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Preface

Because of the immense interest in and success of the first edition, the second edition of Advanced
Engineering Electromagnetics has maintained all the attractive features of the first edition. This
edition contains many new features and additions, in particular:

A new chapter, Chapter 14, on diffraction by a wedge with impedance surfaces

A section on double negative (DNG) metamaterials (Section 5.7)

A section on artificial impedance surfaces (AIS, EBG, PBG, HIS, AMC, PMC) (Section 8.8)
Additional smaller inserts throughout the book

New figures, photos, and tables

Additional examples and numerous end-of-chapter problems

Purchase of this book also provides you with access to a password-protected website that contains
supplemental multimedia resources. Open the sealed envelope attached to the book, go to the
URL below and, when prompted, enter the unique code printed on the registration card:

[http://placeholder.for.actual.url.tk.com]
Multimedia material include:

e PowerPoint view graphs in multicolor, over 4,200, of lecture notes for each of the fifteen
chapters

e Forty-eight MATLAB® computer programs (most of them new; the four Fortran programs
from the first edition were translated to MATLAB®)

Given the space limitations, the added material supplements, expands, and reinforces the ana-
lytical methods that were, and continue to be, the main focus of this book. The analytical methods
are the foundation of electromagnetics and provide understanding and physical interpretation of
electromagnetic phenomena and interactions. Although numerical and computational methods
have, especially in the last four decades, played a key role in the solution of complex elec-
tromagnetic problems, they are highly dependent on fundamental principles. Not understanding
the basic fundamentals of electromagnetics, represented by analytical methods, may lead to the
lack of physical realization, interpretation and verification of simulated results. In fact, there are
a plethora of personal and commercial codes that are now available, and they are expanding
very rapidly. Users are now highly dependent on these codes, and we seem to lose focus on the
interpretation and physical realization of the simulated results because, possibly, of the lack of
understanding of fundamental principles. There are numerous books that address numerical and
computational methods, and this author did not want to repeat what is already available in the lit-
erature, especially with space limitations. Only the moment method (MM), in support of Integral

Xvii



Xviii PREFACE

Equations (IEs), and Diffraction Theory (GTD/UTD) are included in this book. However, to aid in
the computation, simulation and animation of results based on analytical formulations included
in this book, even provide some of the data in graphical form, forty-eight basic MATLAB
computer programs have been developed and are included in the website that is part of this book.

The first edition was based on material taught on a yearly basis and notes developed over nearly
20 years. This second edition, based on an additional 20 years of teaching and development of
notes and multimedia (for a total of over 40 years of teaching), refined any shortcomings of
the first edition and added: a new chapter, two new complete sections, numerous smaller inserts,
examples, numerous end-of-chapter problems, and Multimedia (including PPT notes, MATLAB
computer programs for computations, simulations, visualization, and animation). The four Fortran
programs from the first edition were translated in MATLAB®, and numerous additional ones
were developed only in MATLAB®. These are spread throughout Chapters 4 through 14. The
revision of the book also took into account suggestions of nearly 20 reviewers selected by
the publisher, some of whom are identified and acknowledged based on their approval. The
multicolor PowerPoint (PPT) notes, over 4,200 viewgraphs, can be used as ready-made lectures
so that instructors will not have to labor at developing their own notes. Instructors also have the
option to add PPT viewgraphs of their own or delete any that do not fit their class objectives.

The book can be used for at least a two-semester sequence in Electromagnetics, beyond an
introduction to basic undergraduate EM. Although the first part of the book in intended for senior
undergraduates and beginning graduates in electrical engineering and physics, the later chapters
are targeted for advanced graduate students and practicing engineers and scientists. The majority
of Chapters 1 through 10 can be covered in the first semester, and most of Chapter 11 through 15
can be covered in the second semester. To cover all of the material in the proposed time frame
would be, in many instances, an ambitious task. However, sufficient topics have been included
to make the text complete and to allow instructors the flexibility to emphasize, de-emphasize, or
omit sections and/or chapters. Some chapters can be omitted without loss of continuity.

The discussion presumes that the student has general knowledge of vector analysis, differential
and integral calculus, and electromagnetics either from at least an introductory undergraduate
electrical engineering or physics course. Mathematical techniques required for understanding
some advanced topics, mostly in the later chapters, are incorporated in the individual chapters or
are included as appendixes.

Like the first edition, this second edition is a thorough and detailed student-oriented book. The
analytical detail, rigor, and thoroughness allow many of the topics to be traced to their origin,
and they are presented in sufficient detail so that the students, and even the instructors, will
follow the analytical developments. In addition to the coverage of traditional classical topics,
the book includes state of the art advanced topics on DNG Metamaterials, Artificial Impedance
Surfaces (AIS, EBG, PBG, HIS, AMC, PMC), Integral Equations (IE), Moment Method (MM),
Geometrical and Uniform Theory of Diffraction (GTD/UTD) for PEC and impedance surfaces,
and Green’s functions. Electromagnetic theorems, as applied to the solution of boundary-value
problems, are also included and discussed.

The material is presented in a methodical, sequential, and unified manner, and each chapter is
subdivided into sections or subsections whose individual headings clearly identify the topics dis-
cussed, examined, or illustrated. The examples and end-of-chapter problems have been designed
to illustrate basic principles and to challenge the knowledge of the student. An exhaustive list of
references is included at the end of each chapter to allow the interested reader to trace each topic.
A number of appendixes of mathematical identities and special functions, some represented also
in tabular and graphical forms, are included to aid the student in the solution of the examples
and assigned end-of-chapter problems. A solutions manual for all end-of-chapter problems is
available exclusively to instructors.
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In Chapter 1, the book covers classical topics on Maxwell’s equations, constitutive param-
eters and relations, circuit relations, boundary conditions, and power and energy relations. The
electrical properties of matter for both direct-current and alternating-current, including an update
on superconductivity, are covered in Chapter 2. The wave equation and its solution in rectan-
gular, cylindrical and spherical coordinates are discussed in Chapter 3. Electromagnetic wave
propagation and polarization is introduced in Chapter 4. Reflection and transmission at normal
and oblique incidences are considered in Chapter 5, along with depolarization of the wave due
to reflection and transmission and an introduction to metamaterials (especially those with neg-
ative index of refraction, referred to as double negative, DNG). Chapter 6 covers the auxiliary
vector potentials and their use toward the construction of solutions for radiation and scattering
problems. The theorems of duality, uniqueness, image, reciprocity, reaction, volume and surface
equivalences, induction, and physical and physical optics equivalents are introduced and applied
in Chapter 7. Rectangular cross section waveguides and cavities, including dielectric slabs, arti-
ficial impedance surfaces (AIS) [also referred to as Electromagnetic Band-Gap (EBG) structures;
Photonic Band-Gap (PBG) structures; High Impedance Surfaces (HIS), Artificial Magnetic Con-
ductors (AMC), Perfect Magnetic Conductors (PMC)], striplines and microstrips, are discussed in
Chapter 8. Waveguides and cavities with circular cross section, including the fiber optics cable,
are examined in Chapter 9, and those of spherical geometry are introduced in Chapter 10. Scat-
tering by strips, plates, circular cylinders, wedges, and spheres is analyzed in Chapter 11. Chapter
12 covers the basics and applications of Integral Equations (IE) and Moment Method (MM). The
techniques and applications of the Geometrical and Uniform Theory of Diffraction (GTD/UTD)
are introduced and discussed in Chapter 13. The PEC GTD/UTD techniques of Chapter 13
are extended in the new Chapter 14 to wedges with impedance surfaces, utilizing Maliuzhinets
functions. The classic topic of Green’s functions is introduced and applied in Chapter 15.

Throughout the book an e/®’ time convention is assumed, and it is suppressed in almost all the
chapters. The International System of Units, which is an expanded form of the rationalized MKS
system, is used throughout the text. In some instances, the units of length are given in meters (or
centimeters) and feet (or inches). Numbers in parentheses ( ) refer to equations, whereas those
in brackets [ ] refer to references. For emphasis, the most important equations, once they are
derived, are boxed.

I would like to acknowledge the invaluable suggestions from those that contributed to the
first edition, too numerous to mention here. Their names and contributions are stated in the first
edition. It is a pleasure to acknowledge the invaluable suggestions and constructive criticisms of
the reviewers of this edition who allowed their names to be identified (in alphabetical order):
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University of Delaware; and Prof. James West, Oklahoma State University. There have been other
reviewers and contributors to this edition. In addition, I would like to thank Dr. Timothy Griesser,
Agilent Technologies, for allowing me to use material from his PhD dissertation at Arizona State
University for the new Chapter 14; Prof. Sergey N. Makarov, Worcester Polytechnic Institute,
for providing MATLAB® programs for computations and animations of scattering by cylinders
and spheres; Prof. Nathan Newman, Arizona State University, for updates on superconductivity;
Prof. Donald R. Wilton, University of Houston, for elucidations on the topic of integral equations;
Dr. Arthur D. Yaghjian for his review and comments on the Veselago planar lens; Prof. Danilo
Ericcolo, University of Illinois at Chicago, for bringing to my attention some updates to the first
edition; and Dr. Lesley A. Polka, Intel, for allowing me to use figures from her MS Thesis and
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Time-Varying and Time-Harmonic
Electromagnetic Fields

1.1 INTRODUCTION

Electromagnetic field theory is a discipline concerned with the study of charges, at rest and in
motion, that produce currents and electric-magnetic fields. It is, therefore, fundamental to the
study of electrical engineering and physics and indispensable to the understanding, design, and
operation of many practical systems using antennas, scattering, microwave circuits and devices,
radio-frequency and optical communications, wireless communications, broadcasting, geosciences
and remote sensing, radar, radio astronomy, quantum electronics, solid-state circuits and devices,
electromechanical energy conversion, and even computers. Circuit theory, a required area in the
study of electrical engineering, is a special case of electromagnetic theory, and it is valid when
the physical dimensions of the circuit are small compared to the wavelength. Circuit concepts,
which deal primarily with lumped elements, must be modified to include distributed elements and
coupling phenomena in studies of advanced systems. For example, signal propagation, distortion,
and coupling in microstrip lines used in the design of sophisticated systems (such as computers and
electronic packages of integrated circuits) can be properly accounted for only by understanding
the electromagnetic field interactions associated with them.

The study of electromagnetics includes both theoretical and applied concepts. The theoretical
concepts are described by a set of basic laws formulated primarily through experiments conducted
during the nineteenth century by many scientists—Faraday, Ampere, Gauss, Lenz, Coulomb,
Volta, and others. They were then combined into a consistent set of vector equations by Maxwell.
These are the widely acclaimed Maxwell’s equations. The applied concepts of electromagnetics
are formulated by applying the theoretical concepts to the design and operation of practical
systems.

In this chapter, we will review Maxwell’s equations (both in differential and integral forms),
describe the relations between electromagnetic field and circuit theories, derive the boundary
conditions associated with electric and magnetic field behavior across interfaces, relate power and
energy concepts for electromagnetic field and circuit theories, and specialize all these equations,
relations, conditions, concepts, and theories to the study of time-harmonic fields.

1.2 MAXWELL’S EQUATIONS

In general, electric and magnetic fields are vector quantities that have both magnitude and
direction. The relations and variations of the electric and magnetic fields, charges, and cur-
rents associated with electromagnetic waves are governed by physical laws, which are known

1
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as Maxwell’s equations. These equations, as we have indicated, were arrived at mostly through
various experiments carried out by different investigators, but they were put in their final form
by James Clerk Maxwell, a Scottish physicist and mathematician. These equations can be written
either in differential or in integral form.

1.2.1 Differential Form of Maxwell’s Equations

The differential form of Maxwell’s equations is the most widely used representation to solve
boundary-value electromagnetic problems. It is used to describe and relate the field vectors, current
densities, and charge densities at any point in space at any time. For these expressions to be valid,
it is assumed that the field vectors are single-valued, bounded, continuous functions of position
and time and exhibit continuous derivatives. Field vectors associated with electromagnetic waves
possess these characteristics except where there exist abrupt changes in charge and current densi-
ties. Discontinuous distributions of charges and currents usually occur at interfaces between media
where there are discrete changes in the electrical parameters across the interface. The variations of
the field vectors across such boundaries (interfaces) are related to the discontinuous distributions
of charges and currents by what are usually referred to as the boundary conditions. Thus a com-
plete description of the field vectors at any point (including discontinuities) at any time requires
not only Maxwell’s equations in differential form but also the associated boundary conditions.
In differential form, Maxwell’s equations can be written as

0B
VX%Z—M,'—EZ—M,‘—MQ':—M[ (1—1)
0D 0D
VX%=51‘+3C+¥=3ic+¥=$ic+9d=$z (1-2)
VD= Tev (1-3)
V-% = Pmv (-4
where

$.=% 18 (1-5a)

0D
_ 7= 1-5b
34 o7 (1-5b)

0B
'M'd = E (1-5C)

All these field quantities—$€, %, @, B, $, M, and g, —are assumed to be time-varying, and
each is a function of the space coordinates and time, that is, € = € (x,y,z; t). The definitions
and units of the quantities are

€ = electric field intensity (volts/meter)

% = magnetic field intensity (amperes/meter)

@ = electric flux density (coulombs/square meter)

B = magnetic flux density (webers/square meter)

$, = impressed (source) electric current density (amperes/square meter)

$. = conduction electric current density (amperes/square meter)

$, = displacement electric current density (amperes/square meter)

M; = impressed (source) magnetic current density (volts/square meter)
M, = displacement magnetic current density (volts/square meter)
7,,= electric charge density (coulombs/cubic meter)

7., = magnetic charge density (webers/cubic meter)
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The electric displacement current density $, = 99 /9t was introduced by Maxwell to complete
Ampere’s law for statics, V x # = $. For free space, $, was viewed as a motion of bound
charges moving in “ether,” an ideal weightless fluid pervading all space. Since ether proved to be
undetectable and its concept was not totally reasonable with the special theory of relativity, it has
since been disregarded. Instead, for dielectrics, part of the displacement current density has been
viewed as a motion of bound charges creating a true current. Because of this, it is convenient to
consider, even in free space, the entire 09 /d¢ term as a displacement current density.

Because of the symmetry of Maxwell’s equations, the d%®/d¢ term in (1-1) has been des-
ignated as a magnetic displacement current density. In addition, impressed (source) magnetic
current density M; and magnetic charge density ¢ — have been introduced, respectively, in
(1-1) and (1-4) through the “generalized” current concept. Although we have been accustomed to
viewing magnetic charges and impressed magnetic current densities as not being physically real-
izable, they have been introduced to balance Maxwell’s equations. Equivalent magnetic charges
and currents will be introduced in later chapters to represent physical problems. In addition,
impressed magnetic current densities, like impressed electric current densities, can be considered
energy sources that generate fields whose expressions can be written in terms of these current
densities. For some electromagnetic problems, their solution can often be aided by the introduc-
tion of “equivalent” impressed electric and magnetic current densities. The importance of both
will become more obvious to the reader as solutions to specific electromagnetic boundary-value
problems are considered in later chapters. However, to give the reader an early glimpse of the
importance and interpretation of the electric and magnetic current densities, let us consider two
familiar circuit examples.

In Figure 1-1a, an electric current source is connected in series to a resistor and a parallel-
plate capacitor. The electric current density $; can be viewed as the current source that generates
the conduction current density $,. through the resistor and the displacement current density $,
through the dielectric material of the capacitor. In Figure 1-1b, a voltage source is connected to a
wire that, in turn, is wrapped around a high-permeability magnetic core. The voltage source can
be viewed as the impressed magnetic current density that generates the displacement magnetic
current density through the magnetic material of the core.

In addition to the four Maxwell’s equations, there is another equation that relates the variations
of the current density $;. and the charge density ¢ . Although not an independent relation, this
equation is referred to as the continuity equation because it relates the net flow of current out of
a small volume (in the limit, a point) to the rate of decrease of charge. It takes the form

97,,

V.$.= 3 (1-6)
The continuity equation 1-6 can be derived from Maxwell’s equations as given by (1-1) through

(1-5¢).

1.2.2 Integral Form of Maxwell’s Equations

The integral form of Maxwell’s equations describes the relations of the field vectors, charge
densities, and current densities over an extended region of space. They have limited applications,
and they are usually utilized only to solve electromagnetic boundary-value problems that possess
complete symmetry (such as rectangular, cylindrical, spherical, etc., symmetries). However, the
fields and their derivatives in question do not need to possess continuous distributions.

The integral form of Maxwell’s equations can be derived from its differential form by utilizing
the Stokes’ and divergence theorems. For any arbitrary vector A, Stokes’ theorem states that the
line integral of the vector A along a closed path C is equal to the integral of the dot product of
the curl of the vector A with the normal to the surface S that has the contour C as its boundary.
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Figure 1-1 Circuits with electric and magnetic current densities. (a) Electric current density. (b) Magnetic
current density.

In equation form, Stokes’ theorem can be written as

%A-dl:f/(VxA)-dS (1-7)
c s

The divergence theorem states that, for any arbitrary vector A, the closed surface integral of the
normal component of vector A over a surface S is equal to the volume integral of the divergence of
A over the volume V enclosed by S. In mathematical form, the divergence theorem is stated as

ﬁ[ A-ds:/// V.A dv (1-8)
S \%

Taking the surface integral of both sides of (1-1), we can write

//(Vx%)-ds:—// Mi-ds—/ @-ds=—f/.,u,--ds—3// B;-ds (1-9)
S S K at Ky ot S

Applying Stokes’ theorem, as given by (1-7), on the left side of (1-9) reduces it to

%%-d(:—// Mi-ds—i//%-ds (1-9a)
c S at JJs
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which is referred to as Maxwell’s equation in integral form as derived from Faraday’s law . In the
absence of an impressed magnetic current density, Faraday’s law states that the electromotive
force (emf) appearing at the open-circuited terminals of a loop is equal to the time rate of decrease
of magnetic flux linking the loop.

Using a similar procedure, we can show that the corresponding integral form of (1-2) can be

written as
%%-dﬁ:// 2ic-ds+£//%-ds=// }ic-ds—i—/f $,-ds (1-10)
c s at JJs S s

which is usually referred to as Maxwell’s equation in integral form as derived from Ampere’s law.
Ampere’s law states that the line integral of the magnetic field over a closed path is equal to the
current enclosed.

The other two Maxwell equations in integral form can be obtained from the corresponding
differential forms, using the following procedure. First take the volume integral of both sides of

(1-3); that is,
([ 5@t [J[ yas=o. 0
1% 1%

where 9, is the total electric charge. Applying the divergence theorem, as given by (1-8), on the

left side of (1-11) reduces it to
ﬂ @-ds:/ff g dv=09, (1-11a)
N 1%

which is usually referred to as Maxwell’s electric field equation in integral form as derived from
Gauss’s law. Gauss’s law for the electric field states that the total electric flux through a closed
surface is equal to the total charge enclosed.

In a similar manner, the integral form of (1-4) is given in terms of the total magnetic charge

9. by
ﬂ B.ds—0 (1-12)
S

which is usually referred to as Maxwell’s magnetic field equation in integral form as derived from
Gauss’s law. Even though magnetic charge does not exist in nature, it is used as an equivalent
to represent physical problems. The corresponding integral form of the continuity equation, as
given by (1-6) in differential form, can be written as

9 09,
. .d = —— 7 d = —
ﬂs}” s a;///vﬁ’eu v at

Maxwell’s equations in differential and integral form are summarized and listed in Table 1-1.

(1-13)

1.3 CONSTITUTIVE PARAMETERS AND RELATIONS

Materials contain charged particles, and when these materials are subjected to electromagnetic
fields, their charged particles interact with the electromagnetic field vectors, producing currents
and modifying the electromagnetic wave propagation in these media compared to that in free
space. A more complete discussion of this is in Chapter 2. To account on a macroscopic scale for
the presence and behavior of these charged particles, without introducing them in a microscopic
lattice structure, we give a set of three expressions relating the electromagnetic field vectors.
These expressions are referred to as the constitutive relations, and they will be developed in
more detail in Chapter 2.
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TABLE 1-1 Maxwell’s equations and the continuity equation in differential and integral forms for
time-varying fields

Differential form Integral form

Vx%:—‘ui—@ ?{%d(:—/]aﬂpds—i//%-ds
ot c s at JJs
0% 0
Vx®=%+3. +— %%~d€://}i-ds+ﬂ}0-d5+—ﬂ%-d5
ot c s N ot JJs

Vo=, ﬂ%ds:&e
S
VR=y ﬂsa.ds:gzm
39,, 3 99,
Vg, =L ﬂg}ic-ds_—al/]v%vdv——at

One of the constitutive relations relates in the time domain the electric flux density & to the
electric field intensity € by
D=:£x% (1-14)

where ¢ is the time-varying permittivity of the medium (farads/meter) and * indicates convolution.

For free space
-9

10
8 =¢gy=28.854x10""2 ~ T (farads/meter) (1-14a)
T

and (1-14) reduces to a product.
Another relation equates in the time domain the magnetic flux density ®B to the magnetic field
intensity # by
B=[+% (1-15)

where [ is the time-varying permeability of the medium (henries/meter). For free space
QA = o = 4 x1077 (henries/meter) (1-15a)

and (1-15) reduces to a product.
Finally, the conduction current density $,. is related in the time domain to the electric field
intensity € by
$.=6x%% (1-16)

where & is the time-varying conductivity of the medium (siemens/meter). For free space
6=0 (1-16a)

In the frequency domain or for frequency nonvarying constitutive parameters, the relations (1-14),
(1-15) and (1-16) reduce to products. For simplicity of notation, they will be indicated everywhere
from now on as products, and the caret (") in the time-varying constitutive parameters will be
omitted.

Whereas (1-14), (1-15), and (1-16) are referred to as the constitutive relations, &, i and & are
referred to as the constitutive parameters, which are, in general, functions of the applied field
strength, the position within the medium, the direction of the applied field, and the frequency of
operation.
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The constitutive parameters are used to characterize the electrical properties of a material.
In general, materials are characterized as dielectrics (insulators), magnetics, and conductors,
depending on whether polarization (electric displacement current density), magnetization (mag-
netic displacement current density), or conduction (conduction current density) is the predominant
phenomenon. Another class of material is made up of semiconductors, which bridge the gap
between dielectrics and conductors where neither displacement nor conduction currents are, in
general, predominant. In addition, materials are classified as linear versus nonlinear, homoge-
neous versus nonhomogeneous (inhomogeneous), isotropic versus nonisotropic (anisotropic), and
dispersive versus nondispersive, according to their lattice structure and behavior. All these types
of materials will be discussed in detail in Chapter 2.

If all the constitutive parameters of a given medium are not functions of the applied field
strength, the material is known as linear; otherwise it is nonlinear. Media whose constitu-
tive parameters are not functions of position are known as homogeneous; otherwise they are
referred to as nonhomogeneous (inhomogeneous). Isotropic materials are those whose constitu-
tive parameters are not functions of direction of the applied field; otherwise they are designated
as nonisotropic (anisotropic). Crystals are one form of anisotropic material. Material whose con-
stitutive parameters are functions of frequency are referred to as dispersive; otherwise they are
known as nondispersive. All materials used in our everyday life exhibit some degree of disper-
sion, although the variations for some may be negligible and for others significant. More details
concerning the development of the constitutive parameters can be found in Chapter 2.

1.4 CIRCUIT-FIELD RELATIONS

The differential and integral forms of Maxwell’s equations were presented, respectively, in
Sections 1.2.1 and 1.2.2. These relations are usually referred to as field equations, since the
quantities appearing in them are all field quantities. Maxwell’s equations can also be written in
terms of what are usually referred to as circuit quantities; the corresponding forms are denoted
circuit equations. The circuit equations are introduced in circuit theory texts, and they are special
cases of the more general field equations.

1.4.1 Kirchhoff’s Voltage Law

According to Maxwell’s equation 1-9a, the left side represents the sum voltage drops (use the
convention where positive voltage begins at the start of the path) along a closed path C, which

can be written as
Y ov= f % -d 4 (volts) (1-17)
C

The right side of (1-9a) must also have the same units (volts) as its left side. Thus, in the absence
of impressed magnetic current densities (M; = 0), the right side of (1-9a) can be written as

0 oY, 0 . ai
- B-ds = — = ——(Lsi) = —L;— (webers/second = volts) (1-17a)
at JJg ot at

dt

because by definition v, = L;i where L; is an inductance (assumed to be constant) and i is the
associated current. Using (1-17) and (1-17a), we can write (1-9a) with M; = 0 as
> OV 9 (Lyi) = —L oi (1-17b)
V= ——""=——(L41) = —Ls— -
at at ot
Equation 1-17b states that the voltage drops along a closed path of a circuit are equal to the time
rate of change of the magnetic flux passing through the surface enclosed by the closed path, or
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equal to the voltage drop across an inductor L; that is used to represent the stray inductance of
the circuit. This is the well-known Kirchhoff loop voltage law, which is used widely in circuit
theory, and its form represents a circuit relation. Thus we can write the following field and circuit
relations:

Field Relation Circuit Relation

Bdt = —— || Boas =22 =W 1-17
fc o1 //S S O ot o1 (1-17¢)

In lumped-element circuit analysis, where usually the wavelength is very large (or the dimen-
sions of the total circuit are small compared to the wavelength) and the stray inductance of the
circuit is very small, the right side of (1-17b) is very small and it is usually set equal to zero. In
these cases, (1-17b) states that the voltage drops (or rises) along a closed path are equal to zero,
and it represents a widely used relation to electrical engineers and many physicists.

To demonstrate Kirchhoff’s loop voltage law, let us consider the circuit of Figure 1-2 where
a voltage source and three ideal lumped elements (a resistance R, an inductor L, and a capacitor
C) are connected in series to form a closed loop. According to (1-17b)

—Vs + Vg + VL +Vc = _Lv% = —UsL (1_18)
where L;, shown dashed in Figure 1-2, represents the total stray inductance associated with the
current and the magnetic flux generated by the loop that connects the ideal lumped elements (we
assume that the wire resistance is negligible). If the stray inductance L, of the circuit and the
time rate of change of the current is small (the case for low-frequency applications), the right
side of (1-18) is small and can be set equal to zero.

1.4.2 Kirchhoff’s Current Law

The left side of the integral form of the continuity equation, as given by (1-13), can be written

in circuit form as
Yi= ﬂ $,.-ds (1-19)
S

+ vg -
" R
_ +
L & v
- B
S<:>
Vg ;E: L
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- v o+

Figure 1-2 RLC series network.
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where ) i represents the sum of the currents passing through closed surface S. Using (1-19)
reduces (1-13) to

09, d Jv
| = — = —_—— CS = —CS— 1-19
> 5 (Csv) o (1-19a)

since by definition 9, = C;v where C; is a capacitance (assumed to be constant) and v is the
associated voltage.

Equation 1-19a states that the sum of the currents crossing a surface that encloses a circuit
is equal to the time rate of change of the total electric charge enclosed by the surface, or equal
to the current flowing through a capacitor C; that is used to represent the stray capacitance of
the circuit. This is the well-known Kirchhoff node current law, which is widely used in circuit
theory, and its form represents a circuit relation. Thus, we can write the following field and circuit
relations:

Field Relation Circuit Relation

a 02, 02, v
cvds = —— 7 dv = — | = — =—-Cy,— 1-19b
ﬂ;jzc S ot ///Vyev v ot <:>Zl ot ot ( )

In lumped-element circuit analysis, where the stray capacitance associated with the circuit is very
small, the right side of (1-19a) is very small and it is usually set equal to zero. In these cases,
(1-19a) states that the currents exiting (or entering) a surface enclosing a circuit are equal to zero.
This represents a widely used relation to electrical engineers and many physicists.

To demonstrate Kirchhoff’s node current law, let us consider the circuit of Figure 1-3 where
a current source and three ideal lumped elements (a resistance R, an inductor L, and a capacitor
C) are connected in parallel to form a node. According to (1-19a)

av
—ist+ig +ir+ic = —Csa = —isc (1-20)
where Cy, shown dashed in Figure 1-3, represents the total stray capacitance associated with the
circuit of Figure 1-3. If the stray capacitance Cs of the circuit and the time rate of change of
the total charge 9, are small (the case for low-frequency applications), the right side of (1-20) is
small and can be set equal to zero. The current izc associated with the stray capacitance Cg also

Figure 1-3 RLC parallel network.
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includes the displacement (leakage) current crossing the closed surface S of Figure 1-3 outside of
the wires.

1.4.3 Element Laws

In addition to Kirchhoff’s loop voltage and node current laws as given, respectively, by (1-17b)
and (1-19a), there are a number of current element laws that are widely used in circuit theory.
One of the most popular is Ohm’s law for a resistor (or a conductance G), which states that the
voltage drop vg across a resistor R is equal to the product of the resistor R and the current ig
flowing through it (vg = Rig or ig = vg/R = Guvg). Ohm’s law of circuit theory is a special case
of the constitutive relition given by (1-16). Thus

Field Relation Circuit Relation

1 1-21
9C=U% <:>l.R=§UR=GUR ( )

Another element law is associated with an inductor L and states that the voltage drop across an
inductor is equal to the product of L and the time rate of change of the current through the inductor
(vp = Ldiy/dt). Before proceeding to relate the inductor’s voltage drop to the corresponding field
relation, let us first define inductance. To do this we state that the magnetic flux v, is equal to the
product of the inductance L and the corresponding current i. That is ¥, = Li. The corresponding
field equation of this relation is (1-15). Thus

Field Relation Circuit Relation

B=—pu¥ o Y=L (1-22)

Using (1-5c) and (1-15), we can write for a homogeneous and non-time-varying medium that

0B a 0%
Mi=—=—(nu#) = pn— 1-22
¢ = az(“ ) oy (1-22a)
where M, is defined as the magnetic displacement current density [analogous to the electric
displacement current density $, = 09 /0t = 0(¢%€)/dt = €d%/dt]. With the aid of the right side

of (1-9a) and the circuit relation of (1-22), we can write

d kY. o . o1
- B.ds= —— = —(Lij) = L— = 1-22b
ot //S > dt 8t( iL) ot oL ( )
Using (1-22a) and (1-22b), we can write the following relations:
Field Relation Circuit Relation
o dir, (1-22¢)
‘Mo = —_— :L—
IThYy T uThy

Using a similar procedure for a capacitor C, we can write the field and circuit relations
analogous to (1-22) and (1-22c¢):

Field Relation Circuit Relation
B =c¥ & 9, =Cvu, (1-23)
0¢ 8UC
=e— ic = C—— 1-24
$,=¢ o1 & e ar (1-24)

A summary of the field theory relations and their corresponding circuit concepts are listed in
Table 1-2.
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1.5 BOUNDARY CONDITIONS

As previously stated, the differential form of Maxwell’s equations are used to solve for the field
vectors provided the field quantities are single-valued, bounded, and possess (along with their
derivatives) continuous distributions. Along boundaries where the media involved exhibit discon-
tinuities in electrical properties (or there exist sources along these boundaries), the field vectors
are also discontinuous and their behavior across the boundaries is governed by the boundary
conditions.

Maxwell’s equations in differential form represent derivatives, with respect to the space coor-
dinates, of the field vectors. At points of discontinuity in the field vectors, the derivatives of the
field vectors have no meaning and cannot be properly used to define the behavior of the field
vectors across these boundaries. Instead, the behavior of the field vectors across discontinuous
boundaries must be handled by examining the field vectors themselves and not their derivatives.
The dependence of the field vectors on the electrical properties of the media along boundaries of
discontinuity is manifested in our everyday life. It has been observed that cell phone, radio, or
television reception deteriorates or even ceases as we move from outside to inside an enclosure
(such as a tunnel or a well-shielded building). The reduction or loss of the signal is governed
not only by the attenuation as the signal/wave travels through the medium, but also by its behav-
ior across the discontinuous interfaces. Maxwell’s equations in integral form provide the most
convenient formulation for derivation of the boundary conditions.

1.5.1 Finite Conductivity Media

Initially, let us consider an interface between two media, as shown in Figure 1-4a, along which
there are no charges or sources. These conditions are satisfied provided that neither of the two
media is a perfect conductor or that actual sources are not placed there. Media 1 and 2 are
characterized, respectively, by the constitutive parameters ¢y, ;1,07 and &, (2, 0s.

At a given point along the interface, let us choose a rectangular box whose boundary is denoted
by Cy and its area by Sy. The x, y, z coordinate system is chosen to represent the local geometry
of the rectangle. Applying Maxwell’s equation 1-9a, with M; = 0, on the rectangle along Cy and

on Sy, we have
0
jg %-d!:——/ B.ds (1-25)
Co ot So

As the height Ay of the rectangle becomes progressively shorter, the area Sy also becomes
vanishingly smaller so that the contributions of the surface integral in (1-25) are negligible. In
addition, the contributions of the line integral in (1-25) along Ay are also minimal, so that in the
limit (Ay — 0), (1-25) reduces to

%1 °ﬁxA)C - %2-ﬁxAx =0

€1 — €y =0= €, =€y (1-26)

or

nx (@ —%)=0 01,0, are finite (1-26a)

In (1-26), €, and €, represent, respectively, the tangential components of the electric field in
media 1 and 2 along the interface. Both (1-26) and (1-26a) state that the tangential components
of the electric field across an interface between two media, with no impressed magnetic current
densities along the boundary of the interface, are continuous.
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A

(b)

Figure 1-4 Geometry for boundary conditions of tangential and normal components. (a) Tangential.
(b) Normal.

Using a similar procedure on the same rectangle but for (1-10), assuming $; =0, we can write
that
Hir — Ho =0 = ¥y = oy (1-27)

or

nx (# —#,)=0 01,0, are finite (1-27a)

which state that the tangential components of the magnetic field across an interface between two
media, neither of which is a perfect conductor, are continuous. This relation also holds if either
or both media possess finite conductivity. Equations 1-26a and 1-27a must be modified if either
of the two media is a perfect conductor or if there are impressed (source) current densities along
the interface. This will be done in the pages that follow.

In addition to the boundary conditions on the tangential components of the electric and mag-
netic fields across an interface, their normal components are also related. To derive these relations,
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let us consider the geometry of Figure 1-4b where a cylindrical pillbox is chosen at a given point
along the interface. If there are no charges along the interface, which is the case when there are
no sources or either of the two media is not a perfect conductor, (1-11a) reduces to

ﬂ D.-ds=0 (1-28)
ApAl

As the height Ay of the pillbox becomes progressively shorter, the total circumferential area A
also becomes vanishingly smaller, so that the contributions to the surface integral of (1-28) by
A are negligible. Thus (1-28) can be written, in the limit (Ay — 0), as

@,-4,4) — By 2,49 = 0
gb2}1 - @in =0= gb2}1 = gb1n (1_29)

or

(@ —D)=0 01,0, are finite (1-29a)

In (1-29), 9, and %,, represent, respectively, the normal components of the electric flux density
in media 1 and 2 along the interface. Both (1-29) and (1-29a) state that the normal components
of the electric flux density across an interface between two media, both of which are imperfect
electric conductors and where there are no sources, are continuous. This relation also holds if
either or both media possess finite conductivity. Equation 1-29a must be modified if either of the
media is a perfect conductor or if there are sources along the interface. This will be done in the
pages that follow.
In terms of the electric field intensities, (1-29) and (1-29a) can be written as

& £
0260y = 161, = €y = s—l%ln =€), = f%zn (1-30)
2 1

(6% — %) =0 01,0, are finite (1-30a)

which state that the normal components of the electric field intensity across an interface are
discontinuous.

Using a similar procedure on the same pillbox, but for (1-12) with no charges along the
interface, we can write that

Bon — Bin = 0= Bop = By, (1-31)

n-(B, —B;) =0 (1-31a)

which state that the normal components of the magnetic flux density, across an interface between
two media where there are no sources, are continuous. In terms of the magnetic field intensities,
(1-31) and (1-31a) can be written as

M1 M2
MZ%Zn = Ml%ln = %Zn = E%ln = %ln = M_%Zn (1'32)
1

- (¥ — 11%,) =0 (1-32a)

which state that the normal components of the magnetic field intensity across an interface are
discontinuous .
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1.5.2 Infinite Conductivity Media

If actual electric sources and charges exist along the interface between the two media, or if either
of the two media forming the interface displayed in Figure 1-4 is a perfect electric conductor
(PEC), the boundary conditions on the tangential components of the magnetic field [stated by
(1-27a)] and on the normal components of the electric flux density or normal components of
the electric field intensity [stated by (1-29a) or (1-30a)] must be modified to include the sources
and charges or the induced linear electric current density ($,) and surface electric charge density
(7,,)- Similar modifications must be made to (1-26a), (1-31a), and (1-32a) if magnetic sources
and charges exist along the interface between the two media, or if either of the two media is a
perfect magnetic conductor (PMC).

To derive the appropriate boundary conditions for such cases, let us refer first to Figure 1-
4a and assume that on a very thin layer along the interface there exists an electric surface
charge density ¢, (C/m?) and linear electric current density $. (A/m). Applying (1-10) along the
rectangle of Flgure 1-4a, we can write that

a
%-d(:/ $,-ds + — /gb-ds (1-33)
Co So ot So

In the limit as the height of the rectangle is shrinking, the left side of (1-33) reduces to

lim ¢ %-de= (% —K)-4, Ax (1-33a)
Ay—0 Cy

Since the electric current density $;. is confined on a very thin layer along the interface, the first
term on the right side of (1-33) can be written as

lim $ic-ds
Ay—0 So

= lim [$;. -4, AxAy] = lim [($;.Ay)-4,Ax] = $ -4, Ax (1-33b)
Ay—0 Ay—0

Since Sy becomes vanishingly smaller as Ay — 0, the last term on the right side of (1-33) reduces

to
// B.ds = lim —// ‘4,ds =0 (1-33c¢)
Av—)O at So Ay—0 0t So

Substituting (1-33a) through (1-33c) into (1-33), we can write it as

(¥, —%,)-a,Ax = $,-4, Ax

or
(%, —%r)-4, — $,-4, =0 (1-33d)
Since
a, =4, xa, (1-34)
(1-33d) can be written as
(%, — %>)-(a, xa;) — $,-4, =0 (1-35)

Using the vector identity
A-BxC=C-AxB (1-36)
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on the first term in (1-35), we can then write it as
a-[(%, — %) xa,]—$,-4,=0 (1-37)

or
{lay x (% — %)) — $,}-a. =0 (1-37a)

Equation 1-37a is satisfied provided
A, x (%, — %) - $,=0 (1-38)

or
ﬁy X (%2 — %1) = }S (1—38&)

Similar results are obtained if the rectangles chosen are positioned in other planes. Therefore,
we can write an expression on the boundary conditions of the tangential components of the
magnetic field, using the geometry of Figure 1-4a, as

0 (% — %) =g, (1-39)

Equation 1-39 states that the tangential components of the magnetic field across an interface, along
which there exists a surface electric current density $, (A/m), are discontinuous by an amount
equal to the electric current density.

If either of the two media is a perfect electric conductor (PEC), (1-39) must be reduced to
account for the presence of the conductor. Let us assume that medium 1 in Figure 1-4a possesses
an infinite conductivity (o7 = 0o). With such conductivity €; = 0, and (1-26a) reduces to

AXxB=0= %y =0 (1-40)

Then (1-1) can be written as

Vx%lz():—a&;—a;l:%l:O:%l:O (1-41)
provided p; is finite.

In a perfect electric conductor, its free electric charges are confined to a very thin layer on the
surface of the conductor, forming a surface charge density ¢,  (with units of coulombs/square
meter). This charge density does not include bound (polarization) charges (which contribute
to the polarization surface charge density) that are usually found inside and on the surface of
dielectric media and form atomic dipoles having equal and opposite charges separated by an
assumed infinitesimal distance. Here, instead, the surface charge density ¢  represents actual
electric charges separated by finite dimensions from equal quantities of opposite charge.

When the conducting surface is subjected to an applied electromagnetic field, the electric
surface charges are subjected to electric field Lorentz forces. These charges are set in motion and
thus create a surface electric current density $, with units of amperes per meter. The surface
current density $, also resides in a vanishingly thin layer on the surface of the conductor so that
in the limit, as Ay — 0 in Figure 1-4a, the volume electric current density $ (A/m?) reduces to

Al_jrilo(f Ay) =&, (1-42)

Then the boundary condition of (1-39) reduces, using (1-41) and (1-42), to

n x %2 = }x = %21 = }s (1-43)
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which states that the tangential components of the magnetic field intensity are discontinuous next
to a perfect electric conductor by an amount equal to the induced linear electric current density.

The boundary conditions on the normal components of the electric field intensity, and the
electric flux density on an interface along which a surface charge density ¢, resides on a very
thin layer, can be derived by applying the integrals of (1-11a) on a cylindrical pillbox as shown
in Figure 1-4b. Then we can write (1-11a) as

lim @ ds= lim /// g dv (1-44)
Ay—=0JJ A, A, Ay—0 y ey

Since the cylindrical surface A; of the pillbox diminishes as Ay — 0, its contributions to the
surface integral vanish. Thus we can write (1-44) as

(@~ ) Ao = lim [(7, AV)A] = 7, Ao (1-45)

which reduces to

0 (B - D) =g, = Doy —Din =g, (1-45a)

Equation 1-45a states that the normal components of the electric flux density on an interface,
along which a surface charge density resides, are discontinuous by an amount equal to the surface
charge density.

In terms of the normal components of the electric field intensity, (1-45a) can be written as

fl-(é‘z%z — 81%1) = (/es (1—46)

which also indicates that the normal components of the electric field are discontinuous across a
boundary along which a surface charge density resides.

If either of the media is a perfect electric conductor (PEC) (assuming that medium 1 possesses
infinite conductivity o) = 00), (1-45a) and (1-46) reduce, respectively, to

n-%, = T s = 9, = T s (1-47a)

n-%, = 7/&?/82 = €y, = y/es/f)z (1-47b)

Both (1-47a) and (1-47b) state that the normal components of the electric flux density, and corre-
sponding electric field intensity, are discontinuous next to a perfect electric conductor.

1.5.3 Sources Along Boundaries

If electric and magnetic sources (charges and current densities) are present along the interface
between the two media with neither one being a perfect conductor, the boundary conditions on
the tangential and normal components of the fields can be written, in general form, as

X (8 —B)) = M, (1-482)
nx (¥ —%) =g (1-48b)
(@D — D) =g, (1-48¢)

(@ - B) =g (1-48d)
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TABLE 1-3 Boundary conditions on instantaneous electromagnetic fields

Finite
conductivity media, Medium 1 of Medium 1 of
no sources or infinite electric infinite
charges conductivity magnetic
01,02 F# 00 @& =%,=0 conductivity
3 =09 =0 o=o0050#00 (& =% =0
General My=00 =0 M=09 =0 $ =0g =0
Tangential —Ax & -%)=M, H1x@E —-%)=0 nx% =0 —nx% =M,
electric field
intensity
Tangential Ax (#,—H)=%, fHaxH,—%,)=0 nx# =4, Ax =0
magnetic field
intensity
Normal electric ﬁ~(932—9b1)=%5 n- (D —D)=0 ﬁ~‘§52=%5 n-% =0
flux density
Normal magnetic ~ fi- (B, — B) =7, n- (B, —B;) =0 n-%, =0 ﬁ-%zz/ms

flux density

where (M, $,) and (050 .y) ATC the magnetic and electric linear (per meter) current and surface
(per square meter) charge densities, respectively. The derivation of (1-48a) and (1-48d) proceeds
along the same lines, respectively, as the derivation of (1-48b) and (1-48c) in Section 1.5.2, but
begins with (1-9a) and (1-12).

A summary of the boundary conditions on all the field components is found in Table 1-3,
which also includes the boundary conditions assuming that medium 1 is a perfect magnetic
conductor (PMC). In general, a magnetic conductor is defined as a material inside of which both
time-varying electric and magnetic fields vanish when it is subjected to an electromagnetic field.
The tangential components of the magnetic field also vanish next to its surface. In addition, the
magnetic charge moves to the surface of the material and creates a magnetic current density that
resides on a very thin layer at the surface. Although such materials do not physically exist, they
are often used in electromagnetics to develop electrical equivalents that yield the same answers
as the actual physical problems. PMCs can be synthesized approximately over a limited frequency
range (band-gap); see Section 8.8.

1.6 POWER AND ENERGY

In a wireless communication system, electromagnetic fields are used to transport information over
long distances. To accomplish this, energy must be associated with electromagnetic fields. This
transport of energy is accomplished even in the absence of any intervening medium.

To derive the equations that indicate that energy (and forms of it) is associated with electro-
magnetic waves, let us consider a region V characterized by ¢, t, o and enclosed by the surface §,
as shown in Figure 1-5. Within that region there exist electric and magnetic sources represented,
respectively, by the electric and magnetic current densities §; and M;. The fields generated by
$, and M; that exist within S are represented by €, #. These fields obey Maxwell’s equations,
and we can write using (1-1) and (1-2) that

0B 0%
VX%:—MI'—EZ—MZ'—ME:—M[—.M@ (1-493)
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Figure 1-5 Electric and magnetic fields within S generated by $; and M, .

0D 0%
VX%=§i+$c+—t=9i+‘7%+8—_$i+$c+$d

a at
Scalar multiplying (1-49a) by # and (1-49b) by €, we can write that
x-(VxE) =—-% (M + M)
E-(VxH)=%-($; +8 +30
Subtracting (1-50b) from (1-50a) reduces to
(VB —B(VXH)=—KH-(M +My)—B-(F, + 5. +3)
Using the vector identity
V.(AxB)=B-(VxA)—A-(V xB)
on the left side of (1-51), we can write that
V-@x¥)=—-%-(M; + M) —8-(F; + 3.+ 3

or

V- @ExH)+%,-(M; +My)+8-($ +F.+3,)=0

Integrating (1-53) over the volume V leads to

/// V-(%x%)dv:—// (- (M; +My) +8-($, + 3.+ F)]dv
\%4 \4

Applying the divergence theorem (1-8) on the left side of (1-54) reduces it to

ﬂs(‘sx%).dh—/f [%-(M; +My) +8-(F; +F.+F)]dv
1%

or

ﬂs(‘z x %)-ds+// [9- (i + My + 8- ($, + F. + $)]dv =0
1%

(1-49b)

(1-50a)
(1-50b)

(1-51)

(1-52)

(1-53)

(1-53a)

(1-54)

(1-55)

(1-55a)

Equations 1-53a and 1-55a can be interpreted, respectively, as the differential and integral forms
of the conservation of energy. To accomplish this, let us consider each of the terms included in

(1-55a).
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The integrand, in the first term of (1-55a), has the form
P=8x¥% (1-56)

where & is known as the Poynting vector. It has the units of power density (watts/square meter),
since € has units of volts/meter and % has units of ampere/meter, so that the units of & are
volts - ampere/meter? = watts/meter”. Thus the first term of (1-55a), written as

@gzﬂ(ﬁx%)-ds=ﬂ & ds (1-57)
S S

represents the total power %, exiting the volume V bounded by the surface S.
The other terms in (1-55a), which represent the integrand of the volume integral, can be written
as

So=—(H My +B-8) (1-58a)
IR % 1 9w 9 (1 ]
KMy =K — = — = ~p— = — (=¥ ) = —w,, 1-58b
d or M TP T (2“ ) T (1-586)
), =8-$.=%-(08) =0€ (1-58¢)
Bl 9% 1 9€* 9 (1 3
€-9,=%— =8 — =-c—=—[=6€* | = —w, (1-58d)
at ot 2 ot ar \2 at
where
1 on . . 3
twy = 3 UH* = magnetic energy density(J/m”) (1-58e)
1
we = 55%2 = electric energy density(J /m3) (1-58f)
Soo = —(®-M; +€-$;) = supplied power density(W/m3) (1-58g)
Jog = o€’ = dissipated power density(W/m?) (1-58h)

Integrating each of the terms in (1-58a) through (1-58d), we can write the corresponding forms

as
@Sz—/// (%-.M.,-—}—‘K-}i)dv:////asdv (1-59a)
|4 \%

_ 9 L oggp = O _ 9 i
//V(%-Md)dv = Efffv FHIC dv = o ///V o dv = 8t°wm (1-59b)
97>d=// (%-gc)dvszf o%zdvz// /oy dv (1-59¢)

\4 %4 Vv

_ 9 g2y, 0 _ 9 i

///V(%-}d)dv = E///V Se€ dv = o ff/v wedv = W, (1-59d)
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where W, = magnetic energy (J)
W, = electric energy (J)
P = supplied power (W)
P, = exiting power (W)
P, = dissipated power (W)

Using (1-57) and (1-59a) through (1-59d), we can write (1-55a) as

d
Pe— P+ Py + a—t(We +W,)=0 (1-60)

or
a
gj)x = @)e + E)-Pd + E(We +0Wm) (1'603)

which is the conservation of power law. This law states that within a volume V', bounded by S,
the supplied power % is equal to the power P, exiting S plus the power P, dissipated within
that volume plus the rate of change (increase if positive) of the electric (‘W',) and magnetic (W',)
energies stored within that same volume.

A summary of the field theory relations and their corresponding circuit concepts is found listed
in Table 1-2.

1.7 TIME-HARMONIC ELECTROMAGNETIC FIELDS

Maxwell’s equations in differential and integral forms, for general time-varying electromagnetic
fields, were presented in Sections 1.2.1 and 1.2.2. In addition, various expressions involving
and relating the electromagnetic fields (such as the constitutive parameters and relations, circuit
relations, boundary conditions, and power and energy) were also introduced in the preceding
sections. However, in many practical systems involving electromagnetic waves, the time variations
are of cosinusoidal form and are referred to as time-harmonic. In general, such time variations
can be represented by' ¢/, and the instantaneous electromagnetic field vectors can be related to
their complex forms in a very simple manner. Thus for time-harmonic fields, we can relate the
instantaneous fields, current density and charge (represented by script letters) to their complex
forms (represented by roman letters) by

B(x,y,2;1) = Re[E(x,y,2)e/ '] (1-61a)
%(x.y.z;1) = Re[H(x,y,z)e/”"] (1-61b)
B(x,y,z; 1) = Re[D(x,y,z)e/"] (1-61c)
B(x,y,2:1) = Re[B(x,y,2)e/"] (1-61d)
$x.y.z: 1) = Re[J(x,y,2)e/”] (1-61e)
g(x,y,2:1) = Re[q(x,y,z)e/"] (1-61f)

where €,%,9, R, $, and ¢ represent the instantaneous field vectors, current density and charge,
while E, H, D, B, J, and g represent the corresponding complex spatial forms which are only
a function of position. In this book we have chosen to represent the instantaneous quantities by
the real part of the product of the corresponding complex spatial quantities with ¢/®’. Another

! Another representation form of time-harmonic variations is e 7' (most scientists prefer ¢’ or e ' where i = /—1).
Throughout this book, we will use the ¢/’ form, which when it is not stated will be assumed. The e ~7¢' fields are related
to those of the ¢/’ form by the complex conjugate.
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option would be to represent the instantaneous quantities by the imaginary part of the products.
It should be stated that throughout this book the magnitudes of the instantaneous fields represent
peak values that are related to their corresponding root-mean-square (rms) values by the square
root of 2 (peak = +/2rms). If the complex spatial quantities can be found, it is then a very simple
procedure to find their corresponding instantaneous forms by using (1-61a) through (1-61f). In
what follows, it will be shown that Maxwell’s equations in differential and integral forms for
time-harmonic electromagnetic fields can be written in much simpler forms using the complex
field vectors.

1.7.1  Maxwell’s Equations in Differential and Integral Forms

It is a very simple exercise to show that, by substituting (1-61a) through (1-61f) into (1-1) through
(1-4) and (1-6), Maxwell’s equations and the continuity equation in differential form for time-
harmonic fields can be written in terms of the complex field vectors as shown in Table 1-4. Using
a similar procedure, we can write the corresponding integral forms of Maxwell’s equations and
the continuity equation listed in Table 1-1 in terms of the complex spatial field vectors as shown
in Table 1-4. Both of these derivations have been assigned as exercises to the reader at the end
of the chapter.

By examining the two forms in Table 1-4, we see that one form can be obtained from the
other by doing the following:

1. Replace the instantaneous field vectors by the corresponding complex spatial forms, or vice
versa.
2. Replace 9/t by jw(d/0t = jw), or vice versa.

The second step is very similar to that followed in circuit analysis when Laplace transforms are
used to analyze RLC a.c. circuits. In these analyses d/d¢ is replaced by s (d/9t = s). For steady-
state conditions d/dt is replaced by jw(9/0t = s = jw). The reason for using Laplace transforms
is to transform differential equations to algebraic equations, which are simpler to solve. The same
intent is used here to write Maxwell’s equations in forms that are easier to solve. Thus, if it is
desired to solve for the instantaneous field vectors of time-harmonic fields, it is easier to use
the following two-step procedure, instead of attempting to do it in one step using the general
instantaneous forms of Maxwell’s equations:

1. Solve for the complex spatial field vectors, current densities and charges (E, H, D, B, J,
M, g), using Maxwell’s equations from Table 1-4 that are written in terms of the complex
spatial field vectors, current densities and charges.

2. Determine the corresponding instantaneous field vectors, current densities and charges using
(1-61a) through (1-61f).

Step 1 is obviously the most difficult, and it is often the only step needed. Step 2 is straight-
forward, and it is often omitted. In practice, the time variations of ¢/“' are stated at the outset,
but then are suppressed.

1.7.2 Boundary Conditions

The boundary conditions for time-harmonic fields are identical to those of general time-varying
fields, as derived in Section 1.5, and they can be expressed simply by replacing the instantaneous
field vectors, current densities and charges in Table 1-3 with their corresponding complex spatial
field vectors, current densities and charges. A summary of all the boundary conditions for time-
harmonic fields, referring to Figure 1-4, is found in Table 1-5.

In addition to the boundary conditions found in Table 1-5, an additional boundary condition
on the tangential components of the electric field is often used along an interface when one of
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TABLE 1-5 Boundary conditions on time-harmonic electromagnetic fields

Finite
conductivity media, Medium 1 of Medium 1 of
no sources or infinite electric infinite
charges conductivity magnetic
01,02 # 00 (Eit=H; =0 conductivity
Js=M; =0 op=o00;0y#00 (Eit=H;=0)
General Ges = qms = 0 M, = 0; qms = 0 Js = 0; Ges = 0
Tangential —nx (E; —E;) = Mg nx (E,—E;)=0 nxE,=0 —i x E; = M
electric field
intensity
Tangential nx (H, —H) =J; nxMH,—H)=0 i x Hy = J nxH, =0
magnetic field
intensity
Normal electric N (D) —Dy) =qes n-M,—D;)) =0 D) =g n-D,=0
flux density
Normal magnetic - (B, —B)) =qps fi-(B,—B;)=0 n-B,=0 n- By = g

flux density

the two media is a very good conductor (material that possesses large but finite conductivity).
This is illustrated in Figure 1-6 where it is assumed that medium 1 is a very good conductor
whose surface, as will be shown in Section 4.3.1, exhibits a surface impedance Z; (ohms) given,
approximately, by (4-42) or

Zo =R+ X = (1+)), | 2 (1-62)
20’1
with equal real and imaginary (inductive) parts (o) is the conductivity of the conductor). At the
surface there exists a linear current density J, (A/m) related to the tangential magnetic field in
medium 2 by
Js ~ i x Hp (1-63)

Since the conductivity is finite (although large), the most intense current density resides at the
surface, and it diminishes (in an exponential form) as the observations are made deeper into the
conductor. This is demonstrated in Example 5.7 of Section 5.4.1. In addition, the electric field
intensity along the interface cannot be zero (although it may be small). Thus, we can write that

Figure 1-6 Surface impedance along the surface of a very good conductor.



TIME-HARMONIC ELECTROMAGNETIC FIELDS 25

the tangential component of the electric field in medium 2, along the interface, is related to the
electric current density J; and tangential component of the magnetic field by

w
E,=2J, =ZhxH,=h x H /%(l—i—j) (1-64)
1

For time-harmonic fields, the boundary conditions on the normal components are not inde-
pendent of those on the tangential components, and vice-versa, since they are related through
Maxwell’s equations. In fact, if the tangential components of the electric and magnetic fields sat-
isfy the boundary conditions, then the normal components of the same fields necessarily satisfy
the appropriate boundary conditions. For example, if the tangential components of the electric
field are continuous across a boundary, their derivatives (with respect to the coordinates on the
boundary surface) are also continuous. This, in turn, ensures continuity of the normal component
of the magnetic field.

To demonstrate that, let us refer to the geometry of Figure 1-6 where the local surface along
the interface is described by the x, z coordinates with y being normal to the surface. Let us
assume that £, and E, are continuous, which ensures that their derivatives with respect to x and
7z (0E;/0x,0E,/0z,0E,/dx,dE, /dz) are also continuous. Therefore, according to Maxwell’s curl
equation of the electric field

a, a, a
_ A A _ |0 Bl
VXxE=Vx@QkE +3,E)=|_ o —
X 0z
E. 0 E,
—a,0) +a (2 05 s )
- ANEY ax ‘
. (0E, OFE, .
VxE=4,| — — = —jouH (1-65)
0z dax
or
B H 1 (0E, OE, (1-652)
, — = —— — - a
y = B jo \ 0z ox

According to (1-65a), By, the normal component of the magnetic flux density along the interface,

is continuous across the boundary if dE, /dz and dE, /dx are also continuous across the boundary.
In a similar manner, it can be shown that continuity of the tangential components of the

magnetic field ensures continuity of the normal component of the electric flux density (D).

1.7.3 Power and Energy

In Section 1.6, it was shown that power and energy are associated with time-varying electromag-
netic fields. The conservation-of-energy equation, in differential and integral forms, was stated
respectively by (1-53a) and (1-55a). Similar equations can be derived for time-harmonic electro-
magnetic fields using the complex spatial forms of the field vectors. Before we attempt this, let
us first rewrite the instantaneous Poynting vector & in terms of the complex field vectors.

The instantaneous Poynting vector was defined by (1-56) and is repeated here as

F=¢x¥ (1-66)

The electric and magnetic fields of (1-61a) and (1-61b) can also be written as
B(x,y,2:1) = Re[E(x,y,2)e/”] = J[E/ + (Ee/*)*] (1-67a)
#H(x.y.z:1) = Re[H(x,y,z)e/ ] = J[H/” + (He/*')*] (1-67b)
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where the asterisk (*) indicates complex conjugate. Substituting (1-67a) and (1-67b) into (1-66),
we have that

$ =% x % = LB + Ere 7o) x J(Hel® 4 HreT*)
= 1 {3[E x H* + E* x H] + }[E x He/>*' + E* x H*e /2']}
¢ = L{L[E x H' + (E x H)*] + 1[E x He'™' + (E x He'>)*]}  (1-68)

Using the equalities (1-67a) or (1-67b) in reverse order, we can write (1-68) as
g = %[Re(E x H*) + Re(E x He/?*)] (1-69)

Since both E and H are not functions of time and the time variations of the second term are twice
the frequency of the field vectors, the time-average Poynting vector (average power density) over
one period is equal to

v =S = JRe[E x H*] (1-70)

Since E x H* is, in general, complex and the real part of E x H* represents the real part of
the power density, what does the imaginary part represent? As will be seen in what follows, the
imaginary part represents the reactive power. With (1-69) and (1-70) in mind, let us now derive
the conservation-of-energy equation in differential and integral forms using the complex forms
of the field vector.

From Table 1-4, the first two of Maxwell’s equations can be written as

VxE=-M;, —jouH (1-71a)
VxH=J,+J.+jwcE =]); + cE +jwecE (1-71b)
Dot multiplying (1-71a) by H* and the conjugate of (1-71b) by E, we have that
H'-(VxE)=-H""M; — jouH-H* (1-72a)
E-(VxH)=E.J; + cE-E* — jowcE-E* (1-72b)
Subtracting (1-72a) from (1-72b), we can write that
E-(VxH") —H*-(V xE)
=H*"M; +E-J + ocE-E" — jocE-E* + jouH-H* (1-73)
Using the vector identity (1-52) reduces (1-73) to
V.H* xE) =H"M; +E-J; + 0|E|* + jou|H* — joe|E] (1-74)

or
~V.(ExH)=H"M, +E-J: + o|E* +jow(uH* — ¢|E[?) (1-74a)

Dividing both sides by 2, we can write that

—V.(1E x H*) = 1H*.M; + 1E.J; + Lo |E]> + j20 (S u|H]? — 1e|E]?) (1-75)

For time-harmonic fields, (1-75) represents the conservation-of-energy equation in differential
form.

