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PREFACE
An introductory course on analog and digital communications is fundamental to the under-
graduate program in electrical engineering. This course is usually offered at the junior level.
Typically, it is assumed that the student has a background in calculus, electronics, signals
and systems, and possibly probability theory.

Bearing in mind the introductory nature of this course, a textbook recommended for
the course must be easy to read, accurate, and contain an abundance of insightful exam-
ples, problems, and computer experiments. These objectives of the book are needed to
expedite learning the fundamentals of communication systems at an introductory level and
in an effective manner. This book has been written with all of these objectives in mind.

Given the mathematical nature of communication theory, it is rather easy for the
reader to lose sight of the practical side of communication systems. Throughout the book,
we have made a special effort not to fall into this trap. We have done this by moving
through the treatment of the subject in an orderly manner, always trying to keep the math-
ematical treatment at an easy-to-grasp level and also pointing out practical relevance of the
theory wherever it is appropriate to do so.

Structural Philosophy of the Book

To facilitate and reinforce learning, the layout and format of the book have been
structured to do the following:

• Provide motivation to read the book and learn from it.

• Emphasize basic concepts from a “systems” perspective and do so in an orderly manner.

• Wherever appropriate, include examples and computer experiments in each chapter to illus-
trate application of the pertinent theory.

• Provide drill problems following the discussion of fundamental concepts to help the user
of the book verify and master the concepts under discussion.

• Provide additional end-of-chapter problems, some of an advanced nature, to extend the
theory covered in the text.

Organization of the book

1. Motivation Before getting deeply involved in the study of analog and digital communi-
cations, it is imperative that the user of the book be motivated to use the book and learn
from it. To this end, Chapter 1 begins with a historical background of communication sys-
tems and important applications of the subject.

2. Modulation Theory Digital communication has overtaken analog communications as the
dominant form of communications. Although, indeed, these two forms of communications
work in different ways, modulation theory is basic to them both. Moreover, it is easiest to
understand this important subject by first covering its fundamental concepts applied to ana-
log communications and then moving on to digital communications. Moreover, amplitude
modulation is simpler than angle modulation to present. One other highly relevant point is
the fact that to understand modulation theory, it is important that Fourier theory be mas-
tered first. With these points in mind, Chapters 2 through 7 are organized as follows:

ix
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• Chapter 2 is devoted to reviewing the Fourier representation of signals and systems.

• Chapters 3 and 4 are devoted to analog communications, with Chapter 3 covering ampli-
tude modulation and Chapter 4 covering angle modulation.

• Chapter 5 on pulse modulation covers the concepts pertaining to the transition from ana-
log to digital communications.

• Chapters 6 and 7 are devoted to digital communications, with Chapter 6 covering base-
band data transmission and Chapter 7 covering band-pass data transmission.

3. Probability Theory and Signal Detection Just as Fourier analysis is fundamental to mod-
ulation theory, probability theory is fundamental to signal detection and receiver performance
evaluation in the presence of additive noise. Since probability theory is not critical to the
understanding of modulation, we have purposely delayed the review of probability theory,
random signals, and noise until Chapter 8. Then, with a good understanding of modulation
theory applied to analog and digital communications and relevant concepts of probability
theory and probabilistic models at hand, the stage is set to revisit analog and digital com-
munication receivers, as summarized here:

• Chapter 9 discusses noise in analog communications.

• Chapter 10 discusses noise in digital communications. Because analog and digital com-
munications operate in different ways, it is natural to see some fundamental differences
in treating the effects of noise in these two chapters.

4. Noise The introductory study of analog and digital communications is completed in Chap-
ter 11. This chapter illustrates the roles of modulation and noise in communication systems
by doing four things:

• First, the physical sources of noise, principally, thermal noise and shot noise, are described.

• Second, the metrics of noise figure and noise temperature are introduced.

• Third, how propagation affects the signal strength in satellite and terrestrial wireless com-
munications is explained.

• Finally, we show how the signal strength and noise calculations may be combined to pro-
vide an estimate of the signal-to-noise ratio, the fundamental figure of merit for commu-
nication systems.

5. Theme Examples In order to highlight important practical applications of communication
theory, theme examples are included wherever appropriate. The examples are drawn from
the worlds of both analog and digital communications.

6. Appendices To provide back-up material for the text, eight appendices are included at the
end of the book, which cover the following material in the order presented here:

• Power ratios and the decibel

• Fourier series

• Bessel functions

• The Q-function and its relationship to the error function

• Schwarz’s inequality

• Mathematical tables
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• Matlab scripts for computer experiments to problems in Chapters 7–10

• Answers to drill problems

7. Footnotes, included throughout the book, are provided to help the interested reader to pur-
sue selected references for learning advanced material.

8. Auxiliary Material The book is essentially self-contained. A glossary of symbols and a
bibliography are provided at the end of the book. As an aid to the teacher of the course using
the book, a detailed Solutions Manual for all the problems, those within the text and those
included at the end of chapters, will be made available through the publisher: John Wiley
and Sons.

How to Use the Book

The book can be used for an introductory course on analog and digital communications
in different ways, depending on the background of the students and the teaching interests
and responsibilities of the professors concerned. Here are two course models of how this
may be done:

COURSE MODEL A: FULL TWO-SEMESTER COURSE

(A.1) The first semester course on modulation theory consists of Chapters 2 through 7, inclu-
sive.

(A.2) The second semester course on noise in communication systems consists of Chapters 8
through 11, inclusive.

COURSE MODEL B: TWO SEMESTER COURSES, ONE ON ANALOG AND THE

OTHER ON DIGITAL

(B.1) The first course on analog communications begins with review material from Chapter 2
on Fourier analysis, followed by Chapter 3 on amplitude modulation and Chapter 4 on
angle modulation, then proceeds with a review of relevant parts of Chapter 8 on noise,
and finally finishes with Chapter 9 on noise in analog communications.

(B.2) The second course on digital communications starts with Chapter 5 on pulse modulation,
followed by Chapter 6 on baseband data transmission and Chapter 7 on digital modu-
lation techniques, then proceeds with review of relevant aspects of probability theory in
Chapter 8, and finally finishes with Chapter 10 on noise in digital communications.

Simon Haykin
Ancaster, Ontario, Canada

Michael Moher
Ottawa, Ontario, Canada
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1 This historical background is adapted from Haykin’s book (2001).

CHAPTER 1

INTRODUCTION

“To understand a science it is necessary to know its history”
—Auguste Comte (1798–1857)

1.1 Historical Background

With this quotation from Auguste Comte in mind, we begin this introductory study of
communication systems with a historical account of this discipline that touches our daily
lives in one way or another.1 Each subsection in this section focuses on some important and
related events in the historical evolution of communication.

Telegraph

The telegraph was perfected by Samuel Morse, a painter. With the words “What hath
God wrought,” transmitted by Morse’s electric telegraph between Washington, D.C., and
Baltimore, Maryland, in 1844, a completely revolutionary means of real-time, long-dis-
tance communications was triggered. The telegraph, ideally suited for manual keying, is the
forerunner of digital communications. Specifically, the Morse code is a variable-length code
using an alphabet of four symbols: a dot, a dash, a letter space, and a word space; short
sequences represent frequent letters, whereas long sequences represent infrequent letters.

Radio

In 1864, James Clerk Maxwell formulated the electromagnetic theory of light and pre-
dicted the existence of radio waves; the underlying set of equations bears his name. The exis-
tence of radio waves was confirmed experimentally by Heinrich Hertz in 1887. In 1894,
Oliver Lodge demonstrated wireless communication over a relatively short distance (150
yards). Then, on December 12, 1901, Guglielmo Marconi received a radio signal at Signal
Hill in Newfoundland; the radio signal had originated in Cornwall, England, 1700 miles
away across the Atlantic. The way was thereby opened toward a tremendous broadening
of the scope of communications. In 1906, Reginald Fessenden, a self-educated academic,
made history by conducting the first radio broadcast.

In 1918, Edwin H. Armstrong invented the superheterodyne radio receiver; to this day,
almost all radio receivers are of this type. In 1933, Armstrong demonstrated another rev-
olutionary concept—namely, a modulation scheme that he called frequency modulation
(FM). Armstrong’s paper making the case for FM radio was published in 1936.
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Telephone

In 1875, the telephone was invented by Alexander Graham Bell, a teacher of the deaf.
The telephone made real-time transmission of speech by electrical encoding and replication
of sound a practical reality. The first version of the telephone was crude and weak, enabling
people to talk over short distances only. When telephone service was only a few years old,
interest developed in automating it. Notably, in 1897, A. B. Strowger, an undertaker from
Kansas City, Missouri, devised the automatic step-by-step switch that bears his name. Of
all the electromechanical switches devised over the years, the Strowger switch was the most
popular and widely used.

Electronics

In 1904, John Ambrose Fleming invented the vacuum-tube diode, which paved the
way for the invention of the vacuum-tube triode by Lee de Forest in 1906. The discovery
of the triode was instrumental in the development of transcontinental telephony in 1913
and signaled the dawn of wireless voice communications. Indeed, until the invention and
perfection of the transistor, the triode was the supreme device for the design of electronic
amplifiers.

The transistor was invented in 1948 by Walter H. Brattain, John Bardeen, and William
Shockley at Bell Laboratories. The first silicon integrated circuit (IC) was produced by
Robert Noyce in 1958. These landmark innovations in solid-state devices and integrated
circuits led to the development of very-large-scale integrated (VLSI) circuits and single-
chip microprocessors, and with them the nature of signal processing and the telecommu-
nications industry changed forever.

Television

The first all-electronic television system was demonstrated by Philo T. Farnsworth in
1928, and then by Vladimir K. Zworykin in 1929. By 1939, the British Broadcasting Cor-
poration (BBC) was broadcasting television on a commercial basis.

Digital Communications

In 1928, Harry Nyquist published a classic paper on the theory of signal transmis-
sion in telegraphy. In particular, Nyquist developed criteria for the correct reception of
telegraph signals transmitted over dispersive channels in the absence of noise. Much of
Nyquist’s early work was applied later to the transmission of digital data over dispersive
channels.

In 1937, Alex Reeves invented pulse-code modulation (PCM) for the digital encod-
ing of speech signals. The technique was developed during World War II to enable the
encryption of speech signals; indeed, a full-scale, 24-channel system was used in the field
by the United States military at the end of the war. However, PCM had to await the dis-
covery of the transistor and the subsequent development of large-scale integration of cir-
cuits for its commercial exploitation.

The invention of the transistor in 1948 spurred the application of electronics to
switching and digital communications. The motivation was to improve reliability, increase
capacity, and reduce cost. The first call through a stored-program system was placed in
March 1958 at Bell Laboratories, and the first commercial telephone service with digital
switching began in Morris, Illinois, in June 1960. The first T-1 carrier system transmission
was installed in 1962 by Bell Laboratories.
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In 1943, D. O. North devised the matched filter for the optimum detection of a known
signal in additive white noise. A similar result was obtained in 1946 independently by
J. H. Van Vleck and D. Middleton, who coined the term matched filter.

In 1948, the theoretical foundations of digital communications were laid by Claude
Shannon in a paper entitled “A Mathematical Theory of Communication.” Shannon’s
paper was received with immediate and enthusiastic acclaim. It was perhaps this response
that emboldened Shannon to amend the title of his paper to “The Mathematical Theory
of Communications” when it was reprinted a year later in a book co-authored with War-
ren Weaver. It is noteworthy that prior to the publication of Shannon’s 1948 classic paper,
it was believed that increasing the rate of information transmission over a channel would
increase the probability of error. The communication theory community was taken by sur-
prise when Shannon proved that this was not true, provided the transmission rate was
below the channel capacity.

Computer Networks

During the period 1943 to 1946, the first electronic digital computer, called the
ENIAC, was built at the Moore School of Electrical Engineering of the University of
Pennsylvania under the technical direction of J. Presper Eckert, Jr., and John W. Mauchly.
However, John von Neumann’s contributions were among the earliest and most funda-
mental to the theory, design, and application of digital computers, which go back to the
first draft of a report written in 1945. Computers and terminals started communicating
with each other over long distances in the early 1950s. The links used were initially
voice-grade telephone channels operating at low speeds (300 to 1200 b/s). Various fac-
tors have contributed to a dramatic increase in data transmission rates; notable among
them are the idea of adaptive equalization, pioneered by Robert Lucky in 1965, and effi-
cient modulation techniques, pioneered by G. Ungerboeck in 1982. Another idea widely
employed in computer communications is that of automatic repeat-request (ARQ). The
ARQ method was originally devised by H. C. A. van Duuren during World War II and
published in 1946. It was used to improve radio-telephony for telex transmission over
long distances.

From 1950 to 1970, various studies were made on computer networks. However,
the most significant of them in terms of impact on computer communications was the
Advanced Research Projects Agency Network (ARPANET), first put into service in 1971.
The development of ARPANET was sponsored by the Advanced Research Projects Agency
of the U. S. Department of Defense. The pioneering work in packet switching was done on
ARPANET. In 1985, ARPANET was renamed the Internet. The turning point in the evo-
lution of the Internet occurred in 1990 when Tim Berners-Lee proposed a hypermedia soft-
ware interface to the Internet, which he named the World Wide Web. In the space of only
about two years, the Web went from nonexistence to worldwide popularity, culminating
in its commercialization in 1994. We may explain the explosive growth of the Internet by
offering these reasons:

� Before the Web exploded into existence, the ingredients for its creation were already
in place. In particular, thanks to VLSI, personal computers (PCs) had already become
ubiquitous in homes throughout the world, and they were increasingly equipped with
modems for interconnectivity to the outside world.

� For about two decades, the Internet had grown steadily (albeit within a confined
community of users), reaching a critical threshold of electronic mail and file transfer.

� Standards for document description and transfer, hypertext markup language
(HTML), and hypertext transfer protocol (HTTP) had been adopted.
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Thus, everything needed for creating the Web was already in place except for two critical
ingredients: a simple user interface and a brilliant service concept.

Satellite Communications

In 1955, John R. Pierce proposed the use of satellites for communications. This pro-
posal was preceded, however, by an earlier paper by Arthur C. Clark that was published in
1945, also proposing the idea of using an Earth-orbiting satellite as a relay point for com-
munication between two Earth stations. In 1957, the Soviet Union launched Sputnik I, which
transmitted telemetry signals for 21 days. This was followed shortly by the launching of
Explorer I by the United States in 1958, which transmitted telemetry signals for about five
months. A major experimental step in communications satellite technology was taken with
the launching of Telstar I from Cape Canaveral on July 10, 1962. The Telstar satellite was
built by Bell Laboratories, which had acquired considerable knowledge from pioneering
work by Pierce. The satellite was capable of relaying TV programs across the Atlantic; this
was made possible only through the use of maser receivers and large antennas.

Optical Communications

The use of optical means (e.g., smoke and fire signals) for the transmission of infor-
mation dates back to prehistoric times. However, no major breakthrough in optical com-
munications was made until 1966, when K. C. Kao and G. A. Hockham of Standard
Telephone Laboratories, U. K., proposed the use of a clad glass fiber as a dielectric wave-
guide. The laser (an acronym for light amplification by stimulated emission of radiation)
had been invented and developed in 1959 and 1960. Kao and Hockham pointed out that
(1) the attenuation in an optical fiber was due to impurities in the glass, and (2) the intrin-
sic loss, determined by Rayleigh scattering, is very low. Indeed, they predicted that a loss
of 20 dB/km should be attainable. This remarkable prediction, made at a time when the
power loss in a glass fiber was about 1000 dB/km, was to be demonstrated later. Nowa-
days, transmission losses as low as 0.1 dB/km are achievable.

The spectacular advances in microelectronics, digital computers, and lightwave sys-
tems that we have witnessed to date, and that will continue into the future, are all respon-
sible for dramatic changes in the telecommunications environment. Many of these changes
are already in place, and more changes will occur over time.

1.2 Applications

The historical background of Section 1.1 touches many of the applications of communi-
cation systems, some of which are exemplified by the telegraph that has come and gone,
while others exemplified by the Internet are of recent origin. In what follows, we will focus
on radio, communication networks exemplified by the telephone, and the Internet, which
dominate the means by which we communicate in one of two basic ways or both, as sum-
marized here:

� Broadcasting, which involves the use of a single powerful transmitter and numerous
receivers that are relatively inexpensive to build. In this class of communication sys-
tems, information-bearing signals flow only in one direction, from the transmitter to
each of the receivers out there in the field.

� Point-to-point communications, in which the communication process takes place
over a link between a single transmitter and a single receiver. In this second class of
communication systems, there is usually a bidirectional flow of information-bearing
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FIGURE 1.1 Elements of a communication system.

signals, which, in effect, requires the use of a transmitter and receiver (i.e., trans-
ceiver) at each end of the link.

The block diagram of Fig. 1.1 highlights the basic composition of a communication
system. The transmitter, at some location in space, converts the message signal produced
by a source of information into a form suitable for transmission over the channel. The
channel, in turn, transports the message signal and delivers it to the receiver at some other
location in space. However, in the course of transmission over the channel, the signal is dis-
torted due to channel imperfections. Moreover, noise and interfering signals (originating
from other sources) are added to the channel output, with the result that the received sig-
nal is a corrupted version of the transmitted signal. The receiver has the task of operating
on the received signal so as to produce an estimate of the original message signal for the
user of information. We say an “estimate” here because of the unavoidable deviation, how-
ever small, of the receiver output compared to the transmitter input, the deviation being
attributed to channel imperfections, noise, and interference.

� RADIO

Speaking in a generic sense, the radio embodies the means for broadcasting as well as point-
to-point communications, depending on how it is used.

The AM radio and FM radio are both so familiar to all of us. (AM stands for ampli-
tude modulation, and FM stands for frequency modulation.) The two of them are built in
an integrated form inside a single unit, and we find them in every household and installed
in every car. Via radio we listen to news about local, national, and international events, com-
mentaries, music, and weather forecasts, which are transmitted from broadcasting stations
that operate in our neighborhood. Traditionally, AM radio and FM radio have been built
using analog electronics. However, thanks to the ever-increasing improvements and cost-
effectiveness of digital electronics, digital radio (in both AM and FM forms) is already in
current use.

Radio transmits voice by electrical signals. Television, which operates on similar elec-
tromagnetic and communication-theoretic principles, also transmits visual images by elec-
trical signals. A voice signal is naturally defined as a one-dimensional function of time,
which therefore lends itself readily to signal-processing operations. In contrast, an image
with motion is a two-dimensional function of time, and therefore requires more detailed
attention. Specifically, each image at a particular instant of time is viewed as a frame sub-
divided into a number of small squares called picture elements or pixels; the larger the
number of pixels used to represent an image, the better the resolution of that image will
be. By scanning the pixels in an orderly sequence, the information contained in the image
is converted into an electrical signal whose magnitude is proportional to the brightness
level of the individual pixels. The electrical signal generated at the output of the scanner is
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FIGURE 1.2 Satellite communication system.

the video signal that is transmitted. Generation of the video signal is the result of a well-
defined mapping process known to the receiver. Hence, given the video signal, the receiver
is able to reconstruct the original image. As with digital radio, television is also the bene-
ficiary of spectacular advances in digital electronics. These advances, coupled with the
application of advanced digital signal processing techniques and the demands of consumers,
have motivated the development of high-definition television (HDTV), which provides a
significant improvement in the quality of reconstructed images at the receiver output.

We turn next to the point-to-point communication scene. The radio has also touched
our daily lives in highly significant ways through two avenues: satellite communications and
wireless communications. Satellite communications, built around a satellite in geostation-
ary orbit, relies on line-of-sight radio propagation for the operation of an uplink and a
downlink. The uplink connects an Earth terminal to a transponder (i.e., electronic cir-
cuitry) on board the satellite, while the downlink connects the transponder to another
Earth terminal. Thus, an information-bearing signal is transmitted from the Earth termi-
nal to the satellite via the uplink, amplified in the transponder, and then retransmitted from
the satellite via the downlink to the other Earth terminal, as illustrated in Fig. 1.2. In so
doing, a satellite communication system offers a unique capability: global coverage.

In a loose sense, wireless communications operates in a manner similar to satellite com-
munications in that it also involves a downlink and an uplink. The downlink is responsi-
ble for forward-link radio transmission from a base station to its mobile users. The uplink
is responsible for reverse-link radio transmission from the mobile users to their base sta-
tions. Unlike satellite communications, the operation of wireless communications is dom-
inated by the multipath phenomenon due to reflections of the transmitted signal from
objects (e.g., buildings, trees, etc.) that lie in the propagation path. This phenomenon tends
to degrade the receiver performance, which makes the design of the receiver a challenging
task. In any event, wireless communications offers a unique capability of its own: mobil-
ity. Moreover, through the use of the cellular concept, the wireless communication system
is enabled to reuse the radio spectrum over a large area as many times as possible. Within
a cell, the available communication resources can be shared by the mobile users operating
within that cell.

� COMMUNICATION NETWORKS

The computer was originally conceived as a machine working by itself to perform numer-
ical calculations. However, given the natural ability of a computer to perform logical func-
tions, it was soon recognized that the computer is ideally suited to the design of
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communication networks. As illustrated in Fig. 1.3, a communication network consists of
the interconnection of a number of routers that are made up of intelligent processors (e.g.,
microprocessors). The primary purpose of these processors is to route voice or data through
the network, hence the name “routers.” Each router has one or more hosts attached to it;
hosts refer to devices that communicate with one another. The purpose of a network is to
provide for the delivery or exchange of voice, video, or data among its hosts, which is
made possible through the use of digital switching. There are two principal forms of switch-
ing: circuit switching and packet switching.

In circuit switching, dedicated communication paths are established for the transmis-
sion of messages between two or more terminals, called stations. The communication path
or circuit consists of a connected sequence of links from source to destination. For exam-
ple, the links may consist of time slots (as in time-division multiplexed systems), for which
a common channel is available for multiple users. The important point to note is that once
it is in place, the circuit remains uninterrupted for the entire duration of transmission. Cir-
cuit switching is usually controlled by a centralized hierarchical control mechanism with
knowledge of the network’s entire organization. To establish a circuit-switched connection,
an available path through the telephone network is seized and then dedicated to the exclu-
sive use of the two users wishing to communicate. In particular, a call-request signal prop-
agates all the way to the destination, whereupon it is acknowledged before communication
can begin. Then, the network is effectively transparent to the users, which means that dur-
ing the entire connection time the resources allocated to the circuit are essentially “owned”
by the two users. This state of affairs continues until the circuit is disconnected.

Circuit switching is well suited for telephone networks, where the transmission of
voice constitutes the bulk of the network’s traffic. We say so because voice gives rise to a
stream traffic, and voice conversations tend to be of long duration (about 2 minutes on the
average) compared to the time required for setting up the circuit (about 0.1 to 0.5 seconds).

In packet switching,2 on the other hand, the sharing of network resources is done on
a demand basis. Hence, packet switching has an advantage over circuit switching in that

2 Packet switching was invented by P. Baran in 1964 to satisfy a national defense need of the United States. The
original need was to build a distributed network with different levels of redundant connections, which is robust
in the sense that the network can withstand the destruction of many nodes due to a concerted attack, yet the sur-
viving nodes are able to maintain intercommunication for carrying common and control information; see Baran
(1990).
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3 The OSI reference model was developed by a subcommittee of the International Organization for Standardiza-
tion (ISO) in 1977. For a discussion of the principles involved in arriving at the original seven layers of the OSI
model and a description of the layers themselves, see Tannenbaum (1996).

when a link has traffic to send, the link tends to be more fully utilized. Unlike voice sig-
nals, data tend to occur in the form of bursts on an occasional basis.

The network principle of packet switching is store and forward. Specifically, in a
packet-switched network, any message longer than a specified size is subdivided prior to
transmission into segments not exceeding the specified size. The segments so formed are
called packets. After transporting the packets across different parts of the network, the
original message is reassembled at the destination on a packet-by-packet basis. The network
may thus be viewed as a pool of network resources (i.e., channel bandwidth, buffers, and
switching processors), with the resources being dynamically shared by a community of
competing hosts that wish to communicate. This dynamic sharing of network resources is
in direct contrast to the circuit-switched network, where the resources are dedicated to a
pair of hosts for the entire period they are in communication.

� DATA NETWORKS

A communication network in which the hosts are all made up of computers and terminals
is commonly referred to as a data network. The design of such a network proceeds in an
orderly way by looking at the network in terms of a layered architecture, which is regarded
as a hierarchy of nested layers. A layer refers to a process or device inside a computer sys-
tem that is designed to perform a specific function. Naturally, the designers of a layer will
be familiar with its internal details and operation. At the system level, however, a user
views the layer in question merely as a “black box,” which is described in terms of inputs,
outputs, and the functional relation between the outputs and inputs. In the layered archi-
tecture, each layer regards the next lower layer as one or more black boxes with some
given functional specification to be used by the given higher layer. In this way, the highly
complex communication problem in data networks is resolved as a manageable set of well-
defined interlocking functions. It is this line of reasoning that has led to the development
of the open systems interconnection (OSI) reference model.3 The term “open” refers to the
ability of any two systems to interconnect, provided they conform to the reference model
and its associated standards.

In the OSI reference model, the communications and related-connection functions
are organized as a series of layers with well-defined interfaces. Each layer is built on its pre-
decessor. In particular, each layer performs a related subset of primitive functions, and it
relies on the next lower layer to perform additional primitive functions. Moreover, each layer
offers certain services to the next higher layer and shields that layer from the implementa-
tion details of those services. Between each pair of layers there is an interface, which defines
the services offered by the lower layer to the upper layer.

As illustrated in Fig. 1.4, the OSI model is composed of seven layers. The figure also
includes a description of the functions of the individual layers of the model. Layer k on sys-
tem A, say, communicates with a layer R on some other system B in accordance with a set
of rules and conventions, which collectively constitute layer k protocol, where k � 1, 2,
. . . , 7. (The term “protocol” has been borrowed from common usage that describes con-
ventional social behavior between human beings.) The entities that comprise the corre-
sponding layers on different systems are referred to as peer processes. In other words,
communication between system A and system B is achieved by having the peer processes in
the two systems communicate via protocol. Physical connection between peer processes
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4 For a fascinating account of the Internet, its historical evolution from the ARPANET, and international stan-
dards, see Abbate (2000). For easy-to-read essays on the Internet, see Special Issue, IEEE Communications
Magazine (2002); the articles presented therein are written by pioneering contributors to the development of the
Internet.

exists only at layer 1—namely, the physical layer. The remaining layers, 2 through 7, are in
virtual communication with their distant peers. Each of these latter six layers exchanges
data and control information with its neighboring layers (lower and above) through layer-
to-layer interfaces. In Fig. 1.4, physical communication is shown by solid lines, and virtual
communications are shown by dashed lines.

� INTERNET4

The discussion of data networks just presented leads to the Internet. In the Internet para-
digm, the underlying network technology is decoupled from the applications at hand by
adopting an abstract definition of network service. In more specific terms, we may say the
following:

� The applications are carried out independently of the technology employed to con-
struct the network.

� By the same token, the network technology is capable of evolving without affecting
the applications.
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FIGURE 1.6 Illustrating the network architecture of the Internet.

The Internet application depicted in Fig. 1.5 has three functional blocks: hosts, subnets, and
routers. The hosts constitute nodes of the network, where data originate or where they are
delivered. The routers constitute intermediate nodes that are used to cross subnet bound-
aries. Within a subnet, all the hosts belonging to that subnet exchange data directly; see,
for example, subnets 1 and 3 in Fig. 1.5. In basic terms, the internal operation of a subnet
is organized in two different ways (Tanenbaum, 1996):

1. Connected manner, where the connections are called virtual circuits, in analogy with
physical circuits set up in a telephone system.

2. Connectionless manner, where the independent packets are called datagrams, in anal-
ogy with telegrams.

Like other data networks, the Internet has a layered set of protocols. In particular, the
exchange of data between the hosts and routers is accomplished by means of the Internet
protocol (IP), as illustrated in Fig. 1.6. The IP is a universal protocol that resides in the net-
work layer (i.e., layer 3 of the OSI reference model). It is simple, defining an addressing plan
with a built-in capability to transport data in the form of packets from node to node. In
crossing a subnetwork boundary, the routers make the decisions as to how the packets
addressed for a specified destination should be routed. This is done on the basis of rout-
ing tables that are developed through the use of custom protocols for exchanging pertinent
information with other routers. The net result of using the layered set of protocols is the
provision of best effort service. That is, the Internet offers to deliver each packet of data,

FIGURE 1.5 An interconnected
network of subnets.
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but there are no guarantees on the transit time experienced in delivery or even whether the
packets will be delivered to the intended recipient.

The Internet has evolved into a worldwide system, placing computers at the heart of
a communication medium that is changing our daily lives in the home and workplace in
profound ways. We can send an e-mail message from a host in North America to another
host in Australia at the other end of the globe, with the message arriving at its destination
in a matter of seconds. This is all the more remarkable because the packets constituting the
message are quite likely to have taken entirely different paths as they are transported across
the network.

Another application that demonstrates the remarkable power of the Internet is our
use of it to surf the Web. For example, we may use a search engine to identify the refer-
ences pertaining to a particular subject of interest. A task that used to take hours and some-
times days searching through books and journals in the library now occupies a matter of
seconds!

To fully utilize the computing power of the Internet from a host located at a remote
site, we need a wideband modem (i.e., modulator-demodulator) to provide a fast commu-
nication link between that host and its subnet. When we say “fast,” we mean operating
speeds on the order of megabits per second and higher. A device that satisfies this require-
ment is the so-called digital subscriber line (DSL). What makes the DSL all the more remark-
able is the fact that it can operate over a linear wideband channel with an arbitrary frequency
response. Such a channel is exemplified by an ordinary telephone channel built using twisted
pairs for signal transmission. A twisted pair consists of two solid copper conductors, each
of which is encased in a polyvinyl chloride (PVC) sheath. Twisted pairs are usually made
up into cables, with each cable consisting of many twisted pairs in close proximity to each
other. From a signal-transmission viewpoint, the DSL satisfies the challenging requirement
described herein by following the well-known engineering principle of divide and conquer.
Specifically, the given wideband channel is approximated by a set of narrowband channels,
each of which can then be accommodated in a relatively straightforward manner.

One last comment is in order. Typically, access to the Internet is established via hosts
in the form of computer terminals (i.e., servers). The access is expanded by using hand-held
devices that act as hosts, which communicate with subnets of the Internet via wireless links.
Thus, by adding mobility through the use of wireless communications to the computing
power of the Internet to communicate, we have a new communication medium with enor-
mous practical possibilities.

� INTEGRATION OF TELEPHONE AND INTERNET

One of the important challenges facing the telecommunications industry is the transmission
of Voice over Internet Protocol (VoIP), which would make it possible to integrate tele-
phony services with the rapidly growing Internet-based applications. The challenge is all
the more profound because the IP is designed to accommodate the exchange of data between
the hosts and the routers, which makes it difficult to support quality of service for VoIP.
Quality of service (QoS) is measured in terms of two parameters:

� Packet loss ratio, defined as the number of packets lost in transport across the net-
work to the total number of packets pumped into the network.

� Connection delay, defined as the time taken for a packet of a particular host-to-host
connection to transmit across the network.

Subjective tests performed on VoIP show that in order to provide voice-grade telephone
service, the packet loss ratio must be held below 1 percent, and one-way connection delay
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5 The limits on QoS measures mentioned herein are taken from the overview article by James, Chen, and Garri-
son (2004), which appears in a Special Issue of the IEEE Communications Magazine devoted to voice VoIP and
quality of service.
6 PBXs are discussed in McDonald (1990).

can accumulate up to 160 ms without significant degradation of quality. Well-designed
and managed VoIP networks, satisfying these provisions, are being deployed. However,
the issue of initial-echo control remains a challenge.5 Initial echo refers to the echo expe-
rienced at the beginning of a call on the first word or couple of words out of a user’s mouth.
The echo arises due to an impedance mismatch somewhere in the network, whereupon the
incident signal is reflected back to the source.

Looking into the future, we may make the following remarks on internet telephony:

1. VoIP will replace private branch exchanges (PBXs) and other office switches; PBXs
are remote switching units that have their own independent controls.6

2. VoIP is also currently having success with longer distance calls, but this is mainly due
to the excess capacity that is now available on long-haul networks. If the loading on
these long-haul networks increases, the delays will increase and a real-time service such
as VoIP will be degraded. Accordingly, if long-service providers keep adding capac-
ity so that loading is always low and response time is fast, thereby ensuring quality
of service, then VoIP telephony may become mainstream and widespread.

� DATA STORAGE

When considering important applications of digital communication principles, it is nat-
ural to think in terms of broadcasting and point-to-point communication systems. Never-
theless, the very same principles are also applied to the digital storage of audio and video
signals, exemplified by compact disc (CD) and digital versatile disc (DVD) players. DVDs
are refinements of CDs in that their storage capacity (in the order of tens of gigabytes) are
orders of magnitude higher than that of CDs, and they can also deliver data at a much
higher rate.

The digital domain is preferred over the analog domain for the storage of audio and
video signals for the following compelling reasons:

(i) The quality of a digitized audio/video signal, measured in terms of frequency response,
linearity, and noise, is determined by the digital-to-analog conversion (DAC) process,
the parameterization of which is under the designer’s control.

(ii) Once the audio/video signal is digitized, we can make use of well-developed and pow-
erful encoding techniques for data compression to reduce bandwidth, and error-con-
trol coding to provide protection against the possibility of making errors in the course
of storage.

(iii) For most practical applications, the digital storage of audio and video signals does not
degrade with time.

(iv) Continued improvements in the fabrication of integrated circuits used to build CDs
and DVDs ensure the ever-increasing cost-effectiveness of these digital storage devices.

With the help of the powerful encoding techniques built into their design, DVDs can hold
hours of high-quality audio-visual contents, which, in turn, makes them ideally suited for
interactive multimedia applications.
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7 For a discussion of the decibel, see Appendix 1.

1.3 Primary Resources 
and Operational Requirements

The communication systems described in Section 1.2 cover many diverse fields. Neverthe-
less, in their own individual ways, the systems are designed to provide for the efficient uti-
lization of two primary communication resources:

� Transmitted power, which is defined as the average power of the transmitted signal.
� Channel bandwidth, which is defined by the width of the passband of the channel.

Depending on which of these two resources is considered to be the limiting factor, we may
classify communication channels as follows:

(i) Power-limited channels, where transmitted power is at a premium. Examples of such
channels include the following:
� Wireless channels, where it is desirable to keep the transmitted power low so as to

prolong battery life.
� Satellite channels, where the available power on board the satellite transponder is

limited, which, in turn, necessitates keeping the transmitted power on the down-
link at a low level.

� Deep-space links, where the available power on board a probe exploring outer
space is extremely limited, which again requires that the average power of infor-
mation-bearing signals sent by the probe to an Earth station be maintained as low
as possible.

(ii) Band-limited channels, where channel bandwidth is at a premium. Examples of this
second category of communication channels include the following:
� Telephone channels, where, in a multi-user environment, the requirement is to

minimize the frequency band allocated to the transmission of each voice signal
while making sure that the quality of service for each user is maintained.

� Television channels, where the available channel bandwidth is limited by regula-
tory agencies and the quality of reception is assured by using a high enough trans-
mitted power.

Another important point to keep in mind is the unavoidable presence of noise at the
receiver input of a communication system. In a generic sense, noise refers to unwanted sig-
nals that tend to disturb the quality of the received signal in a communication system. The
sources of noise may be internal or external to the system. An example of internal noise is
the ubiquitous channel noise produced by thermal agitation of electrons in the front-end
amplifier of the receiver. Examples of external noise include atmospheric noise and inter-
ference due to transmitted signals pertaining to other users.

A quantitative way to account for the beneficial effect of the transmitted power in rela-
tion to the degrading effect of noise (i.e., assess the quality of the received signal) is to
think in terms of the signal-to-noise ratio (SNR), which is a dimensionless parameter. In par-
ticular, the SNR at the receiver input is formally defined as the ratio of the average power
of the received signal (i.e., channel output) to the average power of noise measured at the
receiver input. The customary practice is to express the SNR in decibels (dBs), which is
defined as 10 times the logarithm (to base 10) of the power ratio.7 For example, signal-to-
noise ratios of 10, 100, and 1000 are 10, 20, and 30 dBs, respectively.



14 CHAPTER 1 � INTRODUCTION

8 One other theory—namely, Information Theory—is basic to the study of communication systems. We have not
included this theory here because of its highly mathematical and therefore advanced nature, which makes it inap-
propriate for an introductory book.

In light of this discussion, it is now apparent that as far as performance evaluation is
concerned, there are only two system-design parameters: signal-to-noise ratio and channel
bandwidth. Stated in more concrete terms:

The design of a communication system boils down to a tradeoff between signal-to-
noise ratio and channel bandwidth.

Thus, we may improve system performance by following one of two alternative design
strategies, depending on system constraints:

1. Signal-to-noise ratio is increased to accommodate a limitation imposed on channel
bandwidth.

2. Channel bandwidth is increased to accommodate a limitation imposed on signal-to-
noise ratio.

Of these two possible design approaches, we ordinarily find that strategy 1 is simpler to
implement than strategy 2, because increasing signal-to-noise ratio can be accomplished sim-
ply by raising the transmitted power. On the other hand, in order to exploit increased chan-
nel bandwidth, we need to increase the bandwidth of the transmitted signal, which, in turn,
requires increasing the complexity of both the transmitter and receiver.

1.4 Underpinning Theories 
of Communication Systems

The study of communication systems is challenging not only in technical terms but also in
theoretical terms. In this section, we highlight four theories, each of which is essential for
understanding a specific aspect of communication systems.8

� MODULATION THEORY

Modulation is a signal-processing operation that is basic to the transmission of an infor-
mation-bearing signal over a communication channel, whether in the context of digital or
analog communications. This operation is accomplished by changing some parameter of
a carrier wave in accordance with the information-bearing (message) signal. The carrier wave
may take one of two basic forms, depending on the application of interest:

� Sinusoidal carrier wave, whose amplitude, phase, or frequency is the parameter cho-
sen for modification by the information-bearing signal.

� Periodic sequence of pulses, whose amplitude, width, or position is the parameter
chosen for modification by the information-bearing signal.

Regardless of which particular approach is used to perform the modulation process,
the issues in modulation theory that need to be addressed are:

� Time-domain description of the modulated signal.
� Frequency-domain description of the modulated signal.
� Detection of the original information-bearing signal and evaluation of the effect of

noise on the receiver.
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� FOURIER ANALYSIS

The Fourier transform is a linear mathematical operation that transforms the time-domain
description of a signal into a frequency-domain description without loss of information,
which means that the original signal can be recovered exactly from the frequency-domain
description. However, for the signal to be Fourier transformable, certain conditions have
to be satisfied. Fortunately, these conditions are satisfied by the kind of signals encountered
in the study of communication systems.

Fourier analysis provides the mathematical basis for evaluating the following issues:

� Frequency-domain description of a modulated signal, including its transmission band-
width.

� Transmission of a signal through a linear system exemplified by a communication
channel or (frequency-selective) filter.

� Correlation (i.e., similarity) between a pair of signals.

These evaluations take on even greater importance by virtue of an algorithm known as the
fast Fourier transform, which provides an efficient method for computing the Fourier
transform.

� DETECTION THEORY

Given a received signal, which is perturbed by additive channel noise, one of the tasks that
the receiver has to tackle is how to detect the original information-bearing signal in a reli-
able manner. The signal-detection problem is complicated by two issues:

� The presence of noise.

� Factors such as the unknown phase-shift introduced into the carrier wave due to
transmission of the sinusoidally modulated signal over the channel.

Dealing with these issues in analog communications is radically different from dealing with
them in digital communications. In analog communications, the usual approach focuses on
output signal-to-noise ratio and related calculations. In digital communications, on the
other hand, the signal-detection problem is viewed as one of hypothesis testing. For exam-
ple, in the specific case of binary data transmission, given that binary symbol 1 is trans-
mitted, what is the probability that the symbol is correctly detected, and how is that
probability affected by a change in the received signal-to-noise ratio at the receiver input?

Thus, in dealing with detection theory, we address the following issues in analog com-
munications:

� The figure of merit for assessing the noise performance of a specific modulation
strategy.

� The threshold phenomenon that arises when the transmitted signal-to-noise ratio
drops below a critical value.

� Performance comparison of one modulation strategy against another.

In digital communications, on the other hand, we look at:

� The average probability of symbol error at the receiver output.

� The issue of dealing with uncontrollable factors.

� Comparison of one digital modulation scheme against another.



16 CHAPTER 1 � INTRODUCTION

� PROBABILITY THEORY AND RANDOM PROCESSES

From the brief discussion just presented on the role of detection theory in the study of com-
munication systems, it is apparent that we need to develop a good understanding of the
following:

� Probability theory for describing the behavior of randomly occurring events in math-
ematical terms.

� Statistical characterization of random signals and noise.

Unlike a deterministic signal, a random signal is a signal about which there is uncertainty
before it occurs. Because of the uncertainty, a random signal may be viewed as belonging
to an ensemble, or a group, of signals, with each signal in the ensemble having a different
waveform from that of the others in the ensemble. Moreover, each signal within the ensem-
ble has a certain probability of occurrence. The ensemble of signals is referred to as a ran-
dom process or stochastic process. Examples of a random process include:

� Electrical noise generated in the front-end amplifier of a radio or television receiver.
� Speech signal produced by a male or female speaker.
� Video signal transmitted by the antenna of a TV broadcasting station.

In dealing with probability theory, random signals, and noise, we address the following
issues:

� Basic concepts of probability theory and probabilistic models.
� Statistical description of a random process in terms of ensemble as well as temporal

averages.
� Mathematical analysis and processing of random signals.

1.5 Concluding Remarks

In this chapter, we have given a historical account and applications of communications
and a brief survey of underlying theories of communication systems. In addition, we pre-
sented the following points to support our view that the study of this discipline is both
highly challenging and truly exciting:

(i) Communication systems encompass many and highly diverse applications: radio,
television, wireless communications, satellite communications, deep-space commu-
nications, telephony, data networks, Internet, and quite a few others.

(ii) Digital communication has established itself as the dominant form of communication.
Much of the progress that we have witnessed in the advancement of digital commu-
nication systems can be traced to certain enabling theories and technologies, as sum-
marized here:
� Abstract mathematical ideas that are highly relevant to a deep understanding of the

processing of information-bearing signals and their transmission over physical
media.

� Digital signal-processing algorithms for the efficient computation of spectra, cor-
relation, and filtering of signals.

� Software development and novel architectures for designing microprocessors.
� Spectacular advances in the physics of solid-state devices and the fabrication of very-

large-scale integrated (VLSI) chips.
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(iii) The study of communication systems is a dynamic discipline, continually evolving
by exploiting new technological innovations in other disciplines and responding to new
societal needs.

(iv) Last but by no means least, communication systems touch our daily lives both at
home and in the workplace, and our lives would be much poorer without the wide
availability of communication devices that we take for granted.

The remainder of the book, encompassing ten chapters, provides an introductory
treatment of both analog and digital kinds of communication systems. The book should pre-
pare the reader for going on to deepen his or her knowledge of a discipline that is best
described as almost limitless in scope. This is especially the case given the trend toward the
unification of wireline and wireless networks to accommodate the integrated transmission
of voice, video, and data.
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CHAPTER 2

FOURIER REPRESENTATION

OF SIGNALS AND SYSTEMS

In mathematical terms, a signal is ordinarily described as a function of time, which is how
we usually see the signal when its waveform is displayed on an oscilloscope. However, as
pointed out in Chapter 1, from the perspective of a communication system it is important
that we know the frequency content of the signal in question. The mathematical tool that
relates the frequency-domain description of the signal to its time-domain description is the
Fourier transform. There are in fact several versions of the Fourier transform available. In
this chapter, we confine the discussion primarily to two specific versions:

� The continuous Fourier transform, or the Fourier transform (FT) for short, which
works with continuous functions in both the time and frequency domains.

� The discrete Fourier transform, or DFT for short, which works with discrete data in
both the time and frequency domains.

Much of the material presented in this chapter focuses on the Fourier transform, since
the primary motivation of the chapter is to determine the frequency content of a continu-
ous-time signal or to evaluate what happens to this frequency content when the signal is
passed through a linear time-invariant (LTI) system. In contrast, the discrete Fourier trans-
form, discussed toward the end of the chapter, comes into its own when the requirement is
to evaluate the frequency content of the signal on a digital computer or to evaluate what
happens to the signal when it is processed by a digital device as in digital communications.

The extensive material presented in this chapter teaches the following lessons:

� Lesson 1: The Fourier transform of a signal specifies the complex amplitudes of the com-
ponents that constitute the frequency-domain description or spectral content of the signal.
The inverse Fourier transform uniquely recovers the signal, given its frequency-domain
description.

� Lesson 2: The Fourier transform is endowed with several important properties, which,
individually and collectively, provide invaluable insight into the relationship between a sig-
nal defined in the time domain and its frequency domain description.

� Lesson 3: A signal can only be strictly limited in the time domain or the frequency domain,
but not both.

� Lesson 4: Bandwidth is an important parameter in describing the spectral content of a sig-
nal and the frequency response of a linear time-invariant filter.
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1Joseph Fourier studied the flow of heat in the early 19th century. Understanding heat flow was a problem of both
practical and scientific significance at that time and required solving a partial-differential equation called the heat
equation. Fourier developed a technique for solving partial-differential equations that was based on the assump-
tion that the solution was a weighted sum of harmonically related sinusoids with unknown coefficients, which
we now term the Fourier series. Fourier’s initial work on heat conduction was submitted as a paper to the Acad-
emy of Sciences of Paris in 1807 and rejected after review by Lagrange, Laplace, and Legendre. Fourier persisted
in developing his ideas in spite of being criticized for a lack of rigor by his contemporaries. Eventually, in 1822,
he published a book containing much of his work, Theorie analytique de la chaleur, which is now regarded as
one of the classics of mathematics.

� Lesson 5: A widely used algorithm called the fast Fourier transform algorithm provides a
powerful tool for computing the discrete Fourier transform; it is the mathematical tool for
digital computations involving Fourier transformation.

2.1 The Fourier Transform1

� DEFINITIONS

Let denote a nonperiodic deterministic signal, expressed as some function of time t.
By definition, the Fourier transform of the signal is given by the integral

(2.1)

where and the variable denotes frequency; the exponential function
is referred to as the kernel of the formula defining the Fourier transform.

Given the Fourier transform the original signal is recovered exactly using the for-
mula for the inverse Fourier transform:

(2.2)

where the exponential is the kernel of the formula defining the inverse Fourier
transform. The two kernels of Eqs. (2.1) and (2.2) are therefore the complex conjugate of
each other.

Note also that in Eqs. (2.1) and (2.2) we have used a lowercase letter to denote the
time function and an uppercase letter to denote the corresponding frequency function. The
functions and are said to constitute a Fourier-transform pair. In Appendix 2, we
derive the definitions of the Fourier transform and its inverse, starting from the Fourier series
of a periodic waveform.

We refer to Eq. (2.1) as the analysis equation. Given the time-domain behavior of a
system, we are enabled to analyze the frequency-domain behavior of a system. The basic
advantage of transforming the time-domain behavior into the frequency domain is that
resolution into eternal sinusoids presents the behavior as the superposition of steady-state
effects. For systems whose time-domain behavior is described by linear differential equa-
tions, the separate steady-state solutions are usually simple to understand in theoretical as
well as experimental terms.

Conversely, we refer to Eq. (2.2) as the synthesis equation. Given the superposition
of steady-state effects in the frequency-domain, we can reconstruct the original time-domain
behavior of the system without any loss of information. The analysis and synthesis equa-
tions, working side by side as depicted in Fig. 2.1, enrich the representation of signals and

G1f2g1t2

exp1j2pft2
g1t2 � L

q

�q
G1f2 exp1j2pft2 df

g1t2G1f2,exp1�j2pft2 fj � 2�1,

G1f 2 � L
q

�q
g1t2 exp1�j2pft2 dt

g1t2g1t2
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Analysis equation:

Synthesis equation:

g(t) =

Time-domain
description:

g(t)

Frequency-domain
description:

G(f )

G(f ) exp ( j2�ft)df
∞

–∞
�

G(f ) = g(t) exp (–j2�ft)dt
∞

–∞
�

systems by making it possible to view the representation in two interactive domains: the
time domain and the frequency domain.

For the Fourier transform of a signal to exist, it is sufficient, but not necessary,
that satisfies three conditions known collectively as Dirichlet’s conditions:

1. The function is single-valued, with a finite number of maxima and minima in any
finite time interval.

2. The function has a finite number of discontinuities in any finite time interval.
3. The function is absolutely integrable—that is,

We may safely ignore the question of the existence of the Fourier transform of a time func-
tion when it is an accurately specified description of a physically realizable signal (e.g.,
voice signal, video signal). In other words, physical realizability is a sufficient condition for
the existence of a Fourier transform. For physical realizability of a signal , the energy 

of the signal defined by must satisfy the condition

Such a signal is referred to as an energy-like signal or simply an energy signal. What we are
therefore saying is that all energy signals are Fourier transformable.

� NOTATIONS

The formulas for the Fourier transform and the inverse Fourier transform presented in
Eqs. (2.1) and (2.2) are written in terms of two variables: time t measured in seconds (s)
and frequency measured in hertz (Hz). The frequency is related to the angular frequency

as

which is measured in radians per second (rad/s). We may simplify the expressions for the
exponents in the integrands of Eqs. (2.1) and (2.2) by using instead of However, the
use of is preferred over for two reasons. First, the use of frequency results in mathe-
matical symmetry of Eqs. (2.1) and (2.2) with respect to each other in a natural way. Sec-
ond, the spectral contents of communication signals (i.e., voice and video signals) are
usually expressed in hertz.

vf
f.v

v � 2pf

v

ff
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q

�q
ƒg1t2 ƒ2 dt � �

L
q

�q
ƒg1t2 ƒ2 dt

g1t2
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L
q

�q
ƒg1t2 ƒ dt � �

g1t2g1t2
g1t2

g1t2 g1t2

FIGURE 2.1 Sketch of the interplay
between the synthesis and analysis
equations embodied in Fourier
transformation.
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A convenient shorthand notation for the transform relations of Eqs. (2.1) and (2.2)
is to write

(2.3)

and

(2.4)

where and play the roles of linear operators. Another convenient shorthand nota-
tion for the Fourier-transform pair, represented by and is

(2.5)

The shorthand notations described in Eqs. (2.3) through (2.5) are used in the text where
appropriate.

� CONTINUOUS SPECTRUM

By using the Fourier transform operation, a pulse signal of finite energy is expressed
as a continuous sum of exponential functions with frequencies in the interval to 
The amplitude of a component of frequency is proportional to where is the
Fourier transform of Specifically, at any frequency the exponential function

is weighted by the factor which is the contribution of in an infin-
itesimal interval centered on the frequency Thus we may express the function in
terms of the continuous sum of such infinitesimal components, as shown by the integral

Restating what was mentioned previously, the Fourier transformation provides us
with a tool to resolve a given signal into its complex exponential components occu-
pying the entire frequency interval from to In particular, the Fourier transform 
of the signal defines the frequency-domain representation of the signal in that it specifies
complex amplitudes of the various frequency components of the signal. We may equiva-
lently define the signal in terms of its time-domain representation by specifying the func-
tion at each instant of time t. The signal is uniquely defined by either representation.

In general, the Fourier transform is a complex function of frequency so that
we may express it in the form

(2.6)

where is called the continuous amplitude spectrum of and is called the con-
tinuous phase spectrum of Here, the spectrum is referred to as a continuous spec-
trum because both the amplitude and phase of are uniquely defined for all frequencies.

For the special case of a real-valued function we have

where the asterisk denotes complex conjugation. Therefore, it follows that if is a real-
valued function of time t, then

and
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G1f2 exp1j2pft2 df
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G1f2,g1t2F�134F34

g1t2 � F�13G1f24
G1f2 � F3g1t24
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Accordingly, we may make the following statements on the spectrum of a real-valued signal:

1. The amplitude spectrum of the signal is an even function of the frequency; that is, the
amplitude spectrum is symmetric with respect to the origin 

2. The phase spectrum of the signal is an odd function of the frequency; that is, the
phase spectrum is antisymmetric with respect to the origin 

These two statements are summed up by saying that the spectrum of a real-valued signal
exhibits conjugate symmetry.

EXAMPLE 2.1 Rectangular Pulse

Consider a box function or rectangular pulse of duration T and amplitude A, as shown in
Fig. 2.2(a). To define this pulse mathematically in a convenient form, we use the notation

(2.7)

which stands for a rectangular function of unit amplitude and unit duration centered at 
Then, in terms of this “standard” function, we may express the rectangular pulse of Fig. 2.2(a)
simply as

The Fourier transform of the rectangular pulse is given by

(2.8)

To simplify the notation in the preceding and subsequent results, we introduce another stan-
dard function—namely, the sinc function—defined by

(2.9)sinc1l2 �
sin1pl2
pl

� ATa sin1pfT2
pfT

b
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FIGURE 2.2 (a) Rectangular pulse. (b) Amplitude spectrum.
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FIGURE 2.3 The sinc function.

where is the independent variable. The sinc function plays an important role in communi-
cation theory. As shown in Fig. 2.3, it has its maximum value of unity at and approaches
zero as approaches infinity, oscillating through positive and negative values. It goes through
zero at and so on.

Thus, in terms of the sinc function, we may rewrite Eq. (2.8) as

(2.10)

The amplitude spectrum is shown plotted in Fig. 2.2(b). The first zero-crossing of the
spectrum occurs at As the pulse duration T is decreased, this first zero-crossing
moves up in frequency. Conversely, as the pulse duration T is increased, the first zero-crossing
moves toward the origin.

This example shows that the relationship between the time-domain and frequency-
domain descriptions of a signal is an inverse one. That is, a pulse narrow in time has a sig-
nificant frequency description over a wide range of frequencies, and vice versa. We shall
have more to say on the inverse relationship between time and frequency in Section 2.3.

Note also that in this example, the Fourier transform is a real-valued and sym-
metric function of frequency This is a direct consequence of the fact that the rectangu-
lar pulse shown in Fig. 2.2(a) is a symmetric function of time t.

EXAMPLE 2.2 Exponential Pulse

A truncated decaying exponential pulse is shown in Fig. 2.4(a). We define this pulse mathe-
matically in a convenient form using the unit step function:

(2.11)u1t2 � d 1, t � 0
1
2

, t � 0

0, t � 0

g1t2 f.
G1f2

f � �1>T.
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A recta t
T
b Δ AT sinc1fT2

l � �1, �2, Á ,
l

l � 0,
l
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(a)

0 1/a

0.366

1.0
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g (t)

t t

(b)
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g (t)

FIGURE 2.4 (a) Decaying exponential pulse. (b) Rising exponential pulse.

We may then express the decaying exponential pulse of Fig. 2.4(a) as

Recognizing that is zero for the Fourier transform of this pulse is

The Fourier-transform pair for the decaying exponential pulse of Fig. 2.4(a) is therefore

(2.12)

A truncated rising exponential pulse is shown in Fig. 2.4(b), which is defined by

Note that is equal to unity for one-half at and zero for With 
equal to zero for the Fourier transform of this pulse is

Replacing t with we may next write
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The Fourier-transform pair for the rising exponential pulse of Fig. 2.4(b) is therefore

(2.13)

The decaying and rising exponential pulses of Fig. 2.4 are both asymmetric functions of time
t. Their Fourier transforms are therefore complex valued, as shown in Eqs. (2.12) and (2.13).
Moreover, from these Fourier-transform pairs, we readily see that truncated decaying and ris-
ing exponential pulses have the same amplitude spectrum, but the phase spectrum of the one
is the negative of the phase spectrum of the other.

� Drill Problem 2.1 Evaluate the Fourier transform of the damped sinusoidal wave
where is the unit step function. �

� Drill Problem 2.2 Determine the inverse Fourier transform of the frequency function
defined by the amplitude and phase spectra shown in Fig. 2.5. �

2.2 Properties of the Fourier Transform

It is useful to have insight into the relationship between a time function and its Fourier
transform and also into the effects that various operations on the function have
on the transform This may be achieved by examining certain properties of the Fourier
transform. In this section, we describe fourteen properties, which we will prove, one by one.
These properties are summarized in Table A8.1 of Appendix 8 at the end of the book.

PROPERTY 1 Linearity (Superposition) Let and 
Then for all constants and we have

(2.14)

The proof of this property follows simply from the linearity of the integrals defining 
and

Property 1 permits us to find the Fourier transform of a function that is a
linear combination of two other functions and whose Fourier transforms 
and are known, as illustrated in the following example.G21f2 G11f2g21t2g11t2 g1t2G1f2g1t2. G1f2

c1g11t2 	 c2g21t2 Δ c1G11f2 	 c2G21f2
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G1f2
u1t2g1t2 � exp1�t2 sin12pfc t2u1t2,

exp1�at2u1�t2 Δ
1

a � j2pf

FIGURE 2.5 Frequency function for Problem 2.2.G1f2
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FIGURE 2.6 (a) Double-exponential pulse (symmetric). (b) Another double-exponential
pulse (odd-symmetric).

EXAMPLE 2.3 Combinations of Exponential Pulses

Consider a double exponential pulse (defined by (see Fig. 2.6(a))

(2.15)

This pulse may be viewed as the sum of a truncated decaying exponential pulse and a truncated
rising exponential pulse. Therefore, using the linearity property and the Fourier-transform
pairs of Eqs. (2.12) and (2.13), we find that the Fourier transform of the double exponential
pulse of Fig. 2.6(a) is

We thus have the following Fourier-transform pair for the double exponential pulse of
Fig. 2.6(a):

(2.16)exp1�a ƒt ƒ2 Δ
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FIGURE 2.7 Signum function.

Note that because of the symmetry in the time domain, as in Fig. 2.6(a), the spectrum is real
and symmetric; this is a general property of such Fourier-transform pairs.

Another interesting combination is the difference between a truncated decaying expo-
nential pulse and a truncated rising exponential pulse, as shown in Fig. 2.6(b). Here we have

(2.17)

We may formulate a compact notation for this composite signal by using the signum function
that equals for positive time and for negative time, as shown by

(2.18)

The signum function is shown in Fig. 2.7. Accordingly, we may reformulate the composite sig-
nal defined in Eq. (2.17) simply as

Hence, applying the linearity property of the Fourier transform, we readily find that in light
of Eqs. (2.12) and (2.13), the Fourier transform of the signal is given by

We thus have the Fourier-transform pair

(2.19)

In contrast to the Fourier-transform pair of Eq. (2.16), the Fourier transform in Eq. (2.19) is
odd and purely imaginary. It is a general property of Fourier-transform pairs that apply to an
odd-symmetric time function, which satisfies the condition as in Fig. 2.6(b);
such a time function has an odd and purely imaginary function as its Fourier transform.
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PROPERTY 2 Dilation Let Then, the dilation property or similarity
property states that

(2.20)

where the dilation factor—namely, a—is a real number.

To prove this property, we note that

Set There are two cases that can arise, depending on whether the dilation factor a
is positive or negative. If we get

On the other hand, if the limits of integration are interchanged so that we have the
multiplying factor or, equivalently, This completes the proof of Eq. (2.20).

Note that the dilation factors a and used in the time and frequency functions in
Eq. (2.20) are reciprocals. In particular, the function represents compressed in
time by the factor a, whereas the function represents expanded in frequency
by the same factor a, assuming that Thus, the dilation rule states that the com-
pression of a function in the time domain is equivalent to the expansion of its Fourier
transform in the frequency domain by the same factor, or vice versa.

For the special case when the dilation rule of Eq. (2.20) reduces to the reflec-
tion property, which states that if then

(2.21)

Referring to Fig. 2.4, we see that the rising exponential pulse shown in part (b) of the fig-
ure is the reflection of the decaying exponential pulse shown in part (a) with respect to the
vertical axis. Hence, applying the reflection rule to Eq. (2.12) that pertains to the decay-
ing exponential pulse, we readily see that the Fourier transform of the rising exponential
pulse is which is exactly what we have in Eq. (2.13).

PROPERTY 3 Conjugation Rule Let Then for a complex-valued time
function we have

(2.22)

where the asterisk denotes the complex-conjugate operation.

To prove this property, we know from the inverse Fourier transform that
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Taking the complex conjugates of both sides yields

Next, replacing with gives

That is, is the inverse Fourier transform of which is the desired result.
As a corollary to the conjugation rule of Eq. (2.22), we may state that if

then

(2.23)

This result follows directly from Eq. (2.22) by applying the reflection rule described in
Eq. (2.21).

PROPERTY 4 Duality If then

(2.24)

This property follows from the relation defining the inverse Fourier transform of Eq. (2.21)
by first replacing t with thereby writing it in the form

Finally, interchanging t and (i.e., replacing t with in the left-hand side of the equation
and with t in the right-hand side), we get

which is the expanded part of Eq. (2.24) in going from the time domain to the frequency
domain.

EXAMPLE 2.4 Sinc Pulse

Consider a signal in the form of a sinc function, as shown by

To evaluate the Fourier transform of this function, we apply the duality and dilation proper-
ties to the Fourier-transform pair of Eq. (2.10). Then, recognizing that the rectangular func-
tion is an even function of time, we obtain the result

(2.25)

which is illustrated in Fig. 2.8. We thus see that the Fourier transform of a sinc pulse is zero
for Note also that the sinc pulse itself is only asymptotically limited in time in the sense
that it approaches zero as time t approaches infinity; it is this asymptotic characteristic that
makes the sinc function into an energy signal and therefore Fourier transformable.
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PROPERTY 5 Time Shifting If then

(2.26)

where is a real constant time shift.

To prove this property, we take the Fourier transform of and then set
or, equivalently, We thus obtain

The time-shifting property states that if a function is shifted along the time axis by an
amount the effect is equivalent to multiplying its Fourier transform by the factor

This means that the amplitude of is unaffected by the time shift, but
its phase is changed by the linear factor which varies linearly with frequency 

PROPERTY 6 Frequency Shifting If then

(2.27)

where is a real constant frequency.

This property follows from the fact that

That is, multiplication of a function by the factor is equivalent to shifting
its Fourier transform along the frequency axis by the amount This property is a
special case of the modulation theorem discussed later under Property 11; basically, a shift
of the range of frequencies in a signal is accomplished by using the process of modulation.
Note the duality between the time-shifting and frequency-shifting operations described in
Eqs. (2.26) and (2.27).

fc .G1f2 exp1j2pfct2g1t2
� G1f � fc2

F3exp1j2pfct2g1t24 � L
q

�q
g1t2 exp3�j2pt1f � fc24 dt

fc

exp1j2pfct2g1t2 Δ G1f � fc2
g1t2 Δ G1f2,

f.�2pft0,
G1f2exp1�j2pft02. G1f2t0,

g1t2
� exp1�j2pft02G1f2

F3g1t � t024 � exp1�j2pft02L
q

�q
g1t2 exp1�j2pt2 dt

t � t 	 t0.t � 1t � t02 g1t � t02
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g1t2 Δ G1f2,

— 0

g(t)

G(f )

(a) (b)

A

t f
3

2W
—3
2W

—A
2W

– 1
2W
— 1

2W
—–1

W
— 1

W
–W W0—–

FIGURE 2.8 (a) Sinc pulse (b) Fourier transform G1f2.g1t2.
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FIGURE 2.9 (a) RF pulse of unit amplitude and duration T. (b) Amplitude spectrum.

EXAMPLE 2.5 Radio Frequency (RF) Pulse

Consider the pulse signal shown in Fig. 2.9(a), which consists of a sinusoidal wave of unit
amplitude and frequency extending in duration from to This signal is
sometimes referred to as an RF pulse when the frequency falls in the radio-frequency band.
The signal of Fig. 2.9(a) may be expressed mathematically as follows:

(2.28)

To find the Fourier transform of the RF signal, we first use Euler’s formula to write

Therefore, applying the frequency-shifting property to the Fourier-transform pair of Eq. (2.10),
and then invoking the linearity property of the Fourier transform, we get the desired result

(2.29)recta t
T
b  cos12pfct2 Δ

T
2
5sinc3T1f � fc24 	 sinc3T1f 	 fc246

cos12pfct2 �
1
2
3exp1j2pfct2 	 exp1�j2pfct24

g1t2 � recta t
T
b  cos12pfct2

g1t2 fc
t � T>2.t � �T>2fc ,

g1t2
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In the special case of —that is, the frequency is large compared to the reciprocal of
the pulse duration T—we may use the approximate result

(2.30)

Under the condition the amplitude spectrum of the RF pulse is shown in Fig. 2.9(b).
This diagram, in relation to Fig. 2.2(b), clearly illustrates the frequency-shifting property of the
Fourier transform.

PROPERTY 7 Area Under If then

(2.31)

That is, the area under a function is equal to the value of its Fourier transform 
at

This result is obtained simply by putting in Eq. (2.1) defining the Fourier trans-
form of the function 

� Drill Problem 2.3 Suppose is real valued with a complex-valued Fourier transform
Explain how the rule of Eq. (2.31) can be satisfied by such a signal. �

PROPERTY 8 Area Under If then

(2.32)

That is, the value of a function at is equal to the area under its Fourier trans-
form

The result is obtained simply by putting in Eq. (2.2) defining the inverse Fourier
transform of 

� Drill Problem 2.4 Continuing with Problem 2.3, explain how the rule of Eq. (2.32) can
be satisfied by the signal described therein. �

PROPERTY 9 Differentiation in the Time Domain Let and assume
that the first derivative of with respect to time t is Fourier transformable. Then

(2.33)

That is, differentiation of a time function has the effect of multiplying its Fourier trans-
form by the purely imaginary factor 

This result is obtained simply in two steps. In step 1, we take the first derivative of
both sides of the integral in Eq. (2.2) defining the inverse Fourier transform of In step
2, we interchange the operations of integration and differentiation.

G1f2.
j2pf.G1f2 g1t2

d
dt

g1t2 Δ j2pfG1f2
g1t2 g1t2 Δ G1f2

g1t2
G1f2. t � 0

G1f2. t � 0g1t2
g102 � L

q

�q
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g1t2 Δ G1f2,G1f2

G1f2. g1t2
g1t2. f � 0
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G1f2g1t2

L
q

�q
g1t2 dt � G102

g1t2 Δ G1f2,g1t2
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2
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We may generalize Eq. (2.33) for higher order derivatives of the time function 
as follows:

(2.34)

which includes Eq. (2.33) as a special case. Equation (2.34) assumes that the Fourier trans-
form of the higher order derivative of exists.

EXAMPLE 2.6 Unit Gaussian Pulse

Typically, a pulse signal and its Fourier transform have different mathematical forms.
This observation is illustrated by the Fourier-transform pairs studied in Examples 2.1 through 2.5.
In this example, we consider an exception to this observation. In particular, we use the differen-
tiation property of the Fourier transform to derive the particular form of a pulse signal that has
the same mathematical form as its own Fourier transform.

Let denote the pulse signal expressed as a function of time t, and denote its
Fourier transform. Differentiating the Fourier transform formula of Eq. (2.1) with respect to
frequency we may write

or, equivalently,

(2.35)

Suppose we  now impose the following condition on the left-hand sides of Eqs. (2.33) and (2.35):

(2.36)

Then in a corresponding way, it follows that the right-hand sides of these two equations must
(after cancelling the common multiplying factor j) satisfy the condition

(2.37)

Equations (2.36) and (2.37) show that the pulse signal and its Fourier transform have
exactly the same mathematical form. In other words, provided that the pulse signal sat-
isfies the differential equation (2.36), then where is obtained from by
substituting for t. Solving Eq. (2.36) for we obtain

(2.38)

The pulse defined by Eq. (2.38) is called a Gaussian pulse, the name being derived from the
similarity of the function to the Gaussian probability density function of probability theory (see
Chapter 8). It is shown plotted in Fig. 2.10. By applying Eq. (2.31), we find that the area under

g1t2 � exp1�pt22
g1t2,f

g1t2g1f2G1f2 � g1f2, g1t2G1f2g1t2
d
df

G1f2 � �2pfG1f2

d
dt

g1t2 � �2ptg1t2

2ptg1t2 Δ j
d
df

G1f2

�j2ptg1t2 Δ
d
df

G1f2
f,

G1f2g1t2

G1f2g1t2

g1t2

dn

dtn g1t2 Δ 1j2pf2nG1f2
g1t2
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0–0.47 0.47
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t

g(t)

FIGURE 2.10
Gaussian pulse.
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this Gaussian pulse is unity, as shown by

(2.39)

When the central ordinate and the area under the curve of a pulse are both unity, as in
Eqs. (2.38) and (2.39), we say that the Gaussian pulse is a unit pulse. We conclude therefore
that the unit Gaussian pulse is its own Fourier transform, as shown by

(2.40)

PROPERTY 10 Integration in the Time Domain Let Then provided
that we have

(2.41)

That is, integration of a time function has the effect of dividing its Fourier transform
by the factor provided that is zero.

This property is verified by expressing as

and then applying the time-differentiation property of the Fourier transform to obtain

from which Eq. (2.41) follows immediately.
It is a straightforward matter to generalize Eq. (2.41) to multiple integration; how-

ever, the notation becomes rather cumbersome.
Equation (2.41) assumes that —that is, the area under —is zero. The more

general case pertaining to is deferred to Section 2.4.

EXAMPLE 2.7 Triangular Pulse

Consider the doublet pulse shown in Fig. 2.11(a). By integrating this pulse with respect
to time, we obtain the triangular pulse shown in Fig. 2.11(b). We note that the doublet
pulse consists of two rectangular pulses: one of amplitude A, defined for the interval

and the other of amplitude defined for the interval Applying
the time-shifting property of the Fourier transform to Eq. (2.10), we find that the Fourier
transforms of these two rectangular pulses are equal to and

respectively. Hence, invoking the linearity property of the Fourier
transform, we find that the Fourier transform of the doublet pulse of Fig. 2.11(a)
is given by

(2.42)

We further note from Eq. (2.42) that is zero. Hence, using Eqs. (2.41) and (2.42), we
find that the Fourier transform of the triangular pulse of Fig. 2.11(b) is given byg21t2G21f2G1102

� 2jAT sinc1fT2 sin1pfT2
G11f2 � AT sinc1fT23exp1jpfT2 � exp1�jpfT24

g11t2G11f2�AT sinc1fT2 exp1�jpfT2, AT sinc1fT2 exp1jpfT2
0 � t � T.�A,�T � t � 0;

g11t2 g21t2g11t2

G102 
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t

�q
g1t2 dt d f
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�q
g1t2 dt d
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FIGURE 2.11 (a) Doublet pulse 
(b) Triangular pulse obtained by
integrating with respect to time t.g11t2 g21t2 g11t2.

(2.43)

Note that the doublet pulse of Fig. 2.11(a) is real and odd-symmetric and its Fourier transform
is therefore odd and purely imaginary, whereas the triangular pulse of Fig. 2.11(b) is real and
symmetric and its Fourier transform is therefore symmetric and purely real.

EXAMPLE 2.8 Real and Imaginary Parts of a Time Function

Thus far in the chapter, we have discussed the Fourier representation of various signals, some
being purely real, others being purely imaginary, yet others being complex valued with real and
imaginary parts. It is therefore apropos that at this stage in the Fourier analysis of signals, we
use this example to develop a number of general formulas pertaining to complex signals and
their spectra.

Expressing a complex-valued function in terms of its real and imaginary parts, we
may write

(2.44)

where Re denotes “the real part of” and Im denotes the “imaginary part of.” The complex con-
jugate of is defined by

(2.45)g*1t2 � Re3g1t24 � j Im3g1t24
g1t2

g1t2 � Re3g1t24 	 j Im3g1t24
g1t2

� AT2 sinc21fT2
� AT

sin1pfT2
pf

 sinc1fT2
G21f2 �

1
j2pf

G11f2
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Adding Eqs. (2.44) and (2.45) gives

(2.46)

and subtracting them yields

(2.47)

Therefore, applying the conjugation rule of Eq. (2.22), we obtain the following two Fourier-
transform pairs:

(2.48)

From the second line of Eq. (2.48), it is apparent that in the case of a real-valued time func-
tion we have that is, the Fourier transform exhibits conjugate
symmetry, confirming a result that we stated previously in Section 2.2.

PROPERTY 11 Modulation Theorem Let and 
Then

(2.49)

To prove this property, we first denote the Fourier transform of the product by
so that we may write

where

For we next substitute the inverse Fourier transform

in the integral defining to obtain

Define Then, eliminating the variable and interchanging the order of inte-
gration, we obtain (after rearranging terms)

assuming that is fixed. The inner integral (inside the square brackets) is recognized sim-
ply as we may therefore writeG11l2; f
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which is the desired result. This integral is known as the convolution integral expressed in
the frequency domain, and the function is referred to as the convolution of
and We conclude that the multiplication of two signals in the time domain is trans-
formed into the convolution of their individual Fourier transforms in the frequency domain.
This property is also known as the modulation theorem. We have more to say on the prac-
tical implications of this property in subsequent chapters.

In a discussion of convolution, the following shorthand notation is frequently used:

Accordingly, we may reformulate Eq. (2.49) in the following symbolic form:

(2.50)

where the symbol denotes convolution. Note that convolution is commutative; that is,

which follows directly from Eq. (2.50).

PROPERTY 12 Convolution Theorem Let and 
Then

(2.51)

Equation (2.51) follows directly by combining Property 4 (duality) and Property 11
(modulation). We may thus state that the convolution of two signals in the time domain is
transformed into the multiplication of their individual Fourier transforms in the frequency
domain. This property is known as the convolution theorem. Its use permits us to exchange
a convolution operation in the time domain for a multiplication of two Fourier transforms,
an operation that is ordinarily easier to manipulate. We have more to say on convolution
later in the chapter when the issue of filtering is discussed.

Using the shorthand notation for convolution, we may rewrite Eq. (2.51) in the sim-
ple form

(2.52)

Note that Properties 11 and 12, described by Eqs. (2.49) and (2.51), respectively, are the
dual of each other.

� Drill Problem 2.5 Develop the detailed steps that show that the modulation and con-
volution theorems are indeed the dual of each other. �

PROPERTY 13 Correlation Theorem Let and 
Then, assuming that and are complex valued,

(2.53)

where is the complex conjugate of and is the time variable involved in
defining the inverse Fourier transform of the product G11f2G2

…1f2.tG21f2,G2
…1f2

L
q

�q
g11t2g2

…1t � t2 dt Δ G11f2G2
…1f2

g21t2g11t2 g21t2 Δ G21f2.g11t2 Δ G11f2

g11t2 � g21t2 Δ G11f2G21f2

L
q

�q
g11t2g21t � t2 dt Δ G11f2G21f2

g21t2 Δ G21f2.g11t2 Δ G11f2

G11f2 � G21f2 � G21f2 � G11f2
�

g11t2g21t2 Δ G11f2 � G21f2
G121f2 � G11f2 � G21f2

G21f2. G11f2G121f2

G121f2 � L
q
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G11l2G21f � l2 dl
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To prove Eq. (2.53), we begin by reformulating the convolution integral with the roles of
the time variables t and interchanged, in which case we may simply rewrite Eq. (2.51) as

(2.54)

As already pointed out in the statement of Property 13, the inverse Fourier transform of
the product term has as its time variable; that is, is its kernel. With
the formula of Eq. (2.54) at hand, Eq. (2.53) follows directly by combining reflection rule
(special case of the dilation property) and conjugation rule.

The integral on the left-hand side of Eq. (2.53) defines a measure of the similarity that
may exist between a pair of complex-valued signals. This measure is called correlation, on
which we have more to say later in the chapter.

� Drill Problem 2.6 Develop the detailed steps involved in deriving Eq. (2.53), starting
from Eq. (2.51). �

� Drill Problem 2.7 Prove the following properties of the convolution process:

(a) The commutative property:

(b) The associative property:

(c) The distributive property:
�

PROPERTY 14 Rayleigh’s Energy Theorem Let Then

(2.55)

To prove Eq. (2.55), we set in Eq. (2.53), in which case the correla-
tion theorem reduces to

In expanded form, we may write

(2.56)

Finally, putting in Eq. (2.56) and recognizing that we get the
desired result.

Equation (2.55), known as Rayleigh’s energy theorem, states that the total energy of
a Fourier-transformable signal equals the total area under the curve of squared amplitude
spectrum of this signal. Determination of the energy is often simplified by invoking the
Rayleigh energy theorem, as illustrated in the following example.

EXAMPLE 2.9 Sinc Pulse (continued)

Consider again the sinc pulse The energy of this pulse equals

E � A2

L
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The integral in the right-hand side of this equation is rather difficult to evaluate. However, we
note from Example 2.4 that the Fourier transform of the sinc pulse is equal to

hence, applying Rayleigh’s energy theorem to the problem at hand, we
readily obtain the desired result:

(2.57)

This example clearly illustrates the usefulness of Rayleigh’s energy theorem.

� Drill Problem 2.8 Considering the pulse function show that

�

2.3 The Inverse Relationship 
Between Time and Frequency

The properties of the Fourier transform discussed in Section 2.2 show that the time-domain
and frequency-domain descriptions of a signal are inversely related to each other. In par-
ticular, we may make two important statements:

1. If the time-domain description of a signal is changed, the frequency-domain descrip-
tion of the signal is changed in an inverse manner, and vice versa. This inverse rela-
tionship prevents arbitrary specifications of a signal in both domains. In other words,
we may specify an arbitrary function of time or an arbitrary spectrum, but we can-
not specify both of them together.

2. If a signal is strictly limited in frequency, the time-domain description of the sig-
nal will trail on indefinitely, even though its amplitude may assume a progres-
sively smaller value. We say a signal is strictly limited in frequency or strictly band
limited if its Fourier transform is exactly zero outside a finite band of frequen-
cies. The sinc pulse is an example of a strictly band-limited signal, as illustrated
in Fig. 2.8. This figure also shows that the sinc pulse is only asymptotically lim-
ited in time. In an inverse manner, if a signal is strictly limited in time (i.e., the sig-
nal is exactly zero outside a finite time interval), then the spectrum of the signal
is infinite in extent, even though the amplitude spectrum may assume a progres-
sively smaller value. This behavior is exemplified by both the rectangular pulse
(described in Fig. 2.2) and the triangular pulse (described in Fig. 2.11(b)). Accord-
ingly, we may state that a signal cannot be strictly limited in both time and
frequency.

� BANDWIDTH

The bandwidth of a signal provides a measure of the extent of the significant spectral con-
tent of the signal for positive frequencies. When the signal is strictly band limited, the band-
width is well defined. For example, the sinc pulse described in Fig. 2.8(a) has a bandwidth

L
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�q
sinc21t2 dt � 1.

sinc1t2,

�
A2

2W

� a A
2W
b2

L
W

�W
df

E � a A
2W
b2

L
q

�q
rect2a f

2W
b df

rect1f>2W2;1A>2W2 A sinc12Wt2



40 CHAPTER 2 � FOURIER REPRESENTATION OF SIGNALS AND SYSTEMS

equal to W. However, when the signal is not strictly band limited, which is generally the
case, we encounter difficulty in defining the bandwidth of the signal. The difficulty arises
because the meaning of the word “significant” attached to the spectral content of the sig-
nal is mathematically imprecise. Consequently, there is no universally accepted definition
of bandwidth.

Nevertheless, there are some commonly used definitions for bandwidth. In this sec-
tion, we consider three such definitions; the formulation of each definition depends on
whether the signal is low-pass or band-pass. A signal is said to be low-pass if its significant
spectral content is centered around the origin A signal is said be band-pass if its sig-
nificant spectral content is centered around where is a constant frequency.

When the spectrum of a signal is symmetric with a main lobe bounded by well-defined
nulls (i.e., frequencies at which the spectrum is zero), we may use the main lobe as the
basis for defining the bandwidth of the signal. The rationale for doing so is that the main
spectral lobe contains the significant portion of the signal energy. If the signal is low-pass,
the bandwidth is defined as one half the total width of the main spectral lobe, since only
one half of this lobe lies inside the positive frequency region. For example, a rectangular
pulse of duration T seconds has a main spectral lobe of total width hertz centered
at the origin, as depicted in Fig. 2.2(b). Accordingly, we may define the bandwidth of this
rectangular pulse as hertz. If, on the other hand, the signal is band-pass with main
spectral lobes centered around where is large, the bandwidth is defined as the width
of the main lobe for positive frequencies. This definition of bandwidth is called the null-
to-null bandwidth. For example, an RF pulse of duration T seconds and frequency has
main spectral lobes of width hertz centered around as depicted in Fig. 2.9(b).
Hence, we may define the null-to-null bandwidth of this RF pulse as hertz. On the
basis of the definitions presented here, we may state that shifting the spectral content of a
low-pass signal by a sufficiently large frequency has the effect of doubling the bandwidth
of the signal. Such a frequency translation is attained by using the process of modulation,
which is discussed in detail in Chapter 3.

Another popular definition of bandwidth is the 3-dB bandwidth. Specifically, if the
signal is low-pass, the 3-dB bandwidth is defined as the separation between zero frequency,
where the amplitude spectrum attains its peak value, and the positive frequency at which
the amplitude spectrum drops to of its peak value. For example, the decaying expo-
nential and rising exponential pulses defined in Fig. 2.4 have a 3-dB bandwidth of 
hertz. If, on the other hand, the signal is band-pass, centered at the 3-dB bandwidth
is defined as the separation (along the positive frequency axis) between the two frequen-
cies at which the amplitude spectrum of the signal drops to of the peak value at 
The 3-dB bandwidth has an advantage in that it can be read directly from a plot of the ampli-
tude spectrum. However, it has a disadvantage in that it may be misleading if the ampli-
tude spectrum has slowly decreasing tails.

Yet another measure for the bandwidth of a signal is the root mean-square (rms)
bandwidth, defined as the square root of the second moment of a properly normalized
form of the squared amplitude spectrum of the signal about a suitably chosen point. We
assume that the signal is low-pass, so that the second moment may be taken about the ori-
gin. As for the normalized form of the squared amplitude spectrum, we use the nonnega-

tive function in which the denominator applies the correct nor-

malization in the sense that the integrated value of this ratio over the entire frequency axis
is unity. We may thus formally define the rms bandwidth of a low-pass signal with
Fourier transform as follows:G1f2 g1t2

ƒG1f2 ƒ2nL
q

�q
ƒG1f2 ƒ2 df,
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�fc ,
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11>T2
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(2.58)

An attractive feature of the rms bandwidth is that it lends itself more readily to math-
ematical evaluation than the other two definitions of bandwidth, although it is not as eas-
ily measured in the laboratory.

� TIME-BANDWIDTH PRODUCT

For any family of pulse signals that differ by a time-scaling factor, the product of the sig-
nal’s duration and its bandwidth is always a constant, as shown by

The product is called the time-bandwidth product or bandwidth-duration product. The
constancy of the time-bandwidth product is another manifestation of the inverse relation-
ship that exists between the time-domain and frequency-domain descriptions of a signal.
In particular, if the duration of a pulse signal is decreased by compressing the time scale by
a factor a, say, the frequency scale of the signal’s spectrum, and therefore the bandwidth
of the signal, is expanded by the same factor a, by virtue of Property 2 (dilation), and the
time-bandwidth product of the signal is thereby maintained constant. For example, a rec-
tangular pulse of duration T seconds has a bandwidth (defined on the basis of the positive-
frequency part of the main lobe) equal to hertz, making the time-bandwidth product
of the pulse equal unity. The important point to note here is that whatever definition we
use for the bandwidth of a signal, the time-bandwidth product remains constant over cer-
tain classes of pulse signals. The choice of a particular definition for bandwidth merely
changes the value of the constant.

To be more specific, consider the rms bandwidth defined in Eq. (2.58). The corre-
sponding definition for the rms duration of the signal is

(2.59)

where it is assumed that the signal is centered around the origin. It may be shown that
using the rms definitions of Eqs. (2.58) and (2.59), the time-bandwidth product has the fol-
lowing form:

(2.60)

where the constant is It may also be shown that the Gaussian pulse satisfies this
condition with the equality sign. For the details of these calculations, the reader is referred
to Problem 2.51.

11>4p2.
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1
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g1t2

Trms � § Lq

�q
t2 ƒg1t2 ƒ2 dt

L
q

�q
ƒg1t2 ƒ2 dt

¥1>2
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1duration2  1bandwidth2 � constant

Wrms

Wrms � §Lq

�q
f 2 ƒG1f2 ƒ2 df

L
q

�q
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2.4 Dirac Delta Function

Strictly speaking, the theory of the Fourier transform, as described in Sections 2.2 and 2.3,
is applicable only to time functions that satisfy the Dirichlet conditions. Such functions
include energy signals—that is, signals for which the condition

holds. However, it would be highly desirable to extend the theory in two ways:

1. To combine the theory of Fourier series and Fourier transform into a unified frame-
work, so that the Fourier series may be treated as a special case of the Fourier trans-
form. (A review of the Fourier series is presented in Appendix 2.)

2. To expand applicability of the Fourier transform to include power signals—that is,
signals for which the condition

holds.

It turns out that both of these objectives are met through the “proper use” of the Dirac delta
function or unit impulse.

The Dirac delta function, denoted by is defined as having zero amplitude every-
where except at where it is infinitely large in such a way that it contains unit area
under its curve. Specifically, satisfies the pair of relations

(2.61)
and

(2.62)

An implication of this pair of relations is that the delta function must be an even func-
tion of time t.

For the delta function to have meaning, however, it has to appear as a factor in the
integrand of an integral with respect to time and then, strictly speaking, only when the
other factor in the integrand is a continuous function of time. Let be such a function,
and consider the product of and the time-shifted delta function In light of
the two defining equations (2.61) and (2.62), we may express the integral of the product

with respect to time t as follows:

(2.63)

The operation indicated on the left-hand side of this equation sifts out the value of
the function at time where Accordingly, Eq. (2.63) is referred to
as the sifting property of the delta function. This property is sometimes used as the defin-
ing equation of a delta function; in effect, it incorporates Eqs. (2.61) and (2.62) into a sin-
gle relation.

Noting that the delta function is an even function of t, we may rewrite Eq. (2.63)
in a way that emphasizes its resemblance to the convolution integral, as shown by

(2.64)L
q

�q
g1t2d1t � t2 dt � g1t2
d1t2

�� � t � �.t � t0,g1t2 g1t02
L

q

�q
g1t2d1t � t02 dt � g1t02

g1t2d1t � t02
d1t � t02.g1t2 g1t2

d1t2
L

q

�q
d1t2 dt � 1

d1t2 � 0,  t 
 0

d1t2t � 0,
d1t2,
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TS�

1
2T L
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ƒg1t2 ƒ2 dt � �
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FIGURE 2.12 (a) The Dirac delta function (b) Spectrum of d1t2.d1t2.
or, using the notation for convolution:

In words, the convolution of any time function with the delta function leaves that
function completely unchanged. We refer to this statement as the replication property of
the delta function.

By definition, the Fourier transform of the delta function is given by

Hence, using the sifting property of the delta function and noting that is equal
to unity at we obtain

We thus have the Fourier-transform pair for the Dirac delta function:

(2.65)

This relation states that the spectrum of the delta function extends uniformly over the
entire frequency interval, as shown in Fig. 2.12.

It is important to realize that the Fourier-transform pair of Eq. (2.65) exists only in
a limiting sense. The point is that no function in the ordinary sense has the two properties
of Eqs. (2.61) and (2.62) or the equivalent sifting property of Eq. (2.63). However, we can
imagine a sequence of functions that have progressively taller and thinner peaks at 
with the area under the curve remaining equal to unity, whereas the value of the function
tends to zero at every point except where it tends to infinity. That is, we may view
the delta function as the limiting form of a pulse of unit area as the duration of the pulse
approaches zero. It is immaterial what sort of pulse shape is used.

In a rigorous sense, the Dirac delta function belongs to a special class of functions
known as generalized functions or distributions. Indeed, in some situations its use requires
that we exercise considerable care. Nevertheless, one beautiful aspect of the Dirac delta func-
tion lies precisely in the fact that a rather intuitive treatment of the function along the lines
described herein often gives the correct answer.

EXAMPLE 2.10 The Delta Function as a Limiting Form of the Gaussian Pulse

Consider a Gaussian pulse of unit area, defined by

(2.66)g1t2 �
1
t

 exp¢�
pt2

t2
≤

t � 0,

t � 0,

d1t2
d1t2 Δ 1

F3d1t24 � 1
t � 0,

exp1�j2pft2
F3d1t24 � L

q

�q
d1t2 exp1�j2pft2 dt

d1t2g1t2
g1t2 � d1t2 � g1t2
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FIGURE 2.13
(a) Gaussian pulses of
varying duration.
(b) Corresponding spectra.

where is a variable parameter. The Gaussian function has two useful properties: (1) its
derivatives are all continuous, and (2) it dies away more rapidly than any power of t. The delta
function is obtained by taking the limit The Gaussian pulse then becomes infi-
nitely narrow in duration and infinitely large in amplitude, yet its area remains finite and fixed
at unity. Figure 2.13(a) illustrates the sequence of such pulses as the parameter is permitted
to decrease.

The Gaussian pulse defined here, is the same as the unit Gaussian pulse 
derived in Example 2.6, except for the fact that it is now scaled in time by the factor and scaled
in amplitude by the factor Therefore, applying the linearity and dilation properties of the
Fourier transform to the Fourier transform pair of Eq. (2.40), we find that the Fourier transform
of the Gaussian pulse defined in Eq. (2.66) is also Gaussian, as shown by

G1f2 � exp1�pt2f 22
g1t2

1>t. t

exp1�pt22g1t2,
t

tS 0.d1t2
g1t2t
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FIGURE 2.14 (a) dc signal. (b) Spectrum.

Figure 2.13(b) illustrates the effect of varying the parameter on the spectrum of the Gauss-
ian pulse Thus putting we find, as expected, that the Fourier transform of the
delta function is unity.

� APPLICATIONS OF THE DELTA FUNCTION

1. dc Signal.
By applying the duality property to the Fourier-transform pair of Eq. (2.65) and noting that
the delta function is an even function, we obtain

(2.67)

Equation (2.67) states that a dc signal is transformed in the frequency domain into a delta
function occurring at zero frequency, as shown in Fig. 2.14. Of course, this result is
intuitively satisfying.

Invoking the definition of Fourier transform, we readily deduce from Eq. (2.67) the
useful relation

Recognizing that the delta function is real valued, we may simplify this relation as
follows:

(2.68)

which provides yet another definition for the delta function, albeit in the frequency domain.

2. Complex Exponential Function.
Next, by applying the frequency-shifting property to Eq. (2.67), we obtain the Fourier-
transform pair

(2.69)

for a complex exponential function of frequency Equation (2.69) states that the com-
plex exponential function is transformed in the frequency domain into a delta
function occurring at f � fc .d1f � fc2 exp1j2pfct2 fc .

exp1j2pfct2 Δ d1f � fc2

L
q

�q
 cos12pft2 dt � d1f2

d1f2
L

q

�q
 exp1�j2pft2 dt � d1f2

d1t2
1 Δ d1f2

t � 0,g1t2. t
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FIGURE 2.15 (a) Cosine function. (b) Spectrum.
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FIGURE 2.16 (a) Sine function. (b) Spectrum.

3. Sinusoidal Functions.
Consider next the problem of evaluating the Fourier transform of the cosine function

We first use Euler’s formula to write

(2.70)

Therefore, using Eq. (2.69), we find that the cosine function is represented by
the Fourier-transform pair

(2.71)

In other words, the spectrum of the cosine function consists of a pair of delta
functions occurring at each of which is weighted by the factor as shown in
Fig. 2.15.

Similarly, we may show that the sine function is represented by the Fourier-
transform pair

(2.72)

which is illustrated in Fig. 2.16.

sin12pfct2 Δ
1
2j
3d1f � fc2 � d1f 	 fc24

sin12pfct2
1>2,f � �fc ,

cos12pfct2
cos12pfct2 Δ

1
2
3d1f � fc2 	 d1f 	 fc24

cos12pfct2
cos12pfct2 �

1
2
3exp1j2pfct2 	 exp1�j2pfct24

cos12pfct2.
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FIGURE 2.17 (a) Signum function
(continuous curve), and double-
exponential pulse (dashed curve).
(b) Amplitude spectrum of signum
function (continuous curve), and
that of double-exponential pulse
(dashed curve).

� Drill Problem 2.9 Determine the Fourier transform of the squared sinusoidal signals:

(i)
(ii) �

4. Signum Function.
The signum function equals for positive time and for negative time, as shown
by the solid curve in Fig. 2.17(a). The signum function was defined previously in Eq. (2.18);
this definition is reproduced here for convenience of presentation:

The signum function does not satisfy the Dirichlet conditions and therefore, strictly speak-
ing, it does not have a Fourier transform. However, we may define a Fourier transform for
the signum function by viewing it as the limiting form of the odd-symmetric double-
exponential pulse

(2.73)

as the parameter a approaches zero. The signal shown as the dashed curve in
Fig. 2.17(a), does satisfy the Dirichlet conditions. Its Fourier transform was derived in

g1t2,
g1t2 � c exp1�at2, t � 0

0, t � 0
�exp1at2, t � 0

sgn1t2 � c	1, t � 0
0, t � 0

�1, t � 0

�1	1sgn1t2
g1t2 � sin212pfc t2g1t2 � cos212pfc t2
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FIGURE 2.18 (a) Unit step function. (b) Amplitude spectrum.

Example 2.3; the result is given by [see Eq. (2.19)]:

The amplitude spectrum is shown as the dashed curve in Fig. 2.17(b). In the limit
as a approaches zero, we have

That is,

(2.74)

The amplitude spectrum of the signum function is shown as the continuous curve in
Fig. 2.17(b). Here we see that for small a, the approximation is very good except near the
origin on the frequency axis. At the origin, the spectrum of the approximating function 
is zero for whereas the spectrum of the signum function goes to infinity.

5. Unit Step Function.
The unit step function u(t) equals for positive time and zero for negative time. Previ-
ously defined in Eq. (2.11), it is reproduced here for convenience:

The waveform of the unit step function is shown in Fig. 2.18(a). From this defining equa-
tion and that of the signum function, or from the waveforms of Figs. 2.17(a) and 2.18(a),
we see that the unit step function and signum function are related by

(2.75)

Hence, using the linearity property of the Fourier transform and the Fourier-transform
pairs of Eqs. (2.67) and (2.75), we find that the unit step function is represented by the
Fourier-transform pair

u1t2 �
1
2
3sgn11t2 	 124

u1t2 � d 1, t � 0
1
2

, t � 0

0, t � 0

	1
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jpf
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jpf
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�4jpf

a2 	 12pf22
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�j4pf
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(2.76)

This means that the spectrum of the unit step function contains a delta function weighted
by a factor of and occurring at zero frequency, as shown in Fig. 2.18(b).

6. Integration in the Time Domain (Revisited).
The relation of Eq. (2.41) describes the effect of integration on the Fourier transform of a
signal assuming that is zero. We now consider the more general case, with no
such assumption made.

Let

(2.77)

The integrated signal can be viewed as the convolution of the original signal and
the unit step function as shown by

where the time-shifted unit step function is itself defined by

Recognizing that convolution in the time domain is transformed into multiplication in the
frequency domain in accordance with Property 12, and using the Fourier-transform pair
of Eq. (2.76) for the unit step function we find that the Fourier transform of is

(2.78)

where is the Fourier transform of According to the sifting property of a delta
function formulated in the frequency domain, we have

Hence, we may rewrite Eq. (2.78) in the equivalent form:

In general, the effect of integrating the signal is therefore described by the Fourier-
transform pair

(2.79)

This is the desired result, which includes Eq. (2.41) as a special case (i.e., ).

� Drill Problem 2.10 Consider the function
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which consists of the difference between two delta functions at The integration of 

with respect to time t yields the unit rectangular function Using Eq. (2.79), show that

which is a special form of Eq. (2.10). �

2.5 Fourier Transforms 
of Periodic Signals

It is well known that by using the Fourier series, a periodic signal can be represented as a
sum of complex exponentials. (Appendix 2 presents a review of the Fourier series.) Also,
in a limiting sense, Fourier transforms can be defined for complex exponentials, as demon-
strated in Eqs. (2.69), (2.71), and (2.72). Therefore, it seems reasonable to represent a peri-
odic signal in terms of a Fourier transform, provided that this transform is permitted to
include delta functions.

Consider then a periodic signal where the subscript denotes the period of
the signal. We know that can be represented in terms of the complex exponential
Fourier series as (see Appendix 2)

(2.80)

where is the complex Fourier coefficient, defined by

(2.81)

and is the fundamental frequency defined as the reciprocal of the period that is,

(2.82)

Let be a pulselike function, which equals over one period and is zero elsewhere;
that is,

(2.83)

The periodic signal may now be expressed in terms of the function as the infi-
nite summation

(2.84)

Based on this representation, we may view as a generating function, in that it gener-
ates the periodic signal Being pulselike with some finite energy, the function is
Fourier transformable. Accordingly, in light of Eqs. (2.82) and (2.83), we may rewrite the
formula for the complex Fourier coefficient as follows:

(2.85)� f0G1nf02
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where is the Fourier transform of evaluated at the frequency We may
thus rewrite the formula of Eq. (2.80) for the reconstruction of the periodic signal 

as

(2.86)

Therefore, eliminating between Eqs. (2.84) and (2.86), we may now write

(2.87)

which defines one form of Poisson’s sum formula.
Finally, using Eq. (2.69), which defines the Fourier transform of a complex expo-

nential function, in Eq. (2.87), we deduce the Fourier-transform pair:

(2.88)

for the periodic signal whose fundamental frequency Equation (2.88)
simply states that the Fourier transform of a periodic signal consists of delta functions
occurring at integer multiples of the fundamental frequency including the origin, and
that each delta function is weighted by a factor equal to the corresponding value of 
Indeed, this relation merely provides a method to display the frequency content of the peri-
odic signal 

It is of interest to observe that the pulselike function constituting one period of
the periodic signal has a continuous spectrum defined by On the other hand,
the periodic signal itself has a discrete spectrum. In words, we may therefore sum
up the transformation embodied in Eq. (2.88) as follows:

Periodicity in the time domain has the effect of changing the spectrum of a pulse-
like signal into a discrete form defined at integer multiples of the fundamental fre-
quency, and vice versa.

EXAMPLE 2.11 Ideal Sampling Function

An ideal sampling function, or Dirac comb, consists of an infinite sequence of uniformly spaced
delta functions, as shown in Fig. 2.19(a). We denote this waveform by

(2.89)

We observe that the generating function for the ideal sampling function consists sim-
ply of the delta function We therefore have and

Thus, the use of Eq. (2.88) yields the new result

(2.90)

Equation (2.90) states that the Fourier transform of a periodic train of delta functions, spaced
seconds apart, consists of another set of delta functions weighted by the factor 

and regularly spaced Hz apart along the frequency axis as in Fig. 2.19(b). In the special case
of a periodic train of delta functions is, like a Gaussian pulse, its own Fourier transform.T0 � 1,
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Applying the inverse Fourier transform to the right-hand side of Eq. (2.90), we get the
relationship

(2.91)

On the other hand, applying the Fourier transform to the left-hand side of Eq. (2.90), we get
the dual relationship:

(2.92)

where we have used the relation of Eq. (2.82) rewritten in the form Equations (2.91)
and (2.92) are the dual of each other, in that in the delta functions show up in the time domain
in Eq. (2.91) whereas in Eq. (2.92) the delta functions show up in the frequency domain.

� Drill Problem 2.11 Using the Euler formula refor-

mulate Eqs. (2.91) and (2.92) in terms of cosinusoidal functions. �

2.6 Transmission of Signals Through 
Linear Systems: Convolution Revisited

With the Fourier transform theory presented in the previous sections at our disposal, we are
now ready to turn our attention to the study of a special class of systems known to be linear.
A system refers to any physical device or phenomenon that produces an output signal in
response to an input signal. It is customary to refer to the input signal as the excitation and to
the output signal as the response. In a linear system, the principle of superposition holds; that
is, the response of a linear system to a number of excitations applied simultaneously is equal
to the sum of the responses of the system when each excitation is applied individually. Impor-
tant examples of linear systems include filters and communication channels operating in their
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FIGURE 2.19 (a) Dirac comb. (b) Spectrum.
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linear region. A filter refers to a frequency-selective device that is used to limit the spectrum of
a signal to some band of frequencies. A channel refers to a physical medium that connects the
transmitter and receiver of a communication system. We wish to evaluate the effects of trans-
mitting signals through linear filters and communication channels. This evaluation may be
carried out in two ways, depending on the description adopted for the filter or channel. That
is, we may use time-domain or frequency-domain ideas, as described below.

� TIME RESPONSE

In the time domain, a linear system is described in terms of its impulse response, which is
defined as the response of the system (with zero initial conditions) to a unit impulse or
delta function applied to the input of the system. If the system is time invariant, then
this property implies that a time-shifted unit impulse at the input of the system produces
an impulse response at the output, shifted by exactly the same amount. In other words, the
shape of the impulse response of a linear time-invariant system is the same no matter when
the unit impulse is applied to the system. Thus, assuming that the unit impulse or delta func-
tion is applied at time we may denote the impulse response of a linear time-invariant
system by Let this system be subjected to an arbitrary excitation as in Fig. 2.20(a).
To determine the response of the system, we begin by first approximating by a
staircase function composed of narrow rectangular pulses, each of duration as shown
in Fig. 2.20(b). Clearly the approximation becomes better for smaller As approaches
zero, each pulse approaches, in the limit, a delta function weighted by a factor equal to the
height of the pulse times Consider a typical pulse, shown shaded in Fig. 2.20(b), which
occurs at This pulse has an area equal to By definition, the response of the
system to a unit impulse or delta function occurring at is It follows there-
fore that the response of the system to a delta function, weighted by the factor and
occurring at must be To find the response at some time t, wey1t2x1t2h1t � t2¢t.t � t,

x1t2¢th1t2.t � 0,d1t2, x1t2¢t.t � t.
¢t.

¢t¢t.
¢t,

x1t2y1t2 x1t2,h1t2. t � 0,
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FIGURE 2.20 (a) Linear
system with input and
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apply the principle of superposition. Thus, summing the various infinitesimal responses
due to the various input pulses, we obtain in the limit, as approaches zero,

(2.93)

This relation is called the convolution integral.
In Eq. (2.93), three different time scales are involved: excitation time response time

t, and system-memory time This relation is the basis of time-domain analysis of
linear time-invariant systems. It states that the present value of the response of a linear
time-invariant system is a weighted integral over the past history of the input signal,
weighted according to the impulse response of the system. Thus, the impulse response acts
as a memory function for the system.

In Eq. (2.93), the excitation is convolved with the impulse response to pro-
duce the response Since convolution is commutative, it follows that we may also write

(2.94)

where is convolved with 

EXAMPLE 2.12 Tapped-Delay-Line Filter

Consider a linear time-invariant filter with impulse response We make two assumptions:

1. Causality, which means that the impulse response is zero for 
2. Finite support, which means that the impulse response of the filter is of some finite dura-

tion so that we may write for 

Under these two assumptions, we may express the filter output produced in response to
the input as

(2.95)

Let the input impulse response and output be uniformly sampled at the rate
samples per second, so that we may put

and

where k and n are integers, and is the sampling period. Assuming that is small enough
for the product to remain essentially constant for for
all values of k and we may approximate Eq. (2.95) by a convolution sum as shown by

where Define the weight

(2.96)

We may then rewrite the formula for as

(2.97)y1n ¢t2 � a
N�1

k�0
wkx1n ¢t � k ¢t2

y1n ¢t2
wk � h1k ¢t2 ¢t, k � 0, 1, Á , N � 1

N ¢t � Tf .

y1n ¢t2 � a
N�1

k�0
h1k ¢t2x1n ¢t � k ¢t2 ¢t

t,
k ¢t � t � 1k 	 12 ¢th1t2x1t � t2 ¢t¢t

t � k ¢t

t � n ¢t
11>¢t2 y1t2h1t2,x1t2,

y1t2 � L
Tf

0
h1t2x1t � t2 dt

x1t2 y1t2
t � Tf .h1t2 � 0Tf ,

t � 0.h1t2h1t2.

x1t2.h1t2
y1t2 � L

q

�q
h1t2x1t � t2 dt

y1t2. h1t2x1t2

1t � t2. t,

y1t2 � L
q

�q
x1t2h1t � t2 dt

¢t
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FIGURE 2.21 Tapped-delay-line filter.

Equation (2.97) may be realized using the structure shown in Fig. 2.21, which consists of a set
of delay elements (each producing a delay of seconds), a set of multipliers connected to the
delay-line taps, a corresponding set of weights supplied to the multipliers, and a summer for
adding the multiplier outputs. This structure is known as a tapped-delay-line filter or transversal
filter. Note that in Fig. 2.21 the tap-spacing or basic increment of delay is equal to the sam-
pling period of the input sequence 

� CAUSALITY AND STABILITY

A system is said to be causal if it does not respond before the excitation is applied. For a
linear time-invariant system to be causal, it is clear that the impulse response must van-
ish for negative time, as stated in Example 2.12. That is, we may formally state that the nec-
essary and sufficient condition for a linear time-invariant system to be causal is

(2.98)

Clearly, for a system operating in real time to be physically realizable, it must be causal.
However, there are many applications in which the signal to be processed is only available
in stored form; in these situations, the system can be noncausal and yet physically realizable.

The system is said to be stable if the output signal is bounded for all bounded input
signals. We refer to this requirement as the bounded input–bounded output (BIBO) stabil-
ity criterion, which is well suited for the analysis of linear time-invariant systems. Let the
input signal be bounded, as shown by

where M is a positive real finite number. Taking the absolute values of both sides of
Eq. (2.94), we have

(2.99)ƒy1t2 ƒ � ` L
q

�q
h1t2x1t � t2 dt `

ƒx1t2 ƒ � M for all t

x1t2

h1t2 � 0, t � 0

h1t2

5x1n ¢t26.

¢t
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Next, we recognize that the absolute value of an integral is bounded by the integral of the
absolute value of the integrand, as shown by

Hence, substituting this inequality into Eq. (2.99) yields the important result

It follows therefore that for a linear time-invariant system to be stable, the impulse response
must be absolutely integrable. That is, the necessary and sufficient condition for BIBO

stability of a linear time-invariant system is described by

(2.100)

where is the impulse response of the system.

� FREQUENCY RESPONSE

Consider next a linear time-invariant system of impulse response which is driven by
a complex exponential input of unit amplitude and frequency that is,

(2.101)

Using Eqs. (2.101) in (2.94), the response of the system is obtained as

(2.102)

Define the transfer function or frequency response of the system as the Fourier transform
of its impulse response, as shown by

(2.103)

The terms transfer function and frequency response are used interchangably. The integral
in the last line of Eq. (2.102) is the same as that of Eq. (2.103), except for the fact that 
is used in place of t. Hence, we may rewrite Eq. (2.102) in the form

(2.104)

Equation (2.104) states that the response of a linear time-invariant system to a complex
exponential function of frequency is the same complex exponential function multiplied
by a constant coefficient H1f2. f

y1t2 � H1f2 exp1j2pft2
t

H1f2 � L
q

�q
h1t2 exp1�j2pft2 dt

� exp1j2pft2L
q

�q
h1t2 exp1�j2pft2 dt

y1t2 � L
q

�q
h1t2 exp3j2pf1t � t24 dt

x1t2 � exp1j2pft2
f;

h1t2,

h1t2
L

q

�q
ƒh1t2 ƒ dt � �

h1t2

ƒy1t2 ƒ � ML
q

�q
ƒh1t2 ƒ dt

� ML
q

�q
ƒh1t2 ƒ dt

` L
q

�q
h1t2x1t � t2 dt ` �L

q

�q
ƒh1t2x1t � t2 ƒ dt
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Equation (2.103) is one definition of the transfer function An alternative defi-
nition of the transfer function may be deduced by dividing Eq. (2.104) by (2.101) to obtain

(2.105)

Consider next an arbitrary signal applied to the system. The signal may be
expressed in terms of its inverse Fourier transform as

(2.106)

Equivalently, we may express in the limiting form

(2.107)

That is, the input signal may be viewed as a superposition of complex exponentials
of incremental amplitude. Because the system is linear, the response to this superposition
of complex exponential inputs is given by

(2.108)

The Fourier transform of the output signal is therefore readily obtained as

(2.109)

According to Eq. (2.109), a linear time-invariant system may thus be described quite sim-
ply in the frequency domain by noting that the Fourier transform of the output is equal to
the product of the frequency response of the system and the Fourier transform of the input.

Of course, we could have deduced the result of Eq. (2.109) directly by recognizing two
facts:

1. The response of a linear time-invariant system of impulse response to an arbi-
trary input is obtained by convolving with in accordance with
Eq. (2.93).

2. The convolution of a pair of time functions is transformed into the multiplication of
their Fourier transforms.

The alternative derivation of Eq. (2.109) above is presented primarily to develop an under-
standing of why the Fourier representation of a time function as a superposition of com-
plex exponentials is so useful in analyzing the behavior of linear time-invariant systems.

The frequency response is a characteristic property of a linear time-invariant sys-
tem. It is, in general, a complex quantity, so that we may express it in the form

(2.110)

where is called the amplitude response or magnitude response, and the phase
or phase response. In the special case of a linear system with real-valued impulse response

the frequency response exhibits conjugate symmetry, which means that

ƒH1f2 ƒ � ƒH1�f2 ƒ
H1f2h1t2,

b1f2ƒH1f2 ƒ
H1f2 � ƒH1f2 ƒ  exp3jb1f24

H1f2

h1t2,x1t2x1t2 h1t2y1t2

Y1f2 � H1f2X1f2
y1t2

�L
q

�q
H1f2X1f2 exp1j2pft2 df

y1t2 � lim
¢fS0

f � k ¢f

a
q

k��q
H1f2X1f2 exp1j2pft2 ¢f

x1t2
x1t2 � lim

¢fS0
f � k ¢f

a
q

k��q
X1f2 exp1j2pft2 ¢f

x1t2
x1t2 �L

q

�q
X1f2 exp1j2pft2 df

x1t2x1t2
H1f2 �

y1t2
x1t2 ` x1t2�exp1j2pft2

H1f2.
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and

That is, the amplitude response of a linear system with real-valued impulse response
is an even function of frequency, whereas the phase is an odd function of frequency.

In some applications it is preferable to work with the logarithm of expressed
in polar form, rather than with itself. Define the natural logarithm

(2.111)

where

(2.112)

The function is one definition of the gain of the system. It is measured in nepers,
whereas the phase is measured in radians. Equation (2.111) indicates that the gain 
and phase are the real and imaginary parts of the natural logarithm of the frequency
response respectively. The gain may also be expressed in decibels (dB) by using the
definition

(2.113)

The two gain functions and are related by

(2.114)

That is, 1 neper is equal to 8.69 dB.
From the discussion presented Section 2.3, we note that the bandwidth of a system

is specified by the constancy of its amplitude response. The bandwidth of a low-pass sys-
tem is thus defined as the frequency at which the amplitude response is times
its value of zero frequency or, equivalently, the frequency at which the gain drops by
3 dB below its value at zero frequency, as illustrated in Fig. 2.22(a). Correspondingly, the
bandwidth of a band-pass system is defined as the range of frequencies over which the
amplitude response remains within times its value at the mid-band frequency,
as illustrated in Fig. 2.22(b).

� PALEY–WIENER CRITERION

A necessary and sufficient condition for a function to be the gain of a causal filter is
the convergence of the integral.

(2.115)

This condition is known as the Paley–Wiener criterion. It states that, provided the gain
satisfies the condition of Eq. (2.115), then we may associate with this gain a suitable

phase such that the resulting filter has a causal impulse response that is zero for neg-
ative time. In other words, the Paley–Wiener criterion is the frequency-domain equivalent
of the causality requirement. A system with a realizable gain characteristic may have infi-
nite attenuation [i.e., ] for a discrete set of frequencies, but it cannot have infi-
nite attenuation over a band of frequencies; otherwise, the Paley–Wiener criterion is violated.

� Drill Problem 2.12 Discuss the following two issues, citing examples for your answers:
(a) Is it possible for a linear time-invariant system to be causal but unstable?
(b) Is it possible for such a system to be noncausal but stable? �

a1f2 � ��

b1f2a1f2
L

q

�q
¢ ƒa1f2 ƒ

1 	 f 2 ≤ df � �

a1f2

1>12ƒH1f2 ƒ
a�1f21>12ƒH1f2 ƒ

a�1f2 � 8.69a1f2
a�1f2a1f2
a�1f2 � 20 log10 ƒH1f2 ƒ

H1f2,b1f2 a1f2b1f2a1f2
a1f2 � ln ƒH1f2 ƒ

ln H1f2 � a1f2 	 jb1f2
H1f2 H1f2,b1f2ƒH1f2 ƒ
b1f2 � �b1�f2
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FIGURE 2.22 Illustration of the definition of system bandwidth.
(a) Low-pass system. (b) Band-pass system.

