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Preface

Because of the immense interest in and success of the first edition, the second edition of Advanced
Engineering Electromagnetics has maintained all the attractive features of the first edition. This
edition contains many new features and additions, in particular:

• A new chapter, Chapter 14, on diffraction by a wedge with impedance surfaces
• A section on double negative (DNG) metamaterials (Section 5.7)
• A section on artificial impedance surfaces (AIS, EBG, PBG, HIS, AMC, PMC) (Section 8.8)
• Additional smaller inserts throughout the book
• New figures, photos, and tables
• Additional examples and numerous end-of-chapter problems

Purchase of this book also provides you with access to a password-protected website that contains
supplemental multimedia resources. Open the sealed envelope attached to the book, go to the
URL below and, when prompted, enter the unique code printed on the registration card:

[http://placeholder.for.actual.url.tk.com]

Multimedia material include:

• PowerPoint view graphs in multicolor, over 4,200, of lecture notes for each of the fifteen
chapters

• Forty-eight MATLAB R© computer programs (most of them new; the four Fortran programs
from the first edition were translated to MATLAB R©)

Given the space limitations, the added material supplements, expands, and reinforces the ana-
lytical methods that were, and continue to be, the main focus of this book. The analytical methods
are the foundation of electromagnetics and provide understanding and physical interpretation of
electromagnetic phenomena and interactions. Although numerical and computational methods
have, especially in the last four decades, played a key role in the solution of complex elec-
tromagnetic problems, they are highly dependent on fundamental principles. Not understanding
the basic fundamentals of electromagnetics, represented by analytical methods, may lead to the
lack of physical realization, interpretation and verification of simulated results. In fact, there are
a plethora of personal and commercial codes that are now available, and they are expanding
very rapidly. Users are now highly dependent on these codes, and we seem to lose focus on the
interpretation and physical realization of the simulated results because, possibly, of the lack of
understanding of fundamental principles. There are numerous books that address numerical and
computational methods, and this author did not want to repeat what is already available in the lit-
erature, especially with space limitations. Only the moment method (MM), in support of Integral

xvii



xviii PREFACE

Equations (IEs), and Diffraction Theory (GTD/UTD) are included in this book. However, to aid in
the computation, simulation and animation of results based on analytical formulations included
in this book, even provide some of the data in graphical form, forty-eight basic MATLAB R©
computer programs have been developed and are included in the website that is part of this book.

The first edition was based on material taught on a yearly basis and notes developed over nearly
20 years. This second edition, based on an additional 20 years of teaching and development of
notes and multimedia (for a total of over 40 years of teaching), refined any shortcomings of
the first edition and added: a new chapter, two new complete sections, numerous smaller inserts,
examples, numerous end-of-chapter problems, and Multimedia (including PPT notes, MATLAB R©
computer programs for computations, simulations, visualization, and animation). The four Fortran
programs from the first edition were translated in MATLAB R©, and numerous additional ones
were developed only in MATLAB R©. These are spread throughout Chapters 4 through 14. The
revision of the book also took into account suggestions of nearly 20 reviewers selected by
the publisher, some of whom are identified and acknowledged based on their approval. The
multicolor PowerPoint (PPT) notes, over 4,200 viewgraphs, can be used as ready-made lectures
so that instructors will not have to labor at developing their own notes. Instructors also have the
option to add PPT viewgraphs of their own or delete any that do not fit their class objectives.

The book can be used for at least a two-semester sequence in Electromagnetics, beyond an
introduction to basic undergraduate EM. Although the first part of the book in intended for senior
undergraduates and beginning graduates in electrical engineering and physics, the later chapters
are targeted for advanced graduate students and practicing engineers and scientists. The majority
of Chapters 1 through 10 can be covered in the first semester, and most of Chapter 11 through 15
can be covered in the second semester. To cover all of the material in the proposed time frame
would be, in many instances, an ambitious task. However, sufficient topics have been included
to make the text complete and to allow instructors the flexibility to emphasize, de-emphasize, or
omit sections and/or chapters. Some chapters can be omitted without loss of continuity.

The discussion presumes that the student has general knowledge of vector analysis, differential
and integral calculus, and electromagnetics either from at least an introductory undergraduate
electrical engineering or physics course. Mathematical techniques required for understanding
some advanced topics, mostly in the later chapters, are incorporated in the individual chapters or
are included as appendixes.

Like the first edition, this second edition is a thorough and detailed student-oriented book. The
analytical detail, rigor, and thoroughness allow many of the topics to be traced to their origin,
and they are presented in sufficient detail so that the students, and even the instructors, will
follow the analytical developments. In addition to the coverage of traditional classical topics,
the book includes state of the art advanced topics on DNG Metamaterials, Artificial Impedance
Surfaces (AIS, EBG, PBG, HIS, AMC, PMC), Integral Equations (IE), Moment Method (MM),
Geometrical and Uniform Theory of Diffraction (GTD/UTD) for PEC and impedance surfaces,
and Green’s functions. Electromagnetic theorems, as applied to the solution of boundary-value
problems, are also included and discussed.

The material is presented in a methodical, sequential, and unified manner, and each chapter is
subdivided into sections or subsections whose individual headings clearly identify the topics dis-
cussed, examined, or illustrated. The examples and end-of-chapter problems have been designed
to illustrate basic principles and to challenge the knowledge of the student. An exhaustive list of
references is included at the end of each chapter to allow the interested reader to trace each topic.
A number of appendixes of mathematical identities and special functions, some represented also
in tabular and graphical forms, are included to aid the student in the solution of the examples
and assigned end-of-chapter problems. A solutions manual for all end-of-chapter problems is
available exclusively to instructors.
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ative index of refraction, referred to as double negative, DNG). Chapter 6 covers the auxiliary
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functions. The classic topic of Green’s functions is introduced and applied in Chapter 15.
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chapters. The International System of Units, which is an expanded form of the rationalized MKS
system, is used throughout the text. In some instances, the units of length are given in meters (or
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in brackets [ ] refer to references. For emphasis, the most important equations, once they are
derived, are boxed.
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CHAPTER 1
Time-Varying and Time-Harmonic

Electromagnetic Fields

1.1 INTRODUCTION

Electromagnetic field theory is a discipline concerned with the study of charges, at rest and in
motion, that produce currents and electric-magnetic fields. It is, therefore, fundamental to the
study of electrical engineering and physics and indispensable to the understanding, design, and
operation of many practical systems using antennas, scattering, microwave circuits and devices,
radio-frequency and optical communications, wireless communications, broadcasting, geosciences
and remote sensing, radar, radio astronomy, quantum electronics, solid-state circuits and devices,
electromechanical energy conversion, and even computers. Circuit theory, a required area in the
study of electrical engineering, is a special case of electromagnetic theory, and it is valid when
the physical dimensions of the circuit are small compared to the wavelength. Circuit concepts,
which deal primarily with lumped elements, must be modified to include distributed elements and
coupling phenomena in studies of advanced systems. For example, signal propagation, distortion,
and coupling in microstrip lines used in the design of sophisticated systems (such as computers and
electronic packages of integrated circuits) can be properly accounted for only by understanding
the electromagnetic field interactions associated with them.

The study of electromagnetics includes both theoretical and applied concepts. The theoretical
concepts are described by a set of basic laws formulated primarily through experiments conducted
during the nineteenth century by many scientists—Faraday, Ampere, Gauss, Lenz, Coulomb,
Volta, and others. They were then combined into a consistent set of vector equations by Maxwell.
These are the widely acclaimed Maxwell’s equations . The applied concepts of electromagnetics
are formulated by applying the theoretical concepts to the design and operation of practical
systems.

In this chapter, we will review Maxwell’s equations (both in differential and integral forms),
describe the relations between electromagnetic field and circuit theories, derive the boundary
conditions associated with electric and magnetic field behavior across interfaces, relate power and
energy concepts for electromagnetic field and circuit theories, and specialize all these equations,
relations, conditions, concepts, and theories to the study of time-harmonic fields.

1.2 MAXWELL’S EQUATIONS

In general, electric and magnetic fields are vector quantities that have both magnitude and
direction. The relations and variations of the electric and magnetic fields, charges, and cur-
rents associated with electromagnetic waves are governed by physical laws, which are known

1
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as Maxwell’s equations. These equations, as we have indicated, were arrived at mostly through
various experiments carried out by different investigators, but they were put in their final form
by James Clerk Maxwell, a Scottish physicist and mathematician. These equations can be written
either in differential or in integral form.

1.2.1 Differential Form of Maxwell’s Equations

The differential form of Maxwell’s equations is the most widely used representation to solve
boundary-value electromagnetic problems. It is used to describe and relate the field vectors, current
densities, and charge densities at any point in space at any time. For these expressions to be valid,
it is assumed that the field vectors are single-valued, bounded, continuous functions of position
and time and exhibit continuous derivatives . Field vectors associated with electromagnetic waves
possess these characteristics except where there exist abrupt changes in charge and current densi-
ties. Discontinuous distributions of charges and currents usually occur at interfaces between media
where there are discrete changes in the electrical parameters across the interface. The variations of
the field vectors across such boundaries (interfaces) are related to the discontinuous distributions
of charges and currents by what are usually referred to as the boundary conditions . Thus a com-
plete description of the field vectors at any point (including discontinuities) at any time requires
not only Maxwell’s equations in differential form but also the associated boundary conditions .

In differential form, Maxwell’s equations can be written as

∇ × � = −�i − ∂�

∂t
= −�i − �d = −�t (1-1)

∇ × � = �i + �c + ∂�

∂t
= �ic + ∂�

∂t
= �ic + �d = �t (1-2)

∇ • � = q
ev

(1-3)

∇ • � = q
mv

(1-4)

where

�ic = �i + �c (1-5a)

�d = ∂�

∂t
(1-5b)

�d = ∂�

∂t
(1-5c)

All these field quantities—�, �, �, �, �, �, and q
v

—are assumed to be time-varying, and
each is a function of the space coordinates and time, that is, � = � (x , y , z ; t). The definitions
and units of the quantities are

� = electric field intensity (volts/meter)
� = magnetic field intensity (amperes/meter)
� = electric flux density (coulombs/square meter)
� = magnetic flux density (webers/square meter)
�i = impressed (source) electric current density (amperes/square meter)
�c = conduction electric current density (amperes/square meter)
�d = displacement electric current density (amperes/square meter)
�i = impressed (source) magnetic current density (volts/square meter)
�d = displacement magnetic current density (volts/square meter)
q

ev
= electric charge density (coulombs/cubic meter)

q
mv

= magnetic charge density (webers/cubic meter)
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The electric displacement current density �d = ∂�/∂t was introduced by Maxwell to complete
Ampere’s law for statics, ∇ × � = �. For free space, �d was viewed as a motion of bound
charges moving in “ether,” an ideal weightless fluid pervading all space. Since ether proved to be
undetectable and its concept was not totally reasonable with the special theory of relativity, it has
since been disregarded. Instead, for dielectrics, part of the displacement current density has been
viewed as a motion of bound charges creating a true current. Because of this, it is convenient to
consider, even in free space, the entire ∂�/∂t term as a displacement current density.

Because of the symmetry of Maxwell’s equations, the ∂�/∂t term in (1-1) has been des-
ignated as a magnetic displacement current density. In addition, impressed (source) magnetic
current density �i and magnetic charge density q

mv
have been introduced, respectively, in

(1-1) and (1-4) through the “generalized” current concept. Although we have been accustomed to
viewing magnetic charges and impressed magnetic current densities as not being physically real-
izable, they have been introduced to balance Maxwell’s equations. Equivalent magnetic charges
and currents will be introduced in later chapters to represent physical problems. In addition,
impressed magnetic current densities, like impressed electric current densities, can be considered
energy sources that generate fields whose expressions can be written in terms of these current
densities. For some electromagnetic problems, their solution can often be aided by the introduc-
tion of “equivalent” impressed electric and magnetic current densities. The importance of both
will become more obvious to the reader as solutions to specific electromagnetic boundary-value
problems are considered in later chapters. However, to give the reader an early glimpse of the
importance and interpretation of the electric and magnetic current densities, let us consider two
familiar circuit examples.

In Figure 1-1a , an electric current source is connected in series to a resistor and a parallel-
plate capacitor. The electric current density �i can be viewed as the current source that generates
the conduction current density �c through the resistor and the displacement current density �d
through the dielectric material of the capacitor. In Figure 1-1b, a voltage source is connected to a
wire that, in turn, is wrapped around a high-permeability magnetic core. The voltage source can
be viewed as the impressed magnetic current density that generates the displacement magnetic
current density through the magnetic material of the core.

In addition to the four Maxwell’s equations, there is another equation that relates the variations
of the current density �ic and the charge density q

ev
. Although not an independent relation, this

equation is referred to as the continuity equation because it relates the net flow of current out of
a small volume (in the limit, a point) to the rate of decrease of charge. It takes the form

∇ • �ic = −∂q
ev

∂t
(1-6)

The continuity equation 1-6 can be derived from Maxwell’s equations as given by (1-1) through
(1-5c).

1.2.2 Integral Form of Maxwell’s Equations

The integral form of Maxwell’s equations describes the relations of the field vectors, charge
densities, and current densities over an extended region of space. They have limited applications,
and they are usually utilized only to solve electromagnetic boundary-value problems that possess
complete symmetry (such as rectangular, cylindrical, spherical, etc., symmetries). However, the
fields and their derivatives in question do not need to possess continuous distributions .

The integral form of Maxwell’s equations can be derived from its differential form by utilizing
the Stokes’ and divergence theorems . For any arbitrary vector A, Stokes’ theorem states that the
line integral of the vector A along a closed path C is equal to the integral of the dot product of
the curl of the vector A with the normal to the surface S that has the contour C as its boundary .
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Dielectric
slab

(a)

(b)

�i

�c

�d

�i

�d

Figure 1-1 Circuits with electric and magnetic current densities. (a) Electric current density. (b) Magnetic
current density.

In equation form, Stokes’ theorem can be written as∮
C

A • d� =
∫∫

S
(∇ × A) • ds (1-7)

The divergence theorem states that, for any arbitrary vector A, the closed surface integral of the
normal component of vector A over a surface S is equal to the volume integral of the divergence of
A over the volume V enclosed by S . In mathematical form, the divergence theorem is stated as

#S
A • ds =

∫∫∫
V

∇ • A dv (1-8)

Taking the surface integral of both sides of (1-1), we can write∫∫
S
(∇ × �) • ds = −

∫∫
S

�i • ds −
∫∫

S

∂�

∂t
• ds = −

∫∫
S

�i • ds − ∂

∂t

∫∫
S

�i • ds (1-9)

Applying Stokes’ theorem, as given by (1-7), on the left side of (1-9) reduces it to∮
C

� • d� = −
∫∫

S
�i • ds − ∂

∂t

∫∫
S

� • ds (1-9a)
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which is referred to as Maxwell’s equation in integral form as derived from Faraday’s law . In the
absence of an impressed magnetic current density, Faraday’s law states that the electromotive
force (emf) appearing at the open-circuited terminals of a loop is equal to the time rate of decrease
of magnetic flux linking the loop.

Using a similar procedure, we can show that the corresponding integral form of (1-2) can be
written as ∮

C
� • d� =

∫∫
S

�ic • ds + ∂

∂t

∫∫
S

� • ds =
∫∫

S
�ic • ds +

∫∫
S

�d • ds (1-10)

which is usually referred to as Maxwell’s equation in integral form as derived from Ampere’s law.
Ampere’s law states that the line integral of the magnetic field over a closed path is equal to the
current enclosed.

The other two Maxwell equations in integral form can be obtained from the corresponding
differential forms, using the following procedure. First take the volume integral of both sides of
(1-3); that is, ∫∫∫

V
∇ • � dv =

∫∫∫
V

q
ev

dv = �e (1-11)

where �e is the total electric charge. Applying the divergence theorem, as given by (1-8), on the
left side of (1-11) reduces it to

#S
� • ds =

∫∫∫
V

q
ev

dv = �e (1-11a)

which is usually referred to as Maxwell’s electric field equation in integral form as derived from
Gauss’s law. Gauss’s law for the electric field states that the total electric flux through a closed
surface is equal to the total charge enclosed.

In a similar manner, the integral form of (1-4) is given in terms of the total magnetic charge
�m by

#S
� • ds = �m (1-12)

which is usually referred to as Maxwell’s magnetic field equation in integral form as derived from
Gauss’s law . Even though magnetic charge does not exist in nature, it is used as an equivalent
to represent physical problems. The corresponding integral form of the continuity equation, as
given by (1-6) in differential form, can be written as

#S
�ic • ds = − ∂

∂t

∫∫∫
V

q
ev

dv = −∂�e

∂t
(1-13)

Maxwell’s equations in differential and integral form are summarized and listed in Table 1-1.

1.3 CONSTITUTIVE PARAMETERS AND RELATIONS

Materials contain charged particles, and when these materials are subjected to electromagnetic
fields, their charged particles interact with the electromagnetic field vectors, producing currents
and modifying the electromagnetic wave propagation in these media compared to that in free
space. A more complete discussion of this is in Chapter 2. To account on a macroscopic scale for
the presence and behavior of these charged particles, without introducing them in a microscopic
lattice structure, we give a set of three expressions relating the electromagnetic field vectors.
These expressions are referred to as the constitutive relations , and they will be developed in
more detail in Chapter 2.
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TABLE 1-1 Maxwell’s equations and the continuity equation in differential and integral forms for
time-varying fields

Differential form Integral form

∇ × � = −�i − ∂�
∂t

∮
C

� · d� = −
∫∫

S
�i · ds − ∂

∂t

∫∫
S

� · ds

∇ × � = �i + �c + ∂�
∂t

∮
C

� · d� =
∫∫

S
�i · ds +

∫∫
S

�c · ds + ∂

∂t

∫∫
S

� · ds

∇ · � = q
ev #S

� · ds = �e

∇ · � = q
mv #S

� · ds = �m

∇ · �ic = −∂q
ev

∂t #S
�ic · ds = − ∂

∂t

∫∫∫
V

q
ev

dv = −∂�e

∂t

One of the constitutive relations relates in the time domain the electric flux density � to the
electric field intensity � by

� = ε̂ ∗ � (1-14)

where ε̂ is the time-varying permittivity of the medium (farads/meter) and ∗ indicates convolution.
For free space

ε̂ = ε0 = 8.854×10−12 � 10−9

36π
(farads/meter) (1-14a)

and (1-14) reduces to a product.
Another relation equates in the time domain the magnetic flux density � to the magnetic field

intensity � by
� = μ̂ ∗ � (1-15)

where μ̂ is the time-varying permeability of the medium (henries/meter). For free space

μ̂ = μ0 = 4π×10−7 (henries/meter) (1-15a)

and (1-15) reduces to a product.
Finally, the conduction current density �c is related in the time domain to the electric field

intensity � by
�c = σ̂ ∗ � (1-16)

where σ̂ is the time-varying conductivity of the medium (siemens/meter). For free space

σ̂ = 0 (1-16a)

In the frequency domain or for frequency nonvarying constitutive parameters, the relations (1-14),
(1-15) and (1-16) reduce to products. For simplicity of notation, they will be indicated everywhere
from now on as products, and the caret ( )̂ in the time-varying constitutive parameters will be
omitted.

Whereas (1-14), (1-15), and (1-16) are referred to as the constitutive relations , ε̂, μ̂ and σ̂ are
referred to as the constitutive parameters , which are, in general, functions of the applied field
strength, the position within the medium, the direction of the applied field, and the frequency of
operation.



Balanis c01.tex V3 - 11/22/2011 3:03 P.M. Page 7

CIRCUIT-FIELD RELATIONS 7

The constitutive parameters are used to characterize the electrical properties of a material.
In general, materials are characterized as dielectrics (insulators), magnetics , and conductors ,
depending on whether polarization (electric displacement current density), magnetization (mag-
netic displacement current density), or conduction (conduction current density) is the predominant
phenomenon. Another class of material is made up of semiconductors , which bridge the gap
between dielectrics and conductors where neither displacement nor conduction currents are, in
general, predominant. In addition, materials are classified as linear versus nonlinear, homoge-
neous versus nonhomogeneous (inhomogeneous), isotropic versus nonisotropic (anisotropic), and
dispersive versus nondispersive, according to their lattice structure and behavior. All these types
of materials will be discussed in detail in Chapter 2.

If all the constitutive parameters of a given medium are not functions of the applied field
strength, the material is known as linear ; otherwise it is nonlinear . Media whose constitu-
tive parameters are not functions of position are known as homogeneous; otherwise they are
referred to as nonhomogeneous (inhomogeneous). Isotropic materials are those whose constitu-
tive parameters are not functions of direction of the applied field; otherwise they are designated
as nonisotropic (anisotropic). Crystals are one form of anisotropic material. Material whose con-
stitutive parameters are functions of frequency are referred to as dispersive; otherwise they are
known as nondispersive. All materials used in our everyday life exhibit some degree of disper-
sion, although the variations for some may be negligible and for others significant. More details
concerning the development of the constitutive parameters can be found in Chapter 2.

1.4 CIRCUIT-FIELD RELATIONS

The differential and integral forms of Maxwell’s equations were presented, respectively, in
Sections 1.2.1 and 1.2.2. These relations are usually referred to as field equations , since the
quantities appearing in them are all field quantities . Maxwell’s equations can also be written in
terms of what are usually referred to as circuit quantities; the corresponding forms are denoted
circuit equations . The circuit equations are introduced in circuit theory texts, and they are special
cases of the more general field equations.

1.4.1 Kirchhoff’s Voltage Law

According to Maxwell’s equation 1-9a, the left side represents the sum voltage drops (use the
convention where positive voltage begins at the start of the path) along a closed path C , which
can be written as ∑

v =
∮

C
� • d� (volts) (1-17)

The right side of (1-9a) must also have the same units (volts) as its left side. Thus, in the absence
of impressed magnetic current densities (�i = 0), the right side of (1-9a) can be written as

− ∂

∂t

∫∫
S

� • ds = −∂ψm

∂t
= − ∂

∂t
(Ls i ) = −Ls

∂i

∂t
(webers/second = volts) (1-17a)

because by definition ψm = Ls i where Ls is an inductance (assumed to be constant) and i is the
associated current. Using (1-17) and (1-17a), we can write (1-9a) with �i = 0 as∑

v = −∂ψm

∂t
= − ∂

∂t
(Ls i ) = −Ls

∂i

∂t
(1-17b)

Equation 1-17b states that the voltage drops along a closed path of a circuit are equal to the time
rate of change of the magnetic flux passing through the surface enclosed by the closed path, or
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equal to the voltage drop across an inductor Ls that is used to represent the stray inductance of
the circuit. This is the well-known Kirchhoff loop voltage law , which is used widely in circuit
theory, and its form represents a circuit relation. Thus we can write the following field and circuit
relations:

Field Relation Circuit Relation∮
C

� • d� = − ∂

∂t

∫∫
S

� • ds = −∂ψm

∂t
⇔

∑
v = −∂ψm

∂t
= −Ls

∂i

∂t
(1-17c)

In lumped-element circuit analysis, where usually the wavelength is very large (or the dimen-
sions of the total circuit are small compared to the wavelength) and the stray inductance of the
circuit is very small, the right side of (1-17b) is very small and it is usually set equal to zero. In
these cases, (1-17b) states that the voltage drops (or rises) along a closed path are equal to zero,
and it represents a widely used relation to electrical engineers and many physicists.

To demonstrate Kirchhoff’s loop voltage law, let us consider the circuit of Figure 1-2 where
a voltage source and three ideal lumped elements (a resistance R, an inductor L, and a capacitor
C ) are connected in series to form a closed loop. According to (1-17b)

−vs + vR + vL + vC = −Ls
∂i

∂t
= −vsL (1-18)

where Ls , shown dashed in Figure 1-2, represents the total stray inductance associated with the
current and the magnetic flux generated by the loop that connects the ideal lumped elements (we
assume that the wire resistance is negligible). If the stray inductance Ls of the circuit and the
time rate of change of the current is small (the case for low-frequency applications), the right
side of (1-18) is small and can be set equal to zero.

1.4.2 Kirchhoff’s Current Law

The left side of the integral form of the continuity equation, as given by (1-13), can be written
in circuit form as ∑

i =#S
�ic • ds (1-19)

i

R

vR

vL

vC

LsvsL

vs

L

C

− +

+

−

+

+

−

−

−

+

Figure 1-2 RLC series network.
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where
∑

i represents the sum of the currents passing through closed surface S . Using (1-19)
reduces (1-13) to ∑

i = −∂�e

∂t
= − ∂

∂t
(Csv) = −Cs

∂v

∂t
(1-19a)

since by definition �e = Csv where Cs is a capacitance (assumed to be constant) and v is the
associated voltage.

Equation 1-19a states that the sum of the currents crossing a surface that encloses a circuit
is equal to the time rate of change of the total electric charge enclosed by the surface, or equal
to the current flowing through a capacitor Cs that is used to represent the stray capacitance of
the circuit. This is the well-known Kirchhoff node current law, which is widely used in circuit
theory, and its form represents a circuit relation. Thus, we can write the following field and circuit
relations:

Field Relation Circuit Relation

#S
�ic • ds = − ∂

∂t

∫∫∫
V

q
ev

dv = −∂�e

∂t
⇔

∑
i = −∂�e

∂t
= −Cs

∂v

∂t
(1-19b)

In lumped-element circuit analysis, where the stray capacitance associated with the circuit is very
small, the right side of (1-19a) is very small and it is usually set equal to zero. In these cases,
(1-19a) states that the currents exiting (or entering) a surface enclosing a circuit are equal to zero.
This represents a widely used relation to electrical engineers and many physicists.

To demonstrate Kirchhoff’s node current law, let us consider the circuit of Figure 1-3 where
a current source and three ideal lumped elements (a resistance R, an inductor L, and a capacitor
C ) are connected in parallel to form a node. According to (1-19a)

−is + iR + iL + iC = −Cs
∂v

∂t
= −isC (1-20)

where Cs , shown dashed in Figure 1-3, represents the total stray capacitance associated with the
circuit of Figure 1-3. If the stray capacitance Cs of the circuit and the time rate of change of
the total charge �e are small (the case for low-frequency applications), the right side of (1-20) is
small and can be set equal to zero. The current isC associated with the stray capacitance Cs also

vCLCs
is

is

iR isC

iL

iC

S

R

+

−

Figure 1-3 RLC parallel network.
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includes the displacement (leakage) current crossing the closed surface S of Figure 1-3 outside of
the wires .

1.4.3 Element Laws

In addition to Kirchhoff’s loop voltage and node current laws as given, respectively, by (1-17b)
and (1-19a), there are a number of current element laws that are widely used in circuit theory.
One of the most popular is Ohm’s law for a resistor (or a conductance G), which states that the
voltage drop vR across a resistor R is equal to the product of the resistor R and the current iR
flowing through it (vR = RiR or iR = vR/R = GvR). Ohm’s law of circuit theory is a special case
of the constitutive relition given by (1-16). Thus

Field Relation Circuit Relation

�c = σ� ⇔ iR = 1

R
vR = GvR

(1-21)

Another element law is associated with an inductor L and states that the voltage drop across an
inductor is equal to the product of L and the time rate of change of the current through the inductor
(vL = L diL/dt). Before proceeding to relate the inductor’s voltage drop to the corresponding field
relation, let us first define inductance. To do this we state that the magnetic flux ψm is equal to the
product of the inductance L and the corresponding current i . That is ψm = Li . The corresponding
field equation of this relation is (1-15). Thus

Field Relation Circuit Relation
� = μ� ⇔ ψm = LiL

(1-22)

Using (1-5c) and (1-15), we can write for a homogeneous and non-time-varying medium that

�d = ∂�

∂t
= ∂

∂t
(μ�) = μ

∂�

∂t
(1-22a)

where �d is defined as the magnetic displacement current density [analogous to the electric
displacement current density �d = ∂�/∂t = ∂(ε�)/∂t = ε∂�/∂t]. With the aid of the right side
of (1-9a) and the circuit relation of (1-22), we can write

∂

∂t

∫∫
S

� • ds = ∂ψm

∂t
= ∂

∂t
(LiL) = L

∂iL
∂t

= vL (1-22b)

Using (1-22a) and (1-22b), we can write the following relations:

Field Relation Circuit Relation

�d = μ
∂�

∂t
⇔ vL = L

∂iL
∂t

(1-22c)

Using a similar procedure for a capacitor C , we can write the field and circuit relations
analogous to (1-22) and (1-22c):

Field Relation Circuit Relation

� = ε� ⇔ �e = Cve (1-23)

�d = ε
∂�

∂t
⇔ iC = C

∂vC

∂t
(1-24)

A summary of the field theory relations and their corresponding circuit concepts are listed in
Table 1-2.
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1.5 BOUNDARY CONDITIONS

As previously stated, the differential form of Maxwell’s equations are used to solve for the field
vectors provided the field quantities are single-valued, bounded, and possess (along with their
derivatives) continuous distributions. Along boundaries where the media involved exhibit discon-
tinuities in electrical properties (or there exist sources along these boundaries), the field vectors
are also discontinuous and their behavior across the boundaries is governed by the boundary
conditions .

