
H

CH
3

O

C

O

O

H
B

+
Enz

R

N
+

CONH
2

H
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3
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C
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O

H
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R

N
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2
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N
+

CONH
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(A side; H
R
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S
) (Pro S; si face) (Pro R; re face)

Fig. 33.2 Hydride transfer in the lactate dehydrogenase (LDH) reaction mechanism. This

enzyme reaction is specific for the C-4 R hydrogen (bottom panel: H in gray, A side specificity) of

NADH. In the reverse direction, it transfers the hydride to C-4 proR position (re face) of NAD+
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1,5-dihydroflavin is bent with the two outer ring planes forming an angle (of ~30�)

along the N5–N10 axis. One can visualize enzyme active sites selectively stabilizing

one of these two forms – a possible basis for shifting the reduction potential of the

flavin cofactor. For instance, D-amino acid oxidase binds FAD about 107 fold tighter

than FADH2 (1,5-dihydroflavin). Unlike with nicotinamide coenzymes, flavin

cofactors are much more tightly bound to flavoenzymes (KD ranging from 10�7 M

to 10�14 M). In some cases the flavin (through a methyl C on its C-8) is covalently

bound to the apoenzyme (e.g., through His residue of succinate dehydrogenase).

FAD (as also FMN) can exist in three distinct oxidation states – FAD, FADH.

(semiquinone radical), and FADH2 (1,5-dihydro FAD). Since flavin semiquinone is

reasonably stable (at least in enzyme-bound form), it can be a significant intermedi-

ate in flavoenzyme catalysis. Flavins are able to participate both in 1e� and 2e�

transfer reactions. They are crucial as adapters/mediators between 2e� oxidations

(of organic compounds) and 1e� oxidations (like in electron transport chains). This

feature also allows them to react with molecular oxygen (see below). On the

contrary, pyridine nucleotides are always restricted to 2e� (hydride) transfer

reactions. Interestingly, 5-deazaflavin (where the flavin N-5 is replaced by a C

atom) behaves more like a nicotinamide cofactor – capable of only 2e� transfers.

Factor F420 (E0� ¼ �0.360 V) found in methanogenic bacteria is an example of

naturally occurring 5-deazaflavin.

Flavoenzymes may be classified according to the nature of (a) electron acceptors

that accept electrons from the reduced flavin and (b) electron donors that transfer

electrons to the oxidized flavin nucleus (Fraaije and Mattevi 2000; Joosten and van

Berkel 2007; Mattevi 2006). Different substrates like alcohol (D-lactate dehydroge-

nase), aldehyde (glucose oxidase), amine (D-amino acid oxidase), C-C bond (acyl-

CoA dehydrogenase), and thiols (glutathione reductase) may donate electrons to

Fig. 33.3 Absorption spectra of reduced and oxidized FAD. Spectral properties, particularly

those of the reduced flavin, are greatly influenced by their microenvironment at the active site.

Representative spectrum of reduced FAD in an enzyme-bound form is shown; FADH2

(1,5-dihydroflavin), in free solution and in air, is unstable. Corresponding spectral features of

FMN and FMNH2 are almost identical
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reduce the enzyme-bound flavin. When we analyze the molecules that receive

electrons from a dihydroflavin (enzyme-bound FADH2, for instance), two broad

categories may be observed. One group using molecular oxygen (O2) as the electron

acceptor includes oxidases, monooxygenases, dioxygenases, and metallo-

flavoenzymes. We shall address this group in the next section. The second category

includes all flavoproteins – like succinate dehydrogenase and glutathione reductase –

that do not use O2 as electron acceptor. These dehydrogenase mechanisms represent

a major class of reactions wherein flavin coenzymes take part. Varied experimental

evidence (from model reactions and enzyme examples) supports different roles for

its participation in these reactions. Possible mechanisms for such substrate

dehydrogenations are:

(a) Direct hydride transfer from the substrate to oxidized flavin (to its N-5)

(b) Nucleophilic attack by substrate hetero-atom (other than C) at C4a (the

bridge C between C-4 and N-5) of oxidized flavin

(c) Nucleophilic attack by substrate carbanion at N-5 of oxidized flavin

(d) A radical mechanism involving 1e� transfers

Glutathione reductase is a well-characterized enzyme among the flavoprotein

dehydrogenases. It regenerates glutathione (GSH) from its oxidized disulfide

(GS-SG) by the following reaction:

GS2 SGþ NADPHþHþ
⇄ 2 GSHþ NADPþ

Based on their reduction potentials (Table 33.1), equilibrium position favors the

reduction of GS-SG (oxidized glutathione; disulfide) to GSH (reduced; thiol) at the

expense of NADPH. The hydride from NADPH is first transferred to the bound

flavin (to its N-5) of glutathione reductase. Bound FADH2 further transfers the two

electrons to reduce a disulfide – of two cysteine residues at the enzyme active site.

These cysteine thiols reduce GS-SG to two molecules of GSH. In turn, the active site

disulfide is regenerated for the next catalytic cycle (Fig. 33.4). Other flavoenzymes

with a similar chemical mechanism (but with different disulfide substrates) include

dihydrolipoamide dehydrogenase, thioredoxin reductase, and trypanothione

reductase.

Like glutathione reductase, many other flavoenzymes utilize NAD(P)H to reduce

their bound flavin coenzyme. However, some of them eventually transfer these

electrons to molecular oxygen. These will be the subject of our next topic.

33.7 Reactions Involving Molecular Oxygen

Molecular oxygen (O2, also known as dioxygen) is the ultimate electron acceptor in

aerobic metabolism. Oxygen atom has eight electrons with the configuration 1s2,2s2

2p4 (Chap. 29, Table 29.1). However, in nature it exists as a diatomic molecule with

a double bond (bond order is 2) between the two O atoms. Interestingly enough it

398 33 Enzymatic Oxidation–Reduction Reactions



exists as a diradical in the ground state (O2 has a triplet ground state). Its two

unpaired electrons in the valence orbitals have parallel spins making it diamagnetic.

The low reactivity of O2 is closely related to its triplet ground state with the

following molecular orbital description:

2sσð Þ2 2sσ∗ð Þ2 2pσð Þ2 2pπð Þ4 2pπ∗ð Þ1, 1

The peculiar electronic configuration of O2, according to Pauli’s exclusion principle,

dictates that it can accept only unpaired electrons. Therefore electrons must be

transferred to O2 one at a time. Such single-electron transfers are in obvious contrast

to the transfer of electrons in pairs seen in most redox reactions, discussed above.

Special cofactors are required to transfer electrons from a two-electron donor to

one-electron acceptor (and vice versa!). FAD is one such cofactor that is capable of

participating in both 1e� and 2e� redox reactions.

Reactions of molecular oxygen usually occur at a prosthetic group on the

enzyme (Malmstrom 1982). Dioxygen reacts with a fully reduced flavin (such as

bound FADH2) to yield a flavin-peroxide. The C4a of the isoalloxazine is where this

peroxy adduct forms (Fig. 33.5). The final fate of such peroxides is decided by the

nature of the active site of that particular enzyme. The redox active metal center of an

enzyme may also react with molecular oxygen. The metal center may (a) transfer

electrons to bound O2 or (b) activate the organic substrate so that it can react with O2,

also bound at the active site.
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Fig. 33.4 Glutathione reductase reaction mechanism. Reduction of the enzyme disulfide

requires the transfer of 2e� from NADPH via the bound FAD (top reactions). The two active site

cysteine thiols in turn reduce GSSG (bottom reactions). All proton transfer steps are not explicitly

shown for the sake of clarity
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Enzymatic insertion of atoms from dioxygen into organic substrates was first

demonstrated, independently by Hayashi and Mason, in the 1950s. In their

pioneering work, oxygen isotopes (18O in particular) were exploited. Since then

more than 200 enzymes are known to use molecular oxygen as one of their

substrates. These O2-utilizing enzymes are classified into oxidases and oxygenases.

In an oxidase-catalyzed reaction, O2 functions only as an electron acceptor. In

D-amino acid oxidase, for instance, bound FADH2 reduces molecular oxygen to

hydrogen peroxide. In general, the successively reduced products of molecular

oxygen include the following:

O2
Dioxygenð Þ

��!
e�

O2
�:

Superoxideð Þ
�����!
e�, 2Hþ

H2O2
Hydrogen peroxideð Þ

�����!
2e�, 2Hþ

2H2O
Waterð Þ

In oxygenase-catalyzed reactions, however, one or both the atoms of O2 are

incorporated into organic substrates. Oxygenases in turn may be (a) dioxygenases,

which catalyze the insertion of both atoms of O2 into the organic substrate, or

(b) monooxygenases (mixed function oxidases), which catalyze the insertion of

one atom of O2 into the organic substrate while the other one is reduced to water.

Participation of protein R-groups (amino acid side chains) alone is not enough to

catalyze the reactions involving O2. All enzymes that activate/reduce O2 are conju-

gated proteins. Associated cofactors/prosthetic groups at the reaction centers include

flavins, heme, iron (Fe3+/Fe2+), or copper (Cu2+/Cu+). Non-heme iron prosthetic

groups are common in oxygenases and some oxidases. Phenylalanine hydroxylase

uses tetrahydro-biopterin along with Fe2+ for its activity. Table 33.4 lists the

prosthetic groups exploited by enzymes acting on molecular oxygen. The list will

however be different, and gets expanded, when the reactants are either superoxide or

hydrogen peroxide, instead of O2.

Metal ions in redox catalysis: Metal ions contribute to enzyme catalysis by

shielding/stabilizing charges and by enhancing the nucleophilicity of water

(Chap. 6). Multivalent metal ions can act as super (Lewis) acids. In addition,

redox-active metal ions directly participate in electron transfer chemistry. Reduction

potential of a redox-active metal center can be modulated, and it depends on the

nature of ligands coordinating the metal ion. Metal ions can be classified as hard

acids, soft acids, and borderline cases. Hard acids prefer a hard ligand, while soft

acids prefer softer ligands (Irving–Williams stability series and Pearson’s Hard-Soft-
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Fig. 33.5 The FAD peroxy adduct of D-amino acid oxidase and formation of hydrogen peroxide
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Acid-Base classification). For instance, Fe3+ (hard acid) prefers hard ligands (with

O) than Fe2+ (borderline case, preferring N,S-containing ligands). Clearly ligand

preference versus the actual ligands present influences the reduction potential (and

metal reactivity) of a redox-active metal. This forms the basis of redox manipulation

at active sites – enzymes offer appropriate side chain residues to modulate the metal

center chemistry. A more detailed treatment of this subject may be found in

specialized books on bioinorganic chemistry.

Binding of metal cofactor (regardless of whether it is redox-active or not) to the

apoenzyme can be followed by one or more techniques. Metal ion binding may be

tested by (a) kinetic competition with other metal ions and use of chelators; (b) gel

filtration, equilibrium dialysis, and/or ultracentrifugation; (c) difference spectral

titrations (with UV-visible, fluorescence, optical rotatory dispersion, or circular

dichroism); and (d) resonance techniques (like nuclear magnetic resonance, proton

relaxation rates, electron spin resonance, or electron paramagnetic resonance). The

actual ligands coordinating the metal center may be directly visualized by X-ray

structure analysis. Depending on their strength of metal binding, enzymes may be

grouped into metallo-enzymes and metal-activated enzymes. This distinction, how-

ever, is purely arbitrary and is based on the magnitude of the binding constant –

when the binding is strong (KD < 10�8 M), it is a metallo-enzyme, but when metal is

weakly bound (KD > 10�8 M), it is a metal-activated enzyme. In practice, however,

we see a continuum of metal ion-binding constants, and it is difficult to classify

borderline cases.

Metal ion-requiring enzymes may be distinguished into three groups depending

on who donates the coordinating ligands to the metal. The metal ion is bound to the

enzyme via the substrate (E-S-M) in a substrate bridge complex. Instead, the enzyme

may independently bind the substrate and the metal – the enzyme bridge complex

(M-E-S). Thirdly, we can visualize a metal bridge complex, where enzyme makes

contact with both the metal and the substrate, individually and in combination. These

different binding types can be experimentally verified by the set of analytical

techniques listed above.

33.8 Summing Up

Oxidation–reduction reactions provide the driving force to all biological reactions. A

reaction with positive reduction potential ΔE (and hence negative ΔG) is thermody-

namically feasible. Like with all other reactions, enzymes hasten redox reaction rates

by lowering kinetic barrier. When required, they recruit cofactors and help in tuning

their redox potential, facilitate electron transfers, modulate oxygen reactivity, and

exert control over the nature of redox substrate used.

Pyridine nucleotides and flavin coenzymes are two frequently encountered

molecules in redox enzyme chemistry. They serve two distinct purposes. NAD

(P) is adept at 2e� transfers (hydride transfers) and is stable in O2 environment.

FAD (and FMN) is able to participate in both 1e� and 2e� transfers – hence act as
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step-down or step-up adapters in redox reactions. Reduced flavin can therefore react

with molecular oxygen.

Not all oxidation–reduction reactions occur at the carbon atom. Examples include

nitrate reductase and sulfate reductase. Nitrogenase – containing flavin, molybde-

num, and iron–sulfur center – performs a multi-electron reduction of nitrogen

(N2 + 6H+ + 6e� ! 2NH3). Multicomponent enzyme systems like dihydroxylating

dioxygenases even contain a mini-electron transport chain (NADH ! FAD ! FeS

cluster ! non-heme Fe) where electrons ultimately flow to substrates.

It is not surprising that nature has evolved a range of enzymes, coenzymes, and

cofactors to perform redox reactions – as they fuel all the carbon-based life pro-

cesses. Many radical and redox chemistries pose frontiers in enzymatic reaction

mechanism where reaction intermediates and pathways need investigation.
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Carboxylations and Decarboxylations 34

Except in science fiction, all life as we know it today is based on carbon chemistry.

Living beings either assimilate the required carbon from already made organic

compounds (most heterotrophs) or fix inorganic carbon dioxide to produce the

organic compounds (most autotrophs). Carbon dioxide is the end product of respira-

tion in all domains of life. Plants, algae, and cyanobacteria fix CO2 during photo-

synthesis, while some others do it by using inorganic compounds

(lithoautotrophs) (Berg et al. 2010; Berg 2011). In this sense carbon dioxide is the

substrate (for carboxylation) or the product (of decarboxylation) of a large number of

enzymatic reactions in biology. A carboxylating enzyme usually links either CO2 or

HCO3
� with an organic acceptor molecule. Enzymatic carboxylations are physio-

logically significant routes for CO2 assimilation. And the reverse of carboxylation is

decarboxylation. Carboxylations and decarboxylations are an important class of

enzymatic reactions that make and break carbon–carbon bonds.

34.1 Reactions and Reactivity of CO2

Carbon dioxide (CO2) represents only 0.036% of the atmospheric gases and is able

to diffuse through cell membranes. Its hydration product bicarbonate (HCO3
�),

however, cannot. Solubility of carbon dioxide in water, and at physiological pH, is

low. It promptly gets hydrated, and the equilibrium favors the bicarbonate form with

an apparent pKa (for [HCO3
�/CO2]) of 6.3. Under slightly alkaline conditions,

[HCO3
�] is therefore much higher than that of dissolved [CO2)]; this makes usage

of HCO3
� advantageous. In fact this is one reason why a decarboxylation event

(enzymatic or not) often becomes an irreversible step of a reaction. By the same

token, carboxylations are uphill reactions (endergonic) and require input of energy –

with HCO3
� in particular. No wonder that HCO3

� is activated by phosphorylation to

its mixed anhydride carboxylphosphate (see Biotin-dependent carboxylases and

Fig. 34.2 later).
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The reversible hydration of carbon dioxide to bicarbonate is spontaneous but

slow (takes several seconds). It can be accelerated by the ubiquitous enzyme

carbonic anhydrase (EC 4.2.1.1; typically a Zn2+-metalloenzyme):

CO2 þH2O⇄HCO3
� þHþ

This enzyme plays a physiologically significant role (as demonstrated in yeast) in

generating HCO3
� for the carboxylation reactions catalyzed by pyruvate carboxyl-

ase, acetyl-CoA carboxylase, and carbamyl phosphate synthetase.

Both carbon dioxide (CO2) and bicarbonate (HCO3
�) are essential molecules in

various physiological processes. The carbon atom of CO2 is a good electrophile. A

nucleophilic (carbanion) species is best suited to attack this carbon. Molecules

undergoing carboxylation possess structural features that stabilize a carbanion for

this attack. Indeed many carboxylation reactions occur by the attack of a substrate

carbanion on to the carbon atom of CO2. Bicarbonate is not as good an electrophile

as CO2. The HCO3
� anion must be activated to a more electrophilic species for

reaction. This is achieved by metal ion coordination, dehydration at the enzyme

active site, or covalent activation. A carboxylase is thus capable of using either CO2

or HCO3
�, and not both. Table 34.1 lists a few examples from these two groups of

enzymes.

How do we know whether a carboxylase uses CO2 or HCO3
� as its substrate?

The chemical (nonenzymatic) equilibrium between CO2 and HCO3
� in water is

reached over several seconds. This time window provides a good kinetic clue.

Consider a carboxylase specific for CO2 as its substrate. When this enzyme reaction

is started with CO2, initial rates are faster. However, with time the effective [CO2]

decreases due to its hydration to HCO3
�. This in turn leads to a decreased enzymatic

rate and a lower steady-state rate is attained. The net result is an observed burst in the

Table 34.1 Carboxylases use either CO2 or HCO3
� as substrate

Enzymesa acting on

Carbon dioxide (CO2) Bicarbonate (HCO3
�)

C
O

O

Carbanion
-

OH C

X

O

Carbanion
-

Ribulose-1,5-bisphosphate carboxylase-oxygenase

(RubisCO)

Carbamyl phosphate synthetase

PEP carboxykinase PEP carboxylase

PEP carboxytransphosphorylase Pyruvate carboxylase

Pyruvate synthase Acetyl-CoA carboxylase
aEach one of them additionally requires cofactors like divalent metal ion, biotin, or thiamine

pyrophosphate. Bicarbonate is usually activated to its carbonic–phosphoric mixed anhydride

(carboxyphosphate) for reaction; “X” corresponds to phosphate or N-1 of biotin. See specific

examples for details
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early part of the carboxylase time course. In summary, if a carboxylase shows initial

burst kinetics with CO2, then it uses CO2 as substrate. For HCO3
� as the substrate, a

lag in the time course is observed. A carboxylase requiring HCO3
� as substrate

behaves exactly opposite – a burst with HCO3
� and a lag with CO2 in its kinetics.

Careful investigation of lag and burst in carboxylation kinetics is thus a useful tool to

distinguish whether that carboxylase uses CO2 or HCO3
� as its substrate. We finally

note that the lag/burst kinetics should be abolished by including carbonic anhydrase

(to rapidly establish CO2⇄HCO3
� equilibrium) – to confirm our results.

Carboxylation reactions entail the attack of a suitable carbanion to capture either

CO2 or HCO3
�. Carboxylases may be classified according to (a) the nature of the

attacking carbanion and (b) the cofactor recruited to stabilize the carbanion and/or

activate carbon dioxide. Specific mechanistic details available for some well-

understood carboxylases are described later. Carboxylation reactions of pyruvate

and PEP are central to carbon metabolism and these are discussed next.

34.2 Carboxylation Chemistry with Pyruvate
and Phosphoenolpyruvate

Pyruvate is a center piece of carbon metabolism. It is either the substrate or the

product in a number of critical reactions (Table 34.2). A large majority of them are

carboxylation or decarboxylation reactions.

Pyruvate predominantly exists as a keto acid, while enolpyruvate quickly

converts to the keto form in aqueous solution (Fig. 34.1, also see Fig. 29.5,

Chap. 29). Enolpyruvate offers a resonance-stabilized carbanion at its C-3 carbon.

This carbanionic carbon is where carboxylation of pyruvate (or its phosphorylated

enol) occurs. The reaction also requires biotin as a cofactor (see below).

Phosphoenolpyruvate (PEP), the enolase reaction product of glycolysis,

participates in a few key biosynthetic steps. PEP is the pyruvoyl donor in two

reactions, namely, 5-enolpyruvylshikimate-3-phosphate synthase (of aromatic

amino acid biosynthesis) and UDP-N-acetylenolpyruvylglucosamine synthase

(of peptidoglycan biosynthesis). But more importantly, PEP is readily carboxylated

to oxaloacetate by different anaplerotic enzymes. This carboxylation is invariably

accompanied by transfer of the high-energy phosphoryl group of PEP to an acceptor;

nature of phosphoryl acceptor may however vary.

The three well-known reactions that carboxylate PEP (box below and Table 34.1)

seem to involve enol form of pyruvate as the common reactive intermediate. All of

them have a divalent metal ion (Mn2+ or Mg2+) requirement. The C-3 carbanion of

enolpyruvate attacks either CO2 (PEP carboxykinase and PEP

carboxytransphosphorylase) or activated bicarbonate (PEP carboxylase;

enolpyruvate attacks the carbonyl phosphate formed first).
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Enzymes That Carboxylate PEP

PEP carboxylase (from plants and bacteria)

PEPþH2OþHCO3
2

⇄OxaloacetateþⓅ

PEP carboxykinase (from fungi, plants, and mammals)

(continued)

C
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O
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C C

O
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O
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C C

O

O

O

EnolpyruvatePyruvate C-3 Carbanion

H+

Fig. 34.1 Pyruvate and its enolate. Resonance delocalization of enolate negative charge allows

its C-3 carbon atom to react as a carbanion

Table 34.2 Metabolic steps involving pyruvate as substrate or product

Reaction (shown as physiologically relevant) Enzyme; cofactor(s)

Decarboxylations

Pyruvate ! Acetaldehyde + CO2 Pyruvate decarboxylase; TPP

2 Pyruvate ! α-Acetolactate + CO2 α-Acetolactate synthase; TPP

Pyruvate + CoASH + NAD+ ! Acetyl-

CoA + NADH + H+ + CO2

Pyruvate dehydrogenase complex;TPP,

FAD, lipoate

Pyruvate + O2 ! Acetate + CO2 Pyruvate oxidase; TPP, FAD

Malate + NAD+
⇄ Pyruvate + NADH + H+ + CO2 Malic enzyme; Mn2+

Oxaloacetate ! Pyruvate + CO2 Oxaloacetate decarboxylase; Mn2+

Carboxylations

Pyruvate + HCO3
� + ATP ! Oxaloacetate +

ADP + Ⓟ

Pyruvate carboxylase; biotin

Acetyl-CoA + CO2 + 2e� ⇄ Pyruvate + CoASH Pyruvate synthase; ferredoxin,TPP

Others

Pyruvate + CoASH ⇄ Acetyl-CoA + HCOO� Pyruvate-formate lyase

Pyruvate + NADH + H+ ! Lactate + NAD+ Lactate dehydrogenase

Pyruvate + L-Glutamate ⇄ L-Alanine +2-

oxoglutarate

Glutamate-pyruvate transaminase;PLP

PEP + ADP ! Pyruvate + ATP Pyruvate kinase

Cofactor abbreviations are TPP thiamine pyrophosphate, FAD flavin adenine dinucleotide, and PLP

pyridoxal phosphate. Some of these reactions are unique to anaerobic metabolism (pyruvate-

formate lyase) and autotrophic carbon fixation mechanisms of archaea (pyruvate synthase and

other reactions of reductive TCA cycle)
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PEPþGDPþCO2⇄OxaloacetateþGTP

PEP carboxytransphosphorylase (Propionibacterium sp.)

PEPþⓅþCO2!OxaloacetateþⓅ2Ⓟ

34.3 Cofactor-Assisted Carboxylations

Carboxylation of PEP is facilitated by the associated phosphoryl group transfer. Simi-

larly, all other carboxylations require an input of energy (to activate HCO3
� in particular)

and a suitable cofactor (Table 34.2). Prominent cofactors used in these reactions include

biotin, vitamin K, and divalent metal ions. The vitamin K-dependent carboxylase

(of prothrombin) is a unique example from blood clotting cascade. The enzyme generates

a carbanion on C-4 of the glutamyl residue by abstracting the proS hydrogen. This

carbanion captures CO2 to form γ-carboxy-glutamate residues on prothrombin. Autotro-

phic CO2 fixation mechanisms of some bacteria (such as pyruvate synthase) are rare

examples where thiamine pyrophosphate (TPP) participates in a carboxylation reaction.

Here the hydroxyethyl carbanion on TPP (of pyruvate synthase) makes a nucleophilic

approach to CO2. We note here that normally TPP is the cofactor in decarboxylations

(discussed later).

Biotin-dependent carboxylases form a physiologically significant group.

Ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) is the first and single

most important step of photosynthetic CO2 assimilation. We turn now to these two

examples in some detail.

Biotin-Dependent Carboxylases Biotin is a cofactor in many crucial carboxyla-

tion reactions. It is therefore an important water-soluble vitamin whose deficiency

causes dermatitis. First isolated from egg yolk in 1936, it binds tightly with avidin

(a protein from egg white). Avidin–biotin complex is one of the strongest

non-covalent interactions known (KD of 10�15 M and a t½ of 2.5 years). Most

biotin-dependent enzymes are therefore inhibited when incubated with avidin.

Biotin is a bicyclic ring with a substituted urea as a functional group for catalytic

function (Table 31.2). The cofactor is covalently attached to the ε-amino group of an

active site lysine. This charging occurs at the expense of energy

(ATP ! AMP + Ⓟ-Ⓟ) and is similar to the charging of lipoamide on to

transacetylase.

Biotin-dependent carboxylases include enzymes that carboxylate acetyl-CoA,

propionyl-CoA, pyruvate, urea, etc. Biocarbonate is the substrate in all these

reactions and ATP is required to activate it. One atom of 18O from isotopically
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labeled HCO3
� ends up in the phosphate formed from ATP (Knowles 1989). This is

consistent with the transfer of ATP γ-phosphate to generate carboxyphosphate

intermediate (Fig. 34.2), at the enzyme active site. It is believed that

carboxyphosphate is attacked by N1 (in its deprotonated state) of biotin to form a

carboxy-biotin intermediate. This intermediate (or CO2 generated from it) is attacked

by the substrate carbanion (nucleophile) to form the carboxylated product and

regenerate biotin. The entire mechanistic sequence (for acetyl-CoA carboxylase) is

shown in Fig. 34.2.

Mechanistic evidence was gathered by a number of elegant isotope exchange

experiments and trapping the relevant intermediates. Enzyme-bound carboxy-biotin

was trapped by diazomethane and stabilized as its methyl derivative (biotin>N1-

COOCH3). The kinetic and chemical competence of carboxy-biotin was also shown.

The carboxylated enzyme was capable of (1) carboxylating the acceptor substrate

and (2) synthesizing ATP from ADP and Ⓟ. Their rates were comparable to the

overall carboxylation reaction rates. The partial exchanges observed (see box below)

support a ping-pong kinetic mechanism. All the biotin-dependent carboxylases

studied so far proceed with retention of configuration at the carbon atom being

carboxylated.
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Fig. 34.2 Biotin-dependent carboxylation of acetyl-CoA
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Exchange Reactions Observed with Acetyl-CoA Carboxylase

Acetyl-CoA carboxylase (and other biotin-dependent carboxylases) is a three-

component enzyme:

1. Biotin is covalently bound to the small biotin carboxyl carrier protein

(BCCP).

2. Biotin carboxylase charges HCO3
� on to form carboxy-biotin; it is respon-

sible for the HCO3
�-dependent ADP-ATP exchange.

14C
� �

ADPþATP⇄ADPþ 14C
� �

ATP

3. Carboxyl transferase transfers the active “CO2” from carboxy-biotin to the

acceptor carbanion (acetyl-CoA); this is responsible for the acetyl-CoA-

malonyl-CoA exchange.

14C
� �

Acetyl CoAþMalonyl CoA⇄Acetyl CoAþ 14C
� �

Malonyl CoA

Transcarboxylase is an interesting variation of the biotin-dependent carboxylases.

This enzyme (from Propionibacterium shermanii) is not a carboxylase but simply

transfers the “CO2” from a donor to an acceptor via the enzyme-bound biotin.

Propionyl CoAþOxaloacetate⇄PyruvateþS2Methylmalonyl CoA

Transcarboxylase is an example of two-site ping-pong kinetics where the biotin on a

flexible swinging arm ferries “CO2” between two separate active site regions – the

donor site and the acceptor site (see Fig. 28.5, Chap. 28).

At least three instances of carboxylation at the N atom may be noted. Carbamyl

phosphate synthetase is an example of ammonia carboxylation that occurs without

the need for biotin. The ammonia N makes a direct nucleophilic attack on

carboxyphosphate (enzyme bound) to form carbamate – which subsequently gets

phosphorylated to carbamyl phosphate. However the –NH2 group of urea is nor-

mally an unreactive nucleophile. It is thought that such N is deprotonated before its

attack on carboxyphosphate. Both the carboxylation at N1 of biotin and that of urea

(by urea carboxylase leading to allophanate) are examples of such N-carboxylations.

RubisCO Ribulose-1,5-bisphosphate carboxylase-oxygenase (abbreviated as

RubisCO) is the enzyme responsible for fixing atmospheric CO2 by green plants

and photosynthetic bacteria. RubisCO is the most abundant protein in the world. It

neither carboxylates an energy-rich molecule (like PEP) nor uses ATP for activation.

RubisCO is one of the abundant proteins localized in the chloroplasts and contains

Cu2+ and requires Mg2+ or Mn2+ for its carboxylation activity. Carboxylation of
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ribulose-1,5-bisphosphate is associated with its irreversible cleavage to two

molecules of 3-phosphoglycerate. This reaction forms the first step of Calvin cycle

in plants.

Many labeling experiments have defined the chemical mechanism of RubisCO

(Fig. 34.3). These include the following: (a) radioactivity from 14CO2 ends up in the

C-1 carboxylate of one half of the 3-phosphoglycerate molecules formed, (b) 3H

from the solvent is incorporated at C-2 of the same 3-phosphoglycerate molecule

that has got 14CO2, and (c) 3H on the C-3 of ribulose-1,5-bisphosphate rapidly

exchanges with solvent protons in the presence of this enzyme. A six carbon

intermediate compound (2-carboxy-3-keto derivative of ribulose-1,5-bisphosphate)

was postulated by Calvin. Molecules structurally related to this postulated interme-

diate are excellent reversible inhibitors of RubisCO. We have come across one such

inhibitor earlier in 20-carboxy-D-arabinitol 1,5-bisphosphate (see Fig. 6.9 in

Chap. 6).
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Fig. 34.3 Carboxylation reaction mechanism of ribulose-1,5-bisphosphate carboxylase-

oxygenase. The bottom panel shows the oxygenase reaction catalyzed by the same enzyme. The

carbon originating from CO2 is in bold
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RubisCO reaction mechanism begins by proton abstraction from C-3 of

ribulose-1,5-bisphosphate (which accounts for tritium exchange with solvent)

and enolization of C-2 ketone. The resulting enediol now can display carbanion

character at its C-2 and attacks CO2 to form the carboxylated intermediate (Calvin

compound). Nucleophilic attack by water at C-3 and the C-C bond cleavage

(between C-2 and C-3) produces two 3-phosphoglycerate molecules. The

3-phosphoglycerate that bears the newly fixed carbon is the one whose C-2

carbanion picks up a solvent proton.

RubisCO is unable to strictly discriminate between CO2 and O2 for its sub-

strate (Griffiths 2006). The consequence is the process of photorespiration

observed in plants. Apart from its carboxylation reaction, RubisCO is capable of

an oxygenase activity. RubisCO functions as a monooxygenase (in the absence of

CO2) and splits ribulose-1,5-bisphosphate into 2-phosphoglycolate and

3-phosphoglycerate. One atom of oxygen from 18O2 ends up in the carboxylate

group of 2-phosphoglycolate. This supports the mechanism where the enediol (its

C-2 carbanion) attacks O2 (Fig. 34.3).

Autotrophic CO2/HCO3
� Assimilation Pathways Reductive pentose phosphate

cycle (Calvin–Benson cycle) along with RubisCO is undoubtedly of singular impor-

tance in the autotrophic CO2 fixation in nature. However to date six autotrophic CO2

fixation mechanisms (Table 34.3) are known. All of them of course have to carry out

carboxylation steps either with CO2 or HCO3
� or both. The observed diversity

reflects the variety of the organisms and the ecological niches existing in nature (Berg

2011).

Table 34.3 Autotrophic CO2/HCO3
� assimilation mechanisms

Assimilation pathwaya Carboxylases used Occurrence

Calvin–Benson cycle

(reductive pentose

phosphate cycle)

RubisCO (and PEP carboxylase) Plants, algae, cyanobacteria, and

many aerobic/facultative aerobic

Proteobacteria

Reductive citric acid

cycle (rTCA cycle)

Pyruvate synthase (Fd),

2-oxoglutarate synthase (Fd),

isocitrate dehydrogenase, PEP

carboxylase

Green sulfur bacteria, anaerobic

or microaerobic bacteria

Reductive acetyl-CoA

pathway (requires

strict anoxic

conditions)

CO Dehydrogenase/acetyl-CoA

synthase, pyruvate synthase (Fd),

2-oxoglutarate synthase (Fd)

Prokaryotes like acetogenic

bacteria, methanogenic archaea,

psychrophiles,

hyperthermophiles

3-Hydroxypropionate

cycle

Acetyl-CoA/propionyl-CoA

carboxylases (biotin)

Green non-sulfur phototrophs

4-Hydroxybutyrate

cycles

Acetyl-CoA/propionyl-CoA

carboxylases (biotin), pyruvate

synthase (Fd), and PEP

carboxylase

(Hyper)Thermophilic

organisms, Crenarchaeota

aDepending on the environment and nutritional state, some organisms may display more than one

assimilation pathway
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34.4 Decarboxylation Reactions

Carboxylations and decarboxylations are complementary reactions yet essential

components of the global carbon cycle. Mechanistically, decarboxylations are the

reverse of carboxylations – but with a difference. While either CO2 or HCO3
� is

used in a carboxylation step, decarboxylation invariably results in CO2 as its

product. It is a different matter however that CO2 formed quickly gets hydrated

(by carbonic anhydrase) to HCO3
� in the aqueous setting. This makes

decarboxylations irreversible and thermodynamically downhill. An organic com-

pound undergoes decarboxylation by losing its carboxylate group by releasing CO2.

Typically this reaction goes through a transition state where a carbanion develops on

the carbon atom losing the -COOH group (Fig. 34.4). Decarboxylation rates can be

accelerated by stabilizing the developing carbanion. Mechanism(s) to do this include

providing a suitable temporary electron sink. Such features may be present either

within the substrate structure or in an external cofactor recruited for this purpose. We

will look at these possibilities in some detail.

Most common organic acids undergoing decarboxylations also contain additional

functional groups. For instance, these may be α-amino acids (all the 20 and more),

α-keto acids (pyruvate, 2-oxoglutarate, and 2-keto acids of branched chain amino

acids), β-keto acids (oxaloacetate and acetoacetate), βγ-unsaturated acids (cis-

aconitate), or β-hydroxy acids (malate, isocitrate, and 6-phosphogluconate). An

incipient carbanion forms during the decarboxylation of all these acids (Fig. 34.4).

A β-keto acid substrate offers the possibility of enolization; this in turn can function

as a useful temporary electron sink. The β-keto group therefore assists in decarbox-

ylation by delocalizing negative charge. An α-keto group cannot be used in this

manner. Both α-amino acids and α-keto acids lack a built-in structural feature to

stabilize this developing negative charge. External electron sinks like PLP (α-amino

acid decarboxylations; Chap. 35 – Electrophilic Catalysis and Amino Acid

Transformations) or TPP (α-keto acid decarboxylations) are required/recruited to

help decarboxylate them. While we will deal with these a little later, decarboxylation

mechanisms for β-keto acids are discussed first.

β-Keto Acid Decarboxylation Mechanisms The β-keto group provides natural

assistance in decarboxylating β-keto acids. This is contingent upon how easily it can

be enolized. Low basicity of the β-carbonyl group sets a high-energy barrier and

needs further assistance. Nevertheless β-keto group is exploited to support the
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Fig. 34.4 General scheme

for decarboxylation of an
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developing carbanion in different ways. First, it is made a better electron sink by

protonating the developing enolate form. For instance, nonenzymatic decarboxyl-

ation of acetoacetic acid is pH dependent and is 50 times faster in its acid form than

the corresponding acetoacetate ion. Second, divalent metal ions may assist in

stabilizing the negative charge. Mn2+ is very well able to accept the developing

enolate ion during oxaloacetate decarboxylation (Fig. 34.5; also see Fig. 6.6); indeed

oxaloacetate decarboxylase requires Mn2+ for activity. Oxalate (�OOC-COO�)

mimicking the initial enolate product is an inhibitor of this enzyme. This is in

keeping with the proposed oxaloacetate decarboxylase chemical mechanism.

Enzymatic decarboxylation of a β-hydroxy acid shares mechanistic similarities

with that of a β-keto acid. The β-hydroxy moiety cannot function as a useful electron

sink. Therefore it is converted to a β-keto acid prior to its decarboxylation. Well-

characterized examples of this kind include malic enzyme, isocitrate dehydrogenase,

and 6-phosphogluconate dehydrogenase. Both malic enzyme and isocitrate dehy-

drogenase require bound Mn2+ for activity. They also require NAD(P)+ which

accepts the reducing equivalents (2e�) and oxidizes the β-hydroxy acid. The two

enzyme reactions appear to proceed with the generation of a β-keto acid intermedi-

ate. Analysis of kinetic isotope effects, at least with malic enzyme, supports a

mechanism where malate oxidation precedes its decarboxylation (see Fig. 27.4,
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Chap. 27). Oxalosuccinate is the proposed intermediate of isocitrate dehydrogenase

reaction (see box below). Recently a loss of function mutant of isocitrate dehydro-

genase was implicated in cancer metabolism – it simply reduces 2-oxoglutarate to

2-hydroxyglutarate (see Chap. 39). Although a β-keto acid intermediate seems

chemically reasonable, its actual demonstration can be tricky. It may be tightly

bound to the active site, not accessible for trapping reagents or may be ephemeral.

Malic enzyme:

Malate!
�2e�

Oxaloacetate½ � ! Pyruvateþ CO2

Isocitrate dehydrogenase:

Isocitrate!
�2e�

Oxalosuccinate½ � ! 2-Oxoglutarateþ CO2

Oxaloacetate (as also oxalosuccinate) is both an α-keto acid and a β-keto acid.

Only the carboxylate that is β to the keto group (previously the hydroxyl group) is

lost as CO2. Interestingly, cis-aconitate decarboxylase might exploit the suitably

located double bond to facilitate decarboxylation and form itaconate.

Decarboxylation of Acetoacetate As expected for the β-keto acid, both nonenzy-

matic and enzymatic decarboxylation of acetoacetic acid is promoted by Mn2+. The

divalent metal ion acts as a superacid catalyst, polarizes the β-keto group, and makes

it a better electron sink. Acetoacetate decarboxylases requiring Mn2+ for catalysis

(Fig. 34.5) are less common. Instead, there is an efficient and interesting way to use

β-keto moiety as an electron sink. This more effective strategy employs a protonated

Schiff base form. While it is difficult to protonate the oxygen of β-carbonyl group

(poor base), corresponding imine nitrogen (Schiff base) is readily protonated. This

cationic imine is an excellent sink to stabilize the carbanion formed during decar-

boxylation. Formation of imines at adjacent carbonyl groups is a general mecha-

nism for catalysis when carbanions are generated during the reaction. No wonder

that amines are effective catalysts in decarboxylating β-keto acids. For instance,

aniline (pKa of 4.8) can accelerate acetoacetate (pKa of 3.7) decarboxylation rate

maximally at pH 4.2. The “aniline–acetoacetate complex” breaks down much faster

than the acid alone. A well-documented enzyme example is acetoacetate decarbox-

ylase from Clostridium acetobutylicum. In its reaction mechanism (Fig. 34.6), active

site lysine –NH2 forms a Schiff base with acetoacetate. This cationic imine acts as an

electron sink to stabilize the carbanion formed at C-2 in the transition state.
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The proposed acetoacetate decarboxylase chemical mechanism is supported by

several lines of experimental evidence: (a) sodium borohydride (NaBH4) inactivates

this enzyme in the presence of acetoacetate, (b) a lysine residue is radiolabeled by

NaBH4 reduction in the presence of 3-[14C]-acetoacetate (or [14C]-acetone), (c) the

ε-NH2 of this active site lysine has an unusually low pKa, (d) the enzyme

incorporates 18O from H2
18O into the product acetone, and (e) the enzyme catalyzes

the exchange of deuterium from D2O into acetone to produce CD3COCD3. In sum,

these data justify the formation of an initial substrate imine intermediate and of an

enamine of acetone in the acetoacetate decarboxylase reaction mechanism. In

contrast, an imine intermediate does not form in the case of Mn2+-requiring

acetoacetate decarboxylase (Fig. 34.5). Accordingly, NaBH4 inactivation and 18O

exchange is also not observed with this Mn2+-dependent catalysis.