� Drill Problem 2.13 The impulse response of a linear system is defined by the Gaussian
function

where is an adjustable parameter that defines pulse duration. Determine the frequency response
of the system. �

� Drill Problem 2.14 A tapped-delay-line filter consists of N weights, where N is odd. It
is symmetric with respect to the center tap; that is, the weights satisfy the condition

(a) Find the amplitude response of the filter.

(b) Show that this filter has a linear phase response. What is the implication of this property?
(c) What is the time delay produced by the filter? �

wn � wN�1�n , 0 � n � N � 1

t

h1t2 � exp¢�
t2

2t2 ≤
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2.7 Ideal Low-Pass Filters

As previously mentioned, a filter is a frequency-selective system that is used to limit the spec-
trum of a signal to some specified band of frequencies. Its frequency response is characterized
by a passband and a stopband. The frequencies inside the passband are transmitted with
little or no distortion, whereas those in the stopband are rejected. The filter may be of the
low-pass, high-pass, band-pass, or band-stop type, depending on whether it transmits low,
high, intermediate, or all but intermediate frequencies, respectively. We have already encoun-
tered examples of low-pass and band-pass systems in Fig. 2.22.

Filters, in one form or another, represent an important functional block in building
communication systems. In this book, we will be concerned with the use of high-pass, low-
pass, and band-pass filters.

In this section, we study the time response of the ideal low-pass filter, which trans-
mits, without any distortion, all frequencies inside the passband and completely rejects all
frequencies inside the stopband, as illustrated in Fig. 2.23. According to this figure, the
frequency response of an ideal low-pass filter satisfies two necessary conditions:

1. The amplitude response of the filter is a constant inside the passband
(The constant in Fig. 2.23 is set equal to unity for convenience of presentation.)

2. The phase response varies linearly with frequency inside the passband of the filter.
(Outside the passband, the phase response may assume arbitrary values.)

In mathematical terms, the transfer function of an ideal low-pass filter is therefore defined by

(2.116)H1f2 � b exp1�j2pft02, �B � f � B
0, ƒf ƒ � B

�B � f � B.

0
(a)

1.0

f

|H(f )|

–B B

0
(b)

Slope = –2� t0

f

arg[H(f )]

–B B FIGURE 2.23 Frequency response of
ideal low-pass filter. (a) Amplitude
response. (b) Phase response; outside
the band the phase
response assumes an arbitrary form
(not shown in the figure).

�B � f � B,
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FIGURE 2.24 Impulse response of ideal low-pass filter.

The parameter B defines the bandwidth of the filter. The ideal low-pass filter is, of course,
noncausal because it violates the Paley–Wiener criterion. This observation may also be
confirmed by examining the impulse response Thus, by evaluating the inverse Fourier
transform of the transfer function of Eq. (2.116), we get

(2.117)

where the limits of integration have been reduced to the frequency band inside which 
does not vanish. Equation (2.117) is readily integrated, yielding

(2.118)

The impulse response has a peak amplitude of centered on time as shown in Fig. 2.24
for The duration of the main lobe of the impulse response is and the build-
up time from the zero at the beginning of the main lobe to the peak value is We see
from Fig. 2.24 that, for any finite value of there is some response from the filter before
the time at which the unit impulse is applied to the input; this observation confirms
that the ideal low-pass filter is noncausal. Note, however, that we can always make the delay

large enough for the condition

to be satisfied. By so doing, we are able to build a causal filter that approximates an ideal
low-pass filter, with the approximation improving with increasing delay 

� PULSE RESPONSE OF IDEAL LOW-PASS FILTERS

Consider a rectangular pulse of unit amplitude and duration T, which is applied to an
ideal low-pass filter of bandwidth B. The problem is to determine the response of
the filter.

The impulse response of the filter is defined by Eq. (2.118). Clearly, the delay 
has no effect on the shape of the filter response . Without loss of generality, we mayy1t2 t0h1t2

y1t2x1t2

t0.

ƒsinc32B1t � t024 ƒ V 1, for t � 0

t0

t � 0
t0,

1>2B.
1>B,t0 � 1>B.

t0,2B

� 2B sinc32B1t � t024
h1t2 �

sin32pB1t � t024
p1t � t02

H1f2
h1t2 �L

B

�B
 exp3j2pf1t � t024 df

h1t2.
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therefore simplify the exposition by setting in which case the impulse response of
Eq. (2.118) reduces to

(2.119)

With the input for the resulting response of the filter is
given by the convolution integral

(2.120)

Define a new dimensionless variable

Then, changing the integration variable from to we may rewrite Eq. (2.120) as

(2.121)

In Eq. (2.121), we have introduced a new expression called the sine integral, which is
defined by

(2.122)

Unfortunately, the sine integral Si(u) cannot be evaluated in closed form in terms of ele-
mentary functions. However, it can be integrated in a power series, which, in turn, leads
to the graph plotted in Fig. 2.25. From this figure we make three observations:

1. The sine integral is an oscillatory function of u, having odd symmetry about the
origin

2. It has its maxima and minima at multiples of 
3. It approaches the limiting value for large positive values of u.

In Fig. 2.25, we see that the sine integral oscillates at a frequency of Corre-
spondingly, the filter response will also oscillate at a frequency equal to the cutoff fre-
quency (i.e., bandwidth) B of the low-pass filter, as indicated in Fig. 2.26. The maximum
value of occurs at and is equal to

We may show that the filter response has maxima and minima at

tmax � �
T
2

�
1

2B

y1t2
1.8519 � 11.1792  ap

2
b

umax � pSi1u2
y1t2 1>2p.Si1u2

1p>22 p.
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u

0

sin x
x
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1
p
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p
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1
p L

2pB1t	T>22
2pB1t�T>22 a
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l � 2pB1t � t2

� 2BL
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�T>2 a
sin32pB1t � t24

2pB1t � t2 b dt

� 2BL
T>2

�T>2 sinc32B1t � t24 dt

y1t2 �L
q

�q
x1t2h1t � t2 dt

�1T>22 � t � 1T>22,x1t2 � 1

h1t2 � 2B sinc12Bt2
t0 � 0,
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FIGURE 2.25 The sine integral Si(u).
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where, in the second line, we have used the odd symmetric property of the sine integral. Let

Si12pBT � p2 �
p
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p
3Si1p2 � Si1p � 2pBT24

FIGURE 2.26 Ideal low-pass filter response for a square pulse.
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where is the absolute value of the deviation in the value of expressed as
a fraction of the final value Thus, recognizing that

we may redefine as

(2.123)

For a time-bandwidth product the fractional deviation has a very small value,
in which case we may make two important observations from Eq. (2.123):

1. The percentage overshoot in the filter response is approximately 9 percent.
2. The overshoot is practically independent of the filter bandwidth B.

The basic phenomenon underlying these two observations is called the Gibbs phenomenon.
Figure 2.26 shows the oscillatory nature of the filter response and the 9 percent overshoot
characterizing the response, assuming that 

Figure 2.27, occupying pages 65 and 66, shows the filter response for four time-band-
width products: 10, 20, and 100, assuming that the pulse duration T is 1 second.
Table 2.1 shows the corresponding frequencies of oscillations and percentage overshoots
for these time-bandwidth products, confirming observations 1 and 2.

BT � 5,

BT W 1.

¢BT W 1,

� 1.09 �
1
2
¢

y1tmax2 �
1
2
11.179 	 1 � ¢2

y1tmax2
Si1p2 � 11.17921p>22

	p>2.
Si12pBT � p2¢

TABLE 2.1 Oscillation Frequency and Percentage
Overshoot for Varying Time-Bandwidth Product

BT Oscillation Frequency Percentage Overshoot

5 5 Hz 9.11
10 10 Hz 8.98
20 20 Hz 8.99

100 100 Hz 9.63

Figure 2.28, occupying pages 67 and 68, shows the filter response for periodic square-
wave inputs of different fundamental frequencies: 0.25, 0.5, and 1 Hz, and with
the bandwidth of the low-pass filter being fixed at From Fig. 2.28 we may make
the following observations:

� For corresponding to a time-bandwidth product the filter some-
what distorts the input square pulse, but the shape of the input is still evident at the
filter output. Unlike the input, the filter output has nonzero rise and fall times that
are inversely proportional to the filter bandwidth. Also, the output exhibits oscilla-
tions (ringing) at both the leading and trailing edges.

� As the fundamental frequency of the input square wave increases, the low-pass fil-
ter cuts off more of the higher frequency components of the input. Thus, when

corresponding to only the fundamental frequency and the
first harmonic component pass through the filter; the rise and fall times of the out-
put are now significant compared with the input pulse duration T. When 
corresponding to only the fundamental frequency component of the input
square wave is preserved by the filter, resulting in an output that is essentially
sinusoidal.

BT � 1,
f0 � 0.5 Hz,

BT � 2,f0 � 0.25 Hz,

f0

BT � 5,f0 � 0.1 Hz,

B � 1 Hz.
f0 � 0.1,
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FIGURE 2.27 Pulse response of ideal low-pass filter for pulse duration and varying
time-bandwidth product. (a) (b) BT � 10.BT � 5.1BT2 T � 1s
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FIGURE 2.27 (continued) (c) . (d) BT � 100.BT � 20
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FIGURE 2.28 Response of ideal low-pass filter to a square wave of varying frequency 
(a) (b) f0 � 0.25 Hz.f0 � 0.1 Hz.
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FIGURE 2.28 (continued) (c) (d) f0 � 1 Hz.f0 � 0.5 Hz.



2.7 Ideal Low-Pass Filters 69

� When the fundamental frequency of the input square wave is increased further to the
high value which corresponds to a time-bandwidth product , the
dc component becomes the dominant output, and the shape of the input square wave
is completely destroyed by the filter.

From these results, we draw an important conclusion: When using an ideal low-pass filter,
we must use a time-bandwidth product to ensure that the waveform of the filter
input is recognizable from the resulting output. A value of BT greater than unity tends to
reduce the rise time as well as decay time of the filter pulse response.

� APPROXIMATION OF IDEAL LOW-PASS FILTERS

A filter may be characterized by specifying its impulse response or, equivalently, its
transfer function . However, the application of a filter usually involves the separation
of signals on the basis of their spectra (i.e., frequency contents). This, in turn, means that
the design of filters is usually carried out in the frequency domain. There are two basic
steps involved in the design of a filter:

1. The approximation of a prescribed frequency response (i.e., amplitude response,
phase response, or both) by a realizable transfer function.

2. The realization of the approximating transfer function by a physical device.

For an approximating transfer function to be physically realizable, it must represent
a stable system. Stability is defined here on the basis of the bounded input-bounded out-
put criterion described in Eq. (2.100) that involves the impulse response . To specify
the corresponding condition for stability in terms of the transfer function, the traditional
approach is to replace with s and recast the transfer function in terms of s. The new
variable s is permitted to have a real part as well as an imaginary part. Accordingly, we refer
to s as the complex frequency. Let denote the transfer function of the system, defined
in the manner described herein. Ordinarily, the approximating transfer function is
a rational function, which may therefore be expressed in the factored form

where K is a scaling factor; are called the zeros of the transfer function, and
are called its poles. For a low-pass transfer function, the number of zeros,

m, is less than the number of poles, n. If the system is causal, then the bounded
input–bounded output condition for stability of the system is satisfied by restricting all the
poles of the transfer function to be inside the left half of the s-plane; that is to say,

Note that the condition for stability involves only the poles of the transfer function 
the zeros may indeed lie anywhere in the s-plane. Two types of systems may be distin-
guished, depending on locations of the m zeros in the s-plane:

� Minimum-phase systems, characterized by a transfer function whose poles and zeros
are all restricted to lie inside the left hand of the s-plane.

� Nonminimum-phase systems, whose transfer functions are permitted to have zeros on
the imaginary axis as well as the right half of the s-plane.

H�1s2;
Re13pi42 � 0, for all i

H�1s2
p1, p2, Á , pn

z1, z2, Á , zm

� K
1s � z121s � z22Á 1s � zm21s � p121s � p22Á 1s � pn2

H�1s2 � H1f2 ƒ j2pf�s

H�1s2H�1s2
j2pf

h1t2
H1f2

H1f2 h1t2

BT � 1

BT � 0.5f0 � 1Hz,
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Minimum-phase systems distinguish themselves by the property that the phase response of
this class of linear time-invariant systems is uniquely related to the gain response.

In the case of low-pass filters where the principal requirement is to approximate the
ideal amplitude response shown in Fig. 2.23, we may mention two popular families of fil-
ters: Butterworth filters and Chebyshev filters, both of which have all their zeros at 
In a Butterworth filter, the poles of the transfer function lie on a circle with origin
as the center and as the radius, where B is the 3-dB bandwidth of the filter. In a Cheby-
shev filter, on the other hand, the poles lie on an ellipse. In both cases, of course, the poles
are confined to the left half of the s-plane.

Turning next to the issue of physical realization of the filter, we see that there are
two basic options to do this realization, one analog and the other digital:

� Analog filters, built using (a) inductors and capacitors, or (b) capacitors, resistors, and
operational amplifiers. The advantage of analog filters is the simplicity of
implementation.

� Digital filters, for which the signals are sampled in time and their amplitude is also
quantized. These filters are built using digital hardware; hence the name. An impor-
tant feature of a digital filter is that it is programmable, thereby offering a high degree
of flexibility in design. In effect, complexity is traded off for flexibility.

2.8 Correlation and Spectral Density:
Energy Signals

In this section, we continue the characterization of signals and systems by considering the
class of energy signals and therefore focusing on the notion of energy. (The characteriza-
tion of signals and systems is completed in Section 2.9, where we consider the other class
of signals, power signals.) In particular, we introduce a new parameter called spectral den-
sity, which is defined as the squared amplitude spectrum of the signal of interest. It turns
out that the spectral density is the Fourier transform of the correlation function, which
was first introduced under Property 13 in Section 2.2.

� AUTOCORRELATION FUNCTION

Consider an energy signal that, for the purpose of generality, is assumed to be com-
plex valued. Following the material presented under the correlation theorem (Property 13)
in Section 2.2, we formally define the autocorrelation function of the energy signal for
a lag as

(2.124)

According to this formula, the autocorrelation function provides a measure of the
similarity between the signal and its delayed version As such, it can be mea-
sured using the arrangement shown in Fig. 2.29. The time lag plays the role of a scan-
ning or searching variable. Note that is complex valued if is complex valued.

From Eq. (2.124) we readily see that the value of the autocorrelation function 
for is equal to the energy of the signal ; that is,

Rx102 � L
q

�q
ƒx1t2 ƒ2 dt

x1t2t � 0
Rx1t2x1t2Rx1t2 t

x1t � t2.x1t2 Rx1t2
Rx1t2 � L

q

�q
x1t2x*1t � t2 dt

t

x1t2
x1t2

2pB
H�1s2 s � �.
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Rx(�)

x*(t – �)

FIGURE 2.29 Scheme for measuring the autocorrelation function
of an energy signal for lag .tx1t2Rx1t2

� ENERGY SPECTRAL DENSITY

The Rayleigh energy theorem, discussed under Property 14 in Section 2.2, is important
because it not only provides a useful method for evaluating the energy of a pulse signal, but
also it highlights the squared amplitude spectrum as the distribution of the energy of the
signal measured in the frequency domain. It is in light of this theorem that we formally define
the energy spectral density or energy density spectrum of an energy signal as

(2.125)

where is the amplitude spectrum of . Clearly, the energy spectral density 
is a nonnegative real-valued quantity for all even though the signal may itself be com-
plex valued.

� WIENER–KHITCHINE RELATIONS FOR ENERGY SIGNALS

Referring to the correlation theorem described in Eq. (2.53), let where
is an energy signal and therefore Fourier transformable. Under this condition, the

resulting left-hand side of Eq. (2.53) defines the autocorrelation function of the sig-
nal . Correspondingly, in the frequency domain, we have in
which case the right-hand side of Eq. (2.53) defines the energy spectral density On
this basis, we may therefore state that given an energy signal , the autocorrelation func-
tion and energy spectral density form a Fourier-transform pair. Specifically, we
have the pair of relations:

(2.126)

and

(2.127)

Note, however, that the Fourier transformation in Eq. (2.126) is performed with respect to
the adjustable lag The pair of equations (2.126) and (2.127) constitutes the Wiener–Khit-
chine relations for energy signals.

From Eqs. (2.126) and (2.127) we readily deduce the following two properties:

1. By setting in Eq. (2.126), we have

L
q

�q
Rx1t2 dt � cx102

f � 0

t.

Rx1t2 � L
q

�q
cx1f2 exp1j2pft2 df

cx1f2 � L
q

�q
Rx1t2 exp1�j2pft2 dt

cx1f2Rx1t2 x1t2 cx1f2.G11f2 � G21f2 � X1f2,x1t2 Rx1t2x1t2 g11t2 � g21t2 � x1t2,

x1t2f,
cx1f2x1t2ƒX1f2 ƒ

cx1f2 � ƒX1f2 ƒ2
x1t2
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which states that the total area under the curve of the complex-valued autocorrela-
tion function of a complex-valued energy signal is equal to the real-valued energy
spectral at zero frequency.

2. By setting in Eq. (2.127), we have

which states that the total area under the curve of the real-valued energy spectral
density of an energy signal is equal to the total energy of the signal. This second result
is merely another way of starting the Rayleigh energy theorem.

EXAMPLE 2.13 Autocorrelation Function of Sinc Pulse

From Example 2.4, the Fourier transform of the sinc pulse

is given by

Since the rectangular function rect ( ) is unaffected by squaring, the energy spectral den-
sity of is therefore

Taking the inverse Fourier transform of we find that the autocorrelation function of the
sinc pulse is given by

(2.128)

which has a similar waveform, plotted as a function of the lag as the sinc pulse itself.

This example teaches us that sometimes it is easier to use an indirect procedure based
on the energy spectral density to determine the autocorrelation function of an energy sig-
nal rather than using the formula for the autocorrelation function.

� EFFECT OF FILTERING ON ENERGY SPECTRAL DENSITY

Suppose now the energy signal is passed through a linear time-invariant system of
transfer function yielding the output signal as illustrated in Fig. 2.20(a). Then,
according to Eq. (2.109), the Fourier transform of the output is related to the Fourier
transform of the input as follows:

Taking the squared amplitude of both sides of this equation, we readily get

(2.129)

where, by definition, and Equation (2.129) states that
when an energy signal is transmitted through a linear time-invariant filter, the energy spec-
tral density of the resulting output equals the energy spectral density of the input multiplied
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FIGURE 2.30 (a) Ideal low-pass
filtering. (b) Filter input. (c)
Amplitude response of the filter.

by the squared amplitude response of the filter. The simplicity of this statement emphasizes
the importance of spectral density as a parameter for characterizing the distribution of the
energy of a Fourier transformable signal in the frequency domain.

Moreover, on the basis of the Wiener–Khintchine equations (2.126) and (2.127) and
the relationship of Eq. (2.129), we may describe an indirect method for evaluating the
effect of linear time-invariant filtering on the autocorrelation function of an energy signal:

1. Determine the Fourier transforms of and , obtaining and 
respectively.

2. Use Eq. (2.129) to determine the energy spectral density of the output .
3. Determine by applying the inverse Fourier transform to obtained under

point 2.

EXAMPLE 2.14 Energy of Low-pass Filtered Version of Rectangular Pulse

A rectangular pulse of unit amplitude and unit duration is passed through an ideal low-pass
filter of bandwidth B, as illustrated in Fig. 2.30(a). Part (b) of the figure depicts the waveform
of the rectangular pulse. The amplitude response of the filter is defined by (see Fig. 2.30(c))

The rectangular pulse constituting the filter input has unit energy. We wish to evaluate the
effect of varying the bandwidth B on the energy of the filter output.

We start with the Fourier transform pair:

which represents the normalized version of the Fourier-transform pair given in Eq. (2.10).
Hence, with the filter input defined by

x1t2 � rect1t2

rect1t2 Δ sinc1f2

ƒH1f2 ƒ � b1, �B � f � B
0, otherwise

cy1f2Ry1t2
y1t2cy1f2

H1f2,X1f2h1t2x1t2
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FIGURE 2.31 Energy spectral density of the filter input only the
values for positive frequencies are shown in the figure.

x1t2;

its Fourier transform equals

The energy spectral density of the filter input therefore equals

(2.130)

This normalized energy spectral density is plotted in Fig. 2.31.
To evaluate the energy spectral density of the filter output , we use Eq. (2.129),

obtaining

(2.131)

The energy of the filter output is therefore

(2.132)

Since the filter input has unit energy, we may also view the result given in Eq. (2.132) as the
ratio of the energy of the filter output to that of the filter input for the general case of a rec-
tangular pulse of arbitrary amplitude and arbitrary duration, processed by an ideal low-pass
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filter of bandwidth B. Accordingly, we may in general write

(2.133)

According to Fig. 2.30(b), the rectangular pulse applied to the filter input has unit duration;
hence, the variable in Eq. (2.133) represents a normalized frequency. Equation (2.133) is
plotted in Fig. 2.32. This figure shows that just over 90 percent of the total energy of a rec-
tangular pulse lies inside the main spectral lobe of this pulse.

� INTERPRETATION OF THE ENERGY SPECTRAL DENSITY

Equation (2.129) is important because it not only relates the output energy spectral den-
sity of a linear time-invariant system to the input energy spectral density, but it also pro-
vides a basis for the physical interpretation of the concept of energy spectral density itself.
To be specific, consider the arrangement shown in Fig. 2.33(a), where an energy signal

is passed through a narrow-band filter followed by an energy meter. Figure 2.33(b)
shows the idealized amplitude response of the filter. That is, the filter is a band-pass filter
whose amplitude response is defined by

(2.134)

We assume that the filter bandwidth is small enough for the amplitude response of the
input signal to be essentially flat over the frequency interval covered by the passbandx1t2 ¢f

ƒH1f2 ƒ � c 1, fc �
¢f

2
� ƒf ƒ � fc 	

¢f

2
0, otherwise

x1t2

f

� 2L
B

0
 sinc21f2 df

r �
Energy of filter output

Energy of filter input

FIGURE 2.32 Output energy-to-input energy ratio versus normalized
bandwidth.
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FIGURE 2.33 (a) Block diagram of system for measuring
energy spectral density. (b) Idealized amplitude response of
the filter. (c) Energy spectral density of the filter output.

of the filter. Accordingly, we may express the amplitude spectrum of the filter output by the
approximate formula

(2.135)

Correspondingly, the energy spectral density of the filter output is approximately
related to the energy spectral density of the filter input as follows:

(2.136)

This relation is illustrated in Fig. 2.33(c), which shows that only the frequency compo-
nents of the signal that lie inside the narrow passband of the ideal band-pass filterx1t2

cy1f2 � c cx1fc2, fc �
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reach the output. From Rayleigh’s energy theorem, the energy of the filter output is
given by

In light of Eq. (2.136), we may approximate as

(2.137)

The multiplying factor 2 accounts for the contributions of negative as well as positive fre-
quency components. We may rewrite Eq. (2.137) in the form

(2.138)

Equation (2.138) states that the energy spectral density of the filter input at some frequency
equals the energy of the filter output divided by where is the filter bandwidth

centered on We may therefore interpret the energy spectral density of an energy signal
for any frequency f as the energy per unit bandwidth, which is contributed by frequency
components of the signal around the frequency f.

The arrangement shown in the block diagram of Fig. 2.33(a) thus provides the basis
for measuring the energy spectral density of an energy signal. Specifically, by using a vari-
able band-pass filter to scan the frequency band of interest and determining the energy of
the filter output for each midband frequency setting of the filter, a plot of the energy spec-
tral density versus frequency is obtained. Note, however, for the formula of Eq. (2.138) to
hold and therefore for the arrangement of Fig. 2.33(a) to work, the bandwidth must
remain fixed for varying 

� CROSS-CORRELATION OF ENERGY SIGNALS

The autocorrelation function provides a measure of the similarity between a signal and its
own time-delayed version. In a similar way, we may use the cross-correlation function as
a measure of the similarity between one signal and the time-delayed version of a second sig-
nal. Let and denote a pair of complex-valued energy signals. The cross-correlation
function of this pair of signals is defined by

(2.139)

We see that if the two signals and are somewhat similar, then the cross-correla-
tion function will be finite over some range of thereby providing a quantitative
measure of the similarity, or coherence, between them. The energy signals and are
said to be orthogonal over the entire time interval if is zero — that is, if

(2.140)

Equation (2.139) defines one possible value for the cross-correlation function for a speci-
fied value of the delay variable We may define a second cross-correlation function fort.
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the energy signals and as

(2.141)

From the definitions of the cross-correlation functions and just given, we
obtain the fundamental relationship

(2.142)

Equation (2.142) indicates that unlike convolution, correlation is not in general commu-
tative; that is, 

To characterize the cross-correlation behavior of energy signals in the frequency
domain, we introduce the notion of cross-spectral density. Specifically, given a pair of com-
plex-valued energy signals and , we define their cross-spectral densities, denoted
by and as the respective Fourier transforms of the cross-correlation functions

and as shown by

(2.143)

and

(2.144)

In accordance with the correlation theorem (i.e., Property 13 of Section 2.2), we thus have

(2.145)

and

(2.146)

From this pair of relations, we readily see two properties of the cross-spectral density.

1. Unlike the energy spectral density, cross-spectral density is complex valued in general.
2. from which it follows that, in general, 

� Drill Problem 2.15 Derive the relationship of Eq. (2.142) between the two cross-
correlation functions and �

� Drill Problem 2.16 Consider the decaying exponential pulse

Determine the energy spectral density of the pulse �

� Drill Problem 2.17 Repeat Problem 2.16 for the double exponential pulse
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2.9 Power Spectral Density

In this section, we expand the important notion of spectral density to include the class of
power signals. The average power of a signal is defined by

(2.147)

The signal is said to be a power signal if the condition

holds. Examples of power signals include periodic signals and noise. We consider periodic
signals in this section. (Noise is considered in Chapter 8.)

To develop a frequency-domain distribution of power, we need to know the Fourier
transform of the signal However, this may pose a problem, because power signals
have infinite energy and may therefore not be Fourier transformable. To overcome the
problem, we consider a truncated version of the signal In particular, we define

(2.148)

As long as the duration T is finite, the truncated signal has finite energy; hence 
is Fourier transformable. Let denote the Fourier transform of that is,

Using the truncated signal we may rewrite Eq. (2.147) for the average power P in
terms of as

(2.149)

Since has finite energy, we may use the Rayleigh energy theorem to express the energy
of in terms of its Fourier transform as

where is the amplitude spectrum of Accordingly, we may rewrite Eq. (2.149)
in the equivalent form

(2.150)

As the duration T increases, the energy of increases. Correspondingly, the energy
spectral density increases with T. Indeed as T approaches infinity, so will 

However, for the average power P to be finite, must approach infinity 
at the same rate as T. This requirement ensures the convergence of the integral on the right-
hand side of Eq. (2.150) in the limit as T approaches infinity. The convergence, in turn, per-
mits us to interchange the order in which the limiting operation and integration in
Eq. (2.150) are performed. We may then rewrite this equation as
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Let the integrand in Eq. (2.151) be denoted by

(2.152)

The frequency-dependent function is called the power spectral density or power spec-
trum of the power signal , and the quantity is called the periodogram of
the signal.

From Eq. (2.152), we readily see that the power spectral density is a nonnegative
real-valued quantity for all frequencies. Moreover, from Eq. (2.152) we readily see that

(2.153)

Equation (2.153) states: the total area under the curve of the power spectral density of a
power signal is equal to the average power of that signal. The power spectral density of a
power signal therefore plays a role similar to the energy spectral density of an energy signal.

� Drill Problem 2.18 In an implicit sense, Eq. (2.153) embodies Parseval’s power theo-
rem, which states that for a periodic signal x(t) we have

where T is the period of the signal, is the fundamental frequency, and is the Fourier
transform of evaluated at the frequency Prove this theorem. �

EXAMPLE 2.15 Modulated Wave

Consider the modulated wave

(2.154)

where is a power signal that is band-limited to B hertz. We refer to as a “modulated
wave” in the sense that the amplitude of the sinusoidal “carrier” of frequency is varied lin-
early with the signal (The subject of modulation is covered in detail in Chapter 3.) We
wish to find the power spectral density of in terms of that of given that the frequency

is larger than the bandwidth B.
Let denote the truncated version of defined in a manner similar to that

described in Eq. (2.148). Correspondingly, we may express the truncated version of as

(2.155)

Since

(2.156)

it follows from the frequency-shifting property (i. e., Property 6) of the Fourier transform that

(2.157)

where is the Fourier transform of gT1t2.GT1f2
XT1f2 �

1
2
3GT1f � fc2 	 GT1f 	 fc24

cos12pfct2 �
1
2
3exp1j2pfct2 	 exp1�j2pfct24,

xT1t2 � gT1t2 cos12pfct2
x1t2g1t2,gT1t2fc

g1t2,x1t2g1t2. fc
x1t2g1t2

x1t2 � g1t2 cos12pfct2

nf0 .x1t2 X1nf02f0

1
T L

T>2
�T>2 ƒx1t2 ƒ2 dt � a

q

n� ��
ƒX1nf02 ƒ2

P � L
q

�q
Sx1f2 df

1 ƒXT1f2 ƒ2>2T2x1t2 Sx1f2
Sx1f2 � lim

TS�

1
2T

ƒXT1f2 ƒ2



2.10 Numerical Computation of the Fourier Transform 81

Given that we find that and represent nonoverlapping
spectra; their product is therefore zero. Accordingly, using Eq. (2.157) to evaluate the squared
amplitude of we get

(2.158)

Finally, applying the definition of Eq. (2.152) for the power spectral density of the power sig-
nal to Eq (2.158), we get the desired result:

(2.159)

Except for the scaling factor the power spectral density of the modulated wave is equal
to the sum of the power spectral density shifted to the right by and the shifted to
the left by the same amount

2.10 Numerical Computation 
of the Fourier Transform

The material presented in this chapter clearly testifies to the importance of the Fourier
transform as a theoretical tool for the representation of deterministic signals and linear
time-invariant systems. The importance of the Fourier transform is further enhanced by the
fact that there exists a class of algorithms called fast Fourier transform algorithms for the
numerical computation of the Fourier transform in a highly efficient manner.

The fast Fourier transform algorithm is itself derived from the discrete Fourier trans-
form in which, as the name implies, both time and frequency are represented in discrete
form. The discrete Fourier transform provides an approximation to the Fourier transform.
In order to properly represent the information content of the original signal, we have to take
special care in performing the sampling operations involved in defining the discrete Fourier
transform. A detailed treatment of the sampling process will be presented in Chapter 5. For
the present, it suffices to say that given a band-limited signal, the sampling rate should be
greater than twice the highest frequency component of the input signal. Moreover, if the
samples are uniformly spaced by seconds, the spectrum of the signal becomes periodic,
repeating every Hz. Let N denote the number of frequency samples contained
in an interval Hence, the frequency resolution involved in the numerical computation
of the Fourier transform is defined by

(2.160)

where is the total duration of the signal.
Consider then a finite data sequence For brevity, we refer to this

sequence as in which the subscript is the time index Such a
sequence may represent the result of sampling an analog signal at times

where is the sampling interval. The ordering of the data
sequence defines the sample time in that denote samples of taken at
times 0, respectively. Thus we have

(2.161)gn � g1nTs2
Ts , Á , 1N � 12Ts ,

g1t2g0, g1, Á , gN�1

Tst � 0, Ts , Á , 1N � 12Ts ,
g1t2n � 0, 1, Á , N � 1.gn ,

5g0, g1, Á , gN�16.T � NTs
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1
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We formally define the discrete Fourier transform (DFT) of the sequence as

(2.162)

The sequence is called the transform sequence. For brevity, we refer
to this new sequence as in which the subscript is the frequency index

Correspondingly, we define the inverse discrete Fourier transform
(IDFT) of as

(2.163)

The DFT and the IDFT form a transform pair. Specifically, given the data sequence we
may use the DFT to compute the transform sequence and given the transform sequence

we may use the IDFT to recover the original data sequence A distinctive feature of
the DFT is that for the finite summations defined in Eqs. (2.162) and (2.163), there is no
question of convergence.

When discussing the DFT (and algorithms for its computation), the words “sample”
and “point” are used interchangeably to refer to a sequence value. Also, it is common prac-
tice to refer to a sequence of length N as an N-point sequence, and refer to the DFT of a
data sequence of length N as an N-point DFT.

� INTERPRETATIONS OF THE DFT AND THE IDFT

We may visualize the DFT process, described in Eq. (2.162), as a collection of N complex
heterodyning and averaging operations, as shown in Fig. 2.34(a); in the picture depicted
herein, heterodyning refers to the multiplication of data sequence by a complex expo-
nential. We say that the heterodyning is complex in that samples of the data sequence are
multiplied by complex exponential sequences. There are a total of N complex exponential
sequences to be considered, corresponding to the frequency index 
Their periods have been selected in such a way that each complex exponential sequence has
precisely an integer number of cycles in the total interval 0 to The zero-frequency
response, corresponding to is the only exception.

For the interpretation of the IDFT process, described in Eq. (2.163), we may use the
scheme shown in Fig. 2.34(b). Here we have a collection of N complex signal generators,
each of which produces the complex exponential sequence

(2.164)

Thus, in reality, each complex signal generator consists of a pair of generators that output
a cosinusoidal and a sinusoidal sequence of k cycles per observation interval. The output
of each complex signal generator is weighted by the complex Fourier coefficient At each
time index n, an output is formed by summing the weighted complex generator outputs.

It is noteworthy that although the DFT and the IDFT are similar in their mathemat-
ical formulations, as described in Eqs. (2.162) and (2.163), their interpretations, as depicted
in Figs. 2.34(a) and 2.34(b), are so completely different.

Also, the addition of harmonically related periodic signals, as in Figs. 2.34(a) and
2.34(b), suggests that the sequences and must be both periodic. Moreover, the proces-gnGk

Gk .
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FIGURE 2.34 Interpretations of (a) the DFT as an analyzer of the data
sequence and (b) the IDFT as a synthesizer of gn .gn ,

sors shown in Figs. 2.34(a) and 2.34(b) must be linear, suggesting that the DFT and IDFT
are both linear operations. This important property is also obvious from the defining equa-
tions (2.162) and (2.163).

� FAST FOURIER TRANSFORM ALGORITHMS

In the discrete Fourier transform (DFT), both the input and the output consist of sequences
of numbers defined at uniformly spaced points in time and frequency, respectively. This fea-
ture makes the DFT ideally suited for direct numerical evaluation on a digital computer.



84 CHAPTER 2 � FOURIER REPRESENTATION OF SIGNALS AND SYSTEMS

Moreover, the computation can be implemented most efficiently using a class of algorithms
called fast Fourier transform (FFT) algorithms.2 An algorithm refers to a “recipe” that can
be written in the form of a computer program.

FFT algorithms are computationally efficient because they use a greatly reduced num-
ber of arithmetic operations as compared to the brute force computation of the DFT. Basi-
cally, an FFT algorithm attains its computational efficiency by following a
divide-and-conquer strategy, whereby the original DFT computation is decomposed suc-
cessively into smaller DFT computations. In this section, we describe one version of a pop-
ular FFT algorithm, the development of which is based on such a strategy.

To proceed with the development, we first rewrite Eq. (2.162), defining the DFT of
in the simplified form

(2.165)

where the new coefficient W is defined by

(2.166)

From this definition, we see that

That is, is periodic with period N. The periodicity of is a key feature in the devel-
opment of FFT algorithms.

Let N, the number of points in the data sequence, be an integer power of two, as
shown by

where L is an integer. Since N is an even integer, is an integer, and so we may divide
the data sequence into the first half and the last half of the points. Thus, we may rewrite
Eq. (2.165) in the equivalent form

(2.167)

Note that in the second line of Eq. (2.167), we changed the index of the second summa-
tion term so that both summation terms cover the same range. Since we have

WkN>2 � 1�12k
WN>2 � �1,
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1N>22�1

n�0
1gn 	 gn	N>2WkN>22Wkn, k � 0, 1, Á , N � 1
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n�0
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n�N>2gnWnk

N>2
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WknWkn
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W � expa�
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N
b

Gk � a
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gn ,

2The fast Fourier transform (FFT) algorithm has a long history. Its modern discovery (or rediscovery to be more
precise) is attributed to Cooley and Tukey in 1965; see the paper by Cooley (1992) for details.
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For the evaluation of Eq. (2.167), we proceed by considering two cases, one correspond-
ing to even values of k and the other corresponding to odd values of k. For the case of
even k, let where Hence, we define

(2.168)

Then, for even k we may put Eq. (2.167) into the new form

(2.169)

From the definition of W given in Eq. (2.166), we readily see that

Hence, we recognize the sum on the right-hand side of Eq. (2.169) as the ( )-point DFT
of the sequence 

Consider next the remaining case of odd k, and let

Then, recognizing that for odd we may define

(2.170)

Hence, for the case of odd k, we may put Eq. (2.167) into the corresponding form

(2.171)

We recognize the sum on the right-hand side of Eq. (2.171) as the ( )-point DFT of the
modified sequence The coefficient multiplying is called a twiddle factor.

Equations (2.169) and (2.171) show that the even- and odd-valued samples of the
transform sequence can be obtained from the ( )-point DFTs of the sequences and

respectively. The sequences and are themselves related to the original data
sequence by Eqs. (2.168) and (2.170), respectively. Thus, the problem of computing an
N-point DFT is reduced to that of computing two ( )-point DFTs. This procedure is
repeated a second time, whereby an ( )-point is decomposed into two ( )-point DFTs.
The decomposition (or, more precisely, the divide-and-conquer procedure) is continued
in this fashion until (after stages), we reach the trivial case of N single-
point DFTs.

Figure 2.35 illustrates the computations involved in applying the formulas of
Eqs. (2.169) and (2.171) to an 8-point data sequence; that is, In constructing the
left-hand portions of the figure, we have used signal-flow graph notation. A signal-flow
graph consists of an interconnection of nodes and branches. The direction of signal trans-
mission along a branch is indicated by an arrow. A branch multiplies the variable at a node
(to which it is connected) by the branch transmittance. A node sums the outputs of all
incoming branches. The convention used for branch transmittances in Fig. 2.35 is as follows.
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FIGURE 2.35 (a) Reduction of 8-point DFT into two 4-point DFTs. (b) Reduction of
4-point DFT into two 2-point DFTs. (c) Trivial case of 2-point DFT.
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When no coefficient is indicated on a branch, the transmittance of that branch is assumed
to be unity. For other branches, the transmittance of a branch is indicated by or an inte-
ger power of W, placed alongside the arrow on the branch.

Thus, in Fig. 2.35(a), the computation of an 8-point DFT is reduced to that of two
4-point DFTs. The procedure for the 8-point DFT is mimicked to simplify the computation
of the 4-point DFT. This is illustrated in Fig. 2.35(b), where the computation of a 4-point
DFT is reduced to that of two 2-point DFTs. Finally, the computation of a 2-point DFT is
shown in Fig. 2.35(c).

Combining the ideas described in Fig. 2.35, we obtain the complete signal-flow graph
of Fig. 2.36 for the computation of the 8-point DFT. A repetitive structure, called a but-
terfly, can be discerned in the FFT algorithm of Fig. 2.36; a butterfly has two inputs and
two outputs. Examples of butterflies (for the three stages of the algorithm) are illustrated
by the bold-faced lines in Fig. 2.36.

For the general case of the algorithm requires stages of compu-
tation. Each stage requires ( ) butterflies. Each butterfly involves one complex multipli-
cation and two complex additions (to be precise, one addition and one subtraction).
Accordingly, the FFT structure described here requires complex multiplications1N>22 log2 N

N>2 L � log2 NN � 2L,

�1
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FIGURE 2.36 Decimation-in-frequency FFT algorithm.
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and complex additions. (Actually, the number of multiplications quoted is 
pessimistic , because we may omit all twiddle factors and 

) This computational complexity is significantly smaller than that of the com-
plex multiplications and complex additions required for the direct computation
of the DFT. The computational savings made possible by the FFT algorithm become more
substantial as we increase the data length N.

We may establish two other important features of the FFT algorithm by carefully
examining the signal-flow graph shown in Fig. 2.36:

1. At each stage of the computation, the new set of N complex numbers resulting from
the computation can be stored in the same memory locations used to store the pre-
vious set. This kind of computation is referred to as in-place computation.

2. The samples of the transform sequence are stored in a bit-reversed order. To illus-
trate the meaning of this latter terminology, consider Table 2.2 constructed for the case
of At the left of the table, we show the eight possible values of the frequency
index k (in their natural order) and their 3-bit binary representations. At the right of
the table, we show the corresponding bit-reversed binary representations and indices.
We observe that the bit-reversed indices in the right-most column of Table 2.2 appear
in the same order as the indices at the output of the FFT algorithm in Fig. 2.36.

N � 8.

Gk

N1N � 12 N2W3N>4 � j.
WN>4 � �j,WN>2 � �1,W0 � 1

N log2 N

TABLE 2.2 Illustrating Bit Reversal

Frequency Binary Bit-Reversed Bit-Reversed 
Index, k Representation Binary Representation Index

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

The FFT algorithm depicted in Fig. 2.36 is referred to as a decimation-in-frequency algorithm,
because the transform (frequency) sequence is divided successively into smaller subse-
quences. In another popular FFT algorithm, called a decimation-in-time algorithm, the data
(time) sequence is divided successively into smaller subsequences. Both algorithms have
the same computational complexity. They differ from each other in two respects. First, for
decimation-in-frequency, the input is in natural order, whereas the output is in bit-reversed
order. The reverse is true for decimation-in-time. Second, the butterfly for decimation-in-time
is slightly different from that for decimation-in-frequency. The reader is invited to derive
the details of the decimation-in-time algorithm using the divide-and-conquer strategy that
led to the development of the algorithm described in Fig. 2.36; See Problem 2.50.

� COMPUTATION OF THE IDFT

The IDFT of the transform sequence is defined by Eq. (2.163). We may rewrite this
equation in terms of the complex parameter W as

(2.172)gn �
1
N a

N�1

k�0
GkW�kn, n � 0, 1, Á , N � 1

Gk

gn

Gk
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FIGURE 2.37 Use of the FFT algorithm for computing the IDFT.
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Taking the complex conjugate of Eq. (2.172), multiplying by N, and recognizing from the
definition of Eq. (2.166) that we get

(2.173)

The right-hand side of Eq. (2.173) is recognized as the N-point DFT of the complex-con-
jugated sequence Accordingly, Eq. (2.173) suggests that we may compute the desired
sequence using the scheme shown in Fig. 2.37, based on an N-point FFT algorithm.
Thus, the same FFT algorithm can be used essentially to handle the computation of both
the IDFT and the DFT.

2.11 Theme Example: Twisted Pairs 
for Telephony

The fundamental transmission medium for connecting homes to telephone central switch-
ing offices is the twisted pair. A twisted pair is usually a pair of solid copper wires with poly-
ethylene sheathing. If the copper strand has a diameter of 0.4 mm, this cable size is referred
to as #26 on the American Wire Gauge, or simply 26 AWG. A twisted pair is an example
of a transmission line.

A transmission line consists of two conductors, each of which has its own inherent
resistance and inductance. Since the two conductors are often in close proximity, there is
also a capacitive effect between the two as well as potential conductance through the mate-
rial that is used to insulate the two wires. A transmission line so constructed is often rep-
resented by the lumped circuit shown in Fig. 2.38. Although the impedances are shown as
discrete elements in Fig. 2.38, it is more correct to consider them distributed through the
length of the transmission line.

Depending upon the circuit element values in Fig. 2.38, it is clear that a transmission
line will have a distorting effect on the transmitted signal. Furthermore, since the total
impedance increases with the length of the line, so will the frequency response of the trans-
mission line.

In Fig. 2.39, we show the typical response of a twisted pair with lengths of 2 to 8 kilo-
meters. There are several observations to be made from the figure:

� Twisted pairs run directly from the central office to the home with one pair dedi-
cated to each telephone line. Consequently, the transmission lines can be quite long.

� The results in Fig. 2.39 assume a continuous cable. In practice, there may be several
splices in the cable, different gauge cables along different parts of the path, and so on.
These discontinuities in the transmission medium will further affect the frequency
response of the cable.

gn

Gk
… .

Ngn
… � a

N�1

k�0
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…Wkn, 0, 1, Á , N � 1

W* � W�1,
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FIGURE 2.39 Typical frequency response of a 26-AWG twisted-pair transmission
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� We see that, for a 2-km cable, the frequency response is quite flat over the voice band
from 300 to 3100 Hz for telephonic communication. However, for the 8-km cable,
the frequency response starts to fall just above 1 kHz.

� The frequency response falls off at zero frequency because there is a capacitive connec-
tion at the load and the source. This capacitive connection is put to pratical use by enabling
dc power to be transported along the cable to power the remote telephone handset.

Analysis of the frequency response of longer cables indicates that it can be improved
by adding some reactive loading. For this reason, we often hear of loaded lines that include
lumped inductors at regular intervals (typically 66 milli-henry (mH) approximately every
two kilometers). The loading improves the frequency response of the circuit in the range
corresponding to voice signals without requiring additional power. The disadvantage of
loaded lines, however, is their degraded performance at high frequency. Services such as dig-
ital subscriber line (DSL) (discussed later in Chapter 7), which rely on the high-frequency
response of the twisted pairs, do not work well over loaded telephone lines.

In most of what follows, in the rest of the book, we will usually assume that the
medium does not affect the transmission, except possibly through the addition of noise to
the signal. In practice, the medium may affect the signal in a variety of ways as illustrated
in the theme example just described.

2.12 Summary and Discussion

In this chapter, we have described the Fourier transform as a fundamental tool for relating
the time-domain and frequency-domain descriptions of a deterministic signal. The signal
of interest may be an energy signal or a power signal. The Fourier transform includes the
exponential Fourier series as a special case, provided that we permit the use of the Dirac
delta function.
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Problem 2.19

An inverse relationship exists between the time-domain and frequency-domain descrip-
tions of a signal. Whenever an operation is performed on the waveform of a signal in the
time domain, a corresponding modification is applied to the spectrum of the signal in the
frequency domain. An important consequence of this inverse relationship is the fact that
the time-bandwidth product of an energy signal is a constant; the definitions of signal dura-
tion and bandwidth merely affect the value of the constant.

An important signal processing operation frequently encountered in communication sys-
tems is that of linear filtering. This operation involves the convolution of the input signal with
the impulse response of the filter or, equivalently, the multiplication of the Fourier transform
of the input signal by the transfer function (i.e., Fourier transform of the impulse response) of
the filter. Note, however, that the material presented in the chapter on linear filtering assumes
that the filter is time-invariant (i.e., the shape of the impulse response of the filter is invariant
with respect to when the unit impulse or delta function is applied to the filter).

Another important signal processing operation encountered in communication sys-
tems is that of correlation. This operation may provide a measure of similarity between a
signal and a delayed version of itself, in which case we speak of the autocorrelation func-
tion. When the measure of similarity involves a pair of different signals, however, we speak
of the cross-correlation function. The Fourier transform of the autocorrelation function is
called the spectral density. The Fourier transform of the cross-correlation function is called
the cross-spectral density. Discussions of correlation and spectral density presented in the
chapter were confined to energy signals and power signals exemplified by pulse-like signals
and periodic signals respectively; the treatment of noise (another realization of power sig-
nal) is deferred to Chapter 8.

The final part of the chapter was concerned with the discrete Fourier transform and its
numerical computation. Basically, the discrete Fourier transform is obtained from the stan-
dard Fourier transform by uniformly sampling both the input signal and the output spectrum.
The fast Fourier transform algorithm provides a practical means for the efficient implemen-
tation of the discrete Fourier transform on a digital computer. This makes the fast Fourier
transform algorithm a powerful computational tool for spectral analysis and linear filtering.

ADDITIONAL PROBLEMS

2.19 (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a).
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(b) Apply the time-shifting property to the result obtained in part (a) to evaluate the spectrum
of the half-sine pulse shown in Fig. 2.40(b).

(c) What is the spectrum of a half-sine pulse having a duration equal to aT?
(d) What is the spectrum of the negative half-sine pulse shown in Fig. 2.40(c)?
(e) Find the spectrum of the single sine pulse shown in Fig. 2.40(d).

2.20 Any function can be split umambiguously into an even part and an odd part, as shown by

The even part is defined by

and the odd part is defined by

(a) Evaluate the even and odd parts of a rectangular pulse defined by

(b) What are the Fourier transforms of these two parts of the pulse?

2.21 The following expression may be viewed as an approximate representation of a pulse with finite
rise time:

where it is assumed that Determine the Fourier transform of What happens to
this transform when we allow to become zero? 

2.22 The Fourier transform of a signal is denoted by Prove the following properties of
the Fourier transform:
(a) If a real signal is an even function of time t, the Fourier transform is purely real.

If the real signal is an odd function of time t, the Fourier transform is purely
imaginary.

(b) where is the nth derivative of with respect to 

(c)

(d)

2.23 The Fourier transform of a signal is bounded by the following three inequalities:

(a)

(b)

(c)
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FIGURE 2.41
Problem 2.23

Construct these three bounds for the triangular pulse shown in Fig. 2.41 and compare your
results with the actual amplitude spectrum of the pulse.

2.24 Consider the convolution of two signals and Show that

(a)

(b)

2.25 A signal of finite energy is applied to a square-law device whose output is defined by

The spectrum of is limited to the frequency interval Hence, show that the
spectrum of is limited to Hint: Express as multiplied by itself.

2.26 Evaluate the Fourier transform of the delta function by considering it as the limiting form of (a)
rectangular pulse of unit area, and (b) sinc pulse of unit area.

2.27 The Fourier transform of a signal is defined by

Determine the signal 
2.28 Consider a pulselike function that consists of a small number of straight-line segments.

Suppose that this function is differentiated with respect to time t twice so as to generate a
sequence of weighted delta functions, as shown by

where the are related to the slopes of the straight-line segments.
(a) Given the values of the and show that the Fourier transform of is given by

(b) Using this procedure, show that the Fourier transform of the trapezoidal pulse shown in
Fig. 2.42 is given by

G1f2 �
A

p2f 21tb � ta2 sin3pf1tb � ta24 sin3pf1tb 	 ta24

G1f2 � �
1

4p2f 2 a
i

ki exp1�j2pfti2
g1t2ti ,ki

ki

d2g1t2
dt2 � a

i
kid1t � ti2

g1t2g1t2.

G1f2 � d 1, f � 0
1
2

, f � 0

0, f � 0

g1t2G1f2

x1t2y1t2�2W � f � 2W.y1t2 �W � f � W.x1t2
y1t2 � x21t2

y1t2x1t2L
t

�q
3g11t2 � g21t24 dt � cL

t

�q
g11t2 dt d � g21t2

d
dt
3g11t2 � g21t24 � c d

dt
g11t2 d � g21t2

g21t2.g11t2

A

t
–tb –ta ta tb0

g(t)

FIGURE 2.42
Problem 2.28
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FIGURE 2.43 Problem 2.31

2.29 A rectangular pulse of amplitude A and duration may be viewed as the limiting case of the
trapezoidal pulse shown in Fig. 2.42 as approaches 

(a) Starting with the result given in part (b) of Problem 2.28, show that as approaches this
result approaches a sinc function.

(b) Reconcile the result derived in part (a) with the Fourier-transform pair of Eq. (2.10).
2.30 Let and be the input and output signals of a linear time-invariant filter. Using Rayleigh’s

energy theorem, show that if the filter is stable and the input signal has finite energy, then
the output signal also has finite energy. That is, if

then

2.31 (a) Determine the overall amplitude response of the cascade connection shown in Fig. 2.43
consisting of N identical stages, each with a time constant RC equal to 

(b) Show that as N approaches infinity, the amplitude response of the cascade connection 

approaches the Gaussian function where for each value of N, the time

constant is selected so that the condition

is satisfied.

t0
2

�
T2

4p2N

t0

expa�
1
2

f 2T2b ,

t0 .

L
q

�q
ƒy1t2 ƒ2 dt � �

L
q

�q
ƒx1t2 ƒ2 dt � �

y1t2 x1t2y1t2x1t2

ta ,tb

ta .tb
2ta

2.32 Suppose that, for a given signal , the integrated value of the signal over an interval T is
required, as shown by

(a) Show that can be obtained by transmitting the signal through a filter with its
transfer function given by

(b) An adequate approximation to this transfer function is obtained by using a low-pass filter
with a bandwidth equal to passband amplitude response T, and delay Assuming
this low-pass filter to be ideal, determine the filter output at time due to a unit step
function applied to the filter at and compare the result with the corresponding out-
put of the ideal integrator. Note that and 

2.33 Show that the two different pulses defined in parts (a) and (b) of Fig. 2.44 have the same energy
spectral density:

°g1f2 �
4A2T2 cos21pTf2
p214T2f 2 � 122

Si1�2 � p>2.Si1p2 � 1.85
t � 0,

t � T
T>2.1>T,

H1f2 � T sinc1fT2 exp1�jpfT2
x1t2y1t2

y1t2 � L
t

t�T
x1t2 dt

x1t2
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FIGURE 2.45
Problem 2.39

2.34 Determine and sketch the autocorrelation functions of the following exponential pulses:
(a)
(b)
(c)

where u(t) is the unit step function, and is its time-reversed version.

2.35 Determine and sketch the autocorrelation function of a Gaussian pulse defined by

2.36 The Fourier transform of a signal is defined by Show that the autocorrelation function
of this signal is triangular in form.

2.37 Specify two different pulse signals that have exactly the same autocorrelation function.

2.38 Consider a sinusoidal signal defined by

(a) Determine the autocorrelation function of this signal.
(b) What is the value of 
(c) Has any information about been lost in obtaining the autocorrelation function? Explain.

2.39 Determine the autocorrelation function of the triplet pulse shown in Fig. 2.45.

g1t2Rg102?
Rg1t2

g1t2 � A0 	 A1 cos12pf1t 	 u12 	 A2 cos12pf2t 	 u22
g1t2

sinc1f2.
g1t2 �

1
t0

exp¢�
pt2

t0
2 ≤

u1�t2
g1t2 � exp1�at2u1t2 � exp1at2u1�t2g1t2 � exp1�a ƒ t ƒ2
g1t2 � exp1�at2u1t2

2.40 Let denote the Fourier transform of a real-valued energy signal and denote
its autocorrelation function. Show that

2.41 Determine the cross-correlation function of the rectangular pulse and triplet pulse
shown in Fig. 2.46, and sketch it. What is Are these two signals orthogonal to

each other? Why?
R211t2?g21t2 g11t2R121t2

L
q

�q
B dRg1t2

dt
R dt � 4p2

L
q

�q
f 2 ƒG1f2 ƒ4 df

Rg1t2g1t2,G1f2
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FIGURE 2.46 Problem 2.41

2.42 Consider two energy signals and These two signals are delayed by amounts equal
to and seconds, respectively. Show that the time delays are additive in convolving the pair
of delayed signals, whereas they are subtractive in cross-correlating them.

2.43 (a) An energy signal its Fourier transform autocorrelation function and
energy spectral density are all related, directly or indirectly. Construct a flow-graph
that portrays all the possible direct relationships between them.

(b) If you are given the frequency-domain description the autocorrelation function 
can be calculated from Outline two ways in which this calculation can be performed.

2.44 Find the autocorrelation function of a power signal whose power spectral density is depicted
in Fig. 2.47. What is the value of this autocorrelation function at the origin?

g1t2X1f2. Rx1t2X1f2,
°x1f2 Rx1t2,X1f2,x1t2,

t2t1
g21t2.g11t2

2.45 Consider the square wave shown in Fig. 2.48. Find the power spectral density, average
power, and autocorrelation function of this square wave. Does the wave have dc power? Explain
your answer.

g1t2

2.46 Consider two periodic signals and that have the following complex Fourier series
representations:

gp11t2 � a
q

n� ��
c1,n exp¢ j2pnt

T0
≤

gp21t2gp11t2
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and

The two signals have a common period equal to 
Using the following definition of cross-correlation for a pair of periodic signals,

show that the prescribed pair of periodic signals satisfies the Fourier-transform pair

2.47 A periodic signal of period is represented by the complex Fourier series

where the are the complex Fourier coefficients. The autocorrelation function of is
defined by

(a) Consider the sinusoidal wave

Determine the autocorrelation function and plot its waveform.

(b) Show that 

2.48 Repeat parts (a) and (b) of Problem 2.47 for the square wave:

2.49 Determine the power spectral density of (a) the sinusoidal wave of Problem 2.47, and (b) the
square wave of Problem 2.48.

2.50 Following a procedure similar to that described in Section 2.10 that led to the flow graph of
Fig. 2.36 for the 8-point FFT algorithm based on decimation-in-frequency, do the following:

(a) Develop the corresponding flow graph for the 8-point FFT algorithm based on decimation-
in-time.

(b) Compare the flow graph obtained in part (a) with that described in Fig. 2.36, stressing the
similarities and differences between these two basic methods for deriving the FFT algorithm.
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ADVANCED PROBLEMS

2.51 (a) The root mean-square (rms) bandwidth of a low-pass signal of finite energy is defined by

where is the energy spectral density of the signal. Correspondingly, the root mean-
square (rms) duration of the signal is defined by

Using these definitions, show that

Assume that faster than as 

(b) Consider a Gaussian pulse defined by

Show that, for this signal, the equality

can be reached. 
Hint: Use Schwarz’s inequality (see Appendix 5).

in which we set

and

2.52 The Hilbert transform of a Fourier transformable signal is defined by

Correspondingly, the inverse Hilbert transform is defined by
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1
p L

q

�q

gN1t2
t � t

dt

gN1t2 �
1
p L

q

�q

g1t2
t � t

dt

g1t2
g21t2 �

dg1t2
dt

g11t2 � tg1t2

e L
q

�q
3g1
…1t2g21t2 	 g11t2g2

…1t24 dt f 2

� 4 L
q

�q
ƒg11t2 ƒ2 L

q

�q
ƒg21t2 ƒ2 dt

TrmsWrms �
1

4p

g1t2 � exp1�pt22
ƒ t ƒ S �.1>2 ƒ t ƒƒg1t2 ƒ S 0

TrmsWrms �
1

4p

Trms � D L q

�q
t2 ƒg1t2 ƒ2 dt

L
q

�q
ƒg1t2 ƒ2 dt

T 1>2
ƒG1f2 ƒ2

Wrms � D L q

�q
f 2 ƒG1f2 ƒ2 df

L
q

�q
ƒG1f2 ƒ2 df

T 1>2
g1t2



Advanced Problems 99

Using these two formulas, derive the following set of Hilbert-transform pairs:

2.53 Evaluate the inverse Fourier transform of the one-sided frequency function

Hence, show that is complex, and that its real and imaginary parts constitute a Hilbert-
transform pair.

2.54 A Hilbert transformer may be viewed as a device whose transfer function exhibits the follow-
ing characteristics:
(a) The amplitude response is unity for all positive and negative frequencies.
(b) The phase response is for negative frequencies and for positive frequencies.

Starting with the definition of the Hilbert transform given in Problem 2.52, demonstrate the
frequency-domain description embodied in parts (a) and (b).

(c) Is the Hilbert transformer physically realizable? Justify your answer.
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CHAPTER 3

AMPLITUDE MODULATION

Modulation is defined as the process by which some characteristic of a carrier wave is var-
ied in accordance with an information-bearing signal. The carrier is needed to facilitate the
transportation of the modulated signal across a band-pass channel from the transmitter to
the receiver. A commonly used carrier is a sinusoidal wave, the source of which is physi-
cally independent of the source of the information-bearing signal. When the information-
bearing signal is of an analog kind, we speak of continuous-wave modulation, a term that
stresses continuity of the modulated wave as a function of time.

In the context of communications, a primary motivation for modulation is to facili-
tate transmission of the information-bearing signal over a communication channel (e.g.,
radio channel) with a prescribed passband. In continuous-wave modulation, this is made
possible by varying the amplitude or angle of the sinusoidal carrier wave. On this basis, we
may classify continuous-wave modulation into two broadly defined families: amplitude
modulation and angle modulation. These two families of modulation distinguish them-
selves by offering entirely different spectral characteristics and therefore different practical
benefits. The classification is made on the basis of whether, on the one hand, the amplitude
of the sinusoidal carrier wave, or, on the other hand, the phase or frequency (and there-
fore) the angle of the sinusoidal carrier wave, is varied in accordance with the information-
bearing signal. The family of amplitude modulation is studied in this chapter, followed by
the study of angle modulation in the next chapter.

In Chapter 1, we identified system complexity and the two primary communication
resources—namely, transmitted power and channel bandwidth—as the central issues
involved in the design of a communication system. With these issues in mind, in this chap-
ter, we will study four linear modulation strategies that constitute the amplitude modula-
tion family:

� amplitude modulation (AM)

� double sideband-suppressed carrier (DSB-SC)

� single sideband (SSB)

� vestigial sideband (VSB)

These four types of modulation differ from each other by virtue of their spectral character-
istics. Their study will teach us the following lessons:

� Lesson 1: Fourier analysis provides a powerful mathematical tool for developing mathe-
matical as well as physical insight into the spectral characterization of linear modulation
strategies.
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1 Throughout the book, the term “amplitude modulation” or AM, for short, is used to refer to that particular form
of modulation in which the carrier wave and both sidebands are present.

� Lesson 2: The implementation of analog communications is significantly simplified by
using AM, at the expense of transmitted power and channel bandwidth.

� Lesson 3: The utilization of transmitted power and channel bandwidth is improved
through well-defined modifications of an amplitude-modulated wave’s spectral content at
the expense of increased system complexity.

In short, we may make the statement:

There is no free lunch in designing a communication system: for every gain that is made,
there is a price to be paid.

3.1 Amplitude Modulation

� THEORY

Consider a sinusoidal carrier wave defined by

(3.1)

where is the carrier amplitude and is the carrier frequency. The information-bearing
signal or message signal is denoted by m(t); the terms “information-bearing signal” and
“message signal” are used interchangeably throughout the book. To simplify the exposi-
tion without affecting the results obtained and conclusions reached, we have assumed that
the phase of the carrier wave is zero in Eq. (3.1). Amplitude modulation1 (AM) is formally
defined as a process in which the amplitude of the carrier wave is varied about a mean
value, linearly with the message signal An amplitude-modulated (AM) wave may
thus be described as a function of time as follows:

(3.2)

where is a constant called the amplitude sensitivity of the modulator responsible for the gen-
eration of the modulated signal Typically, the carrier amplitude and the message signal

are measured in volts, in which case the amplitude sensitivity is measured in
Notice that if the message signal is switched off, the sinusoidal carrier is left intact.

Figure 3.1(a) shows a message signal and Figs. 3.1(b) and 3.1(c) show the cor-
responding AM wave for two values of amplitude sensitivity and a carrier ampli-
tude

In amplitude modulation, information pertaining to the message signal resides
solely in the envelope, which is defined as the amplitude of the modulated wave —that
is, From this expression, we observe that the envelope of has essen-
tially the same shape as the message signal provided that two conditions are satisfied:

1. The amplitude of is always less than unity; that is,

(3.3)

This condition is illustrated in Fig. 3.1(b); it ensures that the function is
always positive, in which case we may express the envelope of the AM wave of
Eq. (3.2) simply as When the amplitude sensitivity of thekaAc31 	 kam1t24. s1t21 	 kam1t2

ƒkam1t2 ƒ � 1, for all t

kam1t2
m1t2 s1t2Ac ƒ1 	 kam1t2 ƒ . s1t2m1t2Ac � 1 volt.

kas1t2 m1t2,m1t2 volt�1.kam1t2 Acs1t2.ka

s1t2 � Ac31 	 kam1t24 cos12pfct2
m1t2. c1t2

fcAc

c1t2 � Ac cos12pfct2
c1t2
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FIGURE 3.1 Illustration of the amplitude modulation process. (a) Message signal 
(b) AM wave for for all t. (c) AM wave for for some t.ƒkam1t2 ƒ � 1kam1t2 � 1

m1t2.

modulator is large enough to make for any t, the carrier wave becomes
over modulated, resulting in carrier phase reversals whenever the factor 
crosses zero. The modulated wave then exhibits envelope distortion, as in Fig. 3.1(c).
It is therefore apparent that by avoiding overmodulation, a one-to-one relationship

1 	 kam1t2ƒkam1t2 ƒ � 1
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is maintained between the envelope of the AM wave and the modulating wave for all
values of time. The absolute maximum value of multiplied by 100 is referred
to as the percentage modulation.

2. The carrier frequency is much greater than the highest frequency component W of
the message signal —that is,

(3.4)

We call W the message bandwidth. If the condition of Eq. (3.4) is not satisfied, an enve-
lope cannot be visualized (and therefore detected) satisfactorily.

Provided that the conditions of Eqs. (3.3) and (3.4) are satisfied, demodulation of the AM
wave is achieved by using an envelope detector, which is defined as a device whose output
traces the envelope of the AM wave acting as the input signal. The process of envelope
detection is discussed later in the section.

The next issue for discussion is the frequency-domain description of AM. Let
where the Fourier transform is called the message spectrum. From

Eq. (3.2), we find that the Fourier transform or spectrum of the AM wave is given by

(3.5)

where we have used the relations:

and

Following the terminology introduced in Chapter 2, the in Eq. (3.5) denotes the Dirac
delta function in the frequency domain.

Suppose that the message signal is band-limited to the interval 
as in Fig. 3.2(a). The shape of the spectrum shown in this figure is intended for the pur-
pose of illustration only. We find from Eq. (3.5) that the spectrum of the AM wave is
as shown in Fig. 3.2(b) for the case when This spectrum consists of two delta func-
tions weighted by the factor and occurring at and two versions of the message
spectrum translated in frequency by and scaled in amplitude by From the spec-
trum of Fig. 3.2(b), we make three important observations:

1. As a result of the modulation process, the spectrum of the message signal for neg-
ative frequencies extending from to 0 becomes completely visible for positive (i.e.,
measurable) frequencies, provided that the carrier frequency satisfies the condition

herein lies the importance of the idea of “negative” frequencies, which was
emphasized in Chapter 2.

2. For positive frequencies, the portion of the spectrum of an AM wave lying above the
carrier frequency is referred to as the upper sideband, whereas the symmetric por-
tion below is referred to as the lower sideband. The condition ensures that
the sidebands do not overlap. Moreover, with the upper sideband, lower sideband,
and carrier fully represented in the spectrum of Fig. 3.2(b), the modulated wave is
referred to as AM, in accordance with footnote 1 on page 101.

fc � Wfc
fc

fc � W;

�W
m1t2

kaAc>2.�fc
�fc ,Ac>2 fc � W.

S1f2
�W � f � W,m1t2

d1f2
m1t2 exp1j2pfct2 Δ M1f � fc2

exp1j2pfct2 Δ d1f � fc2
cos12pfct2 �

1
2
3exp1j2pfct2 	 exp1�j2pfct24

S1f2 �
Ac

2
3d1f � fc2 	 d1f 	 fc24 	

kaAc

2
3M1f � fc2 	 M1f 	 fc24

s1t2M1f2m1t2 Δ M1f2,

fc W W

m1t2fc
kam1t2
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FIGURE 3.2 (a) Spectrum of message signal (b) Spectrum of AM wave s1t2.m1t2.

3. For positive frequencies, the highest frequency component of the AM wave equals
and the lowest frequency component equals The difference between

these two frequencies defines the transmission bandwidth of the AM wave, which
is exactly twice the message bandwidth W; that is,

(3.6)

EXAMPLE 3.1 Single-Tone Modulation

Consider a modulating wave that consists of a single tone or frequency component; 
that is,

where is the amplitude of the sinusoidal modulating wave and is its frequency (see Fig.
3.3(a)). The sinusoidal carrier wave has amplitude and frequency (see Fig. 3.3(b)). The
corresponding AM wave is therefore given by

(3.7)

where

The dimensionless constant is called the modulation factor, or the percentage modulation
when it is expressed numerically as a percentage. To avoid envelope distortion due to over-
modulation, the modulation factor must be kept below unity, as explained previously.m

m

m � kaAm

s1t2 � Ac31 	 m cos12pfmt24 cos12pfct2
fcAc

fmAm

m1t2 � Am cos12pfmt2
m1t2

BT � 2W

BT

fc � W.fc 	 W,
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FIGURE 3.3 Illustration of the time-domain (on the left) and frequency-domain (on the
right) characteristics of amplitude modulation produced by a single tone. (a) Modulating
wave. (b) Carrier wave. (c) AM wave.

Figure 3.3(c) shows a sketch of for less than unity. Let and denote the
maximum and minimum values of the envelope of the modulated wave, respectively. Then, from
Eq. (3.7) we get

Rearranging this equation, we may express the modulation factor as

Expressing the product of the two cosines in Eq. (3.7) as the sum of two sinusoidal waves,
one having frequency and the other having frequency we get

The Fourier transform of is therefore

Thus the spectrum of an AM wave, for the special case of sinusoidal modulation, consists of
delta functions at and as shown in Fig. 3.3(c).�fc � fm ,�fc , fc � fm ,
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In practice, the AM wave is a voltage or current wave. In either case, the aver-
age power delivered to a 1-ohm resistor by is comprised of three components:

For a load resistor R different from 1 ohm, which is usually the case in practice, the expres-
sions for carrier power, upper side-frequency power, and lower side-frequency power are
merely scaled by the factor 1/R or R, depending on whether the modulated wave is a
voltage or a current, respectively. In any case, the ratio of the total sideband power to the
total power in the modulated wave is equal to which depends only on the
modulation factor If —that is, 100 percent modulation is used—the total power
in the two side frequencies of the resulting AM wave is only one-third of the total power
in the modulated wave.

Figure 3.4 shows the percentage of total power in both side frequencies and in the car-
rier plotted versus the percentage modulation. Notice that when the percentage modula-
tion is less than 20 percent, the power in one side frequency is less than 1 percent of the
total power in the AM wave.

� COMPUTER EXPERIMENT: AM

For the AM experiment, we will study sinusoidal modulation based on the following
parameters:

Carrier amplitude,
Carrier frequency,
Modulation frequency,

We wish to display and analyze 10 full cycles of the modulated wave, corresponding to a
total duration of 200 seconds. To perform the experiment on a digital computer, the mod-
ulated wave is sampled at the rate obtaining a total of 
data points. The frequency band occupied by the modulated wave is 
Since the separation between the carrier frequency and either side frequency is equal to
the modulation frequency we would like to have a frequency resolution

To achieve this frequency resolution, it is recommended that the number of
frequency samples satisfies the condition:
fr � 0.005 Hz.

fm � 0.05 Hz,

�5 Hz � f � 5 Hz.
200  fs � 2000 Hzfs � 10 Hz,

fm � 0.05 Hz
fc � 0.4 Hz

Ac � 1

m � 1m.
m2>12 	 m22,

s1t2
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We therefore choose To approximate the Fourier transform of the modulated
wave, we use a 2000-point FFT algorithm; the FFT algorithm was described in Chapter 2.

The only variable parameter in the full AM experiment is the modulation factor 
with respect to which three different situations are investigated:

corresponding to undermodulation
corresponding to 100 percent modulation
corresponding to overmodulation

The results of the investigations are displayed in Figs. 3.5 through 3.7, details of which are
described next.

1. Modulation factor
Figure 3.5(a) displays 10 cycles of the AM wave, corresponding to Them � 0.5.

m � 0.5

m � 2.0,
m � 1.0,
m � 0.5,

m,

M � 2000.

M �
fs
fr
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FIGURE 3.5 Amplitude modulation with 50 percent modulation: (a) AM wave, (b) magnitude
spectrum of the AM wave, and (c) expanded spectrum around the carrier frequency.
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envelope of the modulated wave is clearly seen to follow the sinusoidal modulating
wave faithfully. This means that we can use an envelope detector for demodulation.

Figure 3.5(b) displays the magnitude (amplitade) spectrum of the modulated
wave. In Fig. 3.5(c), we have zoomed in on the fine structure of the modulated wave
around the carrier frequency. The two figures clearly display the exact relationships
between the two side frequencies and the carrier, in accordance with amplitude mod-
ulation theory, as summarized here:
� The lower side frequency, the carrier, and the upper side frequency are located at

and
� The amplitude of both side frequencies is times the amplitude of

the carrier.

2. Modulation factor
Figure 3.6(a) shows 10 cycles of the modulated wave with the same parameters as in

m � 1.0

1m>22 � 0.25
(fc 	 fm) � �0.45 Hz.(fc � fm) � �0.35 Hz, fc � �0.4 Hz,
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Fig. 3.5(a), except for the fact that This new figure shows that the modu-
lated wave is now on the verge of overmodulation.

The magnitude spectrum of the modulated wave is shown in Fig. 3.6(b), and its
zoomed version (around the carrier frequency) is shown in Fig. 3.6(c). Here again, we
see that the basic structure of the modulated wave’s magnitude spectrum is in perfect
agreement with amplitude modulation theory.

3. Modulation factor
Figure 3.7(a) demonstrates the effect of overmodulation by using a modulation fac-
tor Here we see that there is no clear relationship between the envelope of
the overmodulated wave and the sinusoidal modulating wave. As expected, the result
implies that an envelope detector will not work for m � 2.0.
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Load

Diode
(Nonlinear device)

Message signal
m(t)

Carrier wave
Ac cos(2�fc t)

v1(t)

~
v2(t)

FIGURE 3.8 Nonlinear circuit using a diode.

Nevertheless, the spectral content of the overmodulated wave displayed in
Figs. 3.7(b) and 3.7(c) follows exactly what the amplitude modulation theory predicts.

� Drill Problem 3.1 For 100 percent modulation, is it possible for the envelope of AM to
become zero for some time t? Justify your answer. �

� Drill Problem 3.2 For a particular case of AM using sinusoidal modulating wave, the
percentage modulation is 20 percent. Calculate the average power in (a) the carrier and (b) each
side frequency. �

� Drill Problem 3.3 In AM, spectral overlap is said to occur if the lower sideband for
positive frequencies overlaps with its image for negative frequencies. What condition must the
modulated wave satisfy if we are to avoid spectral overlap? Assume that the message signal

is of a low-pass kind with bandwidth W. �

� Drill Problem 3.4 A square-law modulator for generating an AM wave relies on the
use of a nonlinear device (e.g., diode); Fig. 3.8 depicts the simplest form of such a modulator.
Ignoring higher order terms, the input-output characteristic of the diode-load resistor combi-
nation in this figure is represented by the square law:

where

is the input signal, is the output signal developed across the load resistor, and and 
are constants.

(a) Determine the spectral content of the output signal 

(b) To extract the desired AM wave from we need a band-pass filter (not shown in
Fig. 3.8). Determine the cutoff frequencies of the required filter, assuming that the mes-
sage signal is limited to the band 

(c) To avoid spectral distortion by the presence of undesired modulation products in 
the condition must be satisfied; validate this condition. �W � fc � 3W

n21t2,
�W � f � W.

n21t2,
n21t2.

a2a1n21t2
n11t2 � Ac cos12pfct2 	 m1t2

n21t2 � a1n11t2 	 a2n1
21t2

m1t2
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2 In the Preface, we pointed out that the approach taken in this book is from a systems perspective. In describing
the envelope detector in detail, we are clearly making an exception to this approach. The reason for doing so is
in recognition of the fact that the envelope detector, by virtue of its simplicity, is used in almost all commercial
AM receivers. Indeed, the simplicity of building AM transmitters and receivers is such a compelling economic fac-
tor that, despite the ever-increasing dominance of digital communications, amplitude modulation will continue
to find practical use in one form or another.

� ENVELOPE DETECTION

The square-law modulator addressed in Problem 3.4 is testimony to the implementational
simplicity involved in building an AM transmitter. The implementational simplicity of AM
is further reinforced when we consider the demodulation of an AM wave, which is the
inverse of modulation. In particular, the demodulation of an AM wave can be accomplished
by means of a simple and yet highly effective circuit called the envelope detector2, provided
two practical conditions are satisfied:

1. The AM wave is narrowband, which means that the carrier frequency is large com-
pared to the message bandwidth.

2. The percentage modulation in the AM wave is less than 100 percent.

An envelope detector of the series type is shown in Fig. 3.9(a), which consists of a diode
and resistor-capacitor (RC) filter. The operation of this envelope detector is as follows. On
a positive half-cycle of the input signal, the diode is forward-biased and the capacitor C
charges up rapidly to the peak value of the input signal. When the input signal falls below
this value, the diode becomes reverse-biased and the capacitor C discharges slowly through
the load resistor The discharging process continues until the next positive half-cycle.
When the input signal becomes greater than the voltage across the capacitor, the diode
conducts again and the process is repeated. We assume that the diode is ideal, presenting
resistance to current flow in the forward-biased region and infinite resistance in the
reverse-biased region. We further assume that the AM wave applied to the envelope detec-
tor is supplied by a voltage source of internal impedance The charging time constant

C must be short compared with the carrier period —that is,

so that the capacitor C charges rapidly and thereby follows the applied voltage up to the
positive peak when the diode is conducting. On the other hand, the discharging time con-
stant must be long enough to ensure that the capacitor discharges slowly through the
load resistor between positive peaks of the carrier wave, but not so long that the capac-
itor voltage will not discharge at the maximum rate of change of the modulating wave—
that is,

where W is the message bandwidth. The result is that the capacitor voltage or detector
output is nearly the same as the envelope of the AM wave, as demonstrated next.

1
fc

V RlC V
1
W

Rl

RlC

1rf 	 Rs2C V
1
fc

1>fc1rf 	 Rs2 Rs .

rf

Rl .
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detector output
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� COMPUTER EXPERIMENT: ENVELOPE DETECTION FOR SINUSOIDAL AM

Consider the sinusoidal AM wave shown in Fig. 3.9(b), assuming 50 percent modulation.
The envelope detector output is shown in Fig. 3.9(c). This latter waveform is computed
assuming that the diode is ideal, having a constant resistance when forward-biased and
infinite resistance when reverse-biased. The numerical values used in the computation of
Fig. 3.9(c) are as follows:

Source resistance
Forward resistance
Load resistance
Capacitance
Message bandwidth
Carrier frequency

Notice that the envelope detector output includes a high-frequency ripple; this ripple can
be removed by using a low-pass filter (not shown in Fig. 3.9 (a))

3.2 Virtues, Limitations, and Modifications
of Amplitude Modulation

Amplitude modulation is the oldest method of performing modulation. As already remarked
in Section 3.1, its biggest virtue is the ease with which it is generated and reversed. The net
result is that an amplitude modulation system is relatively inexpensive to build.

However, from Chapter 1 we recall that transmitted power and channel bandwidth
are our two primary communication resources and they should be used efficiently. In this
context, we find that the amplitude modulation defined in Eq. (3.2) suffers from two major
practical limitations:

1. Amplitude modulation is wasteful of transmitted power. The carrier wave c(t) is com-
pletely independent of the information-bearing signal The transmission of the
carrier wave therefore represents a waste of power, which means that in amplitude
modulation only a fraction of the total transmitted power is actually affected by 

2. Amplitude modulation is wasteful of channel bandwidth. The upper and lower side-
bands of an AM wave are uniquely related to each other by virtue of their symmetry about
the carrier frequency; hence, given the amplitude and phase spectra of either sideband,
we can uniquely determine the other. This means that insofar as the transmission of
information is concerned, only one sideband is necessary, and the communication chan-
nel therefore needs to provide only the same bandwidth as the message signal. In light
of this observation, amplitude modulation is wasteful of channel bandwidth as it requires
a transmission bandwidth equal to twice the message bandwidth.

To overcome these two limitations of AM, we must make certain changes that result in
increased system complexity of the amplitude modulation process. In effect, we trade off
system complexity for improved utilization of communication resources. Starting with
amplitude modulation, we can distinguish three modifications of amplitude modulation:

1. Double sideband-suppressed carrier (DSB-SC) modulation, in which the transmitted
wave consists of only the upper and lower sidebands. Transmitted power is saved
here through the suppression of the carrier wave, but the channel bandwidth require-
ment is the same as before (i.e., twice the message bandwidth).

2. Single sideband (SSB) modulation, in which the modulated wave consists only of the
upper sideband or the lower sideband. The essential function of SSB modulation is
therefore to translate the spectrum of the modulating signal (with or without inversion)

m1t2.
m1t2.

fc � 20 kHz
W � 1 kHz
C � 0.01 mF
Rl � 10 kÆ
rf � 25 Æ

Rs � 75 Æ

rf
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to a new location in the frequency domain. Single sideband modulation is particularly
suited for the transmission of voice signals by virtue of the energy gap that exists in
the spectrum of voice signals between zero and a few hundred hertz. SSB is the opti-
mum form of continuous-wave modulation in that it requires the minimum trans-
mitted power and minimum channel bandwidth; its principal disadvantages are
increased complexity and limited applicability.

3. Vestigial sideband (VSB) modulation, in which one sideband is passed almost com-
pletely and just a trace, or vestige, of the other sideband is retained. The required
channel bandwidth is therefore slightly in excess of the message bandwidth by an
amount equal to the width of the vestigial sideband. This form of modulation is well
suited for the transmission of wideband signals such as television signals that contain
significant components at extremely low frequencies. In commercial television broad-
casting, a sizable carrier is transmitted together with the modulated wave, which
makes it possible to demodulate the incoming modulated signal by an envelope detec-
tor in the receiver and thereby simplify the receiver design.

In Section 3.3 we discuss DSB-SC modulation, followed by discussions of SSB and VSB
forms of modulation in subsequent sections and in that order.

3.3 Double Sideband-Suppressed 
Carrier Modulation

� THEORY

Basically, double sideband-suppressed carrier (DSB-SC) modulation consists of the prod-
uct of the message signal and the carrier wave as shown in the equation

(3.8)

Accordingly, the device used to generate the DSB-SC modulated wave is referred to as a
product modulator. From Eq. (3.8) we also note that unlike amplitude modulation, DSB-SC
modulation is reduced to zero whenever the message signal is switched off.

Most noticeably, however, is the fact that the modulated signal undergoes a phase
reversal whenever the message signal crosses zero, as indicated in Fig. 3.10(b) for the
message signal depicted in part (a) of the figure. The envelope of a DSB-SC modulated
signal is therefore different from the message signal, which means that simple demodula-
tion using an envelope detection is not a viable option for DSB-SC modulation.

From Eq. (3.8), the Fourier transform of is obtained as

(3.9)

where For the case when the message signal is limited to the inter-
val as in Fig. 3.11(a), we find that the spectrum of the DSB-SC wave

is as illustrated in Fig. 3.11(b). Except for a change in scale factor, the modulation
process simply translates the spectrum of the message signal by to the right and by 
to the left. Of course, the transmission bandwidth required by DSB-SC modulation is the
same as that for amplitude modulation—namely, 2W.

In short, insofar as bandwidth occupancy is concerned, DSB-SC offers no advantage
over AM. Its only advantage lies in saving transmitted power, which is important enough
when the available transmitted power is at a premium.

�fcfc
s1t2 S1f2�W � f � W,

m1t2m1t2 Δ M1f2.
S1f2 �

1
2

Ac3M1f � fc2 	 M1f 	 fc24
s1t2

m1t2 m1t2 s1t2m1t2

� Ac cos12pfct2m1t2
s1t2 � c1t2m1t2

c1t2,m1t2
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EXAMPLE 3.2 Sinusoidal DSB-SC spectrum

Consider DSB-SC modulation using a sinusoidal modulating wave of amplitude and fre-
quency and operating on a carrier of amplitude and frequency The message spectrum is

Invoking Eq. (3.9), the shifted spectrum defines the two side-frequencies for pos-
itive frequencies:

The other shifted spectrum of Eq. (3.9)—namely, —defines the remaining two
side-frequencies for negative frequencies:

which are the images of the first two side-frequencies with respect to the origin, in reverse
order.

� Drill Problem 3.5 For the sinusoidal DSB-SC modulation considered in Example 3.2,
what is the average power in the lower or upper side-frequency, expressed as a percentage of
the average power in the DSB-SC modulated wave? �

� COHERENT DETECTION

Since the envelope of the DSB-SC modulated wave is different from the message signal
we have to find some other means for recovering from To this end, we rec-

ognize that contains a constant term, as shown by the trigonometric identity

In light of this relation rewritten for we see from Eq. (3.8) that the recovery of
the message signal can be accomplished by first multiplying with a locally gen-
erated sinusoidal wave and then low-pass filtering the product. It is assumed that the local
oscillator signal is exactly coherent or synchronized, in both frequency and phase, with
the carrier wave used in the product modulator to generate This method of
demodulation is known as coherent detection or synchronous demodulation.

It is instructive to derive coherent detection as a special case of the more general
demodulation process using a local oscillator signal of the same frequency but arbitrary
phase difference measured with respect to the carrier wave Thus, denoting the local
oscillator signal by and using Eq. (3.8) for the DSB-SC wave we
find that the product modulator output in Fig. 3.12 is

(3.10)�
1
2

AcA
œ
c cos14pfct 	 f2m1t2 	

1
2

AcA�c cos1f2m1t2
� AcA

œ
c cos12pfct2 cos12pfct 	 f2m1t2

n1t2 � Aœ
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Ac� cos(2�fct + �)

Modulated
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modulator
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Demodulated
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vo(t)

v(t) FIGURE 3.12 Block
diagram of coherent
detector, assuming that the
local oscillator is out of
phase by with respect to
the sinusoidal carrier
oscillator in the transmitter.

f

where we have used the trigonometric identity

where, for the application at hand, we have and 
The first term in Eq. (3.10) represents a new DSB-SC modulated signal with carrier

frequency whereas the second term is proportional to the message signal This is
further illustrated by the spectrum shown in Fig. 3.13, where it is assumed that the
message signal is limited to the interval It is therefore apparent that
the first term in Eq. (3.10) is removed by the low-pass filter in Fig. 3.12, provided that the
cut-off frequency of this filter is greater than W but less than This is satisfied by
choosing At the filter output we then obtain a signal given by

(3.11)

The demodulated signal is therefore proportional to when the phase error
is a constant. The amplitude of this demodulated signal is maximum when and

it is minimum (zero) when The zero demodulated signal, which occurs for
represents the quadrature null effect, which is an inherent property of coher-

ent detection. Thus the phase error in the local oscillator causes the detector output to
be attenuated by a factor equal to As long as the phase error is constant, the detec-
tor output provides an undistorted version of the message signal In practice, how-
ever, we usually find that the phase error varies randomly with time, due to random
variations in the communication channel. The result is that at the detector output, the mul-
tiplying factor would also vary randomly with time, which is obviously undesirable.
Therefore, provision must be made in the system to maintain the local oscillator in the
receiver in synchronism, in both frequency and phase, with the carrier wave used to gen-
erate the DSB-SC modulated signal in the transmitter. The resulting system complexity is
the price that must be paid for suppressing the carrier wave to save transmitted power.

cos f

f

m1t2.fcos f.
f
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FIGURE 3.13 Illustration of the spectrum of product modulator output in the
coherent detector of Fig. 3.12, which is produced in response to a DSB-SC modulated wave
as the detector input.
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FIGURE 3.14 DSB-SC modulation: (a) DSB-SC modulated wave, (b) magnitude spectrum
of the modulated wave, and (c) expanded spectrum around the carrier frequency.

� Drill Problem 3.6 The sinusoidally modulated DSB-SC wave of Example 3.2 is applied
to a product modulator using a locally generated sinusoid of unit amplitude, and which is syn-
chronous with the carrier used in the modulator.

(a) Determine the output of the product modulator, denoted by 
(b) Identify the two sinusoidal terms in that are produced by the DSB-SC modulated

wave for positive frequencies, and the remaining two sinusoidal terms produced by the
DSB-SC modulated wave for negative frequencies. �

� Drill Problem 3.7 The coherent detector for the demodulation of DSB-SC fails to operate
satisfactorily if the modulator experiences spectral overlap. Explain the reason for this failure. �

� COMPUTER EXPERIMENT: DSB-SC
For the experimental study of DSB-SC modulation, we follow the same setup described in
Section 3.1, except for the changes brought on by the use of DSB-SC in place of AM.
Results of the experiment are described under two points:

n1t2 n1t2.
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1. Figure 3.14(a) displays 10 cycles of the DSB-SC modulated wave produced by the sinu-
soidal modulating wave of frequency 0.05 Hz. As expected, the envelope of the mod-
ulated wave bears no clear relationship to the sinusoidal modulating wave. Accordingly,
we must use coherent detection for demodulation, which is discussed under point 2.

Figure 3.14(b) shows the magnitude spectrum of the modulated wave. An
expanded view of the spectrum around the carrier frequency of frequency 0.4 Hz is
shown in Fig. 3.14(c). These two figures clearly show that the carrier is indeed sup-
pressed, and that the upper and lower side frequencies are located exactly where they
should be—namely, at and respectively.

2. To perform coherent detection, we proceed in two stages: (i) multiply the DSB-SC mod-
ulated wave by an exact replica of the carrier, and (ii) pass the product through a
low-pass filter, as described under coherent detection in this section. With two oper-
ational stages involved in the coherent detection process, the results of this part of the
experiment are presented as follows:
(i) Figure 3.15(a) displays the waveform of the product modulator’s output in the

coherent detector. The magnitude spectrum of this waveform is shown in
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FIGURE 3.15 Coherent detection of DSB-SC modulated wave: (a) Waveform of signal
produced at the output of product modulator, (b) amplitude spectrum of the signal in part
(a); (c) waveform of low-pass filter output; and (d) amplitude spectrum of signal in part (c).
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Fig. 3.15(b), which readily shows that the waveform consists of the following
components:
� A sinusoidal component with frequency 0.05 Hz, representing the sinusoidal

modulating wave.
� A new DSB-SC modulated wave with double carrier frequency of 0.8 Hz; in

actuality, the two side-frequencies of this modulated wave are located at 0.75
and 0.85 Hz, exactly where they should be.

(ii) Figure 3.15(c) shows the waveform of the coherent detector’s overall output,
which results after passing the product modulator’s output through the low-pass
filter. Except for transient effects experienced early on in the detection process,
the waveform is recognized to be the desired sinsuoidal modulating wave of
frequency 0.05 Hz. This result is further confirmed in the amplitude spectrum dis-
played in Fig. 3.15(d); the pedestal on which the line frequency component at 0.05
Hz sits is due to the transient effects just described.

3.4 Costas Receiver

Coherent detection of a DSB-SC modulated wave requires that the locally generated car-
rier in the receiver be synchronous in both frequency and phase with the oscillator respon-
sible for generating the carrier in the transmitter. This is a rather demanding requirement,
all the more so since the carrier is suppressed from the transmitted DSB-SC signal. One
method of satisfying this requirement is to use the Costas receiver shown in Fig. 3.16. This
receiver consists of two coherent detectors supplied with the same input signal—namely,
the incoming DSB-SC wave but with two local oscillator signals that are
in phase quadrature with respect to each other. The frequency of the local oscillator is
adjusted to be the same as the carrier frequency it is assumed known a priori. This
assumption is reasonable since the system designer has access to the detailed specifications
of both the transmitter and receiver. The detector in the upper path is referred to as the in-
phase coherent detector or I-channel, and the detector in the lower path is referred to as

fc ;
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FIGURE 3.16 Costas receiver for the demodulation of a DSB-SC modulated wave.
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the quadrature-phase coherent detector or Q-channel. These two detectors are coupled
together to form a negative feedback system designed in such a way as to maintain the
local oscillator in synchronism with the carrier wave.

To understand the operation of this receiver, suppose that the local oscillator signal
is of the same phase as the carrier wave used to generate the incoming DSB-
SC wave. Under these conditions, we find that the I-channel output contains the desired
demodulated signal whereas the Q-channel output is zero due to the quadrature null
effect of the Q-channel. Next suppose that the local oscillator phase drifts from its proper
value by a small angle radians. From the discussion on coherent detection in Section 3.3
we know that the I-channel output is proportional to and for small 
hence, the I-channel output remains essentially unchanged so long as is small. But there
will now be some signal, albeit small, appearing at the Q-channel output, which is pro-
portional to for small This Q-channel output will have the same polarity as
the I-channel output for one direction of local oscillator phase drift and the opposite
polarity for the opposite direction of Thus, by combining the I- and Q-channel outputs
in a phase discriminator (which consists of a multiplier followed by a time-averaging unit),
a dc control signal proportional to the phase drift is generated. With negative feedback
acting around the Costas receiver, the control signal tends to automatically correct for the
local phase error in the voltage-controlled oscillator.

It is apparent that phase control in the Costas receiver ceases with modulation, which
means that phase-lock would have to be re-established with the reappearance of modula-
tion. This is not a serious problem, because the lock-up process normally occurs so rapidly
that no distortion is perceptible.

� Drill Problem 3.8 As just mentioned, the phase discriminators in the Costas receiver of
Fig. 3.16 consist of a multiplier followed by a time-averaging unit. Referring to this figure, do
the following:

(a) Assuming that the phase error is small compared to one radian, show that the output
of the multiplier component is approximately 

(b) Furthermore, passing through the time-averaging unit defined by

where the averaging interval is long enough compared to the reciprocal of the band-
width of show that the output of the phase discriminator is proportional to the
phase-error multiplied by the dc (direct current) component of The amplitude of
this signal (acting as the control signal applied to the voltage-controlled oscillator in Fig.
3.16) will therefore always have the same algebraic sign as that of the phase error 
which is how it should be. �

3.5 Quadrature-Carrier Multiplexing

The quadrature null effect of the coherent detector may also be put to good use in the con-
struction of the so-called quadrature-carrier multiplexing or quadrature-amplitude modu-
lation (QAM). This scheme enables two DSB-SC modulated waves (resulting from the
application of two physically independent message signals) to occupy the same channel
bandwidth. Yet it allows for the separation of the two message signals at the receiver out-
put. Quadrature-carrier multiplexer is therefore a bandwidth-conservation system.

A block diagram of this system is shown in Fig. 3.17. The transmitter part of the sys-
tem, shown in Fig. 3.17(a), involves the use of two separate product modulators that are
supplied with two carrier waves of the same frequency but differing in phase by
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FIGURE 3.17 Quadrature-carrier multiplexing system: (a) Transmitter, (b) receiver.

The transmitted signal consists of the sum of these two product modu-
lator outputs, as shown by

(3.12)

where and denote the two different message signals applied to the product
modulators. The multiplexed signal occupies a channel bandwidth of 2W centered on
the carrier frequency where W is the message bandwidth, assumed to be common to both

and According to Eq. (3.12), we may view as the in-phase compo-
nent of the multiplexed band-pass signal and as its quadrature component.

The receiver part of the system is shown in Fig. 3.17(b). Specifically, the multiplexed
signal is applied simultaneously to two separate coherent detectors that are supplied
with two local carriers of the same frequency, but differing in phase by 
The output of the top detector is whereas the output of the bottom detector

is For the system to operate satisfactorily, it is important to maintain the 
correct phase and frequency relationships between the oscillator used to generate the car-
riers in the transmitter and the corresponding local oscillator used in the receiver.
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To maintain this synchronization, we may use a Costas receiver described in Section
3.4. Another commonly used method is to send a pilot signal outside the passband of the
modulated signal. In the latter method, the pilot signal typically consists of a low-power
sinusoidal tone whose frequency and phase are related to the carrier wave 
At the receiver, the pilot signal is extracted by means of a suitably tuned circuit and then
translated to the correct frequency for use in the coherent detector.

� Drill Problem 3.9 Verify that the outputs of the receiver in Fig. 3.17(b) are as indicated
in the figure, assuming perfect synchronism between the receiver and transmitter. �

3.6 Single-Sideband Modulation

In suppressing the carrier, DSB-SC modulation takes care of a major limitation of AM that
pertains to the wastage of transmitted power. To take care of the other major limitation of
AM that pertains to channel bandwidth, we need to suppress one of the two sidebands in
the DSB-SC modulated wave. This modification of DSB-SC modulation is precisely what
is done in single sideband (SSB) modulation. In effect, SSB modulation relies solely on the
lower sideband or upper sideband to transmit the message signal across a communication
channel. Depending on which particular sideband is actually transmitted, we speak of
lower SSB or upper SSB modulation.

� THEORY

A rigorous derivation of SSB modulation theory that applies to an arbitrary message sig-
nal is rather demanding and therefore beyond the scope of this book. To simplify matters,
we will take an approach different from that used in Section 3.1 on AM and Section 3.3
on DSB-SC. Specifically, we start the study of SSB modulation by first considering the sim-
ple case of a sinusoidal modulating wave, and then we generalize the results to an arbitrary
modulating signal in a step-by-step manner.

To proceed then, consider a DSB-SC modulator using the sinusoidal modulating wave

With the carrier the resulting DSB-SC modulated wave is defined by

(3.13)

which is characterized by two side-frequencies, one at and the other at 
Suppose that we would like to generate a sinusoidal SSB modulated wave that retains the
upper side-frequency at Then, suppressing the second term in Eq. (3.13), we may
express the upper SSB modulated wave as

(3.14)

The cosine term in Eq. (3.14) includes the sum of two angles—namely, and 
Therefore, expanding the cosine term in Eq. (3.14) using a well-known trigonometric
identity, we have
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If, on the other hand, we were to retain the lower side-frequency at in the DSB-SC
modulated wave of Eq. (3.13), then we would have a lower SSB modulated wave defined by

(3.16)

Examining Eqs. (3.15) and (3.16), we see that they differ from each other in only one
respect: the minus sign in Eq. (3.15) is replaced with the plus sign in Eq. (3.16). Accord-
ingly, we may combine these two equations and thereby define a sinusoidal SSB modu-
lated wave as follows:

(3.17)

where the plus sign applies to lower SSB and the minus sign applies to upper SSB.
With the generalization of Eq. (3.17) as the goal, we next proceed in two stages. In

stage 1, we let the message signal be periodic; and in stage 2, we let it be nonperiodic. Con-
sider then a periodic message signal defined by the Fourier series

(3.18)

which consists of a mixture of sinusoidal waves with harmonically related frequencies.
Recognizing that the carrier is common to all the sinusoidal components of we
may therefore immediately infer from Eq. (3.17) the expression

(3.19)

as the corresponding formula for the SSB modulated wave. 
Next, let us consider another periodic signal defined by the Fourier series

(3.20)

which is of a form similar to that of Eq. (3.18) except for the fact that the cosine term
is replaced by the sine term Then, in light of the definitions in Eqs.

(3.19) and (3.20), we may reformulate the SSB modulated wave of Eq. (3.17) as

(3.21)

Comparing Eq. (3.20) with Eq. (3.18), we observe that the periodic signal can be
derived from the periodic modulating signal simply by shifting the phase of each
cosine term in Eq. (3.18) by 

In both technical and practical terms, the observation we have just made is very
important for two reasons:

1. We know from Fourier analysis that under appropriate conditions, the Fourier series
representation of a periodic signal converges to the Fourier transform of a nonperi-
odic signal; see Appendix 2 for details.

2. The signal is the Hilbert transform of the signal Basically, a Hilbert trans-
former is a system whose transfer function is defined by

(3.22)

where sgn(f) is the signum function; for the definition of the signum function see
Section 2.4. In words, the Hilbert transformer is a wide-band phase-shifter whose
frequency response is characterized in two parts as follows (see Problem 2.52):

� The magnitude response is unity for all frequencies, both positive and negative.
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� The phase response is for negative frequencies and for positive
frequencies.

Equipped analytically in the manner described under points 1 and 2, we may finally gen-
eralize Eq. (3.21) as the formula for a single-sideband modulated wave produced by a mes-
sage signal, regardless of whether it is periodic or nonperiodic. Specifically, given a Fourier
transformable message signal with its Hilbert transform denoted by the SSB
modulated wave produced by is defined by

(3.23)

where is the carrier, is its phase-shifted version; the plus
and minus signs apply to the lower SSB and upper SSB, respectively. In Eq. (3.23), we have
omitted the use of SSB as a subscript for with it being understood that this equation
refers to SSB modulation in its most generic form.

� Drill Problem 3.10 Using Eqs. (3.22) and (3.23), show that for positive frequencies the
spectra of the two kinds of SSB modulated waves are defined as follows:

(a) For the upper SSB,

(3.24)

(b) For the lower SSB,

(3.25)

� Drill Problem 3.11 Show that if the message signal is low-pass, then the Hilbert
transform is also low-pass with exactly the same bandwidth as �

The two spectral formulas defined in parts (a) and (b) of Problem 3.10 are intuitively
satisfying. In particular, they are both in perfect accord with the two pictures displayed in
parts (b) and (c) of Fig. 3.18, respectively. Figure 3.18(b) describes an SSB modulated wave
that has retained the upper sideband, whereas Fig. 3.18(c) describes the other kind of SSB
modulation that has retained the lower sideband. From a practical perspective, the only issue
that distinguishes one kind of SSB modulation from the other is that of bandwidth
occupancy.

� MODULATORS FOR SSB

In light of the theory presented in this section, we may develop two methods for generat-
ing SSB-modulated waves, as described next.

Frequency Discrimination Method

One straightforward method for SSB generation, called the frequency discrimination
method, is depicted in Fig. 3.19; this discriminator follows directly from Eqs. (3.24) and
(3.25) presented in Problem 3.10. The SSB modulator of Fig. 3.19 consists of two compo-
nents: product modulator followed by band-pass filter. The product modulator produces
a DSB-SC modulated wave with an upper sideband and a lower sideband. The band-pass
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FIGURE 3.18 (a) Spectrum of a message signal with energy gap centered around zero
frequency. Corresponding spectra of SSB-modulated waves using (b) upper sideband, and
(c) lower sideband. In parts (b) and (c), the spectra are only shown for positive frequencies.
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FIGURE 3.19 Frequency-discrimination scheme for the generation
of a SSB modulated wave.

filter is designed to transmit one of these two sidebands, depending on whether the upper
SSB or lower SSB is the desired modulation. For the design of the band-pass filter to be prac-
tically feasible, there must be a certain separation between the two sidebands that is wide
enough to accommodate the transition band of the band-pass filter. This separation is equal
to where is the lowest frequency component of the message signal, as illustrated in
Fig. 3.18. This requirement limits the applicability of SSB modulation to speech signals for

fa2fa ,
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which but rules it out for video signals and computer data whose spectral con-
tent extends down to almost zero frequency.

Phase Discrimination Method

The second method for SSB generation, called the phase discrimination method, is
depicted in Fig. 3.20; its implementation follows from the time-domain description of SSB
waves defined in Eq. (3.23). This second SSB modulator consists of two parallel paths, one called
the in-phase path and the other called the quadrature path. Each path involves a product mod-
ulator. The sinusoidal carrier waves applied to the two product modulators are in phase-
quadrature, which is taken care of by simply using a phase-shifter as shown in Fig. 3.20.
However, the one functional block in Fig. 3.20 that requires special attention is the wide-band
phase-shifter, which is designed to produce the Hilbert transform in response to the
incoming message signal The role of the quadrature path embodying the wide-band
phase shifter is merely to interfere with the in-phase path so as to eliminate power in one of
the two sidebands, depending on whether upper SSB or lower SSB is the requirement.

The two modulators of Figs. 3.19 and 3.20 are clearly quite different in their struc-
tures. In terms of design challenge, the band-pass filter in the frequency discriminator of
Fig. 3.19 stands out as the functional block that requires special attention. On the other
hand, in the phase discriminator of Fig. 3.20, it is the wide-band phase shifter that requires
special attention.

� COHERENT DETECTION OF SSB

The demodulation of DSB-SC is complicated by the suppression of the carrier in the trans-
mitted signal. To make up for the absence of the carrier in the received signal, the receiver
resorts to the use of coherent detection, which requires synchronization of a local oscilla-
tor in the receiver with the oscillator responsible for generating the carrier in the trans-
mitter. The synchronization requirement has to be in both phase and frequency. Although
the carrier is suppressed, information on the carrier phase and frequency is embedded into
the sidebands of the modulated wave, which is exploited in the receiver. However, the
demodulation of SSB is further complicated by the additional suppression of the upper or
lower sideband. In actuality, however, the two sidebands share an important property: they
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are the images of each other with respect to the carrier. Here again, coherent detection
comes to the rescue of SSB demodulation.

The coherent detector of Fig. 3.12 applies equally well to the demodulation of both
DSB-SC and SSB; the only difference between these two applications is how the modulated
wave is defined.

� Drill Problem 3.12 For the low-pass filter in Fig. 3.12 (assuming perfect synchronism)
to suppress the undesired SSB wave, the following condition must be satisfied

Justify this condition. �

� Drill Problem 3.13 Starting with Eq. (3.23) for a SSB modulated wave, show that the
output produced by the coherent detector of Fig. 3.12 in response to this modulated wave is
defined by

Assume that the phase error in Fig. 3.12. �

� FREQUENCY TRANSLATION

The basic operation performed in single sideband modulation is in fact a form of frequency
translation, which is why single sideband modulation is sometimes referred to as frequency
changing, mixing, or heterodyning.

The idea of single sideband modulation has thus far been presented in the context of
a raw message signal. This idea may be generalized to encompass frequency translation as
follows. Suppose that we have a modulated wave whose spectrum is centered on a car-
rier frequency and the requirement is to translate it upward or downward in frequency,
such that the carrier frequency is changed from to a new value This requirement is
accomplished by using a mixer. As depicted in Fig. 3.21, the mixer is a functional block
that consists of a product modulator followed by a band-pass filter, as it is in a conventional
SSB modulator but with an important difference: the band-pass filter is now straightfor-
ward to design, as explained in what follows.

Specifically, to explain the action of the mixer, consider the spectral situation depicted
in Fig. 3.22(a), where, for the purpose of illustration, it is assumed that the mixer input 
is a wave with carrier frequency and bandwidth 2W. Figure 3.21(b) displays the spec-
trum of the resulting signal produced at the output of the product modulator in
Fig. 3.21.

The signal may be viewed as the sum of two modulated components: one com-
ponent represented by the shaded spectrum in Fig. 3.22(b), and the other component rep-
resented by the unshaded spectrum in this figure. Depending on whether the incoming
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carrier frequency is to be translated upward of downward, we may now identify two
different situations:

(i) Up conversion. In this form of mixing, the translated carrier frequency, denoted by
is greater than the incoming carrier frequency The required local oscillator

frequency is therefore defined by

Solving for we therefore have

In this situation, the unshaded part of the spectrum in Fig. 3.22(b) defines the up-
converted signal and the shaded part of this spectrum defines the image signal
associated with which is removed by the band-pass filter in Fig. 3.21. For obvi-
ous reasons, the mixer in this case is referred to as a frequency-up converter.

(ii) Down conversion. In this second form of mixing, the translated carrier frequency 
is smaller than the incoming carrier frequency as shown by

The required local oscillator frequency is therefore

The picture we have this time is the reverse of that pertaining to up conversion. In par-
ticular, the shaded part of the spectrum in Fig. 3.22(b) defines the down-converted
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signal and the unshaded part of this spectrum defines the associated image sig-
nal. Accordingly, this second mixer is referred to as a frequency-down converter. Note
that in this case, the translated carrier frequency has to be larger than W (i.e., one half
of the bandwidth of the incoming modulated signal ) to avoid sideband overlap.

The purpose of the band-pass filter in the mixer of Fig. 3.21 is now clear: pass the sig-
nal and eliminate the associated image signal. This objective is achieved by aligning
the midband frequency of the filter with the translated carrier frequency and assigning
it a bandwidth equal to that of the incoming modulated signal Regardless of whether
the frequency conversion is up or down, the transition band of the filter is permitted to
occupy the gap from to that is, the permissible width of the tran-
sition band is which, in effect, requires that the local oscillator frequency be
greater than W. Moreover, to avoid spectoral overlap in down conversion, we also require
that be greater than zero; that is, 

It is important to note that mixing is a linear operation. Accordingly, the relation of
the sidebands of the incoming modulated wave to the original carrier existing at the mixer
input is completely preserved at the mixer output.

3.7 Vestigial Sideband Modulation

� MOTIVATION

Single-sideband modulation works satisfactorily for an information-bearing signal (e.g.,
speech signal) with an energy gap centered around zero frequency. However, for the spec-
trally efficient transmission of wideband signals, we have to look to a new method of mod-
ulation for two reasons:

1. Typically, the spectra of wideband signals (exemplified by television video signals and
computer data) contain significant low frequencies, which make it impractical to use
SSB modulation.

2. The spectral characteristics of wideband data befit the use of DSB-SC. However, DSB-
SC requires a transmission bandwidth equal to twice the message bandwidth, which
violates the bandwidth conservation requirement.

To overcome these two practical limitations, we need a compromise method of modulation
that lies somewhere between SSB and DSB-SC in its spectral characteristics. Vestigial side-
band, the remaining modulation scheme to be considered in this section, is that compro-
mise scheme.

Vestigial sideband (VSB) modulation distinguishes itself from SSB modulation in two
practical respects:

1. Instead of completely removing a sideband, a trace or vestige of that sideband is
transmitted; hence, the name “vestigial sideband.”

2. Instead of transmitting the other sideband in full, almost the whole of this second band
is also transmitted.

Accordingly, the transmission bandwidth of a VSB modulated signal is defined by

where is the vestige bandwidth and W is the message bandwidth. Typically, is 25
percent of W, which means that the VSB bandwidth lies between the SSB bandwidth,
W, and DSB-SC bandwidth, 2W.
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� SIDEBAND SHAPING FILTER

To produce VSB modulation, we may use the modulator depicted in Fig. 3.23, which con-
sists of a product modulator followed by a band-pass filter. For VSB modulation, the band-
pass filter is referred to as a sideband shaping filter. Assuming that the vestige of the VSB
lies in the lower sideband of the DSB-SC modulated wave, the VSB spectrum at the mod-
ulator output is shaped in a manner depicted in Fig. 3.24(a). The spectrum shaping is
defined by the transfer function of the filter, which is denoted by The only require-
ment that the sideband shaping performed by must satisfy is that the transmitted ves-
tige compensates for the spectral portion missing from the other sideband. This requirement
ensures that coherent detection of the VSB modulated wave recovers a replica of the mes-
sage signal, except for amplitude scaling.

By imposing this requirement on the VSB demodulation process, it turns out that the
sideband shaping filter must itself satisfy the following condition:

(3.26)

where is the carrier frequency. The term is the positive-frequency part of the
band-pass transfer function shifted to the left by and is the negative-
frequency part of shifted to the right by A proof of Eq. (3.26) dealing with an
arbitrary Fourier transformable message signal is presented later in this section on the
coherent detection of VSB.

Two properties of the sideband shaping filter follow from Eq. (3.26):

1. The transfer function of the sideband shaping filter exhibits odd symmetry about the
carrier frequency To explain this property, we first express as the difference
between two frequency-shifted functions as follows:

(3.27)

The first term denotes the frequency-shifted version of the unit-step fre-
quency function which is depicted in Fig. 3.24(b). That is,

(3.28)

The second term denotes the frequency-shifted version of a new low-pass
transfer function which, as depicted in Fig. 3.24(c), is completely determined
by the vestige of the modulated wave The relationship defined in Eq. (3.27) fol-
lows readily from the three example parts of Fig. 3.24. The important point to note

s1t2.Hn1f2,Hn1f � fc2
u1f2 � b1, for f � 0

0, for f � 0

u1f2,u1f � fc2
H1f2 � u1f � fc2 � Hn1f � fc2, for fc � fn � ƒf ƒ � fc 	 W

H1f2fc .

fc .H1f2 H1f � fc2fc ,H1f2 H1f 	 fc2fc

H1f 	 fc2 	 H1f � fc2 � 1, for �W � f � W

H1f2 H1f2.

Carrier wave
Ac cos(2�fct)

Message
signal m(t) Product

modulator

VSB-shaping
filter:
H(f )

VSB-Modulated
wave s(t)

FIGURE 3.23 VSB modulator using frequency discrimination.
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fc – fv fc + fv fc + Wfc
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f

0
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–0.5
0

FIGURE 3.24 (a) Amplitude response of sideband-shaping filter; only the positive-
frequency portion is shown, the dashed part of the amplitude response is arbitrary.
(b) Unit-step function defined in the frequency domain. (c) Low-pass transfer
function Hn1f2.

from part (c) of the figure is that satisfies the property of odd symmetry about
zero frequency, as shown by

(3.29)

It is therefore in this sense that Property 1 is stated.

Hn1�f2 � �Hn1f2
Hn1f2
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2. The transfer function is required to satisfy the condition of Eq. (3.26) only for
the frequency interval where W is the message bandwidth. The prac-
tical implication of this second property is that, for the case of VSB depicted in 
Fig. 3.24(a), the transfer function of the sideband shaping filter can have an arbi-
trary specification for it is for this reason that the part of the spectrum
lying above is shown dashed in Fig. 3.24(a).

EXAMPLE 3.3 Sinusoidal VSB

Consider the simple example of sinusoidal VSB modulation produced by the sinusoidal mod-
ulating wave

and carrier wave

Let the upper side-frequency at as well as its image at be attenuated by the
factor k. To satisfy the condition of Eq. (3.26), the lower side-frequency at and its
image must be attenuated by the factor The VSB spectrum is therefore

Correspondingly, the sinusoidal VSB modulated wave is defined by

(3.30)

Using well-known trigonometric identities to expand the cosine terms and
we may reformulate Eq. (3.30) as the linear combination of two sinusoidal

DSB-SC modulated waves.