Maxwell’s equations in differential form represent derivatives, with respect to the space coor-
dinates, of the field vectors. At points of discontinuity in the field vectors, the derivatives of the
field vectors have no meaning and cannot be properly used to define the behavior of the field
vectors across these boundaries. Instead, the behavior of the field vectors across discontinuous
boundaries must be handled by examining the field vectors themselves and not their derivatives.
The dependence of the field vectors on the electrical properties of the media along boundaries of
discontinuity is manifested in our everyday life. It has been observed that cell phone, radio, or
television reception deteriorates or even ceases as we move from outside to inside an enclosure
(such as a tunnel or a well-shielded building). The reduction or loss of the signal is governed
not only by the attenuation as the signal/wave travels through the medium, but also by its behav-
ior across the discontinuous interfaces. Maxwell’s equations in integral form provide the most
convenient formulation for derivation of the boundary conditions.

1.5.1 Finite Conductivity Media

Initially, let us consider an interface between two media, as shown in Figure 1-4a , along which
there are no charges or sources. These conditions are satisfied provided that neither of the two
media is a perfect conductor or that actual sources are not placed there. Media 1 and 2 are
characterized, respectively, by the constitutive parameters ε1, μ1, σ1 and ε2, μ2, σ2.

At a given point along the interface, let us choose a rectangular box whose boundary is denoted
by C0 and its area by S0. The x, y, z coordinate system is chosen to represent the local geometry
of the rectangle. Applying Maxwell’s equation 1-9a, with �i = 0, on the rectangle along C0 and
on S0, we have ∮

C0

� • d� = − ∂

∂t

∫∫
S0

� • ds (1-25)

As the height 	y of the rectangle becomes progressively shorter, the area S0 also becomes
vanishingly smaller so that the contributions of the surface integral in (1-25) are negligible. In
addition, the contributions of the line integral in (1-25) along 	y are also minimal, so that in the
limit (	y → 0), (1-25) reduces to

�1 • âx	x − �2 • âx	x = 0

�1t − �2t = 0 ⇒ �1t = �2t (1-26)

or

n̂ × (�2 − �1) = 0 σ1, σ2 are finite (1-26a)

In (1-26), �1t and �2t represent, respectively, the tangential components of the electric field in
media 1 and 2 along the interface. Both (1-26) and (1-26a) state that the tangential components
of the electric field across an interface between two media, with no impressed magnetic current
densities along the boundary of the interface, are continuous .
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e 2,
m2, s2

e 1,
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y
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A0

A1

S0

1

1

2

2

n

n

n

n

�2, �2, �2, �2

�1, �1, �1, �1

�2, �2, �2, �2

�1, �1, �1, �1

Figure 1-4 Geometry for boundary conditions of tangential and normal components. (a) Tangential.
(b) Normal.

Using a similar procedure on the same rectangle but for (1-10), assuming �i = 0, we can write
that

�1t − �2t = 0 ⇒ �1t = �2t (1-27)

or
n̂ × (�2 − �1) = 0 σ1, σ2 are finite (1-27a)

which state that the tangential components of the magnetic field across an interface between two
media, neither of which is a perfect conductor, are continuous . This relation also holds if either
or both media possess finite conductivity. Equations 1-26a and 1-27a must be modified if either
of the two media is a perfect conductor or if there are impressed (source) current densities along
the interface. This will be done in the pages that follow.

In addition to the boundary conditions on the tangential components of the electric and mag-
netic fields across an interface, their normal components are also related. To derive these relations,
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let us consider the geometry of Figure 1-4b where a cylindrical pillbox is chosen at a given point
along the interface. If there are no charges along the interface, which is the case when there are
no sources or either of the two media is not a perfect conductor, (1-11a) reduces to

#A0,A1

� • ds = 0 (1-28)

As the height 	y of the pillbox becomes progressively shorter, the total circumferential area A1

also becomes vanishingly smaller, so that the contributions to the surface integral of (1-28) by
A1 are negligible. Thus (1-28) can be written, in the limit (	y → 0), as

�2 • ây A0 − �1 • ây A0 = 0

�2n − �in = 0 ⇒ �2n = �1n (1-29)

or
n̂ • (�2 − �1) = 0 σ1, σ2 are finite (1-29a)

In (1-29), �1n and �2n represent, respectively, the normal components of the electric flux density
in media 1 and 2 along the interface. Both (1-29) and (1-29a) state that the normal components
of the electric flux density across an interface between two media, both of which are imperfect
electric conductors and where there are no sources, are continuous . This relation also holds if
either or both media possess finite conductivity. Equation 1-29a must be modified if either of the
media is a perfect conductor or if there are sources along the interface. This will be done in the
pages that follow.

In terms of the electric field intensities, (1-29) and (1-29a) can be written as

ε2�2n = ε1�1n ⇒ �2n = ε1

ε2
�1n ⇒ �1n = ε2

ε1
�2n (1-30)

n̂ • (ε2�2 − ε1�1) = 0 σ1, σ2 are finite (1-30a)

which state that the normal components of the electric field intensity across an interface are
discontinuous .

Using a similar procedure on the same pillbox, but for (1-12) with no charges along the
interface, we can write that

�2n − �1n = 0 ⇒ �2n = �1n (1-31)

n̂ • (�2 − �1) = 0 (1-31a)

which state that the normal components of the magnetic flux density, across an interface between
two media where there are no sources, are continuous . In terms of the magnetic field intensities,
(1-31) and (1-31a) can be written as

μ2�2n = μ1�1n ⇒ �2n = μ1

μ2
�1n ⇒ �1n = μ2

μ1
�2n (1-32)

n̂ • (μ2�2 − μ1�1) = 0 (1-32a)

which state that the normal components of the magnetic field intensity across an interface are
discontinuous .
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1.5.2 Infinite Conductivity Media

If actual electric sources and charges exist along the interface between the two media, or if either
of the two media forming the interface displayed in Figure 1-4 is a perfect electric conductor
(PEC), the boundary conditions on the tangential components of the magnetic field [stated by
(1-27a)] and on the normal components of the electric flux density or normal components of
the electric field intensity [stated by (1-29a) or (1-30a)] must be modified to include the sources
and charges or the induced linear electric current density (�s) and surface electric charge density
(q

es
). Similar modifications must be made to (1-26a), (1-31a), and (1-32a) if magnetic sources

and charges exist along the interface between the two media, or if either of the two media is a
perfect magnetic conductor (PMC).

To derive the appropriate boundary conditions for such cases, let us refer first to Figure 1-
4a and assume that on a very thin layer along the interface there exists an electric surface
charge density q

es
(C/m2) and linear electric current density �s (A/m). Applying (1-10) along the

rectangle of Figure 1-4a , we can write that∮
C0

� • d� =
∫∫

S0

�ic • ds + ∂

∂t

∫∫
S0

� • ds (1-33)

In the limit as the height of the rectangle is shrinking, the left side of (1-33) reduces to

lim
	y→0

∮
C0

� • d� = (�1 − �2) • âx	x (1-33a)

Since the electric current density �ic is confined on a very thin layer along the interface, the first
term on the right side of (1-33) can be written as

lim
	y→0

∫∫
S0

�ic • ds

= lim
	y→0

[�ic • âz 	x	y] = lim
	y→0

[(�ic	y) • âz 	x ] = �s • âz 	x (1-33b)

Since S0 becomes vanishingly smaller as 	y → 0, the last term on the right side of (1-33) reduces
to

lim
	y→0

∂

∂t

∫∫
S0

� • ds = lim
	y→0

∂

∂t

∫∫
S0

� • âz ds = 0 (1-33c)

Substituting (1-33a) through (1-33c) into (1-33), we can write it as

(�1 − �2) • âx	x = �s • âz 	x

or
(�1 − �2) • âx − �s • âz = 0 (1-33d)

Since
âx = ây × âz (1-34)

(1-33d) can be written as
(�1 − �2) • (ây × âz ) − �s • âz = 0 (1-35)

Using the vector identity
A • B × C = C • A × B (1-36)
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on the first term in (1-35), we can then write it as

âz • [(�1 − �2) × ây ] − �s • âz = 0 (1-37)

or
{[ây × (�2 − �1)] − �s} • âz = 0 (1-37a)

Equation 1-37a is satisfied provided

ây × (�2 − �1) − �s = 0 (1-38)

or
ây × (�2 − �1) = �s (1-38a)

Similar results are obtained if the rectangles chosen are positioned in other planes. Therefore,
we can write an expression on the boundary conditions of the tangential components of the
magnetic field, using the geometry of Figure 1-4a , as

n̂ × (�2 − �1) = �s (1-39)

Equation 1-39 states that the tangential components of the magnetic field across an interface, along
which there exists a surface electric current density �s (A/m), are discontinuous by an amount
equal to the electric current density .

If either of the two media is a perfect electric conductor (PEC), (1-39) must be reduced to
account for the presence of the conductor. Let us assume that medium 1 in Figure 1-4a possesses
an infinite conductivity (σ1 = ∞). With such conductivity �1 = 0, and (1-26a) reduces to

n̂ × �2 = 0 ⇒ �2t = 0 (1-40)

Then (1-1) can be written as

∇ × �1 = 0 = −∂�1

∂t
⇒ �1 = 0 ⇒ �1 = 0 (1-41)

provided μ1 is finite.
In a perfect electric conductor, its free electric charges are confined to a very thin layer on the

surface of the conductor, forming a surface charge density q
es

(with units of coulombs/square
meter). This charge density does not include bound (polarization) charges (which contribute
to the polarization surface charge density) that are usually found inside and on the surface of
dielectric media and form atomic dipoles having equal and opposite charges separated by an
assumed infinitesimal distance. Here, instead, the surface charge density q

es
represents actual

electric charges separated by finite dimensions from equal quantities of opposite charge.
When the conducting surface is subjected to an applied electromagnetic field, the electric

surface charges are subjected to electric field Lorentz forces. These charges are set in motion and
thus create a surface electric current density �s with units of amperes per meter. The surface
current density �s also resides in a vanishingly thin layer on the surface of the conductor so that
in the limit, as 	y → 0 in Figure 1-4a , the volume electric current density � (A/m2) reduces to

lim
	y→0

(�	y) = �s (1-42)

Then the boundary condition of (1-39) reduces, using (1-41) and (1-42), to

n̂ × �2 = �s ⇒ �2t = �s (1-43)
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which states that the tangential components of the magnetic field intensity are discontinuous next
to a perfect electric conductor by an amount equal to the induced linear electric current density .

The boundary conditions on the normal components of the electric field intensity, and the
electric flux density on an interface along which a surface charge density q

es
resides on a very

thin layer, can be derived by applying the integrals of (1-11a) on a cylindrical pillbox as shown
in Figure 1-4b. Then we can write (1-11a) as

lim
	y→0#A0, A1

� • ds = lim
	y→0

∫∫∫
V

q
eν

dν (1-44)

Since the cylindrical surface A1 of the pillbox diminishes as 	y → 0, its contributions to the
surface integral vanish. Thus we can write (1-44) as

(�2 − �1) • n̂ A0 = lim
	y→0

[(q
eν

	y)A0] = q
es

A0 (1-45)

which reduces to

n̂ • (�2 − �1) = q
es

⇒ �2n − �1n = q
es

(1-45a)

Equation 1-45a states that the normal components of the electric flux density on an interface,
along which a surface charge density resides, are discontinuous by an amount equal to the surface
charge density .

In terms of the normal components of the electric field intensity, (1-45a) can be written as

n̂ • (ε2�2 − ε1�1) = q
es

(1-46)

which also indicates that the normal components of the electric field are discontinuous across a
boundary along which a surface charge density resides .

If either of the media is a perfect electric conductor (PEC) (assuming that medium 1 possesses
infinite conductivity σ1 = ∞), (1-45a) and (1-46) reduce, respectively, to

n̂ • �2 = q
es

⇒ �2n = q
es

(1-47a)

n̂ • �2 = q
es

/ε2 ⇒ �2n = q
es

/ε2 (1-47b)

Both (1-47a) and (1-47b) state that the normal components of the electric flux density, and corre-
sponding electric field intensity, are discontinuous next to a perfect electric conductor .

1.5.3 Sources Along Boundaries

If electric and magnetic sources (charges and current densities) are present along the interface
between the two media with neither one being a perfect conductor, the boundary conditions on
the tangential and normal components of the fields can be written, in general form, as

−n̂ × (�2 − �1) = �s (1-48a)

n̂ × (�2 − �1) = �s (1-48b)

n̂ • (�2 − �1) = q
es

(1-48c)

n̂ • (�2 − �1) = q
ms

(1-48d)
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TABLE 1-3 Boundary conditions on instantaneous electromagnetic fields

Finite
conductivity media, Medium 1 of Medium 1 of

no sources or infinite electric infinite
charges conductivity magnetic

σ1, σ2 �= ∞ (�1 = �1 = 0) conductivity
�s = 0; q

es
= 0 σ1 = ∞; σ2 �= ∞ (�1 = �1 = 0)

General �s = 0; q
ms

= 0 �s = 0; q
ms

= 0 �s = 0; q
es

= 0

Tangential
electric field
intensity

−n̂ × (�2 − �1) = �s n̂ × (�2 − �1) = 0 n̂ × �2 = 0 −n̂ × �2 = �s

Tangential
magnetic field
intensity

n̂ × (�2 − �1) = �s n̂ × (�2 − �1) = 0 n̂ × �2 = �s n̂ × �2 = 0

Normal electric
flux density

n̂ · (�2 − �1) = q
es

n̂ · (�2 − �1) = 0 n̂ · �2 = q
es

n̂ · �2 = 0

Normal magnetic
flux density

n̂ · (�2 − �1) = q
ms

n̂ · (�2 − �1) = 0 n̂ · �2 = 0 n̂ · �2 = q
ms

where (�s , �s ) and (q
ms

, q
es

) are the magnetic and electric linear (per meter) current and surface
(per square meter) charge densities, respectively. The derivation of (1-48a) and (1-48d) proceeds
along the same lines, respectively, as the derivation of (1-48b) and (1-48c) in Section 1.5.2, but
begins with (1-9a) and (1-12).

A summary of the boundary conditions on all the field components is found in Table 1-3,
which also includes the boundary conditions assuming that medium 1 is a perfect magnetic
conductor (PMC). In general, a magnetic conductor is defined as a material inside of which both
time-varying electric and magnetic fields vanish when it is subjected to an electromagnetic field.
The tangential components of the magnetic field also vanish next to its surface. In addition, the
magnetic charge moves to the surface of the material and creates a magnetic current density that
resides on a very thin layer at the surface. Although such materials do not physically exist, they
are often used in electromagnetics to develop electrical equivalents that yield the same answers
as the actual physical problems. PMCs can be synthesized approximately over a limited frequency
range (band-gap); see Section 8.8 .

1.6 POWER AND ENERGY

In a wireless communication system, electromagnetic fields are used to transport information over
long distances. To accomplish this, energy must be associated with electromagnetic fields. This
transport of energy is accomplished even in the absence of any intervening medium.

To derive the equations that indicate that energy (and forms of it) is associated with electro-
magnetic waves, let us consider a region V characterized by ε, μ, σ and enclosed by the surface S ,
as shown in Figure 1-5. Within that region there exist electric and magnetic sources represented,
respectively, by the electric and magnetic current densities �i and �i . The fields generated by
�i and �i that exist within S are represented by �, �. These fields obey Maxwell’s equations,
and we can write using (1-1) and (1-2) that

∇ × � = −�i − ∂�

∂t
= −�i − μ

∂�

∂t
= −�i − �d (1-49a)
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�, �
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�i

Figure 1-5 Electric and magnetic fields within S generated by �i and �i .

∇ × � = �i + �c + ∂�

∂t
= �i + σ� + ε

∂�

∂t
= �i + �c + �d (1-49b)

Scalar multiplying (1-49a) by � and (1-49b) by �, we can write that

� • (∇ × �) = −� • (�i + �d ) (1-50a)

� • (∇ × �) = � • (�i + �c + �d ) (1-50b)

Subtracting (1-50b) from (1-50a) reduces to

� • (∇ × �) − � • (∇ × �) = −� • (�i + �d ) − � • (�i + �c + �d ) (1-51)

Using the vector identity

∇ • (A × B) = B • (∇ × A) − A • (∇ × B) (1-52)

on the left side of (1-51), we can write that

∇ • (� × �) = −� • (�i + �d ) − � • (�i + �c + �d ) (1-53)

or
∇ • (� × �) + � • (�i + �d ) + � • (�i + �c + �d ) = 0 (1-53a)

Integrating (1-53) over the volume V leads to∫∫∫
V

∇ • (� × �) dv = −
∫∫∫

V
[� • (�i + �d ) + � • (�i + �c + �d )] dv (1-54)

Applying the divergence theorem (1-8) on the left side of (1-54) reduces it to

#S
(� × �) • ds = −

∫∫∫
V

[� • (�i + �d ) + � • (�i + �c + �d )] dv (1-55)

or

#S
(� × �) • ds +

∫∫∫
V

[� • (�i + �d ) + � • (�i + �c + �d )] dv = 0 (1-55a)

Equations 1-53a and 1-55a can be interpreted, respectively, as the differential and integral forms
of the conservation of energy . To accomplish this, let us consider each of the terms included in
(1-55a).
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The integrand, in the first term of (1-55a), has the form

	 = � × � (1-56)

where 	 is known as the Poynting vector. It has the units of power density (watts/square meter),
since � has units of volts/meter and � has units of ampere/meter, so that the units of 	 are
volts · ampere/meter2 = watts/meter2. Thus the first term of (1-55a), written as

�e =#S
(� × �) • ds =#S

	 • ds (1-57)

represents the total power �e exiting the volume V bounded by the surface S .
The other terms in (1-55a), which represent the integrand of the volume integral, can be written

as

ps = −(� • �i + � • �i ) (1-58a)

� • �d = � •
∂�

∂t
= μ� •

∂�

∂t
= 1

2
μ

∂�2

∂t
= ∂

∂t

(
1

2
μ�2

)
= ∂

∂t
wm (1-58b)

pd = � • �c = � • (σ�) = σ�2 (1-58c)

� • �d = � •
∂�

∂t
= ε� •

∂�

∂t
= 1

2
ε
∂�2

∂t
= ∂

∂t

(
1

2
ε�2

)
= ∂

∂t
we (1-58d)

where

wm = 1

2
μ�2 = magnetic energy density(J/m3) (1-58e)

we = 1

2
ε�2 = electric energy density(J/m3) (1-58f)

ps = −(� • �i + � • �i ) = supplied power density(W/m3) (1-58g)

pd = σ�2 = dissipated power density(W/m3) (1-58h)

Integrating each of the terms in (1-58a) through (1-58d), we can write the corresponding forms
as

�s = −
∫∫∫

V
(� • �i + � • �i ) dv =

∫∫∫
V

ps dv (1-59a)∫∫∫
V
(� • �d ) dv = ∂

∂t

∫∫∫
V

1

2
μ�2 dv = ∂

∂t

∫∫∫
V

wm dv = ∂

∂t
	m (1-59b)

�d =
∫∫∫

V
(� • �c) dv =

∫∫∫
V

σ�2 dv =
∫∫∫

V
pd dv (1-59c)∫∫∫

V
(� • �d ) dv = ∂

∂t

∫∫∫
V

1

2
ε�2 dv = ∂

∂t

∫∫∫
V

we dv = ∂

∂t
	e (1-59d)
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where 	m = magnetic energy (J)
	e = electric energy (J)
�s = supplied power (W)
�e = exiting power (W)
�d = dissipated power (W)

Using (1-57) and (1-59a) through (1-59d), we can write (1-55a) as

�e − �s + �d + ∂

∂t
(	e + 	m) = 0 (1-60)

or
�s = �e + �d + ∂

∂t
(	e + 	m) (1-60a)

which is the conservation of power law . This law states that within a volume V , bounded by S ,
the supplied power �s is equal to the power �e exiting S plus the power �d dissipated within
that volume plus the rate of change (increase if positive) of the electric (	e) and magnetic (	m)

energies stored within that same volume.
A summary of the field theory relations and their corresponding circuit concepts is found listed

in Table 1-2.

1.7 TIME-HARMONIC ELECTROMAGNETIC FIELDS

Maxwell’s equations in differential and integral forms, for general time-varying electromagnetic
fields, were presented in Sections 1.2.1 and 1.2.2. In addition, various expressions involving
and relating the electromagnetic fields (such as the constitutive parameters and relations, circuit
relations, boundary conditions, and power and energy) were also introduced in the preceding
sections. However, in many practical systems involving electromagnetic waves, the time variations
are of cosinusoidal form and are referred to as time-harmonic. In general, such time variations
can be represented by1 ejωt , and the instantaneous electromagnetic field vectors can be related to
their complex forms in a very simple manner. Thus for time-harmonic fields, we can relate the
instantaneous fields, current density and charge (represented by script letters) to their complex
forms (represented by roman letters) by

�(x , y , z ; t) = Re[E(x , y , z )ejωt ] (1-61a)

�(x , y , z ; t) = Re[H(x , y , z )ejωt ] (1-61b)

�(x , y , z ; t) = Re[D(x , y , z )ejωt ] (1-61c)

�(x , y , z ; t) = Re[B(x , y , z )ejωt ] (1-61d)

�(x , y , z ; t) = Re[J(x , y , z )ejωt ] (1-61e)

q(x , y , z ; t) = Re[q(x , y , z )ejωt ] (1-61f)

where �, �, �, �, �, and q represent the instantaneous field vectors, current density and charge,
while E, H, D, B, J, and q represent the corresponding complex spatial forms which are only
a function of position. In this book we have chosen to represent the instantaneous quantities by
the real part of the product of the corresponding complex spatial quantities with ejωt . Another

1 Another representation form of time-harmonic variations is e−jωt (most scientists prefer eiωt or e−iωt where i = √−1).
Throughout this book, we will use the ejωt form, which when it is not stated will be assumed. The e−jωt fields are related
to those of the ejωt form by the complex conjugate.
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option would be to represent the instantaneous quantities by the imaginary part of the products.
It should be stated that throughout this book the magnitudes of the instantaneous fields represent
peak values that are related to their corresponding root-mean-square (rms) values by the square
root of 2 (peak = √

2 rms). If the complex spatial quantities can be found, it is then a very simple
procedure to find their corresponding instantaneous forms by using (1-61a) through (1-61f). In
what follows, it will be shown that Maxwell’s equations in differential and integral forms for
time-harmonic electromagnetic fields can be written in much simpler forms using the complex
field vectors.

1.7.1 Maxwell’s Equations in Differential and Integral Forms

It is a very simple exercise to show that, by substituting (1-61a) through (1-61f) into (1-1) through
(1-4) and (1-6), Maxwell’s equations and the continuity equation in differential form for time-
harmonic fields can be written in terms of the complex field vectors as shown in Table 1-4. Using
a similar procedure, we can write the corresponding integral forms of Maxwell’s equations and
the continuity equation listed in Table 1-1 in terms of the complex spatial field vectors as shown
in Table 1-4. Both of these derivations have been assigned as exercises to the reader at the end
of the chapter.

By examining the two forms in Table 1-4, we see that one form can be obtained from the
other by doing the following:

1. Replace the instantaneous field vectors by the corresponding complex spatial forms, or vice
versa.

2. Replace ∂/∂t by jω(∂/∂t = jω), or vice versa.

The second step is very similar to that followed in circuit analysis when Laplace transforms are
used to analyze RLC a.c. circuits. In these analyses ∂/∂t is replaced by s (∂/∂t ≡ s). For steady-
state conditions ∂/∂t is replaced by jω(∂/∂t ≡ s ≡ jω). The reason for using Laplace transforms
is to transform differential equations to algebraic equations, which are simpler to solve. The same
intent is used here to write Maxwell’s equations in forms that are easier to solve. Thus, if it is
desired to solve for the instantaneous field vectors of time-harmonic fields, it is easier to use
the following two-step procedure, instead of attempting to do it in one step using the general
instantaneous forms of Maxwell’s equations:

1. Solve for the complex spatial field vectors, current densities and charges (E, H, D, B, J,
M, q), using Maxwell’s equations from Table 1-4 that are written in terms of the complex
spatial field vectors, current densities and charges.

2. Determine the corresponding instantaneous field vectors, current densities and charges using
(1-61a) through (1-61f).

Step 1 is obviously the most difficult, and it is often the only step needed. Step 2 is straight-
forward, and it is often omitted. In practice, the time variations of ejωt are stated at the outset,
but then are suppressed.

1.7.2 Boundary Conditions

The boundary conditions for time-harmonic fields are identical to those of general time-varying
fields, as derived in Section 1.5, and they can be expressed simply by replacing the instantaneous
field vectors, current densities and charges in Table 1-3 with their corresponding complex spatial
field vectors, current densities and charges. A summary of all the boundary conditions for time-
harmonic fields, referring to Figure 1-4, is found in Table 1-5.

In addition to the boundary conditions found in Table 1-5, an additional boundary condition
on the tangential components of the electric field is often used along an interface when one of
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TABLE 1-5 Boundary conditions on time-harmonic electromagnetic fields

Finite
conductivity media, Medium 1 of Medium 1 of

no sources or infinite electric infinite
charges conductivity magnetic

σ1, σ2 �= ∞ (E1 = H1 = 0) conductivity
Js = Ms = 0 σ1 = ∞; σ2 �= ∞ (E1 = H1 = 0)

General qes = qms = 0 Ms = 0; qms = 0 Js = 0; qes = 0

Tangential
electric field
intensity

−n̂ × (E2 − E1) = Ms n̂ × (E2 − E1) = 0 n̂ × E2 = 0 −n̂ × E2 = Ms

Tangential
magnetic field
intensity

n̂ × (H2 − H1) = Js n̂ × (H2 − H1) = 0 n̂ × H2 = Js n̂ × H2 = 0

Normal electric
flux density

n̂ · (D2 − D1) = qes n̂ · (D2 − D1) = 0 n̂ · D2 = qes n̂ · D2 = 0

Normal magnetic
flux density

n̂ · (B2 − B1) = qms n̂ · (B2 − B1) = 0 n̂ · B2 = 0 n̂ · B2 = qms

the two media is a very good conductor (material that possesses large but finite conductivity).
This is illustrated in Figure 1-6 where it is assumed that medium 1 is a very good conductor
whose surface, as will be shown in Section 4.3.1, exhibits a surface impedance Zs (ohms) given,
approximately, by (4-42) or

Zs = Rs + jXs = (1 + j )

√
ωμ1

2σ1
(1-62)

with equal real and imaginary (inductive) parts (σ1 is the conductivity of the conductor). At the
surface there exists a linear current density Js (A/m) related to the tangential magnetic field in
medium 2 by

Js � n̂ × H2 (1-63)

Since the conductivity is finite (although large), the most intense current density resides at the
surface, and it diminishes (in an exponential form) as the observations are made deeper into the
conductor. This is demonstrated in Example 5.7 of Section 5.4.1. In addition, the electric field
intensity along the interface cannot be zero (although it may be small). Thus, we can write that

E
2, H

2, D
2, B

2
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1, H
1, D

1, B
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e 2,
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e 1,
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(s1
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n

Figure 1-6 Surface impedance along the surface of a very good conductor.
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the tangential component of the electric field in medium 2, along the interface, is related to the
electric current density Js and tangential component of the magnetic field by

Et2 = ZsJs = Zs n̂ × H2 = n̂ × H2

√
ωμ1

2σ1
(1 + j ) (1-64)

For time-harmonic fields, the boundary conditions on the normal components are not inde-
pendent of those on the tangential components, and vice-versa, since they are related through
Maxwell’s equations. In fact, if the tangential components of the electric and magnetic fields sat-
isfy the boundary conditions, then the normal components of the same fields necessarily satisfy
the appropriate boundary conditions. For example, if the tangential components of the electric
field are continuous across a boundary, their derivatives (with respect to the coordinates on the
boundary surface) are also continuous. This, in turn, ensures continuity of the normal component
of the magnetic field.

To demonstrate that, let us refer to the geometry of Figure 1-6 where the local surface along
the interface is described by the x, z coordinates with y being normal to the surface. Let us
assume that Ex and Ez are continuous, which ensures that their derivatives with respect to x and
z (∂Ex/∂x , ∂Ex/∂z , ∂Ez /∂x , ∂Ez /∂z ) are also continuous. Therefore, according to Maxwell’s curl
equation of the electric field

∇ × E = ∇ × (âx Ex + âz Ez ) =

∣∣∣∣∣∣∣∣
âx ây âz

∂

∂x
0

∂

∂z
Ex 0 Ez

∣∣∣∣∣∣∣∣
= âx (0) + ây

(
∂Ex

∂z
− ∂Ez

∂x

)
+ âz (0)

∇ × E = ây

(
∂Ex

∂z
− ∂Ez

∂x

)
= −jωμH (1-65)

or

By = μHy = − 1

jω

(
∂Ex

∂z
− ∂Ez

∂x

)
(1-65a)

According to (1-65a), By , the normal component of the magnetic flux density along the interface,
is continuous across the boundary if ∂Ex/∂z and ∂Ez /∂x are also continuous across the boundary.

In a similar manner, it can be shown that continuity of the tangential components of the
magnetic field ensures continuity of the normal component of the electric flux density (D).

