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Preface

The contents of this book are based upon manuscripts prepared for both under-
graduate courses of Kyoto Institute of Technology by the author entitled “Polymer
Nanomaterials Engineering” and ‘“Photonics Physical Chemistry” and a master’s
course lecture of Kyoto Institute of Technology by the author entitled “Solid-State
Polymers Engineering.”

This book is intended for graduate and undergraduate students, especially those
who major in chemistry and, at the same time, wish to study mathematical physics.
Readers are supposed to have basic knowledge of analysis and linear algebra.
However, they are not supposed to be familiar with the theory of analytic functions
(i.e., complex analysis), even though it is desirable to have relevant knowledge
about it.

At the beginning, mathematical physics looks daunting to chemists, as used to be
the case with myself as a chemist. The book introduces basic concepts of mathe-
matical physics to chemists. Unlike other books related to mathematical physics,
this book makes a reasonable selection of material so that students majoring in
chemistry can readily understand the contents in spontaneity. In particular, we stress
the importance of practical and intuitive methodology. We also expect engineers
and physicists to benefit from reading this book.

In Part I and Part II, the book describes quantum mechanics and electromag-
netism. Relevance between the two is well considered. Although quantum
mechanics covers broad field of modern physics, in Part I we focus on a harmonic
oscillator and a hydrogen (like) atom. This is because we can study and deal with
many of fundamental concepts of quantum mechanics within these restricted topics.
Moreover, knowledge acquired from the study of the topics can readily be extended
to practical investigation of, e.g., electronic sates and vibration (or vibronic) states
of molecular systems. We describe these topics both by analytic method (that uses
differential equations) and operator approach (using matrix calculations). We
believe that the basic concepts of quantum mechanics can be best understood by
contrasting the analytical and algebraic approaches. For this reason, we give matrix
representations of physical quantities whenever possible. Examples include energy
eigenvalues of a quantum-mechanical harmonic oscillator and angular momenta of
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a hydrogen-like atom. At the same time, these two physical systems supply us with
a good opportunity to study classical polynomials, e.g., Hermite polynomials,
(associated) Legendre polynomials, Laguerre polynomials, Gegenbauer polyno-
mials, and special functions, more generally. These topics constitute one of
important branches of mathematical physics. One of the basic concepts of the
quantum mechanics is that a physical quantity is represented by an Hermitian
operator or matrix. In this respect, the algebraic approach gives a good opportunity
to get familiar with this concept. We present tangible examples for this. We also
emphasize the importance of notion of Hermiticity of a differential operator. We
often encounter unitary operator or unitary transformation alongside of the notion
of Hermitian operator. We show several examples of the unitary operators in
connection with transformation of vectors and coordinates.

Part II describes Maxwell’s equations and their applications to various phe-
nomena of electromagnetic waves. These include their propagation, reflection, and
transmission in dielectric media. We restrict ourselves to treating those phenomena
in dielectrics without charge. Yet, we cover a wide range of important topics. In
particular, when two (or more) dielectrics are in contact with each other at a plane
interface, reflection and transmission of light are characterized by various important
parameters such as reflection and transmission coefficients, Brewster angles, and
critical angles. We should have a proper understanding not only from the point of
view of basic study, but also to make use of relevant knowledge in optical device
applications such as a waveguide. In contrast to a concept of electromagnetic
waves, light possesses a characteristic of light quanta. We present semiclassical and
statistical approach to blackbody radiation occurring in a simplified system in
relation to Part I. The physical processes are well characterized by a notion of
two-level atoms. In this context, we outline the dipole radiation within the frame-
work of the classical theory. We briefly describe how the optical processes
occurring in a confined dielectric medium are related to a laser that is of great
importance in fundamental science and its applications. Many of basic equations of
physics are descried as second-order linear differential equations (SOLDE:s).
Different methods were developed and proposed to seek their solutions. One of the
most important methods is that of Green’s functions. We present introductory
theory of the Green’s functions accordingly. In this connection, we rethink the
Hermiticity of a differential operator.

In Par IIT and Part IV, we describe algebraic structures of mathematical physics.
Their understanding is useful to studies of quantum mechanics and electromag-
netism whose topics are presented in Part I and Part II. Part III deals with theories of
linear vector spaces. We focus on the discussion on vectors and their transforma-
tions in finite-dimensional vector spaces. Generally, we consider the vector trans-
formations among the vector spaces of different dimensions. In this book, however,
we restrict ourselves to the case of the transformation between the vector spaces of
same dimension, i.e., endomorphism of the space (V" — V"). This is not only
because this is most often the case with many of physical applications, but because
the relevant operator is represented by a square matrix. Canonical forms of square
matrices hold an important position in algebra. These include a triangle matrix,
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diagonalizable matrix as well as a nilpotent matrix and idempotent matrix. The most
general form will be Jordan canonical form. We present its essential parts in detail
taking a tangible example. Next to the general discussion, we deal with an inner
product space. Once an inner product is defined between any couple of vectors, the
vector space is given a fruitful structure. An example is a norm (i.e., “length”) of a
vector. Also we gain a clear relationship between Part III and Part I. We define
various operators or matrices that are important in physical applications. Examples
include normal operators (or matrices) such as Hermitian operators, projection
operators, and unitary operators. Once again, we emphasize the importance of the
Hermitian operators. In particular, two commutable Hermitian matrices share
simultaneous eigenvectors (or eigenstates) and, in this respect, such two matrices
occupy a special position in quantum mechanics.

Finally, Part IV describes the essence of group theory and its chemical appli-
cations. Group theory has a broad range of applications in solid-state physics,
solid-state chemistry, molecular science, etc. Nonetheless, the knowledge of group
theory does not seem to have fully prevailed among chemists. We can discover an
adequate reason for this in a preface to the first edition of “Chemical Applications of
Group Theory” written by F. A. Cotton. It might well be natural that definition and
statement of abstract algebra, especially group theory, sound somewhat pretentious
for chemists, even though the definition of group is quite simple. Therefore, we
present various examples for readers to get used to notions of group theory. Notion
of mapping is important as in the case of the linear vector spaces. Aside from being
additive with calculation for a vector space and multiplicative for a group, the
fundamentals of calculation regulations are pretty much the same regarding the
vector space and group. We describe characteristics of symmetry groups in detail
partly because related knowledge is useful for molecular orbital (MO) calculations
that are presented in the last Section of the book. Representation theory is probably
one of the most daunting notions for chemists. Practically, however, the repre-
sentation is just homomorphism that corresponds to a linear transformation in a
vector space. In this context, the representation is merely denoted by a number or a
matrix. Basis functions of representation correspond to basis vectors in a vector
space. Grand orthogonality theorem (GOT) is a “nursery bed” of the representation
theory. Therefore, readers are encouraged to understand its essence apart from the
rigorous proof of the theorem. In conjunction with Part III, we present a variety of
projection operators. These are very useful to practical applications in, e.g.,
quantum mechanics and molecular science. The final parts of the book are devoted
to applications of group theory to problems of physical chemistry, especially those
of quantum chemistry, more specifically molecular orbital calculations. We see how
symmetry consideration, particularly use of projection operators, saves us a lot of
labor. Examples include aromatic hydrocarbons and methane.

The above is the constitution of this book. Readers may start with any Part and
go freely back and forth. This is because contents of many Sections are interrelated.
For example, we stress the importance of Hermiticity of differential operators and
matrices. Also projection operators and nilpotent matrices appear in many Sections
along with their tangible applications to individual topics. Hence, readers are
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recommended to carefully examine and compare the related contents throughout the
book. We believe that readers, especially chemists, benefit from a writing style of
this book, since it is suited to chemists who are good at intuitive understanding.

The author would like to thank many students for their valuable suggestions and
discussions at the lectures. The author also wishes to thank Dr. Shin’ichi Koizumi,
Springer for giving him an opportunity to write this book.

Kyoto, Japan Shu Hotta
October 2017
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Part I
Quantum Mechanics

Quantum mechanics is clearly distinguished from classical physics whose major
pillars are Newtonian mechanics and electromagnetism established by Maxwell.
Quantum mechanics was first established as a theory of atomic physics that handled
microscopic world. Later on, quantum mechanics was applied to macroscopic
world, i.e., cosmos. A question on how exactly quantum mechanics describes the
natural world and on how far the theory can go remains yet problematic and is in
dispute to this day.

Such an ultimate question is irrelevant to this monograph. Our major aim is to
study a standard approach to applying Schrodinger equation to selected topics. The
topics include a particle confined within a potential well, a harmonic oscillator, and
a hydrogen-like atoms. Our major task rests on solving eigenvalue problems of
these topics. To this end, we describe both an analytical method and algebraic (or
operator) method. Focusing on these topics, we will be able to acquire various
methods to tackle a wide range of quantum-mechanical problems. These problems
are usually posed as an analytical equation (i.e., differential equation) or an
algebraic equation. A Hamiltonian is constructed analytically or algebraically
accordingly. Besides Hamiltonian, physical quantities are expressed as a differential
operator or a matrix operator. In both analytical and algebraic approaches,
Hermitian property (or Hermiticity) of an operator and matrix is of crucial
importance. This feature will, therefore, be highlighted not only in this part but also
throughout this book along with a unitary operator and matrix.

Optical transition and associated selection rules are dealt with in relation to
the above topics. Those subjects are closely related to electromagnetic phenomena
that are considered in Part II.



Chapter 1
Schrodinger Equation and Its Application

Quantum mechanics is an indispensable research tool of modern natural science
that covers cosmology, atomic physics, molecular science, materials science, and so
forth. The basic concept underlying quantum mechanics rests upon Schrodinger
equation. The Schrédinger equation is described as a second-order linear differential
equation (SOLDE). The equation is analytically solved accordingly. Alternatively,
equations of the quantum mechanics are often described in terms of operators and
matrices, and physical quantities are represented by those operators and matrices.
Normally, they are non-commutative. In particular, the quantum-mechanical for-
malism requires the canonical commutation relation between position and mo-
mentum operators. One of the great characteristics of the quantum mechanics is that
physical quantities must be Hermitian. This aspect is deeply related to the
requirement that these quantities should be described by real numbers. We deal with
the Hermiticity from both an analytical point of view (or coordinate representation)
relevant to the differential equations and an algebraic viewpoint (or matrix repre-
sentation) associated with the operators and matrices. Including these topics, we
briefly survey the origin of Schrédinger equation and consider its implications. To
get acquainted with the quantum-mechanical formalism, we deal with simple
examples of the Schrédinger equation.

1.1 Early-Stage Quantum Theory

The Schrodinger equation is a direct consequence of discovery of quanta. It
stemmed from the hypothesis of energy quanta propounded by Max Planck (1900).
This hypothesis was further followed by photon (light quantum) hypothesis pro-
pounded by Albert Einstein (1905). He claimed that light is an aggregation of light
quanta and that individual quanta carry an energy E expressed as Planck constant &
multiplied by frequency of light v, i.e.,

© Springer Nature Singapore Pte Ltd. 2018 3
S. Hotta, Mathematical Physical Chemistry,
https://doi.org/10.1007/978-981-10-7671-8_1



4 1 Schrodinger Equation and Its Application

E = hv = ho, (L.1)

where 7i = h/2n and » = 2nv. The quantity o is called angular frequency with v
being frequency. The quantity 7 is said to be a reduced Planck constant.

Also, Einstein (1917) concluded that momentum of light quantum p is identical
to the energy of light quantum divided by light velocity in vacuum c. That is, we
have

p=E/c=how/c=TIk, (1.2)

where k = 2n// (A is wavelength of light in vacuum) and & is called wavenumber.
Using vector notation, we have

p = hk, (1.3)
where k = 27"n (n: a unit vector in the direction of propagation of light) is said to be
a wavenumber vector.

Meanwhile, Arthur Compton (1923) conducted various experiments where he
investigated how an incident X-ray beam was scattered by matter (e.g., graphite,
copper, etc.). As a result, Compton found out a systematical redshift in X-ray
wavelengths as a function of scattering angles of the X-ray beam (Compton effect).
Moreover, he found that the shift in wavelengths depended only on the scattering
angle regardless of quality of material of a scatterer. The results can be summarized
in a simple equation described as

h (1 —cos @), (1.4)

MeC

A;u ==

where A/ denotes a shift in wavelength of the scattered beam; m, is a rest mass of
an electron; 0 is a scattering angle of the X-ray beam (see Fig. 1.1). A quantity m%c
has a dimension of length and denoted by Z.. That is,

Je = h/mec. (1.5)

In other words, /. is equal to the maximum shift in the wavelength of the
scattered beam; this shift is obtained when 6 = /2. The quantity Z. is called an
electron Compton wavelength and has an approximate value of 2.426 x 10~'% (m).

Let us derive (1.4) on the basis of conservation of energy and momentum. To
this end, in Fig. 1.1 we assume that an electron is originally at rest. An X-ray beam
is incident to the electron. Then the X-ray is scattered and the electron recoils as
shown. The energy conservation reads as

ho + mec® = hot' + \/p2c? +mic4, (1.6)
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(a) recoiled electron (p)
(b)
—hk
incident X-ray (hk) rest electron
o hk' p

scattered X-ray (hk')

Fig. 1.1 Scattering of an X-ray beam by an electron. a 0 denotes a scattering angle of the X-ray
beam. b conservation of momentum

where w and «’ are initial and final angular frequencies of the X-ray; the second term
of RHS is an energy of the electron in which p is a magnitude of momentum after
recoil. Meanwhile, conservation of the momentum as a vector quantity reads as

ik = k' +p, (1.7)

where k and k' are wavenumber vectors of the X-ray before and after being scat-
tered; p is a momentum of the electron after recoil. Note that an initial momentum
of the electron is zero since the electron is originally at rest. Here, p is defined as

p = mu, (1.8)

where u is a velocity of an electron and m is given by [1]

mme/\/l — |u)?/c2. (1.9)

Figure 1.1 shows that —7ik, ik, and p form a closed triangle.
From (1.6), we have

[mec® + h(w — o)) = p*2 +m2c*. (1.10)
Hence, we get
2mecthi(w — o) + R — o) = pc. (1.11)
From (1.7), we have

PP =12k — k) = 1 (K +k? — 2kK cos 0)
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h2
:C—z(w2+a)'2 — 2w’ cos ), (1.12)

where we used the relations w = ck and @’ = ck’ with the third equality. Therefore,
we get

p’c =1 (0’ + o — 200 cosb). (1.13)
From (1.11) and (1.13), we have
2mec* (o — o) + 1 (0 — o) = 12 (0* + 0 = 200 cos 0). (1.14)

Equation (1.14) is simplified to the following:

2mec*h(w — o) = 2P w0’ = =2 oo’ cos .
That is,
mec*(w — ') = how'(1 — cos 0). (1.15)
Thus, we get
o—o 1 1 1 h
ww' o o 27‘EC< ) MeC? (1 —cos0), ( )

where /. and A’ are wavelengths of the initial and final X-ray beams, respectively.
Since ' — /. = AA, we have (1.4) from (1.16) accordingly.

We have to mention another important person, Louis Victor de Broglie (1924) in
the development of quantum mechanics. Encouraged by the success of Einstein and
Compton, he propounded the concept of matter wave, which was referred to as the
de Broglie wave afterward. Namely, de Broglie reversed the relationship of (1.1)
and (1.2) such that

o =E/h, (1.17)
and
k=p/hori=h/p, (1.18)

where p equals |p| and A is a wavelength of a corpuscular beam. This is said to be
the de Broglie wavelength. In (1.18), de Broglie thought that a particle carrying an
energy E and momentum p is accompanied by a wave that is characterized by an
angular frequency w and wavenumber & (or a wavelength 2 = 2n/k). Equation
(1.18) implies that if we are able to determine the wavelength of the corpuscular
beam experimentally, we can decide a magnitude of momentum accordingly.
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In turn, from squares of both sides of (1.8) and (1.9), we get

= P . (1.19)

mey/ 1+ (p/mec)2

This relation represents a velocity of particles of the corpuscular beam. If we are
dealing with an electron beam, (1.19) gives the velocity of the electron beam. As a
non-relativistic approximation (i.e., p/mec < 1), we have

D = M.