(3.31)

where the first term on the right-hand side is the in-phase component of and the second
term is the quadrature component.
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To summarize, depending on how the attenuation factor k in Eq. (3.31) is defined in
the interval (0, 1), we may identify all the different sinusoidal forms of linear modulated
waves studied in Sections 3.3, 3.6, and 3.7 as follows:

1. for which reduces to DSB-SC

2. for which reduces to lower SSB
for which reduces to upper SSB

3. for which the attenuated version of the upper side-frequency defines the

vestige of 

for which the attenuated version of the lower side frequency defines the

vestige of 

� COHERENT DETECTION OF VSB

For an exact recovery of the message signal from the VSB modulated wave except
for some amplitude scaling, we may use the coherent detector shown in Fig. 3.12. As with
the DSB-SC and SSB demodulations studied previously, the demodulation of VSB consists
of multiplying with a locally generated sinusoid and then low-pass filtering the result-
ing product signal It is assumed that the local sinusoid in the coherent detector of
Fig. 3.12 is in perfect synchronism with the carrier in the modulator responsible for gen-
erating the VSB-modulated wave. Then setting the phase in the local sinusoid in Fig. 3.12
equal to zero, we express the Fourier transform of the product signal

as follows

(3.32)

where

Next, we express the Fourier transform of the VSB modulated wave as

(3.33)

which follows from Fig. 3.23 depicting the VSB modulator; M(f) is the message spectrum
and is the transfer function of the sideband shaping filter. Shifting the VSB spectrum

to the right by yields

(3.34)

and shifting it to the left by yields
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Hence, substituting Eqs. (3.34) and (3.35) into Eq. (3.32) and then combining terms, we
obtain

which, in light of the condition imposed on in Eq. (3.26), reduces to

(3.36)

The first term on the right-hand side of Eq. (3.36) is a scaled version of the message spec-
trum The second term of Eq. (3.36) is the Fourier transform of high-frequency com-
ponents, representing a new VSB wave modulated onto a carrier of frequency Provided
that the low-pass filter in the coherent detector of Fig. 3.12 has a cutoff frequency just
slightly greater than the message bandwidth, the high-frequency components of are
removed by the low-pass filter. The resulting demodulated signal is a scaled version of the
desired message signal 

� Drill Problem 3.14 Validate the statement that the high-frequency components in 
Eq. (3.36) represent a VSB wave modulated onto a carrier of frequency �

EXAMPLE 3.4 Coherent detection of sinusoidal VSB

Recall from Eq. (3.31) of Example 3.3, that the sinusoidal VSB modulated signal is defined by

Multiplying by in accordance with perfect coherent detection yields the
product signal

Next, using the trigonometric identities
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3 Another procedure used for the detection of a VSB modulated wave is to add a pilot to the modulated wave at
the transmitter. The pilot would be a frequency-translated version of the carrier used in the generation of the
modulated wave, but it lies outside the band of frequencies occupied by the modulated wave. At the receiver, the
pilot is extracted by means of a band-pass filter and then translated (upward or downward) to produce a replica
of the original carrier. With this replica of the carrier available to the receiver, coherent detection may be used to
recover the original message signal.

A similar procedure can be used for the coherent detection of SSB modulated waves.

and

we may redefine as

(3.37)

The first term on the right-hand side of Eq. (3.37) is a scaled version of the message signal
The second term of the equation is a new sinusoidal VSB wave modulated

onto a carrier of frequency which represents the high-frequency components of This
second term is removed by the low-pass filter in the detector of Fig. 3.12, provided that the cut-
off frequency of the filter is just slightly greater than the message frequency 

EXAMPLE 3.5 Envelope detection of VSB plus carrier

The coherent detection of VSB requires synchronism of the receiver to the transmitter, which
increases system complexity. To simplify the demodulation process, we may purposely add the
carrier to the VSB signal (scaled by the factor ) prior to transmission and then use envelope
detection in the receiver.3 Assuming sinusoidal modulation, the “VSB-plus-carrier” signal is
defined [see Eq. (3.31) of Example 3.3) as

The envelope of is therefore
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Equation (3.38) shows that distortion in the envelope detection performed on the envelope
is contributed by the quadrature component of the sinusoidal VSB signal. This distortion

can be reduced by using a combination of two methods:

� The amplitude sensitivity factor is reduced, which has the effect of reducing the per-
centage modulation.

� The width of the vestigial sideband is reduced, which has the effect of reducing the fac-
tor

Both of these methods are intuitively satisfying in light of what we see inside the square brack-
ets in Eq. (3.38).

3.8 Baseband Representation of Modulated
Waves and Band-Pass Filters

From the discussion of different modulation strategies presented in this chapter, we see
that a modulated wave using a sinusoidal wave as the carrier is actually a band-pass sig-
nal centered on the carrier frequency. By virtue of this very fact, the carrier wave imprints
itself into the structure of the modulated wave. In an explicit sense, it does so when the car-
rier wave is contained as a separate component in the transmitted signal. When the carrier
wave is suppressed, it makes its presence known to the receiver in an implicit sense by posi-
tioning the sidebands of the transmitted spectrum around the carrier frequency in one form
or another, depending on the type of modulation used.

Typically, the carrier frequency is large compared to the message bandwidth, which
makes the processing of a modulated wave on a digital computer a difficult proposition.
However, from the modulation theory presented in this chapter, we do know that all the
information content of a message signal resides completely in the sidebands of the modu-
lated wave. Accordingly, when the objective is to process a modulated wave on a com-
puter, the efficient procedure is to do the processing on the baseband version of the
modulated wave rather than directly on the modulated wave itself. The term “baseband”
is used to designate the band of frequencies representing the original signal as delivered by
a source of information.

� BASEBAND REPRESENTATION OF MODULATED WAVES

Consider then a generic, linear modulated wave, which is defined by

(3.39)

Let

be the carrier wave with frequency and

be the quadrature-phase version of the carrier. To simplify matters, without loss of gener-
ality we have set the carrier amplitude equal to unity. We now express the modulated wave
in the compact form

(3.40)s1t2 � sI1t2c1t2 � sQ1t2cn1t2

cn1t2 � sin12pfct2
fc ,

c1t2 � cos12pfct2
s1t2 � sI1t2 cos12pfct2 � sQ1t2 sin12pfct2

11 � 2k2.

ka

a1t2
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The term is called the in-phase component of the modulated wave so called
because it is multiplied by the carrier By the same token, the term is called the
quadrature-phase component or simply the quadrature component of so called because
it is multiplied by the quadrature carrier The carriers and are orthogonal to
each other.

Equation (3.39) or (3.40) is itself referred to as the canonical representation of lin-
ear modulated waves. Most important, this representation includes all the members of the
amplitude modulation family discussed in this chapter, as shown in Table 3.1.

From this table, it is clearly apparent that the information content of the message
signal and the way in which the modulation strategy is implemented are fully described
by the in-phase component in both AM and DSB-SC, or in the combination of the in-
phase component and the quadrature component in both SSB and VSB. More-
over, the orthogonality of and with respect to each other prompts us to introduce
a new signal called the complex envelope of the modulated wave which is formally
defined by

(3.41)

This definition is motivated by the way in which we deal with complex numbers. In any
event, the important point to take from Eq. (3.41) is the fact that the complex envelope 
accounts fully for the information contents of both and Note, however, that the
complex envelope is a fictitious signal, the use of which is intended merely to simplify
signal processing operations on band-pass signals, which are exemplified by modulated
waves based on a sinusoidal carrier.

In a manner corresponding to Eq. (3.41), we may define the complex carrier wave

(3.42)

Accordingly, the modulated wave is itself defined by

(3.43)

where extracts the real part of the complex quantity enclosed inside the square
brackets.

Now we can see the practical advantage of the complex envelope over the real-
valued modulated wave 

1. The highest frequency component of may be as large as where is the
carrier frequency and W is the message bandwidth.

2. On the other hand, the highest frequency component of is considerably smaller,
being limited by the message bandwidth W.

Yet, in using Eq. (3.43) as the representation of the modulated wave there is nothing
lost whatsoever.

Given an arbitrary modulated wave we may derive the in-phase compound 
and quadrature component using the scheme shown in Fig. 3.25(a). Conversely, givensQ1t2 sI1t2s1t2,
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s
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4 Two additional comments on Table 3.1 are in order:

(i) In SSB modulation, the Hilbert transform

defines the quadrature component of the modulated wave that is,

In the frequency domain, the Hilbert transformation is described by

where

is the signum function.

(ii) In VSB modulation, the quadrature component is obtained by passing the message signal
through a linear time-invariant filter whose transfer function is denoted by The is itself

defined by

where is the transfer function of the VSB sideband shaping filter. In the limit, as the vestige sideband
approaches zero, we have

and with it the VSB reduces to SSB, which is exactly how it should be.

lim
fnS0
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H1f2
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(b) Vestige of upper 
sideband transmitted where is the transfer function 

of the VSB sideband shaping filter.
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TABLE 3.1 Different Forms of Linear Modulation as Special Cases 
of Eq. (3.39), assuming unit carrier amplitude

In-phase Quadrature
component  component

Type of modulation Comments

AM 0
sensitivity

signal
DSB-SC 0

SSB:

(a) Upper sideband transform  
transmitted of (see part (i) of footnote 4)4

(b) Lower sideband 
transmitted

VSB:

(a) Vestige of lower of filter 
sideband transmitted with transfer function 

due to message signal 

The is defined by the formula

(see part (ii) of footnote 4)

HQ1f2
m1t2.HQ1f2

m�1t2 � response
1
2

m�1t21
2

m1t2

�
1
2

mn 1t21
2

m1t2
m1t2

mn 1t2 � Hilbert
1
2

mn 1t21
2

m1t2
m1t2 m1t2 � message

ka � amplitude1 	 kam1t2
sQ1t2sI1t2



140 CHAPTER 3 � AMPLITUDE MODULATION
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FIGURE 3.25 (a) Scheme for deriving the in-phase and quadrature components of a
linearly modulated (i.e., band-pass) signal. (b) Scheme for reconstructing the modulated
signal from its in-phase and quadrature components.

the pair of in-phase component and quadrature component we may generate
the modulated wave using the complementary scheme shown in Fig. 3.25(b). For obvi-
ous reasons, these two schemes are respectively called the analyzer and synthesizer of
modulated waves.

� Drill Problem 3.15 Derivation of the synthesizer depicted in Fig. 3.25(b) follows directly
from Eq. (3.39). However, derivation of the analyzer depicted in Fig. 3.25(a) requires more
detailed consideration. Given that and the trigonometric identities:

and

show that the analyzer of Fig. 3.25(a) yields and as its two outputs. �

� BASEBAND REPRESENTATION OF BAND-PASS FILTERS

The baseband representation of a band-pass signal (exemplified by a modulated wave)
developed in this section prompts the desire to develop the corresponding representation
for band-pass filters, including band-pass communication channels.

To this end, consider a linear band-pass filter whose input–output behavior is defined
by the transfer function which is limited to frequencies within of the mid-band
frequency in effect, 2B defines the bandwidth of the filter. Suppose a modulated wave

is applied to this filter, producing the output as shown in Fig. 3.26(a). We assume
that the transmission bandwidth of the modulated wave is 2W, centered on a carrier fre-
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~

~~
Complex low-
pass filter H(f )

~

FIGURE 3.26 Band-pass filter to complex low-pass system transformation: (a) Real-valued
band-pass configuration, and (b) corresponding complex-valued low-pass configuration.

5 For a derivation of the transformation defined by Eq. (3.44), see Haykin (2000), p. 731.

quency In other words, the spectrum of the modulated wave and the frequency response
of the band-pass filter are aligned, with (The reason for ignoring the case 
is that in such a situation the modulated wave passes through the filter completely
unaffected, which is therefore of no practical importance.) Obviously, we may determine
the output signal by evaluating the inverse Fourier transform of the product 
A simpler procedure, however, is to use a band-pass to low-pass (i.e., baseband) transfor-
mation,5 which eliminates the carrier frequency from the analysis. Specifically, this trans-
formation is defined by

(3.44)

The new frequency function is the transfer function of the complex low-pass filter,
which results from the transformation defined in Eq. (3.44). The scaling factor 2 in this equa-
tion is required to make sure that the transformation yields the exact result when we come
to evaluate the output 

According to Eq. (3.44), we may determine by proceeding as follows:

1. Given the transfer function of a band-pass filter, which is defined for both pos-
itive and negative frequencies, keep the part of that corresponds to positive fre-
quencies; let denote this part.

2. Shift to the left along the frequency axis by an amount equal to and scale
it by the factor 2. The result so obtained defines the desired 

Having determined the complex low-pass filter characterized by we may then pro-
ceed onto the next stage of complex signal processing. Specifically, we input into this fil-
ter the complex envelope of the modulated wave the is derived from in 
accordance with Eq. (3.41). Then, applying to as depicted in Fig. 3.26(b), we
determine the complex envelope of the output signal Finally, the actual output

is determined from the formula

(3.45)

which is simply a rewrite of Eq. (3.43).

� Drill Problem 3.16 Starting with the complex low-pass system depicted in
Fig. 3.26(b), show that the  derived from Eq. (3.45) is identical to the actual output 
in Fig. 3.26 (a). �
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3.9 Theme Examples

In this section, we describe three theme examples, which build on the continuous-wave
modulation theory described in previous sections of the chapter. The presentations empha-
size insight into the operational aspects of analog communication systems rather than
mathematical equations or design details.

� SUPERHETERODYNE RECEIVER

In a broadcasting system, irrespective of whether it is based on amplitude modulation or
frequency modulation, the receiver not only has the task of demodulating the incoming
modulated signal, but also it is required to perform some other system functions:

� Carrier-frequency tuning, the purpose of which is to select the desired signal (i.e.,
desired radio or TV station).

� Filtering, which is required to separate the desired signal from other modulated sig-
nals that may be picked up along the way.

� Amplification, which is intended to compensate for the loss of signal power incurred
in the course of transmission.

The superheterodyne receiver, or superhet as it is often referred to, is a special type of
receiver that fulfills all three functions, particularly the first two, in an elegant and practi-
cal fashion. Specifically, it overcomes the difficulty of having to build a tunable highly
frequency-selective and variable filter. Indeed, practically all radio and TV receivers now
being made are of the superheterodyne type.

Basically, the receiver consists of a radio-frequency (RF) section, a mixer and local
oscillator, an intermediate frequency (IF) section, demodulator, and power amplifier. Typ-
ical frequency parameters of commercial AM radio receivers are listed in Table 3.2. (For
the sake of completeness, the table also includes the corresponding frequency parameters
of commercial FM receivers; frequency modulation (FM) theory is covered in Chapter 4.)
Figure 3.27 shows the block diagram of a superheterodyne receiver for amplitude modu-
lation using an envelope detector for demodulation.

The incoming amplitude-modulated wave is picked up by the receiving antenna and
amplified in the RF section that is tuned to the carrier frequency of the incoming wave. The
combination of mixer and local oscillator (of adjustable frequency) provides a heterodyn-
ing function, whereby the incoming signal is converted to a predetermined fixed interme-
diate frequency, usually lower than the incoming carrier frequency. This frequency

RF
section Mixer

IF
section

Envelope
detector

Local
oscillator

Loudspeaker

Antenna

Common
tuning

Audio
amplifier

FIGURE 3.27 Basic elements of an AM radio receiver of the superheterodyne type.



translation is achieved without disturbing the relation of the sidebands to the carrier. The
result of the heterodyning is to produce an intermediate-frequency carrier defined by

(3.46)

where is the frequency of the local oscillator and is the carrier frequency of the
incoming RF signal. We refer to as the intermediate frequency (IF), because the signal
is neither at the original input frequency nor at the final baseband frequency. The mixer-
local oscillator combination is sometimes referred to as the first detector, in which case
the demodulator (envelope detector in Fig. 3.27) is called the second detector.

The IF section consists of one or more stages of tuned amplification, with a bandwidth
as required for the particular type of signal that the receiver is intended to handle. This sec-
tion provides most of the amplification and selectivity in the receiver. The output of the IF
section is applied to a demodulator, the purpose of which is to recover the baseband sig-
nal. If coherent detection is used, then a coherent signal source must be provided in the
receiver. The final operation in the receiver is the power amplification of the recovered
message signal.

In a superheterodyne receiver, the mixer will develop an intermediate frequency out-
put when the input signal frequency is greater or less than the local oscillator frequency by
an amount equal to the intermediate frequency. That is, there are two input frequencies—
namely, that will result in at the mixer output. This introduces the possibil-
ity of simultaneous reception of two signals differing in frequency by twice the intermediate
frequency. For example, a receiver tuned to 1 MHz and having an IF of 0.455 MHz is sub-
ject to an image interference at 1.910 MHz. Indeed, any receiver with this value of IF, when
tuned to any station, is subject to image interference at a frequency of 0.910 MHz higher
than the desired station. Since the function of the mixer is to produce the difference between
two applied frequencies, it is incapable of distinguishing between the desired signal and its
image in that it produces an IF output from either one of them. The only practical cure for
the suppression of image interference is to employ highly selective stages in the RF section
(i.e., between the antenna and the mixer) in order to favor the desired signal and discrim-
inate against the undesired or image signal. The effectiveness of suppressing unwanted
image signals increases as the number of selective stages in the radio-frequency section
increases and as the ratio of intermediate to signal frequency increases.

� TELEVISION SIGNALS

Vestigial sideband modulation, discussed in Section 3.7, plays a key role in commercial
television. The exact details of the modulation format used to transmit the video signal
characterizing a TV system are influenced by two factors:

1. The video signal exhibits a large bandwidth and significant low-frequency content,
which suggest the use of vestigial sideband modulation.

2. The circuitry used for demodulation in the receiver should be simple and therefore
inexpensive. This suggests the use of envelope detection, which requires the addition
of a carrier to the VSB modulated wave. 

fIFƒfLO � fIF ƒ ,

fIF
fRFfLO

fIF � fRF � fLO
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TABLE 3.2 Typical Frequency Parameters of AM and FM Radio Receivers

AM Radio FM Radio

RF carrier range 0.535–1.605 MHz 88–108 MHz
Mid-band frequency of IF section 0.455 MHz 10.7 MHz
IF bandwidth 10 kHz 200 kHz
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FIGURE 3.28 (a) Idealized amplitude spectrum of a transmitted TV signal. (b) Amplitude
response of a VSB shaping filter in the receiver.

With regard to point 1, however, it should be stressed that although there is indeed a basic
desire to conserve bandwidth, in commercial TV broadcasting the transmitted signal is not
quite VSB modulated. The reason is that at the transmitter the power levels are high, with
the result that it would be expensive to rigidly control the filtering of sidebands. Instead, a
VSB filter is inserted in each receiver where the power levels are low. The overall performance
is the same as conventional vestigial-sideband modulation, except for some wasted power
and bandwidth. These remarks are illustrated in Fig. 3.28. In particular, Fig. 3.28(a) shows
the idealized spectrum of a transmitted TV signal. The upper sideband, 25 percent of the
lower sideband, and the picture carrier are transmitted. The frequency response of the VSB
filter used to do the required spectrum shaping in the receiver is shown in Fig. 3.28(b).

The channel bandwidth used for TV broadcasting in North America is 6 MHz, as indi-
cated in Fig. 3.28(b). This channel bandwidth not only accommodates the bandwidth
requirement of the VSB modulated video signal but also provides for the accompanying
sound signal that modulates a carrier of its own. The values presented on the frequency axis
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in Figs. 3.28(a) and 3.28(b) pertain to a specific TV channel. According to this figure, the
picture carrier frequency is at 55.25 MHz, and the sound carrier frequency is at 59.75 MHz.
Note, however, that the information content of the TV signal lies in a baseband spectrum
extending from 1.25 MHz below the picture carrier to 4.5 MHz above it.

With regard to point 2, on page 143, the use of envelope detection (applied to a VSB
modulated wave plus carrier) produces waveform distortion in the video signal recovered
at the detector output. As discussed in Example 3.5, the waveform distortion is produced
by the quadrature component of the VSB modulated wave. As pointed out in that exam-
ple, we may reduce the extent of waveform distortion by reducing the percentage modu-
lation and minimizing the width of the vestigial sideband.

� FREQUENCY-DIVISION MULTIPLEXING

Another important signal processing operation in analog communications is multiplexing,
whereby a number of independent signals can be combined into a composite signal suitable
for transmission over a common channel. Voice frequencies transmitted over telephone systems,
for example, range from 300 to 3100 Hz. To transmit a number of these signals over the same
channel (e.g. cable), the signals must be kept apart so that they do not interfere with each
other, and thus they can be separated at the receiving end. This is accomplished by separating
the signals either in frequency or in time. The technique of separating the signals in frequency
is referred to as frequency-division multiplexing (FDM), whereas the technique of separating
the signals in time is called time-division multiplexing (TDM). In this subsection, we discuss
FDM; the discussion of TDM is deferred to Chapter 5.

A block diagram of an FDM system is shown in Fig. 3.29. The incoming message sig-
nals are assumed to be of the low-pass type, but their spectra do not necessarily have nonzero
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FIGURE 3.29 Block diagram of frequency-division multiplexing (FDM) system.
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values all the way down to zero frequency. Following each signal input, we have shown a low-
pass filter, which is designed to remove high-frequency components that do not contribute sig-
nificantly to signal representation but are capable of disturbing other message signals that share
the common channel. These low-pass filters may be omitted only if the input signals are suf-
ficiently band-limited initially. The filtered signals are applied to modulators that shift the fre-
quency ranges of the signals so as to occupy mutually exclusive frequency intervals. The
necessary carrier frequencies needed to perform these frequency translations are obtained
from a carrier supply. For the modulation, we may use any one of the methods described in
previous sections of this chapter. However, in telephony, the most widely used method of
modulation in frequency-division multiplexing is single sideband modulation, which, in the
case of voice signals, requires a bandwidth that is approximately equal to that of the origi-
nal voice signal. In practice, each voice input is usually assigned a bandwidth of 4 kHz. The
band-pass filters following the modulators are used to restrict the band of each modulated
wave to its prescribed range. The resulting band-pass filter outputs are next combined in par-
allel to form the input to the common channel. At the receiving terminal, a bank of band-pass
filters, with their inputs connected in parallel, is used to separate the message signals on a fre-
quency-occupancy basis. Finally, the original message signals are recovered by individual
demodulators. Note that the FDM system shown in Fig. 3.29 operates in only one direction.
To provide for two-way transmission, as in telephony for example, we have to completely
duplicate the multiplexing facilities, with the components connected in reverse order and
with the signal waves proceeding from right to left.

EXAMPLE 3.6 Modulation steps in a 60-channel FDM system

The practical implementation of an FDM system usually involves many steps of modulation
and demodulation, as illustrated in Fig. 3.30. The first multiplexing step combines 12 voice
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FIGURE 3.30 Illustration of the modulation steps in an FDM system.
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inputs into a basic group, which is formed by having the nth input modulate a carrier at fre-
quency kHz, where The lower sidebands are then selected by
band-pass filtering and combined to form a group of 12 lower sidebands (one for each voice
input). Thus the basic group occupies the frequency band 60–108 kHz. The next step in the
FDM hierarchy involves the combination of five basic groups into a supergroup. This is accom-
plished by using the nth group to modulate a carrier of frequency kHz, where

Here again the lower sidebands are selected by filtering and then combined to
form a supergroup occupying the band 312–552 kHz. Thus, a supergroup is designed to accom-
modate 60 independent voice inputs. The reason for forming the supergroup in this manner is
that economical filters of the required characteristics are available only over a limited fre-
quency range. In a similar manner, supergroups are combined into mastergroups, and master-
groups are combined into very large groups.

3.10 Summary and Discussion

In this chapter, we studied the family of amplitude modulation, in which the carrier is a sine
wave whose amplitude is varied in accordance with a message signal. The format of this
analog modulation family is typified by the example modulated wave

(3.47)

where is the message signal and is the carrier. The amplitude mod-
ulation family encompasses four types of continuous wave modulation, depending on
the spectral content of the modulated wave. The four types of modulation and their
practical merits are summarized here:

1. Amplitude modulation (AM), in which the upper and lower sidebands are transmit-
ted in full, accompanied by the carrier wave. Generation of an AM wave can be
accomplished simply by using a nonlinear device (e.g., diode) in a square-law mod-
ulator, for example. By the same token, demodulation of the AM wave is accom-
plished equally simply in the receiver by using an envelope detector, for example. It
is for these two reasons, simple generation and simple detection, that amplitude mod-
ulation is commonly used in commercial AM radio broadcasting, which involves a
single powerful transmitter and numerous receivers that are relatively inexpensive to
build.

2. Double sideband-suppressed carrier (DSB-SC) modulation, defined by Eq. (3.47), in
which only the upper and lower sidebands are transmitted. The suppression of the car-
rier wave means that DSB-SC modulation requires less power than AM to transmit
the same message signal. This advantage of DSB-SC modulation over AM is, however,
attained at the expense of increased receiver complexity. DSB-SC modulation is there-
fore well suited for point-to-point communication involving one transmitter and one
receiver. In this form of analog communication, transmitted power is at a premium
and the use of a complex receiver is therefore justifiable.

3. Single sideband (SSB) modulation, in which only the upper sideband or lower side-
band is transmitted. It is optimum in the sense that it requires the minimum trans-
mitted power and the minimum channel bandwidth for conveying a message signal
from one point to another. However, implementation of the SSB transmitter imposes
several constraints on the spectral content of the incoming message signal. Specifically,
it requires the presence of a low-frequency gap around zero frequency, which for
example, is satisfied by voice signals for telephonic communication.

Ac cos12pfct2m1t2
s1t2 � Acm1t2 cos12pfct2

n � 1, 2, Á , 5.
fc � 372 	 48n

n � 1, 2, Á , 12.fc � 60 	 4n
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4. Vestigial sideband modulation, in which “almost” the whole of one sideband and a
“vestige” of the other sideband are transmitted in a prescribed complementary fash-
ion. VSB modulation requires a channel bandwidth that is intermediate between that
required for SSB and DSB-SC systems, and the saving in bandwidth can be significant
if modulating signals with large bandwidths are being handled, as in the case of tele-
vision signals and high-speed digital data.

One final comment is in order. Although the development of the amplitude modulation
family has been motivated by its direct relevance to analog communications, many aspects
of this branch of modulation theory are equally applicable to digital communications. If,
for example, the message signal in Eq. (3.47) for the modulated wave is restricted to
levels of or representing a binary “0” and “1” respectively, then we have a basic
form of digital modulation known as binary phase-shift-keying (BPSK) that is discussed fur-
ther in Chapter 7.

ADDITIONAL PROBLEMS

3.17 Throughout the chapter we focused on

as the sinusoidal carrier wave. Suppose we choose

as the sinusoidal carrier wave. To be consistent, suppose we also define

(a) Evaluate the spectrum of the new definition of AM:

where is the amplitude sensitivity.
(b) Compare the result derived in part (a) with that studied in Example 3.1.
(c) What difference does the formulation in this problem make to the formulation of modula-

tion theory illustrated in Example 3.1?
3.18. Consider the message signal

and the carrier wave

(a) Sketch (to scale) the resulting AM wave for 75 percent modulation.
(b) Find the power developed across a load of 100 ohms due to this AM wave.

3.19. Using the message signal

determine and sketch the modulated wave for amplitude modulation whose percentage modu-
lation equals the following values:
(a) 50 percent
(b) 100 percent
(c) 125 percent

m1t2 �
t

1 	 t2

c1t2 � 50 cos1100pt2 volts

m1t2 � 20 cos12pt2 volts

ka

s1t2 � Ac31 	 kam1t24 sin12pfct2
m1t2 � Ac sin12pfmt2
c1t2 � Ac sin12pfct2
c1t2 � Ac cos12pfct2

	1�1
s1t2
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3.20 Suppose a nonlinear device is available for which the output current and input voltage are
related by

where and are constants. Explain how such a device could be used to provide amplitude
modulation. Could such a device also be used for demodulation? Justify your answer.

3.21 Consider the DSB-SC modulated wave obtained by using the sinusoidal modulating wave

and the carrier wave

The phase angle denoting the phase difference between and at time is vari-
able. Sketch this modulated wave for the following values of 
(a)
(b)
(c)
(d)
Comment on your results.

3.22 Given the nonlinear device described in Problem 3.20, explain how it could be used to provide
a product modulator.

3.23 Consider a message signal with the spectrum shown in Fig. 3.31. The message bandwidth
This signal is applied to a product modulator, together with a carrier wave

producing the DSB-SC modulated wave This modulated wave is next
applied to a coherent detector. Assuming perfect synchronism between the carrier waves in the
modulator and detector, determine the spectrum of the detector output when: (a) the carrier fre-
quency and (b) the carrier frequency What is the lowest carrier
frequency for which each component of the modulated wave is uniquely determined
by m1t2? s1t2fc � 0.75 kHz.fc � 1.25 kHz

s1t2.Ac cos12pfct2,W � 1 kHz.
m1t2

f � 135°
f � 90°
f � 45°
f � 0

f:
t � 0,m1t2c1t2f,

c1t2 � Ac cos12pfct 	 f2
m1t2 � Am cos12pfmt2

a3a1

io � a1ni 	 a3ni
3

niio

f
–W W

M( f )

0 FIGURE 3.31 Problem 3.23

3.24 Consider a composite wave obtained by adding a noncoherent carrier to a
DSB-SC wave This composite wave is applied to an ideal envelope detector.
Find the resulting detector output for
(a)
(b) and

3.25 A DSB-SC wave is demodulated by applying it to a coherent detector.
(a) Evaluate the effect of a frequency error in the local carrier frequency of the detector, mea-

sured with respect to the carrier frequency of the incoming DSB-SC wave.
(b) For the case of a sinusoidal modulating wave, show that because of this frequency error, the

demodulated wave exhibits beats at the error frequency. Illustrate your answer with a sketch
of this demodulated wave. (A beat refers to a signal whose frequency is the difference
between the frequencies of two input signals.)

¢f

ƒm1t2 ƒ V Ac>2f 
 0
f � 0

cos12pfct2m1t2. Ac cos12pfct 	 f2
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3.26 Consider a pulse of amplitude A and duration T. This pulse is applied to a SSB modulator, pro-
ducing the modulated wave Determine the envelope of and show that this envelope
exhibits peaks at the beginning and end of the pulse.

3.27 (a) Consider a message signal containing frequency components at 100, 200, and 400
Hz. This signal is applied to a SSB modulator together with a carrier at 100 kHz, with only
the upper sideband retained. In the coherent detector used to recover the local oscil-
lator supplies a sinusoidal wave of frequency 100.02 kHz. Determine the frequency com-
ponents of the detector output.

(b) Repeat your analysis, assuming that only the lower sideband is transmitted.
3.28 Throughout this chapter, we have expressed the sinusoidal carrier wave in the form

where is the carrier amplitude and is the carrier frequency. In Chapter 7 dealing with dig-
ital band-pass modulation techniques, we find it more convenient to express the carrier in the
form

where is the duration allotted to the transmission of symbol 1 or symbol 0. Determine the
value of carrier amplitude for the energy in per symbol to equal unity.

ADVANCED PROBLEMS

3.29 For a p-n junction diode, the current i through the diode and the voltage across it are related by

where is the reverse saturation current and is the thermal voltage defined by

where k is Boltzmann’s constant in joules per degree Kelvin, T is the absolute temperature in
degrees Kelvin, and e is the charge of an electron. At room temperature, 
(a) Expand i as a power series in retaining terms up to 
(b) Let

where and Determine the spectrum of the resulting diode cur-
rent i.

(c) Specify the bandpass filter required to extract from the diode current an AM wave with
carrier frequency 

(d) What is the percentage modulation of this AM wave?
3.30 Consider the quadrature-carrier multiplex system of Fig. 3.17. The multiplexed signal pro-

duced at the transmitter output in part (a) of this figure is applied to a communication channel
of transfer function The output of this channel is, in turn, applied to the receiver input
in part (b) of Fig. 3.17. Prove that the condition

H1fc 	 f2 � H*1fc � f2, for 0 � f � W

H1f2.
s1t2

fc .

fc � 100 kHz.fm � 1 kHz

v � 0.01 cos12pfmt2 	 0.01 cos12pfct2 volts

n3.n,
VT � 0.026 volt.

VT �
kT
e

VTI0

i � I0Bexp¢�
n

VT
≤ � 1R n

c1t2Ac

Tb

c1t2 � A 2
Tb

 cos12pfct2

fcAc

c1t2 � Ac cos12pfct2

m1t2,
m1t2

s1t2,s1t2.
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is necessary for recovery of the message signals and at the receiver outputs; is
the carrier frequency, W is the message bandwidth. The asterisk in denotes com-
plex conjugation. 
Hint: Evaluate the spectra of the two receiver outputs.

3.31 (a) Let denote the SSB wave obtained by transmitting only the upper sideband, and 
its Hilbert transform. Show that

and

where is the message signal, is its Hilbert transform, the carrier frequency,
and is the carrier amplitude.

(b) Show that the corresponding equations in terms of the SSB wave obtained by trans-
mitting only the lower sideband are

and

(c) Using the results of (a) and (b), set up the block diagrams of a receiver for demodulating an
SSB wave.

Note: The Hilbert transform is defined in Problem 2.52; see also footnote 4 of this chapter.
3.32 In this problem, we continue the discussion on VSB modulation for the case when a vestige of

the lower sideband is transmitted; Fig. 3.24 depicts the frequency response of the sideband
shaping filter used to generate such a modulated wave. In particular, we wish to examine the
complex representation of this filter, denoted by 

Let and denote the in-phase and quadrature components of respec-
tively. Show that over the interval we have
(a) represents an all-pass filter; that is, the frequency response of the filter is constant as

shown by

where W is the message bandwidth.
(b) represents a low-pass filter with an odd-symmetric frequency response, described by

the following three relations

1.

2.

3.

where is the width of the vestigial sideband.fv

HQ1f2 � 1  for fv � f � W

HQ102 � 0

HQ1�f2 � �HQ1f2,  �W � f � W

HQ1f2
H1f2 � 1,  for �W � f � W

HI1f2
�W � f � W,

H
'1f2,HQ1f2HI1f2 H

'1f2.
H1f2

mn 1t2 �
2
Ac
3sl1t2 cos12pfct2 � snl1t2 sin12pfct24

m1t2 �
2
Ac
3sl1t2 cos12pfct2 	 snl1t2 sin12pfct24

sl1t2
Ac

fcmn 1t2m1t2
mn 1t2 �

2
Ac
3snu1t2 cos12pfct2 � su1t2 sin12pfct24

m1t2 �
2
Ac
3su1t2 cos12pfct2 	 snu1t2 sin12pfct24

snu1t2su1t2

H*1fc � f2 fcm21t2m11t2
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CHAPTER 4

ANGLE MODULATION

In the previous chapter, we investigated the effect of slowly varying the amplitude of a
sinusoidal carrier wave in accordance with an information-bearing signal, keeping the car-
rier frequency fixed. There is another way of modulating a sinusoidal carrier wave—
namely, angle modulation, in which the angle of the carrier wave is varied according to the
information-bearing signal. In this second family of modulation techniques, the amplitude
of the carrier wave is maintained constant.

An important feature of angle modulation is that it can provide better discrimination
against noise and interference than amplitude modulation. As will be shown in Chapter 9,
however, this improvement in performance is achieved at the expense of increased trans-
mission bandwidth; that is, angle modulation provides us with a practical means of
exchanging channel bandwidth for improved noise performance. Such a tradeoff is not
possible with amplitude modulation. Moreover, the improvement in noise performance in
angle modulation is achieved at the cost of increased system complexity in both the trans-
mitter and receiver.

The material presented in this chapter on angle modulation will teach us three
lessons:

� Lesson 1: Angle modulation is a nonlinear process, which testifies to its sophisticated
nature. In the context of analog communications, this distinctive property of angle modu-
lation has two implications:

� In analytic terms, the spectral analysis of angle modulation is complicated.

� In practical terms, the implementation of angle modulation is demanding.

Both of these statements are made with amplitude modulation as the frame of reference.

� Lesson 2: Whereas the transmission bandwidth of an amplitude-modulated wave (or any
of its variants) is of limited extent, the transmission bandwidth of an angle-modulated
wave may assume an infinite extent, at least in theory.

� Lesson 3: Given that the amplitude of the carrier wave is maintained constant, we would
intuitively expect that additive noise would affect the performance of angle modulation to
a lesser extent than amplitude modulation.
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4.1 Basic Definitions

Let denote the angle of a modulated sinusoidal carrier at time t; it is assumed to be a
function of the information-bearing signal or message signal. We express the resulting
angle-modulated wave as

(4.1)

where is the carrier amplitude. A complete oscillation occurs whenever the angle 
changes by radians. If increases monotonically with time, then the average fre-
quency in hertz, over a small interval from t to is given by

Allowing the time interval to approach zero leads to the following definition for the
instantaneous frequency of the angle-modulated signal 

(4.2)

where, in the last line, we have invoked the definition for the derivative of the angle 
with respect to time t.

Thus according to Eq. (4.1), we may interpret the angle-modulated signal as a
rotating phasor of length and angle The angular velocity of such a phasor is

measured in radians per second. In the simple case of an unmodulated carrier, the
angle is

and the corresponding phasor rotates with a constant angular velocity equal to radi-
ans per second. The constant defines the angle of the unmodulated carrier at time 

There are an infinite number of ways in which the angle may be varied in some
manner with the message signal. However, we shall consider only two commonly used
methods, phase modulation and frequency modulation, as defined below:

1. Phase modulation (PM) is that form of angle modulation in which the instantaneous
angle is varied linearly with the message signal as shown by

(4.3)

The term represents the angle of the unmodulated carrier with the constant 
set equal to zero for convenience of presentation; the constant represents the phase
sensitivity factor of the modulator, expressed in radians per volt on the assumption
that is a voltage waveform. The phase-modulated wave is correspondingly
described in the time domain by

(4.4)s1t2 � Ac cos32pfc t 	 kpm1t24
s1t2m1t2
kp

fc2pfct

ui1t2 � 2pfc t 	 kpm1t2
m1t2,ui1t2

ui1t2 t � 0.fc

2pfc

ui1t2 � 2pfct 	 fc , for m1t2 � 0

ui1t2dui1t2>dt,
ui1t2.Ac

s1t2
ui1t2

�
1

2p

dui1t2
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� lim
¢tS0

B ut1t 	 ¢t2 � ui1t2
2p¢t

Rfi1t2 � lim
¢tS0

f¢t1t2
s1t2:¢t

f¢t1t2 �
ut1t 	 ¢t2 � ui1t2

2p¢t

t 	 ¢t,
ui1t22p

ui1t2Ac

s1t2 � Ac cos3ui1t24
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2. Frequency modulation (FM) is that form of angle modulation in which the instanta-
neous frequency is varied linearly with the message signal as shown by

(4.5)

The constant term represents the frequency of the unmodulated carrier; the constant
represents the frequency-sensitivity factor of the modulator, expressed in hertz per

volt on the assumption that is a voltage waveform. Integrating Eq. (4.5) with
respect to time and multiplying the result by we get

(4.6)

where the second term accounts for the increase or decrease in the instantaneous
phase due to the message signal The frequency-modulated wave is therefore

(4.7)

Table 4.1 summarizes the basic definitions embodied in the generation of angle-modulated waves.
These definitions apply to all kinds of message signals, be they of the analog or digital kind.

s1t2 � Ac cos c2pfct 	 2pkfL
t

0
m1t2 dt d

m1t2.ui1t2

� 2pfct 	 2pkfL
t

0
m1t2 dt

ui1t2 � 2pL
t

0
fi1t2 dt

2p,
m1t2kf

fc

fi1t2 � fc 	 kf m1t2
m1t2,fi1t2

TABLE 4.1 Summary of Basic Definitions in Angle Modulation

Phase modulation Frequency modulation Comments

Instantaneous
phase

Instantaneous

frequency

Modulated
wave s1t2 Ac cos c2pfct 	 2pkfL

t

0
m1t2 dt dAc cos32pfct 	 kpm1t24

fi1t2
fc 	 kf m1t2fc 	

kp

2p
d
dt

m1t2

ui1t2
2pfct 	 2pkfL

t

0
m1t2 dt2pfct 	 kpm1t2 carrier amplitude

carrier frequency
message signal

phase-sensitivity
factor
frequency-sensitivity
factor

kf:

kp:
m1t2:fc:
Ac:

4.2 Properties of Angle-Modulated Waves

Angle-modulated waves are characterized by some important properties, which follow from
the basic definitions summarized in Table 4.1. Indeed, it is these properties that put angle-mod-
ulated waves in a family of their own, and distinguish them from the family of amplitude-
modulated waves, as illustrated by the waveforms shown in Fig. 4.1 for the example of
sinusoidal modulation. Figures 4.1(a) and 4.1(b) are the sinusoidal carrier and modulating
waves, respectively. Figures 4.1(c), 4.1(d), and 4.1(e) display the corresponding amplitude-mod-
ulated (AM), phase-modulated (PM), and frequency-modulated (FM) waves, respectively.
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(a)

(b)

(c)

(d)

(e) time

FIGURE 4.1 Illustration of AM, PM, and FM waves produced by a single tone.
(a) Carrier wave. (b) Sinusoidal modulating signal. (c) Amplitude-modulated
signal. (d) Phase-modulated signal. (e) Frequency modulated signal.
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PROPERTY 1 Constancy of transmitted power From both Eqs. (4.4) and (4.7), we
readily see that the amplitude of PM and FM waves is maintained at a constant value equal
to the carrier amplitude for all time t, irrespective of the sensitivity factors and 
This property is well demonstrated by the PM wave of Fig. 4.1(d) and FM wave of Fig.
4.1(e). Consequently, the average transmitted power of angle-modulated waves is a con-
stant, as shown by

(4.8)

where it is assumed that the load resistor is 1 ohm.

PROPERTY 2 Nonlinearity of the modulation process Another distinctive property
of angle modulation is its nonlinear character. We say so because both PM and FM waves
violate the principle of superposition. Suppose, for example, that the message signal 
is made up of two different components and as shown by

Let and denote the PM waves produced by and in
accordance with Eq. (4.4), respectively. In light of this equation, we may express these PM
waves as follows:

and

From these expressions, despite the fact that we readily see that the
principle of superposition is violated because

� Drill Problem 4.1 Using Eq. (4.7), show that FM waves also violate the principle of
superposition. �

The fact that the angle-modulation process is nonlinear complicates the spectral analysis
and noise analysis of PM and FM waves, compared to amplitude modulation. By the same
token, the angle-modulation process has practical benefits of its own. For example, frequency
modulation offers a superior noise performance compared to amplitude modulation, which is
attributed to the nonlinear character of frequency modulation.

PROPERTY 3 Irregularity of zero-crossings A consequence of allowing the instanta-
neous angle to become dependent on the message signal as in Eq. (4.3) or its inte-
gral as in Eq. (4.6) is that, in general, the zero-crossings of a PM or FM wave
no longer have a perfect regularity in their spacing across the time-scale. Zero-crossings are
defined as the instants of time at which a waveform changes its amplitude from a positive
to negative value or the other way around. In a way, the irregularity of zero-crossings in
angle-modulated waves is also attributed to the nonlinear character of the modulation
process. To illustrate this property, we may contrast the PM wave of Fig. 4.1(d) and the FM
wave of Fig. 4.1(e) to Fig. 4.1(c) for the corresponding AM wave.

1 t
0 m1t2 dt

m1t2ui1t2

s1t2 
 s11t2 	 s21t2
m1t2 � m11t2 	 m21t2,

s21t2 � Ac cos32pfct 	 kpm21t24
s11t2 � Ac cos32pfct 	 kpm11t24
s1t2 � Ac cos32pfct 	 kp1m11t2 	 m21t224

m21t2m1t2, m11t2,s21t2s1t2, s11t2,
m1t2 � m11t2 	 m21t2

m21t2,m11t2 m1t2

Pav �
1
2

Ac
2

kf .kpAc
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However, we may cite two special cases where regularity is maintained in angle
modulation:

1. The message signal increases or decreases linearly with time t, in which case the
instantaneous frequency of the PM wave changes from the unmodulated carrier
frequency to a new constant value dependent on the slope of 

2. The message signal is maintained at some constant value, positive or negative,
in which case the instantaneous frequency of the FM wave changes from the
unmodulated carrier frequency to a new constant value dependent on the constant
value of 

In any event, it is important to note that in angle modulation, the information content of
the message signal resides in the zero-crossings of the modulated wave. This statement
holds provided the carrier frequency is large compared to the highest frequency compo-
nent of the message signal 

PROPERTY 4 Visualization difficulty of message waveform In AM, we see the mes-
sage waveform as the envelope of the modulated wave, provided, of course, the percent-
age modulation is less than 100 percent, as illustrated in Fig. 4.1(c) for sinusoidal
modulation. This is not so in angle modulation, as illustrated by the corresponding wave-
forms of Figs. 4.1(d) and 4.1(e) for PM and FM, respectively. In general, the difficulty in
visualizing the message waveform in angle-modulated waves is also attributed to the non-
linear character of angle-modulated waves.

PROPERTY 5 Tradeoff of increased transmission bandwidth for improved noise
performance An important advantage of angle modulation over amplitude modulation
is the realization of improved noise performance. This advantage is attributed to the fact
that the transmission of a message signal by modulating the angle of a sinusoidal carrier
wave is less sensitive to the presence of additive noise than transmission by modulating
the amplitude of the carrier. The improvement in noise performance is, however, attained
at the expense of a corresponding increase in the transmission bandwidth requirement of
angle modulation. In other words, the use of angle modulation offers the possibility of
exchanging an increase in transmission bandwidth for an improvement in noise perfor-
mance. Such a tradeoff is not possible with amplitude modulation since the transmission
bandwidth of an amplitude-modulated wave is fixed somewhere between the message
bandwidth W and 2W, depending on the type of modulation employed. The effect of noise
on angle modulation is discussed in Chapter 9.

EXAMPLE 4.1 Zero-crossings

Consider a modulating wave that increases linearly with time t, starting at as
shown by

where a is the slope parameter; see Fig. 4.2(a). In what follows, we study the zero-crossings of
the PM and FM waves produced by for the following set of parameters:

a � 1 volt>s
fc �

1
4

Hz

m1t2

m1t2 � bat, t � 0
0, t � 0

t � 0,m1t2

m1t2. fc
m1t2

m1t2. fc
fi1t2m1t2 m1t2.fc

fi1t2m1t2
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Phase modulated wave sp(t)

time t

1.0

–1.0

Frequency modulated wave sf (t)

time t

1.0

–1.0

(a)

(b)

(c)

slope a = 1 volt/s

time t
0

m(t)

1. Phase modulation: phase-sensitivity factor radians/volt. Applying Eq. (4.4) to
the given yields the PM wave

which is plotted in Fig. 4.2(b) for 
Let denote the instant of time at which the PM wave experiences a zero-cross-

ing; this occurs whenever the angle of the PM wave is an odd multiple of Then, we
may set up

as the linear equation for Solving this equation for we get the linear formula

Substituting the given values for a, and into this linear formula, we get

where is measured in seconds.tn

tn �
1
2

	 n, n � 0, 1, 2, Á

kpfc ,

tn �

1
2

	 n

2fc 	
kp

p
a

tn ,tn .

2pfctn 	 kpatn �
p

2
	 np, n � 0, 1, 2, Á

p>2.
tn

Ac � 1 volt.

s1t2 � bAc cos12pfct 	 kpat2, t � 0
Ac cos12pfct2, t � 0

m1t2 kp � p

2

FIGURE 4.2 Starting at time the figure displays (a) linearly increasing
message signal m(t), (b) phase-modulated wave, and (c) frequency-modulated wave.

t � 0,
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2. Frequency modulation: frequency-sensitivity factor, Applying Eq. (4.7)
yields the FM wave

which is plotted in Fig. 4.2(c).
Invoking the definition of a zero-crossing, we may set up

as the quadratic equation for The positive root of this equation—namely,

defines the formula for Substituting the given values of a, and into this quadratic
formula, we get

where is again measured in seconds.

Comparing the zero-crossing results derived for PM and FM waves, we may make the
following observations once the linear modulating wave begins to act on the sinusoidal carrier
wave:

1. For PM, regularity of the zero-crossings is maintained; the instantaneous frequency
changes from the unmodulated value of to the new constant value of 

2. For FM, the zero-crossings assume an irregular form; as expected, the instantaneous fre-
quency increases linearly with time t.

The angle-modulated waveforms of Fig. 4.2 should be contrasted with the corresponding
ones of Fig. 4.1. Whereas in the case of sinusoidal modulation depicted in Fig. 4.1 it is dif-
ficult to discern the difference between PM and FM, this is not so in the case of Fig. 4.2.
In other words, depending on the modulating wave, it is possible for PM and FM to exhibit
entirely different waveforms.

4.3 Relationship Between PM 
and FM Waves

Examining the definitions of Eqs. (4.4) and (4.7), we see that an FM wave may be viewed
as a PM wave produced by the modulating wave in place of This means
that an FM wave can be generated by first integrating the message signal with respect
to time t and then using the resulting signal as the input to a phase modulator, as shown
in Fig. 4.3(a).

Conversely, a PM wave can be viewed as an FM wave produced by the modulating
wave Hence, a PM wave can be generated by first differentiating with
respect to time t and then using the resulting signal as the input to a frequency modulator,
as shown in Fig. 4.3(b).

m1t2dm1t2>dt.

m1t2m1t2.1 t
0 m1t2 dt

fc 	 kp1a>2p2 �
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2
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1
4
A�1 	 29 	 16n B , n � 0, 1, 2, Á

kffc ,tn .

tn �
1

akf
¢�fc 	 Bf c

2
	 akf a1

2
	 nb ≤ , n � 0, 1, 2, Á

tn .

2pfctn 	 pkf atn
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�
p

2
	 np, n � 0, 1, 2, Á

s1t2 � bAc cos12pfct 	 pkfat22, t � 0
Ac cos12pfct2, t � 0

kf � 1 Hz>volt.
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(a)

Ac cos(2�fct )

Modulating
wave Integrator Phase

modulator FM wave

(b)

Ac cos(2�fct )

Modulating
wave Differentiator Frequency

modulator PM wave

FIGURE 4.3 Illustration of the relationship between frequency modulation and phase
modulation. (a) Scheme for generating an FM wave by using a phase modulator. (b) Scheme
for generating a PM wave by using a frequency modulator.

It follows therefore that phase modulation and frequency modulation are uniquely
related to each other. This relationship, in turn, means that we may deduce the properties
of phase modulation from those of frequency modulation and vice versa. For this reason,
in this chapter we will be focusing much of the discussion on frequency modulation.

� Drill Problem 4.2 The scheme shown in Fig. 4.3(a) provides the basis for the indirect gen-
eration of an FM wave. The phase modulator is defined by Eq. (4.4). Show that if the resulting FM
wave is to have exactly the form as that defined in Eq. (4.7), then the phase-sensitivity factor of
the phase modulator is related to the frequency sensitivity factor in Eq. (4.7) by the formula

where T is the interval over which the integration in Fig. 4.3(a) is performed. Justify the dimen-
sionality of this expression. �

4.4 Narrow-Band Frequency Modulation

In Section 4.2, we stressed the fact that an FM wave is a nonlinear function of the modu-
lating wave. This property makes the spectral analysis of the FM wave a much more dif-
ficult task than that of the corresponding AM wave.

How then can we tackle the spectral analysis of an FM wave? We propose to provide
an empirical answer to this important question by proceeding in the following manner:

� We first consider the simple case of a single-tone modulation that produces a narrow-
band FM wave.

� We next consider the more general case also involving a single-tone modulation, but
this time the FM wave is wide-band.

We could, of course, go on and consider the more elaborate case of a multitone FM
wave. However, we propose not to do so, because our immediate objective is to establish
an empirical relationship between the transmission bandwidth of an FM wave and the

kp � 2pkfT

kf

kp
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message bandwidth. As we shall subsequently see, the two-stage spectral analysis described
above provides us with enough insight to propose a useful solution to the problem.

Consider then a sinusoidal modulating wave defined by

(4.9)

The instantaneous frequency of the resulting FM wave is

(4.10)

where

(4.11)

The quantity is called the frequency deviation, representing the maximum departure of
the instantaneous frequency of the FM wave from the carrier frequency A fundamental
characteristic of sinusoidal frequency modulation is that the frequency deviation is pro-
portional to the amplitude of the modulating signal and is independent of the modulating
frequency.

Using Eq. (4.10) in the first line of Eq. (4.6), the angle of the FM wave is
obtained as

(4.12)

The ratio of the frequency deviation to the modulation frequency is commonly called
the modulation index of the FM wave. We denote this new parameter by so we write

(4.13)

and

(4.14)

From Eq. (4.14) we see that, in a physical sense, the parameter represents the phase devi-
ation of the FM wave—that is, the maximum departure of the angle from the angle

of the unmodulated carrier. Hence, is measured in radians.
The FM wave itself is given by

(4.15)

For the FM wave of Eq. (4.15) to be narrow-band the modulation index must be
small compared to one radian. To proceed further, we use the trigonometric identity

to expand Eq. (4.15) as

(4.16)

Then under the condition that the modulation index is small compared to one radian,
we may use the following two approximations for all times t:

and

sin3b sin12pfmt24 � b sin12pfmt2
cos3b sin12pfmt24 � 1

b

s1t2 � Ac cos12pfct2 cos3b sin12pfmt24 � Ac sin12pfct2 sin3b sin12pfmt24
cos1A 	 B2 � cos A cos B � sin A sin B

bs1t2
s1t2 � Ac cos32pfct 	 b sin12pfmt24

b2pfct
ui1t2b

ui1t2 � 2pfct 	 b sin12pfmt2

b �
¢f

fm

b,
fm¢f

ui1t2 � 2pfct 	
¢f

fm
sin12pfmt2

ui1t2
¢f

fc .
¢f

¢f � kf Am

� fc 	 ¢f cos12pfmt2
fi1t2 � fc 	 kf Am cos12pfmt2

m1t2 � Am cos12pfmt2
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Ac sin(2�fct )

Modulating
wave Integrator Product

modulator
Narrow-band

FM wave

Carrier wave
Ac cos(2�fct )

–90°
phase-shifter

–

+
Σ

Narrow-band
phase modulator

FIGURE 4.4 Block diagram of an indirect method for generating a narrow-band FM wave.

Accordingly, Eq. (4.16) simplifies to

(4.17)

Equation (4.17) defines the approximate form of a narrow-band FM wave produced by the
sinusoidal modulating wave From this approximate representation, we
deduce the modulator shown in block diagram form in Fig. 4.4. This modulator involves
splitting the carrier wave into two paths. One path is direct; the other path
contains a degree phase-shifting network and a product modulator, the combination
of which generates a DSB-SC modulated wave. The difference between these two signals
produces a narrow-band FM wave, but with some amplitude distortion, as discussed next.

Ideally, an FM wave has a constant envelope and, for the case of a sinusoidal mod-
ulating signal of frequency the angle is also sinusoidal with the same frequency.
But the modulated wave produced by the narrow-band modulator of Fig. 4.4 differs from
this ideal condition in two fundamental respects:

1. The envelope contains a residual amplitude modulation that varies with time.
2. The angle contains harmonic distortion in the form of third- and higher order

harmonics of the modulation frequency 

� Drill Problem 4.3 The Cartesian representation of band-pass signals discussed in Sec-
tion 3.8 is well-suited for linear modulation schemes exemplified by the amplitude modulation
family. On the other hand, the polar representation

is well-suited for nonlinear modulation schemes exemplified by the angle modulation family. The
in this new representation is the envelope of and is its phase.
Starting with the representation [see Eq. (3.39)]

where is the in-phase component and is the quadrature component, we may write

and

Show that the polar representation of in terms of and is exactly equivalent to its
Cartesian representation in terms of and �sQ1t2.sI1t2 f1t2a1t2s1t2

f1t2 � tan�1B sQ1t2
sI1t2 R

a1t2 � 3sI
21t2 	 sQ

2 1t2412
sQ1t2sI1t2

s1t2 � sI1t2 cos12pfct2 � sQ1t2 sin12pfct2
f1t2s1t2a1t2

s1t2 � a1t2 cos32pfct 	 f1t24

fm .
ui1t2

ui1t2fm ,

�90
Ac cos12pfct2

Am cos12pfmt2.
s1t2 � Ac cos12pfct2 � bAc sin12pfct2 sin12pfmt2



4.4 Narrow-Band Frequency Modulation 163

� Drill Problem 4.4 Consider the narrow-band FM wave approximately defined by Eq.
(4.17). Building on Problem 4.3, do the following:

(a) Determine the envelope of this modulated wave. What is the ratio of the maximum to the
minimum value of this envelope?

(b) Determine the average power of the narrow-band FM wave, expressed as a percentage of
the average power of the unmodulated carrier wave.

(c) By expanding the angular argument of the narrow-band FM wave
in the form of a power series, and restricting the modulation index to a maximum

value of 0.3 radian, show that

What is the value of the harmonic distortion for radian?

Hint: For small x, the following power series approximation

holds. In this approximation, terms involving and higher order ones are ignored, which is
justified when x is small compared to unity. �

The important point to note from Problem 4.4 is that by restricting the modulation
index to radian, the effects of residual amplitude modulation and harmonic dis-
tortion are limited to negligible levels. We are therefore emboldened to proceed further
with the use of Eq. (4.17), provided radian. In particular, we may expand the
modulated wave further into three frequency components:

(4.18)

This expression is somewhat similar to the corresponding one defining an AM wave, which
is reproduced from Example 3.1 of Chapter 3 as follows:

(4.19)

where is the modulation factor of the AM signal. Comparing Eqs. (4.18) and (4.19) and
putting aside the respective constants and we see that in the case of sinusoidal mod-
ulation, the basic difference between an AM wave and a narrow-band FM wave is that the
algebraic sign of the lower side-frequency in the narrow-band FM is reversed. Neverthe-
less, a narrow-band FM wave requires essentially the same transmission bandwidth (i.e.,

for sinusoidal modulation) as the AM wave.

� PHASOR INTERPRETATION

We may represent the narrow-band FM wave with a phasor diagram as shown in Fig. 4.5(a),
where we have used the carrier phasor as reference. We see that the resultant of the two side-
frequency phasors is always at right angles to the carrier phasor. The effect of this geometry is
to produce a resultant phasor representing the narrow-band FM wave that is approximately
of the same amplitude as the carrier phasor, but out of phase with respect to it.

2fm

m,b

m

sAM1t2 � Ac cos12pfct2 	
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mAc5cos32p1fc 	 fm2t4 	 cos32p1fc � fm2t46
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b � 0.3
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b � 0.3

u1t2 � 2pfct 	 b sin12pfmt2 �
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3
 sin312pfmt2

bs1t2 u1t2 � 2pfct 	 f1t2
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(a)

(b)

Carrier
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side-frequency

Upper
side-frequency

Sum of side-
frequency phasors

fm

fm

Resultant
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side-frequency

Upper
side-frequency

fm

fm

Sum of side-
frequency phasors

FIGURE 4.5 Phasor comparison of
narrow-band FM and AM waves for
sinusoidal modulation. (a) Narrow-band
FM wave. (b) AM wave.

The phasor diagram for the FM wave should be contrasted with that of Fig. 4.5(b),
representing the corresponding AM wave. In this latter case, we see that the resultant pha-
sor representing the AM wave has a different amplitude from that of the carrier phasor, but
always in phase with it.

Despite the fact that both the narrow-band FM of Eq. (4.18) and the AM wave of Eq.
(4.19) have three sinusoidal components, the two parts of Fig. 4.5 clearly illustrate the
major differences between these two modulated waves; the differences are attributed to
the ways in which these two modulated waves are generated.

4.5 Wide-Band Frequency Modulation

We next wish to determine the spectrum of the single-tone FM wave defined by the exact
formula in Eq. (4.15) for an arbitrary value of the modulation index In general, such an
FM wave produced by a sinusoidal modulating wave is a periodic function of time t only
when the carrier frequency is an integral multiple of the modulation frequency 

� Drill Problem 4.5 Strictly speaking, the FM wave of Eq. (4.15) produced by a sinu-
soidal modulating wave is a nonperiodic function of time t. Demonstrate this property of fre-
quency modulation. �

In light of this problem, how can we simplify the spectral analysis of the wide-band
FM wave defined in Eq. (4.15)? The answer lies in using the complex baseband represen-
tation of a modulated (i.e., bandpass) signal, which was discussed in Section 3.8. Specifi-
cally, assume that the carrier frequency is large enough (compared to the bandwidth of
the FM wave) to justify rewriting Eq. (4.15) in the form

(4.20)� Re3s'1t2 exp1j2pfct24
s1t2 � Re3Ac exp1j2pfct 	 jb sin12pfmt224

fc

fm .fc

b.
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where the operator Re[ ] extracts the real part of the complex quantity contained inside the
square brackets. The new term

(4.21)

introduced in Eq. (4.21) is the complex envelope of the FM wave The important point to
note from Eq. (4.21) is that unlike the original FM wave the complex envelope is a
periodic function of time with a fundamental frequency equal to the modulation frequency 
Specifically, replacing time t in Eq. (4.21) with for some integer k, we have

which confirms as the fundamental frequency of We may therefore expand 
in the form of a complex Fourier series as follows:

(4.22)

where the complex Fourier coefficient

(4.23)

Define the new variable:

(4.24)

Hence, we may redefine the complex Fourier coefficient in Eq. (4.23) in the new form

(4.25)

The integral on the right-hand side of Eq. (4.25), except for the carrier amplitude is
referred to as the nth order Bessel function of the first kind and argument This function
is commonly denoted by the symbol so we may write

(4.26)

Accordingly, we may rewrite Eq. (4.25) in the compact form

(4.27)

Substituting Eq. (4.27) into (4.22), we get, in terms of the Bessel function the fol-
lowing expansion for the complex envelope of the FM wave:

(4.28)

Next, substituting Eq. (4.28) into (4.20), we get

(4.29)s1t2 � Re cAc a
q

n��q
Jn1b2 exp3j2p1fc 	 nfm2t4 d

s
'1t2 � Ac a

q

n��q
Jn1b2 exp1j2pnfmt2

Jn1b2,
cn � Ac Jn1b2

Jn1b2 �
1

2p L
p

�p
 exp3j1b sin x � nx24 dx

Jn1b2, b.
Ac ,

cn �
Ac

2p L
p

�p
 exp3j1b sin x � nx24 dx

cn

x � 2pfmt

� fmAcL
1>(2fm)

�1>(2fm)
 exp3jb sin12pfmt2 � j2pnfmt4 dt

cn � fmL
1>(2fm)

�1>(2fm)
s
'1t2 exp1�j2pnfmt2 dt

s
'1t2 � a

q

n��q
cn exp1j2pnfmt2

s
'1t2s

'1t2.fm

� Ac exp3jb sin12pfmt24� Ac exp3jb sin12pfmt 	 2kp24s
'1t2 � Ac exp3jb sin12pfm1t 	 k>fm224

t 	 k>fm fm .
s
'1t2s1t2, s1t2.

s
'1t2 � Ac exp3jb sin12pfmt24



166 CHAPTER 4 � ANGLE MODULATION

The carrier amplitude is a constant and may therefore be taken outside the real-time oper-
ator Re[.]. Moreover, we may interchange the order of summation and real-part opera-
tion, as they are both linear operators. Accordingly, we may rewrite Eq. (4.29) in the
simplified form

(4.30)

Equation (4.30) is the desired form for the Fourier series expansion of the single-tone FM
signal for an arbitrary value of modulation index 

The discrete spectrum of is obtained by taking the Fourier transforms of both sides
of Eq. (4.30), which yields

(4.31)

where and for an arbitrary Equation 

(4.31) shows that the spectrum of consists of an infinite number of delta functions
spaced at for 

� PROPERTIES OF SINGLE-TONE FM FOR ARBITRARY MODULATION INDEX

In Fig. 4.6, we have plotted the Bessel function versus the modulation index for
different positive integer values of n. We can develop further insight into the behavior of
the Bessel function by making use of the following properties (see Appendix 3 for
more details):

Jn1b2
bJn1b2
B

n � 0, 	1, 	2, Á .f � fc � nfm
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2
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2 a
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n��q
Jn1b23d1f � fc � nfm2 	 d1f 	 fc 	 nfm24

s1t2 b.s1t2
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FIGURE 4.6 Plots of the Bessel function of the first kind, for varying order n.Jn1b2,
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1. For different integer (positive and negative) values of n, we have

(4.32)

and

(4.33)

2. For small values of the modulation index we have

(4.34)

3. The equality

(4.35)

holds exactly for arbitrary 

Thus using Eqs. (4.31) through (4.35) and the curves of Fig. 4.6, we may make the following
observations:

1. The spectrum of an FM wave contains a carrier component and an infinite set of side
frequencies located symmetrically on either side of the carrier at frequency separations
of In this respect, the result is unlike the picture that prevails in
AM, since in the latter case a sinusoidal modulating wave gives rise to only one pair
of side frequencies.

2. For the special case of small compared with unity, only the Bessel coefficients 
and have significant values, so that the FM wave is effectively composed of a
carrier and a single pair of side-frequencies at This situation corresponds to
the special case of narrow-band FM that was considered in Section 4.4.

3. The amplitude of the carrier component varies with according to That is,
unlike an AM wave, the amplitude of the carrier component of an FM wave is depen-
dent on the modulation index The physical explanation for this property is that
the envelope of an FM wave is constant, so that the average power of such a signal
developed across a 1-ohm resistor is also constant, as in Eq. (4.8), which is reproduced
here for convenience of presentation:

When the carrier is modulated to generate the FM wave, the power in the side-
frequencies may appear only at the expense of the power originally in the carrier,
thereby making the amplitude of the carrier component dependent on Note that the
average power of an FM wave may also be determined from Eq. (4.30), as shown by

(4.36)

Substituting Eq. (4.35) into (4.36), the expression for the average power reduces
to Eq. (4.8), and so it should.
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EXAMPLE 4.2 FM Spectrum for Varying Amplitude and Frequency 
of Sinusoidal Modulating Wave

In this example, we wish to investigate the ways in which variations in the amplitude and fre-
quency of a sinusoidal modulating wave affect the spectrum of the FM wave. Consider first the
case when the frequency of the modulating wave is fixed, but its amplitude is varied, produc-
ing a corresponding variation in the frequency deviation Thus, keeping the modulation
frequency fixed, we find that the amplitude spectrum of the resulting FM wave is as shown
plotted in Fig. 4.7 for and 5. In this diagram, we have normalized the spectrum with
respect to the unmodulated carrier amplitude.

b � 1, 2,
fm

¢f.

(a)

f

2�f

� = 1.0

1.0

(b)

1.0

f

2�f

� = 2.0

(c)

1.0

f
fc fm

2�f

� = 5.0

FIGURE 4.7 Discrete amplitude
spectra of an FM wave, normalized
with respect to the unmodulated
carrier amplitude, for the case of
sinusoidal modulation of fixed
frequency and varying amplitude.
Only the spectra for positive
frequencies are shown.



4.5 Wide-Band Frequency Modulation 169
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FIGURE 4.8 Discrete amplitude spectra of an FM wave, normalized with respect to the
unmodulated carrier amplitude, for the case of sinusoidal modulation of varying frequency
and fixed amplitude. Only the spectra for positive frequencies are shown.

Consider next the case when the amplitude of the modulating wave is fixed; that is, the
frequency deviation is maintained constant, and the modulation frequency is varied. In
this second case, we find that the amplitude spectrum of the resulting FM wave is as shown
plotted in Fig. 4.8 for and 5. We now see that when is fixed and is increased,
we have an increasing number of spectral lines crowding into the fixed frequency interval

That is, when approaches infinity, the bandwidth of the FM wave
approaches the limiting value of which is an important point to keep in mind.2¢f,

bfc � ¢f � ƒf ƒ � fc 	 ¢f.

b¢fb � 1, 2,

fm¢f
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4.6 Transmission Bandwidth of FM Waves

� CARSON’S RULE

In theory, an FM wave contains an infinite number of side-frequencies so that the band-
width required to transmit such a modulated wave is similarly infinite in extent. In prac-
tice, however, we find that the FM wave is effectively limited to a finite number of significant
side-frequencies compatible with a specified amount of distortion. We may therefore build
on this idea to specify an effective bandwidth required for the transmission of an FM wave.
Consider first the case of an FM wave generated by a single-tone modulating wave of fre-
quency In such an FM wave, the side-frequencies that are separated from the carrier fre-
quency by an amount greater than the frequency deviation decrease rapidly toward
zero, so that the bandwidth always exceeds the total frequency excursion, but nevertheless
is limited. Specifically, we may identify two limiting cases:

1. For large values of the modulation index the bandwidth approaches, and is only
slightly greater than the total frequency excursion as illustrated in Fig. 4.8(c).

2. For small values of the modulation index the spectrum of the FM wave is effec-
tively limited to the carrier frequency and one pair of side-frequencies at 
so that the bandwidth approaches as illustrated in Section 4.4.

In light of these two limiting scenarios, we may define an approximate rule for the trans-
mission bandwidth of an FM wave generated by a single-tone modulating wave of fre-
quency as

(4.37)

This simple empirical relation is known as Carson’s rule.

� UNIVERSAL CURVE FOR FM TRANSMISSION BANDWIDTH

Carson’s rule is simple to use, but, unfortunately, it does not always provide a good esti-
mate of the bandwidth requirements of communication systems using wideband frequency
modulation. For a more accurate assessment of FM bandwidth, we may use a definition
based on retaining the maximum number of significant side frequencies whose amplitudes
are all greater than some selected value. A convenient choice for this value is one percent
of the unmodulated carrier amplitude. We may thus define the transmission bandwidth of
an FM wave as the separation between the two frequencies beyond which none of the side
frequencies is greater than one percent of the carrier amplitude obtained when the modu-
lation is removed. That is, we define the transmission bandwidth as where is
the modulation frequency and is the largest value of the integer n that satisfies the
requirement The value of varies with the modulation index and
can be determined readily from tabulated values of the Bessel function Table 4.2
shows the total number of significant side-frequencies (including both the upper and lower
side-frequencies) for different values of calculated on the one percent basis. The trans-
mission bandwidth calculated using this procedure can be presented in the form of a uni-
versal curve by normalizing it with respect to the frequency deviation and then plotting
it versus This curve is shown in Fig. 4.9, which is drawn as a best fit through the set of
points obtained by using Table 4.2. In Fig. 4.9, we note that as the modulation index is
increased, the bandwidth occupied by the significant side-frequencies drops toward that

b

b.
¢f

BT

b,

Jn1b2. bnmaxƒJn1b2 ƒ � 0.01.
nmax

fm2nmaxfm ,

BT � 2¢f 	 2fm � 2¢f a1 	
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FIGURE 4.9 Universal curve for evaluating the one percent bandwidth of an FM wave.

value over which the carrier frequency actually deviates. This means that the small values
of modulation index are relatively more extravagant in transmission bandwidth than
the larger values of 

� ARBITRARY MODULATING WAVE

Consider next the more general case of an arbitrary modulating wave with its high-
est frequency component denoted by W; that is, W denotes the message bandwidth. We now
have a more difficult situation to deal with. One way of tackling it is to seek a worst-case
evaluation of the transmission bandwidth. Specifically, the bandwidth required to transmit
an FM wave generated by an arbitrary modulating wave is based on a worst-case tone-
modulation analysis. We first determine the so-called deviation ratio D, defined as the ratio
of the frequency deviation which corresponds to the maximum possible amplitude of¢f,

m1t2

b.
b

TABLE 4.2 Number of Significant Side-Frequencies of a Wide-Band FM
Signal for Varying Modulation Index

Modulation Index Number of Significant Side-Frequencies 

0.1 2
0.3 4
0.5 4
1.0 6
2.0 8
5.0 16

10.0 28
20.0 50
30.0 70

2nmaxB
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the modulation wave to the highest modulation frequency W. These conditions rep-
resent the extreme cases possible. We may thus formally write

(4.38)

The deviation ratio D plays the same role for nonsinusoidal modulation that the modula-
tion index plays for the case of sinusoidal modulation. Hence, replacing by D and
replacing with W, we may generalize Eq. (4.37) as follows:

(4.39)

Hereafter, we refer to Eq. (4.39) as the generalized Carson rule for the transmission band-
width of an arbitrary FM signal. In a similar way, we may generalize the universal curve of Fig.
4.9 to obtain a value for the transmission bandwidth of the FM signal. From a practical view-
point, the generalized Carson rule somewhat underestimates the bandwidth requirement of an
FM system, whereas, in a corresponding way, using the universal curve of Fig. 4.9 yields a
somewhat conservative result. Thus, the choice of a transmission bandwidth that lies between
the bounds provided by these two rules of thumb is acceptable for most practical purposes.

EXAMPLE 4.3 Commercial FM Broadcasting

In North America, the maximum value of frequency deviation is fixed at 75 kHz for com-
mercial FM broadcasting by radio. If we take the modulation frequency which
is typically the “maximum” audio frequency of interest in FM transmission, we find that the
corresponding value of the deviation ratio is [using Eq. (4.38)]

Using the values and in the generalized Carson rule of Eq. (4.39), we find
that the approximate value of the transmission bandwidth of the FM signal is obtained as

On the other hand, use of the universal curve of Fig. 4.9 gives the transmission bandwidth of
the FM signal to be

In this example, Carson’s rule underestimates the transmission bandwidth by 25 percent
compared with the result of using the universal curve of Fig. 4.9.

4.7 Generation of FM Waves

According to Eq. (4.5), the instantaneous frequency of an FM wave varies linearly
with the message signal For the design of a frequency modulator, we therefore need
a device that produces an output signal whose instantaneous frequency is sensitive to vari-
ations in the amplitude of an input signal in a linear manner.

There are two basic methods of generating frequency-modulated waves, one direct and
the other indirect.

� DIRECT METHOD

The direct method uses a sinusoidal oscillator, with one of the reactive elements (e.g., capac-
itive element) in the tank circuit of the oscillator being directly controllable by the message

m1t2. fi1t2

BT � 3.2 ¢f � 3.2  75 � 240 kHz

BT � 2175 	 152 � 180 kHz

D � 5¢f � 75 kHz

D �
75
15

� 5

W � 15 kHz,
¢f

BT � 21¢f 	 W2
fm

bb

D �
¢f

W

m1t2,
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signal. In conceptual terms, the direct method is therefore straightforward to implement.
Moreover, it is capable of providing large frequency deviations. However, a serious limi-
tation of the direct method is the tendency for the carrier frequency to drift, which is usu-
ally unacceptable for commercial radio applications. To overcome this limitation, frequency
stabilization of the FM generator is required, which is realized through the use of feed-
back around the oscillator; see Problem 4.15 for the description of one such procedure.
Although the oscillator may itself be simple to build, the use of frequency stabilization
adds system complexity to the design of the frequency modulator.

� INDIRECT METHOD: ARMSTRONG MODULATOR

In the indirect method, on the other hand, the message signal is first used to produce a
narrow-band FM, which is followed by frequency multiplication to increase the frequency
deviation to the desired level. In this second method, the carrier-frequency stability prob-
lem is alleviated by using a highly stable oscillator (e.g., crystal oscillator) in the narrow-
band FM generation; this modulation scheme is called the Armstrong wide-band frequency
modulator, in recognition of its inventor.

A simplified block diagram of this indirect FM system is shown in Fig. 4.10. The
message signal is first integrated and then used to phase-modulate a crystal-controlled
oscillator; the use of crystal control provides frequency stability. In order to minimize the
distortion inherent in the phase modulator, the maximum phase deviation or modulation
index is purposely kept small, thereby resulting in a narrow-band FM wave; for the
implementation of the narrow-band phase modulator, we may use the arrangement
described in Fig. 4.4. The narrow-band FM wave is next multiplied in frequency by means
of a frequency multiplier so as to produce the desired wide-band FM wave.

A frequency multiplier consists of a memoryless nonlinear device followed by a band-
pass filter, as shown in Fig. 4.11. The implication of the nonlinear device being memory-
less is that it has no energy-storage elements. The input–output relation of such a device
may be expressed in the general form

(4.40)v1t2 � a1s1t2 	 a1s21t2 	 Á 	 ansn1t2

b

m1t2

Wide-band
FM wave

Frequency
multiplier

Message
signal
m(t)

Integrator
Narrow-band

phase
modulator

Narrow-band frequency modulator

Crystal
controlled
oscillator

FIGURE 4.10 Block diagram of the indirect method of generating a wide-band FM wave.

FM wave s�(t) with carrier 
frequency f �c = nfc

and modulation
index n�

FM wave s(t) with
carrier frequency fc

and modulation
index �

v(t)Memoryless
nonlinear device

Bandpass
filter with
mid-band

frequency nfc

FIGURE 4.11 Block diagram of frequency multiplier.
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where are coefficients determined by the operating point of the device, and
n is the highest order of nonlinearity. In other words, the memoryless nonlinear device is
an nth power-law device.

The input is an FM wave defined by

(4.41)

where the instantaneous frequency is

(4.42)

Suppose that (1) the mid-band frequency of the bandpass filter in Fig. 4.11 is set equal to
where is the carrier frequency of the incoming FM wave and (2) the bandpass

filter is designed to have a bandwidth equal to n times the transmission bandwidth of 
In Problem 4.24 dealing with nonlinear effects in FM systems, we address the spectral con-
tributions of such nonlinear terms as the second- and third-order terms in the input–out-
put relation of Eq. (4.40). For now it suffices to say that after bandpass filtering of the
nonlinear device’s output we have a new FM wave defined by

(4.43)

whose instantaneous frequency is

(4.44)

Thus, comparing Eq. (4.44) with (4.42), we see that the nonlinear subsystem of Fig. 4.11
acts as a frequency multiplier with and The frequency multiplication
ratio n is determined by the highest power n in the input–output relation of Eq. (4.40), char-
acterizing the memoryless nonlinear device.

4.8 Demodulation of FM Signals

Frequency demodulation is the process by means of which the original message signal is
recovered from an incoming FM wave. In other words, frequency demodulation is the
inverse of frequency modulation. With the frequency modulator being a device that pro-
duces an output signal whose instantaneous frequency varies linearly with the amplitude
of the input message signal, it follows that for frequency demodulation we need a device
whose output amplitude is sensitive to variations in the instantaneous frequency of the
input FM wave in a linear manner too.

In what follows, we describe two devices for frequency demodulation. One device,
called a frequency discriminator, relies on slope detection followed by envelope detection.
The other device, called a phase-locked loop, performs frequency demodulation in a some-
what indirect manner.

� FREQUENCY DISCRIMINATOR

Recall that the FM signal is given by

s1t2 � Ac cosa2pfct 	 2pkfL
t

0
m1t2 dtb

kf
œ � nkf.fc

œ � nfc

f i
œ1t2 � nfc 	 nkf m1t2

s�1t2 � Ac cos c2pfc�t 	 2pk�fL
t

0
m1t2 dt d

v1t2,

s1t2.s1t2,fcnfc,

fi1t2 � fc 	 kf m1t2

s1t2 � Ac cos c2pfct 	 2pkfL
t
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m1t2 dt d

s1t2
a1, a2, Á , an
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which is Eq. (4.41), reproduced here for convenience of presentation. The question to be
addressed is: how do we recover the message signal from the modulated signal 
We can motivate the formulation of a receiver for doing this recovery by noting that if we
take the derivative of Eq. (4.44) with respect to time, then we obtain

(4.45)

Inspecting Eq. (4.45), we observe that the derivative is a band-pass signal with amplitude
modulation defined by the multiplying term Consequently, if is large
enough such that the carrier is not overmodulated, then we can recover the message signal

with an envelope detector in a manner similar to that described for AM signals in
Chapter 3. This idea provides the motivation for the frequency discriminator, which is
basically a demodulator that consists of a differentiator followed by an envelope detector.

However, there are practical issues related to implementation of the discriminator as
just described—particularly, the differentiator. In Chapter 2, we showed that differentia-
tion corresponds to a linear transfer function in the frequency domain; that is,

(4.46)

where, as usual, implies a Fourier-transform relationship. In practical terms, it is
difficult to construct a circuit that has a transfer function equivalent to the right-hand
side of Eq. (4.46) for all frequencies. Instead, we construct a circuit that approximates
this transfer function over the band-pass signal bandwidth—in particular, for

where is the transmission bandwidth of the incoming
FM signal s(t). A typical transfer characteristic that satisfies this requirement is described by

(4.47)

The transfer characteristic of this so-called slope circuit is illustrated in Fig. 4.12 for positive
frequencies. A practical slope circuit would have a nonunity gain associated with the slope;
but, to simplify matters, we assume that it has unity gain without loss of generality. The cir-
cuit is also not required to have zero response outside the transmission bandwidth, provided
that the circuit is preceded by a band-pass filter centered on with bandwidth BT .fc

H11f2 � b j2p3f � 1fc � BT>224, fc � 1BT>22 � ƒf ƒ � fc 	 1BT>22
0, otherwise
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FIGURE 4.12 Frequency response of an ideal slope circuit.
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1Note that the first line of Eq. (4.53) on page 177 is a repeat of Eq. (3.43) in Chapter 3, which deals with the rela-
tionship between a modulated signal s(t) and its complex representation s

'1t2.

It is simplest to proceed with a complex baseband representation of the signal pro-
cessing performed by the discriminator. Specifically, following the theory of this represen-
tation developed in Chapter 3, we find that the complex envelope of the FM signal 
(reproduced at the bottom of page 174) is

(4.48)

the applicability of which requires that the carrier frequency be large compared to 
Correspondingly, we may express the complex baseband filter (i.e., slope circuit) corre-
sponding to Eq. (4.48) as

(4.49)

Let denote the complex envelope of the response of the slope circuit due to 
Then, according to the band-pass to low-pass transformation described in Chapter 3, we
may express the Fourier transform of as

(4.50)

where is the Fourier transform of The reason for introducing the multiplying
factor in the first line of Eq. (4.50) was delineated in Chapter 3. To determine 
which is the inverse of we invoke two pertinent properties of the Fourier transform,
as outlined here (see Chapter 2):

1. Multiplication of the Fourier transform by is equivalent to differentiating
the inverse Fourier transform in accordance with Property 9 described in Eq.
(2.33), as shown by

2. Application of the linearity property (i.e., Eq. (2.14)) to the nonzero part of 
yields

(4.51)

Substituting Eq. (4.48) into (4.51), we get

(4.52)

Finally, the actual response of the slope circuit due to the FM wave is given by1s1t2
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(4.53)

The next functional block to be considered is the envelope detector, which is fed by 
From Eq. (4.53), we see that is a hybrid modulated wave, exhibiting both amplitude
modulation and frequency modulation of the message signal Provided that we main-
tain the extent of amplitude modulation, namely,

then the envelope detector recovers the message signal except for a bias. Specifically,
under ideal conditions, the output of the envelope detector is given by

(4.54)

The bias in is defined by the constant term in Eq. (4.54)—namely, 
To remove the bias, we may use a second slope circuit followed by an envelope detec-

tor of its own. This time, however, we design the slope circuit so as to have a negative
slope. On this basis, we infer from Eq. (4.54) that the output of this second configuration
is given by

(4.55)

Accordingly, subtracting Eq. (4.55) from Eq. (4.54), we obtain an overall output that is bias-
free, as shown by

(4.56)

where c is a constant.
In light of Eqs. (4.54) to (4.56), we may now construct the block diagram of Fig. 4.13

for the ideal frequency discriminator whose composition is as follows:

� The upper path of the figure pertains to Eq. (4.54).

� The lower path pertains to Eq. (4.55)

� The summing junction accounts for Eq. (4.56).

� cm1t2
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FIGURE 4.13 Block diagram of balanced frequency discriminator.
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2In Haykin (1994), pp. 178–180, a practical realization of the balanced frequency discriminator is described,
using a pair of highly resonant RLC filters. The two filters are designed to have a high Q-factor. The quality fac-
tor or Q-factor of a resonant filter is a measure of how sharp the frequency response of the filter is; it is formally
defined as times the ratio of the maximum energy stored in the filter to the energy dissipated in the filter, both
being measured on a per cycle basis. For the application at hand, one filter is tuned to a frequency above the unmod-
ulated carrier frequency and the other filter is correspondingly tuned to a frequency below By making the
Q-factor high, the linearity pertaining to the required portion of the total frequency response, centered on is
determined by the separation of the two resonant frequencies.

fc ,
fc .fc

2p

This particular detection system is called a balanced frequency discriminator, where the term
“balanced” refers to the fact that the two slope circuits of the system are related to each
other in the manner described in Eqs. (4.54) and (4.55).

From a practical perspective, the challenge in implementing the balanced frequency dis-
criminator2 of Fig. 4.13 is how to build the two slope circuits so as to satisfy the design
requirements of Eqs. (4.54) and (4.55).

� PHASE-LOCKED LOOP

The phase-locked loop is a feedback system whose operation is closely linked to frequency
modulation. It is commonly used for carrier synchronization, and indirect frequency demod-
ulation. The latter application is the subject of interest here.

Basically, the phase-locked loop consists of three major components:

� Voltage-controlled oscillator (VCO), which performs frequency modulation on its
own control signal.

� Multiplier, which multiplies an incoming FM wave by the output of the voltage-con-
trolled oscillator.

� Loop filter of a low-pass kind, the function of which is to remove the high-frequency
components contained in the multiplier’s output signal and thereby shape the over-
all frequency response of the system.

As shown in the block diagram of Fig. 4.14, these three components are connected together
to form a closed-loop feedback system.

To demonstrate the operation of the phase-locked loop as a frequency demodulator,
we assume that the VCO has been adjusted so that when the control signal (i.e., input) is
zero, two conditions are satisfied:

1. The frequency of the VCO is set precisely at the unmodulated carrier frequency of
the incoming FM wave 

2. The VCO output has a 90-degree phase-shift with respect to the unmodulated car-
rier wave.

Suppose then that the incoming FM wave is defined by

(4.57)s1t2 � Ac sin32pfct 	 f11t24

s1t2. fc

v(t)
e(t)

r(t)

Loop
filter

Voltage
controlled
oscillator

FM wave
s(t)

FIGURE 4.14 Block diagram of the phase-locked loop.
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where is the carrier amplitude. By definition, the angle is related to the message
signal by the integral

(4.58)

where is the frequency-sensitivity factor of the frequency modulator responsible for the
generation of Correspondingly, in accordance with points (1) and (2) on page 178, we
define the FM wave produced by the VCO as

(4.59)

where is the amplitude. The angle is related to the control signal of the VCO
by the integral

(4.60)

where is the frequency-sensitivity factor of the VCO.
The function of the feedback loop acting around the VCO is to adjust the angle 

so that it equals thereby setting the stage for frequency demodulation. To delve more
deeply into this function and how it can arise, we need to develop a model for the phase-
locked loop, as described next.

To this end, we first note that multiplication of the incoming FM wave by the locally
generated FM wave produces two components (except for the scaling factor ):

1. A high-frequency component, which is defined by the double-frequency term—namely,

where is the multiplier gain.
2. A low-frequency component, which is defined by the difference-frequency term—

namely,

� Drill Problem 4.6 Using a well-known trigonometric identity involving the product of
the sine of an angle and the cosine of another angle, demonstrate the two results just described
under points 1 and 2. �

With the loop-filter designed to suppress the high-frequency components in the mul-
tiplier’s output, we may henceforth discard the double-frequency term. Doing this, we may
reduce the signal applied to the loop filter to

(4.61)

where is the phase error defined by

(4.62)

When the phase error is zero, the phase-locked loop is said to be in phase-lock.
It is said to be near-phase-lock when the phase error is small compared with one
radian, under which condition we may use the approximation

sin3fe1t24 � fe1t2
fe1t2fe1t2

� f11t2 � 2pkvL
t

0
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e1t2 � kmAcAv sin3fe1t24

kmAcAv sin3f11t2 � f21t24

km

kmAcAv sin34pfct 	 f11t2 	 f21t24
1>2r1t2 s1t2

f11t2, f21t2kv

f21t2 � 2pkvL
t
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t
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3Consider the classic example of a negative feedback amplifier, which is made up of two components: an ampli-
fier of gain in the forward path and a network of gain in the feedback path. The closed-loop gain of the ampli-
fier is defined by

The product term in the denominator is the open-loop gain of the feedback amplifier. When is large com-
pared with unity, the formula for A is effectively determined by the inverse of as shown by

A �
1
b

b,
mbmb

A �
m

1 	 mb

bm

This approximation is accurate to within four percent provided that is less than 0.5
radian. Correspondingly, we may approximate the error signal of Eq. (4.61) as

(4.63)

where the new parameter

(4.64)

is called the loop-gain parameter of the phase-lock loop.
The error signal acts on the loop filter to produce the overall output Let 

denote the impulse response of the loop filter. We may then relate to by the con-
volution integral

(4.65)

Equations (4.62), (4.63), (4.65), and (4.60), in that order, constitute a linearized feedback
model of the phase-locked loop. The model is depicted in Fig. 4.15(a) with the angle 
of the incoming FM wave acting as input and the loop filter’s output acting as the
overall output of the phase-locked loop.

From linear feedback theory, we recall the following important theorem:3

When the open-loop transfer function of a linear feedback system has a large
magnitude compared with unity for all frequencies, the closed-loop transfer
function of the system is effectively determined by the inverse of the transfer func-
tion of the feedback path.

Stated in another way, the closed-loop transfer function of the feedback system becomes
essentially independent of the forward path.

From the linearized feedback model of Fig. 4.15(a), we observe three points pertinent
to the problem at hand:

1. The feedback path is defined solely by the scaled integrator described in Eq. (4.60),
which is the VCO’s contribution to the model. Correspondingly, the inverse of this
feedback path is described in the time domain by the scaled differentiator:

(4.66)

2. The closed-loop time-domain behavior of the phase-locked loop is described by the
overall output produced in response to the angle in the incoming FM 
wave s1t2. f11t2v1t2

v1t2 �
1

2pkv
¢df21t2

dt
≤

v1t2s1t2 f11t2

v1t2 � L
q

�q
e1t2h1t � t2 dt

e1t2v1t2 h1t2v1t2.e1t2
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FIGURE 4.15 (a) Linearized model of the phase-locked loop. (b) Approximate form of the
model, assuming that the loop gain is large compared with unity.K0

3. The magnitude of the open-loop transfer function of the phase-locked loop is
controlled by the loop-gain parameter of Eq. (4.64).

Assuming that the loop-gain parameter is large compared with unity, application of the
linear feedback theorem to the model of Fig. 4.15(a) teaches us that the closed-loop trans-
fer function (i.e., closed-loop time-domain behavior) of the phase-locked loop is effectively
determined by the inverse of the transfer function (i.e., time-domain behavior) of the feed-
back path. Accordingly, in light of the feedback theorem stated on page 180 and Eq. (4.66),
we may relate the overall output to the input angle by the approximate formula

(4.67)

Permitting to assume a large value has the effect of making the phase error 
approach zero. Under this condition, we have in accordance with the first
line of Eq. (4.62). This condition of approximate equality provides the rationale for replac-
ing with in Eq. (4.67).

In light of the approximate relationship described in Eq. (4.67), we may now simplify
the linearized feedback model of Fig. 4.15(a) to the form shown in part (b) of the figure.
Hence, substituting Eq. (4.58) into (4.67), we obtain

(4.68)

Equation (4.68) states that when the system operates in the phase-lock mode or near phase
lock and the loop-gain parameter is large compared with unity, frequency demodula-
tion of the incoming FM wave is accomplished; that is, the original message signal

is recovered from except for the scaling factor 
An important feature of the phase-locked loop, acting as a frequency demodulator,

is that the bandwidth of the incoming FM wave can be much wider than that of thes1t2
1kf>kv2.s1t2,m1t2 s1t2K0
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loop filter characterized by the transfer function —that is, the Fourier transform of the
loop filter’s impulse response The transfer function of the loop filter can and
therefore should be restricted to the baseband (i.e., the original frequency band occupied
by the message signal). Then the control signal of the VCO—namely, —has the band-
width of the baseband (message) signal whereas the VCO output is a wide-band
frequency-modulated wave whose instantaneous frequency tracks the variations in the
instantaneous frequency of the incoming FM wave due to Here we are merely
restating the fact that the bandwidth of a wide-band FM wave is much larger than the
bandwidth of the message signal responsible for its generation.

The complexity of the phase-locked loop is determined by the transfer function 
of the loop filter. The simplest form of a phase-locked loop is obtained by setting 
that is, there is no loop filter, in which case the phase-locked loop is referred to as a first-
order phase-locked loop. For higher order loops, the transfer function assumes a
more complex frequency-dependent form.

A major limitation of a first-order phase-locked loop is that the loop-gain parameter
controls both the loop bandwidth as well as the hold-in frequency range of the loop.

The hold-in frequency range refers to the range of frequencies for which the loop remains
in a phase-locked condition with respect to the incoming FM wave. It is for this reason that
despite its simplicity, a first-order phase-locked loop is seldom used in practice. Rather, the
recommended procedure is to use a second-order phase-locked loop, the realization of
which is satisfied by using a first-order loop filter; See Problem 4.25.

� Drill Problem 4.7 Using the linearized model of Fig. 4.15(a), show that the model is
approximately governed by the integro-differential equation

Hence, derive the following two approximate results in the frequency domain:

(a)

(b)

where

is the open-loop transfer function. Finally, show that when is large compared with unity
for all frequencies inside the message band, the time-domain version of the formula in part (b)
reduces to the approximate form in Eq. (4.68). �

4.9 Theme Example: FM Stereo
Multiplexing

Stereo multiplexing is a form of frequency-division multiplexing (FDM) designed to trans-
mit two separate signals via the same carrier. It is widely used in FM radio broadcasting to
send two different elements of a program (e.g., two different sections of an orchestra, a
vocalist and an accompanist) so as to give a spatial dimension to its perception by a listener
at the receiving end.
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FIGURE 4.16 (a) Multiplexer in transmitter of FM stereo. (b) Demultiplexer in
receiver of FM stereo.

The specification of standards for FM stereo transmission is influenced by two factors:

1. The transmission has to operate within the allocated FM broadcast channels.
2. It has to be compatible with monophonic radio receivers.

The first requirement sets the permissible frequency parameters, including frequency devi-
ation. The second requirement constrains the way in which the transmitted signal is con-
figured.

Figure 4.16(a) shows the block diagram of the multiplexing system used in an FM
stereo transmitter. Let and denote the signals picked up by left-hand and right-
hand microphones at the transmitting end of the system. They are applied to a simple
matrixer that generates the sum signal, and the difference signal,

The sum signal is left unprocessed in its baseband form; it is available for
monophonic reception. The difference signal and a 38-kHz subcarrier (derived from a 19-
kHz crystal oscillator by frequency doubling) are applied to a product modulator, thereby
producing a DSB-SC modulated wave. In addition to the sum signal and this DSB-SC mod-
ulated wave, the multiplexed signal also includes a 19-kHz pilot to provide a referencem1t2

ml1t2 � mr1t2. ml1t2 	 mr1t2,
mr1t2ml1t2
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for the coherent detection of the difference signal at the stereo receiver. Thus in accordance
with Fig. 4.16(a), the multiplexed signal is described by

(4.69)

where and K is the amplitude of the pilot tone. The multiplexed signal 
then frequency-modulates the main carrier to produce the transmitted signal, this frequency
modulation is not shown in Fig. 4.16(a). The pilot is allotted between 8 and 10 percent of the
peak frequency deviation; the amplitude K in Eq. (4.69) is chosen to satisfy this requirement.

At a stereo receiver, first of all the multiplexed signal is recovered by frequency
demodulating the incoming FM wave. Then is applied to the demultiplexing system
shown in Fig. 4.16(b). The individual components of the multiplexed signal are sep-
arated by the use of three appropriate filters. The recovered pilot (using a narrow-band fil-
ter tuned to 19 kHz) is frequency-doubled to produce the desired 38-kHz subcarrier. The
availability of this subcarrier enables the coherent detection of the DSB-SC modulated
wave, see the part of Fig. 4.16(b) inside the dashed rectangle. The difference signal

is thereby recovered. The baseband low-pass filter in the top path of
Fig. 4.16(b) is designed to pass the sum signal, Finally, the simple matrixer
reconstructs the original left-hand signal and right-hand signal except for the
scaling factor 2, and applies them to their respective speakers. FM stereophonic reception
is thereby accomplished.

4.10 Summary and Discussion

In Chapter 3, we studied the underlying principles of the first family of continuous-wave (CW)
modulation, based on amplitude modulation and its variants. In this chapter, we completed the
study of the underlying principles of CW modulation, based on angle modulation.

Fundamentally, there are two kinds of angle modulation:

� Phase modulation (PM), where the instantaneous phase of the sinusoidal carrier wave
is varied linearly with the message signal.

� Frequency modulation (FM), where the instantaneous frequency of the sinusoidal
carrier wave is varied linearly with the message signal.

These two methods of modulation are closely related in that if we are given one of them,
we can derive the other one. For this reason we focused much of the discussion on fre-
quency modulation.

Frequency modulation (FM) is typified by the equation

(4.70)

where is the message signal, is the sinusoidal carrier wave, and is the
frequency sensitivity of the modulator. Equation (4.70) is a repeat of Eq. (4.7), reproduced
at this point merely for convenience of presentation.

Unlike amplitude modulation, from Eq. (4.70) we see that FM is a nonlinear modu-
lation process. Accordingly, the spectral analysis of FM is more difficult than for AM. Nev-
ertheless, by studying single-tone FM, we were able to develop a great deal of insight into
the spectral properties of FM. In particular, we derived an empirical rule known as the
generalized Carson rule for an approximate evaluation of the transmission bandwidth 
of FM. According to this rule, is controlled by a single parameter: the modulation index

for sinusoidal FM or the deviation ratio D for nonsinusoidal FM.
In FM, the carrier amplitude and therefore the transmitted average power is maintained

constant. Herein lies the important advantage of FM over AM in combating the effects of noise

b
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or interference at reception, an issue that we study in Chapter 9, after familiarizing ourselves
with probability theory and random processes in Chapter 8. This advantage becomes increas-
ingly more pronounced as the modulation index (deviation ratio) is increased, which has the
effect of increasing the transmission bandwidth in a corresponding way. Thus, frequency
modulation provides a practical method for the tradeoff of channel bandwidth for improved
noise performance, which is not feasible with amplitude modulation.

One final comment is in order. Just as with amplitude modulation, the development
of the angle modulation family has been motivated by its direct relevance to analog com-
munications, but many aspects of this branch of modulation theory are equally applicable
to digital communications. For example, if the message signal in Eq. (4.70) is restricted to
levels of or representing binary 0 and binary symbol 1, respectively, then we have
a basic form of digital modulation known as binary frequency-shift-keying (BFSK), dis-
cussed in Chapter 7.

ADDITIONAL PROBLEMS

4.8 Sketch the PM and FM waves produced by the sawtooth wave shown in Fig. 4.17 as the source
of modulation.

	1�1

4.9 In a frequency-modulated radar the instantaneous frequency of the transmitted carrier is var-
ied as in Fig. 4.18. Such a signal is generated by frequency modulation with a periodic trian-
gular modulating wave. The instantaneous frequency of the received echo signal is shown dashed
in Fig. 4.18 where is the round-trip delay time. The transmitted and received echo signals are
applied to a mixer, and the difference frequency component is retained. Assuming that 
for all determine the number of beat cycles at the mixer output, averaged over one second,
in terms of the peak deviation of the carrier frequency, the delay and the repetition fre-
quency of the transmitted signal. (The beat refers to a signal whose frequency is the differ-
ence between the frequencies of the two input signals.)
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FIGURE 4.17 Problem 4.8
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FIGURE 4.19 Problem 4.15

4.10 Consider an interval of an FM wave such that satisfies the condition

Hence, show that if is sufficiently small, the instantaneous frequency of the FM wave inside
this interval is approximately given by

4.11 The sinusoidal modulating wave

is applied to a phase modulator with phase sensitivity The unmodulated carrier wave has
frequency and amplitude Determine the spectrum of the resulting phase-modulated wave,
assuming that the maximum phase deviation does not exceed 0.3 radian.

4.12 A carrier wave is frequency-modulated using a sinusoidal signal of frequency and amplitude 
(a) Determine the values of the modulation index for which the carrier component of the FM wave

is reduced to zero. For this calculation you may use the values of given in Appendix 3.
(b) In a certain experiment conducted with and increasing (starting from zero

volt), it is found that the carrier component of the FM wave is reduced to zero for the first
time when What is the frequency sensitivity of the modulator? What is the
value of for which the carrier component is reduced to zero for the second time?

4.13 A carrier wave of frequency 100 MHz is frequency-modulated by a sinusoidal wave of ampli-
tude 20 V and frequency 100 kHz. The frequency sensitivity of the modulator is 25 kHz/V.
(a) Determine the approximate bandwidth of the FM wave, using Carson’s rule.
(b) Determine the bandwidth obtained by transmitting only those side-frequencies with ampli-

tudes that exceed one percent of the unmodulated carrier amplitude. Use the universal curve
of Fig. 4.9 for this calculation.

(c) Repeat your calculations, assuming that the amplitude of the modulating wave is doubled.
(d) Repeat your calculations, assuming that the modulation frequency is doubled.

4.14 Consider a wide-band PM wave produced by the sinusoidal modulating wave 
using a modulator with a phase sensitivity equal to radians per volt.
(a) Show that if the maximum phase deviation of the PM wave is large compared with one

radian, the bandwidth of the PM wave varies linearly with the modulation frequency 
(b) Compare this characteristic of a wide-band PM wave with that of a wide-band FM wave.

4.15 Figure 4.19 shows the block diagram of a closed-loop feedback system for the carrier-frequency
stabilization of a wide-band frequency modulator. The voltage-controlled oscillator shown in
the figure constitutes the frequency modulator. Using the ideas of mixing (i.e., frequency trans-
lation) (described in Chapter 3) and frequency discrimination (described in this chapter), dis-
cuss how the feedback system of Fig. 4.19 is capable of exploiting the frequency accuracy of the
crystal oscillator to stabilize the voltage-controlled oscillator.
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4.16 Consider the frequency demodulation scheme shown in Fig. 4.20 in which the incoming FM wave
is passed through a delay line that produces a phase shift of radians at the carrier

frequency The delay-line output is subtracted from and the resulting composite wave
is then envelope-detected. This demodulator finds application in demodulating FM waves at
microwave frequencies. Assuming that

analyze the operation of this demodulator when the modulation index is less than unity and
the delay T produced by the delay line is sufficiently small to justify making the approximations:

and
sin12pfmT2 � 2pfmT

cos12pfmT2 � 1

b

s1t2 � Ac cos32pfct 	 b sin12pfct24

s1t2,fc .
�p>2s1t2

4.17 Consider the following pair of modulating signals:

1.

2.

where the as and the bs are constant parameters.
Signal 1 is applied to a frequency modulator, while signal 2 is applied to a phase modu-

lator. Determine the conditions for which the outputs of these two angle modulators are exactly
the same.

4.18 In this problem, we work on the specifications of a superheterodyne FM receiver listed in Table
3.2. In particular, given those specifications, do the following work:
(a) Determine the range of frequencies provided by the local oscillator of the receiver in order

to accommodate the RF carrier range 88-108 MHz.
(b) Determine the corresponding range of image frequencies.

ADVANCED PROBLEMS

4.19 The instantaneous frequency of a sinusoidal wave is equal to for and for
Determine the spectrum of this frequency-modulated wave. Hint: Divide up the time

interval of interest into three nonoverlapping regions:

(i)

(ii)

(iii)

4.20 Figure 4.21 shows the block diagram of a real-time spectrum analyzer working on the princi-
ple of frequency modulation. The given signal and a frequency-modulated signal are
applied to a multiplier and the output is fed into a filter of impulse The and

are linear FM signals whose instantaneous frequencies vary at opposite rates, as shown by
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and

where k is a constant. Show that the envelope of the filter output is proportional to the ampli-
tude spectrum of the input signal with the product term kt playing the role of frequency 
Hint: Use the complex notations described in Section 3.8 for band-pass transmission.

f.g1t2
h1t2 � cos12pfct � pkt22

Filter:
impulse response

h(t)
Outputg(t)

s(t)

FIGURE 4.21 Problem 4.20

4.21 Consider the modulated wave

where is a slowly varying envelope function, is the carrier frequency, is the frequency
sensitivity, and is a message signal. The modulated wave is processed by a band-pass
limiter, which consists of a hard limiter followed by a band-pass filter. The function of the band-
pass limiter is to remove amplitude fluctuations due to Specify the parameters of the band-
pass filter component so as to produce the FM wave

where A is a constant amplitude.

4.22 The analysis of distortion produced in an FM wave applied to a linear communication channel
is of important practical interest. In this problem, we explore this analysis for the special case
of a wide-band FM wave produced by a sinusoidal modulating wave. Let denote the
transfer function of the channel. Starting with Eq. (4.15), do the following:
(a) Derive an expression for the modulated signal produced at the channel output.
(b) Using the expression derived in part (a), discuss the distortion produced by the channel.

4.23 In Section 4.1, we pointed out that the instantaneous angle in angle-modulated waves can
be varied in accordance with a message signal in an infinite number of ways. The treat-
ment of angle modulation presented in this chapter focused on phase modulation and frequency
modulation as two important candidates. The purpose of this problem is to explore other meth-
ods of producing angle-modulated waves.
(a) Do this exploration by considering derivatives and integrals of the message signal as

possible functions response for the modulation process.
(b) Would there be any practical benefits in these new methods of angle modulation? Elaborate

on your answer.

4.24 In this problem, we explore how the use of FM can overcome nonlinear distortion. Consider a
memoryless channel characterized by the nonlinear input–output relationship:
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where is the input and is the output; and are fixed coefficients. The input
is defined by the frequency-modulated signal

The message bandwidth is denoted by W, and the frequency deviation of the FM signal is 
(a) Evaluate the output 
(b) Using the generalized Carson rule, show that if the carrier frequency satisfies the condition

then the effect of nonlinear distortion can be removed by band-pass filtering.
(c) Specify the mid-band frequency and bandwidth of the filter in part (b).

4.25 Consider a second-order phase-locked loop using a loop filter with the transfer function

where a is a filter parameter.
(a) Using this loop filter in the following formula (see part a of Drill Problem 4.7)

show that the resulting Fourier transform of phase error is expressed as

where is the natural frequency of the loop, and

is its damping factor.
(b) Hence, justify the statement that by appropriately choosing the parameters and , it is pos-

sible for this phase-locked loop to overcome the limitations of the first-order version of the
loop.
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CHAPTER 5

PULSE MODULATION:
TRANSITION FROM ANALOG

TO DIGITAL

COMMUNICATIONS

In continuous-wave (CW) modulation, which we studied in Chapters 3 and 4, some para-
meter of a sinusoidal carrier wave is varied continuously in accordance with the message
signal. This is in direct contrast to pulse modulation, which we study in the present chap-
ter. In pulse modulation, some parameter of a pulse train is varied in accordance with the
message signal. In this context, we may distinguish two families of pulse modulation, ana-
log pulse modulation and digital pulse modulation, depending on how the modulation is
performed. In analog pulse modulation, a periodic pulse train is used as the carrier wave,
and some characteristic feature of each pulse (e.g., amplitude, duration, or position) is var-
ied in a continuous manner in accordance with the corresponding sample value of the mes-
sage signal. Thus, in analog pulse modulation, information is transmitted basically in
analog form, but the transmission takes place at discrete times. In digital pulse modula-
tion, on the other hand, the message signal is represented in a form that is discrete in both
time and amplitude, thereby permitting its transmission in digital form as a sequence of
coded pulses. Simply put, digital pulse modulation has no CW counterpart.

The use of coded pulses for the transmission of analog information-bearing signals
represents a basic ingredient in the application of digital communications. This chapter
may therefore be viewed as the transition from analog to digital communications in our
study of the principles of communication systems.

We begin the chapter by describing the sampling process, which is basic to all pulse
modulation systems. This is followed by a discussion of pulse-amplitude modulation,
which is the simplest form of analog pulse modulation. We then move on to describe the
quantization process, the use of which distinguishes digital pulse modulation from analog
pulse modulation. In particular, we describe three widely used forms of digital pulse
modulation—namely, pulse-code modulation, delta modulation and differential 
pulse-code modulation.

The material presented in this chapter on pulse modulation teaches us the following
two lessons:

� Lesson 1: Given a strictly band-limited message signal, the sampling theorem embodies the
conditions for a uniformly sampled version of the signal to preserve its information content.
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� Lesson 2: Analog pulse-modulation systems rely on the sampling process to maintain con-
tinuous amplitude representation of the message signal. In contrast, digital pulse-modula-
tion systems use not only the sampling process but also the quantization process, which is
non-reversible. Quantization provides a representation of the message signal that is dis-
crete in both time and amplitude. In so doing, digital pulse modulation makes it possible
to exploit the full power of digital signal-processing techniques.

5.1 Sampling Process

Much of the material on the representation of signals and systems covered up to this stage in
the book has been devoted to signals and systems that are continuous in both time and fre-
quency. At various points in Chapter 2, however, we did consider the representation of peri-
odic signals. In particular, recall that the Fourier transform of a periodic signal with period 
consists of an infinite sequence of delta functions occurring at integer multiples of the funda-
mental frequency We may therefore state that making a signal periodic in the time
domain has the effect of sampling the spectrum of the signal in the frequency domain. We may
go one step further by invoking the duality property of the Fourier transform, and state that
sampling a signal in the time domain has the effect of making the spectrum of the signal peri-
odic in the frequency domain. This latter issue is the subject of this section.

The sampling process is usually, but not exclusively, described in the time domain. As
such, it is an operation that is basic to digital signal processing and digital communications.
Through use of the sampling process, an analog signal is converted into a corresponding
sequence of samples that are usually spaced uniformly in time. Clearly, for such a proce-
dure to have practical utility, it is necessary that we choose the sampling rate properly, so
that the sequence of samples uniquely defines the original analog signal. This is the essence
of the sampling theorem, which is derived in what follows.

� INSTANTANEOUS SAMPLING AND FREQUENCY-DOMAIN CONSEQUENCES

Consider an arbitrary signal of finite energy, which is specified for all time t. A seg-
ment of the signal is shown in Fig. 5.1(a). Suppose that we sample the signal 
instantaneously and at a uniform rate, once every seconds. Consequently, we obtain an
infinite sequence of samples spaced seconds apart and denoted by where n takes
on all possible integer values, both positive and negative. We refer to as the sampling
period or sampling interval and to its reciprocal as the sampling rate. This ideal
form of sampling is called instantaneous sampling.

Let denote the signal obtained by individually weighting the elements of a peri-
odic sequence of Dirac delta functions spaced seconds apart by the sequence of numbers

as shown by (see Fig. 5.1(b))

(5.1)

We refer to as the instantaneously (ideal) sampled signal. The term rep-
resents a delta function positioned at time From the definition of the delta func-
tion presented in Section 2.4, recall that such an idealized function has unit area. We may
therefore view the multiplying factor in Eq. (5.1) as a “mass” assigned to the delta
function A delta function weighted in this manner is closely approximated by
a rectangular pulse of duration and amplitude the smaller we make the
better the approximation will be.

¢t,g1nTs2>¢t;¢t
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FIGURE 5.1 Illustration of the sampling process. (a) Analog waveform (b)
Instantaneously sampled representation of g1t2. g1t2.

The instantaneously sampled signal has a mathematical form similar to that of
the Fourier transform of a periodic signal. This is readily established by comparing 
Eq. (5.1) for with the Fourier transform of a periodic signal given by the right-hand
side of Eq. (2.88). This correspondence suggests that we may determine the Fourier trans-
form of the sampled signal by invoking the duality property of the Fourier transform,
the essence of which is embodied in Eq. (2.24). Indeed, by applying this property to the
Fourier transform of Eq. (2.88) and the related Eq. (2.87), we may develop Table 5.1. The
entries listed in the table describe the duality relationships between sampling in the time
domain and its counterpart, sampling in the frequency domain.

� Drill Problem 5.1
(a) Using the material presented in Section 2.5, justify the mathematical relationships

listed at the bottom of the left-hand side of Table 5.1, which pertain to ideal sampling
in the frequency domain.

(b) Applying the duality property of the Fourier transform to part (a), justify the math-
ematical relationships listed at the bottom of the right-hand side of this table, which
pertain to ideal sampling in the time-domain. �

The motivation for formulating table 5.1 is to lay the mathematical groundwork for for-
mulating the sampling theorem in the time-domain. To this end, we reproduce the rela-
tionships listed at the bottom of the right-hand side of the table in the form

(5.2)a
q

n��q
g1nTs2d1t � nTs2 Δ fs a

q

m��q
G1f � mfs2 � a

q

n��q
g1nTs2 exp1�j2pnTsf2 � Gd1f2

gd1t2
gd1t2

gd1t2
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where is the Fourier transform of the original signal and is the sam-
pling rate. In words, Eq. (5.2) states that the process of uniformly sampling a continuous-
time signal of finite energy results in a periodic spectrum with a repetition frequency equal
to the sampling rate.