1.7.3 Power and Energy

In Section 1.6, it was shown that power and energy are associated with time-varying electromag-
netic fields. The conservation-of-energy equation, in differential and integral forms, was stated
respectively by (1-53a) and (1-55a). Similar equations can be derived for time-harmonic electro-
magnetic fields using the complex spatial forms of the field vectors. Before we attempt this, let
us first rewrite the instantaneous Poynting vector 	 in terms of the complex field vectors.

The instantaneous Poynting vector was defined by (1-56) and is repeated here as

	 = � × � (1-66)

The electric and magnetic fields of (1-61a) and (1-61b) can also be written as

�(x , y , z ; t) = Re[E(x , y , z )ejωt ] = 1
2 [Eejωt + (Eejωt )∗] (1-67a)

�(x , y , z ; t) = Re[H(x , y , z )ejωt ] = 1
2 [Hejωt + (Hejωt )∗] (1-67b)



Balanis c01.tex V3 - 11/22/2011 3:03 P.M. Page 26

26 TIME-VARYING AND TIME-HARMONIC ELECTROMAGNETIC FIELDS

where the asterisk (*) indicates complex conjugate. Substituting (1-67a) and (1-67b) into (1-66),
we have that

	 = � × � = 1
2 (Eejωt + E∗e−jωt ) × 1

2 (Hejωt + H∗e−jωt )

= 1
2

{
1
2 [E × H∗ + E∗ × H] + 1

2 [E × Hej 2ωt + E∗ × H∗e−j 2ωt ]
}

	 = 1
2

{
1
2 [E × H∗ + (E × H∗)∗] + 1

2 [E × Hej 2ωt + (E × Hej 2ωt )∗]
}

(1-68)

Using the equalities (1-67a) or (1-67b) in reverse order, we can write (1-68) as

	 = 1
2 [Re(E × H∗) + Re(E × Hej 2ωt )] (1-69)

Since both E and H are not functions of time and the time variations of the second term are twice
the frequency of the field vectors, the time-average Poynting vector (average power density) over
one period is equal to

	av = S = 1
2 Re[E × H∗] (1-70)

Since E × H∗ is, in general, complex and the real part of E × H∗ represents the real part of
the power density, what does the imaginary part represent? As will be seen in what follows, the
imaginary part represents the reactive power. With (1-69) and (1-70) in mind, let us now derive
the conservation-of-energy equation in differential and integral forms using the complex forms
of the field vector.

From Table 1-4, the first two of Maxwell’s equations can be written as

∇ × E = −Mi − jωμH (1-71a)

∇ × H = Ji + Jc + jωεE = Ji + σE + jωεE (1-71b)

Dot multiplying (1-71a) by H∗ and the conjugate of (1-71b) by E, we have that

H∗ • (∇ × E) = −H∗ • Mi − jωμH • H∗ (1-72a)

E • (∇ × H∗) = E • J∗
i + σE • E∗ − jωεE • E∗ (1-72b)

Subtracting (1-72a) from (1-72b), we can write that

E • (∇ × H∗) − H∗ • (∇ × E)

= H∗ • Mi + E • J∗
i + σE • E∗ − jωεE • E∗ + jωμH • H∗ (1-73)

Using the vector identity (1-52) reduces (1-73) to

∇ • (H∗ × E) = H∗ • Mi + E • J∗
i + σ |E|2 + jωμ|H|2 − jωε|E|2 (1-74)

or
−∇ • (E × H∗) = H∗ • Mi + E • J∗

i + σ |E|2 + jω(μ|H|2 − ε|E|2) (1-74a)

Dividing both sides by 2, we can write that

−∇ • ( 1
2 E × H∗) = 1

2 H∗ • Mi + 1
2 E • J∗

i + 1
2σ |E|2 + j 2ω( 1

4μ|H|2 − 1
4ε|E|2) (1-75)

For time-harmonic fields, (1-75) represents the conservation-of-energy equation in differential
form.

To verify that (1-75) represents the conservation-of-energy equation in differential form, it is
easier to examine its integral form. To accomplish this, let us first take the volume integral of



Balanis c01.tex V3 - 11/22/2011 3:03 P.M. Page 27

TIME-HARMONIC ELECTROMAGNETIC FIELDS 27

both sides of (1-75) and then apply the divergence theorem (1-8) to the left side. Doing both of
these steps reduces (1-75) to

−
∫∫∫

V
∇ • ( 1

2 E × H∗) dv = −#S
( 1

2 E × H∗) • ds

= 1

2

∫∫∫
V
(H∗ • Mi + E • J∗

i ) dv

+ 1

2

∫∫∫
V

σ |E|2 dv + j 2ω

∫∫∫
V
( 1

4μ|H|2 − 1
4ε|E|2) dv

or

−1

2

∫∫∫
V
(H∗ • Mi + E • J∗

i ) dv =#S
( 1

2 E × H∗) • ds + 1
2

∫∫∫
V

σ |E|2 dv

+ j 2ω

∫∫∫
V
( 1

4μ|H|2 − 1
4ε|E|2) dv (1-76)

which can be written as
Ps = Pe + Pd + j 2ω(W m − W e) (1-76a)

where

Ps = −1

2

∫∫∫
V
(H∗ • Mi + E • J∗

i ) dv = supplied complex power (W) (1-76b)

Pe =#S

(
1

2
E × H∗

)
• ds = exiting complex power (W) (1-76c)

Pd = 1

2

∫∫∫
V

σ |E|2 dv = dissipated real power (W) (1-76d)

W m =
∫∫∫

V

1
4μ|H|2 dv = time-average magnetic energy (J) (1-76e)

W e =
∫∫∫

V

1
4ε|E|2 dv = time-average electric energy (J) (1-76f)

For an electromagnetic source (represented in Figure 1-5 by electric and magnetic current densities
Ji and Mi , respectively) supplying power in a region within S , (1-76) and (1-76a) represent the
conservation-of-energy equation in integral form. Now, it is also much easier to accept that (1-
75), from which (1-76) was derived, represents the conservation-of-energy equation in differential
form. In (1-76a), Ps and Pe are in general complex and Pd is always real, but the last two terms
are always imaginary and represent the reactive power associated, respectively, with magnetic
and electric fields. It should be stated that for complex permeabilities and permittivities the
contributions from their imaginary parts to the integrals of (1-76e) and (1-76f) should both be
combined with (1-76d), since they both represent losses associated with the imaginary parts of
the permeabilities and permittivities.

It should be stated that the imaginary term of the right side of (1-76), including its signs, which
represents the complex stored power (inductive and capacitive), does conform to the notation of
conventional circuit theory. For example, defining the complex power P , assuming V and I are
peak values, as

P = 1

2
(VI ∗) (1-77)
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the complex power of a series circuit consisting of a resistor R in series with an inductor L, with
a current I through both R and L and total voltage V across both the resistor and inductor, can
be written, based on (1-77), as

P = 1

2
(VI ∗) = 1

2
(ZI )I ∗ = 1

2
Z |I |2 = 1

2
(R + jωL)|I |2 (1-77a)

The imaginary part of (1-77a) is positive. Similarly, for a parallel circuit consisting of a conductor
G in parallel with a capacitor C , with a voltage V across G and C and a total current I (I =
IG + IC , where IG is the current through the conductor and IC is the current through the capacitor),
its complex power P , based on (1-77), can be expressed as

P = 1

2
(VI ∗) = 1

2
V (YV )∗ = 1

2
Y ∗|V |2 = 1

2
(G + jωC )∗|V |2 = 1

2
(G − jωC )|V |2 (1-77b)

TABLE 1-6 Relations between time-harmonic electromagnetic field and steady-state a.c. circuit
theories

Field theory Circuit theory

1. E (electric field intensity) 1. v (voltage)

2. H (magnetic field intensity) 2. i (current)

3. D (electric flux density) 3. qev (electric charge density)

4. B (magnetic flux density) 4. qmv (magnetic charge density)

5. J (electric current density) 5. ie (electric current)

6. M (magnetic current density) 6. im (magnetic current)

7. Jd = jωεE
(electric displacement
current density)

7. i = jωCv
(current through a
capacitor)

8. Md = jωμH
(magnetic displacement
current density)

8. v = jωLi
(voltage across an
inductor)

9. Constitutive relations 9. Element laws

(a) Jc = σE
(electric conduction
current density)

(a) i = Gv = 1

R
v (Ohm’s law)

(b) D = εE (dielectric material) (b) Qe = Cv (charge in a capacitor)

(c) B = μH (magnetic material) (c) ψ = Li (flux of an inductor)

10.
∮

C
E · d� = −jω

∫∫
S

B · ds
(Maxwell–Faraday
equation)

10.
∑

v = −jωLs i � 0
(Kirchhoff’s
voltage law)

11. #S
Jic · ds = −jω

∫∫∫
V

qevdv = −∂Qe

∂t
(continuity equation)

11.
∑

i = −jωQe = −jωCsv � 0
(Kirchoff’s current law)

12. Power and energy densities 12. Power and energy
(v and i represent peak values)

(a)
1

2#S
(E × H∗) · ds (complex power) (a) P = 1

2
vi

(power-voltage-current
relation)

(b)
1

2

∫∫∫
V

σ |E|2dv (dissipated real power) (b) Pd = 1

2
Gv2 = 1

2

v2

R
(power dissipated
in a resistor)

(c)
1

4

∫∫∫
V

ε|E|2dv
(time-average electric
stored energy)

(c)
1

4
Cv2 (energy stored in a

capacitor)

(d)
1

4

∫∫∫
V

μ|H|2dv
(time-average magnetic
stored energy)

(d)
1

4
Li 2 (energy stored in an

inductor)
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The imaginary part of (1-77b) is negative. Therefore the imaginary parts of (1-77a) and (1-
77b) conform, respectively, to the notation (positive and negative) of the imaginary parts of the
complex power in (1-76) due to the H and E fields.

The field and circuit theory relations for time-harmonic electromagnetic fields are similar to
those found in Table 1-2 for the general time-varying electromagnetic fields, but with the instan-
taneous field quantities (represented by script letters) replaced by their corresponding complex
field quantities (represented by roman letters) and with ∂/∂t replaced by jω (∂/∂t ≡ jω). These
are shown listed in Table 1-6.

Over the years many excellent introductory books on electromagnetics, [1] through [28], and
advanced books, [29] through [40], have been published. Some of them can serve both purposes,
and a few may not now be in print. Each is contributing to the general knowledge of electro-
magnetic theory and its applications. The reader is encouraged to consult them for an even better
understanding of the subject.

1.8 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

1.1. Derive the differential form of the continuity
equation, as given by (1-6), from Maxwell’s
equations 1-1 through 1-4.

1.2. Derive the integral forms of Maxwell’s
equations and the continuity equation, as
listed in Table 1-1, from the corresponding
ones in differential form.

1.3. The electric flux density inside a cube is
given by:
(a) D = âx (3 + x)

(b) D = ây (4 + y2)

Find the total electric charge enclosed inside
the cubical volume when the cube is in the

first octant with three edges coincident with
the x , y , z axes and one corner at the origin.
Each side of the cube is 1 m long.

1.4. An infinite planar interface between media,
as shown in the figure, is formed by having
air (medium #1) on the left of the inter-
face and lossless polystyrene (medium #2)
(with a dielectric constant of 2.56) to the
right of the interface. An electric surface
charge density qes = 0.2 C/m2 exists along
the entire interface.
The static electric flux density inside the
polystyrene is given by

D2 = 6âx + 3âz C/m2
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Determine the corresponding vector:
(a) Electric field intensity inside the

polystyrene.
(b) Electric polarization vector inside the

polystyrene.
(c) Electric flux density inside the air

medium.
(d) Electric field intensity inside the air

medium.
(e) Electric polarization vector inside the air

medium.
Leave your answers in terms of εo , μo .

Air
eo, mo

Polystyrene
2.56eo, mo

z

x

y

qes

#1 #2n

Figure P1-4

1.5. An infinite planar interface between media,
as shown in the figure, is formed by having
air (medium #1) on the left of the interface
and lossless magnetic material (medium #2)
(with a relative permeability of 4 and rela-
tive permittivity of 2.56) to the right of the
interface.
The static magnetic field intensity inside the
air is given by

H1 = 3âx + 9âz A/m

Magnetic material
2.46eo, 4mo

Air
eo, mo

z

x

y

#1 #2

Figure P1-5

Determine the corresponding vector:
(a) Magnetic flux density in the air medium.
(b) Magnetic polarization in the air

medium.
(c) Magnetic field intensity in the magnetic

material.
(d) Magnetic flux density in the magnetic

material.
(e) Magnetic polarization in the magnetic

material.
Leave your answers in terms of ε0, μo .

1.6. A static electric field of intensity/strength Eo

is established inside a free-space medium as
shown below. The static electric field inten-
sity is oriented at an angle of 30◦ relative to
the principal z axis. A semi-infinite dielec-
tric slab of relative permittivity of 4 and
relative permeability of unity is immersed
into the initially established static electric
field, as shown below.
Determine the:
(a) Total electric field intensity E1 and

total electric flux density D1 within the
dielectric slab. Leave your answers in
terms of Eo, εo , μo , and any constants.

(b) Angle θ (in degrees).

z

Eo, Do 

Eo, Do 

E1, D1

z

30°

30°

q

eo, mo

eo, mo

4eo, mo

Figure P1-6

1.7. A static magnetic field of field inten-
sity/strength Ho is established inside a free-
space medium as shown on the next page. The
static magnetic field intensity is oriented at an
angle of 30◦ relative to the principal z axis.
A semi-infinite magnetic slab of relative per-
meability of 4 and relative permittivity of 9 is
immersed into the initially established static
magnetic field, as shown on the next page.
Determine the:
(a) Total static magnetic field intensity H1

and total static magnetic flux density B1

within the magnetic slab. Leave your
answers in terms of Ho, εo , μo and any
constants.

(b) Angle θ (in degrees).
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z

Ho, Bo 

Ho, Bo 

H1, B1

z

30°

30°

q

eo, mo

eo, mo 9eo, 4mo

Figure P1-7

1.8. A dielectric slab, with a thickness of 6 cm
and dielectric constant of 4, is sandwiched
between two different media; free space to
the left and another dielectric, with a dielec-
tric constant of 9, to the right. If the electric
field in the free-space medium is at an angle
of 30◦ at a height of 3 cm at the lead-
ing interface, as shown in the figure below,
determine the:
(a) Angle α (in degrees, as measured from

the normal to the interface) the electric
field will make in the dielectric medium
to the right of the center slab.

(b) Height h (in cm) the electric field will
have at the trailing interface.

h = ? 

Free
space

er = 4 er = 9

3 cm

a = ?

6 cm
30°

Figure P1-8

1.9. The electric field inside a circular cylinder
of radius a and height h is given by

x

y

z

a

h

Figure P1-9

E = âz

[
− c

h
+ b

6ε0
(3z 2 − h2)

]
where c and b are constants. Assuming the
medium within the cylinder is free space,
find the total charge enclosed within the
cylinder.

1.10. The static magnetic field on the inside part
of the surface of an infinite length dielec-
tric cylinder of circular cross section of
radius a = 4 cm and of magnetic material
with a relative permittivity and permeability
of εr = 4, μr = 9 is given by

H= âρ3+âφ6 + âz 8 A/m at ρ = 4− cm

The cylinder is surrounded on the outside
with air. Refer to Figure 3-4 for the cylindri-
cal coordinate system and its units vectors.
Determine the:
(a) Magnetic flux density on the inside part

of the surface of the cylinder (ρ = 4−
cm; magnetic material).

(b) Magnetic field on the outside part of the
cylinder surface (ρ = 4+ cm; air).

(c) Magnetic flux density on the outside part
of the cylinder surface (ρ = 4+ cm; air).

x

y

z

er, mr

4 cm

Figure P1-10

1.11. The instantaneous electric field inside a
source-free, homogeneous, isotropic, and
linear medium is given by

� = [âx A(x + y) + ây B(x − y)] cos(ωt)

Determine the relations between A and B .

1.12. The magnetic flux density produced on its
plane by a current-carrying circular loop of
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radius a = 0.1 m, placed on the xy plane at
z = 0, is given by

� = âz
10−12

1 + 25ρ
cos(1500π t) Wb/m2

where ρ is the radial distance in cylindrical
coordinates. Find the:
(a) Total flux in the z direction passing

through the loop.
(b) Electric field at any point ρ within

the loop. Check your answer by using
Maxwell’s equation 1-1.

1.13. The instantaneous magnetic flux density in
free space is given by

� = âx Bx cos(2y) sin(ωt − πz )

+ ây By cos(2x) cos(ωt − πz )

where Bx and By are constants. Assum-
ing there are no sources at the observation
points x , y , determine the electric displace-
ment current density.

1.14. The displacement current density within a
source-free (�i = 0) cube centered about
the origin is given by

�d = âx yz + ây y2 + âz xyz

Each side of the cube is 1 m long and the
medium within it is free space. Find the dis-
placement current leaving, in the outward
direction, through the surface of the cube.

1.15. The electric flux density in free space
produced by an oscillating electric charge
placed at the origin is given by

� = âr
10−9

4π

1

r2
cos(ωt − βr)

where β = ω
√

μ0ε0. Find the time-average
charge that produces this electric flux den-
sity.

1.16. The electric field radiated at large distances
in free space by a current-carrying small cir-
cular loop of radius a , placed on the xy plane
at z = 0, is given by

� = âφE0 sin θ
cos(ωt − β0r)

r
, r � a

where E0 is a constant, β0 = ω
√

μ0ε0, r
is the radial distance in spherical coordi-
nates, and θ is the spherical angle measured
from the z axis that is perpendicular to the

plane of the loop. Determine the correspond-
ing radiated magnetic field at large distances
from the loop (r � a).

1.17. A time-varying voltage source of v(t) =
10 cos(ωt) is connected across a paral-
lel plate capacitor with polystyrene (ε =
2.56ε0, σ = 3.7×10−4 S/m) between the
plates. Assuming a small plate separation of
2 cm and no field fringing, determine at:
(a) f = 1 MHz
(b) f = 100 MHz

the maximum values of the conduction and
displacement current densities within the
polystyrene and compare them.

1.18. A dielectric slab of polystyrene (ε =
2.56ε0, μ = μ0) of height 2h is bounded
above and below by free space, as shown
in Figure P1-18. Assuming the electric field
within the slab is given by

� = (ây 5 + âz 10) cos(ωt − βx)

where β = ω
√

μ0ε, determine the:
(a) Corresponding magnetic field within the

slab.
(b) Electric and magnetic fields in free

space right above and below the slab.

x

e0, m0

e0, m0

2.56 e0, m0

2.56 e0, m0

y

z

h

h

Figure P1-18

1.19. A finite conductivity rectangular strip,
shown in Figure P1-19, is used to carry
electric current. Because of the strip’s lossy
nature, the current is nonuniformly dis-
tributed over the cross section of the strip.
The current density on the upper and lower
sides is given by

� = âz 104 cos(2π×109t) A/m2

and it rapidly decays in an exponential fash-
ion from the lower side toward the center by
the factor e−106y , or

� = âz 104e−106y cos(2π×109t) A/m2
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A similar decay is experienced by the cur-
rent density from the upper side toward the
center. Assuming no variations of the cur-
rent density with respect to x , determine the
total current flowing through the wire.

x

y

z
5 mm

0.5 mm

Figure P1-19

1.20. The instantaneous electric field inside a
conducting rectangular pipe (waveguide) of
width a is given by

� = ây E0 sin
(π

a
x
)

cos(ωt − βz z )

where βz is the waveguide’s phase constant.
Assuming there are no sources within the
free-space-filled pipe determine the:
(a) Corresponding instantaneous magnetic

field components inside the conducting
pipe.

(b) Phase constant βz .
The height of the waveguide is b.

1.21. The instantaneous electric field intensity
inside a source-free coaxial line with inner
and outer radii of a and b, respectively, that
is filled with a homogeneous dielectric of
ε = 2.25ε0, μ = μ0, and σ = 0, is given by

� = âρ

(
100

ρ

)
cos(108t − βz )

where β is the phase constant and ρ is the
cylindrical radial distance from the center of
the coaxial line. Determine the:
(a) Corresponding instantaneous magnetic

field �.
(b) Phase constant β.
(c) Displacement current density �d .

1.22. A coaxial line resonator with inner and
outer conductors at a = 5 mm and b = 20
mm, and with conducting plates at z = 0
and z = �, is filled with a dielectric with
εr = 2.56, μr = 1, and σ = 0. The instan-
taneous magnetic field intensity inside the

source-free dielectric medium is given by

� = âφ

(
2

ρ

)
cos

(π

�
z
)

cos(4π×108t)

Find the following:
(a) Electric field intensity within the dielec-

tric.
(b) Surface current density �s at the con-

ductor surfaces at ρ = a and ρ = b.
(c) Displacement current density �d at any

point within the dielectric.
(d) Total displacement current flowing

through the circumferential surface of
the resonator.

1.23. Using the instantaneous forms of Maxwell’s
equation and the continuity equations listed
in Tables 1-1 and 1-4, derive the correspond-
ing time-harmonic forms (in differential and
integral forms) listed in Table 1-4. Use def-
initions (1-61a) through (1-61f).

1.24. Show that the electric and magnetic fields
(1-61a) and (1-61b) can be written, respec-
tively, as in (1-67a) and (1-67b).

1.25. The time-harmonic instantaneous electric
field traveling along the z -axis, in a free-
space medium, is given by

�(z , t) = âx Eo sin
[
(ωt − βoz ) +

(π

2

)]
where Eo is a real constant and βo =
ω

√
μoεo .

(a) Write an expression for the complex
spatial electric field intensity E(z ).

(b) Find the corresponding complex spatial
magnetic field intensity H(z ).

(c) Determine the time-average Poynting
vector (average power density) Save.

1.26. An electric line source of infinite length and
constant current, placed along the z axis,
radiates in free space at large distances from
the source (ρ � 0) a time-harmonic com-
plex magnetic field given by

H = âφH0
e−jβ0ρ

√
ρ

, ρ � 0

where H0 is a constant, β0 = ω
√

μ0ε0, and ρ

is the radial cylindrical distance. Determine
the corresponding electric field for ρ � 0.

1.27. The time-harmonic complex electric field
radiated in free space by a linear radiating
element is given by

E = âr Er + âθ Eθ
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Er = E0
cos θ

r2

[
1 + 1

jβ0r

]
e−jβ0r

Eθ = jE0
β sin θ

2r

[
1 + 1

jβ0r
− 1

(β0r)2

]
e−jβ0r

where âr and âθ are unit vectors in the
spherical directions r and θ , E0 is a con-
stant, and β0 = ω

√
μ0ε0. Determine the cor-

responding spherical magnetic field compo-
nents.

1.28. The time-harmonic complex electric field
radiated by a current-carrying small circular
loop in free space is given by

E = âφE0
sin θ

r

[
1 + 1

jβ0r

]
e−jβ0r

where âφ is the spherical unit vector in
the φ direction, E0 is a constant, and
β0 = ω

√
μ0ε0. Determine the correspond-

ing spherical magnetic field components.

1.29. The complex electric field inside an
infinitely long rectangular pipe, with all four
vertical walls perfectly electric conducting,
as shown in Figure P1-29, is given by

E = âz (1 + j ) sin
(π

a
x
)

sin
(π

b
y
)

Assuming that there are no sources within
the box and a = λ0, b = 0.5λ0, and μ = μ0,
where λ0 = free space, infinite medium

x

y

z

a

b

Figure P1-29

wavelength, find the:
(a) Conductivity.
(b) Dielectric constant.
of the medium within the box.

1.30. A time-harmonic electromagnetic field in
free space is perpendicularly incident upon
a perfectly conducting semi-infinite planar
surface, as shown in Figure P1-30. Assum-
ing the incident Ei and reflected Er complex
electric fields on the free-space side of the
interface are given by

Ei = âx e−jβ0z

Er = −âx e+jβ0z

where
β0 = ω

√
μ0ε0

determine the current density Js induced on
the surface of the conducting surface. Eval-
uate all the constants.

zy

x

s = ∞Incident

e0, m0

Reflected

Figure P1-30

1.31. The free-space incident Ei and reflected Er

fields of a time-harmonic electromagnetic
field obliquely incident upon a perfectly
conducting semi-infinite planar surface of
Figure P1-31 are given by

Ei = ây E0e−jβ0(x sin θi +z cos θi )

Er = ây E0�h e−jβ0(x sin θi −z cos θi )

z
y

x

s = ∞

Incident

e0, m0
Reflected

qi

qi

Figure P1-31
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where E0 is a constant and β0 = ω
√

μ0ε0.
Determine the coefficient �h .

1.32. For Problem 1.31, determine the:
(a) Corresponding incident and reflected

magnetic fields.
(b) Electric current density along the inter-

face between the two media.

1.33. Repeat Problem 1.31 when the incident and
reflected electric fields are given by

Ei = (âx cos θi − âz sin θi )

× E0e−jβ0(x sin θi +z cos θi )

Er = (âx cos θi + âz sin θi )

× �eE0e−jβ0(x sin θi −z cos θi )

where E0 is a constant and β0 = ω
√

μ0ε0.
Determine the coefficient �e by applying the
boundary conditions on the tangential com-
ponents.

1.34. Repeat Problem 1.33 except that �e should
be determined using the boundary condi-
tions on the normal components. Compare
the answer with that obtained in Problem
1.33. Explain.

1.35. For Problem 1.33 determine the:
(a) Corresponding incident and reflected

magnetic fields.
(b) Electric current density along the inter-

face between the two media.

1.36. A time-harmonic electromagnetic field trav-
eling in free space and perpendicularly inci-
dent upon a flat surface of distilled water
(ε = 81ε0, μ = μ0), as shown in Figure P1-
36, creates a reflected field on the free-space
side of the interface and a transmitted field
on the water side of the interface. Assum-
ing the incident (Ei ), reflected (Er ), and

x

y

z

Incident

Transmitted

e0, m0

m = m0

e = 81e0

Reflected

Figure P1-36

transmitted (Et ) electric fields are given,
respectively, by

Ei = âx E0e−jβ0z

Er = âx �0E0e+jβ0z

Et = âx T0E0e−jβz

determine the coefficients �0 and T0. E0 is
a constant, β0 = ω

√
μ0ε0, β = ω

√
μ0ε.

1.37. When a time-harmonic electromagnetic field
is traveling in free space and is obliquely
incident upon a flat surface of distilled water
(ε = 81ε0, μ = μ0), it creates a reflected
field on the free-space side of the interface
and a transmitted field on the water side of
the interface. Assume the incident, reflected,
and transmitted electric and magnetic fields
are given by

Ei = ây E0e−jβ0(x sin θi +z cos θi )

Hi = (−âx cos θi + âz sin θi )

×
√

ε0

μ0
E0e−jβ0(x sin θi +z cos θi )

Er = ây�h E0e−jβ0(x sin θi −z cos θi )

Hr = (âx cos θi + âz sin θi )

×
√

ε0

μ0
�h E0e−jβ0(x sin θi −z cos θi )

Et = ây Th E0e
−jβ0

(
x sin θi +z

√
ε
ε0

− sin2 θi

)

Ht =
(

−âx

√
1 − ε0

ε
sin2 θi + âz

√
ε0

ε
sin θi

)

×
√

ε

μ0
Th E0e

−jβ0

(
x sin θi +z

√
ε
ε0

− sin2 θi
)

xy

z

Incident

Transmitted

e0, m0

m = m0

qt

qi
qi

e = 81e0

Reflected

Figure P1-37
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where E0 is a constant and β0 = ω
√

μ0ε0.
Determine the coefficients �h and Th by
applying the boundary conditions on the tan-
gential components. Evaluate all the con-
stants.

1.38. Repeat Problem 1.37 except that �h and
Th should be determined using the bound-
ary conditions on the normal components.
Compare the answers to those obtained in
Problem 1.37. Explain.

1.39. Repeat Problem 1.37 when the incident,
reflected, and transmitted electric and mag-
netic fields are given by

Ei =(âx cos θi −âz sin θi )

× E0e−jβ0(x sin θi +z cos θi )

Hi = ây

√
ε0

μ0
E0e−jβ0(x sin θi +z cos θi )

Er =(âx cos θi +âz sin θi )

× �eE0e−jβ0(x sin θi −z cos θi )

Hr =−ây

√
ε0

μ0
�eE0e−jβ0(x sin θi −z cos θi )

Et =
[

âx

√
1 − ε0

ε
sin2 θi − âz

√
ε0

ε
sin θi

]

× TeE0e
−jβ0

(
x sin θi +z

√
ε
ε0

− sin2 θi
)

Ht = ây

√
ε

μ0
TeE0e

−jβ0

(
x sin θi +z

√
ε
ε0

− sin2 θi
)

�e and Te should be determined using the
boundary conditions on the tangential com-
ponents.

1.40. Repeat Problem 1.39 except that �e and
Te should be determined using the bound-
ary conditions on the normal components.
Compare the answers to those obtained in
Problem 1.39. Explain.

1.41. For Problem 1.16 find the:
(a) Average power density at large dis-

tances.
(b) Total power exiting through the surface

of a large sphere of radius r(r � a).