34.5 Thiamine Pyrophosphate and a-Keto Acid
Decarboxylations

Unlike β-keto acids, α-keto acids are difficult to decarboxylate. The α-carbonyl

group of the α-keto acid cannot be used as an electron sink, and it cannot stabilize

the developing carbanion. Hence all α-keto acid decarboxylations need cofactor
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assistance. Nature has found an elegant solution to this chemical problem by

recruiting thiamine pyrophosphate (TPP) as an external electron sink. The

thiazolium ring of TPP actually participates in the decarboxylation chemistry (Frank

et al. 2007; Jordan 2003). The following chemical features make thiazolium (and

hence TPP) an ideal cofactor:

1. The C-2 proton of the thiazolium ring is very acidic (dissociates with a t½ of 2 min

at pH 5.0). This is because (a) the C-2 carbon is sandwiched between two

electronegative atoms (N and S) and (b) in its active conformation, proximal

amine N on pyrimidine ring helps this deprotonation.

2. The carbanion at C-2 (Fig. 34.7) initiates the nucleophilic attack to the substrate

carbonyl. The five-member ring thiazolium (with –N¼ C-S-) is best suited for the

purpose (both on thermodynamic and kinetic grounds), whereas imidazolium

(with –N¼ C-N-) and oxazolium (with –N¼ C-O-) are not. The carbanion at C-2

with the neighboring positively charged N atom is actually an ylide – a neutral

dipolar molecule with formal positive and negative charges on adjacent atoms.

3. The thiazolium carbon–nitrogen double bond (and its cationic imine) acts as an

electron sink to stabilize the substrate carbanion. This arrangement is quite similar

to the cationic imine of Schiff base used in decarboxylating acetoacetate (see

Fig. 34.6). Thus TPP furnishes the required electron sink for α-keto acid

decarboxylations.
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Decarboxylation of pyruvate is an important example of TPP-assisted electro-

philic catalysis. There are many variants of pyruvate decarboxylation. In every case

the ylide carbanion (of TPP) first attacks the keto group of pyruvate and forms a

lactyl adduct. Enzyme active site electrostatics (Fig. 6.3; Chap. 6) contributes to

expulsion of CO2. Decarboxylation of the adduct results in the carbanion of

hydroxyethyl TPP (HETPP; Fig. 34.8). HETPP is a stabilized carbanion since the

“>C ¼ N+<” moiety of TPP acts as an electron sink – by forming an enamine
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dehydrogenase complex). (d) Attack of HETPP carbanion on keto carbon of another pyruvate molecule

leads to α-acetolactate (condensation; α-acetolactate synthase)
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intermediate. The fate of HETPP carbanion depends on the type of reaction

catalyzed by that particular enzyme. All these possibilities are shown in Fig. 34.8.

Many reaction intermediates in TPP catalysis were recently observed by crystal-

lography. For instance, pyruvate oxidase enzyme forms bound with 2-lactyl TPP

(or its stable phosphonate analog), enamine of TPP, and 2-acetyl-TPP provide

snapshots of its chemical mechanism.

Oxidative decarboxylation of pyruvate is central to aerobic energy metabolism.

This is done by a multi-enzyme complex of three distinct activities: E1, pyruvate

decarboxylase; E2, transacetylase; and E3, dihydrolipoyl dehydrogenase.

Partial Reactions of Pyruvate Dehydrogenase Complex

Pyruvateþ E1-TPP ! E1-HETPPþ CO2

E1-HETPP þ E2-Lipoate þ CoASH ! AcetylCoAþ E1-TPP

þ E2-Dihydrolipoate

E2-Dihydrolipoateþ NADþ ! E2-Lipoate þ NADHþ Hþ

Overall reaction stoichiometry:

Pyruvateþ NADþ þ CoASH ! Acetyl CoAþ NADHþ CO2

The acetyl-lipoamide thioester formed by the first enzyme (E1) is used in the next

step to generate acetyl-CoA. The third activity (E3, with FAD as the redox device)

oxidizes dihydrolipoate back by reducing NAD+. Mechanism of this dehydrogenase

resembles that of glutathione reductase described in the previous chapter (Fig. 33.4;

Chap. 33). Metabolic significance of pyruvate dehydrogenase complex is obvious

from the range of five cofactors used in its chemistry – TPP, FAD, NAD+, CoASH,

and lipoate. Two other α-keto acid dehydrogenase complexes mechanistically very

similar to pyruvate dehydrogenase complex are 2-oxoglutarate dehydrogenase com-

plex of Krebs cycle (2-oxoglutarate ! succinyl-CoA) and the branched chain keto

acid dehydrogenase complexes of valine, isoleucine, and leucine catabolism.

Electrophilic catalysis and stabilization of substrate carbanion are hallmarks of

TPP-dependent decarboxylations. For the same reasons, TPP is an ideal cofactor for

carbon–carbon bond formation chemistry as well. The two-carbon transfers are

catalyzed by the family of TPP-dependent transketolases. In a transketolase reaction,

the TPP carbanion (thiazolium ylide) attacks the carbonyl carbon of a ketose sugar

(Fig. 34.9). Instead of a decarboxylation, a carbon–carbon bond cleavage occurs in

this adduct, and an aldose (two carbons short!) is released as the first product. In an

exact reversal of this reaction sequence, the glycolyl-TPP carbanion now attacks an

aldose (same or a different one), and the 2-hydroxyacetyl group is transferred.
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The 2-hydroxyacetyl (also called the α-ketol) group transfers are critically important

reactions of pentose phosphate pathway and the Calvin cycle. These are two-carbon

transfers brought about by TPP-dependent transketolases. Transaldolases on the other

hand carry out transfer of three-carbon fragments (dihydroxyacetone equivalents).

Between them, transaldolases and transketolases move one-carbon equivalents (CH2O)

around and bring each carbon of every sugar into the metabolic pool. Indeed the two

activities together contribute to build glucose (from six individually fixed CO2molecules)

and also generate the variety of aldoses and ketoses required for cellular metabolism.

34.6 Summing Up

Carbon dioxide is the substrate for carboxylation and product of decarboxylation in a

number of biological reactions.

Both CO2 and HCO3
� could serve as carboxylation substrates. In carboxylation a

suitable carbanion captures either one of these species. But HCO3
� is not as good an

electrophile as CO2. Prominent cofactors used in these reactions include divalent

metal ions, biotin, and vitamin K. Besides, input of energy (in terms of phosphoryl

group transfer) may be required to activate HCO3
�.

Decarboxylations invariably result in the release of CO2 as the product. Since

carbon dioxide is rapidly hydrated to HCO3
� in water, decarboxylation steps are

irreversible and thermodynamically downhill. A carbanion develops when –COOH

is lost as carbon dioxide. Stabilizing such a carbanion transition state is an essential

trick of enzyme catalysis. The developing negative charge on the C atom could be

handled through suitably placed temporary electron sinks. Such sinks may be found

on the substrate itself (β-keto group), on the enzyme (Schiff base through Lys-NH2),

or on the cofactor (a divalent metal ion, TPP, or pyridoxal phosphate).
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Carboxylation reactions lead to carbon capture (fixing atmospheric CO2) and

decarboxylations release CO2 (an end product of respiration). The two are comple-

mentary in preserving the atmospheric CO2 balance.
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Electrophilic Catalysis and Amino Acid
Transformations 35

Side chains of many amino acid residues are known to participate in nucleophilic

catalysis by forming covalent enzyme–substrate intermediates. Enzymes have a

choice of many nucleophilic groups but have little to offer in terms of good

electrophiles. Therefore a number of small molecules (cofactors and prosthetic

groups) are recruited by nature to complement an apoenzyme – resulting in a

functional holoenzyme. These small molecules act as temporary electron sinks

during catalysis, by forming covalent adducts with substrates. Much of enzyme

chemistry is carbanion chemistry. Abstraction of a proton or decarboxylation from a

sp3 carbon leaves behind a carbanion that is not so stable. Developing carbanions

may be stabilized – hence effecting rate accelerations – by suitably placing tempo-

rary electron sinks. Coenzymes like pyridoxal phosphate and thiamine pyrophos-

phate function to stabilize them via their electrophilic adducts. We already listed

more commonly encountered electrophilic reagents in Table 31.1. Decarboxylations

involving carboxylic acids (other than amino acids) have already been dealt with

previously (Chap. 34). Amino acid transformations including decarboxylations offer

a different chemical challenge and are described in this chapter.

Covalent intermediates are common to electrophilic as well as they are for

nucleophilic catalysis. Proving the existence of covalent intermediates (like Schiff

bases) and showing that they indeed participate in the catalytic process (i.e., their

kinetic and chemical competence) requires multiple lines of evidence. We noted in

Chap. 31 with regard to nucleophilic catalysis that these may include data from

steady-state kinetics, isotope exchange studies, inference from analogs and side

reactions, stereochemical evidence, and direct observation and/or trapping. These

same tools may be used to understand electrophilic catalysis as well. Sodium

borohydride inactivation of enzyme (in the presence of appropriate substrate) is

diagnostic evidence for an imine (Schiff base) intermediate. Intermediate formation

(such as a Schiff base) also makes the overall reaction proceed in a stepwise manner.

A covalent bond is established between the enzyme and the substrate in one of the

two ways – (a) an enzyme nucleophile may attack an electron-deficient center on the
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substrate or (b) an enzyme-bound electrophile could be attacked by the electron-rich

center of the substrate. With decarboxylases, aldolases, and transaldolases, the

substrate provides the carbonyl component, while the enzyme provides the amine.

In pyridoxal 50-phosphate (PLP) enzymes however, it is the substrate that provides

the amine component, and the coenzyme provides the carbonyl component. In both

cases the cationic imine – in a conjugated system – is excellent for extensive charge

delocalization. These Schiff base systems act as temporary electron sinks to stabilize

carbanion intermediates that develop during enzyme catalysis.

Schiff Base Chemistry Suitably positioned Schiff base is a simple yet effective

electrophile and a good tool to delocalize/hold electrons. Formation of Schiff base

requires a carbonyl group and an amino function (Fig. 35.1). This is possible either

with a “substrate >C¼O and enzyme-NH2” (see aldolase in Table 31.3 and

acetoacetate decarboxylase in Fig. 34.6) or “substrate-NH2 and enzyme >C¼O”

(as in the case of a PLP-dependent transaminase; see below). Carbonyl groups are

very rare on enzymes; more often an enzyme contributes lysine amino group that

reacts with the substrate carbonyl to form a Schiff base.

We will first describe protein electrophiles that are derived from amino acid side

chains on enzymes.
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Fig. 35.1 Schiff base formation requires a carbonyl group and an amine function. X in the

carbonyl compound can be H (for aldehydes) or a group with C (for ketones). This reversible

reaction is affected by the pH because the Schiff base can be protonated. It is the protonated Schiff

base that acts as an electron sink with the lone pair momentarily residing on N atom. Carbanion

adjacent to protonated imine (bottom panel) is stabilized by the formation of enamine
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35.1 Protein Electrophiles

Amino acid side chains have very little to offer as electrophilic groups. Apart from

protons as the most frequent electrophiles, enzymes also use metal ions and organic

cofactors as electrophiles. Despite the fact that there is paucity of electrophilic

groups in the side chains of proteogenic amino acids, electrophilic catalysis by

enzymes is not uncommon. Then where do the required enzyme electrophiles

come from? There are two possibilities and both are exploited in enzyme design

by nature: (i) posttranslational modification/conversion of a few amino acid side

chains into electrophiles for catalysis (Atkins and Gesteland 2002; Cooke et al.

2009; van Poelje and Snell 1990) or (ii) recruitment of an electrophilic cofactor (like

PLP) derived from vitamins (Percudani and Peracchi 2003). We will discuss the

electrophiles generated from amino acid side chains first. Posttranslational modifi-

cation of the polypeptide chain may result in a catalytically functional electrophile.

These examples are listed in the Table 35.1.

Enzymes with Dehydroalanine and 4-Methylideneimidazole-5-one (MIO)

Enzymes belonging to lyase class (EC 4.x.x.x) utilize a range of prosthetic groups

including thiamine pyrophosphate (TPP), iron–sulfur clusters, pyridoxal 5-
0-phosphate (PLP), biotin, or peptide-dehydroalanine (actually MIO moiety).

Amino acid lyases form important and interesting members of this group. Elimina-

tion of ammonia from an L-amino acid is a chemical challenge. It requires the

abstraction of a β-proton in the face of a positively charged α-ammonium group.

In L-aspartate ammonia lyase (see Fig. 29.9) – presence of the substrate β-carboxyl

(electron withdrawing) group facilitates this process. Therefore the enzyme does not

require any extra help in ammonia elimination. With histidine ammonia lyase (HAL)

and phenylalanine ammonia lyase (PAL) however, this is much more difficult – as

the β-proton in these amino acids is considerably less acidic. Members of this lyase

group have recruited an essential electrophilic group – which was believed to be

dehydroalanine (Fig. 35.2) – posttranslationally derived from a serine residue.

However, recently solved X-ray structures support the presence of

4-methylideneimidazole-5-one (MIO; synonym, 3,5-dihydro-5-methylidene-4H-

imidazol-4-one) as the functional group instead. MIO is formed by the autocatalytic

cyclization of the inner Ala-Ser-Gly tripeptide motif, on these enzymes. Both the

structure and the process of MIO cyclization are mechanistically similar to the well-

characterized fluorophore of green fluorescence protein.

MIO may be regarded as a modified dehydroalanine with much enhanced elec-

trophilicity. It helps increase the acidity of the abstractable β-proton. MIO is a very

strong electrophile because (i) delocalization of the N lone pair into α,β-unsaturated

carbonyl system is blocked and (ii) upon addition of a nucleophile, the imidazolone

becomes aromatic. The α-amine of the substrate (phenylalanine ammonia lyase)

forms a covalent adduct with the exocyclic alkene of the MIO prosthetic group

(Fig. 35.2). The bound amino acid is then deprotonated at the benzylic position by an

enzymatic base (E1cB mechanism). Cinnamic acid is released by the lyase upon loss
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of ammonia. During the catalytic cycle, N3 atom of MIO changes its hybridization

state from sp3!sp2 and then back! Based on the high electrophilicity of this

prosthetic group and active site geometry, an alternative mechanism has also been

proposed. According to this proposal, a Friedel–Crafts reaction-type attack at the

substrate aryl side chain occurs.

Pyruvoyl-Dependent Enzymes Decarboxylations are most common among the

many metabolic transformations involving amino acids. Some important products of

decarboxylation include γ-aminobutyrate, histamine, serotonin, dopamine, putres-

cine, and 3-(S-adenosyl) propylamine. Amino acid decarboxylases need to stabilize
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Fig. 35.2 Mechanism of dehydroalanine-dependent ammonia elimination. The substrate

specificities of histidine ammonia lyase (R ¼ imidazole) and phenylalanine ammonia lyase

(R ¼ phenyl) are different. MIO (structure shown below) may be regarded as a modified

dehydroalanine of enhanced nucleophilicity
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the developing carbanion during the course of catalysis. This is typically achieved by

pyridoxal 50-phosphate (PLP) as the electrophilic cofactor. PLP mechanisms will be

the subject of a later section in this chapter (see below). However several

decarboxylases are known that do not use PLP but instead require pyruvate as a

covalently bound prosthetic group. Table 35.2 provides a summary of pyruvoyl-

dependent enzymes along with their distribution and metabolic significance.

A combination of approaches is used to identify the presence of pyruvoyl group

on these enzymes. These include the following:

1. Cyanide, hydroxylamine, phenylhydrazine, and sodium borohydride (NaBH4)

inhibit pyruvoyl-dependent enzymes by reacting with the catalytically essential

carbonyl group.

2. Pyruvoyl-dependent enzymes can be distinguished from those containing PLP by

spectral analysis. While PLP absorbs (and fluoresces), pyruvoyl group has negli-

gible absorbance above 300 nm.

3. Covalently bound pyruvoyl group can be released by mild hydrolysis of the

enzyme protein; later it can be reduced to lactate by lactate dehydrogenase.

4. Pyruvoyl group can be distinguished from dehydroalanine (discussed earlier) by

reduction with [3H]-NaBH4. Pyruvoyl group is obtained on subsequent hydroly-

sis as [3H]-lactate, while dehydroalanine residues yield [3H]-alanine.

The pyruvoyl group on the enzyme is derived posttranslationally. In all cases

examined so far, a precursor polypeptide (proenzyme) is processed at a specific

X-Ser bond to give two chains: a β chain with X at its –COOH terminus and the α

chain with a pyruvoyl moiety in amide linkage at its N-terminus. The pyruvoyl

Table 35.2 Pyruvoyl-dependent enzymes and their metabolic significance

Decarboxylase Metabolic significance Reported from

Histidine ! Histamine Unknown Lactobacilli

Aspartate ! β-Alanine Precursor of pantothenate,

coenzyme A, acyl carrier protein, etc.

E. coli

40-Phosphopantothenoylcysteine

! 40-Phospho-pantotheine

Precursor of coenzyme A and acyl

carrier protein

E. coli,

mammalian

liver

S-Adenosyl-methionine !

3-(S-Adenosyl) propylamine

Polyamine precursor E. coli, yeast,

mammalian

liver

Phosphatidylserine !

Phosphatidylethanolamine

Phospholipid of the membrane E. coli, yeast,

mammalian

liver
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moiety thus arises from an internal Ser residue. The mechanism of pyruvate forma-

tion by the serinolysis of proenzyme is shown in Fig. 35.3.

Histidine decarboxylase of Lactobacillus (a Gram-positive bacterium) is the best

characterized pyruvoyl enzyme. Its decarboxylation mechanism is well understood,

and possibly all other pyruvoyl-dependent decarboxylases act by a similar mecha-

nism. The decarboxylation reaction can be visualized as a two stage process: a)

labilization of the –COO� group with loss of CO2 and b) its replacement by a proton.

During catalysis, the pyruvoyl group forms a Schiff base (Fig. 35.4) with the

substrate amine, while the protein component provides the necessary binding pocket

and groups required for general acid–base chemistry. A hydrophobic carboxylate-

binding pocket promotes the energetically favorable loss of negative charge by

decarboxylation. The decarboxylation of pyruvoyl-amino acid Schiff base generates

a resonance-stabilized carbanion. Proton addition to the azomethine carbon (in the

imine carbanion in Fig. 35.4) gives the Schiff base of amine product with enzyme.

Resolution of this Schiff base results in the free amine and regenerates the pyruvoyl

enzyme for another catalytic cycle. Both the Schiff base intermediates (with the

amino acid substrate and the product amine) can be trapped as acid-stable secondary

amines. Further, their reduction by NaBH4 covalently tags the protein.

The overall chemical mechanism of the pyruvoyl enzyme is analogous to the

PLP-dependent amino acid decarboxylation (described in the next section; see

Fig. 35.7). Histidine is the only amino acid so far known to be decarboxylated by

both types of decarboxylases – one with pyruvoyl prosthetic group and the other

with PLP. While both act by Schiff base mechanism, they differ in their catalytic

apparatus and distribution in the tree of life. Nature has clearly invented two

excellent solutions to the same chemical problem.
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proenzyme
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35.2 Reactions Involving Pyridoxal Phosphate (PLP)

Proteogenic amino acids have exclusively L-configuration. Being predominant

N-containing metabolites, they are often used as precursors of other cellular nitroge-

nous products. Apart from the MIO and pyruvoyl chemistry discussed above,

breakdown and transformation of amino acids comes in two more forms:

(a) Oxidation of amino group by NAD(P)+ (dehydrogenase) and flavin-dependent

(oxidase) enzymes. These are covered in Chap. 33.

(b) PLP-dependent reactions at the α-, β-, and γ-positions (with respect to the amino

group) of amino acids. These wide ranges of reactions catalyzed by

PLP-dependent enzymes are the subject of this section.

Pyridoxal phosphate (PLP) is a crucial cofactor participating in most amino acid

transformations. PLP (Fig. 35.5) is derived from vitamin B6 (pyridoxine) upon

phosphorylation. Importance of PLP lies in its ability to provide an excellent electron

sink (for electrophilic catalysis). Carbanion intermediates that develop during

enzyme catalysis are stabilized as covalent derivatives of PLP. The bound amino

acid becomes a part of the extended conjugation with the pyridine ring and the lone
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pair of electrons on ring nitrogen. Glycogen phosphorylase is an exception where

PLP does not function as an electrophilic apparatus. Instead, PLP performs a

structural role with no apparent catalytic function. The phosphate group of PLP

may also participate in a proton shuttle.

PLP Forms a Schiff Base Pyridoxal in solution exists as an internal hemiacetal

(Fig. 35.5). In the PLP form however, the aldehyde group is free, and the phenolic O
� is hydrogen bonded to protonated imine. The PLP aldehyde in most enzymes is

bound to an active site lysine (through its ε-amino group) as a Schiff base. The

PLP-bound holoenzyme, in many cases, can be converted into apoenzyme by

dialysis in the presence of free cysteine (substituted cysteine aldimine leaves the

enzyme active site taking away PLP with it). PLP and its various derivatives exhibit

unique absorption and/or fluorescence spectra (Table 35.3). Much of the PLP

chemistry is well understood through exquisite spectral properties of this cofactor.

The enzyme active site lysine (in Schiff base with PLP) is displaced by the

substrate amino group, when the enzyme binds its amino acid substrate. The

substrate aldimine intermediate (Fig. 35.6) is the starting point for all the diverse

reactions involving PLP chemistry. Its formation sets the stage for subsequent bond
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COO�

35.2 Reactions Involving Pyridoxal Phosphate (PLP) 429



breaking – bond-forming steps. If all the chemistry occurs on the PLP, what then is

the role of the apoenzyme? The protein component stabilizes a particular substrate

imine form – by selective protonation of a suitable carbanion. Typically PLP

catalysis involves the following sequence of events:

1. Formation of substrate Schiff base (initial imine)

2. Chemical changes via relevant carbanions

3. Formation of a product imine

4. Hydrolysis of the product imine

As we noted above, the first step of amino acid chemistry with PLP is the

formation of Schiff base. What happens subsequently depends on which bond

around the α-carbon of the amino acid substrate is mobilized. One of the three

bonds of the α-carbon is oriented such that it sticks out of plane (of pyridine ring of

PLP) for cleavage. The substrate α-carbon is thus brought into the extended

Table 35.3 Spectral properties of pyridoxal phosphate and its derivatives

Coenzyme form of PLP Absorption peak at

Fluorescence peaks (excitation/

emission)

Free PLP 330 nm and 388 nm Reduced PLP Schiff base,

λex323 nm and λem390 nm

Lys (ε-amino)-PLP aldimine

(resting enzyme)

430 nm –

Amino acid-PLP aldimine

(the ES complex)

430 nm –

Amino acid-PLP quinonoid

intermediate

490 nm (detected by

stopped flow kinetics)

Amino acid-PLP ketimine

intermediate

340 nm (detected by

stopped flow kinetics)

Enzyme-bound PMP 330 nm

The spectral data taken mostly from those reported for aspartate transaminase
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conjugate double bond system of the cofactor; this permits the resonance stabiliza-

tion of developing carbanion. The chemical control obviously rests with the active

site environment offered by the apoenzyme. Chemical mechanisms for the stabiliza-

tion and protonation of various carbanion species are depicted in Fig. 35.7. Three

most common reactions at the amino acid α-carbon are (a) racemization,

(b) transamination, and (c) decarboxylation.

Reactions at Amino Acid α-Carbon Formation of the aldimine adduct makes the

amino acid α-proton very acidic. This aldimine proton can be easily abstracted, and

the resulting carbanion is stabilized through resonance – the pyridine ring acts as an

electron sink – generating the quinonoid (ketimine) species. Donating the proton to

the opposite face (of α-carbon which is sp2 hybridized) results in net inversion – an

example of racemization of α-amino acid. The racemized product is detached from

the PLP by simple reversal of each step – with active site lysine ε-amino group
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results when the Cα-H bond is mobilized. Enzyme active site holds the substrate in such a way that

the bond around Cα to be broken is held out of plane of the pyridine ring
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reforming its imine linkage with PLP in the end. Proton abstraction/donation at the

α-carbon may be carried out by a single active site base or two distinct groups. These

two possibilities may be distinguished by whether deuterium label on the α-carbon is

retained in the product or not. A very small group of PLP-independent racemases

also produce D-amino acids. For instance, specific racemases for proline, glutamate,

and aspartate are known. These enzymes operate by a two-base mechanism: the

α-proton is removed from one face by an active site base, and a proton is donated by

a protonated base on the other face. In these PLP-independent racemases, the

developing carbanion on the α-carbon is stabilized due to the neighboring –COO�

, possibly through a strong “low-barrier” hydrogen bond to an enzyme residue.

A second transformation at the α-center of an amino acid is transamination – the

conversion of amino acid to its corresponding keto acid. If the transamination

involves an isolated amino group (like in GABA) then the product will be an

aldehyde. The overall reaction for a transamination involves two half reactions

(Fig. 35.8). The first half reaction produces the PMP (pyridoxamine) form of the

enzyme. This is when the second keto acid substrate comes in and binds. A reversal

of all the steps (by tracing the reverse path of first half reaction) regenerates the PLP

enzyme back and releases the second amino acid product. The following experimen-

tal evidences support the depicted alanine transaminase reaction mechanism:

(a) kinetic data best fits a ping pong (Bi Bi) mechanism with the PMP enzyme as

the “F” form; (b) unique spectral signature of enzyme-bound PMP is observed;

(c) enzyme interacts with aspartate to stoichiometrically release oxaloacetate, in the

absence of second substrate (2-oxoglutarate); and (d) the PMP enzyme on incubation
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Fig. 35.8 Transamination of an amino acid comprises of two half reactions. First half reaction

may be viewed as the oxidation of the amino acid-1 to keto acid-1, while in the second half, keto

acid-2 is reduced to amino acid-2. The reactions shown here are for aspartate transaminase; amino

acid-1 is aspartate and the corresponding keto acid-1 is oxaloacetate. Glutamate (amino acid-2) and

2-oxoglutarate (keto acid-2) form the other substrate-product pair. In the case of alanine transami-

nase however, L-alanine (amino acid-1) and pyruvate (keto acid-1) will be involved
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with keto acid stoichiometrically forms the corresponding amino acid. Because of

the two partial reactions, relevant isotope exchanges (see Chap. 26) are also detected.

Aspartate transaminase (more commonly, serum glutamate-oxoglutarate trans-

aminase (SGOT)) and alanine transaminase (serum glutamate-pyruvate transami-

nase (SGPT)) are the two clinically relevant and well-studied amino acid

transaminases.

The PLP adduct of an α-amino acid can also undergo decarboxylation. Here PLP

acts as a 2e� sink to facilitate the decarboxylation event. After the cleavage of the

Cα-COO
� bond, protonation of the α-carbon and product release from PLP

regenerates the primary amine. Besides pyruvoyl-dependent enzymes (see

Table 35.2 and the previous section on Pyruvoyl-dependent enzymes), these PLP

enzymes constitute a major class of amino acid decarboxylases. Examples of

PLP-dependent decarboxylation products include GABA, histamine, dopamine,

and 5-hydroxytryptamine (serotonin).

Reactions at Amino Acid β- and γ-Carbons We have so far looked at

PLP-dependent reactions that occur at the α-carbon – the C atom to which the

substrate amino group is attached. A small but important set of α-amino acid

reactions occur at the β- and γ-positions as well (Fig. 35.9). Mechanistically all

these take off from the quinonoid intermediate.

Interestingly, in some of the reactions (particularly those at γ-carbon), PLP acts as

a 4e� sink (first 2e� on ring N and the next two on the adjacent iminium N) rather

than a 2e� sink (2e� on ring N). The reaction mechanism at γ-carbon begins with

aldimine adduct and leads to the following sequence of events:

Aldimine adduct ! abstract Cα-H ! quinonoid intermediate (ring N as 2e�

sink)! abstract Cβ-H! stabilize β-carbanion (adjacent iminium as 2e� sink)

! β,γ-unsaturated imine intermediate ! reaction of

γ-elimination/γ-replacement.

Examples of enzymes that exploit PLP as 4e� sink include γ-cystathionase,

L-methionine γ-lyase, cystathionine synthase, threonine β-epimerase, and threonine

synthase.

35.3 Summing Up

Stabilizing a carbanion transition state is often crucial for enzyme catalysis. The

developing negative charge on a C atom could be handled through suitably placed

temporary electron sinks. The sink may be found on the substrate itself (a β-keto

group directly or its Schiff base through Lys-NH2), on the enzyme (pyruvoyl group

and 4-methylideneimidazole-5-one), or on the cofactor (a divalent metal ion, thia-

mine pyrophosphate (see Chap. 34), or pyridoxal phosphate). PLP is a versatile
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Fig. 35.9 Reactions occurring at β- and γ-carbon of an amino acid. All these reactions

originate from the quinonoid intermediate (see Fig. 35.7 for details). Ability of the enzyme active

site to quench a suitable carbanion is the key to these reactions. A second proton from the substrate

is abstracted by the enzyme (with PLP acting as a 4e� sink) in case of γ-elimination/γ-replacement

reactions
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electrophile chosen by nature. While PLP chemistry is more or less synonymous

with reactions of amino acid metabolism, there are a small number of amino acid

chemistries where protein electrophiles (like pyruvoyl group and

4-methylideneimidazole-5-one) have been recruited.

PLP-dependent reactions play a crucial yet irreplaceable role – they function to

recycle nitrogen content of the cellular amino acid pool through catabolism, biosyn-

thesis, and interconversions. All these enzymes/reactions make use of PLP cofactor

as a temporary electron sink. Typically the amino group of the substrate amino acid

forms a Schiff base to initiate the proceedings. The bond to be broken (around the

Cα) sticks out of plane as defined by the pyridine ring. For instance, racemases and

transaminases bind their substrate such that the amino acid Cα-H sticks out and is

mobilized. It is the Cα-COO
� group that is held out of plane by a decarboxylase.

Reactions at the Cβ and Cγ of amino acid may be less common but are equally

important.

Table 35.4 is a compilation of various chemical events associated with reactions

that are known to occur at Cα, Cβ, and Cγ atoms of the substrate, during PLP catalysis.

Table 35.4 Summary of various chemical events in PLP catalysis

Amino acid

reaction at

Events

Example

The α-carbon

Racemization Cα-H removed/added Alanine racemase

Transamination

Protonation of aldimine at PLP aldehydic C Glutamate-oxaloacetate

transaminase

Decarboxylation

Cleavage of Cα-COO
� bond but Cα-H not

mobilized

Glutamate decarboxylase

α,β-Aldolytic

cleavage

Cα-H not mobilized Serine

hydroxymethyltransferase

The β-carbon

Decarboxylation

Cα-H mobilized Aspartate

β-decarboxylase

Elimination Cα-H mobilized and 2e� oxidationa at Cα Tryptophanase

Replacement Cα-H mobilized and replacement of group on

Cβ

Tryptophan synthase

The γ-carbon

Elimination Cα-H mobilized followed by the Cβ-H to

stabilize Cβ-carbanion; elimination from Cγ- to

form β,γ-unsaturated imine and 2e� oxidationa

at Cα

γ-Cystathionase

Replacement Cα-H mobilized followed by the Cβ-H to

stabilize Cβ-carbanion; replacement of group

on Cγ

Cystathionine synthase

a2e� oxidation at Cα invariably results in α-keto acid as one of the products
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Integrating Kinetic and Chemical
Mechanisms: A Synthesis 36

Enzymes are chemical catalysts par excellence. Mechanistic understanding of

enzyme catalysis therefore emphasizes two key features – the kinetic pathway and

the chemical route taken to achieve it. Elucidation of kinetic mechanisms was

elaborated in several chapters earlier (in Part III). Chemical tools and cofactor

reactivity exploited by these catalysts formed the major focus of this section (Part

IV). Assimilating the kinetic and the chemical lines of inquiry completes the

comprehension of enzyme function. The origins of enzyme catalytic power (see

Chap. 6) make better sense through this fusion. There may be multiple chemical

solutions for catalyzing a particular reaction, for instance, peptide bond hydrolysis

(Chap. 7). A chosen chemical mechanism may place constraints as to what kind of

kinetic schemes are feasible. Besides, different kinetic mechanisms may exist for the

same enzyme-catalyzed reaction. We will attempt to bring together these two broad

lines of evidence in this chapter through examples.

36.1 Competence of the Proposed Reaction Intermediate

When a reactant is converted to product, one or more bonds are broken and/or

formed. This is true for an enzyme-catalyzed reaction as well. One or more transition

states and intermediates occur along the reaction path. Transition states differ from

intermediates in terms of their lifetime of existence. A transition state is ephemeral

and occurs only at the top of a potential energy peak on the reaction coordinate (see

Chap. 5). As bond vibration modes are translated into bond breaking/forming events

in the transition state, the time frames for the existence of transition state is less than

the time required for intramolecular vibrations (<10�12 s). For these reasons, the

transition state does not have a finite lifetime. In contrast, an intermediate in a

reaction persists longer than the time required for inter�/intramolecular bond

vibrations. All the bonds holding the atoms together are fully established, and the

intermediate does not have any partial bonds (that are in the process of forming or
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breaking). Reaction intermediates are located at potential energy wells on the

reaction coordinate – such that their energy levels lie between those of transition

state and the substrate or the product. A schematic reaction coordinate for the serine

protease (such as chymotrypsin)-catalyzed peptide bond hydrolysis is depicted in

Fig. 36.1. Because intermediates have finite lifetimes, it is often possible to observe

and/or trap them.

The intermediates formed during enzyme-catalyzed reactions may be

non-covalent or covalent. We have seen before (Chaps. 11, 31) that intermediates

can be detected and/or trapped. Much more needs to be done besides demonstrating

their actual existence. If an intermediate is indeed on the S! P reaction coordinate,

then one may be able to demonstrate its kinetic and catalytic competence. An

intermediate, proposed through direct and/or indirect experimental reasoning, must

satisfy both these features. The following criteria are employed to verify the presence

and participation of postulated intermediate:

• Detect and isolate the proposed intermediate (see Chap. 31).

• Determine its structure. If unstable, analyze the breakdown products for indica-

tive clues.

• Look for chemical precedence and thermodynamic basis for such intermediates.
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Fig. 36.1 Reaction coordinate for peptide bond hydrolysis by a serine protease. Four transi-

tion states (6¼1 through 6¼4) and three intermediates are shown – the acyl-enzyme intermediate in

the middle is flanked by two tetrahedral intermediates. For a good substrate, acylation and

deacylation rates are comparable with no net accumulation of the acyl-enzyme intermediate. With

a poor substrate like 4-nitrophenyl acetate, however, acyl-enzyme accumulates significantly as the

deacylation step becomes rate limiting
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• Synthesize relevant model compounds and examine their chemical reactivity.

Test if they are converted by the enzyme to products.

• A postulated intermediate is chemically competent only if it is converted by the

enzyme to the product (and should form the substrate in the case of reversible

enzyme reactions).

• Only those intermediates that form and collapse at rates equal to or greater than

the overall enzymatic reaction rate are kinetically competent. This should be true

for all the postulated intermediates in an enzyme mechanism.

• A compound that is kinetically not competent cannot be an intermediate in the

reaction coordinate.

Intermediates like γ-glutamyl phosphate (glutamine synthetase), acyl-enzyme (chy-

motrypsin), and phospho-enzyme (phosphoglucomutase) do satisfy the above

criteria of catalytic competence. The concepts of kinetic and chemical competence

lead to complete understanding of an enzyme mechanism. We will now describe

several well-studied cases of such mechanistic syntheses.

36.2 Glutamine Synthetase

Glutamine synthetase (glutamate–ammonia ligase) catalyzes a reaction with three

reactants and three products.

L-Glutamate + NH4
+

+ Mg-ATP → L-Glutamine + Mg-ADP + ��

In this three substrate sequential mechanism, γ-glutamyl phosphate is formed at

the active site. Nucleophilic attack by ammonia to this intermediate displaces

phosphate to form glutamine (Fig. 31.5). The kinetic and chemical competence of

γ-glutamyl phosphate was established through the following multiple lines of

evidence.

1. Attempts to synthesize and directly test the reactivity of γ-glutamyl phosphate

have not been successful due to its instability. This compound spontaneously

cyclizes to pyrrolidone carboxylate (also known as pyroglutamate or

5-oxoproline) by loss of phosphate (a good leaving group). However, cis-1-

amino-1,3-dicarboxycyclohexane (a glutamate mimic) is a substrate for

glutamine synthetase that cannot cyclize γ-glutamyl phosphate. This compound

is phosphorylated by the enzyme using Mg-ATP, in the absence of ammonia.

The analogous acyl-phosphate (Fig. 36.2) can be isolated and identified. Sec-

ondly, β-glutamate (3-aminoglutarate) is a substrate for mammalian glutamine

synthetase but its acyl-phosphate is relatively stable and can be prepared. The

enzyme drives the formation of Mg-ATP when incubated with Mg-ADP and
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synthetic β-glutamate phosphate (Fig. 36.2). The acyl-phosphate is thus chemi-

cally competent to form the substrate (ATP), in the reverse reaction.

2. A number of indirect clues also support the chemical intermediacy of γ-glutamyl

phosphate (Fig. 31.5). Activated form of glutamate (such as γ-glutamyl phos-

phate) cyclizes to 5-oxoproline, and this is the product formed by glutamine

synthetase in the absence of ammonia. Only an activated carboxylate group is

reduced by sodium borohydride to aldehyde and then to alcohol; borohydride

does not reduce a free carboxylate, γ-amide of glutamine, or 5-oxoproline. The
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Fig. 36.2 Glutamine synthetase catalysis proceeds via enzyme-bound γ-glutamyl phosphate

as the obligate covalent reaction intermediate. (A). The enzyme phosphorylates cis-1-amino-1,3-

dicarboxycyclohexane and the carboxyl-phosphate formed is stable. (B). ATP can be synthesized

from ADP and synthetic β-glutamate phosphate. (C). The enzyme-bound, activated γ-carboxylate

of glutamate can be intercepted by :NX (either NH2OH or NH3); this forms the basis of γ-glutamyl

transferase activity of all glutamine synthetases
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enzyme-bound γ-glutamyl phosphate is reduced to δ-hydroxy-α-aminovalerate

by borohydride demonstrating that the γ-carboxylate of glutamate is indeed

activated by glutamine synthetase. The enzyme mistakes the sulfoximine moiety

of L-methionine-S-sulfoximine for the γ-carboxylate of glutamate and

phosphorylates it. The L-methionine-S-sulfoximine N-phosphate along with

Mg-ADP forms an extremely tight complex with glutamine synthetase. Lastly,

the glutamate carboxyl oxygen (18O label) ends up in inorganic phosphate upon

glutamine synthesis, suggesting the existence of an acyl-phosphate intermediate.

3. In the presence of Mg-ADP and phosphate or arsenate (AsO4
2- is a structural

analog of PO4
2-) glutamine synthetase also catalyzes the γ-glutamyl group

transfer.

L-Glutamineþ NH2OH⇄γ-glutamylhydroxamateþ NH3

This reaction is also consistent with the existence of an activated γ-carboxylate of

glutamate during the reaction. NH2OH in place of NH3 can intercept this deriva-

tive to form γ-glutamyl hydroxamate; either of them (shown as :NX in the

figure) can generate a tetrahedral intermediate (Fig. 36.2) during the enzymatic

reaction. The γ-glutamyl transferase reaction follows a ping-pong kinetic mecha-

nism with glutamine as the leading substrate and NH3 as the first product. The

activated γ-carboxylate of glutamate bound to the enzyme (the F form) is then

quenched by NH2OH to release the second product.