� SAMPLING THEOREM

The relations of Eq. (5.2) apply to any continuous-time signal of finite energy. Sup-
pose, however, that the signal is strictly band-limited, with no frequency components
higher than W hertz. That is, the Fourier transform of the signal has the prop-
erty that is zero for as illustrated in Fig. 5.2(a); the shape of the spectrum
shown in this figure is intended for the purpose of illustration only. Suppose also that we
choose the sampling period , which, as we shall see, is the maximum permissi-
ble value. Then the corresponding spectrum of the sampled signal is as shown
in Fig. 5.2(b). Putting in Eq. (5.2) and using to denote the Fourier trans-
form of we may write

(5.3)

Equation (5.3) defines the Fourier transform of the sequence which
is obtained by uniform sampling of a continuous-time signal at the special rate

The formula obtained by using the sampling period shown
in Eq. (5.3), is called the discrete-time Fourier transform1 of the sequence 5g1nTs26n���

� .
Ts � 1>2W,11>Ts2 � fs � 2W.

g1t25g1n>2W26n���
� ,Gd1f2

Gd1f2 � a
q

n��q
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2W
b  expa�

jpnf
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gd1t2, Gd1f2Ts � 1>2W
gd1t2Gd1f2Ts � 1>2W

ƒf ƒ � W,G1f2 g1t2G1f2g1t2 g1t2

fs � 1>Tsg1t2,G1f2

1In the Fourier formula of Eq. (5.3), time t is implicitly discretized. If we go one step further and discretize the
frequency too by setting we get the discrete Fourier transform, which is periodic in both time and
frequency; specifically,

where

and

The parameter N is the number of samples in each period, whether in the time or frequency domain. The discrete
Fourier transform was discussed in Chapter 2.
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f � k  2W,f

TABLE 5.1 Time-Frequency Sampling-Duality Relationships

Ideal sampling in the frequency domain Ideal sampling in the time domain
(Discrete spectrum); see Chapter 2 (Discrete-time function); see this chapter

Fundamental period Sampling rate 
Delta function Delta function 
where where 
Periodicity in the time-domain Periodicity in the frequency domain
Time-limited function Band-limited spectrum
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FIGURE 5.2 (a) Spectrum of a strictly
band-limited signal (b) Spectrum of
instantaneously sampled version of for a
sampling period (c) Frequency
response of ideal low-pass filter aimed at
recovering the original message signal 
from its uniformly sampled version.

g1t2
Ts � 1>2W.

g1t2g1t2.

� Drill Problem 5.2 Show that as the sampling period approaches zero, the formula for
the discrete-time Fourier transform given in Eq. (5.3) approaches the formula for the
Fourier transform �

Returning to Eq. (5.2), suppose we isolate the term corresponding to in the
summation term and thus write

From this expression we find that, for a strictly band-limited signal, under the two condi-
tions

1. for

2.

the summation term is constrained to be zero. Then, solving the simplified expression for
we obtain

(5.4)

Eliminating between Eq. (5.3) and Eq. (5.4) yields

(5.5)

Therefore, if the sample values of a signal are specified for all time, then the
Fourier transform of the signal is uniquely determined, except for the scaling fac-g1t2G1f2 g1t2g1n>2W2
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tor by the discrete-time Fourier transform of Eq. (5.3) for the spectrum lim-
ited to the interval Because is related to by the inverse Fourier
transform, it follows that the signal is itself uniquely determined by the sample values

for In other words, the sequence has all the informa-
tion contained in 

Consider next the problem of reconstructing the signal from the sequence of
sample values Substituting Eq. (5.5) into the formula for the inverse Fourier
transform defining in terms of we get

We are permitted to interchange the order of summation and integration, as they are both
linear operations. Accordingly, we may go on to redefine the desired signal as

(5.6)

� Drill Problem 5.3 Show that

�

In light of Problem 5.3, the formula of Eq. (5.6) reduces to

(5.7)

Equation (5.7) is the interpolation formula for reconstructing the original signal from
the sequence of sample values with the sinc function playing the
role of an interpolation function. Each sample is multiplied by a delayed version of the
interpolation function, and all the resulting waveforms are added to obtain 

� Drill Problem 5.4 This problem is intended to identify a linear filter for satisfying the
interpolation formula of Eq. (5.7), albeit in a non-physically realizable manner. Equation (5.7)
is based on the premise that the signal is strictly limited to the band With
this specification in mind, consider an ideal low-pass filter whose frequency response is
as depicted in Fig. 5.2(c). The impulse response of this filter is defined by (see Eq. (2.25))

Suppose that the correspondingly instantaneously sampled signal defined in Eq. (5.1)
is applied to this ideal low-pass filter. With this background, use the convolution integral to
show that the resulting output of the filter is defined exactly by the interpolation formula of
Eq. (5.7). �

In light of Problem 5.4, we may now formally say that the synthesis filter or recon-
struction filter aimed at recovering the original strictly band-limited signal from its
instantaneously sampled version in accordance with Eq. (5.7) consists of an ideal
low-pass whose frequency response is limited exactly to the same band as the signal g1t2gd1t2 g1t2
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h1t2 � sinc12Wt2, �� � t � �

H1f2�W � f � W.g1t2

g1t2.
sinc12Wt25g1n>2W26, g1t2

g1t2 � a
q

n��q
ga n

2W
b  sinc12Wt � n2, �� � t � �

� sinc12Wt � n2
1

2W L
W

�W
 exp c j2pfa t �

n
2W
b d df �

sin12pWt � np2
12pWt � np2

g1t2 � a
q

n��q
ga n

2W
b 1

2WL
W

�W
 expc j2pf at �

n
2W
b d df

g1t2

� L
W

�W
 

1
2W a

q

n��q
ga n

2W
b  expa�

jpnf

W
b  exp1j2pft2 df

g1t2 � L
q

�q
G1f2 exp1j2pft2 df

G1f2,g1t25g1n>2W26. g1t2g1t2. 5g1n>2W26�� � n � �.g1n>2W2 g1t2 G1f2g1t2�W � f � W.
Gd1f21>2W,



196 CHAPTER 5 � PULSE MODULATION: TRANSITION FROM ANALOG TO DIGITAL COMMUNICATIONS

itself—namely, This reconstruction filter is non-causal and therefore 
non-physically realizable. Later on in this section, we will describe how by relaxing the spec-
ification of the signal physical realization of the reconstruction filter can be assured.

The discrete-time Fourier transform of Eq. (5.5) defines the message spectrum 
in terms of the uniformly spaced samples values for The interpola-
tion formula of Eq. (5.7) defines the message signal in terms of these same sample val-
ues. On the basis of these two formulas, we may now state the sampling theorem for strictly
band-limited signals of finite energy in two equivalent parts:

1. Analysis. A band-limited signal of finite energy that has no frequency components
higher than W hertz is completely described by specifying the values of the signal at
instants of time separated by seconds.

2. Synthesis. A band-limited signal of finite energy that has no frequency components
higher than W hertz is completely recovered from knowledge of its samples taken at
the rate of 2W samples per second.

The sampling rate of 2W samples per second for a signal bandwidth of W hertz is
called the Nyquist rate; its reciprocal (measured in seconds) is called the Nyquist
interval. The analysis part of the sampling theorem applies to the transmitter. The synthe-
sis part of the theorem, on the other hand applies to the receiver. Note also that the Nyquist
rate is the minimum sampling rate permissible.

� Drill Problem 5.5 Specify the Nyquist rate and the Nyquist interval for each of the fol-
lowing signals:

(a)
(b)
(c) �

� Drill Problem 5.6 Consider uniform sampling of the sinusoidal wave

Determine the Fourier transform of the sampled waveform for each of the following sampling
periods:

(a)
(b)
(c) �

� Drill Problem 5.7 Consider a continuous-time signal defined by

The signal is uniformly sampled to produce the infinite sequence Deter-
mine the condition that the sampling period must satisfy so that the signal is uniquely
recovered from the sequence �

� ALIASING PHENOMENON

Derivation of the sampling theorem, as described herein, is based on the assumption that
the signal is strictly band-limited. In practice, however, no information-bearing signal
of physical origin is strictly band-limited, with the result that some degree of undersampling

g1t2

5g1nTs26. g1t2Ts
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pt
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g1t2 � sinc1200t2 	 sinc21200t2g1t2 � sinc21200t2g1t2 � sinc1200t2
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FIGURE 5.3 (a) Spectrum of a signal. (b) Spectrum of an undersampled version of the
signal, exhibiting the aliasing phenomenon.

is always encountered. Consequently, aliasing is produced by the sampling process. Alias-
ing refers to the phenomenon of a high-frequency component in the spectrum of the sig-
nal seemingly taking on the identity of a lower frequency in the spectrum of its sampled
version, as illustrated in Fig. 5.3. The aliased spectrum shown by the solid curve in Fig. 5.3(b)
pertains to an “undersampled” version of the message signal represented by the spectrum
of Fig. 5.3(a).

To combat the effects of aliasing in practice, we may use two corrective measures:

1. Prior to sampling, a low-pass anti-alias filter is used to attenuate those high-frequency
components of a message signal that are not essential to the information being con-
veyed by the signal.

2. The filtered signal is sampled at a rate slightly higher than the Nyquist rate.

The use of a sampling rate higher than the Nyquist rate also has the beneficial effect
of easing the design of the synthesis filter used to recover the original signal from its sam-
pled version. Consider the example of a message signal that has been anti-alias (low-pass)
filtered, resulting in the spectrum shown in Fig. 5.4(a). The corresponding spectrum of the
instantaneously sampled version of the signal is shown in Fig. 5.4(b), assuming a sampling
rate higher than the Nyquist rate. According to the picture depicted in Fig. 5.4(b), we now
readily see that the design of a physically realizable reconstruction filter aimed at recover-
ing the original signal from its uniformly sampled version may be achieved as follows (see
Fig. 5.4(c)):

� The reconstruction filter is of a low-pass kind with a passband extending from 
to W, which is itself determined by the anti-alias filter.

� The filter has a non-zero transition band extending (for positive frequencies) from W
to where is the sampling rate.

The non-zero transition band of the filter assures physical realizability, it is shown dashed
to emphasize the arbitrary way of actually realizing it.

fsfs � W,

�W
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FIGURE 5.4 (a) Anti-alias filtered spectrum of an information-bearing signal. (b) Spectrum
of instantaneously sampled version of the signal, assuming the use of a sampling rate greater
than the Nyquist rate. (c) Idealized amplitude response of the reconstruction filter.

5.2 Pulse-Amplitude Modulation

Now that we understand the essence of the sampling process, we are ready to formally
define pulse-amplitude modulation, which is the simplest and most basic form of analog
pulse modulation techniques. In pulse-amplitude modulation (PAM), the amplitudes of
regularly spaced pulses are varied in proportion to the corresponding sample values of a
continuous message signal; the pulses can be of a rectangular form or some other appro-
priate shape. Pulse-amplitude modulation as defined here is somewhat similar to natural
sampling, where the message signal is multiplied by a periodic train of rectangular pulses.
In natural sampling, however, the top of each modulated rectangular pulse is permitted to
vary with the message signal, whereas in PAM it is maintained flat. (Natural sampling is
explored further in Problem 5.26.)

The waveform of a PAM signal is illustrated in Fig. 5.5. The dashed curve in this fig-
ure depicts the waveform of the message signal and the sequence of amplitude-mod-
ulated rectangular pulses shown as solid lines represents the corresponding PAM signal
s(t). There are two operations involved in the generation of the PAM signal:

1. Instantaneous sampling of the message signal every seconds, where the sam-
pling rate is chosen in accordance with the sampling theorem.

2. Lengthening the duration of each sample, so that it occupies some finite value T.
fs � 1>Ts

Tsm1t2

m1t2,
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FIGURE 5.5 Flat-top sampling of a message signal.

In digital circuit technology, these two operations are jointly referred to as “sample and
hold.” One important reason for intentionally lengthening the duration of each sample is
to avoid the use of an excessive channel bandwidth, since bandwidth is inversely propor-
tional to pulse duration. However, care has to be exercised in how long we make the sam-
ple duration T, as the following analysis reveals.

� SAMPLE-AND-HOLD FILTER: ANALYSIS

Let denote the sequence of flat-top pulses generated in the manner described in Fig. 5.5.
Hence, we may express the PAM signal as

(5.8)

where is the sampling period and is the sample value of obtained at time
The is a standard rectangular pulse of unit amplitude and duration T, defined

as follows (see Fig. 5.6(a)):

(5.9)

By definition, the instantaneously sampled version of is given by [see Eq. (5.1)]

(5.10)

where is a time-shifted delta function. To modify so as to assume the
same form as the PAM signal we convolve with the pulse obtaining
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where, in the last line, we have interchanged the order of summation and integration, both
of which are linear operations. Using the sifting property of the delta function—namely,

we find that Eq. (5.11) reduces to

(5.12)

The summation terms in Eqs. (5.8) and (5.12) are identical. It follows therefore that the PAM
signal is mathematically equivalent to the convolution of the instantaneously
sampled version of and the pulse as shown by

(5.13)

Taking the Fourier transform of both sides of Eq. (5.13) and recognizing that the
convolution of two time functions is transformed into the multiplication of their respective
Fourier transforms, we get

(5.14)

where and From Eq. (5.2) we find that
the Fourier transform is related to the original message spectrum as follows:

(5.15)

where is the sampling rate. Therefore, substitution of Eq. (5.15) into (5.14) yields

(5.16)

� Drill Problem 5.8 Starting with Eq. (5.9), show that the Fourier transform of the rec-
tangular pulse is given by

(5.17)

What happens to as the pulse duration T approaches zero? �

Given a PAM signal whose Fourier transform is defined in Eq. (5.16), how do we
recover the original message signal As a first step in this recovery, we may pass 
through a low-pass filter whose frequency response is defined in Fig. 5.2(c); here it is
assumed that the message signal is limited to bandwidth W and the sampling rate 
is larger than the Nyquist rate 2W. Then from Eq. (5.16) we find that the spectrum of the
resulting filter output is equal to This output is equivalent to passing the mes-
sage signal through another low-pass filter of transfer function The next step
in recovering the message signal requires the use of equalization, as discussed next.

� APERTURE EFFECT AND ITS EQUALIZATION

Figure 5.6(b) shows plots of the magnitude and phase of the Fourier transform ver-
sus frequency From this figure we see that by using flat-top samples to generate a PAM
signal, we have introduced amplitude distortion as well as a delay of This effect is
rather similar to the variation in transmission with frequency that is caused by the finite
size of the scanning aperture in television. For this reason, the distortion caused by the use
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of pulse-amplitude modulation (based on flat-top sampling) to transmit an analog infor-
mation-bearing signal is referred to as the aperture effect.

This distortion may be corrected by connecting an equalizer in cascade with the low-pass
reconstruction filter, as shown in Fig. 5.7. The equalizer has the effect of decreasing the in-band
loss of the reconstruction filter as the frequency increases in such a manner as to compensate
for the aperture effect. Ideally, the amplitude response of the equalizer is given by

The amount of equalization needed in practice is usually small. Indeed, for a duty cycle
the amplitude distortion is less than 0.5 percent, in which case the need for

equalization may be omitted altogether.
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FIGURE 5.6 (a) Rectangular pulse (b) Spectrum defined in terms of its
magnitude and phase.
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FIGURE 5.7 Recovering the message signal from the PAM signal s1t2.m1t2
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The transmission of a PAM signal imposes rather stringent requirements on the ampli-
tude and phase responses of the channel, because of the relatively short duration of the trans-
mitted pulses. Furthermore, it may be shown that the noise performance of a PAM system
can never be better than direct transmission of the message signal. Accordingly, we find that
for transmission over long distances, PAM would be used only as a means of message pro-
cessing for time-division multiplexing. The concept of time-division multiplexing is dis-
cussed later in this chapter.

5.3 Pulse-Position Modulation

In pulse-amplitude modulation, pulse amplitude is the variable parameter. Pulse duration
is the next logical parameter available for modulation. In pulse-duration modulation (PDM),
the samples of the message signal are used to vary the duration of the individual pulses. This
form of modulation is also referred to as pulse-width modulation or pulse-length modula-
tion. The modulating signal may vary the time of occurrence of the leading edge, the trail-
ing edge, or both edges of the pulse. In Fig. 5.8(c) the trailing edge of each pulse is varied
in accordance with the message signal, assumed to be sinusoidal as shown in Fig. 5.8(a).
The periodic pulse carrier is shown in Fig. 5.8(b).

m(t)

(a)

(b)

(c)

(d) Time

FIGURE 5.8 Illustration of two different forms of pulse-time modulation for the case of a
sinusoidal modulating wave. (a) Modulating wave. (b) Pulse carrier. (c) PDM wave. (d) PPM
wave.
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PDM is wasteful of power, in that long pulses expend considerable power during the
pulse while bearing no additional information. If this unused power is subtracted from
PDM, so that only time transitions are essentially preserved, we obtain a more efficient
type of pulse modulation known as pulse-position modulation (PPM). In PPM, the posi-
tion of a pulse relative to its unmodulated time of occurrence is varied in accordance with
the message signal, as illustrated in Fig. 5.8(d) for the case of sinusoidal modulation.

Let denote the sample duration. Using the sample of a message signal 
to modulate the position of the nth pulse, we obtain the PPM signal

(5.18)

where is the sensitivity factor of the pulse-position modulator (in seconds per volt) and
denotes a standard pulse of interest. Clearly, the different pulses constituting the PPM

signal must be strictly nonoverlapping; a sufficient condition for this requirement to be
satisfied is to have

(5.19)

which, in turn, requires that
(5.20)

The closer is to one half the sampling duration the narrower must the stan-
dard pulse be to ensure that the individual pulses of the PPM signal do not inter-
fere with each other, and the wider will the bandwidth occupied by the PPM signal be.
Assuming that Eq. (5.19) is satisfied and that there is no interference between adjacent
pulses of the PPM signal then the signal samples can be recovered perfectly.2

Furthermore, if the message signal is strictly band-limited, it follows from the sam-
pling theorem that the original message signal can be recovered from the PPM signal

without distortion.

5.4 Completing the Transition 
from Analog to Digital

At this point in the book, it is instructive that we look at the modulation techniques that
we have studied thus far, for transmitting analog information-bearing signals (i.e., voice and
video signals) over a communication channel, and look at those that are yet to be consid-
ered. The techniques studied thus far are continuous-wave modulation and analog pulse
modulation. Although, these two families of modulation techniques are indeed different,
they share similar attributes and limitations.

First, it is natural to think of pulse-amplitude modulation as the counterpart of ampli-
tude modulation studied in Chapter 3. What do we have as a pulse-modulation counter-
part to frequency modulation studied in Chapter 4? In frequency modulation, the
zero-crossings of the modulated wave vary with time in accordance with the message sig-
nal. In pulse-position modulation, the positions of transmitted pulses vary with time in
accordance with the message signal. In a loose sense, we may therefore think of pulse-posi-
tion modulation as the counterpart of frequency modulation.

An intuitive conclusion to draw from this loose analogy between members of analog
pulse modulation and those of continuous-wave modulation is that these two families of
modulation techniques offer the same order of performance when they are applied to the
transmission of analog signals over communication channels. In the context of performance,
we are thinking in terms of transmission bandwidth requirement and receiver noise behavior.

s1t2 m1t2m1t2 m1nTs2s1t2,
s1t2g1t2 Ts ,kp ƒm1t2 ƒmax

kp ƒm1t2 ƒmax � 1Ts>22
g1t2 � 0, ƒt ƒ � 1Ts>22 � kp ƒm1t2 ƒmax

s1t2g1t2 kp

s1t2 � a
q

n��q
g1t � nTs � kpm1nTs22

m1t2m1nTs2Ts

2Generation and detection of PPM waves are discussed in Haykin (1994), pp. 365–369.
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The operational feature that distinguishes the two families is that continuous-wave
modulation techniques operate in continuous time, whereas analog pulse modulation tech-
niques operate in discrete time.

In going from continuous-wave modulation to analog pulse modulation, we have
moved ourselves into discrete-time signal processing. Why not go one step further and also
incorporate amplitude discretization? Indeed, this is precisely what is done in digital pulse
modulation. In so doing, we have a new family of modulation techniques for the trans-
mission of analog signals over communication channels. The advantages offered by digi-
tal pulse modulation techniques include the following:

1. Performance. In an analog communication system, using either a continuous-wave
modulation or analog pulse modulation technique, the effects of signal distortion and
channel noise (incurred along the transmission path) are cumulative. These sources
of impairments therefore tend to become progressively stronger, ultimately over-
whelming the ability of the communication system to offer an acceptable level of per-
formance from source to destination. Unfortunately, the use of repeaters in the form
of amplifiers, placed at different points along the transmission path, offers little help
because the message signal and noise are amplified to the same extent. In sharp con-
trast, digital pulse modulation permits the use of regenerative repeaters, which, when
placed along the transmission path at short enough distances, can practically elimi-
nate the degrading effects of channel noise and signal distortion.

2. Ruggedness. Unlike an analog communication system, a digital communication sys-
tem can be designed to withstand the effects of channel noise and signal distortion,
provided the noise and distortion are kept under certain limits.

3. Reliability. Digital communication systems can be made highly reliable by exploiting
powerful error-control coding techniques in such a way that the estimate of a mes-
sage signal delivered to a user is almost indistinguishable from the message signal
delivered by a source of information at the other end of the system. (Error-control cod-
ing is discussed in Chapter 10.)

4. Security. By the same token, digital communication systems can be made highly secure
by exploiting powerful encryption algorithms that rely on digital processing for their
implementation.

5. Efficiency. Digital communication systems are inherently more efficient than analog
communication systems in the tradeoff between transmission bandwidth and signal-
to-noise ratio.

6. System integration. The use of digital communications makes it possible to integrate
digitized analog signals (i.e., voice and video signals) with digital computer data,
which is not possible with analog communications.

This impressive list of advantages has made the use of digital pulse modulation techniques
the method of choice for the transmission of voice and video signals over communication
channels.

The benefits of using digital pulse modulation, however, are attained at the expense
of increased system complexity. Nevertheless, by exploiting the computing power of digi-
tal signal processors in hardware and/or software form and the flexibility these processors
offer, digital communication systems can be designed in a cost-effective manner, thanks to
the continuing improvements in very-large-scale integrated (VLSI) silicon chips.

Now that we have identified the digital pulse modulation family as the method of choice
for communications, our next task in this chapter is to describe three family members—namely,
pulse-code modulation, delta modulation, and differential pulse-code modulation. The study
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of pulse-code modulation occupies Sections 5.5 and 5.6, followed by the other two in Sec-
tions 5.7 and 5.8, respectively. Pulse-code modulation is the standard against which delta mod-
ulation and differential pulse-code modulation are usually compared.

5.5 Quantization Process

A continuous signal, such as voice, has a continuous range of amplitudes and therefore its
samples have a continuous amplitude range. In other words, within the finite amplitude
range of the signal, we find an infinite number of amplitude levels. In actual fact, however,
it is not necessary to transmit the exact amplitudes of the samples. We say so because any
human sense (the ear or the eye) as the ultimate receiver can detect only finite intensity dif-
ferences. This means that the original continuous signal may be approximated by a signal
constructed of discrete amplitudes selected on a minimum-error basis from an available set.
The existence of a finite number of discrete amplitude levels is a basic condition of digital-
pulse modulation. Clearly, if we assign the discrete amplitude levels with sufficiently close
spacing, we can make the approximated signal indistinguishable from the original contin-
uous signal for all practical purposes. Note also that quantization is non-reversible.

Amplitude quantization is defined as the process of transforming the sample ampli-
tude of a baseband signal at time into a discrete amplitude
taken from a finite set of possible levels. We confine attention to a quantization process that
is memoryless and instantaneous, which means that the transformation at time is
not affected by earlier or later samples of the message signal. This form of quantization,
though not optimal, is commonly used in practice because of its simplicity.

When dealing with a memoryless quantizer, we may simplify the notation by drop-
ping the time index. That is, we use the symbol m in place of the sample as indi-
cated in Fig. 5.9(a). Then, as shown in Fig. 5.9(b), the signal amplitude m is specified by
the index k if it lies inside the interval

(5.21)

where L is the total number of amplitude levels used in the quantizer, which refers to the
subsystem that performs the quantization process. The amplitudes, are
called decision levels or decision thresholds. At the quantizer output, the index k is trans-
formed into an amplitude that represents all amplitudes that lie inside the interval The
amplitudes are called representation levels or reconstruction levels,
and the spacing between two adjacent representation levels is called a quantum or step-size.
Thus, the quantizer output equals if the input signal sample m belongs to the interval

The mapping

(5.22)

is the quantizer characteristic. This characteristic is described by a staircase function.
Quantizers can be of a uniform or nonuniform type. In a uniform quantizer, the rep-

resentation levels are uniformly spaced; otherwise, the quantizer is nonuniform. The quan-
tizers considered in this section are of the uniform variety; nonuniform quantizers are

v � g1m2
Ik .

vkv

vk , k � 1, 2, Á , L,
Ik .vk

mk , k � 1, 2, Á , L,

Ik: 5mk � m � mk	16, k � 1, 2, Á , L

m1nTs2,

t � nTs

v1nTs2t � nTsm1t2m1nTs2

(a) (b)

Continuous
sample m

Discrete
sample vQuantizer

g(.) mk–1 mk

Ik

vk mk+2mk+1

FIGURE 5.9 Description of a memoryless quantizer.



206 CHAPTER 5 � PULSE MODULATION: TRANSITION FROM ANALOG TO DIGITAL COMMUNICATIONS

considered in Section 5.6. The quantizer characteristic can also be of a midtread or midrise
type. Figure 5.10(a) shows the input–output characteristic of a uniform quantizer of the
midtread type, which is so called because the origin lies in the middle of a tread of the
staircaselike graph. Figure 5.10(b) shows the corresponding input–output characteristic of
a uniform quantizer of the midrise type, in which the origin lies in the middle of a rising
part of the staircaselike graph. Note that both the midtread and midrise types of uniform
quantizers, illustrated in Fig. 5.10, are symmetric about the origin.

5.6 Pulse-Code Modulation

With the sampling and quantization processes at our disposal, we are now ready to describe
pulse-code modulation, which is the most basic form of digital pulse modulation. In pulse-
code modulation (PCM), a message signal is represented by a sequence of coded pulses, which
is accomplished by representing the signal in discrete form in both time and amplitude.

The basic operations performed in the transmitter of a PCM system are sampling, quan-
tization, and encoding, as shown in Fig. 5.11(a); the low-pass filter prior to sampling is included
merely to prevent aliasing of the message signal. The quantizing and encoding operations are
usually performed in the same circuit, which is called an analog-to-digital converter.

The basic operations in the receiver are regeneration of impaired signals, decoding,
and reconstruction of the train of quantized samples, as shown in Fig. 5.11(c). Regenera-
tion also occurs at intermediate points along the transmission path as necessary, as indicated
in Fig. 5.11(b). When time-division multiplexing (discussed later in the chapter) is used, it
becomes necessary to synchronize the receiver to the transmitter for the overall system to
operate satisfactorily. In what follows we describe the operations of sampling, quantizing,
and encoding that are basic to a PCM system.

� OPERATIONS IN THE TRANSMITTER

(i) Sampling

The incoming message (baseband) signal is sampled with a train of rectangular pulses,
narrow enough to closely approximate the instantaneous sampling process. To ensure
perfect reconstruction of the message signal at the receiver, the sampling rate must be
greater than twice the highest frequency component W of the message signal in accor-
dance with the sampling theorem. In practice, an anti-alias (low-pass) filter is used at
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FIGURE 5.10 Two types of quantization: (a) midtread and (b) midrise.
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FIGURE 5.11 The basic elements of a PCM system: (a) Transmitter, (b) transmission path,
connecting the transmitter to the receiver, and (c) receiver.

the front end of the sampler in order to exclude frequencies greater than W before sam-
pling, as shown in Fig. 5.11(a). Thus the application of sampling permits the reduc-
tion of the continuously varying message signal (of some finite duration) to a limited
number of discrete values per second.

(ii) Nonuniform Quantization
The sampled version of the message signal is then quantized, thereby providing a new
representation of the signal that is discrete in both time and amplitude. The quanti-
zation process may follow a uniform law as described in Section 5.5. In certain appli-
cations, however, it is preferable to use a variable separation between the
representation levels. For example, the range of voltages covered by voice signals,
from the peaks of loud talk to the weak passages of weak talk, is on the order of
1000 to 1. By using a nonuniform quantizer with the feature that the step size increases
as the separation from the origin of the input–output amplitude characteristic is
increased, the large end-step of the quantizer can take care of possible excursions of
the voice signal into the large amplitude ranges that occur relatively infrequently. In
other words, the weak passages that need more protection are favored at the expense
of the loud passages. In this way, a nearly uniform percentage precision is achieved
throughout the greater part of the amplitude range of the input signal, with the result
that fewer steps are needed than would be the case if a uniform quantizer were used.

The use of a nonuniform quantizer is equivalent to passing the message signal
through a compressor and then applying the compressed signal to a uniform quan-
tizer. A particular form of compression law that is used in practice is the so called

3 defined by

(5.23)ƒv ƒ �
log11 	 m ƒm ƒ2

log11 	 m2
m-law

3The used for signal compression is described in Smith (1957); this compression law is used in the United States,
Canada, and Japan. In Europe, the A-law is used for signal compression; this second compression law is described in
Cattermole (1969, pp. 133–140). For discussion of the and A-law, see also the paper by Kaneko (1970).m-law

m-law
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where the logarithm is the natural logarithm; m and are respectively the normalized
input and output voltages, and is a positive constant. For convenience of presen-
tation, the input to the quantizer and its output are both normalized so as to occupy
a dimensionless range of values from zero to one, as shown in Fig. 5.12(a); here we
have plotted the for varying Practical values of tend to be in the vicinity
of 255. The case of uniform quantization corresponds to For a given value of

the reciprocal slope of the compression curve, which defines the quantum steps,
is given by the derivative of with respect to that is,

(5.24)

We see therefore that the is neither strictly linear nor strictly logarithmic, but
it is approximately linear at low input levels corresponding to and approx-
imately logarithmic at high input levels corresponding to 

Another compression law that is used in practice is the so-called A-law, defined by

(5.25)

which is shown plotted in Fig. 5.12(b). Typical values of A used in pratice tend to be
in the vicinity of 100. The case of uniform quantization corresponds to The
reciprocal slope of this second compression curve is given by the derivative of 
with respect to as shown by

(5.26)
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From the first line of Eq. (5.26) we may infer that the quantum steps over the cen-
tral linear segment, which have the dominant effect on small signals, are diminished
by the factor This is typically about 25 dB in practice, as compared
with uniform quantization.

� Drill Problem 5.9 Using Eqs. (5.23) and (5.25), respectively, derive the slope charac-
teristics of Eqs. (5.24) and (5.26). �

(iii) Encoding
In combining the processes of sampling and quantization, the specification of a con-
tinuous message (baseband) signal becomes limited to a discrete set of values, but
not in the form best suited to transmission over a wire line or radio path. To exploit
the advantages of sampling and quantization for the purpose of making the trans-
mitted signal more robust to noise, interference and other channel degradations, we
require the use of an encoding process to translate the discrete set of sample values
to a more appropriate form of signal. Any plan for representing this discrete set of
values as a particular arrangement of discrete events is called a code. One of the dis-
crete events in a code is called a code element or symbol. For example, the presence
or absence of a pulse is a symbol. A particular arrangement of symbols used in a code
to represent a single value of the discrete set is called a code word or character.

In a binary code, each symbol may be either of two distinct values, such as a neg-
ative pulse or positive pulse. The two symbols of the binary code are customarily
denoted as 0 and 1. In practice, a binary code is preferred over other codes (e.g.,
ternary code) for two reasons:
1. The maximum advantage over the effects of noise in a transmission medium is

obtained by using a binary code, because a binary symbol withstands a relatively
high level of noise.

2. The binary code is easy to generate and regenerate.

Suppose that, in a binary code, each code word consists of R bits: the bit is an acronym
for binary digit. Then R denotes the number of bits per sample. Hence, by using such
a code, we represent a total of distinct numbers. For example, a sample quantized
into one of 256 levels may be represented by an 8-bit code word.

There are several ways of establishing a one-to-one correspondence between
representation levels and code words. A convenient method is to express the ordinal
number of the representation level as a binary number. In the binary number system,
each digit has a place-value that is a power of 2, as illustrated in Table 5.2 for the case
of four bits per sample (i.e., ).

� REGENERATION ALONG THE TRANSMISSION PATH

The most important feature of a PCM system lies in the ability to control the effects of dis-
tortion and noise produced by transmitting a PCM signal over a channel. This capability
is accomplished by reconstructing the PCM signal by means of a chain of regenerative
repeaters located at sufficiently close spacing along the transmission route. As illustrated
in Fig. 5.13, three basic functions are performed by a regenerative repeater: equalization,
timing, and decision making. The equalizer shapes the received pulses so as to compensate
for the effects of amplitude and phase distortions produced by the transmission charac-
teristics of the channel. The timing circuitry provides a periodic pulse train, derived from
the received pulses; this is done for renewed sampling of the equalized pulses at the instants

R � 4

2R

A>11 	 log A2.
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TABLE 5.2 Binary Number System for 

Ordinal
Number of Level Number

Representation Expressed as Sum of Binary
Level Powers of 2 Number

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 111123 	 22 	 21 	 20

23 	 22 	 21
23 	 22 	 20
23 	 22
23 	 21 	 20
23 	 21
23 	 20
23

22 	 21 	 20
22 	 21
22 	 20
22

21 	 20
21

20

R � 4

of time where the signal-to-noise ratio is a maximum. The sample so extracted is com-
pared to a predetermined threshold in the decision-making device. In each bit interval, a
decision is then made on whether the received symbol is a 1 or 0 on the basis of whether
the threshold is exceeded or not. If the threshold is exceeded, a clean new pulse represent-
ing symbol 1 is transmitted to the next repeater. Otherwise, another clean new pulse rep-
resenting symbol 0 is transmitted. In this way, the accumulation of distortion and noise in
a repeater span is removed, provided the disturbance is not too large to cause an error in
the decision-making process. Ideally, except for delay, the regenerated signal is exactly the
same as the information-bearing signal that was originally transmitted. In practice, how-
ever, the regenerated signal departs from the original signal for two main reasons:

1. The unavoidable presence of channel noise and interference causes the repeater to
make wrong decisions occasionally, thereby introducing bit errors into the regener-
ated signal.

2. If the spacing between received pulses deviates from its assigned value, a jitter is intro-
duced into the regenerated pulse position, thereby causing distortion.

Amplifier-
equalizer

Decision-making
device

Timing
circuit

Distorted
PCM
wave

Regenerated
PCM
wave

FIGURE 5.13 Block diagram of a regenerative repeater.
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� OPERATIONS IN THE RECEIVER

(i) Decoding and Expanding
The first operation in the receiver is to regenerate (i.e., reshape and clean up) the
received pulses one last time. These clean pulses are then regrouped into code words
and decoded (i.e., mapped back) into a quantized PAM signal. The decoding process
involves generating a pulse whose amplitude is the linear sum of all the pulses in the
code word; each pulse is weighted by its place value in the
code, where R is the number of bits per sample.

The sequence of decoded samples represents an estimate of the sequence of
compressed samples produced by the quantizer in the transmitter. We use the term
“estimate” here to emphasize the fact that there is no way for the receiver to com-
pensate for the approximation introduced into the transmitted signal by the quantizer.
Moreover, other sources of noise include bit errors and jitter produced along the
transmission path. In order to restore the sequence of decoded samples to their cor-
rect relative level, we must, of course, use a subsystem in the receiver with a charac-
teristic complementary to the compressor, used in the transmitter. Such a subsystem
is called an expander. Ideally, the compression and expansion laws are exactly inverse
so that, except for the effect of quantization, the expander output is equal to the com-
pressor input if these two devices were connected directly. The combination of a com-
pressor and an expander is referred to as a compander.

(ii) Reconstruction
The final operation in the receiver is to recover the message signal. This operation is
achieved by passing the expander output through a low-pass reconstruction filter
whose cutoff frequency is equal to the message bandwidth. Recovery of the message
signal is intended to signify estimation rather than exact reconstruction.

One last comment is in order. The term “modulation” in pulse-code modulation is a mis-
nomer. In reality, pulse-code modulation is a source-encoding strategy, by means of which an
analog signal emitted by a source is converted into digital form. Transmission of the digital
data so produced is another topic, the treatment of which is deferred to Chapter 6.

5.7 Delta Modulation

From the discussion presented in Section 5.6, it is apparent that the design of a pulse-code
modulation system involves many operations, which tend to make its practical implemen-
tation rather costly. To simplify the system design, we may use another digital pulse mod-
ulation technique known as delta modulation, which is considered in this section.

� BASIC CONSIDERATIONS

In delta modulation (DM), an incoming message signal is oversampled (i.e., at a rate much
higher than the Nyquist rate) to purposely increase the correlation between adjacent sam-
ples of the signal. The increased correlation is done so as to permit the use of a simple
quantizing strategy for constructing the encoded signal.

In its basic form, DM provides a staircase approximation to the oversampled version of
the message signal. Unlike PCM, the difference between the input signal and its approxima-
tion is quantized into only two levels—namely, corresponding to positive and negative dif-
ferences. Thus, if the approximation falls below the input signal at any sampling epoch, it is
increased by If, on the other hand, the approximation lies above the signal, it is diminished¢.

�¢,

120, 21, 22, 23, Á , 2R�12
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by Provided the input signal does not change too rapidly from sample to sample, we find
that the staircase approximation remains within of the input signal.

We denote the input signal by and its staircase approximation by The
basic principle of delta modulation may then be formalized in the following set of three dis-
crete-time relations:

(5.27)

(5.28)

(5.29)

where is the sampling period; is an error signal representing the difference between
the present sample value of the input signal and the latest approximation to it—
that is, and is the quantized version of and sgn[.]
is the signum function, assuming the value or The quantizer output is
finally encoded to produce the desired DM data.

Figure 5.14(a) illustrates the way in which the staircase approximately follows vari-
ations in the input signal in accordance with Eqs. (5.27) to (5.29), and Fig. 5.19(b)
displays the corresponding binary sequence at the delta modulator output. It is apparent
that in a delta modulation system, the rate of information transmission is simply equal to
the sampling rate fs � 1>Ts .

m1t2
eq1nTs2�1.	1

e1nTs2;eq1nTs2m1nTs2 � mq1nTs � Ts2;m1nTs2e1nTs2Ts
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FIGURE 5.14 Illustration of delta modulation. (a) Analog waveform and its staircase
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� SYSTEM DETAILS

The principal virtue of delta modulation is its simplicity. It may be implemented by applying
a sampled version of the incoming message signal to a transmitter that consists of a com-
parator, quantizer, and accumulator connected together as shown in Fig. 5.15(a). Details of the
transmitter follow directly from Eqs. (5.27) to (5.29). The comparator computes the difference
between its two inputs. The quantizer consists of a hard limiter with an input–output charac-
teristic that is a scaled version of the signum function. The accumulator operates on the quan-
tizer output so as to produce an approximation to the message signal.

Equation (5.29) is a difference equation of order one; the order refers to the fact the
present sample differs from the past sample by an amount equal to
the quantization error Assuming that the accumulation process starts at zero time,
the solution to this equation yields the approximate result

(5.30)

where is itself related to the message sample by Eqs. (5.27) and (5.28).
Thus, at the sampling instant the accumulator increments the approximation by

the increment in a positive or negative direction, depending on the algebraic sign of the
error signal If the input signal is greater than the most recent approxima-
tion a positive increment is applied to the approximation. If, on the other
hand, the input signal is smaller, a negative increment is applied to the approximation.�¢
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In this way, the accumulator does the best it can to track the input samples one step (of
amplitude or ) at a time.

In the receiver shown in Fig. 5.15(b), the staircase approximation is recon-
structed by passing the sequence of positive and negative pulses, produced at the decoder
output, through an accumulator in a manner similar to that used in the transmitter. The
out-of-band quantization noise present in the high-frequency staircase waveform is
rejected by passing through a filter, as in Fig. 5.15(b). The filter is of a low-pass
kind, with a bandwidth equal to the original message bandwidth.

� QUANTIZATION ERRORS

Delta modulation is subject to two types of quantization error: (1) slope overload distor-
tion and (2) granular noise. We first discuss the cause of slope overload distortion and then
granular noise.

We observe that Eq. (5.29) is the digital equivalent of integration in the sense that it
represents the accumulation of positive and negative increments of magnitude Also,
denoting the quantization error by as shown by

(5.31)

we observe from Eq. (5.27) that the input to the quantizer is

(5.32)

Thus, except for the delayed quantization error the quantizer input is a first
backward difference of the input signal, which may be viewed as a digital approximation
to the derivative of the input signal or, equivalently, as the inverse of the digital integration
process. If we now consider the maximum slope of the original message signal it is
clear that in order for the sequence of quantized samples to increase as fast as
the sequence of input samples in a region of maximum slope of we require
that the condition

(5.33)

be satisfied. Otherwise, we find that the step size is too small for the staircase approxi-
mation to follow a steep segment of the original message signal with the result
that falls behind as illustrated in Fig. 5.16. This condition is called slope over-
load. Correspondingly, the resulting quantization error is called slope-overload distortion
(noise). Note that since the maximum slope of the staircase approximation is fixed
by the step size increases and decreases in tend to occur along straight lines, as
illustrated in the front end of Fig. 5.16. For this reason, a delta modulator using a fixed value
for the step size is often referred to as a linear delta modulator.¢
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4In statistical terms, the average power of a random process (exemplified by quantization error) is equal to the
mean-square value of that process; this issue is discussed in Chapter 8.

In contrast to slope-overload distortion, granular noise occurs when the step size is
too large relative to the local slope characteristic of the original message signal This
second situation causes the staircase approximation to hunt around a relatively flat
segment of which is illustrated in the back end of Fig. 5.16. Granular noise in delta
modulation may be viewed as the analog of quantization noise in pulse-code modulation.

� Drill Problem 5.10 The best that a linear DM system can do is to provide a compro-
mise between slope-overload distortion and granular noise. Justify this statement. �

From this discussion we see that there is a need to have a large step size to accom-
modate a wide dynamic range, whereas a small step size is required for the accurate rep-
resentation of relatively low-level signals. It is therefore clear that if we are to choose an
optimum step size that minimizes the average power4 of the quantization error in a delta
modulator, we need to make the DM system adaptive. This requirement, in turn, means that
the step size has to vary in accordance with the incoming message signal.

� DELTA-SIGMA MODULATION

As mentioned previously, the quantizer input in the conventional form of delta modulation
may be viewed as an approximation to the derivative of the incoming message signal. This
behavior leads to a drawback of delta modulation in that transmission disturbances such
as noise result in an accumulative error in the demodulated signal. This drawback can be
overcome by integrating the message signal prior to delta modulation. The use of integra-
tion also has other beneficial effects:

� The low-frequency content of the input signal is pre-emphasized.
� Correlation between adjacent samples of the delta modulator input is increased, which

tends to improve overall system performance by reducing the average power of the
error signal at the quantizer input.

� Design of the receiver is simplified.

A delta modulation system that incorporates integration at its input is called delta-
sigma modulation To be more precise, however, it should be called sigma-delta
modulation, because the integration is in fact performed before the delta modulation. Nev-
ertheless, the former terminology is the one commonly used in the literature.

Figure 5.17(a) shows the block diagram of a delta-sigma modulation system. In this
diagram, the message signal is defined in its continuous-time form, which means that
the pulse modulator now consists of a hard-limiter followed by a multiplier; the latter com-
ponent is also fed from an external pulse generator (clock) to produce a 1-bit encoded sig-
nal. The use of integration at the transmitter input clearly requires an inverse signal
emphasis—namely, differentiation—at the receiver. The need for this differentiation is,
however, eliminated because of its cancellation by integration in the conventional DM
receiver. Thus, the receiver of a delta-sigma modulation system consists simply of a low-
pass filter, as indicated in Fig. 5.17(a).

Moreover, we note that integration is basically a linear operation. Accordingly, we may
simplify the design of the transmitter by combining the two integrators 1 and 2 of 
Fig. 5.17(a) into a single integrator placed after the comparator, as shown in Fig. 5.17(b).
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This latter form of implementing delta-sigma modulation is not only simpler than that of
Fig. 5.17(a), but also it provides an interesting interpretation of delta-sigma modulation as
a “smoothed” version of 1-bit pulse-code modulation. In this context, smoothing refers to
the fact that the comparator output is integrated prior to quantization, and the term 1-bit
pulse-code modulation merely restates the fact that the quantizer consists of a hard-limiter
with only two representation levels.

5.8 Differential Pulse-Code Modulation

For yet another form of digital pulse modulation, we recognize that when a voice or video
signal is sampled at a rate slightly higher than the Nyquist rate, the resulting sampled sig-
nal is found to exhibit a high degree of correlation between adjacent samples. The mean-
ing of this high correlation is that, in an average sense, the signal does not change rapidly
from one sample to the next, with the result that the difference between adjacent samples
has an average power that is smaller than the average power of the signal itself. When
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part (b) of the figure is a simplified version of the system in part (a).
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these highly correlated samples are encoded as in a standard PCM system, the resulting
encoded signal contains redundant information. Redundancy means that symbols that are
not absolutely essential to the transmission of information are generated as a result of the
encoding process. By removing this redundancy before encoding, we obtain a more efficient
encoded signal, compared to PCM.

Now, if we know a sufficient part of a redundant signal, we may infer the rest, or at
least make the most probable estimate. In particular, if we know the past behavior of a sig-
nal up to a certain point in time, it is possible to make some inference about its future val-
ues; such a process is commonly called prediction. Suppose then a message signal is
sampled at the rate to produce a sequence of correlated samples seconds apart;
this sequence is denoted by The fact that it is possible to predict future values
of the signal provides motivation for the differential quantization scheme shown in
Fig. 5.18(a). In this scheme, the input signal to the quantizer is defined by

(5.34)

which is the difference between the input sample and a prediction of it, denoted by
This predicted value is produced by using a prediction filter whose input, as we

will see, consists of a quantized version of The difference signal is called the
prediction error, since it is the amount by which the prediction filter fails to predict the
incoming message signal exactly. A simple and yet effective approach to implement the
prediction filter is to use a tapped-delay-line filter or discrete-time filter, with the basic
delay set equal to the sampling period. The block diagram of this filter is shown in Fig. 5.19,
according to which the prediction is modeled as a linear combination of p past
sample values of the quantized version of where p is the prediction order.

By encoding the quantizer output in Fig. 5.18(a), we obtain a variation of PCM,
which is known as differential pulse-code modulation (DPCM). It is this encoded signal that
is used for transmission.
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The quantizer output may be expressed as

(5.35)

where is the quantization error. According to Fig. 5.18(a), the quantizer output
is added to the predicted value to produce the prediction-filter input

(5.36)

Substituting Eq. (5.35) into (5.36), we get

(5.37)

However, from Eq. (5.34) we observe that the sum term is equal to the
sampled message signal Therefore, we may rewrite Eq. (5.37) as

(5.38)

which represents a quantized version of the message sample That is, irrespective
of the properties of the prediction filter, the quantized signal at the prediction fil-
ter input differs from the sampled message signal by the quantization error 
Accordingly, if the prediction is good, the average power of the prediction error will
be smaller than the average power of so that a quantizer with a given number of
levels can be adjusted to produce a quantization error with a smaller average power than
would be possible if were quantized directly using PCM.

The receiver for reconstructing the quantized version of the message signal is shown in
Fig. 5.18(b). It consists of a decoder to reconstruct the quantized error signal. The quantized
version of the original input is reconstructed from the decoder output using the same pre-
diction filter in the transmitter of Fig. 5.18(a). In the absence of channel noise, we find that
the encoded signal at the receiver input is identical to the encoded signal at the transmitter
output. Accordingly, the corresponding receiver output is equal to which differs from
the original input only by the quantization error incurred as a result of quan-
tizing the prediction error Finally, an estimate of the original message signal is
obtained by passing the sequence through a low-pass reconstruction filter.

From the foregoing analysis we thus observe that in a noise-free environment, the
prediction filters in the transmitter and receiver operate on the same sequence of samples,

With this very purpose in mind, a feedback path is added to the quantizer in
the transmitter, as shown in Fig. 5.18(a).

Differential pulse-code modulation includes delta modulation as a special case. In
particular, comparing the DPCM system of Fig. 5.18 with the DM system of Fig. 5.15, we
see that they are basically similar, except for two important differences:

� The use of a one-bit (two-level) quantizer in the DM system.
� Replacement of the prediction filter in the DPCM by a single delay element (i.e., zero

prediction order).
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In other words, DM is the 1-bit version of DPCM. Note, however, that unlike a PCM sys-
tem, the transmitters of both the DPCM and DM involve the use of feedback.

Insofar as noise is concerned, we may finally make the following two statements:

1. DPCM, like DM, is subject to slope-overload distortion whenever the input signal
changes too rapidly for the prediction filter to track it.

2. Like PCM, DPCM suffers from quantization noise.

� Drill Problem 5.11 Justify the two statements just made on sources of noise in a DPCM
system. �

5.9 Line Codes

In reality, PCM, DM, and DPCM represent different strategies for source encoding, whereby
an analog signal is converted into digital form. However, all three of them share a common
feature: once a binary sequence of 1s and 0s is produced, a line code is needed for electri-
cal representation of that binary sequence. There are several line codes that can be used for
this representation, as summarized here:

1. On–off signaling, in which symbol 1 is represented by transmitting a pulse of constant
amplitude for the duration of the symbol, and symbol 0 is represented by switching
off the pulse, as in Fig. 5.20(a).

2. Nonreturn-to-zero (NRZ) signaling, in which symbols 1 and 0 are represented by
pulses of equal positive and negative amplitudes, as illustrated in Fig. 5.20(b).

3. Return-to-zero (RZ) signaling, in which symbol 1 is represented by a positive rec-
tangular pulse of half-symbol width, and symbol 0 is represented by transmitting no
pulse, as illustrated in Fig. 5.20(c).

4. Bipolar return-to-zero (BRZ) signaling, which uses three amplitude levels as indi-
cated in Fig. 5.20(d). Specifically, positive and negative pulses of equal amplitude are
used alternately for symbol 1, and no pulse is always used for symbol 0. A useful
property of BRZ signaling is that the power spectrum of the transmitted signal has
no dc component and relatively insignificant low-frequency components for the case
when symbols 1 and 0 occur with equal probability.

5. Split-phase (Manchester code), which is illustrated in Fig. 5.20(e). In this method of
signaling, symbol 1 is represented by a positive pulse followed by a negative pulse,
with both pulses being of equal amplitude and half-symbol width. For symbol 0, the
polarities of these two pulses are reversed. The Manchester code suppresses the dc
component and has relatively insignificant low-frequency components, regardless of
the signal statistics.

6. Differential encoding, in which the information is encoded in terms of signal transi-
tions, as illustrated in Fig. 5.20(f ). In the example of the binary PCM signal shown
in the figure, a transition is used to designate symbol 0, whereas no transition is used
to designate symbol 1. It is apparent that a differentially encoded signal may be
inverted without affecting its interpretation. The original binary information is recov-
ered by comparing the polarity of adjacent symbols to establish whether or not a
transition has occurred. Note that differential encoding requires the use of a reference
bit, as indicated in Fig. 5.20 (f ).

The waveforms shown in parts (a) to (f ) of Fig. 5.20 are drawn for the binary data stream
01101001. It is important, to note that rectangular pulse-shaping is used to draw these
waveforms, largely to simplify the electrical representation. The benefits of using other
pulse shapes for the transmission of PCM data are discussed in Chapter 6.
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5.10 Theme Examples

� TIME-DIVISION MULTIPLEXING

The sampling theorem provides the basis for transmitting the information contained in a
band-limited message signal as a sequence of samples of taken uniformly at a
rate that is usually slightly higher than the Nyquist rate. An important feature of the sam-
pling process is a conservation of time. That is, the transmission of the message samples
engages the communication channel for only a fraction of the sampling interval on a peri-
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FIGURE 5.20 Line codes. (a) On–off signaling. (b) Nonreturn-to-zero signaling. (c) Return-to-
zero signaling. (d) Bipolar return-to-zero signaling. (e) Split-phase or Manchester encoding. 
(f) Differential encoding.
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odic basis, and in this way some of the time interval between adjacent samples is cleared
for use by other independent message sources on a time-shared basis. We thereby obtain a
time-division multiplex (TDM) system, which enables the joint utilization of a common com-
munication channel by a plurality of independent message sources without mutual inter-
ference among them.

The concept of TDM is illustrated by the block diagram shown in Fig. 5.21. Each input
message signal is first restricted in bandwidth by a low-pass anti-aliasing filter to remove
the frequencies that are nonessential to an adequate signal representation. The low-pass fil-
ter outputs are then applied to a commutator, which is usually implemented using electronic
switching circuitry. The function of the commutator is twofold: (1) to take a narrow sam-
ple of each of the N input messages at a rate that is slightly higher than 2W, where W is
the cutoff frequency of the anti-aliasing filter, and (2) to sequentially interleave these N
samples inside the sampling interval Indeed, this latter function is the essence of the
time-division multiplexing operation.

Following the commutation process, the multiplexed signal is applied to a pulse mod-
ulator, the purpose of which is to transform the multiplexed signal into a form suitable for
transmission over the common channel. It is clear that the use of time-division multiplex-
ing introduces a bandwidth expansion factor N, because the scheme must squeeze N sam-
ples derived from N independent message sources into a time slot equal to one sampling
interval. At the receiving end of the system, the received signal is applied to a pulse demod-
ulator, which performs the reverse operation of the pulse modulator. The narrow samples
produced at the pulse demodulator output are distributed to the appropriate low-pass
reconstruction filters by means of a decommutator, which operates in synchronism with the
commutator in the transmitter. This synchronization is essential for a satisfactory opera-
tion of the system. The way this synchronization is implemented depends naturally on the
method of pulse modulation used to transmit the multiplexed sequence of samples.

The TDM system is highly sensitive to dispersion in the common channel—that is, a
non-constant magnitude response of the channel and a nonlinear phase response, both
being measured with respect to frequency. Accordingly, equalization of both magnitude
and phase responses of the channel is necessary so as to ensure a satisfactory operation of
the system; in effect, equalization compensates for dispersion in the channel. (The subject
of channel equalization is discussed in Chapter 6.) However, unlike frequency-division
multiplexing (FDM) considered in Chapter 3, to a first-order approximation TDM is
immune to nonlinearities in the channel as a source of cross-talk. The reason for this behav-
ior is that different message signals are not simultaneously applied to the channel.
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Synchronization

In applications using PCM, for example, it is natural to multiplex different messages
sources by time division, whereby each source keeps its distinction from all other sources
throughout the journey from the transmitter to the receiver. This individuality accounts
for the comparative ease with which message sources may be dropped or reinserted in a time-
division multiplex system. As the number of independent message sources is increased, the
time interval that may be allotted to each source has to be reduced, since all of them must
be accommodated into a time interval equal to the reciprocal of the sampling rate. This,
in turn, means that the allowable duration of a codeword representing a single sample is
reduced. However, pulses tend to become more difficult to generate and to transmit as
their duration is reduced. Furthermore, if the pulses become too short, impairments in the
transmission medium begin to interfere with the proper operation of the system. Accord-
ingly, in practice, it is necessary to restrict the number of independent message sources that
can be included within a time-division group.

In any event, for a PCM system with time-division multiplexing to operate satisfac-
torily, it is necessary that the timing operations at the receiver, except for the time lost in
transmission and regenerative repeating, follow closely the corresponding operations at
the transmitter. In a general way, this amounts to requiring a local clock at the receiver to
keep the same time as a distant standard clock at the transmitter, except that the local clock
is delayed by an amount equal to the time required to transport the message signals from
the transmitter to the receiver. This delay, in turn, gives rise to a phase difference between
the two clocks. One possible procedure to synchronize the transmitter and receiver clocks
is to set aside a code element or pulse at the end of a frame (consisting of a code word
derived from each of the independent message sources in succession) and to transmit this
pulse every other frame only. In such a case, the receiver includes a circuit that would search
for the pattern of 1s and 0s alternating at half the frame rate, and thereby establish syn-
chronization between the transmitter and receiver.

When the transmission path is interrupted, it is highly unlikely that the transmitter
and receiver clocks will continue to indicate the same time for long. Accordingly, in carry-
ing out a synchronization process, we must set up an orderly procedure for detecting the
synchronizing pulse. The procedure consists of observing the code elements one by one
until the synchronizing pulse is detected. That is, after observing a particular code element
long enough to establish the absence of the synchronizing pulse, the receiver clock is set back
by one code element and the next code element is observed. This searching process is
repeated until the synchronizing pulse is detected. Clearly, the time required for synchro-
nization depends on the epoch at which proper transmission is re-established.

EXAMPLE 5.1 The T1 System

In this example, we describe the important characteristics of a PCM system known as the T1
system, which carries 24 voice channels over pairs of wires with regenerative repeaters spaced
at approximately 2-km intervals. The T1 carrier system is basic to the North American digi-
tal switching hierarchy5 for telephonic communication.

A voice signal (male or female) is essentially limited to a band from 300 to 3100 Hz
in that frequencies outside this band do not contribute much to voice recognition and
comprehension. Indeed, telephone circuits that respond to this range of frequencies give

5For a description of the digital switching hierarchy used in North America, see Haykin (2001), pp. 214–217.
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quite satisfactory service. Accordingly, it is customary to pass the voice signal through a
low-pass filter with a cutoff frequency of about 3.1 kHz prior to sampling. Hence, with

the nominal value of the Nyquist rate is 6.2 kHz. The filtered voice signal is
usually sampled at a slightly higher rate—namely, 8 kHz—which is the standard sampling
rate in telephone systems.

For companding, the T1 system uses a piecewise-linear characteristic (consisting of 15
linear segments) to approximate the logarithmic of Eq. (5.23) with the constant 
This approximation is constructed in such a way that the segment end points lie on the com-
pression curve computed from Eq. (5.23), and their projections onto the vertical axis are spaced
uniformly.

There are a total of 255 representation levels associated with the 15-segment com-
panding law. To accommodate this number of representation levels, each of the 24 voice
channels uses a binary code with an 8-bit word. The first bit indicates whether the input
voice sample is positive or negative; this bit is a 1 if positive and a 0 if negative. The next
three bits of the code word identify the particular segment inside which the amplitude of
the input voice sample lies, and the last four bits identify the actual representation level inside
that segment.

With a sampling rate of 8 kHz, each frame of the T1 multiplexed signal occupies a period
of In particular, it consists of twenty-four 8-bit words, plus a single bit that is added
at the end of the frame for the purpose of synchronization. Hence, each frame consists of a total
of bits. Correspondingly, the duration of each bit equals and
the resulting transmission rate is 1.544 megabits per second 

� IMPULSE RADIO

Traditional digital transmission systems attempt to minimize the bandwidth of the trans-
mitted signal. Hence, filtering is often applied to rectangular pulses to reduce the occupied
bandwidth. However, a method that does not follow this philosophy and has captured
attention recently is known as impulse radio. With this technique, information is sent by
means of very narrow pulses that are widely separated in time. Since the pulse widths are
very narrow, the spectrum of the resulting signal is very broad; consequently, this tech-
nique is a form of ultra-wideband (UWB) radio transmission, which forms the subject of
our third and last theme example.

Specifically, one type of pulse used for impulse radio is the Gaussian monocycle. This
pulse shape is the derivative of the scaled Gaussian pulse discussed in
Chapter 2. The waveform of the Gaussian monocycle is given by

(5.39)

where A is an amplitude scale factor and is the time constant of the pulse. This signal is
depicted in Fig. 5.22. It consists of a positive lobe followed by a negative lobe, with a pulse
width of approximately For impulse radio applications, the pulse width is typically
between 0.20 and 1.50 nanoseconds.

The spectrum of a sequence of these pulses can be obtained from the Fourier trans-
form of an individual pulse and this spectrum is shown in Fig. 5.23. The frequency axis in
Fig. 5.23 has been normalized in terms of the time constant for nanosecond, this
frequency axis ranges from 0 to 4 GHz.
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FIGURE 5.24 Pulse-position modulation of impulse radio.

6For more detailed discussions of ultra-wideband radio, see the following two references: Win and Scholtz (1998)
and Cassioli, Win, and Molisch (2002).

There are several methods for digitally modulating such an impulse wave. One method
is pulse-position modulation as depicted in Fig. 5.24. (Pulse-position modulation was
considered in Section 5.3.) With this method, there is a nominal time separation between
successive pulses. To transmit binary signal 0, the pulse is transmitted slightly early, at time

To transmit binary signal 1, the pulse is transmitted slightly late at time 
The receiver detects this early/late timing and demodulates the data accordingly. Typical sep-
arations between pulses (i.e., ) range from 25 nanoseconds to 1000 nanoseconds, result-
ing in a range of data rates from 40 Mbits/s to 1 Mbit/s.

The ultra-wideband nature of the modulated signal has both good and bad aspects.
Since the signal power is spread over a large bandwidth, the amount of power that falls in
any particular narrowband channel is small, which is good. However, the power falls in all
such narrowband channels, which is bad. In particular, there is the concern that ultra-wide-
band radios will cause harmful interference into existing narrowband radio services occu-
pying the same radio spectrum. As a consequence, although ultra-wideband radio has been
allowed in various jurisdictions, there are strict limits on the power spectra that may be
transmitted. Due to this limitation on transmit power, ultra-wideband radio is restricted to
short-range applications, typically less than a few hundred meters.6

Tp

t � 	Tc .t � �Tc .

Tp
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5.11 Summary and Discussion

In this chapter, we introduced two fundamental and complementary processes:

� Sampling, which operates in the time domain; the sampling process is the link between
an analog waveform and its discrete-time representation.

� Quantization, which operates in the amplitude domain; the quantization process is
the link between an analog waveform and its discrete-amplitude representation.

The sampling process builds on the sampling theorem, which states that a strictly band-lim-
ited signal with no frequency components higher than W Hz is represented uniquely by a
sequence of samples taken at a uniform rate equal to or greater than the Nyquist rate of
2W samples per second. As for the quantization process it exploits the fact that any human
sense, as ultimate receiver, can only detect finite intensity differences.

The sampling process is basic to the operation of all pulse modulation systems, which
may be classified into analog pulse modulation and digital pulse modulation. The distin-
guishing feature between them is that analog pulse modulation systems maintain a con-
tinuous amplitude representation of the message signal, whereas digital pulse modulation
systems employ quantization to provide a representation of the message signal that is
discrete in both time and amplitude.

Analog pulse modulation results from varying some parameter of the transmitted
pulses, such as amplitude, duration, or position, in which case we speak of pulse-amplitude
modulation (PAM), pulse-duration modulation (PDM), or pulse-position modulation (PPM),
respectively.

Digital pulse modulation systems, on the other hand, transmit analog message signals
as a sequence of coded pulses, which is made possible through the combined use of sam-
pling and quantization. Pulse-code modulation is a form of digital pulse modulation that
is endowed with some unique system advantages, which, in turn, have made it the pre-
ferred method of encoding for the transmission of such analog signals as voice and video
signals. The advantages of pulse-code modulation include robustness to noise and inter-
ference, efficient regeneration of the encoded pulses along the transmission path, and a
uniform format for different kinds of message signals. (i.e. voice, video, and data).

Delta modulation and differential pulse-code modulation are two other useful forms
of digital pulse modulation. The principal advantage of delta modulation is simplified cir-
cuitry. However, this advantage is gained at the expense of increased data transmission
rate. In contrast, differential pulse-code modulation employs increased circuit complexity
to improve system performance. The improvement is achieved at the expense of increased
system complexity, which facilitates the idea of prediction to remove redundant symbols
from the incoming data stream, and thereby permit the use of reduced channel bandwidth
compared to PCM.

Further improvements in the operations of delta modulation and differential pulse-
code modulation can be made through the use of adaptivity to account for statistical vari-
ations in the input data. Specifically, adaptivity is used in delta modulation to improve
noise performance. On the other hand, adaptivity is used in differential pulse-code modu-
lation to reduce bandwidth requirement.

It is important to recognize that pulse modulation techniques are lossy in the sense that
some information is lost as a result of the signal representation that they perform. For exam-
ple, in pulse-amplitude modulation, the customary practice is to use anti-alias (low-pass) fil-
tering prior to sampling; in so doing, information is lost by virtue of the fact that high-frequency
components considered to be unessential are removed by the filter. The lossy nature of pulse
modulation is most vividly seen in pulse-code modulation that is impaired by quantization
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noise (i.e., distortion), which arises because the transmitted sequence of encoded pulses does
not have the infinite precision needed to represent continuous samples exactly. Nevertheless,
the loss of information incurred by the use of a pulse modulation process is under the designer’s
control, in that it can be made small enough for it to be nondiscernible by the end user.

A point that needs to be stressed one last time: In reality, PCM, DM, and DPCM are
source-encoding strategies, whose purpose is to convert analog signals into digital form. For
actual transmission of the encoded data over a communication channel, the discrete form
of pulse-amplitude modulation (PAM) is typically used. (Details of this application of PAM
are presented in the next chapter).

In the chapter, we also included three theme examples, addressing important appli-
cations summarized here:

� Time-division multiplexing, which enables the joint utilization of a communication
channel by a multitude of independent message sources by building on an important
feature of the sampling process—namely, the conservation of time.

� The T1 system, which accommodates the PCM transmission of 24 voice channels over
pairs of wires with regenerative repeaters spaced at approximately 2-km intervals.

� Impulse radio, by means of which information is sent across a wireless channel at base-
band, using very narrow pulses.

ADDITIONAL PROBLEMS

5.12 (a) Plot the spectrum of a PAM wave produced by the modulating signal

assuming the modulation frequency sampling period and pulse
duration

(b) Using an ideal reconstruction filter, plot the spectrum of the filter output. Compare this
result with the output that would be obtained if there were no aperture effect.

5.13 In this problem, we evaluate the equalization needed for the aperture effect in a PAM system.
The operating frequency which corresponds to the highest frequency component of the
message signal for a sampling rate equal to the Nyquist rate. Plot versus 
and hence find the equalization needed when 

5.14 A PAM telemetry system involves the multiplexing of four input signals: 
Two of the signals and have bandwidths of 80 Hz each, whereas the remaining two
signals and have bandwidths of 1 kHz each. The signals and are each sam-
pled at the rate of 2400 samples per second. This sampling rate is divided by (i.e., an inte-
ger power of 2) in order to derive the sampling rate for and 
(a) Find the maximum value of R.
(b) Using the value of R found in part (a), design a multiplexing system that first multiplexes

and into a new sequence, and then multiplexes and 

5.15 (a) A sinusoidal signal with an amplitude of 3.25 volts is applied to a uniform quantizer of the
midtread type whose output takes on the values Sketch the wave-
form of the resulting quantizer output for one complete cycle of the input.

(b) Repeat this evaluation for the case when the quantizer is of the midrise type whose output
takes on the values �0.5, �1.5, �2.5, �3.5 volts.

0, �1, �2, �3 volts.

s51t2.s31t2, s41t2,s51t2,s21t2s11t2

s21t2.s11t2 2R
s41t2s31t2s41t2s31t2 s21t2s11t2 si1t2, i � 1, 2, 3, 4.

T>Ts � 0.25.
T>Ts ,1>sinc10.5T>Ts2f � fs>2,

T � 0.45s

Ts � 1s,fm � 0.2 Hz,

m1t2 � Am cos12pfmt2
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5.16 Consider the following sequences of 1s and 0s:
(a) An alternating sequence of 1s and 0s.
(b) A long sequence of 1s followed by a long sequence of 0s.
(c) A long sequence of 1s followed by a single 0 and then a long sequence of 1s.
Sketch the waveform for each of these sequences using the following methods of representing
symbols 1 and 0:
(a) On–off signaling.
(b) Bipolar return-to-zero signaling.

5.17 The sinusoidal wave

is transmitted using a 4-bit binary PCM system. The quantizer is of the midrise type, with a step size
of 1 volt. Sketch the resulting PCM wave for one complete cycle of the input. Assume a sampling
rate of four samples per second, with samples taken at seconds.

5.18 Consider a compact disc that uses pulse-code modulation to record audio signals whose band-
width Specifications of the modulator include the following:

Quantization: uniform with 512 levels
Encoding: binary

Determine (a) the Nyquist rate, and (b) the minimum permissible bit rate.
5.19 This problem addresses the digitization of a television signal using pulse-code modulation. The

signal bandwidth is 4.5 MHz. Specifications of the modulator include the following:

Sampling: 15% in excess of the Nyquist rate
Quantization: uniform with 1024 levels
Encoding: binary

Determine (a) the Nyquist rate, and (b) the minimum permissible bit rate.
5.20 Figure 5.25 shows a PCM signal in which the amplitude levels of volt and volt are used

to represent binary symbols 1 and 0, respectively. The code word used consists of three bits. Find
the sampled version of an analog signal from which this PCM signal is derived.

�1	1

W � 15 kHz.

t � �1>8, �3>8, �5>8, Á ,

m1t2 � 6 sin12pt2 volts

t

Tb

0

+1

–1

FIGURE 5.25 Problem 5.20

5.21 Consider a sinusoidal wave of frequency and amplitude applied to a delta modulator of
step size Show that slope-overload distortion will occur if

where is the sampling period. What is the maximum power that may be transmitted with-
out slope-overload distortion?

5.22 Consider a delta modulation (DM) system used to transmit a voice signal, which is uniformly
sampled at the rate of 64 kHz. Assume the following specifications:

Maximum signal amplitude � 10 volts
Voice signal bandwidth � 3.1 kHz

Ts

Am �
¢

2pfmTs

¢ .
Am ,fm
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(a) To avoid slope overload distortion, what is the minimum permissible value of the step size
used in the system?

(b) Determine the average power of granular noise.
(c) Determine the minimum-channel bandwidth needed to transmit the DM encoded data.

5.23 Repeat Problem 5.22, this time using a sinusoidal wave of and peak

5.24 In the DPCM system depicted in Fig. 5.26, show that in the absence of channel noise, the trans-
mitting and receiving prediction filters operate on slightly different input signals.

amplitude � 10 volts.
frequency � 3.1 kHz

¢

ADVANCED PROBLEMS

5.25 (a) Given any physical signal, it is not possible to sample the signal without impairment due to
the aliasing phenomenon.

(b) The best that a designer can do is to manage the aliasing problem in such a way that the
impairment is not discernible by a human user.

Justify the validity of these two statements.
5.26 In natural sampling, an analog signal is multiplied by a periodic train of rectangular pulses

Given that the pulse-repetition frequency of this periodic train is and the duration of each
rectangular pulse is T (with ), do the following:
(a) Find the spectrum of the signal that results from the use of natural sampling; you may

assume that corresponds to the midpoint of a rectangular pulse in 
(b) Show that the original signal may be recovered exactly from its naturally sampled ver-

sion, provided that the conditions embodied in the sampling theorem are satisfied.
5.27 Figure 5.27 shows the block diagram of a bipolar chopper. The chopper has two parallel paths,

one direct and the other inverting. The commutator at the output switches back and forth
between these two paths at a frequency denoted by The chopper produces an output signal

in response to the input signal x1t2.y1t2 fs .

g1t2 c1t2.t � 0
s1t2fsT W 1

fsc1t2. g1t2

Receiver

Prediction
filter

Prediction
filter

Quantizer and
encoder

Channel Decoder Output
Input

m(nTs)
+

–
Σ

+

+
Σ

m(nTs)n

Transmitter

FIGURE 5.26 Problem 5.24

Input
x(t)

Output
y(t)

fsInverter

FIGURE 5.27 Problem 5.27

(a) Determine in terms of 
(b) Given that is the Fourier transform of determine the Fourier transform of 
Use graphical displays to illustrate your answers.

y1t2.x1t2,X1f2 x1t2.y1t2
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5.28 Figure 5.28 shows a subsystem consisting of an instantaneous sampler followed by a synthesis
filter, which is used in a sampling oscilloscope. The subsystem is designed to exploit the alias-
ing phenomenon for the expanded display of arbitrary periodic signals. Assume that the input
periodic signal has been prefiltered (not shown in Fig. 5.28) to suppress all frequency com-
ponents higher than the mth harmonic.

x1t2

Specifically, the input periodic signal is sampled at a rate slightly smaller than its
fundamental frequency as shown by

where the factor a lies in the interval In so doing, aliasing is purposely introduced
into the composition of the sample sequence where and

The sequence is next processed by the low-pass synthesis filter of cutoff
frequency thereby producing the output periodic signal 

Use graphical plots to illustrate the relationships between and and their respec-
tive spectra and and include the following:

(a) Show that the output signal is an expanded version of the input signal, as shown by

(b) To prevent spectral overlap, the expansion factor a must satisfy the condition

(c) The spectrum contains a compressed image of the spectrum 
5.29 In a television set, the video signal is produced by capturing 60 still frames of a scene per sec-

ond; hence, the sampling period of the video signal is This means that a
given point on the television screen is actually dark most of the time; the point is lit periodically
every The light emitted by the television set makes for an interesting experiment
on the aliasing phenomenon experienced in uniform sampling of the complex sinusoid

Suppose that the television screen is masked off, except for a narrow horizontal strip, and
we sit with our back to the television. To see what is happening on the television, we use a mir-
ror that rotates counterclockwise about the horizontal axis. Demonstrate the following two
possible results:
(a) The horizontal strip will appear still if the rotation speed of the mirror matches the sampling

rate of the video signal.
(b) Otherwise, the horizontal strip on the television screen will appear in the mirror as though

it is rotating backwards.
(Note: The experiment described in Problem 5.29 shows how a television set can be used to
demonstrate the way in which a device called the stroboscope works.)

5.30 In Section 5.2, we discussed the interpolation of a sample sequence based on the sample-and-
hold filter. In the control literature, this interpolation filter is referred to as the zero-order hold.
A more complex interpolation filter called the first-order hold may be preferred to the zero-order
hold. As the name implies, the first-order hold performs interpolation between data points by
a first-order polynomial—namely, a straight line.

Figure 5.29 depicts the impulse response of a first-order hold filter to a pulse of unit
amplitude and duration T.

h1t2

exp1j2pft2.
1>60 second.

Ts � 1>60 second.

X1f2.Y1f2
a �

1
2m 	 1

y1t2 � x(at)

Y1f2,X1f2 y1t2x1t2y1t2.B � fs>2,
5x1nTs26Ts � 1>fs .

n � 0, �1, �2, Á ,5x1nTs26,0 � a � 1.

fs � 11 � a2f0
f0 ,

fsx1t2

Input periodic
signal x(t)

Output periodic
signal y(t)

{x(Ts)}Instantaneous
sampler

Synthesis
filter

FIGURE 5.28 Problem 5.28
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(a) Show that the frequency response of the first-order hold filter is given by

(b) Plot the magnitude and phase responses of the first-order hold filter, and compare them to
the sample-and-hold filter.

(c) Determine the transfer function of the equalizer that needs to be cascaded with the first-order
hold filter for perfect reconstruction of the message signal. Compare your result with the
equalization needed for the sample-and-hold filter for a duty cycle Com-
ment on your results.

(d) Plot the response of the first-order hold filter to the sinusoidal input assuming
and Compare your result with that produced by the sample-and-

hold filter. Here again, comment on what the comparison teaches us.
T � 0.01.fs � 100 Hz

cos150t2,
1T>Ts2 � 0.1.

H1f2 � Ta 1 � exp1�j2pfT2
j2pfT

b 211 	 j2pfT2

2

1

0
T

2T
Time t

–1

FIGURE 5.29 Problem 5.30

5.31 In this problem, we address derivation of the Gaussian monocycle v(t) of Eq. (5.39) and its
spectrum plotted in Fig. 5.23.
To be specific, consider the unit Gaussian pulse

which is its own Fourier transform, as shown by

(For details of this Fourier-transform pair, see Example 2.6).
Differentiating with respect to time t, we get the corresponding Gaussian monocycle

where the prime signifies differentiation.
(a) Applying the linearity and dilation properties of the Fourier transform to derive the

of Eq. (5.39). What is the value of parameter A of the pulse in Fig. 5.22?
(b) Building on the results of part (a) and making use of the differentiation property of the

Fourier transform, derive the formula used to plot the spectrum of shown in Fig. 5.23.
The properties of the Fourier transform referred to in parts (a) and (b) are discussed in Chapter 2.

v1t2
v1t2 g�1t2,

g�1t2 � �2pt exp1�pt22
g1t2

G1f2 � exp1�pf 22
g1t2 � exp1�pt22
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CHAPTER 6

BASEBAND DATA

TRANSMISSION

The transmission of digital data (regardless of their origin) over a physical communication
channel is limited by two unavoidable factors:

1. Intersymbol interference, which arises due to imperfections in the frequency response
of the channel.

2. Channel noise, which refers to unwanted electric signals that arise at the channel out-
put due to random and unpredictable physical phenomena.

In this chapter, we focus attention on the intersymbol interference problem. The discussion
of noise in digital communication receivers is deferred to the latter part of the book.

As the name implies, intersymbol interference refers to interference caused by the
time response of the channel spilling over from one symbol into adjacent symbols. Inter-
symbol interference is troublesome because it has the effect of introducing deviations (i.e.,
errors) between the data sequence reconstructed at the receiver output and the original
data sequence applied to the transmitter input. Hence, unless corrective measures are
taken, intersymbol interference could impose a limit on the attainable rate of data trans-
mission across the channel, which is below the physical capability of the channel.

With intersymbol interference acting as an issue of practical concern, we will study an
important corrective measure to deal with it—namely, baseband pulse shaping. This mea-
sure involves the use of band-limited pulses that are shaped in a special manner so as to
mitigate the intersymbol interference problem; this corrective measure builds on prior
knowledge about the channel.

The chapter will teach us three lessons:

� Lesson 1: Understanding of the intersymbol interference problem and how to cure it is of
fundamental importance to the design of digital communication systems.

� Lesson 2: The raised cosine spectrum provides a powerful mathematical tool for baseband
pulse-shaping designed to mitigate the intersymbol interference problem.

� Lesson 3: The eye pattern is a visual indicator of performance, displaying the physical lim-
itations of a digital data transmission system in an insightful manner.
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FIGURE 6.1 Baseband binary data transmission. (a) Block diagram of the system, depicting its
constituent components all the way from the source to destination. (b) Simplifed representation of
the system.

6.1 Baseband Transmission 
of Digital Data

From Chapter 1, we recall that the term “baseband” is used to designate the band of fre-
quencies representing the original signal delivered by a source of information. The source
of information, for example, could be a computer that produces a stream of binary data
made up of the symbols 0 and 1. The task of a digital communication system is to trans-
port the data stream from the source to its destination over a channel and do so in a reli-
able manner. To accomplish this task, we need to use a modulation technique that involves
varying the amplitude, phase or frequency of transmitted pulses in accordance with the
raw data in some discrete manner. In this chapter, we emphasize the use of discrete pulse-
amplitude modulation, which is a form of pulse-amplitude modulation (previously dis-
cussed in Chapter 5) with the amplitude being quantized into a set of discrete levels. There
are three reasons for this emphasis:

1. Discrete pulse-amplitude modulation is simple to analyze.
2. It is the most efficient form of discrete pulse modulation in terms of both power and

bandwidth use.
3. The analytic techniques developed for handling discrete pulse-amplitude modulation

may be extended to other discrete-pulse modulation techniques using phase or frequency.

In discrete pulse-amplitude modulation (PAM), the amplitude of transmitted pulses is var-
ied in a discrete manner in accordance with an input stream of digital data. Figure 6.1(a)
depicts the basic functional blocks of a baseband PAM system. The input binary data
stream is denoted by At time where is the bit duration and

the element representing binary symbol 1 or 0, is emitted by the
source of information. The binary data stream is applied to a line encoder, the purpose
of which is to produce a level-encoded signal denoted by (Line codes were described5ak6.5bk6bk ,k � 0, �1, �2, Á ;

Tbt � kTb ,5bk6.
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in Chapter 5.) For example, we may define level-encoded signal in terms of positive
and negative pulses of fixed amplitude and short duration (short enough for the two pulses
to be viewed as unit impulses of opposite polarities). Specifically, we write

(6.1)

The level-encoded signal is applied to a transmit filter to produce a sequence of pulses,
whose basic shape is denoted in the time and frequency domains by and respec-
tively. In effect, the level-encoded signal plays the role of a modulating signal, with
the result that the discrete PAM signal is defined by

(6.2)

The PAM signal is transmitted across a linear communication channel, which is
described in the time and frequency domains by the impulse response and transfer
function respectively. Putting aside the effect of additive channel noise, we may
express the channel output as

(6.3)

where the symbol denotes convolution in the time domain.
The channel output is processed by a receive-filter, which is described in the

time and frequency domains by the impulse response and transfer function 
respectively. The resulting output is therefore defined by the convolution of and 
—namely,

(6.4)

The filter output is next sampled synchronously with the generator of clock pulses in
the transmitter; synchronization is commonly established by extracting a clock or timing
signal from the receive-filter output. Finally, the sequence of samples thus obtained is used
to reconstruct the original binary data stream by means of a decision-making device. Specif-
ically, the amplitude of each sample is compared to a threshold. If the threshold is exceeded,
a decision is made in favor of symbol 1, say. If the threshold is not exceeded, a decision is
made in favor of symbol 0. If the sample amplitude equals the threshold exactly, the sym-
bol may be chosen as 0 or 1 through the flip of a fair coin without affecting overall per-
formance. For the case when symbols 0 and 1 are equiprobable, it is reasonable to set the
threshold at the zero amplitude level.

The model shown in Fig. 6.1(a) represents not only a data transmission system inher-
ently baseband in nature (e.g., data transmission over a coaxial cable) but also the base-
band equivalent of a linear modulation system used to transmit data over a band-pass
channel (e.g., telephone channel). In the latter case, the baseband equivalent model of the
data transmission system is developed by using the ideas presented in Section 3.8.

6.2 The Intersymbol 
Interference Problem

As already mentioned, for the present discussion we ignore the effect of additive channel
noise. We do so in order to focus attention on the effects of imperfections in the frequency
response of the channel (i.e., dispersion of the pulse shape by the channel) on data trans-
mission through the channel.

y1t2
y1t2 � x1t2 � q1t2

q1t2x1t2 Q1f2,q1t2x1t2�

x1t2 � s1t2 � h1t2
H1f2, h1t2s1t2

s1t2 � a
q

k��q
akg1t � kTb2

5ak6 G1f2,g1t25ak6
ak � e	1 if the input bk is symbol 1

�1 if the input bk is symbol 0

5ak6
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1In practice, it may be preferable to sample the receive-filter output at times rather than 
The reason for doing so is the unavoidable presence of delay and distortion in the overall pulse response To
simplify the presentation, we have ignored this effect.

p1t2.t � iTb .t � iTb 	 t0y1t2

Using Eqs. (6.2) through (6.4), except for a scaling factor, we may express the receive-
filter output as the modified PAM signal

(6.5)

Linearity of the data transmission depicted in Fig. 6.1 leads us to express the overall pulse
shape in Eq. (6.5) by the multiple convolution product

(6.6)

Naturally, the received pulse has a shape different from that of the transmitted signal
of Eq. (6.2). Let the spectrum denote the Fourier transform of the pulse 

Then, in the frequency domain, we may equivalently write

(6.7)

As remarked previously, the receive-filter output of Eq. (6.5) is sampled synchronously
with the transmitter. Let1

denote the sample of produced at time To simplify the presentation, we intro-
duce the discrete-time shorthand notation:

and, correspondingly,

We thus rewrite the sample of at time compactly as the discrete convolution sum

(6.8)

Referring to Fig. 6.1(a), we see that is the input to the decision-making device.
Define

(6.9)

where E is the transmitted signal energy per bit (symbol). The index i refers to the instant
at which the receive-filter output is sampled in the receiver, whereas the index k refers to
a symbol in the data stream produced by the source of information at the transmitted input.
Thus, isolating the term representing in Eq. (6.8), we may equivalently write

(6.10)

In Eq. (6.10), the first term represents the transmitted binary symbol, except for the scal-
ing factor The second term, involving the combined effect of all other transmitted2E .

ai

yi � 2Eai 	 a
q

k��q
k
 i

akpi�k , i � 0, �1, �2, Á

k � i

p0 � p102 � 2E

yi � y1iTb2
yi � a

q

k��q
akpi�k , i � 0, �1, �2, Á

t � iTby1t2
pi � p1iTb2
yi � y1iTb2

t � iTb .y1t2
y1iTb2 � a

q

k��q
akp31i � k2Tb4, i � 0, �1, �2, Á

y1t2
P1f2 � G1f2H1f2Q1f2

p1t2.P1f2s1t2 p1t2
p1t2 � g1t2 � h1t2 � q1t2

p1t2

y1t2 � a
q

k��q
akp1t � kTb2
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binary symbols before and after represents a residual phenomenon called the intersymbol
interference (ISI). In the absence of ISI (and the assumed absence of channel noise), Eq. (6.10)
reduces to the ideal condition

which, of course, represents perfect decoding.
The pulse-shaping problem involved in designing the PAM system of Fig. 6.1(a) may

now be stated as follows (ignoring the effect of channel noise):

Given the channel transfer function determine the transmit-pulse spectrum
and receive-filter transfer function so as to satisfy two basic requirements:

(i) Intersymbol interference is reduced to zero.
(ii) Transmission bandwidth is conserved.

To satisfy both of these requirements, we have to exercise control over the overall pulse
shape in the time domain or, equivalently, the overall pulse spectrum in the fre-
quency domain. The key question is how this control is actually exercised.

6.3 The Nyquist Channel

In light of Eqs. (6.5) and (6.7), we may replace the PAM system of Fig. 6.1(a) with the
simpler PAM configuration depicted in part (b) of the figure. The distinctive feature of Fig.
6.1(b) is its focus on the overall pulse spectrum 

For the optimum solution to the pulse-shaping problem, the condition for zero inter-
symbol interference would have to be satisfied at the minimum transmission bandwidth pos-
sible. With for all i defining the condition for zero intersymbol interference, we
infer from Eq. (6.10) that it is necessary for the overall pulse shape the inverse Fourier
transform of the pulse spectrum in Fig. 6.1(b), to satisfy the condition

(6.11)

Equation (6.11) implies sampling at a uniform rate equal to the bit rate Suppose
that is band-limited to frequencies in the interval where is to be
defined. Then, invoking the interpolation formula of Eq. (5.7) that is embodied in the sam-
pling theorem, we may express the pulse shape in terms of its sample values as

(6.12)

Suppose the bandwidth is related to the bit rate as

(6.13)

Then substituting Eq. (6.11) into Eq. (6.12), we obtain the sinc function

(6.14)

as the optimum pulse shape.

�
2E sin12pB0t2

2pB0t
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i��q
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≤  sinc12B0t � i2
p1t2

B0�B0 � f � B0,p1t2 1>Tb .p1t2
pi � p1iTb2 � b2E , for i � 0

0, for all i 
 0

P1f2 p1t2,yi � ai

P1f2.
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FIGURE 6.2 (a) Sinc function as the optimum pulse shape. (b) Optimum pulse spectrum.p1t2

� Drill Problem 6.1 The pulse shape of a baseband binary PAM system is defined by

where is the bit duration of the input binary data. The amplitude levels at the pulse genera-
tor output are or depending on whether the binary symbol at the input is 1 or 0, respec-
tively. Describe the waveform at the output of the receiving filter in response to the input data
sequence 001101001. �

The overall pulse spectrum is defined by the optimum brick-wall function

(6.15)

Parts (a) and (b) of Fig. 6.2, respectively, plot the optimum spectrum and its inverse

The important points to take from the idealized plots of Fig. 6.2 are twofold:

1. The brick-wall spectrum defines as the minimum transmission bandwidth
for zero intersymbol interference. That is, the optimum solution for the pulse-shaping
problem involves no frequencies of absolute value exceeding half the bit rate. The
parameter defined in accordance with Eq. (6.13) is called the Nyquist bandwidth.
Correspondingly, the PAM system of Fig. 6.1(b) with the optimum pulse spectrum

defined by Eq. (6.15) is called the Nyquist channel.

2. The optimum pulse shape is the impulse response of an ideal low-pass channel
with an amplitude response of in the passband and a bandwidth Being defined
as a sinc function, has its peak value at the origin and goes through zero at inte-
ger multiples of the bit duration On this basis, the pulses defined by 
in Eq. (6.5) with will not interfere with each other.

In short, the Nyquist channel defined by the overall pulse spectrum of Eq. (6.15) is
the optimum solution for zero intersymbol interference at the minimum transmission band-
width possible in a noise-free environment.

P1f2
k � 0, �1, �2, Á ,

popt1t � kTb2Tb .
popt1t2 B0.Popt1f 2popt1t2

Popt1f2
B0

B0Popt1f2
popt1t2. Popt1f2

Popt1f2 � c 2E
2B0

, for �B0 � f � B0

0, otherwise

�1,	1
Tb

p1t2 � sinc¢ t
Tb
≤p1t2
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Although the Nyquist channel is indeed the optimum solution to the pulse-shaping
problem, there are two difficulties that make its use for a PAM system impractical:

1. The system requires that the spectrum be flat from to and zero else-
where. This is physically unrealizable, and very difficult to approximate in practice
because of the abrupt transitions at 

2. The time function decreases as for large resulting in a slow rate of decay.
This is caused by the discontinuity of at Accordingly, there is practically
no margin of error in sampling times in the receiver.

To pursue the timing error problem under point 2, consider Eq. (6.5) and sample the 
at where is the timing error. To simplify the analysis, we shall put the correct
sampling time equal to zero. We thus obtain (in the absence of channel noise)

Setting equal to the optimum value defined in the first line of Eq. (6.14) yields

With in accordance with Eq. (6.13), we may simplify the expression for
into

where, in the second line, we have done two things: isolate the term corresponding to
and use the formula for the sinc function. Next, using the trigonometric identity

with and for all k, we may go one step further and write

(6.16)

The first term on the right-hand side of Eq. (6.16) defines the desired binary symbol,
whereas the remaining series represents the intersymbol interference caused by the timing
error in sampling the signal The intersymbol interference so caused decays at the
rate Moreover, depending on the value of it is possible for this series to diverge,
thereby causing erroneous decisions in the receiver.

To mitigate the problems due to physical realizability of the Nyquist channel and
zero timing error, we therefore have to look to other pulse shapes. In the next section, we
present one such solution that relaxes the minimum-bandwidth (ideal) solution embodied
in the Nyquist channel.
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6.4 Raised-Cosine Pulse Spectrum

To ensure physical realizability of the overall pulse spectrum we need a solution that
differs from the Nyquist channel in one important respect: the modified decreases
toward zero gradually rather than abruptly. In more specific terms, is proposed to con-
sist of two portions:

1. Flat portion, which occupies the frequency band for some parameter 
to be defined.

2. Roll-off portion, which occupies the frequency band 

The parameter is adjustable under the designer’s control. The flat portion may thus retain
part of the ideal brick-wall solution. As for the roll-off portion, it provides for the gradual
decrease of toward zero. The key question is how to formulate this gradual roll-off
characteristic. For the answer, we first look to one full cycle of the cosine function defined
in the frequency domain, which is raised up by an amount equal to its amplitude. The next
thing we do is to split this function at the origin into two equal halves, separate them by
an amount equal to the width of the flat portion under point 1, and finally use them to
account for the roll-off portion under point 2. This new figure constitutes the desired shape
for the modified pulse spectrum For obvious reasons, the constructed in this man-
ner is called the raised-cosine pulse spectrum.

To cast the raised-cosine pulse spectrum in mathematical terms, we write

(6.17)

The frequency and the Nyquist bandwidth are related by the new parameter

(6.18)

which is called the roll-off factor. For —that is, —we get the Nyquist chan-
nel described in Section 6.3.

The spectrum normalized by multiplying it by is plotted in Fig. 6.3(a)
versus the normalized frequency for three values of namely, 0, 0.5, and 1. We see
that for or 1, the function cuts off gradually as compared with the ideal
brick-wall solution (corresponding to ).

The modified pulse shape —that is, the inverse Fourier transform of the raised-
cosine pulse spectrum —is defined by

(6.19)

The time function of Eq. (6.19) consists of the product of two factors: the factor
that defines the Nyquist channel, and a second factor that decreases as

for large The first factor ensures zero crossings of at the desired sampling
instants of time with i an integer (positive and negative). The second factor reduces
the tails of the pulse considerably below the Nyquist channel, so that the transmission of
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FIGURE 6.3 (a) Raised-cosine pulse spectrum for varying roll-off rates. (b) Pulse response
(i.e., inverse Fourier transform of for varying roll-off rates).P1f2p1t2

binary waves using such pulses is relatively insensitive to sampling time errors. In fact, the
amount of intersymbol interference resulting from a timing error decreases as the roll-
off factor is increased from zero to unity.

The modified pulse shape is plotted in Fig. 6.3(b) for and 1. For the
special case of the function simplifies as

(6.20)p1t2 � 2E¢ sinc14B0t2
1 � 16B0

2t2
≤p1t2a � 1,

a � 0, 0.5,p1t2a

¢t
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2For detailed discussion of this theorem, see Gitlin, Hayes and Weinstein (1992), p. 258.

The function of Eq. (6.20) exhibits two interesting properties:

1. At we have that is, the pulse width mea-
sured at half amplitude is exactly equal to the bit duration 

2. There are zero crossings at in addition to the usual zero
crossings at the sampling times 

These two properties are particularly useful in the provision of a basis for extracting a tim-
ing signal from the receive-filter output which is used to synchronize the receiver to
the transmitter.

� Drill Problem 6.2 Show that for positive frequencies, the area under the normalized
raised-cosine curve of versus is equal to unity for all values of the roll-
off factor in the range A similar statement holds for negative frequencies. �

� Drill Problem 6.3 Given that is the Fourier transform of a pulse-like function 
we may state the following theorem:2

The pulse decreases asymptotically with time as provided that the following
two conditions hold:

1. The first derivatives of the Fourier transform with respect to frequency are
all continuous.

2. The kth derivative of is discontinuous.

Demonstrate the validity of this theorem for the three different values of plotted in 
Fig. 6.3(a). �

� Drill Problem 6.4 Equation (6.17) defines the raised-cosine pulse spectrum as real-
valued and therefore zero delay. In practice, every transmission system experiences some finite
delay. To accommodate this practicality, we may associate with a linear phase character-
istic over the frequency band 

(a) Show that this modification of introduces a finite delay into its inverse Fourier trans-
form, namely, the pulse shape 

(b) According to Eq. (6.19), represents a non-causal time response. The delay intro-
duced into through the modification of has also a beneficial effect, tending to
make essentially causal. For this to happen, however, the delay must not be less than
a certain value dependent on the roll-off factor Suggest suitable values for the delay for

and 1. �

� TRANSMISSION-BANDWIDTH REQUIREMENT

From Eq. (6.17) we see that the nonzero portion of the raised-cosine pulse spectrum 
is limited to the interval for positive frequencies. Accordingly, the transmis-
sion bandwidth required by using the raised-cosine pulse spectrum is given by

Eliminating between Eq. (6.18) and this formula for we obtain

(6.21)

where is the Nyquist bandwidth and is the roll-off factor. Thus, the transmission
bandwidth requirement of the raised-cosine spectrum exceeds that of the optimum Nyquist
channel by the amount
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which is called the excess bandwidth. From this definition, we readily see that the ratio of
the excess bandwidth (resulting from the use of raised-cosine pulse spectrum) to the
Nyquist bandwidth (required by the Nyquist channel) is equal to the roll-off factor 
this is why the roll-off factor is also sometimes called the excess-bandwidth factor. In any
event, the need for accommodating the excess bandwidth is the price we have to pay for
transmitting binary data over the channel at a bit rate equal to and doing so with
zero intersymbol interference in a physically realizable manner.

The following two cases, one ideal and the other practical, are of particular interest:

1. When the roll-off factor is zero, the excess bandwidth is reduced to zero, thereby
permitting the transmission bandwidth to assume its minimum possible value

2. When the roll-off factor is unity, the excess bandwidth is increased to Corre-
spondingly, the transmission bandwidth is doubled, compared to the (ideal) case
1. As pointed out previously, the choice of provides a basis for synchronizing
the receiver to the transmitter.

EXAMPLE 6.1 Bandwidth Requirements of the T1 System

In Chapter 5, we described the signal format for the T1 carrier system that is used to multi-
plex 24 independent voice inputs, which is based on an 8-bit PCM word. The bit duration of
the resulting time-division multiplexed signal (including a framing bit) is

The bit rate of the T1 system is

For the Nyquist bandwidth of the T1 system is

which is the minimum transmission bandwidth of the T1 system for zero intersymbol inter-
ference. However, a more realistic value for the transmission bandwidth is obtained by using
a raised-cosine pulse spectrum with roll-off factor In this case, the use of Eq. (6.21)
yields

which is double the Nyquist bandwidth 

� TWO ADDITIONAL PROPERTIES OF THE RAISED-COSINE PULSE SPECTRUM

From the definition of the raised-cosine pulse spectrum given in Eq. (6.17), we find
that it exhibits two other interesting properties, as described in the material that
follows.

PROPERTY 1 The roll-off portion of the spectrum exhibits odd symmetry about the
midpoints

To prove this property, define the frequency function  

(6.23)Pn1f2 � Popt1f2 � P1f2
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which is a unique characterization of the roll-off portion of the raised-cosine spectrum.
Using Eqs. (6.15) and (6.17) in this definition yields

(6.24)

Figure 6.4(a) plots and for roll-off factor only plots for positive fre-
quencies are shown in the figure. The corresponding residual function is plotted in
Fig. 6.4(b). From this figure we immediately see that

(6.25)

where

(6.26)

Equation (6.25) confirms the odd-property of the roll-off portion about the midpoint
for positive frequencies. Similarly, this property also holds at the other midpoint

for negative frequencies.f � �B0

f � B0

f� � f � B0

Pn1�f�2 � �Pn1f�2
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FIGURE 6.4 (a) Nyquist and raised-cosine pulse spectra for positive frequencies. 
(b) Residual spectrum Pn1f2.
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� Drill Problem 6.5 Starting with the formula of Eq. (6.24) and using the definition of
Eq. (6.26), demonstrate the property of Eq. (6.25). �

The spectral characteristic portrayed in Fig. 6.4(a) reminds us of a similar situation
pertaining to vestigial sideband modulation, which was studied in Chapter 3. Specifically,
comparing Figs. 3.24(a) and 6.4(a), we readily see that although these two spectral char-
acteristics refer to entirely different applications, they are basically of an identical mathe-
matical form, except for two minor differences:

1. The baseband raised-cosine pulse spectrum of Fig. 6.4(a) is centered on the ori-
gin at whereas the vestigial sideband spectrum of Fig. 3.24(a) is centered on
the sinusoidal carrier frequency 

2. The parameter in Fig. 6.4(a) refers to the excess bandwidth measured with respect
to the ideal brick-wall solution for zero intersymbol interference, whereas the para-
meter in Fig. 3.24(a) refers to the excess bandwidth measured with respect to the
optimum bandwidth attainable with single sideband modulation.

Difference 1 is of a technical nature, and difference 2 merely pertains to terminology. What
is really important to note is that in both applications, where the raised-cosine pulse spec-
trum is intended for baseband digital data transmission and the vestigial sideband spectrum
is usually (but not always) intended for analog modulation, the motivation is to ensure
physical realizability.3 (The Theme Example on digital television to be presented in Chap-
ter 7 uses vestigial sideband modulation.)

PROPERTY 2 The infinite summation of replicas of the raised-cosine pulse spectrum,
spaced by hertz, equals a constant, as shown by

(6.27)

To prove this property, recall from Chapter 2 that sampling of a Fourier transformable
function in the time domain is transformed into periodicity in the frequency domain, as
described in Eq. (2.88). Adapting this equation to the situation at hand, we may write

(6.28)

The raised-cosine pulse spectrum and its inverse are respectively defined in Eqs.
(6.17) and (6.19). In particular, sampling the modified pulse response at the rate

we may write
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3It is even more interesting to note, that Harry Nyquist is the originator of both vestigial sideband modulation
and raised-cosine pulse spectrum:

The spectral shaping for vestigial sideband modulation appeared in the paper, H. Nyquist and K. W. Pfleger,
“Effect of the quadrature component in single-sideband transmission,” The Bell System Technical Journal, vol.
19, pp. 63–73, January 1940.

The raised-cosine pulse spectrum was described in the earlier classic paper: H. Nyquist, “Certain topics
in telegraph transmission theory”, Transactions of the American Institute of Electrical Engineers, vol. 47,
pp. 617–644, April 1928.
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where Noting the two points:

1.

2.

it follows that

Accordingly, Eq. (6.28) reduces to

or, equivalently,

(6.29)

Finally, noting that the Fourier transform of the delta function is unity, Eq. (6.29) is
merely another way of describing the desired form shown in Eq. (6.27).

Having proved the validity of Property 2, we may turn it around. Specifically, the
pulse-shaping criterion for zero intersymbol interference is embodied in the following gen-
eral statement:

Given the modified pulse shape for transmitting data over an imperfect channel using
discrete pulse-amplitude modulation at the data rate the pulse shape elimi-
nates intersymbol interference if, and only if, its spectrum satisfies the condition

(6.30)

This statement includes binary PAM as a special case, for which the data rate equals
in accordance with Eq. (6.13). Moreover, the raised-cosine pulse spectrum is one exam-

ple, albeit an important one, that satisfies Eq. (6.30).

� ROOT RAISED-COSINE PULSE SPECTRUM

A more sophisticated form of pulse shaping for baseband digital data transmission is to use
the root raised-cosine pulse spectrum rather than the regular pulse-shaping spectrum of
Eq. (6.17). Specifically, we write

(6.31)

where, as before, is the transmit-filter’s frequency response and is the channel’s
frequency response. Correspondingly, the receive-filter’s frequency response is defined by

(6.32)

Multiplying Eq. (6.31) by (6.32) yields
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which is a repeat of Eq. (6.7). On this basis, the pulse shaping is partitioned equally between
two entities:

� The combination of transmit-filter and channel constitutes one entity. With 
known and defined by Eq. (6.17) for a prescribed roll-off factor we may use
Eq. (6.31) to determine the frequency response of the transmit filter.

� The receive filter constitutes the other entity. Hence, for the same roll-off factor we
may use Eqs. (6.17) and (6.32) to determine the frequency response of the receive-filter.

If the channel is affected by additive noise and the pulse-shaping is partitioned equally
between the transmitter and receiver in the manner described herein, then the receiver
would maximize the output signal-to-noise ratio at the sampling instants. Further discus-
sion of this issue is deferred to Chapter 10, which is devoted to noise in digital communi-
cation receivers.

6.5 Baseband Transmission 
of M-ary Data

In the baseband binary PAM system of Fig. 6.1(a), the sequence emitted by the source
of information consists of binary symbols that are represented by one of two possible
amplitude levels, for symbol 0 and for symbol 1. On the other hand, in a baseband
M-ary version of the system, the output of the line encoder takes on one of M possible ampli-
tude levels with In an M-ary system, the information source emits a sequence of
symbols from an alphabet that consists of M symbols. Each amplitude level at the line-
encoder output corresponds to a distinct symbol, so that there are M distinct amplitude lev-
els to be transmitted.

Consider then an M-ary PAM system with a signal alphabet that contains M symbols,
with the symbol duration denoted by T seconds. We refer to as the signaling rate or
symbol rate of the system, which is expressed in symbols per second or simply bauds. It is
informative to relate the signaling rate of this system to that of an equivalent binary PAM
system for which the value of M is 2 and the bit duration is seconds. The binary PAM
system transmits data at the rate of bits per second. We also observe that in the case
of a quaternary PAM system, for example, the four possible symbols may be identified
with the dibits 00, 10, 11, and 01; a dibit refers to a word consisting of two bits. We thus
see that each symbol represents 2 bits of data and 1 baud is equal to 2 bits per second. We
may generalize this result by stating that in an M-ary PAM system, 1 baud is equal to

bits per second, and the symbol duration T of the M-ary PAM system is related to
the bit duration of a binary PAM system with the equivalent bit rate as follows:

(6.33)

Therefore, in a given channel bandwidth, we find that by using an M-ary PAM system we
are able to transmit data at a rate that is faster than the corresponding binary PAM
system.

However, this improvement in bandwidth utilization is attained at a price. Specifically,
the transmitted power must be increased by a factor equal to compared to a
binary PAM system, if we are to realize the same performance in the presence of channel
noise; this issue is discussed in Chapter 10. Also, system complexity is increased.

M2>log2 M,

log2 M

T � Tb log2 M

Tb

log2 M

1>Tb

Tb

1>T

M � 2.

	1�1

5bk6

a
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4Another visual indicator of system performance is the so-called scatter diagram, which is obtained by plotting
the imaginary part versus the real part of the complex signal appearing at the output of the receiver filter; for more
details, see the book by Jeruchim, Balaban, and Shanmugan (2000), pp. 666–667.

6.6 The Eye Pattern

Up to this point in the chapter, we have discussed the intersymbol interference problem
and how to mitigate it. In this section, we describe a tool called the eye pattern for its
experimental evaluation.

The eye pattern is produced by the synchronized superposition of (as many as possi-
ble) successive symbol intervals of the distorted waveform appearing at the output of the
receive-filter prior to thresholding. As an illustrative example, consider the distorted, but
noise-free, waveform shown in Fig. 6.5(a). Part (b) of the figure displays the correspond-
ing synchronized superposition of the waveform’s eight binary symbol intervals. The result-
ing display is called an “eye pattern” because of its resemblance to a human eye. By the same
token, the interior of the eye pattern is called the eye opening.

As long as the additive channel noise is not large, then the eye pattern is well defined
and may therefore be studied experimentally on an oscilloscope. The waveform under
study is applied to the deflection plates of the oscilloscope with its time-base circuit oper-
ating in a synchronized condition. From an experimental perspective, the eye pattern offers
two compelling virtues:

� The simplicity of generation.
� The provision of a great deal of insightful information about the characteristics of the

data transmission system, hence its wide use as a visual indicator4 of how well or
poorly a data transmission system performs the task of transporting a data sequence
across a physical channel.

(a)

(b)

Binary
Data

0 1 1

Tb

0 0 0 01 1 1

t

Tb

t

FIGURE 6.5 (a) Binary data sequence and its waveform. (b) Corresponding eye pattern.
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� TIMING FEATURES

Figure 6.6 depicts a generic eye pattern for distorted, but noise-free, binary data. The hor-
izontal axis, representing time, spans the symbol interval from to where 
is the bit duration.

From this diagram, we may infer three timing features pertaining to a binary data
transmission system, exemplified by the PAM system of Fig. 6.1(a):

(i) Optimum sampling time. The width of the eye opening defines the time interval over
which the distorted binary waveform appearing at the output of the receive-filter in
Fig. 6.1(a) can be uniformly sampled without decision errors. Clearly, the optimum
sampling time is the time at which the eye opening is at its widest.

(ii) Zero-crossing jitter. In practice, the timing signal (for synchronizing the receiver to
the transmitter) is extracted from the zero-crossings of the waveform that appears at
the receive-filter output. In such a form of synchronization, there will always be irreg-
ularities in the zero-crossings, which, in turn, give rise to jitter and therefore non-
optimum sampling times.

(iii) Timing sensitivity. Another timing-related feature is that of sensitivity of the system
to timing errors. This sensitivity is determined by the rate at which the eye pattern is
closed as the sampling time is varied.

Figure 6.6 indicates how these three timing features of the system can be measured from
the eye pattern.

� THE PEAK DISTORTION FOR INTERSYMBOL INTERFERENCE

Hereafter, we assume that the ideal signal amplitude is scaled to occupy the range from 
to We then find that in the absence of channel noise, the eye opening assumes two
extreme values:

(i) An eye opening of unity5, which corresponds to zero intersymbol interference.
(ii) An eye opening of zero, which corresponds to a completely closed eye pattern; this

second extreme case occurs when the effect of intersymbol interference is severe
enough for some upper traces in the eye pattern to cross with its lower traces.

	1.
�1

Tb	Tb>2,�Tb>2

5In a strict sense, an eye pattern that is completely open occupies the range from to . On this basis, zero-
intersymbol interference would correspond to an ideal eye opening of two. However, for two reasons, convenience
of presentation and consistency with the literature, we have chosen an eye opening of unity to refer to the ideal con-
dition of zero-intersymbol interference.

	1�1

FIGURE 6.6 Interpretation of the eye pattern for a baseband binary data transmission system.
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In situation (ii), it is indeed possible for the receiver to make decision errors even when the
channel is noise-free. Typically, an eye opening of 0.5 or better is considered to yield reli-
able data transmission.

In a noisy environment, the extent of eye opening at the optimum sampling time pro-
vides a measure of the operating margin over additive channel noise. This measure, as illus-
trated in Fig. 6.6, is referred to as the noise margin.

From this discussion, it is apparent that the eye opening plays an important role in
assessing system performance, hence the need for a formal definition of the eye opening.
To this end, we offer the following definition:

(6.34)

where denotes a new criterion called the peak distortion. The point to note here is
that peak distortion is a worst-case criterion for assessing the effect of intersymbol inter-
ference on the performance (i.e., error rate) of a data-transmission system. The relationship
between the eye opening and peak distortion is illustrated in Fig. 6.7. With the eye open-
ing being dimensionless, the peak distortion is dimensionless too. To emphasize this state-
ment, the two extreme eye-opening values defined on the previous page translate as follows:

(i) Zero peak distortion, which occurs when the eye opening is unity.
(ii) Unity peak distortion, which occurs when the eye pattern is completely closed.

With this background, the peak distortion is formally defined as the maximum value
assumed by the intersymbol interference over all possible transmitted sequences, with this
evaluation divided by a normalization factor equal to the absolute value of the corre-
sponding signal level idealized for zero intersymbol interference. Referring to Eq. (6.10),
the two components embodied in this definition are themselves defined as follows:

(i) The idealized signal component of the receive-filter output is defined by
the first term in Eq. (6.10)—namely, where is the ith encoded symbol and unit
transmitted signal energy per bit.

(ii) The intersymbol interference is defined by the second term—namely,

The maximum value of this summation occurs when each encoded symbol has
the same algebraic sign as Therefore,

1Maximum ISI2 � a
q

k��q
k
 i

ƒpi�k ƒ

pi�k .
ak

a
q

k��q
k
 i

akpi�k

aiai ,
yi � y1iTb2

Dpeak

1Eye opening2 � 1 � Dpeak
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T

0

FIGURE 6.7 Illustrating the relationship
between peak distortion and eye opening.
Note: The ideal signal level is scaled to lie
inside the range to 	1.�1



6.7 Computer Experiment: Eye Diagrams for Binary and Quaternary Systems 249

6The smallest possible noise margin places an upper bound on the probability of symbol error due to the unavoid-
able presence of additive channel noise; the notion “probability of symbol error” is formally defined in Chapter 10.

Hence, invoking the definition of peak distortion, we get the desired formula:

(6.35)

where for all Note that by involving the assumption of a signal
amplitude from to , we have scaled the transmitted signal energy for symbol to 

By its very nature, the peak distortion is a worst-case criterion for data transmission
over a noisy channel. The eye opening specifies the smallest possible noise margin.6

� EYE PATTERNS FOR M-ARY TRANSMISSION

As pointed out previously in Section 6.5, an M-ary data transmission system uses M encoded
symbols in the transmitter and thresholds in the receiver. Correspondingly, the eye
pattern for an M-ary data transmission system contains eye openings stacked
vertically one on top of the other. The thresholds are defined by the amplitude-transition
levels as we move up from one eye opening to the adjacent eye opening. When the encoded
symbols are all equiprobable, the thresholds will be equidistant from each other.

In a strictly linear data-transmission system with truly transmitted random data
sequences, all the eye openings would be identical. In practice, however, it is often
possible to find asymmetries in the eye pattern of an M-ary data-transmission system, which
are caused by nonlinearities in the communication channel or other parts of the system.

6.7 Computer Experiment: Eye Diagrams
for Binary and Quaternary Systems

Figures 6.8(a) and 6.8(b) show the eye diagrams for a baseband PAM transmission system
using and respectively. The channel has no bandwidth limitation, and the
source symbols used are randomly generated on a computer. A raised cosine pulse is used
in both cases. The system parameters used for the generation of these eye diagrams are as
follows: bit rate and roll-off factor For the binary case of dis-
played in Fig. 6.8(a), the symbol duration T and the bit duration are the same, with

For the case of displayed in Fig. 6.8(b), we have 
In both cases, we see that the eyes are open, indicating perfectly reliable operation of the
system, perfect in the sense that the intersymbol interference is zero.