1.42. A uniform plane wave traveling in a free
space medium is incident at an oblique angle
θi upon an infinite and flat perfect electric
conductor (PEC, σ = ∞). The normalized
incident and reflected magnetic fields at the

surface of the PEC (y = 0, on the free space
part of the PEC), are given by

Hincident(on surface of PEC)

= 1

377
(−âx cos θi + âz sin θi )

Hreflected(on surface of PEC)

= 1

377
(−âx cos θi − âz sin θi )

Find the total electric current density Js

induced on the surface of the PEC.

PEC (s = ∞)

x

yqi

free space

Reflected
field

Incident
field

Figure P1-42

1.43. The time-harmonic complex field inside a
source-free conducting pipe of rectangu-
lar cross section (waveguide), shown in
Figure P1-43 filled with free space, is given
by

E = ây E0 sin
(π

a
x
)

e−jβz z ,

0 ≤ x ≤ a , 0 ≤ y ≤ b

x
z

y

a

b e0, m0

Figure P1-43

where

βz = β0

√
1 −

(
λ0

2a

)2

E0 is a constant, and β0 = 2π/λ0 =
ω

√
μ0ε0. For a section of waveguide of

length l along the z axis, determine the:
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(a) Corresponding complex magnetic field.
(b) Supplied complex power.
(c) Exiting complex power.
(d) Dissipated real power.
(e) Time-average magnetic energy.
(f) Time-average electric energy.
Ultimately verify that the conservation-of-
energy equation in integral form is satisfied
for this set of fields inside this section of the
waveguide.

1.44. For the waveguide and its set of fields of
Problem 1.43, verify the conservation-of-
energy equation in differential form for any
observation point within the waveguide.

1.45. The normalized time-harmonic electric field
inside an air-filled, source-free rectangu-
lar pipe/waveguide of infinite length and
with cross-sectional dimensions of a and b,
whose four walls (left-right, top-bottom) are
perfect electric conductors (PEC, σ = ∞), is
given by

Ex = cos(βx x) sin(βy y)

Ey = sin(βx x) cos(βy y)

where βx and βy are real constants. For non-
trivial(nonzero) fields, determine all possible
values of βx in terms of a , and βy in terms
of b.

a

b

z

x

y

s = ∞

Figure P1-45

1.46. At microwave frequencies, high Q resonant
cavities are usually constructed of enclosed

conducting pipes (waveguides) of different
cross sections. One such cavity is that of
rectangular cross section that is enclosed on
all six sides, as shown in Figure P1-46. One
set of complex fields that can exist inside
such a source-free cavity filled with free
space is given by

E = ây E0 sin
(π

a
x
)

sin
(π

c
z
)

such that

ω = ωr = 1√
μ0ε0

√(π

a

)2 +
(π

c

)2

where E0 is a constant and ωr is referred to
as the resonant radian frequency. Within the
cavity, determine the:
(a) Corresponding magnetic field.
(b) Supplied complex power.
(c) Dissipated real power.
(d) Time-average magnetic energy.
(e) Time-average electric energy.
Ultimately verify that the conservation of
energy equation in integral form is sat-
isfied for this set of fields inside this
resonant cavity.

x

c

z

y

a

b

e0, m0

Figure P1-46



Balanis c02.tex V3 - 11/22/2011 3:07 P.M. Page 39

CHAPTER 2
Electrical Properties of Matter

2.1 INTRODUCTION

Since the late 1990s a renewed interest has been spurred in the application, integration, mod-
eling, and optimization of materials in a plethora of electromagnetic radiation, guiding, and
scattering structures. In particular, material structures whose constitutive parameters (permittiv-
ity and permeability) are both negative, often referred to as a Double Negative (DNG), have
received considerable interest and attention. Artificial magnetic conductors can also be included
in the DNG class of materials. A more inclusive name for all these materials is metamaterials .
It is the class of metamaterials that has captivated the interest and imagination of many leading
researchers and practitioners, scientists, and engineers from academia, industry, and government.
When electromagnetic waves interact with such surfaces, they result in some very unique and
intriguing characteristics and phenomena that can be used, for example, to optimize the per-
formance of antennas, microwave devices, and other electromagnetic wave guiding structures.
While the revitalization of metamaterials introduced a welcomed renewed interest in materials for
electromagnetics, especially for applications related to antennas, microwaves, transmission lines,
scattering, optics, etc., it also brought along some spirited dialogue that will be discussed in more
detail in Section 5.7. The uniqueness of these materials is characterized and demonstrated by
their basic constitutive parameters, such as permittivity, permeability, and conductivity. In order
to appreciate the behavior of materials, it is very important that engineers and scientists under-
stand the very basics of these constitutive parameters from d.c. to rf frequencies. An in-depth
development of models for these constitutive parameters, from their basic atomic structure to
their interaction with electromagnetic fields, is undertaken in this chapter.

An atom of an element consists of a very small but massive nucleus that is surrounded by
a number of negatively charged electrons revolving about the nucleus. The nucleus contains
neutrons , which are neutral particles, and protons , which are positively charged particles. All
matter is made up of one or more of the 118 different elements that are now known to exist.
Elements 112 to 118 have been discovered but not confirmed. Of this number, only 92 occur
naturally. If the substance in question is a compound, it is composed of two or more different
elements. The smallest constituent of a compound is a molecule, which is composed of one or
more atoms held together by the short-range forces of their electrical charges.

For a given element, each of its atoms contains the same number of protons in its nucleus.
Depending on the element, that number ranges from 1 to 118 and represents the atomic number
of the element. For an atom in its normal state, the number of electrons is also equal to the atomic
number. The revolving electrons that surround the nucleus exist in various shells, and they exert
forces of repulsion on each other and forces of attraction on the positive charges of the nucleus.

39



Balanis c02.tex V3 - 11/22/2011 3:07 P.M. Page 40

40 ELECTRICAL PROPERTIES OF MATTER
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Figure 2-1 Atoms of representative elements of most interest in electronics. (a) Hydrogen atom. (b)
Aluminum atom. (c) Silicon atom. (d ) Germanium atom. (Source: R. R. Wright and H. R. Skutt, Electronics:
Circuits and Devices , 1965; reprinted by permission of John Wiley and Sons, Inc.)

The outer shell of an atom is referred to as the valence shell (band) and the electrons occupying
that shell are known as valence electrons . They are of most interest here. The portrayal of an
atom by such a model is referred to as the Bohr model [1]. Atoms and their charges for some
typical elements of interest in electronics (such as hydrogen, aluminum, silicon, and germanium)
are shown in Figure 2-1.

For an atom, all the electrons in a given shell (orbit) exist in the same energy level (fixed
state). Since there are several shells (orbits) around the nucleus of an atom, there exist several
discrete energy levels (fixed states) each representing a given shell (orbit). In general, there are
more energy levels than electrons. Therefore some of the energy levels (orbits, shells, bands) are
not occupied by electrons. The Bohr model of an atom states that:

1. Electrons of any atom exist only in discrete states and possess only discrete amounts of
energy corresponding to the discrete radii of their corresponding orbital shells.

2. If an electron moves from a lower- to a higher-energy level (orbit), it absorbs a discrete
quantity of energy (referred to as quanta).
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3. If an electron moves from a higher- to a lower-energy level (orbit), it radiates a discrete
quantity of energy (referred to as quanta).

4. If an electron maintains its energy level (orbit), it neither absorbs nor radiates energy.

When a molecule is formed with two or more atoms, forces between the atoms result in new
arrangements of the charges. For an electron to be freed from an atom, it must acquire sufficient
energy to allow it to escape its atomic forces and become a free body. This is analogous to the
energy required by a projectile to escape the earth’s gravity and become a free body.

2.2 DIELECTRICS, POLARIZATION, AND PERMITTIVITY

Dielectrics (insulators) are materials whose dominant charges in atoms and molecules are bound
negative and positive charges that are held in place by atomic and molecular forces, and they are
not free to travel. Thus ideal dielectrics do not contain any free charges (such as in conductors),
and their atoms and molecules are macroscopically neutral as shown in Figure 2-2a . Furthermore,
when external fields are applied, these bound negative and positive charges do not move to the
surface of the material, as would be the case for conductors, but their respective centroids can
shift slightly in positions (assumed to be an infinitesimal distance) relative to each other, thus
creating numerous electric dipoles. This is illustrated in Figure 2-2b. In conductors, positive and
negative charges are separated by macroscopic distances, and they can be separated by a surface
of integration. This is not permissible for bound charges and illustrates a fundamental difference
between bound charges in dielectrics and true charges in conductors.

For dielectrics, the formation of the electric dipoles is usually referred to as orientational
polarization . The effect of each electric dipole can be represented by a dipole, as shown in
Figure 2-3, with a dipole moment dpi given by

dpi = Q�i (2-1)

where Q is the magnitude (in coulombs) of each of the negative and positive charges whose
centroids are displaced vectorially by distance �i .

−

+

+

−

(a)

Ea Ea

(b)

l

Figure 2-2 A typical atom. (a) Absence of applied field. (b) Under applied field.

−Q

+

−

+Q

dpi =Qlili

Figure 2-3 Formation of a dipole between two opposite charges of equal magnitude Q .
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When a material is subjected to an electric field, the polarization dipoles of the material interact
with the applied electromagnetic field. For dielectric (insulating) material, whether they are solids,
liquids, or gases, this interaction provides the material the ability to store electric energy, which
is accomplished by the shift against restraining forces of their bound charges when they are
subjected to external applied forces. This is analogous to stretching a spring or lifting a weight,
and it represents potential energy.

The presence of these dipoles can be accounted for by developing a microscopic model in
which each individual charge and dipole as represented by (2-1) is considered. Such a procedure,
although accurate if performed properly, is very impractical if applied to a dielectric slab because
the spatial position of each atom and molecule of the material must be known. Instead, in
practice, the behavior of these dipoles and bound charges is accounted for in a qualitative way by
introducing an electric polarization vector P using a macroscopic scale model involving thousands
of atoms and molecules.

The total dipole moment pt of a material is obtained by summing the dipole moments of all
the orientational polarization dipoles, each of which is represented by (2-1). For a volume 	v

where there are Ne electric dipoles per unit volume, or a total of Ne	v electric dipoles, we can
write that

pt =
Ne	v∑
i=1

dpi (2-2)

The electric polarization vector P can then be defined as the dipole moment per unit volume, or

P = lim
	v→0

[
1

	v
pt

]
= lim

	v→0

[
1

	v

Ne	v∑
i=1

dpi

]
(C/m2) (2-3)

The units of P are coulomb-meters per cubic meter or coulombs per square meter, which is repre-
sentative of a surface charge density. It should be noted that this is a bound surface charge density
(qsp), and it is not permissible to separate the positive and negative charges by an integration
surface. Therefore, within a volume, an integral (whole) number of positive and negative pairs
(dipoles) with an overall zero net charge must exist. Hence the bound surface charge should not
be included in (1-45a) or (1-46) to determine the boundary conditions on the normal components
of the electric flux density (or normal components of the electric field intensity).

Assuming an average dipole moment of

dpi = dpav = Q�av (2-4)

per molecule, the electric polarization vector of (2-3) can be written, when all dipoles are aligned
in the same direction, as

P = lim
	v→0

[
1

	v

Ne	v∑
i=1

dpi

]
= Nedpav = NeQ�av (2-5)

Electric polarization for dielectrics can be produced by any of the following three mechanisms,
as demonstrated in Figure 2-4 [2]. Few materials involve all three of the following mechanisms:

1. Dipole or Orientational Polarization: This polarization is evident in materials that, in the
absence of an applied field and owing to their structure, possess permanent dipole moments
that are randomly oriented. However when an electric field is applied, the dipoles tend to
align with the applied field. As will be discussed later, such materials are known as polar
materials; water is a good example.
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Mechanism No applied field Applied field

Dipole or
orientational
polarization

lonic or
molecular
polarization

Electronic
polarization

Ea

Ea

Ea

+

+

+

+ −

−

−

−

Figure 2-4 Mechanisms producing electric polarization in dielectrics.

2. Ionic or Molecular Polarization: This polarization is evident in materials, such as sodium
chloride (NaCl), that possess positive and negative ions and that tend to displace themselves
when an electric field is applied.

3. Electronic Polarization: This polarization is evident in most materials, and it exists when
an applied electric field displaces the electric cloud center of an atom relative to the center
of the nucleus.

If the charges in a material, in the absence of an applied electric field Ea , are averaged in
such a way that positive and negative charges cancel each other throughout the entire mate-
rial, then there are no individual dipoles formed and the total dipole moment of (2-2) and the
electric polarization vector P of (2-3) are zero. However, when an electric field is applied, it
exhibits a net nonzero polarization. Such a material is referred to as nonpolar , and it is illus-
trated in Figure 2-5a . Polar materials are those whose charges in the absence of an applied
electric field Ea are distributed so that there are individual dipoles formed, each with a dipole
moment pi as given by (2-1) but with a net total dipole moment pt = 0 and electric polarization
vector P = 0. This is usually a result of the random orientation of the dipoles as illustrated in
Figure 2-5b. Typical dipole moments of polar materials are of the order of 10−30 C-m. Materials
that, in the absence of an applied electric field Ea , possess nonzero net dipole moment and electric
polarization vector P are referred to as electrets .

There is also a class of dielectric materials that are usually referred to as ferroelectrics [3].
They exhibit a hysteresis loop of polarization (P ) versus electric field (E ) that is similar to the
hysteresis loop of B versus H for ferromagnetic material, and it possesses a remnant polarization
Pr and coercive electric field Ec . At some critical temperature, referred to as ferroelectric Curie
temperature, the spontaneous polarization in ferroelectrics disappears. Above the Curie temper-
ature the relative permittivity varies according to the Curie–Weiss law; below it the electric flux
density D and the polarization P are not linear functions of the electric field E [3]. Barium
titanate (BaTiO3) is one such material.

When an electric field is applied to a nonpolar or polar dielectric material, as shown in
Figures 2-5a and 2-5b, the charges in each medium are aligned in such a way that individual
dipoles with nonzero dipole moments are formed within the material. However, when we
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Figure 2-5 Macroscopic scale models of materials. (a) Nonpolar. (b) Polar.

examine the material on a microscopic scale, the following items become evident from
Figures 2-5a and 2-5b:

1. On the lower surface there exists a net positive surface charge density q+
s (representing

bound charges).
2. On the upper surface there exists a net negative surface charge density q−

s (representing
bound charges).

3. The volume charge density qv inside the material is zero because the positive and negative
charges of adjacent dipoles cancel each other.

The preceding items can also be illustrated by macroscopically examining Figure 2-6a where
a d.c. voltage source is connected and remains across two parallel plates separated by distance
s . Half of the space between the two plates is occupied by a dielectric material, whereas the
other half is free space. For a better illustration of this point, let us assume that there are five
free charges on each part of the plates separated by free space. The same number appears on the
part of the plates separated by the dielectric material. Because of the realignment of the bound
charges in the dielectric material and the formation of the electric dipoles and cancellation of
adjacent opposite charges shown circled in Figure 2-6b, a polarization electric vector P is formed
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Figure 2-6 Dielectric slab subjected to an applied electric field Ea . (a) Total charge. (b) Net charge.

within the dielectric material. Thus the polarization vector P is a result of the bound surface
charge density −qsp found on the upper and +qsp found on the lower surface of the dielectric
slab. Let us assume that there are two pairs of bound charges that form the bound surface charge
density qsp on the surface of the dielectric slab of Figure 2-6a (negative on top and positive on
the bottom). Because the surfaces of the slab are assumed to be in contact with the plates of
the capacitor, the two negative bound charges on the top surface will tend to cancel two of the
positive free charges on the upper capacitor plate; a similar phenomenon occurs at the bottom.
If this were to happen, the net number of charges on the top and bottom plates of the capacitor
would diminish to three and the electric field intensity in the dielectric material between the plates
would be reduced. Since the d.c. voltage supply is maintained across the plates, the net charge on
the upper and lower parts of the capacitor and the electric field intensity in the dielectric material
between the plates are also maintained by the introduction of two additional free charges on each
of the capacitor plates (positive on top and negative on bottom). For identification purposes, these
two induced free charges have been circled in each of the two plates in Figure 2-6.
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In each of the situations discussed previously, the net effect is that between the lower and
upper surfaces of the dielectric there is a net electric polarization vector P directed from the upper
toward the lower surfaces, in the same direction as the applied electric field Ea , whose amplitude
is given by

P = qsp (2-6)

Whereas the applied electric field Ea maintains its value, the electric flux density inside the
dielectric material differs from what would exist were the dielectric material replaced by free
space. In the free-space part of the parallel plate capacitor of Figure 2-6, the electric flux density
D0 is given by

D0 = ε0Ea (2-7)

In the dielectric portion, the electric flux density D is related to that in free space D0 by

D = ε0Ea + P (2-8)

where the magnitude of P is given by (2-6). The electric flux density D of (2-8) can also be
related to the applied electric field intensity Ea by a parameter that we designate here as εs

(farads/meter). Thus we can write that
D = εsEa (2-9)

Comparing (2-8) and (2-9), it is apparent that P is also related to Ea and can be expressed as

P = ε0χeEa (2-10)

or

χe = 1

ε0

P

Ea
(2-10a)

where χe is referred to as the electric susceptibility (dimensionless quantity).
Substituting (2-10) into (2-8) and equating the result to (2-9), we can write that

D = ε0Ea + ε0χeEa = ε0 (1 + χe) Ea = εsEa (2-11)

or that
εs = ε0 (1 + χe) (2-11a)

In (2-11a) εs is the static permittivity of the medium whose relative value εsr (compared to that
of free space ε0) is given by

εsr = εs

ε0
= 1 + χe (2-12)

which is usually referred to as the relative permittivity , better known in practice as the dielectric
constant . Scientists and engineers usually designate the square root of the relative permittivity
as the index of refraction . Typical values of dielectric constants at static frequencies of some
prominent dielectric materials are listed in Table 2-1.

Thus the dielectric constant of a dielectric material is a parameter that indicates the relative
(compared to free space) charge (energy) storage capabilities of a dielectric material; the larger
its value, the greater its ability to store charge (energy). Parallel plate capacitors utilize dielectric
material between their plates to increase their charge (energy) storage capacity by forcing extra
free charges to be induced on the plates. These free charges neutralize the bound charges on the
surface of the dielectric so that the voltage and electric field intensity are maintained constant
between the plates.
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TABLE 2-1 Approximate static dielectric constants (relative permittivities) of dielectric
materials

Material Static dielectric constant (εr )

Air 1.0006
Styrofoam 1.03
Paraffin 2.1
Teflon 2.1
Plywood 2.1
RT/duroid 5880 2.20
Polyethylene 2.26
RT/duroid 5870 2.35
Glass-reinforced teflon (microfiber) 2.32–2.40
Teflon quartz (woven) 2.47
Glass-reinforced teflon (woven) 2.4–2.62
Cross-linked polystyrene (unreinforced) 2.56
Polyphenelene oxide (PPO) 2.55
Glass-reinforced polystyrene 2.62
Amber 3
Soil (dry) 3
Rubber 3
Plexiglas 3.4
Lucite 3.6
Fused silica 3.78
Nylon (solid) 3.8
Quartz 3.8
Sulfur 4
Bakelite 4.8
Formica 5
Lead glass 6
Mica 6
Beryllium oxide (BeO) 6.8–7.0
Marble 8
Sapphire εx = εy = 9.4

εz = 11.6
Flint glass 10
Ferrite (Fe2O3) 12–16
Silicon (Si) 12
Gallium arsenide (GaAs) 13
Ammonia (liquid) 22
Glycerin 50
Water 81
Rutile (TiO2) εx = εy = 89

εz = 173

Example 2-1

The static dielectric constant of water is 81. Assuming the electric field intensity applied to water is
1 V/m, determine the magnitudes of the electric flux density and electric polarization vector within the
water.
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Solution: Using (2-9), we have

D = εs Ea = 81(8.854 × 10−12)(1) = 7.17 × 10−10 C/m2

Using (2-12), we have
χe = εsr − 1 = 81 − 1 = 80

Thus the magnitude of the electric polarization vector is given, using (2-10), by

P = ε0χeEa = 8.854 × 10−12(80)(1) = 7.08 × 10−10 C/m2

The permittivity of (2-11a), or its relative form of (2-12), represents values at static or qua-
sistatic frequencies. These values vary as a function of the alternating field frequency. The
variations of the permittivity as a function of the frequency of the applied fields are examined in
Section 2.9.1.

2.3 MAGNETICS, MAGNETIZATION, AND PERMEABILITY

Magnetic materials are those that exhibit magnetic polarization when they are subjected to an
applied magnetic field. The magnetization phenomenon is represented by the alignment of the
magnetic dipoles of the material with the applied magnetic field, similar to the alignment of the
electric dipoles of the dielectric material with the applied electric field.

Accurate results concerning the behavior of magnetic material when they are subjected to
applied magnetic fields can only be predicted by the use of quantum theory. This is usually
quite complex and unnecessary for most engineering applications. Quite satisfactory quantitative
results can be obtained, however, by using simple atomic models to represent the atomic lattice
structure of the material. The atomic models used here represent the electrons as negative charges
orbiting around the positively-charged nucleus, as shown in Figure 2-7a . Each orbiting electron
can be modeled by an equivalent small electric current loop of area ds whose current flows in
the direction opposite to the electron orbit, as shown in Figure 2-7b. As long as the loop is small,
its shape can be circular, square, or any other configuration, as shown in Figures 2-7b and 2-7c.
The fields produced by a small loop of electric current at large distances are the same as those
produced by a linear bar magnet (magnetic dipole) of length d .

Ii Ii

dmi = niIi dsi

dsi

(a)

m

m

m

m

m

m

m

x

z

y

m

(b) (c)

dsi

−
−

+−

−
−

−

−

−
ni

dmi = niIi dsi

ni

Figure 2-7 Atomic models and their equivalents, representing the atomic lattice structure of magnetic
material. (a) Orbiting electrons. (b) Equivalent circular electric loop. (c) Equivalent square electric loop.
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By referring to the equivalent loop models of Figure 2-7, the angular momentum associated
with an orbiting electron can be represented by a magnetic dipole moment dmi of

dmi = Ii dsi = Ii n̂i dsi = n̂i Ii dsi (A-m2) (2-13)

For atoms that possess many orbiting electrons, the total magnetic dipole moment mt is equal to
the vector sum of all the individual magnetic dipole moments, each represented by (2-13). Thus
we can write that

mt =
Nm	v∑

i=1

dmi =
Nm	v∑

i=1

n̂i Ii dsi (2-14)

where Nm is equal to the number of orbiting electrons (equivalent loops) per unit volume. A
magnetic polarization (magnetization) vector M is then defined as

M = lim
	v→0

[
1

	v
mt

]
= lim

	v→0

[
1

	v

Nm	v∑
i=1

dmi

]
= lim

	v→0

[
1

	v

Nm	v∑
i=1

n̂i Ii dsi

]
(A/m) (2-15)

Assuming for each of the loops an average magnetic moment of

dmi = dmav = n̂ (I ds)av (2-16)

the magnetic polarization vector M of (2-15) can be written (assuming all the loops are aligned
in the parallel planes) as

M = lim
	v→0

[
1

	v

Nm	v∑
i=1

dmi

]
= Nmdmav = n̂Nm (Ids)av (2-17)

A magnetic material is represented by a number of magnetic dipoles and thus by many magnetic
moments. In the absence of an applied magnetic field the magnetic dipoles and their corresponding
electric loops are oriented in a random fashion so that on a macroscopic scale the vector sum
of the magnetic moments of (2-14) and the magnetic polarization of (2-15) are equal to zero.
The random orientation of the magnetic dipoles and loops is illustrated in Figure 2-8a . When
the magnetic material is subjected to an applied magnetic field, represented by the magnetic flux

ψi
Ba

Ba = 0 Ba ≠ 0 Ba ≠ 0Ba = 0

dsi

Ii 

(a) (b)

dmi ≠ 0, M = 0 M ≠ 0

M

dmi ≠ 0

M
 =

 N m (I
ds

) av

ni

Figure 2-8 Orientation and alignment of magnetic dipoles. (a) Random in absence of an applied field.
(b) Aligned under an applied field.
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density Ba in Figure 2-8b, the magnetic dipoles of most material will tend to align in the direction
of the Ba since a torque given by

|	T| = |dmi × Ba | = |dmi ||Ba | sin(ψi ) = |(n̂i Ii dsi ) × Ba | = |Ii dsi Ba sin(ψi )| (2-18)

will be exerted in each of the magnetic dipole moments. This is shown in the inset to
Figure 2-8b. Ideally, if there were no other magnetic moments to consider, torque would be
exerted. The torque would exist until each of the orbiting electrons shifted in such a way that
the magnetic field produced by each of its equivalent electric loops (or magnetic moments) was
aligned with the applied field, and its value, represented by (2-18), vanished. Thus the resultant
magnetic field at every point in the material would be greater than its corresponding value at the
same point when the material is absent.

The magnetization vector M resulting from the realignment of the magnetic dipoles is better
illustrated by considering a slab of magnetic material across which a magnetic field Ba is applied,
as shown in Figure 2-9. Ideally, on a microscopic scale, for most magnetic material all the
magnetic dipoles will align themselves so that their individual magnetic moments are pointed in
the direction of the applied field, as shown in Figure 2-9. In the limit, as the number of magnetic
dipoles and their corresponding equivalent electric loops become very large, the currents of the
loops found in the interior parts of the slab are canceled by those of the neighboring loops.
On a macroscopic scale a net nonzero equivalent magnetic current, resulting in an equivalent
magnetic current surface density (A/m), is found on the exterior surface of the slab. This equivalent
magnetic current density Jms is responsible for the introduction of the magnetization vector M
in the direction of Ba .

The magnetic flux density across the slab is increased by the presence of M so that the net
magnetic flux density at any interior point of the slab is given by

B = μ0(Ha + M) (2-19)

Jms

M Ba

Figure 2-9 Magnetic slab subjected to an applied magnetic field and the formation of the magnetization
current density Jms .
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It should be pointed out that M, as given by (2-15), has the units of amperes per meter and
corresponds to those of the magnetic field intensity. In general, we can relate the magnetic flux
density to the magnetic field intensity by a parameter that is designated as μs (henries/meter).
Thus we can write that

B = μs Ha (2-20)

Comparing (2-19) and (2-20) indicates that M is also related to Ha by

M = χmHa (2-21)

where χm is called the magnetic susceptibility (dimensionless quantity).
Substituting (2-21) into (2-19) and equating the result to (2-20) leads to

B = μ0(Ha + χmHa) = μ0(1 + χm)Ha = μs Ha (2-22)

Therefore we can define
μs = μ0(1 + χm) (2-22a)

In (2-22a) μs is the static permeability of the medium whose relative value μsr (compared to
that of free space μ0) is given by

μsr = μs

μ0
= 1 + χm (2-23)

Static values of μsr for some representative materials are listed in Table 2-2.
Within the material, a bound magnetic current density Jm is induced that is related to the

magnetic polarization vector M by

Jm = ∇ × M
(
A/m2) (2-24)

TABLE 2-2 Approximate static relative permeabilities of magnetic
materials

Material Class Relative permeability (μsr)

Bismuth Diamagnetic 0.999834
Silver Diamagnetic 0.99998
Lead Diamagnetic 0.999983
Copper Diamagnetic 0.999991
Water Diamagnetic 0.999991
Vacuum Nonmagnetic 1.0
Air Paramagnetic 1.0000004
Aluminum Paramagnetic 1.00002
Nickel chloride Paramagnetic 1.00004
Palladium Paramagnetic 1.0008
Cobalt Ferromagnetic 250
Nickel Ferromagnetic 600
Mild steel Ferromagnetic 2,000
Iron Ferromagnetic 5,000
Silicon iron Ferromagnetic 7,000
Mumetal Ferromagnetic 100,000
Purified iron Ferromagnetic 200,000
Supermalloy Ferromagnetic 1,000,000
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To account for this current density, we modify the Maxwell–Ampere equation 1-71b and write
it as

∇ × H = Ji + Jc + Jm + Jd = Ji + σE + ∇ × M + jωεE (2-24a)

On the surface of the material, the bound magnetization surface current density Jms is related to
the magnetic polarization vector M at the surface by

Jms = M × n̂|surface (A/m) (2-25)

where n̂ is a unit vector normal to the surface of the material. The bound magnetization current
Im flowing through a cross section S0 of the material can be obtained by using

Im =
∫∫

S0

Jm • ds =
∫∫

S0

(∇ × M) • ds (A) (2-26)

In addition to orbiting, the electrons surrounding the nucleus of an atom also spin about their
own axis. Therefore magnetic moments of the order of ±9 × 10−24 A-m2 are also associated with
the spinning of the electrons that aid or oppose the applied magnetic field (the + sign is used for
addition and the − for subtraction). For atoms that have many electrons in their shells, only the
spins associated with the electrons found in shells that are not completely filled will contribute
to the magnetic moment of the atoms. A third contributor to the total magnetic moment of an
atom is that associated with the spinning of the nucleus, which is referred to as nuclear spin .
However, this nuclear spin magnetic moment is usually much smaller (typically by a factor of
about 10−3) than those attributed to the orbiting and the spinning electrons.