4. The formation of γ-glutamyl phosphate is also inferred from the positional

isotope exchange (PIX; for a detailed treatment see Chap. 25) study. The 18O-

labeled β,γ bridge oxygen of ATP exchanges with non-bridge β-phosphate

oxygens: the γ-phosphate of ATP is transferred to γ-carboxylate of glutamate;

the β-phosphate then can interchange the bridge 18O to the two of its non-bridge 16

O atoms (Fig. 31.5). This exchange requires the presence of glutamate but can

occur in the absence of ammonia; PIX occurs as the reaction cannot proceed

beyond the formation of γ-glutamyl phosphate. In the presence of ammonia,

however, the PIX rate decreases, while glutamine formation is favored. Further,

PIX rate in the absence of ammonia is equal to the initial velocity of complete

reaction (i.e., glutamine synthesis). This demonstrates the kinetic competence of

γ-glutamyl phosphate.

5. The steady-state kinetic data points to a sequential ter–ter reaction mechanism.

Since the formation of γ-glutamyl phosphate is known to require only glutamate

and Mg-ATP, isotope exchange between Mg-ATP and Mg-ADP is expected

(when glutamate is present) in the absence of ammonia. This does not occur,

possibly because the active site does not close for reaction unless all three

substrates assemble. The observed equilibrium isotope exchanges support a

random mechanism. But as both glutamate–glutamine (with 14C label) and

ammonia–glutamine (with 15N label) exchange rates are much larger than that
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of Mg-ATP – Mg-ADP (with 14C label) exchange, the microscopic association/

dissociation rates for the nucleotides are slower than those for the amino acids.

γ-Glutamyl phosphate satisfies the kinetic criteria and also qualifies as a chemi-

cally competent intermediate of glutamine synthetase reaction. Intermediates that are

artifacts of the analysis itself most likely do not stand such rigorous evaluation.

36.3 Glutamate Dehydrogenase

Glutamate dehydrogenase follows a sequential ter–ter reaction mechanism.

2�Oxoglutarateþ NH4
þ þ NADðPÞH⇄L�GlutamateþH2Oþ NADðPÞþ

The reductive amination of 2-oxoglutarate proceeds through an enzyme-bound

2-iminoglutarate intermediate (see Fig. 6.3). The following lines of evidence support

this proposition.

1. Reduction of Δ1-pyrroline-2-carboxylate (a cyclic-α-imino acid) by NADPH is

catalyzed by glutamate dehydrogenase.

2. A primary deuterium isotope effect with α-deuterio-L-glutamate is demonstrated

in the first observable step of the reverse reaction. Kinetic evidence exists that

ammonia is released from the enzyme in a step following the hydrogen transfer

step of the reverse reaction.

3. Sodium borohydride reduction of 2-oxoglutarate in the presence of ammonia and

enzyme leads to the production of an excess of L-glutamate over the

D-enantiomer.

4. The active site electrostatics permits glutamate dehydrogenase to discriminate

between iminium and carbonyl groups; the interaction decreases in the order

iminium ion (>C¼NH2
+) > 2-methyleneglutarate (>C¼CH2) > 2-oxoglutarate

(>C¼Oδ-), possibly due to charge repulsion. Spectral and structural evidence

exists for the presence of this 2-iminoglutarate intermediate on the

enzyme (Prakash et al. 2018).

Two mechanisms were proposed for the formation of the 2-iminoglutarate inter-

mediate: (a) nucleophilic attack of ammonia on a covalently bound Schiff base in the

“E-NADPH-2-oxoglutarate” ternary complex and (b) reaction of ammonia with

carbonyl group of 2-oxoglutarate in this ternary complex. The rates of carbonyl

oxygen exchange (with water; Fig. 36.3) in the ternary complex must be widely

different for the two mechanisms (much faster exchange if a Schiff base is involved).

The “sequential” nature of the kinetic mechanism is borne out by the fact that no

such 18O exchange occurs in the absence of NADPH. However, this 18O exchange

with the solvent could be followed in the ternary complex. When measured, the loss

of label from the >C ¼ 18O containing ternary complex is at least 105 times slower

(and hence kinetically not competent) than the rate of reductive amination reaction.
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This result also provides evidence against the involvement of an enzyme-bound

Schiff base in the mechanism.

In the absence of ammonia, 2-oxoglutarate is not reduced by glutamate dehydro-

genase. The rates of 2-oxoglutarate carbonyl 18O exchange with water due to gem-

diol formation (Fig. 36.3) are orders of magnitude slower than the overall enzyme

reaction rate. Also, the gem-diol of 2-oxoglutarate is not a substrate for this enzyme.

The 2-oxoglutarate gem-diol is therefore not on the reaction path of this enzyme. The

enzyme strongly favors ammonia over water and the active site discriminates against

the carbonyl reaction with water.

36.4 Disaccharide Phosphorylases

Phosphorylases are enzymes that reversibly phosphorolyze glycosides, to produce

sugar 1-phosphates, with strict substrate specificities. This catabolic pathway,

involving the phosphorolysis and direct production of phosphorylated sugars with-

out consuming ATP, is energetically efficient. Among the glycoside hydrolase

families, GH94 group is primarily comprised of phosphorylases that catalyze
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reversible phosphorolysis of β-D-glucosides to form α-D-glucose 1-phosphate

(αGlc1P) with inversion of the anomeric configuration. We will consider three

such enzyme activities and contrast their mechanistic details with sucrose phosphor-

ylase – a retaining phosphorylase (Duodoroff et al. 1947).

1. The glycosidic bridge oxygen (if 18O labeled) of the four respective disaccharide

substrates will not be found in the product – glucose 1-phosphate (Fig. 36.4). A

glucosyl transfer with the cleavage of C-1 and bridge O bond in the substrate

glycoside is indicated.

2. Stereochemical outcome of phosphorolysis by the four disaccharide

phosphorylases is summarized in the table below (Table 36.1).

The phosphorylations of maltose, cellobiose, and cellobionate by the

corresponding enzymes are examples with inversion of the anomeric configuration.

This implies a direct SN2 displacement by oxygen of inorganic phosphate (Ⓟ in the

table above) at the C-1 of the glycoside (Fig. 36.4) and suggests a ternary complex

mechanism. Sucrose phosphorylase on the other hand works with retention of

stereochemistry. This result means either (a) two SN2 displacements or (b) an SN1
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(carbonium ion) mechanism possibly with only one side attack. Additional data (see

below) permits us to discriminate between these two possibilities.

3. The first three enzymes (listed in Table 36.1 above) do not catalyze partial

exchanges, which is again consistent with a ternary complex mechanism for

them. Sucrose phosphorylase does catalyze partial exchanges however (see

Chap. 26 and Fig. 26.1). Sucrose is not required for the exchange of label between

glucose 1-phosphate and [32P]phosphate; and phosphate is not required for the

second exchange between sucrose and [14C]fructose. Such isotope exchanges are

best evidence of ping-pong mechanism (with a glucosyl-enzyme as the covalent

intermediate).

4. The glucosyl-enzyme form of sucrose phosphorylase is labile, but this bond is

stable at acidic pH. Thus the [14C]glucose-bound enzyme can be isolated by

incubating the enzyme with [14C]glucose containing sucrose and quenching it at

pH 3.0. Under similar treatment, the enzyme does not get labeled when incubated

with [14C]glucose, [14C]fructose or [14C]fructose containing sucrose. Only the

glucosyl moiety derived from sucrose is covalently linked to sucrose phosphory-

lase during catalysis; this glucosyl-enzyme is the F form in the ping-pong

kinetics.

5. We noted above (see γ-glutamyl transferase activity of glutamine synthetase) that

arsenate (AsO4
2�) is a structural analog of phosphate (PO4

2�). Arsenate esters,

unlike phosphate esters, are unstable in aqueous solutions – upon water attack

they rapidly decompose to alcohol and arsenate. Glucose 1-phosphate in the

absence of arsenate is stable in water. Only sucrose phosphorylase (and not the

other three enzymes in Table 36.1) catalyzes the arsenate dependent hydrolysis

(arsenolysis) of glucose 1-phosphate. Arsenolysis may be interpreted as follows:

glucosyl form of sucrose phosphorylase can be formed when glucose 1-phosphate

is present; this covalent enzyme intermediate is attacked by arsenate to give the

unstable glucose 1-arsenate; the arsenate ester of glucose breaks down

non-enzymatically to glucose and arsenate in water.

Table 36.1 Stereochemical outcome of disaccharide phosphorylase action

Phosphorylase substrate

C-1 configuration of

substrate

C-1 configuration of

Glc1Pa Outcome

Maltose + Ⓟ ⇄

Glc1P + Glucose

α β Inversion

Cellobiose + Ⓟ ⇄

Glc1P + Glucose

β α Inversion

Cellobionate + Ⓟ ⇄

Glc1P + Gluconate

β α Inversion

Sucrose + Ⓟ ⇄

Glc1P + Fructose

α α Retention

aGlc1P: α or β -D-glucose 1-phosphate
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Glucose 1-phosphate + Enzyme  ⇄⇄ Glucosyl enzyme + �

Glucosyl enzyme + AsO4
2-
⇄ Glucose 1-arsenate + Enzyme

Glucose 1-arsenate + H2O  → Glucose + AsO4
2-

Net Reaction: Glucose 1-phosphate + H2O  →  Glucose + �

The other three phosphorylases do not show arsenolysis – a result consistent with

absence of glucosyl-enzyme in their sequential mechanism.

6. The inverting phosphorylases (such as those acting on maltose, cellobiose and

cellobionate) follow a sequential bi–bi mechanism. In each case, double recipro-

cal plots of the initial velocities against various initial concentrations of respective

disaccharide and Ⓟ give a series of lines intersecting at a point. In contrast,

sucrose phosphorylase involves a double-displacement (ping-pong Bi–Bi) mech-

anism – with fructose released prior toⓅ addition. As expected, two competitive

and two noncompetitive product inhibitions are observed with sucrose

phosphorylase.

We may summarize, from the mechanistic details of disaccharide phosphorylases

discussed above, that a reaction may be catalyzed by different chemical and kinetic

strategies. However, a glucosyl-enzyme intermediate is compatible only with ping-

pong mechanism (see Chap. 26 and Fig. 26.1) and not a sequential Bi–Bi

mechanism.

36.5 Acyl Transferases

Acyl transfers are very common in metabolism and regulation. An acyl group is

accepted by nucleophiles such as amines, alcohols, thiols, phosphates, and

carboxylates. Acylation of alcohols represent an important group of enzymatic

reactions among them. Mechanistically, acyl transfer to alcohol can occur in one

of the two modes (Fig. 36.5): (1) direct nucleophilic attack by the alcohol on the acyl

donor via a tetrahedral intermediate (or transition state) to form products or (2) for-

mation of an acyl-enzyme intermediate involving an enzyme nucleophile and

subsequent transfer of acyl group to the alcohol. We will now compare the two

mechanisms.

Direct Nucleophilic Attack Both the substrates have to occupy the active site

before the alcohol attacks the acyl donor. Therefore, such enzymes are predicted

to follow a sequential kinetic mechanism. And this is observed experimentally

(double reciprocal plots of the initial velocities against various initial concentrations
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of respective substrates give a series of lines intersecting at a point; Chap. 19,

Fig. 19.3). Examples include carnitine acetyltransferase (rapid equilibrium random

kinetics), choline acetyltransferase (Theorell–Chance kinetics), and serine

acetyltransferase (steady-state ordered, at pH 7.5). A conserved histidine residue is

found in the active site of all such enzymes. The imidazole side chain acts as a

general base to remove the alcoholic proton so as to prepare it for the ensuing

nucleophilic attack (Fig. 36.5). The initial attack on the acyl thioester (of acetyl CoA)

by serine –OH is most likely the rate-determining step in serine acetyltransferase; the

general base accepting the alcoholic proton in the ternary complex sets up serine

for this attack (Johnson et al. 2005). Solvent kinetic isotope effects on Vmax and
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Vmax/KSerine are linearly dependent on percent of D2O present – a result consistent

with single proton in flight in the rate-determining step. If multiple proton transfers

were involved, then this dependence would be nonlinear.

Acyl-Enzyme Formation Acyltransferases of this class display the predicted ping-

pong kinetics. A ternary complex of the two substrates and the enzyme does not

occur; the double reciprocal plots of the initial velocities give a parallel pattern

(Chap. 19, Fig. 19.4), typical for double-displacement mechanism. The acyl group is

transferred to an active site nucleophile during the first half of reaction. The acyl

acceptor substrate receives it in the second half of the reaction. Depending on the

enzyme, either a serine or a cysteine residue is the catalytic nucleophile at the active

site. Examples of enzymes that go through an acyl-enzyme intermediate include

homoserine succinyltransferase (active site Cys) and homoserine acetyltransferase

(active site Ser?). Most lipases contain a catalytic serine that is acylated during

catalysis. When water is made limiting (nonaqueous conditions), lipases are capable

of facilitating transacylation – a property gainfully exploited for trans-esterification

reactions in the industry. In this situation, the ping-pong Bi–Bi mechanism and the

acyl-enzyme intermediate of lipases become obvious.

Both sequential and ping-pong kinetics are mechanistic possibilities for

acyltransferase catalysis. But an acyl-enzyme intermediate forms only with ping-

pong kinetics.

36.6 Chymotrypsin

Among the serine proteases chymotrypsin is a well-studied example. Its chemical

and kinetic mechanism was established through a series of experimental evidences.

1. Incubation of chymotrypsin with diisopropyl fluorophosphate (DFP) leads to

inhibition of the enzyme. This inhibition can be reversed by strong nucleophiles.

When 32P-labeled DFP is incubated with chymotrypsin, a radioactive protein is

obtained. Upon complete inhibition, one mole of the radiolabel is bound per mole

of the enzyme. O-Diisopropyl phosphoryl serine is obtained on acid hydrolysis of

this labeled enzyme. The serine modified by diisopropyl fluorophosphate is at

position 195 and is the only one among the 29 serines found in chymotrypsin. The

“free” amino acid serine does not react with DFP. The enzyme active site contains

a serine residue, and this Ser-OH is the nucleophile. A catalytically critical Ser

residue (serving as a nucleophile) is also found at the active site of many esterases

and lipases.

2. Reagents modifying the amino acid histidine also inhibit the enzyme. The

pH-activity studies reveal that a group with pKa of 6.6 is important in catalysis.

Active site directed irreversible inhibitors like N-4-toluenesulfonyl-L-
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phenylalanine chloromethylketone (TPCK) (see Fig. 21.3) covalently modify

His-57 residue.

3. The side group of Ser-195 is the true catalytic nucleophile; its nucleophilic

reactivity depends on a histidine side group. X-ray diffraction studies on crystal-

line chymotrypsin show that Ser-195 is in hydrogen bonding distance to the

imidazole side chain of His-57. It is also seen that Asp-102 in turn hydrogen

bonds to the active site His-57 side chain (Craik et al. 1987).

4. p-Nitrophenyl acetate is a substrate (albeit a poor one!) of chymotrypsin and

when acted upon yields an acetyl enzyme intermediate. The acyl-enzyme of

chymotrypsin is a true covalent intermediate during its catalytic cycle. With a

poor substrate like 4-nitrophenyl acetate however, acyl-chymotrypsin

accumulates significantly as the deacylation step becomes rate limiting. This

manifests as the observed burst kinetics (Fig. 31.4). O-Acetyl serine can be

isolated by careful hydrolysis of this acetyl enzyme. It is worth noting that the

acyl-enzyme, despite its accumulation, is still a kinetically competent intermedi-

ate; this is because the overall reaction rate itself slows down with this poor

substrate. For a good substrate, acylation and deacylation rates are comparable

with no net accumulation of the acyl-enzyme intermediate (see Fig. 36.1).

An acyl-enzyme intermediate of chymotrypsin was observed through UV

spectroscopy, by using trans-cinnamoyl esters as substrates. This acyl-ester was

both chemically competent as a reaction intermediate and kinetically competent

(as it was converted to product at a rate at least as fast as the overall reaction rate).

Serpins present themselves as the proteinaceous suicide substrates of serine

proteases. They act by generating a kinetically incompetent acyl-enzyme thereby

titrating out the active enzyme. The trapping of transpeptidase (in bacterial cell

wall biosynthesis) by β-lactam antibiotics is a similar example. The intermediate

penicilloyl enzyme is a dead-end as it is not kinetically competent.

5. Chymotrypsin reaction involves ordered product release; the amino product is

released first before the acyl-enzyme is attacked by water. A UniBi kinetic

mechanism is described by not considering water as a reactant (55.5 M; pseudo-

first-order kinetics). Reactions like transpeptidation and/or peptide synthesis can

be demonstrated when the second substrate is a nucleophile other than water

(nonaqueous enzymology!). As expected, a ping-pong BiBi mechanism and the

acyl-enzyme intermediate of chymotrypsin catalysis become obvious here.

6. Site-directed mutagenesis was used to assess the contribution of Ser-195 toward

trypsin catalysis. The kinetic mechanism of S195A mutant may not follow the

ping-pong BiBi mechanism as no acyl-enzyme can form. The S195A mutant

retains the ability to hydrolyze peptide bonds (at 103–104-fold above the

uncatalyzed rates); this significant residual rate is attributed to the stabilization

of oxyanion intermediate by the serine protease active site.
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36.7 Aldolases and Transaldolase

The aldolytic cleavage of fructose 1,6-bisphosphate is a key reaction of glycolysis.

This reaction is catalyzed by fructose 1,6-bisphosphate aldolase. The same enzyme

is also responsible for the catalysis of the reverse reaction (retro-aldol condensation)

to form fructose 1,6-bisphosphate during gluconeogenesis (Fig. 36.6).

We have noted earlier (Chap. 6) that, during catalysis, the stabilization of

carbanion on C-3 of dihydroxyacetone phosphate may occur in one of the two

ways: (i) a Schiff base formed with enzyme Lys-NH2 (Class I aldolase) or

(ii) stabilizing the charge on carbonyl oxygen by the active site Zn2+ (Class II

aldolase; the yeast enzyme has one Zn2+ per active site). Of the two, Class I aldolases

have been extensively characterized for their mechanism of action.

The collection of kinetic and chemical evidences in support of the Schiff base

mechanism (Class I fructose 1,6-bisphosphate aldolase) is listed below.
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1. Reduction by sodium borohydride (NaBH4) in the presence of either dihydroxy-

acetone phosphate or fructose 1,6-bisphosphate, but not in the presence of

glyceraldehyde 3-phosphate, irreversibly inactivates the enzyme. If 14C-dihy-

droxyacetone phosphate was used in this reaction then the radiolabel gets

incorporated into the protein. Digestion of this modified protein provides evi-

dence that the covalent intermediate trapped was the imine (cationic form of

Schiff base; see Fig. 36.7) between the modified lysine and dihydroxyacetone

phosphate (Table 31.4). In a similar experiment, trapping of the lysine adduct was

also demonstrated for acetoacetate decarboxylase reaction.

2. Active site labels display – (a) saturation behavior with respect to the rates of

inactivation, (b) competition of this inactivation by corresponding substrate or

competitive inhibitor and (c) the KD values measured through the inactivation
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rates are similar to their respective KM and KI values. All these three aspects were

tested with 1-hydroxybut-3-en-2-one phosphate as an active site label for fructose

1,6-bisphosphate aldolase.

1-Hydroxybut-3-en-2-one phosphate (active site label) binds to aldolase before

covalently modifying it (by Michael addition; Fig. 36.7). From the saturation

curve with pseudo-first-order inactivation rate constants, a KD of 99 μM was

observed. The irreversible inactivation by 1-hydroxybut-3-en-2-one phosphate is

competitively inhibited by the substrate dihydroxyacetone phosphate. A dihy-

droxyacetone phosphate dissociation constant of 1.4 μM (calculated from such

protection experiments) is close enough to the kinetically obtained KI (4.5 μM)

for this substrate.

3. Incubation with the enzyme facilitates the release of 18O from the carbonyl group

of dihydroxyacetone phosphate (but not from that of glyceraldehyde

3-phosphate) into the solvent. This is consistent with the formation of Schiff

base between the enzyme and dihydroxyacetone phosphate. For the same mecha-

nistic reason, acetoacetate decarboxylase also catalyzes the exchange of 18O from

H2
18O into acetone (its decarboxylation product).

4. The tritium exchange between 3H-labeled dihydroxyacetone phosphate

(ⓅOCH2-CO-C
3H2-OH) with water is catalyzed by the enzyme in the absence

of glyceraldehyde 3-phosphate. This is an example of isotope exchange in the

absence of one or more reactants – Suggestive of a covalent intermediate with the

enzyme that is responsible for the observed exchange. Further, the rate of this

tritium exchange at equilibrium falls sharply with increasing concentration of

glyceraldehyde 3-phosphate. This inhibition of exchange is indicative of glycer-

aldehyde 3-phosphate release before dihydroxyacetone phosphate (ordered prod-

uct release). Accordingly, in the reverse reaction, dihydroxyacetone phosphate

goes on to the enzyme first.

5. The two hydrogens on the pro-chiral C-3 of dihydroxyacetone phosphate are not

equivalent. Hence only one of them (pro-S hydrogen) is available for exchange.

One may contrast this situation with (a) the enolization of pyruvate by pyruvate

kinase reaction and (b) the exchange of deuterium from D2O into acetone to

produce CD3COCD3 by acetoacetate decarboxylase. The three methyl hydrogens

of pyruvate and the six methyl hydrogens of acetone respectively are torsio-

symmetric. Therefore, all the methyl hydrogens of pyruvate and acetone (note

that the two methyl groups on acetone are equivalent!) are exchangeable.

6. The C-3 of dihydroxyacetone phosphate is a pro-chiral center. Only its pro-S hydro-

gen is removed by a base on the enzyme active site – Its subsequent exchange with

water by acid–base reaction is responsible for the tritium exchange mentioned in

evidence 4 above. This exchange rate establishes only a lower limit to the rate at which

the labeled intermediate itself is formed (Fig. 36.8). Consistent with this abstraction of

pro-S hydrogen, the aldolase chemistry occurs with overall retention of configuration

at C-3. The enzyme facilitates the stereo-specific attack by dihydroxyacetone phos-

phate imine on to only one face of the bound aldehyde (Fig. 36.8).
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Transaldolase While two mechanistically distinct aldolases (the Class I with Schiff

base and the Class II with Zn2+) are known, transaldolases with only Schiff base

mechanism are reported. The best studied transaldolase is an important member of

the pentose phosphate pathway (and the Calvin cycle). It catalyzes the transfer of

three carbon (dihydroxyacetone) units, between the aldose acceptor molecules. The

bound dihydroxyacetone phosphate eneamine in transaldolase is held sufficiently

long at the active site without imine hydrolysis. This feature allows the erythrose

4-phosphate to diffuse out of the active site, other aldose substrate (glyceraldehyde

3-phosphate) to diffuse in and react with the bound dihydroxyacetone phosphate. In

the retro-aldol condensation step (Fig. 36.8), one aldehyde (R1CHO) leaves and is

replaced by another (R2CHO). Clearly, ping-pong Bi–Bi kinetic mechanism ensues

with the dihydroxyacetone phosphate adduct (Schiff base) on enzyme Lys-NH2 as

the F form.

Mechanistic difference between transaldolase and aldolase reaction is only that

the release of dihydroxyacetone phosphate from the E-DHAP complex is much more

rapid in the aldolase. The essential mechanistic similarity between the two enzymes

is evident when FBP aldolase was able to carry out transaldolation upon limited

proteolysis (removal of 3–4 amino acid residues from the carboxyl-terminus by

carboxypeptidase A treatment). The limited proteolysis resulted in an aldolase

whose proton abstraction ability becomes rate determining – it holds on to the

bound dihydroxyacetone phosphate for a longer interval.
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We may summarize from the above that aldolase catalysis can be achieved either

by deploying a Schiff base (as in Class I aldolases) or a Zn2+ (as in Class II

aldolases). For mechanistically similar reasons, acetoacetate decarboxylase also

comes in two forms: one employing a Schiff base and the other an active site Mn2+

(see Figs. 34.6 and 34.7). As expected, the Schiff base acetoacetate decarboxylase

displays the relevant proton and 18O exchanges with water. These are mechanistic

features consistent with a carbanion stabilized during catalysis by both aldolase and

acetoacetate decarboxylase. Lastly, it appears that only with a Schiff base mecha-

nism, there is sufficient time and scope for one aldehyde to leave and the other to

enter the active site. This is consistent with the fact that transaldolases with Schiff

base mechanism alone are known and no Class II transaldolases are reported so

far (Samland and Sprenger 2006).

36.8 Ribonuclease A

Bovine pancreatic ribonuclease A (RNase A) is a compact enzyme with a polypep-

tide chain of 124 amino acids. It is an efficient catalyst in the hydrolysis of RNA

phosphodiester bonds (Raines 1998).

1. The single polypeptide of RNase A contains four histidine residues. Incubation

with iodoacetate leads to enzyme inhibition. The inhibition by iodoacetate is

prevented if substrate or substrate analogs are present during incubation.

Iodoacetate modifies an essential histidine required for RNase A activity.

2. When 14C-iodoacetate is incubated with RNase A, a radioactive protein is

obtained. One mole of 14C-iodoacetate is bound per mole of enzyme upon

complete inhibition. Complete hydrolysis of the inhibited enzyme with acid

releases carboxymethyl histidine. This histidine was found to be His-119 on

sequence analysis; a minor product was His-12. Both His-119 and His-12 are

important for RNase a catalysis and are spatially located close to each other.

X-ray data also supports this.

3. The pH-activity studies revealed two general acid–base catalytic groups at the

active site. Their cationic acid nature was indicated based on organic solvent

effects (Chap. 24, Table 24.2). The pH titration of 1H chemical shifts (by NMR)

for His-119 and His-12 match the pH-activity profile of RNase A. Incorporating

fluorohistidine at these two positions gives an enzyme with lower pH optimum –

Expected with the chemical reactivity differences between His and fluoroHis side

chains.

4. Limited proteolysis by subtilisin cuts RNase a polypeptide into two fragments,

S-peptide (residues 1–20) and S-protein (residues 21–124). The two separate

fragments are inactive but their 1:1 mixture combines to give full activity. Both

His-119 and His-12 are at the active site and are located close to each other.

5. RNase A cleaves RNA chain after pyrimidine residues. It also hydrolyzes

monomeric cyclic-20,30-phosphates of UMP and CMP. The product is always a

30-phosphate. The alkaline hydrolysis of RNA also proceeds through a cyclic-
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20,30-phosphate intermediate, but here both the 20- and 30-phosphates are formed.

While cyclic-20,30-phosphate is the true intermediate (and is kinetically compe-

tent) in the RNase A catalysis, the enzyme controls the reaction specificity to open

up the cyclic-20,30-phosphate only as a 30-phosphate. One may also expect that

this portion of the substrate (the 50 fragment) may leave the active site later than

the 30 fragment of the RNA.

6. Uridine vanadate is a potent competitive inhibitor of RNase A (see Fig. 36.9). The

fact that its structure mimics the cyclic-20,30-phosphate intermediate in the

enzyme-catalyzed reaction makes it a powerful inhibitor.

A reasonable idea of the active site and the reaction mechanism of RNase A may

be arrived at from the above data. This is summarized and shown in Fig. 36.9.

36.9 Interdependence of Kinetic and Chemical Mechanisms:
A Summary

All enzyme mechanisms go through a transition state (or many transition states) –

ephemeral species without finite lifetime found at the top of a potential energy peak

on the reaction coordinate. Intermediates on the other hand persist and are located at

potential energy wells on the reaction coordinate; they can either be non-covalent or

covalent complexes of the enzyme. Genuine intermediates must satisfy the twin

criteria of kinetic and chemical competence. It may be possible to trap the reaction

intermediates in certain situations.

For many chemical reactions, both sequential and ping-pong kinetics are feasible

mechanistic solutions in enzyme catalysis. Such examples were described above

with acyltransferases and disaccharide phosphorylases. Among redox reactions,

those involving NAD(P) follow a sequential mechanism (e.g., alcohol dehydroge-

nase and lactate dehydrogenase), whereas ones with FAD follow ping-pong kinetics

(e.g., glucose oxidase and methylenetetrahydrofolate reductase). Enzyme covalent

intermediates are invariably associated with ping-pong reaction kinetics and not with

sequential mechanisms. The well-accepted Phillips mechanism for lysozyme reac-

tion had to be suitably modified once the covalent glycosyl-enzyme intermediate

was demonstrated.

Both random and ordered addition of substrates and/or release of products are

equally feasible kinetic solutions for a sequential mechanism. Alcohol

dehydrogenases with either sequential-ordered or sequential-random mechanism

have evolved and are reported in the literature. A change from one type of sequential

mechanism to other may occur – for example, as a consequence of pH change.

Creatine kinase exhibits an equilibrium ordered kinetics at pH 7.0 with Mg-ATP

adding before creatine; but the back reaction shows a random addition of Mg-ADP

and phosphocreatine. However, the kinetic mechanism is random in both

directions at pH 8.0. This change in mechanism is because enzyme loses affinity

for creatine at pH 7.0 – as the active site general base becomes protonated.

Consequently, Mg-ATP adds first and is at equilibrium. A pH-dependent change
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of mechanism is also reported for serine acetyltransferase (Fig. 36.5). The enzyme

follows a sequential mechanism with acetyl CoA adding first and then Serine.

However, it is equilibrium ordered at pH 6.5 and steady-state ordered (with nearly
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Fig. 36.9 Reaction mechanism of RNase A. His-12 imidazole group (base) abstracts the proton

from 20-OH, while His-119 imidazole group (acid) protonates the leaving group �OR2 (the 30

portion of the RNA substrate). The 20,30-cyclic phosphate is opened up by water where the roles of

His-12 and His-119 are reversed. The enzyme specificity controls this step so that only the

30-phosphate results. Structure of uridine vanadate (a potent inhibitor) is shown in the box

456 36 Integrating Kinetic and Chemical Mechanisms: A Synthesis



parallel initial velocity pattern; this was mistaken for a ping-pong mechanism since

KAcetyl CoA > KIAcetyl CoA) at pH 7.5. Again, the shift in mechanism is due to change

in reactant affinity at different pH values.

Site-directed mutagenesis enables enzymologists to selectively replace active site

residues and ask some really interesting mechanistic questions. However, it remains

a distinct possibility that mutant enzymes might follow a different reaction pathway.

This is what was noticed with triosephosphate isomerase and serine proteases.

Subtilisin is the most studied bacterial serine protease with active site catalytic

residues S221, H64 and D32. This catalytic triad synergistically accelerates amide

bond hydrolysis by contributing a factor of ~2 � 106, to the total catalytic rate

enhancement of 109–1010. Similar results were obtained for trypsin (with the active

site catalytic triad of S195, H57, and D102). The residual activity, in the absence of

catalytic triad, results from the transition state stabilization at the active site. For the

S221A mutant, the reaction cannot proceed by the usual serine acyl-enzyme inter-

mediate (ping-pong mechanism). Instead, direct attack of water on the scissile

peptide bond may occur to form a single tetrahedral intermediate that collapses to

the products. With the catalytic nucleophile missing (in the S221A mutant) the

mechanism changes to a sequential one. While a mechanistic change from an acyl-

enzyme to a direct one with tetrahedral intermediate may be possible, the converse is

not because the essential nucleophile would be missing.

An active site apparatus with an oxyanion hole and favoring a tetrahedral reaction

intermediate (after water attack) is a common mechanistic feature of proteases,

esterases, and carbonic anhydrases. It is therefore no wonder that a weak esterase

activity is displayed by chymotrypsin, pepsin, carboxypeptidase A, and carbonic

anhydrase. On similar grounds, some phosphotransferases exhibit phosphatase

activity. Such promiscuity exposes the underlying common mechanistic features

of enzyme action.
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Regulation of Enzyme Activity 37

Most organisms, however evolutionarily distant, contain a set of common

metabolites. But their intracellular concentrations are unique to each individual

species. This metabolic identity of an organism is the consequence of quantitative

differences in relevant enzyme properties and their associated regulation. Features of

metabolic regulation are unique to each organism – often within a closely related

group of organisms. It is becoming increasingly clear that the concept of unity in

biochemistry does not always extend to the metabolic pathway control and enzyme

regulation. Historically, metabolic regulation and control of enzyme activity have

developed as closely related phenomena. What then is the justification to place

regulation of enzyme activity here in “Frontiers in Enzymology”? Over the years,

molecular developments in biology have outshone the progress made in physiologi-

cal and system-level understanding of organisms. While the basic principles of

enzyme/metabolic regulation may have been uncovered, novel modes of regulation

continue to be discovered. Nature continues to surprise us with original ways of

regulating enzyme activity. The novelty may be in the conceptual mechanism or the

regulatory ligands involved. For instance, fructose-2,6-bisphosphate as a regulator of

glycolysis (at the phosphofructokinase step) was discovered much later (in the early

1980s) – many decades after the complete description of glycolytic enzymes (Hers

and Hue 1983). In this sense the topic of regulation of enzyme activity will always be

at the frontiers of enzymology.

The multitude of biochemical changes in metabolism are brought about by the

battery of different enzymes. Regulation (also termed homeostasis) is the ability to

maintain metabolic constancy in the face of external perturbations. Control on the

other hand is the ability to make changes to metabolism as and when necessary. Both

these phenomena manifest through manipulation of enzyme activities. Without its

regulation and control, the cell is essentially a bag of enzymes. However, the cell is

not just a bag of enzymes. A remarkable degree of order is maintained inside because

of the stringent and very efficient regulation of enzyme activities. Regulation of

enzyme activity is desirable and is accomplished because (a) the catalytic rates
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achieved, at times, may be too fast or too slow for the well-being of the cell and

(b) more than one enzyme may share a metabolite as its substrate, thereby

necessitating a logic for metabolic pathway flux distribution.

At any given time, the reaction rate taking metabolite A to metabolite B depends

on the in vivo activity of the corresponding enzyme. Effective intracellular enzyme

activity is a function of a number of intensive (KM, kcat and nH) and extensive ([Et],

[S], [P], [I] and [activator]) properties (Fig. 37.1). The resultant rate is a consolidated

response and an outcome of all these factors. Therefore, in principle, regulation of

enzyme activity is possible by changing one or more of these properties.

Enzyme regulation can be achieved either by increasing/decreasing the number of

enzyme molecules (through induction, repression, and turnover) or by modulating

the activity of preexisting enzyme molecules (inhibition or activation). The former

mechanisms respond relatively slowly to the changing external stimuli and provide

for long-term control, while the latter respond rapidly to changing conditions and are

short-term control mechanisms (Fig. 37.2). We will study representative examples

for all these modes of enzyme regulation in this chapter. Looking at each and every

variant of regulation would be arduous and would quickly grow into a textbook on

metabolism. Instead of dwelling on the vast mechanistic permutations, case studies

of well-established systems are highlighted. Furthermore, the emphasis will be on

the examples of historical importance.

Enzyme

Metabolite A            Metabolite B

   velocity μμ kcat (�)

KM (¯)

(¯)nH

[Et] (�)

[S]  (�)

[I]   (¯)

[Activator] (�)

Cell
Fig. 37.1 Various factors

that influence the overall

rate of an enzyme-catalyzed

reaction in cellular

metabolism. Changes in the

intensive or extensive

properties listed may increase

(") or decrease (#) effective
enzyme activity of that step
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37.1 Control of Enzyme Concentration

We recall from Chap. 15 that maximal velocity (Vmax) for an enzyme equals

kcat � [Et]. Of these, kcat is an intensive property and is an intrinsic constant for a

given enzyme. Enzyme concentration [Et] is an extensive property whose magnitude

can be adjusted either by increasing or decreasing the number of enzyme molecules

in the cell. This mode of regulation largely comes under genetic regulation but will

be briefly mentioned here for the sake of completeness.

Induction and Repression Enzymes involved in catabolic routes are “induced” in

the presence of compounds that are destined to be degraded through these routes.

The lac operon of E. coli and its induction by lactose is an excellent example. The

enzymes of the biosynthetic pathway are “repressed” by the end product of the

pathway. In many bacteria histidine is known to repress the expression of enzymes

from his operon. The genetic control of pathways is brought about by inducer or

repressor (“effector” in general) molecules which may be small molecular weight

metabolites. There is no uniformity with regard to the effector identity for a given

pathway in different organisms. This is where unity in biochemistry concept faces its

biggest challenge. In the biosynthetic pathways, repression by the end product and in

the catabolic routes induction by the initial substrate affect all the enzymes of a given

pathway. It is generally found that majority of the metabolic routes are nonlinear,

i.e., there is considerable branching (for biosynthetic routes) and convergence (for

catabolic routes). Compared to linear metabolic sequences, branching and conver-

gence produces an added dimension of complexity in regulation both at the bio-

chemical as well as the genetic level. The control of enzyme synthesis occurs by

sequential induction and by multivalent repression, which are, in effect, variations of

the same theme found in linear pathways.

Another prevalent genetic control mechanism, governing the number of enzyme

molecules, is catabolite repression. The enzymes of catabolic routes may be

repressed when glucose is abundant through carbon catabolite repression. This

repression could be mediated through cAMP or some other effector. The nitrogen

metabolite control is an adaptive mechanism which imparts hierarchy to nitrogen

Enzyme binds ligands

Allosteric transitions

Cellular metabolite transport

Catalytic turnover

Covalent modifications

Enzyme synthesis/degradation

10-15 10-12 10-9 10-6 10-3 100 103   Seconds

Fig. 37.2 Events relevant to regulation of enzyme activity. The timescales as indicated are

approximate ranges
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sources – the ones most economically used generally being consumed first. Nitrogen

metabolite repression is observed when ammonia is present as a nitrogen source.

Ammonia acts by either inhibiting the uptake of other complex nitrogen sources by a

phenomenon called “inducer exclusion” or serves as a direct or indirect (such as via

L-glutamine) repressor of the genes involved in the catabolism of complex nitrogen

sources. Both carbon catabolite repression and nitrogen metabolite repression are

broad modes of control acting globally across pathways.

Posttranscriptional Regulation of mRNA The half-lives of the mRNA transcripts

of key enzymes involved in metabolism are often determined by the cellular

demands. The mRNA stability is known to increase during induction of a few

structural genes in metabolic pathways. Stable, stored mRNAs of some microbial

enzymes are translated in response to environmental cues. The mammalian ornithine

decarboxylase antizyme is a protein regulator of the ornithine decarboxylase enzyme

activity (see Sect. 37.6 below). This antizyme mRNA is significantly stable (t1/

2 ¼ 12 h). The synthesis of antizyme protein from its preformed mRNA is triggered

by an increase in cellular polyamine levels – an example of translational control.

Regulation by Protein Degradation Cells continuously synthesize proteins from,

and degrade them to, their component amino acids. This permits regulation of

cellular metabolism by eliminating superfluous enzyme and other protein molecules.

Remarkably, most rapidly turned over enzymes occupy important metabolic control

points, whereas the relatively stable enzymes have nearly constant catalytic and

allosteric properties so that cells can efficiently respond to environmental changes

and metabolic needs. The half-lives of enzymes range from under an hour to more

than 100 h. Enzyme protein turnover thus represents a regulatory mechanism

belonging to longer timescales (Fig. 37.2). In general, the longer the life span of a

cell (such as in eukaryotes), the more important is the process of enzyme turnover as

a control mechanism.

The steady-state level of a given enzyme protein is a balanced outcome of its

synthesis rate (which generally follows zero-order kinetics; ks�[E]0 or simply ks)

and degradation rate (which normally obeys first-order kinetics; kd�[E]). Also, the

degradation rate constant is related to half-life (t1/2) by the following relation (see

Chap. 9 for details):

kd ¼
ln 2

t1=2
¼

0:693

t1=2

The rate of change of enzyme level inside a cell is given by the following equation:

d[E]/dt ¼ ks�kd � [E]. During the steady state, d[E]/dt ¼ 0 and therefore we have

the relation ks ¼ kd�[E].

The first step to establish the occurrence of enzyme turnover is to show that the

protein level of that enzyme is changing. It is also important to show that the change

in enzyme activity is not due to any other reason such as covalent modification or a
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conformational change. Enzyme turnover can be experimentally measured by using

isotopically labeled amino acid precursors. The synthesis rate constant (ks) may be

evaluated by giving a single pulse of radiolabeled amino acid and subsequently

following the incorporation (at short time intervals) of the label into the enzyme

protein. For degradation rate constant (kd) measurements, first the enzyme protein is

labeled. Then the decay of specific radioactivity of this labeled protein is measured at

fixed (often longer) time intervals. Among the liver proteins, ornithine decarboxyl-

ase is turned over much more rapidly (t1/2 ¼ 15 min) than phosphofructokinase

(t1/2 ¼ 168 h). Many of the enzymes with short half-lives catalyze rate limiting steps

in metabolic pathways.