Figures 6.9(a) and 6.9(b) show the eye diagrams for these two baseband-pulse trans-
mission systems using the same system parameters as before, but this time under a band-
width-limited condition. Specifically, the channel is now modeled by a low-pass Butterworth
filter, whose frequency response is defined by

where N is the order of the filter, and is its 3-dB cutoff frequency of the filter. For the
results displayed in Fig. 6.9, the following filter parameter values were used:

1. , and for binary PAM

2. , and for PAM4 �f0 � 0.3 HzN � 3

f0 � 0.6 HzN � 3

f0

ƒH1f2 ƒ �
1

1 	 1f>f022N

T � Tb log2 M � 2Tb .M � 4Tb � 1s.
Tb

M � 2a � 0.5.� 1 Hz,

M � 4,M � 2

M � 1

1M � 12M � 1

E � 1.	1�1
i � k, p0 � p102 � 1.
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q
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FIGURE 6.8 Eye diagram of received signal with no bandwidth limitation. (a)
(b) M � 4.

M � 2.

With the roll-off factor and Nyquist bandwidth for binary PAM, the
use of Eq. (6.21) defines the transmission bandwidth of the PAM transmission system to be

Although the channel bandwidth cutoff frequency is greater than absolutely necessary,
its effect on the passband is observed in a decrease in the size of the eye opening. Instead
of the distinct values at time (as shown in Figs. 6.8(a) and 6.8(b)), now there is a
blurred region. If the channel bandwidth were to be reduced further, the eye would close
even more until finally no distinct eye opening would be recognizable.

t � 1s

BT � 0.511 	 0.52 � 0.75 Hz

B0 � 0.5 Hz,a � 0.5
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FIGURE 6.9 Eye diagram of received signal, using a bandwidth-limited channel. (a)
(b) M � 4.

M � 2.

6.8 Theme Example: Equalization

An efficient approach to high-speed transmission of digital data over a linear band-limited
communication channel (exemplified by telephone channels for example) is to use a com-
bination of two signal-processing strategies:

� Discrete pulse-amplitude modulation (PAM), which encodes the amplitudes of suc-
cessive pulses in a periodic pulse train with a discrete set of possible amplitude levels.

� Linear modulation scheme, which offers the virtue of bandwidth conservation to
transmit the encoded pulse train over the channel.
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FIGURE 6.10 Transversal filter.

In the receiver part of the data-transmission system, the received signal is demodulated
and synchronously sampled, then finally decisions are made as to which particular symbols
were transmitted. When the transmitted signal-to-noise ratio is high, we find that the num-
ber of detectable amplitude levels is essentially limited by intersymbol interference rather
than additive channel noise. In principle, if the channel is known precisely, then it is vir-
tually always possible to make the intersymbol interference at the sampling instants arbi-
trarily small by using a suitable pair of transmit- and receive-filters, so as to control the pulse
shape in the manner described in previous sections of the chapter. Thus, insofar as the
intersymbol interference problem is concerned, we may consider the task of data trans-
mission over the channel as being at baseband.

In practice, however, we seldom have prior knowledge of the exact channel characteris-
tics. Moreover, there is the problem of imprecision that arises in the physical implementation
of the pulse-shaping filters. The net result of these practical realities is that there will always
be some residual distortion for intersymbol interference to be a limiting factor on the data rate
sustainable by the system. To compensate for the intrinsic residual distortion, we may use a
process known as equalization. The filter used to perform this process is called an equalizer.

Thus, in addition to pulse shaping performed by the receive-filter, we now have a
new function to perform—namely, equalization of residual distortion. Since these two func-
tions are both linear, we propose to combine them in a single structure. Moreover, recog-
nizing the need for a structure with adjustable coefficients to deal with the equalization
process, we propose to use a structure known as the transversal filter. This filter, depicted
in Fig. 6.10, consists of the following components:

� Delay line, whose taps are uniformly spaced T seconds apart; T is the symbol duration.

� Adjustable weights, which are connected to the taps of the delay line.
� Summer, which adds successively delayed versions of the input signal, after they have

been individually weighted.

With channel equalization as the function of interest and the transversal filter with adjustable
coefficients as the structure to perform it, it is apropos that we refer to this new structure
as the adjustable transversal equalizer or simply transversal equalizer.
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� ZERO-FORCING EQUALIZATION

To proceed with the solution to the equalization problem, consider then the composite sys-
tem depicted in Fig. 6.11:

� The first subsystem characterized by the impulse response represents the combined
action of the transmit-filter and communication channel.

� The second subsystem characterized by the impulse response accounts for pulse
shaping combined with residual-distortion equalization in the receiver.

For structural symmetry with respect to the midpoint of the adjustable transversal equal-
izer, the total number of taps is chosen to be Correspondingly, let the weights
(coefficients) of the equalizer be denoted by On this
basis, we may express the impulse response of the equalizer as

(6.36)

where is the Dirac delta function and is the weight connected to the kth tap of the
delay line in the equalizer. According to Fig. 6.11, the transversal equalizer of impulse
response is connected in cascade with the transmit filter-channel combination of
impulse response Let denote the overall impulse response of this cascade con-
nection. We may then express as the convolution of with as shown by

(6.37)

where the symbol denotes convolution. Interchanging the order of summation and
convolution, which we are permitted to do because the two subsystems of Fig. 6.11 are both
linear, we may write

(6.38)� a
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FIGURE 6.11 Simplified depiction of the scenario for solving the channel-equalization problem.
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where, in the last line, we made use of the sifting property of the delta function. Evaluat-
ing Eq. (6.38) at the sampling times we get the discrete convolution sum.

(6.39)

To simplify the presentation, let and We may then rewrite Eq.
(6.39) in the compact form

(6.40)

Elimination of the intersymbol interference requires that we satisfy the Nyquist criterion
for distortionless transmission described in Eq. (6.11), on the basis of which we write

where E is the transmitted signal energy per symbol. From Eq. (6.40) we note that there
are only adjustable weights at our disposal. Hence, the Nyquist criterion for
distortionless transmission can only be approximately satisfied (depending on N) as follows:

(6.41)

Hence, imposing the condition of Eq. (6.39) on the discrete convolution sum of Eq. (6.40),
we obtain a system of simultaneous equations:

(6.42)

Equivalently, in matrix form we may write

(6.43)

A transversal equalizer described by Eq. (6.42), or equivalently Eq. (6.43), is referred to as
a zero-forcing equalizer, so called because the equalizer forces the intersymbol interference
to be zero at sampling instants of the received signal. The zero-forcing equalizer
is optimum in the sense that it minimizes the peak distortion in the absence of noise; peak
distortion is defined in Eq. (6.34). Another nice feature of the zero-forcing equalizer is that
it is relatively simple to implement. Moreover, in theory, the longer we make the equalizer
(i.e., permit N to approach infinity), the more closely will the equalized system approach
the ideal condition specified by the Nyquist criterion for distortionless transmission across
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8The solution of Eq. (6.43), namely, the weights of the transversal equalizer, is defined by the inverse
of the matrix of known coefficients on the left-hand side of the equation multiplied by
the highly sparse column vector on the right-hand side. For large N, computation of the inverse matrix becomes
troublesome, in which case we have to seek another approach, for details, see Haykin (2001)

12N 	 12-by-12N 	 12 12N 	 12

the channel. Note, however, that since the zero-forcing equalizer ignores the effect of addi-
tive channel noise, the equalized system does not always offer the best solution to the inter-
symbol interference problem.7

� Drill Problem 6.6 Assume the following perfect conditions:

• The residual distortion in the data transmission system is zero.
• The pulse shaping is partitioned equally between the transmit filter-channel combination

and the receiver.
• The transversal equalizer is infinitely long.

(a) Find the corresponding value of the equalizer’s transfer function in terms of the overall
pulse spectrum 

(b) For the roll-off factor demonstrate that a transversal equalizer of infinite length
would essentially satisfy the perfect condition found in part (a) of the problem. �

� HOW COULD THE RECEIVER DETERMINE THE

Given the coefficients defining the sampled impulse response
of the transmit filter-channel combination, we may then use the simultaneous system of
equations (6.43) to solve for the corresponding weights of the transversal equal-
izer.8 This computation, however, presumes that the receiver already has knowledge of the
set of coefficients But, how can the receiver acquire this knowledge?

A commonly used method of addressing this fundamental question is to use a pilot-
assisted training session that proceeds as follows:

1. For the binary data sequence applied to the transmitter input, use a determin-
istic sequence of 1s and 0s that is noise-like in character, hence the reference to this
sequence as a pseudo-noise (PN) sequence. The reason for using such a sequence as
the pilot is to provide a measure of uniqueness.

2. The PN sequence is known a priori to the receiver. Accordingly, with the receiver
synchronized to the transmitter, the receiver is enabled to know when to initiate the
training session.

3. Finally, knowing the transmitted PN sequence and measuring the corresponding chan-
nel output, it is a straight-forward matter for the receiver to estimate the sequence 
representing the sampled impulse response of the transmit-filter and channel combined.

5ck6

5bk6

5ck6k��N
N .
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a � 1,
P1f2.

7For an equalizer more robust than the zero-forcing equalizer, we look to a different optimization criterion—namely,
the mean-square error criterion—which accounts for the combined effects of residual distortion and channel
noise. The mean-square error (e.g., average error power) is defined as the expected value of the squared error (dif-
ference) between the “desired” response and the “actual” response of the equalizer; expectation is a statistical oper-
ator, the discussion of which is deferred to Chapter 8.

For detailed discussion of the minimum mean-square-error equalizer and its adaptive implementation, see
Haykin (2001). Unlike a fixed equalizer (i.e., a transversal equalizer whose tap weights are fixed once their indi-
vidual adjustments have been computed), an adaptive equalizer is equipped with a mechanism that continually
adjusts the tap weights of the equalizer so as to compensate for the time-varying nature of telephone and wire-
less channels, which is another practical reality of digital communications.
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6.9 Summary and Discussion

The subject of digital data transmission over a communication channel encompasses two
different families of applications, depending on the type of channel being considered:

(i) Baseband data transmission, for which the channel is of a low-pass type.

(ii) Band-pass data transmission, for which the channel is of a band-pass type. (Band-pass
data transmission is also referred to as passband data transmission.)

In this chapter, we studied baseband data transmission. The study of band-pass data trans-
mission is taken up in Chapter 7.

In particular, this chapter focused on the intersymbol interference problem, which
arises due to imperfections in the frequency response of the channel, assumed to be linear.
With attention directed at a signal pulse of interest at the channel output, intersymbol
interference (ISI) refers to the effect on that pulse due to cross-talk or spillover from all other
signal pulses in the data stream applied to the channel input.

A corrective measure widely used in practice is to shape the overall pulse spectrum
of the baseband system, starting from the source of the message signal all the way to the
receiver. The optimum solution for the pulse spectrum is provided by the Nyquist channel,
which guarantees zero intersymbol interference at a bit rate equal to twice the channel
bandwidth. However, this optimum solution to the intersymbol interference problem is
unrealizable due to its brick-wall characterization. To circumvent the issue of unrealiz-
ability, we may use the raised-cosine pulse spectrum, which provides design flexibility
through the roll-off factor that varies between zero and unity. Note, however, that the use
of a nonzero roll-off factor is a necessary but not sufficient condition for physical realiz-
ability of the solution to the zero-intersymbol interference problem. In addition, the raised-
cosine pulse spectrum must be associated with a linear phase characteristic whose slope
depends on the roll-off factor, as discussed in Problem 6.4. It is also noteworthy that a
more sophisticated solution to the intersymbol interference problem is provided by parti-
tioning the overall task of pulse shaping equally between the transmitter and receiver, using
the root raised-cosine pulse spectrum.

In this chapter, we also studied a practical issue closely related to intersymbol interference:
how to evaluate it experimentally. The eye pattern is a tool that addresses this issue in a very
insightful manner. Indeed, in a single picture, the eye pattern portrays the degrading effects of
timing jitter, intersymbol interference (due to system imperfections), and channel noise, all of
which are of a random nature. In this context, there is a basic difference between intersymbol
interference and noise. Intersymbol interference is a signal-dependent phenomenon; it therefore
disappears when the information-bearing signal is switched off. On the other hand, noise is
always there, regardless of whether there is data transmission or not.

One last comment is in order. In addition to pulse shaping, there is another correc-
tive measure for dealing with the intersymbol interference problem—namely, channel equal-
ization. This second corrective measure involves the use of a transversed filter with
adjustable coefficients; the filter is placed in the receiver and adjusted in a principled man-
ner so as to compensate for residual distortion resulting from imperfections in the chan-
nel’s impulse response.
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ADDITIONAL PROBLEMS

6.7 Starting with Eq. (6.17) for the raised-cosine pulse spectrum use the inverse Fourier trans-
form to derive the corresponding time response defined in Eq. (6.19).

6.8 The raised-cosine pulse spectrum for a roll-off factor of unity is given by

which is a special case of Eq. (6.17) for Show that the time response the inverse
Fourier transform of is

6.9 A computer puts out binary data at the rate of 56 kilobits per second. The computer output is
transmitted using a baseband binary PAM system that is designed to have a raised-cosine pulse
spectrum. Determine the transmission bandwidth required for each of the following roll-off factors:
(a)
(b)
(c)
(d)

6.10 A binary PAM wave is to be transmitted over a low-pass channel with bandwidth of 75 kHz.
The bit duration is Find a raised-cosine pulse spectrum that satisfies these requirements.

6.11 Consider a channel with bandwidth 3.0 kHz, which is available for data transmission using
binary PAM. Plot the permissible bit (signaling) rate versus the excess bandwidth assum-
ing that the roll-off factor varies from zero to unity, and that the criterion for zero intersym-
bol interference is satisfied.

6.12 You are given a channel of bandwidth 3.0 kHz. The requirement is to transmit data over the
channel at the rate of 4.5 kilobits/s using binary PAM.
(a) What is the maximum roll-off factor in the raised-cosine pulse spectrum that can accom-

modate this data transmission?
(b) What is the corresponding excess bandwidth?

6.13 This problem follows up on the pulse-shaping criterion for zero intersymbol interference, which
is embodied in Eq. (6.30). This criterion can be satisfied by an infinite number of overall pulse
spectra denoted by The brick-wall spectrum of Fig. 6.2(a) and the raised-cosine pulse
spectrum of Fig. 6.4(a) are two such examples. The pulse spectra shown in parts (a) and (b) of
Fig. 6.12 are two other examples that can also satisfy the pulse-shaping criterion of Eq. (6.30).

(a) Derive the condition that the bandwidth in Fig. 6.12(a) must satisfy for the requirement
of zero intersymbol interference to be satisfied for binary PAM.

(b) Repeat the problem for the pulse spectrum of Fig. 6.12(b).
(c) Given the four pulse spectra, the two of Figs. 6.2(b) and 6.3(a) and those of Fig. 6.12, why

then is it that the raised-cosine pulse spectrum of Fig. 6.3(a) is the preferred choice in prac-
tice? Justify your answer.

B0

P1f2.

a

fn,1>Tb

10 ms.

a � 1.0
a � 0.75
a � 0.5
a � 0.25

p1t2 � 2E
sinc14B0t2

1 � 16B0
2t2

P1f2, p1t2,a � 1.

P1f2 �
c 2E

2B0
cos2¢ pf

4B0
≤ , 0 � ƒf ƒ � 2B0

0, 2B0 � ƒf ƒ
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6.14 Repeat Problem 6.12, given that each set of three successive binary digits in the computer out-
put is coded into one of eight possible amplitude levels, and the resulting signal is transmitted
by using an 8-level PAM system designed to have a raised-cosine pulse spectrum.

6.15 An analog signal is sampled, quantized, and encoded into a binary PCM wave. The number of
representation levels used is 128. A synchronizing pulse is added at the end of each code word.
The resulting PCM signal is transmitted over a channel of bandwidth 13 kHz using a quater-
nary PAM system with a raised-cosine pulse spectrum. The roll-off factor is unity.
(a) Find the rate (in bits per second) at which information is transmitted through the channel.
(b) Find the rate at which the analog signal is sampled. What is the maximum possible value

for the highest frequency component of the analog signal?
6.16 A binary wave using non-return-to-zero signaling is generated by representing symbol 1 by a

pulse of amplitude and symbol 0 by a pulse of amplitude in both cases, the pulse dura-
tion equals the bit duration. This signal is applied to a low-pass RC filter with transfer function:

Construct the eye pattern for the filter output for the following sequences:
(a) Alternating 1s and 0s.
(b) A long sequence of 1s followed by a long sequence of 0s.
(c) A long sequence of 1s followed by a single 0 and then a long sequence of 1s.
Assume a bit rate of bits per second.

6.17 The binary sequence 011010 is transmitted through a channel having a raised-cosine pulse spec-
trum with a roll-off factor of unity. Assume the use of non-return-to-zero signaling, with sym-
bols 1 and 0 represented by and respectively.
(a) Construct the received wave to scale, and indicate the best sampling times for regeneration.
(b) Construct the eye pattern for this received wave and show that it is completely open.
(c) Determine the zero crossings of the received wave.

6.18 The sampled impulse response of a data-transmission system (encompassing the transmit filter
and channel) is defined by

For zero-forcing equalization of the system, it is proposed to use a three-tap transversal filter.

cn � 50.0, 0.15, 0.68, �0.22, 0.086

�1,	1

2B0

H1f2 �
1

1 	 jf>f0

�1;	1

P(f )

–B0 B0
0

(a)

f

/E/2B0

P(f )

–B0 –f1 f1 B0
0

(b)

f

/E/2B0

FIGURE 6.12 Problem 6.13
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(a) Calculate the adjustable weights of the equalizer.
(b) Using the equalizer determined in part (a), calculate the residual intersymbol interference at

the equalizer output.
(c) Identify the magnitude of the sample making the largest contribution to the residual inter-

symbol interference.
6.19 Repeat Problem 6.18, this time using a five-tap transversal filter for zero-forcing equalization

of the system. Compare the residual intersymbol interference at the output of the equalizer with
that in Problem 6.18, and comment on the benefit gained by using a longer transversal filter for
the equalization process.

ADVANCED PROBLEMS

The treatment of intersymbol interference presented in much of this chapter has viewed it as an
undesirable phenomenon. Nevertheless, by adding intersymbol interference to the transmitted
signal in a controlled manner, it is possible to achieve a signaling rate of symbols per second
in a channel of bandwidth hertz. Such an approach is called correlative coding or partial-
response signaling. The next four problems address issues related to correlative coding, as
summarized here:

• Problems 6.20 and 6.21 pertain to duobinary signaling. In particular, Problem 6.20
addresses the duobinary conversion filter, the use of which can lead to a propagation of
errors. To mitigate this problem, we use a precoder addressed in Problem 6.21.

• Problem 6.22 pertains to a modification of the schemes described in Problems 6.20 and
6.21.

• Finally, Problem 6.23 probes the use of modified duobinary signaling for single sideband
modulation applied to data transmission.

6.20 Figure 6.13 depicts the duobinary signaling scheme in its simplest form. The incoming binary
sequence consists of uncorrelated binary symbols 1 and 0, each having duration This
sequence is first applied to a pulse-amplitude modulator to produce the two-level sequence 
consisting of pulses (short enough to be viewed as unit impulses). Specifically,

The two-level sequence is next applied to the duobinary conversion filter enclosed inside the
dashed rectangle in Fig. 6.13, where the Nyquist channel is defined by (see Eq. (6.15))

Hopt1f2 � c 2E
2B0

, for �B0 � f � B0

 0, otherwise

Hopt1f25ak6
ak � b	1, if symbol bk is 1

�1, if symbol bk is 0

5ak6Tb .5bk6

B0

2B0

Sample
at t = kTb

Delay
Tb

Duobinary conversion filter
H(f )

Input binary
sequence

{bk}

Output
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{ck}
{ak}

Σ
+

+

Nyquist
channel
Hopt(f )

Pulse-
amplitude
modulator

FIGURE 6.13 Problem 6.20
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At the receiver, the channel output is sampled every seconds in synchronism with the trans-
mitter; the sample so produced is denoted by An estimate of the original symbol is pro-
duced by using the rule

where is the previous estimate.
(a) Determine the overall frequency response of the duobinary conversion filter.
(b) Determine the impulse response of this filter.
(c) The above-described rule used in the receiver is an example of decision feedback, which

may be viewed as an inverse of the delay-line filter at the transmitter. A major drawback of
this decision rule is that once errors are made, they tend to propagate through the output.
Why? Justify your answer.

6.21 To mitigate the error propagation phenomenon discussed in part (c) of Problem 6.20, we may
use a precoder, as depicted in Fig. 6.14. The precoding is applied to the input binary sequence

producing a new binary sequence defined by

where the symbol denotes modulo-two addition. This addition is equivalent to the EXCLU-
SIVE-OR operation, which operates as follows. The output is a symbol 1 if inputs, or

differ from each other; otherwise, the output is symbol 0.
As shown in Figure 6.14, the precoded binary sequence is applied to a pulse-ampli-

tude modulator, followed by the duobinary conversion filter; both of these two components
follow exactly the same descriptions presented in Problem 6.20. This time, however, the deci-
sion rule used by the receiver for detecting the original binary sequence from the three-
level sequence is defined by

If say binary symbol is 1

If say binary symbol is 0

According to this decision, the detector consists of a rectifier followed by a threshold device. Most
important, if any is received in error, the error is confined to that instant.ck

bkƒck ƒ � 1,

bkƒck ƒ � 1,

5ck6 5bk6
5dk6dkdk�1 ,

bkdk

⊕

dk � bk ⊕ dk�1

5dk65bk6,

h1t2 H1f2aN k�1

aN k � ck � aN k�1

akaNkck .
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modulator
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H(f )

Delay
Tb
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Input binary
sequence

{bk}
{dk}

Modulo 2
adder

FIGURE 6.14 Problem 6.21

To illustrate the operation of the duobinary signaling scheme with precoding, consider the
input data sequence

To proceed with the precoding of this sequence, add an extra bit to the precoder output; this
extra bit is chosen arbitrarily to be 1. Hence, do the following:
(a) Determine the precoded sequence and then the two-level sequence produced by

the pulse-amplitude modulator.
5ak65dk6,

5bk6 � 0010110
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(b) Determine the duobinary code output 
(c) Applying to the rectifier-based detector described above, determine the resulting binary

sequence. Thereby, demonstrate the correct reconstruction of the original sequence.

6.22 In this problem, we consider another correlative scheme known as modified duobinary signaling,
which is depicted in Fig. 6.15. The correlative encoding strategy is now defined by

which involves a correlation span of two binary symbols.
(a) Determine the frequency response of the modified duobinary conversion filter enclosed

inside the second dashed rectangle in Fig. 6.15.
(b) Determine the impulse response of this filter, and show that it has three distinguish-

able levels at the sampling instants.
(c) For decoding in the receiver, demonstrate the successful use of the decision rule:

For the demonstration, again use the input sequence 0010110.
(d) In light of your findings in parts (a) through (c), discuss the advantages of the modified

duobinary encoder over the duobinary encoder discussed in Problem 6.21.

bNk � b symbol 1, if ƒck ƒ � 1
symbol 0, if ƒck ƒ � 1

h1t2
H1f2
ck � ak � ak�2

5ck6
5ck6.

6.23 The modified duobinary signaling scheme described in Problem 6.22 is well-suited for single side-
band modulation applied to binary data transmission over a linear channel. Justify the practi-
cal reality of this statement.
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CHAPTER 7

DIGITAL BAND-PASS

MODULATION TECHNIQUES

In baseband data transmission, which we studied in Chapter 6, an incoming serial data
stream is represented in the form of a discrete pulse-amplitude modulated wave that can be
transmitted over a low-pass channel (e.g., a coaxial cable). What if the requirement is to
transmit the data stream over a band-pass channel, exemplified by wireless and satellite
channels? In applications of this kind, we usually resort to the use of a modulation strat-
egy configured around a sinusoidal carrier whose amplitude, phase, or frequency is varied
in accordance with the information-bearing data stream. Digital modulation techniques
dealing with band-pass data transmission are studied in this chapter.

The primary aim of the chapter is to describe some important digital band-pass
modulation techniques used in practice. In particular, we describe three basic modulation
schemes: namely, amplitude-shift keying, phase-shift keying, and frequency-shift keying,
followed by some of their variants. Another issue that will receive particular attention is
that of coherent versus noncoherent detection. A digital communication system is said to
be coherent if the receiver is synchronized to the transmitter with respect to carrier phase;
otherwise, the system is said to be noncoherent. Naturally, a noncoherent system offers
the practical advantage of reduced complexity but at the cost of degraded performance.
Considerations of the issue of noise performance evaluation are deferred to Chapter 10.

This chapter will teach us three lessons:

� Lesson 1: Each digital band-pass modulation scheme is defined by a transmitted signal
with a unique phasor representation.

� Lesson 2: At the receiving end, digital demodulation techniques encompass different
forms, depending on whether the receiver is coherent or noncoherent.

� Lesson 3: Two ways of classifying digital modulation schemes are (a) by the type of modu-
lation used, and (b) whether the transmitted data stream is in binary or M-ary form.

7.1 Some Preliminaries

Given a binary source that emits symbols 0 and 1, the modulation process involves switch-
ing or keying the amplitude, phase, or frequency of a sinusoidal carrier wave between a pair
of possible values in accordance with symbols 0 and 1. To be more specific, consider the
sinusoidal carrier

(7.1)c1t2 � Ac cos12pfct 	 fc2



7.1 Some Preliminaries 263

where is the carrier amplitude, is the carrier frequency, and is the carrier phase. Given
these three parameters of the carrier we may now identify three distinct forms of
binary modulation:

1. Binary amplitude shift-keying (BASK), in which the carrier frequency and carrier
phase are both maintained constant, while the carrier amplitude is keyed between
the two possible values used to represent symbols 0 and 1.

2. Binary phase-shift keying (BPSK), in which the carrier amplitude and carrier fre-
quency are both maintained constant, while the carrier phase is keyed between the two
possible values (e.g., 0° and 180°) used to represent symbols 0 and 1.

3. Binary frequency-shift keying (BFSK), in which the carrier amplitude and carrier
phase are both maintained constant, while the carrier frequency is keyed between the
two possible values used to represent symbols 0 and 1.

In light of these definitions, we see that BASK, BPSK, and BFSK are special cases of ampli-
tude modulation, phase modulation, and frequency modulation, respectively. Indeed, it
was with this close relationship between analog and digital modulation techniques in mind
that in the “Summary and Discussion” sections of Chapter 3 on amplitude modulation
and Chapter 4 on angle modulation, we briefly highlighted the connections between ana-
log and digital modulation schemes. An important conclusion that we can draw from the
close relationship between analog and digital modulation techniques is that despite their
basic differences, BASK, BPSK, and BFSK share a common feature: all three of them are
examples of a band-pass process.

In the analog communications literature, the sinusoidal carrier is commonly
defined as in Eq. (7.1). On the other hand, in the digital communications literature, the usual
practice is to assume that the carrier has unit energy measured over one symbol (bit)
duration. Specifically, from Problem 3.28, we recall that the carrier amplitude

(7.2)

where is the bit duration. Using the terminology of Eq. (7.2), we may thus express the
carrier in the equivalent form

(7.3)

From the material presented in Chapter 2 on the Fourier representation of signals
and systems, we learned that decreasing the duration of a rectangular pulse has the effect
of widening the effective band of frequencies contained in the pulse. In a corresponding fash-
ion, decreasing the bit duration has the effect of increasing the transmission bandwidth
requirement of a binary modulated wave.

One other lesson learned from material covered in previous chapters—namely, Chap-
ters 3 and 4—is the fact that the transmission bandwidth requirement of an angle-modulated
wave is greater than that of the corresponding amplitude-modulated wave. In light of that
lesson, we may say that the transmission bandwidth requirement of BFSK is greater than
that of BASK for a given binary source. However, the same does not hold for BPSK, as we
shall see from the material presented in this chapter. This is one of many differences that
distinguish digital modulation from analog modulation.

Tb

c1t2 � B 2
Tb

cos12pfct 	 fc2
c1t2Tb

Ac � B 2
Tb

c1t2
c1t2

c1t2, fcfcAc
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� BAND-PASS ASSUMPTION

The spectrum of a digitally modulated wave, exemplified by BASK, BPSK and BFSK, is
centered on the carrier frequency implicitly or explicitly. Moreover, as with analog mod-
ulation, it is normal practice to assume that the carrier frequency is large compared with
the “bandwidth” of the incoming binary data stream that acts as the modulating signal. This
band-pass assumption has certain implications, as discussed next.

To be specific, consider a linear modulation scheme for which the modulated wave
is defined by

(7.4)

where denotes an incoming binary wave. Then, setting the carrier phase for
convenience of presentation, we may use Eq. (7.3) to express the modulated wave as

(7.5)

Under the assumption where W is the bandwidth of the binary wave 
there will be no spectral overlap in the generation of (i.e., the spectral content of
the modulated wave for positive frequencies is essentially separated from its spectral
content for negative frequencies).

Another implication of the band-pass assumption is that we may express the trans-
mitted signal energy per bit as

(7.6)

Using the trigonometric identity

we may rewrite Eq. (7.6) as

(7.7)

The band-pass assumption implies that is essentially constant over one complete
cycle of the sinusoidal wave cos which, in turn, means that

Accordingly, we may approximate Eq. (7.7) as

(7.8)

In words, for linear digital modulation schemes governed by Eq. (7.5), the transmitted sig-
nal energy (on a per bit basis) is a scaled version of the energy in the incoming binary wave
responsible for modulating the sinusoidal carrier.
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� Drill Problem 7.1 Invoking the band-pass assumption, show that

regardless of how the bit duration is exactly related to as long as �

� Drill Problem 7.2 Show that Eq. (7.8) is invariant with respect to the carrier phase 
(i.e., it holds for all ). �

7.2 Binary Amplitude-Shift Keying

Binary amplitude-shift keying (BASK) is one of the earliest forms of digital modulation
used in radio telegraphy at the beginning of the twentieth century. To formally describe
BASK, consider a binary data stream which is of the ON–OFF signaling variety. That
is, is defined by

(7.9)

Then, multiplying by the sinusoidal carrier wave of Eq. (7.3) with the phase set equal
to zero for convenience of presentation, we get the BASK wave

(7.10)

The carrier frequency may have an arbitrary value, consistent with transmitting the
modulated signal anywhere in the electromagnetic radio spectrum, so long as it satisfies the
bond-pass assumption.

When a bit duration is occupied by symbol 1, the transmitted signal energy is 
When the bit duration is occupied by symbol 0, the transmitted signal energy is zero. On
this basis, we may express the average transmitted signal energy as

(7.11)

For this formula to hold, however, the two binary symbols must be equiprobable. In other
words, if we are given a long binary data stream, then symbols 1 and 0 occur in essentially
equal numbers in that data stream. For this equality to hold, however, there must be no bias
involved in the generation of the bit stream, either in favor of symbol 1 or symbol 0.

� GENERATION AND DETECTION OF ASK SIGNALS

From Eqs. (7.9) and (7.10), we readily see that a BASK signal is readily generated by using
a product modulator with two inputs. One input, the ON–OFF signal of Eq. (7.9), is the
modulating signal. The sinusoidal carrier wave

supplies the other input.
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Input binary
sequence

0 0 1 1 0 1 1 0 0 1

(b) t

(c)

(a)

t

(d) t

A property of BASK that is immediately apparent from Fig. 7.1(b), which depicts the
BASK waveform corresponding to the incoming binary data stream of Fig. 7.1(a), is the non-
constancy of the envelope of the modulated wave. Accordingly, insofar as detection of the
BASK wave is concerned, the simplest way is to use an envelope detector, exploiting the non-
constant-envelope property of the BASK signal.

� COMPUTER EXPERIMENT I: SPECTRAL ANALYSIS OF BASK

Consider a binary data stream that consists of a square wave, the amplitude of which
alternates between the constant levels and zero every seconds. The square wave
is centered on the origin for convenience of the presentation. The objective of the exper-
iment is twofold:

(i) To investigate the effect of varying the carrier frequency on the power spectrum of
the BASK signal assuming that the square wave is fixed. Recall that the power
spectrum of a signal (expressed in decibels) is defined as 10 times the logarithm (to
base 10) of the squared magnitude (amplitude) spectrum of the signal.

(ii) To investigate the effect of varying the frequency of the square wave on the spectrum
of the BASK signal, assuming that the sinusoidal carrier wave is fixed.

For the purpose of computer evaluation, we set the carrier frequency where n is
an integer. This choice of the carrier frequency permits the simulation of a band-pass
system on a digital computer without requiring the only restriction on the
choice is to make sure that spectral overlap is avoided. (We follow this practice when
performing computer experiments as we go forward in the study of other digital modula-
tion schemes.)

fc W 1>Tb ;
fc

fc � n>Tb

s1t2, fc

Tb2Eb

FIGURE 7.1 The three basic forms of signaling binary information. (a) Binary data
stream. (b) Amplitude-shift keying. (c) Phase-shift keying. (d) Frequency-shift keying
with continuous phase.



7.2 Binary Amplitude-Shift Keying 267

To plot the power spectra (in decibels) of the digitally modulated waves (in this exper-
iment and others to follow), we use the fast Fourier transform (FFT) algorithm, which was
discussed in Section 2.10. The simulation parameters used in the computer experiments (this
one and the subsequent experiments) are as follows:

Number of data bits (1s and 0s)

Sampling frequency, 

Number of data points (samples)

Block size of the FFT, N

Results of the computation are plotted in Figs. 7.2 and 7.3.
The two parts of Fig. 7.2 correspond to objective (i) of the experiment. Specifically,

the two plots shown in Fig. 7.2 correspond to the following parameters:

Bit duration,

Carrier frequency,

The second set of results plotted in Fig. 7.3 corresponds to objective (ii) of the experiment,
using the following parameters:

Carrier frequency,

Bit duration,

In each part of Figs. 7.2 and 7.3, we show two power spectral plots: one shaded,
resulting from the computation, and the other, well-defined curve, obtained from theory.
(We follow a similar practice in the computer experiments to follow.) Here we must rec-
ognize that the binary data streams used in the experiments are of finite length, hence the
jagged appearance depicted in the figures. In contrast, theory leads to a solid curve, which
closely follows the “envelope” of the computational results.

In light of the results plotted in Figs. 7.2 and 7.3, we can make the following
observations for positive frequencies:

1. The spectrum of the BASK signal contains a line component at 

2. When the square wave is fixed and the carrier frequency is doubled, the mid-band
frequency of the BASK signal is likewise doubled.

3. When the carrier is fixed and the bit duration is halved, the width of the main lobe
of the sinc function defining the envelope of the BASK spectrum is doubled, which,
in turn, means that the transmission bandwidth of the BASK signal is doubled.

4. The transmission bandwidth of BASK, measured in terms of the width of the main
lobe of its spectrum, is equal to where is the bit duration.

These observations support the statement: the BASK signal is an example of amplitude
modulation that includes the carrier wave as a component in its composition.

Tb2>Tb ,

f � fc .

Tb � c 1 s for Fig. 7.31a2
1
2

s for Fig 7.31b2

fc � 8 Hz

fc � b 4 Hz for Fig. 7.21a2
8 Hz for Fig. 7.21b2

Tb � 1 s

� 4096

� 100  fs � 10,000 data points

� 100 Hzfs

� 100
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7.3 Phase-Shift Keying

� BINARY PHASE-SHIFT KEYING (BPSK)

In the simplest form of phase-shift keying known as binary phase-shift keying (BPSK), the
pair of signals and used to represent symbols 1 and 0, respectively, are defined by

(7.12)

where with denoting the bit duration and denoting the transmitted signal
energy per bit; see the waveform of Fig. 7.1 (c) for a representation example of BPSK. A pair of
sinusoidal waves, and which differ only in a relative phase-shift of radians as
defined in Eq. (7.12), are referred to as antipodal signals. From the two lines of this equation,
we see that BPSK is in actual fact a special case of double-sideband suppressed-carried 
(DSB-SC) modulation, a remark that was previously pointed out in Section 3.10.

BPSK differs from BASK in an important respect: the envelope of the modulated
signal is maintained constant at the value for all time t. This property, which
follows directly from Eq. (7.12), has two important consequences:

1. The transmitted energy per bit, is constant; equivalently, the average transmitted
power is constant.

2. Demodulation of BPSK cannot be performed using envelope detection; rather, we
have to look to coherent detection as described next.

� GENERATION AND COHERENT DETECTION OF BPSK SIGNALS

(i) Generation
To generate the BPSK signal, we build on the fact that the BPSK signal is a special case
of DSB-SC modulation. Specifically, we use a product modulator consisting of two
components (see Fig. 7.4(a)):
(i) Non-return-to-zero level encoder, whereby the input binary data sequence is

encoded in polar form with symbols 1 and 0 represented by the constant-ampli-
tude levels: and respectively.�2Eb ,2Eb

Eb

22Eb>Tbs1t2

ps21t2,s11t2
EbTb0 � t � Tb ,

si1t2 � e B2Eb

Tb
 cos12pfct2, for symbol 1 corresponding to i � 1

B2Eb

Tb
 cos12pfct 	 p2 � �B2Eb

Tb
 cos12pfct2, for symbol 0 corresponding to i � 2
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FIGURE 7.4 (a) BPSK modulator. (b) Coherent detector for BPSK; for the sampler, integer i � 0, �1, �2, Á .
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(ii) Product modulator, which multiplies the level-encoded binary wave by the sinu-
soidal carrier of amplitude to produce the BPSK signal.

The timing pulses used to generate the level-encoded binary wave and the sinusoidal
carrier wave are usually, but not necessarily, extracted from a common master clock.

(ii) Detection
To detect the original binary sequence of 1s and 0s, the BPSK signal at the channel
output is applied to a receiver that consists of four sections, as depicted in Fig. 7.4(b):
(i) Product modulator, which is also supplied with a locally generated reference

signal that is a replica of the carrier wave 
(ii) Low-pass filter, designed to remove the double-frequency components of the

product modulator output (i.e., the components centered on ) and pass the
zero-frequency components.

(iii) Sampler, which uniformly samples the output of the low-pass filter at 
where ; the local clock governing the operation of the sampler
is synchronized with the clock responsible for bit-timing in the transmitter.

(iv) Decision-making device, which compares the sampled value of the low-pass filter’s
output to an externally supplied threshold, every seconds. If the threshold is
exceeded, the device decides in favor of symbol 1; otherwise, it decides in favor
of symbol 0.

The BPSK receiver described in Fig. 7.4 is said to be coherent in the sense that the sinu-
soidal reference signal applied to the product modulator in the demodulator is synchronous
in phase (and, of course, frequency) with the carrier wave used in the modulator. This
requirement can be achieved by using a phase-locked loop, which was described in Section
4.8. In addition to synchrony with respect to carrier phase, the receiver also has an accu-
rate knowledge of the interval occupied by each binary symbol.

The operation of the coherent BPSK receiver in Fig. 7.4(b) follows a procedure sim-
ilar to that described for the demodulation of a double-sideband suppressed-carrier (DSB-
SC) modulated wave (described in Section 3.3) with a couple of important additions:
sampler and decision-making device. The rationale for this similarity builds on what we have
already stated: BPSK is simply another form of DSB-SC modulation.

However, an issue that needs particular attention is how to design the low-pass filter
in Fig. 7.4(b). Specifically, what should the bandwidth of the filter be? From the conclu-
sion drawn from the graphical results presented in Fig. 2.28 on the response of an ideal low-
pass filter to an input rectangular pulse for varying time-bandwidth product, we recall that
a time-bandwidth product equal to or greater than unity is a necessary requirement to
ensure that the waveform of the filter input is recognizable from the resulting output. For
the problem at hand, we may therefore state that the bandwidth of the low-pass filter in
the coherent BPSK receiver of Fig. 7.4(b) has to be equal to or greater than the reciprocal
of the bit duration for satisfactory operation of the receiver.

� COMPUTER EXPERIMENT II: SPECTRAL ANALYSIS OF BPSK

As with the experiment on BASK, consider a binary data stream that consists of a square
wave, the amplitude of which alternates between and every seconds. The
square wave is centered on the origin. The objectives of this second experiment are simi-
lar to those of Computer Experiment I on BASK:

(i) To evaluate the effect of varying the carrier frequency on the power spectrum of the
BPSK signal, for a fixed square modulating wave.

(ii) To evaluate the effect of varying modulation frequency on the power spectrum of the
BPSK signal for a fixed carrier frequency.

fc

Tb�2Eb	2Eb

Tb

Tb

i � 0, �1, �2, Á
t � i Tb,

2fc

c1t2.

x1t2

22>Tbc1t2
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FIGURE 7.5 Power spectra of BPSK signal produced by square wave as the modulating signal
for varying modulation frequency: (a) and ; (b) and Tb � 1 s.fc � 8 HzTb � 1 sfc � 4 Hz
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To be consistent with Experiment I on BASK, objectives (i) and (ii) are investigated for the
same sets of frequencies used in that experiment. The results of the experiment on BPSK
are plotted in Figs. 7.5 and 7.6, where, as before, we show computational results along-
side the corresponding theoretical ones. Comparing these two figures with Figs. 7.2 and 7.3
for BASK, respectively, we can make two important observations:

1. BASK and BPSK signals occupy the same transmission bandwidth—namely, —
which defines the width of the main lobe of the sinc-shaped power spectra.

2. The BASK spectrum includes a carrier component, whereas this component is absent
from the BPSK spectrum. With this observation we are merely restating the fact that
BASK is an example of amplitude modulation, whereas BPSK is an example of double
sideband-suppressed carrier modulation.

This second observation has practical implications of its own:

� The presence of carrier in the BASK spectrum means that the binary data stream can
be recovered by envelope detection of the BASK signal.

� On the other hand, suppression of the carrier in the BPSK spectrum mandates the use
of coherent detection for recovery of the binary data stream from the BASK signal,
as discussed on page 271.

� QUADRIPHASE-SHIFT KEYING

An important goal of digital communication is the efficient utilization of channel band-
width. This goal is attained by a bandwidth-conserving modulation scheme known as
quadriphase-shift keying, which builds on the same idea as that of quadrature-carrier
multiplexing that was discussed in Section 3.5.

In quadriphase-shift keying (QPSK), as with BPSK, information carried by the trans-
mitted signal is contained in the phase of a sinusoidal carrier. In particular, the phase of the
sinusoidal carrier takes on one of four equally spaced values, such as 
and For this set of values, we define the transmitted signal as

(7.13)

where is the transmitted signal energy per symbol and T is the symbol
duration. Each one of the four equally spaced phase values corresponds to a unique pair
of bits called a dibit. For example, we may choose the foregoing set of phase values to rep-
resent the Gray encoded set of dibits: 10, 00, 01, and 11. In this form of encoding, we see
that only a single bit is changed from one dibit to the next. Note that the symbol duration
(i.e., the duration of each dibit) is twice the bit duration, as shown by

(7.14)

Using a well-known trigonometric identity, we may recast the transmitted signal in the
interval in the expanded form

(7.15)

where Based on the expanded form of Eq. (7.15), we can make some impor-
tant observations:

1. In reality, the QPSK signal consists of the sum of two BPSK signals.

2. One BPSK signal, represented by the first term 22E>T cos312i � 12p>44 cos312pfct24,

i � 1, 2, 3, 4.

si1t2 � A2E
T

 cos c12i � 12p
4
d  cos12pfct2 � A2E

T
 sin c12i � 12p

4
d  sin12pfct2

0 � t � T

T � 2Tb

i � 1, 2, 3, 4; E

si1t2 � cA2E
T

 cos c2pfct 	 12i � 12p
4
d , 0 � t � T

0, elsewhere

7p>4.
p>4, 3p>4, 5p>4,

2>Tb
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defines the product of modulating a binary wave by the sinusoidal carrier
which has unit energy over the symbol duration T. We also rec-

ognize that

(7.16)

We therefore see that this binary wave has an amplitude equal to 

3. The other BPSK signal, represented by the second term 

defines the product of modulating a different binary wave by the sinusoidal carrier
which also has unit energy per symbol. This time, we recognize that

(7.17)

We therefore see that this second binary wave also has an amplitude equal to 
albeit in a different way with respect to the index i.

4. The two binary waves defined in Eqs. (7.16) and (7.17) share a common value for the
symbol duration—namely, T.

5. The two sinusoidal carrier waves identified under points 2 and 3 are in phase quad-
rature with respect to each other. Moreover, they both have unit energy per symbol
duration. We may therefore state that these two carrier waves constitute an ortho-
normal pair of basis functions.

6. For each possible value of the index i, Eqs. (7.16) and (7.17) identity the corre-
sponding dibit, as outlined in Table 7.1. This table also includes other related entries
pertaining to the phase of the QPSK signal, and the amplitudes of the two binary
waves identified under points 2 and 3.

�2E>2,

�2E sin c12i � 12p
4
d � e�2E>2 for  i � 1, 22E>2 for  i � 3, 4

22>T sin12pfct2,
�22E>T sin c12i � 12p

4
d  sin12pfct2,

�2E>2.

2E cos c12i � 12p
4
d � e 2E>2 for i � 1, 4

�2E>2 for i � 2, 3

22>T cos12pfct2,

TABLE 7.1 Relationship Between Index i And Identity of Corresponding
Dibit, and Other Related Matters

Amplitudes of constituent
binary waves

Phase of 
QPSK signal Binary wave 1 Binary wave 2 Input dibit 

Index i (radians)

1 10

2 00

3 01

4 11	2E>2	2E>27p>4
	2E>2�2E>25p>4
�2E>2�2E>23p>4
�2E>2	2E>2p>4

0 � t � Ta21t2a11t2

� GENERATION AND COHERENT DETECTION OF QPSK SIGNALS

In light of the six points summarized above as well as the material presented previously in
this section on BPSK, we may construct the block diagrams depicted in Fig. 7.7 for the
generation and coherent detection of QPSK signals, as described here:

(i) Generation
To generate the QPSK signal, the incoming binary data stream is first converted into
polar form by a non-return-to-zero level encoder; the encoder output is denoted by b1t2.
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FIGURE 7.7 Block diagrams of (a) QPSK transmitter and (b) coherent QPSK receiver; for the two synchronous
samplers, integer i � 0, �1, �2, Á .

Symbols 1 and 0 are thereby represented by and where The
resulting binary wave is next divided by means of a demultiplexer (consisting of a ser-
ial-to-parallel converter) into two separate binary waves consisting of the odd- and even-
numbered input bits of These two binary waves, referred to as the demultiplexed
components of the input binary wave, are denoted by and In any signaling
interval, the amplitudes of and are determined in accordance with columns
3 and 4 of Table 7.1, depending on the particular dibit that is being transmitted. The
demultiplexed binary waves and are used to modulate the pair of quadrature
carriers—namely, and Finally, the two BPSK sig-
nals are subtracted to produce the desired QPSK signals, as depicted in Fig. 7.7(a).

(ii) Detection

The QPSK receiver consists of an in-phase (I)-channel and quadrature (Q)-channel with
a common input, as depicted in Fig. 7.7(b). Each channel is itself made up of a product
modulator, low-pass filter, sampler, and decision-making device. Under ideal conditions,

22>T sin12pfct2.22>T cos12pfct2 a21t2a11t2
a21t2a11t2 a21t2.a11t2b1t2.

Eb � E>2.�2Eb ,2Eb
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1OQPSK is also referred to as staggered quadriphase-shift keying (SQPSK).

the I- and Q-channels of the receiver, respectively, recover the demultiplexed components
and responsible for modulating the orthogonal pair of carriers in the trans-

mitter. Accordingly, by applying the outputs of these two channels to a multiplexer (con-
sisting of a parallel-to-serial converter), the receiver recovers the original binary sequence.
(We will return to the coherent detection of QPSK in Chapter 10.)

The design of the QPSK receiver builds on the strategy described for the coherent
BPSK receiver. Specifically, each of the two low-pass filters in the coherent QPSK receiver
of Fig. 7.7(b) must be assigned a bandwidth equal to or greater than the reciprocal of the
symbol duration T for satisfactory operation of the receiver.

It is informative that we compare the QPSK transmitter and receiver depicted in Fig. 7.7
to the transmitter and receiver of the quadrature multiplexing system of Fig. 3.17. We see that
although these two figures address different applications, one analog and the other digital,
they are both covered by the same underlying principle: bandwidth conservation. As such, it
is not surprising to see that their respective transmitters and receivers share similar structures.

� OFFSET QUADRIPHASE-SHIFT KEYING

In QPSK, the carrier amplitude is maintained constant. However, the carrier phase may jump
by or every two-bit (dibit) duration. This latter property can be of particular
concern when the QPSK signal is filtered during the course of transmission over a com-
munication channel. Unfortunately, such a filtering action can cause the carrier amplitude,
and therefore the envelope of the QPSK signal, to fluctuate. When the data transmission
system contains nonlinear components, fluctuations of this kind are undesirable as they tend
to distort the received signal; the net result is a reduced opening of the eye diagram, which
was discussed in Section 6.6.

The extent of amplitude fluctuations exhibited by QPSK signals may be reduced by
using a variant of quadriphase-shift keying known as the offset quadriphase-shift keying
(OQPSK).1 In OQPSK, the demultiplexed binary wave labeled in Fig. 7.7(a) is delayed
(i.e., offset) by one bit duration with respect to the other demultiplexed binary wave labeled

in that figure. This modification has the effect of confining the likely occurrence of
phase transitions to 0° and However, the phase transitions in OQPSK occur
twice as frequently but with a reduced range of amplitude fluctuations, compared with
QPSK. In addition to the phase transitions, there are also phase transitions
in QPSK. We therefore find that amplitude fluctuations in OQPSK due to filtering have a
smaller amplitude than in OQPSK. The remarks made herein on phase transitions are illus-
trated in the next example.

EXAMPLE 7.1 Phase transitions

Parts (a) and (b) of Fig. 7.8 depict the waveforms of QPSK and OQPSK, both of which are pro-
duced by the binary data stream 0011011001 with the following composition over the inter-
val

� The input dibit (i.e., the pair of adjacent bits in the binary data stream) changes in going
from the interval to the next interval 

� The dibit changes again in going from the interval to the next interval

� The dibit changes yet again in going from the interval to the next inter-
val 6Tb � t � 8Tb .

4Tb � t � 6Tb

4Tb � t � 6Tb .
2Tb � t � 4Tb

2Tb � t � 4Tb .0 � t � 2Tb

0 � t � 10Tb:

�180°�90°

�90°�90°.
a11t2

a21t2

�180°�90°

a21t2a11t2



� Finally, the dibit is changed one last time in going from the interval to the
interval

Examining the two waveforms of Fig. 7.8, we find the following:

(i) In QPSK, the carrier phase undergoes jumps of 0°, or every seconds.
(ii) In OQPSK, on the other hand, the carrier phase experiences only jumps of 0° or 

every seconds.

� COMPUTER EXPERIMENT III: QPSK AND OQPSK SPECTRA

For our next experiment, we evaluate the power spectra of QPSK and OQPSK signals,
assuming the use of square waves for the incoming data streams; here again the FFT algo-
rithm is used to do the evaluation. Specifically, the evaluations are made for a fixed value
of carrier frequency and two different bit durations:

(i) QPSK Spectra Parts (a) and (b) of Fig. 7.9 display the power spectra (in decibels)
of QPSK for the following parameters:

Carrier frequency,

Bit duration,

(ii) OQPSK Spectra Parts (a) and (b) of Fig. 7.10 display the corresponding power
spectra of OQPSK for the same parameters used for QPSK. 

As before, each part of Figs. 7.9 and 7.10 includes two spectral plots, one compu-
tational and the other theoretical, with good agreement between theory and experiment.

The important conclusion, drawn from comparing the two parts of Fig. 7.9 for QPSK
with those of Fig. 7.10 for OQPSK, is summarized as follows: although these two digital
methods of modulation naturally yield different waveforms, the power spectra of QPSK and
OQPSK are identical for the same set of system parameters.

Tb � c 1 s for part 1a2 of the figure
1
2

s for part 1b2 of the figure

fc � 8 Hz

Tb

�90°
2Tb�180°�90°,

8Tb � t � 10Tb .
6Tb � t � 8Tb
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OQPSK

t(b)

FIGURE 7.8 Graphical comparison of phase transitions in QPSK and OQPSK.
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FIGURE 7.9 Power spectra of QPSK produced by square wave as the modulating signal for fixed carrier
frequency and varying bit duration: (a) and (b) and Tb � 1>2 s.fc � 8 HzTb � 1 s;fc � 8 Hz



280 CHAPTER 7 � DIGITAL BAND-PASS MODULATION TECHNIQUES

5 6 7 8 9 10 11

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

dB
)

Frequency (Hz)
(a)

0

–10

–20

–30

–40

–50

FIGURE 7.10 Power spectra of OQPSK produced by square wave as the modulating signal
for fixed carrier frequency and varying bit duration: (a) and 
(b) and Tb � 1>2 s.fc � 8 Hz

Tb � 1 s;fc � 8 Hz

5 6 7 8 9 10 11

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

dB
)

Frequency (Hz)
(b)

–40

–50

–30

–20

–10

0



7.4 Frequency-Shift Keying 281

Moreover, comparing the power spectral plots of Fig. 7.9 for QPSK with those of Fig.
7.6 for BPSK, we observe that QPSK occupies a bandwidth equal to one half that of BPSK.

� Drill Problem 7.3 Although QPSK and OQPSK signals have different waveforms, their
magnitude spectra are identical; but their phase spectra differ by a linear phase component.
Justify the validity of this two-fold statement. �

7.4 Frequency-Shift Keying

� BINARY FREQUENCY-SHIFT KEYING (BFSK)

In the simplest form of frequency-shift keying known as binary frequency-shift keying (BFSK),
symbols 0 and 1 are distinguished from each other by transmitting one of two sinusoidal waves
that differ in frequency by a fixed amount. A typical pair of sinusoidal waves is described by

(7.18)

where is the transmitted signal energy per bit. When the frequencies and are cho-
sen in such a way that they differ from each other by an amount equal to the reciprocal of
the bit duration the BFSK signal is referred to as Sunde’s BFSK after its originator. This
modulated signal is a continuous-phase signal in the sense that phase continuity is always
maintained, including the inter-bit switching times.

� COMPUTER EXPERIMENT IV: SUNDE’S BFSK

(i) Waveform
Figure 7.11 plots the waveform of Sunde’s BFSK produced by the input binary
sequence 0011011001 for a bit duration Part (a) of the figure displays the
waveform of the input sequence, and part (b) displays the corresponding waveform

Tb � 1 s.

Tb ,

f2f1Eb

si1t2 � e B2Eb

Tb
 cos12pf1t2, for symbol 1 corresponding to i � 1

B2Eb

Tb
 cos12pf2t2, for symbol 0 corresponding to i � 2

Input
binary
sequence

0 0 1 1 0 1 1 0 0 1

t(a)

t(b)

FIGURE 7.11 (a) Binary sequence and its non-return-to-zero level-encoded waveform. 
(b) Sunde’s BFSK signal.
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FIGURE 7.12 Power spectrum of Sunde’s BFSK produced by square wave as the modulating
signal for the following parameters: and Tb � 1 s.fc � 8 Hz

of the BFSK signal. The latter part of the figure clearly displays the phase-continuous
property of Sunde’s BFSK.

(ii) Spectrum
Figure 7.12 shows two superimposed spectral plots of Sunde’s BFSK for a square-
wave input for positive frequencies; as before, one plot is computational and the
other is theoretical. The system parameters used for the computation are as follows:

Bit duration,

Carrier frequency,

Examining Fig. 7.12, we can make the following observations for positive frequencies:

(i) The spectrum contains two line components at the frequency which
equal 7.5 Hz and 8.5 Hz for and 

(ii) The main lobe occupies a band of width equal to centered on the
carrier frequency 

(iii) The largest sidelobe is about 21 dB below the main lobe.

� Drill Problem 7.4 Show that the modulation process involved in generating Sunde’s
BFSK is nonlinear. �

� CONTINUOUS-PHASE FREQUENCY-SHIFT KEYING

Sunde’s BFSK is the simplest form of a family of digitally modulated signals known col-
lectively as continuous-phase frequency-shift keying (CPFSK) signals, which exhibit the
following distinctive property:

fc � 8 Hz.
13>Tb2 � 3 Hz,

Tb � 1 s.fc � 8 Hz
f � fc � 1>12Tb2;

fc � 8 Hz

Tb � 1 s
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The modulated wave maintains phase continuity at all transition points, even though
at those points in time the incoming binary data stream switches back and forth
between symbols 0 and 1.

In other words, the CPFSK signal is a continuous-wave modulated wave like any other
angle-modulated wave experienced in the analog world, despite the fact that the modulat-
ing wave is itself discontinuous.

In Sunde’s BFSK, the overall excursion in the transmitted frequency from symbol
0 to symbol 1, or vice versa, is equal to the bit rate of the incoming data stream. In another
special form of CPFSK known as minimum shift keying (MSK), the binary modulation
process uses a different value for the frequency excursion with the result that this new
modulated wave offers superior spectral properties to Sunde’s BFSK.

� MINIMUM-SHIFT KEYING

In MSK, the overall frequency excursion from binary symbol 1 to symbol 0, or vice
versa, is one half the bit rate, as shown by

(7.19)

The unmodulated carrier frequency is the arithmetic mean of the two transmitted fre-
quencies and that is,

(7.20)

Expressing and in terms of the carrier frequency and overall frequency excursion 
we have

(7.21)

(7.22)

Accordingly, we formally define the MSK signal as the angle-modulated wave

(7.23)

where is the phase of the MSK signal. In particular, when frequency is transmitted, cor-
responding to symbol 1, we find from Eqs. (7.21) and (7.23) that the phase assumes the value

(7.24)

In words, this means that at time the transmission of symbol 1 increases the phase of
the MSK signal by radians. By the same token, when frequency is transmitted, cor-
responding to symbol 0, we find from Eqs. (7.22) and (7.23) that the phase assumes the value

(7.25)� �
pt
2Tb

, for symbol 0

u1t2 � 2pa�
df

2
b t

u1t2f2p>2s1t2 t � Tb ,

�
pt
2Tb

, for symbol 1

u1t2 � 2padf
2
b t

u1t2f1u1t2
s1t2 � B2Eb

Tb
 cos32pfct 	 u1t24

f2 � fc �
df

2
, for symbol 0

f1 � fc 	
df

2
, for symbol 1

df,fcf2f1

fc �
1
2
1f1 	 f22

f2;f1

�
1

2Tb

df � f1 � f2

df

df,

df
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This means that at time the transmission of symbol 0 decreases the phase of 
by radians.

The phase changes described in Eqs. (7.24) and (7.25) for MSK are radically different
from their corresponding counterparts for Sunde’s BFSK. Specifically, the phase of Sunde’s
BFSK signal changes by radians at the termination of the interval representing symbol 0,
and radians for symbol 1. However, the changes and are exactly the same, mod-
ulo This observation, in effect, means that Sunde’s BFSK has no memory; in other words,
knowing which particular change occurred in the previous bit interval provides no help in the
current bit interval. In contrast, we have a completely different situation in the case of MSK
by virtue of the different ways in which the transmissions of symbols 1 and 0 affect the phase

as shown in Eqs. (7.24) and (7.25). Note also that the overall frequency excursion in
MSK is the minimum frequency spacing between symbols 0 and 1 that allows their FSK rep-
resentations to be coherently orthogonal, hence the terminology “minimum-shift keying.”

EXAMPLE 7.2: Relationship Between OQPSK and MSK Waveforms

The purpose of this example is to illustrate the relationship that exists between OQPSK and
MSK waveforms. Figures 7.13 and 7.14 bear out this fundamental relationship:

dfu1t2,

2p.
	p�p	p

�p

p>2 s1t2t � Tb ,

Input
binary
sequence Dibit 00 Dibit 11

–Tb Tb 3Tb

0 2Tb 4Tb 6Tb 8Tb

5Tb 7Tb 9Tb

Dibit 01 Dibit 10 Dibit 01

0 0 1 1 0 1 1 0 0 1

t(a)

0 0 01 1

0 01 1 1

t(b)

t(d)

t(c)

t(e)

FIGURE 7.13 OQPSK signal components: (a) Modulating signal for in-phase component.
(b) Modulated waveform of in-phase component. (c) Modulating signal for quadrature
component. (d) Modulated waveform of quadrature component. (e) Waveform of OQPSK
signal obtained by subtracting (d) from (b).
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� The five waveforms of Fig. 7.13 plot the components of the OQPSK signal for the input
binary data stream 0011011001.

� The corresponding five waveforms of Fig. 7.14 plot the components of the MSK signal
for the same input binary data stream 0011011001.

Comparing the results plotted in Figs. 7.13 and 7.14, we may make the following
observation. Although the OQPSK and MSK are derived from different modulation prin-
ciples, the MSK from frequency-shift keying and the OQPSK from phase-shift keying,
these two digitally modulated waves are indeed closely related. The basic difference
between them lies merely in the way in which the binary symbols in their in-phase and
quadrature components are level-encoded. In OQPSK, the level-encoding is based on rec-
tangular pulses, with one binary wave shifted from the other binary wave by one bit
duration. On the other hand, in MSK, the level-encoding is based on the half cycle of a
cosinusoid.

The insightful close relationship of MSK to OQPSK derived from Example 7.2 sets
the stage for an analytic formulation of the MSK signal, as described next.

Input
binary
sequence Dibit 00 Dibit 11 Dibit 01 Dibit 10 Dibit 01

0 0 1 1 0 1 1 0 0 1

t(a)
–Tb Tb 3Tb 5Tb 7Tb 9Tb

t(b)

t(c)
2Tb0

0 1 0 1 0

0 011 1

4Tb 6Tb 8Tb

t(d)

t(e)

FIGURE 7.14 MSK signal components: (a) Modulating signal for in-phase
component. (b) Modulated waveform of in-phase (c) Modulating signal for
quadrature component (d) Modulated quadrature component. (e) Waveform of MSK
signal obtained by subtracting (d) from (b).
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� FORMULATION OF MINIMUM-SHIFT KEYING2

To proceed with the formulation, we refer back to Eq. (7.23), and use a well-known trigono-
metric identity to expand the angle-modulated wave (i.e., MSK signal) as

(7.26)

In light of this equation, we make two identifications:

(i) is the in-phase (I) component associated with the carrier
(7.27)

(ii) is the quadrature (Q) component associated with the 90°-

phase-shifted carrier. (7.28)

To highlight the bearing of the incoming binary data stream on the composition of
and we reformulate them respectively as follows:

(7.29)

and

(7.30)

The and are two binary waves that are extracted from the incoming binary data
stream through demultiplexing and offsetting, in a manner similar to OQPSK. As such, they take
on the value or in symbol (i.e., dibit) intervals of duration where is the bit
duration of the incoming binary data stream. The two data signals and are respec-
tively weighted by the sinusoidal functions and where the frequency 
is to be determined. To define we use Eqs. (7.29) and (7.30) to reconstruct the original angle-
modulated wave in terms of the data signals and In so doing, we obtain

(7.31)

on the basis of which we recognize two possible scenarios that can arise:

1. This scenario arises when two successive binary symbols (constituting
a dibit) in the incoming data stream are the same (i.e., both are 0s or 1s); hence, Eq.
(7.31) reduces to

(7.32)
2. This second scenario arises when two successive binary symbols (i.e.,

dibits) in the incoming data stream are different; hence, Eq. (7.31) reduces to

(7.33)� 2pf0t

u1t2 � �tan�13�tan12pf0t24
a21t2 � �a11t2

� �2pf0t

u1t2 � �tan�13tan12pf0t24

a21t2 � a11t2

� �tan�1Ba21t2
a11t2 tan12pf0t2R

u1t2 � �tan�1B sQ1t2
sI1t2 R

a21t2.a11t2s1t2 f0,
f0sin12pf0t2,cos12pf0t2 a21t2a11t2 TbT � 2Tb ,�1	1

a21t2a11t2
sQ1t2 � a21t2 sin12pf0t2
sI1t2 � a11t2 cos12pf0t2

sQ1t2,sI1t2

sQ1t2 � 2Eb sin1u1t22
22>Tb cos12pfct2.
sI1t2 � 2Eb cos1u1t22

s1t2 � B2Eb

Tb
 cos1u1t22 cos12pfct2 � B2Eb

Tb
 sin1u1t22 sin12pfct2

s1t2

2Analytic formulation of the MSK presented herein follows Ziemer and Tranter (2002).
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Equations (7.32) and (7.33) are respectively of similar mathematical forms as Eqs. (7.25)
and (7.24). Accordingly, we may now formally define

(7.34)

To sum up, given a non-return-to-zero level encoded binary wave of prescribed
bit duration and a sinusoidal carrier wave of frequency we may formulate the MSK
signal by proceeding as follows:

1. Use the given binary wave to construct the binary demultiplexed-offset waves
and

2. Use Eq. (7.34) to determine the frequency 

3. Use Eqs. (7.29) and (7.30) to determine the in-phase component and quadrature
component respectively from which the MSK signal follows.

Indeed, it is this procedure that was used in Example 7.3 to construct the MSK sig-
nal from its related components.

� Drill Problem 7.5 To summarize matters, we may say that MSK is an OQPSK where the
symbols in the in-phase and quadrature components (on a dibit-by-dibit basis) are weighted by
the basic pulse function

where is the bit duration, and rect(t) is the rectangular function of unit duration and unit
amplitude. Justify this summary. �

� Drill Problem 7.6 The sequence 11011100 is applied to an MSK modulator. Assuming
that the angle of the MSK signal is zero at time plot the trellis diagram that displays
the evolution of over the eight binary symbols of the input sequence. �

� Drill Problem 7.7 The process of angle modulation involved in the generation of an
MSK signal is linear. Justify this assertion. �

� Drill Problem 7.8 A simple way of demodulating an MSK signal is to use a frequency
discriminator, which was discussed in Chapter 4 on angle modulation. Justify this use and
specify the linear input-output characteristic of the discriminator. �

� COMPUTER EXPERIMENT V: MSK SPECTRUM

In this computer experiment, we evaluate the power spectrum of an MSK signal produced
by a square wave input. The parameters of the experiment are as follows:

Bit duration,

Carrier frequency,

Figure 7.15 shows two power spectral plots of the MSK signal, one computational and
the other theoretical. Comparing this figure with that of QPSK in Fig. 7.9(a) and that of
Sunde’s BFSK in Fig. 7.12 for the same set of parameters, we can make the following obser-
vations for positive frequencies:

fc � 8 Hz

Tb � 1 s

u1t2 t � 0,u1t2

Tb

p1t2 � sin¢ pt
2Tb
≤  rect¢ t

2Tb
�

1
2
≤

s1t2sQ1t2, sI1t2
f0.

a21t2.a11t2 b1t2
fc ,Tb

b1t2
f0 �

1
4Tb
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FIGURE 7.15 Power spectrum of MSK produced by square wave as the modulating signal
for the following parameters: and Tb � 1 s.fc � 8 Hz

(i) MSK versus QPSK: The main lobe of MSK occupies a frequency band whose width
is centered on the carrier frequency On this basis, the
transmission bandwidth of MSK is 50 percent larger than that of QPSK. However,
the sidelobes of MSK are considerably smaller than those of QPSK.

(ii) MSK versus Sunde’s BFSK: The transmission bandwidth of MSK is one half that of
Sunde’s BFSK. Moreover, Sunde’s BFSK exhibits two line components at

whereas the spectrum of MSK is continuous across the whole
frequency band.

Figure 7.16 plots the power spectrum of the MSK signal for the same set of para-
meters as those used in Fig. 7.15. In Fig. 7.16, the frequency spans the range from 0 to
50 Hz, whereas in Fig. 7.15, the frequency spans the range from 6 to 10 Hz. The moti-
vation for including Fig. 7.16 is merely to illustrate that although the carrier frequency

is not high enough to completely eliminate spectral overlap, the overlap is relatively
small as evidenced by

� The small value of the spectrum at zero frequency.

� The small degree of asymmetry about the carrier frequency fc � 8 Hz.

fc

f � fc � 1>12Tb2,

fc � 8 Hz.1.5>Tb � 1.5 Hz,
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FIGURE 7.16 Illustrative confirmation that for MSK produced by a square modulating
wave, the carrier frequency is high enough to produce insignificant spectral
overlap for bit duration Tb � 1 s.

fc � 8 Hz

7.5 Summary of Three Binary 
Signaling Schemes

Parts (b), (c), and (d) of Fig. 7.1 illustrate the waveforms of the three basic signaling schemes,
BASK, BPSK, and BFSK, which are respectively produced by the binary data stream
0011011001 in part (a) of the figure. This figure clearly illustrates the following points:

(i) BASK, BPSK, and BFSK are the digital counterparts of amplitude modulation, phase
modulation, and frequency modulation, respectively; this point further reinforces
previous observations.

(ii) Both BASK and BPSK exhibit discontinuity. In contrast, it is possible to configure
BFSK in such a way that phase continuity is maintained across the entire input binary
data stream. In actual fact, the BFSK waveform plotted in part (d) of the figure is an
example of minimum-shift keying, which exhibits this property.

Moreover, Table 7.2 presents a summary of the three binary modulation schemes: BASK,
BPSK, and BFSK. Columns 2 and 3 of the table summarize the discriminants that distin-
guish these three basic schemes in mathematical terms. The last column of the table por-
trays phasor representations of the three schemes, thereby picturing the discriminants that
distinguish them in graphical terms.



2
9
0

TABLE 7.2 Summary of Three Basic Binary Modulation Schemes

Type of Definition of modulated wave Phasor representation
modulation scheme Variable parameter or for of modulated wave0 � t � Tbs21t2,s11t2
1. Binary 
amplitude-shift keying
(BASK)

2. Binary phase-shift
keying (BPSK)

3. Binary 
frequency-shift
keying (BFSK)

¢Carrier frequency
fc

≤ � b f1 for symbol 1
f2 for symbol 0

¢Carrier phase
fc

≤ � b 0 for symbol 1
p for symbol 0

¢Carrier amplitude
Ac

≤ � c B 2
Tb

for symbol 1

0 for symbol 0

s21t2 � B2Eb

Tb
cos12pf2t2 for symbol 0

s11t2 � B2Eb

Tb
cos12pf1t2 for symbol 1

s21t2 � B2Eb

Tb
cos12pfct 	 p2 for symbol 0

s11t2 � B2Eb

Tb
cos12pfct2 for symbol 1

s21t2 � 0  for symbol 0

s11t2 � B2Eb

Tb
cos12pfct2 for symbol 1

0
Phasor for
symbol 1

Phasor for
symbol 0

0
Phasor for
symbol 1

Phasor for
symbol 0

0

Zero phasor
for symbol 0

Phasor for
symbol 1

Notations

Carrier:

The carrier phase is set equal to zero for both BASK and BFSK.fc

c1t2 � Ac cos12pfct 	 fc2
Eb � transmitted signal energy per bit

Tb � bit duration
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7.6 Noncoherent Digital 
Modulation Schemes

Coherent receivers, exemplified by the schemes shown in Figs. 7.4(b) and 7.7(b), require
knowledge of the carrier wave’s phase reference to establish synchronism with their
respective transmitters. However, in some communication environments, it is either
impractical or too expensive to phase-synchronize a receiver to its transmitter. In situa-
tions of this kind, we resort to the use of noncoherent detection by abandoning the use
of phase synchronization between the receiver and its transmitter, knowing that when we
do so the receiver performance is degraded in the presence of channel noise (as discussed
in Chapter 10).

In discussing binary signaling techniques, we described BASK, BPSK, and BFSK, in
that order. This ordering was motivated by the following considerations. Both BASK and
BPSK are examples of linear modulation, with increasing complexity in going from BASK
and BPSK. On the other hand, BFSK is in general an example of nonlinear modulation,
hence leaving it until last. In this section, however, we change the order in which the per-
tinent noncoherent detection schemes are considered. Specifically, we first consider the
noncoherent detection of BASK, followed by that of BFSK. The rationale for this new
ordering is guided by the fact that both of them use similar techniques based on band-pass
filtering, but with increasing complexity in going from BASK to BFSK. The discussion is
completed by tackling the noncoherent detection of BPSK, which requires more careful
considerations of its own.

� NONCOHERENT DETECTION OF BASK SIGNAL

Referring to Eq. (7.10), we see that the generation of BASK signals involves the use of a
single sinusoidal carrier of frequency for symbol 1 and switching off the transmission for
symbol 0. Now, the system designer would have knowledge of two system parameters:

� The carrier frequency 
� The transmission bandwidth, which is determined by the bit duration 

It is therefore natural to make use of these known parameters in designing the noncoher-
ent receiver for BASK. Specifically, the receiver consists of a band-pass filter, followed by
an envelope detector, then a sampler, and finally a decision-making device, as depicted in
Fig. 7.17.

The band-pass filter is designed to have a mid-band frequency equal to the carrier fre-
quency and a bandwidth equal to the transmission bandwidth of the BASK signal. More-
over, it is assumed that the intersymbol interference (ISI) produced by the filter is negligible,
which, in turn, requires that the rise time and decay time of the response of the filter to a
rectangular pulse be short compared to the bit duration Under these conditions, weTb .

fc

Tb .
fc .

fc

Band-pass filter 
tuned to fc

Envelope
detector

Decision-making
device

Sample at
time t = iTb

Say symbol 1 if the
threshold is exceeded

Otherwise, say symbol 0

BASK
signal

Threshold

FIGURE 7.17 Noncoherent BASK receiver; the integer i for the sampler equals 0, �1, �2, Á .
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Sample at
time t = iTb

Sample at
time t = iTb

Envelope
detector

Envelope
detector

Band-pass
filter tuned

to frequency f2

Band-pass
filter tuned

to frequency f1

Say symbol 1 if
v1 > v2

v1

v2

Otherwise, say symbol 0

BFSK
signal

Comparator

FIGURE 7.18 Noncoherent BFSK receiver; the two samplers operate synchronously, with i � 0, �1, �2, Á .

find that in response to the incoming BASK signal (assumed to be noise-free), the band-pass
filter produces a pulsed sinusoid for symbol 1 and, ideally, no output for symbol 0. Next,
the envelope detector traces the envelope of the filtered version of the BASK signal. Finally,
the decision-making device working in conjunction with the sampler, regenerates the orig-
inal binary data stream by comparing the sampled envelope-detector output against a pre-
set threshold every seconds; this operation assumes the availability of bit-timing in the
receiver. If the threshold is exceeded at time the receiver decides
in favor of symbol 1; otherwise, it decides in favor of symbol 0. In the absence of channel
noise and channel distortion, the receiver output (on a bit-by-bit basis) would be an exact
replica of the original binary data stream applied to the transmitter, subject to the above-
mentioned assumptions on the band-pass filter.

� NONCOHERENT DETECTION OF BFSK SIGNALS

In the case of BFSK, we recall from Section 7.4 that the transmissions of symbols 1 and 0
are represented by two carrier waves of frequencies and respectively, with adequate
spacing between them. In light of this characterization, we may build on the noncoherent
detection of BASK by formulating the noncoherent BFSK receiver of Fig. 7.18. The receiver
consists of two paths, one dealing with frequency (i.e., symbol 1) and the other dealing
with frequency (i.e., symbol 0):

� Path 1 uses a band-pass filter of mid-band frequency The filtered version of
the incoming BFSK signal is envelope-detected and then sampled at time 

to produce the output 
� Path 2 uses a band-pass filter of mid-band frequency As with path 2, the filtered

version of the BFSK signal is envelope-detected and then sampled at time 
to produce a different output 

The two band-pass filters have the same bandwidth, equal to the transmission bandwidth
of the BFSK signal. Moreover, as pointed out in dealing with BASK, the intersymbol inter-
ference produced by the filters is assumed to be negligible.

The outputs of the two paths, and are applied to a comparator, where decisions
on the composition of the BFSK signal are repeated every seconds. Here again, the avail-
ability of bit timing is assumed in the receiver. Recognizing that the upper path corresponds
to symbol 1 and the lower path corresponds to symbol 0, the comparator decides in favor

Tb

v2,v1

v2.i � 0, �1, �2, Á ,
t � i Tb,

f2.
v1.i � 0, �1, �2, Á ,

t � iTb,
f1.

f2
f1

f2,f1

t � iTb , i � 0, �1, �2, Á ,
Tb



7.6 Noncoherent Digital Modulation Schemes 293

of symbol 1 if is greater than at the specified bit-timing instant; otherwise, the deci-
sion is made in favor of symbol 0. In a noise-free environment and no channel distortion,
the receiver output (on a bit-by-bit basis) would again be a replica of the original binary
data stream applied to the transmitter input.

� DIFFERENTIAL PHASE-SHIFT KEYING

From the above discussion, we see that both amplitude-shift keying and frequency-shift
keying lend themselves naturally to noncoherent detection whenever it is impractical to
maintain carrier-phase synchronization of the receiver to the transmitter. But in the case
of phase-shift keying, we cannot have noncoherent detection in the traditional sense
because the term “noncoherent” means having to do without carrier-phase information.
To get around this difficulty, we employ a “pseudo PSK” technique known as differen-
tial phase-shift keying (DPSK), which, in a loose sense, does permit the use of noncoherent
detection.

DPSK eliminates the need for a coherent reference signal at the receiver by combin-
ing two basic operations at the transmitter:

� Differential encoding of the input binary wave (which was discussed under line codes
in Section 5.9).

� Phase-shift keying (which was discussed in Section 7.3).

It is because of this combination that we speak of “differential phase-shift keying.” In
effect, to send symbol 0, we phase advance the current signal waveform by 180 degrees,
and to send symbol 1 we leave the phase of the current signal waveform unchanged. Cor-
respondingly, the receiver is equipped with a storage capability (i.e., memory) designed to
measure the relative phase difference between the waveforms received during two succes-
sive bit intervals. Provided the unknown phase varies slowly (i.e., slow enough for it to
be considered essentially constant over two bit intervals), the phase difference between
waveforms received in two successive bit intervals will be essentially independent of 

Generation and Detection of DPSK Signals

(i) Generation
The differential encoding process at the transmitter input starts with an arbitrary
first bit, serving merely as reference. Let denote the differentially encoded
sequence with this added reference bit. To generate this sequence, the transmitter
performs the following two operations:
� If the incoming binary symbol is 1, then the symbol is unchanged with respect

to the previous symbol .
� If the incoming binary symbol is 0, then the symbol is changed with respect

to the previous symbol .
The differentially encoded sequence thus generated is used to phase-shift a sinu-
soidal carrier wave with phase angles 0 and radians, representing symbols 1 and
0, respectively.

The block diagram of the DPSK transmitter is shown in Fig. 7.19(a). It con-
sists, in part, of a logic network and a one-bit delay element (acting as the memory
unit) interconnected so as to convert the raw binary sequence into a differen-
tially encoded sequence This sequence is amplitude-level encoded and then used
to modulate a carrier wave of frequency thereby producing the desired DPSK
signal.

fc ,
5dk6. 5bk6

p

5dk6dk�1

dkbk

dk�1

dkbk

5dk6

u.

u

v2v1



294 CHAPTER 7 � DIGITAL BAND-PASS MODULATION TECHNIQUES

(a)
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Delay
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level
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Product
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{bk}

{dk–1}

{dk} DPSK
signal

D
2

Tb
cos(2�fct)—

(b)

Delay
Tb

Low-pass
filter

DPSK
signal

Decision-making
device

Sample at
time t = iTb Choose 1 if the low-pass

filter output at time t = iTb
exceeds the threshold

Otherwise, choose 0

Threshold

FIGURE 7.19 Block diagrams for (a) DPSK transmitter and (b) DPSK receiver; for the sampler, integer
i � 0, �1, �2, Á .

(ii) Detection
For the detection of DPSK signals, we take advantage of the fact that the phase-mod-
ulated pulses pertaining to two successive bits are identical except for a possible sign
reversal. Hence, the incoming pulse is multiplied by the preceding pulse, which, in
effect, means that the preceding pulse serves the purpose of a locally generated refer-
ence signal. On this basis, we may formulate the receiver of Fig. 7.19(b) for the detec-
tion of DPSK signals. Comparing the DPSK detector of Fig. 7.19(b) and the coherent
BPSK detector of Fig. 7.4(b), we see that the two receiver structures are similar except
for the source of the locally generated reference signal. According to Fig. 7.19(b), the
DPSK signal is detectable, given knowledge of the reference bit, which, as mentioned
previously, is inserted at the very beginning of the incoming binary data stream. In
particular, applying the sampled output of the low-pass filter to a decision-making
device supplied with a prescribed threshold, detection of the DPSK signal is accom-
plished. If the threshold is exceeded, the receiver decides in favor of symbol 1; other-
wise, the decision is made in favor of symbol 0. Here again, it is assumed that the
receiver is supplied with bit-timing information for the sampler to work properly.

EXAMPLE 7.3 From Binary Data Stream to DPSK Signal and Back

Starting with the binary data stream given in the first row of Table 7.3 and using sym-
bol 1 as the first reference bit, we may construct the differentially encoded stream in row
3 of the table. The second row is the delayed version of by one bit. Note that for each
index k, the symbol is the complement of the modulo-2 sum of and The fourth row
of Table 7.3 defines the phase (in radians) of the transmitted DPSK signal.

The last two rows of Table 7.3 pertain to the DPSK receiver. Row 5 of the table defines
the polarity (positive or negative) of the low-pass filter output in the receiver of Fig. 7.19(b).
The final row of the table defines the binary data stream produced at the receiver output,
which is identical to the input binary data stream at the top of the table, as it should be in a
noise-free environment.

dk�1.bkdk

5dk6 5dk65bk6
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7.7 M-ary Digital Modulation Schemes

By definition, in an M-ary digital modulation scheme, we send any one of M possible sig-
nals during each signaling (symbol) interval of duration T. In almost
all applications, where m is an integer. Under this condition, the symbol duration

where is the bit duration.
M-ary modulation schemes are preferred over binary modulation schemes for trans-

mitting digital data over band-pass channels when the requirement is to conserve bandwidth
at the expense of both increased power and increased system complexity. In practice, we
rarely find a communication channel that has the exact bandwidth required for transmit-
ting the output of an information-bearing source by means of binary modulation schemes.
Thus, when the bandwidth of the channel is less than the required value, we resort to an
M-ary modulation scheme for maximum bandwidth conservation.

� M-ARY PHASE-SHIFT KEYING

To illustrate the capability of M-ary modulation schemes for bandwidth conservation, con-
sider first the transmission of information consisting of a binary sequence with bit dura-
tion If we were to transmit this information by means of binary PSK, for example, we
would require a channel bandwidth that is inversely proportional to the bit duration 
However, if we take blocks of m bits to produce a symbol and use an M-ary PSK scheme
with and symbol duration then the bandwidth required is proportional
to This simple argument shows that the use of M-ary PSK provides a reduction
in transmission bandwidth by a factor over binary PSK.

In M-ary PSK, the available phase of radians is apportioned equally and in a dis-
crete way among the M transmitted signals, as shown by the phase-modulated signal

(7.35)

where E is the signal energy per symbol, and is the carrier frequency. Using a well-known
trigonometric identity, we may expand Eq. (7.35) as

(7.36)� c2E sina2p
M

ib d cA 2
T

sin12pfct2 d , i � 0, 1, Á , M � 1
0 � t � T

si1t2 � c2E cosa2p
M

ib d cA 2
T

cos12pfct2 d

fc

si1t2 � A2E
T

cosa2pfct 	
2p
M

ib , i � 0, 1, Á , M � 1
0 � t � T

2p
m � log2 M

1>1mTb2. T � mTb ,M � 2m

Tb .
Tb .

TbT � mTb ,
M � 2m

s11t2, s21t2, Á , sM1t2

TABLE 7.3 Illustration of the Generation and Detection of DPSK Signal

1 0 0 1 0 0 1 1
1 1 0 1 1 0 1 1

Differentially encoded sequence 1 1 0 1 1 0 1 1 1
Transmitted phase (radians) 0 0 0 0 0 0 0
Sampler’s output (polarity)
Binary symbol at decision-maker’s output 1 0 0 1 0 0 1 1

Note: The symbol 1 inserted at the beginning of the differentially encoded sequence is the reference bit.dk
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The discrete coefficients and are respectively referred to as the
in-phase and quadrature components of the M-ary PSK signal We now recognize that

(7.37)

Accordingly, M-ary PSK modulation has the unique property that the in-phase and quad-
rature components of the modulated signal are interrelated in such a way that the dis-
crete envelope of the signal is constrained to remain constant at the value for all M.
The modulation strategy of QPSK discussed in Section 7.3 is an example of M-ary PSK with
the number of phase levels 

Signal-Space Diagram

The result described in Eq. (7.37), combined with the fact that the in-phase and quad-
rature components of M-ary PSK are discrete, leads to an insightful geometric portrayal of
M-ary PSK. To explain, suppose we construct a two-dimensional diagram with the hori-
zontal and vertical axes respectively defined by the following pair of orthnormal functions:

(7.38)

and

(7.39)

where the band-pass assumption implies orthogonality; the scaling factor assures
unit energy over the interval T for both and On this basis, we may rep-
resent the in-phase component and quadrature component
for as a set of points in this two-dimensional diagram, as illus-
trated in Fig. 7.19 for Such a diagram is referred to as a signal-space diagram.M � 8.
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FIGURE 7.20 Signal-space diagram of 8-PSK.
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Figure 7.20 leads us to make three important observations:

1. M-ary PSK is described in geometric terms by a constellation of M signal points dis-
tributed uniformly on a circle of radius

2. Each signal point in the figure corresponds to the signal of Eq. (7.35) for a par-
ticular value of the index i.

3. The squared length from the origin to each signal point is equal to the signal energy E.

In light of these observations, we may now formally state that the signal-space-diagram of
Fig. 7.20 completely sums up the geometric description of M-ary PSK in an insightful man-
ner. Note that the 3-bit sequences corresponding to the 8 signal points are Gray-encoded,
with only a single bit changing as we move along the constellation in the figure from one
signal point to an adjacent one.

� M-ARY QUADRATURE AMPLITUDE MODULATION

Suppose next that the constraint of Eq. (7.37) that characterizes M-ary PSK modulation is
removed. Then, the in-phase and quadrature components of the resulting M-ary modu-
lated signal are permitted to be independent of each other. Specifically, the mathematical
description of the new modulated signal assumes the form

(7.40)

where the level parameter in the in-phase component and the level parameter in the
quadrature component are independent of each other for all i. This new modulation scheme
is called M-ary quadrature amplitude modulation (QAM). Note also that the constant 
is the energy of the signal pertaining to a particular value of the index i for which the ampli-
tude of the modulated signal is the lowest.

M-ary QAM is a hybrid form of M-ary modulation, in the sense that it combines
amplitude-shift keying and phase-shift keying. It includes two special cases:

(i) If for all i, the modulated signal of Eq. (7.40) reduces to

which defines M-ary amplitude-shift keying (M-ary ASK).
(ii) If and the constraint

is satisfied, then the modulated signal of Eq. (7.40) reduces to M-ary PSK.

Signal-Space Diagram

Figure 7.21 portrays the signal-space representation of M-ary QAM for 
with each signal point being defined by a pair of level parameters and where

This time, we see that the signal points are distributed uniformly on a rec-
tangular grid. The rectangular property of the signal-space diagram is testimony to the
fact that the in-phase and quadrature components of M-ary QAM are independent of each
other. Moreover, we see from Fig. 7.21 that, unlike M-ary PSK, the different signal points
of M-ary QAM are characterized by different energy levels, and so they should be. Note
also that each signal point in the constellation corresponds to a specific quadbit, which
is made up of 4 bits. Assuming the use of Gray encoding, only one bit is changed as we
go from each signal point in the constellation horizontally or vertically to an adjacent
point, as illustrated in Fig. 7.21.
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� M-ARY FREQUENCY-SHIFT KEYING

However, when we consider the M-ary version of frequency-shift keying, the picture is
quite different from that described for M-ary PSK or M-ary QAM. Specifically, in one form
of M-ary FSK, the transmitted signals are defined for some fixed integer n as follows:

(7.41)

The M transmitted signals are all of equal duration T and equal energy E. With the indi-
vidual signal frequencies separated from each other by hertz, the signals in Eq.
(7.41) are orthogonal; that is, they satisfy the condition

(7.42)

Like M-ary PSK, the envelope of M-ary FSK is constant for all M, which follows directly
from Eq. (7.41). Hence, both of these M-ary modulation strategies can be used over non-
linear channels. On the other hand, M-ary QAM can only be used over linear channels
because its discrete envelope varies with the index i (i.e., the particular signal point chosen
for transmission).

Signal-Space Diagram

To develop a geometric representation of M-ary FSK, we start with Eq. (7.41). In
terms of the signals defined therein, we introduce a complete set of orthonormal
functions:

(7.43)

Unlike M-ary PSK and M-ary QAM, we now find that M-ary FSK is described by an
M-dimensional signal-space diagram, where the number of signal points is equal to the
number of coordinates. The visualization of such a diagram is difficult beyond 
Figure 7.22 illustrates the geometric representation of M-ary FSK for M � 3.
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� Drill Problem 7.9 Starting with Eq. (7.41), prove the orthogonality property of Eq. (7.42)
that characterizes M-ary FSK. �

7.8 Mapping of Digitally Modulated Waveforms
Onto Constellations of Signal Points

The idea of signal-space diagrams mentioned at various points in Section 7.7 is of pro-
found importance in statistical communication theory. In particular, it provides the math-
ematical basis for the geometric representation of energy signals, exemplified by digitally
modulated waveforms. For a specific method of digital modulation, the geometric repre-
sentation is pictured in the form of a constellation of points in the signal-space diagram,
which is unique to that method.

The purpose of this section is to do two things:

� Consolidate the idea of a signal-space diagram pictorially.
� Discuss what this idea teaches us in the analysis of noise in digital communication sys-

tems, which we treat later in the book.

With consolidation in mind, Fig. 7.23 on BPSK shows the way in which the two
waveforms and respectively representing binary symbols 1 and 0, are mapped
onto the transmitted signal points and The key question is: how is the mappings2.s1

s21t2,s11t2
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accomplished? The answer lies in the use of a correlator. First, we note that the signal-
space representation of BPSK is simple, involving a single basis function:

(7.44)

In more specific terms, each of the two signaling waveforms and is correlated
with the basis function The use of correlation provides another way of designing a
receiver for the coherent detection of BPSK. For the issue at hand, we proceed in two steps
as follows:

1. Correlating the signal

(7.45)

with the basis function over the time interval we get the signal
point

(7.46)

Under the band-pass assumption, Eq. (7.46) simplifies to

(7.47)
2. Similarly, we may show that the signal

(7.48)

is represented by the signal point

(7.49)

These two results are indeed what is portrayed in Fig. 7.23.

� Drill Problem 7.10 Justify Eqs. (7.47) and (7.49). �

Consider next the picture depicted in Fig. 7.24, pertaining to BFSK. As with BPSK, the
signal-space diagram consists of two transmitted signal points: the point representing the
transmission of binary symbol 1 and the point representing the transmission of binary
symbol 0. Following a procedure similar to that which led to the signal-space mapping of
BPSK, we may construct the signal-space mapping of Fig. 7.24 for BFSK, where the two
signal points are defined by

(7.50)

and

(7.51)

The two signal-space diagrams of Figs. 7.23 and 7.24 differ in one important respect:
dimensionality, which is defined by the pertinent number of basis functions. The BPSK sig-
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FIGURE 7.24 Mapping of BFSK onto two-
dimensional signal-space diagram.

nal-space diagram of Fig. 7.23 is one-dimensional, as it involves the single basis function
of Eq. (7.44). On the other hand, the BFSK signal-space diagram of Fig. 7.24 is two-

dimensional, as it involves the pair of basis functions

(7.52)

and

(7.53)

What insight can we learn from these two signal-space diagrams when considering
the effect of additive channel noise on BPSK and BFSK? To answer this question, we first
note that the separation between the signal points for BPSK is whereas it is 
for BFSK, assuming that the signal energy per bit, and the bit duration, are the
same for both schemes. In other words, we may now make our first statement:

1. The separation between the transmitted signal points for BPSK is times that for
BFSK.

As for the presence of additive channel noise, it has the effect of causing the received sig-
nal point to wander about the transmitted signal point in a random fashion. Accordingly,
we make our second statement:

2. The received signal point lies inside a “cloud” centered on the transmitted signal point.

In light of statements 1 and 2, we are now emboldened to say that under the assumption
of an identical statistical characterization of additive channel noise (and therefore an iden-
tical cloud of uncertainly) for both BPSK and BFSK schemes, noise degrades the performance
of BFSK to a greater extent than BPSK. The validity of this observation is confirmed in Chap-
ter 10, where it is put on a mathematical basis.

22
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22Eb22Eb

f21t2 � B 2
Tb

 cos12pf2t2

f11t2 � B 2
Tb

 cos12pf1t2

f11t2



302 CHAPTER 7 � DIGITAL BAND-PASS MODULATION TECHNIQUES

f

|H(f )|2

f

Ss(f )

f

|H(f )|2Sm(f )

f

Sm(f )

(a)
0

0 0

0

(b)

(c)

(d)

FIGURE 7.25 (a) Frequency response squared of channel. (b) Transmit power spectral density of
single-carrier modulation. (c) Transmit power spectral density of multi-carrier modulation. 
(d) Received power spectral density of multi-carrier modulation.

7.9 Theme Examples

� ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING

In Section 2.11, we discussed the frequency response of twisted pairs used to connect homes
to telephone central switching offices. We found that the frequency response for short
cables is quite flat over the voice band but deteriorates as the cable length increases. For
our first theme example, we consider how we might transmit high-speed data using twisted
pairs to the home. This service is often referred to as digital subscriber line (DSL).

Consider a transmission medium that has the arbitrary frequency response shown in
Fig. 7.25(a). It is clear that this medium will alter the transmitted spectrum of Fig. 7.25(b)
and thereby cause significant intersymbol interference with most of the digital modulation
techniques discussed in this chapter. We refer to modulation techniques that have charac-
teristics similar to Fig. 7.25(b) as single-carrier systems.

Consider next the multi-carrier system shown in Fig. 7.25(c) where a single trans-
mitter employs multiple carriers, each being responsible for a fraction of the overall data
rate. With multi-carrier transmission, the medium will have the same effect on the overall
spectrum, but the spectrum of the individual carriers is relatively undistorted except for pos-
sible gain change and phase rotation, as shown in Fig. 7.25(d).

Now let us consider how we could implement such a multi-carrier system where the
individual components are referred to as subcarriers. Since all of the subcarriers are gener-
ated by the same source, we assume that they can be synchronized. First, consider a single
symbol period and let there be N subcarriers with frequencies and information-carrying
bits The nth subcarrier signal may then be represented as

(7.54)

If is then Eq.(7.54) is simply a complex baseband representation of BPSK at the sub-
carrier frequency Hence, the multi-carrier signal over one symbol period can befn .

�1,bn

sn1t2 � bn exp1j2pfnt2, 0 � t � T

5bn6. 5fn6
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represented as the sum of Eq.(7.54) over all subcarriers, as shown by

(7.55)

Now we ingeniously make the following two decisions:

� We sample this multi-carrier signal at intervals of where 
� We choose the subcarrier frequencies to be spaced at intervals of Then Eq.

(7.55), evaluated at becomes

(7.56)

Comparing what we have presented here with the material in Section 2.10, we find
that the sampled multi-carrier signal is simply the inverse discrete Fourier transform (DFT)
of the data stream Consequently, we can represent this data transmission system as
shown in Fig. 7.26, where the transmitter includes a serial-to-parallel conversion of the
data stream  followed by an inverse DFT subsystem. The receiver performs the inverse pro-
cessing with respect to the transmitter. If we make the additional assumption that N is an
integer power of two, then the system can be implemented efficiently with the fast Fourier
transform (FFT) algorithm, which was also discussed in Section 2.10.

Not only do the decisions regarding the sampling and frequency intervals facilitate a
simple implementation, they also have the following practical benefits:

� The adjacent channels are spaced at intervals this choice implies that there is sig-
nificant spectral overlap, and hence the modulation scheme minimizes the amount of
bandwidth required.

� The fact that the subcarrier frequencies are a multiple of the symbol period means that
they are orthogonal3 over a symbol period. Consequently, there is no interference
between the subcarriers even though they overlap significantly.

� The subcarrier frequencies are continuous from one symbol interval to the next,
meaning there is no distortion of the spectral properties when we transmit a contin-
uous stream of data.
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� Symbols may be continuously extended by a simple repetition referred to as cyclic pre-
fix or postfix; this feature can be used beneficially in channels that tend to lengthen
the pulse interval.

The combination of the multiplexing subcarriers in the frequency domain and the orthog-
onality of these subcarriers lead to the name orthogonal frequency division multiplex
(OFDM) for this multi-carrier modulation technique.4

� GLOBAL SYSTEM FOR MOBILE (GSM) COMMUNICATION

In Chapter 4, we discussed the idea of frequency modulation, based on the definition

(7.57)

where the message signal is an analog signal. In this second theme example, we con-
sider angle modulation that is produced by a digital message signal defined by

(7.58)

where T is the symbol period, is the data symbol of the nth symbol period, and is the
pulse shape applied at each symbol period. In the historical course of events, analog modula-
tion was the mainstay of radio communications for many years before the advent of digital com-
munications. Consequently, for initial digital communications, it was often most convenient
to use an FM transmitter, hence the term digital FM. Digital FM systems have a number of
advantages, not the least of which is power efficiency due to their constant envelope.

The desirable power efficiency made digital FM a strong contender for wireless appli-
cations using handheld terminals with small battery packs. In fact, a form of digital FM was
chosen as a European standard in 1991 and later spread to other parts of the world under
the name GSM (Global System for Mobile Communications).

The actual modulation selected for GSM is called Gaussian minimum shift keying
(GMSK), which is a special combination of Eqs. (7.57) and (7.58). In particular, we intro-
duce three conditions:

1. The pulse shape is chosen to have the Gaussian shape

(7.59)

where the scale factor and the logarithm is the natural logarithm.
2. The factor B controls the signal bandwidth, which, for prescribed symbol period T,

is chosen such that the time-bandwidth product 
3. The frequency sensitivity factor of the modulator is selected such that the phase

change over one symbol period is radians.

Under these three conditions, it turns out that the resulting GMSK signal has a compact
spectrum and may be coherently detected with only 0.46-dB degradation relative to ideal
BPSK performance in noise.

GSM communication (embodying GMSK) may therefore be viewed as a practical
example of the evolution of an analog FM system to a digital system, which attempts to
retain the advantages of the former.5

p>2kf
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5For detailed discussion of GMSK, see Steele and Hanzo (1999).

4For a more detailed discussion of OFDM, see Bahai and Saltzberg (1999).
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FIGURE 7.27 Digital television broadcasting model.

� DIGITAL TELEVISION

For the third and last theme example, we consider digital television. There is a worldwide
movement from analog to digital television with the objective of providing high-quality
video and audio. In North America, the analog NTSC6 television standard is being replaced
by the digital Advanced Television (ATV) standard. For backward compatibility, the new
ATV standard is designed to fit into the 6-MHz channel bandwidth used by current NTSC
service. The ATV system provides two levels of service:

(i) of throughput in a 6-MHz channel broadcast by terrestrial radio.
(ii) of throughput in a 6 MHz channel used by cable networks.

Similar to analog television, digital television is a complex system; the block diagram
of Fig. 7.27 is a hint of the complexity involved. Let us consider the different components
shown in the figure.

Of primary importance are the audio and video sources, without which there would
be no need for the remainder. Nowadays, these sources may take one of many forms, either
analog or digital; thus the transmitter must support a variety of interfaces. The ancillary
data include control data, and data associated with the program audio and video services,
such as closed captioning.

The first operation on the source data is source encoding. This operation refers to sig-
nal processing applied to the video and audio data streams to eliminate redundancy and min-
imize the bit rate required for transmission; it is also referred to as data compression. The
amount of compression possible depends both on the underlying dynamics of the video or
audio signal and the amount of distorsion permissible; in general, the objective is to make any
distortion imperceptibile to a human user. Since the system is designed to carry high-resolution
video, achieving this objective using the available bandwidth requires complex video and audio
compression algorithms.

The ATV system employs a number of source coding and compression algorithms. For
video, the algorithm defined in the MPEG-2 standard is used. This compression algorithm
is capable of coding standard definition television at bit rates from four to nine megabits
per second and high definition television from 15 to 25 megabits per second.

For audio source coding, an algorithm from the Dolby AC-3 standard is used. This
same algorithm is used for laser discs and DVDs. For a 5.1-channel system, this second algo-
rithm can achieve compression ratios in the range of ten to one for high-quality audio.

The multiplexer of Fig. 7.27 provides three specific functions:

1. Dividing the digital data stream into “packets” of information.
2. Providing a unique identifier for each packet or packet type.
3. Multiplexing the video packets, audio packets, and ancillary data packets into a single

data stream.

38 Mb>s19 Mb>s

6NTSC stands for National Television System Committee.
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Given the bandwidth limitations, this multiplexing must be done in a highly efficient manner.
The last three blocks of Fig. 7.27 correspond to the physical layer of digital transmission

systems. The channel encoder takes the data bit stream and adds additional channel encoding
information that is, in turn, used by the receiver to correct errors that may occur due to trans-
mission impairments (see Section 10.8 on error detection and correction). The modulator uses
the digital data stream information to modulate the transmitted carrier. The modulation sub-
system offers two transmission modes, corresponding to the two levels of service:

1. Terrestrial broadcast mode, referred to as 8-VSB, uses an 8-ary PAM signal with
vestigial sideband modulation to transmit 19 megabits/s.

2. High data rate mode, intended for cable transmission and referred to as 16-VSB, uses
a 16-ary PAM signal with vestigial sideband modulation to transmit 38 megabits/s.

We have seen vestigial sideband modulation (VSB) applied to analog signals in Chapter 3.
This raises the question: how is VSB used to transport a digital signal?

Recall that, at complex baseband, the frequency response of the sideband sharing filter
in a VSB modulator looks similar to that shown in Fig. 7.28(a); see Problem 3.32. The mod-
ulator passes most positive frequencies without distortion, and blocks most negative fre-
quency components of the signal. In the region near zero frequency, the frequency response
tapers from 1 to 0, leaving a vestige of the negative frequency component of the signal. To
analyze a digital VSB modulator, we note that this frequency response may be expressed as
the sum of the two frequency responses, denoted by and as shown in Figs.
7.28(b) and 7.28(c), respectively. The first frequency response, corresponds to an all-
pass filter that passes the signal without distortion; since is an even function of fre-
quency, it has a purely real impulse response, The second frequency response, 
corresponds to a filter that passes most positive frequencies without distortion but inverts
the phase of the negative frequency components; since is an odd function of fre-
quency, it has a purely imaginary impulse response, 

Let the input to the VSB modulator be a real digital signal defined by
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where is one of or for an 8-ary PAM signal. The pulse shape corre-
sponds to a root-raised cosine spectral shape; this form of pulse shaping was discussed in Sec-
tion 6.4. The complex baseband representation at the output of the VSB modulator is therefore

(7.61)

where denotes convolution. Since is an all-pass filter, we have 
and we let We may thus rewrite Eq. (7.61) as

(7.62)

The band-pass transmitted signal is therefore given by

(7.63)

where is the carrier frequency. At the receiver, we coherently recover the signal by mul-
tiplying the of Eq. (7.63) by (i.e., a locally generated replica of the carrier)
to obtain (in the absence of channel noise)

(7.64)

Using double-angle trigonometric identities, Eq. (7.64) reduces to

(7.65)

which consists of a baseband term and two high-frequency terms centered at If we
low-pass filter we are then left with which, except for the scaling factor 
is the original message signal.8

The approach described herein can be applied to any signal and does not depend on
the level of digital modulation. Thus, it can be applied equally well to 8-ary or 16-ary
PAM. Furthermore, it simplifies the receiver as only a real channel has to be processed.

The ATV symbol rate with either 8-VSB or 16-VSB is 10.76 megasymbols per sec-
ond. With 8-VSB, there are three bits per symbol and the raw channel bit rate is three times
the symbol rate; overhead and redundant bits for forward error-correction reduce the user
information to approximately 19 megabits per second. The bit rate is twice this value with 16-
VSB. With VSB modulation, the channel bandwidth is approximately half the symbol rate or
5.38 MHz. Thus the VSB modulated signal fits nicely in a 6-MHz channel with some margin
for filter tails and frequency error. It should be noted that the ATV system also includes a pilot
tone (a dc level at complex baseband); this pilot tone is set at 11.3 dB below the signal level,
which is used by the receiver to coherently recover the original information-bearing signal.

7.10 Summary and Discussion

In this chapter, we discussed some important digital band-pass modulation schemes, as
summarized here:

(i) Amplitude-shift keying (ASK), with emphasis on binary signaling.
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1>2,1
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8It is of interest to note that we may use a root-raised cosine pulse shape for low-pass filtering of in the receiver,
which is matched to the transmit pulse shape so as to provide a performance free of intersymbol interference.

x1t2
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(ii) Phase-shift keying (PSK) with emphasis on binary and quaternary forms of signaling.
(Quaternary signaling works with pairs of bits, whereas, of course, binary signaling
works with single bits). Under quaternary signaling, we discussed quadriphase-shift
keying (QPSK) and a variant of it called offset quadriphase-shift keying (OQPSK). The
advantage of OQPSK over QPSK is that it is less sensitive to nonlinearities.

(iii) Frequency-shift keying (FSK) with emphasis on binary signaling. We also discussed a
modification of binary FSK known as minimum-shift keying (MSK), which is an exam-
ple of continuous-phase frequency-shift keying (CPFSK). An important property of MSK
is that it uses minimum frequency spacing, which, in turn, allows the two FSK signals
representing symbols 0 and 1 to be coherently orthogonal so as not to interfere with one
another in the process of coherent detection in the receiver. For its generation, MSK fol-
lows a procedure similar to OQPSK insofar as the extraction of the demultiplexed-off-
set streams from the incoming binary data stream is concerned. They differ from each
other in a simple and important respect: in OQPSK, these two auxiliary binary waves
are weighted by a rectangular function on a dibit-by-dibit basis; whereas in MSK, the
weighting is performed by the positive half cycle of a cosinusoid.

(iv) Coherent detection, which means that regardless of the modulation scheme of inter-
est, the receiver must be synchronized with the transmitter in two respects: carrier
phase and bit timing.

(v) Noncoherent detection, which refers to a scheme in which the receiver ignores knowl-
edge of the carrier phase between its own operation and that of the transmitter. The
implementation of noncoherent detection is straightforward for both amplitude-shift
keying and frequency-shift keying. However, the noncoherent form of phase-shift key-
ing requires more detailed attention. Specifically, a pseudo-form of noncoherent detec-
tion is worked out by combining differential encoding and phase-shift keying, which
results in differential phase-shift keying (DPSK). Note, however, that all noncoherent
receivers, regardless of their origin, require knowledge of bit-timing information.

(vi) Spectral analysis, which was demonstrated by way of experiments performed on
example band-pass signals representative of different digital modulation strategies. The
experiments were of illustrative value by virtue of the fact that the bit rate was a
small fraction of the carrier frequency. In practice, however, we usually find that the
bit rate is orders of magnitude smaller than the carrier frequency. In such situations,
the recommended procedure is to perform the spectral analysis at baseband, where
(without loss of essential information) the presence of the carrier wave is removed by
representing the modulated signal in terms of its in-phase and quadrature compo-
nents. The reader is referred to Problem 7.30 for a repeat of the spectral analysis,
this time using the baseband approach.

(vii) M-ary signaling schemes, whose use is preferred over binary modulation schemes for
transmitting digital data over band-pass channels when the need for conserving channel
bandwidth is of profound importance. In both M-ary PSK and M-ary FSK signaling
schemes, the envelope of the transmitted signal is constant, thereby permitting their use
over nonlinear channels. In contrast, in M-ary QAM, the envelope of the transmitted sig-
nal is variable, which therefore limits its use to linear band-pass channels.

For theme examples, we considered three digital systems of pervasive use in their own indi-
vidual ways:

� Orthogonal frequency-division multiplexing (OFDM), which provides the basis for
high-speed data transmission using twisted pairs that connect homes to telephone
central switching offices.
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� Global system for mobile (GSM) communication, which embodies a modification of
MSK known as Gaussian-filtered minimum shift-keying (GMSK).

� Digital television, the objective of which is to provide high-quality video and audio
using channel parameters similar to analog television.

One last comment is in order. Throughout the discussion of receivers in this chapter, be
they of the coherent or noncoherent kind, we ignored a practical reality: the unavoidable pres-
ence of additive channel noise. Inevitably, the transmitted signal is perturbed by this reality,
which, in turn, has the effect of producing errors in the estimated binary data stream at the
receiver output. The effect of channel noise is discussed in Chapter 10, but we have to first study
the characterization of random signals and noise, which we do in the next chapter.

ADDITIONAL PROBLEMS

7.11 The binary sequence 11100101 is applied to an ASK modulator. The bit duration is and
the sinusoidal carrier wave used to represent symbol 1 has a frequency equal to 7 MHz.
(a) Find the transmission bandwidth of the transmitted signal.
(b) Plot the waveform of the transmitted ASK signal.
Assume that the line encoder and the carrier-wave oscillator are controlled by a common clock.

7.12 Repeat Problem 7.11, assuming that the line encoder and the carrier-wave generator operate inde-
pendently of each other. Comment on your results.

7.13 (a) Repeat Problem 7.11 for the case when the binary sequence 11100101 is applied to a PSK
modulator, assuming that the line encoder and sinusoidal carrier-wave oscillator are oper-
ated from a common clock.

(b) Repeat your calculations, assuming that the line encoder and carrier-wave oscillator oper-
ate independently.

7.14 The binary sequence 11100101 is applied to a QPSK modulator. The bit duration is The
carrier frequency is 6 MHz.
(a) Calculate the transmission bandwidth of the QPSK signal.
(b) Plot the waveform of the QPSK signal.

7.15 Repeat Problem 7.14 for the signaling case of OQPSK.
7.16 The binary sequence 11100101 is applied to Sunde’s BFSK modulator. The bit duration is The

carrier frequencies used to represent symbols 0 and 1 are 2.5 MHz and 3.5 MHz, respectively.
(a) Calculate the transmission bandwidth of the BFSK signal.

(b) Plot the waveform of the BFSK signal.
7.17 As remarked previously, the waveform plotted in Fig. 7.1(d) is an example of MSK. Determine

(a) The frequency excursion of the MSK.

(b) The frequency parameter 

7.18 The binary sequence 11100101 is applied to a MSK modulator. The bit duration is The
carrier frequencies used to represent symbols 0 and 1 are 2.5 MHz and 3 MHz, respectively. Plot
the waveform of the MSK signal.

7.19 Consider an MSK modulator that uses a sinusoidal carrier with frequency The
bit rate of the incoming binary stream is 

(a) Calculate the instantaneous frequency of the MSK modulator for a data sequence in which
symbols 0 and 1 alternate.

(b) Repeat the calculation in part (a) for a data sequence that consists of all 0s. What if the
sequence consists of all 1s?

20  103 bits>s. fc � 50 MHz.

1 ms.

f0 .

df

1 ms.

1 ms.

1 ms,
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7.20 Suppose you are given an MSK signal How would you extract the bit-timing signal from
Explain.

7.21 Consider the noncoherent receiver of Fig. 7.17 for BASK and that of Fig. 7.18 for BFSK. Roughly
speaking, the noncoherent BFSK receiver is twice as complex as the noncoherent BASK receiver.
What would be the advantage of the BFSK system over the BASK system, given that they oper-
ate on the same binary data stream and the same communication channel? Justify your answer.
Hint: Refer to the pertinent phasor representations in Table 7.2.

7.22 Figure 7.29 depicts a receiver for the noncoherent detection of BFSK signals. The receiver con-
sists of two paths; the band-pass filter in the top path is tuned to the carrier frequency rep-
resenting symbol 1, and the band-pass filter in the lower path is tuned to the alternative carrier
frequency representing symbol 0. These two filters are followed by a pair of energy-level
detectors, whose outputs are applied to the comparator to recover the original binary data
stream. Identify the conditions that the receiver of Fig. 7.29 must satisfy for it to be an alter-
native to the noncoherent BFSK receiver of Fig. 7.18.

f2

f1

s1t2? s1t2.

7.23 The binary sequence 11100101 is applied to a DPSK system. The bit duration is The car-
rier frequency is 6 MHz.

(a) Calculate the transmission bandwidth of the system.

(b) Plot the waveform of the transmitted signal.

(c) Using the transmitted sequence of part (b), plot the waveform produced by the receiver,
and compare it against the original binary sequence.

ADVANCED PROBLEMS

7.24 Consider a phase-locked loop consisting of a multiplier, loop filter, and voltage-controlled oscil-
lator (VCO); you may refer to Section 4.8 for a description of the phase-locked loop for the
demodulation of analog frequency modulation. Let the signal applied to the multiplier input be
a PSK signal defined by

where is the phase sensitivity, and the data signal takes on the value for binary sym-
bol 1 and for binary symbol 0. The VCO output is

r1t2 � Ac sin32pfct 	 u1t24
�1

	1b1t2kp

s1t2 � Ac cos32pfct 	 kpb1t24

1 ms.