Example 2-2

A bar of magnetic material of finite length, which is placed along the z axis, as shown in Figure 2-10,
has a cross section of 0.3 m in the x direction (0 ≤ x ≤ 0.3) and 0.2 m in the y direction (0 ≤ y ≤ 0.2).
The bar is subjected to a magnetic field so that the magnetization vector inside the bar is given by

M = âz (4y)

az

z

4y

y

M =

M

Jm Jms

Jms

Jm

0.3

0.2

x

Figure 2-10 Magnetic bar of rectangular cross section subjected to a magnetic field.
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Determine the volumetric current density Jm at any point inside the bar, the surface current density Jms

on the surface of each of the four faces, and the total current Im per unit length flowing through the bar
face that is parallel to the y axis at x = 0.3 m.

Solution: Using (2-24), we have

Jm = ∇ × M = âx
∂Mz

∂y
= âx 4

Using (2-25), we have
Jms = M × n̂|surface

Therefore at

x = 0 :

Jms = (âz 4y) × (−âx )|x=0 = −ây (4y) for 0 ≤ y ≤ 0.2

y = 0 :

Jms = (âz 4y) × (−ây )|y=0 = âx (4y) = 0 for 0 ≤ x ≤ 0.3

x = 0.3 :

Jms = (âz 4y) × (âx )|x=0.3 = ây (4y) for 0 ≤ y ≤ 0.2

y = 0.2

Jms = (âz 4y) × (ây )|y=0.2 = −âx (4y) = −âx 0.8 for 0 ≤ x ≤ 0.3

According to (2-26), the current (per unit length) flowing through the bar face at x = 0.3 is given by

x = 0.3 :

Im =
∫∫

S
Jm • ds =

∫ 1

0

∫ 0.2

0
(âx 4) • (âx dy dz ) = 4(1)(0.2) = 0.8

Consistent with the relative permittivity (dielectric constant), the values of μ, and thus μr ,
vary as a function of frequency. These variations will be discussed in Section 2.9.2. The values
of μr listed in Table 2-2 are representative of frequencies related to static or quasistatic fields.
Excluding ferromagnetic material, it is apparent that most relative permeabilities are very near
unity, so that for engineering problems a value of unity is almost always used.

According to the direction in which the net magnetization vector M is pointing (either aiding
or opposing the applied magnetic field), material are classified into two groups, Group A and
Group B as shown:

Group A Group B

Diamagnetic Paramagnetic
Ferromagnetic
Antiferromagnetic
Ferrimagnetic

In general, for material in Group A the net magnetization vector (although small in magnitude)
opposes the applied magnetic field, resulting in a relative permeability slightly smaller than unity.
Diamagnetic materials fall into that group. For material in Group B the net magnetization vector
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is aiding the applied magnetic field, resulting in relative permeabilities greater than unity. Some
of them (paramagnetic and antiferromagnetic) have only slightly greater than unity relative per-
meabilities whereas others (ferromagnetic and ferrimagnetic) have relative permeabilities much
greater than unity.

In the absence of an applied magnetic field, the moments of the electron spins of diamagnetic
material are opposite to each other as well as to the moments associated with the orbiting elec-
trons so that a zero net magnetic moment mt is produced on a macroscopic scale. In the presence
of an external applied magnetic field, each atom has a net nonzero magnetic moment, and on a
macroscopic scale there is a net total magnetic moment for all the atoms that results in a mag-
netization vector M. For diamagnetic material, this vector M is very small, opposes the applied
magnetic field, leads to a negative magnetic susceptibility χm , and results in values of relative
permeability that are slightly less than unity. For example, copper is a diamagnetic material with
a magnetic susceptibility χm = −9 × 10−6 and a relative permeability μr = 0.999991.

In paramagnetic material, the magnetic moments associated with the orbiting and spinning
electrons of an atom do not quite cancel each other in the absence of an applied magnetic field.
Therefore each atom possesses a small magnetic moment. However, because the orientation
of the magnetic moment of each atom is random, the net magnetic moment of a large sample
(macroscopic scale) of dipoles, and the magnetization vector M, are zero when there is no applied
field. When the paramagnetic material is subjected to an applied magnetic field, the magnetic
dipoles align slightly with the applied field to produce a small nonzero M in its direction and a
small increase in the magnetic flux density within the material. Thus the magnetic susceptibilities
have small positive values and the relative permeabilities are slightly greater than unity. For
example, aluminum possesses a susceptibility of χm = 2 × 10−5 and a relative permeability of
μr = 1.00002.

The individual atoms of ferromagnetic material possess, in the absence of an applied magnetic
field, very strong magnetic moments caused primarily by uncompensated electron spin moments.
The magnetic moments of many atoms (usually as many as five to six) reinforce one another
and form regions called domains , which have various sizes and shapes. The dimensions of the
domains depend on the material’s past magnetic state and history, and range from 1 μm to a few
millimeters. On a macroscopic scale, however, the net magnetization vector M in the absence of
an applied field is zero because the domains are randomly oriented and the magnetic moments of
the various atoms cancel one another. When a ferromagnetic material is subjected to an applied
field, there are not only large magnetic moments associated with the individual atoms, but the
vector sum of all the magnetic moments and the associated vector magnetization M are very
large, leading to extreme values of magnetic susceptibility χm and relative permeability. Typical
values of μr for some representative ferromagnetic materials are found in Table 2-2. When the
applied field is removed, the magnetic moments of the various atoms do not attain a random
orientation and a net nonzero residual magnetic moment remains. Since the magnetic moment of
a ferromagnetic material on a macroscopic scale is different after the applied field is removed,
its magnetic state depends on the material’s past history. Therefore a plot of the magnetic flux
density � versus � leads to a double-valued curve known as the hysteresis loop. Material with
such properties are very desirable in the design of transformers, induction cores, and coatings for
magnetic recording tapes.

Materials that possess strong magnetic moments, but whose adjacent atoms are about equal in
magnitude and opposite in direction, with zero net total magnetic moment in the absence of an
applied magnetic field, are called antiferromagnetic. The presence of an applied magnetic field
has a minor effect on the material and leads to relative permeabilities slightly greater than unity.

If the adjacent opposing magnetic moments of a material are very large in magnitude but greatly
unequal in the absence of an applied magnetic field, the material is known as ferrimagnetic. The
presence of an applied magnetic field has a large effect on the material and leads to large
permeabilities (but not as large as those of ferromagnetic material). Ferrites make up a group
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of ferrimagnetic materials that have low conductivities (several orders smaller than those of
semiconductors). Because of their large resistances, smaller currents are induced in them that result
in lower ohmic losses when they are subjected to alternating fields. They find wide applications
in the design of nonreciprocal microwave components (isolators, hybrids, gyrators, phase shifters,
etc.) and they will be discussed briefly in Section 2.9.3.

2.4 CURRENT, CONDUCTORS, AND CONDUCTIVITY

The prominent characteristic of dielectric materials is the electric polarization introduced through
the formation of electric dipoles between opposite charges of atoms. Magnetic dipoles, modeled by
equivalent small electric loops, were introduced to account for the orbiting of electrons in atoms
of magnetic material. This phenomenon was designated as magnetic polarization. Conductors are
materials whose prominent characteristic is the motion of electric charges and the creation of a
current flow.

2.4.1 Current

Let us assume that an electric volume charge density, represented here by qv , is distributed
uniformly in an infinitesimal circular cylinder of cross-sectional area 	s and volume 	V , as
shown in Figure 2-11. The total electric charge 	Qe within the volume 	V is moving in the z
direction with a uniform velocity vz . Thus we can write that

	Qe

	t
= qv

	V

	t
= qv

	s	z

	t
= qv	s

	z

	t
(2-27)

In the limit as 	t → 0, (2-27) is used to define the current 	I (with units of amperes) that flows
through 	s . Thus

	I = lim
	t→0

[
	Qe

	t

]
= lim

	t→0

[
qv	s

	z

	t

]
= qvvz 	s (2-28)

y

Δz

+vz
Δs

x

ΔV

z

E

E
Jc

Figure 2-11 Charge uniformly distributed in an infinitesimal circular cylinder.
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Dividing both sides of (2-28) by 	s and taking the limit as 	s → 0, we can define the current
density Jz (with units of amperes per square meter) as

Jz = lim
	s→0

[
	I

	s

]
= qvvz (2-29)

Using a similar procedure for the x - and y-directed currents, we can write in general that

J = qvv (A/m2) (2-30)

In (2-30), J is defined as the convection current density . The current density between the cathode
and anode of a vacuum tube is a convection current density. It should be noted that for an electric
field intensity of E = âz Ez , a positive charge density +qv will experience a force that will move
it in the +z direction. Thus the current density J will be directed in the +z direction or

J = +qv(+âz vz ) = âz qvvz (2-31)

If the same electric field E = âz Ez is subjected to a negative charge density −qv , the field will
force the negative charge to move in the negative z direction (v = −âz vz ). However, the electric
current density J is still directed along the +z direction,

J = −qv(−âz vz ) = âz qvvz (2-32)

since both the charge density and the velocity are negative. If positive (q+
v ) and negative (q−

v )

charges are present, (2-30) can be written as

J = q+
v v+ + q−

v v− (2-33)

2.4.2 Conductors

Conductors are material whose atomic outer shell (valence) electrons are not held very tightly and
can migrate from one atom to another. These are known as free electrons , and for metal conductors
they are very large in number. With no applied external field, these free electrons move with
different velocities in random directions producing zero net current through the surface of the
conductor.

When free charge qv0 is placed inside a conductor that is subjected to a static field, the charge
density at that point decays exponentially as

qv(t) = qv0e−t/tr = qv0e−(σ/ε)t (2-34)

because the charge migrates toward the surface of the conductor. The time it takes for this to occur
depends on the conductivity of the material; for metals it is equal to a few time constants. During
this time, charges move, currents flow, and nonstatic conditions exist. The time tr that it takes
for the free charge density placed inside a conductor to decay to e−1 = 0.368, or 36.8 percent of
its initial value, is known as the relaxation time constant . Mathematically it is represented by

tr = ε

σ
(2-35)

where
ε = permittivity of conductor (F/m)
σ = conductivity of conductor (S/m) (see equation (2-39))
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Example 2-3

Find the relaxation time constant for a metal such as copper (σ = 5.76 × 107 S/m, ε = ε0) and a good
dielectric such as glass (σ � 10−12 S/m, ε = 6ε0).

Solution: For copper

tr = ε

σ
= 8.854 × 10−12

5.76 × 107
= 1.54 × 10−19 s

which is very short. For glass

tr = ε

σ
= 6

(
8.854 × 10−12

10−12

)
= 53.1 s � 1 min

which is comparatively quite long.

The free charges of a very good conductor (σ → ∞), which is subjected to an electric field,
migrate very rapidly and distribute themselves as surface charge density qs to the surface of the
conductor within an extremely short period of time (several very short relaxation time constants).
The surface charge density qs will induce on the conductor an electric field intensity Ei , so that
the total electric field Et , within the conductor (Ei + Ea = Et , where Ea is the applied field) is
essentially zero. This is illustrated in Figure 2-12. For perfect conductors (σ = ∞) the electric
field within the conductors is exactly zero.

2.4.3 Conductivity

When a conductor is subjected to an electric field, the electrons still move in random direc-
tions but drift slowly (with a drift velocity ve) in the negative direction of the applied electric

− − − − −

+ + + + + + + +++++

− − − − −−−

+ qs + qs

− qs− qs

Ea

Ei Ei EiEiEa

s = ∞

Ea Ea

Ea Ea

E =
 E a 

+  E
i 
= 0

s = ∞

s = ∞

s =
 ∞

Figure 2-12 Electric field applied on a perfect electric conductor.
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TABLE 2-3 Typical conductivities of insulators, semiconductors, and conductors

Material Class Conductivity σ (S/m)

Fused quartz Insulator ∼ 10−17

Ceresin wax Insulator ∼ 10−17

Sulfur Insulator ∼ 10−15

Mica Insulator ∼ 10−15

Paraffin Insulator ∼ 10−15

Hard rubber Insulator ∼ 10−15

Porcelain Insulator ∼ 10−14

Glass Insulator ∼ 10−12

Bakelite Insulator ∼ 10−9

Distilled water Insulator ∼ 10−4

Gallium arsenide (GaAs)∗ Semiconductor ∼ 2.38 × 10−7

Fused silica∗ Semiconductor ∼ 2.1 × 10−4

Cross-linked polystyrene (unreinforced)∗ Semiconductor ∼ 3.7 × 10−4

Beryllium Oxide (BeO)∗ Semiconductor ∼ 3.9 × 10−4

Intrinsic silicon Semiconductor ∼ 4.39 × 10−4

Sapphire∗ Semiconductor ∼ 5.5 × 10−4

Glass-reinforced Teflon (microfiber)∗ Semiconductor ∼ 7.8 × 10−4

Teflon quartz (woven)∗ Semiconductor ∼ 8.2 × 10−4

Dry soil Semiconductor ∼ 10−4 − 10−3

Ferrite(Fe2O3)
∗ Semiconductor ∼ 1.3 × 10−3

Glass-reinforced Polystyrene∗ Semiconductor ∼ 1.45 × 10−3

Polyphenelene oxide (PPO)∗ Semiconductor ∼ 2.27 × 10−3

Glass-reinforced Teflon (woven)∗ Semiconductor ∼ 2.43 × 10−3

Plexiglas∗ Semiconductor ∼ 5.1 × 10−3

Wet soil Semiconductor ∼ 10−3 − 10−2

Fresh water Semiconductor ∼ 10−2

Human and animal tissue Semiconductor ∼ 0.2 − 0.7
Intrinsic germanium Semiconductor ∼ 2.227
Seawater Semiconductor ∼ 4
Tellurium Conductor ∼ 5 × 10−2

Carbon Conductor ∼ 3 × 10−4

Graphite Conductor ∼ 3 × 104

Cast iron Conductor ∼ 106

Mercury Conductor 106

Nichrome Conductor 106

Silicon steel Conductor 2 × 106

German silver Conductor 2 × 106

Lead Conductor 5 × 106

Tin Conductor 9 × 106

Iron Conductor 1.03 × 107

Nickel Conductor 1.45 × 107

Zinc Conductor 1.7 × 107

Tungsten Conductor 1.83 × 107

Brass Conductor 2.56 × 107

Aluminum Conductor 3.96 × 107

Gold Conductor 4.1 × 107

Copper Conductor 5.76 × 107

Silver Conductor 6.1 × 107

∗For most semiconductors the conductivities are representative for a frequency of about 10 GHz.
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field, thus creating a conduction current in the conductor. The applied electric field E and drift
velocity ve of the electrons are related by

ve = −μeE (2-36)

where μe is defined to be the electron mobility [positive quantity with units of m2/(V-s)]. Sub-
stituting (2-36) into (2-30), we can write that

J = qveve = qve(−μeE) = −qveμeE (2-37)

where qve is the electron charge density. Comparing (2-37) with (1-16), or

J = σs E (2-38)

we define the static conductivity of a conductor as

σs = −qveμe (S/m) (2-39)

Its reciprocal value is called the resistivity (ohm-meters).
The conductivity σs of a conductor is a parameter that characterizes the free-electron conductive

properties of a conductor. As temperature increases, the increased thermal energy of the conductor
lattice structure increases the lattice vibration. Thus the possibility of the moving free electrons
colliding increases, which results in a decrease in the conductivity of the conductor. Materials
with a very low value of conductivity are classified as dielectrics (insulators). The conductivity
of ideal dielectrics is zero.

The conductivity of (2-39) is referred to as the static or d.c. conductivity; typical values of
several materials are listed in Table 2-3. The conductivity varies as a function of frequency. These
variations, along with the mechanisms that result in them, will be discussed in Section 2.8.1.

2.5 SEMICONDUCTORS

Materials whose conductivities bridge the gap between dielectrics (insulators) and conductors
(typically the conductivity being 10−3 to unity) are referred to as intrinsic (pure) semiconductors.
A graph illustrating the range of conductivities, from insulators to conductors, is displayed in
Figure 2-13. Two such materials of significant importance to electrical engineering are intrinsic
germanium and intrinsic silicon . In intrinsic (pure) semiconductors there are two common carriers:
the free electrons and the bound electrons (referred to as positive holes) [4].

As the temperature rises, the mobilities of semiconducting material decrease but their charge
densities increase more rapidly. The increases in the charge density more than offset the decreases
in mobilities, resulting in a general increase in the conductivity of semiconducting material
with rises in temperature. This is one of the characteristic differences between intrinsic semi-
conductors and metallic conductors: for semiconductors the conductivity increases with rising
temperature whereas for metallic conductors it decreases. Typically the conductivity of germa-
nium will increase by a factor of 10 as the temperature increases from 300 to about 360 K, and
it will decrease by the same factor of 10 as the temperature decreases from 300 to 255 K. The
conductivity of semiconductors can also be increased by adding impurities to the intrinsic (pure)
materials. This process is known as doping . Some impurities (such as phosphorus) are called
donors because they add more electrons and form n-type semiconductors, with the electrons
being the major carriers. Impurities (such as boron) are called acceptors because they add more
holes to form p-type semiconductors, with the holes being the predominant carriers. When both
n- and p-type regions exist on a single semiconductor, the junction formed between the two
regions is used to build diodes and transistors.
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Figure 2-13 Range of conductivities of insulators, intrinsic semiconductors, and conductors.

At temperatures near absolute zero (0 K � −273◦C), the valence electrons of the outer shell of
a semiconducting material are held very tightly and they are not free to travel. Thus the material
behaves as an insulator under those conditions. As the temperature rises, thermal vibration of the
lattice structure in a semiconductor material increases, and some of the electrons gain sufficient
thermal energy to break away from the tight grip of their atom and become free electrons similar
to those in a metallic conductor. As was shown in Figure 2-1, the atoms of silicon and germanium
have four valence electrons in their outer shell which are held very tightly at temperatures near
absolute zero, but some of them may break away as the temperature rises. The valence electrons
of any semiconductor must gain sufficient energy to allow them to go from the valence band
to the conduction band by jumping over the forbidden band, as shown in Figure 2-14. For all
semiconductors, the energy gap of the forbidden band is about Eg = 1.43 eV = 2.29 × 1019 J.
The bound electrons must gain at least that much energy, although they sometimes gain more,
through increased thermal activity to make the jump.

The electrons that gain sufficient energy to break away from their atoms create vacancies in
the shells that they vacate, designated as holes , which also move in a random fashion. When
the semiconducting material is not subjected to an applied electric field, the net current from
the bound electrons (which became free electrons) and the bound holes is zero because the net
drift velocity of each type of carrier (electrons and holes) is zero, since they move in a random
fashion. When an electric field is applied, the electrons move with a nonzero net drift velocity
of ved (in the direction opposite to the applied field) while the holes move with a nonzero
net drift velocity of vhd (in the same direction as the applied field), thus creating a nonzero
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Figure 2-14 Energy levels for: (a) Conductors. (b) Semiconductors. (c) Insulators.

current. Therefore we write the conduction current density for the two carriers (electrons and
holes) as

Jc = qevved + qhvvhd = qev(−μeE) + qhv(+μhE)

Jc = (−qevμe + qhvμh)E = (σes + σhs)E = σsE (2-40)

where
μe = mobility of electrons [m2/(V-s)]
μh = mobility of holes [m2/(V-s)]
σes = static conductivity due to electrons
σhs = static conductivity due to holes

The static conductivities of the electrons (σes ) and the holes (σhs ) can also be written as

σes = −qevμe = −Neqeμe = Ne |qe |μe (2-41a)

σhs = +qhvμh = +Nhqhμh = Nh |qh |μh (2-41b)

where
Ne = free electron density (electrons per cubic meter)
Nh = bound hole density (holes per cubic meter)

|qe | = |qh | = charge of an electron (magnitude) = 1.6 × 10−19 (coulombs)
qev = Neqe = −Ne |qe |
qhv = Nhqh = +Nh |qh | = Nh |qe |

For comparison, representative values of charge densities, mobilities, and conductivities for intrin-
sic silicon, intrinsic germanium, aluminum, copper, silver, and gallium arsenide are given in
Table 2-4 [5].

Six different materials were chosen to illustrate the formation of conductivity; their conduc-
tivity conditions are shown in Figure 2-15 [6]. These, in order, are representative of a dielectric
(insulator), plasma (liquid or gas), conductor (metal), pure semiconductor, n-type semiconductor,
and p-type semiconductor. It is observed that positively charged particles (holes) travel in the
direction of the electric field whereas negatively charged particles (electrons) travel opposite to
the electric field. However, both add to the total current.
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TABLE 2-4 Charge densities, mobilities, and conductivities for silicon, germanium, aluminum,
copper, silver, and gallium arsenide at 300 K

qev (C/m3) qhv (C/m3) μe [m2/(V-s)] μh [m2/(V-s)] σ (S/m)

Intrinsic −2.4 × 10−3 +2.4 × 10−3 0.135 at 300 K 0.048 at 300 K 0.439 × 10−3

silicon
Intrinsic −3.84 +3.84 0.39 at 300 K 0.19 at 300 K 2.227

germanium
Aluminum −1.8 × 1010 0 2.2 × 10−3 0 3.96 × 107

Copper −1.8 × 1010 0 3.2 × 10−3 0 5.76 × 107

Silver −1.8 × 1010 0 3.4 × 10−3 0 6.12 × 107

∗Intrinsic −2.86 × 10−7 2.86 × 10−7 0.8 at 300 K 0.032 at 300 K 2.38 × 10−7

gallium
arsenide

∗O. Madelung (Ed.) Numerical Data and Fundamental Relationships in Science and Technology , Springer-Verlag, Berlin,
Heidelberg, Germany, 1987.
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Figure 2-15 Conductivity conditions for six different materials representing dielectrics, plasmas, conduc-
tors, and semiconductors. (Source: J. D. Kraus, Electromagnetics , 1984, McGraw-Hill Book Co.).
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The temperature variations of the mobilities of germanium, silicon, and gallium arsenide are
given approximately by

Silicon [5]:

μe � (2.1 ± 0.2) × 105T −2.5±0.1 160 ≤ T ≤ 400 K (2-42a)

μh � (2.3 ± 0.1) × 105T −2.7±0.1 150 ≤ T ≤ 400 K (2-42b)

Germanium [5]:

μe � 4.9 × 103T −1.66 100 ≤ T ≤ 300 K (2-43a)

μh � 1.05 × 105T −2.33 125 ≤ T ≤ 300 K (2-43b)

Gallium arsenide:

μe � 0.8

(
300

T

)2.3

(2-44a)

μh � 0.032

(
300

T

)2.3

(2-44b)

Example 2-4

For the semiconducting materials silicon and germanium, determine conductivities at a temperature
of 10◦F. The electron and hole densities for silicon and germanium are, respectively, equal to about
3.03 × 1016 and 1.47 × 1019 electrons or holes per cubic meter.

Solution: At T = 10◦F, the respective temperatures on the Celsius (◦C) and Kelvin (K) scales are

◦C = 5
9 (◦F − 32) = 5

9 (10 − 32) = −12.2

K = ◦C + 273.2 = −12.2 + 273.2 = 261

The mobilities of silicon and germanium at 10◦F (261 K) are approximately equal to

Silicon:

μe � 2.1 × 105T −2.5 = 2.1 × 105(261−2.5) = 0.1908

μh � 2.3 × 105T −2.7 = 2.3 × 105(261−2.7) = 0.0687

Germanium:

μe � 4.9 × 103T −1.66 = 4.9 × 103(261−1.66) = 0.4771

μh � 1.05 × 105T −2.33 = 1.05 × 105(261−2.33) = 0.2457

In turn the conductivities are equal to

Silicon:

σe � ne |qe |μe = 3.03 × 1016(1.6 × 10−19)(0.1908) = 0.925 × 10−3 S/m

σh � nh |qh |μh = 3.03 × 1016(1.6 × 10−19)(0.0687) = 0.333 × 10−3 S/m

σ = σe + σh � 1.258 × 10−3 S/m
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Germanium:

σe � ne |qe |μe = 1.47 × 1019(1.6 × 10−19)(0.4771) = 1.122 S/m

σh � nh |qh |μh = 1.47 × 1019(1.6 × 10−19)(0.2457) = 0.578 S/m

σ = σe + σh � 1.7 S/m

2.6 SUPERCONDUCTORS

Ideal conductors (σ = ∞) are usually understood to be materials within which an electric field
E cannot exist at any frequency. Through Maxwell’s time-varying equations, this absence of an
electric field also assures that there is no time-varying magnetic field. For static fields, however,
the magnetic field should not be affected by the conductivity (including infinity) of the mate-
rial. Therefore for static fields (f = 0) a perfect conductor is defined as one that possesses an
equipotential on its surface.

In practice no ideal conductors exist. Metallic conductors (such as aluminum, copper, silver,
gold, etc.) have very large conductivities (typically 107 − 108 S/m), and the rf fields in them
decrease very rapidly with depth measured from the surface (being essentially zero at a few skin
depths). However, the d.c. resistivity of certain metals essentially vanishes (conductivity becomes
extremely large, almost infinity) at temperatures near absolute zero (T = 0 K or −273◦C). Such
materials are usually called superconductors , and the temperature at which this is achieved is
referred to as the critical temperature (Tc). Superconductivity was discovered in 1911 by Dutch
physicist H. Kamerlingh Onnes, who received the Nobel Prize in 1913. For example, aluminum
becomes superconducting at a critical temperature of 1.2 K, niobium (also called columbium) at
9.2 K, and the intermetallic compound niobium-germanium (Nb3Ge) at 23 K. For temperatures
down to 0.05 K, copper and gold do not superconduct. Even for low frequencies, superconductors
above 0 K do exhibit a very small level of loss as a result of the presence of two types of
carriers, lossless Cooper pairs and normal electrons. The ability of superconductors to expel
magnetic fields, now referred to as the Meissner effect , was first observed experimentally in
1933 by Meissner and Ochsenfeld [7, 8]. In 1957, Bardeen, Cooper, and Schrieffer developed
a theory that was able to accurately simulate the properties of superconductors using only first
principles [9].

The electrodynamic response of a superconductor at microwave frequencies above 0 K has a
small, but measurable, loss as a result of the presence of a resistive branch from the dissipative
normal electrons (R) and an inductive branch because of the lossless Cooper pairs. Although
Cooper pairs do not experience dissipation, they exhibit an inductive component from their finite
inertia from their momentum (i.e., Lk , a kinetic inductance). Because the superconductor inductive
Cooper pairs and normal electrons act in parallel, a.c. losses scale as ω2, as would be expected
from a parallel R-L circuit. Since the superconductor current density is finite, the microwave
field will penetrate exponentially with a characteristic length called the penetration depth that is
frequency independent and much smaller than the skin depth of a normal metal. Because of the
smaller interaction volume and the small number of normal electrons, a superconductor will have
typically several orders of magnitude smaller surface resistance than a normal metal.

Before 1986, it was accepted that if materials could become superconducting at tempera-
tures of 25 K or greater, there would be a major technological breakthrough. The reason for the
breakthrough is that materials can be cooled to these temperatures with relatively inexpensive
liquid hydrogen, whose boiling temperature is about 20.4 K. Some of the potential applications
of superconductivity would be:
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1. supercomputers becoming smaller, faster, and thus more powerful;
2. ultra low-loss microwave communication systems;
3. economical, efficient, pollution-free, and safe-generating power plants using fusion or mag-

netohydromagnetic technology;
4. virtually loss-free transmission lines and more efficient power transmission;
5. high-field magnets for use in MRI instruments, 300 mph trains levitated on a magnet cush-

ion, particle accelerators and laboratory instrumentation; and
6. improved electronic instrumentation.

From 1911 to 1986, a span of 75 years, research into superconductivity yielded more than
one thousand superconductive substances, but the increase in critical temperature was moderate
and was accomplished at a very slow pace. Prior to January 1986, the record for the highest
critical temperature belonged to niobium-germanium (Nb3Ge), which in 1973 achieved a Tc

of 23 K.
In January 1986 a major breakthrough in superconductivity may have provided the spark

for which the scientific community had been waiting. Karl Alex Mueller and Johannes Georg
Bednorz, IBM Zurich Research Laboratory scientists, observed that a new class of oxide materials
exhibited superconductivity at a critical temperature much higher than anyone had observed
before [10, 11]. The material was a ceramic copper oxide containing barium and lanthanum, and
it had a critical temperature up to about 35 K, which was substantially higher than the 23 K for
niobium-germanium.

Before Mueller and Bednorz’s discovery, the best superconducting materials were intermetallic
compounds, which included niobium-tin, niobium-germanium, and others. However, Mueller and
Bednorz were convinced that the critical temperature could not be raised much higher using
such compounds. Therefore they turned their attention to oxides with which they were familiar
and which they believed to be better candidates for higher-temperature superconductors. For
superconductivity to occur in a material, either the number of electrons that are available to
transport current (i.e., a high density of states at the Fermi level) must be high or the electron
pairs that are responsible for superconductivity must exhibit strong attractive forces [10]. Usually
metals are very good candidates for superconductors because they have many available electrons.
Oxides, however, have fewer electrons but it was shown that some metallic oxides of nickel
and copper exhibited strong attractive electron-pair forces, and others could be found with even
stronger pairing forces. Mueller and Bednorz became aware that some copper oxides behave like
metals in conducting electricity. This led them to the superconducting copper oxide containing
barium and lanthanum with a critical temperature of 35 K.