Intracellular proteins destined for degradation are either tagged (ubiquitinated)

and taken to proteasomes or processed through autophagy. Proteasome is a large

multi-subunit protease found in all eukaryotes. This multicatalytic proteolytic com-

plex degrades ubiquitin-tagged proteins in an ATP-dependent manner. A

proteasome contains five different protease activities facing its lumen cavity –

these are characterized as chymotrypsin-like, trypsin-like, postglutamyl hydrolase,

branched chain amino acid protease, and small neutral amino acid protease.

Lactacystin is a selective proteasome inhibitor. Autophagy is the other route of

protein turnover and involves lysosomes. Proteins/enzymes that are generally not

ubiquitinated take this nonselective process of autophagy. Lysosomes contain more

than 50 different hydrolytic enzymes, all with an acidic pH optimum. These include

nine different cathepsins and nine more exoproteases. Most lysosomal proteases are

inhibited by leupeptin.

37.2 Control of Enzyme Activity: Inhibition

Another level of regulation of metabolic pathways is to control the activity of a

strategically placed enzyme by sensing metabolite concentrations. Compared to the

slow, limited means of control of enzyme concentration, there are a plethora of

mechanisms to control the enzyme activity. This adds further diversity in regulation

because one can modulate enzyme activity either positively (by activation) or

negatively (by inhibition). Some such important control mechanisms are outlined

below.

Inhibition of the activity of an enzyme by ligand binding is the quickest way of

controlling its function. Being a non-covalent interaction, the binding equilibrium is

concentration driven and reversible. In this timescale (see Fig. 37.2), the enzyme

concentration remains effectively constant. While examples of inhibitory ligands are

plentiful, we do find instances of enzyme activation by ligands. The concept of

enzyme activation is analogous to the more common enzyme inhibition. It is just that

the effects are opposite! We will elaborate on the various modes of enzyme inhibi-

tion (and leave examples of enzyme activation mostly to the imagination of the

reader).

Inhibitors could be structurally similar to either the substrate or the product of an

enzyme. By virtue of this similarity, they may bind at the active site and exhibit their
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inhibitory effect. Such inhibitors are called isosteric inhibitors (see Chap. 20).

Ligands that may or may not resemble the substrate (or the product) could bind to

a site other than the enzyme active site. These inhibitors are termed as allosteric

inhibitors. It is worth noting that a substrate itself could be an allosteric activator (see

“cooperative/allosteric modulation” below).

Enzymes inhibited at higher substrate concentrations are rare. This phenomenon

of substrate inhibition is known in enzyme kinetics (see Chap. 23). However,

regulatory significance of substrate inhibition is not well understood. Enzymes

acting on metabolites that are toxic when accumulated often display substrate

inhibition behavior. An aldehyde dehydrogenase interacting with its substrate alde-

hyde is an example. It appears that such enzymes have evolved to catalyze forward

reaction at low substrate concentrations. The evolutionary pressure on catalysis in

the reverse direction may have been insignificant on them. In any case, the toxic

metabolic intermediate is quickly cleared by such enzymes.

Inhibition by the reaction product is the most common yet frequently overlooked

mode of enzyme regulation. A product can access and bind at the enzyme active site.

Product can inhibit the reaction by titrating out the active enzyme available for

catalysis. It can also drive the reaction backward by simple mass action. The extent

to which a product inhibits an enzyme depends on its concentration and the binding

constant. The lower the KI, the greater is the inhibition at any given product

concentration. As a thumb rule, biosynthetic enzymes are much more sensitive to

product inhibition than the catabolic enzymes. This makes sense as catabolism

should occur only when the corresponding substrate is in excess. Product inhibition

ensures that a biosynthetic enzyme makes enough product (and is accumulated to

satisfy the cellular needs) as is necessary, while wasteful metabolism is prevented.

End Product Inhibition is a common mode of metabolic regulation in biosynthetic

pathways. Often a terminal metabolite, without any chemical analogy/reactivity to

an earlier step, is a powerful inhibitor of its own synthesis. Since they have very little

structural resemblance to the substrate(s) of the metabolic step they inhibit, these

inhibitors invariably bind to an allosteric site of that enzyme (Pardee and Reddy

2003). In this mode of feedback inhibition, the end product (or a near end product)

controls the metabolic flux by inhibiting the activity of one or more early enzymes of

the pathway. Two examples are acetolactate synthase (in branched chain amino acid

biosynthesis) feedback inhibited by L-valine and aspartate transcarbamoylase

(in pyrimidine biosynthesis) inhibited by CTP (Umbarger 1956; Monod et al.

1963). In branched pathways, the maximum inhibition is often attained only by

the combined action of multiple end products. This inhibition strategy circumvents

the problem of completely shutting down a branched pathway by one end product,

thereby ensuring availability of other end products to the organism. Figure 37.3

shows the schematic of a branched anabolic pathway to understand the various kinds

of feedback inhibitions that may operate in biosynthetic pathways.

In branched pathways, often the end product inhibits the first (or an early) enzyme

of the respective branch. The branch point intermediate preceding the branch in turn

466 37 Regulation of Enzyme Activity



regulates the activity of the first enzyme common to all the end products, thus

maintaining a balance of the products formed (Fig. 37.3; M6 inhibits E4, M9 inhibits

E6, and consequent higher levels of M4 inhibit E1). Examples of such sequential

feedback inhibitionmay be found in aromatic amino acid biosynthesis (e.g., pathway

control by Trp, Phe, and Tyr in B. subtilis) and the biosynthesis of aspartate family of

amino acids. Variations of this sequential feedback control are also possible. For

instance, inhibition of the first (or important) common enzyme of each branch by the

product at the branch point along with a simultaneous activation of the first enzyme

after the branch point by the same or other intermediate of the pathway (Fig. 37.3;

M4 inhibits E2 and activates E7). Yet another possible mode involves compensatory

activation and deinhibition – where the first common enzyme is inhibited by one

product and activated by the other product (Fig. 37.3; M6 inhibits E4 and activates

E6, and M9 inhibits E6 and activates E4), thus maintaining a balance in the products

formed. Examples of this kind may be found in biosynthesis of purine nucleotides

(AMP and GMP) and of dNTPs.

Examples of an enzyme inhibited by more than one ligand are known – the

so-called multiple inhibition. In the case of concerted or multivalent inhibition, the

products of a branched pathway do not singly inhibit the first common enzyme.

However, the presence of two or more products is essential for significant inhibition

(Fig. 37.3; either M6 or M9 alone do not inhibit E1, but when both are present, E1

activity is markedly reduced). Threonine and lysine act in concert (but not individu-

ally) to inhibit B. polymyxa aspartokinase. A synergistic inhibition is observed when

mixtures of M6 and M9 at low concentrations bring about more inhibition (of E1)

than the same total specific concentration of M6 or M9 alone. Interaction with AMP,

histidine, and glutamine as inhibitors of B. licheniformis glutamine synthetase is one

such case (where synergistic inhibition of the enzyme by Gln + His pair and

AMP + His pair is reported). The concerted inhibition is thus an extreme case of

synergism for inhibition between the inhibitors. By contrast, in cumulative feedback

inhibition, there is no cooperation or antagonism between several inhibitors of an
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Fig. 37.3 Schematic of a branched anabolic pathway showing different modes of enzyme

inhibition. Pathway metabolites are numbered M1 through M9 and enzymes are numbered E1

through E8. A simple feedback inhibition of E1 by end product M9 (gray arrow) is depicted.

Sequential inhibition involving inhibitions of E4 by M6 and E6 by M9 with the resultant accumula-

tion of M4 and subsequent inhibition of E1 by M4 (black arrows) is shown. Few other possible

variations are described in the text
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enzyme. Each end product is a partial inhibitor and brings about same percentage

inhibition irrespective of whether other inhibitors are present or not. The E. coli

glutamine synthetase provides an excellent case study of cumulative inhibition (also

see later section) (Stadtman 2001). Suppose His alone at a given concentration yields

50% inhibition (enzyme retains 50% of the original activity) and Trp alone at a given

concentration yields 30% inhibition (leaving 70% of the original activity). Then at

the same concentrations of “His+Trp,” the enzyme retains 35% of the original

activity (50% + [30% of 50%] or 30% + [50% of 70%] ¼ 65% inhibition). If the

nature of inhibition was additive, then the final inhibition reached would have been

80% (i.e., 50% + 30% ¼ 80%).

If an enzyme is inhibited by more than one ligand, then understanding their

mutual interaction is of interest. Multiple inhibition analysis (or the interaction of

more than one inhibitor with the enzyme) is meaningfully done through Dixon

analysis (Chap. 22). For example, when I and J competitively inhibit the enzyme,

the double reciprocal form of the rate equation is

1

v
¼

KM

Vmax

1þ
I½ �

KI

þ
J½ �

KJ

þ
I½ � J½ �

αKIKJ

� �

1

S½ �
þ

1

Vmax

Experimentally however, rates are measured at a fixed concentration of S, while [I] is

varied. A 1/v ! [I] plot of this data is nothing but the Dixon plot. Now, in a similar

setup, we can include different fixed concentrations of J and obtain a series of lines.

The pattern of these lines is characteristic of the nature of interaction between the

two inhibitors. The influence of one-bound inhibitor on the binding of the other is

estimated by the interaction constant, α. This constant is conceptually similar to the

interaction term α, we used in describing noncompetitive inhibition in Chap. 22. An

α value of infinity indicates mutually exclusive binding of I and J (meaning only EI

or EJ possible; EIJ does not form) and gives a parallel pattern in the Dixon analysis.

A finite α value shows that both inhibitors can simultaneously bind the enzyme;

values below unity are indicative of synergistic interaction between I and J.

37.3 Control of Enzyme Activity: Cooperativity and Allostery

In some enzymes the ligand binding and/or catalytic activity follows a

non-Michaelian saturation pattern. This feature allows the enzyme to function as a

ligand concentration-dependent switch. At higher concentrations ligand binding may

become progressively easier (positive cooperativity) or more difficult (negative

cooperativity). Enzyme conformational changes accompany ligand binding events

in this mode of regulation.

Subunit Cooperativity and Switch Behavior Most cooperative enzymes share a

few features in common. These include:
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1. Allosteric enzymes generally consist of multiple subunits (i.e., they are

oligomeric).

2. The regulatory ligands (effectors) usually do not share any structural resemblance

to the substrate(s) or product(s) of the enzyme reaction concerned.

3. Effectors may bind to an allosteric site distinct from the enzyme active site. It is

thus possible to selectively destroy (by physicochemical or mutational methods)

the allosteric site without affecting the catalytic site. Such a desensitized enzyme

does not respond to allosteric effectors. For instance, upon limited heat treatment,

E. coli aspartate transcarbamoylase loses its ability to bind CTP.

4. Allosteric enzymes do not show Michaelian substrate saturation kinetics. Their

v! [S] plots are sigmoidal rather than being hyperbolic (see Fig. 15.4, Chap. 15).

The sigmoid saturation curve indicates cooperative substrate binding – the

binding of the first molecule facilitates the binding of subsequent molecules.

The extent of cooperativity is measured by the value of h – the Hill coefficient

(also denoted as nH; see Chap. 15). An enzyme with h ¼ 1 shows no

cooperativity and is Michaelian. Negative cooperative enzymes have h < 1,

whereas those with positive cooperativity will have 1 < h < n. If h ¼ n for an

enzyme with n binding sites (each monomer with an active site) then such an

enzyme will be extremely cooperative. We note that h¼ 2.6 for hemoglobin. The

Hill coefficient for E. coli aspartate transcarbamoylase is 2.0; it decreases to 1.4 in

the presence of an allosteric activator (ATP) and increases to 2.3 in the presence

of an allosteric inhibitor (CTP).

There have been several attempts to capture the phenomenon of cooperativity into

a theoretical model. These include mathematical descriptors of allosteric behavior

(Hill equation and Adair equation, e.g., see box below) as well as physical models

that incorporate enzyme structural information (see the two models by Monod,

Wyman, and Changeux as well as by Koshland, Nemethy, and Filmer, briefly

described later).

Oligomeric State, Subunit Cooperativity, and Metabolic Switch Behavior

We define “Y” (fractional saturation) using the rearranged form of Hill equa-

tion (see Chap. 15) as

Y ¼
v

Vmax

¼
K0:5 S½ �

1þ K0:5 S½ �
, and on rearranging we get S½ � ¼

Y

K0:5 1� Yð Þ

For dimeric (n ¼ 2) enzymes, this will be.

Y ¼
v

Vmax

¼
K0:5 S½ �2

1þ K0:5 S½ �2
, and this gets rearranged to S½ �2 ¼

Y

K0:5 1� Yð Þ

(continued)
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In general, for an oligomeric enzyme consisting of “n”monomers, we arrive at

a general form.

S½ �n ¼
Y

K0:5 1� Yð Þ

Calculated [S]0.9/[S]0.1 ratios for oligomeric enzymes with various “n” values

are shown below.

Oligomeric State (n monomers) [s]1 (n¼1) [s]2 (n¼2) [s]3 (n¼3) [s]4 (n¼4)

[s]0.9/[s]0.1 Ratio 81 9 4.33 3

This analysis is based purely on the mathematical assumption of n subunits

interacting with each other in an oligomer. The larger the “n” value, the greater

is the sensitivity to changing [S]; this is how typical concentration-dependent

switches are expected to behave. However, as discussed above, only for

extremely cooperative enzymes n is equal to h.

Enzymes exhibiting cooperative/allosteric regulation are often multi-

subunit proteins. But it is not necessary that oligomeric state is always

associated with cooperativity. Besides the subunit cooperativity described

above, there may be other reasons why oligomeric proteins are selected by

evolution. Multiple subunit structure of an oligomeric enzyme may confer the

following possible advantages:

(a) Multimeric nature may bestow structural stability to an otherwise

unstable structural fold of a monomer. Lactate dehydrogenase is one

such example.

(b) Different subunit types may be dedicated to bind different ligands (one to

bind substrates – the active site – while others to bind regulatory ligands,

the allosteric site). Examples include aspartate transcarbamoylase and

lactose synthase.

The earliest physical model to account for the behavior of allosteric proteins and

enzymes was proposed by Monod, Wyman, and Changeux (Monod et al. 1965).

According to this model, in an oligomeric allosteric enzyme, the subunits occupy

equivalent positions within the oligomer. Each monomer can exist in one of the two

conformational states: either the R (for relaxed – an active, high-affinity state with

tighter binding to the ligand) or the T (for tense – an inactive, low-affinity state with

weak/no binding to the ligand) state. Further, the monomers are conformationally

coupled to each other – when one subunit takes the R conformation, all others also

change to R state such that the symmetry of the oligomer is maintained (Fig. 37.4).

Hence this model is known as the symmetry model. Allosteric ligands affect the

R ⇄ T equilibrium, and the subunits change their conformation in a concerted
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fashion. Therefore, it is also called the concerted model. Cooperative binding occurs

when the ligand preferentially binds to the R state, thereby displacing the R ⇄ T

equilibrium toward the R state. Sigmoidal oxygen binding to hemoglobin is a good

example of this model. Nearly 100% of free hemoglobin occurs in T state, while O2

binds 70 times more tightly to the R state.

Koshland, Nemethy, and Filmer proposed another physical model to describe

allosteric phenomena – the so-called sequential model (Koshland et al. 1966). This

model is based on the concept of ligand binding by “induced fit” (Chap. 8). In the

absence of the ligand, the oligomer exists in one conformational state (and not as

equilibrium of R and T states). The subunits change their conformation sequentially
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L L

L L L

L L

L L

L L

RT

L LL

L L L L LL L L LL
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L
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L
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L

L

L

L

Fig. 37.4 Models of subunit cooperativity in a tetrameric enzyme. R represents a high affinity

form (Ο) of the tetramer which is in equilibrium with T, the low affinity form (☐) of the enzyme.

The two vertical columns (in gray) show the species considered in the Monod, Wyman, and

Changeux model. The species occurring along the diagonal (shown by the arrow) represent the

forms considered by Koshland, Nemethy, and Filmer model. These two models are special cases of

the more general Adair model (that includes all the enzyme species shown)
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as ligand molecules bind (Fig. 37.4). Conformational change in one subunit alters

the interface of that subunit with its neighbors. This may result in more favorable

(positive cooperativity) or less favorable (negative cooperativity) binding of the

subsequent ligands. Unlike the symmetry model, this model can also account for

and explain negative cooperativity.

More general models incorporating all possible conformational states for an

allosteric enzyme have been proposed (Fig. 37.4), but with these the resulting kinetic

treatment becomes extremely complex. The symmetry model (of Monod, Wyman,

and Changeux) and the sequential model (of Koshland, Nemethy, and Filmer) have

gained popularity over the years. The two models differ in the way ligand binding

and conformational states are linked. Accordingly, they make specific predictions as

to the allosteric behavior of an enzyme. The following experimental features are

useful to distinguish between the two models:

(a) Observation of negative cooperativity in ligand binding points to a sequential

model. For instance, rabbit muscle glyceraldehyde-3-phosphate dehydrogenase

binds NAD+ in a negative cooperative manner.

(b) Conformational changes accompany ligand binding according to both the

models. However, they predict different patterns for these conformational

changes. The sequential model predicts a one to one correspondence between

the number of sites occupied by the ligand ( �Y, the fraction of sites saturated)

and the extent of conformational change ( �R, the fraction of enzyme in the R

state) observed. A plot of �R against �Y should therefore be linear (Fig. 37.5).

However, this �R! �Y plot will be nonlinear in the case of symmetry model – at

every stage of ligand binding, there will be more than stoichiometric number of

subunits in the R state. By this experimental criterion (the �R ! �Y plot), the

interaction of AMP with glycogen phosphorylase a conforms to the symmetry

R

_

_

_
| ||

Concerted Model

Sequential Model
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0.0

0.5
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Y

Fig. 37.5 Plot of �Ragainst �Y

is different for symmetry

and sequential models of

cooperativity. The linearity

of this plot supports the

sequential model of Koshland,

Nemethy, and Filmer, while

the nonlinear plot favors

Monod, Wyman, and

Changeux model ( �R, the

fraction of enzyme in the R

state; �Y, the fraction of sites

saturated)
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model, while that of NAD+ with glyceraldehyde-3-phosphate dehydrogenase

follows the sequential model.

Structural information on allosteric enzymes and their various conformational

states is necessary to understand the phenomenon of cooperativity. Ligand-induced

conformational changes are the most valuable indicators. These changes could be

assessed indirectly by spectroscopic probes or directly by X-ray crystallographic

data. Best studied examples of distinct R and T states for allosteric proteins are

hemoglobin (the honorary enzyme!), E. coli aspartate transcarbamoylase, and

phosphofructokinase.

The two original physical models account for cooperativity through ligand

binding features. Direct ligand-binding data (obtained by equilibrium dialysis, gel

filtration, and/or ultracentrifugation) allows Scatchard analysis of the cooperative

behavior. If the binding of a ligand to one subunit affects the affinity of another

subunit for the same ligand, then such a cooperative interaction is termed

homotropic. The sigmoid saturation of E. coli aspartate transcarbamoylase by

L-aspartate is an example. On the other hand, heterotropic allosteric effects are

observed between substrates and effectors (other than that substrate). Allosteric

inhibition by CTP observed on the L-aspartate saturation of aspartate

transcarbamoylase illustrates this point. The enzyme kinetic data (as opposed to

direct ligand binding data) often provides evidence of cooperativity. Since the

enzyme activity is a manifestation of binding as well as catalysis, one or both of

these may account for the cooperative enzyme behavior. If an effector modifies the

affinity of the enzyme for its substrate (i.e., it affects the K0.5), then it is a K system. In

this sense, CTP allosterically inhibits E. coli aspartate transcarbamoylase by shifting

the aspartate saturation curve to the right (the K0.5 is increased without affecting the

Vmax). In a V system, the effector influences the Vmax and not the K0.5.

The structural biology today has offered strong evidence for multiple

conformations in preexisting equilibrium for many enzyme proteins. This more

dynamic view of enzyme structure needs to be addressed in describing allosteric

phenomena. Accordingly, allosteric control may manifest by a population shift in the

statistical ensembles of many states. This new outlook is discussed in a later section

(Chap. 39 Future of enzymology – An appraisal).

Other Origins of Sigmoid Enzyme Kinetics Enzymes displaying cooperative/

allosteric regulation are often multi-subunit proteins. However, besides true subunit

cooperativity described above, there may be other reasons why an enzyme displays

sigmoid enzyme kinetics. Nature has evolved a varied set of mechanisms for

generating sigmoidal effects for enzyme regulation.

(a) The enzyme activity may be a function of its state of aggregation (Lynch et al.

2017; Traut 1994). Enzyme monomers may be less active than the oligomeric

aggregates. Further, this association–dissociation equilibrium may be

influenced by substrate and/or regulatory ligands. Sigmoid kinetic behavior

could arise from such association–dissociation. For instance, chicken liver
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acetyl CoA carboxylase monomers polymerize extensively to more active

filamentous, polymeric aggregates; and this is helped by citrate (an activator)

while palmitoyl CoA facilitates depolymerization (an inhibitor). Systems

undergoing association–dissociation are amenable to experimental verification

because protein concentration effects can be easily observed.

(b) Multiple kinetic paths exist for an enzyme exhibiting random mechanism. The

reaction path followed at lower substrate concentrations may differ from the

one favored at higher [S]. If the net rates of the two paths are different (and

the one at higher [S] is faster), a sigmoid kinetic curve ensues because of the

substrate concentration-dependent reaction path switching!

(c) Although rare, there are examples of single subunit enzymes showing sigmoid

kinetics. This kinetic behavior arises due to slow conformational change as

a part of the enzyme catalytic cycle. Such systems with conformational

memory are also called as hysteretic enzymes or mnemonic enzymes. For

instance, glucokinase is monomeric but shows sigmoid kinetics with respect

to its substrate glucose. The monomer undergoes a slow, glucose concentration-

dependent conformational transition. An h value of 1.7 for glucose is

reported.

(d) Complex non-Michaelian kinetics ensues when a mixture of isoenzyme forms

with differing kinetic constants is analyzed. One isoform may saturate earlier

than the other, and the resultant v ! [S] curve (overlap of the two!) could be

sigmoid. We will look at isoenzyme regulation in some detail in a subsequent

section.

How to Study Regulatory Enzymes First and the foremost, one should ensure that

the so-called regulatory kinetic behavior is not due to some artifacts of the assay.

Many such caveats are discussed in an earlier chapter (Chap. 12 Principles of

enzyme assays). A misleading sigmoid kinetics may be recorded when oxidation

of enzyme or substrate, depletion of substrate due to complex formation, etc. occur

during the enzyme assay. Before ascribing sophisticated regulatory mechanisms to

unusual enzyme kinetic behavior, such artifacts must be discounted.

In order to assess cooperative behavior, it is necessary to examine enzyme

activity over a wide range of substrate concentration. The kinetic data may then be

analyzed through suitable plots (like the Hill plot) to measure the degree of

cooperativity. An idea about the enzyme architecture is required to ascertain the

possibility of subunit interactions leading to cooperativity. Typical protein quater-

nary structure determination techniques such as study of molecular weight in the

absence and presence of denaturing agents, subunit composition, and cross-linking

studies are useful. The kinetic cooperativity may correspond to ligand binding in an

oligomeric protein. This can be tested through direct binding methods such as

equilibrium dialysis, ultracentrifugation, etc. Once again, the ligand-binding

cooperativity may be evaluated through Scatchard plot or Hill plot of the binding
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data (see Chap. 17). Conformational changes often accompany ligand binding.

These can be scored directly by X-ray crystallography and NMR spectra. Indirect

approaches with chromophores and fluorophores as reporters or accessibility of

amino acid residues to chemical modification reagents are also useful. Finally,

presence of allosteric sites (distinct from the active site) to bind regulatory ligands

may be ascertained by desensitizing the enzyme through physicochemical and

mutational tricks.

37.4 Isozymes and Regulation

Isozymes are multiple molecular forms of an enzyme catalyzing the same chemical

reaction. They differ from each other in their primary sequence but often are of

comparable size and are unique translational products of distinct genes. The covalent

modification states (like the phosphorylated forms, etc.) of the same enzyme are not

isoenzymes by this definition. Isozymes play critical roles in cellular and metabolic

regulation. They may be found in the same cell but in different (a) metabolic states

(such as NADP-glutamate dehydrogenase versus NAD-glutamate dehydrogenase),

(b) organelles to integrate cellular metabolism (malate shuttle; mitochondrial and

cytosolic malate dehydrogenase isoforms in heart muscle), (c) tissues to facilitate

inter-organ metabolism (lactate dehydrogenase in the skeletal muscle versus the

liver), and (d) stages of development (e.g., laccases and trehalases during sporula-

tion). Isoenzymes may be catalogued according to their distinguishing features and

perceived metabolic significance (Table 37.1).

For the same chemical reaction, enzymes can be evolved that are more effective

catalysts for one direction than the other. This is possible despite the fact that

Haldane relationship (see Chap. 15) places certain constraints on the kinetic

parameters of the enzyme. Recall that

Table 37.1 Isoezymes grouped according to their metabolically significant features

Differing feature Examplesa

Michaelis constant Hexokinase (m), aldolase (m)

Substrate and cofactor specificity Glutamate dehydrogenase (f), isocitrate dehydrogenase

(p)

Allosteric properties Hexokinase (m), aspartate kinase (b)

Subcellular localization Carbamyl phosphate synthetase (f), malate dehydrogenase

(m)

Tissue/organ localization Arginase (m), lactate dehydrogenase (m)

Catabolic or biosynthetic

(inducibility)

Alcohol dehydrogenase (f), threonine deaminase (b)

aIsoenzymes observed in bacteria (b), fungi (f), mammals (m) and plants (p)
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Vmaxf � KMP

Vmaxr � KMS

¼
P½ �eq
S½ �eq

¼ Keq

and Keq is an immutable thermodynamic parameter that the catalyst cannot tinker

with. It is however perfectly possible to have more than one numerical solution to

satisfy the above equation. For example, two isozymes may have the same Vmaxf

values but different KMSs. This is compensated by appropriate Vmaxr and KMP values

in the two cases thereby resulting in an identical Keq value. The isozyme with a lower

Vmaxf/KMS could either have a suitably lowered Vmaxr, an elevated KMP or both. The

forward reaction rate (the first order rate with respect to [S]) is given by

v f ¼
Vmaxf

KMS

S½ � ¼
kcatf Et½ �

KMS

S½ �

On comparing the vf for the two isozymes at a given [S], the enzyme form with a

lower KMS performs better in this direction. Two general observations can now be

made:

(a) As many enzymes never need to catalyze a reaction in the reverse direction

in vivo, there is no evolutionary pressure to achieve catalytic perfection in that

direction. If the active site is strictly complementary to the transition state, then

the enzyme will be an optimized catalyst for both directions. Efficiency in one

direction could however be preferentially improved by evolving an active site

that binds either S or P better than it binds the transition state. Indeed, methio-

nine adenosyltransferase is one such one-way enzyme (with its limiting forward

rate about 105 times greater than the reverse one).

(b) Since Vmaxf ¼ kcatf � [Et], any unfavorable kcatf changes during catalyst design/

evolution (arising out of thermodynamic constraints – such as Haldane rela-

tionship) can be compensated by the system. Despite having a lower kcatf, one

can maintain the desired Vmaxf by increasing [Et]. In reality, this implies that the

cellular concentrations (abundance!) of various isozymes need not necessarily

be maintained at the same level.

Isozyme Dedicated to a Pathway Nature employs isozymes as a means to com-

partmentalize and regulate metabolism. These may be wired into metabolism to

perform specific roles. Isozymes with dedicated function may be differently

regulated at the genetic level. Bacteria elaborate two distinct isoforms of threonine

deaminase: one for biosynthesis (with higher affinity for Thr; low KM) and the other

for catabolism (with lower affinity for Thr; high KM). Similarly, the two carbamyl

phosphate synthetases serve to feed the biosyntheses of arginine and pyrimidine,

respectively. Multiple ω-amino acid transaminases are expressed in response to the

availability of respective ω-amino acid inducers in the medium. They may be

specific (such as GABA transaminase) or generic in their substrate specificity.

There are two glutamate dehydrogenases in fungi to satisfy the cellular needs.
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They catalyze the same chemical reaction but in opposite directions! The

NAD-glutamate dehydrogenase (catabolic enzyme) is induced upon nitrogen starva-

tion and/or when glutamate is the sole nitrogen source available to the cell. The

NADP-dependent enzyme is biosynthetic and is responsible for the synthesis of

cellular glutamate. Interestingly, yeast displays yet another isoform (of NADP-

glutamate dehydrogenase) during diauxic growth on ethanol – dedicated to make

glutamate when the carbon source is switched to ethanol (and it is not glucose).

Isozyme to Suit a Metabolic Demand Isozymes may have evolved distinct kinetic

virtues to suit the metabolic demands of an organism. The two mammalian lactate

dehydrogenase isoforms are well suited for the requirement of converting lactate to

pyruvate (H4 form in the heart) or pyruvate to lactate (M4 form in the skeletal

muscle). In addition, pyruvate inhibits the muscle form of lactate dehydrogenase.

On the whole, pyruvate is completely oxidized by the heart (glycolysis + Krebs

cycle), while in the skeletal muscles, it is reduced to lactate and sent into the blood

stream. The liver displays both isoforms and is able to reconvert lactate to pyruvate

so that gluconeogenesis can occur. While the Cori cycle depends on their function-

ality, the proposed metabolic role of lactate dehydrogenase isozymes is far from

conclusive.

Kinetic differences between isozymes may favor forward reaction in one tissue

and the back reaction in another. Despite the immutability of the equilibrium

constant, one can envision various absolute values for Vmaxf and Vmaxr as well as

different Vmaxf/Vmaxr ratios. This is possible within the constraints of Haldane

relationship (discussed above). Aldolase isozymes are good examples where such

kinetic comparisons have been made. The liver isozyme (aldolase B) is clearly more

effective in fructose-1,6-bisphosphate synthesis (and hence gluconeogenesis!).

Table 37.2 summarizes the relevant kinetic data for the two aldolase isozymes.

Glucokinase occurs only in the liver, while hexokinases are found both in the

muscle and the liver. Further, hexokinase, but not glucokinase, is inhibited by the

product glucose 6-phosphate. These features, in combination with their respective

Michaelis constants, are in accordance with their role in glucose homeostasis in the

Table 37.2 Kinetic features of rabbit aldolase isozymes

Kinetic property

Isozyme form

Aldolase A

(muscle)

Aldolase B

(liver)

Vmaxf (Fructose 1,6-bisphosphate cleavage) 5300 min�1 250 min�1

Vmaxr (Fructose 1,6-bisphosphate synthesis) 10,000 min�1 2600 min�1

KM (Fructose 1,6-bisphosphate) 60 μM 1 μM

KM (Dihydroxyacetone phosphate) 2000 μM 400 μM

KM (Glyceraldehyde 3-phosphate) 1000 μM 300 μM

(Fructose 1,6-bisphosphate)/(Fructose 1-phosphate)

activity ratioa
50 1

aThe ratio favors the liver isozyme (aldolase B) for fructose metabolism via fructose 1-phosphate
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body. The glucose concentration response of the two isoenzymes is shown in

Fig. 37.6. It is obvious that liver (with its glucokinase) is able to respond and process

high glucose presented to it in the blood.

Yet another example of isozymes tailored for catalysis in opposing directions is

alcohol dehydrogenase (ADH) in yeast. Yeast growing in the absence of oxygen

displays the constitutive ADH-I that is designed for aldehyde reduction. The ADH-II

is induced upon aerobic growth and is well suited to oxidize alcohol to aldehyde for

its further entry into Krebs cycle.

Isoenzymatic Regulation and Additive Inhibition A single enzyme reaction

leading to several end products is a potential problem for regulation. Feedback

inhibition by one of these products would not only affect its own formation but

also interferes with that of the other products. Therefore, in some branched biosyn-

thetic pathways, a number of discrete isoenzymes exist for the first committed step.

Each one of them responds specifically and differently to inhibition by the various

end products. The aspartokinases from E. coli were first examples described by Earl

Stadtman’s group at NIH. These isoforms are involved in the biosynthesis of

L-aspartate family of amino acids (Lys, Thr, Met, and Ile). The multiplicity of

aspartokinases is feedback inhibited by different end products of the branched

pathway. One isozyme is Thr-sensitive, while the other is Lys-sensitive. Because

of this aspartokinase from E. coli extracts exhibits additive inhibition by Thr and

Lys. Further, the Lys-sensitive isozyme is also under Lys repression. The

Thr-sensitive isozyme is subjected to multivalent inhibition by Thr and Ile. A second

interesting example of enzyme multiplicity is 3-deoxy-D-arabino-heptulosonate-7-

phosphate (DAHP) synthase from E. coli. Formation of DAHP from erythrose-4-

phosphate and PEP is the first step in the aromatic amino acid biosynthesis. Of the

three isozymes of E. coli DAHP synthase, one is inhibited by Phe, while the second

by Tyr. The third minor isoform is inhibited by Trp. Although there are many

sequence differences between the DAHP synthase (Phe) and the DAHP synthase

(Tyr) of yeast, a single residue determines the sensitivity to feedback inhibition; the
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Fig. 37.6 Glucose

saturation of hexokinase

and glucokinase of

mammalian liver. As the two

isoenzymes show

significantly different KM for

glucose (summary table

above), a semi-log plot of log

[Glucose] with fractional

velocity (v/Vmax) on Y-axis is

shown (see Chap. 17)
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isozyme with Gly-226 is Tyr-sensitive, whereas that with Ser-226 responds to Phe

inhibition.

37.5 Covalent Modifications and Control

Many enzymes (and hence pathways) are controlled by mechanisms that involve

posttranslational covalent modification of proteins (Walsh et al. 2005). Here the

actual enzyme protein concentration (i.e., [Et]) remains unaffected, but the activity of

existing enzyme molecules is altered. We are interested in covalent modifications

that lead to altered enzyme activity/specificity. The modification may result in a less

active or more active form of the unmodified enzyme. Examples of covalent

modification types amenable to regulation of enzyme activity are listed in

Table 37.3. As we shall see shortly, such covalent modification may be reversible

or irreversible.

Zymogen Activation by Limited Proteolysis Is Irreversible Proteolytic cleavage

of polypeptides (and enzymes) is an essentially irreversible event. More often, we

think of this process in terms of protein degradation. However, in some cases,

Table 37.3 Well-characterized covalent modifications in enzymes

Type of

modification Target in protein Examples

Irreversible (once

only)

Peptide bond

Limited (specific)

proteolysis

-Asp-Lys – Ile-Val-,

-Ala-Arg – Ile-Val-,

-Ser-Arg – Ile-Val-

Pancreatic zymogens (trypsinogen,

chymotrypsinogen, proelastase,

procarboxypeptidases A and B)

Arg – Ile, Arg – Gly Blood clotting factors (factors XIIa, XIa,

IXa, VIIa, Xa and prothrombin)

Single site? Complement system (C1r, C1s, C2)

Reversible (back

and forth)

Amino acid

Phosphorylation–

dephosphorylation

Ser, Thr, Tyr, Lys Glycogen synthase, glycogen

phosphorylase, phenylalanine hydroxylase,

triglyceride lipase, acetyl CoA carboxylase,

cdc kinase, NAD-glutamate dehydrogenase

Nucleotidylation–

denucleotidylation

Tyr, Ser Glutamine synthetase and PII protein

(Gram-negative bacteria)

Acetylation–

deacetylation

Cys? Citrate lyase (anaerobic bacteria)

Thiol-disulfide

interchange

Cys Plants (light activation)

ADP-ribosylation Arg, Glu, Lys EF-2 (diphtheria toxin), G protein (cholera

toxin), glutamine synthetase (mammalian)

Methylation Asp, Glu, Lys, His, Gln Bacterial chemotaxis, histones
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limited and selective peptide bond cleavage can lead to activation of an inactive

precursor – the so-called zymogen activation. The well-known example of zymogen

activation in the small intestine is a regulatory trick (safety mechanism) to guard

against premature activation of pancreatic proteases. Enteropeptidase (earlier known

as enterokinase) of the small intestine initiates the zymogen activation cascade

(Fig. 37.7) by converting trypsinogen to trypsin. This is achieved by the cleavage

of a single peptide bond of the zymogen. Once small amount of trypsin is generated,

the further conversion of trypsinogen to trypsin becomes autocatalytic (see inset,

Fig. 37.7). A significant feature of zymogen activation is amplification of the initial

signal. The irreversible cascades of zymogen activation also occur in blood clotting

and activation of the complement system. In these two examples, each factor upon

activation proteolytically cleaves the next zymogen in the sequence (for details see

standard text books of biochemistry). These cascade systems are amenable to control

and exhibit great signal amplification by using a catalyst to create more catalysts.

Enzyme Regulation by Reversible Covalent Modification Many key enzymes of

metabolism interconvert between two forms that differ in catalytic properties. While

more than 100 different covalent modifications of amino acid residues are known, in

terms of enzyme regulation, phosphorylation, nucleotidylation, and
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Fig. 37.7 Sequence of protease activation events associated with pancreatic zymogens.

Activated enzyme forms are in black and zymogens are in gray. Black arrows indicate activation

events catalyzed by the relevant enzyme (gray arrows). Autocatalytic activation of trypsinogen by

trypsin is shown in the inset
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ADP-ribosylation are important and frequent. Regulation by thiol-disulfide inter-

change, well demonstrated in plants, may also be significant in other organisms. The

best documented example of adenylylation control is that of E. coli glutamine

synthetase (see below). An extremely versatile mechanism of reversible covalent

modification is via protein phosphorylation and dephosphorylation (Krebs and

Beavo 1979). This is a predominant mode of control in eukaryotes. Reversible

phosphorylation–dephosphorylation event occurs at the –OH of a Ser, Thr, or Tyr

on the enzyme protein. The enzymes accomplishing phosphorylation and dephos-

phorylation are known as protein kinases and protein phosphatases, respectively.

The modification and its reversal are catalyzed by separate (converter) enzymes – a

catalyst acts upon another – to create a cascade system. A well-studied example of

an interconvertible enzyme is glycogen phosphorylase (Fig. 37.8). Glycogen phos-

phorylase along with its converter enzymes (the kinase and the phosphatase) defines

a monocyclic cascade. In such a system allosteric effectors can bind to either or both

converter enzymes or directly to the interconvertible enzyme. One or more effectors

cAMP

Ca2+

GlycogenN + Phosphate GlycogenN-1 + Glucose-1-phosphate

Hormone (Epinephrine, glucagon etc)

Adenylate cyclase

cAMP-Protein kinase

Glycogen phosphorylase kinase

Phosphorylase b Phosphorylase a

Neuronal (muscle)

PI Kinase (liver)

Fig. 37.8 Protein phosphorylation cascade of glycogen breakdown. Glycogenolysis in the liver

and muscle is triggered by hormone action (also by neuronal stimulation in the muscle). Multiple

protein phosphorylation steps allow exquisite control of glycogen phosphorylation (gray box). The

phosphorylation cascade is further complicated by that a) the phosphorylation state itself may also

be determined by associated protein phosphatases and b) at every level, both phosphorylation and

dephosphorylation may be differently (reciprocally) affected by allosteric modulators like AMP and

glucose-1-phosphate. This regulation also receives inputs from multiple second messengers like

cAMP, Ca2+, inositol-1,4,5-trisphosphate (IP3), and diacylglycerol (DAG). The tissue-specific

differences are not explicitly shown in this figure, but the reader is directed to excellent texts on

this subject. Finally, a similar mechanism reciprocally controls glycogen synthase activity –

phosphorylations leading to net decrease in its activity
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can thus lead to an adjustment in the steady-state level of phosphorylation and the

activity of glycogen phosphorylase. Monocyclic cascades can thus sense changes in

the concentrations of many different metabolites and act as metabolic integration

systems. When a converter enzyme (glycogen phosphorylase kinase) itself is subject

to phosphorylation/dephosphorylation (a kinase kinase!), then a bicyclic cascade is

defined. Glycogenolysis in the liver provided the first example of this kind

(Fig. 37.8). Nucleotidylation control of E. coli glutamine synthetase (see below)

provides yet another case of a bicyclic cascade (although a closed one!) (Stadtman

and Chock 2014). Reader may refer to literature on many other examples of

excellent metabolic control by enzyme covalent modifications.