Band-pass
filter

tuned to f2

Band-pass
filter

tuned to f1

Say 1 if
E1 > E2

Otherwise, say 0

BFSK
signal
s(t)

Comparator

v1(t)dt
v1(t) E1

E2

Tb

0
�

v2(t)dt
v2(t) Tb

0
� 2

2

FIGURE 7.29 Problem 7.22
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(a) Evaluate the loop filter output, assuming that this filter removes only modulated components
with twice the carrier frequency 

(b) Show that this output is proportional to the data signal when the loop is phase locked;
that is, 

7.25 (a) In a coherent FSK system, the signals and representing symbols 1 and 0, respec-
tively, are defined by

(1)

and

(2)

Assuming that show that the correlation coefficient of the signals and 
defined by

is approximately given by

(b) What is the minimum value of frequency shift for which the signals and are
orthogonal?

7.26 A BFSK signal with discontinuous phase is generated by using the incoming binary data stream
to switch between two independent sinusoidal oscillators:

(a) Show that this BFSK signal may be expressed as the sum of two independent BASK signals.
(b) For and plot the BFSK waveform for the binary data stream 01101001,

and compare your result to that of Fig. 7.1(d) for continuous-phase BFSK.
7.27 Table 7.4 shows the phase transitions experienced by an MSK signal. Verify the entries listed

in this table.

u2 � 45°,u1 � 30°

Symbol 0: B2Eb

Tb
 cos(2pf2t 	 u2)

Symbol 1: B2Eb

Tb
 cos(2pf1t 	 u1)

s21t2s11t2¢f

r � sinc12 ¢fTb2

r �
L

T
b

0
s11t2s21t2 dt

L
T

b

0
s1
21t2 dt

s21t2,s11t2fc � ¢f,

s21t2 � Ac cos c2pa fc �
¢f

2
b t d , 0 � t � Tb

s11t2 � Ac cos c2pa fc 	
¢f

2
b t d , 0 � t � Tb

s21t2s11t2
u1t2 � 0.

b1t2fc .

TABLE 7.4 Phase Transitions in MSK

Phase state (radians)

Transmitted bit 

0 0
1
0
1 0 	p>2	p2p

�p>2p

�p>2
u1Tb2u1020 � t � Tb
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7.28 The generation and detection of QPSK can be viewed as an example of the “divide and conquer”
strategy. In particular, the implementation of QPSK is achieved by

• Knowing how to generate and detect BPSK.
• Using the idea of quadrature multiplexing.

Extend what we have learned from this example, and thereby develop the transmitter for gen-
erating 8-PSK and the receiver for detecting it.

� COMPUTER EXPERIMENTS

7.29 In this problem, we continue Computer Experiment III on the spectral comparison of QPSK and
OQPSK. Specifically, using the parameters

Carrier frequency,

Bit duration,

compute the phase spectra of these two digital modulation methods. Hence, justify the asser-
tion made in Drill Problem 7.3 that these two methods differ by a linear phase component, and
determine the slope of that component.

7.30 The purpose of this experiment is to demonstrate that the simulation of a digitally modulated
signal on a computer can be simplified by using the idea of complex envelope that was intro-
duced in Chapter 3. In particular, the experiment compares band-pass and baseband forms of
data transmission, supported by the matlab scripts provided in Appendix 7. The scripts provided
therein also cater to the generation of binary random sequences needed to perform the experi-
ment and thereby add practical realism to the experiments.

(a) To proceed then, generate two random binary sequences and and use them to
form the multiplexed band-pass signal

Hence, compute the magnitude spectrum of , using the following parameters:

Carrier frequency,

Symbol (bit) duration, 

Assume that the two binary sequences are synchronized and they both use amplitude levels
to represent symbols 0 and 1.

(b) Using complex notations, define the complex envelope

on the basis of which we may reconstruct the original band-pass signal

Specifically, compute the magnitude spectrum of the complex envelope , and compare
it to the magnitude spectrum of computed in part (a). Comment on the computational
significance of this comparison.

7.31 Repeat Problem 7.30, this time using a raised-cosine pulse shape of roll-off factor to
construct the binary sequences and ; Appendix 7 provides the matlab scripts for gen-
erating the raised-cosine pulse. Compute the magnitude spectrum of the complex envelope 
and compare it to the magnitude spectrum of the band-pass signal . Comment on your
results.

s(t)
b
'
(t),

bQ(t)bI(t)
a � 1

s(t)
b(t)

s(t) � Re5b'(t)exp(j2pfct6
b
'
(t) � bI(t) 	 jbQ(t)

�1

Tb � 1s

fc � 10 Hz

s(t)

s(t) � bI(t)cos(2pfct) � bQ(t)sin(2pfct)

bQ(t)bI(t)

Tb � 1s

fc � 8 Hz
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1The concept of randomness in communications is expanded upon in the book by Wozencraft and Jacobs (1965) and it is one of
the fundamental tenets of information theory; see Cover and Thomas (1991).

CHAPTER 8

RANDOM SIGNALS

AND NOISE

The term “random” is used to describe erratic and apparently unpredictable variations of
an observed signal. Random signals in one form or another are encountered in every prac-
tical communication system. Consider voice communication, in which voice is often con-
verted to an electrical signal by means of a microphone before processing for transmission.
If this electrical signal is displayed on an oscilloscope, we might be tempted on first sight
to say the signal appears to be quite random; that is, it would be difficult to predict or
reproduce. Similarly, with digital communications, if we consider the stream of 0s and 1s
that are transported over the Internet, they appear quite random—they are always 0 or 1,
but their order and location are quite unpredictable. This randomness or unpredictability
is a fundamental property of information.1 If the information were predictable, there
would be no need to communicate, because the other end could predict the information
before receiving it.

On the other hand, noise is the bane of most communication systems. Noise limits
the range and/or quality with which information-bearing signals may be transported over
a channel. Noise may be defined as any unwanted signal interfering with or distorting the
signal being communicated. Noise is another example of a random signal—if noise was
predictable, we would then predict it at the receiver and remove it, negating its effect.
Thus, in some ways, noise is similar to information in terms of its random nature. It is the
object of the communications engineer to sift one from the other to the maximum extent
possible.

Although information and noise are random signals, they still have properties that
can be measured and analyzed, in some average sense. It is the purpose of this chapter to
introduce the tools that are necessary to analyze information and noise and that are
required to understand the signal detection techniques described in the remainder 
of the book.

The material in this chapter teaches us the following lessons:

� Lesson 1: Random events and signals can be modeled as the outcomes of random
experiments.
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� Lesson 2: Random variables provide a general representation for analyzing, comparing,
and processing outcomes of random experiments. Statistical properties of random events
can be obtained from the expectation of the various functions of these random variables;
the expectation should be viewed as an operator.

� Lesson 3: Gaussian random variables play a key role in the analysis of random signals
because of the central limit theorem and their mathematical tractability.

� Lesson 4: A random process may be viewed as a family of random variables, indexed by a
time parameter. Then we can extend the analysis techniques for random variables to study
the time-variation of random processes.

� Lesson 5: White noise is one of the most important random processes in the study of com-
munication systems, both from a practical viewpoint and for the mathematical tractability
of its statistical properties.

� Lesson 6: Narrowband noise can be analyzed in terms of its in-phase and quadrature com-
ponents, in a manner similar to narrowband communication signals.

8.1 Probability and Random Variables

Probability theory is rooted in situations that involve performing an experiment with an
outcome that is subject to chance. That is, if the experiment is repeated, the outcome may
differ due to the influence of an underlying random phenomenon. Such an experiment is
referred to as a random experiment. For example, the experiment may be the observation
of the result of the tossing of a fair coin. In this experiment, the possible outcomes of a trial
are “heads” and “tails.”

We ask that a random experiment have the following properties:

1. On any trial of the experiment, the outcome is unpredictable.
2. For a large number of trials of the experiment, the outcomes exhibit statistical regu-

larity. That is, a definite average pattern of outcomes is observed if the experiment is
repeated a large number of times.

� RELATIVE-FREQUENCY APPROACH

To elaborate on the concept of statistical regularity, let event A denote one of the possible
outcomes of a random experiment. For example, in the coin-tossing experiment, event A
may represent “heads.” Suppose that in n trials of the experiment, event A occurs times.
We may then assign the ratio to the event A. This ratio is called the relative frequency
of the event A. Clearly, the relative frequency is a nonnegative real number less than or equal
to one. That is to say,

(8.1)0 �
nA

n
� 1

nA>n nA
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1 2 3 4 5 6

Sample point

One-dimensional
sample space

FIGURE 8.1 Sample space of the experiment of throwing
a die.

If event A occurs in none of the trials, If, on the other hand, event A occurs
in all of the trials, 

We say that the experiment exhibits statistical regularity if, for any sequence of n
trials, the relative frequency converges to a limit as n becomes large. We define this
limit

(8.2)

as the probability of event A. Thus, in the coin-tossing experiment, we expect that in a
million tosses of a fair coin, for example, about half of the outcomes will be heads.

The probability of an event is intended to represent the likelihood that a trial of the
experiment will result in the occurrence of the event. For many engineering applications and
games of chance, the use of Eq. (8.2) to define the probability of an event is acceptable. On
the other hand, consider the statistical analysis of the stock market: How are we to achieve
repeatability of such an experiment? A more satisfying approach is to state the properties
that any measure of probability is expected to have, postulating them as axioms, then use
the relative-frequency interpretation to justify them.

� THE AXIOMS OF PROBABILITY

When we perform a random experiment, it is natural for us to be aware of the various
outcomes that are likely to arise. In this context, it is convenient to think of an experiment
and its possible outcomes as defining a space and its points. With each possible outcome
of the experiment, we associate a point called the sample point, which we denote by The
totality of all sample points, corresponding to the aggregate of all possible outcomes of
the experiment, is called the sample space, which we denote by S. An event corresponds to
either a single sample point or a set of sample points. In particular, the entire sample space
S is called the sure event, and the null set is called the null or impossible event; and a sin-
gle sample point is called an elementary event.

Consider for example, an experiment that involves the throw of a die. In this exper-
iment there are six possible outcomes; the showing of one, two, three, four, five, and six
dots on the upper face of the die. By assigning a sample point to each of these possible
outcomes, we have a sample space that consists of six sample points, as shown in Fig. 8.1.

The elementary event describing the statement “a six shows” corresponds to the sam-
ple point On the other hand, the event describing the statement “an even number of
dots shows” corresponds to the subset of the sample space. Note that the term
“event’ is used interchangeably to describe the subset or the statement.

We are now ready to make a formal definition of probability. A probability system
consists of the triple:

1. A sample space S of elementary events (outcomes).

52, 4, 66566.

f

sk .

P3A4 � lim
nS�
¢nA

n
≤

nA>n
1nA>n2 � 1.

1nA>n2 � 0.
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s1

sk
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Sample
space

S
1

0

B

C

2. A class E of events that are subsets of S.
3. A probability measure assigned to each event A in the class which has the

following properties:
(i)

(ii)

(iii) If is the union of two mutually exclusive events in the class E, then

(8.3)

Properties (i), (ii), and (iii) are known as the axioms of probability. Axiom (i) states that
the probability of the sure event is one. Axiom (ii) states that the probability of an event
is a nonnegative number less than or equal to unity. Axiom (iii) states that the probabil-
ity of the union of two mutually exclusive events is the sum of probabilities of the indi-
vidual events.

Although the axiomatic approach to probability theory is abstract in nature, all three
axioms have relative frequency interpretations. Axiom (ii) corresponds to Eq. (8.1). Axiom
(i) corresponds to the limiting case of Eq. (8.1) when the event A occurs in all trials. To inter-
pret axiom (iii), we note that if event A occurs times in n trials and event B occurs
times, then the union of event “A or B” occurs in trials (since A and B can never
occur on the same trial). Hence, and so we have

(8.4)

which has the mathematical form similar to that of axiom (iii).
This abstract definition of a probability system is illustrated in Fig. 8.2. The sam-

ple space S is mapped to events via the random experiment. The events may be ele-
mentary outcomes of the sample space or larger subsets of the sample space. The
probability function assigns a value between 0 and 1 to each of these events. The prob-
ability value is not unique to the event; mutually exclusive events may be assigned the
same probability. However, the probability of the union of all events—that is, the sure
event—is always unity.

nA∪B

n
�

nA

n
	

nB

n

nA	B � nA 	 nB ,
nA 	 nB

nBnA

P3A ∪ B4 � P3A4 	 P3B4
A ∪ B

0 � P3A4 � 1

P3S4 � 1

E,P3A4

FIGURE 8.2 Illustration of the relationship between sample space, events, and probability.
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FIGURE 8.3 Illustration of the relationship between sample space, random variables, and
probability.

� RANDOM VARIABLES

While the meaning of the outcome of a random experiment is clear, such outcomes are
often not the most convenient representation for mathematical analysis. For example, heads
or tails is not a convenient mathematical representation. As another example, consider a
random experiment where we draw colored balls from an urn; the color is not directly
amenable to mathematical analysis.

In these cases, it is often more convenient if we assign a number or a range of values
to the outcomes of a random experiment. For example, a head could correspond to 1 and
a tail to 0. We use the expression random variable to describe this process of assigning a
number to the outcome of a random experiment.

In general, a function whose domain is a sample space and whose range is a set of real
numbers is called a random variable of the experiment. That is, for events in a random
variable assigns a subset of the real line. Thus, if the outcome of the experiment is s, we
denote the random variable as or just X. Note that X is a function, even if it is, for
historical reasons, called a random variable. We denote a particular outcome of a random
experiment by x; that is, There may be more than one random variable asso-
ciated with the same random experiment.

The concept of a random variable is illustrated in Fig. 8.3, where we have suppressed
the events but show subsets of the sample space being mapped directly to a subset of the
real line. The probability function applies to this random variable in exactly the same man-
ner that it applies to the underlying events.

The benefit of using random variables is that probability analysis can now be devel-
oped in terms of real-valued quantities regardless of the form or shape of the underlying
events of the random experiment. Random variables may be discrete and take only a finite
number of values, such as in the coin-tossing experiment. Alternatively, random variables
may be continuous and take a range of real values. For example, the random variable that
represents the amplitude of a noise voltage at a particular instant in time is a continuous
random variable because, in theory, it may take on any value between plus and minus

X1sk2 � x.

X1s2
E,
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0 1 X

1/2 1/2

FIGURE 8.4 Illustration of probability mass function
for coin-tossing experiment.

infinity. Random variables may also be complex valued, but a complex-valued random
variable may always be treated as a vector of two real-valued random variables.

For a discrete-valued random variable, the probability mass function describes the prob-
ability of each possible value of the random variable. For the coin-tossing experiment, if it is
a fair coin, the probability mass function of the associated random variable may be written as

(8.5)

This probability mass function is illustrated in Fig. 8.4, where delta functions of weight 
are used to represent the probability mass at each of the two points, 0 and 1.

EXAMPLE 8.1 Bernoulli Random Variable

Consider the coin-tossing experiment in which the probability of heads is p. Let X be a ran-
dom variable that takes the value 0 if the result is tails and 1 if it is heads. We say that X is a
Bernoulli random variable. The probability mass function of a Bernoulli random variable is

(8.6)

� DISTRIBUTION FUNCTIONS

Closely related to the probability mass function is the probability distribution function.
This is the probability that the random variable X takes any value less than or equal to x.
The distribution function is written as so

(8.7)

The function is a function of x, not of the random variable X. However, it depends on
the assignment of the random variable X, which accounts for the use of X as subscript. For any
point x, the distribution function expresses the probability that the value of X is less than x.

The distribution function has two basic properties, which follow directly from 
Eq. (8.7):

1. The distribution function is bounded between zero and one.
2. The distribution function is a monotone nondecreasing function of x; that is,

If X is a continuous-valued random variable and is differentiable with respect to x, then
a third commonly used function is the probability density function, denoted by wherefX1x2,FX1x2

FX1x12 � FX1x22 if x1 � x2

FX1x2
FX1x2

FX1x2
FX1x2 � P3X � x4

FX1x2,

P3X � x4 � c 1 � p, x � 0
p, x � 1
0, otherwise

1
2

P3X � x4 � c 1
2, x � 0
1
2, x � 1
0, otherwise
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(8.8)

A probability density function has three basic properties:

1. Since the distribution function is monotone nondecreasing, it follows that the density
function is nonnegative for all values of x.

2. The distribution function may be recovered from the density function by integration,
as shown by

(8.9)

3. Property 2 implies that the total area under the curve of the density function is unity.

EXAMPLE 8.2 Bernoulli Distribution Function

Continuing with Example 8.1, we see that the probability distribution function of the Bernoulli
random variable is given by

EXAMPLE 8.3 Uniform Distribution

Consider a random variable X with the density function

(8.10)

This function, shown in Fig. 8.5(a), satisfies the requirements of a probability density because
and the area under the curve is unity. A random variable having the probability den-

sity function of Eq. (8.10) is said to be uniformly distributed.
fX1x2 � 0,

fX1x2 � c 1
b � a

, a � x � b

0, otherwise

FX1x2 � c 0, x � 0
1 � p, 0 � x � 1
1, x � 1

FX1x2 � L
x

�q
fX1s2 ds

fX1x2 �
�

�x
FX1x2

(a)

0

fX (x)

x

b – a

a b

1——

(b)

0

FX (x)

x
a b

1.0

FIGURE 8.5 The uniform distribution. 
(a) The probability density function. 
(b) The distribution function.
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The corresponding distribution function of the uniformly distributed random variable
X is continuous everywhere, as shown by

This distribution function is plotted in Fig. 8.5(b).

� SEVERAL RANDOM VARIABLES

Thus far we have focused attention on situations involving a single random variable. How-
ever, we find frequently that the outcome of an experiment may be described by several dif-
ferent random variables, and we are interested in the relationships between these random
variables. In this section, we consider the case of two random variables, but the approach
can be extended to any number of random variables.

Consider two random variables X and Y. We define the joint distribution function
as the probability that the random variable X is less than or equal to a speci-

fied value x and that the random variable Y is less than or equal to a specified value y. The
joint distribution function, is the probability that the outcome of an experiment
will result in a sample point lying inside the quadrant of the
joint sample space. That is,

(8.11)

Suppose that the joint distribution function is continuous everywhere, and that
the partial derivative

(8.12)

exists and is continuous everywhere. We call the function the joint probability
density function of the random variables X and Y. The joint distribution function 
is a monotone nondecreasing function of both x and y. Therefore, from Eq. (8.12), it fol-
lows that the joint probability density function is always nonnegative. Also, the
total volume under the graph of a joint probability density function is unity.

The probability density function for a single random variable, say X, can be obtained
from its joint probability density function with a second random variable, say Y, in the fol-
lowing way. We first note that

(8.13)

Differentiating both sides of Eq.(8.13) with respect to x, we get the desired relation

(8.14)

Thus the probability density function may be obtained from the joint probability den-
sity function by simply integrating over all possible values of the random variable
Y. The use of similar arguments in the context of the other random variable Y yields
The probability density functions and are called marginal densities.fY1y2fX1x2 fY1y2.fX, Y1x, y2 fX1x2

fX1x2 � L
q

�q
fX, Y1x, h2 dh

FX1x2 � L
q

�qL
x

�q
fX, Y1j, h2 dj dh

fX, Y1x, y2
FX, Y1x, y2fX, Y1x, y2

fX, Y1x, y2 �
�2FX, Y1x, y2

�x �y

FX, Y1x, y2
FX, Y1x, y2 � P3X � x, Y � y4

1�� � X � x, �� � Y � y2FX, Y1x, y2,
FX, Y1x, y2

FX1x2 � L
x

�q
fX1s2 ds � d 0, x � a

x � a
b � a

, a � x � b

1, x � b
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Two random variables, X and Y, are statistically independent if the outcome of X does
not affect the outcome Y. Mathematically, for independent X and Y, the joint probability,

is the product of the individual probabilities; that is,

(8.15)

for all sets A and B in the respective ranges of X and Y. The property of Eq. (8.15) imme-
diately extends to distribution functions by letting and that is,

(8.16)

A similar property holds for the joint density function. In general, for situations
involving two or more independent random variables, the variables may be addressed sep-
arately without concern for their interaction with other random variables. To simplify nota-
tion when considering the probabilities of random variables, we will often suppress the
sets involved; for instance, Eq. (8.15) is often written simply as 

EXAMPLE 8.4 Binomial Random Variable

Consider a sequence of coin-tossing experiments where the probability of a head is p and let
be the Bernoulli random variable representing the outcome of the nth toss. Since the outcome
of one coin toss is not expected to influence the outcome of subsequent coin tosses, this set is
referred to as a set of independent Bernoulli trials.

Let Y be the number of heads that occur on N tosses of the coins. This new random
variable may be expressed as

(8.17)

What is the probability mass function of Y?
First consider the probability of obtaining y heads in a row followed by tails.

Using the independence of the trials, repeated application of Eq. (8.15) implies that this prob-
ability is given by

By symmetry, this is the probability of any sequence of N trials that has y heads. To determine
the probability of obtaining y heads anywhere in the N trials, the relative frequency definition
of probability implies we simply have to count the number of possible arrangements of N
tosses that have y heads and tails. That is, the probability that is given by

(8.18)

where

is the combinatorial function. Equation (8.18) defines the probability mass function of Y and
the random variable Y is said to have a binomial distribution. The binomial distribution derives
its name from the fact that the values of are the successive terms in the expansion of
the binomial expression

(8.19)3p 	 11 � p24N
P3Y � y4

¢N
y
≤ �

N!
y!1N � y2!

P3Y � y4 � ¢N
y
≤py11 � p2N�y

Y � yN � y

� py11 � p2N�y

P3y heads followed by N � y tails4 � ppp Á pp11 � p211 � p2Á 11 � p2

N � y

Y � a
N

n�1
Xn

Xn

P3X, Y4 � P3X4 P3Y4.

FX, Y1x, y2 � FX1x2FY1y2
B � 1��, y4;A � 1��, x4

P3X � A,Y � B4 � P3X � A4P3Y � B4
P3X � A,Y � B4,
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where the term of the expansion corresponds to The binomial probabil-
ity mass function for and is illustrated in Fig. 8.6.p � 1

2N � 20
P3Y � y4.1y 	 12st
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FIGURE 8.6 The binomial probability mass function for and p � 1
2 .N � 20

EXAMPLE 8.5 Binomial Distribution Function

This example addresses the probability distribution function of a binomial random variable.
By the definition of Eq. (8.7), the distribution function is given by thus

for a binomial random variable we have

(8.20)

This distribution function of Y is illustrated in Fig. 8.7 for and We can use the
observation of Eq. (8.19) to show that

(8.21)

as it should for a distribution function.

� 1

� 3p 	 11 � p24N
FY1N2 � a

N

k�0
¢N

k
≤pk11 � p2N�k

p � 1
2 .N � 20

� a
y

k�0
¢N

k
≤pk11 � p2N�k

� a
y

k�0
P3Y � k4

FY1y2 � P3Y � y4
FY1y2 � P3Y � y4,
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FIGURE 8.7 The binomial distribution function for and p � 1
2 .N � 20

� Drill Problem 8.1 An information packet contains 200 bits. This packet is transmitted over
a communications channel where the probability of error for each bit is What is the proba-
bility that the packet is received error-free? �

� Drill Problem 8.2 Suppose the packet of Problem 8.1 includes an error-correcting code
that can correct up to three errors located anywhere in the packet. What is the probability that
a particular packet is received in error in this case? �

� CONDITIONAL PROBABILITY

Suppose we are studying a random experiment or signal that has been characterized by
two random variables, X and Y, which are not independent. Then we would expect that
knowing the value of one random variable, say X, would influence the values observed for
the other random variable. For example, consider tossing two dice. Suppose X represents
the number showing on the first die and Y represents the sum of the two dice. Knowing

will clearly influence the value that we would expect to see for Y.
We let denote the probability mass function of Y given that X has occurred.

The probability is called the conditional probability of Y given X. Assuming X has
nonzero probability, the conditional probability is defined as

(8.22)

where is the joint probability of the two random variables. This definition may be
justified using a relative frequency interpretation.

We may rewrite Eq. (8.22) as

(8.23)P3X, Y4 � P3Y ƒX4 P3X4

P3X, Y4
P3Y ƒX4 �

P3X, Y4
P3X4

P3Y ƒX4P3Y ƒX4X � 3

10�3.
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If we consider the conditional probability of X given Y, we may also write

(8.24)

Equations (8.23) and (8.24) state that the joint probability of two events may be expressed
as the product of the conditional probability of one event given the other, and the elemen-
tary probability of the other. Note that the conditional probabilities and 
have the same properties as the various probabilities previously defined.

Situations may exist where the conditional probability and the probabilities
and are easily determined directly, but the conditional probability is

desired. From Eqs. (8.23) and (8.24), it follows that, provided we may deter-
mine by using the relation

(8.25)

This relation is a special form of Bayes’ rule.
Suppose that the conditional probability is simply equal to the probability of

occurrence of Y; that is,

(8.26)

Under this condition, the joint probability of X and Y is equal to the product of the indi-
vidual probabilities:

(8.27)

It then follows from Eq. (8.24) that In this case, knowledge of the outcome
of a random variable tells us no more about probability of the outcome of the other ran-
dom variable than we knew without that knowledge. Random variables X and Y that sat-
isfy this condition are said to be statistically independent.

EXAMPLE 8.6 Binary Symmetric Channel

Consider a discrete memoryless channel used to transmit binary data. The channel is said to be dis-
crete in that it is designed to handle discrete messages. It is memoryless in the sense that the chan-
nel output at any time depends only on the channel input at that time. Due to the unavoidable
presence of noise on the channel, errors are made in the received binary data stream. Specifically,
when symbol 1 is sent, occasionally an error is made and symbol 0 is received, and vice versa. The
channel is assumed to be symmetric, which means that the probability of receiving symbol 1 when
0 is sent is the same as the probability of receiving symbol 0 when symbol 1 is sent.

To describe the probabilistic nature of this channel fully, we need two sets of probabilities:

1. The a priori probability of sending binary symbols 0 and 1 is given by

where X is the random variable representing the transmitted symbol. Note that
so X is a Bernoulli random variable.

2. The conditional probability of error is given by

where Y is the random variable representing the received symbol. The conditional prob-
ability is the probability that symbol 0 is received given that symbol 1
was sent.

P3Y � 0 ƒX � 14
P3Y � 1 ƒX � 04 � P3Y � 0 ƒX � 14 � p

p0 	 p1 � 1,

P3X � x4 � bp0 x � 0
p1 x � 1

P3X ƒY4 � P3X4.
P3X, Y4 � P3X4 P3Y4

P3Y ƒX4 � P3Y4
P3Y ƒX4

P3Y ƒX4 �
P3X ƒY4 P3Y4

P3X4
P3Y ƒX4 P3X4 
 0,

P3Y ƒX4P3Y4P3X4 P3X ƒY4
P3X ƒY4P3Y ƒX4

P3X, Y4 � P3X ƒY4 P3Y4
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0 0
p

p

1 – p

1 – p

1 1 FIGURE 8.8 Transition probability diagram of
binary symmetric channel.

The requirement is to determine the a posteriori probabilities and
The conditional probability is the probability that symbol

0 was sent if symbol 0 was received, and similarly for Both these conditional
probabilities refer to events that are observed “after the fact”; hence the name “a posteriori”
probabilities.

Since the events and are mutually exclusive, and the probability of receiv-
ing symbol 0 or symbol 1 is unity, we have from axiom (iii):

That is to say,

Similarly, we may write

Accordingly, we may use the transition probability diagram shown in Fig. 8.8 to represent the
binary communication channel specified in this example; the term “transition probability”
refers to the conditional probability of error. Figure 8.8 clearly depicts the (assumed) sym-
metric nature of the channel; hence the name “binary symmetric channel.”

From Figure 8.8 we deduce the following results:

1. The probability of receiving symbol 0 is given by

(8.28)
2. The probability of receiving symbol 1 is given by

(8.29)

Therefore, applying Bayes’ rule, we obtain

(8.30)

and

(8.31)

These are the desired results.

�
11 � p2p1

pp0 	 11 � p2p1

P3X � 1 ƒY � 14 �
P3Y � 1 ƒX � 14P3X � 14

P3Y � 14

�
11 � p2p011 � p2p0 	 pp1

P3X � 0 ƒY � 04 �
P3Y � 0 ƒX � 04P3X � 04

P3Y � 04

� pp0 	 11 � p2p1

P3Y � 14 � P3Y � 1 ƒX � 04P3X � 04 	 P3Y � 1 ƒX � 14P3X � 14
� 11 � p2p0 	 pp1

P3Y � 04 � P3Y � 0 ƒX � 04P3X � 04 	 P3Y � 0 ƒX � 14P3X � 14

P3Y � 1 ƒX � 14 � 1 � p

P3Y � 0 ƒX � 04 � 1 � p

P3Y � 0 ƒX � 04 	 P3Y � 1 ƒX � 04 � 1

Y � 1Y � 0

P3X � 1 ƒY � 14.P3X � 0 ƒY � 04P3X � 1 ƒY � 14. P3X � 0 ƒY � 04
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� Drill Problem 8.3 Continuing with Example 8.6, find the following conditional prob-
abilities: and �

� Drill Problem 8.4 Consider a binary symmetric channel for which the conditional prob-
ability of error and symbols 0 and 1 occur with equal probability. Calculate the fol-
lowing probabilities:

(a) The probability of receiving symbol 0.
(b) The probability of receiving symbol 1.
(c) The probability that symbol 0 was sent given that symbol 0 is received.
(d) The probability that symbol 1 was sent given that symbol 0 is received. �

8.2 Expectation

The probability distribution function, while it provides a complete description of the random
variable, may include more detail than is necessary in some instances. We may wish to use
simple statistical averages, such as the mean and variance, to describe the random variable.

� MEAN

These statistical averages or expectations are denoted by, for example, for the
expected value of a function of the random variable X. For the case of the expected
value of X, we denote the mean using the shorthand For a discrete random variable
X, the mean, is the weighted sum of the possible outcomes

(8.32)

where the sum is over all possible outcomes of the random variable X. For a continuous ran-
dom variable with a density function the analogous definition of the expected value is

(8.33)

Often the mean value of a random variable is estimated from N observations of the ran-
dom variable using the estimator

(8.34)

That is, we estimate the mean of the distribution by averaging over a number of observa-
tions of the random variable. This estimator is based on the relative frequency definition
of probability. For example, if the possible outcomes of a random variable Z are

then the estimator becomes

where is the number of times that the observation occurs. We may rewrite this
equation as

Z � ini

mN Z �
1 # n1 	 2 # n2 	 Á 	 M # nM

N

1, 2, 3, Á , M,

mN X �
1
N a

N

n�1
xn

5x1, x2, Á , xN6,

E3X4 � L
q

�q
xfX1x2 dx

fX1x2,
� a

X
x P3X � x4

mX � E3X4
mX ,

mX .
g1.2 E3g1X24

p � 10�4,

P3X � 1 ƒY � 04.P3X � 0 ƒY � 14
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That is, we expect the more probable outcomes to occur more frequently when a number
of observations are made.

Returning to the general case, if we consider X as a random variable representing
observations of the voltage of a random signal, then the mean value of X represents the aver-
age voltage or dc offset of the signal.

� VARIANCE

The variance of a random variable is an estimate of the spread of the probability distribu-
tion about the mean. For discrete random variables, the variance, is given by the expec-
tation of the squared distance of each outcome from the mean value of the distribution.

(8.35)

For a continuous random variable with density function the analogous definition of
variance is given by

(8.36)

As is the case for the mean, we may estimate the variance of a random variable from N inde-
pendent observations using the formula

(8.37)

We may justify this estimator using the relative frequency interpretation of probability. For
example, if we use the random variable Z defined previously, we have

(8.38)

The factor appearing on the right-hand side of Eq. (8.38) is due to the assump-
tion that the same N observations are used to estimate the mean With this factor, the
expected value of the right-hand side is and, consequently, Eq. (8.37) is an unbiased esti-
mator of the variance. We say is an unbiased estimator of g if E3gN4 � E3g4.gN

sZ
2

mN .
N>1N � 12

�
N

N � 1 a
M

i�1
1i � mN Z22 P3Z � i4

�
N

N � 1 a
M

ni�1
1i � mN Z22 ni

N

sN Z
2

�
11 � mN Z22 # n1 	 12 � mN Z22 # n2 	 Á 	 1M � mN Z22 # nM

N � 1

sN X
2

�
1

N � 1 a
N

n�1
1xn � mN X22

sX
2

� L
q

�q
1x � mX22fX1x2 dx

fX1x2,
� a

X
1x � mX22P3X � x4

� E31X � mX224
sX

2
� Var1X2

sX
2 ,

� a
M

i�1
iP3Z � i4

mN Z � a
M

i�1
i
ni

N



328 CHAPTER 8 � RANDOM SIGNALS AND NOISE

If we consider X as a random variable representing observations of the voltage of a ran-
dom signal, then the variance represents the ac power of the signal. The second moment of X,

is also called the mean-square value of the random signal and it physically represents
the total power of the signal.

EXAMPLE 8.7 Mean and Variance of a Bernoulli Random Variable

If X is a Bernoulli random variable with parameter p, then the expected value of X is

With the variance of X is given by

� COVARIANCE

Also of importance in the analysis of communication systems are the statistical averages
between two random variables. The covariance of two random variables, X and Y, is given
by the expected value of the product of the two random variables,

(8.39)

We may expand this equation to obtain2 (see Problem 8.23)

(8.40)

If the two random variables are continuous with joint density, then the expec-
tation term of Eq. (8.40) is given by

(8.41)

If the two random variables happen to be independent, then

(8.42)

as we might intuitively expect. Substituting this result into Eq. (8.40), we find that the
covariance of independent random variables is zero. It should be noted however that

� E3X4E3Y4
� L

q

�q
xfX1x2 dx L

q

�q
yfX1y2 dy

E3XY4 � L
q

�qL
q

�q
xyfX1x2fY1y2 dx dy

E3XY4 � L
q

�qL
q

�q
xyfX, Y1x, y2 dx dy

fX, Y1x, y2,
Cov1X, Y2 � E3XY4 � mXmY

Cov1X, Y2 � E31X � mX21Y � mY24

� p11 � p2
� 1p2 � p32 	 1p � 2p2 	 p32
� 10 � p2211 � p2 	 11 � p22p

sX
2

� a
1

k�0
1k � mX22P3X � k4

mX � E3X4,
� p

� 0 # 11 � p2 	 1 # p
E3X4 � a

1

k�0
kP3X � k4

E3X24,

2If the random variables are complex valued, then this expression is modified to 
where the asterisk denotes complex conjugation. In such a situation, Cov(X, Y) and Cov (Y, X) are unequal.

Cov1X, Y2 � E3XY*4 � mXmY
… ,
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the opposite is not always true: zero covariance does not, in general, imply
independence.

� Drill Problem 8.5 Determine the mean and variance of a random variable that is uni-
formly distributed between a and b. �

8.3 Transformation of Random Variables

In communication systems, random signals may be processed by several devices, linear or
nonlinear, before the final output. If we represent a random signal as a random variable and
know its distribution function before processing, it is logical to ask: what is the new dis-
tribution function of the random variable after processing? In this section, we provide some
answers to this question when the transformation is one-to-one.3 For example, assume
that a random variable X with distribution is transformed to What is
the distribution function of Y?

We answer this question by returning to probability fundamentals. Consider the prob-
ability that X belongs to the set A where A is a subset the real line. If then it fol-
lows that where B is defined by hence, we have

(8.43)

Suppose the set B is the real line from to y, which we write as ( ]. Then the set A
is given by So, we may write

(8.44)

which defines the relationship between distribution functions of the original random vari-
able X and that of the transformed random variable Y. In general, if is a one-
to-one transformation of the random variable X to the random variable Y, then the
distribution function of Y is given by

(8.45)

where the symbol denotes the functional inverse of It can be shown that if X

has a density then the density of Y is provided that the 
transformation is differentiable.

EXAMPLE 8.8 The Cosine Transformation

Let X be a random variable that is uniformly distributed on Let Y be the transformed
variable, We wish to find the distribution function of Y.

We first observe that the transformation is not one-to-one, so we cannot use
the above theory directly. However, we note that we can split the range of X into two inter-
vals and where, in each interval, the transformation is one-to-one. Consequently,
if Y belongs to the set B, then X belongs to the set or X belongs to the
set Since the two sets and are disjoint, we may use the axioms
of probability to write

(8.46)P3Y � B4 � P3X � A14 	 P3X � A24
A2A1A2 � cos�11B2 ∩ 3p, 2p2. A1 � cos�11B2 ∩ 30, p23p, 2p230, p2

Y � cos1X2Y � cos1X2. 30, 2p2.

fX1g�11y22 ƒ dg�1(y)

dy
ƒ ,f1x2,

g1y2.g�11y2
FY1y2 � FX1g�11y22

Y � g1X2
� FXay � b

a
b

� P3X � 1��, 1y � b2>a44
FY1y2 � P3Y � 1��, y44

A � 1B � b2>a � 1��, 1y � b2>a4. ��, y��

P3X � A4 � P3Y � B4
B � aA 	 b;Y � B

X � A,

Y � aX 	 b.FX1x2

3For further examples of functions of random variables, see pages 119–126 of Leon-Garcia (1994) and pages
179–190 of Bertsekas and Tsitsiklis (2002).
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When we then have from Fig. 8.9

where refers to the principal value; that is, is always in Evaluating
Eq. (8.46) we have

(8.47)

where Since X is uniformly distributed with density 
this probability is proportional to the length of interval A; that is,

Substituting this result into Eq. (8.47) defines the distribution of Y.

� Drill Problem 8.6 Let X be a random variable and let What are
the mean and variance of the random variable Y? �

� Drill Problem 8.7 What is the probability density function of the random variable Y of
Example 8.8? Sketch this density function. �

8.4 Gaussian Random Variables4

The Gaussian random variable5 plays an important role in many applications and is by far
the most commonly encountered random variable in the statistical analysis of communi-

Y � 1X � mX2>sX .

P3X � A4 �
2p � 2 cos�11y2

2p

1>2p,A � 3cos�11y2, 2p � cos�11y24.

� c 0, y � �1
P3A4, ƒy ƒ � 1
1, y � 1

FY1y2 � c P3f4 	 P3f4, y � �1
P3A4, ƒy ƒ � 1
P30, p4 	 P3p, 2p4, y � 1

30, p4.cos�11y2cos�11y2
A1 � c f, y � �13cos�11y2, p4, ƒy ƒ � 130, p4, y � 1

and A2 � c f, y � �13p, 2p � cos�11y24, ƒy ƒ � 13p, 2p4, y � 1

B � 1��, y4,

x = cos–1y

x = 2� – cos–1y

y

Y = cos X

X
� 2�

FIGURE 8.9 Illustration of cosine
transformation.

4The Gaussian distribution is named after the great mathematician C. G. Gauss. At age 18, Gauss invented the
method of least squares for finding the best estimate of a quantity based on a sequence of measurements. Gauss
later used the method of least squares for estimating orbits of planets with noisy measurements, a procedure that
was published in 1809 in his book Theory of Motion of Heavenly Bodies. In connection with the error of obser-
vation, he developed the Gaussian distribution.
5Gaussian random variables are also called normal random variables. Engineers and physicists tend to use the term
“Gaussian” while mathematicians tend to use the term “normal.”
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cation systems. A Gaussian random variable is a continuous random variable with a den-
sity function given by

(8.48)

where the Gaussian random variable X has mean and variance This density func-
tion extends from to and is symmetric about the mean A Gaussian random vari-
able has a number of properties that we will state without proof6:

1. A Gaussian random variable is completely characterized by its mean and variance.
2. A Gaussian random variable plus a constant is another Gaussian random variable with

the mean adjusted by the constant.
3. A Gaussian random variable multiplied by a constant is another Gaussian random

variable where both the mean and variance are affected by the constant.
4. The sum of two independent Gaussian random variables is also a Gaussian random

variable.
5. The weighted sum of N independent Gaussian random variables is a Gaussian ran-

dom variable.
6. If two Gaussian random variables have zero covariance (uncorrelated), they are also

independent.

Except for properties 2 and 3, these properties do not hold, in general, for other types of
random variables.

For the special case of a Gaussian random variable with a mean of zero, 
and a variance of unity, the density function is given by

(8.49)

which has the familiar bell-shaped curve depicted in Fig. 8.10(a).
The distribution function of this normalized Gaussian random variable is given by the

integral of this function

(8.50)

and illustrated in Fig. 8.10(b). There is no closed-form solution for this integral but, due
to frequent appearance of integrals of this type, numerous related functions have been
defined and tabulated. The related function, often used in the communications context, is
the Q-function, defined as7

(8.51)� 1 � FX1x2
Q1x2 �

1
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1x � mX22
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6A proof of these properties may be found in Chapter 4 of Leon-Garcia (1994) and Chapter 3 of Bertsekas and
Tsitsiklis (2002).

7Appendix 4 presents tabulated values of the Q(x).Q-function
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The last line of Eq. (8.51) indicates that the Q-function is the complement of the normal-
ized Gaussian distribution function. The Q-function is plotted in Fig. 8.11.

To reiterate: with Gaussian random variables, the mean and variance have particu-
lar importance because they completely characterize the distribution function.

EXAMPLE 8.9 Probability of Bit Error with PAM

In a pulse-amplitude modulation (PAM) transmission scheme, binary data are represented with
voltage levels of for a 1 and for a 0. Suppose that a 1 is transmitted and received in
the presence of Gaussian noise having a mean of zero and a variance of We wish to find
the probability that the bit is incorrectly detected.

The received data can be represented by the random variable Y, defined as

(8.52)

where N is a Gaussian random variable with zero mean and variance It follows from the
properties of random variables that Y is also a Gaussian random variable but with a mean of
A and a variance of as illustrated in Fig. 8.12.

The probability that an error occurs is the probability that Y has a value less than zero.
This probability corresponds to the shaded area under the curve of Fig. 8.12. Mathematically,
this probability is given by

(8.53)P3Y � 04 � L
0

�q

1

22ps
 exp5�1y � A22>2s26 dy
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s2.

Y � A 	 N
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FIGURE 8.10 The normalized Gaussian
distribution. (a) The probability density
function. (b) The distribution function.
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If we make the change of variable by setting

(8.54)

then Eq. (8.53) becomes

(8.55)

where we have used the definition of the Q-function in Eq. (8.51). We will return to this
example in Chapter 10.

� Drill Problem 8.8 Show that the mean and variance of a Gaussian random variable X
with the density function given by Eq. (8.48) are and respectively. �

� Drill Problem 8.9 Show that for a Gaussian random variable X with mean and vari-
ance the transformation converts X to a normalized Gaussian random
variable with zero mean and with variance. �

8.5 The Central Limit Theorem

An important result in probability theory that is closely related to the Gaussian distribu-
tion is the central limit theorem. Let be a set of random variables with the
following properties:

1. The with are statistically independent.
2. The all have the same probability density function.
3. Both the mean and the variance exist for each Xk .

Xk

k � 1, 2, 3, Á , nXk

X1, X2, Á , Xn

Y � 1X � mX2>sXsX
2 ,

mX
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FIGURE 8.12 Density function of noisy PAM signal Y.
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We do not assume that the density function of the is Gaussian. Let Y be a new ran-
dom variable defined as

(8.56)

Then, according to the central limit theorem, the normalized random variable

(8.57)

approaches a Gaussian random variable with zero mean and unit variance as the number
of the random variables increases without limit. That is, as n becomes large,
the distribution of Z approaches that of a zero-mean Gaussian random variable with unit
variance, as shown by

(8.58)

This is a mathematical statement of the central limit theorem. In words, the normalized dis-
tribution of the sum of independent, identically distributed random variables approaches
a Gaussian distribution as the number of random variables increases, regardless of the
individual distributions. Thus, Gaussian random variables are common because they char-
acterize the asymptotic properties of many other types of random variables.

When n is finite, the Gaussian approximation of Eq. (8.58) is most accurate in the cen-
tral portion of the density function (hence the central limit) and less accurate in the “tails”
of the density function.

� COMPUTER EXPERIMENT: SUMS OF RANDOM VARIABLES

In Problem 8.55 toward the end of this chapter, we describe a computer experiment to
demonstrate the central limit theorem. In this experiment, we consider the random variable

where the are independent, uniformly distributed random variables on the interval from
to In the computer experiment, we compute 20,000 samples of Z for and

estimate the corresponding density function by forming a histogram of the results. In 
Fig. 8.13, we compare this histogram (scaled for unit area) to the Gaussian density func-
tion having the same mean and variance. As the graph indicates, it does not take many
random contributions to approach an overall Gaussian distribution.

The results of this experiment indicate how powerful the central limit theorem is and
explain why Gaussian models are ubiquitous in the analysis of random signals in commu-
nications and elsewhere. An added bonus is the mathematical tractability of Gaussian ran-
dom variables and the fact that the distribution type is unchanged after linear processing but,
of course, the mean and variance of the Gaussian distribution are subjected to change.

� Drill Problem 8.10 Determine the mean and variance of the sum of five independent uni-
formly distributed random variables on the interval from to �	1.�1

N � 5,	1.�1
Xi

Z � a
N

i�1
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FZ1z2S L
z

��
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22p
 expb�
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2
rds

X1, X2, Á , Xn

Z �
Y � E3Y4
sY

Y � a
n
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Xk

Xk



8.6 Random Processes 335

8.6 Random Processes

In a radio communication system, the received signal usually consists of an information-
bearing signal component, a random interference component, and channel noise. The infor-
mation-bearing signal may represent, for example, a voice signal that, typically, consists of
randomly spaced bursts of energy of random duration. The interference component may
represent spurious electromagnetic waves produced by other communication systems oper-
ating in the vicinity of the radio receiver. A major source of channel noise is thermal noise,
which is caused by the random motion of the electrons in conductors and devices at the front
end of the receiver. We thus find that the received time-varying signal is random in nature.
In this section, we combine the concepts of time variation and random variables to intro-
duce the concept of random processes. Although it is not possible to predict the exact value
of the random signal or process in advance, it is possible to describe the signal in terms of
the statistical parameters such as average power and power spectral density, as will be
shown in this chapter.

Random processes represent the formal mathematical model of these random sig-
nals. From the above discussion, random processes have the following properties:

1. Random processes are functions of time.
2. Random processes are random in the sense that it is not possible to predict exactly

what waveform will be observed in the future.

Analogous to random variables, when discussing an experiment involving random processes
it is convenient to think in terms of a sample space. Specifically, each outcome of the exper-
iment is associated with a sample point. However, in this case each sample point represents
a time-varying function. The aggregate of all possible outcomes of the experiment is referred
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FIGURE 8.13 Comparison of the empirical density of sum of five uniform
variables with a Gaussian density having the same mean and variance.
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to as the sample space, ensemble, or random process. Reiterating, each point in the sam-
ple space or ensemble is a function of time. As an integral part of the definition of a ran-
dom process, we assume the existence of a probability distribution over appropriate sets
in the sample space, so we may speak of the probability of various events.

Consider a random experiment specified by the outcomes s from a sample space S,
and the probabilities of these events. Suppose that we assign to each sample point s a func-
tion of time with the label

(8.59)

where 2T is the total observation period. For a fixed sample point the function of 
is called a realization or a sample function of the random process. To simplify notation, we
denote this sample function as

(8.60)

Figure 8.14 illustrates a set of sample functions From this figure, we
note that at a fixed inside the observation window, the set of numbers

is a random variable. Thus, we have an indexed ensemble (family) of random variables
which is called a random process. To simplify notation, it is convenient to sup-

press the s and use to denote the random process.
To compare:

� With a random variable, the outcome of random experiment is mapped to a real number.
� With a random process, the outcome of random experiment is mapped into a wave-

form that is a function of time.
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FIGURE 8.14 Illustration of the relationship between sample space and the ensemble of sample functions.
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At any point in the observation window, the possible outcomes of a random process can
be represented as a random variable. The family of all such random variables, indexed by
the time variable t, forms the random process.

The range of possible random processes is quite large. To restrict this range to ran-
dom processes that are both: (i) typical of real-world situations, and (ii) mathematically
tractable, we need two technical conditions, stationarity and ergodicity, which we discuss
in what follows.

� STATIONARY RANDOM PROCESSES

With real-world random processes, we often find that the statistical characterization of a
process is independent of the time at which the observations occur. That is, if a random
process is divided into a number of time intervals, the various sections of the process exhibit
essentially the same statistical properties. Such a process is said to be stationary. Otherwise,
it is said to be nonstationary.

This characterization is loosely analogous to linear systems theory, where we define
time-invariant systems as those whose impulse response does not vary with time. This is
to be contrasted with time-varying systems, whose impulse response varies with time. As
with time-invariant systems, stationary random processes are often more mathematically
tractable and simpler to analyze.

To be more precise, let be a random process that is observed at time Let
be the probability distribution function associated with observations of the differ-

ent sample functions of the random process at time Suppose the same random process is
observed at time and the corresponding distribution function is Then if

(8.61)

for all and all we say the process is stationary to the first order. A first-order stationary
random process has a distribution function that is independent of time. As a consequence,
statistical parameters such as the mean and variance are also independent of time for such a
process. For example, suppose has the density Then the mean value

(8.62)

does not change with time because the distribution function (and hence the density) are time
invariant.

Next, consider sampling the random process at two points in time and with
the corresponding joint distribution function Suppose a second set of
observations are made at times and and the corresponding joint distribution
is Then if, for all and we find that

(8.63)

we say the process is stationary to the second order. Stationarity to the second order implies
that statistical quantities such as covariance and correlation, which we will discuss in the
following, do not depend upon absolute time.

The definition of a kth-order stationary random process follows in a similar manner.
If the equivalence between distribution functions holds for all time shifts all k, and all
possible observation times then we say the process is strictly stationary. In
other words, a random process is strictly stationary if the joint distribution of any set
of random variables obtained by observing the random process is invariant with
respect to the location of the origin t � 0.
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� Drill Problem 8.11 A random process is defined by the function

where A and are constants, and is uniformly distributed over the interval 0 to Is X
stationary to the first order? �

� Drill Problem 8.12 Show that a random process that is stationary to the second order
is also stationary to the first order. �

8.7 Correlation of Random Processes

While random processes are, by definition, unpredictable, we often observe that samples
of the process at different times may be correlated. For example, if is large, then we
might also expect to be large, if is small. To quantify this relationship, consider
the covariance of two random variables, defined in Section 8.2, applied to samples of the
random process at times and That is, the covariance of the two random vari-
ables and is given by

(8.64)

We define the first term on the right-hand side of Eq. (8.64) as the autocorrelation of the
random process and use the generic notation

(8.65)

where we have used the asterisk to denote conjugation for the case when may be complex
valued. If is stationary to the second order or higher, then Eq. (8.64) may be written as

(8.66)

Stationarity in the second order also implies the mean of the random process is constant.
If this mean is zero, then the autocorrelation and covariance functions of a random process
are equivalent. The following will show the importance of the autocorrelation function as
a descriptor of random processes.

For many applications we do not require a random process to have all of the
properties necessary to be stationary in the second order. In particular, we often only
require:

1. The mean of the random process is a constant independent of time: 
for all t.

2. The autocorrelation of the random process only depends upon the time difference:
for all t and

If a random process has these two properties, then we say it is wide-sense stationary or
weakly stationary. Note that wide-sense stationarity does not imply stationarity to the sec-
ond order. Neither does stationary to the second order imply wide-sense stationary, as the
first and second moments may not exist. In the rest of the book, we shall assume that all
processes of interest are wide-sense stationary.
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� PROPERTIES OF THE AUTOCORRELATION FUNCTION

The autocorrelation function of a wide-sense stationary random process has the following
properties for a real-valued process:

PROPERTY 1 Power of a Wide-Sense Stationary Process The second moment or
mean-square value of a real-valued random process is given by

(8.67)

The mean-square value is therefore equivalent to the average power of the process.

PROPERTY 2 Symmetry The autocorrelation of a real-valued wide-sense stationary
process has even symmetry. 
To show this, consider

(8.68)

PROPERTY 3 Maximum Value The autocorrelation function of a wide-sense stationary
random process is a maximum at the origin. 
To show this property for a real-valued process, form the nonnegative quantity

(8.69)

Rearranging the last relationship, we have

The physical significance of the autocorrelation function is that it provides a means
of describing the interdependence of two random variables obtained by observing a random
process at times seconds apart. It is therefore apparent that the more rapidly the random
process changes with time, the more rapidly will the autocorrelation function 
decrease from its maximum as increases, as illustrated in Fig. 8.15. This decrease may
be characterized by the decorrelation time specifically, for the magnitude of the
correlation remains below some prescribed value. We may thus define the decorrelation
time of a stationary process of zero mean as the time for the magnitude of the auto-
correlation function to decrease to, say, 1 percent of its maximum value RX102.RX1t2 X1t2t0

RX1t2 t � t0,t0;
tRX102 RX1t2X1t2 tX1t2
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FIGURE 8.15 Illustration of autocorrelation functions of
slowly and rapidly fluctuating random processes.
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EXAMPLE 8.10 Autocorrelation of a Random Cosine Process

Let be a random process defined by

where the amplitude A and frequency are known, but is uniformly distributed on the inter-
val between 0 and This is a special type of random process where a single parameter 
defines the sample function for all time. The requirement is to find the autocorrelation of 

The autocorrelation is given by

Applying the trigonometric identity to this rela-
tion, we obtain

Since is uniformly distributed between 0 and we have

Consequently, the expression for the autocorrelation reduces to

The autocorrelation clearly only depends upon the time difference in this example, and the
process can be shown to be wide-sense stationary.

� Drill Problem 8.13 Let be a random process defined by

where A is uniformly distributed between 0 and 1, and is constant. Determine the autocorre-
lation function of X. Is X wide-sense stationary? �

� ERGODICITY

To determine the statistical properties of random processes, we usually have to compute
expectations. The expectation of a random process at a particular point in time requires
separate independent realizations of the random process. For example, for a random process,

with N equiprobable realizations the expected value and
second moment of the random process at time are respectively given by the ensem-
ble averages

(8.70)

and

(8.71)

If the process is wide-sense stationary, then the mean value and second moment computed
by these two equations do not depend upon the time tk .
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In practical problems involving random processes, what will generally be available to
the user is not the random process, but one of its sample functions, In such cases, the
most easily measurable parameters are time averages. For example, the time average of a
continuous sample function drawn from a real-valued process is given by

(8.72)

and the time-autocorrelation of the sample function is given by

(8.73)

So the question is: When are the time averages of a sample function equal to the ensemble
averages of the corresponding random process? Intuitively, if the statistics of the random
process do not change with time, then we might expect the time averages and ensemble
averages to be equivalent.

Depending upon the stationary properties of a random process, various time averages
of the sample functions may be used to approximate the corresponding ensemble averages
or expectations. Random processes for which this equivalence holds are said to be ergodic.
In most physical applications, wide-sense stationary processes are assumed to be ergodic,
in which case time averages and expectations can be used interchangeably.

The alert reader will note that, just as with stationarity, there are varying degrees of
ergodicity. The equivalences of Eqs. (8.70) and (8.72) on the one hand and the corre-
sponding Eqs. (8.66) and (8.73) on the other hand are analogous to a form of first-order
and second-order ergodicity.

Furthermore, if we assume that the real-valued random process is ergodic, then we
can express the autocorrelation function as

(8.74)

where is a sample function of the random process This definition of autocorre-
lation is identical to the definition of correlation for deterministic power signals as described
in Chapter 2. As a consequence, the autocorrelation of an ergodic random process has
many of the same properties as the autocorrelation of deterministic signals.

The concept of ergodicity also naturally leads to the idea of estimators for the auto-
correlation function. In particular, if is a sample function of a wide-sense stationary
ergodic process then an estimate of the autocorrelation of a real-valued process for
lag is (see Fig. 2.29)

(8. 75)

where is a convenient set of sampling times, uniformly spaced or otherwise. Similar
to the estimators of the mean and variance of a random variable, this estimate of the auto-
correlation is motivated by the relative frequency definition of probability.

EXAMPLE 8.11 Discrete-Time Autocorrelation

In a digital communication system, we often sample a continuous signal at discrete times 
where is the sampling interval. This sampled signal is a discrete-time ran-
dom process for which we can define the discrete-time autocorrelation function
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where the expectation is the usual ensemble average. As suggested in this section, we may wish
to estimate this autocorrelation by performing a time average over a particular sample func-
tion. This time average, over N samples of the sample function is defined as

(8.77)

In Fig. 8.16(a), we plot a random signal as a function of time. For this signal, the time-aver-
aged autocorrelation of the random signal is shown in Fig. 8.16(b). The horizontal axis rep-
resents the time lag in sample periods. Although the signal is quite random in the time domain,
it has a smooth autocorrelation function as shown in Fig. 8.16(b).
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� Drill Problem 8.14 A discrete-time random process is
defined by

where is a random process with autocorrelation function , where 
is the delta function. What is the autocorrelation function Is the process

wide-sense stationary? �

8.8 Spectra of Random Signals

As described above, a random signal may be viewed as belonging to an ensemble of signals,
generated by some probabilistic mechanism. Hence, no two signals exhibit the same vari-
ation in time. Let denote a sample function of a random process Figure 8.17
shows a plot of the waveform of on the interval We may define the
Fourier transform of the sample function as

(8.78)

This transform converts the sample function to a new sample function 8 We
define the collection (ensemble) of all such new sample functions as the new random
process Effectively, the Fourier transform has converted a family of random
variables indexed by parameter t to a new family of random variables
indexed by parameter .

From the discussion of Chapter 2, we recall that the power spectral density of the sam-
ple function over the interval is where is the Fourier
transform of This power spectral density will depend on the particular sample func-
tion drawn from the ensemble. Accordingly, to obtain the power spectral density of
the random process, we must perform an ensemble-averaging operation and then take the
limit as T approaches infinity.

The ensemble-averaging operation requires using the probability distribution of the
ensemble. The value of is held fixed while averaging over the ensemble. For the pre-
sent discussion, it is sufficient to acknowledge the ensemble-averaging operation by
using the expectation operator E. We thus write the ensemble-averaged value of the

f

x1t2 xT1t2. jT1f2ƒjT1f2 ƒ2>2T�T � t � Tx1t2
f

�T1f2X1t2�T1f2.
jT1f2.xT1t2

jT1f2 � L
q

�q
xT1t2 exp(�j2pft) dt

xT1t2 �T � t � T.xT1t2 X1t2.x1t2

5Yn6 RY1n, m2 � E3YnYm4? d1n2RZ1n2 � s2d1n25Zn6
Yn � a0Zn 	 a1Zn�1

5Yn: n � Á , �1, 0, 1, 2, Á 6

8We previously have used the notation to denote a Fourier-transform pair. However, the use of
to represent the random process introduces a possible ambiguity in notation. Hence, in this section we use

as a Fourier-transform pair of sample functions, and as a Fourier-transform pair
of random processes.

X1t2 Δ �1f2x1t2 Δ j1f2X1t2 x1t2 Δ X1f2

xT (t)

–T +T

FIGURE 8.17 Sample function of a random process.
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new random process as and the corresponding power spectral den-
sity of the random process as

(8.79)

It is important to note that in Eq. (8.79), the ensemble averaging must be performed
before the limit is taken. Also critical to this definition is that the process be wide-
sense stationary.

This approach of determining the power spectral density through an ensemble aver-
age may be used to motivate an estimator of the power spectral density given a sample
function of an ergodic stationary process. In Section 2.10, we saw how the discrete Fourier
transform (DFT) may be used to numerically approximate the Fourier transform. In par-
ticular, if are uniformly spaced samples of a function at

then the discrete Fourier transform is defined as

(8.80)

where and are samples of the frequency-domain response at
Consequently, we may estimate the power spectral density of a random process

by the following three steps:

1. Partition the sample function into M sections of length and sample at
intervals

2. Perform a DFT on each section of length Let where
represent the M DFT outputs, one set for each section.

3. Average the magnitude squared of each DFT, and then the power spectral density
estimate is given by

(8.81)

This result clearly relies on the process being ergodic.

� PROPERTIES OF THE POWER SPECTRAL DENSITY

The power spectral density and the autocorrelation function of a wide-sense
stationary random process form a Fourier-transform pair in the variables and In par-
ticular, the same Weiner–Khintchine relations that apply to deterministic processes also
relate the power spectral density and autocorrelation function of a random process, as
shown by

(8.82)

and

(8.83)RX1t2 � L
q

�q
SX1f2 exp1j2pft2 df

SX1f2 � L
q

�q
RX1t2 exp1�j2pft2 dt

t.f
RX1t2SX1f2

�
1
M a

M�1

m�0
` aN�1

n�0
xn	mNWkn ` 2,  k � 0, Á , M � 1

SNX¢ k
NTS
≤ �

1
M a

M�1

m�0
ƒjk	mN ƒ2

m � 0, Á , M � 1
5jk	mN6NTs .

Ts .
NTsx1t2

f � k>NTs .
5jk6W � exp1�j2p>N2
jk � a

N�1

n�0
xnWkn

t � nTs ,
x1t25xn: n � 0, 1, Á , N � 16

SX1f2 � lim
TS�

1
2T

E3 ƒ�T1f2 ƒ24
X1t2 E3 ƒ�T1f2 ƒ24ƒ�T1f2 ƒ2
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Equations (8.82) and (8.83) are the basic relations of the spectral analysis theory of ran-
dom processes. The Weiner–Khintchine relations show that if either the autocorrelation
or the power spectral density of the random process is known, the other may be found
exactly.

We can use this pair of relations to derive some general properties of the power spec-
tral density of a wide-sense stationary process.

PROPERTY 1 Mean-Square Value The mean-square value of a stationary process equals
the total area under the graph of the power spectral density; that is,

(8.84)

This property follows directly from Eq. (8.83) by putting and noting that

PROPERTY 2 Nonnegativity The power spectral density of a stationary random process
is always nonnegative; that is,

(8.85)

This follows from the definition of the power spectral density given in Eq. (8.79).

PROPERTY 3 Symmetry The power spectral density of a real random process is an even
function of frequency; that is,

(8.86)

This property is readily obtained by first substituting for in Eq. (8.82).

Next, substituting for and recognizing that for a real process, we
obtain

which is the desired result.

PROPERTY 4 Filtered Random Processes If a stationary random process with
spectrum is passed through a linear filter with frequency response the spectrum
of the stationary output random process is given by

(8.87)

This result is analogous to that obtained for deterministic signals.9
SY1f2 � ƒH1f2 ƒ2SX1f2

Y1t2 H1f2,SX1f2 X1t2

SX1�f2 � L
q

�q
RX1t2 exp1�j2pft2 dt � SX1f2

RX1�t2 � RX1t2t,�t

SX1�f2 � L
q

�q
RX1t2 exp1j2pft2 dt

f�f

SX1�f2 � SX1f2

SX1f2 � 0, for all f

RX102 � E3 ƒX1t2 ƒ24
t � 0

E3 ƒX1t2 ƒ24 � L
q

�q
SX1f2 df

9The proof of this result for deterministic signals follows from the convolution theorem of Section 2.2. The proof
for random processes may be found in Chapter 1 of Haykin (2001).
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EXAMPLE 8.12 Filtering a Random Sinusoid

A random signal with autocorrelation function

is processed by a causal filter with impulse response that is zero for negative time to pro-
duce the new random process

If the filter has an impulse response corresponding to the frequency response

(8.88)

what is the autocorrelation function of 
From Property 4 of power spectral densities of random processes, we have that the spec-

tral density of is given by

We may use the Fourier-transform pair

(8.89)

to obtain the spectral density Hence,

where the last line anticipates the sifting property of the Dirac delta function. Using the inverse
Fourier transform of and evaluating of Eq. (8.88) at we get

We thus see that, similar to deterministic sinusoids, linear filtering does not affect the frequency
of a random sinusoid.

� Drill Problem 8.15 For the discrete-time process of Problem 8.14, use the discrete
Fourier transform to approximate the corresponding spectrum. That is, compute and sketch

If the sampling in the time domain is at where what frequency
does the integer k correspond to? �

n � 0, 1, 2, Á , N � 1,n>Ts

SY1k2 � a
N�1

n�0
RY1n2Wkn

RY1t2 �
1

1 	 12pRCfc22 cos12pfct2
f � fc ,H1f2SY(f )

�
1
2

ƒH1fc2 ƒ23d1f � fc2 	 d1f 	 fc24
SY1f2 �

1
2

ƒH1f2 ƒ23d1f � fc2 	 d1f 	 fc24
SX1f2.

cos12pfct2 Δ
1
2
3d1f � fc2 	 d1f 	 fc24

SY1f2 � ƒH1f2 ƒ2SX1f2
Y1t2

Y1t2?
H1f2 �

1
1 	 j2pRCf

Y1t2 � L
t

0
h1t � s2X1s2 ds

h(t)

RX1t2 �
A2

2
cos12pfct2

X1t2
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8.9 Gaussian Processes

Up to this point in our discussion, we have presented the theory of random processes in gen-
eral terms. In the remainder of this chapter, we consider this theory in the context of some impor-
tant random processes that are commonly encountered in the study of communication systems.

We have seen how Gaussian random variables play a fundamental role in communi-
cation systems because (i) many physical processes that generate noise in communication
systems can be considered approximately Gaussian distributed; and (ii) the Gaussian ran-
dom variable is mathematically tractable and therefore convenient to deal with.

Similarly, a Gaussian process plays an important role in the study of random processes
for two reasons. First, the Gaussian process has many properties that make analytic results
possible. Second, the random processes produced by physical phenomena are often such
that a Gaussian model is appropriate.

Before we define a Gaussian process, we must provide some background regarding
the joint distribution of multiple Gaussian random variables. The joint distribution of N
Gaussian random variables may be written as10

(8.90)

which is called the multi-variate Gaussian distribution. In Eq. (8.90), the respective quan-
tities are:

is the N-by-N covariance matrix with individual elements given by 

The notation denotes the determinant of matrix With this definition of the multi-
variate Gaussian distribution we have a basis for defining a Gaussian random process.

A random process with t taking values in the set T, is said to be a Gaussian
process if, for any integer k and any subset of T, the k random variables

is jointly Gaussian distributed. That is, for any k,
has a density equivalent to Eq. (8.90).

A Gaussian process has the following properties:

1. If a Gaussian process is wide-sense stationary, then it is also stationary in the strict sense.
2. If a Gaussian process is applied to a stable linear filter, then the random process 

produced at the output of the filter is also Gaussian.
3. If integration is defined in the mean-square sense, then we may interchange the order

of the operations of integration and expectation with a Gaussian random process.11

This first property comes from observing that if a Gaussian process is wide-sense stationary, then
(i) its mean does not vary with time, and (ii) the elements of the covariance matrix only
depend on the time difference and not on the absolute t. Since the N-dimensional joint
distribution of samples of a Gaussian process only depends on the mean and covariance through
Eq. (8.90), a wide-sense stationary Gaussian process is also strictly stationary.

ti � tj ,
¶ij

Y1t2

fX1t12,Á, X1tk21x1, Á , xk25X1t12, X1t22, Á , X1tk26 5t1, t2, Á , tk6X1t2,
¶.ƒ ¶ ƒ

¶ij � Cov1Xi , Xj2∂
M � 1E3X14, E3X24, Á , E3XN42 is the N-dimensional vector of means
x � 1x1, x2, Á , xN2 is the corresponding vector of indeterminates
X � 1X1, X2, Á , XN2 represents an N-dimensional vector of Gaussian random variables

fX1x2 �
1

12p2N>2 ƒ ∂ ƒ1>2 exp5�1x � M2¶�11x � M2T>26

10See Chapter 4 of Leon-Garcia (1994).
11See Chapter 6 of Leon-Garcia (1994). The mean-square convergence of to Y implies that

E[(Y � Yn)2] � 0lim
nS �

5Yn6



348 CHAPTER 8 � RANDOM SIGNALS AND NOISE

The second property comes from observing that the filtering operation can be written as

(8.91)

if we use the following three facts:

1. The integral of Eq. (8.91) is defined as the mean-square limit of the sums

Hence, we observe that the right-hand side is a weighted sum of the Gaussian ran-
dom variables 

2. Recall from the properties of Gaussian random variables that a weighted sum of
Gaussian random variables is another Gaussian random variable.

3. If a sequence of Gaussian random variables converges in the mean-square sense, then
the result is a Gaussian random variable.

Together these three facts12 can be used to prove that is also a Gaussian random
process.

The third property of Gaussian processes implies that if is given by Eq. (8.91)
then the mean of the output is given by

These results are very useful in communication systems, where linear filtering of random
processes occurs quite often.

� Drill Problem 8.16 Is the discrete-time process defined by 
and

a Gaussian process, if is Gaussian? Assume that Justify your answer. �

8.10 White Noise

The noise analysis of communication systems is often based on an idealized noise process called
white noise. The power spectral density of white noise is independent of frequency. White noise
is analogous to the term “white light” in the sense that all frequency components are present in
equal amounts. We denote the power spectral density of a white noise process as

(8.92)

where the factor has been included to indicate that half the power is associated with positive
frequencies and half with negative frequencies, as illustrated in Fig. 8.18(a). The dimensions

1
2

SW1f2 �
N0

2

W1t2

|a | � 1.Wn

Yn	1 � aYn 	 Wn

Y0 � 05Yn: n � 0, 1, 2, Á 6

� mY1t2
� L

t

0
h1t � s2E3X1s24 ds

E3Y1t24 � E cL
t

0
h1t � s2X1s2 ds d

Y1t2
Y1t2

X1i ¢s2.
Y1t2 � lim

¢sS0 ai h1t � i ¢s2x1i ¢s2 ¢s

Y1t2 � L
t

0
h1t � s2X1s2 ds

12The invariance of the Gaussian distribution type after filtering is shown in Chapter 11 of Thomas (1971).
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of are watts per hertz. The parameter is usually measured at the input stage of a com-
munications receiver. Since there is no delta function at the origin in the power spectral den-
sity of Fig. 8.18(a), white noise has no dc power. That is, its mean or average value is zero.

Since the autocorrelation function is the inverse Fourier transform of the power spec-
tral density, it follows from Eq. (8.92) that the autocorrelation of white noise is given by

(8.93)

The autocorrelation function of white noise consists of a delta function weighted by the fac-
tor located at as in Fig. 8.18(b). We note that is zero for Con-
sequently, any two different samples of white noise, no matter how close together in time
they are taken, are uncorrelated.

Strictly speaking, white noise has infinite average power and, as such, it is not phys-
ically realizable. Nevertheless, white noise has convenient mathematical properties and is
therefore useful in system analysis. Utility of the white noise process is parallel to that of
an impulse function or delta function in the analysis of linear systems. The effect of the
impulse is observed only after it has passed through a system with finite bandwidth. Like-
wise, the effect of white noise is observed only after passing through a system of finite
bandwidth. We may therefore state that as long as the bandwidth of a noise process at the
input of a system is appreciably larger than that of the system itself, we may model the noise
process as white noise. This is usually the case in practical communication systems.

EXAMPLE 8.13 Ideal Low-Pass Filtered White Noise

Suppose that a white noise process of zero mean and power spectral density is
applied to an ideal low-pass filter of bandwidth B with a unity gain passband amplitude
response. The power spectral density of the noise process appearing at the filter output
is therefore (see Fig. 8.19(a))

(8.94)
SN1f2 � c N0

2
, ƒf ƒ � B

0,  ƒf ƒ � B

N1t2
N0>2W1t2

t 
 0.RW1t2t � 0,N0>2
RW1t2 �

N0

2
d1t2

N0N0

SW (f )

N0

2
—–

N0

2
—–

f

(a)

0

RW (�)


 (�)

�

(b)

0 FIGURE 8.18 Characteristics of white noise. 
(a) Power spectral density. (b) Autocorrelation function.
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The autocorrelation function of is the inverse Fourier transform of the power spectral den-
sity shown in Fig. 8.19(a).

(8.95)

This autocorrelation function is plotted in Fig. 8.19(b). We see that has its maximum
value of at the origin, is symmetric in and passes through zero at where

EXAMPLE 8.14 RC Low-Pass Filtered White Noise

Consider a white noise process of zero mean and power spectral density applied
to the low-pass RC filter, as in Fig. 8.20(a). The transfer function of the filter is

(8.96)

From Eq. (8.87), we find that the power spectral density of the noise appearing at the 
low-pass RC filter output is therefore (see Fig. 8.20(b))

From Eq. (2.16) of Chapter 2, we have the Fourier-transform pair

Therefore, using the dilation property of the Fourier-transform (see Section 2.2), we find that
the autocorrelation of the filtered noise process is

which is plotted in Fig. 8.20(c).
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FIGURE 8.19 Characteristics of low-pass filtered white noise. (a) Power spectral density.
(b) Autocorrelation function.
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� Drill Problem 8.17 A discrete-time white noise process has an autocorrelation
function given by 

(a) Using the discrete Fourier transform, determine the power spectral density of 
(b) The white noise process is passed through a discrete-time filter having a discrete-frequency

response

where, for a N-point discrete Fourier transform, What is the power
spectral density of the filter output? �

W � exp5�j2p>N6.
H1k2 �

1 � 1aWk2N
1 � aWk

5Wn6.
RW1n2 � N0d1n2. 5Wn6

(b)

(a)

(c)

1
2�RC

SN(f )

f
– —–—– 1

2�RC
—–—–0
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N0

4
—–
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–2RC 2RC–RC RC0
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FIGURE 8.20 Characteristics of RC-filtered white noise. (a) Low-pass RC filter. (b) Power
spectral density of output (c) Autocorrelation function of N1t2.N1t2.
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0 fc – B fc + Bfc
f

t

– fc – B – fc + B– fc

0

�

n(t)

SN( f ) 1
B

� 1
fc

(a) (b)

FIGURE 8.21 (a) Power spectral density of narrowband noise. (b) Sample function of narrowband noise.

8.11 Narrowband Noise

A communication receiver includes multiple signal-processing stages. A common signal-
processing stage for passband systems is a narrowband filter whose bandwidth is just large
enough to pass the modulated component of the received signal essentially undistorted,
but not so large as to admit excessive noise into the receiver. The noise process appearing
at the output of such a filter is called narrowband noise. If the narrowband noise has a spec-
trum centered at the mid-band frequencies as illustrated in Fig. 8.21(a), we find that a
sample function of the narrowband noise process is somewhat similar to a sine wave of fre-
quency that varies slowly in amplitude and phase, as illustrated in Fig. 8.21(b).fc

�fc

(a)

Low-pass
filter

n(t)

n1(t)

nQ(t)

2 cos(2�fct)

–2 sin(2�fct)

Low-pass
filter

(b)

Σ n(t)

n1(t)

nQ(t)

cos(2�fct)
+

–

sin(2�fct)

FIGURE 8.22 (a) Extraction
of in-phase and quadrature
components of narrowband
noise process. (b) Generation
of narrowband noise process
from its in-phase and
quadrature components.

Narrowband noise can be represented mathematically using in-phase and quad-
rature components, just as we used them to represent narrowband signals in Chapter
2 and subsequent chapters. For the narrowband noise process of bandwidth 2B
and centered on frequency of Fig. 8.21, we may represent in the form

(8.97)

where is called the in-phase component of and is the quadrature com-
ponent. Both and are low-pass random processes; that is, their spectra are
confined to Knowledge of the in-phase and quadrature components, as
well as the center frequency fully characterizes the narrowband noise.

Given the narrowband noise sample function the in-phase and quadrature com-
ponents may be extracted using the scheme shown in Fig. 8.22(a). The two low-pass filters are
assumed to be ideal with bandwidth equal to B. This scheme follows directly from the repre-
sentation of narrowband noise given in Eq. (8.97). Alternatively, if we are given the in-phase
and quadrature components, we may generate the narrowband noise using Fig. 8.22(b).n1t2

n1t2,fc ,
0 � ƒf ƒ � B.

NQ1t2NI1t2 NQ1t2N1t2NI1t2
N1t2 � NI1t2 cos12pfct2 � NQ1t2 sin12pfct2

N1t2fc
N1t2
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13The justification of these properties is discussed in Chapter 1 of Haykin (2001).

The in-phase and quadrature components of narrowband noise have the following
important properties:13

1. The in-phase component and quadrature component of narrowband
noise have zero mean.

2. If the narrowband noise is Gaussian, then its in-phase and quadrature compo-
nents are Gaussian.

3. If the narrowband noise is stationary, then its in-phase and quadrature compo-
nents are stationary.

4. Both the in-phase component and have the same power spectral density.
This power spectral density is related to the power spectral density of the narrowband
density by

(8.98)

5. The in-phase component and quadrature component have the same vari-
ance as the narrowband noise 

As an illustration of these properties, consider narrowband noise having the power
spectral density shown in Fig. 8.23(a). According to Property 4 above, the spectrum of the
in-phase component of the narrowband noise is given by

SNI
1f2 � bN0,  �B � f � B

0,  otherwise

N1t2. NQ1t2NI1t2
SNI
1f2 � SNQ

1f2 � bSN1f � fc2 	 SN1f 	 fc2,  �B � f � B
0,  otherwise
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FIGURE 8.23 Characteristics of ideal band-pass filtered white noise. (a) Power spectral density.
(b) Autocorrelation function. (c) Power spectral density of in-phase and quadrature components.
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and the quadrature component has a similar spectrum. Thus the spectral density of the in-
phase component is twice that of narrowband noise. However, since the narrowband noise
has nonzero spectral density in two bands of width 2B centered at we have that

which confirms Property 5 that the in-phase component has the same variance (power) as
the narrowband noise.

EXAMPLE 8.15 Ideal Band-Pass Filtered White Noise

Consider white Gaussian noise of zero mean and power spectral density which is passed
through an ideal band-pass filter with center frequency bandwidth 2B, and passband mag-
nitude response of unity. The power spectral density of the filtered white noise is then

(8.99)

as illustrated in Fig. 8.23(a). The problem is to determine the autocorrelation functions of 
and its in-phase and quadrature components.

The autocorrelation function of is the inverse Fourier transform of the power spec-
tral density characteristic of Eq. (8.99), as shown by

(8.100)

This autocorrelation function of the ideal narrowband noise is plotted in Fig. 8.23(b).
From Property 4 of narrowband noise, the in-phase and quadrature components have

an identical spectral density as shown in Fig. 8.23(c). The autocorrelation function of or
is therefore (see Example 8.13)

(8.101)

� NOISE-EQUIVALENT BANDWIDTH

In Example 8.13, we observed that when a source of white noise of zero mean and power
spectral density is connected across the input of an ideal low-pass filter of bandwidth
B and unity band-pass gain, the average output power (or equivalently ) is In
Example 8.14, we observed that when a similar source is connected to a low-pass RC fil-
ter, the corresponding average output power is For this filter, the 3-dB band-
width is equal to We may therefore make two important observations. First,
the filtered white noise has finite average power. Second, the average power is proportional
to bandwidth. We may generalize these observations to include all kinds of low-pass filters
by defining the noise-equivalent bandwidth as follows.

Suppose a white noise source with spectrum is connected to the input
of an arbitrary filter of transfer function From Properties 1 and 4 of power spectral
densities, the average output noise power is
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(8.102)

where, in the last line, we have made use of the fact that the amplitude response is
an even function of frequency. Now consider the same noise source connected to the input
of an ideal low-pass filter of zero-frequency response and bandwidth as illus-
trated in Fig. 8.24. In this case the average output noise power is

(8.103)

By equating Eqs. (8.102) and (8.103), we determine the bandwidth of the ideal filter
that produces the same noise power as the arbitrary filter. Doing this, we obtain

(8.104)

The bandwidth is called the noise-equivalent bandwidth for a low-pass filter. Thus, the
procedure for calculating the noise-equivalent bandwidth consists of replacing the arbi-
trary low-pass filter of transfer function with an equivalent ideal low-pass filter of zero-
frequency response and bandwidth as illustrated in Fig. 8.24.

In a similar way, we may define the noise-equivalent bandwidth for a band-pass fil-
ter, as illustrated in Fig. 8.25. This figure depicts the square amplitude response of the fil-
ter for positive frequencies only. Thus, the noise-equivalent bandwidth for a band-pass
filter may be defined as

(8.105)BN �
L

q

0
ƒH1f2 ƒ2 df

ƒH1fc2 ƒ 2

BN ,H102 H1f2
BN
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q

0
ƒH1f2 ƒ2 df

ƒH102 ƒ 2

BN

PN � N0BN ƒH102 ƒ 2
BNH102

ƒH1f2 ƒ
� N0L

q

0
ƒH1f2 ƒ2 df

� L
q

�q
ƒH1f2 ƒ2 N0

2
df

PN � L
q

�q
ƒH1f2 ƒ2SW1f2 df

BN0

Equivalent
areas

|H(f )|2

|H(0)|2

f

BN

Equivalent
areas

|H(f )|2

|H(0)|2

f
0 fc

FIGURE 8.25 Illustration of arbitrary bandpass filter and
ideal bandpass filter of bandwidth BN .

H1f2FIGURE 8.24 Illustration of arbitrary low-
pass filter and ideal low-pass filter of
bandwidth BN .

H1f2
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where is the center-frequency amplitude response of the filter. In fact, we recognize
that Eq. (8.105) may be used to represent both cases by setting for low-pass filters.
Then we have the general result

(8.106)

and the effect of passing white noise through a filter may be separated into two parts:

� The center-frequency power gain 

� The noise equivalent bandwidth representing the frequency selectivity of the filter.

This separation applies whether the filter is low-pass or band-pass. Hence, as a general rule we
may say that effect of noise in the system is reduced by narrowing the system bandwidth.

EXAMPLE 8.16 Noise Equivalent Bandwidth of RC Filter

Consider the single-pole low-pass filter of Example 8.14. The transfer function of this filter is

We wish to find the noise equivalent bandwidth of this filter.
The noise equivalent bandwidth of this filter is

Recognizing the integrand as the scaled derivative of we obtain

Due to the slow roll-off of the single-pole filter, the noise bandwidth is slightly larger than its
3-dB bandwidth, 

8.12 Summary and Discussion

We began this chapter by indicating that information and noise are both random signals;
indeed, it is this randomness or unpredictability that is a key property of communication
systems. However, even random signals have statistical characteristics that may be measured.
We subsequently presented several important tools for characterizing random signals.

We introduced a random experiment as a model for unpredictable phenomena; and the
relative frequency definition of probability as a means of assigning a likelihood to the out-
come of a random experiment. This led to the three basic axioms of probability theory.

B3dB � 1>12pRC2.

�
1

4RC

�
1

2pRC
ap

2
� 0b

BN �
1

2pRC
tan�112pfRC2 `

0

q

tan�11f2,
� 1  L

�

0

df

1 	 12pfRC22

BN �
1

ƒH102 ƒ2 L
q

0
ƒH1f2 ƒ2 df

H1f2 �
1

1 	 j2pfRC

BN ,

ƒH1fc2 ƒ2.

PN � N0 ƒH1fc2 ƒ2BN

fc � 0
ƒH1fc2 ƒ2
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Random variables were introduced as a function whose domain is the sample space
of the random experiment and whose range is the real numbers. Random variables provide
a method to unify the treatment of a wide variety of random experiments. Probability dis-
tribution and density functions were shown as fundamental methods of characterizing a ran-
dom variable.

The study of functions of random variables led naturally to the concept of expecta-
tion and the statistical moments and covariance of random variables.

Gaussian random variables were introduced as a particular important type of random
variable in the study of communication systems.

Considering time as parameter in random signals led to the study of random processes.
A random process was defined as a family of random variables indexed by time as a para-
meter. Stationary, ergodic, and wide-sense stationary random processes were introduced as
models of most physical processes exhibiting random behavior. It was shown that wide-sense
stationary random processes have many of the properties of deterministic power signals,
including the fact that the Weiner–Khintchine formulas relate the spectrum of the random
process to its autocorrelation.

Gaussian processes and white noise were introduced as important random processes
in the analysis of communication systems.

Finally, it was shown that, similar to deterministic signals, we may consider bandpass
or narrowband versions of noise. This narrowband noise has in-phase and quadrature
components, similar to deterministic signals.

This chapter has been a brief and certainly not complete introduction to the ran-
dom signals and noise that are commonly found in communication systems, but the treat-
ment presented herein is adequate for an introductory treatment of statistical
communication theory. The two subsequent chapters will illustrate the importance of
the material presented in this chapter in designing receivers and evaluating communica-
tion system performance.

ADDITIONAL PROBLEMS

8.18 Consider a deck of 52 cards, divided into four different suits, with 13 cards in each suit rang-
ing from the two up through the ace. Assume that all the cards are equally likely to be drawn.
(a) Suppose that a single card is drawn from a full deck. What is the probability that this card

is the ace of diamonds? What is the probability that the single card drawn is an ace of any
one of the four suits?

(b) Suppose that two cards are drawn from the full deck. What is the probability that the cards
drawn are an ace and a king, not necessarily the same suit? What if they are of the same suit?

8.19 Suppose a player has one red die and one white die. How many outcomes are possible in the
random experiment of tossing the two dice? Suppose the dice are indistinguishable, how many
outcomes are possible?

8.20 Refer to Problem 8.19.

(a) What is the probability of throwing a red 5 and a white 2?

(b) If the dice are indistinguishable, what is the probability of throwing a sum of 7? If they are
distinguishable, what is this probability?

8.21 Consider a random variable X that is uniformly distributed between the values of 0 and
1 with probability takes on the value 1 with probability and is uniformly distributed
between values 1 and 2 with probability Determine the distribution function of the ran-
dom variable X.

1
2 .

1
4 ,1

4 ,
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8.22 Consider a random variable X defined by the double-exponential density

where a and b are constants.

(a) Determine the relationship between a and b so that is a probability density function.

(b) Determine the corresponding distribution function 

(c) Find the probability that the random variable X lies between 1 and 2.

8.23 Show that the expression for the variance of a random variable can be expressed in terms of the
first and second moments as

8.24 A random variable R is Rayleigh distributed with its probability density function given by

(a) Determine the corresponding distribution function 

(b) Show that the mean of R is equal to 

(c) What is the mean-square value of R?

(d) What is the variance of R?

8.25 Consider a uniformly distributed random variable Z, defined by

The two random variables X and Y are related to Z by and 

(a) Determine the probability density functions of X and Y.

(b) Show that X and Y are uncorrelated random variables.

(c) Are X and Y statistically independent? Why?

8.26 A Gaussian random variable has zero mean and a standard deviation of 10 V. A constant volt-
age of 5 V is added to this random variable.

(a) Determine the probability that a measurement of this composite signal yields a positive value.

(b) Determine the probability that the arithmetic mean of two independent measurements of this
signal is positive.

8.27 Consider a random process defined by

in which the frequency W is a random variable with the probability density function

Show that is nonstationary.
8.28 Consider the sinusoidal process

X1t2 � A cos12pfct2
X1t2

fW1w2 � c 1
B

, 0 � w � B

0, otherwise

X1t2 � sin12pWt2
X1t2

Y � cos1Z2.X � sin1Z2
fZ1z2 � c 1

2p
, 0 � z � 2p

0, otherwise

2bp>2 .

FR1r2.
fR1r2 � c r

b
 exp¢�

r2

2b
≤ , 0 � r � �

0, otherwise

Var1X2 � E3X24 � E3X42

FX1x2.
fX1x2

fX1x2 � a exp1�b ƒx ƒ2, �� � x � �
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where the frequency is constant and the amplitude A is uniformly distributed:

Determine whether or not this process is stationary in the strict sense.
8.29 A random process is defined by

where A is a Gaussian random variable of zero mean and variance This random process is
applied to an ideal integrator, producing an output defined by

(a) Determine the probability density function of the output at a particular time 
(b) Determine whether or not is stationary.

8.30 Prove the following two properties of the autocorrelation function of a random process

(a) If contains a dc component equal to A, then contains a constant component
equal to 

(b) If contains a sinusoidal component, then also contains a sinusoidal compo-
nent of the same frequency.

8.31 A discrete-time random process is defined by

where the zero-mean random process is stationary with autocorrelation function
What is the autocorrelation function a wide-sense sta-

tionary process? Justify your answer.
8.32 Find the power spectral density of the process that has the autocorrelation function

8.33 A random pulse has amplitude A and duration T but starts at an arbitrary time That is, the
random process is defined as

where rect(t) is defined in Section 2.9. The random variable is assumed to be uniformly dis-
tributed over with density

(a) What is the autocorrelation function of the random process 
(b) What is the spectrum of the random process 

8.34 Given that a stationary random process has an autocorrelation function and a
power spectral density show that:
(a) The autocorrelation function of the first derivative of , is equal to the neg-

ative of the second derivative of 
(b) The power spectral density of is equal to 

Hint: See the solution to problem 2.24
4p2f 2SX1f2.dX1t2>dt,

RX1t2. X1t2dx1t2>dt,
SX1f2, RX1t2X1t2 X1t2? X1t2?

ft01s2 � c 1
T

 , 0 � s � T

0, otherwise

30, T4 t0

X1t2 � A rect1t 	 t02
t0 .

RX1t2 � bs211 � ƒt ƒ2, for ƒt ƒ � 1
0, for ƒt ƒ � 1

Ry(k) of Yn? Is YnRW(k) � s2d(k).
5Wn6

Yn � aYn 	 Wn,   n � Á , �1, 0, 	1, Á

5Yn6
RX1t2X1t2 A2.

RX1t2X1t2X1t2: RX1t2
Y1t2 tk .Y1t2

Y1t2 � L
t

0
X1t2 dt

Y1t2 sA
2 .

X1t2 � A cos12pfct2
X1t2

fA1a2 � b 1, 0 � a � 1
0, otherwise

fc
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8.35 Consider a wide-sense stationary process having the power spectral density shown
in Fig. 8.26. Find the autocorrelation function of the process X1t2.RX1t2 SX1f2X1t2

 1.0

Sx(f )

0
f

–1 1 FIGURE 8.26 Problem 8.35.

8.36 The power spectral density of a random process is shown in Fig. 8.27.
(a) Determine and sketch the autocorrelation function of 
(b) What is the dc power contained in 
(c) What is the ac power contained in 
(d) What sampling rates will give uncorrelated samples of Are the samples statistically

independent?
X1t2?X1t2?X1t2? X1t2.RX1t2

X1t2

 1.0

�(f )

SX(f )

0
f

–f0 f0

8.37 Consider the two linear filters shown in cascade as in Fig. 8.28. Let be a stationary process
with autocorrelation function The random process appearing at the first filter output
is and that at the second filter output is 

(a) Find the autocorrelation function of 
(b) Find the autocorrelation function of Y1t2.V1t2.

Y1t2.V1t2 RX1t2. X1t2

h1(t)
V(t)

h2(t)X(t) Y(t)
FIGURE 8.28 Problem 8.37.

SN(f )
(W/Hz)

f (Hz)
0

1.0

4 5 7–7 –5 –4

8.38 The power spectral density of a narrowband random process is as shown in Fig. 8.29. Find
the power spectral densities of the in-phase and quadrature components of assuming
fc � 5 Hz.

X1t2,X1t2

FIGURE 8.27 Problem 8.36.

`FIGURE 8.29 Problem 8.38.
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8.39 Assume the narrowband process described in Problem 8.38 is Gaussian with zero mean
and variance 

(a) Calculate
(b) Determine the joint probability density function of the random variables Y and Z obtained

by observing the in-phase and quadrature components of at some fixed time.

ADVANCED PROBLEMS

8.40 Find the probability that the last two digits of the cube of a natural number will
be 01.

8.41 Consider the random experiment of selecting a number uniformly distributed over the range
Let A, B, and C be the events that the selected number is a multiple of 3,

4, and 6, respectively.
(a) What is the probability of event A—that is, P[A]?

(b) What is ?

(c) What is 

(d) What is 

(e) What is 
8.42 A message consists of ten 0s and 1s.

(a) How many such messages are there?
(b) How many such messages are there that contain exactly four 1s?
(c) Suppose the 10th bit is not independent of the others but is chosen such that the modulo-

2 sum of all the bits is zero. This is referred to as an even-parity sequence. How many such
even-parity sequences are there?

(d) If this ten-bit even-parity sequence is transmitted over a channel that has a probability of
error p for each bit. What is the probability that the received sequence contains an unde-
tected error?

8.43 The probability that an event occurs at least once in four independent trials is equal to 0.59. What
is the probability of occurrence of the event in one trial, if the probabilities are equal in all trials?

8.44 The arrival times of two signals at a receiver are uniformly distributed over the interval 
The receiver will be jammed if the time difference in the arrivals is less than Find the proba-
bility that the receiver will be jammed.

8.45 A telegraph system (an early version of digital communications) transmits either a dot or dash
signal. Assume the transmission properties are such that of the dots and of the dashes
are received incorrectly. Suppose the ratio of transmitted dots to transmitted dashes is 5 to 3.
What is the probability that a received signal is as transmitted if:
(a) The received signal is a dot?
(b) The received signal is a dash?

8.46 Four radio signals are emitted successively. The probability of reception for each of them is
independent of the reception of the others and equal, respectively, 0.1, 0.2, 0.3, and 0.4. Find
the probability that k signals will be received where 

8.47 In a computer-communication network, the arrival time between messages is modeled with
an exponential distribution function having the density

fT1t2 � c 1
l

e�lt, t � 0

0, otherwise

t

k � 1, 2, 3, 4.

1>32>5

t.
30, T4.

P3A ∩ C4?
P3A ∪ B4?
P3A ∩ B4?
P3B4?

51, 2, 3, Á , 1206.

11, 2, 3, Á 2

X1t2
sX

2 .

sX
2 .

X1t2
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(a) What is the mean time between messages with this distribution?
(b) What is the variance in this time between messages?

8.48 If X has a density find the density of the random variable Y defined as follows:
(a) for constants a and b.
(b)
(c) assuming X is a nonnegative random variable.

8.49 Let X and Y be two independent random variables with density functions and 
respectively. Show that the random variable has a density function given by

Hint:

8.50 Find the spectral density if

where and are independent zero-mean random processes with

8.51 Consider a random process defined by

where the frequency is a random variable uniformly distributed over the interval [0, W].
Show that is nonstationary. Hint: Examine specific sample functions of the random process

for, say, the frequencies and W.
8.52 The oscillators used in communication systems are not ideal but often suffer from a distortion

known as phase noise. Such an oscillator may be modeled by the random process

where is a slowly varying random process. Describe and justify the conditions on the ran-
dom process such that is wide-sense stationary.

8.53 A baseband signal is disturbed by an additive noise process as shown by

where is a stationary Gaussian process of zero mean and variance 
(a) Determine the density functions of the random variables and where 

(b) The noise process has an autocorrelation function given by

Determine the joint density function of  and , that is, fX1
, X2

 (x1, x2).X2X1

RN (t) � s2  exp1� ƒ t ƒ 2
N1t2

X2 � X(t) ƒ t�2

X1 � X(t) ƒ t�1

X2X1

s
2 .N1t2

X1t2 � A sin10.3pt2 	 N(t)

N1t2Y1t2f(t)
f(t)

Y1t2 � A cos12pfct 	 f(t)2

W>2,W>4,X1t2 X1t2 fc

X1t2 � sin12pfct2
X1t2RX1t2 � a1e�a1 ƒt ƒ, and RY1t2 � a2e�a2 ƒt ƒ.

Y1t2X1t2
Z1t2 � X1t2 	 Y1t2

SZ1f2
P[Z � z] � P[X � z, Y � z � X]

fZ1z2 � L
0

��
fY1z � s2 fX1s2ds

Z � X 	 Y
fY1x2,fX1x2

Y � 2X ,
Y � X2.
Y � aX 	 b

fX1x2,
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� COMPUTER EXPERIMENTS

8.54 For this die-tossing experiment, a MATLAB script is included in Appendix 7. The MATLAB
script simulates the tossing of a biased die 1000 times. The steps to the script are:

� Roll the die N times and save the results in X.
� Compute a histogram on X to obtain the probabilities of the different faces.

Repeat the experiment for 100, 1000, and 10,000. Comment on the relative frequency
definition of probability as a function of N, the number of throws.

8.55 To demonstrate the central limit theorem, we compute 20,000 samples of Z for and esti-
mate the corresponding probability density function by forming a histogram of the results. A
MATLAB script for performing this is included in Appendix 7. Compare this histogram (scaled
for unit area) to the Gaussian density function having the same mean and variance.

8.56 Revise the script for Problem 8.55 to find the distribution of a sum of Bernoulli random vari-
ables. Compare it to the Gaussian distribution as N becomes large.

8.57 Revise the script for Problem 8.55 so the mean values are not identical but have a random dis-
tribution as well, but with the same overall mean. Compute the distribution of the sum.

8.58 In this computer experiment, we will simulate a Gaussian random process digitally. A MATLAB
script in Appendix 7 generates a discrete-time white Gaussian process and filters it with a dis-
crete-time root-raised cosine filter (as discussed in Chapter 6). In the script, we perform the fol-
lowing steps:

• Generate a discrete-time white Gaussian process.
• Filter this Gaussian process with a root-raised cosine filter having 25 percent excess

bandwidth.

• Compute the spectrum of the resulting discrete-time process.
• Compute the autocorrelation of the resulting discrete-time process.

(a) Determine the autocorrelation of the filtered sequence.
(b) Determine the spectrum of the filtered sequence.

Comment on the results.

N � 5,

N � 10,
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1In this chapter and the following, we use lowercase letters for random signals with the understanding that they represent sample
functions of the underlying random processes.

CHAPTER 9

NOISE IN ANALOG

COMMUNICATIONS

In this chapter, we revisit the analog modulation methods of Chapters 3 and 4 in light of
the noise-related concepts introduced in Chapter 8. In practice, we find that modulated
signals, regardless of their kind, are perturbed by noise and by the imperfect characteristics
of the channel during transmission. Noise can broadly be defined as any unknown signal
that affects the recovery of the desired signal. There may be many sources of noise in a
communication system, but often the major sources are the communication devices them-
selves or interference encountered during the course of transmission. There are several
ways that noise can affect the desired signal, but one of the most common ways is as an
additive distortion. That is, the received signal is modeled as1

(9.1)

where is the transmitted signal and is the additive noise. If we knew the noise
exactly, then we could subtract it from and recover the transmitted signal exactly.
Unfortunately, this is rarely the case. Much of communication system design is related to
processing the received signal in a manner that minimizes the effect of additive noise.

This chapter will focus on the detection of analog signals in the presence of additive
noise. The material in this chapter teaches us the following lessons.

� Lesson 1: Minimizing the effects of noise is a prime concern in analog communications,
and consequently the ratio of signal power to noise power is an important metric for
assessing analog communication quality.

� Lesson 2: Amplitude modulation may be detected either coherently requiring the use of
a synchronized oscillator or non-coherently by means of a simple envelope detector.
However, there is a performance penalty to be paid for non-coherent detection.

� Lesson 3: Frequency modulation is nonlinear and the output noise spectrum is parabolic
when the input noise spectrum is flat. Frequency modulation has the advantage that it
allows us to trade bandwidth for improved performance.

� Lesson 4: Pre- and de-emphasis filtering is a method of reducing the output noise of an
FM demodulator without distorting the signal. This technique may be used to significantly
improve the performance of frequency modulation systems.

r1t2
r1t2w1t2s1t2

r1t2 � s1t2 	 w1t2
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Band-pass
filter

Σs(t)
r(t) x(t)

w(t)

fc fc fc

FIGURE 9.1 Block diagram of signal plus noise before and after filtering,
showing spectra at each point.

9.1 Noise in Communication Systems

Before we look at techniques for minimizing the effects of noise, we will review some of
the properties of noise. In Chapter 8, we identified noise as a random process but, even
though a noise process is unpredictable, there are still methods of characterizing its behav-
ior. In particular, we may use statistical parameters such as:

� The mean of the random process. For noise, the mean value corresponds to the dc off-
set. In most communication systems, dc offsets are removed by design since they
require power and carry little information. Consequently, both noise and signal are
generally assumed to have zero mean.

� The autocorrelation of the random process. In Chapter 11, we will describe physical
models for receiver noise and means of characterizing it. As it turns out, white noise,
as described in Chapter 8, is often a good mathematical model for receiver noise, and
we will use this model extensively in Chapters 9 and 10. With white noise, samples
at one instant in time are uncorrelated with those at another instant in time regard-
less of the separation; that is, the autocorrelation of white noise is described by

(9.2)

where is the Dirac delta function and is the two-sided power spectral density.

� The spectrum of the random process. For additive white Gaussian noise the spec-
trum is flat and defined as

(9.3)

The Weiner–Khintchine relations state that the spectrum of Eq. (9.3) is the Fourier trans-
form of the autocorrelation function of Eq. (9.2).

Given the characteristics of the noise, we must determine how it affects the received
signal. To compute noise power, we must measure the noise over a specified bandwidth. We
have seen that the noise power at the output of a filter of equivalent-noise bandwidth is

(9.4)

where, for convenience of presentation, we have assumed that Clearly, the
smaller the bandwidth the smaller the noise power N will be. Relating this back to the
detection of the received signal of Eq. (9.1), it seems intuitive that we
should make as small as possible to minimize the noise but it should be no smaller than
the bandwidth of otherwise we will distort the desired signal.

This situation is illustrated in Fig. 9.1, where the transmitted signal is distorted by addi-
tive white noise and the combination is passed through a filter of bandwidth If theBT .

s1t2,BT

r1t2 � s1t2 	 w1t2BT ,
ƒH1fc2 ƒ � 1.

N � N0BT

BT

Sw1f2 �
N0

2

N0>2d1t2
Rw1t2 �

N0

2
d1t2
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filter bandwidth is greater than the signal bandwidth, then we retain all of the desired sig-
nal energy. However, if the filter is no larger than required to pass the signal undistorted,
then it will minimize the amount of noise passed. Consequently, the bandwidth is
referred to as the transmission bandwidth of the signal. The matching of the receiver filter
to the bandwidth of the transmitted signal is the basis of many optimum detection schemes.

In the following, we shall represent the signal after initial filtering as
where is narrowband noise, as contrasted to which is

assumed to be white.

9.2 Signal-To-Noise Ratios

Given that communication deals with random signals—with randomness being a qual-
ity of both the information being transmitted and the noise hampering the transmission—
how do we quantify the performance of a particular communication system? In this
chapter, we will focus on signal-to-noise ratio (SNR) as the measure of quality for ana-
log systems; this statistical parameter has importance in digital systems as well, as we
shall see in Chapter 10.

As described above and repeated below for convenience, the received signal in many
communication systems can be modeled as the sum of the desired signal, and a nar-
rowband noise signal, as shown by

(9.5)

Both of the terms on the right-hand side of Eq. (9.5) are random. The signal is random due
to the unpredictability of its information content, and the noise is random for reasons
described in Section 9.1. In Chapter 8, we saw that the two simplest parameters for par-
tially describing a random variable are the mean and variance. For reasons described pre-
viously, dc offsets are assumed to be zero. Consequently, for zero-mean processes, a simple
measure of the signal quality is the ratio of the variances of the desired and undesired sig-
nals. On this basis, the signal-to-noise ratio is formally defined by

(9.6)

where E is the expectation operator. For a communication signal, a squared signal level is
usually proportional to power. Consequently, the signal-to-noise ratio is often considered
to be a ratio of the average signal power to the average noise power. Equivalently, it can
be considered to be a ratio of the average signal energy per unit time to the average noise
energy per unit time; this latter interpretation is more common in digital communication
systems. If we happen to be using a complex representation of the signals and noise, then
instead of squared values, Eq. (9.6) would use magnitude-squared values.

EXAMPLE 9.1 Sinusoidal Signal-to-Noise Ratio

Consider the case where the transmitted signal in Eq. (9.5) is

where the phase is unknown at the receiver. The signal is received in the presence of
additive noise as shown in Fig. 9.2. The noise is white and Gaussian with power spectral
density N0>2.

u

s1t2 � Ac cos12pfct 	 u2

SNR �
E3s21t24
E3n21t24

x1t2 � s1t2 	 n1t2
n1t2, s1t2,

w1t2,n1t2x1t2 � s1t2 	 n1t2

BT
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Σ

w(t)

Signal

No signal

Band-pass
filter

Power
meter

Σ

w(t)

N

S + N

SNR = —S
N

Band-pass
filter

Power
meter

SNR
computer

FIGURE 9.2 SNR measurement scheme for Example 9.1.

In this case, although the signal is random, it is also periodic. Consequently, we can
estimate its average power by integrating over one cycle (i.e., equating an ensemble average with
a time average).

(9.7)

Theoretically, the white noise extends to infinite frequency. The narrowband noise process,
is the result of passing the white noise process through a band-pass filter with noise-

equivalent bandwidth Under this assumption, we compute the noise power

(9.8)

Substituting the results of Eqs. (9.7) and (9.8) into (9.6), the signal-to-noise ratio becomes

(9.9)

Since the bandwidth of the signal is arbitrarily narrow in this example, the choice of the band-
width is somewhat arbitrary. Consequently, in practice, the related carrier-to-noise density
ratio is defined by

(9.10)

which is not dimensionless like the SNR, but it is independent of the choice of bandwidth. The
ratio has units of hertz where is measured in watts per hertz and the carrier power

is measured in watts.

The signal-to-noise ratio is clearly measured at the receiver, but there are several
points in the receiver where the measurement may be carried out. In fact, measurements
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FIGURE 9.3 High-level block diagram of a communications receiver.
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at particular points in the receiver have their own particular importance and value. 
For instance:

� If the signal-to-noise ratio is measured at the front-end of the receiver, then it is usu-
ally a measure of the quality of the transmission link and the receiver front-end.

� If the signal-to-noise ratio is measured at the output of the receiver, it is a measure of
the quality of the recovered information-bearing signal whether it be audio, video, or
otherwise.

To illustrate these two points, consider the block diagram of a typical analog com-
munication receiver presented in Fig. 9.3. The signal plus white Gaussian noise is passed
through a band-pass filter to produce the band-pass signal, The signal is processed
by the demodulator to recover the original message signal The SNR measured at the
input to the demodulator is referred to as the pre-detection signal-to-noise ratio.

Of equal or greater importance is the signal-to-noise ratio of the recovered message
at the output of the demodulator. This metric defines the quality of the signal that is deliv-
ered to the end user. We refer to this output SNR as the post-detection signal-to-noise ratio.
It should be noted that the signal and noise characteristics may differ significantly between
the pre-detection and post-detection calculations.

The calculation of the post-detection signal-to-noise ratio involves the use of an ide-
alized receiver model, the details of which naturally depend on the channel noise and the
type of demodulation used in the receiver. We will have more to say on these issues in sub-
sequent sections of the chapter. In order to compare different analog modulation–
demodulation schemes, we introduce the idea of a reference transmission model as depicted
in Fig. 9.4. This reference model is equivalent to transmitting the message at baseband. In
this model, two assumptions are made:

1. The message power is the same as the modulated signal power of the modulation
scheme under study.

2. The baseband low-pass filter passes the message signal and rejects out-of-band noise.
Accordingly, we may define the reference signal-to-noise ratio, as

(9.11)SNRref �
average power of the modulated message signal

average power of noise measured in the message bandwidth

SNRref ,

m1t2. x1t2x1t2.

FIGURE 9.4 Reference transmission model for analog communications.



9.3 Band-Pass Receiver Structures 369

The reference signal-to-noise ratio of Eq. (9.11) may be used to compare different modu-
lation–demodulation schemes by using it to normalize the post-detection signal-to-noise
ratios. That is, we may define a figure of merit for a particular modulation–demodulation
scheme as follows:

Clearly, the higher the value that the figure of merit has, the better the noise performance
of the receiver will be.

To summarize our consideration of signal-to-noise ratios:

� The pre-detection SNR is measured before the signal is demodulated.
� The post-detection SNR is measured after the signal is demodulated.
� The reference SNR is defined on the basis of a baseband transmission model.
� The figure of merit is a dimensionless metric for comparing different analog

modulation–demodulation schemes and is defined as the ratio of the post-detection
and reference SNRs.

� Drill Problem 9.1 In practice, we often cannot measure the signal by itself but must
measure the signal plus noise. Explain how the SNR would be calculated in this case. �

9.3 Band-Pass Receiver Structures

In a band-pass communication system, the information is transmitted on some carrier
frequency, typically using an arrangement similar to the left-hand side of Fig. 9.5. The
transmitter includes a modulator that produces an output at a standard intermediate fre-
quency (IF) and a local mixer-translates (up-converts) this output to a “channel” or radio
frequency (RF).

The right-hand side of Fig. 9.5 shows an example of a superheterodyne receiver that
was discussed in Section 3.9. At the receiver, a tunable local oscillator frequency-translates
(down-converts) this channel frequency to a standard intermediate frequency (IF) for demod-
ulation. Common examples are AM radio transmissions, where the RF channels’ frequen-
cies lie in the range between 510 and 1600 kHz, and a common IF is 455 kHz; another
example is FM radio, where the RF channels are in the range from 88 to 108 MHz and the
IF is typically 10.7 MHz.

Figure of merit �
post�detection SNR

reference SNR

FIGURE 9.5 Block diagram of band-pass transmission showing a superheterodyne receiver.
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FIGURE 9.6 A linear DSB-SC receiver using coherent demodulation.

In Chapter 3, we saw how to represent band-pass signals using the in-phase and
quadrature representation with

(9.12)

where is the in-phase component of and is its quadrature component. Most
receivers immediately limit the white noise power by processing the received signal with a
band-pass filter as shown in Fig. 9.5. Typically, there is a band-pass filter before and after
the local oscillator. The filter preceding the local oscillator is centered at a higher RF fre-
quency and is usually much wider, wide enough to encompass all RF channels that the
receiver is intended to handle. For example, with an FM receiver the band-pass filter pre-
ceding the local oscillator would pass the frequencies from 88 to 108 MHz. The band-pass
filter following the oscillator passes the signal of a single RF channel relatively undistorted
but limits the noise to those components within the passband of the filter. With the same
FM receiver, the band-pass filter after the local oscillator would be approximately 200 kHz
wide; it is the effects of this narrower filter that are of most interest to us.

9.4 Noise in Linear Receivers Using
Coherent Detection

In Chapter 3, we looked at the generation and detection of amplitude-modulated signals. A
variety of amplitude-modulated signals were considered therein, with their demodulation depend-
ing upon whether the carrier was present in the transmitter signal or not. In the case of double-
sideband suppressed-carrier (DSB-SC) modulation, the modulated signal is represented as

(9.13)

where is the carrier frequency, and is the message signal; the carrier phase is a ran-
dom variable, but not varying during the course of transmission. For suppressed-carrier sig-
nals, linear coherent detection was identified as the proper demodulation strategy. In
particular, a linear receiver for this signal could be implemented as shown in Fig. 9.6.

In Fig. 9.6, the received RF signal is the sum of the modulated signal and white Gauss-
ian noise The received signal is down-converted to an IF by multiplication with a sinu-
soid of frequency This down-conversion is performed by the product modulator
shown as mixer 1 in Fig. 9.6. After band-pass filtering, the resulting signal is

(9.14)x1t2 � s1t2 	 n1t2
fc � fRF .

w1t2.

um1t2fc

s1t2 � Acm1t2 cos12pfct 	 u2

sQ1t2s1t2,sI1t2
s1t2 � sI1t2 cos12pfct2 � sQ1t2 sin12pfct2
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FIGURE 9.7 Power spectral density of band-pass noise.

where is the undistorted modulated signal and is the band-pass noise at the out-
put of the filter. The assumed power spectral density of the band-pass noise is illustrated
in Fig. 9.7. Equation 9.14 assumes that the band-pass filter has a sufficiently wide and flat
passband that does not cause any significant distortion to the modulated signal. This equa-
tion also assumes that the gain of the filter is unity. In practice, the filter gain will often dif-
fer from unity but will affect the signal and noise equally, so there is no loss of generality
by assuming that the gain is unity.

� PRE-DETECTION SNR

For analog signals, our measure of quality is the signal-to-noise ratio. For the signal 
of Eq. (9.13), the average power of the signal component is given by expected value of the
squared magnitude. Since the carrier and modulating signal are independent, this can be
broken down into two components as follows:

(9.15)

If we let

(9.16)

be the average signal (message) power and using the result of Example 9.1 for the first
factor of Eq. (9.15), we have

(9.17)

That is, the average received signal power due to the modulated component is The
signal is the output of a product modulator that has its inputs and

both of which have units of volts. Due to internal scaling, the output of this prod-
uct modulator has units of volts, not volts-squared. Consequently, the expression for

has units of power not power-squared.
If the band-pass filter has a noise bandwidth then the noise power passed by this

filter is by definition Consequently, the signal-to-noise ratio of the signal is

(9.18)

This is the pre-detection signal-to-noise ratio of the DSB-SC system because it is measured
at a point in the system before the message signal is demodulated.m1t2

SNRpre
DSB �

Ac
2P

2N0BT

N0BT .
BT ,

E3s21t24
m1t2, Ac cos12pfct 	 u2s1t2 Ac

2P>2.

E3s21t24 �
Ac
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P � E3m21t24
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� POST-DETECTION SNR

Next, we wish to determine the post-detection or output SNR of the DSB-SC system. The
post-detection signal-to-noise ratio is the ratio of the message signal power to the noise
power after demodulation/detection. The post-detection SNR depends on both the modu-
lation and demodulation techniques.