To verify that (1-75) represents the conservation-of-energy equation in differential form, it is
easier to examine its integral form. To accomplish this, let us first take the volume integral of
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both sides of (1-75) and then apply the divergence theorem (1-8) to the left side. Doing both of
these steps reduces (1-75) to

—/// V-(%ExH*)dv:—ﬂ(%ExH*)-ds
\%4 S
=1// H*M; +E-J) dv
2 )0y

1
+5/// o|El>dv +j2w// (uIH]> — 1e|E|») dv
\4 \%4
1
——// (H*.Mi+E.J;‘)du=ﬂ (%EXH*)'dS+%f// o|E*dv
2 v s v

or

+j2a)/// (GuHP? — Le|E|») dv (1-76)
14
which can be written as o
Py =P, 4 Py +j20(W, —W,) (1-762)
where
1
Py = 5 /// (H*-M; +E-J!)dv = supplied complex power (W) (1-76b)
v
1
P, = ﬂ (EE X H*) - ds = exiting complex power (W) (1-76c)
s
1
P; = 3 /// o|EPdv = dissipated real power (W) (1-76d)
v
W = / / / i,ulH|2 dv = time-average magnetic energy (J) (1-76e)
v
W, = / / /V ‘]—18|E|2 dv = time-average electric energy (J) (1-76f)

For an electromagnetic source (represented in Figure 1-5 by electric and magnetic current densities
Ji and M;, respectively) supplying power in a region within S, (1-76) and (1-76a) represent the
conservation-of-energy equation in integral form. Now, it is also much easier to accept that (1-
75), from which (1-76) was derived, represents the conservation-of-energy equation in differential
form. In (1-76a), P; and P, are in general complex and P, is always real, but the last two terms
are always imaginary and represent the reactive power associated, respectively, with magnetic
and electric fields. It should be stated that for complex permeabilities and permittivities the
contributions from their imaginary parts to the integrals of (1-76e) and (1-76f) should both be
combined with (1-76d), since they both represent losses associated with the imaginary parts of
the permeabilities and permittivities.

It should be stated that the imaginary term of the right side of (1-76), including its signs, which
represents the complex stored power (inductive and capacitive), does conform to the notation of
conventional circuit theory. For example, defining the complex power P, assuming V and I are
peak values, as

p— %(w*) (1-77)
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the complex power of a series circuit consisting of a resistor R in series with an inductor L, with
a current / through both R and L and total voltage V across both the resistor and inductor, can
be written, based on (1-77), as

1 1 1 1
P=—(VI")= =(ZDI* = =Z|I|*> = =(R + jowL)|I | 1-77
2( ) 2( ) 3 || 2( +joL)|I| (1-77a)

The imaginary part of (1-77a) is positive. Similarly, for a parallel circuit consisting of a conductor
G in parallel with a capacitor C, with a voltage V across G and C and a total current /(/ =
Ig + I¢, where I is the current through the conductor and /¢ is the current through the capacitor),
its complex power P, based on (1-77), can be expressed as

1 1 1 1 1
P=Z(VI")=3VV) = EY*|V|2 =5(G +joC) |V = G —joO)|V[*  (1-77b)

TABLE 1-6 Relations between time-harmonic electromagnetic field and steady-state a.c. circuit

theories

Field theory

Circuit theory

1. E (electric field intensity)

. H (magnetic field intensity)
. D (electric flux density)

. B (magnetic flux density)

. J (electric current density)

AN L B W

. M (magnetic current density)

(electric displacement
current density)
(magnetic displacement
current density)

. Constitutive relations

~

Jis =jweE

]

.My =jouH

\O

_ (electric conduction
@ Jo = oF current density)
(b) D = ¢E (dielectric material)

(c) B = uH (magnetic material)

10. % E.di — —ja)// B. ds (MaX\yell—Faraday
C s equation)

90,
11# Ji(r'ds:_jwﬂ/ qevdv:_ Q
S 1% at

(continuity equation)
12. Power and energy densities

1

(a) 3 ﬂ (E x H*) - ds (complex power)
N

1

(b) 5 /// o|E[*dv (dissipated real power)
v

1 ime- i
© X e|Edv (time-average electric

4 v stored energy)

1 2, (time-average magnetic
@ 4 ///;/ #Hdv stored energy)

1. v (voltage)

2. i (current)

3. gev (electric charge density)
4. gy (magnetic charge density)
5. i, (electric current)

6. i, (magnetic current)

(current through a

T.i=joCy capacitor)
_ . . (voltage across an
8. v=joli inductor)

9. Element laws

1
()i =Gv= Ev (Ohm’s law)
(b) Q. = Cv (charge in a capacitor)
(c) ¥ = Li (flux of an inductor)

(Kirchhoff’s

10.2 v =—joli=0 voltage law)

11.Y i = —jw0, = —jwCsv =0
(Kirchoff’s current law)

12. Power and energy
(v and i represent peak values)
1 . (power-voltage-current

@ P = Evl relation)

1 Ui (power dissipated
2 R in a resistor)

I ., (energy stored in a
© ch capacitor)

1, (energy stored in an

(@ ZLI inductor)

(b) Py = 2Gv =
d_i v =
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The imaginary part of (1-77b) is negative. Therefore the imaginary parts of (1-77a) and (1-
77b) conform, respectively, to the notation (positive and negative) of the imaginary parts of the
complex power in (1-76) due to the H and E fields.

The field and circuit theory relations for time-harmonic electromagnetic fields are similar to
those found in Table 1-2 for the general time-varying electromagnetic fields, but with the instan-
taneous field quantities (represented by script letters) replaced by their corresponding complex
field quantities (represented by roman letters) and with d/d¢ replaced by jw (9/9t = jw). These
are shown listed in Table 1-6.

Over the years many excellent introductory books on electromagnetics, [1] through [28], and
advanced books, [29] through [40], have been published. Some of them can serve both purposes,
and a few may not now be in print. Each is contributing to the general knowledge of electro-
magnetic theory and its applications. The reader is encouraged to consult them for an even better
understanding of the subject.

1.8 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

e Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS
1.1. Derive the differential form of the continuity first octant with three edges coincident with
equation, as given by (1-6), from Maxwell’s the x,y,z axes and one corner at the origin.
equations 1-1 through 1-4. Each side of the cube is 1 m long.
1.2. Derive the integral forms of Maxwell’s 1.4. An infinite planar interface between media,

as shown in the figure, is formed by having
air (medium #1) on the left of the inter-
face and lossless polystyrene (medium #2)
(with a dielectric constant of 2.56) to the

equations and the continuity equation, as
listed in Table 1-1, from the corresponding
ones in differential form.

1.3. The electric flux density inside a cube is right of the interface. An electric surface
given by: charge density g.; = 0.2 C/m? exists along
(@ D=2a,(3 +x) the entire interface.

The static electric flux density inside the

_ 3 2
(®) D =2a,(4+y7) polystyrene is given by

Find the total electric charge enclosed inside
the cubical volume when the cube is in the D, = 64, + 34, C/m?



1.5.

Determine the corresponding vector:

(a) Electric field intensity inside the
polystyrene.

(b) Electric polarization vector inside the
polystyrene.

(c) Electric flux density inside the air
medium.

(d) Electric field intensity inside the air
medium.

(e) Electric polarization vector inside the air
medium.

Leave your answers in terms of &,, i, -

qe:
X A
Air Polystyrene
€, Ity 2.56¢,, 1,
y @—>z
#1 | > 0 #2
Figure P1-4

An infinite planar interface between media,
as shown in the figure, is formed by having
air (medium #1) on the left of the interface
and lossless magnetic material (medium #2)
(with a relative permeability of 4 and rela-
tive permittivity of 2.56) to the right of the
interface.

The static magnetic field intensity inside the
air is given by

H, =34, + 94, A/m
A
Air Magnetic material
6 1ty 2.46¢,, 4,
Y&———> 2
#1 #2

Figure P1-5

1.6.
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Determine the corresponding vector:

(a) Magnetic flux density in the air medium.

(b) Magnetic polarization in the air
medium.

(c) Magnetic field intensity in the magnetic
material.

(d) Magnetic flux density in the magnetic
material.

(e) Magnetic polarization in the magnetic
material.
Leave your answers in terms of &g, .

A static electric field of intensity/strength E,
is established inside a free-space medium as
shown below. The static electric field inten-
sity is oriented at an angle of 30° relative to
the principal z axis. A semi-infinite dielec-
tric slab of relative permittivity of 4 and
relative permeability of unity is immersed
into the initially established static electric
field, as shown below.

Determine the:

(a) Total electric field intensity E; and
total electric flux density D; within the
dielectric slab. Leave your answers in
terms of E,, ¢,, 1o, and any constants.

(b) Angle 6 (in degrees).

E;, D,

1.7.

w

o
°
2

€00 o E

Eo0 Mo 480’ Ho

Figure P1-6

A static magnetic field of field inten-
sity/strength H, is established inside a free-
space medium as shown on the next page. The
static magnetic field intensity is oriented at an
angle of 30° relative to the principal z axis.
A semi-infinite magnetic slab of relative per-
meability of 4 and relative permittivity of 9 is
immersed into the initially established static
magnetic field, as shown on the next page.
Determine the:

(a) Total static magnetic field intensity H;
and total static magnetic flux density B
within the magnetic slab. Leave your
answers in terms of Hy, &,, 1, and any
constants.

(b) Angle 6 (in degrees).
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H, B,

1.8.

1.9.

bl"
Y

9¢,. 4u,

Figure P1-7

A dielectric slab, with a thickness of 6 cm
and dielectric constant of 4, is sandwiched
between two different media; free space to
the left and another dielectric, with a dielec-
tric constant of 9, to the right. If the electric
field in the free-space medium is at an angle
of 30° at a height of 3 cm at the lead-
ing interface, as shown in the figure below,
determine the:

(a) Angle o (in degrees, as measured from
the normal to the interface) the electric
field will make in the dielectric medium
to the right of the center slab.

(b) Height & (in cm) the electric field will
have at the trailing interface.

Figure P1-8

The electric field inside a circular cylinder
of radius a and height & is given by

I
I
I
I
I
P E—
& y
X

Figure P1-9

1.10.

1.11.

1.12.

c b
E=4, |-+ —@3z>—h’
: [ R

where ¢ and b are constants. Assuming the
medium within the cylinder is free space,
find the total charge enclosed within the
cylinder.

The static magnetic field on the inside part
of the surface of an infinite length dielec-
tric cylinder of circular cross section of
radius a = 4cm and of magnetic material
with a relative permittivity and permeability
of ¢, =4, u, =9 is given by

H=4,3+4464+4,8 A/m atp=4 cm

The cylinder is surrounded on the outside

with air. Refer to Figure 3-4 for the cylindri-

cal coordinate system and its units vectors.

Determine the:

(a) Magnetic flux density on the inside part
of the surface of the cylinder (p =4~
cm; magnetic material).

(b) Magnetic field on the outside part of the
cylinder surface (o = 41 cm; air).

(c) Magnetic flux density on the outside part
of the cylinder surface (p = 4" cm; air).

<
N [T

Y
=

& Ky

~_

Figure P1-10

The instantaneous electric field inside a
source-free, homogeneous, isotropic, and
linear medium is given by

€ =[a,A(x +y) + 4,B(x — y)]cos(wt)

Determine the relations between A and B.

The magnetic flux density produced on its
plane by a current-carrying circular loop of



1.13.

1.14.

1.15.

1.16.

radius @ = 0.1 m, placed on the xy plane at
z =0, is given by

10—12

B =4,
1425p

cos(15007r1) Wb/m?

where p is the radial distance in cylindrical

coordinates. Find the:

(a) Total flux in the z direction passing
through the loop.

(b) Electric field at any point p within
the loop. Check your answer by using
Maxwell’s equation 1-1.

The instantaneous magnetic flux density in
free space is given by

B = 4, B, cos(2y) sin(wt — 77)
+4,B, cos(2x) cos(wt — 7)

where B, and By are constants. Assum-
ing there are no sources at the observation
points x,y, determine the electric displace-
ment current density.

The displacement current density within a
source-free ($; = 0) cube centered about
the origin is given by

$,=4z7+ ﬁyyz + a,xyz

Each side of the cube is 1 m long and the
medium within it is free space. Find the dis-
placement current leaving, in the outward
direction, through the surface of the cube.

The electric flux density in free space
produced by an oscillating electric charge
placed at the origin is given by
@ 5 1070 1
= arﬂrj COS((,()t — ,37')

where 8 = w,/110&o. Find the time-average
charge that produces this electric flux den-
sity.

The electric field radiated at large distances
in free space by a current-carrying small cir-
cular loop of radius a, placed on the xy plane
at z =0, is given by

cos(wt — Bor)

€ = ﬁ¢E0 sin @ r>a

P
where Ej is a constant, Sy = w./ito€o, I
is the radial distance in spherical coordi-
nates, and 6 is the spherical angle measured
from the z axis that is perpendicular to the

1.17.

1.18.
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plane of the loop. Determine the correspond-
ing radiated magnetic field at large distances
from the loop (r > a).

A time-varying voltage source of v(t) =
10cos(wt) is connected across a paral-
lel plate capacitor with polystyrene (& =
2.560,0 = 3.7x107*S/m) between the
plates. Assuming a small plate separation of
2 c¢cm and no field fringing, determine at:
(a) f =1 MHz

(b) f =100 MHz

the maximum values of the conduction and
displacement current densities within the
polystyrene and compare them.

A dielectric slab of polystyrene (e =
2.56¢p, 0 = o) of height 2h is bounded
above and below by free space, as shown
in Figure P1-18. Assuming the electric field
within the slab is given by

€ = (4,5 + 4,10) cos(wt — px)

where B = w,/[to¢, determine the:

(a) Corresponding magnetic field within the
slab.

(b) Electric and magnetic fields in free
space right above and below the slab.

€0» Mo

=

2.56 &0, 1o j

n 7 2.56¢5 1 V
yd

=Y

1.19.

Z/ €0, Mo

Figure P1-18

A finite conductivity rectangular strip,
shown in Figure P1-19, is used to carry
electric current. Because of the strip’s lossy
nature, the current is nonuniformly dis-
tributed over the cross section of the strip.
The current density on the upper and lower
sides is given by

$ =4a.10* cos(2r x10%r) A/m>

and it rapidly decays in an exponential fash-

ion from the lower side toward the center by
0

the factor ¢ =19V or

$ =4, 10% 1% cos (27 x 10%) A/m?
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A similar decay is experienced by the cur-
rent density from the upper side toward the
center. Assuming no variations of the cur-
rent density with respect to x, determine the
total current flowing through the wire.

1
L_,

ZT |<—5 mm—>| X
Figure P1-19

The instantaneous electric field inside a
conducting rectangular pipe (waveguide) of
width a is given by

€ = 4a,E)sin (zx) cos(wt — B,7)
a

where B, is the waveguide’s phase constant.

Assuming there are no sources within the

free-space-filled pipe determine the:

(a) Corresponding instantaneous magnetic
field components inside the conducting
pipe.

(b) Phase constant ;.

The height of the waveguide is b.

The instantaneous electric field intensity
inside a source-free coaxial line with inner
and outer radii of a and b, respectively, that
is filled with a homogeneous dielectric of
& =2.25¢p, u = [Lo, and o = 0, is given by

€=a, (%) cos(10% — Bz)

where B is the phase constant and p is the

cylindrical radial distance from the center of

the coaxial line. Determine the:

(a) Corresponding instantaneous magnetic
field %€.

(b) Phase constant S.

(c) Displacement current density $,,.

A coaxial line resonator with inner and
outer conductors at ¢ =5 mm and b = 20
mm, and with conducting plates at z =0
and z = ¢, is filled with a dielectric with
g =2.56,u, = 1, and o0 = 0. The instan-
taneous magnetic field intensity inside the

1.23.

1.24.

1.25.

1.26.

1.27.

source-free dielectric medium is given by
2

#H =4, <7) cos (%z) cos(4m x10%1)
0

Find the following:

(a) Electric field intensity within the dielec-
tric.

(b) Surface current density $, at the con-
ductor surfaces at p = a and p = b.

(c) Displacement current density $, at any
point within the dielectric.

(d) Total displacement current flowing
through the circumferential surface of
the resonator.

Using the instantaneous forms of Maxwell’s
equation and the continuity equations listed
in Tables 1-1 and 1-4, derive the correspond-
ing time-harmonic forms (in differential and
integral forms) listed in Table 1-4. Use def-
initions (1-61a) through (1-61f).

Show that the electric and magnetic fields
(1-61a) and (1-61b) can be written, respec-
tively, as in (1-67a) and (1-67b).

The time-harmonic instantaneous electric
field traveling along the z-axis, in a free-
space medium, is given by

B(z.1) = a.E, sin [ (01 — B,2) + (%)]

where E, is a real constant and B, =

W/ Moo

(a) Write an expression for the complex
spatial electric field intensity E(z).

(b) Find the corresponding complex spatial
magnetic field intensity H(z).

(c) Determine the time-average Poynting
vector (average power density) Saye.

An electric line source of infinite length and
constant current, placed along the z axis,
radiates in free space at large distances from
the source (p >> 0) a time-harmonic com-
plex magnetic field given by
e~ Pop
H = a,H ,
NG

p>0

where Hy is a constant, Sy = w./o€g, and p
is the radial cylindrical distance. Determine
the corresponding electric field for p > 0.

The time-harmonic complex electric field
radiated in free space by a linear radiating
element is given by

E=4,E +aEy
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where 4, and &y are unit vectors in the
spherical directions r and 6,Ey is a con-
stant, and By = w./o&o. Determine the cor-
responding spherical magnetic field compo-
nents.

The time-harmonic complex electric field
radiated by a current-carrying small circular
loop in free space is given by

E = 8,500 [1 4 ]e*fﬂO’
r JBor

where 4, is the spherical unit vector in

the ¢ direction, Ey is a constant, and

Bo = w/o€o. Determine the correspond-

ing spherical magnetic field components.

The complex electric field inside an
infinitely long rectangular pipe, with all four
vertical walls perfectly electric conducting,
as shown in Figure P1-29, is given by

E=4a.(1+)sin <%x) sin (%y)

Assuming that there are no sources within
the box and @ = Ay, b = 0.5X¢, and u = o,
where A9 = free space, infinite medium

zl}
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Figure P1-29

1.30.

1.31.
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wavelength, find the:

(a) Conductivity.

(b) Dielectric constant.

of the medium within the box.

A time-harmonic electromagnetic field in
free space is perpendicularly incident upon
a perfectly conducting semi-infinite planar
surface, as shown in Figure P1-30. Assum-
ing the incident E/ and reflected E" complex
electric fields on the free-space side of the
interface are given by

i _ a4 —jBoz
E = aye JPo

r A +j Boz
E —a,e 7 Po

where

Bo = w100

determine the current density J; induced on
the surface of the conducting surface. Eval-
uate all the constants.

4
€0> Mo

Incident

L

B p—
Reflected

4

Figure P1-30

The free-space incident E' and reflected E”
fields of a time-harmonic electromagnetic
field obliquely incident upon a perfectly
conducting semi-infinite planar surface of
Figure P1-31 are given by

E = ﬁyE()e_‘]'BO(x sin0; +z cos 6;)

E = ﬁ),EO[‘he—jlgo(x sin6; —z cos 6;)

Reflected e0 10| o= oo
p—>
y

Incident

Figure P1-31
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where Ey is a constant and By = w./io&o.
Determine the coefficient I'j,.

For Problem 1.31, determine the:

(a) Corresponding incident and reflected
magnetic fields.

(b) Electric current density along the inter-
face between the two media.

Repeat Problem 1.31 when the incident and
reflected electric fields are given by

E' = (4, cost; — 4. sin6;)

x Eoefjﬁo(x sin6; +z cos ;)

E" = (4, cos6; + 4, sin6;)

x FeEoefjﬁo(x sin6; —z cos 0;)

where Ey is a constant and Sy = w./o€0.
Determine the coefficient I', by applying the
boundary conditions on the tangential com-
ponents.

Repeat Problem 1.33 except that I', should
be determined using the boundary condi-
tions on the normal components. Compare
the answer with that obtained in Problem
1.33. Explain.

For Problem 1.33 determine the:

(a) Corresponding incident and reflected
magnetic fields.

(b) Electric current density along the inter-
face between the two media.

A time-harmonic electromagnetic field trav-
eling in free space and perpendicularly inci-
dent upon a flat surface of distilled water
(¢ = 8lgg, & = W), as shown in Figure P1-
36, creates a reflected field on the free-space
side of the interface and a transmitted field
on the water side of the interface. Assum-
ing the incident (EY), reflected (E"), and

Reflected Incident
€0» Mo Y
o) >
e =8lg, . x
Transmitted
n = o

Figure P1-36

1.37.

transmitted (E’) electric fields are given,
respectively, by

E' = a,Ege 77
E" = 4,[Eoe™Fo
E' =4, ToEpe /7
determine the coefficients 'y and Ty. Ey is

a constant, Sy = w./ o0, B = w./IL0E.

When a time-harmonic electromagnetic field
is traveling in free space and is obliquely
incident upon a flat surface of distilled water
(¢ = 8leg, u = o), it creates a reflected
field on the free-space side of the interface
and a transmitted field on the water side of
the interface. Assume the incident, reflected,
and transmitted electric and magnetic fields
are given by

Ei — ﬁy Eoe—jﬁo(x sin 6; +z cos 6;)

H' = (—4, cosf; + 4, sin;)

% @Eoe—jﬂo(x sin6; +z cos 6;)
V o

E = ﬁVFhEOe—jﬁO(x sin6; —z cos 0;)

H" = (4, cos6; + 4, sin6;)

x @FhEoe_jﬂO(x sin; —z cos 6;)
V 1o
. . / )
. —jB (x sin6; 4z £ _gin 9)
Et = ay ThE()e 0 ‘o '
& &
H = (—a 1 - Zsin26; +ﬁz\/zsin9,->
& &
% iThEoe—jﬁo(x sind;+z % — SiI‘l2 9,')
V Ko

W

Reflected

=y

Transmitted

Figure P1-37
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1.42.

where Ej is a constant and By = w./to&o.
Determine the coefficients I', and 7j by
applying the boundary conditions on the tan-
gential components. Evaluate all the con-
stants.

Repeat Problem 1.37 except that I'j, and
T}, should be determined using the bound-
ary conditions on the normal components.
Compare the answers to those obtained in
Problem 1.37. Explain.

Repeat Problem 1.37 when the incident,
reflected, and transmitted electric and mag-
netic fields are given by

E' = (4, cos b, —4, sin6;)

% Eoefjﬂ(](x sinf; +z cos ;)

. R £0 . . )
H = a, fE()e -j Bo (x sin6; +z cos 6;)
"V o

E" = (4, cos §; +4; sin ;)

% FeEOefjﬂo(x sinf; —z cos 6;)

Hr=—ﬁv SireEoefiﬂ()(XSin@f*ZCOSQi)
"V 1o
&0 . ~ €0 .
Et=|:ﬁx 1— sin2g, — a, /jsmgi]
3 &
. . 3 )
—j B xsm9i+~\/m
x T,Epe o €0 2
. : & 2N,
thﬁv\/TTeEoe—Jﬁo(x s1n9;+z\/%—ST9,)
"V Mo

I', and T, should be determined using the
boundary conditions on the tangential com-
ponents.

Repeat Problem 1.39 except that I', and
T, should be determined using the bound-
ary conditions on the normal components.
Compare the answers to those obtained in
Problem 1.39. Explain.

For Problem 1.16 find the:

(a) Average power density at large dis-
tances.

(b) Total power exiting through the surface
of a large sphere of radius r(r > a).

A uniform plane wave traveling in a free
space medium is incident at an oblique angle
6; upon an infinite and flat perfect electric
conductor (PEC,o0 = o0). The normalized
incident and reflected magnetic fields at the
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surface of the PEC (y = 0, on the free space
part of the PEC), are given by

Hincidem(on surface of PEC)
1
- ﬁ(_ﬁx cost; +4a, sin6;)
Hreﬂected(on surface of PEC)
1
- ﬁ(_ﬁx cosf; — 4, sinb;)

Find the total electric current density J;
induced on the surface of the PEC.

Incident
field

Reflected
field

PEC (o = «) [ree space

K >

S

Figure P1-42

1.43. The time-harmonic complex field inside a
source-free conducting pipe of rectangu-
lar cross section (waveguide), shown in
Figure P1-43 filled with free space, is given

by
b4 .
E = 4,Epsin (7x) L
a

0<x<a,0<y<b

7
//
v €0> Mo
7

]l

4

H 7,
S

Figure P1-43
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Ey is a constant, and By =2nw/ro =
w./mogo. For a section of waveguide of
length [ along the z axis, determine the:

where
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(a) Corresponding complex magnetic field.
(b) Supplied complex power.

(c) Exiting complex power.

(d) Dissipated real power.

(e) Time-average magnetic energy.

(f) Time-average electric energy.
Ultimately verify that the conservation-of-
energy equation in integral form is satisfied
for this set of fields inside this section of the
waveguide.

For the waveguide and its set of fields of
Problem 1.43, verify the conservation-of-
energy equation in differential form for any
observation point within the waveguide.

The normalized time-harmonic electric field
inside an air-filled, source-free rectangu-
lar pipe/waveguide of infinite length and
with cross-sectional dimensions of a and b,
whose four walls (left-right, top-bottom) are
perfect electric conductors (PEC, 0 = 00), is
given by

E, = cos(B,x) sin(Byy)
Ey = sin(Bx) cos(Byy)

where B, and B, are real constants. For non-
trivial(nonzero) fields, determine all possible
values of B, in terms of a, and B, in terms
of b.

YA

Figure P1-45

At microwave frequencies, high Q resonant
cavities are usually constructed of enclosed

conducting pipes (waveguides) of different
cross sections. One such cavity is that of
rectangular cross section that is enclosed on
all six sides, as shown in Figure P1-46. One
set of complex fields that can exist inside
such a source-free cavity filled with free
space is given by

. LT LT
E =4,Epsin (—x) sin (—z)
a c

such that

o=o= - JEF (2

where E is a constant and w, is referred to
as the resonant radian frequency. Within the
cavity, determine the:

(a) Corresponding magnetic field.

(b) Supplied complex power.

(c) Dissipated real power.

(d) Time-average magnetic energy.

(e) Time-average electric energy.
Ultimately verify that the conservation of
energy equation in integral form is sat-
isfied for this set of fields inside this
resonant cavity.
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Figure P1-46
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CHAPTER 2
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Electrical Properties of Matter

2.1 INTRODUCTION

Since the late 1990s a renewed interest has been spurred in the application, integration, mod-
eling, and optimization of materials in a plethora of electromagnetic radiation, guiding, and
scattering structures. In particular, material structures whose constitutive parameters (permittiv-
ity and permeability) are both negative, often referred to as a Double Negative (DNG), have
received considerable interest and attention. Artificial magnetic conductors can also be included
in the DNG class of materials. A more inclusive name for all these materials is metamaterials.
It is the class of metamaterials that has captivated the interest and imagination of many leading
researchers and practitioners, scientists, and engineers from academia, industry, and government.
When electromagnetic waves interact with such surfaces, they result in some very unique and
intriguing characteristics and phenomena that can be used, for example, to optimize the per-
formance of antennas, microwave devices, and other electromagnetic wave guiding structures.
While the revitalization of metamaterials introduced a welcomed renewed interest in materials for
electromagnetics, especially for applications related to antennas, microwaves, transmission lines,
scattering, optics, etc., it also brought along some spirited dialogue that will be discussed in more
detail in Section 5.7. The uniqueness of these materials is characterized and demonstrated by
their basic constitutive parameters, such as permittivity, permeability, and conductivity. In order
to appreciate the behavior of materials, it is very important that engineers and scientists under-
stand the very basics of these constitutive parameters from d.c. to 1f frequencies. An in-depth
development of models for these constitutive parameters, from their basic atomic structure to
their interaction with electromagnetic fields, is undertaken in this chapter.

An atom of an element consists of a very small but massive nucleus that is surrounded by
a number of negatively charged electrons revolving about the nucleus. The nucleus contains
neutrons, which are neutral particles, and protons, which are positively charged particles. All
matter is made up of one or more of the 118 different elements that are now known to exist.
Elements 112 to 118 have been discovered but not confirmed. Of this number, only 92 occur
naturally. If the substance in question is a compound, it is composed of two or more different
elements. The smallest constituent of a compound is a molecule, which is composed of one or
more atoms held together by the short-range forces of their electrical charges.

For a given element, each of its atoms contains the same number of protons in its nucleus.
Depending on the element, that number ranges from 1 to 118 and represents the atomic number
of the element. For an atom in its normal state, the number of electrons is also equal to the atomic
number. The revolving electrons that surround the nucleus exist in various shells, and they exert
forces of repulsion on each other and forces of attraction on the positive charges of the nucleus.

39
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Third shell
Nucleus (3 electrons)
(13 protons
14 neutrons) Second shell

(8 electrons)

Nucleus (1 proton)

O First shell
First shell (2 electrons)
(1 electron) e
(a) (b)
Fourth shell
Second shell (8 electrons) (4 electrons) _ .
Nucl Third shell
) Third shell ucleus (18 electrons) Second shell
First shell (2 electrons) (4 electrons) (32 protons (8 electrons)
41 neutrons)

Nucleus
(14 protons
14 neutrons)

First shell
(2 electrons)

(c) (d)

Figure 2-1 Atoms of representative elements of most interest in electronics. (¢) Hydrogen atom. (b)
Aluminum atom. (c) Silicon atom. (d) Germanium atom. (Source: R. R. Wright and H. R. Skutt, Electronics:
Circuits and Devices, 1965; reprinted by permission of John Wiley and Sons, Inc.)

The outer shell of an atom is referred to as the valence shell (band) and the electrons occupying
that shell are known as valence electrons. They are of most interest here. The portrayal of an
atom by such a model is referred to as the Bohr model [1]. Atoms and their charges for some
typical elements of interest in electronics (such as hydrogen, aluminum, silicon, and germanium)
are shown in Figure 2-1.

For an atom, all the electrons in a given shell (orbit) exist in the same energy level (fixed
state). Since there are several shells (orbits) around the nucleus of an atom, there exist several
discrete energy levels (fixed states) each representing a given shell (orbit). In general, there are
more energy levels than electrons. Therefore some of the energy levels (orbits, shells, bands) are
not occupied by electrons. The Bohr model of an atom states that:

1. Electrons of any atom exist only in discrete states and possess only discrete amounts of
energy corresponding to the discrete radii of their corresponding orbital shells.

2. If an electron moves from a lower- to a higher-energy level (orbit), it absorbs a discrete
quantity of energy (referred to as quanta).
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3. If an electron moves from a higher- to a lower-energy level (orbit), it radiates a discrete
quantity of energy (referred to as quanta).
4. If an electron maintains its energy level (orbit), it neither absorbs nor radiates energy.

When a molecule is formed with two or more atoms, forces between the atoms result in new
arrangements of the charges. For an electron to be freed from an atom, it must acquire sufficient
energy to allow it to escape its atomic forces and become a free body. This is analogous to the
energy required by a projectile to escape the earth’s gravity and become a free body.

2.2 DIELECTRICS, POLARIZATION, AND PERMITTIVITY

Dielectrics (insulators) are materials whose dominant charges in atoms and molecules are bound
negative and positive charges that are held in place by atomic and molecular forces, and they are
not free to travel. Thus ideal dielectrics do not contain any free charges (such as in conductors),
and their atoms and molecules are macroscopically neutral as shown in Figure 2-2a. Furthermore,
when external fields are applied, these bound negative and positive charges do not move to the
surface of the material, as would be the case for conductors, but their respective centroids can
shift slightly in positions (assumed to be an infinitesimal distance) relative to each other, thus
creating numerous electric dipoles. This is illustrated in Figure 2-2b. In conductors, positive and
negative charges are separated by macroscopic distances, and they can be separated by a surface
of integration. This is not permissible for bound charges and illustrates a fundamental difference
between bound charges in dielectrics and true charges in conductors.

For dielectrics, the formation of the electric dipoles is usually referred to as orientational
polarization. The effect of each electric dipole can be represented by a dipole, as shown in
Figure 2-3, with a dipole moment dp; given by

dp; = Q4 2-1)

where Q is the magnitude (in coulombs) of each of the negative and positive charges whose
centroids are displaced vectorially by distance ¢;.

S ®

(a) (b)

Figure 2-2 A typical atom. (a) Absence of applied field. () Under applied field.

— @+
I

dp; =0,

Figure 2-3 Formation of a dipole between two opposite charges of equal magnitude Q.



42 ELECTRICAL PROPERTIES OF MATTER

When a material is subjected to an electric field, the polarization dipoles of the material interact
with the applied electromagnetic field. For dielectric (insulating) material, whether they are solids,
liquids, or gases, this interaction provides the material the ability to store electric energy, which
is accomplished by the shift against restraining forces of their bound charges when they are
subjected to external applied forces. This is analogous to stretching a spring or lifting a weight,
and it represents potential energy.

The presence of these dipoles can be accounted for by developing a microscopic model in
which each individual charge and dipole as represented by (2-1) is considered. Such a procedure,
although accurate if performed properly, is very impractical if applied to a dielectric slab because
the spatial position of each atom and molecule of the material must be known. Instead, in
practice, the behavior of these dipoles and bound charges is accounted for in a qualitative way by
introducing an electric polarization vector P using a macroscopic scale model involving thousands
of atoms and molecules.

The total dipole moment p, of a material is obtained by summing the dipole moments of all
the orientational polarization dipoles, each of which is represented by (2-1). For a volume Av
where there are N, electric dipoles per unit volume, or a total of N, Av electric dipoles, we can

write that
Ne Av

pi= ) dp 2-2)
i=l1

The electric polarization vector P can then be defined as the dipole moment per unit volume, or

Ne Av
. 1 . . 2
P= jim,| 5o | = im, [5 2 dpl} (©/m? =

The units of P are coulomb-meters per cubic meter or coulombs per square meter, which is repre-
sentative of a surface charge density. It should be noted that this is a bound surface charge density
(qsp), and it is not permissible to separate the positive and negative charges by an integration
surface. Therefore, within a volume, an integral (whole) number of positive and negative pairs
(dipoles) with an overall zero net charge must exist. Hence the bound surface charge should not
be included in (1-45a) or (1-46) to determine the boundary conditions on the normal components
of the electric flux density (or normal components of the electric field intensity).
Assuming an average dipole moment of

dpi = dpav = Qeav (2'4)

per molecule, the electric polarization vector of (2-3) can be written, when all dipoles are aligned
in the same direction, as

NeAv

. 1

P= lim L—v 21 dp,-] = N.dpy = N.Qluy (2-5)
=

Electric polarization for dielectrics can be produced by any of the following three mechanisms,

as demonstrated in Figure 2-4 [2]. Few materials involve all three of the following mechanisms:

1. Dipole or Orientational Polarization: This polarization is evident in materials that, in the
absence of an applied field and owing to their structure, possess permanent dipole moments
that are randomly oriented. However when an electric field is applied, the dipoles tend to
align with the applied field. As will be discussed later, such materials are known as polar
materials; water is a good example.
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Mechanism No applied field Applied field
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Figure 2-4 Mechanisms producing electric polarization in dielectrics.

2. Ionic or Molecular Polarization: This polarization is evident in materials, such as sodium
chloride (NaCl), that possess positive and negative ions and that tend to displace themselves
when an electric field is applied.

3. Electronic Polarization: This polarization is evident in most materials, and it exists when
an applied electric field displaces the electric cloud center of an atom relative to the center
of the nucleus.

If the charges in a material, in the absence of an applied electric field E,, are averaged in
such a way that positive and negative charges cancel each other throughout the entire mate-
rial, then there are no individual dipoles formed and the total dipole moment of (2-2) and the
electric polarization vector P of (2-3) are zero. However, when an electric field is applied, it
exhibits a net nonzero polarization. Such a material is referred to as nonpolar, and it is illus-
trated in Figure 2-5a. Polar materials are those whose charges in the absence of an applied
electric field E, are distributed so that there are individual dipoles formed, each with a dipole
moment p; as given by (2-1) but with a net total dipole moment p, = 0 and electric polarization
vector P = 0. This is usually a result of the random orientation of the dipoles as illustrated in
Figure 2-5b. Typical dipole moments of polar materials are of the order of 10730 C-m. Materials
that, in the absence of an applied electric field E,, possess nonzero net dipole moment and electric
polarization vector P are referred to as electrets.

There is also a class of dielectric materials that are usually referred to as ferroelectrics [3].
They exhibit a hysteresis loop of polarization (P) versus electric field (E) that is similar to the
hysteresis loop of B versus H for ferromagnetic material, and it possesses a remnant polarization
P, and coercive electric field E.. At some critical temperature, referred to as ferroelectric Curie
temperature, the spontaneous polarization in ferroelectrics disappears. Above the Curie temper-
ature the relative permittivity varies according to the Curie—Weiss law; below it the electric flux
density D and the polarization P are not linear functions of the electric field £ [3]. Barium
titanate (BaTiOs3) is one such material.

When an electric field is applied to a nonpolar or polar dielectric material, as shown in
Figures 2-5a and 2-5b, the charges in each medium are aligned in such a way that individual
dipoles with nonzero dipole moments are formed within the material. However, when we
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Figure 2-5 Macroscopic scale models of materials. (a) Nonpolar. (b) Polar.

examine the material on a microscopic scale, the following items become evident from
Figures 2-5a and 2-5b:

1. On the lower surface there exists a net positive surface charge density ¢;" (representing
bound charges).

2. On the upper surface there exists a net negative surface charge density g, (representing
bound charges).

3. The volume charge density g, inside the material is zero because the positive and negative
charges of adjacent dipoles cancel each other.

The preceding items can also be illustrated by macroscopically examining Figure 2-6a where
a d.c. voltage source is connected and remains across two parallel plates separated by distance
s. Half of the space between the two plates is occupied by a dielectric material, whereas the
other half is free space. For a better illustration of this point, let us assume that there are five
free charges on each part of the plates separated by free space. The same number appears on the
part of the plates separated by the dielectric material. Because of the realignment of the bound
charges in the dielectric material and the formation of the electric dipoles and cancellation of
adjacent opposite charges shown circled in Figure 2-6b, a polarization electric vector P is formed
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Figure 2-6 Dielectric slab subjected to an applied electric field E,. (a) Total charge. (b) Net charge.

within the dielectric material. Thus the polarization vector P is a result of the bound surface
charge density —¢y, found on the upper and +¢,, found on the lower surface of the dielectric
slab. Let us assume that there are two pairs of bound charges that form the bound surface charge
density gy, on the surface of the dielectric slab of Figure 2-6a (negative on top and positive on
the bottom). Because the surfaces of the slab are assumed to be in contact with the plates of
the capacitor, the two negative bound charges on the top surface will tend to cancel two of the
positive free charges on the upper capacitor plate; a similar phenomenon occurs at the bottom.
If this were to happen, the net number of charges on the top and bottom plates of the capacitor
would diminish to three and the electric field intensity in the dielectric material between the plates
would be reduced. Since the d.c. voltage supply is maintained across the plates, the net charge on
the upper and lower parts of the capacitor and the electric field intensity in the dielectric material
between the plates are also maintained by the introduction of two additional free charges on each
of the capacitor plates (positive on top and negative on bottom). For identification purposes, these
two induced free charges have been circled in each of the two plates in Figure 2-6.
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In each of the situations discussed previously, the net effect is that between the lower and
upper surfaces of the dielectric there is a net electric polarization vector P directed from the upper
toward the lower surfaces, in the same direction as the applied electric field E,, whose amplitude
is given by

P=q, (2-6)

Whereas the applied electric field E, maintains its value, the electric flux density inside the
dielectric material differs from what would exist were the dielectric material replaced by free
space. In the free-space part of the parallel plate capacitor of Figure 2-6, the electric flux density
Dy is given by

D() = 80Ea (2-7)

In the dielectric portion, the electric flux density D is related to that in free space Dy by
D =¢E, +P (2-8)

where the magnitude of P is given by (2-6). The electric flux density D of (2-8) can also be
related to the applied electric field intensity E, by a parameter that we designate here as &
(farads/meter). Thus we can write that

D = &E, (2-9)

Comparing (2-8) and (2-9), it is apparent that P is also related to E, and can be expressed as

P= 80X6Ea (2_10)
or
Lr (2-10a)
[ -iva
X N Ea

where . is referred to as the electric susceptibility (dimensionless quantity).
Substituting (2-10) into (2-8) and equating the result to (2-9), we can write that

D = gE, + gox.Eqs = g0 (1 + x.) Eq = &,E, (2-11)

or that
ey = &0 (1 + xe) (2-11a)

In (2-11a) g is the static permittivity of the medium whose relative value &, (compared to that
of free space &y) is given by

b= 2 =1+ e (2-12)

€0

which is usually referred to as the relative permittivity, better known in practice as the dielectric
constant. Scientists and engineers usually designate the square root of the relative permittivity
as the index of refraction. Typical values of dielectric constants at static frequencies of some
prominent dielectric materials are listed in Table 2-1.

Thus the dielectric constant of a dielectric material is a parameter that indicates the relative
(compared to free space) charge (energy) storage capabilities of a dielectric material; the larger
its value, the greater its ability to store charge (energy). Parallel plate capacitors utilize dielectric
material between their plates to increase their charge (energy) storage capacity by forcing extra
free charges to be induced on the plates. These free charges neutralize the bound charges on the
surface of the dielectric so that the voltage and electric field intensity are maintained constant
between the plates.
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TABLE 2-1 Approximate static dielectric constants (relative permittivities) of dielectric

47

materials
Material Static dielectric constant (¢,)
Air 1.0006
Styrofoam 1.03
Paraffin 2.1
Teflon 2.1
Plywood 2.1
RT/duroid 5880 2.20
Polyethylene 2.26
RT/duroid 5870 2.35
Glass-reinforced teflon (microfiber) 2.32-2.40
Teflon quartz (woven) 2.47
Glass-reinforced teflon (woven) 2.4-2.62
Cross-linked polystyrene (unreinforced) 2.56
Polyphenelene oxide (PPO) 2.55
Glass-reinforced polystyrene 2.62
Amber 3
Soil (dry) 3
Rubber 3
Plexiglas 34
Lucite 3.6
Fused silica 3.78
Nylon (solid) 3.8
Quartz 3.8
Sulfur 4
Bakelite 4.8
Formica 5
Lead glass 6
Mica 6
Beryllium oxide (BeO) 6.8-7.0
Marble 8
Sapphire & =6,=94
e, =11.6
Flint glass 10
Ferrite (Fe>O3) 12—-16
Silicon (Si) 12
Gallium arsenide (GaAs) 13
Ammonia (liquid) 22
Glycerin 50
Water 81
Rutile (TiO,) & =6, =89
g, =173
Example 2-1

The static dielectric constant of water is 81. Assuming the electric field intensity applied to water is
1 V/m, determine the magnitudes of the electric flux density and electric polarization vector within the
water.
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Solution: Using (2-9), we have
D = &,E, = 81(8.854 x 107'%)(1) = 7.17 x 107'°C/m?

Using (2-12), we have
Xe =65 —1=81—1=280

Thus the magnitude of the electric polarization vector is given, using (2-10), by

P = eox.E, = 8.854 x 107'2(80)(1) = 7.08 x 10~'° C/m?

The permittivity of (2-11a), or its relative form of (2-12), represents values at static or qua-
sistatic frequencies. These values vary as a function of the alternating field frequency. The
variations of the permittivity as a function of the frequency of the applied fields are examined in
Section 2.9.1.

2.3 MAGNETICS, MAGNETIZATION, AND PERMEABILITY

Magnetic materials are those that exhibit magnetic polarization when they are subjected to an
applied magnetic field. The magnetization phenomenon is represented by the alignment of the
magnetic dipoles of the material with the applied magnetic field, similar to the alignment of the
electric dipoles of the dielectric material with the applied electric field.

Accurate results concerning the behavior of magnetic material when they are subjected to
applied magnetic fields can only be predicted by the use of quantum theory. This is usually
quite complex and unnecessary for most engineering applications. Quite satisfactory quantitative
results can be obtained, however, by using simple atomic models to represent the atomic lattice
structure of the material. The atomic models used here represent the electrons as negative charges
orbiting around the positively-charged nucleus, as shown in Figure 2-7a. Each orbiting electron
can be modeled by an equivalent small electric current loop of area ds whose current flows in
the direction opposite to the electron orbit, as shown in Figure 2-7b. As long as the loop is small,
its shape can be circular, square, or any other configuration, as shown in Figures 2-7b and 2-7c.
The fields produced by a small loop of electric current at large distances are the same as those
produced by a linear bar magnet (magnetic dipole) of length d.

dm; = 0, ds;
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Figure 2-7 Atomic models and their equivalents, representing the atomic lattice structure of magnetic
material. (a) Orbiting electrons. (b) Equivalent circular electric loop. (¢) Equivalent square electric loop.
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By referring to the equivalent loop models of Figure 2-7, the angular momentum associated
with an orbiting electron can be represented by a magnetic dipole moment dm; of

dm; = I;ds; = Lifyds; = i L;ds; (A-m?) (2-13)

For atoms that possess many orbiting electrons, the total magnetic dipole moment m;, is equal to
the vector sum of all the individual magnetic dipole moments, each represented by (2-13). Thus

we can write that
N Av Ny Av

m o= dm;= Y #lds (2-14)
i=1 i=1

where N, is equal to the number of orbiting electrons (equivalent loops) per unit volume. A
magnetic polarization (magnetization) vector M is then defined as

| N Av | Nt
e o R Fop SR B P SERE (Ve
Assuming for each of the loops an average magnetic moment of

dm; = dmy,, = f (Ids),, (2-16)

the magnetic polarization vector M of (2-15) can be written (assuming all the loops are aligned
in the parallel planes) as

N Av
M = lim [— Z dm,-:| = N,,dmy, = fN,, (Ids),, (2-17)

A magnetic material is represented by a number of magnetic dipoles and thus by many magnetic
moments. In the absence of an applied magnetic field the magnetic dipoles and their corresponding
electric loops are oriented in a random fashion so that on a macroscopic scale the vector sum
of the magnetic moments of (2-14) and the magnetic polarization of (2-15) are equal to zero.
The random orientation of the magnetic dipoles and loops is illustrated in Figure 2-8a. When
the magnetic material is subjected to an applied magnetic field, represented by the magnetic flux

dm;#0,M =0 dm;#0 > M=#0
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Figure 2-8 Orientation and alignment of magnetic dipoles. (a) Random in absence of an applied field.
(b) Aligned under an applied field.
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density B, in Figure 2-8b, the magnetic dipoles of most material will tend to align in the direction
of the B, since a torque given by

|AT| = |[dm; x By| = [dm;[|B,|sin(y;) = |(8; [; ds;) X Ba| = |I; ds; Bo sin(y;)|  (2-18)

will be exerted in each of the magnetic dipole moments. This is shown in the inset to
Figure 2-8b. Ideally, if there were no other magnetic moments to consider, torque would be
exerted. The torque would exist until each of the orbiting electrons shifted in such a way that
the magnetic field produced by each of its equivalent electric loops (or magnetic moments) was
aligned with the applied field, and its value, represented by (2-18), vanished. Thus the resultant
magnetic field at every point in the material would be greater than its corresponding value at the
same point when the material is absent.

The magnetization vector M resulting from the realignment of the magnetic dipoles is better
illustrated by considering a slab of magnetic material across which a magnetic field B, is applied,
as shown in Figure 2-9. Ideally, on a microscopic scale, for most magnetic material all the
magnetic dipoles will align themselves so that their individual magnetic moments are pointed in
the direction of the applied field, as shown in Figure 2-9. In the limit, as the number of magnetic
dipoles and their corresponding equivalent electric loops become very large, the currents of the
loops found in the interior parts of the slab are canceled by those of the neighboring loops.
On a macroscopic scale a net nonzero equivalent magnetic current, resulting in an equivalent
magnetic current surface density (A/m), is found on the exterior surface of the slab. This equivalent
magnetic current density J,,, is responsible for the introduction of the magnetization vector M
in the direction of B,.

The magnetic flux density across the slab is increased by the presence of M so that the net
magnetic flux density at any interior point of the slab is given by

B = po(H, + M) (2-19)

YYYYVYYY

Figure 2-9 Magnetic slab subjected to an applied magnetic field and the formation of the magnetization
current density J ;.
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It should be pointed out that M, as given by (2-15), has the units of amperes per meter and
corresponds to those of the magnetic field intensity. In general, we can relate the magnetic flux
density to the magnetic field intensity by a parameter that is designated as u, (henries/meter).
Thus we can write that

B = u,H, (2-20)

Comparing (2-19) and (2-20) indicates that M is also related to H, by
M= XmHa (2'21)

where x,, is called the magnetic susceptibility (dimensionless quantity).
Substituting (2-21) into (2-19) and equating the result to (2-20) leads to

B = MO(Ha + XmHa) = /'LO(1 + Xm)Ha = MsHa (2'22)

Therefore we can define

s = po(l + xm) (2-22a)

In (2-22a) ug is the static permeability of the medium whose relative value pg (compared to
that of free space ) is given by
o =2 =14 g (2-23)
Mo

Static values of - for some representative materials are listed in Table 2-2.
Within the material, a bound magnetic current density J,, is induced that is related to the
magnetic polarization vector M by

Jn =V x M(A/m?) (2-24)

TABLE 2-2 Approximate static relative permeabilities of magnetic

materials
Material Class Relative permeability (1q)
Bismuth Diamagnetic 0.999834
Silver Diamagnetic 0.99998
Lead Diamagnetic 0.999983
Copper Diamagnetic 0.999991
Water Diamagnetic 0.999991
Vacuum Nonmagnetic 1.0
Air Paramagnetic 1.0000004
Aluminum Paramagnetic 1.00002
Nickel chloride Paramagnetic 1.00004
Palladium Paramagnetic 1.0008
Cobalt Ferromagnetic 250
Nickel Ferromagnetic 600
Mild steel Ferromagnetic 2,000
Iron Ferromagnetic 5,000
Silicon iron Ferromagnetic 7,000
Mumetal Ferromagnetic 100,000
Purified iron Ferromagnetic 200,000
Supermalloy Ferromagnetic 1,000,000




52 ELECTRICAL PROPERTIES OF MATTER

To account for this current density, we modify the Maxwell—-Ampere equation 1-71b and write
it as
VxH=J+J.+Jn+Js =Ji +0E+V XM+ jweE (2-24a)

On the surface of the material, the bound magnetization surface current density J,, is related to
the magnetic polarization vector M at the surface by

Jms =M x l,'\l|surfa<:e (A/m) (2'25)

where 1 is a unit vector normal to the surface of the material. The bound magnetization current
I,, flowing through a cross section Sy of the material can be obtained by using

I = f T -ds = / / (V x M)-ds (A) (2:26)
So So

In addition to orbiting, the electrons surrounding the nucleus of an atom also spin about their
own axis. Therefore magnetic moments of the order of +9 x 10~2* A-m? are also associated with
the spinning of the electrons that aid or oppose the applied magnetic field (the + sign is used for
addition and the — for subtraction). For atoms that have many electrons in their shells, only the
spins associated with the electrons found in shells that are not completely filled will contribute
to the magnetic moment of the atoms. A third contributor to the total magnetic moment of an
atom is that associated with the spinning of the nucleus, which is referred to as nuclear spin.
However, this nuclear spin magnetic moment is usually much smaller (typically by a factor of
about 1073) than those attributed to the orbiting and the spinning electrons.

Example 2-2

A bar of magnetic material of finite length, which is placed along the z axis, as shown in Figure 2-10,
has a cross section of 0.3 m in the x direction (0 < x < 0.3) and 0.2m in the y direction (0 <y < 0.2).
The bar is subjected to a magnetic field so that the magnetization vector inside the bar is given by

M =4 (4y)

<Y

Figure 2-10 Magnetic bar of rectangular cross section subjected to a magnetic field.
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Determine the volumetric current density J,, at any point inside the bar, the surface current density J,,s
on the surface of each of the four faces, and the total current /,, per unit length flowing through the bar
face that is parallel to the y axis at x = 0.3 m.

Solution: Using (2-24), we have

oM.
J,=VxM=4— =44
dy

Using (2-25), we have
Jms =M x ﬁ|surface

Therefore at

x=0:

Ims = (@z4y) x (—8y)|x=0 = —2,(4y) for0 <y =02
y=0:

Jns = (@4y) x (—4)|y—0 =4,(4y) =0 for0 <x <0.3
x=03:

Jns = (@;4y) x (A0 [v=03 = 8y (4y) for0 <y <02
y =02

Jms = (@ 4y) x (&))|y=02 = —a,(4y) = —4,0.8 for0 <x <03
According to (2-26), the current (per unit length) flowing through the bar face at x = 0.3 is given by

x=03:

1 02
Iy = // Jn-ds = / / (ay4)- (4, dy dz) = 4(1)(0.2) = 0.8
s 0o Jo

Consistent with the relative permittivity (dielectric constant), the values of w, and thus pu,,
vary as a function of frequency. These variations will be discussed in Section 2.9.2. The values
of u, listed in Table 2-2 are representative of frequencies related to static or quasistatic fields.
Excluding ferromagnetic material, it is apparent that most relative permeabilities are very near
unity, so that for engineering problems a value of unity is almost always used.

According to the direction in which the net magnetization vector M is pointing (either aiding
or opposing the applied magnetic field), material are classified into two groups, Group A and
Group B as shown:

Group A Group B
Diamagnetic Paramagnetic
Ferromagnetic
Antiferromagnetic
Ferrimagnetic

In general, for material in Group A the net magnetization vector (although small in magnitude)
opposes the applied magnetic field, resulting in a relative permeability slightly smaller than unity.
Diamagnetic materials fall into that group. For material in Group B the net magnetization vector
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is aiding the applied magnetic field, resulting in relative permeabilities greater than unity. Some
of them (paramagnetic and antiferromagnetic) have only slightly greater than unity relative per-
meabilities whereas others (ferromagnetic and ferrimagnetic) have relative permeabilities much
greater than unity.

In the absence of an applied magnetic field, the moments of the electron spins of diamagnetic
material are opposite to each other as well as to the moments associated with the orbiting elec-
trons so that a zero net magnetic moment m;, is produced on a macroscopic scale. In the presence
of an external applied magnetic field, each atom has a net nonzero magnetic moment, and on a
macroscopic scale there is a net total magnetic moment for all the atoms that results in a mag-
netization vector M. For diamagnetic material, this vector M is very small, opposes the applied
magnetic field, leads to a negative magnetic susceptibility x,,, and results in values of relative
permeability that are slightly less than unity. For example, copper is a diamagnetic material with
a magnetic susceptibility yx,, = —9 x 107° and a relative permeability p, = 0.999991.

In paramagnetic material, the magnetic moments associated with the orbiting and spinning
electrons of an atom do not quite cancel each other in the absence of an applied magnetic field.
Therefore each atom possesses a small magnetic moment. However, because the orientation
of the magnetic moment of each atom is random, the net magnetic moment of a large sample
(macroscopic scale) of dipoles, and the magnetization vector M, are zero when there is no applied
field. When the paramagnetic material is subjected to an applied magnetic field, the magnetic
dipoles align slightly with the applied field to produce a small nonzero M in its direction and a
small increase in the magnetic flux density within the material. Thus the magnetic susceptibilities
have small positive values and the relative permeabilities are slightly greater than unity. For
example, aluminum possesses a susceptibility of x, =2 x 10> and a relative permeability of
wy = 1.00002.

The individual atoms of ferromagnetic material possess, in the absence of an applied magnetic
field, very strong magnetic moments caused primarily by uncompensated electron spin moments.
The magnetic moments of many atoms (usually as many as five to six) reinforce one another
and form regions called domains, which have various sizes and shapes. The dimensions of the
domains depend on the material’s past magnetic state and history, and range from 1 um to a few
millimeters. On a macroscopic scale, however, the net magnetization vector M in the absence of
an applied field is zero because the domains are randomly oriented and the magnetic moments of
the various atoms cancel one another. When a ferromagnetic material is subjected to an applied
field, there are not only large magnetic moments associated with the individual atoms, but the
vector sum of all the magnetic moments and the associated vector magnetization M are very
large, leading to extreme values of magnetic susceptibility y,, and relative permeability. Typical
values of u, for some representative ferromagnetic materials are found in Table 2-2. When the
applied field is removed, the magnetic moments of the various atoms do not attain a random
orientation and a net nonzero residual magnetic moment remains. Since the magnetic moment of
a ferromagnetic material on a macroscopic scale is different after the applied field is removed,
its magnetic state depends on the material’s past history. Therefore a plot of the magnetic flux
density A versus ¥ leads to a double-valued curve known as the hysteresis loop. Material with
such properties are very desirable in the design of transformers, induction cores, and coatings for
magnetic recording tapes.

Materials that possess strong magnetic moments, but whose adjacent atoms are about equal in
magnitude and opposite in direction, with zero net total magnetic moment in the absence of an
applied magnetic field, are called antiferromagnetic. The presence of an applied magnetic field
has a minor effect on the material and leads to relative permeabilities slightly greater than unity.

If the adjacent opposing magnetic moments of a material are very large in magnitude but greatly
unequal in the absence of an applied magnetic field, the material is known as ferrimagnetic. The
presence of an applied magnetic field has a large effect on the material and leads to large
permeabilities (but not as large as those of ferromagnetic material). Ferrites make up a group
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of ferrimagnetic materials that have low conductivities (several orders smaller than those of
semiconductors). Because of their large resistances, smaller currents are induced in them that result
in lower ohmic losses when they are subjected to alternating fields. They find wide applications
in the design of nonreciprocal microwave components (isolators, hybrids, gyrators, phase shifters,
etc.) and they will be discussed briefly in Section 2.9.3.

2.4 CURRENT, CONDUCTORS, AND CONDUCTIVITY

The prominent characteristic of dielectric materials is the electric polarization introduced through
the formation of electric dipoles between opposite charges of atoms. Magnetic dipoles, modeled by
equivalent small electric loops, were introduced to account for the orbiting of electrons in atoms
of magnetic material. This phenomenon was designated as magnetic polarization. Conductors are
materials whose prominent characteristic is the motion of electric charges and the creation of a
current flow.

2.4.1 Current

Let us assume that an electric volume charge density, represented here by ¢,, is distributed
uniformly in an infinitesimal circular cylinder of cross-sectional area As and volume AV, as
shown in Figure 2-11. The total electric charge AQ, within the volume AV is moving in the z
direction with a uniform velocity v,. Thus we can write that

AQ, AV AsAz Az

=g, — = = g,As— 2-27
At qv At qv At qv sAt ( )

In the limit as At — 0, (2-27) is used to define the current A/ (with units of amperes) that flows
through As. Thus

AL = tim | 22| = tim g, a5 2% | = gu0. As (2-28)
- Ar | eV B e

At—0 At—0

Figure 2-11 Charge uniformly distributed in an infinitesimal circular cylinder.
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Dividing both sides of (2-28) by As and taking the limit as As — 0, we can define the current
density J. (with units of amperes per square meter) as

. Al
J, = lim [—] = q,; (2-29)
As

As—0

Using a similar procedure for the x- and y-directed currents, we can write in general that
J=q,v(A/m?) (2-30)

In (2-30), J is defined as the convection current density. The current density between the cathode
and anode of a vacuum tube is a convection current density. It should be noted that for an electric
field intensity of E = 4, E,, a positive charge density +g¢, will experience a force that will move
it in the +z direction. Thus the current density J will be directed in the +z direction or

J =+q,(+4;v;,) = 4.qyv, (2-31)

If the same electric field E = 4, E; is subjected to a negative charge density —gq,, the field will
force the negative charge to move in the negative z direction (v = —a,v,). However, the electric
current density J is still directed along the +z direction,

J=—q,(—4;v,) =4a.qyv, (2-32)

since both the charge density and the velocity are negative. If positive (¢,") and negative (g,")
charges are present, (2-30) can be written as

J=g vt +q, v (2-33)

2.4.2 Conductors

Conductors are material whose atomic outer shell (valence) electrons are not held very tightly and
can migrate from one atom to another. These are known as free electrons, and for metal conductors
they are very large in number. With no applied external field, these free electrons move with
different velocities in random directions producing zero net current through the surface of the
conductor.