The phosphorylation of enzyme targets is a well-recognized mode of regulating

enzyme activity (and hence metabolism) in eukaryotes. Typically protein kinases

recognize -Arg-Arg-X-Ser- or -Arg-Lys-X-Ser- sequences of the target enzyme and

phosphorylate at the Ser-OH. Experimental analysis and interpretation of phosphor-

ylation/dephosphorylation events is tricky because of the following: (a) A single

protein kinase may be able to phosphorylate many different targets in vitro.

Elucidating their in vivo relevance can be daunting. (b) Many target enzymes are

subject to multiple phosphorylations at different sites. Not all of these

phosphorylations may be directly involved in the control of activity. (c) The issues

discussed for protein kinases (in the above two points) are equally relevant to the

functioning of phosphoprotein phosphatases. Nevertheless, some early discoveries

like the phosphorylation/dephosphorylation cascade control of glycogen metabolism

(Fig. 37.8) have been resolved to significant details.

Metabolic Significance of Covalent Modifications The reversible covalent modi-

fication and cyclic cascade systems are of value in the regulation and integration of

cellular metabolism. This mode of control has certain obvious advantages.

• The system develops a capacity for signal amplification. A small amount of signal

(such as a hormone acting via cAMP; Fig. 37.9) can act on a much larger amount

of target enzyme (via the converter enzyme(s)). For example, in the muscle tissue,

the molar concentrations of cAMP protein kinase (0.2 μM), phosphorylase kinase

(2.5 μM), and phosphorylase (80 μM) are widely different, whereas the

O- P O

O

O

N

OH

O
N

N
N

NH
2

Fig. 37.9 Structure of

cyclic AMP – the second

messenger
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intracellular cAMP levels do not exceed 2–3 μM. At these concentrations, cAMP

obviously cannot activate phosphorylase directly! (Ferrell Jr 1996)

• They can act as catalytic amplifiers as a small amount of converter enzyme can

act on a much larger amount of interconvertible enzyme target. For instance, the

initial signal of enteropeptidase is quickly amplified by converting trypsinogen to

trypsin.

• With multi-cyclic cascades, besides the capacity for signal and rate amplification,

the flexibility of response of the system increases exponentially. Individual

enzyme proteins, on an average, are not really big molecules. Their surface area

is not unlimited and may accommodate a few additional sites for regulatory

ligands besides the active site. Cyclic modification systems involve more

enzymes and therefore can harbor more sites for effector binding. For example,

E. coli glutamine synthetase responds directly to about 15 ligands but indirectly

(through the other players of the bicyclic cascade) to another 20 more regulators.

Such systems have the capacity to respond to a range of signals thereby achieving

integration of metabolism (Chock et al. 1980).

Role of Signal Molecules and Energy Charge Protein phosphorylation is the most

common (and prevalent) covalent modification observed in eukaryotic enzyme

regulation. Protein kinases (that phosphorylate target enzymes) themselves respond

to control signals. The major signal molecules include cyclic nucleotides (cAMP and

cGMP), Ca2+, Ca2+/calmodulin, and diacylglycerol. Each one of these activates a

unique class of protein kinases. The cAMP-dependent protein kinase is an important

member of the hormonal activation pathway of glycogen phosphorylase (Fig. 37.8).

Phosphorylation of phosphofructokinase-2 by cAMP-dependent protein kinase leads

to its inhibition; this leads to decrease in fructose-2,6-bisphosphate levels and

lowered phosphofructokinase and of glycolysis.

Similarly, diacylglycerol activates protein kinase C, which in turn catalyzes the

phosphorylation of a range of proteins involved in cellular processes. The function

of molecules like cAMP (Fig. 37.9) appears to be solely to act as signal in controlling

enzyme activities. Sutherland called cAMP the second messenger for hormone

action (Blumenthal 2012). Many hormones act on adenylate cyclase through

G-proteins. Activation of adenylate cyclase leads to the synthesis and hence a rise

in the intracellular levels of cAMP. Regulation by various second messengers and

hormonal/neural control of cellular activities is beyond the scope of this book. The

reader may refer to excellent and detailed account of this area in advanced texts on

biochemistry.

It is well accepted that key glycolytic enzymes are responsive to adenylate

compounds namely ATP, ADP and AMP. Atkinson introduced the term energy

charge to denote the relative concentrations of these three adenine nucleotides:
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Energy Charge ¼
ATP½ � þ 1=2 ADP½ �

ATP½ � þ ADP½ � þ AMP½ �

According to this definition, the energy charge of a cell can take values from 0 (when

all the adenine nucleotide pool is present as AMP) to 1 (when all the adenine

nucleotide pool is present as ATP). Typically, the energy charge of cells is

maintained at or above 0.95. At least in the short term, the cellular concentration

of adenine nucleotide pool (the sum [ATP] + [ADP] + [AMP]) remains constant,

while their relative concentrations are [ATP] >> [ADP],[AMP] (for instance, a 5 mM

total of adenine nucleotides may be present in the ratio ATP:ADP:AMP as

4.48:0.50:0.02). It appears that relative concentration change in the adenine

nucleotides is a key determinant in sensing the state of metabolism, with AMP as

the regulatory signal. This is because [AMP] is related to [ATP] through the

equilibrium reaction catalyzed by adenylate kinase (also known as myokinase):

2ADP⇄ATPþ AMP Keq ¼ 0:44
� �

Due to this equilibrium, small changes in [ATP] are quickly amplified many fold in

terms of [AMP]. Again, it is the fractional change in [ATP], and [AMP] is critical

(and not their absolute concentrations) for the regulation of target enzyme activity.

AMP is an intracellular allosteric signal sensed by many enzymes. A specific protein

kinase is activated by AMP in two ways: (a) AMP is an allosteric activator of this

enzyme, and (b) AMP makes this protein more susceptible to phosphorylation by a

kinase kinase.

37.6 Protein-Protein Interactions and Enzyme Control

Regulation of enzyme activity by reversible interactions with small molecular

weight metabolites (as inhibitors or activators) is a common theme in metabolism.

Many of them are described earlier in this chapter (Sect. 37.2 Control of enzyme

activity: Inhibition). Enzyme-enzyme interactions may also play significant role in

the regulation of metabolic reaction pathways (Srivastava and Bernhard 1986). What

about another protein binding to enzymes and regulating their activity? Although

very few in number, there are indeed well-defined examples of this mode of enzyme

control as well. A distinct regulatory protein may reversibly (or irreversibly) associ-

ate with an enzyme thereby increasing or decreasing its overall activity (Table 37.4).

In one sense these protein modulators could be viewed as regulatory subunits of the

target enzyme. However, the concept is different from regulatory (R) subunits of

allosteric enzymes, permanently associated with the catalytic (C) subunits of an

enzyme (e.g., E. coli aspartate transcarbamoylase with its 3R2-2C3 architecture).

Protein modulators may regulate enzyme activity in different possible ways. This

mode of regulation is often unique to an enzyme system or group of organisms.

Examples include modifying the substrate specificity of an enzyme (lactalbumin),

mediating the activation/inhibition of an enzyme upon receiving environmental cues
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(Ca2+/calmodulin and αs or αi subunits of G-proteins), coupling a biosynthetic

enzyme activity to end product availability (epiarginasic control in S. cerevisiae),

titrating out the active enzyme by presenting themselves as suicide substrates

(serpins) (Silverman et al. 2001), or marking the enzyme for proteolysis (antizyme)

(Small and Traut 1984). We have already noted the role of ubiquitination in

targeting proteins for degradation.

37.7 Compartmental Regulation and Membrane Transport

We have seen early in this chapter that access to the substrate (as well as inhibitors

and activators) is a major factor that determines the overall rate of an enzyme-

catalyzed reaction in vivo. Controlling this access itself can be used as a regulatory

feature. One way to go about this is to keep the substrate (or inhibitor or activator)

and the enzyme in distinct compartments so that they do not see each other unless

required. This separation is achieved in three principle ways.

Many enzymes are selectively expressed during specific phases of growth and/or

development. However, they may not encounter corresponding substrates until

much later. For instance, glutamate decarboxylase and trehalase are stored in the

fungal spores in latent forms. They get to see their substrates (glutamate and

trehalose, respectively) only at the time when conditions are right for spore germi-

nation. Such temporal compartmentalization (separation of enzyme and its substrate

Table 37.4 Well-characterized protein modulators of enzyme activity

Regulator Target enzyme Comments

Lactalbumin Lactose synthase

(α subunit)

Lactalbumin is devoid of any catalytic activity; but it alters

the specificity of the α subunit to synthesize lactose instead

of N-acetyllactosamine

Calmodulin Protein kinases Many protein kinases (e.g., phosphorylase kinase) are

activated by Ca2+/calmodulin

G-Proteins Adenylate cyclase Upon interacting with hormone receptor complex, α

subunit exchanges GTP for GDP and detaches from the βγ

dimer of the G-protein; adenylate cyclase is either

stimulated by the αs or inhibited by αi

Arginase Ornithine

transcarbamoylase

Yeast arginase and ornithine transcarbamoylase form a

complex in the presence of ornithine/arginine. Ornithine

carbamyltransferase activity is thereby inhibited (termed

epiarginasic control)

Serpins Serine proteases Serpins (serine proteinase inhibitors) inhibit serine

proteases by an irreversible suicide substrate mechanism.

Well-known examples include antithrombin (clotting),

C1-inhibitor (complement activation), and antiplasmin

(fibrinolysis)

Antizyme Ornithine

decarboxylase

Antizyme levels increase in response to elevated cellular

polyamines. Upon antizyme binding, proteasome-

mediated degradation of mammalian ornithine

decarboxylase ensues
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in time) is also common in secondary metabolism. Fatty acid synthase and polyke-

tide synthases share a few common substrates but rarely compete with each other.

Polyketide synthases are generally expressed after the cessation of growth phase.

Similarly, the sugar precursors are directed to aminoglycoside antibiotic synthesis as

secondary metabolism is associated with post-growth phase.

Essentially similar metabolites may serve as substrates for two distinct enzymes

located in the same subcellular compartment. One way to dedicate their use by one or

the enzyme is to differentially tag the metabolite and exploit enzyme specificity. Best

example of this is selective use of NAD for catabolic purposes and NADP for

biosynthetic reactions. For instance, despite the availability of NADH in the same

compartment, the biosynthetic glutamate dehydrogenase uses NADPH. The two

cofactors differ in a phosphate group but have essentially same redox potential.

Other instances of chemical compartmentalization include selective use of ATP or

GTP as phosphate donor (and ADP or GDP as phosphate acceptor), UDP glucose for

glycogen synthesis and glucose-1-phosphate from glycogen breakdown, CDP

derivatives in phospholipid metabolism, etc. Fructose-1,6-bisphosphatase acts on

the α anomer of fructose-1,6-bisphosphate, whereas phosphofructokinase generates

the β anomer of fructose-1,6-bisphosphate. Many steps of fatty acid biosynthesis and

catabolism involve chemically similar intermediates. They are segregated in the

same physical compartment of a prokaryotic cell by distinct chemical tags. All the

intermediates of fatty acid biosynthesis are tethered to acyl carrier protein, while the

similar intermediates of catabolism are free as CoA derivatives; the stereochemistry

of the β-hydroxy intermediates are also opposite. An interesting example of similar

set of reactions but distinct chemical compartments is L-proline and L-ornithine

biosynthesis in fungi. Glutamate is the precursor for proline biosynthesis, whereas

N-acetylation of glutamate dedicates it for the biosynthesis of L-ornithine. The

acetyl tag is removed from N-acetyl L-ornithine subsequent to its synthesis.

A prominent feature of eukaryotic cells is their reliance on achieving enzyme/

metabolic regulation through physical compartmentalization. The presence of dis-

tinct membrane-enclosed organelles allows them to spatially separate otherwise

competing reactions. N. crassa arginine metabolism is an excellent case in point.

The L-ornithine biosynthesis occurs in mitochondria. Of the two carbamyl phos-

phate synthetase isozymes, the mitochondrial form is dedicated for ornithine/argi-

nine biosynthesis. Excess cellular arginine is actively transported and sequestered

into fungal vacuoles. The ornithine arising out of cytosolic arginase reaction cannot

access entry into mitochondria – relevant membrane permease is sensitive to com-

petitive inhibition by cytosolic arginine. Since participation of ornithine in the

biosynthesis as well as catabolism of arginine is obligatory, wasteful cycling of

ornithine is a distinct possibility. The overall compartmental organization of arginine

metabolism in N. crassa ensures that futile cycling of ornithine does not occur.

Besides regulation of enzyme activity, this is achieved by recruiting at least two

specific transporters located on vacuolar and mitochondrial membranes. Yet another

example of physical compartmentalization is that of nitrogen fixation in filamentous

cyanobacteria. The oxygen generated by photosynthetic cells is toxic to nitrogenase.

The nitrogenase and the nitrogen-fixing apparatus is quarantined to specialized
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non-photosynthetic cells called heterocysts, which are fortified with defense

enzymes like catalase, peroxidase, superoxide dismutase, etc.

Mediated transport versus enzyme kinetics Cellular physical compartments most

often are separated by phospholipid bilayers. Transport across these biological

membranes is an important phenomenon. With the exception of a few molecules,

most nutrients, metabolites, and ions are transported across such biological

membranes through protein mediators. Various modes of transport and their

characteristics are listed in Table 37.5. Rate of transport due to simple diffusion

increases proportional to the existing concentration gradient – and no saturation is

observed. On the other hand, like enzyme catalysis, mediated transport processes

show saturation kinetics.

Mediated transport may be passive (facilitated diffusion) or active (input of

energy to drive the transport against the prevailing concentration gradient). Both

these forms of mediated transport are also amenable to general kinetic analysis used

to analyze enzyme catalysis. Rate of transport may be saturated with the substance

(denoted as A) transported – plots of initial rates of transport (transport flux, Jtr)

versus substance concentration show a hyperbolic saturation (similar to the

Michaelis–Menten kinetics for an enzyme; see Chap. 15).

J tr ¼
J trmax A½ �

K tr þ A½ �

Other important features of mediated transport that resemble enzyme kinetics are

specificity toward the ligand (compound or ion) being transported, competitive

inhibition, pH dependence of transport, and the ability to be modulated by inhibitory

substances. For example, the glucose carrier of erythrocyte membranes facilitates the

transport of glucose down the concentration gradient. This carrier (a) transports

some other sugars like mannose and fructose, albeit less effectively, and (b) is

competitively inhibited by 2,4,6-trihydroxyacetophenone. The erythrocyte mem-

brane also has a system for the facilitated transport of glycerol of which ethylene

glycol is a competitive inhibitor.

Table 37.5 Different modes of transport across biological membranes

Nature of

transport

Transporter

mediated

ΔG�
tr (¼ � RT ln ([A]in/

[A]out)) Examples

Passive transport

Simple

diffusion

No Negative (driven by

concentration gradient)

Urea, water

Facilitated

diffusion

Yes Negative (driven by

concentration gradient)

Glucose carrier of erythrocytes

Active transport

Yes Positive (coupled to ATP

hydrolysis, ion/pH gradient,

etc.)

(Na+K+)-ATPase on plasma

membrane, maltose transporter

from E. coli
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While the ΔG� for a chemical reaction is related to equilibrium constant (Keq),

ΔG� for transport (ΔG�
tr) is related to concentration ratio of the substance ([A]in/

[A]out). Just as some enzymes catalyze endergonic reactions at the expense of ATP

hydrolysis, in active transport a transporter pumps molecules against a concentration

gradient when it is coupled to energy supply. This input of energy may be in the form

of ATP hydrolysis or dissipation of a preexisting ion/pH gradient. In a nutshell,

mediated transport may be analyzed similar to enzyme catalysis – the former

measuring rates of transport from one compartment to the other (across the

biological membrane) while the latter deals with reaction rates. Examples of various

types of mediated transport may be found in the relevant literature dealing with

biochemistry and bioenergetics.

37.8 Glutamine Synthetase: An Anthology of Control
Mechanisms

Glutamine is an essential metabolite and serves as a nitrogen donor in many crucial

biosynthetic reactions. The enzyme that is responsible for glutamine synthesis is

therefore central to cellular nitrogen metabolism. Glutamine synthetase is the sole de

novo biosynthetic path to satisfy the glutamine needs of a cell. Along with glutamate

synthase, glutamine synthetase offers an ATP-driven route to form glutamate from

limiting concentrations of ammonia. In most organisms therefore, glutamine synthe-

tase occupies a pivotal role in the regulation of nitrogen metabolism. The enzyme is

particularly well regulated in organisms that have to mobilize ammonia into organic

nitrogen. According to their specific needs, the importance of glutamine synthetase

and its modes of regulation vary (Table 37.6). In general, the enzyme levels are

inversely related to the availability of favorable nitrogen source.

Table 37.6 Glutamine synthetase from different organisms and its regulation

Organism

Oligomeric

state Regulation

Prokaryotes Dodecamers Genetic level (induction, repression, etc.); product and

feedback inhibition; covalent modification cascade (such

as in gram-negative bacteria); divalent metal ion-specific

modulation

Yeasts and

filamentous fungi

Tetramers and

octamers

Genetic level (induction, repression, etc.); different

monomeric subunits; aggregation–disaggregation

equilibria; substrate (ammonia) availability; product and

feedback inhibition

Plants Dodecamers? Product and feedback inhibition; substrate (ammonia)

availability; covalent modification (symbiotic bacteria

associated enzyme)

Mammals Tetramers and

octamers

Availability of substrates (glutamate and ammonia);

energy charge; divalent metal ion specific modulation;

inhibition by certain metabolites
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Glutamine synthetase from E. coli is an excellent example of enzyme regulation.

It is regulated by the following mechanisms:

• The enzyme protein levels are subject to transcriptional control depending upon

the availability of carbon and nitrogen compounds in the growth medium.

Glutamine synthetase levels are induced under nitrogen-limiting conditions.

Favorable nitrogen sources (like ammonia and glutamine) normally repress its

expression.

• Regulation occurs through cumulative feedback inhibition by the multiple end

products of glutamine metabolism. Eight different metabolites are known to

inhibit the enzyme with separate binding sites for each one.

• Divalent cations (Mg2+ and Mn2+ in particular) are known to bind and cause

kinetically meaningful conformational changes. The native enzyme contains

tightly bound Mn2+.

• Through the work of Earl Stadtman’s group, E. coli glutamine synthetase

provides the best characterized example of reversible covalent modification.

The biosynthetic ability of the enzyme is controlled by adenylylation and

deadenylylation. The addition and removal of AMPmoiety (on a surface-exposed

Tyr-OH group) modulates catalytic potential, susceptibility to feedback inhibi-

tion, and divalent cation specificity. The adenylylated glutamine synthetase

(GS(AMP)n in Fig. 37.10) is much less active, has a lower pH optimum, requires

Mn2+ for activity, and is more susceptible to feedback inhibition. The physiologi-

cal significance of adenylylation–deadenylylation is apparent from the high levels

of covalent modification and low biosynthetic activity on favorable/sufficient

nitrogen availability; and the converse was found when the growth medium

contained a limiting nitrogen source.

ATd

ATa

Uridylyl

transferase
-UTUR- GS(AMP)n GS

PII(UMP)m

PII

Adenylyl

transferase

Fig. 37.10 The covalent regulation of E. coli glutamine synthetase. The uridylylation cycle and

adenylylation cycle are linked through the regulatory protein PII. Glutamine is an activator of UR

activity, while 2-oxoglutarate activates UT. The PII protein activates ATa, while PII-UMP activates

ATd. Ultimately, ATa and ATd are, respectively, responsible for the adenylylation and the

deadenylylation of glutamine synthetase. ATa transfers AMP from ATP to form one adenylyl-O-

tyrosyl bond per each subunit of the dodecameric glutamine synthetase (where n¼ 1–12). Covalent

modification by UT similarly involves the transfer of UMP from UTP to PII (where n ¼ 1–3)
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The covalent regulation of E. coli glutamine synthetase actually is a closed bicyclic

cascade as shown in Fig. 37.10. A single adenylyltransferase catalyzes the

adenylylation and deadenylylation reactions at separate non-interacting sites (ATa

and ATd). This in turn is coupled to another nucleotidylation cycle in which PII
protein undergoes reversible uridylylation–deuridylylation. The uridylylation and

deuridylylation of PII protein is achieved by a bifunctional enzyme with separate

catalytic centers (UT and UR, respectively). The unmodified form of PII protein

activates adenylylation (ATa) of glutamine synthetase while the modified form (PII-

UMP) activates deadenylylation (ATd). In this closed bicyclic cascade, all the cova-

lent modification–demodification steps are dynamic processes and steady states get

established rapidly. Glutamine synthetase is a dodecamer and each subunit can be

covalently modified; therefore, average state of adenylylation can take values

between 0 and 12, depending on the nutritional status of E. coli. Between UT, UR,

PII, PII-UMP, ATa, and ATd, the cellular levels of 2-oxoglutarate and glutamine are

sensed. In fact, more than 40 different metabolites are known to affect the activities

of one or more of the enzymes of this bicyclic cascade. Thus E. coli glutamine

synthetase is a very finely tuned enzyme for regulation of its activity and to sense the

cellular nitrogen demands.

• Maintaining covalently modified glutamine synthetase for long periods is a poor

investment for the cell. Such modified enzyme protein form (GS(AMP)n in

Fig. 37.10) is oxidatively modified and leads to inactivation. This eventually

renders the protein susceptible to proteolytic turnover.

37.9 Summing Up

Reining in a runaway chemical reaction is just as important as accelerating a sluggish

one. While metabolism cannot do without enzyme catalysts, it can be catastrophic

not to control reaction rates. Enzymes themselves provide the means for this

modulation. Actual intracellular enzyme activity is determined by a combination

of parameters like KM, kcat, nH, [Et], [S], [P], [I], and activators.

Steady-state cellular enzyme concentration is an outcome of gene expression at

the level of induction, repression, mRNA stability, and translation and by protein

degradation. These long-term modes of control often predominate in many prokary-

otic microorganisms. On the other hand, preponderance of metabolic regulation via

the control of enzyme activity is a common feature of eukaryotes. Control of

preexisting enzyme activity is advantageous in terms of rapidity of the system

response. This is typically achieved by ligand interaction phenomena such as

enzyme inhibition, allostery, and cooperativity. Noncompetitive inhibition is impor-

tant for the regulation of cell metabolism as the enzyme activity can be affected

without a direct substrate analogy.
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Sigmoid substrate saturation (the so-called homotropic allosteric interactions) can

offer means to achieve significant changes in enzyme activity (and response) with

just three- to fourfold increase in [S]. With increasing nH values smaller fold

increases in [S] are required to give the same relative increase in enzyme activity.

Since [S] in vivo is often held constant (does not vary much), homotropic allostery

alone is often unimportant. Its real value is in responding to relevant metabolite

activator(s) through reversible shifts between hyperbolic and sigmoid substrate

saturation kinetics.

Organisms solve similar metabolic problems in distinctly different ways. The

same enzyme in two different organisms may be feedback inhibited by a different set

of end products. Aspartate transcarbamoylase is inhibited by CTP in E. coli, whereas

UTP is the regulatory ligand in plants. Depending upon the organism, inhibition by

the same group of end products may be mechanistically distinct (cumulative,

additive, concerted, or synergistic). The enzyme and corresponding substrate

(or inhibitor or activator) may be sequestered in distinct compartments in different

organisms – access itself may be a control feature. Interestingly, the same enzyme

may perform different metabolic roles in different organisms; its regulation will

accordingly be different in those organisms. Citrate synthase is a good case in point

(Table 37.7).

Posttranslational covalent modification of enzymes, either reversible or irrevers-

ible, offers unique opportunities for metabolic regulation. Phosphorylation and

proteolysis are more common. Besides the capacity for signal and rate amplification,

covalent modification of preexisting enzymes allows a system-level mechanism to

integrate a range of metabolic signals.

Nature is replete with examples of subtle variety in the mechanisms of control in

different organisms – the “unity of biochemistry” concept does not always extend to

the metabolic pathway control. Most organisms, however evolutionarily distant,

produce/utilize a set of common metabolites; but their concentrations are unique to

each individual. This metabolic identity is the consequence of quantitative

differences in relevant enzyme properties and their associated regulation. The

patterns of enzyme regulation outlined in this chapter are common themes but are

not exhaustive by any standard. It would be a surprise if we do not find novel

variations of enzyme regulation in the future.

Table 37.7 Citrate synthase from different organisms: Function and its regulation

Organism Function Regulation

Mammalian cells

(mitochondria; aerobic)

ATP production Feedback inhibition by

ATP

E. coli (mainly anaerobic) Production of NADH and

biosynthetic precursors

End product inhibition

by NADH

Germinating seeds

(glyoxysomes)

Glyoxylate cycle; conversion of fatty

acid to sucrose

Not regulated by either

(as above)
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In Vitro Versus In Vivo: Concepts
and Consequences 38

(The biochemist’s word) may not be the last in the description

of life, but without his help the last word will never be said.

Sir Gowland Hopkins

Biochemists enjoy the freedom to purify and study enzymes in isolation, saturate an
enzyme with its substrate, trap/remove the products, and also provide optimal pH,
ionic strength, etc. On the other hand, cell extracts are by their very nature “dirty
enzymes”; intact cells and organisms are “dirtier” still. The cell by design is greatly
constrained to provide a consensus medium to simultaneously support hundreds of
diverse enzyme-catalyzed reactions. Only some of these enzymes may be operating
under optimal conditions at any time. The context for an enzyme to function in vivo
is very different from the well-defined conditions deliberately set up for its study
in vitro. And classical biochemistry is founded on several assumptions valid in dilute
aqueous solutions. These assumptions are often extended without question to the
cellular milieu. But the cell interior is far away from being an ideal solution. The key
features that differentiate the state of affairs in vivo from that in vitro are cataloged
below.

Organization and Compartmentalization The enzyme study in a test tube
presupposes that the solution is homogeneous. This assumption is not valid for
intact cells. The cytoplasm may be better described as an aqueous gel than as a
homogeneous solution. The presence of supramolecular organizations and
membrane-bounded sub-compartments (in eukaryotic cells in particular) confers
intrinsic inhomogeneities on the cell interior. Additionally, the organelles them-
selves are not randomly distributed due to cytoskeleton organization and intracellu-
lar transport.

# Springer Nature Singapore Pte Ltd. 2018
N. S. Punekar, ENZYMES: Catalysis, Kinetics and Mechanisms,
https://doi.org/10.1007/978-981-13-0785-0_38
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The Dilution Factor Due to the small, finite volume of cells and intracellular
compartments, the actual number of a particular molecular species may be surpris-
ingly low. Very few molecules per cell could translate into high, physiologically
relevant molar concentrations. These concentrations may be far higher than those at
which enzymes are usually assayed. Weak protein associations could well disappear
at the far lower protein concentrations with which enzyme kineticists work in vitro.

Concentration of Enzymes, Substrates, and Other Ligands The total concentra-
tion of macromolecules inside cells is very high, with proteins being most abundant
species. Clearly the aqueous phase of the cytoplasm is crowded rather than dilute.
Such crowded solutions are not amenable to the fundamental assumption of the
physical chemistry of dilute solutions – interactions between solute molecules
cannot be neglected. The concentration of a specific enzyme is generally much
higher in cells than in conventional in vitro assays. This may be often much in
excess of the KD as determined in vitro. For instance, the KD for interaction between
calmodulin and myosin light chain kinase in vitro is around 1.0 nM. But the smooth
muscle calmodulin concentration is in the order of 40 μM. Similarly, a substantial
proportion of substrates may exist as complexes, making the availability of free
substrate rate limiting.

Enzymes In Vivo Are Components of an Open System The cell is not a bag of
enzymes each working in isolation. The cellular metabolism is a complex web of
enzyme pathways, many of which often compete for common substrates. In order to
proceed efficiently under these conditions, channeling of substrates from one
enzyme to another in a particular metabolic pathway may be necessary. Discrimina-
tion among competing interactions may be achieved by sequestering enzymes within
an organelle or immobilizing them on a membrane.

We will now elaborate on a few of these key concepts and their consequences on
enzyme action in vivo.

38.1 Why Michaelis-Menten Formalism Is Not Suitable In Vivo

Much of the current paradigm to understand enzymes has been extrapolated from
studies of dilute solutions containing a single enzyme and its cognate substrate –

whose interaction is diffusion limited. Enzymology in the “test tube” is a careful
observation and controlled study of an enzyme in isolation from the host of other
interactions that otherwise make the understanding difficult. This reductionist
approach has led to many valuable insights over the past century. However,
accumulated knowledge on measurements of the physical properties of cells
indicates that the interior of a cell departs from these ideal conditions in several
important ways. Some of these are already listed above.
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We recall that the Michaelis-Menten rate equation is derived for a well-defined
initial conditions and making certain clear assumptions (see Chap. 15). Almost all of
these may not be satisfied with respect to enzymes in vivo.

Where Assumptions Fail Enzyme being a catalyst, its assay concentration in vitro
is usually held very much lower than that of the substrate. This permits us to
approximate [St] � [S], although [St] actually equals “[S] + [ES]” while deriving
the rate equation. Most often the substrate concentrations are held at least 1000 times
higher than that of the enzyme (i.e., [St]> > [Et]). The actual [Et]/[St] ratio becomes
important in interpreting enzyme kinetic behavior under in vivo conditions. This
ratio for various enzymes of glycolysis (in mammalian skeletal muscle) ranges from
0.016 (for phosphofructokinase) to 17.48 (glyceraldehyde 3-phosphate dehydroge-
nase) (Table 38.1). The assumption [St]�[S] is valid only when this ratio is very low
– such as in the case of phosphofructokinase. But when the ratio approaches/exceeds
the value of 0.4, serious deviations from the Michaelis-Menten formalism occur, and
the corresponding rate equations are no longer valid.

Reaction Reversibility Strictly the initial rate (velocity “v”) has to be recorded in
order to apply Michaelis-Menten formalism. This will be the unbiased rate when
[P]�0, whereas significant product concentrations are often observed in vivo.
Products compete with substrates for the available enzyme; by reaction reversal
they can also react to form substrate. Increasing [P] can actually generate negative
velocity, especially when [S] is not high enough to force the reaction forward. Entire
pathways, and most enzymes in such a pathway, are known to work in reverse under
certain physiological states. For example, but for two irreversible steps, most
enzymes of glycolysis operate in reverse during gluconeogenesis.

Table 38.1 Concentration of individual glycolytic enzymes and intermediates

Enzyme
Active site
(μM) Metabolite (substrate)

Concentration
(μM)

Phosphofructokinase 24.1 Fructose 6-phosphate 1500
Aldolase 809.3 Fructose

1,6-bisphosphate
80

Triosephosphate isomerase 223.8 Dihydroxyacetone
phosphate

160

Glyceraldehyde 3-phosphate
dehydrogenase

1398.6 Glyceraldehyde
3-phosphate

80

Phosphoglycerate kinase 133.6 1,3-Bisphospho-
glycerate

50

Pyruvate kinase 172.9 Phosphoenolpyruvate 65
Lactate dehydrogenase 296.0 Pyruvate 380

Adapted from Srivastava & Bernhard, Curr Top Cell Regul, 28:1–68. Copyright (1986), with
permission from Elsevier
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Optimized In Vitro But Compromised In Vivo An enzymologist’s test tube is
optimized for the best measurements of enzyme activity. The parameters like
temperature, buffers, pH, ionic strength, cofactors, metal ion activators, etc. are
rigorously controlled by the experimenter. A wide range of these conditions can
be tested in vitro. However, a given physiological state of the cell provides a single
consensus medium common for all its enzymes functioning in that compartment. It is
therefore rare that kinetic constants determined in vitro are accurate reflections on the
enzymes in vivo. Rate laws determined in vitro with purified, dilute, homogeneous
enzyme solutions may not reflect the enzyme–enzyme interactions that are important
in vivo. Also, many small molecule regulators may be missed due to clean in vitro
(test tube) assays. Optimal behavior for an isolated enzyme may mean nonoptimal
behavior for the intact system and vice versa. For instance, arginase functions inside
a fungal cytoplasm at physiological (near neutral) pH and with in situ Mn
[II] concentrations. This is very different from its alkaline pH optimum (of around
pH 10.0) and the requirement for incubations with micromolar Mn[II] for optimal
activity in the test tube. Regulatory interaction of yeast arginase with ornithine
transcarbamylase (the so-called epiarginasic control) is also well documented
(Table 37.4, Chap. 37).

In order to make the bottoms-up approach to Systems Biology meaningful,
standardized in vivo-like conditions are being simulated to study enzyme function.
One such standardized assay medium for all yeast cytosolic enzymes was recently
described. Potential effects of macromolecular crowding (see section on “Diffusion,
Crowding, and Enzyme Efficiency”) are still missed and not considered in this
standardization effort (Table 38.2). Besides properly defined ionic strength, pH,
and buffering, other components of the intracellular milieu should be included in
enzyme assays to simulate in vivo conditions. Glutamate, glutathione, and
phosphates are the main metabolite pool components that contribute to pH buffering
in most cells. Effects of all these factors on kcat as well as on KM have to be accounted
for. These measurements should also include data when [S] is well above KM (effects
on kcat) as well as around/below KM (effects on KM).

Table 38.2 Standardized assay medium for yeast cytosolic enzymes

Component Concentration

Potassium (K+) 300 mM

L-Glutamate 245 mM
Phosphate 50 mM
Sodium (Na+) 20 mM
Magnesium (Mg2+) 2 mM (free)
Sulfate 2.5–10.0 mM (depending on Mg2+ levels)
Calcium (Ca2+) 0.5 mM
Medium pH 6.8

Adapted with permission from van Eunen et al., FEBS Journal, 277:749–760. Copyright (2010)
John Wiley & Sons Inc
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A study of enzymes in vivo quickly moves into the realm of metabolism and
complexity (Table 38.3). One could build an understanding of metabolism (i.e.,
enzymology in vivo) by studying individual enzymes one at a time and then
upwardly integrating this in vitro knowledge (Smallbone et al. 2013). In practice
this is very complex – collecting such data for regulatory enzymes with multiple
interactions becomes immensely difficult. This “bottoms-up” approach is like
describing the behavior of a gas by applying Newton’s laws of motion to every
individual molecule in the system. More often, enzymology in vivo takes a “top-
down” approach – akin to applying simple gas laws of thermodynamics at the
macroscopic level. It is important to distinguish between kinetics as the study of
molecular mechanisms and the kinetics of system dynamics. The very conditions
that made Michaelis-Menten formalism produce the rate law for enzyme reactions
in vitro tend to make it invalid for enzyme reactions in vivo. Power-law formalism as
an alternative to capture in vivo behavior has been proposed. Interested reader may
refer to this literature (Savageau 1992).

38.2 Concentration of Enzymes, Substrates, and Their Equilibria

There is always a certain tension between the in vitro and in vivo approaches to
enzymology. One aspect that biochemists have struggled with since the beginning is
the extent to which in vitro enzyme data are relevant to in vivo metabolism. Cells and
biological tissues are disrupted to extract and access enzymes prior to assay. Cell-
free extracts are considerably diluted when compared to enzyme/metabolite
concentrations in vivo (Albe et al. 1990; Bennett et al. 2009). Invariably,
extrapolations from in vitro to in vivo involve assumptions, and this often leads to
poor conclusions. All the intracellular compartments are highly concentrated in
terms of proteins and metabolites (Srere 1967; 1970). This also has a direct bearing
on the physical features of the cytosol such as viscosity, diffusion rates, and
excluded volume effects (discussed in detail a little later). We are just beginning to
understand the influence of unique intracellular environment on enzyme activities.

A major experimental challenge in doing in vivo enzymology is the precise
measurement and manipulation of absolute concentrations of enzymes and
metabolites inside the cell. There are many issues that influence such numbers.

Table 38.3 Enzyme

systems in vitro and

in vivo: a comparison

Nature of Enzyme in vitro Enzyme in vivo

Variables Few Many
Interactions Weak Strong
Connectivity Linear Nonlinear

Processes Additive Associative
Aggregate behavior Predictive Emergent
System Closed, simple Open, complex
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• Direct determination of metabolite concentrations is difficult for two reasons:
(a) concentrations may change rapidly during the time required for isolation and
(b) low-molecular-weight substances diffuse out of organelles and redistribute
during isolation. Based on the total ATP, ADP, creatine, and phosphocreatine
concentrations measured in the cell, it was thought that creatine kinase reaction is
far from equilibrium (toward phosphocreatine formation). Subsequently, the free
concentrations of the phosphorylated compounds were directly measured in
living cells using 31P NMR. With this data it was shown that the creatine kinase
reaction is close to equilibrium in vivo.

• Cellular enzyme concentrations tend to be underestimated, mainly due to incom-
plete extraction and associated inactivation during isolation from crude extracts.

• Despite very accurate analytical methods for estimation, serious assumptions/
approximations are necessary to compute the final in vivo concentrations. For
instance, the water content and the total soluble protein in different cell types (see
Table 38.4) are averaged as if the cytoplasm is a homogeneous solution. Typi-
cally, in a gram of muscle tissue, all the cytoplasmic soluble components are
found in about 0.75 ml of water.

• The metabolite concentrations are usually reported in the literature in units of μmol
per g of dry or fresh weight. Such data can be converted to μM using suitable
conversion factors (see Table 38.4 above). Arriving at in vivo enzyme concentrations
requires some more rough estimations: (i) turnover number (μmol substrate
converted � min�1 � μmol enzyme�1) is calculated from the specific activity
(μmol substrate converted min�1 � mg protein�1) of the most purified enzyme
fraction available and the molecular weight of the holoenzyme, assuming that all
protein represents active holoenzyme; (ii) the Vmax value (μmol substrate converted
min�1 � liter cell volume�1), assumed to represent in vivo activity, is calculated
from the specific activity of a crude enzyme fraction using the conversion factors (see
Table 38.4 above); and (iii) enzyme concentration is now obtained by dividing the
Vmax value (from ii) by the turnover number (from i). The total enzyme site
concentration can finally be represented by multiplying enzyme concentration by
the number of subunits per holoenzyme, assuming one active site per subunit.

Table 38.4 Dimensions and content of different cell types

Source Cell dimensions (volume)
Water content (g/100 g
wet cells)

Protein
concentration
(mg/ml)

E. coli 1 � 3 μm (2 μm3) 70 235
Yeast 5 μm (66 μm3) 65 280
Rat liver 10–20 μm (500–4000 μm3) 69 313
Rat muscle 77 260

Human RBC 6–8 μm (90 μm3) 65 300
Mitochondrion 1 μm (0.5 μm3) 50 270–560

A volume of 3.2 � 10�15 l has been directly measured for E. coli cells
[1 μm3 ¼ 10�15 l (1 femtoliter); 103 μm3 ¼ 10�12 l (1 picoliter)]
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Despite inherent difficulties in measurements, there are some obvious take-home
messages from the calculated in vivo concentrations of enzymes and
metabolites (Srivastava and Bernhard 1986; Storey 2005). For instance, consider
the computed concentrations for glycolytic enzymes and their substrates in the
mammalian skeletal muscle (see Table 38.1 above). First, among the enzymes of
the same pathway, some are much more abundant than the rest – aldolase and
glyceraldehyde 3-phosphate dehydrogenase together constitute 40–50% of the
total glycolytic enzymes. Molar concentrations of such enzymes in vivo are quite
high. Notwithstanding this range, the sequence of enzymes sustains a common
single flux through glycolysis. And further, the muscle glycolytic flux increases
100–1000-fold during “‘resting-working” transition without any change in the
concentration of its intermediates. Second, the ratios of final calculated enzyme
site concentration (expressed as μM) to corresponding free substrate (in μM) con-
centration(s) are also quite distinct (free metabolite concentrations can be determined
by solving simultaneous equations relating the free and bound concentrations of all
metabolites; the corresponding Michaelis constants may be used to approximate
corresponding equilibrium constants). The calculated ratio (of [enzyme site]/[free
substrate]) ranges from very low for phosphofructokinase (0.004) to very high for
glyceraldehyde 3-phosphate dehydrogenase (21). It is obvious that [Et] � [S] for at
least a few enzymes in vivo (such as aldolase and glyceraldehyde 3-phosphate
dehydrogenase) and consequently Michaelis-Menten formalism does not apply.
More importantly, in such cases a considerable portion of the substrate may be
bound to the enzyme(s). However, calculated free substrate concentration (total
minus bound substrate) may be employed in a general Michaelis-Menten analysis
to predict the actual velocity of the reaction.