We used a relativistic relation in the second term of RHS of (1.6), where energy
of an electron E, is expressed by

E. = y/p*c® +mlc*. (1.20)

In the meantime, deleting u? from (1.8) and (1.9), we have

mc* = \/p2c? +mct,

Namely, we get [1]
E. = mc?. (1.21)

The relation (1.21) is due to Einstein (1905, 1907) and is said to be the
equivalence theorem of mass and energy.

If an electron is accompanied by a matter wave, that wave should be propagated
with a certain phase velocity v, and a group velocity ve. Thus, using (1.17) and
(1.18), we have

vp = w/k=Ec/p=\/p*+mict/p>c,
vg = 0w/0k = OE./Op = ’p/\/p>c* + mlc* <c, (1.22)

_ 2
VpVg = C".

Notice that in the above expressions, we replaced E of (1.17) with E. of (1.20).
The group velocity is thought to be a velocity of a wave packet and, hence, a
propagation velocity of a matter wave should be identical to v. Thus, v, is con-
sidered as a particle velocity as well. In fact, v, given by (1.22) is identical to u
expressed in (1.19). Therefore, a particle velocity must not exceed c. As for photons
(or light quanta), v, = v = ¢ and, hence, once again we get vpvy = 2. We will
encounter the last relation of (1.22) in Part II as well.
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The above discussion is a brief historical outlook of early-stage quantum theory
before Erwin Schrodinger (1926) propounded his equation.

1.2 Schroédinger Equation

First, we introduce a wave equation expressed by

1 %y

2 e
vwivzfﬂﬂ’

(1.23)
where 1/ is an arbitrary function of a physical quantity relevant to propagation of a
wave; v is a phase velocity of wave; V2 called Laplacian is defined below

”* 7

2_— RN _
v T Ox2 9y? +8zz'

(1.24)

One of special solutions for (1.24) called a plane wave is well studied and
expressed as

= e ®xen, (1.25)
In (1.25), x denotes a position vector of a three-dimensional Cartesian coordinate

and is described as

x = (ejeze3) (1.26)

N o=

where e}, e, and e; denote basis vectors of an orthonormal base pointing to positive
directions of x-, y-, and z-axes. Here, we make it a rule to represent basis vectors by
a row vector and represent a coordinate or a component of a vector by a column
vector; see Sect. 9.1.

The other way around, now we wish to seek a basic equation whose solution is
described as (1.25). Taking account of (1.1)—(1.3) as well as (1.17) and (1.18), we
rewrite (1.25) as

p = e H), (1.27)
Px

where we redefine p = (ejeze3) | py | and E as quantities associated with those of
Pz

matter (electron) wave. Taking partial differentiation of (1.27) with respect to x, we
obtain
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Ty —p. 1.2
ax hpxlpoe hpxlp ( 8)
Rewriting (1.28), we have
hoy
Similarly, we have
no no
—.—l// :pylp and —.—lp = pzlp (130)
i Oy i 0z

Comparing both sides of (1.29), we notice that we may relate a differential
operator ; b d to py. From (1.30), similar relationship holds with the y and z com-
ponents. That is, we have the following relations:

ho no no

T a. X . o y e 1.31
iox P l@pryzﬁszz ( )

Taking partial differentiation of (1.28) once more,

0? i . 1
8x'/’2,: ( ) Yol ) = P2 (1.32)
Hence,
2P,

Similarly, we have

oy Oy

—hza = = poy and —h2W—pZ¢ (1.34)
As in the above cases, we have
? ? ?
o <Py h2m —p hzm - p2, (1.35)

Summing both sides of (1.33) and (1.34) and then dividing by 2m, we have

2
e w——w (1.36)

2m
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and the following correspondence

hz p2
f%vzH%, (1.37)

where m is the mass of a particle.
Meanwhile, taking partial differentiation of (1.27) with respect to #, we obtain

oy i
____E i(be—fr) — _ LRy, 1.38
o Uoe EY (1.38)
That is,
e
=FEy. 1.39
As the above, we get the following relationship:
0
ih— < E (1.40)

ot

Thus, we have relationships between c-numbers (classical numbers) and
g-numbers (quantum numbers, namely, operators) in (1.35) and (1.40). Subtracting
(1.36) from (1.39), we get

h%—w+—v2n// <E%>w. (1.41)
Invoking the relationship on energy
(Total energy) = (Kinetic energy) + (Potential energy), (1.42)
we have
P +V, (1.43)
2m

where V is a potential energy. Thus, (1.41) reads as

e

har +—V2¢ V. (1.44)

Rearranging (1.44), we finally get

- L
<—%v +v)¢_zh5. (1.45)
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This is the Schrédinger equation, a fundamental equation of quantum mechanics.
In (1.45), we define a following Hamiltonian operator H as

— _ "
H= V4V, (1.46)

Then we have a shorthand representation such that

L Oy
HYy =ih o (1.47)

On going from (1.25) to (1.27), we realize that quantities k and  pertinent to a
field have been converted to quantities p and E related to a particle. At the same
time, whereas x and ¢ represent a whole space-time in (1.25), those in (1.27) are
characterized as localized quantities.

From a historical point of view, we have to mention a great achievement
accomplished by Werner Heisenberg (1925) who propounded matrix mechanics.
The matrix mechanics is often contrasted with the wave mechanics Schrodinger
initiated. Schrédinger and Pau Dirac (1926) demonstrated that wave mechanics and
matrix mechanics are mathematically equivalent. Note that the Schrodinger equa-
tion is described as a non-relativistic expression based on (1.43). In fact, kinetic
energy K of a particle is given by [1]

2
K =—F7——=—mc

L= (u/c)®
As a non-relativistic approximation, we get

2

1 /u\2 1 p
K~ 621 —(—) — 62:—62z ,
mc{—i—zc ] meC 2mu e

where we used p ~ m.u again as a non-relativistic approximation; also, we used

1

1—x

1—|—1
~ =X
2

when x( > 0) corresponding to (%)2 is enough small than 1. This implies that in the
above case, the group velocity u of a particle is supposed to be well below light
velocity c¢. Dirac (1928) formulated an equation that describes relativistic quantum
mechanics (the Dirac equation).

In (1.45), y varies as a function of x and z. Suppose, however, that a potential V
depends only upon x. Then, we have
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[—f—mvz + V(x)]lﬁ(x,t) = ihw. (1.48)

Now, let us assume that separation of variables can be done with (1.48) such that

Y(x,1) = p(x)<(0). (1.49)

Then, we have

2
{_j_mvz + v<x>] s = (1:50)

Accordingly, (1.50) can be recast as

2
[‘ f_mvzﬂ’(x)}qb(xw( )= hﬁ/éo (1.51)

For (1.51) to hold, we must equate both sides to a constant E. That is, for a
certain fixed point xo we have

2
5 V) ol ) = i

/¢(0), (1.52)
where ¢(xo) of a numerator should be evaluated after operating V2, while with
¢(xo) in a denominator, ¢(xo) is evaluated simply replacing x in ¢(x) with x.
Now, let us define a function ®(x) such that

hZ
D(x) = {—%W + V(x)] d(x)/P(x). (1.53)
Then, we have
D(xp) = zh%(;)/é(z). (1.54)

If RHS of (1.54) varied depending on ¢, ®(x() would be allowed to have various
values, but this must not be the case with our present investigation. Thus, RHS of
(1.54) should take a constant value E. For the same reason, LHS of (1.51) should
take a constant.

Thus, (1.48) or (1.51) should be separated into the following equations:

Ho(x) = Ep(x), (1.55)
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L O&(r)
ih—> = E(0). (1.56)

Equation (1.56) can readily be solved. Since (1.56) depends on a sole variable #,
we have

d E E
% — St or ding(r) = ds. (1.57)

Integrating (1.57) from zero to ¢, we get

() Et
lnm— o (1.58)
That is,
E(r) = €(0) exp(—iEt/h). (1.59)

Comparing (1.59) with (1.38), we find that the constant E in (1.55) and (1.56)
represents an energy of a particle (electron).

Thus, the next task we want to do is to solve an eigenvalue equation of (1.55).
After solving the problem, we get a solution

W(x,1) = ¢(x)exp(—iEt/h), (1.60)

where the constant £(0) has been absorbed in ¢(x). Normally, ¢(x) is to be
normalized after determining the functional form (vide infra).

1.3 Simple Applications of Schrodinger Equation

The Schrodinger equation has been expressed as (1.48). The equation is a
second-order linear differential equation (SOLDE). In particular, our major interest
lies in solving an eigenvalue problem of (1.55). Eigenvalues consist of points in a
complex plane. Those points sometimes form a continuous domain, but we focus on
the eigenvalues that comprise discrete points in the complex plane. Therefore in our
studies, the eigenvalues are countable and numbered as, e.g., 4, (n = 1,2,3,...).
An example is depicted in Fig. 1.2. Having this common belief as a background, let
us first think of a simple form of SOLDE.

Example 1.1 Let us think of a following differential equation:
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Fig. 1.2 Eigenvalues
In(n=1,2,3,...) ona o 2 z
complex plane ° .
A
i [ L]
1
0 1
) A3 .
&y (x)
02 + Ay(x) =0, (1.61)

where x is a real variable; y may be a complex function of x with 4 possibly being a
complex constant as well. Suppose that y(x) is defined within a domain
[-L,L] (L > 0). We set boundary conditions (BCs) for (1.61) such that

y(L) =0and y(—L) =0 (L > 0). (1.62)
The BCs of (1.62) are called Dirichlet conditions. We define the following
differential operator D described as

d2
Then rewriting (1.61), we have
Dy(x) = Ay(x). (1.64)

According to a general principle of SOLDE, it has two linearly independent
solutions. In the case of (1.61), we choose exponential functions for those solutions
described by

e and e 7 (k # 0).

This is because the above functions do not change a functional form with respect
to the differentiation and we ascribe solving a differential equation to solving an
algebraic equation among constants (or parameters). In the present case, A and k are
such constants.

The parameter k could be a complex variable, because 4 is allowed to take a
complex value as well. Linear independence of these functions is ensured from a
nonvanishing Wronskian, W. That is,
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eikx —ikx

W= ke —jkeikr

eikx efikx ’

(eikx)’ (e—ikx)’

= —ik — ik = —2ik. (1.65)
If kK # 0, W # 0. Therefore, as a general solution, we get
y(x) = ae™ + be *(k # 0), (1.66)

where a and b are (complex) constant. We call two linearly independent solutions
e and e ™ (k # 0) a fundamental set of solutions of a SOLDE. Inserting (1.66)
into (1.61), we have

(A= &%) (ae™ +be ™) = 0. (1.67)
For (1.67) to hold with any x, we must have
J—k =0ield =k (1.68)
Using BCs (1.62), we have
ae™ 4 e " = 0 and ae " + be™t = 0. (1.69)

Rewriting (1.69) in a matrix form, we have

(50 - () w0

For @ and b in (1.70) to have nonvanishing solutions, we must have

eikL efikL

il i | =0 ieelt e =0, (1.71)

It is because if (1.71) were not zero, we would have a = b =0 and y(x) = 0.
Note that with an eigenvalue problem, we must avoid having a solution that is
identically zero. Rewriting (1.71), we get

(eikL +e—ikL) (eikL _ e—ikL) —o. (1.72)

That is, we have either

el p el =0 (1.73)

or
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ekl — e — 0, (1.74)
In the case of (1.73), inserting this into (1.69), we have
e*t(a —b) = 0. (1.75)
Therefore,
a=b, (1.76)

where we used the fact that e’ is a nonvanishing function for any ikL (either real or

complex). Similarly, in the case of (1.74), we have

a=—b. (1.77)
For (1.76), from (1.66), we have
y(x) = a(e®™ + e ™) = 2a cos kx. (1.78)
With (1.77), in turn, we get
y(x) = a(e™ — e ™*) = 2ia sin kx. (1.79)

Thus, we get two linearly independent solutions (1.78) and (1.79).
Inserting BCs (1.62) into (1.78), we have

coskL = 0. (1.80)

Hence,
kL:ngmn(m:O,il,:lﬁ,...). (1.81)
In (1.81), for instance, we have k = T3 for m =0 and k = —5r for m = —1.
Also, we have k = 37 for m = 1 and k = —37 for m = —2. These cases, however,

individually give linearly dependent solutions for (1.78). Therefore, to get a set of
linearly independent eigenfunctions, we may define k as positive. Correspondingly,
from (1.68), we get eigenvalues of

2= (2m+ 17 /4* (m=0,1,2,...). (1.82)

Also, inserting BCs (1.62) into (1.79), we have
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sinkL = 0. (1.83)
Hence,
kL =nm(n=1,2,3,...). (1.84)
From (1.68), we get
A=n’m?/1? = (2n)*7? /AL (n = 1,2,3,...), (1.85)

where we chose positive numbers n for the same reason as the above. With the
second equality of (1.85), we made eigenvalues easily comparable to those of
(1.82). Figure 1.3 shows the eigenvalues given in both (1.82) and (1.85) in a unit of
n? /412,

From (1.82) and (1.85), we find that A is positive definite (or strictly positive),
and so from (1.68), we have

k=7 (1.86)

The next step is to normalize eigenfunctions. This step corresponds to appro-
priate choice of a constant a in (1.78) and (1.79) so that we can have

L L
I= [ y(x)y()de = [ |y(x)Pdc=1. (1.87)
—L —L
That is,
L L 1
1 =4al / cos’kxdx = 4|al* / 5 (1+ cos 2kx)dx
-L -L (1.88)

1 L
=2|al* |:X+ Z_kSin 2kx} = 4L|al*.
-L

Combining (1.87) and (1.88), we get

la| = ;\ﬁ (1.89)

(x 2 /4L?)
1 +w
01 4 9 16 25 -

Fig. 1.3 Eigenvalues of a differential Eq. (1.61) under boundary conditions given by (1.62). The
eigenvalues are given in a unit of 72/4L? on a real axis
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_1 1 i0
a_E\/ze , (1.90)

where 0 is any real number and e is said to be a phase factor. We usually set

Thus, we have

e = 1. Then, we have a = % \/% Thus for a normalized cosine eigenfunctions, we

get

y(x)\@coskx[kLg+mn (m:O,l,Z,...)} (1.91)

that corresponds to an eigenvalue A= (2m+1)°n?/4L? (m=0,1,2,...). For
another series of normalized sine functions, similarly, we get

y(x) = \/%sinkx[kL =nn(n=1,2,3,...)] (1.92)

that corresponds to an eigenvalue 4 = (2n)°n%/4L* (n = 1,2,3,...).

Notice that arranging 4 in ascending order, we have even functions and odd
functions alternately as eigenfunctions corresponding to 4. Such a property is said
to be parity. We often encounter it in quantum mechanics and related fields. From
(1.61), we find that if y(x) is an eigenfunction, so is cy(x). That is, we should bear
in mind that the eigenvalue problem is always accompanied by an indeterminate
constant and that normalization of an eigenfunction does not mean the uniqueness
of the solution (see Chap. 8).

Strictly speaking, we should be careful to assure that (1.81) holds on the basis of
(1.80). It is because we have yet the possibility that k is a complex number. To see
it, we examine zeros of a cosine function that is defined in a complex domain. Here,
the zeros are (complex) numbers to which the function takes zero. That is, if
f(z0) =0, z¢ is called a zero (i.e., one of zeros) of f(z). Now, we have

1

coszEi(e"z+e’iz);z:x+iy(x,y:real). (1.93)

Inserting z = x+ iy in cos z and rearranging terms, we get
1 - . .
coszzi[cosx(e"+e Y)+isinx(e™ —¢”)]. (1.94)

For cosz to vanish, both its real and imaginary parts must be zero. Since
e’ +e7” > 0 for all real numbers y, we must have cosx = 0 for the real part to
vanish, i.e.,
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x:g+mn(m:o,il,i2,...). (1.95)

Note in this case that sinx = %1 (# 0). Therefore, for the imaginary part to
vanish, e™ — ¢ = 0. That is, we must have y = 0. Consequently, the zeros of cos z
are real numbers. In other words, with respect to zo that satisfies cos zp = 0, we have

ZO:ngmn(m:o,ﬂ,iz,...). (1.96)

The above discussion equally applies to a sine function as well.