When free charge g, is placed inside a conductor that is subjected to a static field, the charge
density at that point decays exponentially as

qv (t) = lIuoe_t/t’ = lIvoe_(a/S)t (2'34)

because the charge migrates toward the surface of the conductor. The time it takes for this to occur
depends on the conductivity of the material; for metals it is equal to a few time constants. During
this time, charges move, currents flow, and nonstatic conditions exist. The time 7. that it takes
for the free charge density placed inside a conductor to decay to e~' = 0.368, or 36.8 percent of
its initial value, is known as the relaxation time constant. Mathematically it is represented by

=1 (2-35)
o
where

& = permittivity of conductor (F/m)
o = conductivity of conductor (S/m) (see equation (2-39))
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Example 2-3

Find the relaxation time constant for a metal such as copper (o = 5.76 x 107 S/m, & = &¢) and a good
dielectric such as glass (o ~ 102 S/m, & = 6¢).

Solution: For copper
e 8854 x 107"

- = W = 1.54 x 10_195
o o

r

which is very short. For glass

™

8.854 x 10~ 12
p—% 6 (#

012 ) =53.1s 2~ 1 min

which is comparatively quite long.

The free charges of a very good conductor (o — 00), which is subjected to an electric field,
migrate very rapidly and distribute themselves as surface charge density g, to the surface of the
conductor within an extremely short period of time (several very short relaxation time constants).
The surface charge density g, will induce on the conductor an electric field intensity E;, so that
the total electric field E,, within the conductor (E; + E, = E,, where E, is the applied field) is
essentially zero. This is illustrated in Figure 2-12. For perfect conductors (o = c0) the electric
field within the conductors is exactly zero.

2.4.3 Conductivity

When a conductor is subjected to an electric field, the electrons still move in random direc-
tions but drift slowly (with a drift velocity v,) in the negative direction of the applied electric

7 7 7
/7 / /7
7/ / 7/ 0= o0
/ / 7/
/ / /
/ / /
E, E, , E, S
// : // : // 7
O 4 7 | / | Zaex: ff;
4 4 L |14 \ L | \
| |
| |
Ei Ea Ei I Ea Ei I Ea Ei
| |
o=c0 | | e
| 1 i 1 |
+ o+ o+ |+ o+ l+ + o+ l+ + o+ l+
® 4s ® 45

Figure 2-12 Electric field applied on a perfect electric conductor.
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TABLE 2-3 Typical conductivities of insulators, semiconductors, and conductors

Material Class Conductivity o (S/m)
Fused quartz Insulator ~10~17
Ceresin wax Insulator ~10~17
Sulfur Insulator ~ 10713
Mica Insulator ~ 10713
Paraffin Insulator ~10"1
Hard rubber Insulator ~ 10713
Porcelain Insulator ~ 1071
Glass Insulator ~ 10712
Bakelite Insulator ~107°
Distilled water Insulator ~10~*
Gallium arsenide (GaAs)* Semiconductor ~2.38 x 1077
Fused silica* Semiconductor ~2.1x10™*
Cross-linked polystyrene (unreinforced)* Semiconductor ~3.7x107*
Beryllium Oxide (BeO)* Semiconductor ~3.9x 1074
Intrinsic silicon Semiconductor ~439 x 1074
Sapphire* Semiconductor ~55x 1074
Glass-reinforced Teflon (microfiber)* Semiconductor ~7.8x 1074
Teflon quartz (woven)* Semiconductor ~82x107*
Dry soil Semiconductor ~107*—1073
Ferrite(Fe,O3)* Semiconductor ~13x1073
Glass-reinforced Polystyrene* Semiconductor ~1.45x 1073
Polyphenelene oxide (PPO)* Semiconductor ~2.27 %1073
Glass-reinforced Teflon (woven)* Semiconductor ~2.43 x 1073
Plexiglas* Semiconductor ~5.1x1073
Wet soil Semiconductor ~1073 —-1072
Fresh water Semiconductor ~1072
Human and animal tissue Semiconductor ~0.2-0.7
Intrinsic germanium Semiconductor ~2.227
Seawater Semiconductor ~4
Tellurium Conductor ~5x 1072
Carbon Conductor ~3x 107
Graphite Conductor ~3x 10*
Cast iron Conductor ~10°
Mercury Conductor 10°
Nichrome Conductor 100
Silicon steel Conductor 2 x 100
German silver Conductor 2 x 10°
Lead Conductor 5 x 100
Tin Conductor 9 x 10°
Iron Conductor 1.03 x 107
Nickel Conductor 1.45 x 107
Zinc Conductor 1.7 x 107
Tungsten Conductor 1.83 x 107
Brass Conductor 2.56 x 107
Aluminum Conductor 3.96 x 107
Gold Conductor 4.1 x 107
Copper Conductor 5.76 x 107
Silver Conductor 6.1 x 107

*For most semiconductors the conductivities are representative for a frequency of about 10 GHz.
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field, thus creating a conduction current in the conductor. The applied electric field E and drift
velocity v, of the electrons are related by

Ve = _MeE (2-36)

where 11, is defined to be the electron mobility [positive quantity with units of m?/(V-s)]. Sub-
stituting (2-36) into (2-30), we can write that

J = queve = que(—11eE) = —queptE (2-37)
where ¢, is the electron charge density. Comparing (2-37) with (1-16), or
J=0E (2-38)
we define the static conductivity of a conductor as
Oy = —quelte (S/m) (2-39)

Its reciprocal value is called the resistivity (ohm-meters).

The conductivity o, of a conductor is a parameter that characterizes the free-electron conductive
properties of a conductor. As temperature increases, the increased thermal energy of the conductor
lattice structure increases the lattice vibration. Thus the possibility of the moving free electrons
colliding increases, which results in a decrease in the conductivity of the conductor. Materials
with a very low value of conductivity are classified as dielectrics (insulators). The conductivity
of ideal dielectrics is zero.

The conductivity of (2-39) is referred to as the static or d.c. conductivity; typical values of
several materials are listed in Table 2-3. The conductivity varies as a function of frequency. These
variations, along with the mechanisms that result in them, will be discussed in Section 2.8.1.

2.5 SEMICONDUCTORS

Materials whose conductivities bridge the gap between dielectrics (insulators) and conductors
(typically the conductivity being 10~ to unity) are referred to as intrinsic (pure) semiconductors.
A graph illustrating the range of conductivities, from insulators to conductors, is displayed in
Figure 2-13. Two such materials of significant importance to electrical engineering are intrinsic
germanium and intrinsic silicon. In intrinsic (pure) semiconductors there are two common carriers:
the free electrons and the bound electrons (referred to as positive holes) [4].

As the temperature rises, the mobilities of semiconducting material decrease but their charge
densities increase more rapidly. The increases in the charge density more than offset the decreases
in mobilities, resulting in a general increase in the conductivity of semiconducting material
with rises in temperature. This is one of the characteristic differences between intrinsic semi-
conductors and metallic conductors: for semiconductors the conductivity increases with rising
temperature whereas for metallic conductors it decreases. Typically the conductivity of germa-
nium will increase by a factor of 10 as the temperature increases from 300 to about 360 K, and
it will decrease by the same factor of 10 as the temperature decreases from 300 to 255 K. The
conductivity of semiconductors can also be increased by adding impurities to the intrinsic (pure)
materials. This process is known as doping. Some impurities (such as phosphorus) are called
donors because they add more electrons and form n-fype semiconductors, with the electrons
being the major carriers. Impurities (such as boron) are called acceptors because they add more
holes to form p-type semiconductors, with the holes being the predominant carriers. When both
n- and p-type regions exist on a single semiconductor, the junction formed between the two
regions is used to build diodes and transistors.
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Figure 2-13 Range of conductivities of insulators, intrinsic semiconductors, and conductors.

At temperatures near absolute zero (0 K >~ —273°C), the valence electrons of the outer shell of
a semiconducting material are held very tightly and they are not free to travel. Thus the material
behaves as an insulator under those conditions. As the temperature rises, thermal vibration of the
lattice structure in a semiconductor material increases, and some of the electrons gain sufficient
thermal energy to break away from the tight grip of their atom and become free electrons similar
to those in a metallic conductor. As was shown in Figure 2-1, the atoms of silicon and germanium
have four valence electrons in their outer shell which are held very tightly at temperatures near
absolute zero, but some of them may break away as the temperature rises. The valence electrons
of any semiconductor must gain sufficient energy to allow them to go from the valence band
to the conduction band by jumping over the forbidden band, as shown in Figure 2-14. For all
semiconductors, the energy gap of the forbidden band is about E, = 1.43eV = 2.29 x 107.
The bound electrons must gain at least that much energy, although they sometimes gain more,
through increased thermal activity to make the jump.

The electrons that gain sufficient energy to break away from their atoms create vacancies in
the shells that they vacate, designated as holes, which also move in a random fashion. When
the semiconducting material is not subjected to an applied electric field, the net current from
the bound electrons (which became free electrons) and the bound holes is zero because the net
drift velocity of each type of carrier (electrons and holes) is zero, since they move in a random
fashion. When an electric field is applied, the electrons move with a nonzero net drift velocity
of v,; (in the direction opposite to the applied field) while the holes move with a nonzero
net drift velocity of v,; (in the same direction as the applied field), thus creating a nonzero



SEMICONDUCTORS 61
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Figure 2-14 Energy levels for: (a) Conductors. (b) Semiconductors. (c¢) Insulators.

current. Therefore we write the conduction current density for the two carriers (electrons and
holes) as

Jo = qevVed + qnoVia = Qev(_ﬂeE) + th(+ﬂhE)
Jo = (_QEv/fLe + th/th)E = (0¢5 + op)E = 0,E (2-40)

where
1. = mobility of electrons [m2/(V-s)]
wy, = mobility of holes [m?/(V-s)]
0.5 = static conductivity due to electrons
ops = static conductivity due to holes

The static conductivities of the electrons (o,s) and the holes (o;5) can also be written as

Oes = —qevhe = _NeCIe/Le = Ne|‘]e|:u/e (2'413)
Ons = +qnoitn = +Npqnin = Nilqn|in (2-41b)

where
N, = free electron density (electrons per cubic meter)
Nj, = bound hole density (holes per cubic meter)
|gel = |gn| = charge of an electron (magnitude) = 1.6 x 10~'? (coulombs)
Gev = Neqe = _Ne|QE|
v = Nugn = +Nilgn| = Nplqel

For comparison, representative values of charge densities, mobilities, and conductivities for intrin-
sic silicon, intrinsic germanium, aluminum, copper, silver, and gallium arsenide are given in
Table 2-4 [5].

Six different materials were chosen to illustrate the formation of conductivity; their conduc-
tivity conditions are shown in Figure 2-15 [6]. These, in order, are representative of a dielectric
(insulator), plasma (liquid or gas), conductor (metal), pure semiconductor, n-type semiconductor,
and p-type semiconductor. It is observed that positively charged particles (holes) travel in the
direction of the electric field whereas negatively charged particles (electrons) travel opposite to
the electric field. However, both add to the total current.
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TABLE 2-4 Charge densities, mobilities, and conductivities for silicon, germanium, aluminum,
copper, silver, and gallium arsenide at 300 K

Qev (C/m?) qny (C/m®) e [m?/(V-5)] pn [m?/(V-s)] o (S/m)
Intrinsic —24x 1073 +2.4x 1073 0.135at 300K 0.048 at 300K 0.439 x 1073
silicon
Intrinsic —3.84 +3.84 0.39 at 300K 0.19 at 300K 2.227
germanium
Aluminum —1.8 x 1010 0 2.2 %1073 0 3.96 x 107
Copper —1.8 x 10'0 0 3.2x 1073 0 5.76 x 107
Silver —1.8 x 1010 0 3.4 x 1073 0 6.12 x 107
*Intrinsic —2.86 x 1077 2.86 x 1077 0.8 at 300K 0.032 at 300K 2.38 x 1077
gallium
arsenide

*0. Madelung (Ed.) Numerical Data and Fundamental Relationships in Science and Technology, Springer-Verlag, Berlin,

Heidelberg, Germany, 1987.

Figure

Dielectric or insulator

Plasma, gas or liquid

E — J=0 I=0

O—LO0—EO0—O0—®

(Quartz, paraffin, glass)
o =0

Metallic conductor

E—> J —> [ —>

~—0O —0 <0

E—> J—> [ —>

~—0 —0 «—0

(lonosphere, electrolyte)
0= qp—+ gt

Pure semiconductor
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O ={eylhe

n-type semiconductor

~—0O —0O -0

E—> J—> [ —>

(Germanium, silicon)
O =(oplhet Gty

p-type semiconductor

(Phosphorous-doped)
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2-15 Conductivity conditions for six different materials representing dielectrics, plasmas, conduc-

E—> J —> [ —>

(Boron-doped)
0 ={eylet Gnvlln
(Gevkte < dnyitn)

tors, and semiconductors. (Source: J. D. Kraus, Electromagnetics, 1984, McGraw-Hill Book Co.).
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The temperature variations of the mobilities of germanium, silicon, and gallium arsenide are

given approximately by

Silicon [5]:

e ~ (2.1 +0.2) x 1077 725%01 160 < T < 400K
wn ~ (2.3 +£0.1) x 103772701 150 < T < 400K
Germanium [5]:
e = 4.9 x 10°T16° 100 < T < 300K
wn >~ 1.05 x 107723 125 < T < 300K

Gallium arsenide:

30())2.3

e =08 —
ne =08 (%

300 2.3

(2-422)
(2-42b)

(2-43a)
(2-43b)

(2-442)

(2-44b)

Example 2-4

3.03 x 10'° and 1.47 x 10! electrons or holes per cubic meter.

°C=3(°F—32) = 3(10—32) = —122
K =°C+2732=—12.2+4273.2 = 261
The mobilities of silicon and germanium at 10°F (261 K) are approximately equal to
Silicon:
te >~ 2.1 x 10°T72° = 2.1 x 10°(261727) = 0.1908
wn ~ 23 x 1007727 =23 x 103(261~%7) = 0.0687

Germanium:

e = 4.9 x 10377190 = 4.9 x 10°(26171%) = 0.4771
wn ~ 1.05 x 10077233 = 1.05 x 10°(2617%%) = 0.2457
In turn the conductivities are equal to
Silicon:
Oe 2 Nelqe|pte = 3.03 x 10'9(1.6 x 107'9)(0.1908) = 0.925 x 107> S/m

oh 2 mylgnlmn = 3.03 x 10'°(1.6 x 10719)(0.0687) = 0.333 x 107> S/m
o =0, +0, ~1258x1073S/m

For the semiconducting materials silicon and germanium, determine conductivities at a temperature
of 10°F. The electron and hole densities for silicon and germanium are, respectively, equal to about

Solution: At T = 10°F, the respective temperatures on the Celsius (°C) and Kelvin (K) scales are
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Germanium:
Ge 2 Molqgelpe = 1.47 x 10"°(1.6 x 107'9)(0.4771) = 1.122 S/m
on = mylgnlwn = 1.47 x 10"°(1.6 x 10719)(0.2457) = 0.578 S/m

o =o0,+0, ~17S/m

2.6 SUPERCONDUCTORS

Ideal conductors (o0 = oo) are usually understood to be materials within which an electric field
E cannot exist at any frequency. Through Maxwell’s time-varying equations, this absence of an
electric field also assures that there is no time-varying magnetic field. For static fields, however,
the magnetic field should not be affected by the conductivity (including infinity) of the mate-
rial. Therefore for static fields (f = 0) a perfect conductor is defined as one that possesses an
equipotential on its surface.

In practice no ideal conductors exist. Metallic conductors (such as aluminum, copper, silver,
gold, etc.) have very large conductivities (typically 107 — 108 S/m), and the rf fields in them
decrease very rapidly with depth measured from the surface (being essentially zero at a few skin
depths). However, the d.c. resistivity of certain metals essentially vanishes (conductivity becomes
extremely large, almost infinity) at temperatures near absolute zero (7" = 0K or —273°C). Such
materials are usually called superconductors, and the temperature at which this is achieved is
referred to as the critical temperature (T,). Superconductivity was discovered in 1911 by Dutch
physicist H. Kamerlingh Onnes, who received the Nobel Prize in 1913. For example, aluminum
becomes superconducting at a critical temperature of 1.2 K, niobium (also called columbium) at
9.2K, and the intermetallic compound niobium-germanium (NbsGe) at 23 K. For temperatures
down to 0.05 K, copper and gold do not superconduct. Even for low frequencies, superconductors
above 0 K do exhibit a very small level of loss as a result of the presence of two types of
carriers, lossless Cooper pairs and normal electrons. The ability of superconductors to expel
magnetic fields, now referred to as the Meissner effect, was first observed experimentally in
1933 by Meissner and Ochsenfeld [7, 8]. In 1957, Bardeen, Cooper, and Schrieffer developed
a theory that was able to accurately simulate the properties of superconductors using only first
principles [9].

The electrodynamic response of a superconductor at microwave frequencies above OK has a
small, but measurable, loss as a result of the presence of a resistive branch from the dissipative
normal electrons (R) and an inductive branch because of the lossless Cooper pairs. Although
Cooper pairs do not experience dissipation, they exhibit an inductive component from their finite
inertia from their momentum (i.e., L, a kinetic inductance). Because the superconductor inductive
Cooper pairs and normal electrons act in parallel, a.c. losses scale as w?, as would be expected
from a parallel R-L circuit. Since the superconductor current density is finite, the microwave
field will penetrate exponentially with a characteristic length called the penetration depth that is
frequency independent and much smaller than the skin depth of a normal metal. Because of the
smaller interaction volume and the small number of normal electrons, a superconductor will have
typically several orders of magnitude smaller surface resistance than a normal metal.

Before 1986, it was accepted that if materials could become superconducting at tempera-
tures of 25K or greater, there would be a major technological breakthrough. The reason for the
breakthrough is that materials can be cooled to these temperatures with relatively inexpensive
liquid hydrogen, whose boiling temperature is about 20.4 K. Some of the potential applications
of superconductivity would be:
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supercomputers becoming smaller, faster, and thus more powerful;

. ultra low-loss microwave communication systems;

3. economical, efficient, pollution-free, and safe-generating power plants using fusion or mag-
netohydromagnetic technology;

4. virtually loss-free transmission lines and more efficient power transmission;

5. high-field magnets for use in MRI instruments, 300 mph trains levitated on a magnet cush-
ion, particle accelerators and laboratory instrumentation; and

6. improved electronic instrumentation.

N =

From 1911 to 1986, a span of 75 years, research into superconductivity yielded more than
one thousand superconductive substances, but the increase in critical temperature was moderate
and was accomplished at a very slow pace. Prior to January 1986, the record for the highest
critical temperature belonged to niobium-germanium (Nb3Ge), which in 1973 achieved a T,
of 23 K.

In January 1986 a major breakthrough in superconductivity may have provided the spark
for which the scientific community had been waiting. Karl Alex Mueller and Johannes Georg
Bednorz, IBM Zurich Research Laboratory scientists, observed that a new class of oxide materials
exhibited superconductivity at a critical temperature much higher than anyone had observed
before [10, 11]. The material was a ceramic copper oxide containing barium and lanthanum, and
it had a critical temperature up to about 35 K, which was substantially higher than the 23 K for
niobium-germanium.

Before Mueller and Bednorz’s discovery, the best superconducting materials were intermetallic
compounds, which included niobium-tin, niobium-germanium, and others. However, Mueller and
Bednorz were convinced that the critical temperature could not be raised much higher using
such compounds. Therefore they turned their attention to oxides with which they were familiar
and which they believed to be better candidates for higher-temperature superconductors. For
superconductivity to occur in a material, either the number of electrons that are available to
transport current (i.e., a high density of states at the Fermi level) must be high or the electron
pairs that are responsible for superconductivity must exhibit strong attractive forces [10]. Usually
metals are very good candidates for superconductors because they have many available electrons.
Oxides, however, have fewer electrons but it was shown that some metallic oxides of nickel
and copper exhibited strong attractive electron-pair forces, and others could be found with even
stronger pairing forces. Mueller and Bednorz became aware that some copper oxides behave like
metals in conducting electricity. This led them to the superconducting copper oxide containing
barium and lanthanum with a critical temperature of 35 K.

Since then many other groups have reported even higher superconductivities, up to about
90K in a number of ternary oxides of rare earth elements [11]. One of the main questions still
to be answered is why are they superconducting at such high temperatures. Paul C. W. Chu,
from the University of Houston, found that by pressurizing a superconducting copper oxide,
lanthanum, and barium he could observe critical temperatures of up to 70 K. He reasoned that
the pressure brought the layers of the different elements closer together, leading to the higher
superconductivity temperature. He also found that by replacing barium with strontium, which is
a very similar element but has smaller atoms, brought the layers even closer together and led to
even higher temperatures. In February 1987 Dr. Chu also discovered that replacing lanthanum
with yttrium resulted in even higher temperatures, up to 92 K. This was considered another major
breakthrough because it surpassed the barrier of the boiling point of liquid nitrogen (77 K). Liquid
nitrogen is relatively inexpensive (by a factor of 50) compared to liquid helium or hydrogen, which
are used with superconducting material at lower temperatures.

On January 22, 1988 researchers at the National Research Institute for Metals, Tsukaba, Japan,
reported that a compound of bismuth, calcium, strontium-copper, and oxygen had achieved a
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critical temperature of 105 K. Three days later Dr. Chu announced an identical compound except
that it contained one additional element—aluminum. Dr. Chu has indicated that bismuth contains
two superconducting phases (chemical structures). This two-phase superconducting condition
causes the resistance to drop drastically between 120 and 110K, but not to reach zero until
about 83 K, after a second sudden drop. One of the phases has a transition temperature of about
115K, and the other phase becomes superconducting at 90 K. Efforts are underway to isolate
the two phases, to keep the lower temperature phase from surrounding the higher one. Although
the yttrium—copper oxides are very sensitive to oxygen content and a high temperature anneal
is consequently needed after the material is made superconducting, bismuth compounds do not
lose oxygen when heated. In addition, the bismuth compounds appear less brittle than the yttrium
compounds.

To date, the record T, is 134K in HgBa,Ca,Cu309-5; at ambient and at 164K under pres-
sure. According to the words of Dr. Chu, “The discovery of high temperature superconductivity
(HTS) in the non-inter-metallic compounds, Lay-xBa,CuO4 at 35K (1986) and Yba,Cuz0O; at
93 K (1987), has been ranked as one of the most exciting advancements in modern physics, with
profound implications for technologies. In the ensuing 15 years, extensive worldwide research
efforts have resulted in great progress in all areas of HTS science and technology. For instance,
more than 150 compounds have been discovered with a 7, above 23 K; many anomalous prop-
erties have been observed; various models have been proposed to account for the observations;
and numerous prototype devices have been made and successfully demonstrated. In spite of
the impressive progress, the mechanism responsible for HTS has yet to be identified; a com-
prehensive theory remains elusive; the highest possible 7, is still to be found, if it exists; and
commercialization of HTS devices is not yet realized” [12].

Now the march is on to try to understand better the physics of superconductivity and to see
whether the critical temperature can be raised even further. It is even reasonable to expect that
superconductivity could be achieved at room temperature. Even though practical superconductiv-
ity now seems more of a reality, there are many problems that must be overcome. For example,
most superconductive materials are difficult to produce consistently. They seem to be stronger in
some directions than in others and in general are too brittle to be used for flexible wires. More-
over, they exhibit certain crystal anisotropies as current flow can vary by a factor of 30, depending
on the direction. In addition, properties of materials with high critical temperatures appear to be
generally very susceptible to degradation from crystal defects. While critical current densities are
high in thin films, bulk superconductor values are orders of magnitude smaller. These critical
current densities are believed to be around 10° A/cm?, although values of 1.8 x 10° A/cm? have
been reported at Japan’s NTT Ibaragi Telecommunication Laboratory [11]. These current densi-
ties are about 10 to 100 times greater than reported previously, and they are also about 1,000
times the current density of typical household wiring. These values are reassurance that materials
would sustain superconductivity at current density levels required for power transmission and
generation, electronic circuits, and electromagnets.

2.7 METAMATERIALS

The decades of the 1990s and 2000s have introduced interest and excitement into the field of
electromagnetics, especially as they relate to the integration of special types of artificial dielec-
tric materials, coined metamaterials. The word meta, in metamaterials, is a Greek word that
means beyond/after, and the term has been coined to represent materials that are artificially
fabricated so that they have electromagnetic properties that go beyond those found readily in
nature. In fact, the word has been used to represent materials which usually are constructed
to exhibit periodic formations whose period is much smaller than the free-space and/or guided
wavelength.
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Using a “broad brush,” the word metamaterials can encompass engineered textured surfaces,
artificial impedance surfaces, artificial magnetic conductors, Electromagnetic Band-Gap (EBG)
structures, double negative (DNG) materials, frequency selective surfaces, and even fractals or
chirals. Engineered textured surfaces, artificial impedance surfaces, artificial magnetic conductors,
and Electromagnetic Band-Gap (EBG) structures are discussed in Section 8.6. Materials whose
constitutive parameters (permittivity and permeability) are both negative are often referred to
as Double Negatives (DNGs). It is the class of DNG materials that has captivated the interest
and imagination of many leading researchers and practitioners, scientists, and engineers, from
academia, industry, and government; it also introduced a spirited dialogue. The properties and
characteristics of DNG materials are discussed in more detail in Section 5.7.

2.8 LINEAR, HOMOGENEOUS, ISOTROPIC, AND NONDISPERSIVE MEDIA

The electrical behavior of materials when they are subjected to electromagnetic fields is charac-
terized by their constitutive parameters (e, i, and o).

Materials whose constitutive parameters are not functions of the applied field are usually
known as linear; otherwise they are nonlinear. In practice, many materials exhibit almost linear
characteristics as long as the applied fields are within certain ranges. Beyond those points, the
material may exhibit a high degree of nonlinearity. For example, air is nearly linear for applied
electric fields up to about 1 x 10° V/m. Beyond that, air breaks down and exhibits a high degree
of nonlinearity.

When the constitutive parameters of media are not functions of position, the materials are
referred to as homogeneous; otherwise they are inhomogeneous or nonhomogeneous. Almost all
materials exhibit some degree of nonhomogeneity; however, for most materials used in practice
the nonhomogeneity is so small that the materials are treated as being purely homogeneous.

If the constitutive parameters of a material vary as a function of frequency, they are denoted
as being dispersive; otherwise they are nondispersive. All materials used in practice display some
degree of dispersion. The permittivities and the conductivities, especially of dielectric material,
and the permeabilities of ferromagnetic material and ferrites exhibit rather pronounced dispersive
characteristics. These will be discussed in the text two sections.

Anisotropic or nonisotropic materials are those whose constitutive parameters are a function
of the direction of the applied field; otherwise they are known as isofropic. Many materials,
especially crystals, exhibit a rather high degree of anisotropy. For example, dielectric materials
in which each component of their electric flux density D depends on more than one component
of the electric field E, are called anisotropic dielectrics. For such material, the permittivities and
susceptibilities cannot be represented by a single value. Instead, for example, [€] takes the form
of a 3 x 3 tensor, which is known as the permittivity tensor. The electric flux density D and
electric field intensity E are not parallel to each other, and they are related by the permittivity
tensor € in a form given by

D=¢-E (2-45)
In expanded form (2-45) can be written as
Dx Exx Exy Exz Ex
Dy | = | &x &y &y E, (2-46)
D, Exx Ezy &z E;

which reduces to
D, =enE; +6yE, + e E;
Dy =enE, +¢y,E, + ¢, E;
D, = ¢ E +e,E, + e E; (2-46a)
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The permittivity tensor € is written, in general, as a 3 x 3 matrix of the form

Exr Exy Exz
[e] = Eyx Eyy &y (2—47)
Ex €y €z

where each entry may be complex. For anisotropic material, not all the entries of the permittivity
tensor are necessarily nonzero. For some, only the diagonal terms (&, €y, €;;), referred to as the
principal permittivities, are nonzero. If that is not the case, for some material a set of new axes
(x', y’, ') can be selected by rotation of coordinates so that the permittivity tensor referenced to
this set of axes possesses only diagonal entries (principal permittivities). This process is known
as diagonalization, and the new set of axes are referred to as the principal coordinates. For
physically realizable materials, the entries ¢; of the permittivity tensor satisfy the relation

&jj = 8;; (2-48)

Matrices whose entries satisfy (2-48) are referred to as Hermitian. If the material is lossless
(imaginary parts of ¢; are zero) and the entries of the permittivity tensor satisfy (2-48), then the
permittivity tensor is also symmetrical.

2.9 A.C.VARIATIONS IN MATERIALS

It has been shown that when a material is subjected to an applied static electric field, the centroids
of the positive and negative charges (representing, respectively, the positive charges found in the
nucleus of an atom and the negative electrons found in the shells surrounding the nucleus) are
displaced relative to each other forming a linear electric dipole. When a material is examined
macroscopically, the presence of all the electric dipoles is accounted for by introducing an electric
polarization vector P [see (2-3) and (2-10)]. Ultimately, the static permittivity &; [see (2-11a)]
is introduced to account for the presence of P. A similar procedure is used to account for the
orbiting and spinning of the electrons of atoms (which are represented electrically by small electric
current-carrying loops) when magnetic materials are subjected to applied static magnetic fields.
When the material is examined macroscopically, the presence of all the loops is accounted for by
introducing the magnetic polarization (magnetization) vector M [see (2-15) and (2-21)]. In turn
the static permeability u, [see (2-22a)] is introduced to account for the presence of M.

When the applied fields begin to alternate in polarity, the polarization vectors P and M, and
in turn the permittivities and permeabilities, are affected and they are functions of the frequency
of the alternating fields. By this action of the alternating fields, there are simultaneous changes
imposed upon the static conductivity oy [see (2-39) and (2-40)] of the material. In fact, the
incremental changes in the conductivity that are attributable to the reverses in polarity of the
applied fields (frequency) are responsible for the heating of materials using microwaves (for
example, microwave cooking of food) [13, 18].

In the sections that follow, the variations of ¢, o, and u as a function of frequency of the
applied fields will be examined.

2.9.1 Complex Permittivity

Let us assume that each atom of a material in the absence of an applied electric field (unpolarized
atom) is represented by positive (representing the nucleus) and negative (representing the elec-
trons) charges whose respective centroids coincide. The electrical and mechanical equivalents of
a typical atom are shown in Figure 2-16a [6]. The large positive sphere of a mass M represents
the massive nucleus whereas the small negative sphere of mass m and charge —Q represents
the electrons. When an electric field is applied, it is assumed that the positive charge remains
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Applied E-field Electrical equivalent Mechanical equivalent
Mass m
/charge—Q
zero
(a)
E, m ’ M
- O -0 -
(b)
zero
(c)
E, ] m
— u@<—"—0 -
(d)

Figure 2-16 Electrical and mechanical equivalents of a typical atom in the absence of and under an applied electric field.



70 ELECTRICAL PROPERTIES OF MATTER

stationary and the negative charge moves relative to the positive along a platform that exhibits
a friction (damping) coefficient d. In addition, the two charges will be connected with a spring
whose spring (tension) coefficient is s. The entire mechanical equivalent of a typical atom then
consists of the classical mass—spring system moving along a platform with friction.

When an electric field is applied that is directed along the +x direction, the negative charge
will be displaced a distance ¢ in the negative x direction, as shown in Figure 2-16b, forming an
electric dipole. If the material is not permanently polarized (as are the electrets), the atom will
achieve its initial normal position when the applied electric field diminishes to zero, as shown
in Figure 2-16¢. Now if the applied electric field is polarized in the —x direction, the negative
charge will move a distance ¢ in the positive x direction, as shown in Figure 2-16d, forming
again an electric dipole in the direction opposite of that in Figure 2-16b.

When a time-harmonic field of angular frequency w is applied to an atom, the forces of the
system that describe the movement of the negative charge of mass m relative to the stationary
nucleus and that are opposed by damping (friction) and tension (spring) can be represented by
[6, 19]

L € e 2-49
mF—FdE—i‘SE—Q (t) = QEy (2-49)

By dividing both sides of (2-49) by m, we can write it as

d?¢ de Q o .
— 20— + il = =€) = =Eye/”’ 2-50
dt2+ adt+w0 m @ m 0¢ ( )
where
d
= — (2-50a)
2m
s
wy = | — (2-50b)
m
Q = dipole charge (2-50¢)

The terms on the left side of (2-49) represent, in order, the forces associated with mass times
acceleration, damping times velocity, and spring times displacement. The term on the right side
represents the driving force of the time-harmonic applied field (of peak value QFy). Equations 2-49
and 2-50 are second-order differential equations that are also representative of the natural responses
of RLC circuit systems.

For a source-free series RLC network, (2-50) takes the form for the current i () of

d?i di .
W+2oca+a)ol =0 (2-51)
where

R (2-51a)
o= — -dla

2L

1
wy = —— (2-51b)

VvLC

In a similar manner, the voltage v(¢) for a parallel source-free RLC network can be obtained by
writing (2-50) as

d*v dv
T 2aE + iy =0 (2-52)
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where
_ ! (2-52a)
%= 2RC R
1
wy = _ (2-52b)

JvLC

Solutions to (2-51) and (2-52) can be classified as overdamped, critically damped, or under-
damped according to the values of the «/wy ratio. That is, the solution to (2-51) for i (¢) or (2-52)
for v(t) is considered

Classification of Solution Criterion

overdamped if o> wy (2-53a)
critically damped if o= w) (2-53b)
underdamped if o < wy (2-53¢)

The solutions to (2-49) can be obtained by first dividing both of its sides by m. Doing this

reduces (2-49) to ,
ast ddt s Q.

The general solution to (2-54) is usually composed of two parts: a complementary solution £,
and a particular solution £,. The complementary solution represents the transient response of the
system and is obtained by setting the driving force equal to zero. Since (2-54) is a quadratic,
the general form of the complementary (transient) solution will be in terms of exponentials
whose values vanish as + — oo. The particular solution represents the steady-state response of
the system, and it is of interest here. Thus the particular (steady-state) solution of (2-54) can be
written as

£,(t) = Loe!™ (2-55)

where £y is the solution of ¢,(¢) when ¢ = 0.
Substituting (2-55) into (2-54) leads to

t = Z (2-56)

where

wp = \/E (2-56a)
m

gEoef“”

£,(1) = Lol = 1 (2-57)
2 2 . d
(0w —w )+]w<g>

and it represents the steady-state displacements of the negative charges (electrons) of an atom
relative to those of the positive charges (nucleus).

Thus (2-55) can be written as
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The resonant (natural) angular frequency w; of the system is obtained by setting Ey = 0 in
(2-54). Doing this and assuming an underdamped system (¢ < wg or d < 2./sm) leads to

d 2
Wy = Jo? —a? = ‘/% _ <%) (2-58)

For a frictionless system (d = 0) the resonant angular frequency w, reduces to

[s
Wi la=0 = wo = - (2-58a)

Assuming that the oscillating dipoles, which represent the numerous atoms of a material, are
all similar and there is no coupling between the dipoles (atoms), the macroscopic steady-state
electric polarization % of (2-5) can be written using (2-57) as

2 2
N, (Q—) Epel N, (Q—) 10
m _ m
(@ — ™) +jw <i> (@ — o*) +jw <i>
m m

where N, represents the number of dipoles per unit volume. Dividing both sides of (2-59) by
€(t) = Epe’® reduces it to
QZ
()
m

P =P(t) = N, QL) =

(2-59)

P

i (2-60)

€ ) . (d

(wy — @ )+JCU<—>
m
In turn the permittivity ¢ of the medium can be written, using (2-10a) and (2-11a), as
2
N, (Q_)

. m / P
8=£0+%=80+ =& —j¢ (2-61)

(0§ —o®) +jo (i)
m

which is recognized as being complex, as denoted by the dot (with real and imaginary parts,
respectively, of ¢ and ¢”). Equation (2-61) is also referred to as the dispersion equation for the
complex permittivity.

The relative complex permittivity &, of the material is obtained by dividing both sides of
(2-61) by &g leading to

N.Q?
b= = —je =14 Eom (2-62)
&0 > ooy, o d
(wy — ) +jw
m
The real ¢/ and imaginary ¢/ parts of (2-62) can be written, respectively, as
N 2
i
e =1+ g (2-63a)

2
(a)é — )+ (a)i>
m
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d

Ne 2 w—
g = Q m (2-63b)

g eom d 2
(a)é — )+ (a)—)
m

For nonmagnetic material
& =n? (2-64)

where 7 is the complex index of refraction. For materials with no damping (d/m = 0), (2-63a)
and (2-63b) reduce to

N,Q?
e =1+ 20 (2-65a)
wy — w?
e/ =0 (2-65b)

Since the permittivity of a medium as given by (2-61) [or its relative value as given by (2-62)]
is in general complex, the Maxwell—- Ampere equation can be written as

VxH=J +J. +jwtE=J; + 0,E+jw(e —je")E

VxH=J;, + (0, +weE+jwe’E =J; + 0,E+jws'E (2-66)
where
o, = equivalent conductivity = o, + we” = oy + 0o, (2-66a)
o0, = alternating field conductivity = we” (2-66b)
o, = static field conductivity (2-66¢)
_ ] T Heque for conductors (2-66d)

—UeGve + Unqyn,  for semiconductors

In (2-66a) o, represents the total (referred to here as the equivalent) conductivity composed
of the static portion o, and the alternating part o, caused by the rotation of the dipoles as they
attempt to align with the applied field when its polarity is alternating. The phenomenon (rotation
of dipoles) that contributes the alternating conductivity o, is referred to as dielectric hysteresis.

Many dielectric materials (such as glass and plastic) possess very low values of static oy con-
ductivities and behave as good insulators. However, when they are subjected to alternating fields,
they exhibit very high values of alternating field o, conductivities and they consume considerable
energy. The heat generated by this radio frequency process is used for industrial heating pro-
cesses. The best-known process is that of microwave cooking [13—18]. Others include selective
heating of human tissue for tumor treatment [20—22] and selective heating of certain compounds
in materials that possess conductivities higher than the other constituents. For example, pyrite (a
form of sulfur considered to be a pollutant), which exhibits higher conductivities than the other
minerals of coal, can be heated selectively. This technique has been used as a process to clean
coal by extracting, through microwave heating, its sulfur content.

In (2-66), aside from the impressed (source) electric current density J;, there are two other
components: the effective conduction electric current density J.. and the effective displacement
electric current density J;.. Thus we can write the total electric current density J, as

J[ =Ji +Jce +Jde =Ji +UEE +j0)8/E (2'67)
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where

J: = total electric current density (2-67a)
J; = impressed (source) electric current density (2-67b)
Jee = effective electric conduction current density
=o.E = (0, + we")E (2-67¢)
J4o = effective displacement electric current density

=jwe'E (2-67d)
The total electric current density of (2-67) can also be written as

e

g ) E=J +jws'(l —jtans,)E (2-68)
we

Ji=Ji+0.E+jweE =]J; +jws (1 —j

where
. . lof o5 + 0o, o lof
tan 8, = effective electric loss tangent = — = ———= = — ‘
we’ we’ we'  we'
oy g’ ;/
tand, = + — =tandy; +tand, = — (2-68a)
we ¢ e,
. . US
tan §; = static electric loss tangent = — (2-68b)
we
. . o, &'
tan§, = alternating electric loss tangent = — = — (2-68c)
we e

The manufacturer of any given material usually specifies either the conductivity (S/m) or the
electric loss tangent (tan 8, dimensionless). Although it is usually not stated as such, the specified
conductivity o, and loss tangent should represent, respectively, the effective conductivity and
loss tangent tand, at a given frequency. Typical values of loss tangent for some materials are
listed in Table 2-5.

The effective conduction J. and displacement J; current densities of (2-67) can also be
written as

Oc . .
Ji = Joo + Jie = 0, E + jw€'E = jwe’ (1 —j ) E = jwe' (1 —j tan §,)E (2-69)
we
In phasor form, these can be represented as shown in Figure 2-17. It is evident that the
conduction and displacement current densities are orthogonal to each other. Material can also be
classified as good dielectrics or good conductors according to the values of the o, /we’ ratio. That
is

1. Good Dielectrics, (o,/we") K 1

o/we' K1
)EO' w.

~  jwe'E (2-70a)

. . O,
ch 2]608/ (1 —J ;/

1)
For these materials, the displacement current density is much greater than the conduction

current density, and the total current density is approximately equal to the displacement
current density.
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TABLE 2-5 Dielectric constants and loss tangents of
typical dielectric materials

Material el tan &
Air 1.0006
Alcohol (ethyl) 25 0.1
Aluminum oxide 8.8 6x 107
Bakelite 4.74 22 % 1073
Carbon dioxide 1.001
Germanium 16
Glass 4-7 1x1073
Ice 4.2 0.1
Mica 5.4 6x107*
Nylon 3.5 2 x 1072
Paper 3 8 x 1073
Plexiglas 3.45 4 %1072
Polystyrene 2.56 5% 1073
Porcelain 6 14 x 1073
Pyrex glass 4 6x 107
Quartz (fused) 3.8 7.5 x 1074
Rubber 2.5-3 2x 1073
Silica (fused) 3.8 7.5x 107
Silicon 11.8
Snow 33 0.5
Sodium chloride 5.9 1 x10°*
Soil (dry) 2.8 7 x 1072
Styrofoam 1.03 1 x 107
Teflon 2.1 3x 1074
Titanium dioxide 100 15x 1074
Water (distilled) 80 4 %1072
Water (sea) 81 4.64
Wood (dry) 1.5-4 1 x 1072
x N
et
N &// Jie=Jjwe’E
JL‘C= O-CE

Figure 2-17 Phasor representation of effective conduction and displacement current densities.
2. Good Conductors, (c,/we") > 1

~7 o,E (2-70b)

. . O 0 Jwe">1
Jea = jwe’ (1 —J e/)E o~
we
For these materials, the conduction current density is much greater than the displacement
current density, and the total current density is approximately equal to the conduction
current density.
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As discussed in Section 2.2 and demonstrated in Figure 2-4, the electric polarization for
dielectrics, as given by (2-3) or (2-5), can be composed of any combination involving the dipole
(orientational), ionic (molecular), and electronic polarizations. As a function of frequency, the
electric polarization of (2-10) can be written as

P(w) = g9 xe (@)Eq () (2-71)
where in general

Xe (@) = x. () —jx. (@)

= [Xeq (@) + X0 (@) + Xeo (@)] = j [ Xey (@) + X0 (@) + Koo (@)] (2-71a)
X.q(@) = dipole real electric susceptibility (2-71b)
X.: (w) = ionic real electric susceptibility (2-71c¢)
X, (w) = electronic real electric susceptibility (2-71d)
Xoy (@) = dipole loss electric susceptibility (2-71e)
X0 (w) = ionic loss electric susceptibility (2-71%)
X. (w) = electronic loss electric susceptibility (2-71g)

It should be noted that, in general,
Xo(—®) = x,(®) (2-72a)
X, (—w) = —x. (w) (2-72b)

A general sketch of the variations of the susceptibilities as a function of frequency is given in
Figure 2-18 [25, 26]. It should be stated, however, that this does not represent any one particular
material, and very few materials exhibit all three mechanisms. Measurements have been made on
many materials, with some up to 90 GHz, using microwave and millimeter wave techniques [25].

Xe

”

DALY/

Radio-microwaves Infrared Visible-ultraviolet

Figure 2-18 Electric susceptibility (real and imaginary) variations as a function of frequency for a typical
dielectric.



Since the relati
(2-12), we should

A.C. VARIATIONS IN MATERIALS 7

ve permittivity (dielectric constant) is related to the electric susceptibility by
expect similar variations of the dielectric constant as a function of frequency.

To demonstrate that, we have plotted in Figure 2-19 as a function of frequency (0 < w < 10) the
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Figure 2-19 Typic
(@) N.Q*/eom = 1,

al frequency variations of real and imaginary parts of relative permittivity of dielectrics.
d/m=1,a/wy=1/5, w9 =25 (b)N,Q*/egm = 1,d/m =1, a/wy = 1/10, wy = 5.
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relative complex permittivity (real and imaginary parts and magnitude) of (2-62) or (2-63a) and
(2-63b) (assuming N.Q?/gom =1 and d/m = 1) for
o d |m

1
— = — | — = — (underdamped with wy = 2.5 and w,; = V6 = 2.449)
wo 2mY\ s 5

@ _ @ m_ 1 nderdamped with wo = 5 and wy = ~/99/2 = 4.975)

wy 2m\ s 10
It is observed that the values of ¢ peak at the resonant frequencies, which indicates that the
medium attains its most lossy state at the resonant frequency. Multiple variations of this type
would also be observed in a given curve at other frequencies if the medium possesses multiple
resonant frequencies. For frequencies not near one of the resonant frequencies, the curve rep-
resenting the variations of |¢,| exhibits a positive slope and is referred to as normal dispersion
(because it occurs most commonly). Very near the resonant frequencies there is a small range of
frequencies for which the variations of |&,| exhibit a negative slope that is referred to as anoma-
lous (abnormal) dispersion. Although there is nothing abnormal about this type of dispersion, the
name was given because it seemed unusual when it was first observed.

When (2-57) and (2-59) to (2-63b) were derived, it was assumed that the medium possessed
only one resonant (natural) frequency presented by one type of harmonic oscillator. In general,
however, there are several natural frequencies associated with a particular atom. These can be
accounted for in our dispersion equations for ¢/ and ¢ by introducing several different kinds
of oscillators with no coupling between them. This type of modeling allows the contributions
from each oscillator to be accounted for by a simple addition. Thus for a medium with p natural
frequencies (represented by p independent oscillators), we can write (2-60) to (2-63b) as

Q2
14 N,—
?_ 3 m (2-73a)
é 2 o, @d
=1 (02— ?) +j—
m
Q2
) . 4 Ne?
t=¢—je" =eo+ ) — (2-73b)
s=1 (a)s2 — a)z) +]?
N.Q*
14
b= —jel =1+ con — (2-73¢)
s=1 (@2 —?) +j—
m
N, 2
P ;i (@? — w?)
g=1+) —2 = (2-73d)
=1 (@2 — ) + (%)
d
N QZ w—
"= - m 2-73
=2 eom (2-73¢)

2
s=1 (wSZ _ 602)2 + (%)
m
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Often the question is asked whether there are any relations between the real and imaginary
parts of the complex permittivity. The answer to that is yes. Known as the Kramers—Kronig
[26—28] relations, they are given by

fw)=1+= / 08 @) (2-74a)
@7 o
” 20 [ 1—¢e (o) , ,

and they are very similar to the frequency relations between resistance and reactance in circuit
theory [28].

In addition to the Kramers—Kronig relations of (2-74a) and (2-74b), there are simple relations
that allow the calculation of the real and imaginary parts of the complex relative permittivity for
many materials as a function of frequency provided that the real part of the complex permittivity
is known at zero frequency (denoted by ¢/.) and at very large (ideally infinity) frequency (denoted
by ¢,.,). These relations are obtained from the well-known Debye equation [19, 23, 24] for the
complex dielectric constant, which states that

o
6 (@) = () — je! (@) = &/, + ﬁ (2-75)

where t, is a new relaxation time constant related to original relaxation time constant T by

/
2
=it (2-750)
8r00

The Debye equation of (2-75) is derived using the Clausius—Mosotti equation [23, 24, 29]. The
real and imaginary parts of (2-75) can be written as

! !/

£, — &
e(w) =g, + ——= 2-76a
r(a)) roo 1+ (w.[e)z ( )
ro_
el (w) = (Er — Ero0)OTe (2-76b)
1 + (wt,)?
which can be found at any frequency provided e/, €., and v are known. The relations of

(2-76a) and (2-76b) can be used to estimate the real and imaginary parts of the complex relative
permittivity (complex dielectric constant) for many gases, liquids, and solids.

2.9.2 Complex Permeability

As discussed in Section 2.3, the permeability of most dielectric material, including diamagnetic,
paramagnetic, and antiferromagnetic material, is nearly the same as that of free space o (1o =
47 x 1077 H/m). Ferromagnetic and ferrimagnetic materials exhibit much higher permeability
than free space, as is demonstrated by the data of Table 2-2. These classes of materials are
also magnetically lossy, and their magnetic losses are accounted for by introducing a complex
permeability.

In general then, we can write the Maxwell—Faraday equation as

VxE=-M, —joiH=-M, —jou —ju)H
=-M; —jou'H - onH=-M, (2-77)
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where
M, =M; +jou'H+ on"H (2-77a)
M, = total magnetic current density (2-770b)
M; = impressed (source) magnetic current density (2-77¢)
M, = displacement magnetic current density = jowu'H (2-77d)
M. = conduction magnetic current density = wu”H (2-77e)

Another form of (2-77a) is to write it as

4

M, =M; +jou’ (1 —j“—,)H:Mi +jou' (1 —j tan §,)H (2-78)
w

where
i

tan §,, = alternating magnetic loss tangent = — (2-78a)
i

In addition to being complex, the permeability of ferromagnetic and ferrimagnetic material is
often a function of frequency. Thus it should, in general, be written as

fo= () —ju" (@) (2-79)

or )
= = @) — ) (2-79)
Ho

Most ferromagnetic materials possess very high relative permeabilities (on the order of several
thousand) and good conductivities such that there is a minimum interaction between these materi-
als and the electromagnetic waves propagating through them. As such, they will not be discussed
further here. There is, however, a class of ferrimagnetic material, referred to as ferrites, that
finds wide applications in the design of nonreciprocal microwave components (such as isolators,
hybrids, gyrators, phase shifters, etc.). Ferrites become attractive for these applications because
at microwave frequencies they exhibit strong magnetic effects that result in anisotropic properties
and large resistances (good insulators). These resistances limit the current induced in them and in
turn result in lower ohmic losses. Because of the appeal of ferrites to microwave circuit design,

their magnetic properties will be discussed further in the section that follows.

2.9.3 Ferrites

Ferrites are a class of solid ceramic materials that have crystal structures formed by sintering at
high temperatures (typically 1000—1500°C) stoichiometric mixtures of certain metal oxides (such
as oxygen and iron, and cadmium, lithium, magnesium, nickel, or zinc, or some combination of
them). These materials are ferrimagnetic, and they are considered to be good insulators with high
permeabilities, dielectric constants between 10 to 15 or greater, and specific resistivities as much as
10'* greater than those of metals. In addition, they possess properties that allow strong interaction
between the magnetic dipole moment associated with the electron spin, as discussed in Section 2.3,
and the microwave electromagnetic fields [30—32]. In contrast to ferromagnetic materials, ferrites
have their magnetic ions distributed over at least two interpenetrating sublattices. Within each
sublattice all magnetic moments are aligned, but the sublattices are oppositely directed.

As aresult of these interactions, ferrites exhibit nonreciprocal properties such as different phase
constants and phase velocities for right- and left-hand circularly polarized waves, transmission
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coefficients that are functions of direction of travel, and permeabilities that are represented by
tensors (in the form of a matrix) rather than by a single scalar. These characteristics become
important in the design of nonreciprocal microwave devices [33—35]. Although all ferrimagnetic
materials possess these properties, it is only in ferrites that they are pronounced and significant.
The properties of ferrites will be discussed here by examining the propagation of microwave
electromagnetic waves in an unbounded ferrite material.

There are two possible models that can be used to understand the technical properties of
magnetic material: the phenomenological model and the atomic model [32]. For the purposes
of this book, the phenomenological model is sufficient to examine the properties of magnetic
oxides. As discussed in Section 2.3, the magnetic material is replaced by an array of magnetic
dipoles that are maintained in a permanent and rigid alignment as shown in Figure 2-8a. When
a magnetic field is applied, as shown in Figure 2-8b, the magnetic moments of the dipoles can
turn freely in space as long as they turn together. Much of the discussion of this section follows
that of [32] and [35].

Under an applied magnetic field, each single magnetic dipole rotates with a precession fre-
quency that is referred to as the Larmor precession frequency. The precession frequency is altered
when one or more dipoles are introduced. The dipoles in the array interact with each other and
attempt to achieve an alignment that will minimize the interaction energy. The change in pre-
cession frequency is equivalent to introducing an additional demagnetizing field. When many
dipole arrays are subjected to d.c, rf, or demagnetizing fields, magnetic resonance is introduced.
This is a phenomenon that is of fundamental interest to the design of microwave nonreciprocal
components. The discussion here will be that of the phenomenological model.

The magnetic dipole moment m of a single magnetic dipole of Figure 2-7a or 2-7b is given by
(2-13). When an external magnetic field is applied, as shown in Figure 2-20 for a single dipole,
exerted on the dipole is a torque T of

T= Mom X H() =m X B() (2-80)
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yBoxP=T

Figure 2-20 Torque on a single magnetic dipole caused by an applied external magnetic field. (Source:
R. E. Collin, Foundations for Microwave Engineering, 2nd Edition, 1992, McGraw-Hill Book Co.).
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where m = fi [ ds = magnetic dipole moment of a single dipole
H, = applied magnetic field
By = applied magnetic flux density

The torque will cause the dipole to precess about the z axis, which is parallel to By, as shown in
Figure 2-20.
The interaction energy W,, between the dipole and the applied field can be expressed as

W = —puomHg cos ¢ (2-81)
oW,
T =_—_"™ (2-81a)
d¢
where ¢ is the angle between the applied magnetic field and the magnetic dipole axis. It is
observed that the energy is minimum (W,, = —uomHy) when ¢ = 0 whereas when ¢ =, T is

zero and the dipole is in unstable equilibrium.

When electrons of a physically realizable dipole are moving, they create a current whose
motion is associated with a circulation of mass (angular momentum) as well as charge. Therefore
the magnetic dipole moment of a single electron of charge e, which is moving with a velocity v
in a circle of radius a, can be also be expressed as

1
m=1ds = — (na®) = Eeva (2-82)
and the angular momentum P can be written as
P =m,va (2-83)

where m, is the mass of the electron. The ratio of the magnetic moment [as given by (2-82)] to
the angular momentum [as given by (2-83)] is referred to as the gyromagnetic ratio y, and it is

equal to
_m_ ¢
Y= P 2m,

=m=yP (2-84)

which is negative because of the negative electron charge e. This makes the angular momentum
P of the electron antiparallel to the magnetic dipole moment m, as shown in Figure 2-20.
To obtain the equation of motion we set the rate of change (with time) of the angular momentum
equal to the torque, that is,
dP

E=T:M0mxH0=—M0|y|PxH0=—Pxooo:woxP (2-85)

or
Wwoly|PHysin¢ = wyP sin¢ = —ugmHy sin ¢ (2-85a)

In (2-85) and (2-85a) wy is the vector precession angular velocity which is directed along Hy,
as shown in Figure 2-20. For the free precession of a single dipole, the angular velocity wy is
referred to as the Larmor precession frequency, which is given by

wo = |y |uoHo = |y|Bo (2-86)

and it is independent of the angle ¢.
Let us assume that on the static applied field By a small a.c. magnetic field B is superimposed.
This additional applied field will impose a forced precession on the magnetic dipole. To examine
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the effects of the forced precession, let us assume that the a.c. applied magnetic field BljE is
circularly polarized, either right hand (CW) BT or left hand (CCW) B;, and it is directed
perpendicular to the z axis. As will be shown in Section 4.4.2 these fields can be written as

B/ = (a, —ja,)B; e 7P right-hand (CW) (2-86a)
B; = (4, +ja,)B; e 7 left-hand (CCW) (2-86b)

The corresponding instantaneous fields obtained using (1-61d) rotate, respectively, in the clock-
wise and counterclockwise directions when viewed from the rear as they travel in the +z direction.
This is demonstrated in Figure 2-21. When each of the a.c. signals are superimposed upon the
static field By directed along the z axis, the resultant B field will be at angle 6% (measured from

the z axis) given by
B:t
0F = tan™! (—‘) (2-87)
By

as shown in Figures 2-22a and 2-22b. The resultant magnetic field B will rotate about the z
axis at a rate of @ in the clockwise direction for B;” and @~ in the counterclockwise direction
for B, ", as shown in Figure 2-22. The magnetic dipole will be forced to precess at the same rate
about the z axis when steady-state conditions prevail.

For the torque to impose a clockwise precession on B;" and a counterclockwise precession on
B, , the precession angle ¢* must be larger than 0% (as shown in Figure 2-22a) and ¢~ must
be smaller than 6~ (as shown in Figure 2-22b). Therefore for each case (2-85), the equation of
motion, can be written as

dp*

7=T+=m+ XBI+=—|)/|P+ XB?‘za)"'ﬁz x PT (2-88a)
dpP~ _ _ _ _ _ . _
7=T =m xB =—-|y|P” xB, =—-0" 4, xP (2-88b)
XA XA
ot ot | _
+ y \( B, coswtﬁﬂ/
B cos wt
z 4
\
B/

<Y
<Y

—B sinwt

(a) (b)

Figure 2-21 Rotation of magnetic field, as a function of time, for CW and CCW polarizations.
(a) Clockwise. (b) Counterclockwise. (Source: R. E. Collin, Foundations for Microwave Engineering, 2nd
Edition, 1992, McGraw-Hill Book Co.).
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<Y

(b)

Figure 2-22 Precession of spinning electron caused by applied magnetic field CW and CCW polarizations.
(a) Clockwise. (b) Counterclockwise. (Source: R. E. Collin, Foundations for Microwave Engineering, 2nd
Edition, 1992, McGraw-Hill Book Co.).

or
—|y|P*Btsin(¢T —07) = w Pt sing™ (2-89a)
—|y|P™B; sin(0” —¢~) =—w P sing~ (2-89b)

Expanding (2-89a) and (2-89b) leads to
—|yI[(B," sing™) cos 8T — (B, cos¢pT)sinf1] = w" singp™ (2-90a)

—|y|[(B, sinf~)cos¢p™ — (B, cosf )sing™ | = —w sing~ (2-90b)
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Since
Bﬁ singt = Bfr (2-91a)
Bt cos6t =B, (2-91b)
B[ sin0” =B (291c¢)
B, cos6™ =By (2-91d)

then (2-90a) and (2-90b) can be reduced, respectively, to

angt = BL__ VB (2-92a)
ly|Bo —wt  wy— T
B~ B~

ang- = V1B _ VB (2-92b)

CyIBo+ o wy+ -

According to Figure 2-22 the components m;~ of m* that rotate in synchronism with their
respective B, and mZi that are directed along the z axis, are given, respectively, by

P
m* = m*sing* = m* cos p* St Zi = m™* cos ¢* tan ™ = m;" tan p= (2-93a)
cos
mzi = m™* cos ¢i = m(;—L (2-93b)
where
mE = m* cos ¢* (2-93¢)

Using (2-92a) and (2-92b) we can write the components of m* that rotate in synchronism with
BT as

+ B+

m =m tang* = % (2-94a)
-

m~ =mg tang~ = % (2-94b)

In the previous discussion we considered the essential properties of single spinning electrons
in a magnetic field that is a superposition of a static magnetic field along the z axis and an a.c.
circularly polarized field perpendicular to it. Let us now examine macroscopically the properties
of N orbiting electrons per unit volume whose density is uniformly and continuously distributed.
Doing this we can represent the total magnetization M of all N electrons as the product of N
times that of a single electron (M = Nm), as given by (2-17). In addition, the magnetic flux
density M will be related to the magnetic field intensity H and magnetization vector M by (2-
19). Thus we can write (2-19), using (2-94a) and (2-94b) for the magnetization of the N orbiting
electrons superimposed with the circularly polarized a.c. signal of BY, as

NmJIVIBT>

B = juo(H +M}) = o(Hf +Nm?) = g (Hl+ n ’
wy) — w

Ny o woly 1My
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_ _ _ _ _ _  Nmy|yBy
B™ =puoH; + M) = poH; + Nm;) = po (H} + ———
wo + w
Nmg |y |po\ - moly My om o
= 14+ 0"V = 14+ —> =u H 2-95b
MO( + wo + o 1 Mo +w0+w7 1 M, Iy ( )
where
My = Nmg (2-95¢)
M, = Nmy (2-95d)
M+
ut = o (1 n M) (2-95¢)
wy — w
M-
He = o (1+—“°'y' °> (2-956)
woy + w

In (2-95e) and (2-95f) u} and p represent, respectively, the effective permeabilities for clock-
wise and counterclockwise circularly polarized waves. It is apparent that the two are not equal,
which is a fundamental property utilized in the design of nonreciprocal microwave devices.