Using the narrowband representation of the band-pass noise, the signal at the input
to the coherent detector of Fig. 9.6 may be represented as

(9.19)

where and are the in-phase and quadrature components of with respect
to the carrier. The output of mixer 2 in Fig. 9.6 is given by

(9.20)

where we have used the double-angle formulas

Note that the second line of Eq. (9.20) has two parts: the first part represents the baseband
signal and in-phase component of the noise, while the second part represents quadrature
component of its noise centered at the much higher frequency of These high-frequency
components are removed with a low-pass filter as shown in Fig. 9.6, and the result is

(9.21)

In Eqs. (9.20) and (9.21) we assume the gains of the second mixer and the low-pass filter
are unity, without loss of generality. Two observations can be made:

� The message signal and the in-phase component of the filtered noise appear
additively in the output.

� The quadrature component of the noise is completely rejected by the demodulator.

From Eq. (9.21), we may compute the output or post-detection signal to noise ratio by
noting the following:

� The message component is so analogous to the computation of the pre-
detection signal power, the post-detection signal power is where P is the aver-
age message power as defined in Eq. (9.16).

� The noise component is after low-pass filtering. As described in Section 8.11, the
in-phase component has a noise spectral density of over the bandwidth from 
to If the low-pass filter has a noise bandwidth W, corresponding to the message
bandwidth, which is less than or equal to then the output noise power is

(9.22)

Thus the power in is 2N0W.nI1t2
� 2N0W
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Combining these observations, we obtain the post-detection SNR of

(9.23)

Consequently, if the post-detection SNR is twice the pre-detection SNR. This
is due to the fact that the quadrature component of the noise has been discarded by the
synchronous demodulator.

� FIGURE OF MERIT

It should be clear that for the reference transmission model defined in Section 9.2, the aver-
age noise power for a message of bandwidth W is For DSB-SC modulation the aver-
age modulated message power is given by Eq. (9.17), and consequently the reference SNR
for this transmission scheme is The corresponding figure of merit
for this receiver is

This illustrates that we lose nothing in performance by using a band-pass modulation
scheme compared to the baseband modulation scheme, even though the bandwidth of the
former is twice as wide. Consequently, DSB-SC modulation provides a baseline against
which we may compare other amplitude modulation detection schemes.

� Drill Problem 9.2 A DSC-SC modulated signal is transmitted over a noisy channel, hav-
ing a noise spectral density of watts per hertz. The message bandwidth is 4
kHz and the carrier frequency is 200 kHz. Assume that the average received power of the sig-
nal is Determine the post-detection signal-to-noise ratio of the receiver. �

9.5 Noise In AM Receivers Using 
Envelope Detection

In Section 3.1, we discussed envelope detection of amplitude modulation with a non-
suppressed carrier. Envelope detection results in a simpler receiver than the coherent
approach as it does not require the circuitry to produce a synchronized carrier for
demodulation. Recall from Section 3.1 that the envelope-modulated signal is repre-
sented by

(9.24)

where is the carrier wave, is the message signal, and is the amplitude
sensitivity of the modulator. For envelope detection, the receiver model is depicted in 
Fig. 9.8. The front end of this receiver is identical to that of the coherent receiver. That is,
the received signal, including additive noise, is passed through a band-pass filter.
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FIGURE 9.8 Model of AM receiver using envelope detection.

� PRE-DETECTION SNR

Before discussing the remainder of the circuit, let us consider the (pre-detection) SNR of
this band-pass signal. In Eq. (9.24), the average power of the carrier component is due
to the sinusoidal nature of the carrier. The power in the modulated part of the signal is

(9.25)

where we assume the message signal has zero mean, and the message power
P is defined as in Eq. (9.16). Consequently, the received signal power is As
with the linear receiver, we assume without loss of generality that the gain of the band-pass
filter is unity, so the pre-detection signal-to-noise ratio is given by

(9.26)

where is the noise bandwidth of the band-pass filter.

� POST-DETECTION SNR

To determine the post-detection signal-to-noise ratio, we must analyze the effects of the
remainder of the circuit of Fig. 9.8—in particular, the envelope detector, which can be mod-
eled as shown in Fig. 9.9, and whose operation was described in Section 3.1. As with the
linear receiver of Section 9.4, we can represent the noise in terms of its in-phase and quad-
rature components, and consequently model the input to the envelope detector as

(9.27)

The object of the envelope detector is to recover the low-frequency amplitude variations
of the high-frequency signal depicted in Fig. 9.10. Conceptually, this can be represented in
a phasor diagram as shown in Fig. 9.11, where the signal component of the phasor is

and the noise has two orthogonal phasor components, and nQ1t2.nI1t2Ac11 	 kam1t22,
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FIGURE 9.11 Phasor diagram for AM wave plus narrowband noise.

From Fig. 9.11, the output of the envelope detector is the amplitude of the phasor repre-
senting and it is given by

(9.28)

The above expression is the output of an ideal envelope detector. Note that the phase of
does not appear in this expression; it has been eliminated because it is of no interest

to us. This expression for is somewhat complex but can be simplified to provide some
insightful results. If we assume that the signal is much larger than the noise, then using the
approximation when we may write

(9.29)

under high SNR conditions. This new expression for the demodulated signal has three
components: dc component, signal component, and noise component. The dc term can be
removed with a capacitor, as shown in Fig. 9.8, leaving just the signal and noise terms; the
result so obtained is similar to what was observed with the linear receiver.
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2See Chapter 2 of Haykin (2001).

Accordingly, the post-detection SNR for the envelope detection of AM, using a mes-
sage bandwidth W, is given by

(9.30)

where the numerator represents the average power of the message and the denom-
inator represents the average power of from Eq. (9.22).

This evaluation of the output SNR is only valid under two conditions:

� The SNR is high.
� is adjusted for 100% modulation or less, so there is no distortion of the signal

envelope.

As with suppressed-carrier amplitude modulation, the message bandwidth W is approxi-
mately one-half of the transmission bandwidth 

� FIGURE OF MERIT

For AM modulation, the average transmitted power is given by the product of Eq. (9.25)
and the carrier power consequently the reference SNR is Com-
bining this result with Eq. (9.30), the figure of merit for this AM modulation–
demodulation scheme is

(9.31)

Since the product is always less than unity (otherwise the signal would be over mod-
ulated), the figure of merit for this system is always less than 0.5. Hence, the noise perfor-
mance of an envelope-detector receiver is always inferior to a DSB-SC receiver, the reason
is that at least half of the power is wasted transmitting the carrier as a component of the
modulated (transmitted) signal.

This completes the noise analysis of envelope modulation, but we note that a math-
ematical analysis can also be performed when the signal-to-noise ratio is low.2 From Eq.
(9.30), we see that the post-detection SNR has an inverse linear dependence on the noise
spectral density. With low signal-to-noise conditions, nonlinear effects appear. Synchro-
nous detection does not have this nonlinear behavior, but the quality of the voice is still poor
at low post-detection SNRs.

� COMPUTER EXPERIMENT: ENVELOPE DETECTION

In Problem 9.26, we describe a computer experiment that simulates envelope detection
using the phasor notation given above. In the experiment, the message is a sinusoidal wave

for which we create a time-varying phasor and add a correspond-
ing noise phasor. In this experiment, we compute the pre-detection and post-detection
SNRs for samples of its signal. These two measures are plotted against one another in Fig.
9.12 for . Also shown in this plot is the theoretical performance of these two mea-
sures as given by Eqs. (9.26) and (9.30).
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The post-detection SNR is computed as follows:

• The output signal power is determined by passing a noiseless signal through the enve-
lope detector and measuring the output power.

• The output noise power is computed by passing signal plus noise through the enve-
lope detector and subtracting the output obtained from the clean signal only. With
this approach, any distortion due to the product of noise and signal components is
included as noise contribution.

The ratio of the two quantities is used as an estimate of the output SNR. 

As we can see from Fig. 9.12, there is close agreement between theory and experiment
at high SNR values, which is to be expected. There are some minor discrepancies, but these
can be attributed to the limitations of the discrete time simulation. At lower SNR there is
some variation from theory as might also be expected.

� Drill Problem 9.3 For the same received signal power, compare the post-detection SNRs
of DSB-SC with coherent detection and envelope detection with and 0.4. Assume that
the average message power is �

� Drill Problem 9.4 In practice, there is an arbitrary phase in Eq. (9.24). How will this
affect the results of Section 9.5. �

9.6 Noise in SSB Receivers

We now consider the case of a coherent receiver with an incoming SSB wave. Using the def-
initions of Section 3.6, we assume that only the lower sideband is transmitted, so that we
may express the modulated wave as

(9.32)s1t2 �
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FIGURE 9.12 Comparison of pre-detection and post-detection
SNRs with simulated envelope detection of AM.
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where is the Hilbert transform of the message signal We may make the fol-
lowing observations concerning the in-phase and quadrature components of in 
Eq. (9.32):

1. The two components and are uncorrelated with each other. Therefore,
their power spectral densities are additive.

2. The Hilbert transform is obtained by passing through a linear filter with
transfer function The squared magnitude of this transfer function is equal
to one for all Accordingly, and have the same average power P.

Thus, proceeding in a manner similar to that for the DSB-SC receiver, we find that the in-phase
and quadrature components of the SSB modulated wave contribute an average power of

each. The average power of is therefore This result is half that of the DSB-
SC case, which is intuitively satisfying.

� PRE-DETECTION SNR

For the SSB signal, the transmission bandwidth is approximately equal to the message
bandwidth W. Consequently, using the signal power calculation of the previous section, the
pre-detection signal-to-noise ratio of a coherent receiver with SSB modulation is

(9.33)

� POST-DETECTION SNR

Using the same superheterodyne receiver of Figure 9.6, the band-pass signal after multi-
plication with the synchronous oscillator output is

(9.34)

After low-pass filtering the we are left with

(9.35)

As expected, we see that the quadrature component of the message signal has been
eliminated from the detector output. With a band-pass filter tailor-made for the SSB sig-
nal, the band-pass noise will also be of single sideband nature. However, as noted in
Eq. (8.98), the spectrum of the in-phase component of the noise is given by
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For the single sideband case, is for and for
Consequently,

(9.37)

In other words, the spectral density of is double-sided, as in the DSB-SC case, but with
half of the power. In a practical application, the SSB filter will attenuate the low-frequency
components of the signal plus noise. Hence, in practice, the spectrum of will often have
a notch at dc.

From Eq. (9.35), the message component in the receiver output is so that
the average power of the recovered message is The corresponding noise power from
Eqs. (9.35) and (9.37) is Accordingly, the post-detection signal-to-noise ratio of a
system using SSB modulation in the transmitter and coherent detection in the receiver is the
ratio of these two powers; namely,

(9.38)

� FIGURE OF MERIT

The average signal power for the SSB system, as discussed above, is Consequently,
the reference SNR is The figure of merit for the SSB system is the ratio of
Eq. (9.38) to the latter; that is,

(9.39)

Consequently, SSB transmission has the same figure of merit as DSB-SC. The performance
of vestigial sideband with coherent detection is similar to that of SSB.

Comparing the results for the different amplitude modulation schemes, we find that
there are a number of design tradeoffs. Double-sideband suppressed carrier modulation
provides the same SNR performance as the baseband reference model but requires syn-
chronization circuitry to perform coherent detection. Non-suppressed-carrier AM simpli-
fies the receiver design significantly as it is implemented with an envelope detector. However,
non-suppressed-carrier AM requires significantly more transmitter power to obtain the
same SNR performance as the baseband reference model. Single-sideband modulation
achieves the same SNR performance as the baseband reference model but only requires
half the transmission bandwidth of the DSC-SC system. On the other hand, SSB requires
more transmitter processing. These observations are our first indication that communica-
tion system design involves a tradeoff between power, bandwidth, and processing
complexity.

� Drill Problem 9.5 The message signal of Problem 9.2 having a bandwidth W of 4 kHz
is transmitted over the same noisy channel having a noise spectral density of 
watts per hertz using single-sideband modulation. If the average received power of the signal is

what is the post-detection signal-to-noise ratio of the receiver? Compare the trans-
mission bandwidth of the SSB receiver to that of the DSB-SC receiver. �

�80 dBm,

2  10�17N0>2
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9.7 Detection of Frequency 
Modulation (FM)

We now turn to the detection of a frequency-modulated carrier in noise. Recall from Section
4.1 that the frequency-modulated signal is given by

(9.40)

where is the carrier amplitude, is the carrier frequency, is the frequency sensitivity
factor of the modulator, and is the message signal. The received FM signal has a
carrier frequency and a transmission bandwidth such that a negligible amount of
power lies outside the frequency band for positive frequencies, and similarly for
negative frequencies.

� PRE-DETECTION SNR

For FM detection, we assume a receiver model as shown in Fig. 9.13. As before, we assume that
the noise is a white zero-mean Gaussian process with power spectral density The FM
detector consists of a band-pass filter, a limiter, a discriminator, and a low-pass filter. The band-
pass filter has a center frequency and bandwidth so that it passes the FM signal without
distortion. Ordinarily, is small compared with the center frequency so that we may use the
narrowband representation for the filtered version of the channel noise The pre-
detection SNR in this case is simply the carrier power divided by the noise passed by the
bandpass filter, namely,

In an FM system, the message signal is embedded in the variations of the instantaneous fre-
quency of the carrier. The amplitude of the carrier is constant. Therefore any variations of the
carrier amplitude at the receiver input must result from noise or interference. The amplitude
limiter, following the band-pass filter in the receiver model of Fig. 9.13, is used to remove
amplitude variations by clipping the modulated wave. The resulting wave is almost rectangu-
lar. This wave is rounded by another band-pass filter that is an integral part of the limiter,
thereby suppressing harmonics of the carrier frequency that are caused by the clipping.

The discriminator in the model of Fig. 9.13 consists of two components (see Chapter 4):

1. A slope network or differentiator with a purely imaginary frequency response that
varies linearly with frequency. It produces a hybrid-modulated wave in which both
amplitude and frequency vary in accordance with the message signal.

SNRpre
FM �

Ac
2

2N0BT

N0BT ;
Ac

2>2 w1t2.n1t2, fc ,BT

BTfc

N0>2.w1t2

fc � BT>2 BT ,fc
s1t2m1t2 kffcAc

s1t2 � Ac cos c2pfct 	 2pkfL
t

0
m1t2 dt d
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filter
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w(t) Local

oscillator

v(t)x(t)FM
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Output
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~

FIGURE 9.13 Model of an FM receiver.
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f
fc

S(f )

0

2. An envelope detector that recovers the amplitude variation and reproduces the mes-
sage signal.

The slope network and envelope detector are usually implemented as integral parts
of the single physical unit. An example of the amplitude response of the composite slope
network is shown in Fig. 9.14. The envelope detector was discussed in the previous section;
see also Chapter 3. The combined use of the slope network and envelope detector as an FM
demodulator was discussed in Section 4.8.

The post-detection filter, labeled “low-pass filter” in Fig. 9.13, has a bandwidth that
is just large enough to pass the highest frequency component of the message signal. This
filter removes the out-of-band components of the noise at the discriminator output and
thereby keeps the effect of the output noise to a minimum.

� POST-DETECTION SNR

The noisy FM signal after band-pass filtering may be represented as

(9.41)

where is given by Eq. (9.40). In previous developments, we have expressed the filtered
noise at the band-pass filter output in Fig. 9.13 in terms of its in-phase and quadra-
ture components

(9.42)

We may equivalently express in terms of its envelope and phase as (see Problem 4.3.)

(9.43)

where the envelope is

(9.44)

and the phase is

(9.45)

One of the properties of this polar representation is that the phase is uniformly dis-
tributed between 0 and radians.2p

fn1t2
fn1t2 � tan�1 ¢nQ1t2

nI1t2 ≤
r1t2 � 3nI

21t2 	 nQ
2 1t241>2

n1t2 � r1t2 cos32pfct 	 fn1t24
n1t2

n1t2 � nI1t2 cos12pfct2 � nQ1t2 sin12pfct2
n1t2s1t2

x1t2 � s1t2 	 n1t2

FIGURE 9.14 Amplitude response of slope network used in FM discriminator.
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Resultant

r(t)

�n(t)

�(t) �(t)
FIGURE 9.15 Phasor diagram for
FM signal plus narrowband noise
assuming high carrier-to-noise ratio.

3See Chapter 5 of Downing (1964).

To proceed, we note that the phase of is

(9.46)

Combining Eqs. (9.40), (9.43), and (9.46), the noisy signal at the output of the band-pass
filter may be expressed as

(9.47)

It is informative to represent by means of a phasor diagram, as in Fig. 9.15 where we
have used the signal term as the reference. In Fig. 9.15, the amplitude of the noise is

and the phase difference is the angle between the noise phasor
and the signal phasor. The phase of the resultant is given by

(9.48)

The envelope of is of no interest to us, because the envelope variations at the band-
pass filter output are removed by the limiter.

To obtain useful results, we make some approximations regarding First, we
assume that the carrier-to-noise ratio measured at the discriminator input is large. If R
denotes observations of the sample function of the noise envelope, then most of the time
the random variable R is small compared to the carrier amplitude Under this condition,
and noting that since the expression for the phase simplifies to

(9.49)

We simplify this expression even further by ignoring the modulation component in the sec-
ond term of Eq. (9.49), and replacing with This is justified
because the phase is uniformly distributed between 0 and radians and, since 
is independent of it is reasonable to assume that the phase difference is
also uniformly distributed over radians. Theoretical considerations show that this assump-
tion is justified provided that the carrier-to-noise ratio is high.3 Then noting that the quad-
rature component of the noise is we may simplify Eq. (9.49) to

(9.50)u1t2 � f1t2 	
nQ1t2
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Using the expression for given by Eq. (9.46), Eq. (9.50) can be expressed as

(9.51)

Our objective is to determine the error in the instantaneous frequency of the carrier wave
caused by the presence of the filtered noise With an ideal discriminator, its output is
proportional to the derivative Using the expression for in Eq. (9.51), the
ideal discriminator output, scaled by is therefore

(9.52)

where the noise term is defined by

(9.53)

We now see that, provided the carrier-to-noise ratio is high, the discriminator output 
consists of the original message signal multiplied by the constant factor plus an
additive noise component The additive noise at the discriminator output is determined
essentially by the quadrature component of the narrowband noise .

Accordingly, we may use the post-detection signal-to-noise ratio, as previously defined,
to assess the output quality of the FM receiver. The post-detection signal-to-noise ratio is
defined as the ratio of the average output signal power to the average output noise power.
From Eq. (9.52) we see that the message component of the discriminator output, and there-
fore the low-pass filter output, is Hence, the average output signal power is equal
to where P is the average power of the message signal 

To determine the average output noise power, we note that the noise at the dis-
criminator output is proportional to the time derivative of the quadrature noise component

Since the differentiation of a function with respect to time corresponds to multipli-
cation of its Fourier transform by it follows that we may obtain the noise process 
by passing through a linear filter with a frequency response equal to

(9.54)

This means that the power spectral density of the noise is related to the power
spectral density of the quadrature noise component as follows:

(9.55)

With the band-pass filter in the receiver model of Fig. 9.13 having an ideal frequency
response characterized by bandwidth and midband frequency it follows that the nar-
rowband noise will have a power spectral density characteristic that is similarly shaped.
If the input noise is white then, from the properties of the in-phase and quadrature com-
ponents of narrowband noise described in Section 8.11, the power spectral density of 
will be the low-pass equivalent of the sum of the positive and negative frequency responses
of the band-pass filter. This means that the quadrature component of the narrowbandnQ1t2
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noise will have the ideal low-pass characteristic shown in Fig. 9.16 (a). The corresponding
power spectral density of the noise is shown in Fig. 9.16 (b); that is,

(9.56)

In the receiver model of Fig. 9.13, the discriminator output is followed by a low-pass fil-
ter with a bandwidth equal to the message bandwidth W. For wideband FM, we usually
find that W is smaller than where is the transmission bandwidth of the FM sig-
nal. This means that the out-of-band components of noise will be rejected. Therefore,
the power spectral density of the noise appearing at the receiver output is
defined by

(9.57)
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as shown in Fig. 9.16(c). The average output noise power is determined by integrating the
power spectral density from to W. Doing so, we obtain the following result:

(9.58)

From Eqs. (9.52) and (9.16) the average output signal power is As mentioned earlier,
provided the carrier-to-noise ratio is high, the post-detection signal-to-noise ratio is equal
to the ratio of to the right-hand side of Eq. (9.58), thereby yelding

(9.59)

Hence, the post-detection SNR of an FM demodulator has a nonlinear dependence on both
the frequency sensitivity and the message bandwidth.

� FIGURE OF MERIT

With FM modulation, the modulated signal power is simply hence the reference SNR
is Consequently, the figure of merit for this system is given by

(9.60)

where, in the last line, we have introduced the definition as the deviation
ratio for the FM system in light of the material presented in Section 4.6. Recall from that
section that the generalized Carson rule yields the transmission bandwidth

for an FM signal. So, substituting for in the
definition of D, the figure of merit for an FM system is approximately given by

(9.61)

Consequently, an increase in the transmission bandwidth provides a corresponding
quadratic increase in the output signal-to-noise ratio with an FM system compared to the
reference system. Thus, when the carrier to noise level is high, unlike an amplitude modu-
lation system an FM system allows us to trade bandwidth for improved performance in
accordance with a square law.

EXAMPLE 9.2 Noise in FM Multiplexed Channels

In the FM stereo multiplexing strategy described in Section 4.9, we wish to determine the post-
detection SNR of the stereo difference signal assuming that the transmission
bandwidth is 200 kHz, the baseband bandwidth is 19 kHz, and the pre-detection SNR is 12 dB.
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From the material presented previously in this section, the pre-detection SNR is

Ignoring the pilot component, the average post-detection noise power in the upper channel of
the FM multiplex is

The post-detection SNR on the upper channel is

where we have used the approximation to Carson’s rule that and have assumed
that half of the power is in the upper channel.

� THRESHOLD EFFECT

The formula of Eq. (9.59), defining the post-detection SNR ratio of an FM receiver, is valid
only if the pre-detection SNR, measured at the discriminator input, is high compared to
unity. If the pre-detection SNR is lowered, the FM receiver breaks down. At first, individ-
ual clicks are heard in the receiver output, and as the pre-detection SNR decreases further,
the clicks merge to a crackling or sputtering sound. At and below this breakdown point,
Eq. (9.59) fails to accurately predict the post-detection SNR. This phenomenon is known
as the threshold effect; its evaluation is however beyond the scope of this book.

� COMPUTER EXPERIMENT: THRESHOLD EFFECT WITH FM

In Problem 9.27, we describe a computer experiment for simulating the detection of an
FM signal in noise. The signal and noise are both generated using complex phasor nota-
tion, but they are subsequently up-converted to an IF, creating a band-pass signal, to apply
discriminator detection.

The complex phasor of the FM signal is given by

where (for the results that follow) we have and hertz per unit
amplitude. This signal was transmitted with a band-pass transmission bandwidth of

and a baseband detection bandwidth of W � 5.5 Hz.BT � 62.5 Hz
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Similar to the AM computer experiment, we measure the pre-detection and post-
detection SNRs of the signal and compare the results to the theory developed in this sec-
tion. These results are shown in Fig. 9.17 for the above set of parameters. The results show
that the theory clearly matches the measured performance at high SNR. At low SNR we
have a threshold effect as mentioned, where the post-detection SNR degrades very rapidly
as the pre-detection SNR is decreased past a value of 10 dBs.

� Drill Problem 9.6 The signal is transmitted by means of frequency
modulation. If the frequency sensitivity is 2 kHz per volt, what is the Carson’s rule bandwidth
of the FM signal? If the pre-detection SNR is 17 dB, calculate the post-detection SNR. Assume that
the FM demodulator includes an ideal low-pass filter with bandwidth 3.1 kHz. �

� Drill Problem 9.7 Compute the post-detection SNR in the lower channel for Example
9.2 and compare it to the upper channel. �

9.8 FM Pre-emphasis and De-emphasis

From the square-law nature of the output noise spectrum of an FM receiver, the noise is
most severe at large values of This becomes a significant issue in FM stereo transmis-
sion where the upper channel, suffers significantly more noise than the
lower channel, 

Suppose the demodulator includes a low-pass filter which gradually increases
attenuation as approaches W rather than being approximately flat for and
cutting off sharply at W. Such a filter with transfer function is presented in
Fig. 9.18(b). This filter will de-emphasize the effects of noise at high frequency as illus-
trated in the figure.
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FIGURE 9.17 Comparison of pre-detection and post-detection SNRs for a simulated FM
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FIGURE 9.18 Use of pre-emphasis and de-emphasis in an FM system. (a) Output noise
spectrum before de-emphasis. (b) Frequency response of de-emphasis filter. (c) Noise
spectrum after de-emphasis.

As well as reducing the noise, the de-emphasis filter will distort the received signal.
To compensate this distortion, we appropriately pre-distort or pre-emphasize the baseband
signal at the transmitter, prior to FM modulation, using a filter with the frequency response

(9.62)

With a matching combination of pre-emphasis and de-emphasis as described by Eqs. (9.61) and
(9.62), the signal is recovered undistorted and, most important, with reduced noise levels.

The de-emphasis filter is often a simple resistance-capacitance (RC) circuit with

(9.63)Hde1f2 �
1

1 	 j
f

f3dB

Hpre1f2 �
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Hde1f2 ƒf ƒ � W
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This filter is approximately flat for the 3-dB bandwidth of the filter. With this
choice, the noise spectrum for becomes flat over most of the message bandwidth
as shown in Figure 9.18(c).

At the transmitting end, the pre-emphasis filter is

(9.64)

This second filter has little effect at low frequencies where At frequencies
(recall that the transfer function of a differentiator is ), the filter of Eq. (9.64)

is approximately equivalent to a differentiator. Thus the pre-emphasized signal is the sum
of the original signal plus its derivative. Consequently, the modulated signal is approximately

where Thus, pre-emphasized FM is really a combination of frequency modu-
lation and phase modulation.

Pre-emphasis is used in many applications other than FM stereo broadcasting. Pre-
emphasis can be used to advantage whenever portions of the message band are degraded
relative to others. That is, portions of the message band that are most sensitive to noise are
amplified (emphasized) before transmission. At the receiver, the signal is de-emphasized to
reverse the distortion introduced by the transmitter; at the same time the de-emphasis
reduces the noise that falls in the most sensitive part of the message band. For example, the
Dolby system for tape recording pre-emphasizes high frequencies for sound recording so
that high-frequency surface noise can be de-emphasized during playback.

EXAMPLE 9.3 Pre-emphasis Improvement

In this example, we address the improvement in the post-detection signal-to-noise ratio of an
FM receiver with the pre-and de-emphasis networks of Eqs. (9.64) and (9.63).

From Eq. (9.58), the noise power without de-emphasis is given by

The corresponding noise power with de-emphasis is given by

The improvement provided by de-emphasis is the ratio of these last two expressions,
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In commercial FM broadcasting, we typically have and we may reasonably
assume This set of values yields which corresponds to an improvement
of 13 dB in the post-detection signal-to-noise ratio of the receiver. This example illustrates that
a significant improvement in the noise performance of an FM system may be achieved by using
pre-emphasis and de-emphasis filters made up of simple RC circuits.

� Drill Problem 9.8 An FM system has a pre-detection SNR of 15 dB. If the trans-
mission bandwidth is 30 MHz and the message bandwidth is 6 MHz, what is the post-detec-
tion SNR? Suppose the system includes pre-emphasis and de-emphasis filters as described by
Eqs. (9.63) and (9.64). What is the post-detection SNR if the of the de-emphasis filter
is 800 kHz? �

9.9 Summary and Discussion

In this chapter, we looked at the detection of various analog modulated signals in the pres-
ence of additive noise. We began by reviewing the characteristics of Gaussian noise, the most
common impairment in communication systems. We next introduced the concepts of 
pre-detection and post-detection signal-to-noise ratio (SNR) and established the ratio of the
post-detection SNR to the SNR of a baseband reference model as the figure of merit for com-
paring analog communication systems.

Subsequently, we analyzed the noise performance of a number of different amplitude
modulation schemes and found:

(i) The detection of DSB-SC with a linear coherent receiver has the same SNR perfor-
mance as the baseband reference model but requires synchronization circuitry to
recover the coherent carrier for demodulation.

(ii) Non-suppressed carrier AM systems allow simple receiver design including the use of
envelope detection, but they result in significant wastage of transmitter power com-
pared to coherent systems.

(iii) Analog SSB modulation provides the same SNR performance as DSB-SC while requir-
ing only half the transmission bandwidth.

The analysis of the noise performance of FM signals indicates that the output noise
spectrum has a parabolic shape quite unlike what was observed with AM detection.
This behavior results in the ability of FM to trade off signal bandwidth for improved
noise performance in accordance with a square law. Pre- and de-emphasis spectral
weighting may be used to significantly improve the post-detection signal-to-noise ratios
of FM systems. We also observed that discriminator detection of FM exhibits a thresh-
old phenomenon where performance rapidly degrades below a certain pre-detection
SNR.

In this chapter, we have shown the importance of noise analysis based on signal-to-
noise ratio in the evaluation of the performance of analog communication systems. This type
of noise analysis is fundamental to the understanding and design of any communication
system, be it analog or digital.

f3dB

I � 22,W � 15 kHz.
f3dB � 2.1 kHz,
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ADDITIONAL PROBLEMS

9.9 A sample function

is applied to a low-pass RC filter. The amplitude and frequency of the sinusoidal compo-
nent are constants, and is white noise of zero mean and power spectral density Find
an expression for the output signal-to-noise ratio with the sinusoidal component of regarded
as the signal of interest.

9.10 A DSC-SC modulated signal is transmitted over a noisy channel, with the power spectral den-
sity of the noise as shown in Fig. 9.19. The message bandwidth is 4 kHz and the carrier frequency
is 200 kHz. Assume that the average received power of the signal is and determine
the output signal-to-noise ratio of the receiver.

�80 dBm,

x1t2N0>2.w1t2 fcAc

x1t2 � Ac cos12pfct2 	 w1t2
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FIGURE 9.19 Problem 9.10.

9.11 Derive an expression for the post-detection signal-to-noise ratio of the coherent receiver of Fig.
9.6, assuming that the modulated signal is produced by sinusoidal modulating wave

Perform your calculation for the following two receiver types:
(a) Coherent DSB-SC receiver
(b) Coherent SSB receiver
Assume the message bandwidth is Evaluate these expressions for a received signal strength
of 100 picowatts, noise spectral density of watts per hertz, and of 3 kHz.

9.12 Evaluate the autocorrelation function of the in-phase and quadrature components of narrow-
band noise at the coherent detector input for the DSB-SC system. Assume the band-pass noise
spectral density is for 

9.13 Assume a message signal has the power spectral density

where a and W are constants. Find the expression for post-detection SNR of the receiver when
(a) The signal is transmitted by DSB-SC.
(b) The signal is transmitted by amplitude modulation with amplitude sensitivity 
(c) The signal is transmitted using frequency modulation with frequency sensitivity 

hertz per volt.
Assume that white Gaussian noise of zero mean and power spectral density is added to
the signal at the receiver input.

N0>2
kf � 500

ka � 0.3.

SM1f2 � c a
ƒ f ƒ
W

, ƒ f ƒ � W

0, otherwise

m1t2 ƒ f � fc ƒ � BT .SN1f2 � N0>2

fm10�15
fm .

m1t2 � Am cos12pfmt2
s1t2
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9.14 A 10 kilowatt transmitter amplitude modulates a carrier with a tone 
using 50 percent modulation. Propagation losses between the transmitter and the receiver atten-
uate the signal by 90 dB. The receiver has a front-end noise with spectral density 
watts/Hz and includes a bandpass filter with bandwidth What is the
post-detection signal-to-noise ratio, assuming that the receiver uses an envelope detector?

9.15 The average noise power per unit bandwidth measured at the front end of an AM receiver is
per Hz. The modulating signal is sinusoidal, with a carrier power of 80 watts and

a sideband power of 10 watts per sideband. The message bandwidth is 4 kHz. Assuming the use
of an envelope detector in the receiver, determine the output signal-to-noise ratio of the system.
By how many decibels is this system inferior to a DSB-SC modulation system?

9.16 An AM receiver, operating with a sinusoidal modulating wave and 80 percent modulation, has
a post-detection signal-to-noise ratio of 30 dB. What is the corresponding pre-detection signal-
to-noise ratio?

9.17 The signal is transmitted via FM. There is an ideal band-pass filter pass-
ing at the discriminator output. Calculate the post-detection SNR given that

per volt, and the pre-detection SNR is 500. Use Carson’s rule to estimate the pre-
detection bandwidth.

9.18 Suppose that the spectrum of a modulating signal occupies the frequency band 
To accommodate this signal, the receiver of an FM system (without pre-emphasis) uses an ideal
band-pass filter connected to the output of the frequency discriminator; the filter passes fre-
quencies in the interval Determine the output signal-to-noise ratio and figure of
merit of the system in the presence of additive white noise at the receiver input.

9.19 An FM system, operating at a pre-detection SNR of 14 dB, requires a post-detection SNR of 30
dB, and has a message power of 1 watt and bandwidth of 50 kHz. Using Carson’s rule, estimate
what the transmission bandwidth of the system must be. Suppose this system includes pre-
emphasis and de-emphasis network with of 10 kHz. What transmission bandwidth is
required in this case?

ADVANCED PROBLEMS

9.20 Assume that the narrowband noise is Gaussian and its power spectral density is
symmetric about the midband frequency Show that the in-phase and quadrature compo-
nents of are statistically independent.

9.21 Suppose that the receiver bandpass-filter magnitude response has symmetry about 
and noise bandwidth From the properties of narrowband noise described in Section 8.11,
what is the spectral density of the in-phase and quadrature components of the narrow-
band noise at the output of the filter? Show that the autocorrelation of is

where justify the approximation for 
9.22 Assume that, in the DSB-SC demodulator of Fig. 9.6, there is a phase error in the synchro-

nized oscillator such that its output is Find an expression for the coherent
detector output and show that the post-detection SNR is reduced by the factor 

9.23 In a receiver using coherent detection, the sinusoidal wave generated by the local oscillator suf-
fers from a phase error with respect to the carrier wave Assuming that is
a zero-mean Gaussian process of variance and that most of the time the maximum value of

is small compared to unity, find the mean-square error of the receiver output for DSB-SC
modulation. The mean-square error is defined as the expected value of the squared difference
between the receiver output and message signal component of a synchronous receiver output.

u1t2 su
2

u1t2cos12pfct2.u1t2
cos2f.

cos12pfct 	 f2. f

ƒt ƒ V 1>BT .r1t2 � 1r1t2 � F�13SN1f24;
RN1t2 � r1t2 cos12pfct2

n1t2n1t2 SN1f2BT .
�fcƒHBP1f2 ƒ

n1t2 fc .
SN1f2n1t2

f3dB

f1 � ƒ f ƒ � f2 .

f1 � ƒ f ƒ � f2 .

kf � 1 kHz
100 � ƒ f ƒ � 300

m1t2 � cos1400pt2
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BT � 2W � 10 kHz.
N0 � �113

m1t2 � sin12000pt2,
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9.24 Equation (9.59) is the FM post-detection noise for an ideal low-pass filter. Find the post-detec-
tion noise for an FM signal when the post-detection filter is a second-order low-pass filter with
magnitude resonance

Assume for and 
9.25 Consider a communication system with a transmission loss of 100 dB and a noise spectral den-

sity of at the receiver input. If the average message power is and the
bandwidth is 10 kHz, find the average transmitter power (in kilowatts) required for a post-
detection SNR of 40 dB or better when the modulation is:
(a) AM with repeat the calculation for 
(b) FM with 50, and 100 kHz per volt.

In the FM case, check for threshold limitations by confirming that the pre-detection SNR is
greater than 12 dB.

� COMPUTER EXPERIMENTS

9.26 In this experiment, we investigate the performance of amplitude modulation in noise. The MAT-
LAB script for AM experiment is provided in Appendix 7, it simulates envelope modulation by
a sine wave with a modulation index of 0.3, adds noise, and then envelope-detects the mes-
sage. Using this script:
(a) Plot the envelope modulated signal.
(b) Using the supporting function “spectra,” plot its spectrum.
(c) Plot the envelope-detected signal before low-pass filtering.
(d) Compare the post-detection SNR to theory.

9.27 In this second computer experiment, we investigate the performance of a FM in noise. Using the
MATLAB script for the FM experiment provided in Appendix 7:
(a) Plot the spectrum of the baseband FM signal.
(b) Plot the spectrum of the band-pass FM plus noise.
(c) Plot the spectrum of the detected signal prior to low-pass filtering.
(d) Plot the spectrum of the detected signal after low-pass filtering.
(e) Compare pre-detection and post-detection SNRs for the FM receiver.

kf � 10,
ka � 0.1.ka � 1;

P � 1 watt10�14 W>Hz

BT W 2W.ƒ f ƒ � BT>2ƒHBP1f 	 fc2 ƒ2 � 1

ƒH1f2 ƒ �
1

11 	 1f>W2421>2
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CHAPTER 10

NOISE IN DIGITAL

COMMUNICATIONS

In the last twenty years, digital communication has been replacing existing analog
communication in almost every instance. New communication services typically only
consider digital communication. There are a number of reasons for this evolution in
communication methods. Two technical reasons are the greater noise tolerance provided by
digital communication, and the almost exact reproducibility of digital sequences at the
receiver. Two strong external reasons for the increased dominance of digital communica-
tions are the rapid growth of machine-to-machine communications, such as on the Internet,
and the spectacular evolution of digital electronics. In addition, the ability to further
improve the robustness of digital communications through the use of error-correction codes
is an important advantage over analog. Because digital communications have a greater
noise tolerance than analog, digital communications are applied in situations where analog
communications would never be. In these demanding situations, noise can still have a signif-
icant effect on digital communications, and this is what we will investigate in the chapter.

Broadly speaking, the purpose of detection is to establish the presence or absence
of an information-bearing signal in noise. For this reason, we begin our analysis of the
effects of noise on digital communications by considering the transmission of a single
pulse. The characteristics of noise in digital systems are similar to those in analog
systems; specifically, the received signal may be modeled as

(10.1)

where is the transmitted signal and is the additive noise. As observed in previous
chapters, there are numerous similarities between analog and digital modulation tech-
niques. We will presently find that there are also similarities between analog and digital
receiver structures.

The material in this chapter teaches us the following lessons.

� Lesson 1: The bit error rate is the primary measure of performance quality of digital
communication systems, and it is typically a nonlinear function of the signal-to-noise ratio.

� Lesson 2: Analysis of single-pulse detection permits a simple derivation of the principle
of matched filtering. Matched filtering may be applied to the optimum detection of many
linear digital modulation schemes.

� Lesson 3: The bit error rate performance of binary pulse-amplitude modulation (PAM)
improves exponentially with the signal-to-noise ratio in additive white Gaussian noise.

w1t2s1t2
r1t2 � s1t2 	 w1t2
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1Speech vocoders analyze the characteristics of short segments of speech, and parameters describing these char-
acteristics are transmitted rather than actual samples of the speech. The length of the speech segments is typically
20 milliseconds. The advantage of vocoded speech over the PCM techniques described in Chapter 5 is the significant
reduction in the bit rate required for an accurate representation. There are a wide variety of speech vocoding algo-
rithms, and further details may be found in Gold and Morgan (1999).

� Lesson 4: Receivers for binary and quaternary band-pass linear modulation schemes are
straightforward to develop from matched-filter principles and their performance is similar
to binary PAM.

� Lesson 5: Non-coherent detection of digital signals results in a simpler receiver structure
but at the expense of a degradation in bit error rate performance.

� Lesson 6: The provision of redundancy in the transmitted signal through the addition of
parity-check bits may be used for forward-error correction. Forward-error correction
provides a powerful method to improve the performance of digital modulation schemes.

10.1 Bit Error Rate

With digital systems, it is the output quality of the information that is the primary concern.
Since the information is digital and usually has a binary representation, this quality is mea-
sured in terms of the average bit error rate (BER). A bit error occurs whenever the trans-
mitted bit and the corresponding received bit do not agree; this is a random event. Let n
denote the number of bit errors observed in a sequence of bits of length N; then the rela-
tive frequency definition of BER is

(10.2)

In some digital systems, other measures of quality, closely related to the bit error rate, are
often used. For example, many digital systems transfer information in packets and, regard-
less of whether there is one error in the packet or a hundred, the whole packet must be dis-
carded. In these systems, the measure of quality is often the packet error rate (PER). This
can be directly related to the BER if the bit errors are statistically independent.

Naturally, the required bit error rate of a digital system depends upon the application.
For example:

� For vocoded speech,1 a BER of to is often considered sufficient.
� For data transmission over wireless channels, a bit error rate of to is often

the objective.
� For video transmission, a BER of to is often the objective, depending

upon the quality desired and the encoding method.
� For financial data, a BER of or better is often the requirement.

Given the availability of different digital modulation–demodulation strategies, we need to
compare their performance. Conceptually, we would like a figure of merit such as we used
with analog modulation–demodulation systems that we could assign to each digital trans-
mission scheme. Unfortunately, that is not as easy to do with digital systems because qual-
ity is usually not a linear function of the signal-to-noise ratio.

10�11

10�1210�7

10�610�5
10�310�2

BER � lim
NS�

¢ n
N
≤
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However, we may define the equivalent of a reference SNR for digital systems. In
particular, for digital systems, the reference SNR is the ratio of the modulated energy per
information bit to the one-sided noise spectral density; namely,

This definition differs from the analog definition of reference SNR in three respects.

1. The analog definition was a ratio of powers. The digital definition is a ratio of ener-
gies, since the units of noise spectral density are watts/Hz, which is equivalent to
energy. Consequently, the digital definition is dimensionless, as is the analog definition.

2. The definition uses the one-sided noise spectral density; that is, it assumes all of the noise
occurs on positive frequencies. This assumption is simply a matter of convenience.

3. The reference SNR is independent of transmission rate. Since it is a ratio of energies,
it has essentially been normalized by the bit rate.

To compare digital modulation–demodulation strategies, the objective is to deter-
mine the bit error rate performance as a function of the reference SNR, denoted by 
This digital reference model provides a frame of reference for a fair comparison of the dif-
ferent schemes.

EXAMPLE 10.1 Computing Packet Error Rate

A transmission system is designed to transfer data with a BER of or better. If this system
is used to transmit packets of 1000 bits, what is the expected packet error rate? Assume the
bit errors are statistically independent.

Under the assumption of independent bit errors, the bits in a packet form the equivalent
of a Bernoulli sequence. Consequently, the number of bit errors has a binomial distribution as
described in Example 8.5. The probability of a packet error is simply one minus the probabil-
ity that the packet has no errors; that is, they are complementary events. Consequently, if n is
the number of bit errors, the packet error rate is given by

� Drill Problem 10.1 Let be the event that a 0 is transmitted and let be the event
that a 0 is received. Define and similarly for a 1. Express the BER in terms of the prob-
ability of these events when:
(a) The probability of a 1 error is the same as the probability as a 0 error.
(b) The probability of a 1 being transmitted is not the same as the probability of a 0 being

transmitted. �

10.2 Detection of a Single Pulse in Noise

With the analog schemes, we saw that it was desirable to make filter bandwidths as small
as possible to minimize the noise, yet not so small that they would distort the desired sig-
nal. In a loose sense, we may say that the filters are matched to the signal in a frequency-

R1 ,H1

R0H0

� 9.95  10�3

� 1 � ¢1000
0
≤11 � 10�521000110�520

PER � 1 � Pbinomial1n � 02

10�5

Eb>N0.

�
Eb

N0

SNRref
digital

�
Modulated energy per bit

Noise spectral density



10.2 Detection of a Single Pulse in Noise 397

Linear
detector

Sample
and hold

Threshold
comparison

Signal
s(t)

Noise
w(t)

r(t) y
Σ

FIGURE 10.1 Processing of a single pulse.

domain context. With digital schemes there is a more precise definition of matched filter-
ing, as we shall see in what follows.

We begin with the situation shown in Fig. 10.1 for the detection of a single pulse
transmitted at baseband. The received signal is first processed by a linear detector; the out-
put of the detector is sampled and compared to a threshold. This threshold comparison is
used to determine which of the following two situations has occurred:

1. The received signal consists solely of white Gaussian noise 
2. The received signal consists of plus a signal of known form.

The noise is assumed to have zero mean and spectral density At the receiver, we wish
to determine which of these two situations is true by processing the signal in such a
way that, if the signal is present, the receiver output at some arbitrary time will
be considerably greater than if is absent.

A practical example of the situation described above is binary pulse-amplitude mod-
ulation (PAM) using on–off signaling. A pulse may represent symbol 1, whereas the
absence of the pulse may represent symbol 0. The objective is to maximize the receiver
output when the pulse is present and to minimize its output when only noise is present.

For the single-pulse transmission scheme just described, our present objective is to
maximize the signal-to-noise ratio at the output of the receiver. Mathematically, there are
two possible forms for the received signal:

(10.3)

For this development, we assume that is a baseband pulse, and is nonzero only in the
interval Our detection strategy is to filter the received signal and sample the fil-
ter output at time T. The filter, described by impulse response is assumed to be lin-
ear and time-invariant. Hence, the random variable for determining whether the pulse is
present is defined by a form of the convolution integral:

(10.4)

The objective is to determine the filter that maximizes the signal-to-noise ratio of the
output Y. To analyze Eq. (10.4) we use the first line of Eq. (10.3) to expand it as follows:

(10.5)

The first integral on the right-hand side of Eq. (10.5) is the signal term, which will be zero
if the pulse is absent, and the second integral is the noise term which is always there. We
begin by analyzing the noise term. Let the noise contribution be denoted by

(10.6)N � L
T

0
g1T � t2w1t2 dt

Y � L
T

0
g1T � t2s1t2 dt 	 L

T

0
g1T � t2w1t2 dt

g1t2
Y � L

T

0
g1T � t2r1t2 dt

g1t2,0 � t � T.
s1t2

r1t2 � b s1t2 	 w1t2, pulse present
w1t2, pulse absent

s1t2
s1t2 t � Ts1t2 r1t2N0>2.

s1t2w1t2r1t2 w1t2.r1t2
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This sampling of the filter output converts the random process to a random variable
N. If the the noise process has units of volts, then Eq. (10.6) can be thought of as a
weighted summation of the noise over time, in which case N has units of volt-seconds. The
expected value of N, defined by

(10.7)

is therefore zero. This result follows from the interchange of expectation and integration
discussed in Section 8.9, and the fact that additive white Gaussian noise is assumed
to have zero mean. The variance of the output noise is given by

(10.8)

where, once again, we have changed the order of integration and expectation; we are per-
mitted to do this because both of these operations are linear. We assume that the noise
process is white such that , where is the Dirac delta
function. Then we may rewrite Eq. (10.8) as

(10.9)

The second line of Eq. (10.9) follows from the first due to the sifting property of the delta
function. The third line follows from the assumption that the receive filter, has been
normalized; that is,

(10.10)

The units of power spectral density are watts per hertz or watt-seconds. Thus, in Eq.
(10.9) has units of if we assume that measurement is performed with a
one-ohm resistor, then this is equivalent to This observation shows that the
units of are consistent with those of N. To summarize, the noise sample at the out-
put of the linear receiver has

� A mean of zero.
� A variance of 
� A Gaussian distribution, since a filtered Gaussian process is also Gaussian (see Section 8.9).

It should also be noted that other than the normalization constraint of Eq. (10.10), this
analysis of the noise component has placed no additional constraints on the choice of the
filter impulse response g1t2.
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Next we consider the signal component of Eq. (10.5) given by

(10.11)

To maximize the signal-to-noise ratio, we choose to maximize Eq. (10.11) subject to the
constraint of Eq. (10.10). To solve this maximization problem we use the Schwarz inequal-
ity for integrals (see Appendix 5). The Schwarz inequality for integrals is described by

(10.12)

which holds with equality if

(10.13)

for some scalar c. Consequently, the signal of Eq. (10.11) and the signal-to-noise ratio are
maximized if Eq. (10.13) is satisfied and the scalar c is chosen such that the constraint Eq.
(10.10) is satisfied.

Equation (10.13) implies that the receive filter is matched to the transmit-pulse shape.
This is the principle of matched filter detection that was alluded to in previous sections. That
is, with single-pulse transmission, processing the received signal with a filter matched to the
transmitted signal maximizes the signal-to-noise ratio.

If we substitute Eq. (10.13) into the detector of Eq. (10.4), we obtain

In the general case, where the timing of the received pulse is not known exactly, we
could compute a number of outputs at different time offsets as follows:

Recall from Chapter 8 that this expression is the equivalent to the cross-correlation of two
ergodic signals and Consequently, the receiver structure of Eq. (10.4) with

is also referred to as a correlation receiver. With defined by Eq.
(10.1), the signal component of this correlation is maximized at This emphasizes the
importance of synchronization when performing optimum detection.

� Drill Problem 10.2 Suppose that in Eq. (10.4), represents a complex baseband signal
instead of a real signal. What would be the ideal choice for in this case? Justify your answer.�

10.3 Optimum Detection 
of Binary PAM in Noise

Single-pulse transmission, while convenient for analysis, has limited communication poten-
tial. We now extend the results of the previous section to the case where pulses are sent in
consecutive intervals. In particular, consider binary PAM transmission with on–off signal-
ing as shown in Fig. 10.2. This form of signaling may be represented as

(10.14)

where is zero if the kth bit is a 0, is one if the kth bit is a 1, and is a rectangular pulse
of length T but centered at With transmitted pulse shape 
the matched filter for this pulse shape is (See Problem 10.3.)g1T � t2 � h1t2. h1t2 � rect31t � T>22>T4,t � T>2.
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FIGURE 10.2 Example of binary PAM transmission with on–off signaling; T denotes symbol interval.
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The advantage of rectangular pulses is that the kth pulse is contained within the inter-
val and does not interfere with pulses in the adjacent intervals. Con-
sequently, the matched filter for a pulse in the interval is the matched
filter for a single pulse time-shifted to this interval. That is, in the kth symbol interval, the
matched filter is The output of the matched filter receiver at the
end of the kth symbol interval is

(10.15)

where with given by Eq. (10.14). The second line of Eq. (10.15)
follows from the fact that is only nonzero over the interval 

Since the matched filter wherever it is nonzero, we have

(10.16)

Equation (10.16) is the mathematical description of a physical device known as an integrate-
and-dump detector. This device simply integrates the received signal over the symbol inter-
val, samples the output, and then starts fresh for the next interval as shown in Fig. 10.3.
This simple detector is optimum for rectangular signaling, which follows from Eq. (10.16).

� Drill Problem 10.3 If determine c such that satisfies

Eq. (10.10) where �

� BER PERFORMANCE

While the matched filter is optimum in terms of maximizing the signal-to-noise ratio, we
would like to estimate the performance provided by such a scheme. As described in Section
10.2, the figure of merit for digital systems is typically the bit error rate (BER)—that is, the
average fraction of received bits that are erroneously detected.

With the on–off transmission scheme described above, the receiver must make a deci-
sion between two hypotheses:

(10.17)H1: bk � 1 was transmitted
H0: bk � 0 was transmitted

a � 1.

g1t2g1t2 � c rect Ba (t � T>2)
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R ,
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FIGURE 10.3 The integrate-and-dump
detector.
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based on the received signal during the kth symbol interval. Since we have shown that,
with rectangular pulse shapes, detection is independent from one symbol interval to the next,
we are justified to drop the subscript k in what follows.

A reasonable criterion for choosing between these two hypotheses is to choose the
most likely hypothesis based on the observation. That is, we compare the two conditional
probabilities (where y is the value of the random variable Y):

� is the probability that a 0 was transmitted if y is received.

� is the probability that a 1 was transmitted if y is received.

The largest of these two probabilities provides the decision for the bit under scrutiny. This
situation is quite unlike analog communications, where we attempt to minimize the dis-
tortion on the received signal due to the noise. In digital communications, if reliable deci-
sions are possible, then the transmitted message is recovered with no distortion.

Practically, we would like a simple decision rule for deciding between the two
hypotheses, and An example of such a decision rule is to choose that is,
choose 0 if y is less than some threshold and choose 1 if not. Intuitively, if is
either 0 or 1, then we would set the threshold at and compare y to this threshold.
If y is greater than then the decision is otherwise, the decision is This intu-
itive decision rule is optimum in many situations, but let us show why.

Consider the probability of making an error with this decision rule based on condi-
tional probabilities. If a 1 is transmitted, the probability of an error is

(10.18)

where Y is the random variable associated with the observation y. We refer to this error as
a Type I error. To compute this probability recall, from the discussion in Section 10.2, that
the random variable at the output of the matched filter upon which we base our decision—
namely,

(10.19)

has two components. From Eqs. (10.7) and (10.9), N is a zero-mean Gaussian random vari-
able with variance From Eq. (10.14), the signal component of Y has a deter-
ministic part, which is the pulse shape, and a random component, which is the modulation
bit, However, for a particular symbol interval, modulation bit is fixed and S is obtained
by substituting Eq. (10.14) into Eq. (10.11); specifically, for nominal we have

(10.20)

where the second line follows from the normalized property of the matched filter (see Eq.
[10.10]) and or 1 depending upon whether a 0 or 1 is being transmitted. Note that
S has units of volt-seconds, consistent with previous developments.

From Eq. (10.20) we find that S has a mean when is being transmit-
ted. Correspondingly, Y has a Gaussian distribution with mean and its density
function is given by

(10.21)

which is depicted in Fig. 10.4.
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FIGURE 10.5 Illustration of decision errors for 0 and 1 with on–off signaling.
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FIGURE 10.4 The Gaussian density function for detecting a 1 with on–off signaling.

The probability of a Type I error, as specified by Eq. (10.18), is the probability that
the output Y falls in the shaded area, below in Fig. 10.4. Mathematically, this probabil-
ity is the integral of the shaded area of the Gaussian density function

(10.22)

where the Q-function was defined in Section 8.4.
Equation (10.22) is not the only contributor to the bit errors. An error can also occur

if a 0 is transmitted and a 1 is detected. We refer to this error as a Type II error. It can be
shown that the probability of a Type II error is (see Problem 10.4)

(10.23)

The probability regions associated with Type I and Type II errors are illustrated in 
Fig. 10.5. The combined probability of error is given by Bayes’ rule (see Section 8.1)

(10.24)

where is the a priori probability that 0 or 1 is transmitted. Typically, the transmitted
bits are equiprobable, which means that

(10.25)

Consequently, the average probability of error is given by
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Often we would like the probabilities of the two types of errors, P[Type I error] and
P[Type II error], to be equal; so we choose It can be shown that this choice of 
minimizes the probability of error described by Eq. (10.26) (see Problem 10.22). Conse-
quently, we have that the average probability of error is given by

(10.27)

That is, the probability of a bit error depends upon the ratio of the signal mean when 1
is transmitted to the noise standard deviation through the nonlinear function Q.

Our next step is to express this probability of bit error in terms of the digital refer-
ence model. This evaluation may be broken down into two components:

� To express the variance in terms of the noise spectral density, we have, from Eq.
(10.9), that 

� To express the signal amplitude in terms of the energy per bit we assume that
0 and 1 are equally likely to be transmitted. Then the average energy per bit at the
receiver input is

(10.28)

where, in the second line, we have separated the deterministic and random parts of
the signal and the third line follows from the fact that 
Consequently, we have that for the case of on-off PAM signaling.

By substituting these values for and into Eq. (10.27), the result obtained is

(10.29)

It is interesting to note that if, instead of on–off keying with levels of 0 and A, we used
bipolar levels of and then the above analysis would be unchanged except
that the threshold would now be However, with the bipolar scheme the energy per
bit is and the bit error rate in terms of the digital reference model is

(10.30)

Since the Q-function is a monotone decreasing function of its argument, Eq. (10.30) implies
that a smaller ratio will produce the same error rate as the on–off scheme charac-
terized by Eq. (10.29). Thus, we find that bipolar signaling is a more power-efficient method
of achieving the same bit error rate performance than the on–off signaling scheme.

� Drill Problem 10.4 Show that with on-off signaling, the probability of a Type II error
in Eq. (10.23) is given by
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� NONRECTANGULAR PULSE SHAPES

We saw in Chapter 6 that due to spectral limitations and channel effects, the received sig-
nal may not have a rectangular pulse shape. If we combine this observation with noise, the
received signal may be represented as

(10.31)

where is the pulse shape. Since this pulse shape is not necessarily confined to an inter-
val of length T, one might expect that intersymbol interference would be an issue in a con-
tinuous transmission scheme.

In particular, we consider the case where is a normalized root-raised cosine pulse
shape described in Section 6.4. For a single pulse having a root-raised cosine spectral shape,
the matched-filter theory of Section 10.2 still applies. In addition, this pulse shape has the
following orthogonality property when (see Problems 10.5 and 10.12):

(10.32)

where is the Dirac delta function. Applying the matched filter for the kth symbol of
to Eq. (10.31), we get 

(10.33)

where kth noise term is

(10.34)

The first two terms of Eq. (10.33) represent the usual signal-plus-noise term associ-
ated with single pulse detection. The third term represents the interference due to adjacent
symbols. However, if we substitute Eq. (10.32) into Eq. (10.33), we see that the detector
output reduces to that of single-pulse detection. That is, there is no intersymbol interfer-
ence with the proper choice of pulse shaping. Under these conditions, 
and the BER performance is the same as with rectangular pulse shaping, which is a remark-
able result. The implementation of such a scheme is shown in Fig. 10.6, which involves the
use of root-raised cosine pulse shaping.
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FIGURE 10.6 Implementation of PAM with root-raised cosine filtering. 
(Root-raised cosine pulse shaping was discussed in Section 6.4.) 
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� Drill Problem 10.5 Prove the property of root-raised cosine pulse shape given by
Eq. (10.32), using the following steps:

(a) If is the Fourier transform representation of what is the Fourier transform rep-
resentation of 

(b) What is the Fourier transform of What spectral shape
does it have?

(c) What is What is q(kT)?

Use these results to show that Eq. (10.32) holds. �

10.4 Optimum Detection of BPSK

As described in Chapter 7, one of the simplest forms of digital band-pass communications
is binary phase-shift keying. With BPSK, the transmitted signal is

That is, opposing phases of the same carrier are transmitted to represent the binary symbols.
The detection of BPSK is simplified by noting that since the
transmitted signal may be equally represented as

(10.35)

Hence, in general, we may write

(10.36)

where, for single pulse transmission, for a 1 and for a 0 with
In the more general case, when transmitting multiple bits, we have

(10.37)

where is the rectangular pulse Thus, BPSK has a form very similar to 

double-sideband suppressed-carrier (DSB-SC) modulation that is used for analog commu-
nications, a point which was made previously in Chapter 3. Consequently, to recover the
message, we may use a receiver structure analogous to the coherent receiver structure used
with DSB-SC. A typical receiver structure for BPSK is shown in Fig. 10.7, where the RF
signal plus white Gaussian noise, is frequency-translated to an IF where it is
band-pass filtered. The band-pass signal, is the input to the coherent BPSK detector.x1t2,s1t2 	 w1t2,
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FIGURE 10.7 Typical BPSK receiver structure.
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� DETECTION OF BPSK IN NOISE

Following the development for DSB-SC demodulation of Section 9.4, the signal plus band-
pass noise at the input to the coherent BPSK detector of Fig. 10.7 may be represented as

(10.38)

where and are the in-phase and quadrature components of the band-pass noise
respectively. The output of the product modulator in Fig. 10.7 is given by

(10.39)

where we have used the double angle formulas: cos A
and sin A Let us consider the two parts of the sec-
ond line of Eq. (10.39). The first part represents the baseband signal plus a baseband com-
ponent of the noise, while the second part represents signal and noise centered at the much
higher frequency of 

With the analog DSB-SC signal, we used a low-pass filter to remove the high-fre-
quency noise components and recover the desired signal. With digital signals, we know
that a matched filter is the optimum method to recover the data. We could combine the
matched filter with a low-pass filter to achieve the desired results, as long as the low-pass
filter does not distort the desired signal. However, if we recognize that the matched filter

is already a low-pass filter, then there is no need for the second filter.
The observant reader will note that in the derivation of the matched filter, we assume

that the noise is white. The in-phase component is narrowband noise and hence not
white. However, it can be shown that as long as the bandpass filter has a wider bandwidth
than that of the signal and the noise spectral density is approximately flat over the band-
width of the signal, the matched-filter principle still applies.

In the case where consists of rectangular pulses, the optimum detector after down-
conversion is the integrate-and-dump filter, as was shown for the case of pulse-amplitude
modulation (PAM). The output of the integrate-and-dump detector in this case is therefore

(10.40)

Equation (10.40) assumes that the high-frequency terms have negligible impact on the
detector output. The noise term in Eq. (10.40) is given by

(10.41)

Recall from Section 8.11 that if the power spectral density of the narrowband noise 
is then the power spectral density of the in-phase component of the noise is 
over their respective frequency bands. Accordingly, we may write
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Thus, the variance of in Eq. (10.41) is 
In Fig. 7.4(b), we show a BPSK demodulator quite similar to that shown in Fig. 10.7.

The main difference between the two demodulators is that the low-pass filter of the former
is replaced by the integrator of the latter. In the noiseless case of Chapter 7, the purpose of
the low-pass filter is to remove the high-frequency components, while retaining the desired
baseband signal. The integrator of Fig. 10.7 also acts as a low-pass filter removing the high-
frequency components but, due to its matched property, it additionally removes as much noise
as possible from the signal, and thereby maximizes the signal-to-noise ratio at the demod-
ulator output. Note that in digital communications, the objective is to recover the informa-
tion, 0s and 1s, as reliably as possible. Unlike analog communications, there is no requirement
that the transmitted waveform should be recovered with minimum distortion.

� PERFORMANCE ANALYSIS

The bit error rate analysis with BPSK is similar to the analysis of bipolar signaling in Section
10.3. The threshold for deciding between a 0 and a 1 at the output of the matched filter is
set at zero. A threshold of zero has the practical advantage that it does not have to be cal-
ibrated if the transmission path has an unknown gain.

From Eq. (10.40), the mean signal value is or depending upon
whether is or respectively. If we assume a 1 was transmitted and let 
then the probability of error is

(10.42)

Consequently, analogous to Eq. (10.22) with the bit error rate is given by

(10.43)

By symmetry, this result holds when either a or is transmitted. In terms of the dig-
ital reference model, we note that the energy per bit with BPSK, assuming the energy of the
pulses in is normalized, is simply Using this result in the definition of
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Substituting the value of so obtained and into Eq. (10.43), we obtain the
result

(10.44)

This BER performance is exactly the same as that of the baseband bipolar scheme as given
in Eq. (10.30). That is, there is no difference in BER performance between the low-pass bipo-
lar PAM signaling and bandpass BPSK modulation. Thus, just as in the analog case, there
is no change in the figure of merit when we go from a baseband system to an equivalent
coherent band-pass system.

The analysis of BPSK can be extended to nonrectangular pulse shaping in a manner
similar to what occurred at baseband. For nonrectangular pulse shaping, we represent the
transmitted signal as

(10.45)

where is the pulse shape and represents the data. This combination of pulse
shaping and BPSK modulation forms an important method of communicating binary infor-
mation and controlling the bandwidth required for the transmission. In particular, BPSK
modulation allows multiple users to use the same transmission medium by choosing car-
rier frequencies and the pulse shaping limits the transmitted signal bandwidth and thus
reduces or eliminates the interference between communication links using different 

� Drill Problem 10.6 Compare the transmission bandwidth required for binary PAM
and BPSK modulation, if both signals have a data rate of 9600 bps and use root-raised cosine
pulse spectrum with a roll-off factor of 0.5. �

� Drill Problem 10.7 Sketch a block diagram of a transmission system including both
transmitter and receiver for BPSK modulation with root-raised cosine pulse shaping. �

10.5 Detection of QPSK and 
QAM in Noise

With an understanding of binary data detection in noise for both the baseband (PAM) and
passband (BPSK) at our disposal, we now extend these results to more complex modula-
tion schemes such as quadri-phase-shift keying (QPSK) and quadrature amplitude modu-
lation (QAM).

� DETECTION OF QPSK IN NOISE

We saw in Section 7.3 that QPSK-modulated signal could be represented in the form

(10.46)

for The carrier is transmitted in one of four phases with each phase represent-
ing a two-bit pair (i.e., dibit), as given by
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FIGURE 10.8 Quadrature receiver for QPSK.

(10.47)

It was also shown that Eq. (10.46) could be represented in a quadrature form by expand-
ing the cosine term to obtain

(10.48)

In Eq. (10.48), we have identified as the in-phase component of the mes-
sage signal, and as its quadrature component The similarity of Eq. (10.48)
to quadrature-carrier multiplexing discussed in Section 3.5 for analog signals leads to the
quadrature receiver shown in Fig. 10.8. Using in-phase and quadrature representation for
the band-pass noise, we find that the QPSK input to the coherent detector of Fig. 10.8 is
described by

(10.49)

Analogous to the results obtained with the detection of BPSK, the intermediate output of
the upper branch of Fig. 10.8 is

(10.50)

where the right-hand term on the first line is a low-pass signal; and the terms on the sec-
ond line are high-frequency signals. As with BPSK using rectangular pulse shaping, since

is constant over the duration of pulse, a matched filter with a rectangular shape
(integrate-and-dump) can be used to recover to maximize the signal-to-noise ratio of
the output. As previously mentioned, such a filter will also reject the high-frequency terms.

The comments made in Section 10.4 also apply to Fig. 10.8 when comparing it to
Fig. 7.7(b). In Figure 7.7(b), the low-pass filter removes high-frequency components. In
Fig. 10.8, the integrator serves this purpose as well as maximizing the signal-to-noise ratio.
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Similarly, the output of the lower branch of the quadrature detector is

(10.51)

The baseband signal can be recovered in a manner similar to 
For the in-phase component, if the first bit of the dibit is a 0, then the mean output is

If on the other hand, the first bit of the dibit is a 1 then

After low-pass filtering, the form of Eq. (10.50) is the same as we found with BPSK in Eq.
(10.40). Consequently, the probability of error on the in-phase branch of the QPSK signal is

(10.52)

where is the square root of the noise variance (i.e. the standard deviation). The indi-
cates the symmetry between the 0 bit and the 1 bit. The same result holds for the quadra-
ture component. To express this result in terms of the digital reference model we note that,
with QPSK modulation, two bits are transmitted in one symbol interval of length T. Con-
sequently, the average energy by bit may be determined from

(10.53)

where, under the bandpass assumption, the integral of the high-frequency term is approx-
imately zero. We also note that the noise variance at each branch output is unchanged from
BPSK with With this difference, the bit error rate with after matched fil-
tering is given by
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where we have made the substitution from Eq. (10.53). A similar result
follows for by symmetry.

Consequently, in terms of energy per bit, the QPSK performance is exactly the same
as BPSK, even though we are transmitting twice as many bits through the same channel.
This important result is due to the inherent orthogonal nature of the in-phase and quad-
rature components. Once again we may draw an analogy with analog communications,
where comparing double-sideband and single-sideband transmission, we found that we
could obtain the same quality of performance but with half of the transmission bandwidth.
With QPSK modulation, we use the same transmission bandwidth as BPSK but transmit
twice as many bits with the same reliability.

As described in Section 7.3, offset-QPSK or OQPSK is a variant of QPSK modulation
wherein the quadrature component is delayed by one-half of symbol period relative to the
in-phase component. Under the bandpass assumption, delaying the quadrature component
does not change its orthogonality with the in-phase component. Consequently, we may
use the same quadrature detector for recovering an OQPSK as is used for QPSK. The only
difference is that the sampling of the integrate-and-dump detector of the quadrature com-
ponent occurs one-half symbol latter than that for the in-phase component.

As a result of this similarity between the OQPSK and QPSK, the bit error rate per-
formance of both schemes is identical if the transmission path does not distort the signal.
As mentioned in Chapter 7, one advantage of OQPSK is its reduced phase variations and
potentially less distortion if the transmission path includes nonlinear components such as
an amplifier operating near or at saturation. Under such nonlinear conditions, OQPSK
may perform better than QPSK.

� Drill Problem 10.8 Show that the integral of the high-frequency term in Eq. (10.53) is
approximately zero. �

� DETECTION OF QAM IN NOISE

Quadrature amplitude modulation (QAM), discussed in Section 7.7, is also a band-pass
modulation strategy due to its use of the in-phase and quadrature components of the car-
rier. QAM can be viewed as a hybrid of multi-level PAM and QPSK. In particular, QAM
uses in-phase and quadrature components for transmission just as QPSK does. However,
in each of the in-phase and quadrature components in QAM, the modulator uses multiple
levels—that is, more than the two levels of or used in QPSK.

First, let us consider multi-level PAM. Let the baseband modulated signal be repre-
sented by

(10.55)

where the represent different modulation levels. For example, with four-level PAM, the
scalar could be selected from the set The eye diagram for such a
multi-level signal could look like Fig. 10.9.

If we review the analysis of the optimum procedure that led to the matched filter
detector, we find that it did not depend on the signal amplitude. Consequently, the detec-
tor design for the multi-level PAM receiver is identical to that for on–off PAM. The only
difference between binary PAM and multi-level PAM is the threshold comparisons used to
determine which of the levels were transmitted, as depicted in Fig. 10.10.
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FIGURE 10.9 Eye diagram for four-level PAM.

For each symbol value y at the output of the detector, the probability of error is intu-
itively minimized by choosing the closest modulation level—for example, from

We do this by comparing the output y to a series of thresholds before
making the decision. For the four-level eye diagram shown in Fig. 10.9, the thresholds are
at the values 0 and Such a threshold tree is shown in Fig. 10.11. Then, for example,
if we estimate if we estimate 

We will now discuss the performance of such a detector, but for simplicity we shall
assume the symbol period T is one. For most scenarios, errors will be made with the near-
est neighbor. For example, for the symbol the most likely erroneous decisions are the
nearest neighbor symbols of and If, in general, we assume the transmitted signal
level is and the separation between nearest neighbors is 2A, then, for those symbols that
have two nearest neighbors, the probability of error for these symbols is

(10.56)

where is the noise standard deviation. This result applies for all those symbols that have
two nearest neighbors. For the outer symbols, which have only one neighbor, the proba-
bility of error is half of the value defined in Eq. (10.56). Combining these two cases, it can
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FIGURE 10.11 Illustration of decision rules with
four level PAM.

be shown (see Problem 10.23) that the probability of error for M-ary PAM is, with the
modulation levels separated by a distance 2A,

(10.57)

Although this expression appears similar to that obtained with binary transmission,
there are two important differences that should be noted:

1. Equation (10.57) represents a symbol error rate. Each symbol represents more than
one bit. Consequently, each symbol error may correspond to more than one bit error,
although the symbols are usually arranged, that is, Gray encoded, so that it does not.

2. With binary transmission with levels of and the average transmitted power
is With the M-ary PAM strategy, assuming all levels are equally likely and sepa-
rated by 2A, we can show that the average transmitted power is (see
Problem 10.23); consequently, the extra throughput provided by multi-level PAM
requires significantly more power to achieve the same performance.

Assuming baseband transmission, we can relate the performance of multi-level PAM
to the digital reference model as follows:

� If we assume that the number of levels M is a power of 2—that is, —then each
symbol represents bits.

� The average received energy per bit is 

� The noise variance at the output of the matched filter is under
the assumption This is unchanged from the binary PAM case of Eq. (10.9).

Substituting these results in Eq. (10.57), the probability of symbol error in terms of the dig-
ital reference SNR is

(10.58)

The advantage of the M-ary modulation scheme is the increased number of bits, 
transmitted across the channel with each modulated symbol. However, the disadvantage of
PAM is the performance penalty to be paid when increasing the number of modulation 
levels. If we let in Eq. (10.58), then for we have which
is the standard result for bipolar PAM, BPSK, and QPSK. For which implies
significantly more energy per bit must be transmitted to obtain the same error rate. For

which implies even more energy per bit is required to obtain the same
error rate.
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With this very brief introduction to the performance of multi-level PAM in noise, we
repeat that many forms of quadrature amplitude modulation (QAM) consist of multi-level
PAM signals for both the in-phase and quadrature components, and of a
band-pass signal and therefore make the following observations:

� We may use independent PAM schemes on the in-phase and quadrature components.
That is to say, one PAM signal modulates the in-phase carrier and
the second PAM signal modulates the quadrature carrier 

� Due to the orthogonality of the in-phase and quadrature components, the error rate
is the same on both; and the same as the baseband PAM system.

With a QAM scheme, twice as much data may be transmitted in the same bandwidth as
the baseband PAM scheme with the same power efficiency. This property is a simple exten-
sion of the comparison that was made between BPSK and QPSK modulation.

10.6 Optimum Detection of Binary FSK

From Chapter 7, another simple form of digital band-pass modulation is frequency-shift
keying (FSK). The previous modulation schemes and receiver structures considered in this
chapter are in many ways analogous with amplitude modulation even though some are
referred to as phase-shift keying. Frequency-shift keying, however, is more closely related
to frequency modulation. With FSK, different frequencies are used to represent the data bits
and the transmitted signal for is

(10.59)

In previous sections where the waveform was amplitude modulated, we observed that the
signal could be detected optimally with a single matched filter. With the FSK transmission
system of Eq. (10.59), we actually have two different sinusoidal waveforms with unequal

and It seems logical then to design matched filters for each of these two waveforms
and select the one that produces the largest output as shown in Fig. 10.12. In particular,
the two matched filters are

and

(10.60)

corresponding to a 1 and a 0, respectively.

g21t2 � 22 cos12pf2t2
g11t2 � 22 cos12pf1t2

f2.f1

s1t2 � bAc cos12pf1t2, 0 � t � T if a 1 is sent
Ac cos12pf2t2, 0 � t � T if a 0 is sent

0 � t � T

sin12pfct2.mQ1t2 cos12pfct2mI1t2

mQ1t2,mI1t2

r(t)
cos(2�f1t)
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FIGURE 10.12 Coherent detection of binary FSK.
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To analyze the performance of the FSK detector of Fig. 10.12, we make the simpli-
fying assumption that the frequencies and have been selected such that the corre-
sponding waveforms are orthogonal; that is,

(10.61)

Technically, this implies that is an integer under the bandpass assumption (see
Problem 10.16). This assumption is not necessary in practice, but violation of this assump-
tion does result in degraded performance (see Problem 10.24). Let the received signal be

(10.62)

Suppose a 1 is transmitted. Then the output of the matched filter corresponding to a 0 is

(10.63)

where, from Eq. (10.61), the first part of the integral is zero due to the orthogonality of the
two pulse shapes. The noise component at the output of the matched filter for a 0 is

(10.64)

Consequently, when a 1 is transmitted, the output of the filter matched to a 0 has a mean
of zero and a variance corresponding to that of On the other hand, the output of the
filter matched to a 1 is

(10.65)

The step from the second to the third line of Eq. (10.65) uses the double angle formula
The approximation in Eq. (10.65) is the bandpass assumption that

the integral of a high-frequency component is approximately zero over the interval from 0
to T. The noise component of Eq. (10.65) is defined as

(10.66)

When a 1 is transmitted, the output of the filter matched to a 1 has the mean 
and a variance corresponding to that of A symmetric result is obtained when a 0 is
transmitted.

To determine which bit was transmitted, we compare the output of our two matched
filters. The simplest comparison is to form the difference between the outputs, 
If a 1 is transmitted, then the mean value of D is If a 0 is transmitted, thenm � AcT>12.

D � Y1 � Y2.
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the mean value of D is The obvious decision rule in this case is to choose
1 if D is greater than zero, and 0 otherwise.

The random variable D contains the difference of and We claim that these two
noise terms are independent Gaussian random variables (see Problem 10.9). Since D is the
difference of two independent Gaussian random variables, it has a variance

By analogy with bipolar PAM in Section 10.3,
the probability of error for binary FSK is

(10.67)

Putting this in terms of the digital reference SNR, we find that from inspection of 
Eq. (10.59), the energy per bit is for FSK. The noise variance of the combi-
nation of the two terms and is (see Problem 10.9). Accord-
ingly, the BER in terms of the digital reference model is

(10.68)

This bit error rate performance is similar to that of on–off signaling that we saw in Section
10.3. Both on–off PAM and FSK are forms of orthogonal signaling, whereas modulation
techniques such as bipolar PAM and BPSK are referred to as antipodal signaling. In gen-
eral, we see that antipodal signaling provides a advantage over orthog-
onal signaling in bit error rate performance.

� Drill Problem 10.9 Use Eqs. (10.61), (10.64), and (10.66) to show that and are
uncorrelated and therefore independent Gaussian random variables. Compute the variance of

�

10.7 Differential Detection in Noise

In Chapter 7, we introduced differential detection of BPSK as a simple method of recov-
ering the data without the complexity of coherent detection. A typical receiver structure for
the differential detection of BPSK in the presence of noise is shown in Fig. 10.13. The
received RF signal is first down-converted to the IF frequency and then band-pass filtered.
The band-pass signal at the output of this filter may be represented by

(10.69)

where T is the bit period and is the unknown carrier phase. The differentially encoded
bit is defined by the equation where is the kth information bit.2 Withbkdk � bkdk�1dk

u

x1t2 � Acdk cos12pfct 	 u2 	 n1t2, 1k � 12T � t � kT
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FIGURE 10.13 Band-pass processing
of differential detector.

2In the discussion of differential encoding in Section 7.6, was assumed to take the logical values 0 and 1. The
differentially encoded symbols were given by which were then modulated. In this section, we
assume takes the real values of and and provides the PAM levels directly. These two rep-
resentations are equivalent.

dk � dk�1bk�1,	1bk

dk � bk ⊕ dk�1

bk
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FIGURE 10.14 Differential detector.

coherent detection, synchronization circuits must estimate the phase to produce a coher-
ent reference for down-conversion to baseband. With differential detection, we use the
delay-and-multiply circuit shown in Fig. 10.14. The output of the delay-and-multiply
circuit is

(10.70)

where

(10.71)

is the sum of signal-cross-noise and noise-cross-noise terms. We have implicitly assumed that
the unknown phase remains essentially constant over two-bit intervals. By using the
trigonometric identity we may expand Eq.
(10.70) to obtain

(10.72)

The integrate-and-dump detector depicted in Fig. 10.14 removes the high-frequency com-
ponents of Eq. (10.72), and we are left with

(10.73)

where the additive random variable as due to of Eq. (10.71). If the frequency is
chosen such that is approximately an integer, then and

(10.74)

where we have used the fact that the data information has been differentially encoded
so that 

Consequently, in terms of noise performance, the major difference between a DPSK
system and a coherent binary PSK is not in the differential encoding, which can be used in
either case, but rather lies in the way in which the reference signal is derived for the phase
detection of the received signal. Specifically, in a DPSK receiver the reference is contami-
nated by additive noise to the same extent as the information pulse; that is, they have the
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same signal-to-noise ratio. This is evident in the presence of both the noise-cross-signal
and the noise-cross-noise terms in the expression for in Eq. (10.71). This makes the
statistical characterization of the random variable and therefore determination of the
overall probability of error in DPSK receivers somewhat complicated, and beyond the scope
of this book. However, the formula is3

(10.75)

It is of interest to note that, since in a DPSK receiver decisions are made on the basis of
the signal received in two successive bit intervals, there is a tendency for bit errors to occur in
pairs. The main requirement that is approximately an integer in a differential receiver may
be alleviated in many cases if the IF is chosen to be approximately zero; that is, 

10.8 Summary of Digital Performance

� GRAY ENCODING

In this section, we summarize the performance of the different digital modulation–
demodulation strategies. However, before we do this, we must elaborate upon a comment
made regarding PAM. In particular, with M-ary PAM we calculated the probability of a sym-
bol error. Since, for a symbol is comprised of more than one bit, a symbol error may
imply more than one bit error. However, by clever assignment of bits to symbols, the likelihood
of this occurring can be made small. Specifically, we refer to Gray encoding of symbols where
there is only a one-bit difference between adjacent symbols. In Fig. 10.15, we show Gray-
encoding strategies for 8-ary PAM and for 8-PSK. Observe that the most common error with
both constellations is to select a nearest neighbor. However, there is only a one-bit difference
between all nearest neighbors. Hence, for this encoding, the symbol error rate and bit error rate
are almost identical. The exception to this equality occurs in very noisy channels where the prob-
ability of selecting a symbol that is not a nearest neighbor becomes more likely.

M � 2,

fc � 0 Hz.
fcT
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FIGURE 10.15 Gray-
encoding of (a) 8-ary PAM and
(b) 8-PSK.

3For derivation of the formula given in Eq. (10.75), see Haykin (2001), pp. 407–417.
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� PERFORMANCE COMPARISON

Under the assumption that the symbol error rate is the same as bit error rate, we may for-
mulate the performance comparison of the different modulation–demodulation strategies
shown in Table 10.1. We have split the table between baseband and bandpass counter-
parts where they exist. Although M-ary PAM does have a bandpass equivalent, it is rarely
used; QAM is typically used instead. In Table 10.1, we have extrapolated the results for M-
ary PAM to M-ary QAM as discussed in the text, based on the analogy between baseband
bipolar signaling and QPSK modulation.

For the M-ary signaling results in Table 10.1 we have assumed that:

� For the signal-to-noise ratio is sufficient for the symbol error rate to be
approximately equal to the bit error rate with Gray encoding.

� The modulation order M is a power of 2; that is, for integer For M-ary
QAM, there is an implicit assumption that is even.

� The M-ary QAM strategy uses a M-ary PAM strategy in each of the in-phase and
quadrature components.

In Fig. 10.16, we graphically compare the BER performance of several different dig-
ital transmission strategies. Note that the reference signal-to-noise ratio is measured
in decibels.

Eb>N0

b

b.M � 2b

M � 2,

TABLE 10.1 Comparison of BER Performance for Various
Modulation–Demodulation Strategies. Detection is Coherent
Unless Otherwise Indicated. (The Parameter is the Number of
Bits per Symbol in the in-Phase or Quadrature Dimension.)
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If we compare the performance of a digital transmission system with that of an analog
transmission system, we may make the following observations:

� With analog systems, we typically need post-detection signal-to-noise ratios of 20 to
30 dB for acceptable voice transmission. With AM modulation, the channel bandwidth
is typically 3 to 5 kHz. With FM transmission, the channel bandwidth is typically 25
to 30 kHz.

� With the PCM encoding of voice, the signal is usually sampled at 8 kHz with 8 bits
of resolution (256 levels). The resulting data rate is 64 kilobits per second. If this
data stream is sent over a channel with a quadrature modulation scheme such as
QPSK with 32 kbps for each of the in-phase and quadrature components, the nom-
inal digital signal bandwidth is 32 kHz. If the tolerable error rate on this data is 
then from Fig. 10.16, the post-detection must be 9.6 dB or larger.

� With advanced voice coding techniques (vocoders), human speech can be represented with
reasonable quality with as little as 4 kbps. This requires a transmission bandwidth of
approximately 2 kHz. These vocoders can operate with bit error rates as high as 
with little degradation in quality, thus reducing the required to be as low as 4 dB.

The conclusion is that with the progression from analog to digital techniques, we are improv-
ing the robustness of transmission; by robustness we mean relative insensitivity to noise.
With progress in signal processing, we are reducing the bandwidth requirements as well.

� Drill Problem 10.10 Plot the BER performance of differential BPSK and compare the
results to Fig. 10.16. �

Eb>N0

10�2

Eb>N0

10�5,
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� NOISE IN SIGNAL-SPACE MODELS

In Chapter 7, we saw how different coherent modulation strategies could be represented
in terms of their signal-space diagrams. With the signal space diagram or constellation,
each symbol is represented as a signal point with the appropriate choice of basis functions.
For example, QPSK may be represented as

(10.76)

where the choice of signs indicates the bit polarity. The basis functions are

(10.77)

and

(10.78)

which are orthonormal under the band-pass assumption. A noisy signal-space diagram for
QPSK is shown in Fig. 10.17, where the four points of the constellation are 

and When there is channel noise
present, the received signal point is located randomly about the transmitted signal point. 
In Fig. 10.17, the noisy received signal point lies inside the “noise cloud” centered on the 
transmitted signal point of 

If the channel noise is Gaussian, then the cloud of Fig. 10.17 represents a two-
dimensional Gaussian distribution with mean The variance of this
distribution, depends upon the signal-to-noise ratio of the channel. Now consider
the probability of an error when detecting this signal point. There are two types of
errors that may occur; the channel noise can cause the received signal point to be on the
opposite side of the axis. This would cause an error in the second bit of the pair.
Alternatively, if the channel noise causes the received signal point to fall to the left of
the axis, then an error will occur in the first bit. In the less likely event that the
received signal point falls in the third quadrant when is transmitted,A	2Eb , 	2Eb Bf21t2

f11t2
s2,

A	2Eb , 	2Eb B .
A	2Eb , 	2Eb B .

A�2Eb , 	2Eb B .A�2Eb , �2Eb B ,A	2Eb , �2Eb B , A	2Eb , 	2Eb B ,
f21t2 � A 2

T
 sin12pfct2, 0 � t � T

f11t2 � A 2
T

 cos12pfct2, 0 � t � T

s1t2 � �2Ebf11t2 � 2Ebf21t2
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FIGURE 10.17 Signal space representation of noisy constellation.
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then an error will occur in both bits. Clearly, the probability of either type of error is
related to the ratio of to the noise standard deviation Although not obvious from
the diagram, the probability of either type of error is independent of the other.

For this constellation, there is a circle of radius around each signal point in which
no error can occur. That is, is the maximum error distance over which we can always
guarantee perfect detection. This signal space can be easily extended to multiple dimensions.
For example, if the signal points are then around each signal point,
there is a sphere of radius in which noise is guaranteed not to cause an error.

How would we generate such higher dimensional signals in practice? Consider the
signal

where and are as defined in Eqs. (10.77) and (10.78) but extended such they are
zero on the interval The remaining two orthonormal functions are given by

(10.79)

and

(10.80)

Under the band-pass assumption, the functions and are clearly orthogonal with
each other and, since they are zero whenever and are nonzero, they are also
orthogonal to these functions. The resulting signal point is defined by the four-dimensional
vector where is While this four-dimensional space may seem to
have a somewhat artificial construction, its usefulness will become more evident once we
discuss error-correcting codes in the next section.

10.9 Error Detection and Correction

A fundamental characteristic of communication systems is that the receiver has no prior
knowledge of the information that is being transmitted across the channel. Consequently,
in a digital transmission scheme, when the channel produces errors in the detected bits, it
degrades the quality of communications. In this section, we look at some elementary ways
of detecting and correcting errors that occur in transmission.4

In previous sections, we have shown that bit error rate performance of a digital sys-
tem depends on the post-detection SNR. If the only channel impairment is additive white
Gaussian noise, then this BER often has an exponential dependence on the SNR, as exem-
plified by the Q-function. As a result, the BER quickly becomes very small as the SNR
improves—usually providing much better transmission quality than can be achieved by

�2Eb .si1s1, s2, s3, s42
f21t2f11t2 f41t2f31t2

f41t2 � c 0, 0 � t � T

A 2
T

 sin12pfct2, T � t � 2T

f31t2 � c 0, 0 � t � T

A 2
T

 cos12pfct2, T � t � 2T

T � t � 2T.
f21t2f11t2

s1t2 � s1f11t2 	 s2f21t2 	 s3f31t2 	 s4f41t2

2Eb

A�2Eb , �2Eb , �2Eb B ,
2Eb

2Eb

s.2Eb

4The field of error correction and detection was essentially born in the late 1940s with the classic papers of R.
Hamming and C. Shannon. Since then an enormous amount of research has been performed in this area. Some
introductory books in the field include Clark and Cain (1981), Lin and Costello (2004) and Blahut (1983). The
material in this section is adapted from Arazi (1988).
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analog methods. In some instances, this digital performance is still insufficient and we wish
to improve it further. Some examples are:

� In radio (wireless) channels, the received signal strength may vary with time due to
fading. So, even though the average signal strength would imply good performance
in a nonfading channel, the system experiences much poorer performance when the
signal is faded.

� In satellite applications, the satellite has limited transmitter power. In such cases, we
may wish to obtain similar BER performance with less transmitted energy.

� In some cable transmission systems, cables may be bundled together so closely that
there may be crosstalk between the wires. That is, one communication link occa-
sionally causes interference into another. In such circumstances, it may be useful to
have redundancy in the system to correct errors introduced by occasional interference.

We can achieve the goal of improved bit error rate performance by adding some
redundancy into the transmitted sequence. The purpose of this redundancy is to allow the
receiver to detect and/or correct errors that are introduced during transmission. This kind
of operation is referred to as forward-error correction (FEC), and its position in the digi-
tal transmission system is shown in Fig. 10.18:

� The incoming digital message (information bits) are encoded to produce the channel
bits. The channel bits include the information bits, possibly in a modified form, plus
additional bits that are used for error correction.

� The channel bits are modulated and transmitted over the channel.
� The received signal plus noise is demodulated to produce the estimated channel bits.
� The estimated channel bits are then decoded to provide an estimate of the original

digital message.

By error detection, we mean the ability of the receiver to detect when one or more
errors have occurred during the transmission of the data. This does not imply that the
receiver can correct the detected errors. Nor does it imply that the receiver will be able to
detect all situations in which errors occur.

Consider the transmission of a block of data containing k information bits. As stated
above, the receiver knows nothing about the k information bits and yet the block needs
properties that will help the receiver to detect when an error occurs. Let us assume that each
block contains bits. The extra bits are redundant; that is, they carry no new
information. However, the receiver uses these bits to determine when an error occurs.

To explain how this may be done, we introduce the following concepts:

� Let bits be represented by 0 and 1 values.

� Let represent modulo-2 addition. When this operation is applied to pairs of bits
we obtain the results: and 

� The operator may also be applied to blocks of bits, where it means the modulo-2 sum
of the respective elements of the blocks. For example, 310014 ⊕ 301014 � 311004.⊕

0 ⊕ 1 � 1 ⊕ 0 � 1.0 ⊕ 0 � 1 ⊕ 1 � 0
⊕

1n � k2n � k

Σ
�(t)x(t)

FEC
encoder

Modulator Demodulator FEC
decoder

Decoded
message

Noise
w(t)

Digital
message

FIGURE 10.18 Block diagram of system including coding and decoding.
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Now for a block of k information bits suppose we add the parity-check bit
p such that

(10.81)

and transmit the bits Since this extended block satisfies Eq.
(10.81), we say the block of bits has even parity.

At the receiver, we perform the modulo-2 sum of the block of n received bits. If the
result is 1 (that is, it has odd parity), then we state that there was an error in the trans-
mission. From this statement, it should be clear that a single parity bit would detect whether
1, 3, 5, that is, an odd number of errors, occurred during transmission. If an even
number 2, 4, 6, of errors occurs, the modulo-2 sum (the parity checksum) would be
zero and the errors will not be detected. This reinforces the earlier statement that error-detec-
tion procedures cannot detect all errors. Thus, the error detection scheme consists of two
components. The encoder, which processes the information bits, computes the parity bits
based on the information, and formats the combination of the information and parity
for transmission. The decoder computes the parity checksums of the received bits and
declares whether an error has been detected. With this background, we define the error
detection capability of a code as the maximum number of errors that the receiver can
always detect in the transmitted code word.

� ERROR DETECTION WITH BLOCK CODES

A block code is a collection of binary blocks called code words, all of the same length. For
example, in Table 10.2, we show all binary blocks of length four with even parity. A code
word of length n includes parity bits that are calculated from the information bits.
Consequently, the number of code words in an (n, k) block code is 2k.

1n � k2

Á
Á ,

3x1x2 Á xk,p4.n � k 	 1

x1 ⊕ x2 ⊕ Á ⊕ xk ⊕ p � 0

3x1x2 Á xk4,

Let A and B represent any two code words of length n belonging to a block code. We
say a block code is linear if the sum of the two code words is also a code word.
Note that a linear code always contains the all-zero code word since 

To analyze the error detection and error correction capabilities of block codes, we need
several definitions. We define the Hamming weight of a binary block as the number of 1s
in the block. For a binary block A, we will represent the Hamming weight of A as
For example, the Hamming weight of is two.

The Hamming distance between any two binary blocks is the number of places in
which they differ. Since the expression has 1s in every location that A and B differ
and zeros elsewhere, the Hamming distance may be expressed as

(10.82)dH1A, B2 � wH1A ⊕ B2
dH1A, B2A ⊕ B,

31 0 0 14 wH1A2.
A ⊕ A � 0.

A ⊕ B � C

TABLE 10.2 All Code Words
of Length 4 with Even Parity.

Code words

0000 1001
0011 1010
0101 1100
0110 1111
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The minimum Hamming distance of a code is the minimum value obtained by measuring
the distance between all possible pairs of code words. Mathematically, the minimum Ham-
ming distance is given by

(10.83)

This assumes that A and B are not equal. Since a linear code always contains the all zeros code
word, it follows by setting in Eq. (10.83) that is the minimum number of 1s in any
nonzero code word.

Let A be the transmitted code word and C be the received binary block. We claim that
the binary block C will always be detected as erroneous unless it is another code word. To
show this, let E be the error vector—that is, the binary block with 1s indicating the loca-
tion of errors. Then we may write

(10.84)

since adding a 1 modulo-2 to a bit will always alter that bit. By adding A to both sides, 
Eq. (10.84) may also be written as

(10.85)

With a linear code, if C is a code word, then so is E. This is an important property of lin-
ear block codes. Consequently, for us to guarantee that the error can be detected, the num-
ber of error bits must be less than 

(10.86)

That is, the maximum weight error that can always be detected is A block
code that has no parity bits has a minimum Hamming distance of 1; thus the receiver can-
not detect any errors in the received binary block. A single parity check code
has a minimum Hamming distance of 2. Thus, the single parity check code can always
detect a single bit error in the received binary block.

EXAMPLE 10.2 Properties of Linear Block Codes

For the length 4 code of Table 10.2, we show by example that:

(a) The sum of two code words is a code word:

(b) The sum of a code word with itself is the zero code word:

(c) The sum of any code word and an error vector corresponding to one error is not a code
word:

(d) At least some error vectors of weight 2 are not detectable:

� ERROR CORRECTION

Correcting errors requires both detecting errors and determining the location of those
errors. We define the error correction capability of a code as the maximum number of
errors that the receiver will always be able to correct in the received binary block.

310104 ⊕ 300114 � 310014

310014 ⊕ 300014 � 310004

310104 ⊕ 310104 � 300004

300114 ⊕ 311004 � 311114

1k 	 1, k2
1k, k2dmin � 1.

max wH1E2 � dmin

dmin:

A ⊕ C � E

C � A ⊕ E

dminB � 0

dmin � min
A, B

dH1A, B2
dmin
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Let A and B be two code words separated by Assume that code word A is trans-
mitted and the binary block C is received. Suppose the received binary block C is an equal
distance from each of the code words A and B; that is, it has the property that

(10.87)

Hence, C lies halfway between A and B. In this case, even though A was transmitted, the
receiver has no justification for choosing A over B as the correct code word since the dis-
tance of both to the received block is the same. Let where E is the error vector.
Then for C to be correctable—that is, to recover A from C—the discussion surrounding
Eq. (10.87) implies that

(10.88)

We may therefore state that error correction is possible if the number of errors is less than
half of the minimum Hamming distance of the code.

Clearly, then, the objective when designing a forward error-correction code is to add
parity bits to increase the minimum Hamming distance, as this improves both the error
detection and error-correction capabilities of the code.

EXAMPLE 10.3 Three Parity Bits

In this example, we construct a (7, 4) code. That is, the code words are of length 7 bits and
each code word contains four information bits. Let be the four informa-
tion bits and construct the three parity bits as follows:

The code words of this code are shown in Table 10.3.

p3 � x3 ⊕ x4

p2 � x1 ⊕ x2

p1 � x1 ⊕ x2 ⊕ x3 ⊕ x4

X � 3x1, x2, x3, x44

max wH1E2 � dmin>2

C � A ⊕ E

dH1A, C2 � dH1B, C2 � dmin>2

dmin.

TABLE 10.3 The Sixteen Code Words
for Example 10.3.

0000000 1000101
0001110 1001011
0010110 1010011
0011010 1011101
0100101 1100000
0101011 1101110
0110011 1110110
0111101 1111000

3x1, x2, x3, x4, p1, p2, p34

This code contains the code word which has Hamming weight 2. Thus the mini-
mum distance of this code is 2. We therefore conclude that adding three parity bits is not
always sufficient to obtain In the next section, we will consider a better (7, 4) code.

� HAMMING CODES

In this section, we consider some simple but efficient codes known as Hamming codes,
which were among the first error-correcting codes to be devised. Hamming codes are a
family of codes with block lengths for For a specific blockm � 3, 4, 5, Á .n � 2m � 1

dmin � 3.

311000004,
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length n, there are m parity bits and information bits. Example Hamming
codes are the (7, 4), (15, 11), and (31, 26) codes. All of these codes have a minimum Ham-
ming distance and thus can correct all single bit errors.

As previously described, there are two steps to the coding process. The first step is the
encoding that occurs at the transmitter; this requires the calculation of the parity bits based
on the information bits. The second step is the decoding that occurs at the receiver; this
requires the evaluation of the parity checksums to determine if, and where, the parity equa-
tions have been violated.

We will first consider the Hamming (7, 4) code and let represent
the four information bits. To encode these bits we define the k-by-n generator matrix of the
Hamming (7, 4) code as

(10.89)

Using this generator matrix, the seven-element code word to
be transmitted is given by

(10.90)

where the dot implies the vector-matrix multiply but using modulo-2 arithmetic; that is,
the elements of C are given by

If we expand Eq. (10.90), then we find that the elements of the code word are

(10.91)

Comparing Eqs. (10.89) and (10.91), we observe that the first four columns of G are
the identity matrix and map the information bits to themselves. The last three columns of
G form the parity check equations of the code. Each block code has its own unique gen-
erator matrix; although different generator matrices may produce codes with equivalent
properties. For example, if we exchange any two columns of G we will get a different block
code, but it will have the same error-correcting properties as the above code.

Let represent the seven received, and possibly wrong, bits
of the (7, 4) Hamming code. How do we decode these bits? One possible decoding strat-
egy is a list decoder. With this strategy, we make a list of all possible received blocks and
compute the closest code word, in terms of Hamming distance, beforehand. Then, for any
received block, we look it up on this list and determine the nearest code word. This list
decoder will work conceptually for any code. However, as n becomes large, the list becomes
too long to be of practical value.

27

R � 3r1, r2, r3, r4, r5, r6, r74

c7 � x1 ⊕ x2 ⊕ x4

c6 � x2 ⊕ x3 ⊕ x4

c5 � x1 ⊕ x2 ⊕ x3

c4 � x4

c3 � x3

c2 � x2

c1 � x1

ck � ⊕
4

j�1
xjGjk

ck

#
C � X # G

C � 3c1, c2, c3, c4, c5, c6, c74

G � D1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

  

1 0 1
1 1 1
1 1 0
0 1 1

T
X � 3x1, x2, x3, x44

dmin � 3

2m � 1 � m
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A computational decoding strategy is therefore a preferable alternative to the list
decoder. To this end, for the (7, 4) Hamming code we may define the parity
check matrix H as

(10.92)

Note that the lower 3-by-3 portion of H forms a unit matrix, and the part above the unit
matrix is the transpose of the part of the generating matrix to left of the unit matrix in Eq.
(10.89). Hence, the columns of the parity matrix H form the coefficients of the parity equa-
tions that the code words of the Hamming code should satisfy. For a linear code, the
columns of matrix H describe the independent equations upon which the 
parity bits are computed.

Suppose the received binary block is where C is the transmitted code
word and E is the error vector. We compute the product of the received vector and the
parity-check matrix

(10.93)

Since C is a code word, it satisfies the parity-check equations and Therefore

(10.94)

The -dimensional vector S is called the error syndrome. Suppose E corresponds to
a single-bit error in the mth bit of the code word. The syndrome S will then correspond to
the mth row of the parity check matrix H. Note that the rows of H are unique. Thus we
can use the syndrome to determine the position of any single-bit error. This mapping is
shown in Table 10.4. A syndrome of implies that no error occurred.30, 0, 04

1n � k2
S � E # H

C # H � 0.

� C # H 	 E # H
� 1C 	 E2 # HS � R # H

R � C ⊕ E

1n � k21n � k2 1n, k2

H � G
1 0 1
1 1 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

W
1n � k2-by-n

TABLE 10.4 Syndrome Decoding for
Hamming (7, 4) Code.

Error (E) Syndrome (S) Decimal Rep.

0000000 000 0
1000000 101 5
0100000 111 7
0010000 110 6
0001000 011 3
0000100 100 4
0000010 010 2
0000001 001 1

Thus, we have shown that the Hamming (7, 4) code can correct any single-bit error. Can
it correct more than one error? If E contains two errors, then the syndrome will consist of
the modulo-2 sum of two rows of H. This sum will produce a third row in H, and may thus
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be indistinguishable from the single-bit error that also produces this row. Consequently, the
Hamming (7, 4) code can correct all single-bit errors but not two-bit errors. In other words,
the of the code must be 3.

On the error-detection side, we again note that any two-bit error will produce a third
row of H. Since this third row is nonzero, this means we can detect (but not correct) all two-
bit errors with the Hamming (7, 4) code. Note, however, that if the three-bit error

occurs, then the syndrome Therefore, the code cannot detect all
three-bit errors. This provides further confirmation that is 3 for this code.

EXAMPLE 10.4 Error Correction with a Hamming Code

Four information bits are encoded with a Hamming (7, 4) code whose generator matrix is
given by Eq. (10.89). The received bit sequence is What sequence was trans-
mitted if one error occurred during the transmission?

Multiplying R by the parity check matrix, we obtain the error syndrome

Since the error syndrome is nonzero, we know that one or more errors occurred. From Table
10.4, a single error in the second bit from the left would cause this sequence, so we conclude
that the transmitted sequence is and the information bits are 

EXAMPLE 10.5 Probability of Block Error

Suppose a BPSK transmission strategy is encoded with a (7, 4) Hamming block code. Compare
the block error rate with and without decoding.

From Section 10.4 the probability of a bit error with BPSK is A
block of uncoded seven bits is received correctly if it contains no errors. The probability of a
block error—that is, one or more bit errors—is the complement of this; namely,

(10.95)

With the (7, 4) Hamming code, the probability of a block error is the probability of two or more
errors over a seven-bit block. This probability is given by

(10.96)

where is the probability of a bit error with a Hamming code. If , then the probability
of a block error is clearly reduced with the Hamming code. However, there is a nuance that
must be considered. This is why we have used in the Eq. (10.96) as opposed to In par-
ticular, in the digital reference model, refers to the energy per information bit. With the
Hamming (7, 4) code, we are transmitting four information bits and three parity bits, for a total
of seven channel bits per block. Letting represent the energy per channel bit, we find that
the energy of seven channel bits corresponds to the energy of four information bits:

(10.97)

Furthermore, the probability of error in Eq. (10.96) represents the probability of a channel-
bit error, so using the probability of error for BPSK and Eq. (10.97), we have

(10.98)� Q¢A 8Eb

7N0
≤
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œ � Q¢A2Ec
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≤
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œ
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dmin
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5With Reed–Solomon codes, the n and k in often refer to total symbols and information symbols in a code
word where a symbol corresponds to m bits.

1n, k2

In this way, we may make a fair comparison between the uncoded and coded transmission
strategies. The block error rates of these two strategies are shown in Figure 10.19. The coding
provides approximately 1 dB improvement in the block error rate performance.
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FIGURE 10.19 Comparison of 7-bit block error rate of uncoded BPSK and Hamming
(7, 4) coded BPSK.

� MORE POWERFUL CODES

While Hamming codes are simple to explain and are very efficient codes, they are by no
means the only forward-error-correction codes. Other FEC codes include:

� Reed–Solomon and Bose–Chaudhuri–Hocquenghem (BCH) block codes. Like the
Hamming codes, these are codes where there are k information bits and a total
of n bits including parity bits.5 The values of n and k are not as restricted as
with Hamming codes, which provides greater flexibility.

� Convolutional codes. As the name suggests, these codes are the result of the convo-
lution of one or more parity-check equations with the information bits. For example,
if the information bits are then we generate the sequence of parity
bits using the relation

(10.99)

Thus, every input bit results in two bits and being transmitted over the chan-
nel. Transmitting and for each information bit is an example of a rate that
is, there are two channel bits for each information bit. This is an example of system-
atic convolutional code where the information bit is explicitly transmitted. In non-xk

1
2 ;pkxk

pkxkxk

pk � xk ⊕ xk�2 ⊕ xk�3 ⊕ xk�5

x1, x2, x3, Á ,

n � k
1n, k2
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systematic convolutional codes there may be two parity equations such as Eq. (10.99),
and the two parity bits produced for each information bit are transmitted but the
information bit is not. The error-correcting capabilities of a convolutional code are
usually determined by the span (in bits) of the parity-check equation, which is referred
to as the memory of the code. Unfortunately, the decoding complexity increases expo-
nentially with the memory of the code, so practical codes are usually limited to mem-
ory of less than ten bits.

� Turbo codes. Turbo codes are block codes but use a continuous encoding strategy sim-
ilar to convolutional codes. For example, with a rate Turbo code, the three trans-
mitted bits for each information bit could be

(10.100)

With Turbo codes, the parity is determined by a recursive equation; that is, the kth par-
ity bit depends upon the parity bit as well as the input bits. Note that in Eq.
(10.100) the formula for the p and q parity bits are the same; the difference is that the
q-formula uses which refers to the same information bits but in an interleaved
order. Interleaving means shuffling the order of the bits in a pseudo-random fashion.

For both block codes and convolutional codes, the general principle is to add parity
bits in such a way as to maximize the minimum distance However, maximizing the
minimum distance is subject to two important constraints:

1. The code rate; that is, the ratio of the number of information bits to the total num-
ber of bits in a code word must be reasonable. This ensures that the communication
system has a significant information throughput.

2. The code must permit a practical decoding strategy. It is relatively easy to construct
codes with large minimum distances, but the corresponding decoding strategies are
often too complex to be of practical use.

Even with practical decoding strategies and large minimum distances, there are lim-
its to how reliable data can be transmitted. The theoretical limits fall in the area of Shan-
non channel capacity theory. Shannon theory6 tells us that if the transmission rate is below
the channel capacity, then there exist forward error-correcting codes that permit error-free
transmission. Enormous strides in approaching these theoretical limits have been made in
recent years with the discovery of Turbo codes. Turbo codes draw features from both con-
volutional and block codes. Although is important in the design of Turbo codes, other
distinct features of these codes improve performance at low signal-to-noise ratios.

� SIGNAL-SPACE INTERPRETATION OF FORWARD-ERROR-CORRECTION CODES

In Section 10.8 we saw how we could construct a four-dimensional vector with a signal-
space representation of

(10.101)

where there are sixteen points in the constellation defined by s. To be specific, we consider
the construction of an N-dimensional signal vector in the context of error-correcting codes.

For a linear code, we defined a code word c of length N comprised of informa-

� 2Eb3�1, �1, �1, �14
s � C�2Eb , �2Eb , �2Eb , �2Eb D

dmin

dmin.

xk
i ,

1k � 12th
qk � qk�1 ⊕ xk

i ⊕ xk�2
i ⊕ xk�4

i

pk � pk�1 ⊕ xk ⊕ xk�2 ⊕ xk�4

xk

xk

1
3

xk

xk

6For a discussion of the Shannon theory and its implications, see the book by Cover and Thomas (1991).
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FIGURE 10.20 Illustration of
minimum distance in: 
(a) code word space with

and (b) signal space with
and r � 2dminEb .d � 22dminEb

t � :1dmin � 12>2; ;

tion bits and parity bits. In general, for a binary vector of length N, there were always
possible values. However, with a code word, the special relationship of the infor-

mation bits and the parity bits implies that there are only possible values for c where
k is the number of information bits and is the number of parity bits.

For transmission, we must assign real values to each code word. Let
be a real-valued code word where we assume that takes a value of 

either or depending upon whether the data symbol is 0 or 1. We may con-
sider s as a signal-space vector. Analogous to the code word c, there are only pos-
sible values for the signal space vector in a space of dimension N.

With this new definition of the signal space, we can explain some of the concepts of
coding theory geometrically as shown in Fig. 10.20. In particular, for a linear code we
defined the minimum Hamming distance as the number of locations where the binary code
words differ. In geometric terms, if and are two code words with minimum Hamming
distance then they may be illustrated, in a two-dimensional sense, as shown in Fig.
10.20(a). The circles of radius denoting the smallest integer less than

enclose the binary vectors that can be correctly decoded to the code words at theirdmin>2,
t � :1dmin � 12>2; ,dmin,

c2c1

2k
�2Eb	2Eb

sis � 3s1, s2, s3 Á , sN4
N � k

2k
2N
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respective centers. In reality, these circles represent N-dimensional spheres.
In signal space, the squared geometric (Euclidean) distance between two neighboring

signal space vectors is defined by the squared Euclidean distance

(10.102)

where we have used the fact that neighboring signal-space vectors, and differ in ele-
ments if they represent code words. Thus, the Hamming distance between code words and the
geometric distance between their corresponding signal-space vectors are directly related. In
code space, we may select two code words of minimum separation and draw spheres of radius
t around them. Since the code has minimum distance this implies there are no other code
words within this sphere; any point within this sphere will be closer to its center than to any other
code word. Similarly, in signal space, we may draw spheres of radius around
each signal space vector representing a code word, as shown in Fig. 10.20(b), and there are no
other signal space vectors representing code words within this sphere.

This resonates with our definition of the error correction capability of a code: Any
received signal that lies within a distance of the transmitted code can be uniquely cor-
rected to that code word. Received signals that are beyond this distance may be erroneously
corrected if they fall in other spheres or they may be properly corrected if they fall in the gaps
between spheres and are closer to the transmitted code word than any other. The error detec-
tion capability means the received signal does not fall directly on another code word.

The Hamming (7, 4) code is an example that has code word (points) in a seven-
dimensional signal space and the minimum distance between any two code words is three.
Similarly, the Hamming (15, 11) codes is an example that has code words (points) in
a 15-dimensional space and again the minimum distance is three.

10.10 Summary and Discussion

In this chapter, we investigated the detection of digitally modulated signals in noise. We
began by establishing bit error rate (BER) as the figure of merit for comparing digital com-
munication systems and observed that BER is typically not a linear function of the signal-
to-noise ratio. Next, we addressed the detection of various digital modulation schemes in
the presence of noise and made the following observations:

(i) Analysis of the detection of a single pulse in noise shows the optimality of matched
filtering. The matched-filter principle is a mainstay for the subsequent digital detec-
tion techniques. We showed that the bit error rate performance using matched filtering
was closely related to the Q-function that was defined in Chapter 8.

(ii) We showed how the principle of matched filtering may be extended to the detection
of pulse-amplitude modulation, and that bit error rate performance may be deter-
mined in a manner similar to single-pulse detection.

(iii) We discussed how the receiver structure for the coherent detection of band-pass mod-
ulation strategies such as BPSK, QPSK, and QAM was similar to coherent detection
of corresponding analog signals. After down-conversion to baseband, the principle of
matched filtering also applies to these modulation strategies, and BER performance
equivalent to the corresponding baseband systems is thereby obtained.

211

24

dmin>2

r � 2dminEb

dmin,
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(iv) We showed how quadrature modulation schemes such as QPSK and QAM provide
the same performance as their one-dimensional counterparts of BPSK and PAM, due
to the orthogonality of the in-phase and quadrature components of the modulated sig-
nals. In particular, we showed how QPSK modulation provides the same BER as
BPSK for the same but provides double the throughput.

(v) We also showed that antipodal strategies such as BPSK are more power efficient than
orthogonal transmission strategies such as on–off signaling and FSK.

(vi) We introduced the concept of non-coherent detection when we illustrated that BPSK could
be detected using a new approach where the transmitted bits are differentially encoded.
The simplicity of this detection technique results in a small BER performance penalty.

The signal-space concepts introduced in Chapter 7 provide an intuitive geometrical inter-
pretation of the relative performance of the different coherent digital modulation strategies
in noise. Finally, we closed the chapter with a brief introduction of forward error correc-
tion coding, which can be combined with any of the above digital modulation strategies to
reduce the power required to achieve the same bit error rate performance—however, there
is usually a power and bandwidth tradeoff that must be made when using forward-error-
correction coding in the design of digital communication systems.

ADDITIONAL PROBLEMS

10.11 A communications system that transmits single isolated pulses is subject to multipath such that,
if the transmitted pulse is of lenght T, the received signal is

Assuming that and are known, determine the optimum receiver filter for signal in the pres-
ence of white Gaussian noise of power spectral density . What is the post-detection SNR
at the output of this filter?