Thus, we ensure that k is a nonzero real number. Eigenvalues A are positive
definite from (1.68) accordingly. This conclusion is not fortuitous but a direct
consequence of the form of a differential equation we have dealt with in combi-
nation with the BCs we imposed, i.e., the Dirichlet conditions. Detailed discussion
will follow in Sects. 1.4, 8.3, and 8.4 in relation to the Hermiticity of a differential
operator.

Example 1.2 A particle confined within a potential well.

The results obtained in Example 1.1 can immediately be applied to dealing with
a particle (electron) in a one-dimensional infinite potential well. In this case, (1.55)
reads as

7 d(x)
2m  dx?

+Ey(x) =0, (1.97)

where m is a mass of a particle and E is an energy of the particle. A potential V is
expressed as

_Jo(-L<x<L),
V(x) = { oo (—L>x;x>1L).
Rewriting (1.97), we have

2W(x m
ddli(z ) +2h—2Elﬂ(x):O (1.98)
with BCs
Y(L) =y(-L) =0. (1.99)

If we replace 4 of (1.61) with ZZ—QE, we can follow the procedures of Example. 1.1.
That is, we put
"
E —

T 2m

(1.100)
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with 2 = &2 in (1.68). For k, we use the values of (1.81) and (1.84). Therefore, with
energy eigenvalues, we get either

R (2m+1)7
E=— """ (m=0,1,2,... 1.101
. i (m=0,12,.), (1.101)

to which y(x) = \/%coskx[kL =Z4+mn(m=0,1,2,...)] corresponds or

2 (2n)*n2
E=—-
2m AL

(n=1,2,3,...), (1.102)

to which y(x) = \/%sin kx[kL = nm (n = 1,2,3,...)] corresponds.

Since the particle behaves as a free particle within the potential well
(~L<x<L) and p = Rk, we obtain

E:ﬁ:}i 27
2m  2m
where
[ (@Cm+1)n/2L (m=0,1,2,...),
" | 2nm/2L (n=1,2,3,...)

The energy E is a kinetic energy of the particle.
Although in (1.97), ¥(x) =0 trivially holds, such a function may not be

regarded as a solution of the eigenvalue problem. In fact, considering that [y (x)|?
represents existence probability of a particle, ¥/(x) = 0 corresponds to a situation
where a particle in question does not exist. Consequently, such a trivial case has
physically no meaning.

1.4 Quantum-Mechanical Operators and Matrices

As represented by (1.55), a quantum-mechanical operator corresponds to a physical
quantity. In (1.55), we connect a Hamiltonian operator to an energy (eigenvalue).
Let us rephrase the situation as follows:

PY =pV. (1.103)

In (1.103), we are viewing P as an operation or measurement on a physical
system that is characterized by the quantum state . Operating P on the physical
system (or state), we obtain a physical quantity p relevant to P as a result of the
operation (or measurement).
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A way to effectively achieve the above is to use a matrix and vector to represent
the operation and physical state, respectively. Let us glance a little bit of matrix
calculation to get used to the quantum-mechanical concept and, hence, to obtain
clear understanding about it. In Part III, we will deal with matrix calculation in
detail from a point of view of a general principle. At present, a (2,2) matrix suffices.
Let A be a (2,2) matrix expressed as

a=(9 ). 1.104
(¢ 5) (1.104)

Let |) be a (2,1) matrix, i.e., a column vector such that

W) = (;) (1.105)

Note that operating (2,2) matrix on a (2,1) matrix produces another (2,1) matrix.

Furthermore, we define an adjoint matrix AT such that

a c*
AT:<b* d*>, (1.106)

where a* is a complex conjugate of a. That is, Alisa complex conjugate transposed

matrix of A. Also, we define an adjoint vector (| or |x//)Jr such that
Wl = W)= (). (1.107)

In this case, |t//>Jr also denotes a complex conjugate transpose of |y/). The
notation |y) and (| are due to Dirac. He named (/| and |¢) a bra vector and ket
vector, respectively. This naming or equivoque comes from that (Y| - |@) = (Y | @)
forms a bracket. Thisis a (1,2) x (2,1) = (1, 1) matrix, i.e., a c-number (including
a complex number) and (i | @) represent an inner product. These notations are
widely used nowadays in the field of mathematics and physics.

Taking another vector |£) = (g) and using a matrix calculation rule, we have

h

ATly) = ‘AW> = (Z ;) (;) = (Zji;?) (1.108)

According to the definition (1.107), we have

‘ATWL - <AT1//‘ = (ae* +cf*be* + df*). (1.109)
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Thus, we get

<AT¢‘ > (ae” +cf be” +df* )( ) = (ag +bh)e" + (cg+dh)f*. (1.110)

Similarly, we have

(| AS) = (e*f*)(i Z) (i) = (ag+bh)e* + (cg + dh)f™. (1.111)

Comparing (1.110) and (1.111), we get

(aly | &) =g (1.112)

Also, we have

(W A" = (AL | ). (1.113)
Replacing A with AT in (1.112), we get
<(AT)T¢ ‘ €> = <w ’AT5>- (1.114)
From (1.104) and (1.106), obviously we have
aht = a. (1.115)
Then from (1.114) and (1.115), we have
Ay | ¢) = <HAT5> (€] Ay, (1.116)

where the second equality comes from (1.113) obtained by exchanging y and &
there. Moreover, we have a following relation:

aB) = BlaAT. (1.117)
The proof is left for readers. Using this relation, we have
(vl = ap)T= gy T= iy Tat = piaf = (ya | (1.118)

Making an inner product by multiplying |&) from the right of the leftmost and
rightmost sides of (1.118) and using (1.116), we get
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Ay 1§ = (yal | ) = (v | ale).

This relation may be regarded as the associative law with regard to the symbol
of the inner product. This is equivalent to the associative law with regard to the
matrix multiplication.

The results obtained above can readily be extended to a general case where
(n,n) matrices are dealt with.

Now, let us introduce a Hermitian operator (or matrix) H. When we have

“laa

H =H, (1.119)

H is called a Hermitian matrix. Then, applying (1.112) to the Hermitian matrix
H, we have

<HT¢ ’ 5> (Y | HE) = <¢‘HT§> or (HY | &) = <¢‘HTC> (Y | HE)
(1.120)

Also, let us introduce a norm of a vector |) such that

Wl = v ). (1.121)

A norm is a natural extension for a notion of a “length” of a vector. The norm
||| is zero, if and only if |) = O (zero vector). For, from (1.105) and (1.107), we
have

W v =lel +1fI".

Therefore, (y |Y) =0 e=f=0, ie.lyy) =0.
Let us further consider an eigenvalue problem represented by our newly intro-
duced notation. The eigenvalue equation is symbolically written as

HIW) = Aly), (1.122)

where H represents a Hermitian operator and |i/) is an eigenfunction that belongs to
an eigenvalue 4. Operating (Y| on (1.122) from the left, we have

WIHY) = (blAf) = A | ) = 2, (1.123)

where we assume that |/) is normalized; namely (y | ) =1 or ||y|| = 1. Notice
that the symbol “” in an inner product is of secondary importance. We may

disregard this notation as in the case where a product notation “x” is omitted by
denoting ab instead of a x b.
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Taking a complex conjugate of (1.123), we have
(W | Hp)'= 7. (1.124)

Using (1.116) and (1.124), we have
A=y | HY)'= <x// ’ HW> = (Y | HY) = 4, (1.125)

where with the third equality we used the definition (1.119). The relation A* = 4
obviously shows that any eigenvalue / is real, if H is Hermitian. The relation
(1.125) immediately tells us that even though |¢) is not an eigenfunction, ( | Hy)
is real as well, if H is Hermitian. The quantity (i | Hy) is said to be an expectation
value. This value is interpreted as the most probable or averaged value of H
obtained as a result of operation of H on a physical state [{/). We sometimes denote
the expectation value as

(H) = (Y | HY), (1.126)

where |i/) is normalized. Unless |i/) is not normalized, it can be normalized on the
basis of (1.121) by choosing |®) such that

@) = [¥)/[[w]- (1.127)

Thus, we have an important consequence; if a Hermitian operator has an
eigenvalue, it must be real. An expectation value of a Hermitian operator is real as
well. The real eigenvalue and expectation value are a prerequisite for a physical
quantity.

As discussed above, the Hermitian matrices play a central role in quantum
physics. Taking a further step, let us extend the notion of Hermiticity to a function
space.

In Example 1.1, we have remarked that we have finally reached a solution where
4 is a real (and positive) number, even though at the beginning we set no restriction
on /. This is because the SOLDE form (1.61) accompanied by BCs (1.62) is
Hermitian, and so eigenvalues A are real.

In this context, we give a little bit of further consideration. We define an inner
product between two functions as follows:

b

1 f) = / ¢(0)"F)dr, (1.128)

a

where g(x)* is a complex conjugate of g(x); x is a real variable and an integration
range can be either bounded or unbounded. If @ and b are real definite numbers, [a,
b] is the bounded case. With the unbounded case, we have, e.g.,
(—00,00), (—00,c),and (¢, 00), etc. where ¢ is a definite number. This notation
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will appear again in Chap. 8. In (1.128), we view functions f and g as vectors in a
function space, often referred to as a Hilbert space. We assume that any function f

is square-integrable, i.e., |f|* is finite. That is,

b
/V(X)\zdx<oo. (1.129)

Using the above definition, let us calculate (g | Df), where D was defined in
(1.63). Then, using the integration by parts, we have

(¢| Df) = /hg(X)* {d?x(;c)}dx ~[g'fL+ /bg*/f’dx

a a

b

b
= —[g'/ o+ 1g"fla- / g"fdx = [¢"f — g*f')o + / (—&""f)dx

a

= [gf — &1L+ (Dg | ).

(1.130)
If we have BCs such that
£(b) =f(a) = 0and g(b)" = g(a)" = Oi.c.,g(b) = g(a) =0, (1.131)
we get
(¢ Df) = (Dg|f)- (1.132)

In light of (1.120), (1.132) implies that D is Hermitian. In (1.131), notice that the
functions f and g satisfy the same BCs. Normally, for an operator to be Hermitian
assumes this property. Thus, the Hermiticity of a differential operator is closely
related to BCs of the differential equation.

Next, we consider a following inner product:

b b
f1Df) = /ff”dx [f*f’]‘;+/f*’f’dxz—[f*f’]2+/|f’|2dx. (1.133)

Note that the definite integral of (1.133) cannot be negative. There are two
possibilities for D to be Hermitian according to different BCs.

(i) Dirichlet conditions: f(b) = f(a) = 0. If we could have f' = 0, (f | Df) would
be zero. But, in that case, f should be constant. If so, f(x) = 0 according to
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BCs. We must exclude this trivial case. Consequently, to avoid this situation,
we must have

/[f’|2dx>00r<f|Df> > 0. (1.134)

In this case, the operator D is said to be positive definite. Suppose that such a
positive-definite operator has an eigenvalue A. Then, for a corresponding eigen-
function y(x), we have

Dy(x) = 2y(x). (1.135)

In this case, we state that y(x) is an eigenfunction or eigenvector that corre-
sponds (or belongs) to an eigenvalue A. Taking an inner product of both sides, we
have

(v [ Dy) = (v] ) = Ay | ) = ZlpII* or 2= (v | Dy)/|Iy]I*. (1.136)

Both (y | Dy) and ||y||* are positive and, hence, we have A > 0. Thus, if D has an
eigenvalue, it must be positive. In this case, 4 is said to be positive definite as well,
see Example 1.1.

(ii) Neumann conditions: f(b) = f’(a) = 0. From (1.130), D is Hermitian as well.
Unlike the condition (i), however, f may be a nonzero constant in this case.
Therefore, we are allowed to have

b
/V’\zdxzoor(f|Df>:O. (1.137)

For any function, we have
{f | Df) =0. (1.138)

In this case, the operator D is said to be nonnegative (or positive semi-definite).
The eigenvalue may be zero from (1.136) and, hence, is called nonnegative
accordingly.

(iii) Periodic conditions: f(b) = f(a) and f'(b) = f'(a). We are allowed to have
(f | Df) >0 as in the case of the condition (ii). Then, the operator and
eigenvalues are nonnegative.

Thus, in spite of being formally the same operator, that operator behaves dif-
ferently according to the different BCs. In particular, for a differential operator to be
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associated with an eigenvalue of zero produces a special interest. We will encounter
another illustration in Chap. 3.

1.5 Commutator and Canonical Commutation Relation

In quantum mechanics, it is important whether two operators A and B are com-
mutable. In this context, a commutator between A and B is defined such that

[A, B] = AB — BA. (1.139)

If [A, B] = 0 (zero matrix), A and B are said to be commutable (or commutative).
If [A,B]#0, A and B are non-commutative. Such relationships between two
operators are called commutation relation.

We have canonical commutation relation as an underlying concept of quantum
mechanics. This is defined between a (canonical) coordinate g and a (canonical)
momentum p such that

lq,p] = if, (1.140)

where the presence of a unit matrix E is implied. Explicitly writing it, we have,

[q,p] = ihE. (1.141)
The relations (1.140) and (1. 141) are called the canonical commutation relation.
On the basis of a relation p = %%, a brief proof for this is as follows:
ho h 0
4.0I) = ap —~ pa)lV) = ( e >|w> — =T )
nol) _hog a\w .
= J— _—— = —— - h
T R e
(1.142)
Since |y) is an arbitrarily chosen vector, we have (1.140).
Using (1.117), we have
4, B = (4B — BA) = BTaT — ATBT. (1.143)

If in (1.143) A and B are both Hermitian, we have

A, B =BA —aB = —[A,B]. (1.144)
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If we have an operator G such that

' = —¢, (1.145)

G is said to be anti-Hermitian. Therefore, [A, B] is anti-Hermitian, if both A and
B are Hermitian. If an anti-Hermitian operator has an eigenvalue, the eigenvalue is
zero or pure imaginary. To show this, suppose that

Gly) = 2l¥), (1.146)

where G is an anti-Hermitian operator and |1/) has been normalized. As in the case
of (1.123), we have

WIGlY) = A0 [ ) = 2. (1.147)
Taking a complex conjugate of (1.147), we have
(W | G)y'= A" (1.148)

Using (1.116) and (1.145) again, we have

7 =wiew'=(v|clw) = —wi6w = (1.149)

This shows that / is zero or pure imaginary.

Therefore, (1.142) can be viewed as an eigenvalue equation to which any
physical state [f/) has a pure imaginary eigenvalue i7i with respect to [g, p]. Note
that both ¢ and p are Hermitian (see Sect. 8.2, Example 8.3), and so [q, p] is anti-
Hermitian as mentioned above. The canonical commutation relation given by
(1.140) is believed to underpin the uncertainty principle.

In quantum mechanics, it is of great importance whether a quantum operator is
Hermitian or not. A position operator and momentum operator along with an an-
gular momentum operator are particularly important when we constitute
Hamiltonian. Let f and g be arbitrary functions. Let us consider, e.g., a following
inner product with the momentum operator.

b
<g|pf>:/g(x)*§% (x)]dx, (1.150)

a

where the domain [a, b] depends on a physical system; this can be either bounded or
unbounded. Performing integration by parts, we have
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=216y~ el @)+ [ [P eo)] a

a

If we require f(b) = f(a) and g(b) = g(a), the first term vanishes and we get

b
lon = [ [} 52e0] raa= e 1. (1152)

a

Thus, as in the case of (1.120), the momentum operator p is Hermitian. Note that
a position operator g of (1.142) is Hermitian as a priori assumption.

Meanwhile, the angular momentum operator L, is described in a polar coordinate
as follows:

Lo

e (1.153)

where ¢ is an azimuthal angle varying from O to 2z. The notation and implication
of L, will be mentioned in Chap. 3. Similarly as the above, we have

2n
(¢ 1) = eCys2m) - 20O+ [ [4a00] sa6. (115
0

Requiring an arbitrary function f to satisfy a BC f(27) = f(0), we reach

(8 | Lf) = (Lg | f)- (1.155)

Note that we must have the above BC, because ¢ = 0 and ¢p = 27 are spatially
the same point. Thus, we find that L, is Hermitian as well on this condition.