If the static magnetic field By is much larger than the superimposed a.c. magnetic field Bf—L
(By > Bli) so that the magnetization of the ferrite material is saturated by the static field, then
all the spinning dipoles are tightly coupled and the entire material acts as a large single magnetic
dipole. In that case the magnetization vector M* for the positive (CW) and negative (CCW)
circularly polarized fields superimposed on the static field can be approximated by

M* = Nm* ~ M, ~ M, (2-96)

where M; is the magnetization vector caused by the static field when no time-varying magnetic
field is applied. For those cases the effective permeabilities can be approximated by

M

it o (14 2L (297
M,

He = o (1 + %) (2-97b)

which are not equal. Equations 2-97a and 2-97b are good approximations when the a.c. signals
are small compared to the applied static field.

It can be shown (see Chapter 4) that a time-harmonic transverse electromagnetic (TEM) wave
can be decomposed into a combination of clockwise and counterclockwise circularly polarized
waves. Therefore the implications of (2-97a) and (2-97b) are that when a TEM wave travels
through a ferrite material the clockwise circularly polarized portion of the wave will experience
the permeability of (2-97a) while the counterclockwise wave will experience that of (2-97b). Since
the permeability of a material influences the phase velocity and phase constant (see Chapter 4),
the phases associated with (2-97a) and (2-97b) will be different. This is one of the fundamental
features of ferrites that is utilized for the design of microwave nonreciprocal devices.
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When an unbounded ferrite material is subjected to a static magnetic field By directed along
the z axis of
By = 4,8 = &, uoHy (2-98a)

and a time-harmonic magnetic field @ of
B = pno¥ (2-98b)

each will induce a magnetization per unit volume vector of My, and M, respectively. The script
is used to indicate time-varying components. Under these conditions, the equation of motion can

be written as
d(M; + M) . dM

7 o = I7IMs+ M) x (Bo + B)] (2-99)

or in expanded form as

dM
= = Iy nol(M, + M) x (Ho + 90)]

M

E:—h/“ig(Ms x Hyp+ Mg x #+ M x Hy + M x H) (2-99a)
If the time-harmonic field 9 is small such that

M| < [M] (2-100a)
|%#] < [Ho| (2-100b)

and since the applied magnetic field By is in the same direction as the static saturation magneti-
zation vector My, or

M; x Hy=0 (2-101)
then (2-99a) can be approximated by
dM
o ~ —|ylpo(My x % + M x Ho) (2-102)

If each of the time-harmonic components is written in the form described by (1-61a) through
(1-61d), then (2-102) ultimately reduces, using (2-86), to

JoM >~ —|yluo(M; x H+ M x Hp)
JoM+ |y|uoM x Ho > —[y [noM; x H
JoM + |y M x By >~ —|y|uoM; x H
JoM +M x (ly|Bo) = —|y|uoMs x H
oM + woM x 4. ~ —|y oM, x H (2-103)

Assuming M; has only a z component, whereas H has both x and y components, expanding
(2-103) leads to

JjoM, + woM, >~ |y|uoMH, (2-104a)
—woM, + jwM, >~ —|y|woMH, (2-104b)
joM, >~ 0 (2-104c¢)
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Solving (2-104a) through (2-104c) for M., M,, and M; leads to

600|V |I’L0MSH)C +]CU|V |/’LOMSHy

M, = 2-105a
Wi — @? ( :
M.H, —j M.H
M, = woly | oM y2 Joly|uwoMH, (2-105b)
wy — »?
M. =0 (2-105¢)

By introducing the magnetic susceptibility tensor ¥, we can write (2-105a) through (2-105¢) using
the forms of (2-21) and (2-22) as

M]=[xIH] (2-106)
or
M, Xxx Xxy 0 H,
My | =| Xxu Xpp O H, (2-106a)
M, 0 00 H,
[B] = wollZ]1+ [x11[H ] (2-107)
or
Bx 1 + Xox Xxy 0 Hx
By | = 1o Xox 1+, 0 H, (2-107a)
B. 0 0 1 H,
where
woly | oM,
Kox = Koy = —g (2-107b)
a)o — w
. oly | woM;
Yoy = —Xx =) —5 (2-107¢)
6()0 — W

In (2-106) through (2-107¢) X.¢, Xyy» Xxy» and x,, represent the entries of the susceptibility tensor
x for the ferrite material and [/] is the unit matrix. Equation 2-107a can also be written in a
more general form as

B=p-H (2-108)

where p is the permeability tensor written, in general, as a 3 x 3 matrix of the form

I+ X Xxo O
(L] = po Xyx 1+ Xyy 0 (2-108a)
0 0 1

which is a more general form of (2-22a).

Practical ferrite materials also contain magnetic losses. Therefore the permeability of the mate-
rial will have both real and imaginary parts, as given by (2-79) or (2-79a). A phenomenological
model used to derive the variations as a function of frequency of the real u'(w) and imagi-
nary i’ (w) parts of both (2-95e) and (2-95f) when losses are included is somewhat complex
and beyond the treatment presented here for ferrites. However, the development of this can be
found in [35] and [36]. A typical plot as a function of wy/w is shown in Figure 2-23 where
wm = Moly|M;. A resonance phenomenon is indicated when wy/w = 1.
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10

0 0.5 1.0 1.5 2.0
@0
w
Figure 2-23 Frequency variations of real and imaginary parts of complex permeability for circularly
polarized waves in a ferrite (w = 207 GHz, w,, = 11.27 GHz, o = 0.05). (Source: R. E. Collin, Foundations
for Microwave Engineering, 2nd Edition, 1992, McGraw-Hill Book Co.).

2.10 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

e Power Point (PPT) viewgraphs, in multicolor.

REFERENCES

1. R. R. Wright and H. R. Skutt, Electronics: Circuits and Devices, Ronald Press, New York, 1965.

. S. V. Marshall and G. G. Skitek, Electromagnetic Concepts and Applications, Second Edition, Prentice-
Hall, Englewood Cliffs, NJ, 1987.

3. R. M. Rose, L. A. Shepard, and J. Wulff, Electronic Properties, John Wiley & Sons, New York, p. 262,
1966.

. M. F. Uman, Introduction to the Physics of Electronics, Prentice-Hall, Englewood Cliffs, NJ, 1974.

. E. M. Conwell, “Properties of silicon and germanium: II,” Proc. IRE, vol. 46, pp. 1281-1300, June
1958.

6. J. D. Kraus, Electromagnetics, Fourth Edition, McGraw-Hill, New York, 1992.

[\S)

W A~



90

[ <IN

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.
24.

25.

26.

27.
28.

29.

30.

31.

32.

ELECTRICAL PROPERTIES OF MATTER

F. London, Superfluids, vol. 1, Dover, New York, 1961.

A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity, Pergamon, Elmsford, NY,
1978.

. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic Theory of Superconductivity,” Physical

Review, vol. 106, pp. 162—-164, 1957.

B. C. Fenton, “Superconductivity breakthroughs,” Radio Electronics, vol. 59, no. 2, pp. 43—45, February
1988.

A. Khurana, “Superconductivity seen above the boiling point of nitrogen,” Physics Today, vol. 40,
no. 4, pp. 17-23, April 1987.

P. C. W. Chu, “High Temperature Superconductivity: Past, Present and Future,” APS Colloquium,
Argonne National Laboratory, October 2, 2002.

G. P. de Loor and F. W. Meijboom, “The dielectric constant of foods and other materials with high
water content at microwave frequencies,” Journal of Food Technology, vol. 1, no. 1, pp. 313-322,
1966.

W. E. Pace, W. B. Westphal, and S. A. Goldblith, “Dielectric properties of commercial cooking oils,”
Journal of Food Science, vol. 33, p. 30, 1968.

D. Van Dyke, D. I. C. Wang, and S. A. Goldblith, “Dielectric loss factor of reconstituted ground beef:
The effect of chemical composition,” Journal of Food Technology, vol. 23, p. 944, 1969.

N. E. Bengtsson and P. O. Risman, “Dielectric properties of foods at 3 GHz as determined by a cavity
perturbation technique. II. Measurements on food materials,” Journal of Microwave Power, vol. 6,
no. 2, pp. 107-123, 1971.

S. S. Stuchly and M. A. K. Hamid, “Physical properties in microwave heating processes,” Journal of
Microwave Power, vol. 7, no. 2, p. 117, 1972.

N. E. Bengtsson and T. Ohlsson, “Microwave heating in the food industry,” Proc. IEEE, vol. 62,
no. 1, pp. 44-55, January 1974.

P. Debye, Polar Molecules, Chem. Catalog Co., New York, 1929.

H. F. Cook, “The dielectric behaviour of some types of human tissue at microwave frequencies,” British
Journal of Applied Physics, vol. 2, p. 295, October 1951.

A. W. Guy, J. F. Lehmann, and J. B. Stonebridge, “Therapeutic applications of electromagnetic power,”
Proc. IEEE, vol. 62, no. 1, pp. 55-75, January 1974.

“Biological Effects of EM Waves,” Speical Issue, Radio Science, vol. 12, no. 6(S),
November—December 1977.

A. R. von Hippel, Dielectrics and Waves, MIT Press, Cambridge, MA, 1954.

A. R. von Hippel, Dielectric Materials and Applications, John Wiley & Sons, New York, pp. 93-252,
1954.

C. A. Balanis, “Dielectric constant and loss tangent measurements at 60 and 90 GHz using the
Fabry—Perot interferometer,” Microwave Journal, vol. 14, pp. 39—-44, March 1971.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (translated by J. B. Sykes and
J. S. Bell), Pergamon, Elmsford, NY, Chapter IX, pp. 239-268, 1960.

J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Sons, New York, p. 311, 1975.
S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication, Second Edition,
John Wiley & Sons, New York, pp. 556-558, 671, 1984.

M. C. Lovell, A.J. Avery, and M. W. Vernon, Physical Properties of Materials, Van Nostrand—Reinhold,
Princeton, NJ, p. 161, 1976.

J. L. Snoek, “Non-metallic magnetic material for high frequencies,” Philips Technical Review, vol. 8,
no. 12, pp. 353-384, December 1946.

D. Polder, “On the theory of ferromagnetic resonance,” Philosophical Magazine, vol. 40, pp. 99-115,
January 1949.

W. H. von Aulock, “Ferrimagnetic materials—phenomenological and atomic models,” Handbook of
Microwave Ferrite Materials (W. H. von Aulock, ed.), Section I, Chapter 1, Academic, New York,
1965.



PROBLEMS 91

33. W. von Aulock and J. H. Rowen, “Measurement of dielectric and magnetic properties of ferromagnetic
materials at microwave frequencies,” The Bell System Technical Journal, vol. 36, pp. 427-448, March
1957.

34. W. H. von Aulock, “Selection of ferrite materials for microwave device applications,” IEEE Trans. on
Magnetics, vol. MAG-2, no. 3, pp. 251-255, September 1966.

35. R. E. Collin, Foundations for Microwave Engineering, Second Edition, McGraw-Hill, New York,
pp- 286-302, 1992.

36. R. F. Soohoo, Theory and Application of Ferrites, Chapter 5, Prentice-Hall, Englewood Cliffs, NJ,
1960.

PROBLEMS

2.1.

2.2.

A dielectric slab, shown in Figure P2-1,
exhibits an electric polarization vector of

P=4,2.762 x 1071 C/m?
when it is subjected to an electric field of
E=4,2V/m

Determine:

(a) The bound surface charge density gy, in
each of its six faces.

(b) The net bound charge Q, associated
with the slab.

(c) The volume bound charge density gy,
within the dielectric slab.

(d) The dielectric constant of the material.

I

P=a Exlo—“’C/m2 a<p<b
= , <p=

when it is subjected to an electric field of

Neglecting fringing, find:

(a) The bound surface charge density gy, in
each of the surfaces.

(b) The net bound charge Q, at the inner,
outer, upper, and lower surfaces.

(c) The volume bound charge density q,,
within the dielectric.

(d) The dielectric constant of the material.

ZA

_ @Q

T L
/
/ 4 cm
Y
_r R ) .
ﬁ 2cm V2 y
* x /
Figure P2-1
Figure P2-2

A cylindrical dielectric shell of Figure P2-2
with inner and outer radii, respectively, of
a=2cm and b =6cm, and of length
¢ = 10cm exhibits an electric polarization
vector of

2.3. A spherical dielectric shell of Figure P2-3

with inner and outer radii ¢ =2cm and
b = 4cm, respectively, exhibits an electric
polarization vector of
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2.4.

2.5.

ELECTRICAL PROPERTIES OF MATTER

Figure P2-3

Determine the:

(a) Bound surface charge density gy, in
each of the surfaces.

(b) Net bound charge Q, at the inner and
outer surfaces.

(¢) Volume bound charge density ¢g,, within
the dielectric.

(d) Dielectric constant of the material.

Two parallel conducting plates, each having

a surface area of 2 x 1072 m? on its sides,

form a parallel-plate capacitor. Their sepa-

ration is 1.25 mm and the medium between

them is free space. A 100-V d.c. battery

is connected across them, and it is main-

tained there at all times. Then a dielectric

sheet, 1 mm thick and with the same shape

and area as the plates, is slipped carefully

between the plates so that one of its sides

touches one of the conducting plates. After

the insertion of the slab and neglecting fring-

ing, if the dielectric constant of the dielectric

sheet is &, = 5, determine the:

(a) Electric field intensity between the
plates (inside and outside the slab).

(b) Electric flux density between the plates
(inside and outside the slab).

(c) Surface charge density in each of the
plates.

(d) Total charge in each of the plates.

(e) Capacitance across the slab, the free
space, and both of them.

(f) Energy stored in the slab, the free space,
and both of them.

For Problem 2.4, assume that after the 100-
V voltage source charges the conducting
plates, it is then removed. Then the dielec-
tric sheet is inserted between the plates as

2.6.

indicated in Problem 2.4. After the insertion

of the dielectric sheet, find the:

(a) Total charge Q on the upper and lower
plates.

(b) Surface charge density on the upper and
lower plates.

(c) Electric flux density in the dielectric slab
and free space.

(d) Electric field intensity in the dielectric
slab and free space.

(e) Voltage across the slab, the free space,
and both of them.

(f) Capacitance across the slab, the free
space, and both of them.

(g) Energy stored in the slab, the free space,
and both of them.

A parallel-plate capacitor of Figure P2-6,

with plates each of area 64 cm?, separation

of 4cm, and free space between them, is

charged by a 8-V d.c. source that is kept

across the plates at all times. After the

charging of the plates a 4-cm dielectric slab

of polystyrene (¢, =2.56, 4, = 1) 4cm in

thickness is inserted between the plates and

occupies half of the space between them.

Before insertion of the slab, determine the:

(a) Total charge on the upper and lower
plates.

(b) Electric field between the plates.

(c) Electric flux density between the plates.

(d) Capacitance of the capacitor.

(e) Total stored energy in the capacitor.

After insertion of the slab, determine the:

(f) Total charge on the upper and lower
plates in the free space and dielectric
parts.

(g) Electric field in the free space and
dielectric parts.

(h) Electric flux density in the free space
and dielectric parts.

(i) Capacitance of each of the free space
and dielectric parts.

i £,=2.56, 1= 1

Figure P2-6
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2.8.

(j) Total capacitance (combined free space
and dielectric parts).

(k) Stored energy in each of the free space
and dielectric parts.

(1) Total stored energy (combined free
space and dielectric parts). Compare
with that of part (e) and if there is a
difference, explain why.

Repeat Problem 2.6 except assume that the
voltage source is removed after the charging
of the plates and before the insertion of the
slab.

Two parallel PEC plates, each having a total
surface area of 2cm?, form a parallel plate
capacitor. The separation between the PEC
plates is 1.25 mm and the medium between
the plates is initially free space. A 100-
Volt battery is attached to the plates, charges
them, and is then removed. After removal
of the battery, a 1 mm thick dielectric slab,
with a dielectric constant (relative permittiv-
ity) of 5 and an area of 2cm? on each of its
sides is inserted between the PEC plates and
occupies the lower part of the space between
the PEC plates (basically touching the lower
PEC plate), as shown in the figure below.
After insertion of the dielectric slab, find the:
(a) Total charge Q on the lower and upper

PEC plates (in C).
(b) Surface charge density on the upper and

lower PEC plates (in C/m?).
(c) Electric flux density in the:

1. Dielectric (in C/m?)

2. Free space medium (in C/m?)
(d) Electric field intensity in the:

1. Dielectric (in V/m)

2. Free space medium (in V/m)
(e) Total voltage in the:

1. Dielectric slab (in V)

2. Free-space medium (in V)

3. Between the PEC plates (dielectric

slab + free space medium) (in V)

(f) The capacitance across the:

1. Dielectric slab (in farads)

2. Free-space medium (in farads)

3. Between the PEC plates (dielectric

slab + free space medium) (in farads)
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Area (PEC) = 2 cm?

1 mm (e, = 5)

A
1.25 mm
Y A
- |

Area (PEC) = 2 cm?

Figure P2-8

Two different dielectric slabs, with dielectric
constants of 2 and 6, respectively, are placed
one on top of the other, between two square
perfectly electric conducting (PEC) plates,
each plate with an area of 1 cm?, as shown in
the figure. The thickness of each dielectric
slab is 1cm. A 10-Volt d.c. power supply
is placed between the two plates forming

a parallel-plate capacitor, and is maintained

connected at all times. Find (in terms of &g

when applicable) the following:

(a) Electric field in each slab (in V/meter).

(b) Electric flux density in each slab (in
C/m?).

(c) Total charge in each of the two PEC
plates (in C).

(d) Total capacitance of the parallel-plate
capacitor (in farads) using its definition
based on the charge and voltage.

(e) Capacitance of each slab (in farads)
based on the definition of capacitance
(using plate area, separation and permit-
tivity of the medium).

(f) Total capacitance (in farads) of the
parallel-plate capacitor, using the capac-
itances of part (e). How does this capac-
itance compares with that of part (d)?
Are they the same or different? Explain.

Area = 1 cm?

L

+ £=2 T1em
—_10 _Yy
—‘7 - £=6 :; lcm
|
\Area =1cm?
Figure P2-9

2.10. Two different dielectric slabs, with dielec-

tric constants of 2 and 6, respectively, are
placed side-by-side between four rectangu-
lar PEC plates. Each dielectric slab is square
(1cm by 1cm; area = 1 cm?) and each with
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a thickness of 1cm. Each of the top and

bottom PEC plates has dimensions of 1cm

by 1cm, as shown in the figure. A 10-Volt

d.c. power supply is placed between the two

plates forming two separate parallel-plate

capacitors.

For each capacitor, find the following:

(a) Electric field in each slab (E; and E»)
(in V/meter).

(b) Electric flux density in each slab (D;
and D») (in C/m?).

(c) Total charge density in each of the two
PEC plates (g and g¢;) (in C/m?).

(d) Total charge in each of the two PEC
plates (Q; and Q») (in C).

(e) Capacitance in each of the parallel-plate
capacitors (Cy and ;) (in farads) using
the definition based on the charge and
voltage.

(f) Total capacitance Cr (in farads) of the
parallel-plate capacitor using the capac-
itances from part (e).

(g) Capacitance of each capacitor (in
farads) based on the definition of capac-
itance for each (using plate area, sepa-
ration and permittivity of the medium).

(h) Total capacitance Crp (in farads) of
the parallel plate capacitors, using the
capacitances of part (g).

(i) How do the capacitances of parts (f)
and (h) compare? Are they the same or
different? Should they be the same or
different? Explain.

Area(#1) = 1 cm? Area(#2) = 1 cm?

"
o |

+ A
— 10 én=2 £0=06 Vlcm
T= ~ I \

2.11.

Area(#1) = 1 cm? Area(#2) = 1 cm?

Figure P2-10

A 10-Volt d.c. power supply, placed between
the two plates as shown in Figure P2-10,
with air between the plates which form two
separate parallel-plate capacitors, charges
the plates of the two capacitors. The power
supply is then disconnected; the two capac-
itors are not connected to each other.

After the power supply is disconnected and
the two capacitors are not connected to each
other, two different dielectric slabs with

2.12.

dielectric constants of 2 and 6, respectively,
are inserted side-by-side between the two
rectangular PEC plates. Each dielectric slab
is square (1 cm by 1cm; area = 1 cm?) and
each with a thickness of 1cm. Each of the
top and bottom PEC plates has dimensions
of I cm x 1 cm, as shown in the figure.

For each capacitor, in the presence of the

dielectric slabs but after the removal of the

power supply, find the following:

(a) Total electric charge density in each
of the four PEC plates (¢; and ¢»)
(in C/m?).

(b) Electric flux density in each slab (D;
and D) (in C/m?).

(c) Total charge in each of the four PEC
plates (Q; and Q7) (inC).

(d) Electric field in each slab (E; and E»)
(in V/meter).

(e) Voltage across each of the parallel plate
capacitors (V; and V,) (in V).

(f) Capacitance in each of the parallel-plate
capacitors (C; and C,) (in farads) based
on the geometry of each capacitor (area
of plates, separation of plates, permittiv-
ity of medium).

(g) Capacitance in each of the parallel-plate
capacitors (Cy and C3) (in farads) based
on the results of parts (c) and (e) (charge
and voltage).

(h) Are the corresponding results/answers
in parts (f) and (g) the same or different?
Explain.

A 10-V d.c. voltage source, placed across
the inner and outer conductors of a coax-
ial cylinder as shown in Figure P2-12, is
used to charge the conductors and is then
removed. The total charge in each conduc-
tor is = Q. The inner conductor has a radius
of a = 2 cm, the radius of the outer conduc-
tor is 4cm, and the length of the cylinder
is £ = 6 cm. Assuming no field fringing and
free space between the conductors, find the:
(a) Electric field intensity between the con-
ductors in terms of Q.
(b) Total charge Q on the inner and outer
conductors.
(c) Surface charge density on the inner and
outer conductors.
(d) Electric flux density between the con-
ductors.



2.13.

2.14.

(e) Capacitance between the conductors.
(f) Energy stored between the conductors.

Figure P2-12

For Problem 2.12, assume that after the

10-V source charges the conductors and is

removed, a cylindrical dielectric jacket of

polystyrene (¢, = 2.56) of inner radius a =

2cm and outer radius b = 3 cm is inserted

over the inner conductor of the coaxial

cylinder. After the insertion of the jacket and

neglecting fringing, find the:

(a) Total charge Q on the inner and outer
conductors.

(b) Surface charge density on the inner and
outer conductors.

(c) Electric flux density between the con-
ductors in the dielectric and free space.

(d) Electric field intensity between the con-
ductors in the dielectric and free space.

(e) Voltage between the conductors.

(f) Total capacitance between the conduc-
tors.

(g) Total energy stored between the conduc-
tors.

For Problem 2.13 assume that the 10-V

source that charges the conductors remains

connected at all times. By neglecting fring-
ing, determine the:

(a) Electric field intensity between the con-
ductors inside and outside the dielectric
jacket.

(b) Electric flux density between the con-
ductors inside and outside the dielectric
jacket.

2.15.

2.16.
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(c) Surface charge density in each of the
plates.

(d) Total charge in each of the conductors.

(e) Total capacitance between the conduc-
tors.

(f) Total energy stored between the conduc-
tors.

A 100-V d.c. voltage source is placed across

two parallel-plate sets that are connected in

parallel. Each conductor in each parallel-

plate set has a surface area of 2 x 1072 m?

on each of its sides which are separated by

4 cm. For one parallel-plate set the medium

between them is free space, whereas for

the other it is lossless polystyrene (&, =

2.56, u, = 1). For each parallel-plate set, by

neglecting fringing, determine the:

(a) Electric field intensity between the
plates.

(b) Electric flux density between the plates.

(c) Total charge on the upper and lower
plates.

(d) Total energy stored between the plates.

For the two-set parallel-plate combination,

determine the total:

(e) Charge on the two upper and two lower
plates.

(f) Capacitance between the upper and
lower plates.

(g) Energy stored between the plates.

For the coaxial cylinder of Problem 2.12
assume that once the 10-V voltage source
charges the conductors and is removed, a
curved dielectric slab of polystyrene (e, =
2.56,u, = 1) of thickness equal to the
spacing between the conductors is inserted
between the conductors and occupies half
of the space (7 < ¢ < 2m); the other half,
0 < ¢ < m, is still occupied by free space.
By neglecting fringing, determine the:
(a) Total charge on the inner and outer con-
ductors in free space and in polystyrene.
(b) Surface charge density on inner and
outer conductors in free space and in
polystyrene.
(c) Electric flux density between the con-
ductors in free space and in polystyrene.
(d) Electric field intensity between the con-
ductors in free space and in polystyrene.
(e) Voltage between the conductors in free
space and in polystyrene.
(f) Capacitance between the conductors in
free space, in polystyrene, and total.
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2.18.

2.19.
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(g) Energy stored between the conductors
in free space, in polystyrene, and total.

For Problem 2.16 assume that the 10-V

charging source is maintained across the

conductors at all times. By neglecting fring-

ing, determine the:

(a) Electric field intensity between the con-
ductors in free space and in polystyrene.

(b) Electric flux density between the con-
ductors in free space and in polystyrene.

(c) Charge density in each of the conductors
in free space and in polystyrene.

(d) Total charge in each of the conductors
in free space and in polystyrene.

(e) Capacitance between the conductors in
free space, in polystyrene, and total.

(f) Energy stored between the conductors in
free space, in polystyrene, and total.

The time-varying electric field inside a loss-
less dielectric material of polystyrene, of
infinite dimensions and with a relative per-
mittivity (dielectric constant) of 2.56, is

% =4a.103sin@@7 x 10’t) V/m

Determine the corresponding:
(a) Electric susceptibility of the dielectric

material.

(b) Time-harmonic electric flux density vec-
tor.

(¢) Time-harmonic electric  polarization
vector.

(d) Time-harmonic displacement current
density vector.

(e) Time-harmonic polarization current den-
sity vector defined as the partial deriva-
tive of the corresponding electric polar-
ization vector.

Leave your answers in terms of &g, (ig.

A rectangular slab of ferrimagnetic material
as shown in Figure P2-19 exhibits a magne-
tization vector of

M =4.1.245x 10° A/m
when it is subjected to a magnetic field
intensity of
H=4a5x10" A/m

Find the:

(a) Bound magnetization surface current
density in all its six faces.

(b) Bound magnetization volume current
density within the slab.

(c) Net bound magnetization current asso-
ciated with the slab.
(d) Relative permeability of the slab.

Figure P2-19

2.20. A coaxial line of length ¢ with inner

and outer conductor radii of 1 and 3cm,
respectively, is filled with a ferromagnetic
material, as shown in Figure P2-20. When
the material is subjected to a magnetic field
intensity of

0.3183
H=4, A/m
P

it induces a magnetization vector potential
of

190.67
P

=4,

A/m

Figure P2-20



2.21.

2.22.

Determine the:

(a) Bound magnetization surface current
density in all surfaces.

(b) Bound magnetization volume current
density within the material.

(c) Net bound magnetization current asso-
ciated with the coaxial line.

(d) Relative permeability of the material.

The magnetization vector inside a cylindri-
cal magnetic bar of infinite length and circu-
lar cross section of radius @ = 1 m, as shown
in Figure P2-21, is given by

M =4,10 A/m

Find the:

(a) Magnetic surface current density at the
outside circumferential surface of the
bar.

(b) Magnetic volume current density at any
point inside the bar.

(c) Total current that flows through the
cross section of the bar.

1
a%
-’

<Y

Figure P2-21

The current density through a cylindrical
wire of square cross section as shown in
Figure P2-22 is given by
2 ;
J~ 51106_10 [(@a=|xD+@—IlyD]

where Jj is a constant. Assuming that each
side of the wire is 2 x 1072 m, find the cur-
rent flow through the cross section of the
wire.
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Figure P2-22

2.23. A 10-A current is pushed through a circu-

lar cross section of wire of infinite length
as shown in Figure P2-23. Assuming that
the current density over the cross section of

Figure P2-23

the wire decays from its surface toward its
center as

J=a.Jpe 10"@=» A/m?

where Jy is the current density at the

surface and the wire radius is @ = 1072 m,

determine the:

(a) Current density at the surface of the
wire.
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(b) Depth from the surface of the wire
through which the current density has
decayed to 36.8 percent of its value at
the surface.

Show that the relaxation time constant
for copper (o = 5.76 x 107 S/m) is much
smaller than the period of waves in
the microwave (1-10 GHz) region and
is comparable to the period of x-rays
[A>~1—-10A = (1-10) x 108 cm]. Con-
sequently, conductors cannot maintain a
charge configuration long enough to permit
propagation of the wave more than a short
distance into the conductor at microwave
frequencies. However x-ray propagation is

2.25.

possible because the relaxation time con-
stant is comparable to the period of the
wave.

Aluminum has a static conductivity of about

o =3.96 x 107 S/m and an electron mobil-

ity of g, =22 x 1073 m?/(V-s). Assum-

ing that an electric field of E = 4,2 V/m is

applied perpendicularly to the square area

of an aluminum wafer with cross-sectional

area of about 10cm?, find the:

(a) Electron charge density gy,.

(b) Electron drift velocity v,.

(c) Electric current density J.

(d) Electric current flowing through the
square cross section of the wafer.

(e) Electron density N,.



CHAPTER 3
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Wave Equation and its Solutions

3.1 INTRODUCTION

The electromagnetic fields of boundary-value problems are obtained as solutions to Maxwell’s
equations, which are first-order partial differential equations. However, Maxwell’s equations are
coupled partial differential equations, which means that each equation has more than one unknown
field. These equations can be uncoupled only at the expense of raising their order. For each of the
fields, following such a procedure leads to an uncoupled second-order partial differential equation
that is usually referred to as the wave equation. Therefore electric and magnetic fields for a given
boundary-value problem can be obtained either as solutions to Maxwell’s or the wave equations.
The choice of equations is related to individual problems by convenience and ease of use. In
this chapter we will develop the vector wave equations for each of the fields, and then we will
demonstrate their solutions in the rectangular, cylindrical, and spherical coordinate systems.

3.2 TIME-VARYING ELECTROMAGNETIC FIELDS

The first two of Maxwell’s equations in differential form, as given by (1-1) and (1-2), are first-
order, coupled differential equations; that is, both the unknown fields (€ and %) appear in each
equation. Usually it is very desirable, for convenience in solving for € and %, to uncouple these
equations. This can be accomplished at the expense of increasing the order of the differential
equations to second order. To do this, we repeat (1-1) and (1-2), that is,

0%
VXxE€=—-M —p— (3-1)
at
0%
VX%Zji—FO_%—FSE (3-2)

where it is understood in the remaining part of the book that o represents the effective conductivity
o, and ¢ represents ¢’. Taking the curl of both sides of each of equations 3-1 and 3-2 and assuming
a homogeneous medium, we can write that

0% 0
VXVX%:—VXM,'—,LLVX<¥)=—VXM,'—/¢L§(VX%) (3-3)

0%
VxVx%:Vx}i—i-chx%-l-st(E)

d
=VX}I-+O’VX%+8§(VX%) (3-4)

99
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Substituting (3-2) into the right side of (3-3) and using the vector identity
VxVxF=V(V-F)—V’F (3-5)

into the left side, we can rewrite (3-3) as

a 0%
V(V-8)—V8=-V x M, — /LE |:}l- + 0% +8¥i|

08, 9% 9%%
V(V-8) —V8=-V xM; — p—- — o — — pe— 3-6
(V-%) x M RO T e (3-6)
Substituting Maxwell’s equation 1-3, or
7 ev

V-Qb:sV.‘Bz%v:V-‘ézT (3-7)

into (3-6) and rearranging its terms, we have that

0, 1 0% 0°%

V8=V xM+p-t+-Vg — — 3-8
X Mi+p=" Vg, T o= e (3-8)

which is recognized as an uncoupled second-order differential equation for €.
In a similar manner, by substituting (3-1) into the right side of (3-4) and using the vector
identity of (3-5) in the left side of (3-4), we can rewrite it as

9% 3 9%
VV-%) - V#=Vx$ +0 (—.M.,- ~ u—) +e— (—.M,,- - M-)

at ot ot
V(V-%)—Vz%zVxji—a.Mi—ua%—eaa—A:'i—us% (3-9)
Substituting Maxwell’s equation
V.se:w-%=/mvz>v-%=(’%) (3-10)
into (3-9), we have that
V# =-V xfi+6Mi+£V(7mv)+eaa—“:'i+uo%+us% (3-11)

which is recognized as an uncoupled second-order differential equation for #. Thus (3-8) and
(3-11) form a pair of uncoupled second-order differential equations that are a by-product of
Maxwell’s equations as given by (1-1) through (1-4).

Equations 3-8 and 3-11 are referred to as the vector wave equations for € and ¥. For solving
an electromagnetic boundary-value problem, the equations that must be satisfied are Maxwell’s
equations as given by (1-1) through (1-4) or the wave equations as given by (3-8) and (3-11).
Often, the forms of the wave equations are preferred over those of Maxwell’s equations.
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For source-free regions (§; =¢, =0and M; = ¢,

= 0), the wave equations 3-8 and 3-11
reduce, respectively, to

9% 9°%
V¢ = o - e (3-12)
5 9% 3%

For source-free (§; = Doy = 0 and M; = Ty = 0) and lossless media (o0 =0), the wave
equations 3-8 and 3-11 or 3-12 and 3-13 simplify to

928

V2% = MSW (3—14)
92%

V2% = pe— (3-15)

Equations 3-14 and 3-15 represent the simplest forms of the vector wave equations.

3.3 TIME-HARMONIC ELECTROMAGNETIC FIELDS

For time-harmonic fields (time variations of the form ¢/®), the wave equations can be derived
using a similar procedure as in Section 3.2 for the general time-varying fields, starting with
Maxwell’s equations as given in Table 1-4. However, instead of going through this process, we
find, by comparing Maxwell’s equations for the general time-varying fields with those for the
time-harmonic fields (both are displayed in Table 1-4), that one set can be obtained from the
other by replacing 3/t = jw, 3>/3t*> = (jw)*> = —w?, and the instantaneous fields (%, %, D, B),
respectively, with the complex fields (E, H, D, B) and vice versa. Doing this for the wave equations
3-8, 3-11, 3-12, and 3-13, we can write each, respectively, as

1
V’E =V x M; +joud; + -Vge, +joucE — T O (3-16a)
e
1
VH= -V xJ; + oM; +jwsM; + —Vq,,, + jopucH — o’ usH (3-16b)
w
V2E = joucE — 0?*ucE = y’E (3-17a)
VH = joucH — o’ usH = y*H (3-17b)
where
y? =jouoc — w’ e =jou(oc +jwe) (3-17¢)
y = o +j B = propagation constant (3-17d)
o = attenuation constant (Np/m) (3-17e)

B = phase constant (rad/m) (3-171)



102 WAVE EQUATION AND ITS SOLUTIONS

The constants «, 8, and y will be discussed in more detail in Section 4.3 where « and S are
expressed by (4-28c) and (4-28d) in terms of w, &, i, and o.
Similarly (3-14) and (3-15) can be written, respectively, as

V’E = —0’ucE = —8°E (3-18a)
V’H = —o’ueH = —*H (3-18b)

where
‘32 = a)zlu,g (3-180)

In the literature the phase constant f§ is also represented by k.

3.4 SOLUTION TO THE WAVE EQUATION

The time variations of most practical problems are of the time-harmonic form. Fourier series can
be used to express time variations of other forms in terms of a number of time-harmonic terms.
Electromagnetic fields associated with a given boundary-value problem must satisfy Maxwell’s
equations or the vector wave equations. For many cases, the vector wave equations reduce to a
number of scalar Helmholtz (wave) equations, and the general solutions can be constructed once
solutions to each of the scalar Helmholtz equations are found.

In this section we want to demonstrate at least one method that can be used to solve the scalar
Helmbholtz equation in rectangular, cylindrical, and spherical coordinates. The method is known as
the separation of variables [1, 2], and the general solution to the scalar Helmholtz equation using
this method can be constructed in 11 three-dimensional orthogonal coordinate systems (including
the rectangular, cylindrical, and spherical systems) [3].

The solutions for the instantaneous time-harmonic electric and magnetic field intensities can
be obtained by considering the forms of the vector wave equations given either in Section 3.2 or
Section 3.3. The approach chosen here will be to use those of Section 3.3 to solve for the complex
field intensities E and H first. The corresponding instantaneous quantities can then be formed
using the relations (1-61a) through (1-61f) between the instantaneous time-harmonic fields and
their complex counterparts.

3.4.1 Rectangular Coordinate System

In a rectangular coordinate system, the vector wave equations 3-16a through 3-18c can be reduced
to three scalar wave (Helmbholtz) equations. First, we will consider the solutions for source-free
and lossless media. This will be followed by solutions for source-free but lossy media.

A. Source-Free and Lossless Media For source-free (J; = M; = qye = gy = 0) and loss-
less (0 = 0) media, the vector wave equations for the complex electric and magnetic field
intensities are those given by (3-18a) through (3-18c). Since (3-18a) and (3-18b) are of the
same form, let us examine the solution to one of them. The solution to the other can then be
written by an interchange of E with H or H with E. We will begin by examining the solution
for E.

In rectangular coordinates, a general solution for E can be written as

E(x,y,z) = aEc(x,y,2) + 4,E,(x,y,2) + . E; (x,y,2) (3-19)
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ZA

X

Figure 3-1 Rectangular coordinate system and corresponding unit vectors.

where x,y,z are the rectangular coordinates, as illustrated in Figure 3-1. Substituting (3-19) into
(3-18a) we can write that

V’E + B°E = V2(A.E, + 4,E, + &,E,) + B> (A Ex +4,E, +4.E,) =0 (3-20)

which reduces to three scalar wave equations of

V2E,(x,y,2) + B*E.(x,y,2) =0 (3-20a)
V2E,(x,y,2) + B*Ey(x,y,2) = 0 (3-20b)
VZE.(x,y,2) + B’E. (x,y,2) =0 (3-20¢)
because
V3(a.E, +4,E, +4,E,) = a,V’E, +4,V°E, + 4, V°E, (3-21)

Equations 3-20a through 3-20c are all of the same form; once a solution of any one of them is
obtained, the solutions to the others can be written by inspection. We choose to work first with
that for E, as given by (3-20a).

In expanded form (3-20a) can be written as

9%E, 09%E, 9’E

2 2 _ X 2 —
VE + fPE = o+ TER + B%E, =0 (3-22)

Using the separation-of-variables method, we assume that a solution for E, (x, y, z) can be written
in the form of

E (x,y,2) =f(x)g()h(z) (3-23)

where the x, y, z variations of E, are separable (hence the name). If any inconsistencies are
encountered with assuming such a form of solution, another form must be attempted. This is the
procedure usually followed in solving differential equations. Substituting (3-23) into (3-22), we

can write that , , ,
0°f 0°g 0-h 2
h—= + fh—> + fg— h=0 3-24
8h==3 +/h 0y +/8 522 + B8 (3-24)
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Since f(x), g(v), and h(z) are each a function of only one variable, we can replace the partials
in (3-24) by ordinary derivatives. Doing this and dividing each term by fgh, we can write that

1d>% 1d% 1d*h
Far Tgar Tha TP 0 G2

or
1d? 1d? 1d*h
tdf 1dg  1dh_ (3-25a)
fdx?  gdy? hdz?
Each of the first three terms in (3-25a) is a function of only a single independent variable;
hence the sum of these terms can equal — A2 only if each term is a constant. Thus (3-25a) separates
into three equations of the form

1 d%f d%f
Tl - = i -Bif (3-26a)

1d%g d’g
o -B; = i —Bg (3-26b)

1d*h d*h
haE = = g =R 3269

where, in addition,

Bi+ B, + B =5 (3-27)

Equation 3-27 is referred to as the constraint (dispersion) equation. In addition B, B,, B, are
known as the wave constants (numbers) in the x, y, z directions, respectively, that will be
determined using boundary conditions.

The solution to each of (3-26a), (3-26b), or (3-26c) can take different forms. Some typical
valid solutions for f(x) of (3-26a) would be

fikx) = AjePr 4 Bre P (3-28a)

or
fo(x) = Cycos(Brx) + Dy sin(Brx) (3-28b)

Similarly the solutions to (3-26b) and (3-26¢) for g(y) and h(z) can be written, respectively, as

a(y) =A2€7j5yy +Bze+jﬁyy (3-29a)
or
82(y) = Cycos(Byy) + Dy sin(Byy) (3-29b)
and ) .
h](Z) :ASe—]ﬂ:Z _|_B3e+./ﬂzz (3-303)
or
hy(z) = C;3cos(B.z) + D3 sin(B,z) (3-30b)

Although all the aforementioned solutions are valid for f(x), g(y), and A(z), the most appro-
priate form should be chosen to simplify the complexity of the problem at hand. In general, the
solutions of (3-28a), (3-29a), and (3-30a) in terms of complex exponentials represent traveling
waves and the solutions of (3-28b), (3-29b), and (3-30b) represent standing waves. Wave func-
tions representing various wave types in rectangular coordinates are found listed in Table 3-1. In



SOLUTION TO THE WAVE EQUATION 105

TABLE 3-1 Wave functions, zeroes, and infinities of plane wave functions in rectangular
coordinates

Wave Wave Zeroes of Infinities of

type functions wave functions wave functions

Traveling e‘J: B for + x travel Bx — —joo Bx — +joo
waves etPX for — x travel Bx — +joo Bx — —joo

Standing cos(Bx) for £ x Bx = :i:(n + %)rr Bx — £joo
waves sin(Bx) for £x Bx = tnm Bx — £joo

n=012,...

Evanescent e " for +x ax — +00 ax — —00
waves e for —x ax — —oo ax — 400

cosh(ax) for +x ax = &£j (n + %)7‘[ ax — +oo
sinh(ax) for £x ax = Ejnw ax — £oo
n=0,12,...

Attenuating eVt = e"""e’-’:ﬂx for + x travel yx — 400 yxX — —00
traveling etrr = et eHhY for — x travel yX — —00 yx — +00
waves

Attenuating cos(yx) = cos(ax) cosh(Bx) yx = =£j (n + %)n yx — £joo
standing — j sin(ax) sinh(Bx)
waves for £x

sin(yx) = sin(ax) cosh(Bx) yx = tjnw yx — £joo
+ j cos(ax) sinh(Bx) n=0,1,2,...
for £x

Chapter 8 we will consider specific examples and the appropriate solution forms for f(x), g(y),
and h(z).

Once the appropriate forms for f(x), g(v), and h(z) have been decided, the solution for the
scalar function E,(x,y,z) of (3-22) can be written as the product of fgh as stated by (3-23).
To demonstrate that, let us consider a specific example in which it will be assumed that the
appropriate solutions for f, g, and h are given, respectively, by (3-28b), (3-29b), and (3-30a).
Thus we can write that

E.(x,y,z) = [Ci cos(Bcx) + Dy sin(Bx) |[C2 cos(Byy) + Dz sin(Byy)]
x[AseP% 4 ByetIF:t] (3-31)

This is an appropriate solution for any of the electric or magnetic field components inside a
rectangular pipe (waveguide), shown in Figure 3-2, that is bounded in the x and y directions
and has its length along the z axis. Because the waveguide is bounded in the x and y directions,
standing waves, represented by cosine and sine functions, have been chosen as solutions for f'(x)
and g (y) functions. However, because the waveguide is not bounded in the z direction, traveling
waves, represented by complex exponential functions, have been chosen as solutions for /(z). A
complete discussion of the fields inside a rectangular waveguide can be found in Chapter 8.
For ¢/' time variations, which are assumed throughout this book, the first complex exponential
term in (3-31) represents a wave that travels in the 4z direction; the second exponential represents
a wave that travels in the —z direction. To demonstrate this, let us examine the instantaneous form
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=Y

Figure 3-2 Rectangular waveguide geometry.

€. (x,y,z; 1) of the scalar complex function E,(x,y,z). Since the solution of (3-31) represents
the complex form of E,, its instantaneous form can be written as

€c(x,y,2;1) = Re[Ey(x,y,2)e/ ] (3-32)

Considering only the first exponential term of (3-31) and assuming all constants are real, we can
write the instantaneous form of the €, function for that term as

€ (x,y,2;:1) =Re[Ef (x,y,2)e/]
= Re{ [C) cos(Bex) + Dy sin(B,x)]
«[C2 cos(Byy) + Dy sin(B,y) | Ase! W—ﬁﬂ)} (3-33)
or, if the constants C;, Dy, C,, D>, and A3 are real, as

€ (x,y.z:1) = [C) cos(Bx) + Dy sin(B.x) ]
x[C; cos(Byy) + Dy sin(Byy) A3 cos(wt — B.2) (3-33a)

where the superscript plus is used to denote a positive traveling wave.
A plot of the normalized %;r (x,y,z;t) as a function of z for different times
(t =1ty,t1,...,ty,t,41) is shown in Figure 3-3. It is evident that as time increases (¢, >t,),
the waveform of € is essentially the same, with the exception of an apparent shift in the +z
direction indicating a wave traveling in the 4z direction. This shift in the +z direction can also
be demonstrated by examining what happens to a given point z, in the waveform of %j for
t =to,11,...,ty, ty41. To follow the point z, for different values of 7, we must maintain constant
the amplitude of the last cosine term in (3-33a). This is accomplished by keeping its argument
wt — Bz, constant, that is,
wt — B.z, = Co = constant (3-34)

which when differentiated with respect to time reduces to

d d
s B2 oy, =42 (3-35)

1) — B,
o) =F. di 8.
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F(z,t) = cos(wt — Bz)

Magnitude IF(z,0)l

-1.0

-1.5

Figure 3-3 Variations as a function of distance for different times of positive traveling wave.
—time fp =0; ———— time f; = T/8; ---- time t, = T /4.

The point z, is referred to as an equiphase point and its velocity is denoted as the phase
velocity. A similar procedure can be used to demonstrate that the second complex exponential
term in (3-31) represents a wave that travels in the —z direction.

B. Source-Free and Lossy Media When the media in which the waves are traveling are
lossy (o # 0) but source-free (J; = M; = qy. = qun = 0), the vector wave equations that the
complex electric E and magnetic H field intensities must satisfy are (3-17a) and (3-17b). As for
the lossless case, let us examine the solution to one of them; the solution to the other can then be
written by inspection once the solution to the first has been obtained. We choose to consider the
solution for the electric field intensity E, which must satisfy (3-17a). An extended presentation
of electromagnetic wave propagation in lossy media can be found in [4].
In a rectangular coordinate system, the general solution for E(x,y,z) can be written as

E(x,y,z) = a,E:(x,y,2) + 4 E,(x,y,2) + a4, E (x,y,2) (3-36)
When (3-36) is substituted into (3-17a), we can write that
V’E — y’E = V*(&,E, + 4,E, + 4.E;) — y*(A.E, + 4 E, + 4,E.) =0 (3-37)

which reduces to three scalar wave equations of

VE((x,y,2) — y’Ex(x,y,2) =0 (3-37a)
V2E,(x,y,2) — y?Ey(x,y,2) =0 (3-37b)
VZE.(x,y,2) — Y E:(x,y,2) =0 (3-37¢)
where
y? =jou(o +jws) (3-37d)

If we were to allow for positive and negative values of o

- . +(a+jp) for+o
=+ = 3-37
y=+Jjor +jen =1 00 T (3-37¢)
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In (3-37e),

y = propagation constant
o = attenuation constant (Np/m)
B = phase constant (rad/m)
where o and B are assumed to be real and positive. Although some authors choose to represent

the phase constant by &, the symbol g will be used throughout this book.
Examining (3-37e) reveals that there are four possible combinations for the form of y. That is,

+(a+jB) (3-38a)
—(@+jp) (3-38b)
" |t@-ip (3-38¢)
—(@—jp) (3-384)

Of the four combinations, only one will be appropriate for our solution. That form will be selected
once the solutions to any of (3-37a) through (3-37c) have been decided.

Since all three equations represented by (3-37a) through (3-37c¢) are of the same form, let us
examine only one of them. We choose to work first with (3-37a) whose solution can be derived
using the method of separation of variables. Using a similar procedure as for the lossless case,
we can write that

Ec(x,y,2) =f(x)g()h(z) (3-39)

where it can be shown that f(x) has solutions of the form

filx) =Aje " 4 Betrt (3-40a)
or
fo(x) = Cy cosh(yxx) + Dy sinh(y,x) (3-40Db)
and g (y) can be expressed as
81(y) = Age ™"  Bre Y (3-41a)
or
82(y) = Cy cosh(y,y) + D, sinh(yyy) (3-41b)
and h(z) as
hi(z) = Ase 7% + Bye 7 (3-42a)
or
h,(z) = C5cosh(y,z) + D3 sinh(y,z) (3-42b)

Whereas (3-40a) through (3-42b) are appropriate solutions for f, g, and A of (3-39), which
satisfy (3-37a), the constraint (dispersion) equation takes the form of

ity +vi=y (3-43)

The appropriate forms of f, g, and & chosen to represent the solution of E, (x,y, z), as given by
(3-39), must be made by examining the geometry of the problem in question. As for the lossless
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case, the exponentials represent attenuating traveling waves and the hyperbolic cosines and sines
represent attenuating standing waves. These and other waves types are listed in Table 3-1.

To decide on the appropriate form for any of the y’s (whether it be y,, y,, ., or y), let us
choose the form of y, by examining one of the exponentials in (3-42a). We choose to work with
the first one. The four possible combinations for y,, according to (3-38a) through (3-38d) will
be

(o, +jB.) (3-44a)
—(; +jB2) (3-44b)
T ) e —jB) (3-44c)
—(a; —jBe) (3-444)

If we want the first exponential in (3-42a) to represent a decaying wave which travels in the
+z direction, then by substituting (3-44a) through (3-44d) into it we can write that

AzeTV = Ayt TPl (3-45a)
Vi — +azz ,+jp:z
o Aze V= Aze e ™ (3-45b)
hi'(z) = ,
Aze Vit = Aje %t tibet (3-45¢)
Aze Vet = Ajetuteibir (3-45d)

By examining (3-45a) through (3-45d) and assuming ¢/’ time variations, the following state-
ments can be made:

1. Equation 3-45a represents a wave that travels in the 4z direction, as determined by e Pz,
and it decays in that direction, as determined by e %%,

2. Equation 3-45b represents a wave that travels in the —z direction, as determined by e/f:%,
and it decays in that direction, as determined by e1%:%,

3. Equation 3-45c represents a wave that travels in the —z direction, as determined by e*/#:7,
and it is increasing in that direction, as determined by e ~%:%.

4. Equation 3-45d represents a wave that travels in the 4z direction, as determined by L
and it is increasing in that direction, as determined by e %%,

From the preceding statements it is apparent that for e ~7:% to represent a wave that travels in the
+z direction and that concurrently also decays (to represent propagation in passive lossy media),
and to satisfy the conservation of energy laws, the only correct form of y, is that of (3-44a). The
same conclusion will result if the second exponential of (3-42a) represents a wave that travels in
the —z direction and that concurrently also decays. Thus the general form of any y; (whether it
be vy, ¥y, ¥z, Or ¥), as given by (3-38a) through (3-38d), is

vi=o; +jBi (3-46)

Whereas the forms of f, g, and & [as given by (3-40a) through (3-42b)] are used to arrive
at the solution for the complex form of E, as given by (3-39), the instantaneous form of €,
can be obtained by using the relation of (3-32). A similar procedure can be used to derive the
solutions of the other components of E (E, and E;), all those of H (H,, H,, and H;), and of their
instantaneous counterparts.
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3.4.2 Cylindrical Coordinate System

If the geometry of the system is of a cylindrical configuration, it would be very advisable to
solve the boundary-value problem for the E and H fields using cylindrical coordinates. Maxwell’s
equations and the vector wave equations, which the E and H fields must satisfy, should be solved
using cylindrical coordinates. Let us first consider the solution for E for a source-free and lossless
medium. A similar procedure can be used for H. To maintain some simplicity in the mathematics,
we will examine only lossless media.

In cylindrical coordinates a general solution to the vector wave equation for source-free and
lossless media, as given by (3-18a), can be written as

E(ps ¢7Z) = ﬁpEp(ps ¢sZ) + ﬁ¢E¢(,0,¢,Z) + ﬁzEZ(ps(:b’Z) (3_47)

where p, ¢, and z are the cylindrical coordinates as illustrated in Figure 3-4. Substituting (3-47)
into (3-18a), we can write that

V2(4,E, + 44E, + 4,E,) = —B*(4,E, + a4E4 + 4 E,) (3-48)

which does not reduce to three simple scalar wave equations, similar to those of (3-20a) through
(3-20c¢) for (3-20), because

V2(4,E,) # 4,V’E, (3-49a)
V2(a4E,) # 4, V°E, (3-49b)

However, because
V%(,E.) =4a.V’E, (3-49¢)

one of the three scalar equations to which (3-48) reduces is
V?E. + B’E. =0 (3-50)

The other two are of more complex form and they will be addressed in what follows.

Before we derive the other two scalar equations [in addition to (3-50)] to which (3-48) reduces,
let us attempt to give a physical explanation of (3-49a), (3-49b), and (3-49c). By examining two
different points (p;, ¢1, z1) and (o2, ¢2, z2) and their corresponding unit vectors on a cylindrical
surface (as shown in Figure 3-4), we see that the directions of 4, and 44 have changed from one
point to another (they are not parallel) and therefore cannot be treated as constants but rather are
functions of p, ¢, and z. In contrast, the unit vector 4, at the two points is pointed in the same
direction (is parallel). The same is true for the unit vectors 4, and 4, in Figure 3-1.

Let us now return to the solution of (3-48). Since (3-48) does not reduce to (3-49a) and (3-
49b), although it does satisfy (3-49c), how do we solve (3-48)? The procedure that follows can
be used to reduce (3-48) to three scalar partial differential equations.

The form of (3-48) written in general as

V2E = —p°E (3-51)

was placed in this form by utilizing the vector identity of (3-5) during its derivation. Generally
we are under the impression that we do not know how to perform the Laplacian of a vector
(V’E) as given by the left side of (3-51). However, by utilizing (3-5) we can rewrite the left
side of (3-51) as

V?’E=V(V-E) -V xV xE (3-52)
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e

Figure 3-4 Cylindrical coordinate system and corresponding unit vectors.

whose terms can be expanded in any coordinate system. Using (3-52) we can write (3-51) as
V(V-E)—V xV xE = —B%E (3-53)

which is an alternate form, but not as commonly recognizable, of the vector wave equation for
the electric field in source-free and lossless media.

Assuming a solution for the electric field of the form given by (3-47), we can expand (3-53)
and reduce it to three scalar partial differential equations of the form

E, 2 9E
V2E 2T )~ B2 3-54
ot ( P> p? 3¢ ) s ()
E, 2 dE
V2E S Rl N2 3-54b
- ( p? - p* 3¢ ) P ( )
V?E, = —B’E, (3-54¢)

In each of (3-54a) through (3-54c) V¥ (p,¢,z) is the Laplacian of a scalar that in cylindrical
coordinates takes the form of

2 _ Lo oy 1y oy
Ve = (p dp ) Ty T
0y 1oy 1 0%y 0%y

=—+——+=——+— 3-55
> pop  p*ag? s 559

Equations 3-54a and 3-54b are coupled (each contains more than one electric field component)
second-order partial differential equations, which are the most difficult to solve. However, (3-54c)
is an uncoupled second-order partial differential equation whose solution will be most useful in

the construction of TE* and TM® mode solutions of boundary-value problems, as discussed in
Chapters 6 and 9.
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In expanded form (3-54c) can then be written as

2y 1oy 1 9%y 9ty 5
S AT AL A - 3-56
902 " pop T o ez P (5-50)

where ¥ (p, ¢, z) is a scalar function that can represent a field or a vector potential component.
Assuming a separable solution for ¥ (p, ¢,z) of the form

V(p.d,2) =f(p)g(@)h(z) (3-57)

and substituting it into (3-56), we can write that

9f 1 af 1 9%

h—= +gh—— ——

Srre e p dp +ﬂlp2 dg?

Dividing both sides of (3-58) by fgh and replacing the partials by ordinary derivatives reduces
(3-58) to

9%h 5
+fg@ = —Bfgh (3-58)

Ld> 1ldf 1 1d% 1d°h

fdp*  fpdp ' gp*de® ' hdz?

The last term on the left side of (3-59) is only a function of z. Therefore, using the discussion
of Section 3.4.1, we can write that

(3-59)

1d®h
hdz?

, d%h
_/3 =

= —pBZh (3-60)

where B, is a constant. Substituting (3-60) into (3-59) and multiplying both sides by p?, reduces
it to
PAEf L pd 1
fdp* fdp gd¢?
Since the third term on the left side of (3-61) is only a function of ¢, it can be set equal to a
constant —m?>. Thus we can write that

+ (B = BHp* =0 (3-61)

1d? d?
- S N k. R (3-62)
g d¢? d¢?
Letting
B*—Bi=PB.= B+ pl=p (3-63)

then using (3-62), and multiplying both sides of (3-61) by f, we can reduce (3-61) to

&If | df
P TP gy T —milf =0 (3-64)

Equation 3-63 is referred to as the constraint (dispersion) equation for the solution to the wave
equation in cylindrical coordinates, and (3-64) is recognized as the classic Bessel differential
equation [1-3, 5-10].

In summary then, the partial differential equation 3-56 whose solution was assumed to be
separable of the form given by (3-57) reduces to the three differential equations 3-60, 3-62, 3-64
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and the constraint equation 3-63. Thus

2 2 2
Py Loy 1y Py

2 _ 77 - v - v Y _ B2 _
VY (p,¢,2) = 5r "o T T T By (3-65)
where
V(p,¢,2) =f(p)g(P)h(z) (3-65a)
reduces to
d’f df
pzm togst [(Bop)® —m?]f =0 (3-66a)
2
ZT)i — (3-66b)
d?h 5
= —BZh (3-66¢)
with
B+ B =8 (3-66d)

Solutions to (3-66a), (3-66b), and (3-66¢) take the form, respectively, of

S1(p) = A1dw (Bop) + B1Yu (Byp) (3-67a)
or
f2(p) = C1H" (B,p) + D1H, (Byp) (3-67b)
and
g1(@) = Are ™™ + Bre™™? (3-68a)
or
g2(¢p) = Cycos(mep) + D, sin(me) (3-68b)
and
hi(z) = A3e—jﬂzz + B3e+jﬂzZ (3-69a)
or
hy(z) = C3cos(B;z) + D3 sin(B;z) (3-69b)

In (3-67a) J,,(B,p) and Y,,(B,p) represent, respectively, the Bessel functions of the first and
second kind; H,\"(B,p) and H'? (B,p) in (3-67b) represent, respectively, the Hankel functions
of the first and second kind. A more detailed discussion of Bessel and Hankel functions is found
in Appendix IV.

Although (3-67a) through (3-69b) are valid solutions for f(p), g(¢), and h(z), the most appro-
priate form will depend on the problem in question. For example, for the cylindrical waveguide of
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Figure 3-5 Cylindrical waveguide of the circular cross section.

Figure 3-5 the most convenient solutions for f(p), g(¢), and h(z) are those given, respectively,
by (3-67a), (3-68b), and (3-69a). Thus we can write

Vi(p,¢,2) =f(p)g(P)h(z)
= [Al-]m(ﬂpp) + BIYm(IBpp)]
x[C; cos(m) + Dy sin(me)] [Aze 7F+* + ByetF:%] (3-70)

These forms for f(p), g(¢), and h(z) were chosen in cylindrical coordinates for the following
reasons.

1. Bessel functions of (3-67a) are used to represent standing waves, whereas Hankel functions
of (3-67b) represent traveling waves.

2. Exponentials of (3-68a) represent traveling waves, whereas the cosines and sines of (3-68b)
represent periodic waves.

3. Exponentials of (3-69a) represent traveling waves, whereas the cosines and sines of (3-69b)
represent standing waves.

Wave functions representing various radial waves in cylindrical coordinates are found listed in
Table 3-2.