Since then many other groups have reported even higher superconductivities, up to about
90 K in a number of ternary oxides of rare earth elements [11]. One of the main questions still
to be answered is why are they superconducting at such high temperatures. Paul C. W. Chu,
from the University of Houston, found that by pressurizing a superconducting copper oxide,
lanthanum, and barium he could observe critical temperatures of up to 70 K. He reasoned that
the pressure brought the layers of the different elements closer together, leading to the higher
superconductivity temperature. He also found that by replacing barium with strontium, which is
a very similar element but has smaller atoms, brought the layers even closer together and led to
even higher temperatures. In February 1987 Dr. Chu also discovered that replacing lanthanum
with yttrium resulted in even higher temperatures, up to 92 K. This was considered another major
breakthrough because it surpassed the barrier of the boiling point of liquid nitrogen (77 K). Liquid
nitrogen is relatively inexpensive (by a factor of 50) compared to liquid helium or hydrogen, which
are used with superconducting material at lower temperatures.

On January 22, 1988 researchers at the National Research Institute for Metals, Tsukaba, Japan,
reported that a compound of bismuth, calcium, strontium-copper, and oxygen had achieved a
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critical temperature of 105 K. Three days later Dr. Chu announced an identical compound except
that it contained one additional element—aluminum. Dr. Chu has indicated that bismuth contains
two superconducting phases (chemical structures). This two-phase superconducting condition
causes the resistance to drop drastically between 120 and 110 K, but not to reach zero until
about 83 K, after a second sudden drop. One of the phases has a transition temperature of about
115 K, and the other phase becomes superconducting at 90 K. Efforts are underway to isolate
the two phases, to keep the lower temperature phase from surrounding the higher one. Although
the yttrium–copper oxides are very sensitive to oxygen content and a high temperature anneal
is consequently needed after the material is made superconducting, bismuth compounds do not
lose oxygen when heated. In addition, the bismuth compounds appear less brittle than the yttrium
compounds.

To date, the record Tc is 134 K in HgBa2Ca2Cu3O9-δ at ambient and at 164 K under pres-
sure. According to the words of Dr. Chu, “The discovery of high temperature superconductivity
(HTS) in the non-inter-metallic compounds, La2-xBaxCuO4 at 35 K (1986) and Yba2Cu3O7 at
93 K (1987), has been ranked as one of the most exciting advancements in modern physics, with
profound implications for technologies. In the ensuing 15 years, extensive worldwide research
efforts have resulted in great progress in all areas of HTS science and technology. For instance,
more than 150 compounds have been discovered with a Tc above 23 K; many anomalous prop-
erties have been observed; various models have been proposed to account for the observations;
and numerous prototype devices have been made and successfully demonstrated. In spite of
the impressive progress, the mechanism responsible for HTS has yet to be identified; a com-
prehensive theory remains elusive; the highest possible Tc is still to be found, if it exists; and
commercialization of HTS devices is not yet realized” [12].

Now the march is on to try to understand better the physics of superconductivity and to see
whether the critical temperature can be raised even further. It is even reasonable to expect that
superconductivity could be achieved at room temperature. Even though practical superconductiv-
ity now seems more of a reality, there are many problems that must be overcome. For example,
most superconductive materials are difficult to produce consistently. They seem to be stronger in
some directions than in others and in general are too brittle to be used for flexible wires. More-
over, they exhibit certain crystal anisotropies as current flow can vary by a factor of 30, depending
on the direction. In addition, properties of materials with high critical temperatures appear to be
generally very susceptible to degradation from crystal defects. While critical current densities are
high in thin films, bulk superconductor values are orders of magnitude smaller. These critical
current densities are believed to be around 105 A/cm2, although values of 1.8 × 106 A/cm2 have
been reported at Japan’s NTT Ibaragi Telecommunication Laboratory [11]. These current densi-
ties are about 10 to 100 times greater than reported previously, and they are also about 1,000
times the current density of typical household wiring. These values are reassurance that materials
would sustain superconductivity at current density levels required for power transmission and
generation, electronic circuits, and electromagnets.

2.7 METAMATERIALS

The decades of the 1990s and 2000s have introduced interest and excitement into the field of
electromagnetics, especially as they relate to the integration of special types of artificial dielec-
tric materials, coined metamaterials . The word meta , in metamaterials , is a Greek word that
means beyond/after, and the term has been coined to represent materials that are artificially
fabricated so that they have electromagnetic properties that go beyond those found readily in
nature. In fact, the word has been used to represent materials which usually are constructed
to exhibit periodic formations whose period is much smaller than the free-space and/or guided
wavelength.



Balanis c02.tex V3 - 11/22/2011 3:07 P.M. Page 67

LINEAR, HOMOGENEOUS, ISOTROPIC, AND NONDISPERSIVE MEDIA 67

Using a “broad brush,” the word metamaterials can encompass engineered textured surfaces,
artificial impedance surfaces, artificial magnetic conductors, Electromagnetic Band-Gap (EBG)
structures, double negative (DNG) materials, frequency selective surfaces , and even fractals or
chirals . Engineered textured surfaces, artificial impedance surfaces, artificial magnetic conductors,
and Electromagnetic Band-Gap (EBG) structures are discussed in Section 8.6. Materials whose
constitutive parameters (permittivity and permeability) are both negative are often referred to
as Double Negatives (DNGs). It is the class of DNG materials that has captivated the interest
and imagination of many leading researchers and practitioners, scientists, and engineers, from
academia, industry, and government; it also introduced a spirited dialogue. The properties and
characteristics of DNG materials are discussed in more detail in Section 5.7.

2.8 LINEAR, HOMOGENEOUS, ISOTROPIC, AND NONDISPERSIVE MEDIA

The electrical behavior of materials when they are subjected to electromagnetic fields is charac-
terized by their constitutive parameters (ε, μ, and σ ).

Materials whose constitutive parameters are not functions of the applied field are usually
known as linear ; otherwise they are nonlinear . In practice, many materials exhibit almost linear
characteristics as long as the applied fields are within certain ranges. Beyond those points, the
material may exhibit a high degree of nonlinearity. For example, air is nearly linear for applied
electric fields up to about 1 × 106 V/m. Beyond that, air breaks down and exhibits a high degree
of nonlinearity.

When the constitutive parameters of media are not functions of position, the materials are
referred to as homogeneous; otherwise they are inhomogeneous or nonhomogeneous . Almost all
materials exhibit some degree of nonhomogeneity; however, for most materials used in practice
the nonhomogeneity is so small that the materials are treated as being purely homogeneous.

If the constitutive parameters of a material vary as a function of frequency, they are denoted
as being dispersive; otherwise they are nondispersive. All materials used in practice display some
degree of dispersion. The permittivities and the conductivities, especially of dielectric material,
and the permeabilities of ferromagnetic material and ferrites exhibit rather pronounced dispersive
characteristics. These will be discussed in the text two sections.

Anisotropic or nonisotropic materials are those whose constitutive parameters are a function
of the direction of the applied field; otherwise they are known as isotropic. Many materials,
especially crystals, exhibit a rather high degree of anisotropy. For example, dielectric materials
in which each component of their electric flux density D depends on more than one component
of the electric field E, are called anisotropic dielectrics . For such material, the permittivities and
susceptibilities cannot be represented by a single value. Instead, for example, [ε̄] takes the form
of a 3 × 3 tensor, which is known as the permittivity tensor . The electric flux density D and
electric field intensity E are not parallel to each other, and they are related by the permittivity
tensor ε̄ in a form given by

D = ε̄ • E (2-45)

In expanded form (2-45) can be written as⎡⎣ Dx

Dy

Dz

⎤⎦ =
⎡⎣ εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤⎦⎡⎣ Ex

Ey

Ez

⎤⎦ (2-46)

which reduces to

Dx = εxx Ex + εxy Ey + εxz Ez

Dy = εyx Ex + εyy Ey + εyz Ez

Dz = εzx Ex + εzy Ey + εzz Ez (2-46a)
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The permittivity tensor ε̄ is written, in general, as a 3 × 3 matrix of the form

[ε̄] =
⎡⎣ εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤⎦ (2-47)

where each entry may be complex. For anisotropic material, not all the entries of the permittivity
tensor are necessarily nonzero. For some, only the diagonal terms (εxx , εyy , εzz ), referred to as the
principal permittivities , are nonzero. If that is not the case, for some material a set of new axes
(x ′, y ′, z ′) can be selected by rotation of coordinates so that the permittivity tensor referenced to
this set of axes possesses only diagonal entries (principal permittivities). This process is known
as diagonalization , and the new set of axes are referred to as the principal coordinates . For
physically realizable materials, the entries εij of the permittivity tensor satisfy the relation

εij = ε∗
ji (2-48)

Matrices whose entries satisfy (2-48) are referred to as Hermitian . If the material is lossless
(imaginary parts of εij are zero) and the entries of the permittivity tensor satisfy (2-48), then the
permittivity tensor is also symmetrical.

2.9 A.C. VARIATIONS IN MATERIALS

It has been shown that when a material is subjected to an applied static electric field, the centroids
of the positive and negative charges (representing, respectively, the positive charges found in the
nucleus of an atom and the negative electrons found in the shells surrounding the nucleus) are
displaced relative to each other forming a linear electric dipole. When a material is examined
macroscopically, the presence of all the electric dipoles is accounted for by introducing an electric
polarization vector P [see (2-3) and (2-10)]. Ultimately, the static permittivity εs [see (2-11a)]
is introduced to account for the presence of P. A similar procedure is used to account for the
orbiting and spinning of the electrons of atoms (which are represented electrically by small electric
current-carrying loops) when magnetic materials are subjected to applied static magnetic fields.
When the material is examined macroscopically, the presence of all the loops is accounted for by
introducing the magnetic polarization (magnetization) vector M [see (2-15) and (2-21)]. In turn
the static permeability μs [see (2-22a)] is introduced to account for the presence of M.

When the applied fields begin to alternate in polarity, the polarization vectors P and M, and
in turn the permittivities and permeabilities, are affected and they are functions of the frequency
of the alternating fields. By this action of the alternating fields, there are simultaneous changes
imposed upon the static conductivity σs [see (2-39) and (2-40)] of the material. In fact, the
incremental changes in the conductivity that are attributable to the reverses in polarity of the
applied fields (frequency) are responsible for the heating of materials using microwaves (for
example, microwave cooking of food) [13, 18].

In the sections that follow, the variations of ε, σ , and μ as a function of frequency of the
applied fields will be examined.

2.9.1 Complex Permittivity

Let us assume that each atom of a material in the absence of an applied electric field (unpolarized
atom) is represented by positive (representing the nucleus) and negative (representing the elec-
trons) charges whose respective centroids coincide. The electrical and mechanical equivalents of
a typical atom are shown in Figure 2-16a [6]. The large positive sphere of a mass M represents
the massive nucleus whereas the small negative sphere of mass m and charge −Q represents
the electrons. When an electric field is applied, it is assumed that the positive charge remains
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Figure 2-16 Electrical and mechanical equivalents of a typical atom in the absence of and under an applied electric field.
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stationary and the negative charge moves relative to the positive along a platform that exhibits
a friction (damping) coefficient d . In addition, the two charges will be connected with a spring
whose spring (tension) coefficient is s . The entire mechanical equivalent of a typical atom then
consists of the classical mass–spring system moving along a platform with friction.

When an electric field is applied that is directed along the +x direction, the negative charge
will be displaced a distance � in the negative x direction, as shown in Figure 2-16b, forming an
electric dipole. If the material is not permanently polarized (as are the electrets), the atom will
achieve its initial normal position when the applied electric field diminishes to zero, as shown
in Figure 2-16c. Now if the applied electric field is polarized in the −x direction, the negative
charge will move a distance � in the positive x direction, as shown in Figure 2-16d , forming
again an electric dipole in the direction opposite of that in Figure 2-16b.

When a time-harmonic field of angular frequency ω is applied to an atom, the forces of the
system that describe the movement of the negative charge of mass m relative to the stationary
nucleus and that are opposed by damping (friction) and tension (spring) can be represented by
[6, 19]

m
d2�

dt2
+ d

d�

dt
+ s� = Q�(t) = QE0ejωt (2-49)

By dividing both sides of (2-49) by m , we can write it as

d2�

dt2
+ 2α

d�

dt
+ ω2

0� = Q

m
�(t) = Q

m
E0ejωt (2-50)

where

α = d

2m
(2-50a)

ω0 =
√

s

m
(2-50b)

Q = dipole charge (2-50c)

The terms on the left side of (2-49) represent, in order, the forces associated with mass times
acceleration, damping times velocity, and spring times displacement. The term on the right side
represents the driving force of the time-harmonic applied field (of peak value QE0). Equations 2-49
and 2-50 are second-order differential equations that are also representative of the natural responses
of RLC circuit systems.

For a source-free series RLC network, (2-50) takes the form for the current i (t) of

d2i

dt2
+ 2α

di

dt
+ ω2

0i = 0 (2-51)

where

α = R

2L
(2-51a)

ω0 = 1√
LC

(2-51b)

In a similar manner, the voltage v(t) for a parallel source-free RLC network can be obtained by
writing (2-50) as

d2v

dt2
+ 2α

dv

dt
+ ω2

0v = 0 (2-52)
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where

α = 1

2RC
(2-52a)

ω0 = 1√
LC

(2-52b)

Solutions to (2-51) and (2-52) can be classified as overdamped, critically damped , or under-
damped according to the values of the α/ω0 ratio. That is, the solution to (2-51) for i (t) or (2-52)
for v(t) is considered

Classification of Solution Criterion

overdamped if α > ω0 (2-53a)

critically damped if α = ω0 (2-53b)

underdamped if α < ω0 (2-53c)

The solutions to (2-49) can be obtained by first dividing both of its sides by m . Doing this
reduces (2-49) to

d2�

dt2
+ d

m

d�

dt
+ s

m
� = Q

m
E0ejωt (2-54)

The general solution to (2-54) is usually composed of two parts: a complementary solution �c

and a particular solution �p . The complementary solution represents the transient response of the
system and is obtained by setting the driving force equal to zero. Since (2-54) is a quadratic,
the general form of the complementary (transient) solution will be in terms of exponentials
whose values vanish as t → ∞. The particular solution represents the steady-state response of
the system, and it is of interest here. Thus the particular (steady-state) solution of (2-54) can be
written as

�p(t) = �0ejωt (2-55)

where �0 is the solution of �p(t) when t = 0.
Substituting (2-55) into (2-54) leads to

�0 =
Q
m E0

(ω2
0 − ω2) + jω

(
d

m

) (2-56)

where

ω0 =
√

s

m
(2-56a)

Thus (2-55) can be written as

�p(t) = �0ejωt =
Q

m
E0ejωt

(ω2
0 − ω2) + jω

(
d

m

) (2-57)

and it represents the steady-state displacements of the negative charges (electrons) of an atom
relative to those of the positive charges (nucleus).
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The resonant (natural) angular frequency ωd of the system is obtained by setting E0 = 0 in
(2-54). Doing this and assuming an underdamped system (α < ω0 or d < 2

√
sm) leads to

ωd =
√

ω2
0 − α2 =

√
s

m
−

(
d

2m

)2

(2-58)

For a frictionless system (d = 0) the resonant angular frequency ωd reduces to

ωd |d=0 = ω0 =
√

s

m
(2-58a)

Assuming that the oscillating dipoles, which represent the numerous atoms of a material, are
all similar and there is no coupling between the dipoles (atoms), the macroscopic steady-state
electric polarization � of (2-5) can be written using (2-57) as

� = �(t) = NeQ�(t) =
Ne

(
Q2

m

)
E0ejωt

(ω2
0 − ω2) + jω

(
d

m

) =
Ne

(
Q2

m

)
�(t)

(ω2
0 − ω2) + jω

(
d

m

) (2-59)

where Ne represents the number of dipoles per unit volume. Dividing both sides of (2-59) by
�(t) = E0ejωt reduces it to

�

�
=

Ne

(
Q2

m

)
(ω2

0 − ω2) + jω

(
d

m

) (2-60)

In turn the permittivity ε̇ of the medium can be written, using (2-10a) and (2-11a), as

ε̇ = ε0 + �

�
= ε0 +

Ne

(
Q2

m

)
(ω2

0 − ω2) + jω

(
d

m

) = ε′ − jε′′ (2-61)

which is recognized as being complex, as denoted by the dot (with real and imaginary parts,
respectively, of ε′ and ε′′). Equation (2-61) is also referred to as the dispersion equation for the
complex permittivity.

The relative complex permittivity ε̇r of the material is obtained by dividing both sides of
(2-61) by ε0 leading to

ε̇r = ε̇

ε0
= ε′

r − jε′′
r = 1 +

NeQ2

ε0m

(ω2
0 − ω2) + jω

d

m

(2-62)

The real ε′
r and imaginary ε′′

r parts of (2-62) can be written, respectively, as

ε′
r = 1 +

NeQ2

ε0m
(ω2

0 − ω2)

(ω2
0 − ω2)2 +

(
ω

d

m

)2 (2-63a)
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ε′′
r = NeQ2

ε0m

⎡⎢⎢⎢⎣ ω
d

m

(ω2
0 − ω2)2 +

(
ω

d

m

)2

⎤⎥⎥⎥⎦ (2-63b)

For nonmagnetic material
ε̇r = ṅ2 (2-64)

where ṅ is the complex index of refraction. For materials with no damping (d/m = 0), (2-63a)
and (2-63b) reduce to

ε′
r = 1 +

NeQ2

ε0m
ω2

0 − ω2
(2-65a)

ε′′
r = 0 (2-65b)

Since the permittivity of a medium as given by (2-61) [or its relative value as given by (2-62)]
is in general complex, the Maxwell–Ampere equation can be written as

∇ × H = Ji + Jc + jωε̇E = Ji + σs E + jω(ε′ − jε′′)E

∇ × H = Ji + (σs + ωε′′)E + jωε′E = Ji + σeE + jωε′E (2-66)

where

σe = equivalent conductivity = σs + ωε′′ = σs + σa (2-66a)

σa = alternating field conductivity = ωε′′ (2-66b)

σs = static field conductivity (2-66c)

=
{

−μeqve for conductors

−μeqve + μhqvh for semiconductors
(2-66d)

In (2-66a) σe represents the total (referred to here as the equivalent) conductivity composed
of the static portion σs and the alternating part σa caused by the rotation of the dipoles as they
attempt to align with the applied field when its polarity is alternating. The phenomenon (rotation
of dipoles) that contributes the alternating conductivity σa is referred to as dielectric hysteresis .

Many dielectric materials (such as glass and plastic) possess very low values of static σs con-
ductivities and behave as good insulators. However, when they are subjected to alternating fields,
they exhibit very high values of alternating field σa conductivities and they consume considerable
energy. The heat generated by this radio frequency process is used for industrial heating pro-
cesses. The best-known process is that of microwave cooking [13–18]. Others include selective
heating of human tissue for tumor treatment [20–22] and selective heating of certain compounds
in materials that possess conductivities higher than the other constituents. For example, pyrite (a
form of sulfur considered to be a pollutant), which exhibits higher conductivities than the other
minerals of coal, can be heated selectively. This technique has been used as a process to clean
coal by extracting, through microwave heating, its sulfur content.

In (2-66), aside from the impressed (source) electric current density Ji , there are two other
components: the effective conduction electric current density Jce and the effective displacement
electric current density Jde . Thus we can write the total electric current density Jt as

Jt = Ji + Jce + Jde = Ji + σeE + jωε′E (2-67)
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where

Jt = total electric current density (2-67a)

Ji = impressed (source) electric current density (2-67b)

Jce = effective electric conduction current density

= σeE = (σs + ωε′′)E (2-67c)

Jde = effective displacement electric current density

= jωε′E (2-67d)

The total electric current density of (2-67) can also be written as

Jt = Ji + σeE + jωε′E = Ji + jωε′
(

1 − j
σe

ωε′
)

E = Ji + jωε′(1 − j tan δe)E (2-68)

where

tan δe = effective electric loss tangent = σe

ωε′ = σs + σa

ωε′ = σs

ωε′ + σa

ωε′

tan δe = σs

ωε′ + ε′′

ε′ = tan δs + tan δa = ε′′
e

ε′
e

(2-68a)

tan δs = static electric loss tangent = σs

ωε′ (2-68b)

tan δa = alternating electric loss tangent = σa

ωε′ = ε′′

ε′ (2-68c)

The manufacturer of any given material usually specifies either the conductivity (S/m) or the
electric loss tangent (tan δ, dimensionless). Although it is usually not stated as such, the specified
conductivity σe and loss tangent should represent, respectively, the effective conductivity and
loss tangent tan δe at a given frequency. Typical values of loss tangent for some materials are
listed in Table 2-5.

The effective conduction Jce and displacement Jde current densities of (2-67) can also be
written as

Jcd = Jce + Jde = σeE + jωε′E = jωε′
(

1 − j
σe

ωε′
)

E = jωε′(1 − j tan δe)E (2-69)

In phasor form, these can be represented as shown in Figure 2-17. It is evident that the
conduction and displacement current densities are orthogonal to each other. Material can also be
classified as good dielectrics or good conductors according to the values of the σe/ωε′ ratio. That
is

1. Good Dielectrics , (σe/ωε′) � 1

Jcd = jωε′
(

1 − j
σe

ωε′
)

E
σe/ωε′�1� jωε′E (2-70a)

For these materials, the displacement current density is much greater than the conduction
current density, and the total current density is approximately equal to the displacement
current density.
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TABLE 2-5 Dielectric constants and loss tangents of
typical dielectric materials

Material ε′
r tan δ

Air 1.0006
Alcohol (ethyl) 25 0.1
Aluminum oxide 8.8 6 × 10−4

Bakelite 4.74 22 × 10−3

Carbon dioxide 1.001
Germanium 16
Glass 4–7 1 × 10−3

Ice 4.2 0.1
Mica 5.4 6 × 10−4

Nylon 3.5 2 × 10−2

Paper 3 8 × 10−3

Plexiglas 3.45 4 × 10−2

Polystyrene 2.56 5 × 10−5

Porcelain 6 14 × 10−3

Pyrex glass 4 6 × 10−4

Quartz (fused) 3.8 7.5 × 10−4

Rubber 2.5–3 2 × 10−3

Silica (fused) 3.8 7.5 × 10−4

Silicon 11.8
Snow 3.3 0.5
Sodium chloride 5.9 1 × 10−4

Soil (dry) 2.8 7 × 10−2

Styrofoam 1.03 1 × 10−4

Teflon 2.1 3 × 10−4

Titanium dioxide 100 15 × 10−4

Water (distilled) 80 4 × 10−2

Water (sea) 81 4.64
Wood (dry) 1.5–4 1 × 10−2

Jce= seE

 Jde = jwe′E
 J cd

 =  J ce 
+   J de

Figure 2-17 Phasor representation of effective conduction and displacement current densities.

2. Good Conductors , (σe/ωε′) � 1

Jcd = jωε′
(

1 − j
σe

ωε′
)

E
σe/ωε′�1� σeE (2-70b)

For these materials, the conduction current density is much greater than the displacement
current density, and the total current density is approximately equal to the conduction
current density.
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As discussed in Section 2.2 and demonstrated in Figure 2-4, the electric polarization for
dielectrics, as given by (2-3) or (2-5), can be composed of any combination involving the dipole
(orientational), ionic (molecular), and electronic polarizations. As a function of frequency, the
electric polarization of (2-10) can be written as

P(ω) = ε0χe(ω)Ea(ω) (2-71)

where in general

χe(ω) = χ ′
e(ω) − jχ ′′

e (ω)

= [χ ′
ed (ω) + χ ′

ei (ω) + χ ′
ee(ω)] − j [χ ′′

ed (ω) + χ ′′
ei (ω) + χ ′′

ee(ω)] (2-71a)

χ ′
ed (ω) = dipole real electric susceptibility (2-71b)

χ ′
ei (ω) = ionic real electric susceptibility (2-71c)

χ ′
ee(ω) = electronic real electric susceptibility (2-71d)

χ ′′
ed (ω) = dipole loss electric susceptibility (2-71e)

χ ′′
ei (ω) = ionic loss electric susceptibility (2-71f)

χ ′′
ee(ω) = electronic loss electric susceptibility (2-71g)

It should be noted that, in general,

χ ′
e(−ω) = χ ′

e(ω) (2-72a)

χ ′′
e (−ω) = −χ ′′

e (ω) (2-72b)

A general sketch of the variations of the susceptibilities as a function of frequency is given in
Figure 2-18 [25, 26]. It should be stated, however, that this does not represent any one particular
material, and very few materials exhibit all three mechanisms. Measurements have been made on
many materials, with some up to 90 GHz, using microwave and millimeter wave techniques [25].

w

χ′e

Radio-microwaves Infrared Visible-ultraviolet
w

χ′′e

χ′ed

χ′ei

χ′ee

Figure 2-18 Electric susceptibility (real and imaginary) variations as a function of frequency for a typical
dielectric.
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Since the relative permittivity (dielectric constant) is related to the electric susceptibility by
(2-12), we should expect similar variations of the dielectric constant as a function of frequency.
To demonstrate that, we have plotted in Figure 2-19 as a function of frequency (0 ≤ ω ≤ 10) the
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Figure 2-19 Typical frequency variations of real and imaginary parts of relative permittivity of dielectrics.
(a) NeQ2/ε0m = 1, d/m = 1, α/ω0 = 1/5, ω0 = 2.5. (b) NeQ2/ε0m = 1, d/m = 1, α/ω0 = 1/10, ω0 = 5.
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relative complex permittivity (real and imaginary parts and magnitude) of (2-62) or (2-63a) and
(2-63b) (assuming NeQ2/ε0m = 1 and d/m = 1) for

α

ω0
= d

2m

√
m

s
= 1

5
(underdamped with ω0 = 2.5 and ωd =

√
6 = 2.449)

α

ω0
= d

2m

√
m

s
= 1

10
(underdamped with ω0 = 5 and ωd =

√
99/2 = 4.975)

It is observed that the values of ε′′
r peak at the resonant frequencies, which indicates that the

medium attains its most lossy state at the resonant frequency. Multiple variations of this type
would also be observed in a given curve at other frequencies if the medium possesses multiple
resonant frequencies. For frequencies not near one of the resonant frequencies, the curve rep-
resenting the variations of |ε̇r | exhibits a positive slope and is referred to as normal dispersion
(because it occurs most commonly). Very near the resonant frequencies there is a small range of
frequencies for which the variations of |ε̇r | exhibit a negative slope that is referred to as anoma-
lous (abnormal) dispersion. Although there is nothing abnormal about this type of dispersion, the
name was given because it seemed unusual when it was first observed.

When (2-57) and (2-59) to (2-63b) were derived, it was assumed that the medium possessed
only one resonant (natural) frequency presented by one type of harmonic oscillator. In general,
however, there are several natural frequencies associated with a particular atom. These can be
accounted for in our dispersion equations for ε′

r and ε′′
r by introducing several different kinds

of oscillators with no coupling between them. This type of modeling allows the contributions
from each oscillator to be accounted for by a simple addition. Thus for a medium with p natural
frequencies (represented by p independent oscillators), we can write (2-60) to (2-63b) as

�

�
=

p∑
s=1

Ne
Q2

m

(ω2
s − ω2) + j

ωd

m

(2-73a)

ε̇ = ε′ − jε′′ = ε0 +
p∑

s=1

Ne
Q2

m

(ω2
s − ω2) + j

ωd

m

(2-73b)

ε̇r = ε′
r − jε′′

r = 1 +
p∑

s=1

NeQ2

ε0m

(ω2
s − ω2) + j

ωd

m

(2-73c)

ε′
r = 1 +

p∑
s=1

NeQ2

ε0m
(ω2

s − ω2)

(ω2
s − ω2)2 +

(
ωd

m

)2 (2-73d)

ε′′
r =

p∑
s=1

NeQ2

ε0m

ω
d

m

(ω2
s − ω2)2 +

(
ωd

m

)2 (2-73e)



Balanis c02.tex V3 - 11/22/2011 3:07 P.M. Page 79

A.C. VARIATIONS IN MATERIALS 79

Often the question is asked whether there are any relations between the real and imaginary
parts of the complex permittivity. The answer to that is yes. Known as the Kramers–Kronig
[26–28] relations, they are given by

ε′
r (ω) = 1 + 2

π

∫ ∞

0

ω′ε′′
r (ω′)

(ω′)2 − ω2
dω′ (2-74a)

ε′′
r (ω) = 2ω

π

∫ ∞

0

1 − ε′
r (ω

′)
(ω′)2 − ω2

dω′ (2-74b)

and they are very similar to the frequency relations between resistance and reactance in circuit
theory [28].