On the basis of aforementioned argument, let us proceed to quantum-mechanical
studies of a harmonic oscillator. Regarding the angular momentum, we will study
their basic properties in Chap. 3.

Reference

1. Mgller C (1952) The theory of relativity. Oxford University Press, London



Chapter 2
Quantum-Mechanical Harmonic
Oscillator

Quantum-mechanical treatment of a harmonic oscillator has been a well-studied
topic from the beginning of the history of quantum mechanics. This topic is a
standard subject in classical mechanics as well. In this chapter, first we briefly
survey characteristics of a classical harmonic oscillator. From a quantum-
mechanical point of view, we deal with features of a harmonic oscillator through
matrix representation. We define creation and annihilation operators using position
and momentum operators. A Hamiltonian of the oscillator is described in terms of
the creation and annihilation operators. This enables us to easily determine energy
eigenvalues of the oscillator. As a result, energy eigenvalues are found to be
positive definite. Meanwhile, we express the Schrodinger equation by the coordi-
nate representation. We compare the results with those of the matrix representation
and show that the two representations are mathematically equivalent. Thus, the
treatment of the quantum-mechanical harmonic oscillator supplies us with a firm
ground for studying basic concepts of the quantum mechanics.

2.1 Classical Harmonic Oscillator
Classical Newtonian equation of a one-dimensional harmonic oscillator is expres-
sed as

dzx(t)
dr?

= —sx(1), (2.1)

m

where m is a mass of an oscillator and s is a spring constant. Putting s/m = w?, we
have
d*x(1) 2
+ wx(t) = 0. 2.2
o+ o) 22)
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In (2.2), we set w positive, namely
o =/s/m, (2.3)

where o is called an angular frequency of the oscillator.

If we replace w® with A, we have formally the same equation as (1.61). Two
linearly independent solutions of (2.2) are the same as before (see Example 1.1); we
have € and e ™ (w # 0) as such. Note, however, that Example 1.2 we were
dealing with a quantum state related to existence probability of a particle in a
potential well. In (2.2), on the other hand, we are examining a position of harmonic
oscillator undergoing a force of a spring. We are thus considering a different
situation.

As a general solution, we have

x(t) = ae™” +be ", (2.4)

where a and b are suitable constants. Let us consider BCs different from those of
Examples 1.1 or 1.2 this time. That is, we set BCs such that

x(0) = 0 and X' (0) = vo (vo > 0). (2.5)

Notice that (2.5) gives initial conditions (ICs). Mathematically, ICs are included
in BCs (see Chap. 8). From (2.4), we have

x(t) =a+b=0and ¥(0) = iw(a — b) = vy. (2.6)

Then, we get a = —b = vy /2iw. Thus, we get a simple harmonic motion as a
solution expressed as

x(t) = 2\:% (e — ™) = vaosin wt. (2.7)

From this, we have
L,
E:K—&—V:Emvo. (2.8)

In particular, if vy = 0, x(¢) = 0. This is a solution of (2.1) that has the meaning
that the particle is eternally at rest. It is physically acceptable as well. Notice also
that unlike Examples 1.1 and 1.2, the solution has been determined uniquely. This
is due to the different BCs.

From a point of view of a mechanical system, mathematical formulation of the
classical harmonic oscillator resembles that of electromagnetic fields confined
within a cavity. We return this point later in Sect. 7.6.
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2.2 Formulation Based on an Operator Method

Now let us return to our task to find quantum-mechanical solutions of a harmonic
oscillator. Potential V is given by

1 1
V(g) = 554" = smo’q, (2.9)
where ¢ is used for a one-dimensional position coordinate. Then, we have a clas-
sical Hamiltonian H expressed as

2 2
14 p L 5,
H="—+V(g) =—+ = . 2.10
o TV (@) =5+ smw’q (2.10)
Following the formulation of Sect. 1.2, the Schrédinger equation as an eigen-
value equation related to energy E is described as

Hy(q) = Ey(q) or

H2 ) 1 - (2.11)
__ — =F .

2 VW (9) + 5morqy(q) = Ev(q)

This is a SOLDE and it is well known that the SOLDE can be solved by a power
series expansion method.

In the present studies, however, let us first use an operator method to solve the
eigenvalue Eq. (2.11) of a one-dimensional oscillator. To this end, we use a
quantum-mechanical Hamiltonian where a momentum operator p is explicitly
represented. Thus, the Hamiltonian reads as

p2

1
H ="+ -mo*q. 2.12
5 T3 (2.12)
The equation of (2.12) is formally the same as (2.10). Note, however, that in
(2.12) p and g are expressed as quantum-mechanical operators.
As in (1.126), we first examine an expectation value (H) of H. It is given by

1) = i) = (W0 ) + (vt
s

= o (ptlpw ) + ymo? (qhwlaw) = 5 pwlpw) + S me(aylan)

1 1
=5, IpvIP + S mo? | |* >0, (2.13)
where again we assumed that |\/) has been normalized. In (2.13), we used the

notation (1.126) and the fact that both g and p are Hermitian. In this situation, (H)
takes a nonnegative value.
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In (2.13), the equality holds if and only if |py/) = 0 and |qys) = 0. Let us specify
a vector |y, that satisfies these conditions such that

Ip¥o) = 0 and |gyy) = 0. (2.14)

Multiplying g from the left on the first equation of (2.14) and multiplying p from
the left on the second equation, we have

qple) = 0 and pg|g) = 0. (2.15)

Subtracting the second equation of (2.15) from the first equation, we get

(ap — Pa) o) = iil,) = 0, (2.16)

where with the first equality we used (1.140). Therefore, we would have
[¥o(q)) = 0. This leads to the relations (2.14). That is, if and only if |,(g)) = 0,
(H) = 0. But, since it has no physical meaning, |/,(q)) = 0 must be rejected as
unsuitable for the solution of (2.11). Regarding a physically acceptable solution of
(2.13), (H) must take a positive-definite value accordingly. Thus, on the basis of the
canonical commutation relation, we restrict the range of the expectation values.

Instead of directly dealing with (2.12), it is well known to introduce following
operators [1]:

mo i
a=/—q+ 2.17
Vit ot (2.17)
and its adjoint (complex conjugate) operator
t_ mo i
a' = |=——q— . 2.18
ol P (2.18)

Notice here again that both g and p are Hermitian. Using a matrix representation
for (2.17) and (2.18), we have

< ‘11_> _ ( V % \/2rlnﬁ(u ) (Q> (2.19)
a 2n _\/thw p

Then, we have

ata = (2mhiw) ™ (mwq — ip)(moq + ip)
= (2mho) ! M’ o’ + p* + imo(gp — pq)]

1 1 1 1
= (hw)™" [zmwzq2 + ﬁpz + 2iwih} = (ho)™! <H — 2hw), (2.20)
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where the second last equality comes from (1.140). Rewriting (2.20), we get
1 1
H = howa'a+ Ehw (2.21)

Similarly, we get

H = hoad' — %hw (2.22)
Subtracting (2.22) from (2.21), we have
0 = hwala — hwaa® + ho. (2.23)
That is,
[a,aw =1lor [a,aT] =E. (2.24)

Furthermore, using (2.21), we have

{H, aw = hw [aTa—l— %,aq = h(x)(dJraaJr — aTaTa) = hwaJr {a, aw = hwaT.
(2.25)

Similarly, we get
[H,a] = —hwa. (2.26)

Next, let us calculate an expectation value of H. Using a normalized function
[y/), from (2.21), we have

WIHIY) = lhoata+ Sholy) = hotla ) + 3 holy)

1 1 1
= holap|ay) + S ho = hollay|* + Sho> Sho,

(2.27)

Thus, the expectation value is equal to or larger than %hw This is consistent with
that an energy eigenvalue is positive definite as mentioned above. Equation (2.27)
also tells us that if we have

lay,) =0, (2.28)

we get

WolHg) = 30, (2.29)
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Equation (2.29) means that the smallest expectation value is %hw on the con-
dition of (2.28). On the same condition, using (2.21), we have

Hlfo) = hooalalfo) + 3 ol = 5 holy). (2.30)

Thus, [,) is an eigenfunction corresponding to an eigenvalue 1w = Eo, which
is identical with the smallest expectation value of (2.29). Since this is the lowest
eigenvalue, |i/,) is said to be a ground state. We ensure later that |y, is certainly an
eligible function for a ground state.

The above method is consistent with the variational principle [2] which stipu-
lates that under appropriate BCs an expectation value of Hamiltonian estimated
with any arbitrary function is always larger than or equal to the smallest eigenvalue
corresponding to the ground state.

Next, let us evaluate energy eigenvalues of the oscillator. First we have

1
Hlyy) = Ehww/o) = Eo|o)- (2.31)
Operating al on both sides of (2.31), we have
atHlyo) = a Eolyy). (232)
Meanwhile, using (2.25), we have
aTHlpy) = (Hal — noal ) ). (2.33)
Equating RHSs of (2.32) and (2.33), we get
Hal o) = (o + eo)al|s). (2.34)

This implies that aTWO) belongs to an eigenvalue (Ey+ hiw), which is larger

than Ej as expected. Again multiplying al on both sides of (2.34) from the left and
using (2.25), we get

H(a o) = (Eo +2h00)(al )|hy). (2.35)

This implies that (aT)2|xﬁ0) belongs to an eigenvalue (E+ 2fiw). Thus,
repeatedly taking the above procedures, we get

H(a)"|o) = (Eo +nhr)(al )" ). (2.36)
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Thus, (aT)"|lﬁ0> belongs to an eigenvalue
1
E, = (Ey+nhow) = (n + 5) ho, (2.37)

where E, denotes an energy eigenvalue of the nth excited state. The energy
eigenvalues are plotted in Fig. 2.1.

Our next task is to seek normalized eigenvectors of the nth excited state. Let ¢,
be a normalization constant of that state. That is, we have

W) = ealal)" o), (2.38)

where |i),) is a normalized eigenfunction of the nth excited state. To determine c,,

let us calculate a|i),,). This includes a factor a(aT)". We have

“(aT)n = (aaT - aTa) (aJr)”_l +aTa(aT)"—l
a,ajq(
n—1

= [ aly'! JraTa(aT)’h1 = (a]L)n*1 +aTa(aT)"7l
~ (afy-
2
2

f

Tyt qf [a, aT] @2 4 (ah)?a(aty 2
(al)'™" + (@) a(al)"

=2(al)"™ + (@) [a,al| @) + (aF)atal )™
3(al)" !+ (afYa(al)?

(2.39)

n—
n—

+(

In the above procedures, we used [a, aT} = 1. What is implied in (2.39) is that a

coefficient of (aJr)"*1 increased one by one with a transferred toward the right one
by one in the second term of RHS. Notice that in the second term a is sandwiched

such that (aT)ma(aT)"_m (m=1,2,...). Finally, we have

a(aT)" = n(aT)"_1 + (aT)"a. (2.40)

Fig. 2.1 Energy eigenvalues (x hw)
of a quantum-mechanical
harmonic oscillator on a real

axis

N =
N w
N Ul
|
N O
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Thus, we get

al,) = caalal)' o) = eu|n(a)" ™ + (al)'a jyo) = cun(al )" )

(2.41)
=n (@) o) =n ),

where the third equality comes from (2.28).
Next, operating a on (2.40), we get
az(aT)" = na(a]L)"_1 +a(aT)"a
—n [(n D@+ (aT)"*la} ta(al)a (2.42)
=n(n — 1)(aT)"72 + n(aT)"fla —|—a(aT)na.

Operating another a on (2.42), we get

a (aT)" =n(n— l)a(aT)’“2 + na(aT)"fla + az(aT)"a
=nn—1)|(n— 2)(a]L)"_3 + (aT)"_za} + na(aT)"_la +d° (aT)"a

=n(n—1)(n— 2)(aT)"73 +n(n— 1)(aJr)"72a —i—na(aT)"*la +a2(aT)"a

(2.43)

To generalize the above procedures, operating @ on (2.40) m(<n) times, we get
am(aT)" =nn—1)(n—-2)...n—m+ 1)(aT)'H" +f(a,aT)a, (2.44)

where m<n and f(a,aT) is a polynomial of al that has a power of a as a

coefficient. Further operating (y,| and |i/,) from the left and right on both sides of
(2.44), respectively, we have

(Wola™ (@) o) = n(n — 1)(n = 2)....(n — m+ 1) (ol (@)™ o)
+ (ol (aa" ) alyy) (245)
— n(n—1)(n—2)...(n — m+ 1) {Wol(a )" Wy).

Note that in (2.45) <lp0[f(a, aT)aN/O} vanishes because of (2.28).
Meanwhile, taking adjoint of (2.28), we have
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(Wolal =0, (2.46)
Operating af (n —m — 1) times from the right of LHS of (2.46), we have

(Wol(ah) ™ =o0.

Further operating |y,) from the right of the above equation, we get
(Wol(al )" ") = 0.
Therefore, from (2.45), we get
(Wola" (al)" i) = 0. (2:47)
Taking adjoint of (2.47) once again, we have

(Wola"(a)" o) = 0. (2.48)

Equation (2.48) can be obtained by repeatedly using (1.117). From (2.45) and
(2.48), we get

Wola™ (@Y Io) = 0, whenm # n. (2.49)

If m = n, from (2.45), we get

(Wola" (@) o) = nl{Wolo)- (2.50)
If we assume that |i),) is normalized; i.e., (Y|t} = 1, (2.50) is expressed as
(Wola" (@l )" o) = ! (2.51)

From (2.51), if we put

1 n
) = —=(al)o), (2.52)
then we have
1
W, | = T (Wola".

Thus, from (2.49) and (2.52), we get
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At the same time, for ¢, of (2.38), we get

1
Cp=—=. 2.54
= (2.54)
Notice here that an undetermined phase factor e (0 : real) is intended such that
L o
Cp =—=¢
vn!

But, ¢’ is usually omitted for the sake of simplicity. Thus, we have constructed a
series of orthonormal eigenfunctions |i/,,).
Furthermore, using (2.41) and (2.54), we get
a‘lpn> = \/ﬁ|lpnfl>' (255)
From (2.36), we get
H|y,) = (Eo +nhw)|,). (2.56)

Meanwhile, from (2.21), we have
HY,) = (hwaTa +E0> ). (2.57)
Equating RHSs of (2.56) and (2.57), we get
alaly,) = nly,). (2.58)

Thus, we find that an integer » is an eigenvalue of ala when it is evaluated with

respect to |y,,). For this reason, alais called a number operator. Notice that atais
Hermitian because we have

(aJra)Jr = aJr(a]L)Jr = aTa, (2.59)

where we used (1.115) and (1.117).
Moreover, from (2.55) and (2.58),

dlaly,) = Vnal|y,,) = nlw,). (2.60)

Thus,

'y, 1) = valy,). (2.61)
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Or replacing n with n+ 1, we get

ally,) = Va1, ). (2:62)

As implied in (2.55) and (2.62), we find that operating a on |,) lowers an
energy level by one and that operating al on [,,) raises an energy level by one. For

this reason, a and al are said to be an annihilation operator and creation operator,
respectively.