Within the circular waveguide of Figure 3-5 standing waves are created in the radial (p)
direction, periodic waves in the phi (¢) direction, and traveling waves in the z direction. For the
fields to be finite at p = 0, where Y, (B,0) possesses a singularity, (3-70) reduces to

V1(0.6,2) = A1 (B, p)[Ca cos(mgp) + Dy sin(me)] [Ase 7% 4 Bye 757 (3-702)

To represent the fields in the region outside the cylinder, like scattering by the cylinder, a
typical solution for v (p, ¢,z) would take the form of

V2 (0. ¢.2) = BiH,? (B,p)[Ca cos(mgp) + Dy sin(m¢p)] [Aze F<% 4 Bye™F:%] (3-70b)
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TABLE 3-2 Wave functions, zeroes, and infinities for radial wave functions in cylindrical
coordinates

Infinities
Wave Wave Zeroes of of wave
type functions wave functions functions
Traveling — H (Bp) = Ju(BP) + ¥ (Bp) Bp — +joo Bp =0
waves s for —p travel Bp — —joo
Hy? (Bp) = Jn(Bp) — j¥n (Bp) Bp — —joo Bp=0
for +p travel Bp — +joo
Standing Jm (BP) for +p Infinite number Bp — Ljoo
waves Y (Bp) for £ p (see Table 9-2)
Infinite number Bp =0
Bp — Ljoo
b4
Evanescent K, (ap) = 5(—j)m“H,f,2)(—ja,o) ap — +0o ap — 0
waves for + p ap — +00
In(@p) = j™"Jm(—jap) for — p for integer orders
Attenuating H,ﬁll)(—jyp) = H,ﬁ,”(—ja,o + Bp) yp — —00 yp — 400
traveling for — p travel
waves Hy (—jyp) = Hy (—jap + Bp) Yo — +00 yp — —00
for + p travel
Attenuating Jn(=jyp) =Jn(—jap + Bp) for £p Infinite number yp — tjoo
standing Yn(—jyp) =Y, (—jap + Bp) for & p Infinite number yp — Ejoo

waves

whereby the Hankel function of the second kind Hn(lz) (Bop) has replaced the Bessel function
of the first kind J,,(8,p) because outward traveling waves are formed outside the cylinder, in
contrast to the standing waves inside the cylinder.

More details concerning the application and properties of Bessel and Hankel function can be
found in Chapters 9 and 11.

3.4.3 Spherical Coordinate System

Spherical coordinates should be utilized in solving problems that exhibit spherical geometries.
As for the rectangular and cylindrical geometries, the electric and magnetic fields of a spherical
geometry boundary-value problem must satisfy the corresponding vector wave equation, which
is most conveniently solved in spherical coordinates as illustrated in Figure 3-6.

To simplify the problem, let us assume that the space in which the electric and magnetic fields
must be solved is source-free and lossless. A general solution for the electric field can then be
written as

E(r,0,¢) = &,E.(r,0,¢) + 8 Ey(r,0,¢) +a3E4(r,0, ) (3-71)
Substituting (3-71) into the vector wave equation of (3-18a), we can write that

V24, E, +agEy +ayEs) = —B*(4,E, + 8gEy + a4E,) (3-72)
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Figure 3-6 Spherical coordinate system and corresponding unit vectors.

Since
V%(4,.E,) # a,V’E, (3-73a)
V2(apEy) # 49V*Ey (3-73b)
V2(a,Es) # 4,V2E, (3-73¢)

(3-72) does not reduce to three simple scalar wave equations, similar to those of (3-20a) through
(3-20c) for (3-20). Therefore the reduction of (3-72) to three scalar partial differential equations
must proceed in a different manner. In fact, the method used here will be similar to that utilized
in cylindrical coordinates to reduce the vector wave equation to three scalar partial differential
equations.

To accomplish this, we first rewrite the vector wave equation of (3-51) in a form given by
(3-53) where now all the operators on the left side can be performed in any coordinate system.
Substituting (3-71) into (3-53) shows that, after some lengthy mathematical manipulations, (3-53)
reduces to three scalar partial differential equations of the form

2 2 0E,  OEy )
\Y E’_ﬁ Er—l—EgcotQ—{—cchw—i-% = —B°E, (3-74a)
5 1 2 oE, 0E, 5
V°Ey — ) Eycsc 0 — 2% + 2coth 0500% = —B°Ey (3-74b)
2 1 2 8Er 8E9 2
V'Ey — — | Egcsc 9—205095—200'[90%9% =—pBEy (3-74¢)
r

Unfortunately, all three of the preceding partial differential equations are coupled. This means
each contains more than one component of the electric field and would be most difficult to solve
in its present form. However, as will be shown in Chapter 10, TE” and TM" wave mode solutions
can be formed that in spherical coordinates must satisfy the scalar wave equation of

ViU (r,0,¢) = —p*Y(r,0,¢) (3-75)
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where ¥ (r,6,¢) is a scalar function that can represent a field or a vector potential compo-
nent. Therefore, it would be advisable here to demonstrate the solution to (3-75) in spherical
coordinates.

Assuming a separable solution for ¥ (r, 6, ¢) of the form

Y(r,0,¢) =1 (r)g@)h(e) (3-76)

we can write the expanded form of (3-75)

2
L9 {rZ%}—i- : i{sinéaw}—k;a v =g’y (3-77)

2ar | ar 2sin@ 96 30 | " r2sin?6 092
as 2
1d(,0f 1 8 (. oag 1 8%
h—— 1220 2 Leing22 T _B%eh 378
r2 or {r ar} ./ r2sinf 9 {sm 30 } +f r2sin® 6 9> Fis (5-78)

Dividing both sides by fgh, multiplying by r2sin’6, and replacing the partials by ordinary
derivatives reduces (3-78) to

in*0 d [ ,d ino d d 1d*h
sin _{rzi}_i_sm —:siné’—g}-i-

—_— — — 1 2 -
7 oar | ar ¢ do a6 | T nag = ~Prsin?) (3-79)

Since the last term on the left side of (3-79) is only a function of ¢, it can be set equal to

1 d*h , d*h )
——— = — =—m"h 3-80
ndgr = " Tag T " (-5
where m is a constant.
Substituting (3-80) into (3-79), dividing both sides by sin® 6, and transposing the term from
the right to the left side reduces (3-79) to

1d [ ,df ) . dg m 12
SN2 e lne —{—} —0 (3-81)
fdr dr g sinf do do sin 6
Since the last two terms on the left side of (3-81) are only a function of 6, we can set them equal
to
1 d dg m )2
———— 1sinf— ¢ — { - } =— 1 3-82
gsinf do {sm d@} sin 6 n@e +1) ( )

where n is usually an integer. Equation 3-82 is closely related to the well-known Legendre
differential equation (see Appendix V) [1-3, 6-10].
Substituting (3-82) into (3-81) reduces it to

Ld [ ,df ) B
fd—r{r —}+(ﬁr) —n(n+1)=0 (3-83)

dr
which is closely related to the Bessel differential equation (see Appendix IV).
In summary then, the scalar wave equation 3-75 whose expanded form in spherical coordinates
can be written as

19 | ,0¢ 1 o (. oy 1 92y )
2or | ar 30 150 %0 — = 3-84
r2or {r or } + r2siné 96 {sm 90 } + r2sin2 0 92 B Y ( )
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and whose separable solution takes the form of

V(r,0,¢9) =f(r)g0)h(e) (3-85)
reduces to the three scalar differential equations
d df

o {rzd—r} +[(Br)? =n@m+D]f =0 (3-862)
LN (VL ) Jrl)—{i}2 =0 (3-86b)

singao M aof " [M sing | |87 ]
ﬂ =—m’h (3-86¢)
d5? m -86¢

where m and n are constants (usually integers).
Solutions to (3-86a) through (3-86¢) take the forms, respectively, of

Si(r) = Ay (Br) + Biy. (Br) (3-87a)
or
fo(r) = Cih{"(Br) + Dih\P (Br) (3-87b)
and
81(0) = AyP)' (cos0) + BoP,' (—cos ) n # integer (3-88a)
or
82(0) = CoP)" (cos 0) + D, Q" (cos 0) n = integer (3-88b)
and _ ‘
hi(¢) = Aze™"? + Bye™™? (3-89a)
or
hy(¢p) = C;5 cos(me) + D3 sin(mep) (3-89b)

In (3-87a) j,(Br) and y, (Br) are referred to, respectively, as the spherical Bessel functions of
the first and second kind. They are used to represent radial standing waves, and they are related,
respectively, to the corresponding regular Bessel functions J,,11,2(87) and Y, 41,2(8r) by

Jn(Br) = /%Jﬁm(ﬁr) (3-90a)
Ya(Br) = /%anz(ﬂr) (3-90b)

In (3-87b) h{V(Br) and P (Br) are referred to, respectively, as the spherical Hankel functions
of the first and second kind. They are used to represent radial traveling waves, and they are related,
respectively, to the regular Hankel functions Hn(i)l /z(ﬂr) and Hn(i)l /z(ﬂr) by

WO (pr) = %Hﬁl 2(B7) (3-91a)
W) = | =H2, ,(pr) (3-91b)

28r "t
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TABLE 3-3 Wave functions, zeroes, and infinities for radial waves in spherical

coordinates
Infinities
Wave Wave Zeroes of of wave
type functions wave functions functions
Traveling i (Br) = ju(Br) + jyn (Br) Br — +joo Br=0
waves ) for —r travel Br — —joo
hi? (Br) = ju(Br) — jyn(Br) Br — —joo Br=0
for +r travel Br — +joo
Standing Jn(Br) for £r Infinite number Br — tjoo
waves yu(Br) for £r Infinite number pr=0
Br — +joo

Wave functions used to represent radial traveling and standing waves in spherical coordinates are
listed in Table 3-3. More details on the spherical Bessel and Hankel functions can be found in
Chapters 10 and 11 and Appendix IV.

In (3-88a) and (3-88b) P, (cos 0) and O, (cos §) are referred to, respectively, as the associated
Legendre functions of the first and second kind (more details can be found in Chapter 10 and
Appendix V).

The appropriate solution forms of f, g, and & will depend on the problem in question. For
example, a typical solution for ¥ (r,6,¢) of (3-85) to represent the fields within a sphere as
shown in Figure 3-7 may take the form

Y1(r,0,9) = [Ajn(Br) + By, (Br)]
x[CoP)' (cos 0) + D10, (cos 0)][C3 cos(me) + D3 sin(m¢p)] (3-92)

For the fields to be finite at » = 0, where y, (8r) possesses a singularity, and for any value of
0, including 6 = 0, w where Q)" (cos €) possesses singularities, (3-92) reduces to

Yi(r,0,¢) = Apnjn (Br)P," (cos 0)[C; cos(me) + Ds sin(me)] (3-92a)

To represent the fields outside a sphere, like for scattering, a typical solution for v (r, 0, ¢) would
take the form of

Va2(r,0,¢) = Bunh® (Br)P" (cos 0)[Cs cos(me) + Dj sin(me)] (3-92b)

Figure 3-7 Geometry of a sphere of radius a.
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whereby the spherical Hankel function of the second kind h,(lz) (Br) has replaced the spherical
Bessel function of the first kind j, (8r) because outward traveling waves are formed outside the
sphere, in contrast to the standing waves inside the sphere.

Other spherical Bessel and Hankel functions that are most often encountered in boundary-
value electromagnetic problems are those utilized by Schelkunoff [3, 11]. These spherical Bessel
and Hankel functions, denoted in general by B, (r) to represent any of them, must satisfy the

differential equation
d’B, D7 4
—|—|:‘32—n(nj )i|Bn:0 (3_93)
r

dr?

The spherical Bessel and Hankel functions that are solutions to this equation are related to other
spherical Bessel and Hankel functions of (3-90a) through (3-91b), denoted here by b, (8r), and
to the regular Bessel and Hankel functions, denoted here by B, 11,,(8r), by

B — Br b —gr. | 2B _ TP 3-94
W (Br) = Br b,(Br) = Br 2%r nt12(Br) = - nt1/2(B1) (3-94)

More details concerning the application and properties of the spherical Bessel and Hankel
functions can be found in Chapter 10.

3.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

e Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

3.1.

3.2,

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

Derive the vector wave equations 3-16a and
3-16b for time-harmonic fields using the
Maxwell equations of Table 1-4 for time-
harmonic fields.

Verify that (3-28a) and (3-28b) are solutions
to (3-26a).

Show that the second complex exponential
in (3-31) represents a wave traveling in the
—z direction. Determine its phase velocity.

Using the method of separation of variables
show that a solution to (3-37a) of the form
(3-39) can be represented by (3-40a) through
(3-43).

Show that the vector wave equation of (3-
53) reduces, when E has a solution of
the form (3-47), to the three scalar wave
equations 3-54a through 3-54c.

Reduce (3-51) to (3-54a) through (3-54c) by
expanding V?E. Do not use (3-52); rather
use the scalar Laplacian in cylindrical coor-
dinates and treat E as a vector given by
(3-47). Use that

08, _ 04, _ 04, _ . 0h _ 04,
ap  dp  dp 8¢ 0z
_ 04, 04
T8z 0z
0a 04,
=, 0= a,
d¢ d¢

Using large argument asymptotic forms,
show that Bessel and Hankel functions rep-
resent, respectively, standing and traveling
waves in the radial direction.

Using large argument asymptotic forms and
assuming e/® time convention, show that
Hankel functions of the first kind represent
traveling waves in the —p direction whereas
Hankel functions of the second kind repre-
sent traveling waves in the +p direction.
The opposite would be true were the time
variations of the e /¢’ form.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.
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Using large argument asymptotic forms,
show that Bessel functions of complex argu-
ment represent attenuating standing waves.

Assuming time variations of ¢/’ and using
large argument asymptotic forms, show that
Hankel functions of the first and second kind
with complex arguments represent, respec-
tively, attenuating traveling waves in the —p
and +p directions.

Show that when E can be expressed as
(3-71), the vector wave equation 3-53 redu-
ces to the three scalar wave equations 3-74a
through 3-74c.

Reduce (3-51) to (3-74a) through (3-74c) by
expanding V2E. Do not use (3-52); rather
use the scalar Laplacian in spherical coordi-
nates and treat E as a vector given by (3-71).
Use that

04 _ 0,

— = = 0
ar ar or
0a, 94y A day
= a9 -— = —4a, an
04, . . 0ag A
=sinfdy; — = cos0ay
¢ ¢
94y o .
— = —sinfa, — cos Aay
¢

Using large argument asymptotic forms,
show that spherical Bessel functions repre-
sent standing waves in the radial direction.

Show that spherical Hankel functions of the
first and second kind represent, respectively,
radial traveling waves in the —r and +r
directions. Assume time variations of e/®
and large argument asymptotic expansions
for the spherical Hankel functions.

Justify that associated Legendre functions
represent standing waves in the 6 direction
of the spherical coordinate system.

Verify the relation (3-94) between the vari-
ous forms of the spherical Bessel and Hankel
functions and the regular Bessel and Hankel
functions.






CHAPTER 4
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Wave Propagation and Polarization

4.1 INTRODUCTION

In Chapter 3 we developed the vector wave equations for the electric and magnetic fields in
lossless and lossy media. Solutions to the wave equations were also demonstrated in rectangular,
cylindrical, and spherical coordinates using the method of separation of variables. In this chapter
we want to consider solutions for the electric and magnetic fields of time-harmonic waves that
travel in infinite lossless and lossy media. In particular, we want to develop expressions for
transverse electromagnetic (TEM) waves (or modes) traveling along principal axes and oblique
angles. The parameters of wave impedance, phase and group velocities, and power and energy
densities will be discussed for each.

The concept of wave polarization will be introduced, and the necessary and sufficient conditions
to achieve linear, circular, and elliptical polarizations will be discussed and illustrated. The sense
of rotation, clockwise (right-hand) or counterclockwise (left-hand), will also be introduced.

4.2 TRANSVERSE ELECTROMAGNETIC MODES

A mode is a particular field configuration. For a given electromagnetic boundary-value problem,
many field configurations that satisfy the wave equations, Maxwell’s equations, and the boundary
conditions usually exist. All these different field configurations (solutions) are usually referred to
as modes.

A TEM mode is one whose field intensities, both E (electric) and H (magnetic), at every point
in space are contained on a local plane, referred to as equiphase plane, that is independent of
time. In general, the orientations of the local planes associated with the TEM wave are different
at different points in space. In other words, at point (x;, y;, z;) all the field components are
contained on a plane. At another point (xz, y, z2) all field components are again contained on a
plane; however, the two planes need not be parallel. This is illustrated in Figure 4-1a.

If the space orientation of the planes for a TEM mode is the same (equiphase planes are
parallel), as shown in Figure 4-1b, then the fields form plane waves. In other words, the equiphase
surfaces are parallel planar surfaces. If in addition to having planar equiphases the field has
equiamplitude planar surfaces (the amplitude is the same over each plane), then it is called a
uniform plane wave; that is, the field is not a function of the coordinates that form the equiphase
and equiamplitude planes.

123
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XA

N

A

(b)

Figure 4-1 Phase fronts of waves. (a) TEM. (b) Plane.

4.2.1 Uniform Plane Waves in an Unbounded Lossless Medium — Principal Axis

In this section we will write expressions for the electric and magnetic fields of a uniform plane
wave traveling in an unbounded medium. In addition the wave impedance, phase and energy
(group) velocities, and power and energy densities of the wave will be discussed.

A. Electric and Magnetic Fields Let us assume that a time-harmonic uniform plane wave is
traveling in an unbounded lossless medium (g, ) in the z direction (either positive or negative),
as shown in Figure 4-2q. In addition, for simplicity, let us assume the electric field of the wave
has only an x component. We want to write expressions for the electric and magnetic fields
associated with this wave.
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&, 1

Y

(a)

8-:'2 Eg cos (wt — B2)l,—¢

= E cos (- f2)

+
- Eo
= 77_ Ccos (wt—ﬁz)l,zo

E+
= 77_0 cos (— fBz)

(b)

Figure 4-2 Uniform plane wave fields. (a) Complex. (b) Instantaneous.

For the electric and magnetic field components to be valid solutions of a time-harmonic electro-
magnetic wave, they must satisfy Maxwell’s equations as given in Table 1-4 or the corresponding
wave equations as given, respectively, by (3-18a) and (3-18b). Here the approach will be to initiate
the solution by solving the wave equation for either the electric or magnetic field and then finding
the other field using Maxwell’s equations. An alternate procedure, which has been assigned as an
end-of-chapter problem, would be to follow the entire solution using only Maxwell’s equations.

Since the electric field has only an x component, it must satisfy the scalar wave equation of
(3-20a) or (3-22), whose general solution is given by (3-23). Because the wave is a uniform plane
wave that travels in the z direction, its solution is not a function of x and y. Therefore (3-23)
reduces to

Ei(z) = h(2) (4-1)

The solutions of A(z) are given by (3-30a) or (3-30b). Since the wave in question is a traveling
wave, instead of a standing wave, its most appropriate solution is that given by (3-30a). The first
term in (3-30a) represents a wave that travels in the +z direction and the second term represents
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a wave that travels in the —z direction. Therefore the solution of (4-1), using (3-30a), can be
written as

Ei(z) = Ase 7% + By P = EY + E (4-2)
or
E.(z) =Efe +Eye™” =Ef +E (4-2a)
Ef(x) = Efe™™ (4-2b)
E; (z) = Ey ™" (4-2c)

since B, = 8 because B, = B, =0. E(;r and E; represent, respectively, the amplitudes of the
positive and negative (in the z direction) traveling waves.

The corresponding magnetic field must also be a solution of its wave equation 3-18b, and its
form will be similar to (4-2). However, since we do not know which components of magnetic
field coexist with the x component of the electric field, they are most appropriately determined
by using one of Maxwell’s equations as given in Table 1-4. Since the electric field is known, as
given by (4-2), the magnetic field can best be found using

VXxE=—wuH (4-3)
or
i, a, 4
1 1
H=—-——VxE=——— iii (4-3a)
jour Jor | dx dy 0z
E. 0 O

which, using (4-2a), reduces to

1 oE . .
H=-4,— { - } = ﬁyﬂ {Efe /P — EyetiF?}
jou | 9z

1 g L o1 B . B
H=d e [Efe By eI} =y (B B} = {Hy+m7)
(4-3b)
where
1
H = E* (4-3¢)
VTV
1

H; . _T/&‘E; (4'3(1)

Plots of the instantaneous positive traveling electric and magnetic fields at + = 0 as a function
of z are shown in Figure 4-2b. Similar plots can be drawn for the negative traveling fields.

B. Wave Impedance Since each term for the magnetic field (A/m) in (4-3c) and (4-3d) is
individually identical to the corresponding term for the electric field (V/m) in (4-2a), the factor
J/1t/¢ in the denominator in (4-3c) and (4-3d) must have units of ohms (V/A). Therefore the
factor +/p /€ is known as the wave impedance, Z,,, denoted by the ratio of the electric to magnetic
field, and it is usually represented by 7

EF E- W
_ S ® 4-4
A (4-4)
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The wave impedance of (4-4) is identical to a quantity that is referred to as the intrinsic impedance
n = /p/e of the medium. In general, this is true not only for uniform plane waves but also for
plane and TEM waves; however, it is not true for TE or TM modes.

In (4-3d) it is also observed that a negative sign is found in front of the magnetic field
component that travels in the —z direction; a positive sign is noted in front of the positive traveling
wave. The general procedure that can be followed to find the magnetic field components, given
the electric field components, or to find the electric field components, given the magnetic field
components, is the following:

Place the fingers of your right hand in the direction of the electric field component.
Direct your thumb toward the direction of wave travel (power flow).

Rotate your fingers 90° in a direction so that a right-hand screw is formed.

The new direction of your fingers is the direction of the magnetic field component.
Divide the electric field component by the wave impedance to obtain the corresponding
magnetic field component.

bl S

The foregoing procedure must be followed for each term of each component of an electric
or magnetic field. The results are identical to those that would be obtained by using Maxwell’s
equations. If the wave impedance is known in advance, as it is for TEM waves, this procedure
is simpler and much more rapid than using Maxwell’s equations. By following this procedure,
the answers (including the signs) in (4-3c) and (4-3d) given (4-2b) and (4-2c) are obvious.

To illustrate the procedure, let us consider another example.

Example 4-1
The electric field of a uniform plane wave traveling in free space is given by
E =8, (Efe ™ + Eye) = a, (57 +E;)

where EJ and E; are constants. Find the corresponding magnetic field using the outlined procedure.

Solution: For the electric field component that is traveling in the 4z direction, the corresponding
magnetic field component is given by

Ef . Ef _.
Ht = -4, 2 ¢~ 3 0 772
Mo 377

where
Mo = Zy = .| =2 ~ 377 ohms
€0
Similarly, for the wave that is traveling in the —z direction we can write that
H =4, Eo_+ipe a, By g

Mo 377

Therefore the total magnetic field is equal to
1 o .
H=H"+H =a,— (—Efe7% + Eje™F)
Ny

The same answer would be obtained if Maxwell’s equations were used, and it is assigned as an end-of-
chapter problem.
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The term in the expression for the electric field in (4-2a) that identifies the direction of wave
travel can also be written in vector notation. This is usually more convenient to use when dealing
with waves traveling at oblique angles. Equation 4-2a can therefore take the more general form of

E. (z) =E(;“e_j‘#'r-i-Eofe_jBf'r (4-5)
where
Br=BTB=aB+4ap +ap'|=4ap (4-5a)
BF=p;=0
BF=p
B =B B=aB +4ap —ap |=-ap (4-5b)
Br =Py =0
B, =B
r = position vector = 4,x + 4,y + 4,z (4-5¢)

In (4-5a) through (4-5¢), B, By, B. represent, respectively, the phase constants of the wave in
the x, y, z directions, r represents the position vector in rectangular coordinates, and BT and B~
represent unit vectors in the directions of B+ and p~. The notation used in (4-5) through (4-5¢)
to represent the wave travel will be most convenient to express wave travel at oblique angles,
as will be the case in Section 4.2.2.

C. Phase and Energy (Group) Velocities, Power, and Energy Densities The expressions
for the electric and magnetic fields, as given by (4-2a) and (4-3b), represent the spatial variations
of the field intensities. The corresponding instantaneous forms of each can be written, using
(1-61a) and (1-61b) and assuming E(;r and E; are real constants, as

€ () =€ (z;1) + €, (z;1) =Re [E;e_jﬁzei‘”’] +Re [E()_e+jﬂze/wt]
= E cos (ot — Bz) + E, cos (ot + Bz) (4-6a)
Wy (z:0) =% (23 0) + %, (25 1)

1 _
= T [Ey cos (wt — Bz) — E; cos (o + Bz)] (4-6b)
In each of the fields, as given by (4-6a) and (4-6b), the first term represents, according to
(3-34) through (3-35) and Figure 3-3, a wave that travels in the +z direction; the second term
represents a wave that travels in the —z direction. To maintain a constant phase in the first term
of (4-6a), the velocity must be equal, according to (3-35), to

dz w w 1

=ta = B wyme Jue
The corresponding velocity of the second term in (4-6a) is identical in magnitude to (4-7) but
with a negative sign to reflect the direction of wave travel. The velocity of (4-7) is referred to
as the phase velocity, and it represents the velocity that must be maintained in order to keep in
step with a constant phase front of the wave. As will be shown for oblique traveling waves, the
phase velocity of such waves can exceed the velocity of light. This is only a hypothetical speed,
as will be explained in Section 4.2.2C. Aside of nonuniform plane waves, also referred to as
slow surface waves (see Section 5.3.4A), in general the phase velocity can be equal to or even

vy (4-7)
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greater than the speed of light. Variations of the instantaneous positive traveling electric € (z; 1)
and magnetic %;’(z; t) fields as a function of z for + = 0 are shown in Figure 4-2b. As time
increases, both curves will shift in the positive z direction. A similar set of curves can be drawn
for the negative traveling electric €, (z; 7) and magnetic ¥ (z; 7) fields.

The electric and magnetic energies (W-s/m?) and power densities (W/m?) associated
with the positive traveling waves of (4-6a) and (4-6b) can be written, according to (1-58f) and
(1-58e), as

wl = %8%;—2 = %eEOJr2 cos’ (wt — Bz) (4-8a)
wh = %,u%;rz = %M [(e/1) Eg? cos? (ot — B2)] = %SEOJr2 cos” (wt — Bz) (4-8b)
T =8" x X" =a,E; cos (vt — Bz) X [ﬁy (1/\/M_ﬁa> E cos (ot — ,BZ)]

—a 9t —a, (1 /\/u,_/8> E? cos? (wt — B2) (4-8¢)

The ratio formed by dividing the power density ¥ (W/m?) by the total energy density « =
we + wy (J/m> = W-s/m?) is referred to as the energy (group) velocity v,, and it is given by

v+=9;+= gt _ (1//117€) Ef* cos? (wt — Bz) _ |

wt wj + w;,g 8E0+2 cos? (wt — Bz) \/ﬁ
The energy velocity represents the velocity with which the wave energy is transported. It is
apparent that (4-9) is identical to (4-7). In general that is not the case. In fact, the energy velocity
v} can be equal to, but not exceed, the speed of light, and the product of the phase velocity v,
and energy velocity v, must always be equal to

(4-9)

1
vivS =" = — (4-10)
e

where v = 1/./¢ is the speed of light. The same holds for the negative traveling waves.
The time-average power density (Poynting vector) associated with the positive traveling wave
can be written, using (I-70) and the first terms of (4-2a) and (4-3b), as
1 1 E+ 2 E+ 2
¢ =-Re(E" xH™) =a,———IEf” =2 1B =ﬁ2| 0

a
2 NI NG 2

A similar expression is derived for the negative traveling wave.

(4-11)

D. Standing Waves Each of the terms in (4-2a) and (4-3b) represents individually traveling
waves, the first traveling in the positive z direction and the second in the negative z direction.
The two together form a so-called standing wave, which is comprised of two oppositely traveling
waves.
To examine the characteristics of a standing wave, let us rewrite (4-2a) as
E, (z) = E(;refjﬁz +E0_e+jﬁz
= E [cos (Bz) —j sin (Bz)] + E; [cos (Bz) +j sin (B2)]
= (Ey” +Ey ) cos (Bz) —j (Ey” — Ey ) sin (B2)
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Ec @) = (ES +Ey ) cos (Bo) + (B — By ) sin’ (52)

X exp {—j tan~! |: (E(T _ EO_) sin (A2) j| }

(Ey + Ey ) cos (Bz)

Ec@) = (ES) + (By) +25; By cos 2f2)

+ _ -
X exp {—j tan™! |:(E—EO) tan (ﬂz)] } (4-12)

0
(E) +Ey)

The amplitude of the waveform given by (4-12) is equal to

Ec @) =y (B + (Ey ) + 257 Ey cos 22) (4-12a)

By examining (4-12a), it is evident that its maximum and minimum values are given, respectively,
by

|Ex (2) Imax = |Eq | + |Ey | when Bz = mm,m =0,1,2,... (4-13a)
and for |E) | > |E; |,
+ - 2m + D
|Ex (2) |min = |Ey | — |Ey | when Bz = — m= 0,1,2,... (4-13b)

Neighboring maximum and minimum values are separated by a distance of A/4 or successive
maxima or minima are separated by /2.
The instantaneous field of (4-12) can also be written as

€ (1) =Re[E, (2) ']

= V(B + (By ) + 2B B cos 2B2)

+ —_
1 JEy —E
X COS | wt — tan ——— - tan(fz) (4-14)
Ey + E,
It is apparent that (4-12a) represents the envelope of the maximum values the instantaneous field
of (4-14) will achieve as a function of time at a given position. Since this envelope of maximum
values does not move (change) in position as a function of time, it is referred to as the standing
wave pattern and the associated wave of (4-12) or (4-14) is referred to as the standing wave.
The ratio of the maximum/minimum values of the standing wave pattern of (4-12a), as given
by (4-13a) and (4-13b), is referred to as the standing wave ratio (SWR), and it is given by
+ - 1+ Lol
_|Ex(Z)|max_|E0|+|E0|_ IEq | _1+|F|
|Ex (@) lmin~ |Eg | —1Eg| 1 _ &l 1—]T]

IEq |

SWR

(4-15)

where I is the reflection coefficient. Since in transmission lines we usually deal with voltages and
currents (instead of electric and magnetic fields), the SWR is usually referred to as the VSWR
(voltage standing wave ratio). Plots of the standing wave pattern in terms of E(;r as a function of
72(—=x <z <) for [I'| =0, 0.2, 0.4, 0.6, 0.8, and 1 are shown in Figure 4-3.

The SWR is a quantity that can be measured with instrumentation [1, 2]. SWR has values
in the range of 1 < SWR < co. The value of the SWR indicates the amount of interference
between the two opposite traveling waves; the smaller the SWR value, the lesser the interference.
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Figure 4-3 Standing wave pattern as a function of distance for a uniform plane wave with different
reflection coefficients.

The minimum SWR value of unity occurs when [I'| = E; /E(;L =0, and it indicates that no
interference is formed. Thus the standing wave reduces to a pure traveling wave. The maximum
SWR of infinity occurs when |I'| = E; /E(;r = 1, and it indicates that the negative traveling wave
is of the same intensity as the positive traveling wave. This provides the maximum interference,
and the wave forms a pure standing wave pattern given by

|Ex () |gs—p; = 2Eq | cos(Bz)| = 2E; | cos (B2) | (4-16)

The pattern of this is a rectified cosine function, and it is represented in Figure 4-3 by the |I'| = 1
curve. The pattern exhibits pure nulls and peak values of twice the amplitude of the incident wave.

4.2.2 Uniform Plane Waves in an Unbounded Lossless Medium — Oblique Angle

In this section, expressions for the electric and magnetic fields, wave impedance, phase and group
velocities, and power and energy densities will be written for uniform plane waves traveling at
oblique angles in an unbounded medium. All of these will be done for waves that are uniform
plane waves to the direction of travel.
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A. Electric and Magnetic Fields Let us assume that a uniform plane wave is traveling in
an unbounded medium in a direction shown in Figure 4-4a. The amplitudes of the positive and
negative traveling electric fields are E0+ and E;, respectively, and the assumed directions of each
are also illustrated in Figure 4-4a. It is desirable to write expressions for the positive and negative
traveling electric and magnetic field components.

aY

XA
V+
epn | e
E" H+
__+|
. |
l3+= B+,B I +
+ 6; |7
w 1B, A
- - |
H +
e \'Gi Bz |
A B
[ —_—— >
|H,\' '< y Z
H 0 B O;
¢ ) o
I B=ps
|
(J
£
v
(b)

Figure 4-4 Transverse electric and magnetic uniform plane waves in an unbounded medium at an oblique
angle. (a¢) TE” mode. (b) TM” mode.
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Since the electric field of the wave of Figure 4-4a does not have a y component, the field
configuration is referred to as transverse electric to 'y (TE”). More detailed discussion on the
construction of transverse electric (TE) and transverse magnetic (TM) field configurations, as
well as transverse electromagnetic (TEM), can be found in Chapter 6.

Because for the TE” wave of Figure 4-4a the electric field is pointing along a direction that
does not coincide with any of the principal axes, it can be decomposed into components coincident
with the principal axes. According to the geometry of Figure 4-4a, it is evident that the electric
field can be written as

E=E'+E =E; (a,cosf —4,sin6)e P T
+Ey (8, cost; —a,sin6;) e 7P T (4-17)

where r is the position vector of (4-5c), and it is displayed graphically in Figure 4-5. Since the
phase constants B and B~ can be written, respectively, as

BT =BTB =48 +4. =B (A, sing; +4,cosb) (4-17a)
B~ =P B=a.B; +4.. =—p @A sinb; + 4, cosh;) (4-17b)
(4-17) can be expressed as
E = E; (4, cos6; — 4, sin ;) e 7P sinfitzcosti)
+E; (4, cos6; — 4, sin@;) ¢ H P sinbitzcosti) (4-18a)

Since the wave is a uniform plane wave, the amplitude of its magnetic field is related to
the amplitude of its electric field by the wave impedance (in this case also by the intrinsic

Constant

phase
plane \

XA

Figure 4-5 Phase front of a TEM wave traveling in a general direction.
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impedance) as given by (4-4). Since the magnetic field is traveling in the same direction as the
electric field, the exponentials used to indicate its directions of travel are the same as those of
the electric field as given in (4-18a). The directions of the magnetic field can be found using the
right-hand procedure outlined in Section 4.2.1 and illustrated graphically in Figure 4-2b for the
positive traveling wave. Using all of the preceding information, it is evident that the magnetic
field corresponding to the electric field of (4-18a) can be written as

+ —
H=H" +H = ﬁy |:E_Oe—jﬂ(x sinf;+z cos ;) __ E_Oe+jﬂ(x sin6; +z Cos@,-)] (4-18b)
n n

In vector form, (4-18b) can also be written as
174 N
H=- [3+ x E* + B~ x E—] (4-18¢)
n

The same form can be used to relate the E and H for any TEM wave traveling in any direction. It
is apparent that when 6; = 0, (4-18a) and (4-18b) reduce to (4-2a) and (4-3b), respectively. The
same answer for the magnetic field of (4-18b) can be obtained by applying Maxwell’s equation 4-3
to the electric field of (4-18a). This is left for the reader as an end-of-the-chapter exercise.

The planes of constant phase at any time ¢ are obtained by setting the phases of (4-18a) or
(4-18b) equal to a constant, that is

Brr =B x+ By + B zly—o =B (xsinf +zcos6;) =C* (4-19a)
B -r=pBx+By+B zly=o=—B(xsin; +zcos;) =C" (4-19b)

Each of (4-19a) and (4-19b) are equations of a plane in either the spherical or rectangular
coordinates with unit vectors B and B~ normal to each of the respective surfaces. The respective
phase velocities in any direction (r, x, or z) are obtained by letting

B -r—wt = B (xsinb; +zcosb;) —wt = Cy (4-19¢)
B™r—owt =—B(xsinb; +zcosb;) —wt = Cy (4-19d)

and taking a derivative with respect to time.

Example 4-2

Another exercise of interest is that in which the electric field is directed along the +y direction and the
wave is traveling along an oblique angle 6;, as shown in Figure 4-4b. This is referred to as a TM” wave.
The objective here is again to write expressions for the positive and negative electric and magnetic field
components, assuming the amplitudes of the positive and negative electric field components are E(;r and
E;, respectively.

Solution: Since this wave only has a y electric field component, and it is traveling in the same
direction as that of Figure 4-4a, we can write the electric field as

E= E+ +E = ﬁy [E(;re—jﬂ(x sin6; 4z cos 6;) + E(;e+jﬂ(xsin9i+z cosei)]
Using the right-hand procedure outlined in Section 4.2.1, the corresponding magnetic field components

are pointed along directions indicated in Figure 4-4b. Since the magnetic field is not directed along any
of the principal axes, it can be decomposed into components that coincide with the principal axes, as
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shown in Figure 4-4b. Doing this and relating the amplitude of the electric and magnetic fields by the
intrinsic impedance, we can write the magnetic field as

+
—0_

H=H"+H = % (-4, cosb; + 4, sing;) e 7P sinfitzcosti)

+ 0 (ﬁx cos ei _ ﬁz sm@i) e+]ﬂ(x sinf; +z cos ;)
n

The same answers could have been obtained if Maxwell’s equation 4-3 were used. Since the
magnetic field does not have any y components, this field configuration is referred to as transverse
magnetic to 'y (TM”), which will be discussed in more detail in Chapter 6.

B. Wave Impedance Since the TEY and TM” fields of Section 4.2.2A were TEM to the
direction of travel, the wave impedance of each in the direction § of wave travel is the same as
the intrinsic impedance of the medium. However, there are other directional impedances toward
the x and z directions. These impedances are obtained by dividing the electric field component
by the corresponding orthogonal magnetic field component. These two components are chosen
so that the cross product of the electric field and the magnetic field, which corresponds to the
direction of power flow, is in the direction of the wave travel.

Following the aforementioned procedure, the directional impedances for the TE’ fields of
(4-18a) and (4-18b) can be written as

TE”
EF E-
Zr = _HZ T =nsint; =7 = = (4-20a)
¥ ¥
EF E-
+_ _ _ - _
VAR H);Jr =1ncosh =7 = —H’y‘_ (4-20b)

In the same manner, the directional impedances of the TM” fields of Example 4-2 can be
written as

™Y

Ef E -

+ y n - y
* HF  sing; . H- ( 2)

Ef E-

n _

Zr=-2X = =77 =2 4-21b
¢ H  cosé; < HS ( )

It is apparent from the preceding results that the directional impedances of the TE” oblique
incidence traveling waves are equal to or smaller than the intrinsic impedance and those of the
TM” are equal to or larger than the intrinsic impedance. In addition, the positive and negative
directional impedances of the same orientation are the same. This is the main principle of the
transverse resonance method (see Section 8.6), which is used to analyze microwave circuits and
antenna systems [3, 4].
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C. Phase and Energy (Group) Velocities The wave velocity v, of the fields given by
(4-18a) and (4-18b) in the direction B of travel is equal to the speed of light v. Since the wave is
a plane wave to the direction § of travel, the planes over which the phase is constant (constant
phase planes) are perpendicular to the direction f of wave travel. This is illustrated graphically
in Figure 4-6. To maintain a constant phase (or to keep in step with a constant phase plane),
a velocity equal to the speed of light must be maintained in the direction B of travel. This is
referred to as the phase velocity v, along the direction B of travel. Since the energy also is being
transported with the same speed, the energy velocity v, in the direction p of travel is also equal

to the speed of light. Thus |

N

vr = ‘Upr = ver =V = (4-22)

v, = wave velocity in the direction of wave travel

v, = phase velocity in the direction of wave travel

v, = energy (group) velocity in the direction of wave travel
v = speed of light

To keep in step with a constant phase plane of the wave of Figure 4-6, a velocity in the z
direction equal to

v 1
= = > v (4-23)
cos b; /L€ cos 6;
must be maintained. This is referred to as the phase velocity v,; in the z direction, and it is
greater than the speed of light. Since nothing travels with speeds greater than the speed of light,
it must be remembered that this is a hypothetical velocity that must be maintained in order to

Upz

Figure 4-6 Phase and energy (group) velocities of a uniform plane wave.
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keep in step with a constant phase plane of the wave that itself travels with the speed of light in
the direction f of travel. The phase velocities of (4-22) and (4-23) can be obtained, respectively,
by using (4-19c) and (4-19d). These are left as end-of-chapter exercises for the reader.

Whereas a velocity greater than the speed of light must be maintained in the z direction to
keep in step with a constant phase plane of Figure 4-6, the energy is transported in the z direction
with a velocity that is equal to

cos 6;
JIEe

<v (4-24)

Ve; = VCOSO; =

This is referred to as the energy (group) velocity v,; in the z direction, and it is equal to or
smaller than the speed of light. Graphically this is illustrated in Figure 4-6.

For any wave, the product of the phase and energy velocities in any direction must be equal
to the speed of light squared or

UprVer = UpzVe; = v? = i (4-25)
This obviously is satisfied by the previously derived results.

The energy velocity of (4-24) can be derived using (4-18a) and (4-18b) along with the definition
(4-9). This is left for the reader as an end-of-chapter exercise.

Since the fields of (4-18a) and (4-18b) form a uniform plane wave, the planes over which the
amplitude is maintained constant are also constant planes that are perpendicular to the direction
B of travel. These are illustrated in Figure 4-6 and coincide with the constant phase planes. For
other types of waves, the constant phase and amplitude planes do not in general coincide.

D. Power and Energy Densities The average power density associated with the fields of
(4-18a) and (4-18b) that travel in the BT direction is given by

(55), = 3Re[(E7) x (H7)]

1 . .
= ERG [Ey (4, cost; — 4, sin6;) ¢ I BLxsinbi+z cosi)

ET* .
Xﬁy 0 e+jﬁ(xsm9,~+z cos@i):|
n
+ A o R Eg P 1Eq P o ey LA (ot
(S.), = (ac sinb; + 4 cos 6;) =4, 2 =4, (S,7), +4a (Scw)Z
(4-26)
where

+ o 1Eg 1 : +
(S.h), = sing; = sin6; (S,h), (4-26a)

+ |Eq 12 +
(Sar), = cos6; 2y =08 6; (S,7), (4-26b)

(S,5), represents the average power density along the principal B+ direction of travel and (S,}),
and (S,7), represent the directional power densities of the wave in the +x and +z directions,
respectively. Similar expressions can be derived for the wave that travels along the B~ direction.
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Example 4-3

For the TM” fields of Example 4-2, derive expressions for the average power density along the principal
Bt direction of travel and for the directional power densities along the +x and +z directions.

Solution: Using the electric and magnetic fields of the solution of Example 4-2 and following the
procedure used to derive (4-26) through (4-26b), it can be shown that

(S%), = sRe[(E¥) x (HY)']

N = N

— 7Re|:ﬁyE6|—efjﬁ(x cos 6;+y sin6;)

(E7)" Bxcosd-+y sndy
x (—4, cos6; + &, sin6;) ¢HFcosbitysin)
U
- R B 1>, B
(Si), = (8 sinf; +4; cos6) —i = a —

where
e
(5), = sing 21 = ing (5,),
n
.
(S;g)Z = cos6; 1o = cos b; (Sat)r

(S, (S;)x, and (S;h), of this TM? wave are identical to the corresponding ones of the TE” wave,

\'%4

given by (4-26) through (4-26b).

4.3 TRANSVERSE ELECTROMAGNETIC MODES IN LOSSY MEDIA

In addition to the accumulation of phase, electromagnetic waves that travel in lossy media undergo
attenuation. To account for the attenuation, an attenuation constant is introduced as discussed in
Chapter 3, Section 3.4.1B. In this section we want to discuss the solution for the electric and
magnetic fields of uniform plane waves as they travel in lossy media [5].

4.3.1 Uniform Plane Waves in an Unbounded Lossy Medium — Principal Axis

As for the electromagnetic wave of Section 4.2.1, let us assume that a uniform plane wave is
traveling in a lossy medium. Using the coordinate system of Figure 4-1, the electric field is
assumed to have an x component and the wave is traveling in the 4z direction. Since the electric
field must satisfy the wave equation for lossy media, its expression takes, according to (3-42a),
the form

E(z) = 4.E (2) =4, (Ef e 7" + E; ™) =a, (Ef e e P  EyeteieF?)  (4-27)

where y, =y, =0 and y, = y. The first term represents the positive traveling wave and the
second term represents the negative traveling wave. In (4-27) y is the propagation constant whose
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real o and imaginary S parts are defined, respectively, as the attenuation and phase constants.
According to (3-37e) and (3-46), y takes the form

y=a+jB=\jou(o +jwe) =v—wue+jouc (4-28)

Squaring (4-28) and equating real and imaginary from both sides reduces it to
o — B2 = —w’ue (4-28a)
28 = wuo (4-28b)

Solving (4-28a) and (4-28b) simultaneously, we can write o and S as

- 2412
1 o \2
a=owyiE s |1+ <E> _ Np/m (4-28¢)
- a4 1/2
= oz 1+(G )2+1 rad/m (4-28d)
= W — _— -
H 2 we

In the literature, the phase constant § is also represented by k.

The attenuation constant « is often expressed in decibels per meter (dB/m). The conversion
between Nepers per meter and decibels per meter is obtained by examining the real exponential
in (4-27) that represents the attenuation factor of the wave in a lossy medium. Since that factor
represents the relative attenuation of the electric or magnetic field, its conversion to decibels (dB)
is obtained by

dB = 20log;, (e7*) = 20 (—az) logy, (e)

— 20 (—az) (0.434) = —8.68 (az) (4-28¢)
or 1
lo Np/m) | = %Ia (dB/m) | (4-28f)

The magnetic field associated with the electric field of (4-27) can be obtained using Maxwell’s
equation 4-3 or 4-3a, that is,

1 1 0E;

H=-—VxE=-4,— (4-29)
jou jop 9z
Using (4-27) reduces (4-29) to
s Y + ,— —,tvz
H=+4,— (E; e 7" —E; e
+ay o (Ey 0 )
—a, \/J.CUM.(O +jwe) (E(;i-e—yz _ O—e+yz)
: jou
=4, m (E()*e_’/z — EJeJrVZ)
jou
1
H=4,— (E(;re’yZ — Eo_eﬂz) (4-29a)
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In (4-29a), Z,, is the wave impedance of the wave, and it takes the form

z,= |12 (4-30)
o +jwe

which is also equal to the intrinsic impedance 7, of the lossy medium. The equality between the
wave and intrinsic impedances for TEM waves in lossy media is identical to that for lossless
media of Section 4.2.1B.

The average power density associated with the positive traveling fields of (4-27) and (4-29a)
can be written as

1 1 . E* ‘
ST = ERe (EJr X H+*) = ERe (ﬁxE(;re‘“e“62 X ﬁy—o* e‘”eﬂ’sz)

+12
L IE]

1
ST =a, 5 e 2*Re [—} 4-31)

ne
Individually each term of (4-27) or (4-29a) represents a traveling wave in its respective direc-
tion. The magnitude of each term in (4-27) takes the form
Ef ()| = |E) |e™** (4-32a)
E; ()| = |Ey e (4-32b)
which, when plotted for —A < z < 4 and |I'| = 0.2 through 1 (in increments of 0.2), take the
form shown in Figure 4-7a.

Collectively, both terms in each of the fields in (4-27) or (4-29a) represent a standing wave.
Using the procedure outlined in Section 4.2.1D, (4-27) can also be written as

E, @) = (Ef ) e~ + (Eg ) 255 + 2B, Eg cos (2B2)

. E(;t-e—az _ Eo—e-i—ozz
X exp {—j tan~ tan 4-33
p{ J [E;e—az B e (ﬂz)]} (4-33)

The standing wave pattern is given by the amplitude term of

e @) = (E§ ) =2 + (Eg')? e+ + 2E By cos (22) (4-33a)

which for |I'| = E; /E(;r = 0.2 through 1, in increments of 0.2, is shown plotted in Figure 4-7b
in the range —A < z < A when f = 100 MHz, ¢, = 2.56, u, = 1, and 0 = 0.03S/m.

The distance the wave must travel in a lossy medium to reduce its value to e = 0.368 = 36.8%
is defined as the skin depth §. For each of the terms of (4-27) or (4-29a), this distance is

1

o 3 [Vi e ]|

In summary, the attenuation constant «, phase constant 8, wave Z,, and intrinsic 1, impedances,
wavelength X, velocity v, and skin depth § for a uniform plane wave traveling in a lossy medium
are listed in the second column of Table 4-1. The same expressions are valid for plane and TEM
waves. Simpler expressions for each can be derived depending upon the value of the (o/we)?
ratio. Media whose (o/we)? is much less than unity [(o/we)? < 1] are referred to as good
dielectrics and those whose (0/we)? is much greater than unity [(o/we)? > 1] are referred to
as good conductors [6]; each will now be discussed.

(4-34)

1
8 = skin depth = — =
o
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Figure 4-7 Wave patterns of uniform plane waves in a lossy medium. (a) Traveling. (b) Standing.
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TABLE 4-1 Propagation constant, wave impedance, wavelength, velocity, and skin depth of TEM
wave in lossy media

Good Good
dielectric conductor
2 2
Exact (i) «1 (i) >1
we we

12
1 2
Attenuation = w./|Le {2 |: 1+ (i> — I:H ~ % s ~ /#
constant o wé €
172
Phase =w./|ue l 1+(l>2+1 ~ w, /e ~ |CRT
) —OVHEY S we = evH o 2

constant f8
Wave Z,,
¥ntr1n31c UR _ Jou ~ [l ~ %(1 +j)
impedances o + jwe Ve 20
ZW = r]c
2 2
Wavelength A - ~ T ~2r | ——
B oI wUo
. w 1 2w
Velocity v = — = — =
B JIE uo
1 2 2
Skin depth § =— ~ = /2 =
o o\ u wuo

A. Good Dielectrics [(0/we)? « 1] For source-free lossy media, Maxwell’s equation in dif-
ferential form as derived from Ampere’s law takes the form, by referring to Table 1-4, of

VxH=J.4+Ji=0E+jweE = (6 +jwe)E (4-35)

where J. and J, represent, respectively, the conduction and displacement current densities. When
o/we K 1, the displacement current density is much greater than the conduction current density;
when o/we > 1 the conduction current density is much greater than the displacement current
density. For each of these two cases, the exact forms of the field parameters of Table 4-1 can be
approximated by simpler forms. This will be demonstrated next.

For a good dielectric [when (o/we)? < 1], the exact expression for the attenuation constant
of (4-28c) can be written using the binomial expansion and it takes the form

e @)

e (@A) e

Retaining only the first two terms of the infinite series, (4-36) can be approximated by

AT T 4-36
«zovm ()] =5/t e
In a similar manner it can be shown that by following the same procedure but only retaining
the first term of the infinite series, the exact expression for 8 of (4-28d) can be approximated
by
B~ w /e (4-37)
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For good dielectrics, the wave and intrinsic impedances of (4-30) can be approximated by

Zo=n, = |JOH _ [Jordes 1 (4-38)
o+ jwe o/jwe + 1 e
while the skin depth can be represented by
1 2
s=-~Z2 |2 (4-39)
a o\ pu

These and other approximate forms for the parameters of good dielectrics are summarized on the
third column of Table 4-1.

B. Good Conductors [(¢/we)? > 1] For good conductors, the exact expression for the atten-
uation constant of (4-28c) can be written using the binomial expansion and takes the form

1/2 1
e e | e (o))

_ o 11 11 1 v 4-40
“_w*/ﬁ{z[a)eJrzo/we_S(a/weﬁ+'”_ ]} (4-40)
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Retaining only the first term of the infinite series expansion, (4-40) can be approximated by

1o\ wpno
= —) =,/— (4-40a)
2 we

oz:wd;w( >

Following a similar procedure, the phase constant of (4-28d) can be approximated by

~ [ono _
=3 (4-41)

which is identical to the approximate expression for the attenuation constant of (4-40a).
For good conductors, the wave and intrinsic impedances of (4-30) can be approximated by

Jop Jjop/we [ opn  |ou .
Zv = = = ~ _— = _ 1 4-42
w = e \/a + jwe \/a/a)s +j / o 20 I+ ( )

whose real and imaginary parts are identical. For the same conditions, the skin depth can be
approximated by

1 2
§=—n~ [— (4-43)
o WU

This is the most widely recognized form for the skin depth.

4.3.2 Uniform Plane Waves in an Unbounded Lossy Medium — Oblique Angle

For lossy media the difference between principal axes propagation and propagation at oblique
angles is that the propagation constant y, along the direction f of propagation must be decomposed
into its directional components along the principal axes of the coordinate system. In addition,
since the propagation constant y has real («¢) and imaginary (8) parts, constant amplitude and
constant phase planes are associated with the wave. As discussed in Section 4.2.2C and illustrated
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in Figure 4-6, the constant phase planes for a uniform plane wave are planes that are parallel to
each other, perpendicular to the direction of propagation, and coincide with the constant amplitude
planes. The constant amplitude planes are planes over which the amplitude remains constant. For
a uniform plane wave traveling in a lossy medium, the constant amplitude planes are also parallel
to each other, are perpendicular to the direction of travel, and coincide with the constant phase
planes. This is illustrated in Figure 4-6 for a uniform plane wave traveling at an oblique angle
in a lossless medium.

Let us assume that a uniform plane wave that is also TE” is traveling in a lossy medium at
an angle 6;, as shown in Figure 4-4a. Following a procedure similar to the lossless case and
referring to (4-17a) and (4-17b), the propagation constant of (4-28) can now be written for the
positive and negative traveling waves as

y" =y (4, sin6; + 4, cos6;) = (a« +jB) (4, sin6; + 4, cos6;) (4-44a)
Yy = —y (4,sin6; + 4, cosb;) = — (¢ +jpB) (4, sin6; + a4, cosb;) (4-44b)

where the real (o) and imaginary (f) parts of y are given by (4-28c) and (4-28d), respectively.
Using (4-44a) and (4-44b), the electric and magnetic fields can be written, by referring to (4-17)
through (4-18c), as

E =E] (a,cos6; —a,sin6,) e "+ E; (4, cos; —a,sinf) e T

E = E; (4, cos6; — &, sinf;) e @/ (xsinditecosti)

+E; (A, cosb; — 4, sin ;) e TP sinfitz cosfi) (4-452)
Jr —_

H= ﬁv |:E_Oe(o¢+j/3)(x sinf; 4z cos ;) __ E_Oe+(a+jﬁ)(x sin6; +z cose,-)i| (4-45b)
i nc rl(,‘

Because the wave is a uniform plane wave in the f direction of propagation, the wave
impedance Z,, in the direction of propagation is equal to the intrinsic impedance 7, of the

lossy medium given by (4-30) or
Jop
Zyr=n, = |—F— 4-46
wr =T = T jwe (4-40)

However, the directional impedances in the x and z directions are given, by referring to (4-20a)
and (4-20b), by

EF E-
ZF =iy sinG =77 = = (4-47a)
Hy Hy
+ —
Z+=E—X=r) cos@,-:Z‘:—EX (4-47b)
©  HF F : Hy

According to (4-22) through (4-24) the phase and energy velocities in the principal g direction
of travel and in the z direction are given, respectively, by

1)
Ur = ‘Upr = Uer =V = — (4—483)
p
v @ S22 (4-48b)
Vp, = ——— = V= — -
P cosl;  Bcost; B

Ve; = VCOSH; = %cos 0 <v= @ (4-48c)
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where B for a lossy medium is given by (4-28d) or

12
1 o \2
ﬁ:wm{z[ 1+(&) +1“ (4-484)

As for the lossless medium, the product of the phase and energy velocities is equal to the square
of the velocity of light v in the lossy medium, or

2
VprVer = UpzUpz =V (4-48e)

Using the procedure followed to derive (4-26) through (4-26b) and (4-31), the average power
density along the principal direction f of travel and the directional power densities along the x
and z directions can be written for the fields of (4-45a) and (4-45b) as

iE(;’F|2 2 $in 0, .0 1
(SI/) = (4, sin6; 4+ &, cos ;) ——e "~ or(x sin 0 +2 c0s 0) R o |:_i|
r nzf
EFP |
B ﬁr’ O | ¢ R |:_:| (4-49a)
2 n:
+12
(S*) — Sin@Me*za(x sin9i+ZCOSgi)Re i
av/x 1 2 r]j
ES” 1
=sinf;——e "*"Re |:—i| (4-49Db)
ne
+12
(S+) = Cos Qiue—zﬂxsineﬁ_z cos)Re I:ii|
av/z n:f
‘ (ﬂz 2 1
=cosfh;——e “*Re — (4-49¢)
Ne
Example 4-4

For a TM” wave traveling in a lossy medium at an oblique angle 6;, derive expressions for the fields,
wave impedances, phase and energy velocities, and average power densities.

Solution: The solution to this problem can be accomplished by following the procedure used to derive
the expressions of the fields and other wave characteristics of a TE” wave traveling at an oblique angle
in a lossy medium, as outlined in this section, and referring to the solution of Examples 4-2 and 4-3.
Doing this we can write the fields of a TM” traveling in a lossy medium at an oblique angle 6;, the
coordinate system of which is illustrated in Figure 4-4b, as

E = E+ +E = ﬁy [E0+e—(a+jﬂ)(x sinf; 4z cos 6;) + E(;e+(a+j/3)(x sin6; +z cosf)i)]

EF .
H=H"+H = —% (-4, cosb; + 4, sinf;) e~ @A lxrsinfitz costi)
Ne
E; . .
+—— (4, cosf; —4a,sinb;)e
[

+(a+j B)(x sinb; +z cos ;)
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In addition, the wave impedances are given, by referring to (4-21a) and (4-21b), by

+ -
Z+_EL__’7€ _Z*__E_y
x T - - - ~x _
H* sin 6; H
+ —
7+ — _Ey e 7 — E,
z T + = -z = —
H; cos 6; H;

The phase and energy velocities, and their relationships, are the same as those for the TE* wave,
as given by (4-48a) through (4-48e). Similarly, the average power densities are those given by
(4-49a) through (4-49c).

4.4 POLARIZATION

According to the IEEE Standard Definitions for Antennas [7, 8], the polarization of a radiated
wave is defined as “that property of a radiated electromagnetic wave describing the time-varying
direction and relative magnitude of the electric field vector; specifically, the figure traced as a
function of time by the extremity of the vector at a fixed location in space, and the sense in
which it is traced, as observed along the direction of propagation.” In other words, polarization
is the curve traced out, at a given observation point as a function of time, by the end point of the
arrow representing the instantaneous electric field. The field must be observed along the direction
of propagation. A typical trace as a function of time is shown in Figure 4-8 [8].

Figure 4-8 Rotation of a plane electromagnetic wave at z = 0 as a function of time. (Source: C. A.
Balanis, Antenna Theory: Analysis and Design. 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc.
Reprinted by permission of John Wiley & Sons, Inc.).
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Polarization may be classified into three categories: linear, circular, and elliptical [8]. If the
vector that describes the electric field at a point in space as a function of time is always directed
along a line, which is normal to the direction of propagation, the field is said to be linearly polar-
ized. In general, however, the figure that the electric field traces is an ellipse, and the field is said
to be elliptically polarized. Linear and circular polarizations are special cases of elliptical, and
they can be obtained when the ellipse becomes a straight line or a circle, respectively. The figure
of the electric field is traced in a clockwise (CW) or counterclockwise (CCW) sense. Clockwise
rotation of the electric field vector is also designated as right-hand polarization and counterclock-
wise as left-hand polarization. In Figure 4-9 we show the figure traced by the extremity of the
time-varying field vector for linear, circular, and elliptical polarizations.

The mathematical details for defining linear, circular, and elliptical polarizations follow.

(a) (b)

Y

R

(c)

Figure 4-9 Polarization figure traces of an electric field extremity as a function of time for a fixed position.
(a) Linear. (b) Circular. (c) Elliptical.
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4.4.1 Linear Polarization

Let us consider a harmonic plane wave, with x and y electric field components, traveling in the
positive z direction (into the page), as shown in Figure 4-10 [8]. The instantaneous electric and
magnetic fields are given by

% =4,¢, +4,¢, =Re I:ﬁxEXJrej(wrfﬁz) I ﬁyEerej(wtfﬁz)]

= ﬁxEX’; cos (wt — Bz + ¢y) + ﬁyEng cos (ot — Bz + ¢y) (4-50a)
ET . Ef .
®=4,9% +4,9 =Re|a, /@ F) 4 L pi@=F)
1 1
E+ +
=&, —C cos (0t — Bz + ¢y) — &, —2 cos (of — Bz + ¢y) (4-50b)
] n ’

where E.f, E;r are complex and E;g , E;g are real.