Besides very high total protein concentrations (Table 38.4), the cellular
concentrations of some enzymes are also high (Table 38.1). An important
consequence of high enzyme active site concentration (particularly when [Et] � [S])
in vivo is its effect on the equilibrium position itself. In such cases, one has to
consider the equilibrium between enzyme-bound S and P (i.e., Kint ¼ [EP]/[ES], the
internal equilibrium constant) and not the aqueous equilibrium (i.e., Keq ¼ [P]/[S]).
Table 38.5 lists some Keq values, both for reaction within the enzyme active site (for
all reaction components bound) and for the same reaction in aqueous solution. Note
that the Kint for all reactions are closer to unity despite the wide range in Keq values
for the same reaction; this tendency is predicted on thermodynamic grounds in the
evolution of “ideal” catalysts. Kinetically “perfect” enzymes (those that have
evolved higher rates of turnover) bind substrates and products such that the bound
complexes have nearly equal free energies (i.e., the Kint are closer to unity implies
ΔG� ¼ 0).

We have seen earlier (refer to Chap. 15) that the Keq (of an aqueous reaction
chemical equilibrium) is related to corresponding enzyme kinetic constants through
Haldane relationship. While this places limits on the overall kinetic behavior, certain
features of the reaction catalyzed are still under the control of the enzyme and its
properties. This is where the Keq for a reaction within the enzyme active site (Kint)
becomes very interesting! For example, consider the reaction catalyzed by methionine
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adenosyltransferase. The formation of S-adenosylmethionine is thought to be essentially
irreversible with a forward rate 2� 105 times faster than the reverse rate; this is despite the
fact that the Keq (for the unbound reactants) is near unity. Clearly, the internal equilibrium
constant (i.e., Kint ¼ [EP]/[ES]) should approximate 2 � 105 and that the enzyme has
2 � 105-fold higher affinity (approximated as inverse of KM value) for P than for S.

38.3 Avogadro’s Number Is a Very Big Number

One gram mole of a substance contains Avogadro’s number (6.023 � 1023) of
molecules. These many molecules dissolved in one liter of solvent make a molar
(1.0 M) solution. However, cells and subcellular compartments (organelles) have
finite, small volumes. We have already noted that typical volume of a bacterial cell is
around 2 μm3 (2 � 10�15 liter) (Table 38.4); only about 70% of this is aqueous
cytoplasmic volume and accessible to solutes. Presence of very few molecules can
mean a significant concentration of that compound in such small volumes
(Table 38.6). Assuming that free [H+] contributes to intracellular pH in E. coli,
just about 60 protons represent a pH of 7.0; addition of another 540 protons brings
this intracellular pH down to 6.0. Confined to a limited cellular volume, a single
molecule per bacterium (say lac operator DNA) implies a concentration of nearly
1.0 nM! At an experimental level, we are now able to manipulate volumes in
attolitres (10�18 liters) and reach detection limits down to zeptomoles (10�21moles).

In general, for small confined volumes, the number concentration of a particular
molecular species (this includes enzymes!) may be more informative than its molar
concentration (Halling 1989). Presence of a limited number of molecules within a
cell/compartment has interesting implications. Some of these are numerically
illustrated below.

Number of Invertase Molecules Per Yeast Cell It is the genius of JBS Haldane
that the number of saccharase (popular as ‘invertase’ now!) molecules per yeast cell
was calculated with data available at that time and presented in the book ENZYMES
in 1930. A similar calculation is presented here with recent data on invertase.

Table 38.5 The Keq for aqueous versus enzyme-bound reaction components

Enzyme reaction
Keq when [S]> > [Et] (aqueous
equilibrium) (S⇄P)

Kint when [Et] � [S] (enzyme bound
equilibrium) (ES⇄EP)

Hexokinase 2000 ~1.0
Phosphoglucomutase 17 0.4

Triosephosphate
isomerase

22 0.6

Pyruvate kinase 0.0003 1.0–2.0

Lactate
dehydrogenase

10,000 1.0–2.0

Creatine kinase 0.1 ~1.0

Adapted from Srivastava & Bernhard, Curr Top Cell Regul, 28:1–68. Copyright (1986), with
permission from Elsevier.
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Invertase is a 60 kDa protein and constitutes 0.9% of total yeast protein.
Yeast cell with 5 μm diameter and density 1.1 weighs 7.2 � 10�11 g.

One gram of yeast consists of 0.65 g water. Considering a protein concentration
of 280 mg/ml (Table 38.4), one gram of yeast contains 182 mg protein. Hence,

1 g yeast contains 182�0.9/100 mg, i.e., 1.645 mg invertase.
1 yeast cell (7.2 � 10�11 g) contains 1.645 � 7.2 � 10�11 mg, i.e., 1.2 � 10�14 g

invertase.
1.2 � 10–14 g invertase corresponds to 1.2 � 10�14 � 6.023 � 1023/60000

molecules of invertase ¼ 120000 molecules

Thus, one yeast cell contains 120,000 invertase molecules. This number is about
ten times lower (12,000/ cell) in uninduced yeast, whereas in filamentous fungus
Aspergillus niger, it may be only 1% of that number (1200/cell).

Small Number Concentrations Translate Into Discrete Molar

Concentrations Few enzymes may be found in very limited copies indeed. There
is a single oriC locus in E. coli genome and just 10–20 copies of DNA polymerase III
per cell to initiate replication. On the other hand, with its multiple origins of
replication, a mammalian cell contains about 50,000 copies of this enzyme. A single
molecule per bacterial cell typically corresponds to a molar concentration of 1.0 nM

Table 38.6 Molar versus number concentrations in confined cellular compartments

Compartment Volume
Number of
molecules

Concentration
(approximate)

Vacuole (50 nm
diameter)

6 � 10�20 liter 1 H+ ion 10�4 M (pH 4.0)

Vacuole (250 nm
diameter)

7.5 � 10�18

liter
1 H+ ion 10�6 M (pH 6.0)
50 H+ ions 10�5 M (pH 5.0)

E. coli 2 � 10�15 liter 1 10�9 M (1 nM)

20 2 � 10�8 M (20 nM)
200 2 � 10�7 M (0.2 μM)

Mitochondrion 1 � 10�15 liter 1 10�9 M
Yeast 7 � 10�14 liter 15,000 10�7 M
Mammalian nucleus 5 � 10�13 liter 300 10�9 M
Mammalian cell 2 � 10�12 liter 1 10�12 M

As compartmental dimensions vary within a range, typical volumes are presented here.
Concentrations are computed by assuming that the solute is uniformly distributed throughout the
compartment. Concentration of over-expressed proteins in E. coli can be abnormally high and reach
up to 5 mM.
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(Table 38.6); every additional molecule contributes to a discrete increment of
1.0 nM. In such situations, a bacterial cell may experience stepwise concentration
increase – in 1.0 nM multiples (and none in between!) (Fig. 38.1). And changes in
cellular volume then become important in accessing the full range of molar
concentrations.

Dissociation Constants, Equilibrium Binding, and Stochasticity The binding
equilibrium between two molecular species depends on the equilibrium constant
and the two concentrations. The binding of an enzyme to its substrate is no
exception. However, the same binding phenomenon becomes stochastic when
small “number concentrations” are involved. Consider a simplistic calculation of
DNA polymerase III binding in vivo to oriC locus of E. coli. A single copy of oriC
DNA (per chromosome) approximates to 1.0 nM, and ten copies of DNA polymer-
ase III per cell would represent a concentration of 10.0 nM. If DNA polymerase III
binds to oriC DNA with a KD of 1.0 μM, then we can evaluate the status of this
binding equilibrium as follows:

oriC þ DNA pol III⇄oriC-DNA pol III complex

KD ¼
oriC½ � DNA pol III½ �

oriC-DNA pol III complex½ �

On rearranging

oriC½ �

oriC-DNA pol III complex½ �
¼

oriC½ �free
oriC½ �bound

¼
KD

DNA pol III½ �

Substituting the respective values

oriC½ �free
oriC½ �bound

¼
10-6M

10-8M
¼ 100

|

Concentration 

        (nM)

Molecules per cell
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_
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_
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Fig. 38.1 Molar versus

number concentrations in a

confined cellular volume of

E. coli
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This implies 0.99 nM of the total of 1.0 nM oriC DNA is free (i.e., unbound). Since
there is a single copy of oriC DNA, presenting the concentration of oriC DNA
bound to DNA polymerase III as 0.01 nM (or 10�11 M) does not make any sense!
We now enter the realm of probabilities, and the binding phenomenon is best
considered as stochastic. A [oriC]free/[oriC]bound ratio of 100 signifies that, at any
given time, there is just 1% chance that DNA polymerase III is occupying the oriC
locus. A few more representative calculations of this kind are informative
(Table 38.7); the lower the KD (higher the affinity), the greater is the probability of
oriC DNA bound to the polymerase. At picomolar KD value, the oriC DNA is fully
occupied (nearly 100% probability) by DNA polymerase III. While these
calculations are useful, actual DNA polymerase III binding to oriC locus in vivo is
more complex and is supported by additional protein components. The E. coli DNA
polymerase III (600 kDa protein) is an efficient (about 1000 nucleotides added per
second) and highly processive enzyme. It remains bound to DNA template and does
not fall off almost until the entire bacterial genome is replicated.

Another way of looking at the phenomenon of stochastic (probabilistic) binding
is to compare the “on” and “off” rates. Note that the KD may also be viewed as the
ratio of the off and on rate constants (koff/kon; also see “Tight-Binding Inhibitors” in
Chap. 21 Irreversible Inhibitions). The slower the rate of release (koff < kon) from the
complex, the longer the protein resides on the DNA (since inverse of the first-order
rate is time).

Finally, we note that stochastic (probabilistic) binding is encountered in many
other cases such as when the tetrameric lac repressor (5–10 molecules per cell) binds
(KD, 10 pM) to the operator DNA of lactose operon. The study of single-enzyme
molecules, both in vitro and in vivo, is one research frontier in enzymology; we will
briefly touch upon this topic in the next chapter.

Table 38.7 DNA polymerase III occupying the oriC locus in E. coli

KD (oriC-DNA
pol III complex)

Number of DNA pol III
molecules per cell (concentration)

oriC½ �free
oriC½ �bound

oriC bound with DNA pol
III (probability %)

10�3 M (mM) 1 (10�9 M) 106 0.0009
10 (10�8 M) 105 0.009

10�6 M (μM) 1 (10�9 M) 103 0.09
10 (10�8 M) 102 0.99

10�9 M (nM) 1 (10�9 M) 1.0 50.0
10 (10�8 M) 10�1 90.9

10�12 M (pM) 1 (10�9 M) 10�3 99.9
10 (10�8 M) 10�4 99.99
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38.4 Diffusion, Crowding, and Enzyme Efficiency

The physical event of substrate colliding with the enzyme molecule is diffusion
controlled. As a catalyst, an enzyme can do very little to overcome this diffusion
limit. The upper bound for catalytic rate acceleration is the prevailing diffusion rate,
and an enzyme is considered kinetically perfect when its kcat/KM approaches that
diffusion limit (we have already noted this in Chap. 15) (Hasinoff 1984). The interior
aqueous milieu of intact cells is a very crowded place. The diffusion of enzymes and
their substrates is accordingly affected by the crowded and concentrated state of
cytoplasm (Table 38.4) (Milo and Phillips 2016). Although the concentration of
individual enzymes/proteins may not be very high, cells do contain a dense mixture
of large and small molecules. This has a direct bearing on the viscosity of the
cytoplasm. The macro-viscosity (or bulk viscosity as measured, e.g., by Brookfield
viscometer) is affected by the polymeric solute molecules (cytoplasmic
macromolecules and the synthetic ones like Ficoll or polyethylene glycol). This
macroscopic flow property of the system does not necessarily correlate with effects
on diffusion of small molecules. However, the small molecular weight solutes (like
sucrose and glycerol) do influence diffusion rates of the system at the microscopic
scale (the so-called micro-viscosity) (Verkman 2002). Techniques like fluorescent
probe diffusion using photobleaching, correlation microscopy, and time-resolved
anisotropy have provided a measure of micro-viscosity (fluid-phase viscosity) of
cytoplasm. The viscosity of the cytoplasm has been estimated to be about 3–7 times
that of water (Luby-Phelps 2000). From such data, the view of the cell interior has
evolved from that of a viscous gel to that of a watery but crowded compartment.
Cytoplasm has a low micro-viscosity and a high macro-viscosity. The mitochondrial
matrix is even more crowded.

Three independent factors affecting solute diffusion in the cytoplasmic compart-
ment are (a) specific binding to intracellular components, (b) slowed diffusion in
fluid-phase cytoplasm (micro-viscosity), and (c) collision with intracellular
components (macromolecular crowding). We have already noted in Table 38.1
that significant proportion of substrates (metabolites) may be present in their
enzyme-bound form. The fluid-phase viscosity of cytoplasm (i.e., micro-viscosity)
is not much greater than that of water. Therefore, the diffusion movement of small
cytoplasmic solutes is similar to that in a dilute aqueous solution. However, macro-
molecular crowding leads to steric exclusion and is an important barrier to diffusion
in the cytoplasm.

Macromolecular Crowding and Volume Exclusion How much of the intracellu-
lar volume is available to macromolecules depends upon the numbers, sizes, and
shapes of all the molecules present in that compartment. Cytoplasm is “crowded”
rather than “concentrated” because no single macromolecular species occurs at high
concentration (Ellis 2001). But, taken together, the macromolecules occupy a signif-
icant fraction (typically 20–30%) of the total volume. A simple illustration of this
concept is shown in Fig. 38.2. The space occupied by macromolecules is physically
unavailable to other molecules, and the resultant volume exclusion has noteworthy
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consequences. Macromolecular crowding leads to (1) volume exclusion of reactants,
(2) a reduction in the diffusion coefficient of macromolecules, and (3) a reduction in
the degree of mixing of molecules with an increase in reactant segregation.

Molecular crowding may alter observed equilibrium constants and/or may pro-
foundly affect the enzyme kinetic parameters. Some examples of the kinetic effects
are listed below:

*

*
* * *

*

A CB

21 3

Fig. 38.2 Visualization of crowding effects. A glass jar can be filled by large- (Jar 1), small-
(Jar 3), or medium-sized spheres. Jar 3 cannot further accommodate any of these spheres. However,
Jar 1 can still accommodate medium�/small-sized spheres in between (Jar 2). This is because large
spheres exclude more volume from around them. Similarly, a macromolecule in solution will
exclude others from its neighborhood. The position of each molecule is specified completely by
the position of its center. The closest any two molecules (assumed as spheres; box below) can
approach is a distance equal to the sum of their radii. Around each molecule is a spherical volume
from which the centers of all others are excluded. For instance, the volume around a macromolecule
from which the center of another similar molecule is excluded is a sphere of radius twice (eight
times the volume) that of a single molecule (case A in the box below)
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• Concentration of a molecule in the compact form is favored in the presence of a
space-filling substance, and the effect increases exponentially with the concentra-
tion of inert molecule. If we crowd the solution, the system will change to
minimize crowding – molecules will associate, thereby reducing the excluded
volume. If the enzyme can associate to an oligomer (with the enzyme activity
different from that of the monomer), then crowded solutions will favor the
oligomer (and alter the observed enzyme activity). The tetramer of glyceralde-
hyde 3-phosphate dehydrogenase is less active than the monomer – when
crowded by other proteins (as is the case inside the cell), its activity is reduced
which is consistent with excluded volume effects.

• Protein diffusion is slowed down by molecular crowding as other
macromolecules become obstacles to be avoided (compare a person moving to
the exit in a train station that is crowded versus empty). Weak protein associations
(with KD > 10�4 M) that are otherwise functionally relevant could well disappear
in dilute enzyme assays with which enzyme kineticists work in vitro. Such weak
protein–protein interactions may be specifically promoted by molecular
crowding. Evolution seems to have conserved not only functional sites of protein
molecules but also structural features that might determine the abilities of proteins
to associate with one another.

• If the ES complex is more compact than E, then crowding will enhance the
complex formation; this in turn lowers the KM. For such enzymes, the in vivo
KM is unlikely to be simulated by kinetic measurements from routine test tube
data. DNA replication in vitro requires the inclusion of high concentrations of
polymer crowding agents like polyethylene glycol – this enhances the interaction
between the DNA and the polymerase and other relevant proteins.

• During catalysis, the enzyme transition state may be expanded or contracted
during catalysis. Therefore, in a crowded solution, the activation energy is raised
or lowered, respectively; this in turn affects Vmax. The measured Vmax for pyru-
vate reduction by lactate dehydrogenase increases linearly with increasing
concentrations of ovalbumin, serum albumin, or dextran – a result consistent
with a decrease in the volume of the TS upon NADH binding.

After many failed attempts, Arthur Kornberg’s group was successful in
replicating the oriC plasmid in vitro, by including high concentrations of PEG in
the incubation mixture (Kornberg 2000, 2003). As Kornberg put it “the PEG
occupies most of the aqueous volume and excludes a small volume into which
large molecules are crowded. This concentration is essential when several proteins
are needed in the consecutive stages of a pathway.” The effect of crowding on
enzyme activity is reflected as one of his Ten Commandments – thou shalt correct

for extract dilution with molecular crowding!

Enzyme Size Matters The micro-viscosity of the medium, rather than the macro-
viscosity, determines the velocity of a diffusion-limited enzyme reaction. The
catalytic perfection of an enzyme can be benchmarked by comparing its kcat/KM

against the prevailing diffusion rate constant (Chap. 15) (Knowles & Albery 1977;
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Burbaum et al. 1989). By this yardstick, most enzymes studied have already
achieved “kinetic perfection” (see Table 15.2). Enzymes are some of the smallest
phenotypic units on which evolutionary forces act. But then, is catalytic perfection
the only feature of the enzyme selected by nature? This quickly brings us to other
questions like: Why are enzymes so big? Can we reduce the biosynthetic cost of an
enzyme further? Are there tradeoffs while choosing between these features? It
appears that other features like cost, stability, and regulation also figure significantly
in the evolution of enzyme structure (Benner 1989). As T. Dobzhansky (1973) puts it
– Nothing in biology makes sense except in the light of evolution. And enzymes are
no exception.

Enzyme active sites most often occupy a small percentage of their total surface
area. With the exception of those acting on polymeric substrates (like
polysaccharides, polypeptides, DNA or RNA), enzymes are relatively larger than
their corresponding substrate(s). Is there no selection pressure to trim them to a
smaller size while retaining catalytic function? In other words, are enzymes also
evolved to optimize biosynthetic cost to the cell? Enzymes are three-dimensional
protein boxes made of linear chain of amino acids linked to each other by peptide
bonds. The dimensions of this protein box increase only with the cube root of its
molecular weight (Fig. 38.3). A simple calculation will show that to achieve a
5 times increase in the length “x” of the protein box, we need about 100 times
increase in the molecular weight of that protein. Taken together with the relative
sizes of the protein and the corresponding substrate that occupies the active site on its
surface, it seems that enzymes are not really that big after all.

Almost 70% of the cellular energy is spent toward protein synthesis – larger
enzymes are more expensive. Considering such high biosynthetic cost, it is not
surprising that catalytic efficiency of an enzyme is not the only feature selected for
by nature. Improvements in catalytic perfection beyond a point become counterpro-
ductive – an incremental increase in efficiency may require substantial increases in
biosynthetic investment. This is conceptually illustrated through an imaginary
example in Table 38.8.

Larger size of a polypeptide enzyme ensures the proper positioning of the active
site residues required for most effective catalysis. Therefore, catalytic efficiency
could be improved by accommodating better design through an increase in material
input (increase in the number of amino acid residues per catalyst; E1–E3 in
Table 38.8). Beyond a point however, the gain in catalytic efficiency does not justify
the large investment in the size increase. Natural selection will prefer such a cost-

x

3 Molecular  weightx

and 

Molecular  weight     Chain  length
Protein

Box

Fig. 38.3 Relation between

the three-dimensional size of

an enzyme, its molecular

weight, and the polypeptide

chain length
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efficient catalyst. Yet an increase in the number of less efficient enzyme molecules in
principle could compensate for and support the required metabolic flux rate (see the
imaginary example E4 whose kcat/KM is not diffusion controlled; Table 38.8). For
example, over-expression of less efficient mutant enzyme forms is known to ade-
quately complement the host defect. A case in point is L-methionine biosynthesis in
E. coli – two different isoforms can support this pathway. The B12-dependent
enzyme is a larger polypeptide (130 kDa) than the corresponding non-B12-dependent
isoform (99 kDa). Although the B12-dependent form is larger, this biosynthetic cost
is offset by its 100 times superior kcat value. Everything else being equal, in terms of
cost, more than 75 non-B12-dependent enzyme molecules are required to replace
each B12-dependent enzyme molecule for the same catalytic need (recall that
Vmax ¼ kcat � [Et]). The organism employs the larger isoform whenever it has access
to B12 but otherwise resorts to many more molecules of the smaller isoform. Clearly,
an enzyme is also selected by nature for its biosynthetic cost efficiency.

Then Why Are Enzymes Big? It is obvious from the previous paragraphs that
evolutionary pressures do act to optimize enzyme size (biosynthetic cost). Nonethe-
less enzymes in general are perceived as large molecules compared to their
substrates (Srere 1984). This is because we consider size in relation to linear
dimensions rather than volume or mass. As noted earlier, however, the dimensions
of a protein box increases only with the cube root of its molecular weight (Fig. 38.3).
Polypeptides in the size range of 30–50 kDa make up more than 50% of the total
cellular proteins; only 3–5% proteins are found above the 80 kDa range. No naturally
occurring enzymes with polypeptide chains of less than 50 amino acid residue length
are known. Some of the smallest enzymes known include the following: (1)
4-oxalocrotonate tautomerase consists of a 62-residue monomer but functions as a
hexamer; (2) acylphosphatase consisting of a 98-residue monomer is one of the
smallest enzymes known; it catalyzes the hydrolysis of acylphosphates; and (3) the
HIV protease functions as a homodimer; the active site lies between the identical
subunits made up of 99 amino acids. Among synthetic organic chemists, proline is
considered the smallest chiral catalyst, and it catalyzes asymmetric aldol reactions.

Table 38.8 Catalyst size and relative biosynthetic cost

Form

Enzyme size
(number of
amino acid
residues)

Notional catalytic
efficiency [(kcat/
KM)/Diffusion rate]

Number of enzyme
molecules required to
achieve same relative flux

Relative
biosynthetic
cost

E1 10 0.001 10,000 1.000
E2 100 0.100 1000 1.000
E3 1000 1.000 100 1.000
E4 500 0.800 125 0.625
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The rate accelerations, however, are nowhere comparable to polypeptide-based
enzymes. Lastly, if protein enzymes are considered big, RNA enzymes are even
bigger. A short discussion on nonprotein catalysts may be found in the next chapter.

Hexokinase (~50 kDa protein) is about 70 times the combined molecular masses
of glucose and Mg-ATP. Moderately sized substrates like glucose make use of as
many as 15 or more hydrogen bonds for proper binding to the enzyme. These
considerations bring us to question the purpose of relatively larger size of an
enzyme. The following points may be considered.

• Enzyme active sites most often occupy a fraction of their total surface area. A
typical substrate (like glucose for hexokinase) covers 10–15% of the total enzyme
surface area and occupies 2–3% of its total volume. But active site as a rigid entity
is not acceptable. They should be flexible enough to bind and release substrate or
product but rigid enough to best fit the transition state. The bulk of the enzyme
that does not constitute the active site is needed to maintain the active site in
geometry faithful to its transition state structure. Enzymes have evolved for
conformational flexibility, and this comes with a cost. Their large size ensures
that the interaction of the substrate with the active site alters the global confor-
mation of the enzyme in a meaningful way – the active site shifts from an initial
substrate-specific geometry to a transition state-specific geometry. In addition, in
some cases, interactions (electrostatic!) between the enzyme and its substrate
beyond the active site do contribute to rate accelerations.

• Some enzymes, in addition to acting as catalysts, also serve as sensors. To
accommodate such regulatory features, the protein box is anticipated to display
additional sites to bind the regulatory ligands. Larger proteins have enough
surface area for multiple interactions through allosteric sites (such as glutamine
synthetase; Chap. 37). Cooperative interaction between different sites requires
that the binding information be transmitted across space through the conforma-
tional changes in the polypeptide. For example, hemoglobin (long considered an
honorary enzyme!) has distinct sites and conformational states to bind oxygen,
carbon dioxide, and 2,3-bisphosphoglycerate.

• Some enzymes harbor multiple functions on them and have multiple domains.
Domain structure provides for combining catalytic and regulatory properties and
protein–protein interactions. Protein–protein interactions are the rule rather than
the exception. Through channeling (see below), metabolic advantages accrue to
the cell besides the expected kinetic advantage.

We may conclude that the requirements for catalytic perfection, accommodation
of regulatory site(s), and/or conformational flexibility are not necessarily congruent
properties. One or more of these features may require that others are somewhat
compromised. The ultimate design of an enzyme catalyst may be the result of
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tradeoffs between catalytic efficiency, protein stability, biosynthetic cost, and inclu-
sion of regulatory features. Fortunately the goal of a Biochemist and that of Natural
Selection is not congruent. This leaves enough scope for enzyme engineering and
redesign.

38.5 Consecutive Reactions and Metabolite Channeling

If one focuses on adjacent reaction steps inside a cell, the study of enzymes in vivo
quickly becomes the study of a metabolic pathway. In coupled enzyme assays (e.g., see
Fig. 12.2; Chap. 12 Principles of enzyme assays), we can deliberately couple almost any
two enzymes of our choice, provided they share a substrate–product pair. In the cellular
context however, enzymes of metabolism exist in pathways, and they do not function in
isolation. The product of the previous enzymatic step feeds into the next enzyme as its
substrate.

Consecutive Steps in Metabolism Enzymes catalyzing the consecutive steps of a
metabolic sequence provide interesting insights into how metabolism is organized and
how it responds. The driver for metabolism is the desire for reactions to reach equilib-
rium. Nature has exploited this principle to couple reactions of metabolic pathways;
reactions are made spontaneous by adjusting the concentration of reactants and products.
The direction of an equilibrium reaction is decided by suitably adjusting the mass action
ratio (Γ). We have noted earlier (in Chap. 10) that continuous depletion of GA3P
(by GA3P dehydrogenase) maintains the ΔG negative for triosephosphate isomerase
(DHAP⇄GA3P) reaction and feeds DHAP into glycolysis.

So long as an enzyme is not saturated with the substrate, an increase in [S] could
stimulate the rate of that reaction – this relationship is typically Michaelian. As a
general rule, enzymes will operate with reactant concentrations in the region of their
KM or S0.5. This has two implications: (a) the catalytic potential of the enzyme is
better utilized and (b) the system tendency to revert to steady state (and stabilize [S])
is facilitated. Although individual enzymatic reactions are not at equilibrium in a
cell, the metabolic pathways are believed to be at, or close to, steady state. Only
when supply is balanced by demand, a steady state concentration of intermediate is
obtained. This means the concentrations of metabolic intermediates do not change
appreciably while there is a flux (flow of S ! P) through the pathway.

Consider a simple two-enzyme system with two consecutive irreversible reactions:

A!
E1 B!

E2 C

Assuming that both E1 and E2 display Michaelian behavior, the velocity of the first
step alone is given by
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v1 ¼
Vmax1 A½ �

KA þ A½ �

and of the second by

v2 ¼
Vmax2 B½ �

KB þ B½ �

However, rate of change in [B] is given by

d B½ �

dt
¼ v1 � v2ð Þ ¼

Vmax1 A½ �

KA þ A½ �
�

Vmax2 B½ �

KB þ B½ �

We can now consider three distinct cases. If v1 > v2, then B accumulates (increase in
[B]). Second, if v2 > v1, then [B] tends to zero; at the extreme, B may simply be
transferred from the active site of E1 to that of E2without any buildup of [B]. We will
have more to say about this phenomenon of channeling in the next section. The third
situation is where v1 ¼ v2 and the so-called steady-state levels of [B] are attained.
This [B]steady state is given by

B½ �steady state ¼ v1
KB

Vmax2 � v1

� �

The reader may look up the related treatment of a sequential two-step process
(Fig. 10.4 and the dish washing analogy!) and the accumulation of intermediate
presented in Chap. 10.

Coupled (natural or artificial) enzyme assays are often used in biochemical
analysis. From the above equation, it follows that E2 should ideally have a smaller
KB and a larger Vmax2, for efficient coupling. Enzymologists use much higher
activity of the second enzyme (E2 in the above case) to achieve very little or no
lag time (the time before the system enters steady state).

Substrate Channeling In the consecutive steps of a metabolic sequence
(A ! B ! C, as above), the steady-state level of B is also determined by its transit
time. This is the time required for the product B of the first enzyme (E1) catalyzed
reaction to diffuse to the active site of the next enzyme (E2). And it depends on
(a) the distance between the two sequential enzymes (E1 and E2) of the pathway and
(b) the exact diffusion coefficient of B in the medium between them. A range of
possibilities exist: a metabolic intermediate like B may completely equilibrate with
its pool in the surrounding medium, only a certain fraction of it may equilibrate, or it
may be directly transferred (channeled) to the next enzyme active site. The last
possibility – limiting case of direct transfer of B between active sites without any
release into the bulk phase – with the shortest transit time is called channeling.
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Enzymes exhibiting multiple activities (see Table 14.3; Chap. 14) are obvious
candidates to look for this phenomenon. Metabolite channeling in vivo may be
achieved through a range of sequential active site interactions (Fig. 38.4) enumerated
below.

• Direct channeling relies on the formation of protein tunnels that connect consec-
utive active sites, preventing metabolic intermediates from diffusing away. The
first molecular tunnel within tryptophan synthase was discovered in 1988. Indole
derived from the cleavage of indole-3-glycerol phosphate at one active site
traverses 25 Å through a protein tunnel to the other site where it condenses
with L-serine. The steady-state concentration of indole is extremely low as very
little leaves the enzyme into the surrounding medium. The translocation of
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Fig. 38.4 Possible interactions involving consecutive active sites of sequential reactions. The
product (X) from the first active site (E1) may be taken to the next one (E2) by a molecular tunnel or
a covalent tether. Channeling of X may also occur from E1 to E2 by their proximity (forming a
metabolon) or simple co-clustering. X equilibrates with the bulk metabolic pool only when there is
no channeling
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ammonia, derived from the hydrolysis of glutamine, also occurs frequently
through protein tunnels (Weeks et al. 2006). Channeling ammonia has been
discovered within carbamoyl phosphate synthetase, asparagine synthetase, gluta-
mine phosphoribosylpyrophosphate amidotransferase, glutamate synthase,
imidazoleglycerol phosphate synthase, and glucosamine 6-phosphate synthase.
Another example is the carbon monoxide channeling demonstrated in carbon
monoxide dehydrogenase/acetyl-CoA synthase. It is interesting to note that in all
these examples, the intermediate is not covalently bound to the enzyme but is

simply shepherded to another active site. The presence of molecular tunnels is
becoming a recurring theme in structural enzymology (we will have more to say
about this in the next chapter).

• Yet another strategy to ensure that metabolic intermediates are directed from one
active site to the next is by tethering (Fischbach and Walsh 2006; Perham 2000).
Both multifunctional polypeptides and multienzyme complexes belong to this
category. The tethered intermediates are held on a chemical leash, for example,
through lipoate, biotin, pantothenate, etc. In this assembly-line strategy, swinging
arms carry the reactant from one site to the other. Examples include all α-keto
acid dehydrogenase complexes, both type I and type II fatty acid synthases,
polyketide synthases, and nonribosomal peptide synthases.

• Most high-affinity protein–protein complexes (typical KD < 10�6 M) are readily
detectable. But when their interaction is weak or very weak (e.g., KD > 10�4 M),
many conventional approaches fail to detect them. At high enzyme
concentrations (and with crowded environment!) in vivo, ultra-weak interactions
also become important, despite their transient nature and low stability. Enzyme–
enzyme interactions can become more likely, and the preference for direct
metabolite transfer becomes accordingly far more favorable. Paul Srere coined
the term metabolon to denote a complex of sequential enzymes, which may
involve loosely or transiently associated proteins. Such a metabolon may have
the ability to channel a metabolic pathway, and it involves the preferential transfer
of an intermediate from one enzyme to a physically adjacent enzyme, with
restricted diffusion into the surrounding milieu. Carbamyl phosphate – dedicated
for pyrimidine biosynthesis versus arginine biosynthesis – in N. crassa is an
example. More recently, simple enzyme clustering was shown to accelerate the
processing of intermediates through proximity channeling. Co-clustering multiple
enzymes into compact agglomerates yields the same efficiency benefits as direct
channeling (Castellana et al. 2014; Banani et al. 2017). However, simply fusing
two enzymes together will not cause productive channeling (Sanyal et al. 2015).

Channeling is an example of first-level metabolic organization, indicating that
cell is not a simple bag of enzymes (Mathews 1993). Regardless of how it is
achieved, channeling does provide certain advantages to the cell. Namely, it could
(1) serve to protect toxic, unstable, or scarce metabolites by maintaining them in the
protein-bound state, (2) provide a metabolic advantage by maintaining concentration
gradients, (3) protect the solvation capacity of cell water and reduce solute burden,
(4) provide kinetic advantages in terms of rate accelerations beyond bulk diffusion
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rate limitation, (5) facilitate a quick response of the pathway to inhibitors and
activators, and (6) provide a regulatory feature through the dynamic formation/
destruction of the metabolon complex. Channeling in a limiting case (through
molecular tunnels) leads to one-dimensional diffusion of reactants. This reduction
of dimensionality increases the speed and economy of diffusion-controlled reactions
(as expected intuitively!) (Hardt 1979).

Channeling is an attractive concept that makes much in vivo metabolic sense. But
to provide experimental proof of channeling is a challenge. Channeling is suspected
if an endogenous intermediate produced in a pathway fails to mix (either partially or
completely) with the same intermediate produced exogenously by an enzyme
located elsewhere in the cell. Experimentally, channeling can be observed by
providing a radiolabeled precursor to the pathway and monitoring either the product
or an intermediate; label mixing with pools of nonradioactive intermediates (and
subsequent dilution) leads to diminished specific radioactivity. Channeling implies
facilitated transfer of channeled intermediates. Conversely, restricted access by
exogenous intermediates to the pathway is expected. Confirmation of metabolite
channeling demands multiple experimental approaches, with each approach failing
to disprove it (rather than proving it!). Besides analysis of its advantageous kinetic
features (like reduction in transient times, enhanced in vivo reaction flux rates,
demonstration of direct transfer of intermediates, metabolite compartmentation in
the absence of organelles, etc.), several approaches could be used to establish the
physical proximity of enzymes in a metabolon. These tools include co-fractionation/
co-localization of enzyme activities, use of bifunctional cross-linking reagents, and
immunoprecipitation and pull-down assays. Partial or complete reconstitution of a
functional complex from purified protein components also offers reasonable support
for metabolite channeling.

Metabolic Branch Points – Enzymes Competing for a Metabolite When differ-
ent substrates compete for the active site of the same enzyme, it can be used to glean
useful kinetic insight to enzyme mechanism (see Chap. 23 “Alternate Substrate
Interactions”). Then again, two different enzymes may compete for the same sub-
strate. For example, L-arginine is a substrate for both nitric oxide synthase and
arginase in mammalian cells. There are effectively two kinds of enzyme–substrate
competitions in vivo. A single metabolite may be substrate for more than one
enzyme or one enzyme may accept different metabolites as its substrate.

Many enzymes vying for the same substrate (metabolite) are found at metabolic
branch points. Consider the oxaloacetate node. Intracellular oxaloacetate concentra-
tion is very low, and much of it is enzyme bound. The mitochondrial oxaloacetate is
available to citrate synthase, malate dehydrogenase, phosphoenolpyruvate
carboxykinase, and aspartate aminotransferase. However, distinct cellular metabolic
states decide the flow of oxaloacetate either into Krebs cycle (citrate synthase) or
toward gluconeogenesis (phosphoenolpyruvate carboxykinase). A host of intensive
and extensive properties influence the overall rate of an enzyme-catalyzed reaction in
cellular metabolism (Fig. 37.1; Chap. 37 Regulation of enzyme activity). Of these,
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relative affinities for a common substrate and concentrations of competing enzymes
(Vmax values) significantly decide the fate of a branch point metabolite. The enzyme
with a lower KM will win this competition and operates closer to its full capacity.
Such an enzyme binds more substrate because of its higher affinity; also, enzyme
present at higher concentration hogs larger share of the common substrate. This in
turn generates a steeper substrate gradient near its vicinity. In general, relative KM

values of the competing enzymes dictate the fate of that branch point metabolite. For
instance, phosphofructokinase and glucose-1-phosphate uridyltransferase drain glu-
cose-6-phosphate as their respective hexose phosphate substrates – fructose-6-phos-
phate and glucose-1-phosphate. But with a much lower KM for its substrate,
phosphofructokinase has a higher preference for hexose phosphate; significant
glycogen synthesis begins only after phosphofructokinase is fully saturated. The
following examples will illustrate this point further. Whereas many more equally
interesting cases do exist, the three examples presented below carry a personal bias:

1. Fungal arginine metabolism: Filamentous fungi are capable of biosynthesizing
arginine starting from glutamate and via ornithine. They can also utilize arginine
supplied from outside. Most of the cellular arginine (and ornithine) is located in
the vacuoles, and the cytosolic arginine concentrations are much lower. Arginase,
vacuolar arginine transporter, and arginyl-tRNA synthetase compete for this
arginine pool (Fig. 38.5, panel A). At most cellular concentrations of arginine,
the vacuolar transporter would be more saturated than arginase. This ensures that
significant arginine catabolism ensues only after the vacuolar reserves are filled
up. Low cytosolic concentration of arginine enables arginyl-tRNA synthetase to
compete successfully with arginase; on the basis of their relative KM values,
arginyl-tRNA synthetase will be operating at >90% maximum while arginase is
hardly active. When the pool of arginine in the cytosol increases rapidly (due to
externally supplied arginine), arginase comes into action.

2. Metabolic fate of 2-oxoglutarate: Cellular 2-oxoglutarate occupies a branch point
that connects carbon and nitrogen metabolism. It is either oxidized to succinyl-
CoA (by 2-oxoglutarate dehydrogenase complex and taken through further steps
of Krebs cycle) or gets reductively aminated to glutamate (by NADP-glutamate
dehydrogenase and leads to biogenesis of glutamate family amino acids). Respec-
tive 2-oxoglutarate KM values for the two enzymes dictate how it partitions
between the two routes – cellular energy needs versus biomass (Fig. 38.5, panel
B). The 2-oxoglutarate dehydrogenase complex is effectively fully saturated at
high [2-oxoglutarate], and only then is significant glutamate synthesis expected.
In another example, this split ratio is an important determinant in the glutamate
fermentation by C. glutamicum.

3. Pyruvate branch point: Pyruvate largely originates from phosphoenolpyruvate in
glycolysis. The flux away from pyruvate is defined by four enzyme activities in
A. niger. Except malic enzyme, others (pyruvate carboxylase, alanine amino-
transferase and pyruvate dehydrogenase complex) have sub-millimolar affinity
for pyruvate (Fig. 38.5, panel C). Scrutiny of their relative KM values and
concentrations of competing enzymes is a prerequisite to attempt diverting
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Competing reactions at L-arginine (A), 2-oxoglutarate (B), and pyruvate (C) nodes are illustrated.
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pyruvate flux to lactate. This fungus does not produce lactate. Introducing a
lactate dehydrogenase with appropriate kinetic features could in principle facili-
tate lactate formation (Dave and Punekar 2015).

Underground Metabolism Most enzymes recognize certain substrate analogs and
are able to use them as alternative substrates. In some cases these analogs are
endogenous, natural metabolites. Under normal conditions they are not accessible
or acted upon by such enzymes. Such reactions catalyzed by normal enzymes acting
on substrate analogs which themselves are endogenous metabolites constitute under-
ground metabolism. For example, the biosynthetic pathways of arginine and proline
involve analogous reactions on different substrates. N. crassa strains with deletions
of the first two enzymes of proline synthesis (γ-glutamyl kinase and γ-glutamyl
phosphate dehydrogenase) are viable because the deacetylase, which normally
deacylates N-acetylornithine, promiscuously deacetylates N-acetylglutamate
semialdehyde. Thus, early part of arginine biosynthesis gets short-circuited to
generate proline using arginine biosynthetic enzymes.