2.3 Matrix Representation of Physical Quantities

Equations (2.55) and (2.62) clearly represent the relationship between an operator
and eigenfunction (or eigenvector). The relationship is characterized by

(Matrix) x (Vector) = (Vector). (2.63)

Thus, we are now in a position to construct this relation using matrices.
From (2.53), we should be able to construct basis vectors using a column vector
such that

) = (2.64)

I eNoBololS
N eNeNel =
e Nel S =]

Notice that these vectors form a vector space of an infinite dimension. The

orthonormal relation (2.53) can easily be checked. We represent a and al so that
(2.55) and (2.62) can be satisfied. We obtain

01 0 0 0
00 v2 0 0 --
00 0 V3 0 --

a=1 9 0 0 0 2 ... (2.65)
0 0 0 0 0
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Similarly,
0O 0 0 0 O
1 0 0 0 O
' 0 V2 0 0 0
a' = 0 0 \/§ 0 0 (2.66)
0 0 O 2 0

Note that neither @ nor al is Hermitian.
Since a determinant of the matrix of (2.19) is —i/% # 0, using its inverse matrix
we get

h n

q\ \/ 2mw 2maw a

(p ) o 1 /mho 1 /mho (aT ) ' (267)
V2 iV 2

That is, we have

h

e (a + aJ[) andp = %\/@CB(@ - aT). (2.68)

With the inverse matrix, we will deal with it in Part III. Note that g and p are
both Hermitian. Inserting (2.65) and (2.66) into (2.68), we get

q:

01 0 0 0
1 0 V20 0
10 vV2 0 V30
00 0 2 0
0 -1 0 0 0
1 0 =2 0 0
mho | 0 V2 0 —V/3 0 -
p= 5 00 V3 0o -2 ... |- (2.70)
00 0

Equations (2.69) and (2.70) obviously show that ¢ and p are Hermitian. We can
derive various physical quantities from these equations. For instance, following
matrix algebra Hamiltonian H can readily be calculated. The result is expressed as



2.3 Matrix Representation of Physical Quantities 43

1.0 0 0 O
03 0 0 O
2
p 1 ,, Ao| 0 0O 5 0 O
0O 0 0 0 9

Looking at (2.69-2.71), we immediately realize that although neither g or p is
diagonalized, H is diagonalized. The matrix representation of (2.71) is said to be a
representation that diagonalizes H. This representation is of great practical use. In
fact, using (2.64), we get, e.g.,

100 00 0 0 0
030 00 0 0 0

sl 005 00 B B I R
H) =510 00 7 0 ol=2 o= |0
000 009 0 0 0

=220 = (5 +2) ol
(2.72)

This clearly means that the second-excited state [y,) has an eigenenergy
(% +2)hw. More generally, we find that |y,) has an eigenenergy (% —|—n)hw as
already shown in (2.36) and (2.56).

Furthermore, let us confirm the canonical commutation relation of (1.140).
Using (2.68), we have

a—pg =~ \/%\/@K““T) (“‘“T) - ("_“T) (““’T)] (2.73)

i
- % (-2) - (aaJr — ana) =ih [a,aw =ih= iﬁE,

where with the second last equality we used (2.24) and the identity matrix of an
infinite dimension E is given by

&)
Il

(2.74)

I eNoeleoNall e
SO OO0 O
e Ne o)
el N eleNe)

—_ oo OO
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Thus, the canonical commutation relation holds with the quantum-mechanical

harmonic oscillator. This can be confirmed directly from (2.69) and (2.70). The
proof is left for readers as an exercise.

2.4 Coordinate Representation of Schriodinger Equation

The Schrodinger equation has been given in (1.55) or (2.11) as a SOLDE form. In
contrast to the matrix representation, (1.55) and (2.11) are said to be coordinate
representation of Schrodinger equation. Now, let us derive a coordinate represen-
tation of (2.28) to obtain an analytical solution.

On the basis of (1.31) and (2.17), a is expressed as

Y O _\/@+ i Eé_\/@+,/h§
N2 et N 20T amreiog N 20T\ 2mewdq
(2.75)

Thus, (2.28) reads as a following first-order linear differential equation (FOLDE):

(F/—a—>w<> 276)

Or
ma h alﬁo(‘l)_
V300 g g =0 @77)
This is further reduced to
Nylg) | mo _
5o T avala) = 0. (278)

From this FOLDE form, we anticipate the following solution:

Wo(q) = Noe ™", (2.79)

where Ny is a normalization constant and o is a constant coefficient. Putting (2.79)
into (2.78), we have

(~22g+ m?wq)Noe’“qz —0. (2.80)
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Hence, we get
o0=—". (2.81)

Thus,

_mao

Yo(q) = Noe 57 (2.82)

The constant Ny can be determined by the normalization condition given by
/ Wo(q)|*dg = 1 or Ng / e g = 1. (2.83)
oo %

Recalling the following formula:

7 e dg = \/f (c>0), (2.84)

we have
T 7
/ el dg = | L. (2.85)
ma

To get (2.84), putting [ = [*_e~*¢dq, we have

o0

o0 o0 oo

I’ = /e_c"qu /e_”zds = / e"'(qzﬂz)dqu
007OO 2n - 00 2;00 (286)
1
:/ef”zrdr/d():—/e*”RdR/dQ:E,
2 c
0 0 0 0

where with the third equality we converted two-dimensional Cartesian coordinate to
polar coordinate; take ¢ = r cos ), s = r sinf and convert an infinitesimal area
element dgds to dr-rd0. With the second last equality of (2.86), we used the
variable transformation of > — R. Hence, we get [ = \/¥

Thus, we get

maw ma

No = (E) v and Y, (q) = (E) 1/467%(]2. (2.87)
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Also, we have

Tf mw - w i
V2 ./—zmh Vool =N 20T e zaq \/ Vzm
2 88)

From (2.52), we get

bule) ==l Y1) = (@ SyAE 8q> olg

(2.89)
- (5" (q - m—wa—q) Vo(a).
Putting
B=+/mo/hand & = pg, (2.90)

we rewrite (2.89) as

) =vu(5) = (%)/ (- 52) wot@
e e

- 2nln! (%) " <f - 685) o

Comparing (2.81) and (2.90), we have

=" (2.92)

Moreover, putting

1 mon 1/4 ﬁ
A 2nn!(%) _\/E (2.93)

we get

U, (E/B) = (é — %)"e-%fz. (2.94)
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We have to normalize (2.94) with respect to a variable £. Since y,(q) has
already been normalized as in (2.53), we have

/ ¥, (q)]dg = 1. (2.95)

Changing a variable ¢ to &, we have

1

; / Wa(E/B)RdE = 1. (2.96)

—00

Let us define %(é) as being normalized with &. In other words, ¥,(q) is

converted to 1, (£) by means of variable transformation and concomitant change in
normalization condition. Then, we have

¥, (8] d& =1 (2.97)

Comparing (2.96) and (2.97), if we define %(f) as

W, (6) = \ﬁwn@/m, (2.98)

wNn(é) should be a proper normalized function. Thus, we get

— o N e o~ [ 1
lﬁn(f):Nn(f—a—é> e with N, = PRy e (2.99)

Meanwhile, according to a theory of classical orthogonal polynomial, the
Hermite polynomials H,(x) are defined as [3]

a

H,(x) = (_l)nexz Ao

(e—xz) (n>0), (2.100)

where H,(x) is a nth-order polynomial. We wish to show the following relation on
the basis of mathematical induction:

W, (&) = NyHy(E)e = . (2.101)
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Comparing (2.87), (2.98), and (2.99), we make sure that (2.101) holds with
n = 0. When n = 1, from (2.99), we have

~ d N (2.102)
=R G (7)o = e

Then, (2.101) holds with n = 1 as well.
Next, from supposition of mathematical induction, we assume that (2.101) holds
with n. Then, we have

=58 - R
ol B
(é { [ T e
n+1 (5__){12;; }
n+1 {%dé”< ) [ ;;(efézﬂ}
e

n+1 { daet ) 6752 dy (e 52> — e ;;Tl (e’iz>}
mm( e S ()

n+1_¢& dn+l —& 12 —— _1g2
=Nop1 [(=1)"e 41 <e ) e =Noy1Hyp1(x)e >,

(2.103)
This means that (2.101) holds with n + 1 as well. Thus, it follows that (2.101) is

true of n that is zero or any positive integer.
Orthogonal relation reads as

/ Y (&) Y ()AE = Sy, (2.104)

Placing (2.98) back into the function form ,,(¢), we have

q) = /B, (Bq). (2.105)
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Using (2.101) and explicitly rewriting (2.105), we get

mon 1/4 1 mo o 2
=(— - g e 5 (n =
Vu(q) = ( ; ) ‘/nl/zznn!H”O/ - q)e H(n=0,1,2,...).  (2.106)

We tabulate first several Hermite polynomials H,(x) in Table 2.1, where the
index n represents the highest order of the polynomials. In Table 2.1, we see that
even functions and odd functions appear alternately (i.e., parity). This is the case
with 1, (¢) as well, because ¥, (q) is a product of H,,(x) and an even function e %4 .

Combining (2.101) and (2.104), the orthogonal relation between

%(5) (n=0,1,2,...) can be described alternatively as [3]

oo

/ e Hy(E)H, (E)dE = /2" 1S . (2.107)

—00

Note that H,,(¢) is a real function, and so H,,(¢)* = H,,(&). The relation (2.107)

is well known as the orthogonality of Hermite polynomials with e~ taken as a
weight function [3]. Here, the weight function is a real and nonnegative function
within the domain considered [e.g., (—oo, +00) in the present case] and inde-
pendent of indices m and n. We will deal with it again in Sect. 8.4.

The relation (2.101) and the orthogonality relationship described as (2.107) can
more explicitly be understood as follows: From (2.11), we have the Schrodinger
equation of a one-dimensional quantum-mechanical harmonic oscillator such that

R dulg) 1,5,
Tom dg? + Fmo'q u(q) = Eu(q). (2.108)

Changing a variable as in (2.90), we have

cu(®) . 2E
— = . 2.109
e +&u(S) = ulé) (2.109)
Defining a dimensionless parameter
2E
A=—. 2.110
P (2.110)
Table 2.1 First six Hermite Ho(x) =1
polynomials Hy(x) = 2¢
L(x) =
Hy(x) =462 —2
Hj(x) = 8x° — 12x
Hy(x) = 16x* — 48x% + 12
Hs(x) = 32x° — 160x> 4 120x
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and also defining a differential operator D such that

D:J12 + & (2.111)
= a2 &, .
we have a following eigenvalue equation:
Du(&) = Ju(é). (2.112)
We further consider a following function v(&) such that
u(&) = v(&e </ (2.113)
Then, (2.109) is converted as follows:
d*v(¢&) dv(é)] _2 2
— +2 e 2 =(A—1)v(fe 7. 2.114
w2y (= 1) 2114)
2
Since e~ 7 does not vanish with any &, we have
() . dv(E)
— +2 = (A—1)v(¢). 2.115
1o H2E g = (= (2.115)
If we define another differential operator D such that
~ d d
D=—-—+2—, 2.116
0 P (2:116)
we have another eigenvalue equation
Dv(&) = (A= 1)w(&). (2.117)
Meanwhile, we have a following well-known differential equation:
d’H, (&) dH, (&)
—~ -2 +2nH,(&) = 0. 2.118

This equation is said to be Hermite differential equation. Using (2.116), (2.118)
can be recast as an eigenvalue equation such that

DH, (&) = 2nH,(£). (2.119)
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Therefore, comparing (2.115) and (2.118) and putting
A=2n+1, (2.120)
we get
V(&) = cHu($), (2.121)

where c is an arbitrary constant. Thus, using (2.113), for a solution of (2.109), we
get

up(&) = cH,(6)e <12, (2.122)

where the solution u(¢) is indexed with n. From (2.110), as an energy eigenvalue,

we have
E —1—1 /]
= n+ = ho.
2

Thus, (2.37) is recovered. A normalization constant ¢ of (2.122) can be decided
as in (2.106).

As discussed above, the operator representation and coordinate representation
are fully consistent.

2.5 Variance and Uncertainty Principle

Uncertainty principle is one of most fundamental concepts of quantum mechanics.
To think of this conception on the basis of a quantum harmonic oscillator, let us
introduce a variance operator [4]. Let A be a physical quantity and let (A) be an
expectation value as defined in (1.126). We define a variance operator as

((@ay),
where we have
A=A — (A). (2.123)

In (2.123), we assume that (A) is obtained by operating A on a certain physical
state |/). Then, we have

<(AA)2> = <(A - <A>)2> = <A2 —2(A)A+ (A)2> = (A —(A)%.  (2.124)
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If A is Hermitian, AA is Hermitian as well. This is because

A = AT = (ay =4 — (4) = aa, (2.125)
where we used the fact that an expectation value of an Hermitian operator is real.
Then, <(AA)2> is nonnegative as in the case of (2.13). Moreover, if |i) is an

eigenstate of A, <(AA)2> = 0. Therefore, <(AA)2> represents a measure of how

large measured values are dispersed when A is measured in reference to a quantum
state [}). Also, we define a standard deviation 0A as

A = <(AA)2>. (2.126)
We have a following important theorem on a standard deviation dA [4].
Theorem 2.1 Let A and B be Hermitian operators. If A and B satisfy
[A, B] = ik (k : non-zero real number), (2.127)
then we have
0A - OB > |k|/2 (2.128)
in reference to any quantum state ).
Proof We have
[AA,AB] = [A — (|AlY), B — (y|B|))] = [A, B] = ik. (2.129)

In (2.129), we used the fact that (/|A|y) and (¥|B|y) are just real numbers and
those commute with any operator. Next, we calculate a following quantity in
relation to a real number A:

1(AA +iZAB) W) |* = (|(AA — i2AB)(AA +idA) )

2.130
= (V[(AA)* 1Y) — KA+ (YI(AB)*|¥) 2%, 2130

where we used the fact that AA and AB are Hermitian. For the above quadratic form
to hold with any real number A, we have

(—k)* — 4| (AA) [Y) (W (AB)* |y) <. (2.131)

Thus, (2.128) will follow.
On the basis of Theorem 2.1, we find that both 6A and B are positive on
condition that (2.127) holds. We have another important theorem.
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Theorem 2.2 Let A be an Hermitian operator. The necessary and sufficient con-
dition for a physical state |\y,) to be an eigenstate of A is 0A = 0.

Proof Suppose that [/,) is a normalized eigenstate of A that belongs to an
eigenvalue a. Then, we have

<¢0|A2¢0> = a(yo|Ay,) = 2<‘P0|‘//0> =a,

2.132
WolAdo)? = lalolfo) = (2.132)

From (2.124) and (2.126), we have
<1p0|(AA)2¢0> =0 ie dA=0. (2.133)

Note that JA is measured in reference to |i,). Conversely, suppose that 0A = 0.
Then,

=/ (Wol(84)po ) = /(AL [AAYG) = (Ao, (2.134)

where we used the fact that AA is Hermitian. From the definition of norm of (1.121),
for 0A = 0 to hold, we have

AAYy = (A= (A))p =0 e Ay = (A)hg. (2.135)

This indicates that v, is an eigenstate of A that belongs to an eigenvalue (A).
This completes the proof.

Theorem 2.1 implies that (2.127) holds with any physical state ). That is, we
must have 0A > 0 and 0B > 0, if JA and 0B are evaluated in reference to any |y
on condition that (2.127) holds. From Theorem 2.2, in turn, it follows that eigen-
states cannot exist with A or B under the condition of (2.127).

To explicitly show this, we take an inner product of (2.127). That is, with
Hermitian operators A and B, consider the following inner product:

(WA, Bll) = (blikly) e (V|AB — BA) = ik, (2.136)

where we assumed that |1) is arbitrarily chosen normalized vector. Suppose now
that |y,) is an eigenstate of A that belongs to an eigenvalue a. Then, we have

Alho) = aliby)- (2.137)
Taking an adjoint of (2.137), we get
(WolAT = (Wola = (Wola” = ao]. (2.138)

where the last equality comes from the fact that A is Hermitian. From (2.138), we
would have
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(Yo|AB — BA|yo) = (YolAB[o) — (ol BA|Yy)
= (YolaBlyo) — (Yo|Balhy) = al{yho|Blg) — aliby|Blrg) = 0.

This would imply that (2.136) does not hold with |), in contradiction to
(2.127), where ik # 0. Namely, we conclude that any physical state cannot be an
eigenstate of A on condition that (2.127) holds. Equation (2.127) is rewritten as

(W|BA — ABJY) = —ik. (2.139)

Suppose now that |¢@,) is an eigenstate of B that belongs to an eigenvalue b.
Then, we can similarly show that any physical state cannot be an eigenstate of B.

Summarizing the above, we restate that once we have a relation
[A,B] = ik (k # 0), their representation matrix does not diagonalize A or B. Or,
once we postulate [A, B] = ik(k # 0), we must abandon an effort to have a repre-
sentation matrix that diagonalizes A and B. In the quantum-mechanical formulation
of a harmonic oscillator, we have introduced the canonical commutation relation
(see Sect. 2.3) described by [g,p] = ifi (1.140). Indeed, neither ¢ nor p is diago-
nalized as shown in (2.69) or (2.70).