In addition to the Kramers–Kronig relations of (2-74a) and (2-74b), there are simple relations
that allow the calculation of the real and imaginary parts of the complex relative permittivity for
many materials as a function of frequency provided that the real part of the complex permittivity
is known at zero frequency (denoted by ε′

rs ) and at very large (ideally infinity) frequency (denoted
by ε′

r∞). These relations are obtained from the well-known Debye equation [19, 23, 24] for the
complex dielectric constant, which states that

ε̇r (ω) = ε′
r (ω) − jε′′

r (ω) = ε′
r∞ + ε′

rs − ε′
r∞

1 + jωτe
(2-75)

where τe is a new relaxation time constant related to original relaxation time constant τ by

τe = τ
ε′

rs + 2

ε′
r∞ + 2

(2-75a)

The Debye equation of (2-75) is derived using the Clausius–Mosotti equation [23, 24, 29]. The
real and imaginary parts of (2-75) can be written as

ε′
r (ω) = ε′

r∞ + ε′
rs − ε′

r∞
1 + (ωτe)2

(2-76a)

ε′′
r (ω) = (ε′

rs − ε′
r∞)ωτe

1 + (ωτe)2
(2-76b)

which can be found at any frequency provided ε′
rs , ε′

r∞, and τ are known. The relations of
(2-76a) and (2-76b) can be used to estimate the real and imaginary parts of the complex relative
permittivity (complex dielectric constant) for many gases, liquids, and solids.

2.9.2 Complex Permeability

As discussed in Section 2.3, the permeability of most dielectric material, including diamagnetic,
paramagnetic, and antiferromagnetic material, is nearly the same as that of free space μ0 (μ0 =
4π × 10−7 H/m). Ferromagnetic and ferrimagnetic materials exhibit much higher permeability
than free space, as is demonstrated by the data of Table 2-2. These classes of materials are
also magnetically lossy, and their magnetic losses are accounted for by introducing a complex
permeability.

In general then, we can write the Maxwell–Faraday equation as

∇ × E = −Mi − jωμ̇H = −Mi − jω(μ′ − jμ′′)H

= −Mi − jωμ′H − ωμ′′H = −Mt (2-77)
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where

Mt = Mi + jωμ′H + ωμ′′H (2-77a)

Mt = total magnetic current density (2-77b)

Mi = impressed (source) magnetic current density (2-77c)

Md = displacement magnetic current density = jωμ′H (2-77d)

Mc = conduction magnetic current density = ωμ′′H (2-77e)

Another form of (2-77a) is to write it as

Mt = Mi + jωμ′
(

1 − j
μ′′

μ′

)
H = Mi + jωμ′(1 − j tan δm)H (2-78)

where

tan δm = alternating magnetic loss tangent = μ′′

μ′ (2-78a)

In addition to being complex, the permeability of ferromagnetic and ferrimagnetic material is
often a function of frequency. Thus it should, in general, be written as

μ̇ = μ′(ω) − jμ′′(ω) (2-79)

or

μ̇r = μ̇

μ0
= μ′

r (ω) − jμ′′
r (ω) (2-79a)

Most ferromagnetic materials possess very high relative permeabilities (on the order of several
thousand) and good conductivities such that there is a minimum interaction between these materi-
als and the electromagnetic waves propagating through them. As such, they will not be discussed
further here. There is, however, a class of ferrimagnetic material, referred to as ferrites , that
finds wide applications in the design of nonreciprocal microwave components (such as isolators,
hybrids, gyrators, phase shifters, etc.). Ferrites become attractive for these applications because
at microwave frequencies they exhibit strong magnetic effects that result in anisotropic properties
and large resistances (good insulators). These resistances limit the current induced in them and in
turn result in lower ohmic losses. Because of the appeal of ferrites to microwave circuit design,
their magnetic properties will be discussed further in the section that follows.

2.9.3 Ferrites

Ferrites are a class of solid ceramic materials that have crystal structures formed by sintering at
high temperatures (typically 1000–1500◦C) stoichiometric mixtures of certain metal oxides (such
as oxygen and iron, and cadmium, lithium, magnesium, nickel, or zinc, or some combination of
them). These materials are ferrimagnetic, and they are considered to be good insulators with high
permeabilities, dielectric constants between 10 to 15 or greater, and specific resistivities as much as
1014 greater than those of metals. In addition, they possess properties that allow strong interaction
between the magnetic dipole moment associated with the electron spin, as discussed in Section 2.3,
and the microwave electromagnetic fields [30–32]. In contrast to ferromagnetic materials, ferrites
have their magnetic ions distributed over at least two interpenetrating sublattices. Within each
sublattice all magnetic moments are aligned, but the sublattices are oppositely directed.

As a result of these interactions, ferrites exhibit nonreciprocal properties such as different phase
constants and phase velocities for right- and left-hand circularly polarized waves, transmission
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coefficients that are functions of direction of travel, and permeabilities that are represented by
tensors (in the form of a matrix) rather than by a single scalar. These characteristics become
important in the design of nonreciprocal microwave devices [33–35]. Although all ferrimagnetic
materials possess these properties, it is only in ferrites that they are pronounced and significant.
The properties of ferrites will be discussed here by examining the propagation of microwave
electromagnetic waves in an unbounded ferrite material.

There are two possible models that can be used to understand the technical properties of
magnetic material: the phenomenological model and the atomic model [32]. For the purposes
of this book, the phenomenological model is sufficient to examine the properties of magnetic
oxides. As discussed in Section 2.3, the magnetic material is replaced by an array of magnetic
dipoles that are maintained in a permanent and rigid alignment as shown in Figure 2-8a . When
a magnetic field is applied, as shown in Figure 2-8b, the magnetic moments of the dipoles can
turn freely in space as long as they turn together. Much of the discussion of this section follows
that of [32] and [35].

Under an applied magnetic field, each single magnetic dipole rotates with a precession fre-
quency that is referred to as the Larmor precession frequency . The precession frequency is altered
when one or more dipoles are introduced. The dipoles in the array interact with each other and
attempt to achieve an alignment that will minimize the interaction energy. The change in pre-
cession frequency is equivalent to introducing an additional demagnetizing field. When many
dipole arrays are subjected to d.c, rf, or demagnetizing fields, magnetic resonance is introduced.
This is a phenomenon that is of fundamental interest to the design of microwave nonreciprocal
components. The discussion here will be that of the phenomenological model.

The magnetic dipole moment m of a single magnetic dipole of Figure 2-7a or 2-7b is given by
(2-13). When an external magnetic field is applied, as shown in Figure 2-20 for a single dipole,
exerted on the dipole is a torque T of

T = μ0m × H0 = m × B0 (2-80)

z

y

f

m

B0

gB0 × P = T

P

w0

x

Figure 2-20 Torque on a single magnetic dipole caused by an applied external magnetic field. (Source:
R. E. Collin, Foundations for Microwave Engineering , 2nd Edition, 1992, McGraw-Hill Book Co.).
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where m = n̂ I ds = magnetic dipole moment of a single dipole
H0 = applied magnetic field
B0 = applied magnetic flux density

The torque will cause the dipole to precess about the z axis, which is parallel to B0, as shown in
Figure 2-20.

The interaction energy Wm between the dipole and the applied field can be expressed as

Wm = −μ0mH0 cos φ (2-81)

T = −∂Wm

∂φ
(2-81a)

where φ is the angle between the applied magnetic field and the magnetic dipole axis. It is
observed that the energy is minimum (Wm = −μ0mH0) when φ = 0 whereas when φ = π , T is
zero and the dipole is in unstable equilibrium.

When electrons of a physically realizable dipole are moving, they create a current whose
motion is associated with a circulation of mass (angular momentum) as well as charge. Therefore
the magnetic dipole moment of a single electron of charge e, which is moving with a velocity v
in a circle of radius a , can be also be expressed as

m = I ds = ev

2πa
(πa2) = 1

2
eva (2-82)

and the angular momentum P can be written as

P = meva (2-83)

where me is the mass of the electron. The ratio of the magnetic moment [as given by (2-82)] to
the angular momentum [as given by (2-83)] is referred to as the gyromagnetic ratio γ , and it is
equal to

γ = m

P
= e

2me
⇒ m = γ P (2-84)

which is negative because of the negative electron charge e. This makes the angular momentum
P of the electron antiparallel to the magnetic dipole moment m, as shown in Figure 2-20.

To obtain the equation of motion we set the rate of change (with time) of the angular momentum
equal to the torque, that is,

dP
dt

= T = μ0m × H0 = −μ0|γ |P × H0 = −P × ω0 = ω0 × P (2-85)

or
μ0|γ |PH0 sin φ = ω0P sin φ = −μ0mH0 sin φ (2-85a)

In (2-85) and (2-85a) ω0 is the vector precession angular velocity which is directed along H0,
as shown in Figure 2-20. For the free precession of a single dipole, the angular velocity ω0 is
referred to as the Larmor precession frequency , which is given by

ω0 = |γ |μ0H0 = |γ |B0 (2-86)

and it is independent of the angle φ.
Let us assume that on the static applied field B0 a small a.c. magnetic field B1 is superimposed.

This additional applied field will impose a forced precession on the magnetic dipole. To examine
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the effects of the forced precession, let us assume that the a.c. applied magnetic field B±
1 is

circularly polarized, either right hand (CW) B+
1 or left hand (CCW) B−

1 , and it is directed
perpendicular to the z axis. As will be shown in Section 4.4.2 these fields can be written as

B+
1 = (âx − j ây )B

+
1 e−jβz right-hand (CW) (2-86a)

B−
1 = (âx + j ây )B

−
1 e−jβz left-hand (CCW) (2-86b)

The corresponding instantaneous fields obtained using (1-61d) rotate, respectively, in the clock-
wise and counterclockwise directions when viewed from the rear as they travel in the +z direction.
This is demonstrated in Figure 2-21. When each of the a.c. signals are superimposed upon the
static field B0 directed along the z axis, the resultant B±

t field will be at angle θ± (measured from
the z axis) given by

θ± = tan−1

(
B±

1

B0

)
(2-87)

as shown in Figures 2-22a and 2-22b. The resultant magnetic field B±
t will rotate about the z

axis at a rate of ω+ in the clockwise direction for B+
t and ω− in the counterclockwise direction

for B−
t , as shown in Figure 2-22. The magnetic dipole will be forced to precess at the same rate

about the z axis when steady-state conditions prevail.
For the torque to impose a clockwise precession on B+

t and a counterclockwise precession on
B−

t , the precession angle φ+ must be larger than θ+ (as shown in Figure 2-22a) and φ− must
be smaller than θ− (as shown in Figure 2-22b). Therefore for each case (2-85), the equation of
motion, can be written as

dP+

dt
= T+ = m+ × B+

t = −|γ |P+ × B+
t = ω+âz × P+ (2-88a)

dP−

dt
= T− = m− × B−

t = −|γ |P− × B−
t = −ω−âz × P− (2-88b)

x x

z z

y y

(a) (b)

wt

B1 COS wt

wt
+

B1 sin wt+ B1 sin wt−

B1 cos wt−

−

B1
+

B1
−

Figure 2-21 Rotation of magnetic field, as a function of time, for CW and CCW polarizations.
(a) Clockwise. (b) Counterclockwise. (Source: R. E. Collin, Foundations for Microwave Engineering , 2nd
Edition, 1992, McGraw-Hill Book Co.).
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z
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t

+
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f−
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B1
+

B1
−

−

B−

q−

Figure 2-22 Precession of spinning electron caused by applied magnetic field CW and CCW polarizations.
(a) Clockwise. (b) Counterclockwise. (Source: R. E. Collin, Foundations for Microwave Engineering , 2nd
Edition, 1992, McGraw-Hill Book Co.).

or

−|γ |P+B+
t sin(φ+ − θ+) = ω+P+ sin φ+ (2-89a)

−|γ |P−B−
t sin(θ− − φ−) = −ω−P− sin φ− (2-89b)

Expanding (2-89a) and (2-89b) leads to

−|γ |[(B+
t sin φ+) cos θ+ − (B+

t cos φ+) sin θ+] = ω+ sin φ+ (2-90a)

−|γ |[(B−
t sin θ−) cos φ− − (B−

t cos θ−) sin φ−] = −ω− sin φ− (2-90b)
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Since

B+
t sin θ+ = B+

1 (2-91a)

B+
t cos θ+ = B0 (2-91b)

B−
t sin θ− = B−

1 (2-91c)

B−
t cos θ− = B0 (2-91d)

then (2-90a) and (2-90b) can be reduced, respectively, to

tan φ+ = |γ |B+
1

|γ |B0 − ω+ = |γ |B+
1

ω0 − ω+ (2-92a)

tan φ− = |γ |B−
1

|γ |B0 + ω− = |γ |B−
1

ω0 + ω− (2-92b)

According to Figure 2-22 the components m±
t of m± that rotate in synchronism with their

respective B±
1 , and m±

z that are directed along the z axis, are given, respectively, by

m±
t = m± sin φ± = m± cos φ± sin φ±

cos φ± = m± cos φ± tan φ± = m±
0 tan φ± (2-93a)

m±
z = m± cos φ± = m±

0 (2-93b)

where
m±

0 = m± cos φ± (2-93c)

Using (2-92a) and (2-92b) we can write the components of m± that rotate in synchronism with
B±

1 as

m+
t = m+

0 tan φ+ = m+
0 |γ |B+

1

ω0 − ω+ (2-94a)

m−
t = m−

0 tan φ− = m−
0 |γ |B−

1

ω0 + ω− (2-94b)

In the previous discussion we considered the essential properties of single spinning electrons
in a magnetic field that is a superposition of a static magnetic field along the z axis and an a.c.
circularly polarized field perpendicular to it. Let us now examine macroscopically the properties
of N orbiting electrons per unit volume whose density is uniformly and continuously distributed.
Doing this we can represent the total magnetization M of all N electrons as the product of N
times that of a single electron (M = N m), as given by (2-17). In addition, the magnetic flux
density M will be related to the magnetic field intensity H and magnetization vector M by (2-
19). Thus we can write (2-19), using (2-94a) and (2-94b) for the magnetization of the N orbiting
electrons superimposed with the circularly polarized a.c. signal of B±

1 , as

B+ = μ0(H+
1 + M+

1 ) = μ0(H+
1 + N m+

t ) = μ0

(
H+

1 + Nm+
0 |γ |B+

1

ω0 − ω+

)
= μ0

(
1 + Nm+

0 |γ |μ0

ω0 − ω+

)
H+

1 = μ0

(
1 + μ0|γ |M +

0

ω0 − ω+

)
H+

1 = μ+
e H+

1 (2-95a)
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B− = μ0(H−
1 + M−

1 ) = μ0(H−
1 + N m−

t ) = μ0

(
H−

1 + Nm−
0 |γ |B−

1

ω0 + ω−

)
= μ0

(
1 + Nm−

0 |γ |μ0

ω0 + ω−

)
H−

1 = μ0

(
1 + μ0|γ |M −

0

ω0 + ω−

)
H−

1 = μ−
e H−

1 (2-95b)

where

M +
0 = Nm+

0 (2-95c)

M −
0 = Nm−

0 (2-95d)

μ+
e = μ0

(
1 + μ0|γ |M +

0

ω0 − ω+

)

μ−
e = μ0

(
1 + μ0|γ |M −

0

ω0 + ω−

)
(2-95e)

(2-95f)

In (2-95e) and (2-95f) μ+
e and μ−

e represent, respectively, the effective permeabilities for clock-
wise and counterclockwise circularly polarized waves. It is apparent that the two are not equal,
which is a fundamental property utilized in the design of nonreciprocal microwave devices.

If the static magnetic field B0 is much larger than the superimposed a.c. magnetic field B±
1

(B0 � B±
1 ) so that the magnetization of the ferrite material is saturated by the static field, then

all the spinning dipoles are tightly coupled and the entire material acts as a large single magnetic
dipole. In that case the magnetization vector M± for the positive (CW) and negative (CCW)
circularly polarized fields superimposed on the static field can be approximated by

M± = N m± � Ms � M0 (2-96)

where Ms is the magnetization vector caused by the static field when no time-varying magnetic
field is applied. For those cases the effective permeabilities can be approximated by

μ+
e � μ0

(
1 + μ0|γ |Ms

ω0 − ω+

)

μ−
e � μ0

(
1 + μ0|γ |Ms

ω0 + ω−

)
(2-97a)

(2-97b)

which are not equal. Equations 2-97a and 2-97b are good approximations when the a.c. signals
are small compared to the applied static field.

It can be shown (see Chapter 4) that a time-harmonic transverse electromagnetic (TEM) wave
can be decomposed into a combination of clockwise and counterclockwise circularly polarized
waves. Therefore the implications of (2-97a) and (2-97b) are that when a TEM wave travels
through a ferrite material the clockwise circularly polarized portion of the wave will experience
the permeability of (2-97a) while the counterclockwise wave will experience that of (2-97b). Since
the permeability of a material influences the phase velocity and phase constant (see Chapter 4),
the phases associated with (2-97a) and (2-97b) will be different. This is one of the fundamental
features of ferrites that is utilized for the design of microwave nonreciprocal devices.
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When an unbounded ferrite material is subjected to a static magnetic field B0 directed along
the z axis of

B0 = âz B0 = âz μ0H0 (2-98a)

and a time-harmonic magnetic field � of

� = μ0� (2-98b)

each will induce a magnetization per unit volume vector of Ms , and �, respectively. The script
is used to indicate time-varying components. Under these conditions, the equation of motion can
be written as

d(Ms + �)

dt
= d�

dt
= −|γ |[(Ms + �) × (B0 + �)] (2-99)

or in expanded form as

d�

dt
= −|γ |μ0[(Ms + �) × (H0 + �)]

d�

dt
= −|γ |μ0(Ms × H0 + Ms × � + � × H0 + � × �) (2-99a)

If the time-harmonic field � is small such that

|�| � |Ms | (2-100a)

|�| � |H0| (2-100b)

and since the applied magnetic field B0 is in the same direction as the static saturation magneti-
zation vector Ms , or

Ms × H0 = 0 (2-101)

then (2-99a) can be approximated by

d�

dt
� −|γ |μ0(Ms × � + � × H0) (2-102)

If each of the time-harmonic components is written in the form described by (1-61a) through
(1-61d), then (2-102) ultimately reduces, using (2-86), to

jωM � −|γ |μ0(Ms × H + M × H0)

jωM + |γ |μ0M × H0 � −|γ |μ0Ms × H

jωM + |γ |M × B0 � −|γ |μ0Ms × H

jωM + M × (|γ |B0) � −|γ |μ0Ms × H

jωM + ω0M × âz � −|γ |μ0Ms × H (2-103)

Assuming Ms has only a z component, whereas H has both x and y components, expanding
(2-103) leads to

jωMx + ω0My � |γ |μ0Ms Hy (2-104a)

−ω0Mx + jωMy � −|γ |μ0Ms Hx (2-104b)

jωMz � 0 (2-104c)
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Solving (2-104a) through (2-104c) for Mx , My , and Mz leads to

Mx = ω0|γ |μ0Ms Hx + jω|γ |μ0Ms Hy

ω2
0 − ω2

(2-105a)

My = ω0|γ |μ0Ms Hy − jω|γ |μ0MsHx

ω2
0 − ω2

(2-105b)

Mz = 0 (2-105c)

By introducing the magnetic susceptibility tensor χ̄, we can write (2-105a) through (2-105c) using
the forms of (2-21) and (2-22) as

[M ] = [χ][H ] (2-106)

or ⎡⎣ Mx

My

Mz

⎤⎦ =
⎡⎣ χxx χxy 0

χyx χyy 0
0 0 0

⎤⎦⎡⎣ Hx

Hy

Hz

⎤⎦ (2-106a)

[B ] = μ0[[I ] + [χ]][H ] (2-107)

or ⎡⎣ Bx

By

Bz

⎤⎦ = μ0

⎡⎣ 1 + χxx χxy 0
χyx 1 + χyy 0
0 0 1

⎤⎦⎡⎣ Hx

Hy

Hz

⎤⎦ (2-107a)

where

χxx = χyy = ω0|γ |μ0Ms

ω2
0 − ω2

(2-107b)

χxy = −χyx = j
ω|γ |μ0Ms

ω2
0 − ω2

(2-107c)

In (2-106) through (2-107c) χxx , χyy , χxy , and χyx represent the entries of the susceptibility tensor
χ̄ for the ferrite material and [I ] is the unit matrix. Equation 2-107a can also be written in a
more general form as

B = μ̄ • H (2-108)

where μ̄ is the permeability tensor written, in general, as a 3 × 3 matrix of the form

[μ̄] = μ0

⎡⎣ 1 + χxx χxy 0
χyx 1 + χyy 0
0 0 1

⎤⎦ (2-108a)

which is a more general form of (2-22a).
Practical ferrite materials also contain magnetic losses. Therefore the permeability of the mate-

rial will have both real and imaginary parts, as given by (2-79) or (2-79a). A phenomenological
model used to derive the variations as a function of frequency of the real μ′(ω) and imagi-
nary μ′′(ω) parts of both (2-95e) and (2-95f) when losses are included is somewhat complex
and beyond the treatment presented here for ferrites. However, the development of this can be
found in [35] and [36]. A typical plot as a function of ω0/ω is shown in Figure 2-23 where
ωm = μ0|γ |Ms . A resonance phenomenon is indicated when ω0/ω = 1.
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Figure 2-23 Frequency variations of real and imaginary parts of complex permeability for circularly
polarized waves in a ferrite (ω = 20π GHz, ωm = 11.2π GHz, α = 0.05). (Source: R. E. Collin, Foundations
for Microwave Engineering , 2nd Edition, 1992, McGraw-Hill Book Co.).

2.10 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

2.1. A dielectric slab, shown in Figure P2-1,
exhibits an electric polarization vector of

P = ây 2.762 × 10−11 C/m2

when it is subjected to an electric field of

E = ây 2 V/m

Determine:
(a) The bound surface charge density qsp in

each of its six faces.
(b) The net bound charge Qp associated

with the slab.
(c) The volume bound charge density qvp

within the dielectric slab.
(d) The dielectric constant of the material.

z

6 cm

4 cm

2 cm

y

x

Figure P2-1

2.2. A cylindrical dielectric shell of Figure P2-2
with inner and outer radii, respectively, of
a = 2 cm and b = 6 cm, and of length
� = 10 cm exhibits an electric polarization
vector of

P = âρ

2

ρ
× 10−10 C/m2, a ≤ ρ ≤ b

when it is subjected to an electric field of

E = âρ

7.53

ρ
V/m, a ≤ ρ ≤ b

Neglecting fringing, find:
(a) The bound surface charge density qsp in

each of the surfaces.
(b) The net bound charge Qp at the inner,

outer, upper, and lower surfaces.
(c) The volume bound charge density qvp

within the dielectric.
(d) The dielectric constant of the material.

z

y

x

l

a

b

Figure P2-2

2.3. A spherical dielectric shell of Figure P2-3
with inner and outer radii a = 2 cm and
b = 4 cm, respectively, exhibits an electric
polarization vector of
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a

b

Figure P2-3

P = âr
31.87

r2
× 10−12 C/m2, a ≤ r ≤ b

when it subjected to an electric field of

E = âr
0.45

r2
V/m, a ≤ r ≤ b

Determine the:
(a) Bound surface charge density qsp in

each of the surfaces.
(b) Net bound charge Qp at the inner and

outer surfaces.
(c) Volume bound charge density qvp within

the dielectric.
(d) Dielectric constant of the material.

2.4. Two parallel conducting plates, each having
a surface area of 2 × 10−2 m2 on its sides,
form a parallel-plate capacitor. Their sepa-
ration is 1.25 mm and the medium between
them is free space. A 100-V d.c. battery
is connected across them, and it is main-
tained there at all times. Then a dielectric
sheet, 1 mm thick and with the same shape
and area as the plates, is slipped carefully
between the plates so that one of its sides
touches one of the conducting plates. After
the insertion of the slab and neglecting fring-
ing, if the dielectric constant of the dielectric
sheet is εr = 5, determine the:
(a) Electric field intensity between the

plates (inside and outside the slab).
(b) Electric flux density between the plates

(inside and outside the slab).
(c) Surface charge density in each of the

plates.
(d) Total charge in each of the plates.
(e) Capacitance across the slab, the free

space, and both of them.
(f) Energy stored in the slab, the free space,

and both of them.

2.5. For Problem 2.4, assume that after the 100-
V voltage source charges the conducting
plates, it is then removed. Then the dielec-
tric sheet is inserted between the plates as

indicated in Problem 2.4. After the insertion
of the dielectric sheet, find the:
(a) Total charge Q on the upper and lower

plates.
(b) Surface charge density on the upper and

lower plates.
(c) Electric flux density in the dielectric slab

and free space.
(d) Electric field intensity in the dielectric

slab and free space.
(e) Voltage across the slab, the free space,

and both of them.
(f) Capacitance across the slab, the free

space, and both of them.
(g) Energy stored in the slab, the free space,

and both of them.

2.6. A parallel-plate capacitor of Figure P2-6,
with plates each of area 64 cm2, separation
of 4 cm, and free space between them, is
charged by a 8-V d.c. source that is kept
across the plates at all times. After the
charging of the plates a 4-cm dielectric slab
of polystyrene (εr = 2.56, μr = 1) 4 cm in
thickness is inserted between the plates and
occupies half of the space between them.
Before insertion of the slab, determine the:
(a) Total charge on the upper and lower

plates.
(b) Electric field between the plates.
(c) Electric flux density between the plates.
(d) Capacitance of the capacitor.
(e) Total stored energy in the capacitor.
After insertion of the slab, determine the:
(f) Total charge on the upper and lower

plates in the free space and dielectric
parts.

(g) Electric field in the free space and
dielectric parts.

(h) Electric flux density in the free space
and dielectric parts.

(i) Capacitance of each of the free space
and dielectric parts.

4 cm

64 cm2

er = 2.56, mr = 1

8
+

−

Figure P2-6
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(j) Total capacitance (combined free space
and dielectric parts).

(k) Stored energy in each of the free space
and dielectric parts.

(l) Total stored energy (combined free
space and dielectric parts). Compare
with that of part (e) and if there is a
difference, explain why.

2.7. Repeat Problem 2.6 except assume that the
voltage source is removed after the charging
of the plates and before the insertion of the
slab.

2.8. Two parallel PEC plates, each having a total
surface area of 2 cm2, form a parallel plate
capacitor. The separation between the PEC
plates is 1.25 mm and the medium between
the plates is initially free space. A 100-
Volt battery is attached to the plates, charges
them, and is then removed. After removal
of the battery, a 1 mm thick dielectric slab,
with a dielectric constant (relative permittiv-
ity) of 5 and an area of 2 cm2 on each of its
sides is inserted between the PEC plates and
occupies the lower part of the space between
the PEC plates (basically touching the lower
PEC plate), as shown in the figure below.
After insertion of the dielectric slab, find the:
(a) Total charge Q on the lower and upper

PEC plates (in C).
(b) Surface charge density on the upper and

lower PEC plates (in C/m2).
(c) Electric flux density in the:

1. Dielectric (in C/m2)
2. Free space medium (in C/m2)

(d) Electric field intensity in the:
1. Dielectric (in V/m)
2. Free space medium (in V/m)

(e) Total voltage in the:
1. Dielectric slab (in V)
2. Free-space medium (in V)
3. Between the PEC plates (dielectric

slab + free space medium) (in V)
(f) The capacitance across the:

1. Dielectric slab (in farads)
2. Free-space medium (in farads)
3. Between the PEC plates (dielectric

slab + free space medium) (in farads)

100
+

−

Area (PEC) = 2 cm2

Area (PEC) = 2 cm2

1 mm (er = 5) 1.25 mm

Figure P2-8

2.9. Two different dielectric slabs, with dielectric
constants of 2 and 6, respectively, are placed
one on top of the other, between two square
perfectly electric conducting (PEC) plates,
each plate with an area of 1 cm2, as shown in
the figure. The thickness of each dielectric
slab is 1 cm. A 10-Volt d.c. power supply
is placed between the two plates forming
a parallel-plate capacitor, and is maintained
connected at all times. Find (in terms of ε0

when applicable) the following:
(a) Electric field in each slab (in V/meter).
(b) Electric flux density in each slab (in

C/m2).
(c) Total charge in each of the two PEC

plates (in C).
(d) Total capacitance of the parallel-plate

capacitor (in farads) using its definition
based on the charge and voltage.

(e) Capacitance of each slab (in farads)
based on the definition of capacitance
(using plate area, separation and permit-
tivity of the medium).

(f) Total capacitance (in farads) of the
parallel-plate capacitor, using the capac-
itances of part (e). How does this capac-
itance compares with that of part (d)?
Are they the same or different? Explain.

10

+

−

1 cm

1 cm

Area = 1 cm2

Area = 1 cm2

er = 2

er = 6

Figure P2-9

2.10. Two different dielectric slabs, with dielec-
tric constants of 2 and 6, respectively, are
placed side-by-side between four rectangu-
lar PEC plates. Each dielectric slab is square
(1 cm by 1 cm; area = 1 cm2) and each with
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a thickness of 1 cm. Each of the top and
bottom PEC plates has dimensions of 1 cm
by 1 cm, as shown in the figure. A 10-Volt
d.c. power supply is placed between the two
plates forming two separate parallel-plate
capacitors.
For each capacitor, find the following:
(a) Electric field in each slab (E1 and E2)

(in V/meter).
(b) Electric flux density in each slab (D1

and D2) (in C/m2).
(c) Total charge density in each of the two

PEC plates (q1 and q2) (in C/m2).
(d) Total charge in each of the two PEC

plates (Q1 and Q2) (in C).
(e) Capacitance in each of the parallel-plate

capacitors (C1 and C2) (in farads) using
the definition based on the charge and
voltage.