10.12 The impulse response corresponding to a root-raised cosine spectrum, normalized to satisfy Eq.
(10.10), is given by

where is the symbol period and is the roll-off factor. Obtain a discrete-time rep-
resentation of this impulse response by sampling it at for integer n such that

Numerically approximate matched filtering (e.g. with MatLab) by performing
the discrete-time convolution

where What is the value of and 0?
10.13 Determine the discrete-time autocorrelation function of the noise sequence defined by Eq. (10.34)

where w(t) is a white Gaussian noise process and the pulse p(t) corresponds to a root-raised cosine
spectrum. How are the noise samples corresponding to adjacent bit intervals related?

10.14 Draw the Gray-encoded constellation (signal-space diagram) for 16-QAM and for 64-QAM. Can
you suggest a constellation for 32-QAM?
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10.15 Write the defining equation for a QAM-modulated signal. Based on the discussion of QPSK
and multi-level PAM, draw the block diagram for a coherent QAM receiver.

10.16 Show that the if T is a multiple of the period of then the terms and 
are orthogonal over the interval 

10.17 For a rectangular pulse shape, by how much does the null-to-null transmission bandwidth
increase, if the transmission rate is increased by a factor of three?

10.18 Under the bandpass assumptions, determine the conditions under which the two signals
and are orthogonal over the interval from 0 to T.

10.19 Encode the sequence 1101 with a Hamming (7, 4) block code.

10.20 The Hamming (7, 4) encoded sequence 1001000 was received. If the number of transmission
errors is less than two, what was the transmitted sequence?

10.21 A Hamming (15, 11) block code is applied to a BPSK transmission scheme. Compare the block
error rate performance of the uncoded and coded systems. Explain how this would differ if the
modulation strategy was QPSK.

ADVANCED PROBLEMS

10.22 Show that the choice minimizes the probability of error given by Eq. (10.26). 
Hint: The Q-function is continuously differentiable.

10.23 For M-ary PAM,

(a) Show that the formula for probability of error, namely,

holds for 3, and 4. By mathematical induction, show that it holds for all M.

(b) Show the formula for average power, namely,

holds for and 3. Show it holds for all M.
10.24 Consider binary FSK transmission where is not an integer.

(a) What is the mean output of the upper correlator of Fig. 10.12, if a 1 is transmitted? What
is the mean output of the lower correlator?

(b) Are the random variables and independent under these conditions? What is the vari-
ance of 

(c) Describe the properties of the random variable D of Fig. 10.12 in this case.
10.25 Show that the noise variance of the in-phase component of the band-pass noise is the same

as the band-pass noise variance; that is, for a band-pass noise of bandwidth , we have

10.26 In this problem, we investigate the effects when transmit and receive filters do not combine to
form an ISI-free pulse shape. To be specific, data are transmitted at baseband using binary PAM
with an exponential pulse shape where T is the symbol period (see Exam-
ple 2.2). The receiver detects the data using an integrate-and-dump detector.

(a) With data symbols represented as , what is magnitude of the signal component at the out-
put of the detector?

(b) What is the worst case magnitude of the intersymbol interference at the output of the detec-
tor. (Assume the data stream has infinite length.) Using the value obtained in part (a) as a
reference, by what percentage is the eye opening reduced by this interference. 
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(c) What is the rms magnitude of the intersymbol interference at the output of the detector? If
this interference is treated as equivalent to noise, what is the equivalent signal-to-noise ratio
at the output of the detector?  Comment on how this would affect bit error rate perfor-
mance of this system when there is also receiver noise present.

10.27 A BPSK signal is applied to a matched-filter receiver that lacks perfect phase synchronization
with the transmitter. Specifically, it is supplied with a local carrier whose phase differs from
that of the carrier used in the transmitter by radians.

(a) Determine the effect of the phase error on the average probability of error of this receiver.
(b) As a check on the formula derived in part (a), show that when the phase error is zero the

formula reduces to the same form as in Eq. (10.44).
10.28 A binary FSK system transmits data at the rate of 2.5 times megabits per second. During the

course of transmission, white Gaussian noise of zero mean and power spectral density 
watts per hertz is added to the signal. In the absence of noise, the amplitude of the received sig-
nal is across 50 ohm impedance. Determine the average probability of error assuming
coherent detection of the binary FSK signal.

10.29 One of the simplest forms of forward error correction code is the repetition code. With an N-
repetition code, the same bit is sent N times, and the decoder decides in favor of the bit that is
detected on the majority of trials (assuming N is odd). For a BPSK transmission scheme, deter-
mine the BER performance of a 3-repetition code.

� COMPUTER EXPERIMENTS

10.30 In this experiment, we simulate the performance of bipolar signaling in additive white Gauss-
ian noise. The MATLAB script included in Appendix 7 for this experiment does the following:

• It generates a random sequence with rectangular pulse shaping.
• It adds Gaussian noise.
• It detects the data with a simulated integrate-and-dump detector.

With this MATLAB script:
(a) Compute the spectrum of the transmitted signal and compare to the theoretical.
(b) Explain the computation of the noise variance given an ratio.
(c) Confirm the theoretically predicted bit error rate for from 0 to 10 dB.

10.31 In this experiment, we simulate the performance of bipolar signaling in additive white Gauss-
ian noise but with root-raised-cosine pulse shaping. A MATLAB script is included in Appendix
7 for doing this simulation. Hence, do the following:
(a) Compute the spectrum of the transmitted signal and compare to the theoretical. Also com-

pare to the transmit spectrum with rectangular pulse shaping.
(b) Plot the eye diagram of the received signal under no noise conditions. Explain the relation-

ship of the eye opening to the bit error rate performance.
(c) Confirm the theoretically predicted bit error rate for from 0 to 10 dB.

10.32 In this experiment, we simulate the effect of various mismatches in the communication system
and their effects on performance. In particular, modify the MATLAB scripts of the two pre-
ceding problems to do the following:
(a) Simulate the performance of a system using rectangular pulse-shaping at the transmitter

and raised cosine pulse shaping at the receiver. Comment on the performance degradation.
(b) In the case of matched root-raised cosine filtering, include a complex phase rotation 

in the channel. Plot the resulting eye diagram for being the equivalent of 5°, 10°, 20°, and
45°. compare to the case of  0°. Do likewise for the BER performance. What modifi-
cation to the theoretical BER formula would accurately model this behavior?
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CHAPTER 11

SYSTEM AND NOISE

CALCULATIONS

The inevitable presence of noise undermines the reliable transmission of signals through a
communication system. In previous chapters, we have modeled noise as white, Gaussian,
and additive. This model was mathematically tractable and allowed us to obtain numerous
analytical results about the performance of analog and digital communications in noise. In
those previous chapters, we claimed that white Gaussian model was a reasonable model of
reality. Now we consider in greater detail the potential sources of noise and how they
arise. The sources of noise may be external to the system (e.g., atmospheric noise, galactic
noise, manmade noise) or internal to the system. The second category includes an impor-
tant type of noise that arises due to spontaneous fluctuations of current or voltage in elec-
trical circuits. This type of noise, in one way or another, is present in every communication
system and represents a fundamental limitation on the transmission and detection of
signals.

In this chapter, we briefly discuss the physical sources of noise in electrical circuits
and develop quantitative models for measuring and predicting the presence of noise in a
communication system. We then consider the effect propagation has on the received power
level. In particular, we consider free-space propagation of radio waves and the propagation
of radio waves in a terrestrial mobile environment. When the two concepts of received sig-
nal level and system noise level are combined, we have the signal-to-noise ratio, which rep-
resents the fundamental figure of merit for the quality of transmission across a
communication channel.

This chapter teaches us the following lessons:

� Lesson 1: Noise in communication systems may be generated by a number of sources, but
often the sources are the communication devices themselves. Thermal noise and shot noise
are examples of white noise processes generated by electrical circuits.

� Lesson 2: In a free-space environment, the received signal strength is attenuated propo-
tional to square of the transmission distance. However, signal strength can be enhanced by
directional antennas at both the transmitting and receiving sites.

� Lesson 3: In a terrestrial environment, radio communication may occur over many paths.
The constructive and destructive interference between the different paths leads, in general,
to the so-called multipath phenomenon, which causes much greater propagation losses
than predicted by the free-space model. In addition, movement of either the transmitting
or receiving terminals results in further variation of the received signal strength.
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1For a detailed treatment of electrical noise, see Bell (1985), Van Der Ziel (1970), and Robinson (1974).
2For a discussion of the physical issues involved in the formulation of Eq. (11.1), and for a historical account of
the pertinent literature, see Bell (1985).

11.1 Electrical Noise

In an electrical circuit, noise is generated by various physical phenomena.1 We have thermal
noise produced by the random motion of electrons in conducting media, and shot noise pro-
duced by random fluctuations of current flow in electronic devices. These two are the most
common examples of spontaneous fluctuation noise encountered in electrical circuits.

Besides thermal noise and shot noise, transistors exhibit a low-frequency noise phenome-
non known as flicker noise. The mean-square value of flicker noise is inversely proportional to
frequency; hence it is also referred to as “one-over- ” noise. Yet another type of noise encoun-
tered in semiconductor devices is burst noise, whose mean-square value falls off as

Flicker noise and burst noise are both non-white, with their degrading effects being
observed at low frequencies. Ordinarily, they can be ignored above a few kilohertz. On
the other hand, thermal noise and shot noise are both white for all practical purposes;
hence their degrading influence on the operation of a communication system extends right
across the complete frequency band of interest. A brief discussion of thermal noise and
shot noise is therefore in order.

� THERMAL NOISE

Thermal noise is a ubiquitous source of noise that arises from thermally induced motion
of electrons in conducting media. In a conductor, there are a large number of “free” elec-
trons and an equally large number of ions bound by strong molecular forces. The ions
vibrate randomly about their normal positions. The free electrons move along randomly
oriented paths, due to continuous collisions with the vibrating ions. The net effect of the
random motion is an electric current that is likewise random. The mean value of the cur-
rent is zero since, on average, there are as many electrons moving in one direction as there
are in another.

A thorough analysis of thermal noise requires the use of thermodynamic and quan-
tum mechanical considerations that are beyond the scope of this book. For the purpose of
the discussion presented here, it suffices to say that the power spectral density of thermal
noise produced by a resistor is given by2

(11.1)

where T is the absolute temperature in Kelvin, k is Boltzmann’s constant, and h is Planck’s
constant. Note that the power spectral density is measured in watts per hertz. For
“low” frequencies defined by

(11.2)

we may use the approximation
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(b)
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(a)

R

VTN

FIGURE 11.1 Models of a noisy resistor: (a) Thévenin equivalent circuit and (b) Norton
equivalent circuit.

Substituting this approximate formula into Eq. (11.1) we arrive at the corresponding
approximate formula for the power spectral density of thermal noise:

(11.4)

By substituting the values for Boltzmann’s constant, watts/Hz/ºK,
Planck’s constant, watt-(second) , we find that, at a nominal tempera-
ture of (17 ºC),

(11.5)

This upper frequency limit lies in the infrared region of the electromagnetic spectrum that
is well above the frequencies encountered in conventional electrical communication systems.
Therefore, for all practical purposes the use of the formula of Eq. (11.4) is justified.

Thus given a resistor of R ohms, we find from Eq. (11.4) that the mean-square value
of the thermal noise voltage measured across the terminals of the resistor equals

(11.6)

where is the bandwidth (in hertz) over which the noise voltage is measured. The factor 2
in the first line of Eq. (11.6) comes from the fact that the spectral density has both positive
and negative frequencies. We may thus model a noisy resistor by the Thévenin equivalent cir-
cuit consisting of a noise voltage generator with a mean square value of in series
with a noiseless resistor, as in Fig. 11.1(a). Alternatively, we may use the Norton equivalent
circuit consisting of a noise current generator in parallel with a noiseless conductance 
as in Fig. 11.1(b). The mean-square value of the noise current generator is

(11.7)

Since the number of electrons in a resistor is very large and their random motions inside
the resistor are statistically independent of each other, the central limit theorem indicates
that thermal noise is Gaussian distributed. Accordingly, for the band of frequencies encoun-
tered in electrical communication systems, we may model thermal noise as white Gauss-
ian noise of zero mean.

EXAMPLE 11.1 Noise Voltage in AM Radio

The front-end filter of a radio passes the broadcast AM band from 535 kHz to 1605 kHz.
The radio input has an effective resistance of 300 ohms. What is the root-mean-square noise
voltage that we would expect to observe due to this resistance?
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From Eq. (11.6), the mean-square thermal noise voltage at room temperature is

Hence, the root-mean-square thermal noise voltage is 2.3 microvolts.

� AVAILABLE NOISE POWER

Noise calculations involve the transfer of power from a source to a load, so we find that
the use of the maximum-power transfer theorem is applicable. This theorem states that
the maximum possible power is transferred from a source of internal resistance R to a load
of resistance when Under this matched condition, the power produced by the
source is divided equally between the internal resistance of the source and the load resis-
tance. The power delivered to the load is referred to as the available power. Applying the
maximum-power transfer theorem to the Thévenin equivalent circuit of Fig. 11.1(a) or the
Norton equivalent circuit of Fig. 11.1(b), we readily find that a noisy resistor produces an
available power equal to watts.

EXAMPLE 11.2 Noise Power

What is the available noise power produced by a 10 kilo-ohm resistor over the bandwidth
from 0 to 10 MHz?

The available noise power at room temperature is

The root-mean-square (rms) voltage this power produces across a matched load of 10 kilo-ohms is

� Drill Problem 11.1 What is the root-mean-square voltage across a 10 mega-ohm resis-
tor at room temperature if it is measured over a 1 GHz bandwidth? What is the available noise
power? �

� SHOT NOISE

Shot noise arises in electronic devices due to the discrete nature of current flow in the device.
The process assumes the existence of an average current flow that manifests itself in the
form of electrons flowing from the cathode to the plate in vacuum tubes; holes and electrons
flowing in semi-conductor devices; and photons emitted in photodiodes. Although the aver-
age number of particles moving across the device per unit time is assumed to be constant,
the process of current flow through the device exhibits fluctuations about the average value.
The manner in which these fluctuations arise varies from one device to another. In a vacuum-
tube device, the fluctuations are produced by the random emission of electrons from the
cathode. In a semiconductor device, the cause is the random diffusion of electrons or the

� 20.0 microvolts
Vrms � 2PNR

� 4.0  10�14 watts

� (1.38  10�23)  290  107

PN � kTBN

kTBN

Rl � R.Rl

� 5.14  10�12 volts2

� 4  (1.38  10�23)  290  300  (1070  103)
E3VTN

2 4 � 4kTRBN
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random recombination of electrons with holes. In a photodiode, it is the random emission
of photons. In all these devices, the physical mechanism that controls current flow through
the device has built-in statistical fluctuations about some average value. The shot noise pro-
duced by these fluctuations is thus dependent on the average value of the current.

Consider, for example, a temperature-limited vacuum diode, shown in Fig. 11.2. The
diode consists of two electrodes enclosed in a vacuum: a cathode, which is heated so that
it emits electrons; and an anode or plate, which is maintained at a positive potential with
respect to the cathode so that it gathers the electrons. We assume that the cathode–plate
potential difference is large enough to cause the electrons emitted thermionically by the
heated cathode to be pulled to the plate with such high velocities that the space-charge
effects are negligible. The plate current is then determined effectively by the rate at which
electrons are emitted from the cathode. By considering the plate current as the sum of a suc-
cession of current pulses, with each pulse caused by the transit of one electron through the
cathode-plate space, we find that the mean-square value of the randomly fluctuating com-
ponent of the current is given by

(11.8)

where q is the electron charge equal to coulombs, I is the mean value of the
current in amperes, and is the bandwidth of the measuring instrument in hertz. Equa-
tion (11.8) is called the Schottky formula. The typical transit time of an electron from cath-
ode to plate is on the order of seconds. The Schottky formula holds provided that the
operating frequency is small compared with the reciprocal of the transmit time, so that we
may neglect transit time effects.

Another important characteristic of shot noise is that it is Gaussian distributed with
zero mean. This characteristic follows from the fact that the number of electrons con-
tributing to the shot noise current is very large, and their random emissions from the cath-
ode are, for practical purposes, statistically independent of each other. Hence, the central
limit theorem predicts a Gaussian distribution for shot noise.

The Schottky formula also holds for a semiconductor junction diode. In this case,
the mean value of the current is given by the diode equation

(11.9)

where V is the voltage applied across the diode and is the saturation current; the other
constants are as defined previously. The two components of the current I produce statisti-
cally independent shot-noise contributions of their own, as shown by
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FIGURE 11.2 A temperature-limited
vacuum diode.
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(b)

rISN

(a)
FIGURE 11.3 (a) Junction diode.
(b) Shot noise model.

Figure 11.3 shows the shot noise model of the junction diode.3 The model includes the
dynamic resistance of the diode, defined by

Note, however, unlike ordinary resistor the dynamic resistance r is noiseless since it does
not involve power dissipation.

In a bipolar junction transistor, shot noise is generated at both the emitter and col-
lector junctions. On the other hand, in junction field-effect transistors, the use of an insu-
lated gate structure avoids junction shot noise; nevertheless, shot noise is produced by the
flow of gate current. Of course, in both devices, thermal noise arises from the internal
ohmic resistance: base resistance in a bipolar transistor and channel resistance in a field effect
transistor.

� Drill Problem 11.2 What is the available noise power over 1 MHz due to shot noise from
a junction diode that has a voltage differential of 0.7 volts and carries an average current of 0.1
milliamperes? Assume that the current source of the Norton equivalent circuit of Fig. 11.3(b)
has a resistance of 250 ohms. �

11.2 Noise Figure

A convenient measure of the noise performance of a linear two-port device is furnished by
the so-called noise figure. Consider a linear two-port device connected to a signal source
of internal impedance as in Fig. 11.4. The noise voltage rep-
resents the thermal noise associated with the internal resistance R of the source. The out-
put noise of the two-port device is made up of two contributions, one due to the signal
source and the other due to the device itself. We define the available output noise power
in a band of width centered at frequency as the maximum average noise power in this
band obtainable at the output of the device. The maximum noise power that the two-port
device can deliver to an external load is obtained when the load impedance is the complex
conjugate of the output impedance of the device—that is, when the resistance is matched

f¢f
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FIGURE 11.4 Linear two-port device.

3For details of noise models for semiconductor devices and transistors, see Robinson (1974), pp. 93–116.
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and the reactance is tuned out. We define the noise figure of the two-port device as the
ratio of the total available output noise power (due to the device and the source) per unit
bandwidth to the portion thereof due to the source.

Let the spectral density of the total available noise power of the device output be
and the spectral density of the available noise power due to the source at the device

input be Also let denote the available power gain of the two-port device,
defined as the ratio of the available signal power at the output of the device to the avail-
able signal power of the source when the signal is a sinusoidal wave of frequency Then
we may express the noise figure F of the device as

(11.11)

If the device were noise-free, and the noise figure would then
be unity. In a physical device, however, is larger than so that the noise
figure is always larger than unity. The noise figure is commonly expressed in decibels—that
is, as 

The noise figure F of Eq. (11.11) is a function of the operating frequency it is there-
fore referred to as the spot noise figure. In contrast, we may define the average noise fig-
ure of a two-port device as the ratio of the total noise power at the device output to the
output noise power due solely to the source. That is,

(11.12)

It is apparent that, in the case where thermal noise in the input circuit corresponds to a con-
stant resistance and the device has a constant gain throughout a fixed band with zero
gain at other frequencies, the spot noise figure F and the average noise figure are identical.

EXAMPLE 11.3 Noise Figure Calculation

The input of a two-port network with a gain of 10 dB and a constant noise figure of 8 dB is con-
nected to a resistor that generates a power spectral density where is the nom-
inal temperature. What is the noise spectral density at the output of the two-port network?

From Eq. (11.11) applied at arbitrary frequency we find that the output noise spec-
tral density is

Expressed in decibels, we have

where we have used the fact that 

11.3 Equivalent Noise Temperature

A disadvantage of the noise figure F is that, when it is used to compare low-noise devices, the
values are all close to unity, which makes the comparison difficult. In such cases, it is prefer-
able to use the equivalent noise temperature. Consider a linear two-port device whose input
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FIGURE 11.5 Linear two-port
device matched to the internal
resistance of a source connected to
the input.

resistance is matched to the internal resistance of the source as shown in Fig. 11.5. In this dia-
gram, we also include the noise voltage generator associated with the internal resistance 
of the source. From Eq. (11.3) the mean-square value of this noise voltage is where
k is Boltzmann’s constant. Hence, the available noise power at the device input is

(11.13)

Let denote the noise power contributed by the two-port device to the total available out-
put noise power We define as

(11.14)

where G is the available power gain of the device and is the equivalent noise tempera-
ture of the device. Then it follows that the total output noise power is

(11.15)

The noise figure of the device is therefore

(11.16)

Solving Eq. (11.16) for the equivalent noise temperature, we obtain

(11.17)

where the noise figure is measured under matched input conditions, and the noise source
is set at temperature T. Equation (11.17) provides the relationship between the noise fig-
ure and equivalent noise temperature of a two-port network.

� Drill Problem 11.3 An electronic device has a noise figure of 10 dB. What is the equiv-
alent noise temperature? �

� Drill Problem 11.4 The device of Problem 11.3 has a gain of 17dB and is connected to a
spectrum analyzer. If the input to the device has an equivalent temperature of 290 K and the spec-
trum analyzer is noiseless, express the measured power spectral density in If the spectrum
analyzer has a noise figure of 25 dB, what is the measured power spectral density in this case? �

� NOISE SPECTRAL DENSITY

A two-port network with equivalent noise temperature (referred to the input) produces
the available noise power

(11.18)Nav � kTeBN
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FIGURE 11.6 A cascade of two
noisy networks.

Recognizing that we find that the noise may be modeled as additive white
Gaussian noise with zero mean and power spectral density where

(11.19)

The power spectral density of the noise so modeled depends only on Boltzmann’s constant
and the equivalent noise temperature It is the simplicity of this model that makes the
equivalent noise temperature of a composite network such a useful concept.

11.4 Cascade Connection 
of Two-Port Networks

It is often necessary to evaluate the noise figure of a cascade connection of two-port net-
works whose individual noise figures are known. Consider Fig. 11.6, consisting of a pair
of two-port networks of noise figures and and power gains and connected in
cascade. It is assumed that the devices are matched, and that the noise figure of the sec-
ond network is defined assuming an input noise power 

At the input of the first network, we have a noise power contributed by the source,
plus an equivalent noise power contributed by the network itself. The output
noise power from the first network is therefore Added to this noise power at the
input of the second network, we have the equivalent extra power contributed
by the second network itself. The output noise power from this second network is there-
fore equal to We may consider the noise figure F as the ratio
of the actual output noise power to the output noise power if the networks are noiseless.
We may therefore express the overall noise figure of the cascade connection of Fig.11.6 as

(11.20)

The result may be readily extended to the cascade connection of any number of two-port
networks, as shown by

(11.21)

where are the individual noise figures and are the available
power gains, respectively. Equation (11.21) shows that if the first stage of the cascade con-
nection in Fig. 11.6 has a high gain, the overall noise figure F is dominated by the noise fig-
ure of the first stage.

Correspondingly, we may express the overall equivalent noise temperature of the cas-
cade connection of any number of noisy two-port networks as follows:
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4For a detailed treatment of link calculations for satellite communications, see Chapter 4 of Pratt and Bostian
(1986).
5For a detailed treatment of link calculations for deep-space communications, see Chapter 3 of Yuen (1983).

where are the equivalent noise temperatures of the individual networks.
From Eq. (11.22) we also see that if the first stage of a cascade connection of noisy
two-port networks has a large power gain, then the overall value of the equivalent noise
temperature is practically the same as that of the first stage. For this reason, in a
low-noise receiver, extra care is taken in the design of the pre-amplifier or low-noise
amplifier at the very front end of the receiver.

EXAMPLE 11.4 System Noise Temperature of a Satellite Receiver

A satellite receiver consists of an antenna that has a noise temperature of 50 K. This is followed
by a low-noise amplifier with 30 dB of gain and noise temperature of 70 K. The low-noise
amplifier, in turn, is followed by a second stage amplifier with a gain of 40 dB and noise tem-
perature of 1500 K. What is the system noise temperature?

For this three-stage system, Eq. (11.22) shows that the system noise temperature is given by

where and are the noise temperatures of the antenna, low-noise amplifier, and sec-
ond stage amplifier, respectively. Since the antenna does not provide any electrical gain to the
received signal, Consequently, the effective noise temperature is

� Drill Problem 11.5 A broadcast television receiver consists of an antenna with a noise
temperature of 290 K and a pre-amplifier with an available power gain of 20 dB and a noise
figure of 9 dB. A second-stage amplifier in the receiver provides another 20 dB of gain and has
a noise figure of 20 dB. What is the noise figure of the overall system? �

11.5 Free-Space Link Calculations

In this section, we move on to the issue of signal and noise power calculations for radio links
that rely on line-of-sight propagation through space. Such calculations are encountered in
satellite communications,4 for example. In a satellite system, the message signal is trans-
mitted from a ground station via the uplink to a geosynchronous satellite, amplified in a
transponder therein, and then retransmitted from the satellite via the downlink to another
ground Earth station. The satellite is positioned in a geostationary orbit (around the Earth)
so that it is always visible to different ground stations located inside the satellite antenna’s
coverage zone on the Earth’s surface. The satellite, in effect, acts as a repeater in the sky.
Another application with line-of-sight propagation characteristics is deep-space commu-
nication5 of information between a spacecraft and a ground station. In this second appli-
cation, the system includes a tracking capability such that the spacecraft is always visible
to one of multiple ground stations. For the analysis presented here, we will consider the satel-
lite link as illustrative of space applications.
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� CALCULATION OF RECEIVED SIGNAL POWER

Figure 11.7 illustrates a down-link between a spacecraft and a ground Earth station. The
link includes a transmitting source (on the spacecraft) with its output radiated through the
spacecraft’s antenna. At the ground station, a receiving antenna is used to collect signal
power from the incoming electromagnetic wave and feed it to the low-noise receiver through
a waveguide.

Let the transmitting source radiate a total power If this power is radiated isotropi-
cally (i.e., uniformly in all directions), the power flux density at a distance r from the source
is where is the surface area of a sphere of radius r. In practice, we use a highly
directional antenna so that the transmitted power is radiated primarily along a particular direc-
tion of interest. The antenna has a gain that is defined as the ratio of power radiated per unit
solid angle in a given direction to the average power radiated per solid angle. Let denote
the gain of the transmitting antenna in the direction in which the maximum power is radiated;
this direction is called the boresight of the antenna. The gain is a measure of the increase
in power radiated by the antenna over that radiated by an isotropic source. Thus for a trans-
mitter of total power driving a lossless antenna with gain the power flux density at dis-
tance r in the direction of the antenna boresight is given by

(11.23)

Let denote the effective aperture area of the receiving antenna. This area is related
to the physical aperture area A of the antenna by the formula

(11.24)

where is the aperture efficiency. Typically is in the range of 40 to 90 percent, depend-
ing on the type of antenna employed. The gain of the receiving antenna is defined in
terms of the effective aperture by

(11.25)

where is the wavelength of the transmitted electromagnetic wave; is equal to where
c is the speed of propagation (which is the same as the speed of light), and is the
transmission frequency. Equivalently, we have
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FIGURE 11.7 Space communication down-
link.
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6There are exceptions to this rule, most notably satellite-to-mobile terminal communications and 
direct-to-home satellite television broadcasts.

Hence, given the power flux density at the receiving antenna with an effective aperture
area the received power is

(11.27)

Thus, substituting Eqs. (11.23) and (11.26) into (11.27), we obtain the result

(11.28)

Equation (11.28) is known as the Friis transmission formula, which relates the received
power to the transmitted power. The product in this equation is called the effective
isotropic radiated power (EIRP). It describes the combination of the transmitting source and
antenna in terms of an effective isotropic source with power radiated uniformly in
all directions. The term is called the path loss or free-space loss; it may be viewed
as the ratio of transmitted power to received power between two antennas that are sepa-
rated by a distance r.

From Eq. (11.28) we see that for given values of wavelength and distance r, the
received power may be increased by three methods:

1. The spacecraft-transmitted power is increased. The transmitted power may be
20 watts or less. Even though this transmitted power may appear low, the input power
required for its generation represents a substantial fraction of the total power avail-
able on the spacecraft. Hence, there is a physical limit on how large a value we can
assign to the transmitted power 

2. The gain of the transmitting antenna is increased. This will help concentrate the
transmitted power rather intensely in the direction of the receiving antenna. However,
a large value of requires the use of a large antenna. The choice of is therefore
limited by size and weight constraints of the spacecraft.

3. The gain of the receiving antenna is increased. This will enable the receiver to
collect as much of the radiated signal power as possible. Here again, size and weight
constraints place a physical limit on the size of the ground-station antenna, although
these constraints are far less demanding than those on the spacecraft antenna; we
typically6 have

Let the receiving antenna gain and space loss be expressed in decibels (dB). Likewise,
let the effective radiated power and the received power be expressed in decibels relative to
one watt (dBW). Then we may restate the Friis transmission formula in the form

(11.29)

where

(11.30)

(11.31)

(11.32)

In Eq. (11.25), is represented as a power ratio, whereas in Eq. (11.31) it is
expressed in decibels. Equation (11.29) is idealized in that it does not account for all losses
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in the link. To correct for this, it is customary to include a term that represents the com-
bined effect of losses in the atmosphere due to rain attenuation, losses in the transmitting
and receiving antennas, and possible loss of gain due to mispointing of the antennas. Let

denote the overall value of this loss expressed in decibels; this term is sometimes called
the system margin. Then we may modify the expression for the received signal power as

(11.33)

Equation (11.33) represents the link (power) budget in that it allows the system designer
of a telecommunication link to adjust controllable parameters such as EIRP or the receiv-
ing antenna gain and make quick calculations of the received power.

The received power is commonly called the carrier power. This nomenclature is
derived from early satellite systems where phase or frequency modulation was commonly
employed. Since these modulation strategies maintain the envelope of the sinusoidal car-
rier constant, the carrier power is typically equal to the received power.

EXAMPLE 11.5 Satellite Link Budget

A geostationary satellite is located at a distance of 40,000 km from an Earth station. At the
satellite a source at a frequency of 4 GHz radiates a power of 10 watts through an antenna with
a gain of 20 dB. Assume that the effective aperture area of the receiving antenna is Cal-
culate the received signal power, ignoring nonideal losses in the links.

The effective radiated power with and is

The speed of propagation equals the speed of light: The wavelength of the
transmitted 4 GHz electromagnetic wave is therefore

Hence, the path loss equals

The gain of the receiving antenna with is
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Thus, using Eq. (11.29) and ignoring the system margin we find that the received signal
power equals

Equivalently, the received power may be written as watts. The low value of 
indicates that the received signal at the Earth station is extremely weak. Other losses on the link
(accounted for in the system margin) at the Earth station will make the received signal even weaker.

� Drill Problem 11.6 A satellite antenna has a diameter of 4.6 meters and operates at 12
GHz. What is the antenna gain if the aperture efficiency is 60 percent? If the same antenna was
used at 4 GHz, what would be the corresponding gain? �

� Drill Problem 11.7 A satellite at a distance of 40,000 kilometers transmits a signal at
12 GHz with an EIRP of 10 watts toward a 4.6 meter antenna that has an aperture efficiency
of 60 percent. What is the received signal level at the antenna output? �

� CARRIER-TO-NOISE RATIO

The carrier-to-noise ratio (CNR) is defined as the ratio of carrier power to the available noise
power, with both measured at the receiver input. As mentioned previously, the carrier
power is the same as the received signal power The formula for is described by the
Friis transmission equation (11.28). To calculate the available noise power at the receiver
input, we use the expression where k is Boltzmann’s constant, is the system noise
temperature, and is the noise bandwidth. We therefore have

(11.34)

Here again, the simplicity of this formula stems from the use of noise temperature as the
measure of how noisy the system is. The carrier-to-noise ratio is often the same as the pre-
detection SNR discussed in Chapter 9.

EXAMPLE 11.6 Calculation of CNR

Consider an Earth station receiver with a cryogenically cooled amplifier. The equivalent noise
temperature of the receiver is 20K. The Earth station uses a large antenna operating at a fre-
quency of 4 GHz and an elevation of 15 degrees; the antenna noise temperature is estimated
to be 50K. Calculate the system noise temperature, assuming no loss in the antenna feed and
waveguide. Then calculate the carrier-to-noise ratio, assuming a carrier power of 
(as in Example 11.5) and a noise bandwidth of 36 MHz.

From Eq. (11.22), we see that with the system noise temperature equals

The available noise power in the 36 MHz bandwidth is therefore
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7See Chapter 2 of Haykin and Moher (2004) for further details.

Thus the use of Eq. (11.34) yields the following value for the carrier-to-noise ratio expressed
in decibels:

Recall from our discussion of analog receivers in Chapter 9 that this CNR would just be suf-
ficient to operate an FM system at threshold. In contrast, this CNR would provide a satisfac-
tory bit error rate for many digital systems.

� Drill Problem 11.8 The antenna of Problem 11.7 has a noise temperature of 70 K and is
directly connected to a receiver with an equivalent noise temperature of 50 K and a gain of 60 dB.
What is the system noise temperature? If the transmitted signal has a bandwidth of 100 kHz, what
is the carrier-to-noise ratio? If the digital signal has a bit rate of 150 kbps, what is �

11.6 Terrestrial Mobile Radio

Free-space propagation is often a good model for satellite communications where there is
a clear line-of-sight between the transmitter and the receiver. It also provides insight because
there is a simple theoretical explanation for propagation losses.

With terrestrial communications, on the other hand, both antennas are usually rela-
tively close to the ground. Consequently, buildings, terrain, and vegetation may obstruct
the line-of-sight path. Terrestrial radio communication often relies on the reflection of elec-
tromagnetic waves from various surfaces or diffraction of these waves around various
objects. With these additional modes of propagation, there are a multitude of possible
propagation paths between the transmitter and receiver, and the receiver often receives a
significant signal from more than one path. This phenomenon is referred to as multipath
propagation. With multiple waves arriving at the same location, propagation properties may
differ significantly from free-space propagation.

There are three basic propagation modes that apply to terrestrial propagation: free-
space, reflection, and diffraction.7

1. Free-space propagation depends upon a line-of-sight path between the transmitter
and the receiver and a certain clearance around that path. The required clearance, illus-
trated in Fig. 11.8, is related to the separation of the two, and the wavelength of
transmission. A rule of thumb is that a volume known as the first Fresnel zone must
be kept clear of objects for approximate free-space propagation. The Fresnel zone
defines an ellipsoid of revolution. Objects within the first Fresnel zone will affect
transmission and cause deviation from the free-space propagation model. The radius
of the first Fresnel zone varies with the position between the transmitting and receiv-
ing antenna; it is given by

(11.35)

where is the wavelength of transmission, is the distance to the transmitter, and
is the distance to the receiver, for the particular point along the path.d2
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Transmitter Receiver

Reflected
path 1

Line-of-sight
path 0

Diffracted
path 2

FIGURE 11.9 Illustration of multiple transmission paths between transmitter and receiver.
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FIGURE 11.8 The first Fresnel zone for free-space propagation.

2. Reflection refers to the bouncing of electromagnetic waves from surrounding objects
such as buildings, mountains, and passing vehicles. In terrestrial wireless communi-
cations, there is often no direct line-of-sight path between the transmitter and receiver,
and communications rely on reflection and the following mode of diffraction. Reflec-
tion often further attenuates the signal and may affect the phase as well.

3. Diffraction refers to the bending of electromagnetic waves around objects such as
buildings or terrain such as hills, and through objects such as trees and other forms
of vegetation.

In terrestrial propagation, the received signal is often the combination of many of
these modes of propagation. That is, the transmitted signal may arrive at the receiver over
many paths, as illustrated in Fig. 11.9. The signals on these different paths can construc-
tively, or destructively, interfere with each other. Thus multipath transmission may have quite
different properties from free-space propagation. Measurements indicate that terrestrial
propagation can be broken down into several components. In the following, we describe
two of these components: the median path loss and fast fading.

EXAMPLE 11.7 Ghosting

Before the advent of cable and direct satellite transmission, television signals were mainly
received over the air via terrestrial links. A phenomenon, sometimes referred to as ghosting,
would sometimes be observed with weaker (i.e., more distant) television stations. With ghost-
ing, we would observe the image and a replica of the image in a slightly offset position. This
ghost is a visual instance of multipath; it is a copy of the original signal being received at a
slightly delayed time.
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8In this section, we present a relatively simple model for median path loss. This simple model is adequate for under-
standing the factors affecting path loss. For practical applications, more sophisticated models have been devel-
oped that depend on the application. An example is the Okumura–Hata model for land-mobile radio propagation
of frequencies between 150 MHz and 1 GHz. See Chapter 2 of Haykin and Moher (2004) for more details.

� Drill Problem 11.9 The transmitting and receiving antennas for a 4-GHz signal are
located on top of 20-meter towers separated by two kilometers. For free-space propagation, what
is the maximum height permitted for an object located midway between the two towers? �

� MEDIAN PATH LOSS8

With free-space path propagation, there is a relatively simple theoretical model for predicting
the propagation loss as a function of distance. With other modes of propagation—reflection
and diffraction—the calculation is not as simple, especially when there are multiple reflections
and/or diffractions. For simple scenarios, we can develop tractable mathematical models for
the propagation losses due to reflection and diffraction. With more practical scenarios, we
may still construct a physical model of the environment including terrain, buildings, and veg-
etation, and, using computer analysis, estimate propagation losses of particular paths.

Alternatively, we may use a statistical approach where the propagation characteris-
tics are empirically approximated on the basis of measurements in certain general types of
environments, such as urban, suburban, and rural. The statistical approach is broken down
into two components: an estimate of the median path loss and a random component that
depends upon the physical features of the local terrain.

The measurement of the field strength in various environments as a function of the
distance r, from the transmitter to the receiver motivates a simple propagation model for
median path loss having the form

(11.36)

where, typically, the path-loss exponent n ranges from 2 to 5 depending on the propaga-
tion environment. The parameter represents a gain that is related to frequency and
antenna gains, and may also be related to antenna heights and other factors. The right-hand
side of Eq. (11.36) is sometimes written in the equivalent form

(11.37)

In this representation, represents the measured path gain at the reference distance
In the absence of other information, may be taken as the free-space path gain at a dis-
tance of one meter. (The reference path loss is the inverse of ).

Numerous propagation studies have been carried out trying to closely identify the dif-
ferent environmental effects. The conclusion drawn from these studies is that most of these
effects are locally dependent and difficult, if not impossible, to characterize in general. Some
example values for the exponent n in the model of Eq. (11.36) are given in Table 11.1.

While this table indicates general trends, there are exceptions. For example, if the
propagation path is along a straight street with skyscrapers on either side, there may be a
ducting (waveguide) effect and propagation losses may be similar to free space or even less.

This model for median path loss is quite flexible and is intended for analytical study
of problems, as it allows us to parameterize performance of various system-related fac-
tors. For commercial applications in a terrestrial environment, either a field measurement
campaign or detail modeling of the environment is preferred.
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TABLE 11.1 Example Path-Loss exponents.

Environment n

Free space 2
Flat rural 3
Rolling rural 3.5
Suburban, low rise 4
Dense urban, skyscrapers 4.5 

EXAMPLE 11.8 Terrestrial Link Budget

A propagation measurement campaign indicates that in an urban area, the median path loss
can be modeled as

where the path loss is in decibels and r is in meters. In addition to the median path loss, the
system must include 12 dB of margin to compensate for signal strength variations. If the trans-
mitter EIRP is five watts, find the minimum signal strength expected at a distance of five
kilometers.

We solve this problem by appealing to the Friis transmission formula in the decibel for-
mat; namely,

The problem statement provides all of the quantities on the right-hand side except We make
the assumption that the receiver is mobile and the antenna gain is approximately unity; that
is, Then, at a range of 5 km,

� Drill Problem 11.10 A measurement campaign indicates that the median path loss at
900 MHz in a suburban area may be modeled with a path-loss exponent of 2.9. What is the
median path loss at a distance of three kilometers using this model? How does this loss com-
pare to the free-space loss at the same distance? �

� RANDOM PATH LOSSES

The median path loss is simply that: the median attenuation as a function of distance; 50
percent of locations will have greater loss and 50 percent will have less. The actual loss will
depend upon the exact terrain, buildings, and vegetation along the path. One of the sev-
eral contributors to these variations about the median value is movement of the transmit-
ting or receiving terminal. For example, the received power level at a moving terminal that
is at a relatively constant distance from the transmitter may be as shown in Fig. 11.10. For
this figure, the median received signal strength is about but variations as much
as 7 dB above and 35 dB below may be observed.

These fast variations of the signal strength are due to reflections from local objects
that rapidly change the carrier phase over small distances. Changing the phase of the reflec-
tions causes them to sometimes add constructively and sometimes destructively. This fast
fading is often called Rayleigh fading, so named after the probability distribution function
that is used to model the amplitude variations. If R is the signal amplitude, with a root-mean-

�95 dBm,

� �130.7 dBm
� �160.7 dBW

PR � 10 log10 5 � 41 � 31 log10 5000 � 12 	 0
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FIGURE 11.10 Illustration of received signal power variations in Rayleigh fading.
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square level of then the probability that the amplitude is below a given level r is given
by the Rayleigh distribution function

(11.38)

The Rayleigh distribution is plotted in Fig. 11.11. The median of the distribution is approx-
imately This implies that for 50 percent of locations there is constructive interference

and for 50 percent of locations there is destructive interference 1R � Rrms2.1R � Rrms2Rrms .
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Deep fades of 20 dB or more occur only rarely (with a probability of 1 per-
cent). However, Fig. 11.11 indicates that there can be a wide variation in received signal
strength due to local reflections.

EXAMPLE 11.9 Margin for Rayleigh Fading

Suppose a mobile radio has a receiver sensitivity of That is, is the mini-
mum signal level that the receiver can reliably the demodulate. The system operates at 900
MHz and the intended range is 2 kilometers. Find the transmitter power required to serve this
receiver if the propagation environment has a path-loss exponent n 2.9 and the receiver
must tolerate 90 percent of the fades.

If the receiver must tolerate 90 percent of the fades, then the Rayleigh distribution func-
tion of Fig. 11.11 indicates that the system should include 10 dB of margin. Consequently, the
median signal level should be 10 dB above the receiver sensitivity at the edge of coverage—that
is, Then using Eq. (11.37), we have

We assume is the free-space path gain at one meter, so

at 900 MHz. Expressing the above equation for in decibel format, we obtain

This corresponds to approximately a 50-watt transmitter.

� Drill Problem 11.11 Express the true median of the Rayleigh distribution as a fraction
of the value? What is the decibel error in the approximation �

11.7 Summary and Discussion

In this chapter, we have characterized specific sources of noise and signal attenuation in prac-
tical communication systems. These are the inputs required to calculate the signal-to-noise
ratios used to characterize receiver performance in previous chapters. In particular:

(i) Several sources of thermal noise were identified, and we characterized their power
spectral densities through the simple relation where k is Boltzmann’s con-
stant and T is the absolute temperature in Kelvin.

(ii) The related concepts of noise figure and equivalent noise temperature were defined
and used to characterize the contributions that various electronic devices or noise
sources make to the overall noise. We then showed how the overall noise is calculated
in a cascaded two-port system.
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(iii) The Friis equation was developed to mathematically model the relationship between
transmitted and received signal strengths as a function of transmitting and receiving
antenna gains and path loss.

(iv) Propagation losses ranging from free-space conditions, typical of satellite channels,
to those typical of terrestrial mobile applications were described. Variations about
median path loss were identified as an important consideration in terrestrial
propagation.

This chapter has provided a brief introduction to two communication channels—
satellite and terrestrial—and the effects that propagation and noise have on communica-
tion performance. The propagation loss of the channel is a key component in determining
the signal power at the receiver. The physical noise sources are the contributors to the noise
power at the receiver. The combination of these two quantities—that is, the ratio of the sig-
nal power to the noise power—forms the primary method of assessing the quality of a
communication link.

ADDITIONAL PROBLEMS

11.12 Compute the noise spectral density in watts per hertz of:

(a) An ideal resistor at nominal temperature of 290 K.

(b) An amplifier with an equivalent noise temperature of 22,000 K.

11.13 For the two cases of Problem 11.12, compute the pre-detection SNR when the received signal
power is:

(a) and the receive bandwidth is 1 MHz.

(b) and the receive bandwidth is 30 kHz.

Express the answers in both absolute terms and decibels.

11.14 A wireless local area network transmits a signal that has a noise bandwidth of approximately
6 MHz. If the signal strength at the receiver input terminals is and the receiver noise
figure is 8 dB, what is the pre-detection signal-to-noise ratio?

11.15 A communications receiver includes a whip antenna whose noise temperature is approximately
that of the Earth—that is, 290 K. The receiver pre-amplifier has a noise figure of 4 dB and a gain
of 25 dB. Calculate (a) the equivalent noise temperature of the antenna and the pre-amplifier,
and (b) the combined noise figure.

11.16 A parabolic antenna with a diameter of 0.75 meters is used to receive a 12 GHz satellite signal.
Calculate the gain in decibels of this antenna. Assume that the antenna efficiency is 60 percent.

11.17 If the system noise temperature of a satellite receiver is 300 K, what is the required received sig-
nal strength to produce a of 80 dB?

11.18 If a satellite is 40,000 km from the antenna of Problem 11.16, what satellite EIRP will produce
a signal strength of at the antenna terminals? Assume that the transmission fre-
quency is 12 GHz.

11.19 Antennas are placed on two 35-meter office towers that are separated by 10 kilometers. Find
the minimum height of a building between the two towers that would disturb the assumption
of free-space propagation.

11.20 If a receiver has a sensitivity of and a 12-dB noise figure, what is minimum pre-
detection signal-to-noise ratio of an 8-kHz signal?

�90 dBm

�110 dBm

C>N0

�90 dBm

�90 dBm

�60 dBm
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ADVANCED PROBLEMS

11.21 A satellite antenna is installed on the tail of an aircraft and has a noise temperature of 100 K.
The antenna is connected by a coaxial cable to a low-noise amplifier in the equipment bay at
the front of the aircraft. The cable causes 2-dB attenuation of the signal. The low-noise ampli-
fier has a gain of 60 dB and a noise temperature of 120 K. What is the system noise tempera-
ture? Where would a better place for the low-noise amplifier be?

11.22 A wireless local area network transmitter radiates 200 milliwatts. Experimentation indicates that
the path loss is accurately described by

where the path loss is in decibels and r is the range in meters. If the minimum receiver sensitiv-
ity is what is the range of the transmitter?

11.23 A mobile radio transmits 30 watts and the median path loss may be approximated by

where the path loss is in decibels and r is the range in kilometers. The receiver sensitivity is
and 12 dB of margin must be included to compensate for variations about the

median path loss. Determine the range of the transmitter.
11.24 A cellular telephone transmits 600 milliwatts of power. 

(a) The receiver sensitivity is what would the range of the telephone be under free-
space propagation? Assume that the transmitting and receiving antennas have unity gain
and the transmission is at 900 MHz. 

(b) If propagation conditions actually show a path-loss exponent of 3.1 with a fixed gain
what would the range in this case be?

11.25 A line-of-sight 10-kilometer radio link is required to transmit data at a rate of 1 megabit per
second at a center frequency of 4 GHz. The transmitter uses an antenna with 10 dB gain and
QPSK modulation with a root-raised cosine pulse spectrum having a roll-off factor of 0.5. The
receiver also has an antenna with 10 dB gain and has a system noise temperature of 900 K.
What is the minimum transmit power required to achieve a bit error rate of ?

11.26 A land-mobile radio transmits 128 kbps at a frequency of 700 MHz. The transmitter uses an
omni-directional antenna and 16-QAM modulation with a root-raised cosine pulse spectrum hav-
ing a roll-off of 0.5. The receiver also uses an omni-directional antenna and has noise figure of
6 dB. If the path loss between the transmitter and receiver is given by 

where r is in meters, calculate the maximum range at which a bit error rate of may be
achieved.

10�4

Lp1r2 � 30 	 28 log101r2 dB

10�5

b � �36 dB,

�90 dBm,

�110 dBm

Lp � 69 	 31 log101r2
�85 dBm,

Lp � 31 	 33 log101r2
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APPENDIX 1

POWER RATIOS

AND DECIBEL

In system calculations and measurements involving the use of power ratios, it is custom-
ary practice to use a unit called the decibel. The decibel, commonly abbreviated as dB, is
one tenth of a larger unit, the bel.1 In practice, however, we find that for most applications
the bel is too large a unit, hence, the wide use of dB as the unit for expressing power ratios.
The dB is particularly appropriate for sound measurements because the ear responds to
sound in an approximately logarithmic fashion. Thus, equal dB increments are perceived
by the ear as equal increments in sound.

Let P denote the power at some point of interest in a system. Let denote the ref-
erence power level with respect to which the power P is compared. The number of deci-
bels in the power ratio is defined as For example, a power ratio of 2
approximately corresponds to 3 dB, and a power ratio of 10 exactly corresponds to 10 dB.

We may also express the signal power P itself in dB if we divide P by one watt or one
milliwatt. In the first case, we express the signal power P in dBW as 
where W is the abbreviation for watt. In the second case, we express the signal power P in
dBm as where mW is the abbreviation for milliwatt.10 log101P>1mW2,

10 log101P>1W2,
10 log101P>P02.P>P0

P0

1The unit, bel, is named in honor of Alexander Graham Bell. In addition to inventing the telephone, Bell was the
first to use logarithmic power measurements in sound and hearing research.
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APPENDIX 2

FOURIER SERIES

In this appendix, we review the formulation of the Fourier series and develop the Fourier
transform as a generalization of the Fourier series.

Let denote a periodic signal with period By using a Fourier series expan-
sion of this signal, we are able to resolve it into an infinite sum of sine and cosine terms.
The expansion may be expressed in the trigonometric form:

(A2.1)

where is the fundamental frequency:

(A2.2)

The coefficients and represent the amplitudes of the cosine and sine terms, respectively.
The quantity represents the nth harmonic of the fundamental frequency Each of the
terms and is called a basis function. These basis functions form an
orthogonal set over the interval in that they satisfy the following set of relations:

(A2.3)

(A2.4)

(A2.5)

To determine the coefficient we integrate both sides of Eq. (A2.1) over a complete
period. We thus find that is the mean value of the periodic signal over one period,
as shown by the time average

(A2.6)

To determine the coefficient we multiply both sides of Eq. (A2.1) by and
integrate over the interval to Then, using Eqs. (A2.3) and (A2.4) we find that

(A2.7)

Similarly, we find that

(A2.8)

A basic question that arises at this point is the following: Given a periodic signal
of period how do we know that the Fourier series expansion of Eq. (A2.1) isT0,gT0
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convergent in that the infinite sum of terms in this expansion is exactly equal to To
resolve this issue, we have to show that for the coefficients and calculated in
accordance with Eqs. (A2.6) to (A2.8), this series will indeed converge to In gen-
eral, for a periodic signal of arbitrary waveform, there is no guarantee that the series
of Eq. (A2.1) will converge to or that the coefficients and will even exist.
A rigorous proof of convergence of the Fourier series is beyond the scope of this book.
Here we simply state that a periodic signal can be expanded in a Fourier series if the
signal satisfies the Dirichlet conditions.

1. The function is single-valued within the interval 
2. The function has at most a finite number of discontinuities in the interval 
3. The function has a finite number of maxima and minima in the interval 
4. The function is absolutely integrable; that is,

The Dirichlet conditions are satisfied by the periodic signals usually encountered in com-
munication systems. At a point of discontinuity, the Fourier series converges to the aver-
age value just to the left of the point and the value just to the right of the point.

� COMPLEX EXPONENTIAL FOURIER SERIES

The Fourier series of Eq. (A2.1) can be put into a much simpler and more elegant form with
the use of complex exponentials. We do this by substituting in Eq. (A2.1) the exponential
forms for the cosine and sine, namely:

We thus obtain

(A2.9)

Let denote a complex coefficient related to and by

(A2.10)

Then, we may simplify Eq. (A2.9) as follows:

(A2.11)

where
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The series expansion of Eq. (A2.11) is referred to as the complex exponential Fourier series.
The are called the complex Fourier coefficients. Equation (A2.12) states that, given a peri-
odic signal we may determine the complete set of complex Fourier coefficients. On the
other hand, Eq. (A2.11) states that, given this set of coefficients, we may reconstruct the orig-
inal periodic signal exactly. From the mathematics of real and complex analysis, Eq.
(A2.12) is an inner product of the signal with the basis functions exp by whose lin-
ear combination all square-integrable periodic functions can be expressed using Eq. (A2.11).

According to this representation, a periodic signal contains all frequencies (both pos-
itive and negative) that are harmonically related to the fundamental. The presence of neg-
ative frequencies is simply a result of the fact that the mathematical model of the signal as
described by Eq. (A2.11) requires the use of negative frequencies. Indeed, this representa-
tion also requires the use of complex-valued basis functions—namely, —which
have no physical meaning either. The reason for using complex-valued basis functions and
negative frequency components is merely to provide a compact mathematical description
of a periodic signal, which is well-suited for both theoretical and practical work.

� DISCRETE SPECTRUM

The representation of a periodic signal by a Fourier series is equivalent to resolution of the
signal into its various harmonic components. Thus, using the complex exponential Fourier
series, we find that a periodic signal with period has components at frequencies

and so forth, where is the fundamental frequency. That
is, while the signal exists in the time domain, we may say that its frequency-domain
description consists of components at frequencies called the spectrum. If
we specify the periodic signal we can determine its spectrum; conversely, if we spec-
ify the spectrum, we can determine the corresponding signal. This means that a periodic
signal can be specified in two equivalent ways:

1. A time-domain representation, where is defined as a function of time.
2. A frequency-domain representation, where the signal is defined in terms of its

spectrum.

Although these two descriptions are separate aspects of a given phenomenon, they are not
independent of each other, but are related, as Fourier theory shows.

In general, the Fourier coefficient is a complex number, and so we may express it
in the form:

(A2.13)

The defines the amplitude of the nth harmonic component of the periodic signal 
so that a plot of versus frequency yields the discrete amplitude spectrum of the signal.
A plot of versus frequency yields the discrete phase spectrum of the signal. We refer
to the spectrum as a discrete spectrum because both the amplitude and phase of have
nonzero values only for discrete frequencies that are integer (both positive and negative)
multiples of the fundamental frequency.

For a real-valued periodic function we find, from the definition of the Fourier
coefficient given by Eq. (A2.12), that

(A2.14)

where is the complex conjugate of We therefore have
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FIGURE A2.1 Periodic train of rectangular pulses of
amplitude A, duration T, and period T0.

and

(A2.16)

That is, the amplitude spectrum of a real-valued periodic signal is symmetric (an even func-
tion of n), and the phase spectrum is odd-isymmetric (an odd function of n) about the ver-
tical axis passing through the origin.

EXAMPLE Periodic Pulse Train

Consider a periodic train of rectangular pulses of duration T and period as shown in 
Fig. A2.1. For convenience of analysis, the origin has been chosen to coincide with the center
of the pulse. This signal may be described analytically over one period, as follows:

(A2.17)

Using Eq. (A2.12) to evaluate the complex Fourier coefficient we get

(A2.18)

where is termed the duty cycle.
We may simplify notation by using the sinc function:

(A2.19)

Thus, we may rewrite Eq. (A2.18) as follows:

(A2.20)

In Fig. A2.2, we have plotted the amplitude spectrum and phase spectrum versus
the discrete frequency for a duty cycle equal to 0.2. Based on this figure, we
may note the following:

1. The line spacing in the amplitude spectrum in Fig. A2.2(a) is determined by the period 
2. The envelope of the amplitude spectrum is determined by the pulse amplitude A, pulse

duration T, and duty cycle T>T0.
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FIGURE A2.2 Discrete spectrum of a periodic train of rectangular pulses for a duty cycle
(a) Amplitude spectrum. (b) Phase spectrum.T>T0 � 0.2.

3. Zero-crossings occur in the envelope of the amplitude spectrum at frequencies that are
integer multiples of 

4. The phase spectrum takes on the values 0 degrees and degrees, depending on the
polarity of sinc in Fig. A2.2(b) we have used both 180 degrees and degrees
to preserve odd-symmetry.

A2.1 Fourier Transform

In the previous section, we used the Fourier series to represent a periodic signal. We now
wish to develop a similar representation for a signal that is nonperiodic in terms of com-
plex exponential signals. In order to do this, we first construct a periodic function 
of period in such a way that defines one cycle of this periodic function, as illus-
trated in Fig. A2.3. In the limit, we let the period become infinitely large, so that we may
write

(A2.21)g1t2 � lim
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Representing the periodic function in terms of the complex exponential form
of the Fourier series, we have

(A2.22)

where

(A2.23)

We have purposely written the exponents as shown in Eqs. (A2.22) and (A2.23) because
we wish to let approach infinity in accordance with Eq. (A2.21). Define

(A2.24)

(A2.25)

and

(A2.26)

Thus, making this change of notation in the Fourier series representation of given
in Eqs. (A2.22) and (A2.23), we get the following relations for the interval

(A2.27)
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a periodic waveform. (a) Arbitrarily defined function of time (b) Periodic waveform
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Now let the period approach infinity or, equivalently, its reciprocal approach zero.
Then we find that, in the limit, the discrete frequency approaches the continuous frequency
variable and the discrete sum in Eq. (A2.27) becomes an integral defining the area under
a continuous function of frequency —namely, Also, as approaches
infinity, the function approaches Therefore, in the limit, Eqs. (A2.27) and
(A2.28) become, respectively,

(A2.29)

where

(A2.30)

We have thus achieved our aim of representing an arbitrarily defined signal in terms
of exponential functions over the entire interval Given the function

Eq. (A2.30) defines the Fourier transform Conversely, Eq. (A2.29) defines the
inverse Fourier transform of G1f2. G1f2.g1t2, 1� � � t � � 2. g1t2
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BESSEL FUNCTIONS

A3.1 Series Solution of Bessel’s Equation

In its most basic form, Bessel’s equation of order n is written as

(A3.1)

which is one of the most important of all variable-coefficient differential equations. For each
order n, a solution of this equation is defined by the power series

(A3.2)

The function is called a Bessel function of the first kind of order n. Equation (A3.1)
has two coefficient functions—namely, and Hence, it has no finite sin-
gular points except the origin. It follows therefore that the series expansion of Eq. (A3.2)
converges for all Equation (A3.2) may thus be used to numerically calculate 
for Table A3.1 presents values of for different orders n and varying
x. It is of interest to note that the graphs of and resemble the graphs of cos x
and sin x, respectively; see the graphs of Fig. 4.6 in Chapter 4.
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TABLE A3.1 Table of Bessel Functions

n 0.5 1 2 3 4 6 8 10 12

0 0.9385 0.7652 0.2239 0.1506 0.1717 0.0477
1 0.2423 0.4401 0.5767 0.3391 0.2346 0.0435
2 0.0306 0.1149 0.3528 0.4861 0.3641 0.2546
3 0.0026 0.0196 0.1289 0.3091 0.4302 0.1148 0.0584 0.1951
4 0.0002 0.0025 0.0340 0.1320 0.2811 0.3576 0.1825
5 — 0.0002 0.0070 0.0430 0.1321 0.3621 0.1858
6 — 0.0012 0.0114 0.0491 0.2458 0.3376
7 0.0002 0.0025 0.0152 0.1296 0.3206 0.2167
8 — 0.0005 0.0040 0.0565 0.2235 0.3179 0.0451
9 0.0001 0.0009 0.0212 0.1263 0.2919 0.2304

10 — 0.0002 0.0070 0.0608 0.2075 0.3005
11 — 0.0020 0.0256 0.1231 0.2704
12 0.0005 0.0096 0.0634 0.1953
13 0.0001 0.0033 0.0290 0.1201
14 — 0.0010 0.0120 0.0650

For more extensive tables of Bessel functions, see Abramowitz and Stegun (1965, pp. 358–406).a

�0.1703
�0.2437�0.0145
�0.0735�0.2341

�0.2196�0.1054
�0.2911

�0.0849�0.1130�0.2429
�0.2234�0.2767�0.0660

�0.2459�0.3971�0.2601

O x

Jn1x2

a



The function may also be expressed in the form of an integral as

(A3.3)

or, equivalently, using complex notation, as

(A3.4)

A3.2 Properties of the Bessel Function

The Bessel function has certain properties:

PROPERTY 1 (A3.5)

To prove this relation, we replace by in Eq. (A3.3). Then, noting that
we get

For integer values of n, we have

Therefore,

(A3.6)

From Eq. (A3.3), we also find that by replacing n with

(A3.7)

The desired result follows immediately from Eq. (A3.6) and (A3.7).

PROPERTY 2 (A3.8)

This relation is obtained by replacing x with in Eq. (A3.3), and then using 
Eq. (A.3.6).

PROPERTY 3 For small values of x, we have
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This relation is obtained simply by retaining the first term in the power series of 
Eq. (A3.2) and ignoring the higher order terms. Thus, when x is small, we have

(A3.10)

PROPERTY 4 (A3.11)

To prove this property, we proceed as follows. We observe that is real. Hence, mul-
tiplying Eq. (A3.4) by its own complex conjugate and summing over all possible values of
n, we get

Interchanging the order of double integration and summation:

(A3.12)

Using the following relation from Fourier transform theory for the delta function (see
Chapter 2)

(A3.13)

in Eq. (A3.12) and then applying the sifting property of the delta function, we finally get

which is the desired result.

The Bessel function has several other properties. However, insofar as the scope
of this book is concerned, properties 1 through 4 discussed above are all that we need.
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APPENDIX 4

THE Q-FUNCTION AND ITS

RELATIONSHIP TO THE

ERROR FUNCTION

A4.1 The Q-function

Consider a normalized Gaussian random variable u of zero mean and unit variance. The
probability that an observed value of u is greater than x defines the Q-function

(A4.1)

In words, the Q-function equals the area under the positive tail of the zero-mean, unit-
variance Gaussian density function.

From the defining equation (A4.1), the following properties of the Q-function follow:

PROPERTY 1 For we have the exact value

(A4.2)

PROPERTY 2 For the corresponding value of the Q-function is given by the
relationship

(A4.3)

PROPERTY 3 A useful bound on the Q-function is given by

(A4.4)

Table A4.1 gives a short tabulation of the values of for The properties
described in Eqs. (A4.2) through (A4.4) are confirmed by examining the entries of this
table.

The values of the Q-function listed in this table for have been rounded
to 5 significant decimal places; for we have done the rounding to 7 decimal
places.

3.8 � x � 5,
0 � x � 3.7

0 � x � 5.Q1x2
Q1x2 �

1
2

 expa�
1
2

x2b , x � 0

Q1x2 � 1 � Q1 ƒx ƒ2
x � 0,

Q102 �
1
2

x � 0,

Q1x2 �
1

22p L
q

x
exp¢�

u2

2
≤ du, x � 0
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A4.2 Relationship of the Q-function to
the Complementary Error Function

The Q-function was introduced in Chapter 8 of the book and its use in evaluating the
effect of noise in digital communications was discussed in Chapter 10. In the literature, we
often find that this effect is formulated in terms of another function — namely, the com-
plementary error function.

In this context, we first define the error function as

(A4.5)

The error function has two useful properties

PROPERTY 1 (A4.6)

This property is known as the symmetry relation.

PROPERTY 2 (A4.7)
21p L

q

0
 exp1�u22 du � 1

erf1�x2 � �erf1x2

erf1x2 �
21p L

x

0
 exp1�u22 du
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TABLE A4.1 Table of the values of Q-function

x x

0.0 0.50000 2.2 0.01390
0.1 0.46017 2.3 0.01072
0.2 0.42074 2.4 0.00820
0.3 0.38209 2.5 0.00621
0.4 0.34458 2.6 0.00466
0.5 0.30854 2.7 0.00347
0.6 0.27425 2.8 0.00256
0.7 0.24196 2.9 0.00187
0.8 0.21186 3.0 0.00135
0.9 0.18406 3.1 0.00097
1.0 0.15866 3.2 0.00069
1.1 0.13567 3.3 0.00048
1.2 0.11507 3.4 0.00034
1.3 0.09680 3.5 0.00023
1.4 0.08076 3.6 0.00016
1.5 0.06681 3.7 0.00011
1.6 0.05480 3.8
1.7 0.04457 3.9
1.8 0.03593 4.0
1.9 0.02872 4.30
2.0 0.02275 4.65
2.1 0.01786 5.00

Table A4.1 is adapted from Abramowitz and Stegun (1964), pp. 966–972. This
handbook tabulates the Gaussian (normal) probability density function

a

0.03  10�5
0.17  10�5
0.85  10�5
3.17  10�5
4.81  10�5
7.24  10�5

Q1x2Q1x2

a



A related function, called the complementary error function, is defined by

(A4.8)

Examining Eqs. (A4.1) and first line of Eq. (A4.8), we readily find that the Q-function and
complementary error function as related as follows:

(A4.9)

The inverse of this relationship is given by

(A4.10)

Hence, given the Q-function, we may use Eq. (A 4.10) to calculate the corresponding value
of the complementary error function for prescribed . Conversely, given the complemen-
tary error function, we may calculate the corresponding Q-function using Eq. (A4.9).

x

erfc1x2 � 2Q A22x B
Q1x2 �

1
2

 erfc¢ x

22
≤

� 1 � erf1x2
erfc1x2 �

2

2p L
q

x
 exp1�u22 du
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APPENDIX 5

SCHWARZ’S INEQUALITY

Let and be functions of the real variable t in the interval We assume
that and satisfy the conditions

(A5.1)

(A5.2)

Then, according to Schwarz’s inequality, we have

(A5.3)

To prove this inequality, we first form the integral

(A5.4)

where is a real variable, the asterisk signifies complex conjugation, and

(A5.5)

(A5.6)

(A5.7)

The integral of Eq. (A5.4) exists, is real, and is a nonnegative function of say Since
is nonnegative, it must have no real roots except possibly a double root. From the

quadratic formula, we must then have

(A5.8)

Note that is equal to the real part of B. On substituting Eqs. (A5.5) to (A5.7)
into (A5.8), we get

(A5.9)

This is the most general form of Schwarz’s inequality that is appropriate for com-
plex functions and For the case when both and are real, we have

(A5.10)

and Eq. (A5.3) follows immediately.

g1
…1t2g21t2 	 g11t2g2

…1t2 � 2g11t2g21t2
g21t2g11t2g21t2.g11t2

eL
b

a
3g1
…1t2g21t2 	 g11t2g2

…1t24 dt f2

� 4L
b

a
ƒg11t2 ƒ2 dt L

b

a
ƒg21t2 ƒ2 dt

1B 	 B*2>2
1B 	 B*22 � 4AC

f1l2 f1l2.l,

C � L
b

a
ƒg21t2 ƒ2 dt � 0

B � L
b

a
g1
…1t2g21t2 dt

A � L
b

a
ƒg11t2 ƒ2 dt � 0

l

L
b

a
3lg1
…1t2 	 g2

…1t243lg11t2 	 g21t24 dt � l2A 	 l1B 	 B…2 	 C

` L
b

a
g11t2g21t2 dt ` 2 � L

b

a
ƒg11t2 ƒ2 dt L

b

a
ƒg21t2 ƒ2 dt

L
b

a
ƒg21t2 ƒ2 dt � �

L
b

a
ƒg11t2 ƒ2 dt � �

g21t2g11t2 a � t � b.g21t2g11t2
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Note that equality is obtained [aside from the trivial case where both and 
are zero] when the double root exists in Eq. (A5.4); that is, when

(A5.11)

Since is real, and are linearly related. Looking at the problem from a slightly
different viewpoint, we see that there is a real value of for which Eq. (A5.4) is zero and
for which its first derivative with respect to vanishes; that is.

(A5.12)

or

(A5.13)

This relation holds if, and only if,

(A5.14)

This last relationship is equivalent to Eq. (A5.11).

g21t2 � �lg11t2

l � �
B 	 B…

2A
� �

L
b

a
3g1
…1t2g21t2 	 g11t2g2

…1t24 dt

2L
b

a
ƒg11t2 ƒ2 dt

2lA 	 1B 	 B…2 � 0

l

l

g21t2g11t2l

lg11t2 	 g21t2 � lg1
…1t2 	 g2

…1t2 � 0

g21t2g11t2
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APPENDIX 6

MATHEMATICAL TABLES

This appendix presents tabulations of (1) Fourier-transform theorems, (2) Fourier-transform
pairs, (3) Hilbert-transform pairs, (4) trigonometric identities, (5) series expansions,
(6) indefinite and definite integrals, (7) summations, (8) useful constants, and (9) recom-
mended unit prefixes.
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TABLE A6.1 Fourier-Transform Theorems

Property Mathematical Description

1. Linearity
where a and b are constants

2. Dilation (time scaling)

where a is a constant

3. Duality If

then

4. Time shifting

5. Frequency shifting

6. Area under 

7. Area under 

8. Differentiation in the time domain

9. Integration in the time domain

10. Conjugate functions If

then

11. Multiplication in the time domain

12. Convolution in the time domain

13. Correlation theorem

14. Rayleigh’s energy theorem L
q

�q
ƒg1t2 ƒ2 dt � L

q

�q
ƒG1f2 ƒ2 df

L
q

�q
g11t2g2

…1t � t2 dt L G11f2G2
…1f2

L
q

�q
g11t2g21t � t2 dt L G11f2G21f2

g11t2g21t2 L L
q

�q
G11l2G21f � l2 dl

g*1t2 L G…1�f2,
g1t2 L G1f2,L

t

�q
g1t2 dt L 1

j2pf
G1f2 	

G102
2
d1f2

d
dt

g1t2 L j2pfG1f2
g102 � L

q

�q
G1f2 dfG1f2

L
q

�q
g1t2 dt � G102g1t2

exp1j2pfct2g1t2 L G1f � fc2
g1t � t02 L G1f2 exp1�j2pf t02

G1t2 L g1�f2
g1t2 L G1f2,

g1at2 L 1

ƒa ƒ
Ga f

a
b

ag11t2 	 bg21t2 L aG11f2 	 bG21f2



476 APPENDIX 6 � MATHEMATICAL TABLES

TABLE A6.2 Fourier-Transform Pairs

Time Function Fourier Transform

T

1
1

Notes: step function
delta function

function
function

functionsinc1t2 � sinc
sgn1t2 � signum
rect1t2 � rectangular
d1t2 � Dirac
u1t2 � unit

1
T0
a
q

n��q
d¢f �

n
T0
≤a

q

i��q
d1t � iT02

1
2
d1f2 	

1
j2pf

u1t2
�j sgn1f21

pt

1
jpf

sgn1t2
1
2j
3d1f � fc2 � d1f 	 fc24sin12pfct2

1
2 3d1f � fc2 	 d1f 	 fc24cos12pfct2
d1f � fc2exp1j2pfct2
exp1�j2pf t02d1t � t02
d1f2d1t2
T sinc21fT2c 1 �

ƒt ƒ
T

, ƒt ƒ � T

0, ƒt ƒ � T

exp1�pf 22exp1�pt22
2a

a2 	 12pf22exp1�a ƒt ƒ2, a � 0

1
a 	 j2pf

exp1�at2u1t2, a � 0

1
2W

recta f

2W
bsinc 12Wt2

sinc 1fT2recta t
T
b

TABLE A6.3 Hilbert-Transform Pairsa

Time Function Hilbert Transform

aIn the first two pairs, it is assumed that m(t) is band limited to the interval
where W � fc.�W � f � W,

�pd1t21
t

1
pt

d1t2
�cos12pfct2sin12pfct2
sin12pfct2cos12pfct2
�m1t2 cos12pfct2m1t2 sin12pfct2
m1t2 sin12pfct2m1t2 cos12pfct2
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TABLE A6.4 Trigonometric Identities

sin a cos b � 1
2 3sin1a � b2 	 sin1a 	 b24

cos a cos b � 1
2 3cos1a � b2 	 cos1a 	 b24

sin a sin b � 1
2 3cos1a � b2 � cos1a 	 b24

tan1a � b2 �
tan a �  tan b

1 <  tan a tan b

cos1a � b2 � cos a cos b <  sin a sin b
sin1a � b2 � sin a cos b �  cos a sin b
2 sin u cos u � sin12u2
sin2 u � 1

2 31 � cos12u24
cos2 u � 1

2 31 	 cos12u24
cos2 u � sin2 u � cos12u2sin2 u 	 cos2 u � 1

sin u �
1
2j
3exp1ju2 � exp1�ju24

cos u � 1
2 3exp1ju2 	 exp1�ju24

exp1�ju2 � cos u � j sin u

TABLE A6.5 Series Expansions

Taylor series

where

MacLaurin series

where

Binomial series

Exponential series

Logarithmic series

Trigonometric series

sinc x � 1 �
1
3!
1px22 	

1
5!
1px24 � Á

tan�1x � x �
1
3

x3 	
1
5

x5 � Á,  ƒx ƒ � 1

sin�1 x � x 	
1
6

x3 	
3
40

x5 	 Á

tan x � x 	
1
3

x3 	
2
15

x5 	 Á

cos x � 1 �
1
2!

x2 	
1
4!

x4 � Á

sin x � x �
1
3!

x3 	
1
5!

x5 � Á

ln11 	 x2 � x � 1
2 x2 	 1

3 x3 � Á

exp x � 1 	 x 	
1
2!

x2 	 Á

11 	 x2n � 1 	 nx 	
n1n � 12

2!
x2 	 Á,  ƒnx ƒ � 1

f 1n2102 �
dnf1x2

dxn ƒ x�0

f1x2 � f102 	
f �102

1!
x 	

f �102
2!

x2 	 Á 	
f 1n2102

n!
xn 	 Á

f 1n21a2 �
dnf1x2

dxn ƒ x�a

f1x2 � f1a2 	
f �1a2

1!
1x � a2 	

f �1a2
2!
1x � a22 	 Á 	

f 1n21a2
n!

1x � a2n 	 Á
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TABLE A6.6 Integrals

Indefinite integrals

Definite integrals

L
q

0
x2 exp1�ax22 dx �

1
4aApa , a � 0

L
q

0
 exp1�ax22 dx �

1
2Apa , a � 0

L
q

0
 sinc x dx � L

q

0
 sinc2 x dx �

1
2

L
q

0

cos1ax2
1b2 � x222 dx �

p

4b3 3sin1ab2 � ab cos1ab24, a � 0, b � 0

L
q

0

cos1ax2
b2 	 x2 dx �

p

2b
exp1�ab2, a � 0, b � 0

L
q

0

x sin1ax2
b2 	 x2 dx �

p

2
exp1�ab2, a � 0, b � 0

L
x2 dx

a2 	 b2x2 �
x

b2 �
a

b3 tan�1abx
a
b

L
dx

a2 	 b2x2 �
1
ab

tan�1abx
a
b

L exp1ax2 cos1bx2 dx �
1

a2 	 b2 exp1ax23a cos1bx2 	 b sin1bx24
L exp1ax2 sin1bx2 dx �

1

a2 	 b2 exp1ax23a sin1bx2 � b cos1bx24
Lx exp1ax22 dx �

1
2a

exp1ax22
Lx exp1ax2 dx �

1

a2 exp1ax21ax � 12
Lx cos1ax2 dx �

1

a2 3cos1ax2 	 ax sin1ax24
Lx sin1ax2 dx �

1

a2 3sin1ax2 � ax cos1ax24

TABLE A6.7 Summations

a
K�1

k�0
xk �

1xK � 12
x � 1

a
K

k�1
k3 �

K21K 	 122
4

a
K

k�1
k2 �

K1K 	 1212K 	 12
6

a
K

k�1
k �

K1K 	 12
2
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TABLE A6.8 Useful Constants

Physical Constants

Boltzmann’s constant joule/Kelvin
Planck’s constant joule-second
Electron (fundamental) charge coulomb
Speed of light in vacuum meters/second
Standard (absolute) temperature Kelvin
Thermal voltage volt at room temperature
Thermal energy kT at standard temperature joule
One hertz 
One watt 

Mathematical Constants

Base of natural logarithm
Logarithm of e to base 2
Logarithm of 2 to base e
Logarithm of 2 to base 10
Pi p � 3.1415927

log102 � 0.30103
ln 2 � loge2 � 0.693147
log2e � 1.442695
e � 2.7182818

1W2 � 1 joule>second
1 cycle � 2p radians1Hz2 � 1 cycle>second;

kT0 � 3.77  10�21
VT � 0.026
T0 � 273
c � 2.998  108
q � 1.602  10�19
h � 6.626  10�34
k � 1.38  10�23

TABLE A6.9 Recommended Unit Prefixes

Multiples and 
Submultiples Prefixes Symbols

tera T
giga G
mega M
kilo
milli m
micro
nano n
pico p10�12

10�9
m10�6

10�3
K 1k2103

106
109
1012



APPENDIX 7

MATLAB SCRIPTS FOR

COMPUTER EXPERIMENTS TO

PROBLEMS IN CHAPTERS 7–10

Problem 7.30

480

%-----------------------------------------------------------------
% Script for Problem 7.30(a).
% Modify this script for 7.30(b)
%-----------------------------------------------------------------
Fs � 32: % (Hz) Sample rate (samples per symbol)
fc � 10: % (Hz) Carrier frequency
Nbits � 5000: % Number of bits in sequence
PulseShape � ones(1,Fs): % rectangular pulse shape

%--- Generate two random sequences -----
bI � sign(rand(1,Nbits)-0.5);
bQ � sign(rand(1,Nbits)-0.5);

%--- Create impulse train ------------
bI_t � [1 zeros(1,Fs-1)]’ * bI;
bI_t � bI_t(:);
bQ_t � [1 zeros(1,Fs-1)]’ * bQ;
bQ_t � bQ_t(:);

%--- Pulse shape and create bandpass signal -----
bIp � filter(PulseShape, 1, bI_t);
bQp � filter(PulseShape, 1, bI_t);

t � [1:length(bIp)]’ / Fs; % time scale for bandpass signal 
s � bIp .* cos(2*pi*fc*t) - bQp .* sin(2*pi*fc*t);

%---- Display results ----------------------------
subplot(2,1,1), plot(t,s);         % time display
ylabel(‘Amplitude’). xlabel(‘Time (s)’). axis([0, 50, -2, 2])

nFFT � 2*256;               %frequency display
[spcc,freq] � spectrum(s,nFFT,nFFT/4.nFFT/2.Fs);
subplot(2,1,2). plot(freq, 10*log10(spec(:,l)/sqrt(nFFT)) )
ylabel(‘Spectrum (dB)’), xlabel(‘Frequency (Hz)’), axis([0, 16, -40, 10])
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%---------------------------------------------------------------------------
% Modifiy the script for Problem 7.30 to use the following
% raised cosine pulse shape
% Uses offset time scale to avoid divide by zero
%---------------------------------------------------------------------------
B0 � 0.5; % (Hz)
t � [-2.001: 1/Fs : 	 2.001] % offset time scale for pulse shape
rcos � sinc(4*B0*t) ./ (1-16*B0^2*t.^2): %from Eq.(6.20)
PulseShape � rcos:

Problem 8.54

%---------------------------------------------------------------------------
% Probability distribution with loaded die
%---------------------------------------------------------------------------
function a�Problem8_54;
N � 1000

for i�1:N
X(i) � LoadedDie;

end
[F,X] � hist(X,[1:6]);    % plot histogram of results
stem(X,F);

function b � LoadedDie
% generate non-uniform distribution over 1..6
b � floor(6*rand(1,1)^3) 	 1;
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%---------------------------------------------------------------------------
%  Probability distribution of five uniform variates
%---------------------------------------------------------------------------

N � 5; % number of uniform r.v.s to sum
nSmps � 20000; % number of samples to generate

%----- Generate samples of uniform random variable ------
Y � 2*rand(N,nSmps)- 1; % uniform r.v. over [-1,	1]
cSmps � sum(Y);

%----- Compute histogram and plot ------
[N1,X] � hist(cSmps,40); % histogram with 40 bins
Delta � X(2)- X(1);
plot(X, N1/nSmps/Delta); % normalize plot

%----- compare to theory -------
hold on
x � [-5:0.01:5]
sigma2 � N*(1/3);        % variance of one uniform is 1/3
Gauss � exp(-x.^2/2/sigma2) / sqrt(2*pi*sigma2);
plot(x,Gauss,’r’);
hold off

Problem 8.55

N � 100000; %---- number of samples
x � randn(1,N); %---- generate Gaussian sequence

%---- approximation to pulse shape of root raised cosine filter pulse
%      with 50% rolloff (cutoff at 1/8 of sampling rate)
rrc � [   0.0015   -0.0082   -0.0075    0.0077    0.0212    0.0077 …

-0.0375   -0.0784   -0.0531    0.0784    0.2894    0.4873 …
0.5684    0.4873    0.2894    0.0784   -0.0531   -0.0784 …
-0.0375    0.0077    0.0212    0.0077   -0.0075   -0.0082…
0.0015];

z � filter(rrc,1,x); %---- filter random process
[P,F] � spectrum(z,256,0,Hanning(256),Fs); % compute spectrum and plot
plot(F,P(:,1));
figure(2);
Az � xcorr(z,25); %---- compute the autocorrelation for 25 lags
plot(Az/max(abs(Az))); %---- plot the normalized autocorrelation
grid
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Fs � 1000 ;  % sampling rate
fc � 100;    % carrier frequency
%-----------------------------------------------------
% Bandpass filter - 6th order Chebychev 1
% Passband from 50 to 150 Hz
%-----------------------------------------------------
Bt � 100;    % Bandpass bandwidth
b � [ 1     0    -3     0     3     0    -1];
a � [ 1.0000   -4.3705    8.6828  -10.0000    7.0486   -2.8825    0.5398];
G � 0.0115;
%-----------------------------------------------------
SNRdBr � 30;
ka � 0.3;
t � [0:1/Fs:2];
A � sqrt(2);   % for unity power carrier.
sigma2 � (1	ka^2*0.5) * 10^(-SNRdBr/10) * (Fs/2)/Bt;
sigma � sqrt(sigma2);
m � sin(2*pi*2*t);

%---- Modulator -----------
c � cos(2*pi*fc*t);
AM � A*(1	ka*m).*c;

%---- Add noise ------------
AMn � AM 	 sigma * randn(size(AM));

%---- Bandpass filter ----------------------------------
RxAMn � G*filter(b,a,AMn);
RxAM � G*filter(b,a,AM);    % noise free

%---- Pre-detection SNR -----------------------------
C_N � 10*log10(sum(RxAM.^2)/sum((RxAMn-RxAM).^2))

%---- Envelope detector ------------------------------
BB_sig � EnvelopeDetector(RxAM);   % clean baseband signal
BB_sign � EnvelopeDetector(RxAMn); % noisy baseband signal

%---- Compute post-detection SNR ---------
error � sum((BB_sig - BB_sign).^2);
C � sum(BB_sig.^2);
SNRdBpost � 10*log10(C/error)

%---- plot output -----------------------
figure(1);
plot(t, BB_sig); xlabel(‘Time (s)’), ylabel(‘Amplitude’)
hold on, plot(t, BB_sign,’g’), hold off

% see Miscellaneous for description of Envelope Detector
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CNdB � [3:1:22];                   % pre-detection SNR
Fs � 500;                              % sampling rate (Hz)
t � [0: (1/Fs) : 500-1/Fs];   % sample times for signal

%---- FM Modulator -------------------
A � 1;
kf � 20.0;                                      % FM sensitivity
fm � 1;                                          % frequency of modulating tone (Hz)
m � sin(2*pi*fm*t);                    % message signal
Int_m � cos(2*pi*fm*t) /2/pi;         % integrated message
FM � A*exp(j*2*pi*kf*Int_m);   % phasor representation

for i�1:length(CNdB)
%---- Generate bandlimited baseband noise ---- 
Noise � LowPassNoise(CNdB(i), length(FM));

%---- Generate carrier -----------------------------
fc � Fs/10;    % carrier frequency for demodulation
Carrier � exp(j*2*pi*fc * [1:length(FM)]/Fs );

%---- Upconvert and demodulate ------------------------------
Noisy_message � FMdiscriminator( (FM	Noise) .* Carrier, Fs);
Clean_message � FMdiscriminator( (FM) .* Carrier, Fs);

PreSNR(i) � 20*log10(std(FM)/std(Noise));
%---- Compute Post-detection SNR ---------------------------
Noise_power � sum((Noisy_message - Clean_message).^2);
Signal_power � sum(Clean_message.^2);
SNRdB(i) � 10*log10(Signal_power/Noise_power);

W � 5.5;    % noise bandwidth of lowpass filter used in discriminator
Bt � Fs/8;   % transmission bandwidth
Theory(i) � 10*log10 ( 3*A^2*kf^2*0.5 / (2*(std(Noise)^2/Bt)*W^3));

[CNdB(i) SNRdB(i) Theory(i)]
end

%---- plot results --------------------------------------------------------------
plot(PreSNR, SNRdB)
hold on, plot(PreSNR, Theory,’g’), hold off
grid on, xlabel (‘C/N (dB)’), ylabel (‘Post-detection SNR (dB)’)

% see Miscellaneous for description of FMdiscriminator
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Eb_N0 � 2;
Nbits � 10000; % number of bits, increase for higher Eb/N0
Fs � 4; % number of samples per bit
b � sign(randn(1,Nbits));   % random data
pulse � ones(1,Fs);
Eb � sum(pulse.^2);
N0 � Eb / Eb_N0;
%---- perform rectangular pulse shaping ----
S � pulse’ * b;
S � S(:);
plot(S(1:100));
[P,F] � spectrum(S,256,0,Hanning(256),Fs);
plot(F,P(:,1));
%---- add Gaussian noise -----
Noise � sqrt(N0/2)*randn(size(S));
R � S 	 Noise;

%---- integrate and dump -----
D � sum(reshape(R,Fs,Nbits));
D � sign(D);  % make bit decision
%---- count errors --------------
Nerrs � (Nbits - sum(D.*b))/2;
BER � Nerrs/Nbits

Problem 10.31

Eb_N0 � 2;
Nbits � 10000; % number of bits to simulate 
Fs � 4; % number of samples per bit
b � sign(randn(1,Nbits)); % random data

%---- root raised cosine pulse shape: 100% rolloff -----
pulse � [  0.0064    0.0000   -0.0101    0.0000    0.0182   -0.0000   -0.0424 …

0.0000    0.2122    0.5000    0.6367    0.5000    0.2122   -0.0000 …
-0.0424    0.0000    0.0182   -0.0000   -0.0101    0.0000  0.0064 ];

Delay � length(pulse);
Eb � sum(pulse.^2);
N0 � Eb / Eb_N0;

%---- perform root raised cosine pulse shaping ----
b_delta � [1 zeros(1,Fs-1)]’ * b;  % make b into a stream of delta functions
b_delta � b_delta(:)’;
S � filter(pulse,1,[b_delta zeros(1,Delay)]);  % add zeros for delay of filter

%---- add Gaussian noise -----
Noise � sqrt(N0/2)*randn(size(S));
R � S 	 Noise;
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%---- match filter detection --------
De � filter(pulse,1,R);
D � sign(De(Delay:Fs:end));  % sample output at proper instant
D � D(1:Nbits)’;
%---- count errors -------------
Nerrs � (Nbits - sum(D.*b))/2;
BER � Nerrs/Nbits

%---- plot eye diagram -------------
ploteye(De(Delay:end), Fs)

function BB_sig � EnvelopeDetector(AM_sig);
%----------------------------------------------------------------------------------------------------------------
% Lowpass filter - 4th over Butterworth cutoff freq. � 50 Hz  with 1 kHz sampling rate
%----------------------------------------------------------------------------------------------------------------
bLP � [1     4     6     4     1];
aLP � [ 1.0000   -3.1806    3.8612   -2.1122    0.4383];
GLP � 4.1660e-004;

%---- Envelope detector model -----
AM_env(1) � AM_sig(1);
decay � 0.01;    % signal decay over one sample period

for i� 2:length(AM_sig);
AM_env(i) � max(AM_sig(i), AM_env(i-1) - decay);

end
AM_rec � AM_env  - mean(AM_env);

%---- low pass filter ---------------------------
BB_sig � GLP * filter(bLP, aLP, AM_rec);    

function Message � FMdiscriminator(FM,Fsample);

%---- Lowpass Filter:  Finite Impulse Response 
%----  (36 taps Fsample � 125 Hz, Fpass�5Hz Fstop� 10Hz, 40dB )
FIR_LP � [  -0.0009   -0.0109   -0.0102   -0.0140   -0.0167   -0.0180   -0.0171 ...

-0.0133   -0.0064    0.0038    0.0172    0.0329    0.0502    0.0676 ...
0.0839    0.0975    0.1074    0.1126    0.1126    0.1074    0.0975 ...
0.0839    0.0676    0.0502    0.0329    0.0172    0.0038   -0.0064 ...
-0.0133   -0.0171   -0.0180   -0.0167   -0.0140   -0.0102   -0.0109 ...
-0.0009];

%figure(2),spectrum(FM,512,0,Hanning(512),Fsample);
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%---- FM discriminator detection ------------------------------
FMc � FM ./ abs(FM);                                  % limiter
FMdis � (FMc(2:end)- FMc(1:end-1)) * Fsample;   % differentiator
FMenv � abs(FMdis);                                      % envelope detector
FMlp � FMenv - mean(FMenv);                    % remove d.c. offset
BBdec � decimate(FMlp,2);                            % reduce sampling rate
BBdec � decimate(BBdec,2);
Message � filter(FIR_LP, 1, BBdec);               % low pass filter

%plot(Message);

function Noise � LowPassNoise (SNRdB, Nsmps)
%--------------------------------------------------------------
% Generates lowpass noise by interpolating white
% noise with three interpolate-by-2 stages
%--------------------------------------------------------------

sigma2 � 10^(-SNRdB/10);
sigma � sqrt(sigma2/2);

%---- Generate bandlimited baseband noise ---- 
Noise � sigma * (randn(1,Nsmps/8)	 j*randn(1,Nsmps/8)); % white noise
Noise � interp(Noise,2);               % upsample by two
Noise � interp(Noise,2);
Noise � interp(Noise,2);

function [T,EyeSig] � ploteye(s,ups,offset);
%---------------------------------------------------------------
%  Function to plot eye diagram of s
%
%  Inputs
%     s - real signal
%     ups - oversample rate
%--------------------------------------------------------------
if (nargin [less] 3), offset � 0; end
s � interp(s,4);
ups � ups*4;
f � mod(length(s),ups);
s � real(s(f	1	offset:end-(ups-offset)));

%--------------------------------------------------------------
EyeSigRef � reshape(real(s),ups,length(s)/ups);
EyeSigm1 � EyeSigRef(ups/2	2:ups,1:end-2);
EyeSig0 � EyeSigRef(:,2:end-1);
EyeSigp1 � EyeSigRef(1:ups/2,3:end);
EyeSig � [EyeSigm1; EyeSig0; EyeSigp1];

T � [-1	1/(ups) : 1/(ups) : 	1-1/(ups)];
plot(T,EyeSig)
xlabel(‘Symbol periods’)
ylabel(‘Amplitude’)



488

APPENDIX 8

ANSWERS TO DRILL

PROBLEMS

Notes:

1. Chapter 1 has no Drill Problems and therefore no answers.
2. Many of the Drill Problems in Chapters 2 through 11 have the answers embodied in

the problem statements; hence, these problems are not addressed here.

Chapter 2

2.1

2.2

2.3 The imaginary part of must be zero.
2.4 The imaginary part of must be an odd function of 

2.11

2.12 (a) It is possible for a system to be causal but unstable.
(b) By the same token, it is possible for the system to be stable but noncausal.

2.13

2.14 (a)

(b)

The implication of this result is a constant delay in signal transmission across the

filter, hence no phase distortion.
(c) The time delay is equal to .

2.15

2.16

2.17 Eg1f2 �
4a2

1a2 	 4p2f 222 , �� � f � �

Eg1f2 �
1

a2 	 4p2f 2 , �� � f � �

Ryx
… 1�t2 � Rxy1t2

1N � 12¢t>2

arg1H1f22 � expa�j2paN � 1
2
bf¢tb

ƒH1f2 ƒ � wN�1
2

	 2 a
1
2
1N�12�1

n�0
wn cos12pnf ¢t2

H1f2 � 22pt exp1�2p2t2f 22

1 	 T a
q

m�1
 cos12pmf0t2 � T0 a

q

n��q
d1f � nf02, f0 � 1>T0

f.G1f2G102
g1t2 �

1
pt
1e�j2pWt � 12

G1f2 �
2pfc

1 	 4p21f � fc22
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Chapter 3

3.1 The envelope of the AM signal can assume zero value, if for some t,
where is the amplitude sensitivity factor and is the message signal.

3.2 (a) 98%
(b) 1%

3.3 where is the carrier frequency and W is the message bandwidth.
3.4 (a) The spectral context of the output consists of two parts:

AM part:

Undesirable part:

(b) The required band-pass filter must have bandwidth 2W centered on that is,
the cutoff frequencies of the filter are and 

(c) To extract the AM wave, we require 
3.5 The average power in the lower or upper side-frequency, expressed as a percentage

of the average power in the DSB-SC modulated wave, is 50%.

3.6 (a)

(b) The two sinusoidal terms inside the first set of square brackets are produced by
the upper side-frequency at The other two sinusoidal terms inside the
second set of square brackets are produced by the side-frequency at 

3.7 Spectral overlap occurs when When this happens, part of the lower sideband
moves into the negative frequency region, and the corresponding part of the image
of that sideband moves into the positive frequency region, causing spectral overlap.
The coherent detection then breaks down because the detector is unable to resolve part
of the spectrum where overlap occurs.

3.12 For the coherent detector to recover the original message signal (except for scaling),
we require that 

Chapter 4

4.2 The phase sensitivity factor is measured in radians/volt. The frequency sensitivity
factor is measured in hertz/volt. Therefore, the dimensionality of product term

is

which is the same as the dimensionality of kp .

� radians>volt

1hertz/volt2  1second2 � a cycles

second
1

volt
b  1second2

2pkfT
kf

kp

fc � W.

fc � W.
fc � fm .

fc 	 fm .

	
1
4

AcAm3cos12p12fc � fm2t2 	 cos12pfmt24
v1t2 �

1
4

AcAm3cos12p12fc 	 fm2t2 	 cos12pfmt24

fc � 3W.
fc 	 W.fc � W

fc ;
F3a1m1t2 	 a2Ac

2 cos212pfct2 	 a2m21t24

F31a1 	 2a2m1t22cos12pfct24 �
1
2

a11d1f � fc2 	 d1f 	 fc22 	 a21M1f � fc2 	 M1f 	 fc22

v21t2
fcfc � W,

m1t2ka

kam1t2 � �1
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4.4 (a) The envelope is

Maximum envelope occurs when thereby attaining the value

Minimum envelope occurs when thereby attaining the value 
Therefore,

(b)

(c) The harmonic distortion is produced by the term For 

radian, the distortion is which is small enough to be ignored.

Chapter 5

5.5 (a)
(b)
(c) Nyquist rate and Nyquist interval are the same as in part (b).

5.6 (a) For 

(b) For 

(c) For 

5.7 The Nyquist rate must exceed 1 Hz; correspondingly, the Nyquist interval must be
less than 1s.

gd1t2 � a
q

n��q
 cos11.5np2d1t � 1.5n2.

Ts � 1.5s,

gd1t2 � a
q

n��q
1�12nd1t � n2.

Ts � 1s,

gd1t2 � a
q

n��q
 cosanp

4
bd1t � 0.25n2.

Ts � 0.25s,

Nyquist rate � 400 Hz; Nyquist interval � 2.5 ms.
Nyquist rate � 200 Hz; Nyquist interval � 5 ms.

9  10�3 � 1%,

b � 0.3
b3

3
 sin312pfmt2.

Average power of narrow-band FM

Average power of unmodulated carrier
� a1 	

1
2
b2b

1Envelope2max1Envelope2min
� 1 	

1
2
b2

Ac .sin12pfmt2 � 0,

Aca1 	
1
2
b2b .

sin12pfmt2 � �1,

� Ac¢1 	
1
4
b2 �

b2

4
 sin14pfmt2≤� Aca1 	

1
2
b2 sin212pfmt2b for small b.

a1t2 � Ac31 	 b2 sin212pfmt2
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Chapter 6

6.1 For the input 001101001, the waveform at the receiver output consists of 
whenever symbol 1 is transmitted and whenever symbol 0 is transmit-
ted. There will be no intersymbol interference because the sinc pulse goes through zero
whenever another symbol is transmitted.

6.4 (b) The value assigned to the delay should decrease with increasing 
(i) for 
(ii) for 
(iii) for 

Chapter 7

7.6 Starting at zero, the trellis increases linearly reaching radians on the transmission
of 11, then decreases linearly to on the transmission of 0, increases to on the
transmission of 1; the level is equal to modulo . It then increases linearly from

to on the transmission of 111. Finally, it decreases linearly to on the
transmission of 00.

7.8 The linear input-output characteristic of the frequency discriminator has the follow-
ing specifications:

� It occupies the frequency range 

� It goes through zero at 

Chapter 8

8.1 0.82

8.2

8.3

8.4 (a) 0.5
(b) 0.5
(c) 0.9999
(d) 0.0001

8.5 and

8.6 0 and 1

1b � a22>121b 	 a2>2

pp0

pp0 	 11 � p2p1
 and 

pp1

pp1 	 11 � p2p0

5.5  10�5

f � fc .

fc �
1
4

Tb � f � fc 	
1
4

Tb .

�p>2p>2�p
2p�pp

pp>2 p

a � 1t � 2.5s
a � 1>2t � 3s
a � 0t � 5s

a:t

�sinc1t>Tb2 sinc1t>Tb2
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8.7

8.10 0 and 5/3.

8.11 Yes

8.13 ; No.

8.14 Yes

8.15 and corresponds to frequency where is

the sampling rate, where 

8.16 Yes

8.17 (a)

(b)

Chapter 9

9.1 where ( ) indicates independent power measurements.

9.2 18 dB
9.3 is 0.04 and 0.14.
9.4 Envelope detection is insensitive to a phase offset.
9.5 18 dB and the SSB transmission bandwidth is half that of DSB-SC.
9.6 8 kHz and 20.1 dB
9.7 Upper channel is worse by 17.1 dBs
9.8 34.7 dB and 48.3 dB

SNRAM
POST>SNRDSB

POST

SNR �
1S 	 N2 � 1N2

1N2

SY1k2 � N0 ` 1 � 1aWk2N
1 � aWk ` 2

N0

b0 � 1a0
2

	 a1
22s2 and b1 � a0a1s

2.

fs
kfs
N

SY1k2SY1k2 � b0 	 2b1 cosa2pk
N
b

RY1n2 � 1a0
2

	 a1
22s2d1n2 	 a0a1s

21d1n � 12 	 d1n 	 122;RX1t1, t22 � 1
6 Ccos12pf1t1 � t222 	 cos12pf1t1 	 t222 D

fY (y)

y
–1 1

—�
1

fY1y2 � d 0, y � �1
1

p31 � y2
, ƒy ƒ � 1

0, y � 1
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s(t) = —m(t) sin(2�fct)
Modulated

impulse
train

Root
raised

cosine filter
Data

sin(2�fct)

(a)

(b)

Root
raised

cosine filter T-spaced
sample
clock

Datar(t)

sin(2�fc t)

Chapter 10

10.1 (a)
(b)

10.2
10.3
10.5 (a)

(b)
(c) where is the raised cosine pulse shape,

10.6 PAM bandwidth is 7.2 kHz. BPSK bandwidth is 14.4 kHz

q1kT2 � m11k � l2T2 � d(k � l).
m1t2q1t2 � m1t � lT2R21f2 exp1�j2pflT2R1f2 exp1�j2pflT21a>2cs*1t2P3R0 ƒH14P3H14 	 P3R1 ƒH04P3H04

P1R1 ƒH02

10.7

10.9 (a)
(b) Var1N1 � N22 � N0T

E[N1N2] � 0



Chapter 11

11.1 watts and 6.3 millivolts
11.2 watts
11.3 2610ºK
11.4 and
11.5 9.97 dB
11.6 53.0 dB and 43.5 dB
11.7
11.8 120ºK, 14.7 dB, and 13 dB
11.9 13.9 m

11.10 132 dB and 101 dB
11.11 Rmedian � 0.83Rrms

�143 dBW

�122 dBm>Hz�147 dBm>Hz

8  10�15
4  10�12
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GLOSSARY

Functions

1. Rectangular functions

2. Unit step function

3. Signum function

4. (Dirac) delta function

or, equivalently,

5. Sinc function

6. Sine integral

7. Q-function

8. Binomial coefficient

9. Bessel function of the first

kind of order n

Abbreviations
A ampere
ac alternating current
ADC analog-to-digital converter
AM amplitude modulation
ASK amplitude-shift keying
b/s bits/second
BER bit error rate
BFSK binary frequency-shift keying
BPF band-pass filter
BPSK binary phase-shift keying

Jn1x2 �
1

2p L
p

�p
 exp1jx sin u � jnu2 du

an
k
b �

n!1n � k2!k!

Q1x2 �
1

22p L
q

x
 exp¢�

u2

2
≤ du

Si1x2 � L
x

0

sin u
u

du

sinc1x2 �
sin1px2
px

L
q

�q
g1t2d1t � t02 dt � g1t02

L
q

�q
d1t2 dt � 1

d1t2 � 0, t 
 0

sgn1t2 � c 1, t � 0
0, t � 0

�1, t � 0

u1t2 � b1, t � 0
0, t � 0

rect1t2 � b1, � 1
2 � t � 1

2

0, ƒt ƒ � 1
2
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BSC binary symmetric channel
codec coder/decoder
CW continuous wave
DAC digital-to-analog converter
dB decibel
dBW decibel referenced to 1 watt
dBmW decibel reference to 1 milliwatt
dc direct current
DFT discrete Fourier transform
DM delta modulation
DPCM differential pulse-code modulation
DPSK differential phase-shift keying
DSB-SC double sideband-suppressed carrier
exp exponential
FDM frequency-division multiplexing
FFT fast Fourier transform
FSK frequency-shift keying
FM frequency modulation
GMSK Gaussian filtered MSK
GSM global system for mobile communications
HDTV high-definition television
Hz hertz
IDFT inverse discrete Fourier transform
IF intermediate frequency
IP internet protocol
ISI intersymbol interference
ISO International Organization for Standardization
LDM linear delta modulation
log logarithm
LPF low-pass filter
modem modulator–demodulator
ms millisecond

microsecond
MSK minimum shift keying
NRZ nonreturn-to-zero
NTSC National Television Systems Committee
OFDM orthogonal frequency-division multiplexing
OOK on–off keying
OQPSK offset quadriphase-shift keying
OSI open systems interconnection
PAM pulse-amplitude modulation
PCM pulse-code modulation
PDM pulse-duration modulation

ms
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PLL phase-locked loop
PM phase modulation
PPM pulse-position modulation
PSK phase-shift keying
PWM pulse-width modulation
QAM quadrature amplitude modulation
QPSK quadriphase-shift keying
RF radio frequency
RZ return-to-zero
s second
SNR signal-to-noise ratio
TDM time-division multiplexing
TV television
UWB ultra wideband
V volt
VLSI very-large-scale integration
W watt
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Quadrature-amplitude modulation (QAM),

121–123, 414
detection of, in noise, 411–414
performance of, 419–420

Quadrature-carrier multiplexing, 121–123
Quadrature null effect, 117
Quadrature path (SSB modulators), 127
Quadrature-phase coherent detector 

(Q-channel), 121
Quadriphase-shift keying (QPSK), 274–281

detection of, in noise, 408–411
generation/detection of signals, 275–277
offset, 277–281
performance of, 419–420
power spectra of signals, 278–281

Quality factor (Q-factor), 178n.2
Quality of service (QoS), 11
Quantization process:

in delta modulation, 214–215
in pulse modulation, 205–206

Quantizer characteristics, 205
Quantum, 205
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R

Radio, 5–6
digital, 5
history of, 1
impulse, 223–224
terrestrial mobile radio, 451–452

Radio frequency (RF) pulse, 31–32
Radio receivers, superheterodyne, 1
Raised-cosine pulse spectrum, 238–245

properties of, 241–244
roll-off portion of spectrum, 241–243
root raised-cosine pulse spectrum,

244–245
transmission-bandwidth requirement,

240–241
Random experiment, 314
Random processes, 16, 335–343, 365

correlation of, 338–343
stationary, 337–338

Random signals, 313–348
defined, 16, 313
and Gaussian processes, 347–348
and probability theory, 314–335
and random processes, 335–343

correlation of, 338–343
stationary, 337–338

spectra of, 343–346
Random variables, 317–318, 329–330

experiments with several, 320–323
Gaussian, 330–333
transformation of, 329–330

Rayleigh distribution function, 455
Rayleigh fading, 454–456
Rayleigh’s energy theorem, 38–39
Real-time spectrum analyzer, 187
Received signal power, 447–450
Reconstruction levels, 205
Rectangular pulse, 22–23
Reed—Solomon block codes, 430
Reeves, Alex, 2
Reference power level, 459
Reference signal-to-noise ratio, 368
Reference transmission model, 368
Reflection (terrestrial mobile radio),

451, 452
Reflection property (Fourier transforms), 28

Representation levels, 205
Response, defined, 52
Return-to-zero (RZ) signaling, 219
RF pulse, see Radio frequency pulse
rms bandwidth, see Root mean-square

bandwidth
Rms duration, 98
Roll-off factor, 238, 256
Root mean-square (rms) bandwidth, 

40–41, 98
Root mean-square (rms) duration, 98
Root raised-cosine pulse spectrum,

244–245, 404–405
Routers, 7, 10
RZ signaling, 219

S

Sample point, 315
Sampling theorem, 193–196, 235
Satellite channels, 13
Satellite communications:

components of, 6
free-space link calculations 

for, 446–451
history of, 4
as point-to-point system, 6
system noise temperature 

of receivers, 446
Scanning, 5
Scanning variable, 70
Scatter diagram, 246n.4
Schottky formula, 441
Schwarz’s inequality, 473–474
Search engines, 11
Searching variable, 70
Second detector, 143
Series expansions, 477
Shannon, Claude, 3, 422n.3
Shockley, William, 2
Shot noise, 438, 440–442
Side-frequencies, 123
Sifting property (of Dirac delta function),

42–43
Signals. See also specific types, e.g.:

Periodic signals
and bandwidth, 40
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frequency content of, 18
real-valued, conjugate symmetry 

of spectra of, 22
Signal-dependent phenomenon, 256
Signal detection:

binary amplitude-shift keying, 265–266
of binary PAM in noise, 399–405
of BPSK, 405–408
coherent:

binary phase-shift keying, 270–271
double sideband-suppressed carrier

modulation, 116–118, 370–373
linear receivers, 370–373

detection theory, 15
differential, 416–418
with frequency modulation, 380–387
of FSK, 414–416
noncoherent, 291–295

BASK signals, 291–292
BFSK signals, 292–293
differential phase-shift keying, 

293–294
of QAM, 411–414
of QPSK, 408–411
quadriphase-shift keying, 275–277
signal-detection problem in, 15

Signal-detection problem, 15
Signal-flow graph, 85–87
Signal-space diagram, 296
Signal-space interpretation of codes,

431–433
Signal-space models, noise in, 

421–422
Signal-to-noise ratio (SNR), 13

in analog communication, 366–369
post-detection, 368, 372–376, 378–379,

381–385
as system design parameter, 14

Signum function, 27, 47–48
Similarity property (Fourier 

transforms), 28
Sinc function, 22–23
Sinc pulse, 29–30, 38–39
Single-sideband (SSB) modulation,

113–114, 123–130
and amplitude modulation, 147

coherent detection of, 127–128, 337–379
frequency translation, 128–130
modulators for, 125–127
theory underlying, 123–125

Single-sideband receivers, noise in, 377–379
Sinusoidal carrier waves, 14, 100. See also

Continuous-wave modulation
Sinusoidal DSB-SC spectrum, 116
Sinusoidal functions, application of delta

function to, 46–47
Sinusoidal modulating wave, SSB

modulation and, 123
Sinusoidal VSB wave modulation, 133
Slope circuit, 175
Slope network, 380
SNR, see Signal-to-noise ratio
Spectral density:

cross-spectral density, 78
energy, 71–77
noise, 444–445
power, 79–81

Spectral distortion, avoiding, 110
Spectral overlap, 110
Speech signals, digital encoding of, 2
Speech vecoders, 395n.1
Split-phase (Manchester code), 219
Spot noise figure, 443
Square law, 110
Square-law modulator, 110, 111
Square wave, 266
SSB modulation, see Single-sideband

modulation
Stable systems, 55–56
Stationary random processes, 337–338
Step-by-step switch, 2
Step-size, 205
Stereo multiplexing, 182–184
Stochastic processes, 16. See also

Random processes
Stopband, 60
Stored-program system (telephone), 2
Strowger, A. B., 2
Strowger switch, 2
Subnets, Internet, 10
Summations, 478
Sunde’s BFSK, 281–282
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Supergroup (multiplexing), 147
Superheterodyne receivers (superhets), 1,

142–143, 369
Superposition, principle of, 52
Superposition of Fourier transforms, 

25–28
Sure event, 315
Switching, 7

circuit, 7
packet, 7–8

Symbol error rate, 413
Synchonous demodulation, 116
Synthesis equation, 19
Synthesis filter, 195, 197
Synthesizer, 140
System, defined, 52
Systematic convolutional code, 430–431
System margin, 449
System performance, 15

T

Tapped-delay-line filter, 54–55, 217
TDM, see Time-division multiplexing
Telegraph, 1
Telephone channels, 13
Telephone systems:

first commercial service, 2
history of, 2
integration of Internet and, 11–12
twisted pairs, 89–90

Television:
digital, 305–307
high-definition, 6
history of, 2
transmissions for, 5

Television channels, 13
Television signals, VSB modulation of,

143–145
Terrestrial mobile radio, 451–452
Thermal noise, 438–440
Thévenin equivalent circuit, 439
3-dB bandwidth, 40
Threshold effect, 386–387
Time, inverse relationship between

frequency and, 39–41
Time-bandwidth product, 41, 69

Time-division multiplexing (TDM), 145,
220–223

Time function:
differentiation of a, 32–33
integration of a, 34–36
odd-symmetric, 27
real and imaginary parts of a, 35–36

Time response, transmission of signals
through linear systems and, 53–55

Time-shifting property (Fourier 
transforms), 30

T-1 carrier system, 2, 222–223, 241
Transistor, invention of, 2
Transmission bandwidth (AM waves), 104
Transmission lines, 89
Transmission losses, 4
Transmitted power, 13
Transmitters, 5
Transversal filter, 252
Triangular pulse, 34–35
Trigonometric identities, 477
Truncated decaying exponential pulse,

23–24
Truncated rising exponential 

pulse, 24–25
Turbo codes, 431
Twiddle factor, 85
Twisted pairs, 11, 89–90
Two-port devices:

average noise figure of, 443
equivalent noise temperature 

of, 443–445
Two-port networks, cascade connection

of, 445–446
Type 1 error, 401

U

Ultra-wideband (UWB) radio
transmission, 223

Ungerboeck, G., 3
Unit impulse, 42
Unit prefixes, 479
Unit pulse, 34
Unit step function, 48–49
Unity peak distortion, 248
Uplink (communications), 6
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Upper sideband, 103
UWB (ultra-wideband) radio transmission,

223

V

Vacuum-tube diode, 2
Vacuum-tube triode, 2
Van Duuren, H. C. A., 3
Van Vleck, J. H., 3
VCO, see Voltage-controlled oscillator
Very large groups (multiplexing), 147
Very-large-scale integrated (VLSI) circuits, 2
Vestigal sideband modulation, 149
Vestige bandwidth, 130
Vestigial sideband (VSB) modulation, 

114, 130–137
coherent detection of, 134–135, 

306–307
motivation for using, 130
sideband shaping filter for, 131–134
SSB vs., 130
of television signals, 143–145

Video signal, generation of, 6
Virtual circuits, 10
Virtual communication, 9
VLSI circuits, 2
Voice over Internet Protocol 

(VoIP), 11–12
Voice signals, 5
VoIP, see Voice over Internet Protocol

Voltage-controlled oscillator (VCO):
and the Costas receiver, 121
and phase-locked loops, 178

Von Neumann, John, 3
VSB filter, 144
VSB modulation, see Vestigial sideband

modulation
VSB-plus carrier signal, 136

W

Waveform distortion, 145
Weaver, Warren, 3
White Gaussian noise, 439
White noise, 348–351, 438
Wide-band frequency modulation, 164–169
Wideband modems, 11
Wide-band phase-shifter, 127
Wideband signals, transmission of, 130
Wide-sense stationary, 338
Wiener—Khitchine relations, 71–72, 244
Wireless channels, 13
Wireless communications, 6
World Wide Web, 3

Z

Zero-crossings, 156–157
Zero-forcing equalization, 253–255
Zero peak distortion, 248
Zworykin, Vladimir K., 2
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