Let us now examine the variation of the instantaneous electric field vector € as given by
(4-50a) at the z = 0 plane. Other planes may be considered, but the z = 0 plane is chosen for
convenience and simplicity. For the first example, let

E;g =0 (4-51)
in (4-50a). Then
€, = E);g cos (ot + ¢y)
€, =0 (4-51a)
The locus of the instantaneous electric field vector is given by
8 =4, E] cos (wf + ¢x) (4-51b)

which is a straight line, and it will always be directed along the x axis at all times, as shown in
Figure 4-10. The field is said to be linearly polarized in the x direction.

A

Ejo cos (wt + ¢,)

-

Figure 4-10 Linearly polarized field in the x direction.
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Example 4-5
Determine the polarization of the wave given by (4-50a) when E;g =0.

Solution: Since
El=0

then

€, =0

€, = Ey+0 cos (ot + ¢y)
The locus of the instantaneous electric field vector is given by

8 =a,E cos (wr + ¢y)

Yo

which again is a straight line but directed along the y axis at all times, as shown in Figure 4-11. The

field is said to be linearly polarized in the y direction.

E;O cos (wt + (by)

Figure 4-11 Linearly polarized field in the y direction.

Example 4-6

Determine the polarization and direction of polarization of the wave given by (4-50a) when ¢, = ¢, = ¢.

Solution: Since

br=¢y =19
then
€, = E;} cos (wt + ¢)
€, = E,} cos (wt + ¢)
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The amplitude of the electric field vector is given by

€ = €2 +€ = /(EL) + (Exp)* cos (@t + )

which is a straight line directed at all times along a line that makes an angle vy with the x axis as shown
in Figure 4-12. The angle v is given by

€ Ef
¥ =tan~! [—y] =tan~! |:’°:|
(P Ed

The field is said to be linearly polarized in the r direction.

A
€, A E;;)Z + E;E)Z) cos (wt + ¢)

E;E) cos (ot + @)

E;;) cos (ot + @)
—_——— >

Y

o

Figure 4-12 Linearly polarized field in the v direction.

It is evident from the preceding examples that a time-harmonic field is linearly polarized at a
given point in space if the electric field (or magnetic field) vector at that point is oriented along
the same straight line at every instant of time. This is accomplished if the field vector (electric or
magnetic) possesses (a) only one component or (b) two orthogonal linearly polarized components
that are in time phase or integer multiples of 180° out of phase.

4.4.2 Circular Polarization

A wave is said to be circularly polarized if the tip of the electric field vector traces out a circular
locus in space. At various instants of time, the electric field intensity of such a wave always has
the same amplitude and the orientation in space of the electric field vector changes continuously
with time in such a manner as to describe a circular locus [8, 9].

A. Right-Hand (Clockwise) Circular Polarization A wave has right-hand circular polar-
ization if its electric field vector has a clockwise sense of rotation when it is viewed along the
axis of propagation. In addition, the electric field vector must trace a circular locus if the wave
is to have also a circular polarization.



POLARIZATION 151

Let us examine the locus of the instantaneous electric field vector (&) at the z = 0 plane at
all times. For this particular example, let in (4-50a)

¢ =0
¢y =—m/2
El =El =Eg (4-52)

Then
€, = Eg cos(wt)
V4 .
&, = Ex cos (w1 — 5) = Eg sin(ar) (4-52a)

The locus of the amplitude of the electric field vector is given by

€= € +€ = JEdcost ot + sin’ ) = Ex (4-52b)

and it is directed along a line making an angle ¥ with the x axis, which is given by

U= tan~! |:%—)i| = tan~! [M} = tan” '[tan(wr)] = wt (4-52c¢)
éx ER cos(wt)

If we plot the locus of the electric field vector for various times at the z = 0 plane, we see that
it forms a circle of radius Er and it rotates clockwise with an angular frequency w, as shown in
Figure 4-13. Thus the wave is said to have a right-hand circular polarization. Remember that the
rotation is viewed from the “rear” of the wave in the direction of propagation. In this example,
the wave is traveling in the positive z direction (into the page) so that the rotation is examined
from an observation point looking into the page and perpendicular to it.

We can write the instantaneous electric field vector as

T ——
= ErRe {[a, — ja,] ei(wf—ﬂz)} (4-52d)

We note that there is a 90° phase difference between the two orthogonal components of the
electric field vector.

%x A

wt =Tr/4 wt =1/4

ot =31/2 wt=1/2

Y

R

wt =5m/4 wt =3m/4

wt =71

Figure 4-13 Right-hand circularly polarized wave.
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Example 4-7

If ¢y =+m/2, ¢, =0, and Eg = Eyf) = ER, determine the polarization and sense of rotation of the
wave of (4-50a).

Solution: Since
¢x =+
¢y =0

P — [ —
EXO_EYO_ER

b4
2

then
e .
€, = Eg cos (a)t + 5) = —ER sinwt
€, = ER cos(wt)

and the locus of the amplitude of the electric field vector is given by

€ = \/%)2( -+ %5 = \/Eé(cosz ot + sin® wt) = ER

The angle v along which the field is directed is given by

. [€, _ ER cos(wt) B T
_ 1 Y| 1| _~R _ Tp_ _
Y = tan [—%X] = tan |: 7}2 sin(er) ] =tan " [—cot(wt)] = wt + 7

The locus of the field vector is a circle of radius ER, and it rotates clockwise with an angular frequency
o as shown in Figure 4-14; hence, it is a right-hand circular polarization.
The expression for the instantaneous electric field vector is

€ = Re [a,Ege! @ FH/2 4 4 Erel @17F]

= ExRe{[ja, +4,] ¢/}

€ A

wt=37/2

Y

ot =31/4

wt=1/2

Figure 4-14 Right-hand circularly polarized wave.
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Again we note a 90° phase difference between the orthogonal components.

From the previous discussion we see that a right-hand circular polarization can be achieved
if and only if its two orthogonal linearly polarized components have equal amplitudes and a 90°
phase difference of one relative to the other. The sense of rotation (clockwise here) is determined by
rotating the phase-leading component (in this instance ‘€,) toward the phase-lagging component
(in this instance €,). The field rotation must be viewed as the wave travels away from the observer.

B. Left-Hand (Counterclockwise) Circular Polarization 1If the electric field vector has a
counterclockwise sense of rotation, the polarization is designated as left-hand polarization. To
demonstrate this, let in (4-50a)

¢x:0
¢ _7'[
)
Eg = Eg =E_ (4-53)

then

€, = Ep cos(wt)

@, = Ey cos (cot + %) — —Ey sin(e?) (4-53)
and the locus of the amplitude is
€= € +€ = JEXcos? r + sin’ i) = E;. (4-53b)
The angle ¢ is given by
é —E; sin(wt)
—1 y —1 L
=t — | =t —_— | = —Wwt 4-53
v=n [%J " [ Ey cos(wr) ] ¢ (4339

The locus of the field vector is a circle of radius £, and it rotates counterclockwise with an
angular frequency w as shown in Figure 4-15; hence, it is a left-hand circular polarization.

€A

wt = /4 wt=Tn/4

wt=7/2 wt =37m/2

Y

o8

wt =314 wt =5m/4

Figure 4-15 Left-hand circularly polarized wave.
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The instantaneous electric field vector can be written as
% = Re [ﬁxELei(wt—ﬁz) + ﬁvELej(wz—ﬁz+n/2)]
= E Re {[a, +ja,] /@ 79} (4-53)

In (4-53d) we note a 90° phase advance of the €, component relative to the €, component.

Example 4-8
Determine the polarization and sense of rotation of the wave given by (4-50a) if ¢, = —7/2, ¢, =0,
and ET = El =Ep.
X0 Yo
Solution: Since
PR
2
¢y =0

By =Ky =k
then
Y .
€, = Ep cos (wt — 5) = Ey_sin(wt)
€y = Ep cos(wt)

and the locus of the amplitude is

é = \/%i +(£§ = \/Ef(sinz ot + cos? wt) = Ey,

The angle v is given by

. [€, _; [ EL cos(wr) _ b4
— L2 | — L[ ZLEOSRBR) | 1 - = _
Y = tan [ xi| = tan |: sing I)] =tan ' [cot(wt)] = > wt

The locus of the electric field vector is a circle of radius Ej, and it rotates counterclockwise with an
angular frequency w as shown in Figure 4-16; hence, it is a left-hand circular polarization. For this case
we can write the electric field as

%x A

wt =37/4

wl =1

ot =51/4 ot ="Tr/4

wt =3m/2

Figure 4-16 Left-hand circularly polarized wave.
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€ — Re [ﬁxELej(wrfﬁzfn/Z) + ﬁyELej(a)tfﬁz)]
= EiRe {[—ja, +4,] /@)

and we note a 90° phase delay of the €, component relative to €,.

From the previous discussion we see that left-hand circular polarization can be achieved if
and only if its two orthogonal components have equal amplitudes and odd multiples of 90° phase
difference of one component relative to the other. The sense of rotation (counterclockwise here)
is determined by rotating the phase-leading component (in this instance €,) toward the phase-
lagging component (in this instance €,). The field rotation must be viewed as the wave travels
away from the observer.

The necessary and sufficient conditions for circular polarization are the following:

1. The field must have two orthogonal linearly polarized components.
2. The two components must have the same magnitude.
3. The two components must have a time-phase difference of odd multiples of 90°.

The sense of rotation is always determined by rotating the phase-leading component toward
the phase-lagging component and observing the field rotation as the wave is traveling away from
the observer. The rotation of the phase-leading component toward the phase-lagging component
should be done along the angular separation between the two components that is less than 180°.
Phases equal to or greater than 0° and less than 180° should be considered leading whereas those
equal to or greater than 180° and less than 360° should be considered lagging.

4.4.3 Elliptical Polarization

A wave is said to be elliptically polarized if the tip of the electric field vector traces, as a
function of time, an elliptical locus in space. At various instants of time the electric field vector
changes continuously with time in such a manner as to describe an elliptical locus. It is right-hand
elliptically polarized if the electric field vector of the ellipse rotates clockwise, and it is left-hand
elliptically polarized if the electric field vector of the ellipse rotates counterclockwise [8, 10—14].

Let us examine the locus of the instantaneous electric field vector (€) at the z = 0 plane at
all times. For this particular example, let in (4-50a)

b
b = )
¢y =0
E! = (Er + EL)
E = (Er — Ep) (4-54)

Then,

€. = (Er + EL) cos (wt + %) = — (Er + EL) sinwt

€, = (Er — Ev) cos(wt) (4-54a)
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We can write the locus for the amplitude of the electric field vector as
€’ =€, +%, = (Eg + EL) sin” ot + (Eg — EL)* cos” ot
= EZ sin® wt 4 E7 sin wt + 2EREy sin® ot
—i—El% cos® wt + EL2 cos® wt — 2EREL cos® wt
€} + €, = Eg + E + 2EREL [sin® ot — cos” wt ] (4-54b)
However,

sinwt = —€, /(Er + EL)

coswt =€, /(Er — Er) (4-54¢)
Substituting (4-54¢) into (4-54b) reduces to
€ ) €, )?
+ =1 4-54d
{ER+EL} {ER—EL} ( )

which is the equation for an ellipse with the major axis |€|max = |ER + Er| and the minor axis
|€lmin = |Er — EL|. As time elapses, the electric vector rotates and its length varies with its tip
tracing an ellipse, as shown in Figure 4-17. The maximum and minimum lengths of the electric
vector are the major and minor axes, given by

B |max = |Er + EL|, when wt = (2n + 1)%,;1 =0,1,2,... (4-54e)
8 |min = |Er — EL|, when wt =nm,n=0,1,2,... (4-54f)

The axial ratio (AR) is defined to be the ratio of the major axis (including its sign) of the
polarization ellipse to the minor axis, or
AR = _%max . _2(ER + EL) _ (ER + EL)
Emin 2(Er — Ev) (Er — Ev)
where Er and Ep are positive real quantities. As defined in (4-54g), the axial ratio AR can take
positive (for left-hand polarization) or negative (for right-hand polarization) values in the range
1 < |AR| < co. The instantaneous electric field vector can be written as

(4-54¢g)

% = Re {ﬁx [Eg + EL] &/ @ —Petn/D) 4 a, [Fr — Ey] ej(wt—ﬁz)}
= Re |[a (Er + Ev) + 4y (Er — Ep)] &/ @79}
% = Re {[Er(ja; +4,) + EL(jA, — &,)] e/} (4-54h)

From (4-54h) we see that we can represent an elliptical wave as the sum of a right-hand [first term
of (4-54h)] and a left-hand [second term of (4-54h)] circularly polarized waves with amplitudes
ERr and Ei, respectively. If Eg > E;, the axial ratio will be negative and the right-hand circular
component will be stronger than the left-hand circular component. Thus, the electric vector rotate
in the same direction as that of the right-hand circularly polarized wave, producing a right-hand
elliptically polarized wave, as shown in Figure 4-17a. If Ej, > Eg, the axial ratio will be positive
and the left-hand circularly polarized component will be stronger than the right-hand circularly
polarized component. The electric field vector will rotate in the same direction as that of the
left-hand circularly polarized component, producing a left-hand elliptically polarized wave, as
shown in Figure 4-17b. The sign of the axial ratio carries information on the direction of rotation
of the electric field vector.



POLARIZATION

Y

(a)

%x A min |ER ELl
<—£>I

wt=37/2

max

Y

wt =7/2

(b)

o8
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Figure 4-17 Right- and left-hand elliptical polarizations with major axis along the x axis. (a) Right-hand

(clockwise) when ER > Ep.. (b) Left-hand (counterclockwise) when Er < Ej..

An analogous situation exists when

(4-55)
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€A

: %maxz |ER+EL|

wt=371/2

wt =71

wt=71/2
(a)
Y
:%max =|Eg+Ep |
wt=1/2

wt=371/2

(b)

Figure 4-18 Right- and left-hand elliptical polarizations with major axis along the y axis. (a) Right-hand
(clockwise) when ER > Ep.. (b) Left-hand (counterclockwise) when Er < Ej..

The polarization loci are shown in Figure 4-18a and 4-18b when Er > Ei and Er < E, respec-
tively.

From (4-54e) and (4-54f), it can be seen that the component of € measured along the major
axis of the polarization ellipse is 90° out of phase with the component of € measured along the
minor axis. Also with the aid of (4-54b), it can be shown that the electric vector rotates through
90° in space between the instants of time given by (4-54e) and (4-54f) when the vector has
maximum and minimum lengths, respectively. Thus the major and minor axes of the polarization
ellipse are orthogonal in space, just as we might anticipate.

Since linear polarization is a special kind of elliptical polarization, we can represent a lin-
ear polarization as the sum of a right- and a left-hand circularly polarized components of
equal amplitudes. We see that for this case (Eg = Er), (4-54h) will degenerate into a linear
polarization.
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Figure 4-19 Rotation of a plane electromagnetic wave and its tilted ellipse at z = 0 as a function of time.

A more general orientation of an elliptically polarized locus is the tilted ellipse of Figure 4-19.
This is representative of the fields of (4-50a) when

A¢=¢x—¢y¢% n=0.24..

for CW if Egr > EL.
>0 (4-56a)
for CCW if ER < EL
for CW if ER < EL,
<0 (4-56b)
for CCW if Ex > E}.
E;(; = ER + EL
Et =FEr — EL (4-56¢)

Yo

Thus the major and minor axes of the ellipse do not, in general, coincide with the principal axes
of the coordinate system unless the magnitudes are not equal and the phase difference between
the two orthogonal components is equal to odd multiples of £90°.
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The ratio of the major to the minor axes, which is defined as the axial ratio (AR), is equal
to [8]

major axis OA
AR=+—— " =4+—, 1 < |AR| < 00 (4-57)
minor axis OB
where
—1 +\2 +\2 +14 4 2 2 1/2—1/2
0A = | ED? + ED + | ED* + B +2ED E) cos289)]
(4-57a)
-1 +\2 +\2 +4 4 2 2 1/2'1/2
OB = | 31 ED? + B = [ED + ED + 2B E) cos2a) |
(4-57b)

E;g and E;g are given by (4-56c¢). The plus (+) sign in (4-57) is for left-hand and the minus (—)
sign is for right-hand polarization.
The tilt of the ellipse, relative to the x axis, is represented by the angle t given by

7Lt | 2En (A) (4-57¢)
T=—— —lan —— = COS -J)/C
2 2 (Exp)? — (Exp)?

4.4.4 Poincaré Sphere

The polarization state, defined here as P, of any wave can be uniquely represented by a point on
the surface of a sphere [15—19]. This is accomplished by either of the two pairs of angles (y,d)
or (g, 7). By referring to (4-50a) and Figure 4-20a, we can define the two pairs of angles:

(v,8) set

E’ ET
y = tan~! —yfr) or y= tan™"! i}: , 0° <y <90° (4-58a)
Eg Ey
8 = ¢, — ¢, = phase difference between €, and €,, —180° <4 < 180°

(4-58Db)

where 2y is the great-circle angle drawn from a reference point on the equator and § is the
equator to great-circle angle;

(e,7) set
e = cot '(AR) = AR = cot(g), —45° <& < +45° (4-59a)
T = tilt angle, 0° <1 <180° (4-59b)

where

2¢ = latitude

2t = longitude

In (4-58a) the appropriate ratio is the one that satisfies the angular limits of all the Poincaré
sphere angles (especially those of ¢). The axial ratio AR is positive for left-hand polarization and
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“A Polarization state P of wave
[P (y,8) or P(z,¢)]
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—_——— \
& !
>
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&§ Y i >
& | ¥
Reference @ |
point
) |
|
* 271 (longitude)
(a)
zZA Circular polarization
/ (left hand; & =45°)
Elliptical polarization

(left hand; t=22.5°, £=22.5°) Elliptical polarization
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Elliptical polarization

\
\
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|
1
|
I
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/ (t=45°,¢=0°)

>
—
y
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N\
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(r=22.5°¢=0°)

(b)

Figure 4-20 Poincaré sphere for the polarization state of an electromagnetic wave. (Source: J. D. Kraus,
Electromagnetics, 1984, McGraw-Hill Book Co.). (a) Poincaré sphere. (b) Polarization state.

negative for right-hand polarization. Some polarization states are displayed on the first octant of
the Poincaré sphere in Figure 4-20b. The polarization states on a planar surface representation
(projection) of the Poincaré sphere (—45° < ¢ < 445°,0° < 7 < 180°) are shown in Figure 4-21.

For the polarization ellipse of Figure 4-19, the two sets of angles are related geometrically as
shown in Figure 4-20. Analytically, it can be shown through spherical trigonometry [20] that the
two pairs of angles (y, §) and (e, t) are related by

cos(2y) = cos(2¢) cos(27) (4-60a)

_ tan(2e)

tan(é
an( ) sin(21’) (4-60b)
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./ N

Figure 4-21 Polarization states of electromagnetic waves on a planar surface projection of a Poincaré
sphere. (Source: J. D. Kraus, Electromagnetics, 1984, McGraw-Hill Book Co.).

or

sin(2¢) = sin(2y) sin(§) (4-61a)
tan(2t) = tan(2y) cos(d)

(4-61b)

Thus one set can be obtained by knowing the other.

It is apparent from Figure 4-20 that the linear polarization is always found along the equator; the
right-hand circular resides along the south pole and the left-hand circular along the north pole.
The remaining surface of the sphere is used to represent elliptical polarization with left-hand
elliptical in the upper hemisphere and right-hand elliptical on the lower hemisphere.

Because the Poincaré sphere parameter pairs (y, §) and (e, 7) are related by transcendental
functions, of (4-60a) and (4-60b), there may be some ambiguity at which quadrant should the
angles be chosen. The angles should be selected to each satisfy respectively the range of values
given by (4-58a) and (4-58b), and (4-57c), and each set should represent the same point on
the Poincaré sphere. Also the range of values of the axial ratio (AR) should be 1 < |AR| < o0,
with positive values to represent CCW (left-hand) polarization and negative values to represent
CW (right-hand) polarization. A MATLAB computer program, Polarization_Propag, has been
written and it is part of the website that accompanies this book.
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Example 4-9

Determine the point on the Poincaré sphere of Figure 4-20 when the wave represented by (4-50a) is
such that

€, = E;f cos(wt — Bz + ¢)

€, =0
Solution: Using (4-58a) and (4-58b)

Ef 0

—1 Yo =l o

y = tan — | =tan |:—i| =0
|:E;J E}

and § could be of any value, i.e., —180° < § < 180°. The values of ¢ and 7 can now be obtained from
(4-61a) and (4-61b), and they are equal to

2e = sin~! [sin(2y) sin(8)] = sin' (0) = 0°
27 = tan~ ! [tan(2y) cos(8)] =tan"'(0) = 0°

It is apparent that for this wave, which is obviously linearly polarized, the polarization state (point) is
at the reference point of Figure 4-20. The axial ratio is obtained from (4-59a), and it is equal to

AR = cot(e) = cot(0) = 00

An axial ratio of infinity always represents linear polarization.

Example 4-10
Repeat Example 4-9 when the wave of (4-50a) is such that
€, =0
¢y = Ey“g cos(wt — Bz + ¢y)
Solution: Using (4-58a) and (4-58b),

X0

y =tan™! |:L?$:| = tan"!(c0) = 90°
ET
and § could be of any value, i.e., —180° < § < 180°. The values of ¢ and 7 can now be obtained from
(4-61a) and (4-61b), and they are equal to
2e = sin~! [sin(2y) sin(8)] = sin"' (0) = 0°
27 = tan”' [tan(2y) cos(8)] = tan"'(0) = 180°

The polarization state (point) of this linearly polarized wave is diametrically opposed to that in
Example 4-9. The axial ratio is also infinity.
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Example 4-11

Determine the polarization state (point) on the Poincaré sphere of Figure 4-20 when the wave of (4-50a)
is such that

€, = E);g cos(wt — Bz + ¢y) = 2Eq cos (wt — Bz + %)

€, = E;f cos(wt — Bz + ¢y) = Eocos(wt — fz)
Solution: Using (4-58a) and (4-58b),

E* E
y =tan™! [EQO} = tan~! [ﬁ] =26.56°
X0 0

8=y — ¢ = —90°
The values of ¢ and 7 can now be obtained from (4-61a) and (4-61b), and they are equal to
2¢ = sin™' [sin2y) sin(8)] = sin™' [ siny)] = —2y = —53.12°
27 = tan” ' [tan(2y) cos(8)] = tan"' (0) = 0°

Therefore, this point is situated on the principal xz plane at an angle of 2y = —2¢ = 53.12° from
the reference point of the x axis of Figure 4-20. The axial ratio is obtained using (4-59a), and it is
equal to

AR = cot(g) = cot(—26.56°) = —2

The negative sign indicates that the wave has a right-hand (clockwise) polarization. Therefore the wave
is right-hand elliptically polarized with AR = —2.

In general, points on the principal xz elevation plane, aside from the two intersecting points
on the equator and the north and south poles, are used to represent elliptical polarization when
the major and minor axes of the polarization ellipse of Figure 4-19 coincide with the principal
axes.

If the polarization state of a wave is defined as P, and that of an antenna as P,, then the
voltage response of the antenna due to the wave is obtained by [10, 19]

PwPa
V = C cos |: 2 ] (4-62)

where
C = constant that is a function of the antenna size and field strength of the wave
P,, = polarization state of the wave
P, = polarization state of the antenna
P, P, = angle subtended by a great-circle arc from polarization P,, to P,

Remember that the polarization of a wave, by IEEE standards [7, 8], is determined as the wave
is observed from the rear (is receding). Therefore the polarization of the antenna is determined
by its radiated field in the transmitting mode.
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Example 4-12

If the polarization states of the wave and antenna are given, respectively, by those of Examples 4-9
and 4-10, determine the voltage response of the antenna due to that wave.

Solution: Since the polarization state P,, of the wave is at the +x axis and that of the antenna P, is
at the —x axis of Figure 4-20, then the angle P, P, subtended by a great-circle arc from P,, to P, is
equal to

P, P, = 180°
Therefore the voltage response of the antenna is, according to (4-62), equal to

PP, o
V = C cos — = Ccos(90°) =0

This is expected since the fields of the wave and those of the antenna are orthogonal (cross-polarized)
to each other.

Example 4-13

The polarization of a wave that impinges upon a left-hand (counterclockwise) circularly polarized
antenna is circularly polarized. Determine the response of the antenna when the sense of rotation of the
incident wave is

1. Left-hand (counterclockwise).
2. Right-hand (clockwise).

Solution:

1. Since the antenna is left-hand circularly polarized, its polarization state (point) on the Poincaré
sphere is on the north pole (2y = § = 90°). When the wave is also left-hand circularly polarized,
its polarization state (point) is also on the north pole (2y = § = 90°). Therefore, the subtended
angle P,, P, between the two polarization states is equal to

PyP, =0°

and the voltage response of the antenna, according to (4-62), is equal to

PP,
V=Ccos[ > ]:Ccos(O):C

This represents the maximum response of the antenna, and it occurs when the polarization (includ-
ing sense of rotation) of the wave is the same as that of the antenna.

2. When the sense of rotation of the wave is right-hand circularly polarized, its polarization state
(point) is on the south pole (2y = 90°, § = —90°). Therefore, the subtended angle P,, P, between
the two polarization states is equal to

P,P, = 180°

and the response of the antenna, according to (4-62), is equal to
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PP 180°
V:Ccos|: Wzai|:Ccos|: 820 i|:Ccos(90°):0

This represents a null response of the antenna, and it occurs when the sense of rotation of the
circularly polarized wave is opposite to that of the circularly polarized antenna. This is one
technique, in addition to those shown in Example 4-12, that can be used to null the response of
an antenna system.

4.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

e MATLAB computer programs:
a. Polarization_Diagram_Ellipse_Animation: Animates the 3-D polarization diagram of
a rotating electric field vector (Figure 4-8). It also animates the 2-D polarization ellipse
(Figure 4-19) for linear, circular and elliptical polarized waves, and sense of rotation. It
also computes the axial ratio (AR).
b. Polarization_Propag: Computes the Poincaré sphere angles, and thus the polarization
wave traveling in an infinite homogeneous medium.
e Power Point (PPT) viewgraphs, in multicolor.

REFERENCES
1. S. F. Adam, Microwave Theory and Applications, Prentice-Hall, Englewood Cliffs, N.J., 1969.
2. A. L. Lance, Introduction to Microwave Theory and Measurements, McGraw-Hill, New York, 1964.
3. N. Marcuvitz (ed.), Waveguide Handbook, McGraw-Hill, New York, 1951, Chapter 8, pp. 387—-413.
4. C. H. Walter, Traveling Wave Antennas, McGraw-Hill, New York, 1965, pp. 172—-187.
5. R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation, John

[*)

10.

11.

12.

13.

14.

15.
16.

Wiley & Sons, New York, 1960, Chapter 8.

. D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory, McGraw-Hill, New York, 1969.
. “IEEE Standard 145-1983, IEEE Standard Definitions of Terms for Antennas,” reprinted in /EEE Trans.

Antennas Propagat., vol. AP-31, no. 6, part II, pp. 1-29, November 1983.

. C. A. Balanis, Antenna Theory: Analysis and Design, Third Edition. John Wiley & Sons, New York,

2005.

. W. Sichak and S. Milazzo, “Antennas for circular polarization,” Proc. IEEE, vol. 36, pp. 997—1002,

August 1948.

G. Sinclair, “The transmission and reception of elliptically polarized waves,” Proc. IRE, vol. 38,
pp. 148-151, February 1950.

V. H. Rumsey, G. A. Deschamps, M. L. Kales, and J. I. Bohnert, “Techniques for handling elliptically
polarized waves with special reference to antennas,” Proc. IRE, vol. 39, pp. 533-534, May 1951.

V. H. Rumsey, “Part I—Transmission between elliptically polarized antennas,” Proc. IRE, vol. 39,
pp. 535-540, May 1951.

M. L. Kales, “Part III—Elliptically polarized waves and antennas,” Proc. IRE, vol. 39, pp. 544-549,
May 1951.

J. 1. Bohnert, “Part IV—Measurements on elliptically polarized antennas,” Proc. IRE, vol. 39,
pp. 549-552, May 1951.

H. Poincaré, Théorie Mathématique de la Limiére, Georges Carré, Paris, France, 1892.

G. A. Deschamps, “Part II—Geometrical representation of the polarization of a plane electromagnetic
wave,” Proc. IRE, vol. 39, pp. 540-544, May 1951.



PROBLEMS 167

17. E. F. Bolinder, “Geometric analysis of partially polarized electromagnetic waves,” IEEE Trans. Antennas
Propagat., vol. AP-15, no. 1, pp. 37—40, January 1967.

18. G. A. Deschamps and P. E. Mast, “Poincaré sphere representation of partially polarized fields,” IEEE
Trans. Antennas Propagat., vol. AP-21, no. 4, pp. 474-478, July 1973.

19. J. D. Kraus, Electromagnetics, Third Edition, McGraw-Hill, New York, 1984.
20. M. Born and E. Wolf, Principles of Optics, Macmillan Co., New York, pp. 24-27, 1964.

PROBLEMS

4.1.

4.2

4.3.

44.

4.5.

A uniform plane wave having only an x
component of the electric field is traveling
in the +z direction in an unbounded loss-
less, source-free region. Using Maxwell’s
equations write expressions for the electric
and corresponding magnetic field intensi-
ties. Compare your answers to those of
(4-2b) and (4-3c).

Using Maxwell’s equations, find the mag-
netic field components for the wave whose
electric field is given in Example 4-1.
Compare your answer with that obtained
in the solution of Example 4-1.

The complex H field of a uniform plane
wave, traveling in an unbounded source-
free medium of free space, is given by

= a, — 24,)e /e
1207 ¢ v)e

Find the:

(a) Corresponding electric field.

(b) Instantaneous power density vector.

(c) Time-average power density.

The complex E field of a uniform plane
wave is given by

E = (4, +ja)e 7P 4 (24, —ja,)e P

Assuming an unbounded source-free, free-

space medium, find the:

(a) Corresponding magnetic field.

(b) Time-average power density flowing in
the +y direction.

(c) Time-average power density flowing in
the —y direction.

The magnetic field of a uniform plane wave
in a source-free region is given by

H=10"%[-4,2+)) +4a,(1+j3)]e™F”

Assuming that the medium is free space,
determine the:

4.6.

4.7.

4.8.

(a) Corresponding electric field.
(b) Time-average power density.

The electric field of a uniform plane wave
traveling in a source-free region of free
space is given by

E = 107 (&, +/4,) sin(Boz)

(a) Is this a traveling or a standing wave?

(b) Identify the traveling wave(s) of the
electric field and the direction(s) of
travel.

(c) Find the corresponding magnetic field.

(d) Determine the time-average power
density of the wave.

The magnetic field of a uniform plane wave
traveling in a source-free, free-space region
is given by

H = 10"%(4, +ja,) cos(fox)

(a) Is this a traveling or a standing wave?

(b) Identify the traveling wave(s) of the
magnetic field and the direction(s) of
travel.

(c) Find the corresponding electric field.

(d) Determine the time-average power
density of the wave.

A uniform plane wave is traveling in the

—z direction inside an unbounded source-

free, free-space region. Assuming that the

electric field has only an E, component, its

value at z =0 is 4 x 1073 V/m, and its

frequency of operation is 300 MHz, write

expressions for the:

(a) Complex electric and magnetic fields.

(b) Instantaneous electric and magnetic
fields.

(c) Time-average and instantaneous pow-
er densities.

(d) Time-average and instantaneous elec-
tric and magnetic energy densities.
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4.9.

4.10.

4.11.

4.12.

4.13.

WAVE PROPAGATION AND POLARIZATION

A uniform plane wave traveling inside an
unbounded free-space medium has peak
electric and magnetic fields given by

E = 4,Ege /o

H = a,Hoe 7 Fo*

where £y = 1 mV/m.

(a) Evaluate Hy.

(b) Find the corresponding average power
density. Evaluate all the constants.

(c) Determine the volume electric and
magnetic energy densities. Evaluate all
the constants.

The complex electric field of a uniform
plane wave traveling in an unbounded non-
ferromagnetic dielectric medium is given

by E = 4,107

where z is measured in meters. Assuming
that the frequency of operation is 100 MHz,
find the:

(a) Phase velocity of the wave (give units).
(b) Dielectric constant of the medium.

(c) Wavelength (in meters).

(d) Time-average power density.

(e) Time-average total energy density.

The complex electric field of a time-
harmonic field in free space is given by

E=4,107(1 +j)e @)

Assuming the distance x is measured in
meters, find the:

(a) Wavelength (in meters).

(b) Frequency.

(c) Associated magnetic field.

A uniform plane wave is traveling inside

the earth, which is assumed to be a perfect

dielectric infinite in extent. If the relative

permittivity of the earth is 9, find, at a fre-

quency of 1 MHz, the:

(a) Phase velocity.

(b) Wave impedance.

(c) Intrinsic impedance.

(d) Wavelength of the wave inside the
earth.

An 11-GHz transmitter radiates its power
isotropically in a free-space medium.
Assuming its total radiated power is 50
mW, at a distance of 3 km, find the:

(a) Time-average power density.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

(b) RMS electric and magnetic fields.

(c) Total time-average volume energy den-
sities.

In all cases, specify the units.

The electric field of a time-harmonic wave
traveling in free space is given by

E =4a,107*(1 +j)e 7=

Find the amount of real power crossing a
rectangular aperture whose cross section is
perpendicular to the z axis. The area of the
aperture is 20 cm?.

The following complex electric field of a
time-harmonic wave traveling in a source-
free, free-space region is given by

E =5 x 1073(4a, + 34,)e/ @5

Assuming y and z represent their respec-

tive distances in meters, determine the:

(a) Angle of wave travel (relative to the z
axis).

(b) Three phase constants of the wave
along its oblique direction of travel, the
y axis, and the z axis (in radians per
meter).

(c) Three wavelengths of the wave along
its oblique direction of travel, the y
axis, and the z axis (in meters).

(d) Three phase velocities of the wave
along the oblique direction of travel,
the y axis, and the z axis (in meters
per second).

(e) Three energy velocities of the wave
along the oblique direction of travel,
the y axis, and the z axis (in meters
per second).

(f) Frequency of the wave.

(g) Associated magnetic field.

Using Maxwell’s equations, determine the
magnetic field of (4-18b) given the electric
field of (4-18a).

Given the electric field of Example 4-2 and
using Maxwell’s equations, determine the
magnetic field. Compare it with that found
in the solution of Example 4-2.

Given (4-19a) and (4-19c), determine the
phase velocities of (4-22) and (4-23).

Derive the energy velocity of (4-24) using
the definition of (4-9), (4-18a), and (4-18b).



4.20.

4.21.

4.22.

4.23.

A uniform plane wave of 3 GHz is incident
upon an unbounded conducting medium of
copper that has a conductivity of 5.76 x
107 S/m, ¢ = &9, and p = po. Find the
approximate:

(a) Intrinsic impedance of copper.

(b) Skin depth (in meters).

The magnetic field intensity of a plane
wave traveling in a lossy earth is given by

H = (4, +,24,)Hoe e /H

where Hy = 1 pA/m. Assuming the lossy

earth has a conductivity of 10™* S/m, a

dielectric constant of 9, and the frequency

of operation is 1 GHz, find inside the earth

the:

(a) Corresponding electric field vector.

(b) Average power density vector.

(c) Phase constant (radians per meter).

(d) Phase velocity (meters per second).

(e) Wavelength (meters).

(f) Attenuation constant
meter).

(g) Skin depth (meters).

(Nepers per

Sea water is an important medium in
communication between submerged sub-
marines or between submerged submarines
and receiving and transmitting stations
located above the surface of the sea.
Assuming the constitutive electrical param-
eters of the sea are 0 =4 S/m, ¢, = 81,
iy =1, and f = 10* Hz, find the:
(a) Complex propagation constant (per
meter).
(b) Phase velocity (meters per second).
(c) Wavelength (meters).
(d) Attenuation constant
meter).
(e) Skin depth (meters).

(Nepers per

The electrical constitutive parameters of

moist earth at a frequency of 1 MHz

are 0 = 107! S/m, &, =4, and pu, = 1.

Assuming that the electric field of a uni-

form plane wave at the interface (on the

side of the earth) is 3 x 1072 V/m, find
the:

(a) Distance through which the wave
must travel before the magnitude of
the electric field reduces to 1.104 x
1072 V/m.

(b) Attenuation the electric field undergoes
in part (a) (in decibels).

4.24.

4.25.

4.26.

4.27.

4.28.
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(c) Wavelength inside the earth (in
meters).

(d) Phase velocity inside the earth (in
meters per second).

(e) Intrinsic impedance of the earth.

The complex electric field of a uniform
plane wave is given by

E =107 [av2+4,(1+))e"*] e 7P

(a) Find the polarization of the wave (lin-
ear, circular, or elliptical).

(b) Determine the sense of rotation (clock-
wise or counterclockwise).

(c) Sketch the figure the electric field
traces as a function of wr.

The complex magnetic field of a uniform
plane wave is given by

g 107 i
= 1207 &y —jag)e

(a) Find the polarization of the wave (lin-
ear, circular, or elliptical).

(b) State the direction of rotation (clock-
wise or counterclockwise). Justify your
answer.

(c) Sketch the polarization curve denoting
the #-field amplitude, and direction of
rotation. Indicate on the curve the vari-
ous times for the rotation of the vector.

In a source-free, free-space region, the
complex magnetic field of a time-harmonic
field is represented by

H= [ﬁx(l +j)+4, fzei”/“] %e—fﬂw‘
0

where Ej is a constant and 7, is the intrin-
sic impedance of free space. Determine the:
(a) Polarization of the wave (linear, circu-

lar, or elliptical). Justify your answer.
(b) Sense of rotation, if any.
(c) Corresponding electric field.

Show that any linearly polarized wave can
be decomposed into two circularly polar-
ized waves (one CW and the other CCW)
but both traveling in the same direction as
the linearly polarized wave.

The electric field of a f = 10 GHz time-
harmonic uniform plane wave traveling in
a perfect dielectric medium is given by

E = (4, +,24,) ¢ 700072
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4.29.

4.30.

4.31.
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where z is in meters. Determine, assuming

the permeability of the medium is the same

as that of free space, the:

(a) Wavelength of the wave (in meters).

(b) Velocity of the wave (in meters/sec).

(c) Dielectric constant (relative permittiv-
ity) of the medium (dimensionless).

(d) Intrinsic impedance of the medium (in
ohms).

(e) Wave impedance of the medium (in
ohms).

(f) Vector magnetic field of the wave.

(g) Polarization of the wave (linear, circu-
lar, elliptical; AR; and sense of rota-
tion).

The spatial variations of the electric field
of a time-harmonic wave traveling in free
space are given by

E(x) = ﬁye—j(ﬂox—%) + ﬁze—j(ﬁox—%)

Determine, using the necessary and suffi-

cient conditions of the wave, the:

(a) Direction of wave travel (+x, —x, +y,
—y, +z or —z) based on e/ time.

(b) Polarization of the wave (linear, circu-
lar or elliptical). Justify your answer.

(c) Sense of rotation (CW or CCW), if
any, of the wave. Justify your answer.

The spatial variations of the electric field
of a time-harmonic wave traveling in free
space are given by

E(z) = ﬁxze—j(ﬁoz—%) + ﬁye—j(ﬂoz—%’r)

Determine the:
(a) Direction of wave travel (+x, —x, +y,

—y, +z or —z) based on e time.

(b) Two pairs of Poincaré sphere polariza-

tion parameters (y, 8) and (¢, 7).

(c) Based on either one of the two pairs of
parameters from part (b), state the:

e Polarization of the wave (linear,
circular or elliptical). Justify your
answer.

e Sense of rotation (CW or CCW) of
the wave. Justify your answer.

e Axial Ratio. Justify your answer.

The time-harmonic electric field traveling
inside an infinite lossless dielectric medium
is given by

E'(z) = (j24, + 54,) Ege 7#°

4.32.

4.33.

4.34.

are real constants.
time convention,

where B and E,
Assuming a et
determine the:

(a) Polarization of the wave (linear, circu-
lar or elliptical). You must justify your
answer. Be specific.

(b) Sense of rotation (CW or CCW). You
must justify your answer. Be specific.

(c) Axial Ratio (AR) based on the expres-
sion of the electric field. You must jus-
tify your answer. Be specific.

(d) Poincaré sphere angles (in degrees):

e yand §

e cand 7

Make sure that the polarization point
on the Poincaré sphere based on the
pair of angles (y, §) is the same as that
based on the set of angles (e, 7).

(e) Axial Ratio (AR) based on the
Poincaré sphere angles. Compare with
that in part (c).

In a source-free, free-space region the com-
plex magnetic field is given by
H = j @, — ja) et
Mo
where Ej is a constant and 7, is the intrin-
sic impedance of free space. Find the:
(a) Polarization of the wave (linear, circu-
lar, or elliptical). Justify your answer.
(b) Sense of rotation, if any (CW or
CCW). Justify your answer.
(c) Time-average power density.
(d) Polarization of the wave on the
Poincaré sphere.

The electric field of a time-harmonic wave
is given by
E=2x 107}, +4,)e 7%

(a) State the polarization of the wave (lin-
ear, circular, or elliptical).

(b) Find the polarization on the Poincaré
sphere by identifying the angles §, y,
T and ¢ (in degrees).

(c) Locate the polarization point on the
Poincaré sphere.

For a uniform plane wave represented by
the electric field

E = Eo(a, —j24,)e 7P
where Ey is constant, do the following.
(a) Determine the longitude angle 27,

latitude angle 2¢, great-circle angle 2y,
and equator to great-circle angle § (all



4.35.

4.36.

in degrees) that are used to identify and
locate the polarization of the wave on
the Poincaré sphere.

(b) Using the answers from part (a), state
the polarization of the wave (linear, cir-
cular, or elliptical), its sense of rotation
(CW or CCW), and its Axial Ratio.

(c) Find the signal loss (in decibels) when
the wave is received by a right-hand
circularly polarized antenna.

The electric field of (4-50a) has an Axial
Ratio of infinity and a great-circle angle of
2y = 109.47°.

(a) Find the relative magnitude (ratio) of
E; to E;f. Which component is more
dominant, E, or E,? Use the first def-
inition of y in (4-58a).

(b) Identify the polarization point on the
Poincaré sphere (i.e., find 8, 7, and &
in degrees).

(c) State the polarization of the wave (lin-
ear, circular, or elliptical).

A uniform plane wave is traveling along
the +z axis and its electric field is given
by '

E, = @& +jay)e K

This incident plane wave impinges upon
an antenna whose field radiated along the
7 axis is given by

(a) Eaa = (ﬁx +jﬁy)e+jﬂz E,

(b) Eup = (4 _jﬁ)')e+jﬁzEa
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Determine the:

1. Polarization of the incident wave
(linear, circular, elliptical; sense of
rotation; and AR).

2. Polarization of antenna of part (a)
(linear, circular, elliptical; sense of
rotation; and AR).

3. Polarization of antenna of part (b)
(linear, circular, elliptical; sense of
rotation; and AR).

4. Normalized output voltage when the
incident wave impinges upon the
antenna whose electric field is that
of part (a).

5. Normalized output voltage when the
incident wave impinges upon the
antenna whose electric field is that
of part (b).

4.37. The field radiated by an antenna has

electric field components represented by

(4-50a) such that E;} = E;} and its Axial

Ratio is infinity.

(a) Identify the polarization point on the
Poincaré sphere (i.e., find y, 6, t, and
¢ in degrees).

(b) If this antenna is used to receive the
wave of Problem 4.35, find the polar-
ization loss (in decibels). To do this
part, use the Poincaré sphere param-
eters.






CHAPTER 5
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Reflection and Transmission

5.1 INTRODUCTION

In the previous chapter we discussed solutions to TEM waves in unbounded media. In real-world
problems, however, the fields encounter boundaries, scatterers, and other objects. Therefore the
fields must be found by taking into account these discontinuities.

In this chapter we want to discuss TEM field solutions in two semi-infinite lossless and lossy
media bounded by a planar boundary of infinite extent. Reflection and transmission coefficients
will be derived to account for the reflection and transmission of the fields by the boundary. These
coefficients will be functions of the constitutive parameters of the two media, the direction of
wave travel (angle of incidence), and the direction of the electric and magnetic fields (wave
polarization).

In general, the reflection and transmission coefficients are complex quantities. It will be demon-
strated that their amplitudes and phases can be varied by controlling the direction of wave travel
(angle of incidence). In fact, for one wave polarization (parallel polarization) the reflection coef-
ficient can be made equal to zero. When this occurs, the angle of incidence is known as the
Brewster angle. This principle is used in the design of many instruments (such as binoculars).

The magnitude of the reflection coefficient can also be made equal to unity by properly selecting
the wave incidence angle. This angle is known as the critical angle, and it is independent of wave
polarization; however, in order for this angle to occur, the incident wave must exist in the denser
medium. The critical angle concept plays a crucial role in the design of transmission lines (such
as optical fiber, slab wave-guides, and coated conductors; the microstrip is one example).

5.2 NORMAL INCIDENCE — LOSSLESS MEDIA

We begin the discussion of reflection and transmission from planar boundaries of lossless media
by assuming the wave travels perpendicular (normal incidence) to the planar interface formed
by two semi-infinite lossless media, as shown in Figure 5-1, each characterized by the con-
stitutive parameters of &;, ) and &, 4p. When the incident wave encounters the interface, a
fraction of the wave intensity will be reflected into medium 1 and part will be transmitted into
medium 2.

Assuming the incident electric field of amplitude Ej is polarized in the x direction, we can write
expressions for its incident, reflected, and transmitted electric field components, respectively, as

E' = a,Eje /P* (5-1a)
173
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E"

Figure 5-1

)

7

Wave reflection and transmission at normal incidence by a planar interface.

E =a, [P Ejpeth?

E' =4, T Ege 7P

(5-1b)
(5-1¢)

where I'” and T? are used here to represent, respectively, the reflection and transmission coef-
ficients at the interface. Presently these coefficients are unknowns and will be determined by

applying boundary conditions on the

fields along the interface. Since the incident fields are lin-

early polarized and the reflecting surface is planar, the reflected and transmitted fields will also

be linearly polarized. Because we do

not know the direction of polarization (positive or negative)

of the reflected and transmitted electric fields, they are assumed here to be in the same direc-
tion (positive) as the incident electric fields. If that is not the case, it will be corrected by the
appropriate signs on the reflection and transmission coefficients.

Using the right-hand procedure outlined in Section 4.2.1 or Maxwell’s equations 4-3 or 4-3a,
the magnetic field components corresponding to (5-1a) through (5-1c) can be written as

. E .
H — ﬁyn—‘)e—fﬂlz (5-2a)
1
‘e, ..
H = —a,n—oeﬂﬁlz (5-2b)
1
t_ 4 T’ Eo —jpaz
H =4, e (5-2¢)

n2
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The reflection and transmission coefficients will now be determined by enforcing continuity
of the tangential components of the electric and magnetic fields across the interface. Using (5-1a)
through (5-2c), continuity of the tangential components of the electric and magnetic fields at the
interface (z = 0) leads, respectively, to

1+T2=1° (5-32)
1 1
E(l - = %Tb (5-3b)

Solving these two equations for '’ and T?, we can write that

— E" H"
pp2—m_E& _ 7 (5-4a)
m+n E H'
2 E! H!
h= g R (5-4b)
N+ n2 E! n Hi

Therefore the plane wave reflection and transmission coefficients of a planar interface for
normal incidence are functions of the constitutive properties, and they are given by (5-4a) and
(5-4b). Since the angle of incidence is fixed at normal, the reflection coefficient cannot be equal
to zero unless 17, = 1. For most dielectric material, aside from ferromagnetics, this implies that
&, = &1 since for them [ >~ w,.

Away from the interface the reflection I' and transmission 7 coefficients are related to those
at the boundary (I'’, 7?) and can be written, respectively, as

E’ FbE e+j51z )
z=—t)= i(Z) = —O_jﬂlz =[Pe2h1h (5-5a)
T 2= 4, . Et(12)|12=52 _ ThEUeijﬁﬂz _ Tbe_j(ﬁZZZ‘Hsl[l) (5-5b)
a=— ) Ei@)ly=—  Egetbfili

where ¢ and ¢, are positive distances measured from the interface to media 1 and 2, respectively.
Associated with the electric and magnetic fields (5-1a) through (5-2c) are corresponding aver-
age power densities that can be written as

S = 1Re(E" xH" ) =a Eol? (5-6a)
vo2 ©2m
S’ 1R E <« H" a 1Tb 2|EO|2 a |Tb2¢i
av — 5 e( X ) = —aZ|F | 2_1’)1 = —aZ|F | Sav (5'6b)
1 ; E 2 E 2
S = ‘Re( x H) = a, PP EOC _ g ot B0l
2 2m 2 2m
. Mai  » ;
=4, |T" =S}, =4, (1 - I"]*) S, (5-6¢)

2
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It is apparent that the ratio of the reflected to the incident power densities is equal to the
square of the magnitude of the reflection coefficient. However, the ratio of the transmitted to the
incident power density is not equal to the square of the magnitude of the transmission coefficient;
this is one of the most common errors. Instead the ratio is proportional to the magnitude of the
transmission coefficient squared and weighted by the intrinsic impedances of the two media, as
given by (5-6¢). Remember that the reflection and transmission coefficients relate the reflected and
transmitted field intensities to the incident field intensity. Since the total tangential components of
these field intensities on either side must be continuous across the boundary, the transmitted field
could be greater than the incident field, which would require a transmission coefficient greater
than unity. However, by the conservation of power, it is well known that the transmitted power
density cannot exceed the incident power density.

Example 5-1

A uniform plane wave traveling in free space is incident normally upon a flat semi-infinite lossless
medium with a dielectric constant of 2.56 (being representative of polystyrene). Determine the reflection
and transmission coefficients as well as the incident, reflected, and transmitted power densities. Assume
that the amplitude of the incident electric field at the interface is 1 mV/m.

Solution: Since &1 = gy and &, = 2.56¢),

M1 = [L2 = Uo

[ 11 )
]71 f— —_—= —_—
&1 €0
e (P2 [Ho _ L [Ro_m
: & 25650 1.6\ & 1.6

Thus according to (5-4a) and (5-4b)

then

r”:"z_’“:1-6_121_1'62—0.231
m + L+1 14+ 1.6
1.6
*(76)
A RN €.V A R
N+ 1+i 2.6

In addition, the incident, reflected, and transmitted power densities are obtained using, respectively,
(5-6a), (5-6b), and (5-6¢). Thus

i _ 1B (107
Y2 2(376.73)
S = P21 = | —0.23113(1.327) x 107 = 0.071 nW/m?

=1.327 x 107° W/m? = 1.327nW/m?

: 1
S, = TP PILSi = 10.769) ——(1.327) x 1079 = 1.256 "W /m”
m 1/1.6

or

S =1 —|T?P)si = (1 —10.2311%)(1.327) x 10~ = 1.256 n'W /m?
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In medium 1, the total field is equal to the sum of the incident and reflected fields. Thus, for the
total electric and magnetic fields in medium 1, we can write that

E' = E + E =4, Ege /P12 (1 + T?e?P12) = 4, Epe 7P12 [1 + T'(2)] (5-7a)
M e e e

traveling standing
wave wave

H' = H +H =4, (Eo/n)e P17 (1 —TPet2P15)y =4 “%e P2 [1 —T(z)]  (5-7b)
i - m

traveling standing
wave wave

In each expression the factors outside the parentheses represent the traveling wave part of the wave
and those within the parentheses represent the standing wave part. Therefore the total field of two waves
is the product of one of the waves times a factor that in this case is the standing wave pattern. This
is analogous to the array multiplication rule in antennas where the total field of an array of identical
elements is equal to the product of the field of a single element times a factor that is referred to as the
array factor [1].

As discussed in Section 4.2.1D, the ratio of the maximum value of the electric field magnitude to
that of the minimum is defined as the standing wave ratio (SWR), and it is given here by

2 — M1
E! 14 T2
SWR = |E" [max _ + 7| _ m + N (5-8)
|Elmin  1—(T?| _|m—m
n2+m
For two media with identical permeabilities (i1 = p2), the SWR can be written as
&1 -
- & & o
swr o WAtVElTIVE-vE| ey TP (5-92)
|VET + V&2| - |Ver — Ve 2 e (5-9b)

&1

5.3 OBLIQUE INCIDENCE — LOSSLESS MEDIA

To analyze reflections and transmissions at oblique wave incidence, we need to introduce the
plane of incidence, which is defined as the plane formed by a unit vector normal to the reflecting
interface and the vector in the direction of incidence. For a wave whose wave vector is on the xz
plane and is incident upon an interface that is parallel to the xy plane, as shown in Figure 5-2,
the plane of incidence is the xz plane.

To examine reflections and transmissions at oblique angles of incidence for a general wave
polarization, it is most convenient to decompose the electric field into its perpendicular and
parallel components (relative to the plane of incidence) and analyze each one of them individually.
The total reflected and transmitted field will be the vector sum of these two polarizations.

When the electric field is perpendicular to the plane of incidence, the polarization of the wave
is referred to as perpendicular polarization. Since the electric field is parallel to the interface,
it is also known as horizontal or E polarization. When the electric field is parallel to the plane
of incidence, the polarization is referred to as parallel polarization. Because a component of
the electric field is also perpendicular to the interface when the magnetic field is parallel to the
interface, it is also known as vertical or H polarization. Each type of polarization will be further
examined.
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Figure 5-2 Perpendicular (horizontal) polarized uniform plane wave incident at an oblique angle on an

interface.

5.3.1 Perpendicular (Horizontal or E) Polarization

Let us now assume that the electric field of the uniform plane wave incident on a planar interface
at an oblique angle, as shown in Figure 5-2, is oriented perpendicularly to the plane of incidence.

As previously stated, this is referred to as the perpendicular polarization.

Using the techniques outlined in Section 4.2.2, the incident electric and magnetic fields can

be written as

i _ ﬁyEie,jBi T _ ﬁyEOefjﬂl(x sin6; +z cos ;)
i A A o i —jBier
' = (—aycosb; +4,sinb;)H e 7B

. Eo _ig (xsine: ,
= (—4, cosb; + 4, sinf;) — e/ Prlxsinfit+zcosfi)

n
where
E! =E,
Hi' — ﬂ — @
m M

Similarly, the reflected fields can be expressed as
Ei _ ﬁyEie_jBr S ﬁyFiEoe‘fﬁ‘(" sin@,—z cos 6,)
H', = (4, cos6, +4,sing,)H e /PT

b
FJ_EO efjﬁl(x sin 0, —z cos 0,)
m

= (4, cos O, + 4, sinb,)

where
El =T?E" =TYE,
_ET ThE

Hr
* m m

(5-10a)

(5-10b)

(5-10c)

(5-10d)

(5-11a)

(5-11b)

(5-11¢)

(5-11d)
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Also the transmitted fields can be written as
Etl — ayEt —JB er _ ﬁnyEOe*jﬁz(x sin 0y +z cos 0;) (5-12a)

H'| = (-4, cosf, + &, sin0;) HLefjﬂ’ or

b

T'E
= (—4, cos 6, + 4, sin6,) e IP20xsindi+zcost) (5-12b)

2

where

E!l =TPE! =TYE, (5-12¢)

E! TYE
H! = n_i = ;_20 (5-12d)

The reflection T} and transmission 7% coefficients, and the relation between the incident 6;,
reflected 6,, and transmission (refracted) 6, angles can be obtained by applying the boundary
conditions on the continuity of the tangential components of the electric and magnetic fields.
That is

(E} +E) |;a;0 = (E1) |;a;0 (5-13a)
(HIJ_ + Hj_) |tan - (HtJ_) |tan (5'l3b)
z=0 z=0

Using the appropriate terms of (5-10a) through (5-12d), (5-13a) and (5-13b) can be written,
respectively, as

e*jﬂlx sin&,» + Fiefjﬁlx sin 0, — TJb_efjﬂzx sinG, (5_143)
1 I I T? A
— (—cos@e Pt 4 Ph cos e 1Y) = — L cos P2 SN (5-14b)
m n2

Whereas (5-14a) and (5-14b) represent two equations with four unknowns (e, Tf,@rﬂ,), it
should be noted that each equation is complex. By equating the corresponding real and imaginary
parts of each side, each can be reduced to two equations (a total of four). If this procedure is
utilized, it will be concluded that (5-14a) and (5-14b) lead to the following two relations:

0, =6; (Snell’s law of reflection) (5-15a)
B1sinb; = B, sin b, (Snell’s law of refraction) (5-15b)

Using (5-15a) and (5-15b) reduces (5-14a) and (5-14b) to
1418 =17 (5-162)

cos b;
S0 1t = -

Solving (5-16a) and (5-16b) simultaneously for T'} and T? leads to

cos b;

T? (5-16b)

El  mcos6; +nicosf,

cos 0; + cos b,

£ P P cos@ — cos 6,
cos; — nycos \/ \/
Fj’_ _ 1 _ 2 M t (5-17a)

“_
€
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n2
— cos@
E' 21, cos 0; \/
i
E| n2c0s9 +m cos@, /& cos6; -+ /_ cos 6,
&1

I'% and T? of (5-17a) and (5-17b) are usually referred to as the plane wave Fresnel reflection
and transmission coefficients for perpendicular polarization.

Since for most dielectric media (excluding ferromagnetic material) u; >~ py >~ o, (5-17a) and
(5-17b) reduce, by also utilizing (5-15b), to

cos6; — /2 1-— (8—1) sin® 6;
&1
re =

T = (5-17b)

&2
Llwi=pr — : . (5-18a)
cos6; + /—2 1 — (—1) sin” 6;
€1 &
2 cos 6;
b _ i i
Ty ey = (5-18b)

&1 .2
cosb; + / 1- (—) sin” 6;
€1 &

Plots of |F | and |Tb| of (5-18a) and (5-18b) for &,/e; = 2.56, 4, 9, 16, 25, and 81 as a
function of #; are shown in Figure 5-3. It is apparent that as the relative ratio of &;/¢; increases,
the magnitude of the reflection coefficient increases, whereas that of the transmission coeffi-
cient decreases. This is expected since large ratios of &/, project larger discontinuities in the
dielectric properties of the media along the interface. Also it is observed that for &, > ¢; the
magnitude of the reflection coefficient never vanishes regardless of the €, /¢ ratio or the angle of
incidence.

For ¢,/¢; > 1, both Fﬁ and T f are real with Fi being negative and Tf being positive for all
angles of incidence. Therefore, as a function of 6;, the phase of Fﬁ is equal to 180° and that
of the transmission coefficient Tf is zero. When ¢&;/e; = 1 the reflection coefficient vanishes
and the transmission coefficient reduces to unity. When &/e; < 1, both T'% and T? are real
when the incidence angle 6; < 6,; for 6; > 6., they become complex. The angle 6; for which
|Fﬁ|,32 Je1<1(0; = 6.) =1 is referred to as the critical angle, and it represents conditions of total
internal reflection. More discussion on the critical angle (6; = 6,.) and the wave propagation for
0; > 6, can be found in Section 5.3.4.

In medium 1 the total electric field can be written as

Ei_ — ElJ_ + Ei — ﬁy Eoe—jﬁl(x sin 14z cos ;) [] + Fj}_e+j2ﬁ1z cosQi]

traveling wave standing wave

_ ﬁyEOe—jﬂl(x sin 0; 4z cos 0;) [1+T(2)] (5-19)

where
I (z) = Fj)_e+j2/3|z cos 0; (5-19a)
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Figure 5-3 Magnitude of coefficients for perpendicular polarization as a function of incident angle.
(a) Reflection. (b) Transmission.
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v

Figure 5-4 Parallel (vertical) polarized uniform plane wave incident at an oblique angle on an interface.