Example 2.1 Taking a quantum harmonic oscillator as an example, we consider
variance of ¢ and p in reference to |} (n =0,1,...). We have

((A0)°) = (Wl lvs) = (W laly,) (2.140)
Using (2.55) and (2.62) as well as (2.68), we get

h
Wlglt,) = /(W la+al|y,)
! 2mo (2.141)

= h—n<l//n71|‘//n>+ h(n+1)<¢n|wn+l> :Oa

2mam 2mam

where the last equality comes from (2.53). We have

h h
2_ " T2 —
gl me(a+a) 2mw

[az +E+2ata+ (aT)z}, (2.142)

where E denotes a unit operator and we used (2.24) along with the following
relation:

aa’ = aa’ —ala+ala = {a, aw tata=E+dla (2.143)
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Using (2.55) and (2.62), we have

Wl = 5o [Wl) + 200 ala, ] = 5 —(an+ 1), (2144

where we used (2.60) with the last equality. Thus, we get

((8aP) = Wla,) — Wlal)P= 5 (20 1),

Following similar procedures to those mentioned above, we get

mhw

(Walpla) = 0 and (g, [p*|,) === (2n+1). (2.145)

Thus, we get

mhw

(Ap)) = WP} = "2 (2n+1),

Accordingly, we have

5q-op = \/<(Aq)2> : \/<(Ap)2> = g(Zn—i- 1)> Z (2.146)

The quantity dq - dp is equal to % for n = 0 and becomes larger with increasing 7.
The above example gives a good illustration for Theorem 2.1. Note that putting
A = g and B = p along with k = & in Theorem 2.1, we should have from (1.140)

0q-op>

I\)IN

This is indeed the case with (2.146) for the quantum-mechanical harmonic
oscillator. This example represents uncertainty principle more generally.

In relation to the aforementioned argument, we might well wonder if in
Examples 1.1 and 1.2 have an eigenstate of a fixed momentum. Suppose that we

chose for an eigenstate y(x) = ce’™, where c is a constant. Then, we would have

’?dgx = hky(x) and get an eigenvalue ik for a momentum. Nonetheless, such y(x)

does not satisfy the proper BCs; i.e., y(L) = y(—L) = 0. This is because e never

vanishes with any real numbers of k or x (any complex numbers of k or x, more
generally). Thus, we cannot obtain a proper solution that has an eigenstate with a
fixed momentum in a confined physical system.
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Chapter 3
Hydrogen-like Atoms

In a history of quantum mechanics, it was first successfully applied to the motion of
an electron in a hydrogen atom along with a harmonic oscillator. Unlike the case of
a one-dimensional harmonic oscillator we dealt with in Chap. 2 however, with a
hydrogen atom we have to consider three-dimensional motion of an electron.
Accordingly, it takes somewhat elaborate calculations to constitute the
Hamiltonian. The calculation procedures themselves, however, are worth following
to understand underlying basic concepts of the quantum mechanics. At the same
time, this chapter is a treasure of special functions. In Chap. 2, we have already
encountered one of them, i.e., Hermite polynomials. Here, we will deal with
Legendre polynomials associated Legendre polynomials, etc. These special func-
tions arise when we deal with a physical system having, e.g., the spherical sym-
metry. In a hydrogen atom, an electron is moving in a spherically symmetric
Coulomb potential field produced by a proton. This topic provides us with a good
opportunity to study various special functions. The related Schrédinger equation
can be separated into an angular part and a radial part. The solutions of angular
parts are characterized by spherical (surface) harmonics. The (associated) Legendre
functions are correlated with them. The solutions of the radial part are connected to
the (associated) Laguerre polynomials. The exact solutions are obtained by the
product of the (associated) Legendre functions and (associated) Laguerre polyno-
mials accordingly. Thus, to study the characteristics of hydrogen-like atoms from
the quantum-mechanical perspective is of fundamental importance.

3.1 Introductory Remarks

The motion of the electron in hydrogen is well-known as a two-particle problem (or
two-body problem) in a central force field. In that case, the coordinate system of the
physical system is separated into the relative coordinates and center-of-mass
coordinates. To be more specific, the coordinate separation is true of the case where

© Springer Nature Singapore Pte Ltd. 2018 57
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two particles are moving under control only by a force field between the two
particles without other external force fields [1].

In the classical mechanics, equation of motion is separated into two equations
related to the relative coordinates and center-of-mass coordinates accordingly. Of
these, a term of the potential field is only included in the equation of motion with
respect to the relative coordinates.

The situation is the same with the quantum mechanics. Namely, the Schrodinger
equation of motion with the relative coordinates is expressed as an eigenvalue
equation that reads as

{_gvuv@}w:w, (3.1)

where p is a reduced mass of two particles [1], i.e., an electron and a proton; V(r) is
a potential with r being a distance between the electron and proton. In (3.1), we
assume the spherically symmetric potential; i.e., the potential is expressed only as a
function of the distance r. Moreover, if the potential is coulombic,

? 2
(_ ﬂv a 4nsor> v=E) (32)

where ¢ is permittivity of vacuum and e is an elementary charge.
If we think of hydrogen-like atoms such as He*, Li**, Be’", etc., we have an

equation described as
" Ze?
—_ V2 _ =E 33
( . mﬂ) V= Ev, (33)

where Z is an atomic number and u is a reduced mass of an electron and a nucleus
pertinent to the atomic (or ionic) species. We start with (3.3) in this chapter.

3.2 Constitution of Hamiltonian

As explicitly described in (3.3), the coulombic potential has a spherical symmetry.
In such a case, it will be convenient to recast (3.3) in a spherical coordinate (or polar
coordinate). As the physical system is of three-dimensional, we have to consider
orbital angular momentum L in Hamiltonian.

We have

L= (816’283)

O
W
S

o
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where e, e;,ande; denote an orthonormal basis vectors in a three-dimensional
Cartesian space (RS); L,, Ly, and L, represent each component of L. The angular
momentum L is expressed in a form of determinant as

(3] e e3
L=xxp=|x 'y 2z|,
Px Py Pz

where x denotes a position vector with respect to the relative coordinates x, y, and
z. That is,

x = (ejeze3) (3.5)

N =R

The quantity p denotes a momentum of an electron (as a particle carrying a
reduced mass u) with py, p,, and p, being their components; p is denoted similar to
the above.

As for each component of L, we have, e.g.,

Le = yp: — zpy. (3.6)

To calculate L?, we estimate L)%, Li, and L? separately. We have

Ly = (p: —2py) - 0z — 1)
= YPYPz — YPZPy — Wy¥Pz — IPyZPy
= Y'P2 —p:apy — D+ 7P,
= ¥p? — y(zp: — ih)py — 2(3py — ih)p. +2°p;
= VP2 +2°p; — yappy — 2pyp: + ihi(ypy + 2ps),
where we have used canonical commutation relation (1.140) in the third equality. In

the above calculations, we used commutability of, e.g., y and p;; z and p,. For
example, we have

el =2 (2 -y 2 )y = (v -, 2 -

Since |) is arbitrarily chosen, this relation implies that p, and y commute. We
obtain similar relations regarding L% and Lf as well. Thus, we have
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L =L +L+1L
22,22, 22 2,22, 22
= (PP + 2P + 2P + Xl + 5P, +p})
+(Pp; — Py VP, — VP + 7P — 2°p7)
- (yszpy + 2YPyPz + DXPAPz + XZPPx + XYPyPx + yxpxl’y)
+ ili(ypy + zp; + 2p; + Xpx + XD+ IDy)
= (y2p§ + zzpi + zzp)zc + x2p§ + xzpi + yzp,zc
+XpL VP +2pl) — (Cpi+Yp + 2]
+ YZPPy + P3Pz + DXPxPz + XZPPx + XYPyPx + YXPaDy)
+ih(ypy + 2pz + 2P +xpx + Xpx + Ypy)
=r-p> —r(r-p)-p+2ih(r-p)
In (3.7), we are able to ease the calculations by virtue of putting a term

(Cp} — ¥pr +p; — Vp; +p2 — 2°p?). As aresult, for the second term after the
second to the last equality we have

— (i +y'p; + P

+ YZp2py + 2YPyD: + PP + XZP Py + XYPyPx + YXPAPy)
= — [x(xpx + 3Py + 202)Px + Y (Px + YDy + 2P )Py + 2(Xpx + Ypy + 202 )2
= —r(r-p)-p.

The calculations of r2 - p? [the first term of (3.7)] and r - p (in the third term) are
straightforward.
In a spherical coordinate, momentum p is expressed as

p= p,~e(r) —|—p0e(9) +p e?), 3.8
¢

where p,, py, and py are components of p; e, el and e(?) are orthonormal basis
vectors of R? in the direction of increasing r, 0, and ¢, respectively (see Fig. 3.1).
In Fig. 3.1b, (%) is perpendicular to the plane shaped by the z-axis and a straight
line of y=xtan¢. Notice that the said plane is spanned by e and e(®.
Meanwhile, the momentum operator is expressed as [2]

h
p=-V
i
(3.9)
_w 9 L0l e L 9|
i or rof rsin 6 0¢

The vector notation of (3.9) corresponds to (1.31). That is, in the Cartesian
coordinate, we have



3.2 Constitution of Hamiltonian 61

(a) (b)

e z e®

@)

0/ o )

e

X

Fig. 3.1 Spherical coordinate system and orthonormal basis set. a Orthonormal basis vectors e("),
e?, and e®) in R®. b The basis vector e(?) is perpendicular to the plane shaped by the z-axis and a
straight line of y = xtan ¢

—EV—E eg—i—eg—i—eg
P=3V=7\""ox T %9 %)

where V is said to be nabla (or del), a kind of differential vector operator.
Noting that

r=re", (3.10)
and using (3.9), we have
h ho
p=r--V=r[-—=1). 11
rp=rgV r(i&) (3.11)
Hence,
_ ho RO\ 5, o
r(r-p)-p= "|: (75)] (;E) =—hr 92 (3.12)
Thus, we have
& 0 0 0
12 =2t o2t o, Y22 29 (29 313
TPt ré)ﬂJr "or TPt ar\" or ( )

Therefore,
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o (,0\, L
2 2
-—__ = - —. 3.14
P r? Or (r Br> * r? (3.14)

Notice here that L? does not contain r (vide infra); i.e., L> commutes with 2, and
so it can freely be divided by 2. Thus, the Hamiltonian H is represented by

2
H=" 1v()

2p
3.15
L[ o (,0\ L 2z (3.15)
=-S5 (rP=)+ 5 - —.
2u| r2or or r? dmegr

Thus, the Schrodinger equation can be expressed as

1 [ #o[f,0\ L z&
{zﬂ—ﬁa<’a)+ﬁ}‘ﬁ%ﬁw—Ew (3.16)

Now, let us describe L? in a polar coordinate. The calculation procedures are
somewhat lengthy, but straightforward. First, we have

x =rsinfcos ¢,
y = rsin0sin ¢, (3.17)
z=rcos0,

where we have 0 < 0 < m and 0 < ¢ <2x. Rewriting (3.17) with respect to r, 0, and
¢, we get

r= @+ +2)0

0 = tan—! 22" (3.18)
Z b
¢ =tan 'L
Thus, we have
. 0] 0
L, =xpy — yp: = —1h<xa—y—y§), (3.19)

9 _ord 000 09 0

oxoxor T oxo0 T x99 (3.20)

In turn, we have



3.2 Constitution of Hamiltonian

63

%:J—::sinHCosqﬁ,
a0 1 (2 +y2) 2 2x z x cos 0 cos ¢
ox 1+(2+y)/2 2z :x2+y2+z2.(x2+y2)%: ro
o 1 1 sin ¢
E:W”(_E) T rsin6

(3.21)

In calculating the last two equations of (3.21), we used the differentiation of an

arc tangent function along with a composite function. Namely,

1
14+x2°

(tan~'x)" =

Inserting (3.21) into (3.20), we get

0 cos@cosqﬁg sing 9

9 Gnbcosp L + - =
ox mUCOSeH, r 90 rsin0d¢

Similarly, we have

cos@sinqbg_i_ cosq&i
r 00  rsinfd¢’

%:sinﬁsindb% +

(3.22)

(3.23)

Inserting (3.22) and (3.23) together with (3.17) into (3.19), we get

. 0
LZ = 7lh%

In a similar manner, we have

o oro 000 9 sin0 9

o ozor T ozo0 Vs a0

Combining this relation with either (3.23) or (3.22), we get

L, = ih(sin qﬁ% + cot@cosd)%),

L, = —ih(cosq’)%—cot@sindbaﬁ).

(3.24)

(3.25)

(3.26)
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Now, we introduce following operators:
L' =L, +iL,and L' = L, — iL,. (3.27)

Then, we have

e, 0
(+) — pei il (=) — it — L il
L he (80+lcot08¢> and L fie < 60+lcot08¢) (3.28)

Thus, we get

(0 0 0
(H)7 (=) — p2eit —i¢p
L'L h-e (89+w0t06¢) < 89+100t68¢>
; lia 1 ?
:hz i —ip . 0
) { [ o ( sin20> a6 T aoaqs}

+e @cotd| — 0 +lc0t0 +ie " cot 0 o +icotl— >
a0 0¢ 090 d¢?
2 0 0 5?
— (2 — 20
= h( 2—|—cot080—|—3¢—|-cot 8¢>
(3.29)

In the above calculation procedure, we used differentiation of a product function.
For instance, we have

0 0 Ocotd 0 o2

89(lC0t68¢)l< 50 8(1)+ t0898¢)
A )
'K sm29>%“°t aeaA'

Note also that 330 s 0;30. This is because we are dealing with continuous and

differentiable functions.
Meanwhile, we have following commutation relations:

[Le,Ly) = iiL., [Ly, L.] = iL,, and [L., L] = iAiL,. (3.30)

This can easily be confirmed by requiring canonical commutation relations. The
derivation can routinely be performed, but we show it because the procedures
include several important points. For instance, we have
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L, Ly) = LiL, — LyL,
= (Wp: — py)(@px — xp2) — (apx — xp2) VP2 — 2py)
= YP2Px — YPAP: — ZPyAPx T IPAP:
— ZPYP: + 2Py XDYP: — XD 2Py
= (WpxP:z — xyP:) + (2pyXp: — Xp2py)
+ (XpyPz — YP2XP2) + (2pxzpy — 2pyaps)
= —ypx(2pz — p2) +apy(zp; — pez) = ih(xpy — ypx) = kL,

In the above calculations, we used the canonical commutation relation as well as
commutability of, e.g., y and p,; y and z; p, and p,. For example, we get

B 20 90\, Ply) W)Y _
[pepy] ) = 1 (ga—y_a_ya)‘m - _h2<8x8y - 8y8x) -0

In the above equation, we assumed that the order of differentiation with respect
to x and y can be switched. It is because we are dealing with continuous and
differentiable normal functions. Thus, p, and p, commute.

For other important commutation relations, we have

[L.,L*] =0, [L,,L*] =0, and [L,L*]=0. (3.31)
With the derivation, use
[A,B+C] =[A,B]+[A,C].

The derivation is straightforward and it is left for readers. The relations (3.30)
and (3.31) imply that a simultaneous eigenstate exists for L> and one of L., Ly, and
L,. This is because L? commute with them from (3.31), whereas L, does not
commute with L, or L,. The detailed argument about the simultaneous eigenstate
can be seen in Part III.

Thus, we have

LWL = 12+ L2 +i(LyL, — LiLy) = L} + L} +i[Ly, L]
= L;+ L] +hL..