Yet another example of underground metabolism is the reduction of 2-oxoglutarate
to 2-hydroxyglutarate. 3-Phosphoglycerate dehydrogenase has an interesting dual
function. The S. cerevisiae enzyme functions in the anabolic pathway of serine
synthesis and may also reduce 2-oxoglutarate. The latter activity is manifest under
physiological states when excess 2-oxoglutarate and reducing power coexist in vivo.
Consistent with this idea, anaerobic growth of E. coli is also inhibited by external
supply of 2-oxoglutarate, and this inhibition is reversed by serine addition. Accumu-
lation of 2-hydroxyglutarate (considered an oncometabolite) can modulate the
activities of 2-oxoglutarate-utilizing dioxygenases. Wild-type isocitrate dehydroge-
nase (IDH1 and IDH2 isoforms) catalyzes the NADP-dependent reversible conversion
of isocitrate to 2-oxoglutarate. But cancer-associated gain-of-function mutations (at
substrate-binding residues namely, Arg 132 in IDH1 and Arg 140 and Arg 172 in
IDH2) enable mutant IDH1/2 to catalyze the NADPH-dependent reduction of
2-oxoglutarate to R(-)-2-hydroxyglutarate (D-2-hydroxyglutarate) (Fig. 38.5, panel
B) (Dang et al. 2009).

Broader substrate specificity (enzyme promiscuity and moonlighting activities of
some enzyme proteins; Chap. 14) of some enzymes manifests itself as underground
metabolism. And it has been well argued that underground metabolism is a testing
ground for evolution of metabolic pathways.

38.6 Summing Up

A tiger in the cage is not the same as a tiger in the jungle! Enzyme study in vivo is
much different from that in vitro due to subcellular organization and compartmenta-
tion. The aqueous phase of the cytoplasm is crowded and often has high enzyme
concentrations. The Michaelis-Menten formalism is not suitable in vivo for many
such enzymes (where [St]> > [Et]), is not true). Further, the cell provides a single
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consensus medium common for all its enzymes functioning in that compartment,
whereas an enzymologist’s test tube is optimized for the enzyme of his choice. Many
interactions and regulatory features are simply not there in such a clean system. Rate
laws determined in vitro with purified dilute homogeneous enzyme solutions may
not reflect the enzyme–enzyme interactions that are important in vivo. Molar
concentrations of many enzymes in vivo are quite high because of which a consid-
erable portion of the substrate may be enzyme bound. For small confined volumes
(as we see in cellular compartments such as lysosomes, mitochondria, and
peroxisomes), few molecules of enzyme or substrate may mean a significantly
high molar concentration. Cytoplasm has a low micro-viscosity and a high macro-
viscosity because of macromolecular crowding. Molecular crowding in turn may
alter observed equilibrium constants and/or may profoundly affect the enzyme
kinetic parameters. The ultimate design of an enzyme catalyst in vivo may therefore
be the result of tradeoffs between catalytic efficiency, protein stability, biosynthetic
cost, and inclusion of regulatory features.

Erwin Chargaff held that But the cell is certainly more than a chemical slum.
What is this more? The study of enzymes in vivo quickly becomes the study of a
metabolic pathway. The product of a previous enzymatic step feeds into the next
enzyme as its substrate. This may occur with or without the intermediates freely
equilibrating with the cellular metabolite pool. Metabolite channeling may occur
through a range of sequential active site interactions. Many enzymes may compete
for a single metabolite (at the branch point) or a single enzyme may accept more than
one metabolite as its substrate. Enzymology in vivo thus merges into the complexity
of cellular metabolism. A study in systems biology will not be complete without
incorporating enzymes and their various properties.
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If we wish to catch up with nature we shall need to use the

same methods as she does, and I can foresee a time in which

physiological chemistry will not only make greater use of

natural enzymes but will actually resort to creating synthetic

ones.

–Emil Fischer, 1902 Nobel Lecture

There can be no doubt that study of enzymes will continue to occupy the prime

position in modern biology (and chemistry!) (Editorial, Closing in on catalysis

2009). This much is amply obvious from each and every context and examples

that we have come across in the preceding chapters. The study of enzymes in

isolation, most often in purified form, has occupied much of the time in this field.

However, as we have seen in the last chapter, the importance of understanding

enzyme function in vivo is very much appreciated now; this will form one of the

frontiers in enzymology. Present emphasis on systems biology is a pointer in this

direction. Enzymes in sequence, in combination with other enzymes and other

cellular components, bring in interesting features often not manifested by an enzyme

in isolation – coupled reactions, regulatory networks, and distributed control of

metabolism are some of them.

Major metabolic pathways and the enzymes that function in them are well

documented. But many more novel reactions and corresponding enzyme catalysts

are being discovered on an almost regular basis. For instance, let us consider a few

recent representative cases:

1. Most bacteria and all archaea synthesize glutaminyl-tRNA indirectly. The glutamate

charged onto tRNAGln is converted to glutamine in the second step by a tRNA-

dependent amidotransferase. The two enzymes form the “glutamine transamidosome”

that also involves channeling of ammonia (Ito and Yokoyama 2010).
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2. The dehydroalanine moieties of the lantibiotic nisin are formed from the Ser

residues of the peptide by the action of lantibiotic dehydratase. This enzyme

glutamylates Ser side chains using glutamyl-tRNAGlu for activation; subsequent

glutamate elimination results in the dehydroalanine formation (Ortega et al. 2015).

3. The biosynthesis of lincomycin A (a sulfur-containing lincosamide antibiotic)

recruits two bacterial thiols (mycothiol and ergothioneine) where mycothiol acts

as the sulfur donor after thiol exchange (Zhao et al. 2015).

4. Riboflavin (vitamin B2) is a well-known redox cofactor in a wide variety of

flavoproteins. Addition of a fourth ring to its existing three-ring system generates

a riboflavin derivative (Clarke and Allan 2015). This previously unknown cofac-

tor catalyzes new types of chemistry and is crucial for the decarboxylation of an

intermediate in coenzyme Q biosynthesis.

5. A SAM-dependent enzyme-catalyzed pericyclic transformation leads to the for-

mation of the natural product leporin. Such novel roles for SAM (S-adenosyl-L-

methionine) are likely to be found in other examples of enzyme catalysis (Ohashi,

et al. 2017).

These are just a few examples that represent author’s personal bias. But certainly,

many more novel reactions and enzymes will continue to be discovered and reported.

We will now consider aspects of enzymology where rapid progress is being

made. Understanding the rate enhancements of enzymes continues to be a fundamen-

tal challenge of mechanistic enzymology (Herschlag and Natarajan 2013). These

and other topics are anticipated to attract much attention of enzymologists in the

foreseeable future.

39.1 Transition–State Analysis and Computational Enzymology

Conventional view of enzyme catalysis treats the transition state (TS) in thermody-

namic terms. Equilibrium between reactants and the TS is assumed here; tight

binding to the enzyme active site would sequester the TS from solution and increase

the reaction rate. Kinetic isotope effects can provide direct information on the

enzymatic TS (Chap. 27 Isotope effects in enzymology). When the intrinsic kinetic

isotope effects (KIEs) are available for an enzyme reaction, then the TS structure can

be deduced in the usual physical organic chemistry sense. Interpretations of KIEs

give detailed bond order and geometric features of the transition state for an enzyme.

In turn, molecular electrostatic potential surfaces of these transition-state depictions

guide chemical synthesis of transition-state analogs, yielding excellent, high-affinity

inhibitors (Schramm 2013). Complexes of such inhibitors with their corresponding

enzymes provide structural models for computational analysis of enzymatic transi-

tion states. Taken together, KIEs and computational enzymology provide a

conceptually complete picture of the TS in an enzymatic reaction.

There is a progressive appreciation that the enzymatic transition state is a state of

maximum free energy. And this may not be simply captured as an equilibrium

between the Michaelis complex, transition state, and products. Dynamic
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contributions of protein motion must be incorporated to provide a full understanding

of enzyme catalysis. Besides applications of kinetic measurements, isotope effects,

time-resolved spectroscopy, NMR, and X-ray crystallography, computational enzy-

mology is making significant contributions in understanding the enzyme TS. Most

experimental techniques have focused on conformational changes that occur in

microsecond to millisecond timescales; these times are often correlated with cataly-

sis. These timescales are much slower than the TS lifetimes that occur on a bond-

vibrational timescale. Chemical bond-forming/bond-breaking steps of interest

(in enzyme catalysis) have vibrational modes in the low femtosecond timescales

(Fig. 11.3). They are valuable in understanding TS but otherwise are experimentally

difficult to access. This is where developments in computational enzymology are

making some headway. Bond vibrations during enzyme catalysis can be simulated

with some accuracy in the femtosecond to the nanosecond timescale. This provides

computational dynamic access to the timescales of the TS lifetimes. However,

commonly encountered enzymatic catalysis timescales (10�2 s) require enormous

computational time; and this is far beyond continuous dynamic calculations possible

at present. This frontier in computational enzymology and of complex enzyme

models was recognized with chemistry Nobel Prize in 2013 (Warshel 2014). The

emergence of the quantum mechanical/molecular mechanics (QM/MM) approach

allows one to ask what the origins of the catalytic power of enzymes actually are.

The enormous increase in computer power makes it virtually certain that computer

simulations will increasingly contribute in modeling molecular enzyme cataly-

sis (Garcia-Viloca et al. 2004). This approach also promises to capture the

contributions of subtle protein molecular dynamics to enzyme rate accelerations.

39.2 Single-Molecule Enzymology

The Michaelis-Menten equation (refer Chap. 15) is a highly satisfactory description

of kinetic data involving a very large number of enzyme molecules in the assay.

However, all enzymemolecules are not synchronized with each other in an ensemble-

averaged kinetic measurement. The extraction of dynamic information from such an

asynchronous assembly is complicated and difficult. A single enzymemolecule gives

kinetic signals that reflect the dynamic states of that individual catalytic entity. This

dynamic information is lost in the average signals of the ensembles. Reactions

involving single enzyme molecules can now be examined by the advances in

fluorescence and other time-resolved spectroscopic techniques (Smiley and Hammes

2006). These techniques combined with computational approaches allow real-time

access to study the dynamic behaviors of individual molecules.

Would the ensemble-averaged enzyme kinetics also hold for a single enzyme

molecule? This interesting question has attracted serious attention in the recent times

for the following reasons. Single-molecule behavior is a particularly powerful way

of uncovering (a) mechanistic pathways and intermediates, (b) how enzyme confor-

mational fluctuations affect catalytic activity, and (c) heterogeneities hidden in the

ensemble average. The turnover events of a single enzyme molecule are intrinsically
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stochastic. We find the sequence of the time intervals between consecutive turnover

events (the waiting times, denoted as τ), as a function of the turnover index number.

The average waiting time (denoted by hτi) of a single enzyme molecule plotted

against 1/[S] mimics the linear Lineweaver–Burk plot (refer Chap. 17) recorded in an

ensemble measurement. The rate equation for single enzyme molecule kinetics is

shown below.

1

τh i
¼

χ
2 S½ �

CM þ S½ �
compare this with v ¼

kcat Et½ � S½ �

KM þ S½ �

� �

The reciprocal mean waiting time determined for a single enzyme molecule is thus

related to enzyme-catalyzed velocity in an ensemble measurement (1/hτi ¼ v/[Et]).

While the Michaelis–Menten relation continues to hold for the single enzyme mole-

cule kinetics, interpretations of kinetic constants are different. Specifically, the kcat
(formally represented as χ2 for single enzyme study) measured at saturating [S] is a

weighted harmonic mean of the different catalytic turnover rate constants represented

in the single enzyme over time. Similarly, KM (¼ (kcat + k�1)/k1 or CM for a single

molecule) also acquires an ensemble-averaged meaning (Min et al. 2005).

We notice that single-molecule and ensemble-averaged Michaelis–Menten kinetics

can be reconciled (Walter 2006; English et al. 2006). An interesting insight from single-

molecule study is that the waiting timesmeasured at high [S] levels follow an asymmet-

ric probability distribution. The long time-span of the catalytic turnover rate constant

(i.e., kcat) indicates that the single enzyme molecule’s catalytic velocity fluctuates over

a broad range (from 10�3 to 10 s) of timescales. These catalytic fluctuations point

to conformational isomers of an individual enzyme slowly interconverting over time.

Conformational heterogeneity has been experimentally observed in the studies of

cholesterol oxidase, staphylococcal nuclease, and a few other enzymes. A single

enzyme molecule displays inevitable, stochastic fluctuations in its catalytic activity.

The effects of such fluctuations would be less significant for a system comprising of

large number of enzyme molecules. However, many processes inside cells rely on the

activity of a single enzyme molecule, such as in DNA replication, transcription,

translation, and protein transport along the cytoskeleton. Stochastic fluctuations due

to low copy number of enzymes have important physiological implications for cells/

organelles. These are now being probed on a single-molecule basis in vivo.

39.3 Structure-Function Dissection of Enzyme Catalysis

As discussed earlier in this book (Chap. 8), both conformational flexibility and

protein motion are very important for enzyme catalysis. A structure–function

approach to understand enzyme action uses a combination of kinetic (including

rapid, transient kinetics) and structural techniques. The ultimate goal of such a study

is to develop an in-depth mechanistic understanding of enzyme function. The field

has traditionally made use of protein chemical modifications, spectroscopic tools

(like fluorescence, circular dichroism, etc.), and more recently molecular biology
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tools (like generation of site-directed mutants, truncated or chimeric enzyme

proteins). Whereas solution NMR has provided some information on enzyme

molecular dynamics (although at timescales much slower than most events in

enzyme catalysis), as of now this structural tool is limited to small-sized proteins.

Mass spectrometry of larger polypeptides and oligomeric proteins is also coming of

age. Much of direct structural information on enzymes has come from X-ray

crystallography – mostly presenting to us a static picture of the enzyme. As aptly

stated by the late Jeremy Knowles (biochemist and professor at Harvard University)

– “studying the photograph of a racehorse cannot tell you how fast it can run”; and

thus there is a limit to what a snapshot protein structure can reveal. Although

snapshots of enzyme bound to substrate, product, or transition-state analogs are

valuable, they do not capture structural dynamics of catalytic action. Nevertheless,

presence of molecular tunnels in enzymes like tryptophan synthase would not have

been apparent without detailed structural inputs.

Overwhelming biochemical, mechanistic, and mutational data for any enzyme

study must be supplemented by structural approaches. More recent developments in

computational structure prediction (see below) provide complementary inputs.

Structure-based drug discovery has also benefited from these approaches. One

remarkable success in this venture is the development of HIV protease

inhibitors (Wlodawar and Ericson 1993). These inhibitors were rationally designed

from the knowledge of the structure and mode of action of aspartyl proteases. The

discovery of saquinavir, the first protease inhibitor, made use of the promising

transition-state mimic chemistry.

A fine balance between structural rigidity and conformational plasticity results in

the unique catalytic power of enzymes. And structural enzymology also aims to

address catalytic motions in detail (Ramanathan and Agarwal 2011). How enzymes

achieve a catalytically competent state has become approachable only recently

through experiments and computation.

Site-Directed Mutagenesis and Crystal Structures Application of molecular

biology tools to probe enzyme function has matured over the last couple of decades.

The reader may refer to standard textbooks of molecular biology and many protocol/

recipe books on how to construct site-directed mutants and to genetically engineer

enzymes. The relevant cDNA and an expression system to obtain the mutant enzyme

are all that are required (Fig. 3.5). The native and various mutant enzyme forms are

then subjected to rigorous structural analysis through X-ray crystallography, circular

dichroism spectra, and other tools. Excellent insights continue to be gathered on

residues critical for catalysis, binding, and structural stability/flexibility for many

enzymes.

Site-directed mutagenesis offers a powerful approach to rationally modify an

enzyme (Wagner and Benkovic 1990). It enables enzymologists to selectively replace

active site residue (or any others) and ask some very interesting mechanistic

questions. Yet site-directed mutagenesis does not fully account for enzymatic

catalysis, because the effects of individual substitutions on catalysis are neither

additive nor independent. At the resolution of amino acid residue level, one can
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check whether a given residue is relevant for binding and/or catalysis. This may not

give unambiguous answers as, for many enzymes, substrate binding and catalytic

residues often overlap; and they may not be clearly demarcated in the enzyme active

site. In fact, few examples show that specificity can reside beyond the amino acids

directly interacting with the substrate – requiring major structural changes with loop

grafting, etc. Nature presents us with 20 naturally occurring amino acids in proteins;

an opportunity exists to replace a given residue by any one of the other 19. But still the

choice is limited because very few of these substitutions are more conservative than

others. For instance, Val, Ile, and Leu are often interchangeably accepted; also, a Glu

residue may replace Asp and vice versa. Alanine scanning mutagenesis is a mature

tool and is often used to determine the contribution of a specific residue to the stability

and/or function of a given protein. Alanine is chosen because its R group (methyl) is

least disruptive and imitates the secondary structure preferences of many other amino

acids. Such Ala replacements are usually done by site-directed mutagenesis or

generated randomly by creating a PCR library.

Standard site-directed mutagenesis is largely limited to 20 natural, proteinogenic

amino acid residues. Nonnatural side chains often provide mechanistic insights. One

approach has been to replace the relevant residue by Cys (through SDM) and then

alkylate that Cys-SH by a suitable reagent. Interesting structural variations of imidazole

side chains, with subtle pKa changes, could then be tested (Earnhardt et al. 1999). In

another example, the catalytic activity of glutamine synthetase R!C mutant was

rescued back by chemically modifying the Cys-SH back to an arginine analog by

covalent modification with 2-chloroacetamidine (Dhalla et al. 1994). More recently,

sophisticated tools and technology are in place to directly incorporate nonprotein amino

acids into proteins in a position-specific manner. Nonnatural amino acids may be

introduced into proteins by manipulating in vitro protein translation as well as through

in vivo strategies by expanding the genetic code (Hendrickson et al. 2004). Pyrrolysine,

the twenty-second protein amino acid, was found at the active site ofmethyltransferases

from methane-producing archaea. Like the 20 common amino acids, pyrrolysine is

synthesized in the cytoplasm and incorporated at a specific position during the transla-

tion of the growing polypeptide chain (Atkins and Gesteland 2002; Ragsdale 2011).

The pyrrolysine biosynthetic cassette could be used to incorporate other useful

modified amino-acid residues into proteins.

Examples of SDM to probe enzyme function have rapidly grown. We will look at

only a few case studies to illustrate main issues and highlight some difficulties with

this approach. The first significant effort to change the substrate specificity of an

enzyme was with L-lactate dehydrogenase.

• Holbrook’s group achieved a highly active, malate-specific dehydrogenase by

redesigning Bacillus stearothermophilus lactate dehydrogenase framework

(Wilks et al. 1988; Clarke et al. 1989; Wagner and Benkovic 1990). This involved

three amino acid replacements, namely, D197N, T246G, and Q102R.

• Human arginase II is highly specific and acts on arginine to produce ornithine and

urea. A single amino acid replacement (the N149D variant) converts this enzyme

into an agmatinase with almost no activity on arginine (Lopez et al. 2005).
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• Glucose isomerase site-directed mutagenesis has resulted in enzyme forms with

altered pH optima and altered divalent metal ion specificity.

• The rational modification of enzymes to change or extend their coenzyme speci-

ficity has also been possible (Moon et al. 2012). The NADP-specific glutathione

reductase was altered into a NAD-dependent enzyme. Similar efforts in other

dehydrogenases such as glutamate dehydrogenase are reported.

• There are many attempts to rationalize the enzyme stability as a useful parameter

through site-directed mutagenesis (Bryan 2000). These have been largely empiri-

cal because we do not yet fully understand what contributes to protein stability.

• Site-directed mutagenesis provides enzymologists an opportunity to tinker with

active site residues and ask some really interesting mechanistic questions. Almost

every position in the subtilisin sequence has been subjected to SDM. The three

critical active site catalytic residues S221, H64, and D32 of subtilisin were

evaluated through this approach (see Chap. 36 Chymotrypsin). For the subtilisin

S221A mutant (which still retains some activity!), the reaction cannot proceed by

the usual serine acyl-enzyme intermediate (ping-pong mechanism). While such a

mechanistic change from an acyl-enzyme to a direct water attack may be possible,

the converse is much more difficult because the essential nucleophile would be

missing. It is very easy to lose enzyme function but much more difficult to gain a

new function through SDM!

• The H95 residue of triosephosphate isomerase is important for catalyzing the

enolization of the substrates. The H95Q mutant is impaired in its ability to

stabilize this reaction intermediate. There is an associated change in the proton

transfer pathways mediated by the mutant enzyme (Nickbarg et al. 1988).

• The cancer-associated isocitrate dehydrogenase mutant (R132H form of IDH1

isozyme) loses its native function but is able to catalyze the NADPH-dependent

reduction of 2-oxoglutarate to R(-)-2-hydroxyglutarate (D-2-hydroxyglutarate)

(Dang et al. 2009).

Site-specific mutagenesis approach has undoubtedly extended our knowledge of

enzyme mechanism and function. The necessary first step in the kinetic analysis of a

mutant enzyme is to show that any observed change in catalytic activity is solely

because of the targeted alteration. For this, the enzymologist must be prepared to

analyze both the structural and functional consequences of the mutation(s) made. To

begin with, this should include a thorough evaluation of kinetic parameters like KM,

Vmax, kcat, and kcat/KM. Gross structural changes in a mutant enzyme can be

discerned through techniques like circular dichroism and gel filtration chromatogra-

phy. X-ray crystallography of the native and mutant enzyme forms (as well as their

frozen structures bound to substrate, product, inhibitors, and transition-state analogs)

offers valuable information. Of course, the pretty structures should conform to the

hard data (Miller 2007). It is a distinct possibility that mutant enzymes might follow

a different reaction pathway. This was highlighted above, with examples of

triosephosphate isomerase and serine proteases. Therefore, a detailed mechanistic

analysis is routinely needed for proper appreciation of the effects from site-directed

mutations.
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Changing Landscape of Enzyme Allostery Historically, understanding the con-

trol of enzyme activity through feedback mechanisms led to the simultaneous

discovery of enzyme cooperativity and allostery. Feedback inhibition and

cooperativity over the years have got connected and appear to be two faces of the

same coin. We have seen their implications to metabolic regulation in the previous

chapter (Chap. 37 Regulation of enzyme activity). The non-Michaelian kinetic

feature allows an enzyme to function as a concentration-dependent metabolic switch.

Classical models invoke distinct enzyme conformations associated with allostery.

These may involve multiple ligand binding sites (with associated conformational

selection and induced fit) or polypeptide oligomerization. In most allosteric

enzymes, the allosteric binding site for the ligand lies far away from the active

site. Therefore, structural communication paths (via the levers and pulleys of protein

structure) must exist between these sites. First mechanistic description for allosteric

regulation was proposed more than sixty years ago; other possible mechanisms are

being advanced regularly to describe these phenomena (Changeux 2013; Motlagh

et al. 2014). Investigations at atomic detail (by high-resolution NMR of specifically

labeled side chains) of glucokinase (a monomeric enzyme) for its kinetic

cooperativity have provided recent insights. The enzyme molecule samples a num-

ber of conformational states in the absence of glucose. However, this population of

conformations shifts toward a narrow, well-structured ensemble of states in the

presence of glucose (Larion et al. 2012).

Allostery is not always mediated by conformational changes that can be detected

by standard techniques like X-ray and NMR relaxation measurements, determination

of H/D exchange rates, and isothermal titration calorimetry (ITC) experiments.

These methods give a time-averaged snapshot of the protein 3D structure. However,

recent advances in spectroscopy (probes to explore time-resolved dynamics of

protein conformational changes) and the computational approaches (to study molec-

ular dynamics simulations) indicate that multiple conformational states of the

enzyme exist even in kinetically simple Michaelis complexes. Also, the free enzyme

itself is a collage of protein conformational states. This protein disorder is clearly

observed in the dynamic motions as measured by distance- and time-resolved NMR

studies. Present-day structural biology offers unequivocal evidence of multiple

conformations in preexisting equilibrium for glucokinase, trypsin-like proteases,

maltose-binding protein, etc. The new outlook on allostery incorporates this more

dynamic view of the enzyme protein. Accordingly, allosteric control may manifest

by a population shift in the statistical ensembles of many states, with some regions of

low local stability and others of high stability. Ligand binding affects the relative free

energies of these states; they in turn differ in their affinities for other ligands and/or

their activity. This is different from the earlier concept of a few well-defined static

conformational states (such as R and T states). Various mechanisms of allostery

described to date are summarized in the Table 39.1.

The new view of allostery encompasses a conformationally dynamic continuum

of allosteric phenomena. With recent discoveries, we have moved towards increas-

ing enzyme protein dynamics (disorder or fluctuations) starting from (a) rigid body

528 39 Future of Enzymology: An Appraisal



movements to (b) side-chain dynamics, (c) backbone dynamics, (d) local unfolding,

and finally (e) intrinsically disordered structures.

Allostery, by definition, involves the propagation of signals between different

sites in a protein. This may occur in the absence of detectable conformational

changes and may be exclusively mediated by transmitted changes in protein

motions. The fact that the change in dynamics occurs in the absence of significant

structural change suggests that dynamics alone may convey allosteric information.

There is much interest to probe the existence of an entire channel/network of amino

acids through which allosteric signals are communicated. One approach that could

map such paths (perturbations that travel across the structure) and implicate the

interacting amino acid residues is through measurements of a double-mutant cycle.

Energetics of such residue interactions allows us to infer the degree of functional

coupling between different sites of a protein. A complementary approach uses a

sequence-based statistical analysis (Statistical Coupling Analysis, SCA) method for

elucidating the architecture of functional couplings in proteins (Reynolds et al.

2011). If two residues in a protein are functionally coupled, then they should have

coevolved. This coevolution can be scored by statistically comparing homologous

protein sequences. A combination of SCA and double-mutant cycles along with

functional, structural, and folding analyses can provide insights into the existence of

an entire wave, wire, channel, or network of amino acid residues through which

allosteric signals are transmitted.

Table 39.1 Molecular mechanisms of allosteric regulation

Mechanism Examples

Closure/opening of active

site

3-Phosphoglycerate dehydrogenase (the active site cleft closes

upon binding of the end product, Ser)

Changes in active site

conformation

3-Deoxy-D-arabinoheptulosonate-7-phosphate synthase

(aromatic amino acid (the end product) binding leads to minor

conformational modifications and prevents substrate binding)

Change electrostatic

properties of active site

Chorismate mutase (aromatic amino acid (the end product)

binding brings a Glu residue into the active site; causes a major

change in its electrostatics and repels the negatively charged

substrate)

Influence protein–protein

complex formation

ATP phosphoribosyltransferase (His (the end product) binding

converts an active dimer to an inactive hexamer)

Affect protein flexibility Dihydrodipicolinate synthase (Lys (the allosteric ligand)

binding affects distant sites via a change in the protein

vibrational modes)

Shift in ensemble of

conformer population

–Glucokinase (its intrinsically disordered small domain samples

a broad conformational ensemble; upon glucose binding, the

population shifts toward a narrow, well-ordered ensemble)

–Dimeric catabolite activator protein (binding of the first cAMP

molecule lowers the affinity for the second cAMP molecule; first

cAMP binding enhances motions within the protein, whereas the

binding of second cAMP decreases these motions and flexibility
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Transplantation of allosteric regulation has been possible in hemoglobins and

glycerol kinase (Hardy and Wells 2004). Very few residues may be involved in the

manifestation of allosteric regulation. The allosteric features of crocodile hemoglo-

bin could be introduced into human hemoglobin by substitutions at 12 amino acid

residues. Changing only 11 of 501 total residues (about 2%) converts an unregulated

glycerol kinase to an allosterically regulated glycerol kinase. Small molecules can

exert strong effects from unexpected locations, and hence searching for new alloste-

ric sites in enzymes is a challenge. It is hard enough to predict what ligand might

bind in a binding pocket, but the presence of allosteric binding sites further

complicates the matter. It may become possible to develop algorithms to distinguish

allosteric from active sites with better databases in the future. It may also be feasible

to predict allosteric regulation from protein structural data (Freire 2000).

The emerging radical view of enzyme function is that each catalytic step

corresponds to an ensemble of thermodynamic and structural states. Incidentally,

allostery and catalysis no longer appear as distinct phenomena but as the

manifestations of the same intrinsic protein dynamics. Important issues for further

research in allosteric enzymes include (a) the mechanisms by which an allosteric

effect is transmitted via amino acid networks, (b) how the distribution of protein

conformations is altered, and (c) the timescales at which the redistribution of these

conformations occurs.

Predicting Enzyme Structure and Function Computational tools have

revolutionized the whole of biology. It is no wonder that substantial progress has

taken place in enzymology, one of the more quantitative of the biological sciences.

Incorporating new tools and technology to understand enzyme catalysis is a recur-

ring theme in enzymology. Computational enzymology has joined the earlier

methods involving kinetic measurements, kinetic isotope effects, crystallography,

and distance�/time-resolved NMR. We have noted above that computational enzy-

mology has made significant inroads into transition-state analysis and molecular

dynamics of enzyme action. Besides these, there is a rapid move toward enzyme

structure and function prediction through computational approaches. This need has

arisen as we (a) accumulate a large number of sequenced genomes; (b) come across

orphan open reading frames, with no clues of their function; and (c) express

sequences into proteins and even crystallize them without their actual functional

demonstration (Cuesta-Seijo et al. 2011; Hai et al. 2015).

Assigning valid functions to unknown (putative!) proteins/enzymes identified in

genome projects is a challenge (Kuznetsova et al. 2005). While experimental testing

remains essential, computational approaches can help guide this experimental

design. Bioinformatics approaches are being perfected to (a) identify informative

sequence relationships using structure and genome context, (b) allow accurate high-

throughput structure prediction through homology modeling, and (c) dock

metabolites in silico to provide accurate and testable list of potential enzymes.

Microbial metabolic pathways often are encoded by genome neighborhoods

(synteny and associated gene clusters and/or operons). Such positional information

can provide important clues for enzyme function assignment. For instance, pathway
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docking is an efficient strategy for predicting in vitro enzyme activities and

allocating in vivo physiological functions. It has been possible to identify novel

metabolites, enzyme activities, and biochemical pathways through this tactic.

In view of the exponential growth in genome sequence data sets (with significant

proportion of sequences with unknown enzyme functions), an integrated strategy for

functional assignment was recently proposed (Gerlt et al. 2011; Gerlt 2017). This

enzyme function initiative (EFI; the multicentric program under the National Insti-

tute of General Medical Sciences, USA) looks to predict the substrate specificities of

unknown members of mechanistically diverse enzyme superfamilies – thereby

predicting their functions. The approach exploits conserved features within a given

superfamily such as known chemistry, identity of active site functional groups, and

composition of specificity-determining residues/motifs/structures. Initial enzyme

targets chosen for this purpose include members of the amidohydrolase, enolase,

glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase

superfamilies. Members of these enzyme superfamilies are functionally diverse

(conserved partial reactions or chemical capability but with divergent overall func-

tion) which makes functional assignment difficult. Homology inferred from simple

sequence comparisons alone cannot guide functional assignment in such situations.

Therefore, an integrated approach involving the following components is proposed:

• Perform bioinformatic analysis to cluster sequences into probable isofunctional

groups; assign tentative functions for further investigation by structure determi-

nation, structural modeling/docking, and biochemical experimentation.

• Carry out homology modeling to expand the use of structural models; thereby

guide functional assignment to proteins without experimentally determined

structures.

• Employ computational docking methods to leverage structure and guide func-

tional assignment by suggesting substrates/ligands for biochemical

experimentation.

That enzyme function needs to be defined not only through its chemical and

kinetic competence but also by associated structural features has become increas-

ingly obvious. The change in the title and emphasis of the very well received book

on enzymes by Alan Fersht (from “Enzyme Structure and Mechanism” for the first

edition to “Structure and mechanism in protein science: A guide to enzyme catalysis

and protein folding” in the later version) is a pointer in this direction. Structure is the

necessary third leg, along with mechanism and function, of the secure stool to

understand enzyme function.

39.4 Designing Novel Catalysts

Curiosity and the desire to imitate general principles of biological catalysis have led

to many developments in the design and construction of artificial enzymes. Present

approaches to create novel catalysts fall into three general categories – (a) de novo

design and synthesis of catalysts from polypeptides and nonprotein building blocks
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(such as macrocyclic compounds, poly-ethyleneimine, synthetic chemical/genetic

polymers, and cyclodextrins); (b) modification/evolution of existing catalysts such

as protein enzymes or ribozymes, by genetic or chemical methods; and (c) designer

enzymes made to order. While antibodies and RNA as catalysts will be discussed

subsequently, we will first focus on chemical models, enzyme mimics, and hybrid

catalysts.

Chemical Models, Enzyme Mimics, and Hybrid Catalysts Enzyme models of

increasing complexity have been designed and discovered. A small chiral molecule-

like proline may be considered the simplest enzyme. Recent reports on asymmetric

catalysis by proline and its derivatives include activation of carbonyl compounds via

nucleophilic enamine intermediates (MacMillan 2008). Several highly

enantioselective important carbon–carbon bond-forming reactions (aldol additions

and Mannich reaction) have been developed using this approach. Many model

systems anticipated their enzyme counterparts much ahead of time. Otto Warburg

studied the oxidation of unsaturated fatty acids by combined action of iron and

sulfhydryl (-SH) groups in 1925. Lipoxygenases, containing iron and –SH groups

essential for their oxidative activity, were discovered much later. Aniline-catalyzed

rapid decarboxylation of acetoacetate via the “aniline–acetoacetate complex” is

exemplified by JBS Haldane in his 1930 book on enzymes. More recently, chemical

hydrogenase mimics with Co and Ni centers are reported for exploiting hydrogen as

fuel. Models for enzymes performing free radical chemistry and other redox reactions

are being sought to be incorporated in clean energy programs. The study of glutathi-

one peroxidase anticipated the small molecular enzyme model ebselen as well as an

antibody enzyme – abzyme (see Table 39.2 in the next section for a full treatment).

As pointed out before, there are two reasons to study enzyme constructs and

mimics. One objective of chemists and biologists is to elucidate molecular basis of

enzyme function. Secondly, using the available knowledge base (which is still far

from complete!), one could attempt to design and build novel catalysts – the

so-called tailor-made enzymes. The chemical alteration of an existing enzyme by

introducing additional functional groups is one route to rational enzyme design. The

semisynthetic enzyme so generated can display very different catalytic activities from

that of the parent enzyme. For example, papain (a thiol protease) was converted to an

effective redox catalyst (an oxidoreductase) by appropriately attaching a flavin to the

enzyme sulfhydryl group. In another example, new binding domains are selectively

introduced to build/alter enzyme specificity. RNase A is a relatively nonselective

enzyme hydrolyzing phosphodiester linkages of RNA. It was made specific to a

definite RNA sequence by creating a chimeric RNase A – wherein a covalently

attached single-stranded DNA confers specificity by annealing at the complementary

RNA sequence (Fig. 39.1).

The oligonucleotide-tagged RNase A above is an effort in modifying the substrate

specificity of an enzyme. However, another attempt was made to build a restriction

endonuclease from first principles. Several chemical agents intrinsically possess

DNA cleavage activity. If these are incorporated into DNA/RNA binding proteins,
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a specific nuclease may be created. Indeed, one could design synthetic hybrid

molecules with two components – one for specific DNA sequence recognition and

the other to cleave the DNA adjacent to it. The technique called affinity cleavage is

based on the construction of such bifunctional molecules (Fig. 39.2). Many artificial

metalloenzymes have emerged from similar approaches. Chemistry of EDTA-Fe[II]

with oxygen is an excellent source of hydroxyl (HO•) radicals for DNA cleavage.

This reaction can be turned into a catalytic cycle by adding ascorbate so that Fe[III]

formed is reduced back to Fe[II]. Several chemical agents possess nuclease activity;

rare earth metal ions are active in hydrolyzing phosphodiester linkages in DNA. For

instance, DNA scission by Ce[IV] is hydrolytic and not oxidative. The fragments so

generated can be religated using a ligase. The sequence-recognizing moiety brings

the molecular DNA scissors close to the target phosphodiester bond. Binding to

specific DNA sequences is provided either by a short oligonucleotide or by a specific

DNA-binding domain of the protein. Sequence recognition has also been achieved

by pcPNA (a pseudo-complementary peptide nucleic acid).

Most restriction enzymes used in molecular biology recognize a stretch of six

bases and cut DNA at that site. Assuming random distribution of A, G, T, and Cs,

there is a high probability (46, which is once every 4096 bp of DNA) of finding these

restriction sites in DNA. To cut at a single unique position in human genome, we

could use a 16mer (or longer) sequence-recognizing moiety (416; for >109 bp of

DNA in human genome!). This site selectivity compares well with the molecular

tools like (a) the Achilles’ heel cleavage (only one of the many restriction sites in a

genome is specifically protected from inactivation by a cognate methyltransferase;

-SH
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S-Protein
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Fig. 39.1 Construction of a sequence-specific RNase A chimera. The S-peptide was modified

with an oligonucleotide sequence. The functional RNase A was reconstituted by combining the

modified S-peptide with the S-protein. (Adapted with permission from Zuckermann and Schultz,

J Am Chem Soc, 110:6592–6594. Copyright (1988) American Chemical Society.)
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this in turn creates a unique restriction enzyme cleavage site) and (b) the genome

editing by the CRISPR/Cas system. An artificial restriction enzyme that can cut only

at one position in the human genome will require a 16mer (or longer) sequence-

recognizing moiety.

Novel catalysts may also be crafted on nonprotein molecular framework –

including synthetic macromolecules of nonbiological origin (Bjerre et al. 2008;

Wulff 2002). Poly(ethyleneimine) polymers possess intrinsic acid–base groups;

along with pyridoxal phosphate or other suitable cofactors, some degree of catalysis

was demonstrated. Breslow’s group has made extensive efforts to emulate enzyme

catalysis using cyclodextrin scaffolds (Breslow 2005). While the cyclodextrin cavity
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Fig. 39.2 Construction of artificial restriction enzymes (A) Fenton chemistry of EDTA-Fe[II]

with oxygen generates hydroxyl (HO•) radicals for local DNA cleavage. Specificity is provided by

using a unique sequence-recognizing moiety (e.g., trp or lac repressor or catabolite activator protein

of E. coli). (B) A restriction enzyme construct of Ce4+ complex of iminodiacetate. This Ce4+

nuclease is juxtaposed to the specified DNA sequence for cleavage by an oligonucleotide sequence-

recognizing moiety
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offers a binding pocket, additional functional groups attached to the cyclodextrin

ring offer new enzyme mimics (synzymes). The cavity size can be varied by

choosing either β-cyclodextrin (seven glucose units in the ring) or γ-cyclodextrin

(eight glucose units in the ring). Mimics of RNase A (β-cyclodextrin bis-imidazole)

and chymotrypsin (for its esterase activity!) are demonstrated. A flexible capped

cyclodextrin with the well-fitting substrate afforded a rate acceleration of 8 � 107

fold in p-nitrophenyl ester hydrolysis (Fig. 39.3).

Lastly, a word of caution on rate acceleration observed for enzyme mimics. Most

protease/esterase models use p-nitrophenyl esters as substrates. The p-nitrophenyl

esters are not protease/esterase substrates “in real life.” With p-nitrophenyl esters as

model substrates, partly the better leaving group effect contributes to the observed

rate accelerations. Leaving groups whose pKas are above 9.0 lead to much lower

acceleration. One should account for such a p-nitrophenyl ester syndrome when

evaluating the performance of synzymes (Menger and Ladika 1987).

Antibody Catalysts (Abzymes) Linus Pauling recognized in the 1940s that the

ability of an enzyme to speed up a chemical reaction arises from the “complemen-

tarity of its active site structure to the activated complex (i.e., the transition state).”

This has given rise to the productive field of catalytic antibodies (or abzymes).

Antibody molecules represent a class of proteins with high affinity and exquisite

selectivity; they could be raised against any small molecule (hapten) of our choice.