5.3.2 Parallel (Vertical or H) Polarization

For this polarization the electric field is parallel to the plane of incidence and it impinges upon a
planar interface as shown in Figure 5-4. The directions of the incident, reflected, and transmitted
electric and magnetic fields in Figure 5-4 are chosen so that for the special case of 6; = 0O they
reduce to those of Figure 5-1.

Using the techniques outlined in Section 4.2.2, we can write that

where

Similarly,

where

. N ~ . s i.
E| = (4, cos6; — &, sin6;)Eope JBter
= (A, cos6; — 4, sin 6;) Ege 7 F1(xsinfitz costi)

. . S a0 Ey . - |
Hil = ayHHle B — a,—e j B1 (x sin6; +z cos 6;)
m

Ej = E
El E
I 0
Hj=—=—
m ni

Eﬁ = (4, cos 6, + 4, sin 9, )E e~ /BT
= (&, cos O, + 4, sin6,) '] Ege 7 F10xsinfr=z cosfr)

rfl’E0

A —iB" . A — 1 —
Hﬁ _ _ayHHre jB" .r — _a} e j B1 (x sin Oy —z cos 0,)

n

Ef = Ffl’Ef = FﬁEO
. E TVE
Hy=—"=——
n ni

(5-20a)

(5-20b)

(5-20¢)

(5-20d)

(5-21a)

(5-21b)

(5-21c¢)

(5-21d)
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Also,
E| = (4, cos6, — 4 sin¢)E[e /¥
= (4, cos 6, — A_ sin )T Ege /P20 sn itz cosér) (5-22a)
b
Hﬂ =4a,H| e IB T _ a, T Eoefjﬁz(x sin6;+z cos 6;) (5-22b)
n2
where
Ef =TE' =T/E, (5-22¢)
_E _ Tk

As before, the reflection FIII) and transmission T|f’ coefficients, and the reflection 0, and trans-
mission (refraction) 6, angles are the four unknowns. These can be determined and expressed in
terms of the incident angle ; and the constitutive parameters of the two media by applying the
boundary conditions on the continuity across the interface (z = 0) of the tangential components
of the electric and magnetic fields as given by (5-13a) and (5-13b) and applied to parallel polar-
ization. Using the appropriate terms of (5-20a) through (5-22d), we can write (5-13a) and (5-13b)
as applied to parallel polarization, respectively, as

cos Gje/Prxsinti 4 Fﬁ’ cos O,¢ I Prxsintr T”b cos O, 7 Paxsinr (5-23a)
i (efjﬂlx sinf; __ Fﬁeiiﬁlxsin%) — in —j Box sinb; (5—23b)
m 2

Following the procedure outlined in Section 5.3.1 for the solution of (5-14a) and (5-14b), it
can be shown that (5-23a) and (5-23b) reduce to

0, =6; (Snell’s law of reflection) (5-24a)
Bi1sin6; = B, sinb, (Snell’s law of refraction) (5-24b)

1 c0s8r + 7y 08 —/—cos@—i— /—cos@t
L (5-24¢)

M1 €08 6; + 112 €05 0; / cos@ + /—cos@,
€1 &€

b 21, cos 6;

2 K2 cos 6;

Ve

2 (5-24d)
adl cosO; + /& cos 6;

&2

Fﬁ and T”b of (5-24c) and (5-24d) are usually referred to as the plane wave Fresnel reflection
and transmission coefficients for parallel polarization.

N1 cos6; + na cos O,
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Excluding ferromagnetic material, (5-24c) and (5-24d) reduce, using also (5-24b), to

_ . LI PR (1 1 DS 7
cos6; + 1 sin” 6;
b &2 &

=y = (5-25a)

cosb; + /8—1 1— (8—1> sin® 6;
& 1)
2 /8—1 cos 6;
b €2

T, _. = (5-25b)
H1=H2 - e
cosO; + /—1 1— (—) sin® ;
&2 1)

Plots of |Fﬁ’| and |T|f’| of (5-25a) and (5-25b) for &,/¢; = 2.56, 4,9, 16, 25, and 81 as a function of
0; are shown in Figure 5-5. It is observed in Figure 5-5a that for this polarization there is an angle
where the reflection coefficient does vanish. The angle where the reflection coefficient vanishes
is referred to as the Brewster angle, 0y, and it increases toward 90° as the ratio &;/¢; becomes
larger. More discussion on the Brewster angle can be found in the next section (Section 5.3.3).

For g,/e1 > 1, Fﬁ and Tlf’ are both real. For angles of incidence less than the Brewster angle
6, < 6p), Fﬂ’ is negative, indicating a 180° phase as a function of the incident angle; for
6; > 0g, Fl’" is positive, representing a 0° phase. The transmission coefficient Tlf is positive for all
values of 0;, indicating a 0° phase. When &;/¢; = 1, the reflection coefficient vanishes and the
transmission coefficient reduces to unity. As for the perpendicular polarization, when &;/e; < 1
both FIII) and THb are real when the incident angle 6; < 6.; after that, they become complex. The
angle for which |I‘|’|’ ley/e,<1(6i = 0.) =1 is again referred to as critical angle, and it represents
conditions of total internal reflection. Further discussion of the critical angle (6; = 6,.) and the
wave propagation for 6; > 6, can be found in Section 5.3.4. It is evident that the critical angle is
not a function of polarization; it occurs only when the wave propagates from the more dense to
the less dense medium.

The total electric field in medium 1 can be written as

Eﬁ — Eﬁ + Ei\ — ﬁx cos 6; Eoefjﬁl(x sin 0; +z cos 0;) [1 + F‘lreJer/filz cos@,-]

traveling wave

standing wave

_ﬁz Sin9i Eoe—jﬂl(x sin6; +z cos 6;) [1 _ Fﬁe+j2ﬂ|z cos@,-]

traveling wave standing wave
EIII =E! +E! = 4, cos §; Ege /A1 sinfitzcostio [1 4 1) (2)]
—4, sin 0; Ege ~/P1(xsinf+x cos6)) [1 -T (Z)] (5-26)
where
[y (z) = [hetidhecost (5-262)

5.3.3 Total Transmission-Brewster Angle

The reflection and transmission coefficients for both perpendicular and parallel polarizations are
functions of the constitutive parameters of the two media forming the interface, the angle of
incidence, and the angle of refraction that is related to the angle of incidence through Snell’s law
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of refraction. One may ask: “For a given set of constitutive parameters of two media forming
an interface, is there an incidence angle that allows no reflection, i.e., I' = 0?7 To answer this
we need to refer back to the expressions for the reflection coefficients as given by (5-17a) and
(5-24c¢).

A. Perpendicular (Horizontal) Polarization To see the conditions under which the reflection
coefficient of (5-17a) will vanish, we set it equal to zero, which leads to

“2 1231
/ — c — cos 6,
&
! =0 (5-27)
/ 0059 + / cos@,
or
cos, = | KL ( >c 56, (5-27a)
“2

Using Snell’s law of refraction, as given by (5-15b), (5-27a) can be written as

(1 —sin?6;) = % (i—?) (1 — sin®6,)

(1—sin29,-)=ﬂ(8—2> [1— ad ( ) sin 9} (5-28)
M2 \ €1 M2 \ €2

or

sin 9,‘

(5-28a)

ZoB2ha B (5-29)

or
< (5—29&)

If however wu; = o, (5-28a) indicates that
Sin6; |, =y, = 00 (5-29b)

Therefore there exists no real angle 6; under this condition that will reduce the reflection coeffi-
cient to zero. Since the permeability for most dielectric material (aside from ferromagnetics) is
almost the same and equal to that of free space (] >~ pu» =~ wo), for these materials there exists
no real incidence angle that will reduce the reflection coefficient for perpendicular polarization
to zero.
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B. Parallel (Vertical) Polarization To examine the conditions under which the reflection
coefficient for parallel polarization will vanish, we set (5-24c) equal to zero; that is

— ﬂcos 0; + gcos 0,
Ve Ve
Fb . 1 2 -0

= D m = (5-30)
/—10050,- + /—20030,
€1 &2
or
cosb; = K2 (8—]> cos 6, (5-30a)
H1 \ €2
Using Snell’s law of refraction, as given by (5-24b), (5-30a) can be written as
(1—sin20) = 22 (8—1) (1 — sin®6,)
M1 \ &2
(1 —sin?g;) = 12 (8—1) [1 _m (8—1> sin® 9,} (5-31)
H1 2 M2 \ &2
or
sin 6;
(5-31a)
Since the sine function cannot exceed unity, (5-31a) exists only if
2_&58_2_8_‘ (5-32)
€] 23 &1 &
or
K2 ot (5-32a)
M1 &2
If, however, @1 = o, (5-31a) reduces to
6; = O = sin~! ( i ) (5-33)
&1+ &

The incident angle 6;, as given by (5-31a) or (5-33), which reduces the reflection coefficient
for parallel polarization to zero, is referred to as the Brewster angle, 6g. It should be noted that
when w; = Uy, the incidence Brewster angle 0; = 0g of (5-33) exists only if the polarization of
the wave is parallel (vertical).

Other forms of the Brewster angle, besides that given by (5-33), are

6, = 0 = cos”! ( - i = ) (5-33a)

6, = 0y = tan"" ( 2) (5-33b)
€1
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Example 5-2

A parallel polarized electromagnetic wave radiated from a submerged submarine impinges upon a
water—air planar interface. Assuming the water is lossless, its dielectric constant is 81, and the wave
approximates a plane wave at the interface, determine the angle of incidence to allow complete trans-
mission of the energy.

Solution: The angle of incidence that allows complete transmission of the energy is the Brewster
angle. Using (5-33b), the Brewster angle of the water—air interface is

1
Oiwa = OBwa = tan~! 780 =tan"' (=)= 6.34°
V 8leg 9

This indicates that the Brewster angle is close to the normal to the interface.

Example 5-3

Repeat the problem of Example 5-2 assuming that the same wave is radiated from a spacecraft in air,
and it impinges upon the air—water interface.

Solution: The Brewster angle for an air—water interface is

8180

eiaw = 9Baw = tan_l (
€0

) = tan"'(9) = 83.66°
It is apparent that the sum of the Brewster angle of Example 5-2 (water—air interface) plus that of
Example 5-3 (air—water interface) is equal to 90°. That is

OBwa + OBaw = 6.34° + 83.66° = 90°

From trigonometry, it is obvious that the preceding relation is always going to hold, no matter what
two media form the interface.

5.3.4 Total Reflection-Critical Angle

In Section 5.3.3 we found the angles that allow total transmission for perpendicular, (5-28a), and
parallel, (5-31a), polarizations. When the permeabilities of the two media forming the interface
are the same (u; = w), only parallel polarized fields possess an incidence angle that allows
total transmission. As before, that angle is known as the Brewster angle, and it is given by either
(5-33), (5-33a), or (5-33b).

The next question we will consider is: “Is there an incident angle that allows total reflection of
energy at a planar interface?” If this is possible, then |I'| = 1. To determine the conditions under
which this can be accomplished, we proceed in a similar manner as for the total transmission
case of Section 5.3.3.

A. Perpendicular (Horizontal) Polarization To see the conditions under which the mag-
nitude of the reflection coefficient is equal to unity, we set the magnitude of (5-17a) equal

to
' /&cosei — /ﬂcoset
&2 &1
' /&COSQZ‘-}— /ﬂcoset
& €]

=1 (5-34)




OBLIQUE INCIDENCE — LOSSLESS MEDIA 189

This is satisfied provided the second term in the numerator and denominator is imaginary. Using
Snell’s law of refraction, as given by (5-15b), the second term in the numerator and denominator
can be imaginary if

cosf, = /1 —sin26, = |1 — M8 qn2g = —; [H18 Gn2e. — 1 (5-35)
M2E2 / M2E2

In order for (5-35) to hold

KL G20, > 1 (5-35a)

MH2E2

0, > 0, = sin”! ( /’“—82> (5-35b)
MHi€1

The incident angle 6; of (5-35b) that allows total reflection is known as the critical angle. Since
the argument of the inverse sine function cannot exceed unity, then

or

M282 < [L1€] (5-35¢)

in order for the critical angle (5-35b) to be physically realizable.
If the permeabilities of the two media are the same (1| = u3), then (5-35b) reduces to

0, > 6, = sin”! ( 2) (5-36)
&1

which leads to a physically realizable angle provided
& < g (5-36a)

Therefore for two media with identical permeabilities (which is the case for most dielectrics,
aside from ferromagnetic material), the critical angle exists only if the wave propagates from a
more dense to a less dense medium, as stated by (5-36a).

Example 5-4

A perpendicularly polarized wave radiated from a submerged submarine impinges upon a water—air
interface. Assuming the water is lossless, its dielectric constant is 81, and the wave approximates a
plane wave at the interface, determine the angle of incidence that will allow complete reflection of the
energy at the interface.

Solution: The angle of incidence that allows complete reflection of energy is the critical angle. Since
for water pp = o, the critical angle is obtained using (5-36), which leads to

6, >0, =sin' [ |22 ) =638°
8180

Since there is a large difference between the permittivities of the two media forming the interface, the
critical angle of this example is very nearly the same as the Brewster angle of Example 5-2.
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The next question we will answer is: “What happens to the angle of refraction and to the
propagation of the wave when the angle of incidence is equal to or greater than the critical
angle?”

When the angle of incidence is equal to the critical angle, the angle of refraction reduces,
through Snell’s law of refraction (5-15b) and (5-35b), to

6, = sin~! ( il sin9,~> — sin”! < [fadia} /“2—82> —sin (1) =90°  (5-37)
01 =0, H2&2 § Hi1€1

H2&2
In turn the reflection and transmission coefficients reduce to

% lg=g, = 1 (5-38a)
T’ g =g, =2 (5-38b)

Also the transmitted fields of (5-12a) and (5-12b) can be written as

E| = 4,2 e /F* (5-39a)
2Ey ...

H| =4 —2eihr (5-39b)
m2

which represent a plane wave that travels parallel to the interface in the +x direction as shown
in Figure 5-6a. The constant phase planes of the wave are parallel to the z axis. This wave is
referred to as a surface wave [2].

The average power density associated with the transmitted fields is given by

. 2|Eo|?
= ax

1 .
S lorg = —Re(E’ xH’)
av |91 =0 1 1 0i=6, 1

2

(5-40)

and it does not contain any component normal to the interface. Therefore, there is no transfer of
real power across the interface in a direction normal to the boundary; thus, all power must be
reflected. This is also evident by examining the magnitude of the incident and reflected average
power densities associated with the fields (5-10a) through (5-11d) under critical angle incidence.
These are obviously identical and are given by

i 1 ; * |Eol* . . |Eo|?
ISavlo=0. = |5Re (El X Hl) = |4, sin6; + 4, cosb;| = (5-41a)
2 P ni 2m
. 1 . - |Eol® . . R |Eo?
IS l6,_s. = | ~Re (EL x HL) — 20014, sin6; — 4, cos ;| = =21 (5-41b)
2 0; =0, 2Zm N1

When the angle of incidence 6; is greater than the critical angle 6,(6; > 6.), Snell’s law of
refraction can be written as [3]

. B . M€l .
siné,;lg. ~ 9. = — sin6; = |——sin6;
1 (4
B2 0 >0, H2&2

which can only be satisfied provided 6, is complex, that is, 6, = 6g + j6x, where 0x # 0. Also

. Hiér .
cosO;lg; >0, =1 — sin’ 6, . 1 - 52 sin? 6,
i > 0c

>1 (5-42a)
9,’ >0

Mn28&2 0; >0,
&
= 4 [M sin 6, — 1 (5-42b)
H282 0; >0,

which again indicates that 6, is complex.
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Figure 5-6 Constant phase and amplitude planes for incident angles. (a) Critical (6; = 6,). (b) Above
critical (6; > 6,).

Therefore when 6; > 6., there is no physically realizable angle 6;. If not, what really does
happen to the wave propagation? Since under this condition 6, is complex and not physically
realizable, this may be a clue that the wave in medium 2 is again a surface wave. To see this, let
us examine the field in medium 2, the reflection and transmission coefficients, and the average
power densities.

When the angle of incidence exceeds the critical angle (6; > 6,), the transmitted E field of
(5-12a) can be written, using (5-15b) and (5-35b), as

E\ l6 -0, = 8, T Ey exp(—j Box sin6,) exp(—j foz cos 6y, - g,

[ . .2
sinf; | | exp| —jB2z4y/ 1 — sin” 6,

Hae2

= 4,7 Epexp |:—j Box <
9,‘ >0
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_ - .
EIJ_|6[>(-,JC = ﬁnyE() exp —j,32x ( Hien sin@i):| exp <—j,322 1— #1461 sin2 91>
L M2€2 V H2E2 0 > 6,
_ . .
= ﬁvaEo exp | —j Box ( Hien sin 6; )} exp (—,Bzz Hiel sin® 6; — 1)
’ L 28 U2E2 6 > 6,
i el . , el .
= ﬁnyEo exp | —f2z ( i sin?6; — 1 )] exp I:—],Bzx < adl 51n9i>:|
L H2&2 H2E2 6 > 6,
E' |6, =0 = a,T"Ege e 7P (5-43)
where
e . -
a = fo PR in? i — 1 = U)\/Mlé‘l sin® 6 — poes (5-43a)
K282 0; > 0c 6; >0,
B
=B | Lsing| = oymersing|, _, (5-43b)
M2E2 0; >0, ! <
w w U[)Z
Upe = — = ———— = — =— < Up (5-43¢)
&1 . &1 . 0;
Be B Hiel $in6; 12281 sin; V1€ sIn G
H2g2 6; > b K282 6 > 6,

The wave associated with (5-43) also propagates parallel to the interface with constant phase
planes that are parallel to the z axis, as shown in Figure 5-6b. The effective phase velocity v, of
the wave is given by (5-43c¢), and it is less than v,, of an ordinary wave in medium 2. The wave
also possesses constant amplitude planes that are parallel to the x axis, as shown in Figure 5-6b.
The effective attenuation constant «, of the wave in the z direction is that given by (5-43a).
Its values are such that the wave decays very rapidly, and in a few wavelengths it essentially
vanishes. This wave is also a surface wave. Since its phase velocity is less than the speed of
light, it is a slow surface wave. Also since it decays very rapidly in a direction normal to the
interface, it is tightly bound to the surface—i.e., it is a tightly bound slow surface wave.

Phase velocities greater than the intrinsic phase velocity of an ordinary plane wave in a
given medium can be achieved by uniform plane waves at real oblique angles of propagation,
as illustrated in Section 4.2.2C; phase velocities smaller than the intrinsic velocity can only be
achieved by uniform plane waves at complex angles of propagation. Waves traveling at complex
angles are nonuniform plane waves oriented so as to provide small phase velocities or large rates
of change of phase in a given direction. The price for such large rates of change of phase or
small velocities in one direction is associated with large attenuation at perpendicular directions.

Example 5-5

Assume that 6; > 0, (so the angle of refraction 6, = 0 + j6Ox is complex, i.e. Oy # 0). Determine the
real (Ag) and imaginary (fx) parts of 0, in terms of the constitutive parameters of the two media and
the angle of incidence.

Solution: Using (5-42a)

MHi1€1
282

sin6; = sin(fg +jOx) = sin 6;
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or
Mniél

sin(fg) cosh(0x) + j cos(0g) sinh(Ox) = sin 6;

Since the right side is real, then the only solution that exists is for the imaginary part of the left side to
vanish and the real part to be equal to the real part of the right side. Thus

cos(Bg) sinh(@y) = 0 = O = %

& &
sin(0g) cosh(@x) = /XL sin6; = Oy = cosh™! ( I sin0i>
H2E2 Mn282

In turn cos 6, is defined as

cos 6, = cos(bg +jOx) = cos(0g) cosh(fx) — j sin(fg) sinh(Ox)

or
cos 6, = —j sinh(0x)

which again is shown to be complex as was in (5-42b). When these expressions for sin 6, and cos 6, are
used to represent the fields in medium 2, it will be shown that the fields are nonuniform plane waves
as illustrated by (5-43).

Under the conditions where the angle of incidence is equal to or greater than the critical angle,
the reflection Fi and transmission Tf coefficients of (5-17a) and (5-17b) reduce, respectively, to

[3]
—20059,- — /ﬂcos@
&2 &1
Fﬁ’_|0i29c‘ = M /,L
—ZCOSGi + /—10059,
& & 0; >0,
K2 cosf; — ) 1 — sin’ 6,
¥ & &1
H“2 1231 )
—cosb; + |—+/1 —sin” 6,
&2 &1 020
/ / 3
—zcos 0; — 1— ladla} sin’ 6;
_ H2&2
[ / €
—cosG + al I—IL1 L gin? 0;
2 Ha82 626
3
/&COSGi—i—j /ﬂ Hie 1sin29,~—1
_ M2E2
/ / 3
cos0 —J Hen sin?6; — 1
H282 0, >0,
% 16,20, = |Fb eﬂm = e/ (5-44)
where

re) =1 (5-44a)
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—1 XJ_
Y = tan — (5-44b)
Ry
x, = [ Gg (5-44c)
&1V M282

R, = [®2coso, (5-44d)
&2
2 & cos b;

T lgz0. =
/—cos@ + /—cos@,
& €1 0; >0,
2 /— cos 6;
i 23 )
—cosbt; + |—+/1 —sin” 6,
&2 €1 6 >0
2 /& cos 6;
/ / 3
& cosO; + 1— &
H2E2 0; >0,
2 ,ﬂ cos 6;
o g
&cosei—j atl Msin29,<—1
V & Vo1V maer 026
TP lgz0. = TV |/ (5-45)

where
2R |

VR + X3

In addition, the transmitted average power density can now be written, using (5-12a) through
(5-12b) and the modified forms (5-43) through (5-43b) for the fields when the incidence angle is
equal to or greater than the critical angle, as

ITY| = (5-45a)

1 *
Siloizo. = FRe(E x H )52,
1 N b —ez —jPex A A e * (TL)*E(Sk —eZ ,+jPex
= ERe (8, T Ege e ™7Pe¥) x (—a, cos 0, +4, sin6,)* —=——¢ 7™/ Fe
n2 0;>6,

1 Tb 2 E 2
= —Re {[ﬁz (cosO,)* + ﬁx(SinGI)*] —| LI 1ol e‘zaez}
2 n2 0, >0,

1 * Tb 2 E 2
St 66, = 5Re {[ﬁz (\/1 — sin? 9,) + 4, (sin 9,)*] MN%Z}
6[290

2
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1 3 *
Sivlo=0. = sRe H:ﬁz ( 1 - K sin’ 9,~>
2 282
* Tb 2 E, 2
T
I’L282 nz 91‘29(7
1 €
= —Re H:ﬁz (—j adll} sin® 6; — 1)
2 262

z TP 12 En (2
+ﬁx( i lsinG,-)j| |77 || Eol e_zm}
MH2€&2 2 0;>0,

b2\ |2
R 1e1 . TV Eo® _
S;v|9i29c = a, s sin 6; L e 202

H262 2

(5-46)

0; >0

Again, from (5-46), it is apparent that there is no real power transfer across the interface in
a direction normal to the boundary. Therefore all the power must be reflected into medium 1.
This can also be verified by formulating and examining the incident and reflected average power
densities. Doing this, using the fields (5-10a) through (5-11b) where the reflection coefficient is
that of (5-44), shows that the magnitudes of the incident and reflected average power densities
are those of (5-41a) and (5-41b), which are identical.

The propagation of a wave from a medium with higher density to one with lower density
(¢2 < &1 when | = u) under oblique incidence can be summarized as follows.

1. When the angle of incidence is smaller than the critical angle (8; < 6, = sin™'(/e2/€1)),
a wave is transmitted into medium 2 at an angle 6,, which is greater than the incident angle
;. Real power is transferred into medium 2, and it is directed along angle 6, as shown in
Figure 5-7a.

2. As the angle of incidence increases and reaches the critical angle 6; = 6. = sin~!(\/&2/¢),
the refracted angle 6, which varies more rapidly than the incident angle 6;, approaches
90°. Although a wave into medium 2 exists under this condition (which is necessary to
satisfy the boundary conditions), the fields form a surface wave that is directed along the
x axis (which is parallel to the interface). There is no real power transfer normal to the
boundary into medium 2, and all the power is reflected in medium 1 along reflected angle
6, as shown in Figure 5-7b. The constant phase planes are parallel to the z axis.

3. When the incident angle 6; exceeds the critical angle 6.[6; > 6, = sin~!(\/e2/€1)], a wave
into medium 2 still exists, which travels along the x axis (which is parallel to the interface)
and is heavily attenuated in the z direction (which is normal to the interface). There is no
real power transfer normal to the boundary into medium 2, and all power is reflected into
medium 1 along reflection angle 6,, as shown in Figure 5-7c¢. Although there is no power
transferred into medium 2, a wave exists there that is necessary to satisfy the boundary
conditions on the continuity of the tangential components of the electric and magnetic fields.
The wave in medium 2 travels parallel to the interface with a phase velocity that is less
than that of an ordinary wave in the same medium [as given by (5-43c)], and it is rapidly
attenuated in a direction normal to the interface with an effective attenuation constant given
by (5-43a). This wave is tightly bound to the surface, and it is referred to as a tightly bound
slow surface wave.

The critical angle is used to design many practical instruments and transmission lines, such as
binoculars, dielectric covered ground plane (surface wave) transmission lines, fiber optic cables,
etc. To see how the critical angle may be utilized, let us consider an example.
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Figure 5-7 Critical angle wave propagation along an interface.
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Example 5-6

Determine the range of values of the dielectric constant of a dielectric slab of thickness ¢ so that, when
a wave is incident on it from one of its ends at an oblique angle 0° < #; < 90°, the energy of the wave
in the dielectric is contained within the slab. The geometry of the problem is shown in the Figure 5-8.

Solution: We assume that the slab width is infinite (two-dimensional geometry). To contain the
energy of the wave within the slab, the reflection angle 6, of the wave bouncing within the slab must
be equal to or greater than the critical angle 6,.. By referring to Figure 5-8, the critical angle can be
related to the refraction angle 6, by

in6, = si (” 9 ) 9, > sinf £ !
sinf, =sin( — — =cosf; > sinb, = =
) t t c &0 \/67
or
cos 6, >
= \/g

At the interface formed at the leading edge, Snell’s law of refraction must be satisfied. That is,

Bosinf; = B sinf; = sinb, = @ sinf; = L sin 6;

B Er

Using this, we can write the aforementioned cos 6; as

cosf; =4/1— sin? 0, =
v/ \F

or

1 1
1 — —sin?6; >

& T Jer

Solving this leads to
& —sin®6; > 1

or
& > 1 +sin?6;

To accommodate all possible angles, the dielectric constant must be
e >2

since the smallest and largest values of 6;, are, respectively, 0° and 90°. This is achievable by many
practical dielectric materials such as Teflon (¢, >~ 2.1), polystyrene (¢, >~ 2.56), and many others.

Figure 5-8 Dielectric slab of thickness 7 and wave containment within.
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B. Parallel (Vertical) Polarization The procedure used to derive the critical angle and to
examine the properties for perpendicular (horizontal) polarization can be repeated for parallel
(vertical) polarization. However, it can be shown that the critical angle is not a function of
polarization, and that it exists for both parallel and perpendicular polarizations. The only limitation
of the critical angle is that the wave propagation be to a less dense medium (ue, < 1€ or
&, < & when u; = uy).

The expression for the critical angle for parallel polarization is the same as that for perpendic-
ular polarization as given by (5-35b) or (5-36). In addition, the wave propagation phenomena that
occur for perpendicular polarization when the incidence angle is less than, equal to, or greater
than the critical angle are also identical to those for parallel polarization. Although the formulas
for the reflection and transmission coefficients, F"T and Tl'l’ respectively, and transmitted average
power density S\tl for parallel polarization are not identical to those of perpendicular polarization
as given by (5-44) through (5-46), the principles stated previously are identical here. The deriva-
tion of the specific formulas for the parallel polarization for critical angle propagation are left as
an end-of-chapter exercise for the reader.

5.4 LOSSY MEDIA

In the previous sections we examined wave reflection and transmission under normal and oblique
wave incidence when both media forming the interface are lossless. Let us now examine the
reflection and transmission of waves under normal and oblique incidence when either one or both
media are lossy [4]. Although in some cases the formulas will be the same as for the lossless
cases, there are differences, especially under oblique wave incidence.

5.4.1 Normal Incidence: Conductor-Conductor Interface

When a uniform plane wave is normally incident upon a planar interface formed by two lossy
media (as shown in Figure 5-1 but allowing for losses in both media through the conductivity o),
the incident, reflected, and transmitted fields, reflection and transmission coefficients, and average
power densities are identical to (5-1a) through (5-6¢) except that (a) an attenuation constant must
be included in each field and (b) the intrinsic impedances, and attenuation and phases constants
must be modified to include the conductivities of the media. Thus we can summarize the results
here as

E' = a,Eje e /P12 (5-47a)
. E .
H =4, Lo e bz (5-47b)
m

E = a,[PEjetuietihiz (5-48a)
I'°E .

H = —a,— etz thi (5-48b)

m
E' =4,T Ege % 7P (5-49a)
TE, ‘

H =3, 0 =z pibrz (5-49b)
2

rp=m""m (5-50a)

m+m
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2
L (5-50D)
n2 +
. Ey|? 1
S = ﬁz%e_zalzRe (-) (5-51a)
m
Eol? 1
S, = —ﬁz|rb|2ﬂe+2‘WRe (n_) (5-51b)
1
0w lEol 1
Sl = & |77 e Re P (5-51¢)
2

For each lossy medium the attenuation constants «;, phase constants $;, and intrinsic impedances
n; are related to the corresponding constitutive parameters ¢;, i;, and o;, by the expressions in
Table 4-1.

The total electric and magnetic fields in medium 1 can be written as

E' = E + E =4, Ege “%e /P17 (1 4 [Petinzeti2hizy (5-52a)
traveling wave standing wave
H' =H +H =4, (Ey/n)e e P (1 — Thet2mieti2bizy (5-52b)
traveling wave standing wave

In each field the factors outside the parentheses form the traveling wave part of the total wave;
those within the parentheses form the standing wave part.

Example 5-7

A uniform plane wave, whose incident electric field has an x component with an amplitude at the
interface of 1073 V/m, is traveling in a free-space medium and is normally incident upon a lossy flat
earth as shown in Figure 5-9. Assuming that the constitutive parameters of the earth are &, = ¢,
o = puo and o» = 107! S/m, determine the variation of the conduction current density in the earth at a
frequency of 1 MHz.

Solution: At f = 10°Hz

o 107!
wey 27w x 109 x 10=9/36m)

=2x10>> 1

which classifies the material as a very good conductor.
On either side of the interface, the total electric field is equal to

Etotal|Z:0 — ﬁx X 10—3|1 + Fb|

where

b — n—n :772—770
m+n m+no

o . 27 x 100(4w x 10-7) . .
'722\/;(1 +])=\/ (1+j)=2r1+j)

2 x 101
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8= 90, 12 = 1o
,=10""S/m

Figure 5-9 Electric and magnetic field intensities, and electric current density distributions in a lossy
earth.

Thus
b _ 2 (1 +j) — 377 _ —370.72 + j2m
2 (1 +j) + 377 383.28 +j2m
370.77/179.04°
= —; =0.967/178.1°
383.33/0.94°
and

E°%| o = &, x 107°|1 +0.967/178.1°|
=4, x 1072]0.0335 +j0.0321| = 4, (4.64 x 107°)
The conduction current density at the surface of the earth is equal to
Jolim0 = 4,0 = 4,0 E°%| g = 4, x 107'(4.64 x 1075)

=4,(4.64 x 1079




LOSSY MEDIA

or
Jo = 4.64 uA/m>

The magnitude of the current density varies inside the earth as
el = J0|e—azze—jﬂzz| = Joe~ % = Jye~i/%

where

2 2
8> = skin depth = =
W07 2 x 1004w x 10-7) x 10!

10
= — =15915m
2w

Jelo=s, = Joe ™' = 0.3679Jp = 0.3679(4.64 x 10°) = 1.707 A /m>

Therefore, at one skin depth the current is reduced to 36.79% of its value at the surface.
If the area under the current density curve is found, it is shown to be equal to

o) 00 .
Is :/ eldz :/ JOe_Z/éde = —82-]06‘_2/52|0 = 62Jp
0 0

in Figure 5-9.

density Jo (A/m?) through a depth equal to the skin depth.

The magnitude variations of the current density inside the earth are shown in Figure 5-9 and they exhibit
an exponential decay. At one skin depth (z = 6, = 1.5915 m), the current density has been reduced to

The same answer can be obtained by assuming that the current density maintains a constant surface
value Jy to a depth equal to the skin depth and equal to zero thereafter, as shown by the dashed curve

The area under the curve can then be interpreted as the total current density J; (A/m) per unit width
in the y direction. It can be obtained by finding the area formed by maintaining constant surface current
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5.4.2 Oblique Incidence: Dielectric-Conductor Interface

Let us assume that a uniform plane wave is obliquely incident upon a planar interface where
medium 1 is a perfect dielectric and medium 2 is lossy, as shown in Figure 5-10 [3]. For either
the perpendicular or parallel polarization, the transmitted electric field into medium 2 can be

written, using modified forms of either (5-12a) or (5-22a), as

E' = Eyexp[—y2(x sin6, +z cos6,)| = Ex exp [— (o2 +j B2) (x sin6; + z cos ) |

It can be shown that for lossy media, Snell’s law of refraction can be written as
Y1 8in6; = y, sin 6,

Therefore, for the geometry of Figure 5-10,

sinf, = ﬁsinei = L

—— sin 6;
V2 ar+jpa

and

. 2
cos@ =+/1 —sin’ 6, = \/1 — <L> sin?§; = se’* = s(cos¢ +jsin¢)
o +j B2

(5-53)

(5-54)

(5-55a)

(5-55b)
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Constant amplitude planes
A

I
e My €2, U2, 0

a7 \
|
|

Figure 5-10 Oblique wave incidence upon a dielectric—conductor interface.

Using (5-55a) and (5-55b) we can write (5-53) as

iBr . .
———ssinf; 4 zs(cos ¢ 4+ sin )i| }
a+jp £t+ysing

E' =E,exp {—(012 +JjB2) [x
which reduces to
E' =Eyexp[—zs(aycos¢ — Bysin¢)]
x exp {—j [B1x sinO; + zs(ap Sin & + B cos &)1}
E' = Eye ™ exp[—j (Bix sin6; +zq)]
where
p =s(axcos — frsing) = ae
q = s(apsin¢ + Bcos¢)

It is apparent that (5-57) represents a nonuniform wave.
The instantaneous field of (5-57) can be written, assuming E, is real, as

%' =Re(E'¢’”") = Ese PRe (exp {j [wt — (Bix sinb; +z¢)]})
€' = Eye ¥ cos[wt — (Bix sinb; + zq) |

(5-56)

(5-57)

(5-57a)
(5-57b)

(5-58)

The constant amplitude planes (z = constant) of (5-58) are parallel to the interface, and they are
shown dashed-dotted in Figure 5-10. The constant phase planes [a)t — (kx sin6; +zq) = constant]
are inclined at an angle 1, that is no longer 6;, and they are indicated by the dashed lines in

Figure 5-10.
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To determine the constant phase we write the argument of the exponential or of the cosine
function in (5-58) as

wt — (Bix sin; + zq) = wt — /(B sin6;)? + ¢>
(B1sinb;)x qz
X +
VBising)2+4¢2  /(Bisin6)? + ¢2

} (5-59)

If we define an angle ¥, such that

u = B siné; (5-60a)
. B sin6; u
sin yry = = (5-60Db)
VBising)? +4¢>  Jul+q?
q q
COS ‘[ﬂz = = (5'60C)
VBising)? +4¢>  Ju+q?
or -
Yy = tan~! <%> = tan~! <E> (5-60d)
q q

we can write (5-59), and in turn (5-58), as

%' =FEye PRe|expij| ot —u?+q? ux + At
Vid+qr Jul+ g

= Eze P Re (exp {j [t — B (x sin ¥y + z cos ¥r2)]})
%' = Eye PRe (exp {j [wr — Boe(By-1)]}) (5-61)

where
Ny = 4, siny, + 4, cos ¥, (5-61a)

Bre = Vu?+q? (5-61b)

It is apparent from (5-60a) through (5-61a) that

1. The true angle of refraction is ¥, and not 6, (6, is complex).

2. The wave travels along a direction defined by unit vector fiy.

3. The constant phase planes are perpendicular to unit vector Ay, and they are shown as
dashed lines in Figure 5-10.

The phase velocity of the wave in medium 2 is obtained by setting the exponent of (5-61) to
a constant and differentiating it with respect to time. Doing this, we can write the phase velocity
v, of the wave as

o(l) = ViZ 1 g2 (ﬁw : dr) —0

dr
dr
o(1) = Vil + ¢ <ﬁw'z> = — Prc(liy-vy) =0 (5-62)
or w w w
Vpr = (5-62a)

Bre Vu? + ¢2 B V(Bisin6;)? +q2
It is evident that the phase velocity is a function of the incidence angle 6; and the constitutive
parameters of the two media.
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Example 5-8

A plane wave of either perpendicular or parallel polarization traveling in air is obliquely incident upon
a planar interface of copper (o = 5.76 x 107 S/m). At a frequency of 10 GHz, determine the angle of
refraction and reflection coefficients for each of the two polarizations.

Solution: For copper

o 5.8x10(367)
wer (2w x 1010) x 1072

=1.037 x 108 > 1

Therefore according to Table 4-1

W20
ay = By =~ >
Using (5-55a)
. . .
sing = —2PL g~ —— 9P 16 R 056 ~0
ar +jBa W20 )
T(l +J)

Therefore (5-55b), (5-57a), and (5-57b) reduce to

costy=1=se/* =>5=1 =0

W0
p =s(aacos¢ — Brsing) ~ ap = 'U; 2

. w202
g =s(esing + prcost) = fr = /=

Using (5-60d), the true angle of refraction is

sin 6; ./ IoEo .
Yo = tan~! (Z) ~ tan~! <'Bl ) = tanr! | 2MHOE0 sin 6;
q B2 [@ito02
2

2 2
— G < 20 sin@i) < tan™! ( wg‘)) = tan~1(0.139 x 107%)

(op) 02
Yr = tan"1(0.139 x 103 sin6;) < 0.139 x 103 rad = (7.96 x 107%)°

Using (5-17a) and (5-24c), the reflection coefficients for perpendicular and parallel polarizations reduce
to

re — M2c0s6; —micosty mpcost —mi  cosb —ni/m
L7 mpcos6; +nicosb; T mcos®; +n1 cosb 4 ni/m
b M cost; +mpcos  —micosb; +mp  —cosO +na/m
[ -

N1 cosb; + 1y cos b, ncosd; +ny  cos; +m/ni

Since

\/E Ho
nmo_ €1 _ Veo _\/Tz
mo jouy  [jope  Viws
| o

02 + jwer
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M~ 102 x 10%e 7/ > 1> cosb;

m2
Then
b~ 080 —m/m
e =t e
cos6; +n1/m
b~ ZC080 tm/m
= cosb +m/m

Thus for a very good conductor, such as copper, the angle of refraction approaches zero and the
magnitude of the reflection coefficients for perpendicular and parallel polarizations approach unity, and
they are all essentially independent of the angle of incidence. The same will be true for all other good
conductors.

5.4.3 Oblique Incidence: Conductor-Conductor Interface

In Section 5.3.4 it was shown that when a uniform plane wave is incident upon a
dielectric—dielectric planar interface at an incidence angle 6; equal to or greater than the critical
angle 6., the transmitted wave produced into medium 2 is a nonuniform plane wave. For
this plane wave, the constant amplitude planes (which are perpendicular to the o, vector) of
Figure 5-7 are perpendicular to the constant phase planes (which are perpendicular to the B,
vector), or the angle & between the o, and f,, vectors is 90°.

In Section 5.4.2 it was demonstrated that a uniform plane wave traveling in a lossless medium
and obliquely incident upon a lossy medium also produces a nonuniform plane wave where the
angle & between the o, and B, vectors in Figure 5-10 is greater than 0° but less than 90°.
In fact, for a very good conductor the angle & between o, and B, is almost zero [for copper
with o0 = 5.76 x 107 S/m, & < (8 x 1073)°]. As the conducting medium becomes less lossy, the
angle &, increases and in the limit it approaches 90° for a lossless medium. In fact for all lossless
media, the angle between the effective attenuation constant oy, and phase constant Py, should
always be 90°, with reactive power flowing along oy, and positive real power along By, [4]. This
is necessary since there are no real losses associated with the wave propagation along .. This
was well illustrated in Section 5.3.4 for the nonuniform wave produced in a lossless medium
when the incidence angle was equal to or greater than the critical angle.

It is very interesting to investigate the field characteristics of uniform or nonuniform plane
waves that are obliquely incident upon interfaces comprised of lossy—lossy interfaces. These types
of waves have been examined [5—-6], but, because of the general complexity of the formulations,
they will not be repeated here. The reader is referred to the literature. An excellent discussion
of uniform and nonuniform plane waves propagating in lossless and lossy media and associated
interfaces is found in Chapters 7 and 8 of [4].

5.5 REFLECTION AND TRANSMISSION OF MULTIPLE INTERFACES

Many applications require dielectric interfaces that exhibit specific characteristics as a function
of frequency. Accomplishing this often requires multiple interfaces. The objective of this section
is to analyze the characteristics of multiple layer interfaces. To reduce the complexity of the
problem, we will consider only normal incidence and restrict most of our attention to lossless
media. A general formulation for lossy media will also be stated.
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5.5.1 Reflection Coefficient of a Single Slab Layer

Section 5.2 showed that for normal incidence the reflection coefficient I'” at the boundary of a
single planar interface is given by (5-4a) or

e = m=m (5-63)
n+m
and at a distance z = —¢ from the boundary it is given by (5-5a) or
Tin(z = —€) = "e 2Pt (5-64)

Just to the right of the boundary the input impedance in the +z direction is equal to the
intrinsic impedance 7, of medium 2, that is,

M2
&2

Zn(z=0" =mn = (5-65)

The input impedance at z = —£ can be found by using the field expressions (5-1a) through (5-2c).
By definition Z;,(z = —¢) is equal to

E[Otallzzfz
Zinl:=—e = How|_, (5-66)
where
E°Y.__y = (E' + E")|;——¢ = Eoe 71 (1 + T?e 721y = Epe TP [1 4 Dip(0)]
(5-66a)
total i r Eo e b ,—j2p¢ Eo i
H" oy =H' —H")|;=—g = —e™" (1 =T = —e™P7 1 = Tin(0)]
m m
(5-66b)
Therefore ‘

Z] 1 +be=/2k1 14+ () (5-66¢)
inlz=—¢ = = ., | = PEEe——— -06C
inlz=—¢ ni 1 — Fbe—Jﬁle n 1— Fin(e)

which by using (5-63) can also be written as
1 4 Ibe=2ht 14+ Tin(0) n2 + jn tan(B1£)
Zinle=—e =m (W) =1 (—) = ( i (5-66d)
1 = Tbe—i2b1 1 —T) m +jn2 tan(B,£)

Equation 5-66d is analogous to the well-known impedance transfer equation that is widely used
in transmission line theory [7].

Using the foregoing procedure for normal wave incidence, we can derive expressions for
multiple layer interfaces [8]. Referring to Figure 5-11a the input impedance at z = 07 is equal
to the intrinsic impedance 13 of medium 3, that is

Zin(z = 07) = ns (5-67)
In turn, the input reflection coefficient at the same interface can be written as

Zn(0") —m  m3—m

Fn(z =0") = =
! Zn(OH) +n2  n3+m

(5-67a)
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Figure 5-11 Impedances and reflection and transmission coefficients for wave propagation in dielectric

slab. (a) Dielectric slab. (b) Reflection and transmission coefficients.



208 REFLECTION AND TRANSMISSION

At 7z = —d™ the input impedance can be written using (5-66d) as
1+ Tin(z = 07)e 72PN (g3 + 1) + (3 — m)e 72724
1= Tin(z = 07)e 2024 ) = 2\ (53 + 112) — (3 — np)e72P2d
and the input reflection coefficient at z = —d~ can be expressed as
_ Zin(z=—d") —m

Zin(z = —d*) +m
[+ 1) 4 (i3 — m2)e 2] —y [(3 4 m2) — (3 — ma)e /]

m2 [(n3 +m2) + (13 — n2)e 25| + 1 [(n3 + m2) — (93 — mp)e /2P ]

(5-67¢)

Zin(z = —dT) = ( ) (5-67b)

Fin(z = _di)

In Figure 5-11a we have defined individual reflection coefficients at each of the boundaries.
Here these coefficients are referred to as intrinsic reflection coefficients, and they would exist at
each boundary if two semi-infinite media form each of the boundaries (neglecting the presence
of the other boundaries). Using the intrinsic reflection coefficients defined in Figure 5-11a, the
input reflection coefficient of (5-67c) can also be written as

[ + [yze /2P

T =—d )= -
in( ) 1 + [plpze2p2d

(5-67d)

Equation 5-67d can also be derived using the ray-tracing model of Figure 5-11b. At the leading
interface of Figure 5-11b, I'|, represents the intrinsic reflection coefficient of the initial reflection
and T1o3Th1e 7%, etc., are the contributions to the input reflection due to the multiple bounces
within the medium 2 slab. The total input reflection coefficient can be written as a geometric
series that takes the form

Tin(z = —=d") = T2+ TolsTone 7 + Tl T Tore 7 +
rin(Z = —d_) = FIZ + T12F23T216—j29[1 + 1“21r23e—j29 + (Fz] F23e—j20)2 + .. ]

T2 T2 Tpze 7%

lin(z=—d")=Tn+ T —TyTye i (5-68)
where
0 = Bd (5-68a)
Since according to (5-4a) and (5-4b)
[y =-T2 (5-69a)
Tio=1+Ty=1-Ty (5-69b)
Ty =1+Tp (5-69c¢)

(5-68) can be rewritten and reduced to the form of (5-67d).
If the magnitudes of the intrinsic reflection coefficients |I'j»| and [I"3] are low compared to
unity, (5-67d) can be approximated by the numerator

T2l«1

[y + [ose/2P2d )
Fne=—d7) = —o -2 X Ty Dy 72 (5-70)
1+ Tiplaze™ P24 0«
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The approximate form of (5-70) yields good results if the individual intrinsic reflection coefficients
are low. Typically when |I'jp| = |T'23] < 0.2, the error of the approximate form of (5-70) is
equal to or less than about 4 percent. The approximate form of (5-70) will be very convenient
for representing the input reflection coefficient of multiple interfaces (> 2) when the individual
intrinsic reflection coefficients at each interface are low compared to unity.

Example 5-9
A uniform plane wave at a frequency of 10 GHz is incident normally on a dielectric slab of thickness

d and bounded on both sides by air. Assume that the dielectric constant of the slab is 2.56.

1. Determine the thickness of the slab so that the input reflection coefficient at 10 GHz is zero.
2. Plot the magnitude of the reflection coefficient as a function of frequency between
5GHz < f < 15 GHz when the dielectric slab has a thickness of 0.9375 cm.

Solution:

1. For the input reflection coefficient to be equal to zero, the reflection coefficient of (5-70) must be
set equal to zero. This can be accomplished if

IT12 + Taze 7224 = 0

Since
n —mn
N+ n2

Iy =-Tp =

then ‘
Tialll —e 7?29 =0 = 28,d =2nr  n=0,1,2,...

For nontrivial solutions, the thickness must be

d="" —gxz bR e

= E =
where A, is the wavelength inside the dielectric slab. Thus the thickness of the slab must be an

integral number of half wavelengths inside the dielectric. At a frequency of 10 GHz and a dielectric
constant of 2.56, the wavelength inside the dielectric is

L 30x10°
2710 x 109256

2. At a frequency of 5 GHz, the dielectric slab of thickness 0.9375 cm is equal to

=1.875cm

0.93754/2.56 1 4 A
= NI 0950, = 28d = & (22) =
30 x 109/5 x 10° A \ 4
and at 15 GHz it is equal to
0.9375+/2.561, 4w [(3h,
=———— = (0.75A 280d = — | — ) =3
30 x 10°/15 x 10° 2= 2 x2<4) T

Since 1 1 0.6
m—m _m/m=-1_1-J& 06 .

m4+m  m/m+1  1+5 26

Fp=-Ty3=
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the input reflection coefficient of (5-70), at f = 5 and 15 GHz, achieves the maximum magnitude

of
—0.231 — 0.231 2(0.231)

1—(—0231)(0.231)| _ 1+ (0.231)2

Tin(z = —d7)| = =0.438
A complete plot of |I'jy(z = —d7)| for SGHz < f < 15GHz is shown in the Figure 5-12.
Using the approximate form of (5-70), the magnitude of the input reflection coefficient is equal
to
Tin(z = —d7)| y=s5, = |—0.231 —(0.231)] = 0.462
15GHz

The percent error of this is

—0.438 4 0.462
0.438

percent error = ( ) x 100 = 5.48

05—
0.4
0.3
0.2

0.1

. L Vo

5 7 9 11 13 15
Frequency (GHz)

Input reflection coefficient |T,|

Figure 5-12 Input reflection coefficient, as a function of frequency, for wave propagation through a
dielectric slab.

Example 5-10

A uniform plane wave is incident normally upon a dielectric slab whose thickness at fo = 10 GHz is
A2, /4 where Ay, is the wavelength in the dielectric slab. The slab is bounded on the left side by air and
on the right side by a semi-infinite medium of dielectric constant &,3 = 4.

1. Determine the intrinsic impedance 7, and dielectric constant ¢,, of the sandwiched slab so that
the input reflection coefficient at f = 10 GHz is zero.

2. Plot the magnitude response of the input reflection coefficient for 0 < f <20GHz when the
intrinsic impedance and physical thickness of the slab are those found in part 1.

3. Using the ray-tracing model of Figure 5-11b, at fy = 10 GHz determine the first and next two
higher-order terms that contribute to the overall input reflection coefficient. What is the input
reflection coefficient using these three terms?

Solution:

1. In order for the input reflection coefficient to vanish, the magnitude of (5-70) must be equal to
zero, that is

IT12 + Caze #2224 = 0
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Since at fy = 10GHz, d = X,,/4, then

21 Ao
2d |r=10GH o, 2

Also . .
2 — M
=
n +n
and . .
3— 12
Fpy=——
N3+ m
Thus
P12 + Tpze 7224 d=hyy /4 = e~
f=10GHz n2+n n3 +
=)+ m) — 3 —m)2 +n1) | 0
(2 +m) (3 + m2)
or
2005 —mmsl =0=>m = /mims
1
Since 1; = Uy 377 ohms and 13 = LU —n1 = 188.5 ohms then
€0 480 2
= /71T = % — 0.707y, = 0.707(377) = 266.5 ohms

The dielectric constant of the slab must be equal to
& =2
whereas the physical thickness of the dielectric is

A2, 30 x 10°
== _ "~ —  _ —053cm
4 4010 x 1092

It is apparent then that whenever the dielectric is bounded by two semi-infinite media and its
thickness is a quarter of a wavelength in the dielectric, its intrinsic impedance must always be equal
to the square root of the product of the intrinsic impedances of the two media on each of its sides
in order for the input reflection coefficient to vanish. This is referred to as the quarter-wavelength

transformer that is so popular in transmission line design.
. Since at fo = 10GHz, d = A,/4 = 0.53 cm, then in the frequency range 0 < f < 20 GHz

a2 () (2) (1)

m-m m/m-1 1-+2
m+m m/m+l 1+2
m—m _ m/m—1_ 1-+v2
m+n  m/m+l 1442

Therefore, the magnitude of the input reflection coefficient of (5-70) can be written now as

also

I3 = =TI

(1 4 e 77 oy

Tnz=-d)|=|—2>-""— ~
ITin (2 )] 1+ (Fro)2e o7 T
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0.0146 ————I— | |
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Relative frequency (f/f;)

Figure 5-13 Responses of single-section, two-section binomial, and two-section Tschebyscheft quarter-
wavelength transformers. (Source: C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition.
Copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

whose maximum value, which occurs when f = 0 and 2fy = 20 GHz, is approximately equal to
2|T2]

— - =13l =

(I +1T12[%)

=0.333 ~ 2|T"j| = 0.3431

n —n

Tin(z = —d ™) |max = M+

A complete plot of |[j,(z = _d_)|d=kz()/4 when 0 < f < 20GHz is shown in the Figure 5-13.

It is interesting to note that the magnitude of the input reflection coefficient monotonically
decreases from f = 0 to fp, and it monotonically increases from f to 2fy. It can also be noted that
the bandwidth of the response curve near fy is very small, and any deviations of the frequency
from f will cause the reflection coefficient to rise sharply.

3. According to Figure 5-11b, the first-order term of the input reflection coefficient is

. N2 — N _ 266.5 — 377

- - = —0.1717
M+ 2665+ 377

2

The next two higher terms are equal to

T1oDo3Tae 7224 = = <’73_”2>< & >67jﬂ

n+m \n+n N+ n
2377 188.5 — 266.5 2(266.5
—) (2669) _ 4 1664
377 4+ 266.5 \ 188.5 4+ 266.5 /] 377 + 266.5

. 2 - - 27 9 ,
T12F21F%3T21€_]4ﬁ2d _ U (771 772) (TB 712) ( Uy )e_ﬂ”
n+m \n+n N3+ n +n
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. 2(337) 377 — 266.5 188.5 — 266.5 2 2(266.5)
T1pD T35 Tage 7424 =
377 +266.5 \ 377 + 266.5 188.5 + 266.5 377 + 266.5
= 0.0049

Tin = Tip + T1ala3To1e 7224 4 T30 T2, T e 74724
= —0.1717 + 0.1664 + 0.0049

Cin >~ —4x 1074 ~0

12

Thus, the first three terms, or even the first two terms, provide an excellent approximation to the
exact value of zero.

The bandwidth of the response curve can be increased by flattening the curve near fy. This
can be accomplished by increasing the number of layers bounded between the two semi-infinite
media. The analysis of such a configuration will be discussed in Section 5.5.2.

If the three media of Figure 5-11 are lossy, then it can be shown that the overall reflection
and transmission coefficients can be written as [3]

_ET (1 =Z)(1+Z3) + (1 4+ Zin)(1 — Zpz)e 72!

Ty = — = — (5-71a)
E' (1+Zp)A+Zy3)+ 1 —=Z12)(1 —Zyz)e "
E' 4
_E"_ (5-71b)
Ei (1 =Zp)(A —=Zn)e 4 + (1 +Zin)(1 + Zp3)erd
where
z; =20 =123 (5-71¢)
Wi Vi
Ve = E£vjou (o +joe) (5-71d)

The preceding equations are valid for lossless, lossy, or any combination of lossless and lossy
media.

5.5.2 Reflection Coefficient of Multiple Layers

The results of Example 5-10 indicate that for normal wave incidence the response of a single
dielectric layer sandwiched between two semi-infinite media did not exhibit very broad charac-
teristics around the center frequency fj, and its overall response was very sensitive to frequency
changes. The characteristics of such a response are very similar to the bandstop characteristics
of a single section filter or single section quarter-wavelength impedance transformer. To increase
the bandwidth of the system under normal wave incidence, multiple layers of dielectric slabs,
each with different dielectric constant, must be inserted between the two semi-infinite media.
Multiple section dielectric layers can be used to design dielectric filters [9]. Coating radar targets
with multilayer slabs can also be used to reduce or enhance their scattering characteristics.
When N layers, each with its own thickness and constitutive parameters, are sandwiched
between two semi-infinite media as shown in Figure 5-14, the analysis for the overall reflection
and transmission coefficients is quite cumbersome, although it is straightforward. However, an
approximate form of the input reflection coefficient for the entire system under normal wave
incidence can be obtained by utilizing the approximation first introduced to represent (5-70).
With this in mind, the input reflection coefficient under normal wave incidence for the system of
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d dy | dy dy

E. H'

E H

A
\l

Figure 5-14 Normal wave propagation through N layers sandwiched between two media.

Figure 5-14, referenced at the boundary of the leading interface, can be written approximately as
(1, 8]

i~ Ty + Fle—ﬂﬂldl + er—j2(ﬂ1d1+ﬂ2d2) o FNe_j2(51d1+52d2+"~+ﬂNdN) (5-72)
where
o= n—"o (5-72a)
n + no
r,=mr—m (5-72b)
N2+ M
r,=1R—"m (5-72¢)
N3+ n2
= LTI (5-72d)
nL + nn

Expression 5-72 is accurate provided that at each boundary the intrinsic reflection coefficients of
(5-72a) through (5-72d) are small in comparison to unity.

A. Quarter-Wavelength Transformer Example 5-10 demonstrated that when a lossless
dielectric slab of thickness X,,/4 at a frequency fy is sandwiched between two lossless
semi-infinite dielectric media, the input reflection coefficient at f; is zero provided its intrinsic

impedance 7, is equal to
m = /NN (5-73)

where
11 = intrinsic impedance of dielectric slab.
no = intrinsic impedance of the input semi-infinite medium.
nr = intrinsic impedance of the load semi-infinite medium.
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However, as was illustrated in Figure 5-13, the response of the input reflection coefficient as a
function of frequency was not very broad near the center frequency fp.

Matchings that are less sensitive to frequency variations and that provide broader bandwidths
require multiple A /4 sections. In fact the number of sections and the intrinsic impedance of each
section can be designed so that the reflection coefficient follows, within the desired frequency
bandwidth, prescribed variations that are symmetrical about the center frequency. This design
assumes that the semi-infinite media and the dielectric slabs are all lossless so that their intrinsic
impedances are all real. The discussion that follows parallels that of [1] and [8].

Referring to Figure 5-14, the total input reflection coefficient I'j, for an N-section quarter-
wavelength transformer with 1y > no can be written, using an extension of the approximation
used to represent (5-70), as [1, 8]

Tin(f) ~To+Tie 7% 4+ The 7 + .. 4 Tye 72N = Z e /20 (5-74)

where I',, and 6 are represented, respectively, by

N1 — Nn
Mp+1 + N

0= pudy = - ( ) G ) (5-74b)

In (5-74) T, represents the reflection coefficient at the junction of two infinite lines that have

intrinsic impedances 7, and 7,11, fo represents the designed center frequency, and f represents

the operating frequency. Equation 5-74 is valid provided the I',’s at each junction are small (the

requirements will be met if n; =~ ). For lossless dielectrics, the n,’s and I',,’s will all be real.
For a symmetrical transformer (I'y = 'y, I'y = 'y _1, etc.), (5-74) reduces to

r, = (5-74a)

Cin(f) ~ 2¢ N9 [Tgcos NO + 'y cos(N — 2)0 + [ cos(N —4)0 + .. ] (5-75)
The last term in (5-75) should be
Iiv—1y/21 cos 0 for N = odd integer (5-75a)

%F(N /2) for N = event integer (5-75b)

B. Binomial (Maximally Flat) Design One technique, used to design an N-section A/4
transformer, requires that the input reflection coefficient (5-74) have maximally flat passband
characteristics. For this method, the junction reflection coefficients (I",’s) are derived using the
binomial expansion and we can equate (5-74) to [1, 8]

N
—j —ing L — Mo N
Tin(F) = Y e 20 = N0 2T cosM (6)
" Z " nL + 1No
(5-76)
—N nL — N —12n9
nL+mno s Z
where
N!
cN= _—- n=0,1,2,...,N (5-76a)

" (N —n)!n!
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From (5-76)

_N"L— 10 N
r,=2"=_"¢ 5-77
" n+mno " ( )

For this type of design, the fractional bandwidth Af /fy is given by

A fohw o ha o 2 ]
Yoh( k) ) e
Since ) ,

-Z ()1
(5-78) reduces, using (5-76), to
1/N
ISP S L (5-80)
Jo b4 (mL —n0)/ (ML + no)

where I, is the magnitude of the maximum value of reflection coefficient that can be tolerated
within the bandwidth.
The usual design procedure is to specify

the load intrinsic impedance 7y,

the input intrinsic impedance 7

the number of sections N

the maximum tolerable reflection coefficient I';, (or fractional bandwidth Af /fp)

bl S e

and to find

1. the intrinsic impedance of each section
2. the fractional bandwidth Af /fy (or maximum tolerable reflection coefficient I';,)

To illustrate the principle, let us consider an example.