Notice here that [L,, L,|= —[L.,L,| = —iliL.. Hence,
=109 412 —hL,. (3.32)

From (3.24), we have
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L= —-W—. (3.33)

Finally, we get
0? 0 1 9
L’ =-1*(— t0—+ ———
(802 +eo 00 + sin®6 6¢2) or
1 0 0 1 &
L2 - _ 2 . ] _ .
g Lin 000 (Sm 080) S0 &A
Replacing L? in (3.15) with that of (3.34), we have
»[o/[(,0 1 0 ) 1 0 Ze?
H=- — | rr= —— [ sin0— — —— .
2 {Qr <r ar) t Sin00 (Sm ae) *in%o a(zﬁ] dmagr )
Thus, the Schrédinger equation of (3.3) takes a following form:

2o (,0 1 9/, .0 1 ]z
{‘ 2P {a < 5) 020 (S‘“0%> i sinzeaTsZ] B 4neor}‘” o

(3.36)

(3.34)

3.3 Separation of Variables

If the potential is spherically symmetric (e.g., a Coulomb potential), it is
well-known that the Schrodinger equations of (3.1-3.3) can be solved by a method
of separation of variables. More specifically, (3.36) can be separated into two
differential equations one of which only depends on a radial component r and the
other of which depends only upon angular components 0 and ¢.

To apply the method of separation of variables to (3.36), let us first return to
(3.15). Considering that L? is expressed as (3.34), we assume that L? has eigen-
values 7 (at any rate if any) and takes eigenfunctions Y (6, ¢) (again, if any as well)
corresponding to y. That is,

L*Y(0,¢) = Y(0,9), (3.37)
where Y(0, ¢) is assumed to be normalized. Meanwhile,
L =L+L+L. (3.38)

From (3.6), we have
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Lf = op. —ap) T = phyf - pjzT =py =Pz =Yp.— Py =Le.  (3.39)

Note that p, and y commute, so do p, and z. Therefore, L, is Hermitian, so is L2
More generally if an operator A is Hermitian, so is A" (n: a positive integer);
readers, please show it. Likewise, L, and L, are Hermitian as well. Thus, L? is
Hermitian, too.

Next, we consider an expectation value of L?ie., <L2>. Let |/) be an arbitrary
normalized nonzero vector (or function). Then,

(L) = (v | L)
= [ L)+ (W [ L)+ (v | L)
= (LY | Lap) + (LI | L) + (LT | Ly) (3.40)

(
= (Lo | L) + (L | L) + (Ley | L)
= [LapI” + || Ly ||* + L] > 0.

Notice that the second last equality comes from that L., L,, and L, are Hermitian.
An operator that satisfies (3.40) is said to be nonnegative (see Sects. 1.4 and 2.2,
etc., where we saw the calculation routines). Note also that in (3.40) the equality
holds only when the following relations hold:

L) = |Lyp) = |Lp) = 0. (3.41)
On this condition, we have

[L29) = (L + L3+ L)) = L) + L) + |[L2w)

(3.42)
= Llexlp> +L}’|Ly‘//> +LZ|LZW> =0.

The eigenfunction that satisfies (3.42) and the next relation (3.43) is a simul-
taneous eigenstate of Ly, Ly, L;, and L?. This could seem to be in contradiction to
the fact that L, does not commute with L, or L,. However, this is an exceptional
case. Let |,) be the eigenfunction that satisfies both (3.41) and (3.42). Then, we
have

ILabo) = |LyWo) = |Loho) = |L2'//0> =0. (3.43)

As can be seen from (3.24) to (3.26) along with (3.34), the operators L, L,, L.,
and L? are differential operators. Therefore, (3.43) implies that |i/,) is a constant.
We will come back this point later. In spite of this exceptional situation, it is
impossible that all L, L,, and L. as well as L? take a whole set of eigenfunctions as
simultaneous eigenstate.s. We briefly show this as below.
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In Chap. 2, we mention that if [A,B] = ik, any physical state cannot be an
eigenstate of A or B. The situation is different, on the other hand, if we have a
following case

A, B] = iC, (3.44)

where A, B, and C are Hermitian operators. The relation (3.30) is a typical example
for this. If C|y) =0 in (3.44), [) might well be an eigenstate of A and/or B.
However, if C|¥) = c|y)(c # 0), |) cannot be an eigenstate of A or B. This can
readily be shown in a fashion similar to that described in Sect. 2.5. Let us think of,
e.g., [Ly, Ly] = ihL,. Suppose that for %y, we have L |iy,) = 0. Taking an inner
product using |,), from (3.30) we have

(W | (LiLy — LyL)g) = 0.

In this case, moreover, even if we have |L,,) = 0 and {Lyl//0> = 0, we have no
inconsistency. If, on the other hand, L.|yy) = m|y)(m # 0), |) cannot be an
eigenstate of L, or L, as mentioned above. Thus, we should be careful to deal with a
general situation where we have [A, B] = iC.

In the case where [A, B] = 0; AB = BA, namely A and B commute, we have a
different situation. This relation is equivalent to that an operator AB — BA has an
eigenvalue zero for any physical state [ff). Yet, this statement is of less practical
use. Again, regarding details we wish to make a discussion in Sect. 12.6 of Part III.

Returning to (3.40), let us replace  with a particular eigenfunction Y (0, ¢).
Then, we have

(Y|L?Y) = (Y |yY)=9(Y |Y) =y>0. (3.45)

Again, if L? has an eigenvalue, the eigenvalue should be nonnegative. Taking
account of the coefficient 7? in (3.34), it is convenient to put

y=h*A(1>0). (3.46)
On ground that the solution of (3.36) can be described as
Y(r,0,¢) =R(r)Y(0,9), (3.47)

the Schrédinger equation (3.16) can be rewritten as

{ 1 [ i 9 (rz % > +L_2] ze? }R(r)y(0,¢) — ER(r)Y(0,$). (3.48)

2ul r2or 2| 4meor

That is,
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1 [ B0 [ ,0R(r) L’v(0,¢) ze?

2u [_55 (r2 or )Y(H’ ¢)+ TR(r)} B 47I80VR(r)Y(H’ ¢) (3.49)
= ER(r)Y(0, $).

Recalling (3.37) and (3.46), we have

L[ 10 (L0R0) Y0, 9) Z
ﬂ [_ 28 <r2 T) Y(0,¢)+ T]R(r) B 47‘58()?’R(V)Y(07 ¢) (3.50)

= ER(r)Y (0, ¢).

Dividing both sides by Y (0, ¢), we get a SOLDE of a radial component as

1 [ B9 [ ,0R(r)\ K2 Ze? B
. [‘ﬁ@ <r27> N 7} R(r) = e R(7) = ER(r). (3.51)

Regarding angular components 6 and ¢, using (3.34), (3.37), and (3.46), we have

L*Y(0,¢) = —hz[ L 0 (sin02> + Lo ]Y(0,¢):h2/11/(9,¢).

sin 6 00 00 sin208f¢52
(3.52)
Dividing both sides by /%, we get
1 0 o 1 &
— 5535 \Sin075 ) T 5o | Y(0,6) = 2Y(0,9). _
[smeae (“n ag) * 5208 A (0,¢) = 2Y(0, ) (3.53)

Notice in (3.53) that the angular part of SOLDE does not depend on a specific
form of the potential.

Now, we further assume that (3.53) can be separated into a zenithal angle part 0
and azimuthal angle part ¢ such that

Y(0,¢) = 0(0)D(¢). (3.54)

Then, we have

1o (. 000 1 P0(e) B
Lin 980<sm9%>®(¢)+sm29 50 }@(9)2@(0)@(@. (3.55)

Multiplying both sides by sin>0/©(0)®(¢) and arranging both the sides, we get

1 0*0(p) sin*0f 1 0. 00(0)
D) 09 _®(0){sin0% [SIHOW}+A®(0)}' (3.56)
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Since LHS of (3.56) depends only upon ¢ and RHS depends only on 6, we must
have

LHS of (3.56) = RHS of (3.56) = n (constant). (3.57)

Thus, we have a following relation of LHS of (3.56):

1 do(g)
o(9) d¢2 =1. (3.58)
Putting D = —dd—;, we get
DO($) = (). (3.59)

The SOLDEs of (3.58) and (3.59) are formally the same as (1.61) of Sect. 1.3,
where boundary conditions (BCs) are Dirichlet conditions. Unlike (1.61), however,
we have to consider different BCs; i.e., the periodic BCs.

As in Example 1.1, we adopt two linearly independent solutions. That is, we have

e™® and e ™ (m #0).
As their linear combination, we have
O(¢) = ae™? 4 be= M7, (3.60)
As BCs, we consider ®(0) = ®(2r) and @'(0) = @'(2n); i.e., we have
a+b = ae”™ 4 pe ™", (3.61)
Meanwhile, we have
D' (¢) = aime™? — bime™™?. (3.62)

Therefore, from BCs we have

i2nm —i2mm

aim — bim = aime — bime

Then,
a—b = ae®™™ — pe *™, (3.63)

From (3.61) to (3.63), we have

2a(1 —e?™) =0, and 2b(1 —e ™) =0.
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If a #0, we must have m =0,+1,£2,.... If a =0, we must have b # 0 to
avoid having ®(¢$) = 0 as a solution. In that case, we have m = 0,+1,+2,... as
well. Thus, it suffices to put ®(¢) = ce™?(m = 0,41,42,...). Therefore, as a
normalized function ®(¢), we get

O(¢h) :\/%eim‘f’(mzo,il,iz,...). (3.64)

Inserting it into (3.58), we have
mre™m? = ne""“".
Therefore, we get
n=m*(m=0+1,42,...). (3.65)

From (3.56) to (3.65), we have

1 d {Si 6d®(0)} m*0(0)

S =20(0)(m=0,£1,£2,...). .
| e = A(0)m = 0,1, £, (3.66)

sin 0 d0

In (3.64) putting m = 0 as an eigenvalue, we have ®(¢$) = 1/+/2n as a corre-
sponding eigenfunction. Unlike Examples 1.1 and 1.2, this reflects that the differ-

ential operator — dTﬂ accompanied by the periodic BCs is a nonnegative operator
that allows an eigenvalue of zero. Yet, we are uncertain of a range of m. To clarify
this point, we consider generalized angular momentum in the next section.

3.4 Generalized Angular Momentum

We obtained commutation relations of (3.30) among individual angular momentum

components Ly, L,, and L.. In an opposite way, we may start with (3.30) to define

angular momentum. Such a quantity is called generalized angular momentum.
Let J be a generalized angular momentum as in the case of (3.4) such that

J = (ejeze3) (3.67)

S zg&ubr

For the sake of simple notation, let us define J as follows so that we can
eliminate /& and deal with dimensionless quantities in the present discussion:
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J. /R Jx
J=J/h=(eieze3)| J,/h | = (ere2e3)| J, |,
[h=(ereze5) | J,/ (ere2e3) | Jy (3.68)
J./h J;
P =TT+
Then, we require following commutation relations:
Ve By = iz, Iy, J2]) = iJy, and [J;, J,] = iJ;. (3.69)

Also, we require Jy, Jy, and J; to be Hermitian. The operator J? is Hermitian
accordingly. The relations (3.69) lead to

e, J?] = 0,[J,,J?] =0, and [J,,J?] = 0. (3.70)

This can be confirmed as in the case of (3.30).
As noted above, again a simultaneous eigenstate exists for J 2 and one of i Jy,

and J,. According to the convention, we choose J* and J, for the simultaneous
eigenstate. Then, designating the eigenstate by |{, 1), we have

JNpy =LEpy and T ) = pld, w). (3.71)

The implication of (3.71) is that |, i) is the simultaneous eigenstate and that u is
an eigenvalue of J, which |¢, u) belongs to with { being an eigenvalue of J*> which
|(, 1) belongs to as well.

Since J, and J? are Hermitian, both u and { are real (see Sect. 1.4). Of these,
{ >0 as in the case of (3.45). We define following operators J (+) and J) as in the
case of (3.27):

JH =y +i), and IO =J, —iJ,. (3.72)
Then, from (3.69) to (3.70), we get
[J”),Jz} - {JH,JZ} —0. (3.73)
Also, we obtain following commutation relations:
[JZ,J(”} —Ji), [JZ,JH} — _JO) [JW,JH] —2J.. (3.74)
From (3.70) to (3.72), we get

TION ) =IOy = 01w,

3.75
POV )y = TP 1) = TN ). o
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Equation (3.75) indicates that both J(*)|¢, i) and J()|(, u) are eigenvectors of
J? that correspond to an eigenvalue (.
Meanwhile, from (3.74) we get

+>|c = <+>(, + D[y = (u+ 1IN ),

3.76
ey =IO = DG = (= DI, ). 370

The relation (3.76) means that J(* |C ) is an eigenvector of J, corresponding to
an eigenvalue (u+ 1), while J()|{, ) is an eigenvector of J, corresponding to an

eigenvalue (u — 1). This implies that J (+) and J-) function as raising and lowering

operators (or ladder operators) that have been introduced in this chapter. Thus,

using undetermined constants (or phase factors) a,(f) and a,(,_), we describe

N =a G p+1) and SN ) = a7 G e = 1), (3.77)
Next, let us characterize eigenvalues p. We have
2, 12 2_ g2
S+, =07 —J;. (3.78)
Therefore,
(2 +INIG 1) = P =T w) = (= @)IE ). (3.79)

Since (J2 +JV2) is a nonnegative operator, its eigenvalues are nonnegative as
well, as can be seen from (3.40) to (3.45). Then, we have

{—12>0. (3.80)
Thus, for a fixed value of nonnegative {, p is bounded both upward and

downward. We define then a maximum of u as j and a minimum of u as j.
Consequently, on the basis of (3.77), we have

iy =0 and JOLS) = (3.81)

This is because we have no quantum state corresponding to |{,j+ 1) or
|¢,j — 1). From (3.75) to (3.81), possible numbers of u are

j7j7 17.1.727"',]./' (382)
From (3.69) to (3.72), we get
JE ) =J> - ‘]zz — I, JH) =) = J? _13+Jz~ (3.83)

Operating these operators on |{,j) or |{,j) and using (3.81) we get



74 3 Hydrogen-like Atoms

JOTN )y = (P = T2 = D)IE)) = (=7 =DIE)) =0,

ST = P = 2+ L)L) = =2 +1I6T) = 0. .
Since |{,j) # 0 and |{,j') # 0, we have
(=F—j=(=-/*+]=0. (3.85)
This means that
{=ji+1) =7 -1 (3.86)
Moreover, from (3.86) we get
Ji+1D) =i =) =(+/)G-j+1) =0 (3.87)
Asj>j,j—j+1>0. From (3.87), therefore, we get
jt+ji=0o0rj=—j. (3.88)

Then, we conclude that the minimum of u is —j. Accordingly, possible values of
u are

#:jvj_17j_2a"'a_j_17_j' (389)

That is, the number p can take is (2j+1). The relation (3.239) implies that
taking a positive integer £,

j—k=—jorj=k/2. (3.90)

In other words, j is permitted to take a number zero, a positive integer, or a
positive half-integer (or more precisely, half-odd-integer). For instance, if j = 1/2,
wcanbe 1/2 or —1/2. When j = 1, p can be 1,0,0r — 1.

Finally, we have to decide undetermined constants aLH and a,(f>. To this end,

multiplying ({, u — 1| on both sides of the second equation of (3.77) from the left,
we have

Gu=1ONwy =a T (Gu—1Lu—1) =a”, (3.91)
where the second equality comes from that |{, 4 — 1) has been normalized; i.e.,

[I|1¢, « — 1)|| = 1. Meanwhile, taking adjoint of both sides of the first equation of
(3.77), we have

&t = [“i”r“’“ 1. (3.92)

But, from (3.72) and the fact that J, and J, are Hermitian,
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ot = g, (3.93)
Using (3.93) and replacing u in (3.92) with ¢ — 1, we get
Cn— 10 = [l 1] @l (3.94)

Furthermore, multiplying |{, ) on (3.94) from the right, we have

(o= WG ) = a2 Gl G = [al1] (3.95)
where again |{, u) is assumed to be normalized. Comparing (3.91) and (3.95), we get

at) = [a(“} " (3.96)

un u—1

Taking an inner product regarding the first equation of (3.77) and its adjoint,

* 2
(Gl TG 1 = [af ] a1 Gy = | (3.97)

Once again, the second equality of (3.97) results from the normalization of the
vector.
Using (3.83) as well as (3.71) and (3.86), (3.97) can be rewritten as

(Cul? =2 = LG )
= ({CuliG+1) = = ) = (| LG — wG+u+1) = oD P
(3.98)

Thus, we get

al(f) = em\/(j — )+ u+1) (J:an arbitrary real number), (3.99)

where e” is a phase factor. From (3.96), we also get
al?) =e /(= pt+ 1)+ p). (3.100)
(+) (=)

In (3.99) and (3.100), we routinely put 6 =0 so that a, ’ and a, ’ can be
positive numbers. Explicitly rewriting (3.77), we get

TNy =G —wi+u+ 1) u+1),
T =Vi—p+ D)+l u—1),

(3.101)
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where j is a fixed given number chosen from among zero, positive integers, and
positive half-integers (or half-odd-integers).