Antibodies that can bind to transition-state analogs of a substrate should therefore

catalyze the conversion of that substrate, through the transition state, to the product.

Abzymes production involves the following steps:

• Generating a stable transition-state analog using molecular design and chemical

synthesis

• Raising antibodies (monoclonal antibodies to be more precise) with the TS analog

as the hapten

• Isolating antibodies which bind to the TS analog as potential catalysts for that

reaction

The seminal prediction of Pauling was verified by Lerner’s research group in the

1980s. During an ester hydrolysis, the sp2 hybridized carbonyl carbon is converted

to a sp3 hybridized carbon in the intermediate; and the carbonyl oxygen resembles an

O
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---OH
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Fig. 39.3 A β-cyclodextrin mimic of chymotrypsin displaying catalysis of p-nitrophenyl ester

hydrolysis. The cyclodextrin cavity binds the hydrophobic ferrocene core of the ester substrate
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oxyanion. The transition state presumably looks more like this unstable intermediate

(sp3, oxyanion). A phosphonate ester mimic, with a sp3 hybridized phosphorous

replacing the sp2 hybridized carbonyl carbon (Fig. 39.4), was synthesized. While

very resistant to hydrolysis, this phosphonate also has negatively charged oxygen

similar to the intermediate during ester hydrolysis. The mouse antibodies (the

monoclonal – 6D4) against this phosphonate structure catalyzed the corresponding

carboxylic acid ester hydrolysis.

More than 100 interesting examples of abzyme catalysis are known. They include

many reactions that cannot be achieved by standard chemical methods (Benkovic

1992). Besides the ester hydrolysis mentioned above, these include pericyclic

processes, group transfer reactions, additions and eliminations, redox reactions,

aldol condensations, and a few cofactor-dependent transformations. Some of these

are listed in Table 39.2 below.
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Fig. 39.4 The phosphonate

transition-state analog used

as hapten. The monoclonal

antibodies (abzyme 6D4)

against this hapten displayed

esterase activity on the

corresponding ester shown

Table 39.2 Antibody catalysts generated for different reaction types

Abzymea Reaction catalyzed

6D4 Carboxylic ester hydrolysis

48G7 p-Nitrophenyl ester hydrolysis

1F7 Claisen rearrangement (chorismate to prephenate)

AZ-28 Oxy-Cope rearrangement

39-A11 Diels-Alder reaction

7G12 Ferrochelatase

33F12 Aldolase

34E4 E2 elimination of nitrobenzisoxazole

2F3 (scFv) Glutathione peroxidase
aAll the abzymes (except 2F3) are monoclonal antibodies (Hilvert 2000). The scFv (single chain

Fragment variable) of abzyme 2F3 was activated by chemical modification of a reactive Ser by

attaching Se to it (Ren et al. 2001)
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Virtually all experiments with abzymes employ monoclonal antibodies

(Table 39.2). The monoclonals are a single homogeneous catalytic species (unlike

the polyclonal sera), and their use greatly simplifies kinetic, mechanistic, and

structural characterization of an abzyme. While expressing catalytic antibodies

(or Fab fragments), folding of the two chains into native state is a challenge. One

approach is to express and secrete them into the periplasmic space of E. coli,

exploiting its diminished protease activity and ability to correctly fold and form

disulfide bonds. The single chain Fragment variable (scFv) version of the antibody

exhibits the same catalytic parameters as the parent monoclonal antibody. The scFv

is a recombinant protein construct of a VL chain tethered to a VH chain with a

polypeptide linker and is expressed efficiently by bacteria.

Fastest enzymes are diffusion limited catalysts. Even the less than perfect ones

typically have apparent bimolecular rate constants (kcat/KM) between 106 and 108 M
�1 s�1. Catalytic antibodies have rate accelerations many orders of magnitude below

their enzyme rivals. By definition, abzymes are catalytic antibodies specific to (and

raised against) the corresponding transition-state mimic. We note that stabilization of

the transition state is necessary but not sufficient by itself for achieving good

catalysis. Many other factors – like active site functional groups, conformational

flexibility, shielding of the reaction intermediates, cofactor needs, etc. – substantially

contribute to rate accelerations (refer Chap. 6). Transition states themselves have

fleeting lifetimes and cannot be captured. Synthesis of effective TS analogs must

therefore draw on our chemical intuition about the conformational, stereochemical,

and electronic features of the reaction under study. Since no stable molecule can

reproduce all the characteristics of the actual TS, hapten design strategies have

focused on incorporating the salient features of the TS. In the sum, limited catalytic

ability of abzymes may be attributed to one or more of the following:

• Antibody scaffold is fixed, and this means limited structural space is explored for

catalyst building. Real enzymes come in a variety of structural folds.

• The polypeptide sequence space exploited during antibody maturation is also

limited.

• Catalytic antibodies may lack structural dynamics necessary for optimal catalysis.

• TS analogs are imperfect mimics of the actual transition state. The TS mimic

designed may not capture the best options for discriminatory binding of the

substrate versus TS.

Basic strategy to produce catalytic antibodies is indirect. Here the immune system

is directed to evolve not for catalysis but toward binding tightly to an imperfect TS

analog. To date, antibody enzymes display only modest catalytic activity and have

not found significant practical utility (though a few have reached the market!).

Nonetheless they continue to be of considerable academic interest. Studying

abzymes has yielded valuable insights into reaction mechanisms, catalysis, enzyme

structure, and function. There is yet the promise of delivering tailored catalysts for

difficult reactions for which natural enzymes do not exist. Such catalytic antibodies

may be useful even if they do not attain enzyme-like efficiency.
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RNA Catalysts (Ribozymes) Substantial role for RNA as information molecule is

well established in molecular biology. More recently, RNAs have assumed impor-

tance as components of (a) gene silencing through double-stranded small interfering

RNAs (siRNA) generated by Dicer, an RNase III-like enzyme, and (b) genome

editing through the CRISPR/Cas system where crRNA-guided interference is

exploited. The catalytic role of RNA molecules (the so-called ribozymes) has

expanded the realm of biological catalysis beyond proteins. RNA catalysts do satisfy

the dual criteria of catalysis and specificity but are less impressive catalysts when

compared to protein-based enzymes. They have had much more impact in under-

standing the origin of life problem and catalytic evolution. Like polypeptides, RNA

molecules can fold into higher-order structures that permit the formation of an active

site. On the other hand, DNA is predominantly double helical, cannot fold into

complicated shapes, and has limited repertoire of chemical groups (it lacks the

20-hydroxyl group) for catalysis. Nevertheless, DNA-based catalysts (DNAzymes)

were constructed (Baum and Silverman 2008). More recently, elaboration of differ-

ent catalytic activities from synthetic genetic polymers (XNAs) was demonstrated

(Taylor et al. 2015). The XNAs (arabino nucleic acids, hexitol nucleic acids, or

cyclohexene nucleic acids) fold into defined structures and bind ligands. Few

XNAzymes were elaborated directly from random XNA oligomer pools; some of

them exhibited in trans RNA endonuclease and ligase activities.

Single-stranded nucleic acid molecules are capable of folding into secondary and

tertiary structures. Aptamers are short, single-stranded nucleic acids which bind a

variety of ligands with high affinity and specificity. DNA or RNA aptamers can be

routinely isolated from synthetic combinatorial nucleic acid libraries by in vitro

selection – known as “systematic evolution of ligands by exponential enrichment”

(SELEX) (Tuerk and Gold 1990; Weigand and Suess 2009). Riboswitches are

natural versions of aptamers discovered subsequently. The aptamer domains of

most riboswitch classes are typically fewer than 100 nucleotides. Riboswitches

with distinctive ligand recognition capabilities have been found in all domains of

life; they occur with highest frequency within the 50-UTRs of bacterial mRNAs and

typically regulate genes involved in metabolism. For instance, glycine riboswitch

consists of two different aptamer types that individually bind to a single molecule of

glycine (Famulok 2004). Cooperative interaction between the two sites allows better

sensing of this metabolite. Aptamers and riboswitches are specific ligand binding

RNAs with no catalytic function. They may fold or undergo a conformational

change upon binding the cognate ligand. An aptamer may be fused to a ribozyme

to generate aptazymes. Binding of its cognate ligand to the aptamer displaces it from

the stand on which it is bound on the ribozyme, thereby providing for regulation of

ribozyme function.

Catalytic RNA was discovered through RNA species capable of auto-cleavage

reaction (Abelson 2017). Subsequently, other activities catalyzed by RNA have been

reported (Doudna and Lorsch 2005;Wilson and Lilley 2009).While natural ribozymes

catalyze mainly self-cleavage or ligation reactions, they can also accelerate other

reaction types (Table 39.3). The RNA component of RNase P is responsible for

catalytic processing of precursor tRNAs. The self-splicing group I intron from
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Tetrahymena thermophila was engineered to perform as a multiple turnover RNA

enzyme. The peptide bond formation is attributed to the RNA component of the

ribosome (Schmeing and Ramakrishnan 2009).

There are similarities as well as differences between RNA and protein catalysts.

Greater structural variety (of amino acids) allows better catalytic properties in

protein enzymes than in RNA enzymes. Enzymes are superior catalysts, and many

of them function at the diffusion limit. Ribozymes, on the other hand, are rather slow

with an apparent maximal rate constant of ~1 min�1 (Doudna and Lorsch 2005).

However, ribozymes might be easier to produce than enzymes. Rigidity allows an

enzyme to maximize specific (binding) interactions with the TS relative to the

ground state and hence maximizes catalysis. Larger size ensures better positioning

and rigidity within the active site – features required for most effective catalysis (see

section on “Then why are enzymes big?” in Chap. 38). For the same catalytic

function, RNA has to be much bigger than an enzyme protein. Protein enzymes

are big and RNA enzymes are even bigger. RNA is clumsier than proteins in terms of

functional groups, structural variety, and ability to fold. Hammerhead ribozyme and

pancreatic RNase A have similar sizes, but RNase A (with best kcat/KM of 2.8�109

M�1�s�1) achieves 105-fold higher maximal rates. A direct comparison of catalytic

strategies (Table 39.4) available to protein enzymes and ribozymes is illustra-

tive (Narlikar and Herschlag 1997).

39.5 Enzymes Made to Order

Until man duplicates a blade of grass, nature will laugh at his so-called scientific

knowledge.

Thomas Edison

From the general theme of this book and earlier discussion in this chapter (Chap. 39

Future of enzymology – An appraisal), it is obvious that much is known about how

enzymes function as catalysts. One measure of how well we understand enzymes is

to try and build similar catalysts from first principles. In this sense, de novo enzyme

design is an intellectual challenge, and the exercise serves two important objectives.

Table 39.3 Kinetic constants for some catalytic RNAs

Catalyst Substrate kcat (s
�1) KM (M) kcat/KM

RNase A RNA (cleavage; best

substrate)

– – 2.8 � 109

Ribozyme RNA (cleavage) 2.0 � 10�1 2.0 � 10�8 1.0 � 107

Self-splicing intron RNA (splicing) 1.0 � 10�3 1.1 � 10�9 9.0 � 105

Ribosome (Peptide bond formation) 5.0 � 100 5.0 � 10�3 1.0 � 103

DNAzyme IV Ornithine decarboxylase

mRNA

1.0 � 10�3 3.0 � 10�7 3.0 � 103

Abzyme 34E4

(E2 elimination)

Nitrobenzisoxazole 6.6 � 10�1 1.2 � 10�4 5.5 � 103

Catalytic efficiencies of RNase A, a DNAzyme, and an abzyme are also listed for comparison
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It allows experimental validation of the principles of catalysis that we have learned

so far. Second, tailor-made catalysts can be built for industrial applications, particu-

larly for those reactions for which natural enzymes do not exist. The design of

enzymes with new functions and properties has long been a goal of the protein

engineer. However, in enzyme engineering (and de novo design), serendipity

continues to outstrip design – a clear sign that our basic understanding of enzyme

catalysis to date is far from complete.

Enzyme catalytic power results from a combination of multiple mechanistic

strategies (Chap. 6). Therefore, valuable insight into the evolution of catalytic

function can be gained through de novo design experiments. However, the methods

of kinetic analysis discussed earlier in this book will be applicable to all catalysts

(synthetic or natural) regardless of their chemical nature. We may note that

foundations of enzyme kinetics were laid much before the chemical nature of

enzymes as proteins was established by Sumner (using jack bean urease!).

A major benefit of recombinant DNA technology is the ability to do protein and,

hence, enzyme engineering. This includes the skill to precisely replace/delete/add

one or more amino acids in a given enzyme. These designed yet specific mutations

can be engineered on a desired gene (coding for the desired enzyme) with the help of

synthetic oligonucleotide constructs as primers (see Site-Directed Mutagenesis and

Crystal Structures section, in this chapter). It is very easy to lose an enzyme function

through site-directed mutations, but very difficult to gain a new function. Besides

point mutations, other functional elements of a protein scaffold could also be

replaced/changed through available recombinant DNA tools (Fig. 3.5). The

approach is powerful and is anticipated to deliver many tailored enzymes.

Engineering novel enzymes is a rapidly evolving field, and the examples

presented here are selective and only representative. A foolproof and robust enzyme

activity assay is at the heart of any enzyme engineering and design. While the

Table 39.4 Catalytic strategies of protein and RNA enzymes: A comparison

Catalytic strategy

Protein

enzyme

RNA

enzyme

Substrate orientation and approximation Yes Yes

General acid–base catalysis Always Deficienta

Metal ion catalysis Many Always

Organic cofactors Many None

Active site electrostatics (dielectric manipulated effectively) Most

proficient

Not

proficient

Utilization of binding energy from interactions away from

active site

Yes Yes

Covalent catalysis Yes Yes
aRNA enzymes lack groups with pKas around pH 7.0. The nucleolytic ribozyme GlmS provides an

exception to the exclusive use of nucleobases in general acid–base catalysis by ribozymes; a

molecule of glucosamine-6-phosphate specifically bound to the RNA structure serves as the general

acid in GlmS
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methodological details are outside the scope of this book, various strategies to

generate novel enzyme designs through recombinant DNA technology are outlined

below.

Enzyme Redesign One way to generate novel catalysts is to start from an existing

enzyme scaffold and rationally alter its structure to effect a predicted change in

function. Enzyme redesign may be achieved through simultaneous incorporation

and/or adjustment of protein functional elements – through deletion, insertion, loop

grafting, and substitution of relevant active site loops, generating chimeras, etc. This

could be followed by point mutations to fine-tune the enzyme activity. Using one

such approach, a β-lactamase activity was introduced into the scaffold of glyoxalase

II. The resulting enzyme completely lost its original activity but catalyzed the

hydrolysis of cefotaxime (see Table 39.7 below). Three other interesting examples

include the following:

(a) The domain swap in bacterial glutamate dehydrogenases to change their pyri-

dine nucleotide specificity (Sharkey and Engel 2009).

(b) Mixing and matching of different modules of polyketide synthases and

non-ribosomal peptide synthases leading to product diversity and the produc-

tion of hybrid or novel antibiotics (Penning and Jez 2001).

(c) The cancer-associated mutations from isocitrate dehydrogenases which were

extrapolated to homologous residues in the active sites of homoisocitrate

dehydrogenases, for the catalytic conversion of 2-oxoadipate to (R)-2-

hydroxyadipate, a critical step for adipic acid production (Reitman et al. 2012).

Enzyme redesign as an approach is expected to deliver more tailor-made enzymes

in the near future.

The protein engineering approach to redesign a known enzyme has the potential

to bring about (a) altered substrate/cofactor specificity and improve catalytic effi-

ciency, (b) enhanced enantioselectivity, (c) a change in metal ion specificity, (d) a

desired pH optimum of an enzyme, (e) increased enzyme stability, and (f) alteration

of an existing site to catalyze a new chemical reaction. Both close and distant

mutations appear similarly effective in improving enzymes in terms of thermostabil-

ity and catalytic activity. The mutations close to the active site are more effective

than distant ones for changing enantioselectivity, substrate selectivity, and alternate

catalytic activity of an enzyme (Khersonsky et al. 2006). Besides the chemical

mechanism first view of enzyme redesign, it may be possible to take the more

challenging ligand specificity first approach. Accordingly, one may introduce cata-

lytic residues into the ligand binding site of a chosen protein to create an active site

capable of catalyzing a chemical reaction. After all, the “acid test” of enzyme

redesign is to engineer new catalytic activities and aim to change the reaction

mechanism itself.
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Directed Enzyme Evolution Evolution continues to be an excellent teacher of how

to evolve/modify biological catalysts. Directed evolution as a tool accelerates the

evolutionary process from millions of years to weeks! And natural enzymes are

clearly not evolutionary dead ends. The field of directed evolution of enzymes has

made rapid progress and provides a much larger scope and canvas than simple

enzyme redesign (Bornscheuer et al. 2012). It has moved from being a means for

studying the relationship between sequence and function to being an extremely

powerful tool for optimizing biocatalysts for industry. This Darwinian approach

involves generation of random mutant library (generation of genetic diversity)

followed by biological selection (of the fittest) for the desired activity. The greatest

advantage of directed evolution is its independence from the prior knowledge of

enzyme structure. One need not know the nature of interactions between the enzyme

and its substrate either.

The procedure of directed evolution consists of (i) generating a random gene

library, (ii) expression of these gene variants in a suitable host, and (iii) screening/

selection of library of enzyme forms for the property of interest (Fig. 39.5). It begins

with the mutagenesis of the gene encoding the enzyme template of interest (GFE,

gene of your favorite enzyme). This important first step should generate a represen-

tative yet exhaustive mutant library. The mutated gene library is then inserted into a

suitable host (like E. coli or yeast) for expression, and the transformants are plated on

selective media. Respective protein variants are chosen from the single colonies

growing on these plates. In most directed evolution studies, additional cycles of
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Fig. 39.5 Iterative steps in the directed evolution of an enzyme. Starting with the gene (cDNA)

for the favorite enzyme (GFE), a random mutant library is generated (step A). These GFE variants

are used to express respective enzyme variants (step B). The optimized variants are screened/

selected (step C) and subjected to further cycles of directed evolution
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mutagenesis are necessary for obtaining an optimal catalyst. While many strategies

are available (and continue to be developed) for generating exhaustive libraries, the

success of a directed evolution effort depends greatly on the method chosen for

finding the best mutant enzyme. And, in directed evolution, “we simply get what we

screen for”!

A range of gene mutagenesis methods are available for generating sequence

diversity in a directed evolution experiment. A selection of them is listed in

Table 39.5. Choice of a method is critical as each one of them has certain advantages

as well as limitations. Features such as biased mutational spectrum, use of hazardous

chemicals, uneven sampling of codon space, and need for prior structural, biochem-

ical, or phylogenetic knowledge of each method become important considerations.

Despite these diverse methods to generate gene diversity, it is impossible to cover

the entire mutational space available for a typical protein. For a polypeptide chain of

“n” amino acids, 20n combinations are possible as there are 20 different amino acids.

Even nature has sampled a tiny fraction of these possible sequences over the huge

evolutionary timescale. It is therefore best to begin with an existing enzyme

Table 39.5 Methods to create GFE mutant libraries and generate diversity

Library diversification strategy Examples and tools

Random mutagenesis

Chemical and physical mutagenesis EMS, MNNG, nitrous acid, UV

Error-prone PCR (epPCR) Supplementing Mn2+ and/or unequal dNTP levels

Mutator strains Mutagenesis plasmid (PACE), XL1-red strain of E. coli

Focused mutagenesis

Site-directed saturation

mutagenesis

NNK and NNS codons on mutagenic primersa

Computational strategies for high-

quality library design

Rosetta design and computationally guided libraries,

ISOR, consensus design, REAP, and SCHEMA

Recombination (gene shuffling)

Homologous recombination DNA shuffling, domain swapping, family shuffling, StEP,

RACHITT, NExT, heritable recombination, ADO and

synthetic shuffling

Nonhomologous recombination ITCHY, SHIPREC, NRR, SISDC and overlap extension

PCR (oePCR)

Abbreviations and acronyms used in this table include – ADO assembly of designed

oligonucleotides, EMS ethyl methanesulfonate, ISOR incorporating synthetic oligonucleotides via

gene reassembly, ITCHY incremental truncation for the creation of hybrid enzymes, MNNG

N-methyl-N-nitrosoguanidine, NExT nucleotide exchange and excision technology, NRR

non-homologous random recombination, PACE phage-assisted continuous evolution, RACHITT

random chimeragenesis on transient templates, REAP reconstructed evolutionary adaptive path,

SCHEMA a computational algorithm, SHIPREC sequence homology-independent protein recom-

bination, SISDC sequence-independent site-directed chimeragenesis, StEP staggered extension

process, UV ultraviolet rays
aWhere N can be any of the four nucleotides, K can be G or T, and S can be G or C

Adapted with permission from Packer and Liu, Nat Rev Genet, 16:379–394. Copyright (2015)

Springer Nature
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sequence. The choice of the sequence diversification method will then depend on the

nature of evolutionary trajectory required from the initial scaffold to the desired end

point. For instance, directed evolution of enzyme robustness (for stability) may

require simultaneous changes scattered across the sequence length.

There are two broad approaches to finding the best mutant enzyme, namely,

screening and selection. Screening of the mutant library can be performed in two

different ways: (i) facilitated screening wherein mutants are distinguished based on

distinct phenotypes and (ii) random screening in which we pick mutants blindly.

Selection is always preferred over screening for its higher efficiency. But selection

requires a phenotypic functional link between the target gene and its encoding

enzyme product that confers the selective advantage (such as better growth, etc.)

(Percival Zhang et al. 2006).

Directed evolution has been successfully applied to achieve favorable changes in

enzyme properties like stereo- and region-selectivity, expanding the substrate scope

and/or activity, enzyme robustness, pH optimum, and promiscuity as catalysts in

organic synthesis (Jeschek et al. 2016; Reetz 2016). Select examples of evolved

enzymes reported in the literature are listed in Table 39.6. Industrial-scale biocataly-

sis applications of optimized enzymes have focused primarily on hydrolases, a few

Table 39.6 Examples of directed enzyme evolution

Enzyme Feature optimized

Monoamine oxidase Deracemization of racemic amines

Ketoreductases (KREDs) Chiral intermediates for

pharmaceuticals

Laccase Catalytic efficiency, neutral pH

range

Glyphosate N-acetyltransferase Catalytic efficiency for glyphosate

resistance

Cephalosporin acylase Catalytic efficiency toward adipyl-

7-ADCA

ω-Aminotransferase Specific activity and

thermostability

Epoxide hydrolase Enantioselectivity

Hydantoinase Inverting enantioselectivity (L-Met

process)

β-Lactamase Antibiotic resistance against

cefotaxime

Xylanase, phytase, and lipase Thermostability

Endoglucanase Thermal stability, alkaline pH

range

Subtilisin Stability in organic solvent

Halohydrin dehalogenase Catalytic efficiency

Aldolases Specificity, efficiency,

thermostability

Non-ribosomal peptide synthase–polyketide synthase

(NRPS-PKS) hybrid

Produce broad spectrum antibiotic

(andrimid)
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ketoreductases (KREDs), transaminases, oxidative enzymes, aldolases, cofactor

regeneration, and enzyme stability in organic solvents (Bornscheuer et al. 2012).

De Novo Enzyme Design Designing an enzyme to catalyze the reaction of one’s

choice is a grand challenge (Nanda 2008). This strategy obviously requires detailed

knowledge of the protein structure, structural basis of biological catalysis, and

computational tools for enzyme design. In principle, the following steps may be

envisaged:

• An appropriate catalytic mechanism is chosen for the target reaction.

• The transition state for this reaction is described.

• An idealized active site to position the catalytic residues and maximize TS

stabilization be modeled.

• An appropriate protein scaffold is chosen from the available library.

• It is optimized in silico to best accommodate the reaction transition state and

catalytic residues.

• The candidate theozyme polypeptides are actually created/produced.

• They are tested for catalytic activity.

• Best candidate designer enzyme may be fine-tuned by further sculpting around

the transition-state model.

Although the initial activities of de novo enzyme constructs are typically low,

they can be substantially improved through directed evolution approaches. Compu-

tational enzyme design has emerged as a promising tool to generate custom-built

biocatalysts. The Rosetta de novo enzyme design protocol may be used to tailor

enzyme catalysts for a variety of chemical reactions. There are constant efforts to

improve the reliability of the Rosetta design cycle (Richter et al. 2011). Both the pre-

and post-design analysis of protein structures promises to play an increasingly

important role here.

Genetic engineering is relatively easy and routinely accessible now. But to

attempt rational enzyme engineering, a vastly improved understanding of protein

structure–sequence relationship is required. Our appreciation of protein dynamics is

still very limited, and this makes structure–function correlation very hard. Subtle

changes in the active site geometry have tremendous unexpected consequences for

enzyme function. Hence, rational de novo design of a reasonably efficient enzyme

continues to elude us. Few pioneering and brave attempts to build designer enzymes

have been made. Relevant examples listed in Table 39.7 highlight the successes and

limitations encountered in the de novo design of enzymes.

As can be seen from the representative cases listed above, most designer enzymes

have not reached the expected catalytic performance (Bar-Even et al. 2011). This is

because of our limited mastery over proper protein folding, structure, stability,

dynamics, and catalysis. Indeed, subtle changes in the active site geometry are

enough to generate remarkable unpredicted consequences for enzyme function.

Poor catalytic performance of the de novo designs comes with its own caveats.
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Ensuring that the observed activity is really due to the designed enzyme, and not a

contaminating activity from the expression host, is critical. Attempts to convert

catalytically inert ribose-binding protein into an active triose phosphate isomerase

ran into such difficulties and elicited the response – “It is a bush-league error not to

purify your proteins well, especially in such work” (Hayden 2008).

De novo protein design allows us to explore the full sequence space. Computa-

tional methodology has progressed well for a wide range of structures to be designed

from scratch and with atomic-level accuracy (Huang et al. 2016). However,

obtaining more active catalysts will require improved control over substrate binding

and better pre-organization of the active site. Modifying existing protein scaffolds

through rational redesign has been a more fruitful option so far – where the emphasis

is on finding what works rather than predicting what works (Khersonsky et al. 2006).

The fine-tuning of engineered enzymes can only be fulfilled today by combinatorial

Table 39.7 Examples of de novo enzyme design

Designer enzyme Comments on the design

Oxaloacetate

decarboxylase (metal-free)

A rationally designed synthetic 14 amino acid residue cyclic

peptide – Oxaldie; decarboxylates oxaloacetate via an imine

intermediate on its Lys NH2. Catalytic efficiency comparable with

abzymes (Johnsson et al. 1993)

Dihydrodipicolinate

synthase

The N-acetylneuraminate lyase scaffold was rationally redesigned

to switch the activity toward dihydrodipicolinate synthase. The

designed activity showed 19-fold increased specificity for the new

substrate (Joerger et al. 2003)

β-Lactamase (from

glyoxalase II)

Several loop grafting steps at the active site to achieve major

switch in function. Evolved new activity on an existing glyoxalase

II scaffold (Park et al. 2006)

Sesquiterpene synthase A promiscuous sesquiterpene synthase scaffold was used to build

seven novel terpene synthases, catalyzing the synthesis of different

sesquiterpenes (Yoshikuni et al. 2006)

Retro-aldolase Retro-aldol cleavage of a carbon–carbon bond. The mechanism

involves enamine catalysis by lysine (via a Schiff base or imine

intermediate) giving a catalytic proficiency of 104, which is far

from natural enzymes (Jiang et al. 2008)

Diels–Alderase

(intermolecular)

Organic bimolecular reaction forming two carbon–carbon bonds

and up to four new stereogenic centers in one step. Naturally

occurring enzymes are not known for this reaction. The designed

enzyme is 20 times better than the corresponding abzymes (see

Table 39.2) (Siegel et al. 2010)

Triosephosphate isomerase The Rosetta enzyme design protocol demonstrated for the triose

phosphate isomerase reaction as an example (Richter et al. 2011)

Kemp eliminase A well-studied organic model system for proton transfer from

carbon. In Kemp elimination, the deprotonation of substrate

(5-nitrobenzisoxazole) leads to electronic rearrangements that

break the C�H and N�O bonds while forming a C�N triple bond.

The designer enzyme accelerates the elementary chemical reaction

(6 � 108 fold), nearly as efficient as natural enzyme like triose

phosphate isomerase (Blomberg et al. 2013)
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approaches. The marriage of rational design and directed evolution (combinatorial

redesign!) seems to be the way to go at present.

39.6 Summing Up

Our knowledge on and databases of genome sequences, metabolic pathways, protein

sequences and their three-dimensional folds, enzyme active sites, and chemical

reactions is expanding very fast. Sophisticated computational methods are expected

to rationalize this vast information and aid in predicting the changes required to alter

one enzyme into another. Efficiently introducing a new enzymatic activity in a

chosen protein scaffold may not be too far off in the future. Meanwhile, rational

de novo design of an enzyme continues to be a grand challenge (Editorial 2009).

This final section is demanding and difficult to cover – the subject matter of

research is very current, and many reviews and new developments are reported on a

very frequent basis! Almost every chapter, especially the last part (Part V) of this

book, becomes outdated in a short span of months. Therefore, the relevant literature

after the year 2016 has received limited attention. It is remarkable that for a subject

so much undervalued, and displaced away from the mainstream biology of today,

very-high-quality research gets added continuously to the literature.
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Closure – Whither Enzymology 40

नासतो िव̎ȶो भावो नाभावो िव̎ȶो सत:।
उभयोरिप Ǩ̷̕ ोऽȺतɇȶवनयोɇत̣वदिश Ǹिभ।।2.16।।
The unreal has no existence, and the real never ceases to be,

the reality of both has been perceived by the seers of truth.

(Bhagavad Gita; 2.16)

Enzymes are the only biomolecules that combine three hallmark features, namely,

catalysis, specificity, and regulation. No wonder that study of enzyme catalysis

continues to occupy prime position in modern biology (and chemistry!). Up until

the fashion of omics took over studying one enzyme at a time formed the thrust of

enzymology. Importance of enzyme function in vivo will form one of the key

frontiers with the present emphasis on systems biology as a pointer in this direction.

Enzymes in sequence and in combination with other enzymes and other cellular

components often manifest interesting features like coupled reactions, regulatory

networks, and distributed control of metabolism. While single enzyme studies have

taken the back seat, the knowledge gleaned from such research is important for a

systems biology approach. After all any biologist who follows their research interest

to the finest level of detail will become an enzymologist (quote by Perry Frey).

Enzymes are catalysts par excellence. A three-pronged strategy to comprehend

them has involved mechanism, structure, and function. The following topics will

continue to attract much attention of enzymologists in the foreseeable future.

Transition State Analysis and Computational Enzymology Transition state the-

ory of reaction rates was meaningfully extended to enzyme catalysis. The highest

point along the imaginary reaction coordinate is called the transition state; this is of

highest free energy and is an ephemeral species. Kinetic isotope effects provide

direct information on the enzymatic transition state. Besides kinetic measurements,

isotope effects, time-resolved spectroscopy, NMR, X-ray crystallography, and
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computational enzymology are making significant contributions to understand the

enzyme transition state. This frontier in computational enzymology and complex

enzyme models was recognized with chemistry Nobel Prize in 2013 to Martin

Karplus, Michael Levitt, and Arieh Warshel. The emergence of the quantum

mechanical/molecular mechanics approach allows one to ask – what are the origins

of the catalytic power of an enzyme. Computer simulations will increasingly con-

tribute to modeling molecular enzyme catalysis and capture the contributions of

subtle enzyme molecular dynamics to rate accelerations. Such insights to the nature

of transition state are valuable in terms of enzyme mechanism as well as design of

powerful inhibitors.

Structure–Function Dissection of Enzyme Catalysis A structure-function

approach to understand enzyme action uses a combination of kinetic (including

rapid transient kinetics) and structural techniques. The protein chemical

modifications, spectroscopic tools (like fluorescence, circular dichroism, etc.), and

more recently molecular biology tools (like generation of site-directed mutants,

truncated or chimeric enzyme proteins) are used. Whereas solution NMR is capable

of reporting on enzyme molecular dynamics (albeit at much slower timescales than

most events in enzyme catalysis), as of now this structural tool is limited to small

proteins. This will improve with more powerful NMR machines. Mass spectrometry

of larger polypeptides and oligomeric proteins is also coming of age. Much of direct

structural information on enzymes has come from X-ray crystallography, but there is

a limit to what a snapshot protein structure can reveal. As late Jeremy Knowles

(biochemist at Harvard University) noted, studying the photograph of a racehorse

cannot tell you how fast it can run. Although snapshots of enzyme bound to

substrate, product, or transition state analogs are valuable, they do not capture

structural dynamics of catalytic action. This is where progress is expected. Nonethe-

less, presence of molecular tunnels in enzymes like tryptophan synthase would not

be apparent without detailed structural inputs. A fine balance between structural

rigidity and conformational plasticity results in the unique catalytic power of

enzymes. And structural enzymology of the future will aim to address such catalytic

motions in detail.

Site-directed mutagenesis offers a powerful approach for the rational enzyme

modifications. It enables enzymologists to selectively replace active site residue

(s) and ask some very interesting mechanistic questions. Excellent insights continue

to accrue on residues critical for catalysis, binding, and structural stability/flexibility

for many enzymes. Nature presents us with 20 naturally occurring amino acids in

proteins; we can replace a given residue by any one of the other 19. Nonnatural side

chains often provide better mechanistic insights. Sophisticated tools and technology

are in place to directly incorporate nonprotein amino acids into proteins in a position-

specific manner. This includes expanding the genetic code through in vivo strategies.

Without doubt site-specific mutagenesis will continue to extend our knowledge of

enzyme mechanism and function.
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Single Molecule Enzymology The Michaelis–Menten equation is a highly satis-

factory description of kinetic data from a very large number of enzyme molecules in

the assay. However, all enzyme molecules are not synchronized with each other in

an ensemble-averaged kinetic measurement. A single enzyme molecule gives kinetic

signals that reflect the dynamic states of individual catalyst molecules, information

that is lost in the average signals from ensembles. Reactions involving single enzyme

molecules can now be examined by the advances in fluorescence and related time-

resolved spectroscopic techniques. Combined with computational approaches, these

techniques allow for dynamic behaviors of individual molecules to be recorded in

real time. Single-molecule behavior is powerful in uncovering (a) mechanistic

pathways and intermediates, (b) heterogeneities hidden in the ensemble average,

and (c) how enzyme conformational fluctuations affect catalysis. Conformational

heterogeneity has been experimentally observed in them. Single enzyme molecules

display inevitable, stochastic fluctuations in their catalytic activity. Such fluctuations

would be less significant for a system comprising many enzyme molecules. How-

ever, many critical cellular processes, such as DNA replication, transcription, trans-

lation, and protein transport along the cytoskeleton, rely on one or few enzyme

molecules. Stochastic fluctuations due to low copy number of enzymes have impor-

tant physiological implications for cells/organelles. These are now being probed on a

single-molecule basis in living cells.

Changing Landscape of Enzyme Allostery Observations on the control of

enzyme activity by feedback mechanisms led to the simultaneous discovery of

enzyme cooperativity and allostery. While mechanisms of allosteric regulation

were developed more than 50 years ago, they continue to be revisited regularly.

Present-day structural biology offers unequivocal evidence of multiple

conformations in preexisting equilibrium for monomeric enzymes like glucokinase.

The new, recent vision of allostery incorporates this more dynamic view of the

enzyme protein. Accordingly, allosteric control manifests by a population shift in the

statistical ensembles of many states, with regions of low local stability and others of

high stability. Binding of ligands affects the relative free energies of these states,

which differ in their affinities for other ligands and/or their activity. This is different

from the earlier concept of a few well-defined (such as R and T states) static

conformational states.

Allostery, by definition, involves the propagation of signals between different

sites in a protein structure. There is much interest to probe the existence of an entire

channel or network of residues through which allosteric signals are communicated.

An important issue for further study is to elucidate mechanisms by which an

allosteric effect is transmitted via the network of amino acid residues in the protein.

The emerging radical view of enzyme function is that each catalytic step corresponds

to an ensemble of thermodynamic and structural states. And allosteric regulation and

enzymatic catalysis no longer appear as distinct phenomena but as the manifestations

of the same intrinsic protein dynamics.
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Predicting Enzyme Structure and Function Computational tools have

revolutionized the whole of biology. Incorporating new technologies to understand

enzymatic catalysis is a recurring theme in enzymology. Computational enzymology

has made significant inroads into transition state analysis and molecular dynamics of

enzyme action. Besides these, there is a rapid move toward enzyme structure and

function prediction through computational approaches. This is because we

(a) accumulate a large number of sequenced genomes, (b) come across orphan

open reading frames, with no clues of their function, and (c) express sequences

into proteins and even crystallize them without knowing what their function(s) are.

Assigning valid functions to unknown proteins/enzymes identified in genome

projects is a challenge. While experimental testing remains essential, computational

approaches can help guide this experimental design. Bioinformatics approaches are

being perfected to (a) identify informative sequence relationships using structure and

genome context, (b) homology modeling to allow accurate high-throughput structure

prediction, and (c) in silico metabolite docking to provide accurate and testable list of

potential enzymes. In view of the exponential growth in genome sequence data sets

(with significant proportion of sequences with unknown enzyme functions), an

integrated strategy for functional assignment was recently proposed (Gerlt et al.

2011). This enzyme function initiative (EFI) looks to predict the substrate

specificities of unknown members of mechanistically diverse enzyme superfamilies,

thereby defining their functions.

Enzymes Made to Order Curiosity and the desire to imitate general principles of

biological catalysis have led to many developments in the design and construction of

artificial enzymes. A major objective continues to be the elucidation of molecular

basis of enzyme function. Second, using the knowledge base (which is still far from

complete!), one could attempt to design and construct novel catalysts – the tailor-

made enzymes. Present approaches to the creation of novel catalysts fall into two

general categories: (a) the de novo design and synthesis of catalysts from

polypeptides and nonprotein building blocks and (b) the modification/evolution of

existing catalysts, such as protein enzymes or ribozymes, by genetic or chemical

methods. Enzyme models of increasing complexity are being designed and

discovered.

Linus Pauling recognized in the 1940s that the ability of an enzyme to speed up a

chemical reaction arises from the “complementarity of its active site structure to the

transition state.” This has given rise to the productive field of catalytic antibodies

(or abzymes). There is yet the promise of delivering tailored catalysts for difficult

reactions for which natural enzymes do not exist. Such systems may be useful even if

they do not attain enzyme-like efficiency. More recently, RNAs have assumed

importance as components of (a) gene silencing through double-stranded small

interfering RNAs (siRNA) generated by Dicer, an RNase III like enzyme, and

(b) genome editing through the CRISPR/Cas system where crRNA-guided interfer-

ence is exploited. The catalytic role of RNA molecules (the so-called ribozymes) has
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expanded the realm of biological catalysis beyond proteins. While protein enzymes

are superior catalysts, ribozymes might be easier to produce than regular enzymes.

One measure of how well we understand enzymes is to try and build such

catalysts from first principles. In this sense, de novo enzyme design is an intellectual

endeavor that serves two important objectives. It allows experimental validation of

the principles of catalysis that we have gathered so far. Second, tailor-made catalysts

can be built for industrial applications, particularly for those reactions for which

natural enzymes do not exist. In enzyme engineering (and de novo design), seren-

dipity continues to outstrip design – a clear sign that our basic understanding of

enzyme catalysis is far from complete. A major benefit of recombinant DNA

technology is the ability to do protein engineering. This powerful method is expected

to deliver many enzymes with tailored properties. The strategies to generate novel

catalysts include enzyme redesign starting from an existing protein scaffold.

Directed evolution of enzymes is making a rapid transition from being a new tool

for studying the relationship between sequence and function to being an extremely

useful and efficient method for optimizing biocatalysts for industry. The greatest

advantage of directed evolution is its independence from the knowledge of enzyme

structure and we simply get what we screen for! Rational de novo design of an

enzyme continues to be a grand challenge. This is because our understanding of

protein dynamics is still very limited and this makes predictions difficult. As of now,

the marriage of rational and combinatorial redesign seems to be the way to go.

In the era of systems/synthetic biology, enzymology may not be fashionable, but

it will continue to excite and motivate (Cleland 1979; Khosla 2015). As Pasteur

famously stated, there are no applied sciences but only applications of science. This

is so true with the study of enzymes. We rarely find an unemployed enzymologist.

Surely, the future will be no different.
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