Example 5-11

Two lossless dielectric slabs each of thickness 1o/4 at a center frequency fy = 10 GHz are sandwiched
between air to the left and a lossless semi-infinite medium of dielectric constant ¢, = 4 to the right.
Assuming a fractional bandwidth of 0.375 and a binomial design:

1. Determine the intrinsic impedances, dielectric constants, and thicknesses of the sandwiched slabs
so that the input reflection coefficient at fo = 10 GHz is zero.

2. Determine the maximum reflection coefficient and SWR within the fractional bandwidth.

3. Plot the response of the input reflection coefficient for 0 < f <20GHz when the intrinsic
impedances and physical thicknesses of the slabs are those found in part 1. Compare the response
of the two-section binomial design with that of the single section of Example 5-10.

Solution:
1. Using (5-76a) and (5-77)

r :2_N77L_770CN:2_N77L_7)0 N!
! n+mno " e+ 1o (N —n)!ln!
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Since the input dielectric is air and the load dielectric has a dielectric constant &7, = 4, then

no = 377
377
o= 2 =2 = 1885
ELED 2
Therefore,
= 188.5 — 377\ 2! 1
YZ=OZF0=”1 770=2,2 e [
N1 =+ no 188.5+377 ) 2!0! 12
1—-1/12

= ————— ) =0.84619 = 318.94 oh
= M "°<1+1/12) 70 ohms

s
=¢, =140 dy= % = 0.634cm

= 188.5 — 377\ 2! 1
n:l:l‘lznz 771:272 —— || = = ==
n 4+ n 188.5+377 ) 1!1! 6
= L= 176 _ 7145, = 227.720h

= =Uu. = 5 m

n2=m 1+1/6 m ohms

=&, =274 dy=hy/4=0453cm

2. For a fractional bandwidth of 0.375, the magnitude of the maximum reflection coefficient I',, is
obtained using (5-80) or

A 4
A _ 0.375=2— — cos”!
T

o
which for n;, = 188.5 and 9 = 377 leads to

r 1/2
(ML —mo)/ (e + no)

I, =0.028

The maximum standing wave ratio is

1+T,, 1+4+0.028
SWR,, = + -

= = = 1.058
1-T, 1-0.028

3. The magnitude of the input reflection coefficient is given by (5-76) as

1 1
cos? 0 = 3 cos? 0 = §COSZ [% (J%)}

which is shown plotted in Figure 5-13 where it is also compared with that of the one- and
two-section Tschebyscheff design to be discussed next.

nL — No

[Tin| =
" L+ no

C. Tschebyscheff (Equal-Ripple) Design The reflection coefficient can be made to vary
within the bandwidth in an oscillatory manner and have equal-ripple characteristics [10—12]. This
can be accomplished by making I, vary similarly as a Tschebyscheff (Chebyshev) polynomial.
For the Tschebyscheff design, the equation that corresponds to (5-76) is [1, 8]

Cin(f) = eN? nL — no Ty (sec 6, cos0)
n —_—

(5-81)
ne+mno  Tn(secOy)

where Ty (z) is the Tschebyscheff polynomial of order N.
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The maximum allowable reflection coefficient occurs at the edges of the passband where
0 = 0,, and |Ty (sec 8, cos0)|p=s, = 1. Thus,

— 1
= N — 1o (5-82)
L+ no T (sec O,)
or |
Ty (secB,)| = | — 10 (5-82a)
Pm ML + No
Using (5-82), we can write (5-81) as
Tin () = e N p,, Ty (sech,, cosh) (5-83)
and its magnitude as
ITin ) = pin(f) = | pm T (sec B, cos 0)| (5-83a)

For this type of a design, the fractional bandwidth Af /f, is also given by (5-78).
To be physical, p,, must be smaller than the reflection coefficient when there are no matching
layers. Therefore, from (5-82),

_ 1 _
o = N —No nL — 1o (5-84)
nL+no Ty (sec6y) nL + no
or
[Ty (sec )] > 1 (5-84a)
The Tschebyscheff polynomial can be expressed by either (6-71a) or (6-71b) of [1], or
Tw(z) = cos[mecos ' (z)]  —1<z <+l (5-85a)
T,n(z) = cosh[mcosh™'(z)] z < —1,z>+1 (5-85b)
Since |Ty (sec6,,)| > 1, using (5-85b) we can express Ty (sect,,) as
Ty (sec6,,) = cosh [N cosh™" (sec6,,)] (5-86)
or by using (5-82a), as
1 I np—mno
|Ty (secB,)| = |cosh [N cosh™ (sec Gm)]{ =|— (5-86a)
Pm ML + 1o
Thus,
1 1 —
sec6,, = cosh [— cosh™! ( = >i| (5-87)
N Pm ML+ Mo
or

1 1 —
6, = sec”! {cosh [— cosh™ ( — =
N Pm ML + Mo

Using (5-83) we can write the reflection coefficient of (5-75) as

)

Cin (0) = 27N {pgcos (NO) + picos [(N —2)0] + ...}
= e_jNGpm Tw (secH,, cos0) (5-88)

For a given N, replace Ty (sec6,, cos0) in (5-88) by its polynomial series of (6-69) of [1] and
then match terms. This will allow you to determine the intrinsic reflection coefficients p, s and
subsequently the n),s. The design procedure for the Tschebyscheff design is the same as that of
the binomial design, as outlined previously.
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The first few Tschebyscheff polynomials can be found in [1, 8]. For z = sec6,, cos 6, the first
three polynomials reduce to

T (secB,, cosd) = secb,, cosd
T (sec B, cos 0) = 2(sec b,, cos0)> — 1 = sec’ 6,, cos 20 + (sec>6,, — 1)
T5(sec 6,, cos 0) = 4(sec b,, cos 0)> — 3(sec b, cosH)
= sec’ 6, cos 30 + 3(sec® 6,, — sec,,) cos O (5-89)

The remaining details of the analysis are found in [1, 8].

The design of Example 5-11 using a Tschebyscheff transformer is assigned as an exercise to
the reader. However, its response is plotted in Figure 5-13 for comparison.

In general, multiple sections (either binomial or Tschebyscheff) provide greater bandwidths
than a single section. As the number of sections increases, the bandwidth also increases. The
advantage of the binomial design is that the reflection coefficient values within the bandwidth
monotonically decreases from both ends toward the center. Thus the values are always smaller
than an acceptable and designed value that occurs at the “skirts” of the bandwidth. For the
Tschebyscheff design, the reflection coefficient values within the designed bandwidth are equal
to or smaller than an acceptable and designed value. The number of times the reflection coefficient
reaches the maximum value within the bandwidth is determined by the number of sections. In
fact, for an even number of sections the reflection coefficient at the designed center frequency
is equal to the maximum allowable value, whereas for an odd number of sections it is zero. For
a maximum tolerable reflection coefficient, the N-section Tschebyscheff transformer provides a
larger bandwidth than a corresponding N -section binomial design, or for a given bandwidth the
maximum tolerable reflection coefficient is smaller for a Tschebyscheff design.

D. Oblique-Wave Incidence A more general formulation of the reflection and transmission
coefficients can be developed by considering the geometry of Figure 5-15 where a uniform plane
wave is incident at an oblique angle upon N layers of planar slabs that are bordered on either
side by free space. This type of a geometry can be used to approximate the configuration of a
radome whose radius of curvature is large in comparison to the wavelength. It can be shown

d, dy | d; d; dy
E" H"
£0- Ko ! H!
N E' H
N _
% 1\ /5101 & & | & & en 6,
6 \\ (i Ko | K3 Hi Ky 0. Lo
N\ %1 0, |03 0; ONn
AN
m M |3 i N
E\H
A
v

Figure 5-15 Oblique wave propagation through N layers of dielectric slabs.
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that the overall reflection and transmission coefficients for perpendicular (horizontal) and parallel

(vertical) polarizations can be written as [3]

Perpendicular (Horizontal)

EJr_ By
FJ_:—l=14—
E| 0
Ej_ 1
TJ‘Z_ZZZ
E| 0

Parallel (Vertical)

_E_G
I E\f Do
t
= ﬂ - L
Ej Do
The functions Ay, By, Co, and Dy are found using the recursive formulas
eVi
Aj = T[Ajﬂ(l +Yiq) + Bl = Y1)
e Vi
B; = T[AHI(] = Y1) + Bl + Y]

eVi
C = T[Cjﬂ(l +Zi11) +Djpi (1 — Zi )]
e Vi

D, = T[C’“(l —Ziw1) + D (1 + Zi4)]

where
Avy1 =Cni1 =1

Byi1=Dyy1=0

Voot — cosOiy1 [&41(1 —jtand;)u;
7 cos 0, g (1 —jtan ;)i

Zj

_cosOqy [ g (1 —jtand;)p;q
+1 = .
cost; \ gip1(1 —jtand; ),

Yj = djy; cos b
v = £Vjou;(oj +jwe;)

0; = complex angle of refraction in the j t Jayer

(5-90a)

(5-90b)

(5-91a)

(5-91b)

(5-92a)

(5-92b)

(5-92¢)

(5-92d)

(5-92¢)

(5-92f)

(5-92g)

(5-92h)

(5-92i)
(5-92))
(5-92k)

where dj is the distance from the leading interface, which serves as the reference for the reflection

and transmission coefficients [see (5-5a) and (5-5b)].

5.6 POLARIZATION CHARACTERISTICS ON REFLECTION

When linearly polarized fields are reflected from smooth flat surfaces, the reflected fields main-
tain their linear polarization characteristics. However, when the reflected surfaces are curved or
rough, a linearly polarized component orthogonal to that of the incident field is introduced during
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reflection. Therefore, the total field exhibits two components: one with the same polarization as
the incident field (main polarization) and one orthogonal to it (cross polarization). During this
process, the field is depolarized due to reflection.

Circularly polarized fields in free space incident upon flat surfaces:

1. Maintain their circular polarization but reverse their sense of rotation when the reflecting
surface is perfectly conducting.

2. Are transformed to elliptically polarized fields of opposite sense of rotation when the flat
surface is a lossless dielectric and the angle of incidence is smaller than the Brewster
angle.

Similarly, elliptically polarized fields in free space upon reflection from flat surfaces

1. Maintain their elliptical polarization and magnitude of axial ratio but reverse their sense of
rotation when reflected from a perfectly conducting surface.

2. Maintain their elliptical polarization but change their axial ratio and sense of rotation when
the reflecting surface is a dielectric and the angle of incidence is smaller than the Brewster
angle.

To analyze the polarization properties of a wave when it is reflected by a surface, let us assume
that an elliptically polarized wave is obliquely incident upon a flat surface of infinite extent as
shown in Figure 5-16 [7]. Using the localized coordinate system (x’, y, z’) of Figure 5-16, the
incident electric field components can be written as

E| =a/Eje T = a Ele P (5-93a)
E| =aE e/ " =4,E0%T® oD (5-93b)

where E and EY are assumed to be real.

For this set of field components, the Poincaré sphere angles (4-58a) through (4-59b) can be
written [assuming that the ratio in (4-58a), selected here to demonstrate the procedure, satisfies
the angular limits of all the Poincaré sphere angles] as

: [ 1ED
yi=tan™' [ == (5-94a)
('E?|
8 =¢) —¢| =¢ (5-94b)
e’ = cot"!(ARY) (5-94c)
! = tilt angle of incident wave (5-944d)

where 8’ is the phase angle by which the perpendicular component of the incident field leads
the parallel component. It is assumed that (AR') is positive for left-hand and negative for right-
hand polarized fields. These two sets of angles are related to each other by (4-60a) through
(4-61Db), or

cos(2y’) = cos(2&’) cos(21') (5-95a)

tan(2¢)

wn(¥) = S50

(5-95b)



222 REFLECTION AND TRANSMISSION

Figure 5-16 Elliptically polarized wave incident on a flat lossy surface.

or
sin(2&’) = sin(2y") sin(8") (5-95¢)
tan(27') = tan(2yi) cos(8") (5-95d)

In a similar manner, the reflected fields of the elliptically polarized wave can be written
according to the localized coordinate system (x”, y, z”) of Figure 5-16 as

Ef =a,Efe "= -4, TTEle ¥ T =4, |Ele EA P

= 4P EPe 7 ® oD (5-96a)
E| = 4,Ee% T =4It EOe® r=0D) — 4 |1t |EOe @ r-5'~¢D)

= 4,1 |EDe @ r=0L) (5-96b)

where ¢ and ¢] are the phases of the reflection coefficients for parallel and perpendicular
polarizations, respectively. The Poincaré sphere angles y” and 6" of the reflected field can now
be written by referring to (5-96a) and (5-96b) as

_1 [ EL IT%1E? | Ll
y" =tan"! = | =tan” =tan~ tan y’ (5-97a)
(|E|| R IV

F=¢l—dj=0"+D-T+{H=0"-m+ - (5-97b)
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where 8" is the phase angle by which the perpendicular (y) component leads the parallel (x”)
component of the reflected field. Using the angles " and 6" of (5-97a) and (5-97b), the corre-
sponding Poincaré sphere angles ", t” (tilt angle of ellipse) and axial ratio (AR)" of the reflected
field can be found using the relations

sin(2e”) = sin(2y") sin(8") (5-98a)
tan(2t") = tan(2y") cos(8") (5-98b)
(AR)" = cot(g") (5-98¢)

Following a similar procedure, the transmitted fields can be expressed as
. . _ (Rl e p_gt
Eﬂ = ﬁx///E”fe*]ﬂ’ °r e ﬁX///T|T)EI?37JB, °r e ﬁx/// |T|f|E|?e J(B r §”)
(Rl el
= a0 [T |Efe 7 ® W (5-99a)
E| =a,Ele ¥ T =a T0E)eT® 00 — 4 |Th|E0 e/ 10 ~ED)
= a,|T?|EO ¢~/ ® =0 (5-99b)

where £{, and & are the phases of the transmission coefficients for parallel and perpendicular
polarizations, respectively. The Poincaré sphere angles 8’ and y’ can now be written by referring
to (5-99a) and (5-99b) as

, _1 f [EL] o (ITRIE? S fIT
y' = tan = tan = tan —=—tany (5-100a)
< IE|] ) ('Tlf"E? i
F=¢ -y =0 +E)—§ =8 +E —§) (5-1000)
= @1 (- 1 [ — 1 I

where 8’ is the phase angle by which the perpendicular (y) component of the transmitted field
leads the parallel (x”’) component of the transmitted field. Using the angles ¥’ and 8" of (5-100a)
and (5-100b), the corresponding Poincaré sphere angles &', t’ (tilt angle of ellipse) and axial
ratio (AR)" of the transmitted field can be found using the relations

sin(2¢") = sin(2y") sin(8") (5-101a)
tan(21t") = tan(2y") cos(8") (5-101b)
(AR)' = cot(e’) (5-101c¢)

The set of (5-96a) through (5-98c) and (5-99a) through (5-101c) can be used to find, respec-
tively, the polarization of the reflected and transmitted fields once the polarization of the incident
fields of (5-93a) through (5-94d) has been stated. A block diagram of the relations between the
incident, reflected, and transmitted fields is shown in Figure 5-17. The parallel component of the
incident field is taken as the reference for the phase of all of the other components.
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0
E| _oif EL E!
[ y'=tan <E_(|)|> i
[Ejl = EY < > |E[| = S
____I__l _____ +Bl ___________
¢|| = ¢x 0 > ¢i = ¢;:‘Sl
jm+ ) e g . it
1 = I T4 =7 e, I =[S %= 74 |k
Eu'l Ej E[ E/
— b — b | —
Bl = T51 £, B =75 £5 [Ef| = T4 E% [Ef| =74 | E%
o) =% o) =i ¢ =9} oL =9
=n+ =§j =8t 4] =5l + &)

Figure 5-17 Block diagram for polarization analysis of reflected and transmitted waves.

Example 5-12

A left-hand (CCW) circularly polarized field traveling in free space at an angle of 8; = 30° is incident
on a flat perfect electric conductor of infinite extent. Find the polarization of the reflected wave.

Solution: A circularly polarized wave is made of two orthogonal linearly polarized components
with a 90° phase difference between them. Therefore we can assume that these two orthogonal linearly
polarized components represent the perpendicular and parallel polarizations. Since the reflecting surface
is perfectly conducting (1, = 0), the reflection coefficients of (5-17a) and (5-24c) reduce to

MM=-1=1/a=l=1 ¢=xn
b b r
Iy=-l=1/r==1 ¢ =n

Since the incident field is left-hand circularly polarized, then according to (5-93a) through (5-94b)

0 0
EH =E
.o
S =l = =
ox) >
. EO T .
i—tan '] == =tany =1
g <E|? & g

r i r r T 4

=8 -n+@ —f)=5-—n+@@—n)=—7

2 2
On the Poincaré sphere of Figure 4-20 the angles y” = 7 /4 and §" = —m/2 define the south pole,
which represents right-hand (CW) circular polarization. Therefore, the reflected field is right-hand (CW)
circularly polarized, and it is opposite in rotation to that of the incident field as shown in Figure 5-18a.
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Figure 5-18 Circularly polarized wave incident upon flat surfaces with infinite and zero conductivities.
(a) Infinite conductivity. (b) Lossless ocean.
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Example 5-13

A left-hand (CCW) circularly polarized field traveling in free space at an angle of 6; = 30° is incident

on a flat lossless (o, = 0) ocean (&, = 81gp, o = wo) of infinite extent. Find the polarization of the
reflected and transmitted fields.

Solution: Since the incident field is left-hand circularly polarized, then according to (5-93a) through
(5-94b)

0 _ 50
E/=E]
. . T
(SIZ l=7
T2
0
)/’vztan_1 E—J‘ =E:>tanyi=l
E} 4

To find the polarization of the reflected field, we proceed as follows. Using (5-18a)

o _ cos(30°) — +/81,/1 — (g;) sin*(30°) _ 0.866 — 9\/%
cos(30°) + v/81,/1 — (g) sin*(30°)  0.866 + 9m

_0.866 — 8.986
"~ 0.866 + 8.986

't =—-0824= =084 ¢ =n

Using (5-25a)

L meosa0) + JE/1= (&)sin’30e)  —0.866 -+ 4./1— & (1)

cos(30°) + /o /1 — (&) si?30°)  0.866+ §./1— & (3)
—0.866 +0.111
0.866+0.111

If =—-0773=I}|=0773 ¢ ==

According to (5-97a) and (5-97b)

o D\ (0824 .
y" = tan —-tany' | =tan 0773 ) = 46.83° = 0.817rad
|1"‘| | .

=6 —mt @l —gD=Z —T+@-—m=—3
Using (5-98a) through (5-98c)
2¢" = sin~![sin(2y") sin(8")]
— sin”! [sin(93.66°) sin (—%)] — —86.34°
=& = —43.17°
21" = tan"![tan(2y") cos(8")]
— tan~! [tan(93.66°)cos (—%)] — 180°

=1t =90°
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(AR)" = cot(¢") = cot(—43.17°) = —1.066

On the Poincaré sphere of Figure 4-20 the angles y" = 0.817 and 6" = —n/2 locate a point on the
lower hemisphere on the principal xz plane. Therefore the reflected field is right-hand (CW) elliptically
polarized, and it has an opposite sense of rotation compared to the left-hand (CCW) circularly polarized
incident field as shown in Figure 5-18b. Its axial ratio is —1.066.

To find the polarization of the transmitted field we proceed as follows. Using (5-18b)

2 cos(30°) _2(0.866)

b _
N cos(30°) + /BT,/1 — (&) sin?(307) 0866 +8.986
= 0.1758 = [T’]| =0.1758 £ =0
Using (5-25b)
" 2,/ g cos(30°) _ 2(3)0s66
c0s(30°) + \/811 1 - (&)sin2@30e) 0866 +0.111
=0.197= |T}|=0.197 & =0
According to (5-100a) and (5-100b)
y' =tan~ ( tany ) O ! 9578) =41.75° = 0.729 rad
5 =8+ (&) — SH)—% 0—0) = %

Using (5-101a) through (5-101c¢)

2¢' = sin~!'[sin(2y") sin(8")] = sin~![sin(83.5°) sin(90°)] = 83.5°
= & =41.75°
= tan"![tan(2y") cos(8")] = tan~![tan(83.5°) cos(90°)] = 0
=1 =0°
(AR)' = cot(e’) = cot(41.75°) = 1.12

~

2T

On the Poincaré sphere of Figure 4-20 the angles y' = 0.729 and §' = 7/2 locate a point on the upper
hemisphere on the principal xz plane. Therefore the transmitted field is left-hand (CCW) elliptically
polarized, and it is of the same sense of rotation as the left-hand (CCW) circularly polarized incident
field as shown in Figure 5-18b. Its axial ratio is 1.12.

5.7 METAMATERIALS

The decades of the 1990s and 2000s had renewed interest and excitement into the field of
electromagnetics, especially as they relate to the integration of a special type of artificial dielec-
tric materials, coined metamaterials [13—18]. Using a ‘broad brush,” the word metamaterials
can encompass engineered textured surfaces, artificial impedance surfaces, artificial magnetic
conductors, double negative materials, frequency selective surfaces, Photonic Band-Gap (PBG)
surfaces, Electromagnetic Band-Gap (EBG) surfaces/structures, and even fractals or chirals.
Artificial impedance surfaces are discussed in Section 8.8. In this section we want to focus
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more on material structures whose constitutive parameters (permittivity and permeability) are
both negative, often referred to as Double Negative (DNG). Artificial magnetic conductors can
also be included in the DNG class of materials. It is the class of DNG materials that has capti-
vated the interest and imagination of many leading researchers and practitioners, scientists and
engineers, from academia, industry, and government. When electromagnetic waves interact with
such materials, they exhibit some very unique and intriguing characteristics and phenomena that
can be used, for example, to optimize the performance of antennas, microwave components and
circuits, transmission lines, scatterers, and optical devices such as lenses. While the revitalization
of metamaterials introduced welcomed renewed interest in materials for electromagnetics, it also
brought along some spirited dialogue, which will be referred to in the pages that follow.

The word meta, in metamaterials, is a Greek word that means beyond/after. The term meta-
materials was coined in 1999 by Dr. Rodger Walser, of the University of Texas-Austin and
Metamaterial, Inc., to present materials that are artificially fabricated so that they have electro-
magnetic properties that go beyond those found readily in nature. In fact, the word has been used
to represent materials that microscopically are intrinsically inhomogeneous and constructed from
metallic arrangements that exhibit periodic formations whose period is much smaller than the
free-space and/or guided wavelenth. Using Dr. Walser’s own words, he defined metamaterials
as ‘Macroscopic composites having man-made, three-dimensional, periodic cellular architecture
designed to produce an optimized combination, not available in nature, of two or more responses
to specific excitation’ [19]. Because of the very small period, such structures can be treated as
homogeneous materials, similarly to materials found in nature, and they can then be represented
using bulk constitutive parameters, such as permittivity and permeability. When the period is not
small compared to the free-space or guided wavelength, then such materials can be examined
using periodic analysis (i.e., the Floquet Theorem). Typically the construction of metamaterials
is usually performed by embedding inclusions or inhomogeneities in the host medium, as shown
in Figure 5-19 [13].

5.7.1 Classification of Materials

In general, materials, using their constitutive parameters & (permittivity) and p (permeability) as
a reference, can be classified into four categories. They are those that exhibit:

e Negative ¢ and positive p; they are usually coined as ENG (epsilon negative) material.
e Positive ¢ and positive u; they are usually coined as DPS (double positive) material.

© Y Y P

46 ¢4 ¢
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Figure 5-19 Metamaterial representation using embedded periodic inclusions (after [13]).
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Figure 5-20 Characterization of materials according to the values of their permittivity and permeability
(after [13], [17]).

e Negative ¢ and negative u; they are usually coined as DNG (double negative) material.
e Positive ¢ and negative u; they are usually coined as MNG (mu negative) material.

These are shown schematically in Figure 5-20.

Of the materials shown in Figure 5-20, the ones that usually are encountered in nature are those
of DPS (double positive; first quadrant, like dielectrics such as water, glass, plastics, etc.), ENG
(epsilon negative; second quadrant, like plasmas) and MNG (mu negative; fourth quadrant, like
magnetic materials). Obviously the one set that is most widely familiar and used in applications
is that of DPS, although the other two, ENG and MNG, are used in a wide range of applications.

5.7.2 Double Negative (DNG) Materials

The materials that have recently captured the attention and imagination of electromagnetic engi-
neers and scientists are the DNG, which, as indicated, are not found in nature but may be
artificially realizable. The DNG materials are also referred to as NRI (negative refractive index),
NIM (negative index material), BW (backward) media, and left-handed (LH) media, to name a
few. For clarity and simplicity, we will stay with the DNG designation. The DNG class has cre-
ated an intense activity as many have attempted to incorporate material with such characteristics
to design, enhance, or increase the performance of lenses, microwave circuits, transmission lines,
antennas, phase shifters, broadband power dividers, backward and forward leaky-wave antennas,
electrically small ring antennas, cloaking, plasmonic nanowires, photonic crystals, and miniatur-
ization [13-21]. More specifically, using antennas as an example, it has been reported that the
integration of materials with radiating elements can increase the radiated power, enhance the
gain, and tune the frequency of operation.

While there has been a lot of activity since the recent revival of metamaterials, their intro-
duction has also created some spirited dialogue about the negative index-of-refraction, negative
refraction angle, and phase advancement [19-21]. What may have elevated this dialogue to a
greater level is that some of the reported results using DNG metamaterials may have been over-
stated, and lacked verification, interpretation and practical physical realization [22] Appendix C
of [23]. However, within the broader definition of metamaterials, there have been metamate-
rial structures whose performance, when combined with devices and circuits, has been validated
not only by simulations but also by careful experimentation. For such structures not only good
agreement between simulations and measurements has been found, but also the results have been
within limits of physical reality and interpretation. Some of these have been acknowledged for
their validity, and they have also often been referred to as engineered textured surfaces, artificial
impedance surfaces (AIS), artificial magnetic conductors (AMC), photonic band-gap structures



230 REFLECTION AND TRANSMISSION

(PBG), and electromagnetic band-gap structures (EBG). This class of metamaterials is discussed
in Section 8.8, and the reader is referred to that section for details and references.

Because of the interest in the electromagnetic community, it is important that the topic of
metamaterials be introduced to graduate students, and maybe even to undergraduates, but pre-
sented in the proper context. Because of space limitations, only an introductory overview of the
subject is included in this book. A succinct chronological sequence of the basic events that led to
this immense interest in metamaterials is also presented. The reader is referred to the literature
for an in-depth presentation of the topic and its applications.

5.7.3 Historical Perspective

The origins of metamaterials can be traced back to the end of the 19th century, and they are
outlined in many publications. Since metamaterials is a rather new designation, it is a branch of
artificial dielectrics. In fact, it was indicated in 1898 that Jajadis Chunder Bose may have emulated
chiral media by using man-made twisted fibers to rotate the polarization of electromagnetic waves
[24]. In 1914, Lindman examined artificial chiral media when he attempted to embed into the
material an ensemble of randomly oriented small wire helices [25]. In 1948, Winston E. Kock
of Bell Laboratories introduced the basic principles of artificial dielectrics to design lightweight
lenses in the microwave frequency range (around 3-5 GHz) [26]. His attempt was to replace
at these frequencies, where the wavelength is 10-6 centimeters, heavy and bulky lenses made
of natural dielectric materials. He realized his concept of artificial dielectrics by controlling the
effective index-of-refraction of the materials by embedding into them, and arranging periodically,
metallic disks and spheres in a concave lens shape.

The paper that revived the interest in the special class of artificial materials, now coined
metamaterials and not found in nature, was that of Victor Veselago in 1968 who analyzed
the propagation of uniform waves in materials that exhibited, simultaneously, both negative
permittivity and permeability (DNG; double negative) [27]. Although Veselago may not have
been interested in dielectric materials, he examined analytically the wave propagation through
materials that exhibited, simultaneously, negative ¢ and negative p. One of the materials that can
be created in nature is plasma, which can exhibit negative permittivity. Plasma is an ionized gas of
which a significant number of its charged particles interact strongly with electromagnetic fields and
make it electrically conductive. For those that lived through the birth of the U.S. space program
in the mid-1960s, led by NASA, there was a lot of interest and research in plasmas, formed
beneath and around the nose of the spacecraft during re-entry that caused loss of communication
with the astronauts during the final 10—15 minutes of landing. To attempt to alleviate this loss of
communication (referred to then as blackout), due to the formed plasma sheath near the nose and
belly of the spacecraft, NASA initiated and carried out an intense research program on plasma.
The plasma was modeled with a negative dielectric constant (negative permittivity), and it was
verified through many experiments.

Although Veselago may have known that negative ¢ can be obtained by plasma-type materials,
he did not speculate, at least in [27], how and what kind of materials may exhibit DNG properties.
However, he was able to show and conclude, through analytical formulation, that for wave
propagation through DNG type of materials, the direction of the power density flow (Poynting
vector) is opposite to the wave propagation (phase vector). He referred to such materials as
left-handed . Based on his conclusions, the directions of power density flow and phase velocity for
DPS materials (double positive, which are conventional dielectrics) and DNG materials (double
negative, not found in nature) are illustrated graphically in Figure 5-21, where a uniform plane
wave propagates in DPS (Figure 5-21a) and DNG (Figure 5-21b) materials. The DPS materials
are also dubbed Right-Handed Materials (RHM) while the DNG materials are dubbed as
Left-Handed Materials (LHM). The solid arrows represent the directions of wave vectors (phase
velocities) while the dashed arrows represent power flow (Poynting vectors). While the arrows
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(a) (b)
Figure 5-21 Direction of phase vector (B) and Poynting vector (S) for uniform wave propagation in double

positive (DPS) and double negative (DNG) materials. (a) RHM: double positive material (DPS). (b) LHM:
double negative material (DNG).

in Figure 5-21a illustrate the directions that we expect from conventional dielectrics, the arrows
in Figure 5-21b point in the opposite direction, which will indicate that there is a phase advance
(phase wave fronts move toward the source) for the wave in Figure 5-21b and a phase delay for
the wave in Figure 5-21a, which is what we are accustomed to from conventional dielectrics.
To get the phase advance of Figure 5-21b requires that the phase constant (wave number) is
negative. This is accomplished by defining both the permittivity and permeability negative;
thus the name of DNG material. These concepts will be presented here analytically, but first an
outline will be created to lay the groundwork of metamaterials, at least as of this writing.

5.7.4 Propagation Characteristics of DNG Materials

Veselago in his seminal paper showed, using a slab of DNG material embedded into a host DPS
medium (the same DPS to the left and to the right of the DNG slab), that an impinging wave
emanating from a source to the left of the DNG slab will focus, creating caustics at two different
points (one within the DNG slab and the other one to the right of the DNG slab), as long as
the slab is sufficiently thick. This is accomplished by using, for the DNG slab, permittivity and
permeability that are of the same magnitudes but opposite signs as those of the host DPS medium
(&2 = —&1, o = —p1; index-of-refraction ny, = —ny). This is shown graphically in Figure 5-22,
and it is often referred to as the Veselago planar lens. This, of course, seemed very attractive and

] ——
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Figure 5-22 Veselago’s planar/flat lens: focusing by a DNG slab between two DPS materials [19].
Reprinted with permission from John Wiley & Sons, Inc.
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was probably one of the reasons the genesis of the renewed interest of modern metamaterials.
However, the Veselago planar lens was also analyzed using a classical method based on Fourier
transforms in the frequency domain, and the sinusoidal field exciting the lens expressed in terms
of even and odd resonant surface wave modes whose amplitudes were evaluated by residues at
the poles [28], Appendix D of [23]. Based on this analytical approach, the following observations
were made in [28], Appendix D of [23]: A CW sinusoidal source solution to “a lossless Veselago
flat lens with super resolution is not physically possible” because of the presence of surface waves
that produce divergent fields over a region within and near the Veselago lens. If losses are included,
the excited interfering surface wave modes will decay in a short time interval; however, the lens
resolution will depend on the losses, and it will be substantially reduced if they are moderate to
large [28], Appendix D of [23]. The analysis assumes that the incident field has a finite continuous
frequency spectrum, and the negative epsilon and mu are frequency dispersive, which Veselago
indicates are necessary for the field energy to be positive.

The time-domain solution to a frequency dispersive Veselago lens illuminated by a sinusoidal
source that begins at ¢+ = 0 has also been determined [29]. The time-domain fields remain finite
everywhere for finite time ¢ and approach the fields of a CW source only as t — oo. In particular,
the divergent fields encountered in the CW solution to the lossless Veselago lens are caused by
the infinite CW energy imparted (during the infinite amount of time between t — —oo and the
present time ¢) to the evanescent fields in the vicinity of the slab; analogous to the divergent
fields produced by a CW source inside a lossless cavity at a resonant frequency.

The work of Veselago remained dormant for about 30 years, and it was not until the late 1990s
when Pendry and his colleagues suggested that DNG materials could be created artificially by
using periodic structures [30—33]. Not long after Pendry, Smith and his collaborators [34—38]
built materials that exhibited DNG characteristics. This was accomplished by the use of a structure
consisting of split-ring resonators and wires, a unit cell of which is shown in Figure 5-23. It
was suggested that the split-ring element, of the type shown in Figure 5-23a, will contribute a
negative permeability while the infinite length wire of Figure 5-23b will contribute a negative
permittivity; the combination of the two will, in a periodic structure, contribute a negative index-
of-refraction. An experimental array of split-ring resonators and wires is shown in Figure 5-24.
In fact, Smith and his team claimed to have observed experimentally negative refraction. In [19]
this phenomenon was claimed to be radiation from either a surface wave characteristic of finite
periodic structures or possibly a sidelobe from the main beam [39].

Because of the immense interest in DNG materials, with negative permittivity and permeability,
there were a number of subsequent experiments, in addition to that in [38], to attempt to verify
the negative permittivity and permeability, and thus negative index-of-refraction. Some of these

(a) (b)

Figure 5-23 Simulation of DNG material (negative refraction) using split-ring resonators and wires.
(a) Split ring. (b) Wire.
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Figure 5-24 Simulation of DNG material (negative refraction) using split-ring resonators and wires [38].
“From R. A. Shelby, D. R. Smith, S. Shultz, ‘Experimental verification of a negative index-of-refraction,’
Science, vol. 292, pp. 77-79, April 2001. Reprinted with permission from AAAS.”

experiments, along with the corresponding references, are summarized in [40]. For the simulations,
a frequency-dispersive Drude model [13] was used to represent the negative permittivity of the
infinite wires while a frequency-dispersive Lorentz model [32] was utilized for the representation
of the negative permeability of the split-rings of Figure 5-23. The experiments consisted of
parallel plate waveguide techniques utilizing both metamaterial slabs and prisms [40], and most
of the measurements were carried out in the 4—20 GHz region. The refraction could be observed
by having the slab samples rotated or by having the plane wave incident at an oblique angle.
While the nearly plane wave incidence was easier to implement experimentally, the rotation of the
samples yield good experimental results. The use of prisms was also an alternative and popular
experiment. The metamaterial slabs and prisms were fabricated by embedding various geometrical
shapes to represent the characteristics of both wire and different shape split-ring inclusions. In
some of the experiments, the metamaterials included only split-ring type of inclusions to verify
the negative permeability. The use of an S-shaped unit cell in the metamaterial structure provided
an alternative geometry that simulated both a negative permittivity and permeability, and thus
did not require the straight wire to represent the negative permittivity; alternate S-ring designs
could also be used to possibly achieve dual frequency bands [40]. Gaussian beams and nearly
simulated plane waves were used to perform transmission and focusing experiments to validate
the negative index-of-refraction, using both dielectric and solid state structures. The solid state
metamaterial structures were introduced to minimize the mismatch losses (which were greater
for dielectric structures and led to low power levels), improve the mechanical fragility, and
make metamaterials more attractive for industrial applications [40]. It was reported that both the
transmission and focusing experiments produced results that indicated negative permittivity and
permeability, and thus, the creation of a negative effective index-of-refraction [40].

The attractive performance of devices and systems that incorporated metamaterials led to
the genesis of the enormous interest on the subject by many teams around the world, and the
avalanche of papers published in transactions and journals, presented in symposia and conferences,
and applied to numerous problems with exotic characteristics and performances. The word meta-
materials became a ‘household’ word in the electromagnetic community in the 2000-2010 time
period. This type of materials exhibit narrow bandwidths, which may have limited its applications.

5.7.5 Refraction and Propagation Through DNG Interfaces and Materials

Now that a brief historical and chronological background of the evolution of metamaterials
has been outlined, we will present a special case of what initially were referred to as artificial
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dielectrics, the basics from the analytical point of view as well as from a sample of simulations,
and experiments. It should be pointed out, however, that what ensued after the work by Pendry
and Smith was a plethora of publications which are too numerous to include here. Up to this
point an attempt was made to reference some of the most basic books and papers. The reader
is referred to the technical transactions, journals, and letters where most of these ensuing papers
were published or presented at leading international conferences and symposia. Most of these
can be found in references [41-46].

The greatest potential of the DNG materials is the creation of a structure with a negative
index-of-refraction n defined as

n? = e, = n = £ 5T = £V Te (D = G VEDGVIED = £ VTe i1
n=FIE ] (5-102)

Which sign of n should be chosen for DNG materials (with both ¢, and wu, negative)? It seems
from (5-102) that there are two basic choices; either negative or positive n. If a positive n is
selected, that resorts back to the DPS representation. If the negative value of n in (5-102) is
selected, then that is the basis of DNG materials.

Materials with negative index-of-refraction have some interesting properties, some of which
have been mentioned and illustrated in Figure 5-21. Now let us examine two interface options
using Snell’s law of refraction which is the manifest of phase match across the interface. Of
particular interest are materials with negative index-of-refraction.

e Snell’s law of refraction, represented by (5-15b) and (5-24b), or
B1sinb; = w\/1€; sin0; = B, sin6; = w./ 1€, sin b, (5-103)

can also be written as
ny sin6; = n, sin 6; (5-104)

When the index-of-refraction of both materials forming the interface is positive, then the
refracted ray (transmitted wave) will be, as expected for conventional materials, on the
same side (relative to the normal to the interface) as the reflected ray, as illustrated in
Figure 5-25a. However, when the index-of-refraction of one material is positive while that
of the other is negative, the refracted ray (transmitted wave) will be in the opposite direction
of the reflected ray, as illustrated in Figure 5-25b.

e For DNG materials with a negative index-of-refraction the phase constant (wave number) of
the wave traveling in the DNG material is negative, or based on the definition of (5-103)

B2 = w1282 = —wy/|ual e (5-105)

This implies that, for positive time, there will be a phase advance (phase wavefronts move
toward the source), instead of a phase delay that we have been accustomed to. This is an
interesting phenomenon, which has been part of the spirited dialogue.

So, based on the above, a negative index-of-refraction leads to:

e A refracted angle that is on the same side, relative to the normal to the interface, as the
incident angle, and the power flow (Poynting vector) is outward (as expected); however, the
phase vector in inward (opposite to the Poynting vector).

e Phase advance, instead of phase delay that is typical of DPS materials.

Based on the above, let us examine through an example a more general case of the planar lens
that was illustrated in Figure 5-22.



METAMATERIALS

DPS DPS
Transmitted
Reflected
0, o,
% >z
y
6;
Incident €2, U, 1y
&1 M1,
(a)
L X
DPS DNG
Reflected
0, y
N > 7
0; 0,
. —E€9, Mo, T
Incident
&1 M1,

Transmitted

(b)

235

Figure 5-25 Refraction by planar interface created by double positive (DPS) and double negative (DNG)

materials. (a¢) DPS-DPS. (b) DPS-DNG.
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Example 5-14

Figure 5-22 displays Veselago’s planar/flat lens. A more general one is the one of Figure 5-26 where a
DNG slab is sandwiched within free space. Given the dimensions of the DNG slab of thickness d and
the source position s, as shown in the Figure 5-26, determine the location of the foci (caustics) fy and f;
(one within the DNG slab and one outside it) in terms of the incidence angle 6;, position of the source s,
and thickness d and index-of-refraction n; of the DNG slab. Assume the DNG slab possesses negative
permittivity —e;, negative permeability — s, and negative index-of-refraction —n;. Furthermore, let us
assume that we are looking for a solution based on geometrical optics.

Solution: Using (5-103) through (5-105), we can write for the leading interface between free space

and the DNG slab that 1
6, = sin”! (— sin@,-)
71|

h
tan0; = - = h; = stan6;
s

Also from Figure 5-26

h
tanf; = -1 = hy = fotan 6,

Jo
Equating the two previous equations leads to

tan 6;
stan6; = fotan6) = fo = s
tan 6

s
= tanf; = — tan6;
1 fo

From Figure 5-26

h
tan 6y = 72 = hy = fi tan 6y
J1

h
tan0; = ﬁ = hy = (d — fp) tan 6,
—Jo

Equating the last two equations leads to

tan 6;

fitan8y = (d — fo) tan6y = fi = (d — fo) tan 6

which can also be expressed, assuming d > fy, as

Az f)tanOl —d—f) s tan6;
= 0 tan 6 a 0 fo tan 6y
Since 6y = 6;, the above equation reduces to
fi=@—fo)+
1=l —jo) =
Jo

As the magnitude of —¢; approaches that of free space (that is |—&;| — |eo| = |—n1| — |no| = 1),
the focal distance f; approaches s(fy — s) and f; approaches d — s(fi — d — s). Then Figure 5-26
reduces, in this limiting case, to Figure 5-22. When s becomes very large (approaching infinity), the
incident wave reduces to near normal incidence. In this case the focusing moves toward infinity (ideally
no focusing).
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Figure 5-26 DNG dielectric slab bounded on both sides by free space.
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Figure 5-27 Negative refraction from a DNG slab [48]. Copyright © by The Optical Society of America.
Permission and courtesy of R. W. Ziolkowski.

To illustrate the DNG refraction, a simulation has been performed, using the Finite-Difference
Time-Domain method, of a 30 GHz perpendicularly polarized CW Gaussian beam incident at
20° on a DNG slab bordered from the left and right by free space, as shown in Figure 5-27 [48].
Because the incident wave is a plane wave, there is no focusing. The index-of-refraction of the
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Figure 5-28 Reflection and transmission through a DNG slab.

DNG slab is n = —1, and it was chosen to minimize reflections. Identical electric and magnetic
Drude models were selected with parameters chosen so that only small losses were considered
[13, 48]. Assuming the stated parameters of the media, the negative refraction is visible at the
leading and trailing interfaces.

Another interesting observation will be to illustrate, through an example, the propagation
of a plane wave through a slab of metamaterial, of thickness d, when it is embedded into a
conventional dielectric material, as shown in Figure 5-28. This is similar to the problem for
ordinary dielectrics, illustrated in Figure 5-11. For convenience, it is assumed that in Figure 5-28
the media to the left and right of the metamaterial DNG slab are both conventional dielectrics
and identical. Also, at first we examine wave propagation at normal incidence, which is similar
to that of conventional dielectrics, shown in Figure 5-11. The phase vectors B (=—=) and
Poynting vectors S (=<----2% ) in each region are also indicated by their respective arrows. The
analytical formulation of the reflection and transmission coefficients follows.

Example 5-15

For the DNG geometry of Figure 5-28, derive a simplified expression for the total input reflection at
the initial interface and the total transmission coefficient through the entire DNG slab.

Solution: Using (5-67d), the total input reflection coefficient at the leading edge of the slab can be
written as
. [3=—T2 )
E’ [ip + Dpze@2d  m=m Ty (1 — e—ﬂﬂzd)
" E' 14 Mplpze4262d 1 — (Typ)2e 2k

which for a DNG slab, based on (5-105), reduces to

. Iy3=—T12 .
E" T+ Dyet2fd m=n" T, (1 — ¢H2k2l)
T Er 1 + [pTpseti2ifald 1 — (I'}2)2eti21B2ld
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since

N2 — N
Iy = [ i| = —TI'3
n2 + M

Similarly, it can be shown that the transmission coefficient can be written as [13]

_E dnpnze P2 1
E' (m+m) (2 +m3) (14 Tplazeh2d)
F3=—T12 )
E' _B=m Ampe Pl 1
T = ——— .
2 (m +m)? [1— (Tp)? e 7£2d]

which for the DNG slab reduces to

Iy3=-T12 .
E' _m=m Ap,netiPld 1

= — |
E? m +m)? [1 = (Tip)?eti26ld]

An interesting observation is made if the DNG dielectric slab of Example 5-15 is matched
to the medium it is embedded; that is, if n, = 5. For this case, I'j; = 0, and the total input
reflection and the transmission coefficients of Example 5-15 reduce, respectively, to

r=o (5-106a)
T — g H2iBld (5-106b)

The transmission coefficient of (5-106b) indicates a phase advance (phase wavefront moving
toward the source), instead of a phase delay as we are accustomed for wave propagation through
conventional materials. This wave propagation through DNG materials is a unique feature that
can be taken advantage of in various applications. As an example, the usual phase delay in
conventional dielectric slabs and/or transmission lines can be compensated by phase advance in
DNG type of slabs and/or transmission lines [13, 15, 16, 47] and others.

Now consider a uniform plane wave propagating at oblique incidence through a planar interface
consisting of two materials. The case where both media are DPS has been treated in Section 5.3.1
for perpendicular polarization (Figure 5-2) and in Section 5.3.2 for parallel polarization
(Figure 5-4). Now we will examine the wave propagation through a DNG medium; in this case
medium 2 is DNG, when the first medium is DPS. However, before this is done, the interface
formed by two DPS materials will be examined first. The planar interface formed by one DPS
and one DNG material is examined afterwards. Only the perpendicular polarization of Figure 5-2
is considered. The same procedure can be applied to Figure 5-4 for the parallel polarization.

Based on the geometry of Figure 5-2, the vector wavenumbers for the incident, reflected, and
transmitted fields can be written as

B; = B1 (4, sin6; + &, cos ;) = ny @ (4, sin6; + a, cosb;) (5-107a)
Vo

B, = By (4, sinf; — 4, cosb;) = nlg (4, sin6; — &, cosb;) (5-107b)
Vo

B; = B> (4, sin6; + 4, cosb;) = ngg (4, sin6; + 4, cosb;) (5-107¢)

Vo
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Using the expressions for the electric and magnetic fields of (5-10a) through (5-12b), the Poynting
vectors for the respective three fields (incident, reflected, and refracted) can be written as

1IE)”* . . .
S, = 5 (ay sin6; 4+ a, cosb;) (5-108a)
m
1 [TEy|?
s, = LITEoE 4 Ging, — &, cosb)) (5-108b)
2 m
1 |TEy|?
s,:§| ol (A, sin 6, + 4, cos 6,) (5-108c)
2

This is left as end-of-the-chapter exercises for the reader. It is apparent, from the vectors within
the parentheses in (5-107a) through (5-108c), that for a DPS-DPS interface the phase vectors and
the Poynting vectors for all three fields (incident, reflected, and refracted) are all parallel to each
other and in the same directions.

Now let us consider the same oblique incidence upon a DPS-DNG interface, as shown in
Figure 5-29. Snell’s law of refraction, which is given by (5-103) and (5-104), can be expressed
as

. W/ 11 . np . RS I [ I
sinf;, = ———sin#; = —sinf; = 6, = sin — sin6; (5-109)
w. /U282 ny np

For positive n; and ny, the angle 6, is positive, and everything follows what we already have
experienced with DPS materials. However, when n; and n, have opposite signs, the angle 6,
is negative, as indicated in Figures 5-25, 5-26, and 5-29, and simulated in Figure 5-27. Based
on these figures, whose interface is formed by a DPS and a DNG material (which leads to a
negative angle of refraction), we will examine the directions of the phase vectors of (5-107) and
Poynting vectors of (5-108) for the perpendicular polarization. The same can be done for the
parallel polarization. This is left as an end-of-the-chapter exercise for the reader.

XA

B, DPS
\'(817 u'l’nl) DNG
(=&2, =g, —11p)
N

El‘

A3
\
S,

Reflected 0,

Incident
Transmitted

Figure 5-29 Uniform plane wave reflection and refraction of perpendicular polarization by a planar inter-
face formed by DPS and DNG materials.
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Since for the interface of Figure 5-29 the index-of-refraction of medium 2 is negative and
the wavenumber is also negative, as expressed by (5-105), the wave vectors of (5-107a) and the
Poynting vectors of (5-108a) can now be written, respectively, as

B; = B1 (4, sinb; + &, cos ;) = ny d (4, sin6; + a, cosb;) (5-110a)
Vo
B, = B1 (4, sin6; — &, cos ;) = ny— (4, sin6; — 4, cos b)) (5-110b)
Vo
. A a) A . A
B: = |B2| (ay sin|6;| — &, cos |6;]) = |na] o (a, sin [6;| — 4, cos |6;]) (5-110c¢)
0
1|E)* . . A
Si =+ (a, sin6; + a, cost);) (5-111a)
2m
1|TE> . A
S, =3 (4, sinf; — &, cos 6;) (5-111b)
2 m
1|TE)> . .
S, = 5 (—a, sin |6;| + 4, cos |6;]) (5-111c¢)
Up

While the wave and Poynting vectors of the incident and reflected fields are unaffected by the
presence of the DNG material forming the interface in Figure 5-29 [they are the same as in
(5-107) and (5-108)], those of the transmitted fields, as represented by (5-110c) and (5-111c) are
different from the corresponding ones of (5-107c) and (5-108c) in two ways.

The first difference is that the wave vector of (5-110c) is antiparallel to the Poynting vector
of (5-111c), whereas they were parallel for (5-107c) and (5-108c). Also, for positive time, the
wavenumber of (5-107c¢) leads to a phase delay, but the wavenumber of (5-110c) leads to a phase
advance. In addition, while the phase vector of (5-107c) and the Poynting vector of (5-108c)
are both directed away from the source (point of refraction in the first quadrant), the Poynting
vector of (5-111c) is also directed away from the source, but in the fourth quadrant. These are
also illustrated graphically in Figures 5-21a and 5-21b. These are some of the similarities and
differences in the transmitted fields for DPS-DPS and DPS-DNG interfaces.

5.7.6 Negative-Refractive-Index (NRI) Transmission Lines

Another application of the DNG material is the design of Negative-Refractive-Index Transmission
Lines (NRI-TL) [15, 16, 47]. This concept can be used to design:

e nonradiating phase-shifting lines that can produce either positive or negative phase shift
e broadband series power dividers
e forward leaky-wave antennas

and other applications [16]. When a wave propagates through a DPS medium, like in a conven-
tional dielectric slab of thickness dj, it will accumulate phase lag |¢,| of 81d;(¢; = —pB:1d}), also
referred to as negative phase shift, where §; is the phase constant (wave number). This negative
phase shift can be compensated by a positive phase shift ¢, (¢ = +|B2]d») through a DNG
slab that follows the DPS slab. In fact, ideally, the negative phase shift accumulated through
propagation in the DPS slab (¢; = —f;d|) can be totally eliminated if the positive phase ¢,
(¢2 = +|B2|d>) can be created by propagation through the DNG slab such that |¢;| = |¢,] so that
the total phase ¢ by wave propagation through both slabs is equal to zero (¢ = ¢; + ¢ = 0).
Such an arrangement is shown graphically in Figure 5-30 where the arrows are used to designate
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Figure 5-30 Wave propagation through two successive dielectric slabs, one made of DPS material and
the other, of DNG material, for phase wave compensation.

the directions of the phase vectors 8 and the Poynting vectors S. This phase compensation can
also be used to create any other desired total phase shift by appropriately choosing the phase
constants and thicknesses of the DPS and DNG slabs. The special case of zero phase shift of
wave propagation through both slabs is accomplished provided

61| = wy/iiErd: = Il = 0y al [e2lds = nidy = nady = % = % (5-112)

A graphical illustration of such phase compensation of the electric field intensity of a perpen-
dicularly polarized field, simulated using the FDTD method, is exhibited in Figure 5-31 [13]. The
incident field is a Gaussian beam traveling in a free-space medium and normally incident upon
the DPS slab followed by a DNG slab. The indices of refraction were chosen to be ngeq(w) = +3
for the DPS slab and n,(w) = —3 for the DNG slab. Observing the phase fronts of the beam
inside the two slabs, it is evident that the beam expands (diverges) in the DPS slab while it
refocuses (converges) in the DNG slab. Ultimately, the phase fronts of the exiting beam in the
free-space medium to the right of the DNG slab begin to expand and match those of the incident
field to the left of the DPS slab. According to [13], there was only 0.323 dB attenuation of wave
propagation through the two slabs that span a total distance of 4A,. However, the total phase
accumulation from the leading edge of the DPS slab to the trailing edge of the DNG slab is zero.
Thus, the output field exits the trailing edge, along the symmetry line of the source/beam which
is perpendicular to the interface, with the same phase as the input field and with only a slight
attenuation in the peak value of about of 0.323 dB, which is due to a small loss in the medium
and to the Gaussian beam diverging from the source. While the negative (second) layer refocuses
the beam, the small loss by the first layer is not totally compensated by the second layer and
leads to the slight attenuation at the output face of the system. Such an arrangement of slabs is
usually referred to, for obvious reasons, as a beam translator [13].

This phase compensation concept can also be applied to compensate for negative phase shift
by wave propagation through a conventional DPS transmission line followed by a NRI line
with DNG material, often referred to as BW (backward-wave) line, as shown graphically in
Figure 5-32 [16].
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Figure 5-31 Phase compensation by successive conventional DPS and DNG slabs [13]. Reprinted with
permission from John Wiley & Sons, Inc. Original courtesy of R. W. Ziolkowski.
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Figure 5-32 Phase compensation by successive conventional and backward-wave transmission lines [16].
Reprinted with permission from John Wiley & Sons, Inc. Originals courtesy of G. V. Eleftheriades and
M. Antoniades. (a) Conventional transmission line followed by a backward-wave line. (b) Equivalent circuit
of conventional transmission line followed by a backward-wave line.
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Figure 5-33 Experimental units, and simulated and measured responses of two- and four-stage phase
shifting lines [16]. Reprinted with permission from John Wiley & Sons, Inc. Originals courtesy of G. V.
Eleftheriades and M. Antoniades. (a) Two-stage phase shifting line (16 mm) (top) and a four-stage phase-
shifting line (32 mm) both at 0.9 GHz [16]. (b) Phase and magnitude responses of a two-stage and four-stage
phase-shifting lines compared to conventional —360° TL and a —360° low-pass loaded line at 0.9 GHz [16].
Phase: ————— Measured ——— Simulated (Agilent ADS)

Magnitude: —-—-—- Measured ——— Simulated (Agilent ADS)

In Figure 5-32b the equivalent circuit of BW line indicates that the phase advance through the

unit cell of a BW line is given by
1

dpw = oViC

which is representative of the phase through a high-pass LC filter of the type shown in the unit
cell of the BW line in Figure 5-32b. Such a backward type of a wave, for the equivalent circuit
of the backward section of the line, has also been addressed in [49], which states that “a wave in
which the phase velocity and group velocity have opposite signs is known as a backward wave.
Conditions for these may seem unexpected or rare, but they are not.” In fact, it is also stated

(5-113)
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in [49] that many filter type of lines have backward waves and that periodic circuits exhibit an
equal number of forward and backward “space harmonics.”

The low-pass filter (regular transmission line) and high-pass filter (backward-wave line) char-
acteristics can be verified using the Brillouin dispersion diagram [49, 50], which is a plot of
vs. B with the phase velocity defined as

@ (5-114)
vV, — — -
"B
while the group velocity is defined as
ow
vg = — (5-115)
ap

For the regular transmission type line v, and v, have the same sign while for the backward-wave
type of line, v, and v, have opposite signs.

Therefore, it seems that in Figure 5-32 there is a low-pass filter (conventional) line followed
by a high-pass filter (BW line) with a total phase shift for the two of

dmt™ = G1L + PBW = —wVLCd + (5-116)

1
w+/L,C,
The transmission line is of the delay type while the backward-wave line is of the phase advance
type.

Various one-dimensional phase-shifting lines were constructed at 0.9 GHz using coplanar
waveguide (CPW) technology [16]. Two such units, one a two-stage and the other a four-stage
phase shifters, are shown in Figure 5-33a. The corresponding simulated and measured phase
responses of both units are shown in Figure 5-33H where they are compared with the phase
responses of a conventional —360° TL line and a —360° low-pass loaded line. The corresponding
magnitudes of both units of 0° phase shift are also indicated in Figure 5-33b. A good comparison
is observed between the simulated and measured results and confirms the broadband nature of
the phase shifting lines which also exhibit rather small losses [16].

5.8 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, and presentation of the material of this chapter.

e MATLAB computer programs:

a. SWR_Animation_I'_SWR_Impedance: Animates the standing wave pattern of a plane
wave traveling in a semi-infinite lossless medium and impinging, at normal incidence,
upon a planar interface formed by two semi-infinite planar media; the second medium
can be lossy (see Figure 5-1). It also computes the input reflection coefficient I, SWR,
and input impedance.

b. QuarterWave_Match: Designs a quarter-wavelength impedance transformer of N slabs
to match a given semi-infinite medium (input) to another semi-infinite medium (load).

c. Single_Slab: Characterizes the reflection and transmission characteristics of a single layer
slab bounded on both sides by two semi-infinite media.

d. Refl_Trans_Multilayer: Computes the reflection and transmission coefficients of a uni-
form plane wave incident at oblique angle upon N layers of planar slabs bordered on
either side by free space.

e. Polarization_Refl_Trans: Computes the Poincaré sphere angles, and thus, the polariza-
tion, of a plane wave incident at oblique angles upon a planar interface.

e Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

5.1. A uniform plane wave traveling in a dielec- write the:

tric medium with ¢, = 4 and u, = 1 is inci-
dent normally upon a free-space medium. If
the incident electric field is given by

E' =42 x 10727/ V/m

(a) Corresponding incident magnetic field.
(b) Reflection and transmission coefficients.
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5.2

5.3.

54.
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(c) Reflected and transmitted electric and
magnetic fields.

(d) Incident, reflected, and transmitted po-
wer densities.

XA
&= 4 €0, Mo
M= 1
G&—>
y z
Figure P5-1

The dielectric constant of water is 81.
Calculate the percentage of power density
reflected and transmitted when a uniform
plane wave traveling in air is incident nor-
mally upon a calm lake. Assume that the
water in the lake is lossless.

A uniform plane wave propagating in a me-
dium with relative permittivity of 4 is inci-
dent normally upon a dielectric medium with
dielectric constant of 9. Assuming both media
are nonferromagnetic and lossless, determine
the:

(a) Reflection and transmission coefficients.
(b) Percentage of incident power density

that is reflected and transmitted.

A vertical interface is formed by having
free space to its left and a lossless dielec-
tric medium to its right with ¢ = 4¢y and
W = [Lo, as shown in Figure P5-4. The inci-
dent electric field of a uniform plane wave
traveling in the free-space medium and inci-
dent normally upon the interface has a value
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of 2 x 1073 V/m right before it strikes the

boundary. At a frequency of 3 GHz, find the:

(a) Reflection coefficient.

(b) SWR in the free-space medium.

(c) Positions (in meters) in the free-space
medium where the electric field maxima
and minima occur.

(d) Maximum and minimum values of the
electric field in the free-space medium.

A uniform plane wave traveling in air is
incident upon a flat, lossless, and infinite in
extent dielectric interface with a dielectric
constant of 4. In the air medium, a standing
wave is formed. If the normalized magnitude
of the incident E-field is E, = 1, determine
the:

(a) Maximum value of the E-field standing
wave pattern in air.

(b) Shortest distance !/ (in A,) from the
interface where the first maximum in the
E- field standing wave pattern will occur
(normalized to the incident field).

(c) Minimum value of the E-field standing
wave pattern in air (normalized to the
incident field).

(d) Shortest distance [/ (in XA,) in air from
the interface where the first minimum
in the E-field standing wave pattern will
occur (normalized to the incident field).

(e) Standing Wave Ratio (SWR) measured
in the air medium.

(f) Input wave impedance inside the air
medium where the:

1. First maximum in the E-field stand-
ing wave pattern occurs.

2. First minimum in the E-field standing
wave pattern occurs.

A CW circularly-polarized wave of f =
100 MHz of the form

E'(z) = (4 —ja,) e 7o

where z is in meters, is traveling inside a

lossless dielec