3.5 Orbital Angular Momentum: Operator Approach

In Sect. 3.4, we have derived various important results on angular momenta on the
basis of the commutation relations (3.69) and the assumption that Jy, J,, and J, are
Hermitian. Now, let us return to the discussion on orbital angular momenta we dealt
with in Sects. 3.2 and 3.3. First, we treat the orbital angular momenta via operator
approach. This approach enables us to understand why a quantity j introduced in
Sect. 3.4 takes a value zero or positive integers with the orbital angular momenta. In
the next section (Sect. 3.6), we will deal with the related issues by an analytical
method.

In (3.28), we introduced differential operators L(*) and L(~). According to
Sect. 3.4, we define following operators to eliminate 7 so that we can deal with
dimensionless quantities:

M,
M=L/h= (eexe3)| M, |,
M. (3.102)
M? =L’ /W* = M} +M; + M.
Hence, we have
M,=L,/hM,=L,/h, and M,=L,/h. (3.103)
Moreover, we define following operators:
MF) =M, +iM, = L) /h = 0 +zcot9i (3.104)
’ a0 op)’
MO =L h=e( - 0 +zcot0 (3.105)
a0 ap)’
Then, we have
1 0 0 1 &
M’ =—|——(sin6 — . 3.106
Lin 080 (S' a()) sin?0 &A (3.106)

Here, we execute variable transformation such that
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E=cos0(0<0<m) or sinH:\/l—fz. (3.107)
Noting, e.g., that
9 _0c9 _ ned _ _2_ 9 _ el -2
90 9098 sm@(% 1-¢ Sm080 sin 085 (1 6)65
(3.108)
we get
; , 0 f 8
M) =t /1 & R
o 9 ¢
M) = i 1_5__,_ (3.109)
( Vi 528¢
0 0 1 &
w=-2n- 2_]___.
¢ [( 5)85 1—&0¢°

Although we showed in Sect. 3.3 that m = 0,£1,+2, ..., the range of m was
unclear. The relationship between m and / in (3.66) remains unclear so far as well.
On the basis of a general approach developed in Sect. 3.4, however, we have
known that the eigenvalue u of the dimensionless z-component angular momentum
J; is bounded with its maximum and minimum being j and —j, respectively see
(3.89), where j can be zero, a positive integer, or a positive half-odd-integer.
Concomitantly, the eigenvalue { of J* equals j(j + 1).

In the present section, let us reconsider the relationship between m and 4 in
(3.66) in light of the knowledge obtained in Sect. 3.4. According to the custom, we
replace u in (3.89) with m to have

m=jj—1j=2,...j—1,-j (3.110)

At the moment, we assume that m can be a half-odd-integer besides zero or an
integer [3].
Now, let us define notation of Y (0, ¢) that appeared in (3.37). This function is

eligible for a simultaneous eigenstate of M? and M. and can be indexed with j and
m as in (3.110). Then, let Y (0, ¢) be described accordingly as

Yj’"(f), $) =Y(0, ). (3.111)
From (3.54) to (3.64), we have

Y7"(0, ) o e™.
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Therefore, we get

m i 8 mé m
My <0,¢>)=e¢<— 1—523—5—\/7?)%(0@)

) m+1 b —m
= —e’4’<\/1 - 52> 7% K\/l - 52) Y,,»’”(H,qs)],
where we used the following equation:
9 —m —m—1 1 -1 §
[ (V1-2)] =en(i-e) (ie) e
—-m—2
—mé(\/l —52) :
—m —m—2
5| (Vi-2) pree| —ne(Vi-2) " yres

2\ "0, ¢)

(3.112)

(3.113)

Similarly, we get

2 0 m¢

% ﬁ??) ey
() o]

Let us derive the relations where M(*) or M) is successively operated on
Y"(0, ). In the case of M), using (3.109) we have

MDY, 6) = <—1>"ef"¢(\/@>m+" z [(\/@) Ty, ¢>}

(3.115)

MY (0, ¢) = e""”( 1-¢
(3.114)

We confirm this relation by mathematical induction. We have (3.112) by
replacing n with 1 in (3.115). Namely, (3.115) holds when n = 1. Next, suppose
that (3.115) holds with n. Then, using the first equation of (3.109) and noting
(3.64), we have
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[M(Jr)}nqulyjn(g’ ¢) = M(“{[M(”]"Yf(a‘f’)}
ol TR0 &
=e ( \/ﬁa«:“ﬂ%)

« (_l)nein(/)( 1— éz>m+naagn |:( . 52) —myjm(g’ ¢):|

(1)l 1 [_ | 0  <(n+m)

() ) )

- <—1>"e“"+‘>¢{—ﬁ mim(i=8) (Ve 52)%—291
) ) o
() () e

n+1 in+1 2 ) ot 2\ "
s = (e |

(3.116)

Notice that the first and third terms in the second last equality canceled each
other. Thus, (3.115) certainly holds with (n+ 1). Similarly, we have [3]

oy = (Vi) T (Vi-2) o)
(3.117)

Proof of (3.117) is left for readers.

From the second equation of (3.81) and (3.114) where m is replaced with —j, we
have

MO (0, ¢) = e (\/?)3% l(\/ﬁ) v, ¢>] —o.

(3.118)
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—j X
This implies that (\/1 — é2> Y;7(0,¢) is a constant with respect to £. We

describe this as

(\/ 1-— 52) _]Y;j(ﬂ, ¢) = ¢ (c : constant with respect to &). (3.119)

Meanwhile, putting m = —j and n = 2j 4 1 in (3.115) and taking account of the
first equation of (3.77) and the first equation of (3.81), we get

[M(+)]2.f+le_.i(9’ d))

i+1 a2 j
= e (Vimg ) B [(\/ 1-2) 170 ¢>>] ~o
(3.120)

This means that

i
<\/ - 52) Y;7(0, ¢) = (atmosta2j-degree polynomial with &). (3.121)

Replacing ij(()7 ¢) in (3.121) with that of (3.119), we get

T s R

= (atmost a 2j-degree polynomial with &).

Here, if j is a half-odd-integer, ¢(1 — éz)j of (3.122) cannot be a polynomial. If
on the other hand j is zero or a positive integer, ¢(1 — 52)1 is certainly a polynomial
and, to top it all, a 2j-degree polynomial with respect to & so is

7\ i
(VI=2)v70.9).
According to the custom, henceforth we use [ as zero or a positive integer instead
of j. That is,

Y(0,¢) =Y"(0,¢) (I:zero or a positive integer). (3.123)

At the same time, so far as the orbital angular momentum is concerned, from
(3.71) to (3.86) we can identify { in (3.71) with /(I+ 1). Namely, we have

(=1(+1).

Concomitantly, m in (3.110) is determined as
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m=11-1,1—2,..1,0,—1,...—1+1,—L (3.124)

Thus, as expected m is zero or a positive or negative integer. Considering (3.37)
and (3.46), { is identical with A in (3.46). Finally, we rewrite (3.66) such that

1 d[.  doe0)] m*e(n)
‘m@[““’ a0 ] Sin20

= I(1+1)0(0), (3.125)

where [ is equal to zero or positive integers and m is given by (3.124).
On condition of ¢ = cos 0 (3.107), defining the following function

Py(&) = ©(0), (3.126)
and considering (3.109) along with (3.54), we arrive at the next SOLDE described as

d 2 dpm(é) m2 7 —
d—é[(l—é )é—é]—i—[l(H—l)—l_éz]Pl (&) =0. (3.127)

The SOLDE of (3.127) is well-known as the associated Legendre differential
equation. The solutions P}"(¢) are called associated Legendre functions.

In the next section, we characterize the said equation and functions by an ana-
Iytical method. Before going into details, however, we further seek characteristics
of P}*(&) by the operator approach.

Adopting the notation of (3.123) and putting m = [ in (3.112), we have

MIIYHO, p) = —e™® <\/1 - 52)I+l% l( 1— £2>ZY}((), ¢)]. (3.128)

Corresponding to (3.81), we have M(*)Y!(0, $) = 0. This implies that
-1
( 1- §2> Y!(0,¢) = c (c : constant with respect to, &). (3.129)

From (3.107) to (3.64), we get
Y}(0, ¢) = r;sin'0e™?, (3.130)

where «; is another constant that depends on /, but is independent of 6 and ¢. Let us
seek x; by normalization condition. That is,

TE

2n T
/dq&/smed@yY;(e, o) :2n-y;c,|2/sin2’“0d0: 1, (3.131)
0 0

0
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where the integration is performed on a unit sphere. Note that an infinitesimal area
element on the unit sphere is represented by sin 0d0d¢.
We evaluate the above integral denoted as

n

1= /sin”“ede. (3.132)
0

Using integration by parts,

I= /(— cos 0)'sin?0d0

0
= [(— cos 0)sin® 0]} +/c0s9 -2l - sin*'0 cos 0d0 (3.133)
0

=2l / sin?~10d0 — 21 / sin? T10d0.
0 0

Thus, we get a recurrence relation with respect to I (3.132) such that

n

. 211
= — 6do. 3.134
TR sin ( )
0

Repeating the above process, we get

A 2A-2 2 2041 ()2
-_- - = = in0df = ——~ . 3.135

20+1 20— 1 3/3‘“ QI+ 1)! (3.135)
0

Then,

2H—1

=5 1. oK 211' (3.136)

where e’ is an undetermined constant (phase factor) that is to be determined below.
Thus we get

I (ZZJFI) I il
V0, 6) = Sy sinl0 e, (3.137)



3.5 Orbital Angular Momentum ... 83

Meanwhile, in the second equation of (3.101) replacing J=), j, and x in (3.101)
with M), [, and m, respectively, and using Y;"(0, ¢) instead of |{, u), we get

1

i e (3.138)

Y70, ¢) =

Replacing m with [ in (3.138), we have

Y10, ) — %MHY;(()’ é). (3.139)

Operating M=) (I — m) times in total on Y!(0, ¢) of (3.139), we have

3 = ! (—)=myl
Y0, ) = V22I—1). . (I+m+1)\/1-2...(I—m) MO "Y!(0, ¢)
B %W”Ww, ?).

(3.140)

Meanwhile, putting m =1, n =1 —m, and j = [ in (3.117), we have

MOY(0, ¢) = &m0 (\/1 - 52) B (fi [(\/1 - éZ)IY/(H, ¢>] |

(3.141)

Further replacing [M(‘)]H” Y!(6, ¢) in (3.140) with that of (3.141), we get

0.6) = [ e (- &) 2D [(\/1 ~&) o, ¢>] .

(3.142)

Finally, replacing Y/(0, ¢) in (3.142) with that of (3.137) and converting 0 to ¢,
we arrive at the following equation:

iy | . [—m
e (21+1)(l+m).em,)(1 _ @y d

8fl—m [(1 - 52)1]' (3143)

170, 9) = 21 4n(l — m)!

Now, let us decide e. Putting m = 0 in (3.143), we have
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i (_ l /

Y (0,9)

where we put (—1)l on both the numerator and denominator. In RHS of (3.144),

(-1 &

> a_gl[(l - =po). (3.145)

Equation (3.145) is well-known as Rodrigues formula of Legendre polynomials.
We mention characteristics of Legendre polynomials in the next section. Thus,

er  J(21+1)
Vo

Y (0.) = Pi(©). (3.146)

According to the custom [2], we require Y} (0, ¢) to be positive. Noting that
0 = 0 corresponds to ¢ = 1, we have

et [2i+1) et [(21+1)

SV P(1) = , (3.147)

Ylo(07 ¢) = Ar

|
—
|
—_
=
<

where we used P;(1) = 1. For this important relation, see Sect. 3.6.1. Also noting

e
that ‘(71)1

= 1, we must have

el
(-1

=1ore”=(-1) (3.148)

so that Y(0, ¢) can be positive. Thus, (3.143) is rewritten as

(1) @i+ 1) (I +m)!
21 4n(l — m)!

[—m
—m/2 0

zl—m
9

eimd)(l _ 62)

Y0, ¢) = [(1-&)] (3.149)

In Sect. 3.3, we mentioned that |/,) in (3.43) is a constant. In fact, putting
[ =m =0 in (3.149), we have

Y9(0,9) = \/1/4n. (3.150)

Thus, as a simultaneous eigenstate of all L,, L, L;, and L? corresponding to
[ =0andm = 0, we have

o) = Y500, ).

The normalized functions Y;"(0, ¢) described as (3.149) define simultaneous

eigenfunctions of L? (or M?) and L, (or M.). Those functions are called spherical
surface harmonics and frequently appear in various fields of mathematical physics.
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As in the case of Sect. 2.3, matrix representation enables us to intuitively grasp
the relationship between angular momentum operators and their eigenfunctions (or
eigenvectors). Rewriting the relations of (3.101) so that they can meet the present
purpose, we have

M m)y = /(I —m+1) (I +m)|l,m — 1),
ML m)y =/ (I—m)(I+m+1)|[,m+1),

(3.151)

where we used [ instead of { to designate the eigenstate.

Now, we know that m takes (2 + 1) different values that correspond to each I.
This implies that the operators can be expressed with (24 1,2/4 1) matrices. As
implied in (3.151), M(-) takes the following form:

0 V2i-1
0 2i—1)-2

0

M) — 0 VQ@I—k+1)-k

0 VI
0
(3.152)

where diagonal elements are zero and a (k,k+ 1) element is /(2] —k+1) - k.
That is, nonzero elements are positioned just above the zero diagonal elements.
Correspondingly, we have

0
V201 0
2[-1)-2 0
0
M) = l—k+1)-k 0 ,
0
' 0
V121 0
(3.153)

where again diagonal elements are zero and a (k+1,k) element is
(21 = k+ 1) - k. In this case, nonzero elements are positioned just below the zero
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diagonal elements. Notice also that M=) and M(*) are adjoint to each other and
that these notations correspond to (2.65) and (2.66).

Basis functions Y;"(0, ¢) can be represented by a column vector, as in the case of
Sect. 2.3. These are denoted as follows:

1 0 0 0
1 0 0
TR B TR i—1y=1|: | pn=|:
) - ) |5y - A b - 0 ) % - 0 ’
0 0 1
0 0 1
(3.154)

where the first number [ in |I, —1I), |, =+ 1), etc., denotes the quantum number
associated with 2 =1[(I+1) of (3.124) and is kept constant; the latter number
denotes m. Note from (3.154) that the column vector whose kth row is 1 corre-
sponds to m such that

m=—l+k—1. (3.155)

For instance, if k =1, m= —[; if k =2]4+1, m = [, etc.

The operator M=) converts the column vector whose (k + 1)th row is 1 to that
whose kth row is 1. The former column vector corresponds to |/,m+ 1) and the
latter corresponding to |/,m). Therefore, using (3.152), we get the following
representation:

MINLm41) = /@I —k+1) - kl,m) = /(I —m)(I+m+ 1)|l,m), (3.156)

where the second equality is obtained by replacing k£ with that of (3.155), i.e.,
k=1+m+1. Changing m to (m— 1), we get the first equation of (3.151).
Similarly, we obtain the second equation of (3.151) as well. That is, we have

ML m)y = /@2 —k+1) - kllm+1) = /([ —m)(+m+ 1)|,m+1).
(3.157)

From (3.32), we have
M =M + M — M.

In the above, M(*)M() and M, are diagonal matrices and, hence, MZ2 and M?
are diagonal matrices as well such that
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1
—I+1
—142

1-21
(3.158)

where k—1 and (21 —k+1)-k represent (k+ 1,k+ 1) elements of M, and
M), respectively. Therefore, (k+ 1,k + 1) element of M? is calculated as

20 —k+1) k+ (k=17 — (k=1 =11+1).

As expected, M” takes a constant value [(/+1). A matrix representation is
shown in (3