(f) Total capacitance CT (in farads) of the
parallel-plate capacitor using the capac-
itances from part (e).

(g) Capacitance of each capacitor (in
farads) based on the definition of capac-
itance for each (using plate area, sepa-
ration and permittivity of the medium).

(h) Total capacitance CT (in farads) of
the parallel plate capacitors, using the
capacitances of part (g).

(i) How do the capacitances of parts (f)
and (h) compare? Are they the same or
different? Should they be the same or
different? Explain.

er1 = 210
+

−

1 cm

Area(#1) = 1 cm2

Area(#1) = 1 cm2

Area(#2) = 1 cm2

Area(#2) = 1 cm2

er2 = 6

Figure P2-10

2.11. A 10-Volt d.c. power supply, placed between
the two plates as shown in Figure P2-10,
with air between the plates which form two
separate parallel-plate capacitors, charges
the plates of the two capacitors. The power
supply is then disconnected; the two capac-
itors are not connected to each other.
After the power supply is disconnected and
the two capacitors are not connected to each
other, two different dielectric slabs with

dielectric constants of 2 and 6, respectively,
are inserted side-by-side between the two
rectangular PEC plates. Each dielectric slab
is square (1 cm by 1 cm; area = 1 cm2) and
each with a thickness of 1 cm. Each of the
top and bottom PEC plates has dimensions
of 1 cm × 1 cm, as shown in the figure.
For each capacitor, in the presence of the
dielectric slabs but after the removal of the
power supply, find the following:
(a) Total electric charge density in each

of the four PEC plates (q1 and q2)
(in C/m2).

(b) Electric flux density in each slab (D1

and D2) (in C/m2).
(c) Total charge in each of the four PEC

plates (Q1 and Q2) (in C).
(d) Electric field in each slab (E1 and E2)

(in V/meter).
(e) Voltage across each of the parallel plate

capacitors (V1 and V2) (in V).
(f) Capacitance in each of the parallel-plate

capacitors (C1 and C2) (in farads) based
on the geometry of each capacitor (area
of plates, separation of plates, permittiv-
ity of medium).

(g) Capacitance in each of the parallel-plate
capacitors (C1 and C2) (in farads) based
on the results of parts (c) and (e) (charge
and voltage).

(h) Are the corresponding results/answers
in parts (f) and (g) the same or different?
Explain.

2.12. A 10-V d.c. voltage source, placed across
the inner and outer conductors of a coax-
ial cylinder as shown in Figure P2-12, is
used to charge the conductors and is then
removed. The total charge in each conduc-
tor is ± Q . The inner conductor has a radius
of a = 2 cm, the radius of the outer conduc-
tor is 4 cm, and the length of the cylinder
is � = 6 cm. Assuming no field fringing and
free space between the conductors, find the:
(a) Electric field intensity between the con-

ductors in terms of Q .
(b) Total charge Q on the inner and outer

conductors.
(c) Surface charge density on the inner and

outer conductors.
(d) Electric flux density between the con-

ductors.
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(e) Capacitance between the conductors.
(f) Energy stored between the conductors.

xa

l

b

y

z

+ 10 V−

Figure P2-12

2.13. For Problem 2.12, assume that after the
10-V source charges the conductors and is
removed, a cylindrical dielectric jacket of
polystyrene (εr = 2.56) of inner radius a =
2 cm and outer radius b = 3 cm is inserted
over the inner conductor of the coaxial
cylinder. After the insertion of the jacket and
neglecting fringing, find the:
(a) Total charge Q on the inner and outer

conductors.
(b) Surface charge density on the inner and

outer conductors.
(c) Electric flux density between the con-

ductors in the dielectric and free space.
(d) Electric field intensity between the con-

ductors in the dielectric and free space.
(e) Voltage between the conductors.
(f) Total capacitance between the conduc-

tors.
(g) Total energy stored between the conduc-

tors.

2.14. For Problem 2.13 assume that the 10-V
source that charges the conductors remains
connected at all times. By neglecting fring-
ing, determine the:
(a) Electric field intensity between the con-

ductors inside and outside the dielectric
jacket.

(b) Electric flux density between the con-
ductors inside and outside the dielectric
jacket.

(c) Surface charge density in each of the
plates.

(d) Total charge in each of the conductors.
(e) Total capacitance between the conduc-

tors.
(f) Total energy stored between the conduc-

tors.

2.15. A 100-V d.c. voltage source is placed across
two parallel-plate sets that are connected in
parallel. Each conductor in each parallel-
plate set has a surface area of 2 × 10−2 m2

on each of its sides which are separated by
4 cm. For one parallel-plate set the medium
between them is free space, whereas for
the other it is lossless polystyrene (εr =
2.56, μr = 1). For each parallel-plate set, by
neglecting fringing, determine the:
(a) Electric field intensity between the

plates.
(b) Electric flux density between the plates.
(c) Total charge on the upper and lower

plates.
(d) Total energy stored between the plates.
For the two-set parallel-plate combination,
determine the total:
(e) Charge on the two upper and two lower

plates.
(f) Capacitance between the upper and

lower plates.
(g) Energy stored between the plates.

2.16. For the coaxial cylinder of Problem 2.12
assume that once the 10-V voltage source
charges the conductors and is removed, a
curved dielectric slab of polystyrene (εr =
2.56, μr = 1) of thickness equal to the
spacing between the conductors is inserted
between the conductors and occupies half
of the space (π ≤ φ ≤ 2π); the other half,
0 ≤ φ ≤ π , is still occupied by free space.
By neglecting fringing, determine the:
(a) Total charge on the inner and outer con-

ductors in free space and in polystyrene.
(b) Surface charge density on inner and

outer conductors in free space and in
polystyrene.

(c) Electric flux density between the con-
ductors in free space and in polystyrene.

(d) Electric field intensity between the con-
ductors in free space and in polystyrene.

(e) Voltage between the conductors in free
space and in polystyrene.

(f) Capacitance between the conductors in
free space, in polystyrene, and total.
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(g) Energy stored between the conductors
in free space, in polystyrene, and total.

2.17. For Problem 2.16 assume that the 10-V
charging source is maintained across the
conductors at all times. By neglecting fring-
ing, determine the:
(a) Electric field intensity between the con-

ductors in free space and in polystyrene.
(b) Electric flux density between the con-

ductors in free space and in polystyrene.
(c) Charge density in each of the conductors

in free space and in polystyrene.
(d) Total charge in each of the conductors

in free space and in polystyrene.
(e) Capacitance between the conductors in

free space, in polystyrene, and total.
(f) Energy stored between the conductors in

free space, in polystyrene, and total.

2.18. The time-varying electric field inside a loss-
less dielectric material of polystyrene, of
infinite dimensions and with a relative per-
mittivity (dielectric constant) of 2.56, is

� = âz 10−3 sin(2π × 107t) V/m

Determine the corresponding:
(a) Electric susceptibility of the dielectric

material.
(b) Time-harmonic electric flux density vec-

tor.
(c) Time-harmonic electric polarization

vector.
(d) Time-harmonic displacement current

density vector.
(e) Time-harmonic polarization current den-

sity vector defined as the partial deriva-
tive of the corresponding electric polar-
ization vector.

Leave your answers in terms of ε0, μ0.

2.19. A rectangular slab of ferrimagnetic material
as shown in Figure P2-19 exhibits a magne-
tization vector of

M = âz 1.245 × 106 A/m

when it is subjected to a magnetic field
intensity of

H = âz 5 × 103 A/m

Find the:
(a) Bound magnetization surface current

density in all its six faces.
(b) Bound magnetization volume current

density within the slab.

(c) Net bound magnetization current asso-
ciated with the slab.

(d) Relative permeability of the slab.

x

z

6 cm

1 cm

4 cm

y

Figure P2-19

2.20. A coaxial line of length � with inner
and outer conductor radii of 1 and 3 cm,
respectively, is filled with a ferromagnetic
material, as shown in Figure P2-20. When
the material is subjected to a magnetic field
intensity of

H = âφ

0.3183

ρ
A/m

it induces a magnetization vector potential
of

M = âφ

190.67

ρ
A/m

xa

r

f

b

y

l

z

Figure P2-20
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Determine the:
(a) Bound magnetization surface current

density in all surfaces.
(b) Bound magnetization volume current

density within the material.
(c) Net bound magnetization current asso-

ciated with the coaxial line.
(d) Relative permeability of the material.

2.21. The magnetization vector inside a cylindri-
cal magnetic bar of infinite length and circu-
lar cross section of radius a = 1 m, as shown
in Figure P2-21, is given by

M = âφ10 A/m

Find the:
(a) Magnetic surface current density at the

outside circumferential surface of the
bar.

(b) Magnetic volume current density at any
point inside the bar.

(c) Total current that flows through the
cross section of the bar.

f

x

y

a

z

r

Figure P2-21

2.22. The current density through a cylindrical
wire of square cross section as shown in
Figure P2-22 is given by

J � âz J0e−102[(a−|x |)+(a−|y |)]

where J0 is a constant. Assuming that each
side of the wire is 2 × 10−2 m, find the cur-
rent flow through the cross section of the
wire.

x

y

2a

2a

z

Figure P2-22

2.23. A 10-A current is pushed through a circu-
lar cross section of wire of infinite length
as shown in Figure P2-23. Assuming that
the current density over the cross section of

z

a

x

r

f

y

Figure P2-23

the wire decays from its surface toward its
center as

J = âz J0e−104(a−ρ) A/m2

where J0 is the current density at the
surface and the wire radius is a = 10−2 m,
determine the:
(a) Current density at the surface of the

wire.
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(b) Depth from the surface of the wire
through which the current density has
decayed to 36.8 percent of its value at
the surface.

2.24. Show that the relaxation time constant
for copper (σ = 5.76 × 107 S/m) is much
smaller than the period of waves in
the microwave (1–10 GHz) region and
is comparable to the period of x-rays
[λ � 1 − 10 Å = (1–10) × 10−8 cm]. Con-
sequently, conductors cannot maintain a
charge configuration long enough to permit
propagation of the wave more than a short
distance into the conductor at microwave
frequencies. However x-ray propagation is

possible because the relaxation time con-
stant is comparable to the period of the
wave.

2.25. Aluminum has a static conductivity of about
σ = 3.96 × 107 S/m and an electron mobil-
ity of μe = 2.2 × 10−3 m2/(V-s). Assum-
ing that an electric field of E = âx 2 V/m is
applied perpendicularly to the square area
of an aluminum wafer with cross-sectional
area of about 10 cm2, find the:
(a) Electron charge density qve .
(b) Electron drift velocity ve .
(c) Electric current density J.
(d) Electric current flowing through the

square cross section of the wafer.
(e) Electron density Ne .



CHAPTER 3
Wave Equation and its Solutions

3.1 INTRODUCTION

The electromagnetic fields of boundary-value problems are obtained as solutions to Maxwell’s
equations, which are first-order partial differential equations. However, Maxwell’s equations are
coupled partial differential equations, which means that each equation has more than one unknown
field. These equations can be uncoupled only at the expense of raising their order. For each of the
fields, following such a procedure leads to an uncoupled second-order partial differential equation
that is usually referred to as the wave equation . Therefore electric and magnetic fields for a given
boundary-value problem can be obtained either as solutions to Maxwell’s or the wave equations.
The choice of equations is related to individual problems by convenience and ease of use. In
this chapter we will develop the vector wave equations for each of the fields, and then we will
demonstrate their solutions in the rectangular, cylindrical, and spherical coordinate systems.

3.2 TIME-VARYING ELECTROMAGNETIC FIELDS

The first two of Maxwell’s equations in differential form, as given by (1-1) and (1-2), are first-
order, coupled differential equations; that is, both the unknown fields (� and �) appear in each
equation. Usually it is very desirable, for convenience in solving for � and �, to uncouple these
equations. This can be accomplished at the expense of increasing the order of the differential
equations to second order. To do this, we repeat (1-1) and (1-2), that is,

∇ × � = −�i − μ
∂�

∂t
(3-1)

∇ × � = �i + σ� + ε
∂�

∂t
(3-2)

where it is understood in the remaining part of the book that σ represents the effective conductivity
σε and ε represents ε′. Taking the curl of both sides of each of equations 3-1 and 3-2 and assuming
a homogeneous medium, we can write that

∇ × ∇ × � = −∇ × �i − μ∇ ×
(

∂�

∂t

)
= −∇ × �i − μ

∂

∂t
(∇ × �) (3-3)

∇ × ∇ × � = ∇ × �i + σ∇ × � + ε∇ ×
(

∂�

∂t

)
= ∇ × �i + σ∇ × � + ε

∂

∂t
(∇ × �) (3-4)
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Substituting (3-2) into the right side of (3-3) and using the vector identity

∇ × ∇ × F = ∇(∇ • F) − ∇2F (3-5)

into the left side, we can rewrite (3-3) as

∇(∇ • �) − ∇2� = −∇ × �i − μ
∂

∂t

[
�i + σ� + ε

∂�

∂t

]
∇(∇ • �) − ∇2� = −∇ × �i − μ

∂�i

∂t
− μσ

∂�

∂t
− με

∂2�

∂t2
(3-6)

Substituting Maxwell’s equation 1-3, or

∇ • � = ε∇ • � = q
ev

⇒ ∇ • � = q
ev

ε
(3-7)

into (3-6) and rearranging its terms, we have that

∇2� = ∇ × �i + μ
∂�i

∂t
+ 1

ε
∇q

ev
+ μσ

∂�

∂t
+ με

∂2�

∂t2
(3-8)

which is recognized as an uncoupled second-order differential equation for �.
In a similar manner, by substituting (3-1) into the right side of (3-4) and using the vector

identity of (3-5) in the left side of (3-4), we can rewrite it as

∇(∇ • �) − ∇2� = ∇ × �i + σ

(
−�i − μ

∂�

∂t

)
+ ε

∂

∂t

(
−�i − μ

∂�

∂t

)
∇(∇ • �) − ∇2� = ∇ × �i − σ�i − μσ

∂�

∂t
− ε

∂�i

∂t
− με

∂2�

∂t2
(3-9)

Substituting Maxwell’s equation

∇ • � = μ∇ • � = q
mv

⇒ ∇ • � =
(

q
mv

μ

)
(3-10)

into (3-9), we have that

∇2� = −∇ × �i + σ�i + 1

μ
∇(q

mv
) + ε

∂�i

∂t
+ μσ

∂�

∂t
+ με

∂2�

∂t2
(3-11)

which is recognized as an uncoupled second-order differential equation for �. Thus (3-8) and
(3-11) form a pair of uncoupled second-order differential equations that are a by-product of
Maxwell’s equations as given by (1-1) through (1-4).

Equations 3-8 and 3-11 are referred to as the vector wave equations for � and �. For solving
an electromagnetic boundary-value problem, the equations that must be satisfied are Maxwell’s
equations as given by (1-1) through (1-4) or the wave equations as given by (3-8) and (3-11).
Often, the forms of the wave equations are preferred over those of Maxwell’s equations.
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For source-free regions (�i = q
ev

= 0 and �i = q
mv

= 0), the wave equations 3-8 and 3-11
reduce, respectively, to

∇2� = μσ
∂�

∂t
+ με

∂2�

∂t2
(3-12)

∇2� = μσ
∂�

∂t
+ με

∂2�

∂t2
(3-13)

For source-free (�i = q
ev

= 0 and �i = q
mv

= 0) and lossless media (σ = 0), the wave
equations 3-8 and 3-11 or 3-12 and 3-13 simplify to

∇2� = με
∂2�

∂t2
(3-14)

∇2� = με
∂2�

∂t2
(3-15)

Equations 3-14 and 3-15 represent the simplest forms of the vector wave equations.

3.3 TIME-HARMONIC ELECTROMAGNETIC FIELDS

For time-harmonic fields (time variations of the form ejωt ), the wave equations can be derived
using a similar procedure as in Section 3.2 for the general time-varying fields, starting with
Maxwell’s equations as given in Table 1-4. However, instead of going through this process, we
find, by comparing Maxwell’s equations for the general time-varying fields with those for the
time-harmonic fields (both are displayed in Table 1-4), that one set can be obtained from the
other by replacing ∂/∂t ≡ jω, ∂2/∂t2 ≡ (jω)2 = −ω2, and the instantaneous fields (�, �, �, �),
respectively, with the complex fields (E, H, D, B) and vice versa. Doing this for the wave equations
3-8, 3-11, 3-12, and 3-13, we can write each, respectively, as

∇2E = ∇ × Mi + jωμJi + 1

ε
∇qev + jωμσE − ω2μεE

∇2H = −∇ × Ji + σMi + jωεMi + 1

μ
∇qmv + jωμσH − ω2μεH

(3-16a)

(3-16b)

∇2E = jωμσE − ω2μεE = γ 2E

∇2H = jωμσH − ω2μεH = γ 2H

(3-17a)

(3-17b)

where

γ 2 = jωμσ − ω2με = jωμ(σ + jωε) (3-17c)

γ = α + jβ = propagation constant (3-17d)

α = attenuation constant (Np/m) (3-17e)

β = phase constant (rad/m) (3-17f)
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The constants α, β, and γ will be discussed in more detail in Section 4.3 where α and β are
expressed by (4-28c) and (4-28d) in terms of ω, ε, μ, and σ .

Similarly (3-14) and (3-15) can be written, respectively, as

∇2E = −ω2μεE = −β2E

∇2H = −ω2μεH = −β2H

(3-18a)

(3-18b)

where
β2 = ω2με (3-18c)

In the literature the phase constant β is also represented by k .

3.4 SOLUTION TO THE WAVE EQUATION

The time variations of most practical problems are of the time-harmonic form. Fourier series can
be used to express time variations of other forms in terms of a number of time-harmonic terms.
Electromagnetic fields associated with a given boundary-value problem must satisfy Maxwell’s
equations or the vector wave equations. For many cases, the vector wave equations reduce to a
number of scalar Helmholtz (wave) equations, and the general solutions can be constructed once
solutions to each of the scalar Helmholtz equations are found.

In this section we want to demonstrate at least one method that can be used to solve the scalar
Helmholtz equation in rectangular, cylindrical, and spherical coordinates. The method is known as
the separation of variables [1, 2], and the general solution to the scalar Helmholtz equation using
this method can be constructed in 11 three-dimensional orthogonal coordinate systems (including
the rectangular, cylindrical, and spherical systems) [3].

The solutions for the instantaneous time-harmonic electric and magnetic field intensities can
be obtained by considering the forms of the vector wave equations given either in Section 3.2 or
Section 3.3. The approach chosen here will be to use those of Section 3.3 to solve for the complex
field intensities E and H first. The corresponding instantaneous quantities can then be formed
using the relations (1-61a) through (1-61f) between the instantaneous time-harmonic fields and
their complex counterparts.

3.4.1 Rectangular Coordinate System

In a rectangular coordinate system, the vector wave equations 3-16a through 3-18c can be reduced
to three scalar wave (Helmholtz) equations. First, we will consider the solutions for source-free
and lossless media. This will be followed by solutions for source-free but lossy media.

A. Source-Free and Lossless Media For source-free (Ji = Mi = qve = qvm = 0) and loss-
less (σ = 0) media, the vector wave equations for the complex electric and magnetic field
intensities are those given by (3-18a) through (3-18c). Since (3-18a) and (3-18b) are of the
same form, let us examine the solution to one of them. The solution to the other can then be
written by an interchange of E with H or H with E. We will begin by examining the solution
for E.

In rectangular coordinates, a general solution for E can be written as

E(x , y , z ) = âx Ex (x , y , z ) + ây Ey(x , y , z ) + âz Ez (x , y , z ) (3-19)
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Figure 3-1 Rectangular coordinate system and corresponding unit vectors.

where x , y , z are the rectangular coordinates, as illustrated in Figure 3-1. Substituting (3-19) into
(3-18a) we can write that

∇2E + β2E = ∇2(âx Ex + ây Ey + âz Ez
) + β2(âx Ex + ây Ey + âz Ez

) = 0 (3-20)

which reduces to three scalar wave equations of

∇2Ex (x , y , z ) + β2Ex (x , y , z ) = 0 (3-20a)

∇2Ey(x , y , z ) + β2Ey(x , y , z ) = 0 (3-20b)

∇2Ez (x , y , z ) + β2Ez (x , y , z ) = 0 (3-20c)

because
∇2(âx Ex + ây Ey + âz Ez

) = âx∇2Ex + ây∇2Ey + âz ∇2Ez (3-21)

Equations 3-20a through 3-20c are all of the same form; once a solution of any one of them is
obtained, the solutions to the others can be written by inspection. We choose to work first with
that for Ex as given by (3-20a).

In expanded form (3-20a) can be written as

∇2Ex + β2Ex = ∂2Ex

∂x 2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z 2
+ β2Ex = 0 (3-22)

Using the separation-of-variables method , we assume that a solution for Ex (x , y , z ) can be written
in the form of

Ex (x , y , z ) = f (x)g(y)h(z ) (3-23)

where the x , y , z variations of Ex are separable (hence the name). If any inconsistencies are
encountered with assuming such a form of solution, another form must be attempted. This is the
procedure usually followed in solving differential equations. Substituting (3-23) into (3-22), we
can write that

gh
∂2f

∂x 2
+ fh

∂2g

∂y2
+ fg

∂2h

∂z 2
+ β2fgh = 0 (3-24)
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Since f (x), g(y), and h(z ) are each a function of only one variable, we can replace the partials
in (3-24) by ordinary derivatives. Doing this and dividing each term by fgh , we can write that

1

f

d2f

dx 2
+ 1

g

d2g

dy2
+ 1

h

d2h

dz 2
+ β2 = 0 (3-25)

or
1

f

d2f

dx 2
+ 1

g

d2g

dy2
+ 1

h

d2h

dz 2
= −β2 (3-25a)

Each of the first three terms in (3-25a) is a function of only a single independent variable;
hence the sum of these terms can equal −β2 only if each term is a constant. Thus (3-25a) separates
into three equations of the form

1

f

d2f

dx 2
= −β2

x ⇒ d2f

dx 2
= −β2

x f (3-26a)

1

g

d2g

dy2
= −β2

y ⇒ d2g

dy2
= −β2

y g (3-26b)

1

h

d2h

dz 2
= −β2

z ⇒ d2h

dz 2
= −β2

z h (3-26c)

where, in addition,
β2

x + β2
y + β2

z = β2 (3-27)

Equation 3-27 is referred to as the constraint (dispersion) equation. In addition βx , βy , βz are
known as the wave constants (numbers) in the x , y , z directions, respectively, that will be
determined using boundary conditions.

The solution to each of (3-26a), (3-26b), or (3-26c) can take different forms. Some typical
valid solutions for f (x) of (3-26a) would be

f1(x) = A1e−jβx x + B1e+jβx x (3-28a)

or
f2(x) = C1 cos(βx x) + D1 sin(βx x) (3-28b)

Similarly the solutions to (3-26b) and (3-26c) for g(y) and h(z ) can be written, respectively, as

g1(y) = A2e−jβy y + B2e+jβy y (3-29a)

or
g2(y) = C2 cos(βy y) + D2 sin(βy y) (3-29b)

and
h1(z ) = A3e−jβz z + B3e+jβz z (3-30a)

or
h2(z ) = C3 cos(βz z ) + D3 sin(βz z ) (3-30b)

Although all the aforementioned solutions are valid for f (x), g(y), and h(z ), the most appro-
priate form should be chosen to simplify the complexity of the problem at hand. In general, the
solutions of (3-28a), (3-29a), and (3-30a) in terms of complex exponentials represent traveling
waves and the solutions of (3-28b), (3-29b), and (3-30b) represent standing waves . Wave func-
tions representing various wave types in rectangular coordinates are found listed in Table 3-1. In
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TABLE 3-1 Wave functions, zeroes, and infinities of plane wave functions in rectangular
coordinates

Wave Wave Zeroes of Infinities of
type functions wave functions wave functions

Traveling
waves

e−jβx for + x travel
e+jβx for − x travel

βx → −j∞
βx → +j∞

βx → +j∞
βx → −j∞

Standing
waves

cos(βx) for ± x
sin(βx) for ± x

βx = ±(
n + 1

2

)
π

βx = ±nπ

n = 0, 1, 2, . . .

βx → ±j∞
βx → ±j∞

Evanescent
waves

e−αx for + x
e+αx for − x
cosh(αx) for ± x
sinh(αx) for ± x

αx → +∞
αx → −∞
αx = ±j

(
n + 1

2

)
π

αx = ±jnπ

n = 0, 1, 2, . . .

αx → −∞
αx → +∞
αx → ±∞
αx → ±∞

Attenuating
traveling
waves

e−γ x = e−αx e−jβx for + x travel
e+γ x = e+αx e+jβx for − x travel

γ x → +∞
γ x → −∞

γ x → −∞
γ x → +∞

Attenuating
standing
waves

cos(γ x) = cos(αx) cosh(βx)

− j sin(αx) sinh(βx)

for ± x
sin(γ x) = sin(αx) cosh(βx)

+ j cos(αx) sinh(βx)

for ± x

γ x = ±j
(
n + 1

2

)
π

γ x = ±jnπ

n = 0, 1, 2, . . .

γ x → ±j∞

γ x → ±j∞

Chapter 8 we will consider specific examples and the appropriate solution forms for f (x), g(y),
and h(z ).

Once the appropriate forms for f (x), g(y), and h(z ) have been decided, the solution for the
scalar function Ex (x , y , z ) of (3-22) can be written as the product of fgh as stated by (3-23).
To demonstrate that, let us consider a specific example in which it will be assumed that the
appropriate solutions for f , g , and h are given, respectively, by (3-28b), (3-29b), and (3-30a).
Thus we can write that

Ex (x , y , z ) = [
C1 cos(βx x) + D1 sin(βx x)

][
C2 cos(βy y) + D2 sin(βy y)

]
×[

A3e−jβz z + B3e+jβz z
]

(3-31)

This is an appropriate solution for any of the electric or magnetic field components inside a
rectangular pipe (waveguide), shown in Figure 3-2, that is bounded in the x and y directions
and has its length along the z axis. Because the waveguide is bounded in the x and y directions,
standing waves, represented by cosine and sine functions, have been chosen as solutions for f (x)

and g(y) functions. However, because the waveguide is not bounded in the z direction, traveling
waves, represented by complex exponential functions, have been chosen as solutions for h(z ). A
complete discussion of the fields inside a rectangular waveguide can be found in Chapter 8.

For ejωt time variations, which are assumed throughout this book, the first complex exponential
term in (3-31) represents a wave that travels in the +z direction; the second exponential represents
a wave that travels in the −z direction. To demonstrate this, let us examine the instantaneous form
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z

y

x
a

b

Figure 3-2 Rectangular waveguide geometry.

�x (x , y , z ; t) of the scalar complex function Ex (x , y , z ). Since the solution of (3-31) represents
the complex form of Ex , its instantaneous form can be written as

�x (x , y , z ; t) = Re
[
Ex (x , y , z )ejωt

]
(3-32)

Considering only the first exponential term of (3-31) and assuming all constants are real, we can
write the instantaneous form of the �x function for that term as

�+
x (x , y , z ; t) = Re

[
E+

x (x , y , z )ejωt
]

= Re
{[

C1 cos(βx x) + D1 sin(βx x)
]

×[
C2 cos(βy y) + D2 sin(βy y)

]
A3ej (ωt−βz z )

}
(3-33)

or, if the constants C1, D1, C2, D2, and A3 are real, as

�+
x (x , y , z ; t) = [

C1 cos(βx x) + D1 sin(βx x)
]

×[
C2 cos(βy y) + D2 sin(βy y)

]
A3 cos(ωt − βz z ) (3-33a)

where the superscript plus is used to denote a positive traveling wave.
A plot of the normalized �+

x (x , y , z ; t) as a function of z for different times
(t = t0, t1, . . . , tn , tn+1) is shown in Figure 3-3. It is evident that as time increases (tn+1 > tn),
the waveform of �+

x is essentially the same, with the exception of an apparent shift in the +z
direction indicating a wave traveling in the +z direction. This shift in the +z direction can also
be demonstrated by examining what happens to a given point zp in the waveform of �+

x for
t = t0, t1, . . . , tn , tn+1. To follow the point zp for different values of t , we must maintain constant
the amplitude of the last cosine term in (3-33a). This is accomplished by keeping its argument
ωt − βz zp constant, that is,

ωt − βz zp = C0 = constant (3-34)

which when differentiated with respect to time reduces to

ω(1) − βz
dzp

dt
= 0 ⇒ dzp

dt
= vp = + ω

βz
(3-35)
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Figure 3-3 Variations as a function of distance for different times of positive traveling wave.
time t0 = 0; – – – – time t1 = T/8; ---- time t2 = T/4.

The point zp is referred to as an equiphase point and its velocity is denoted as the phase
velocity . A similar procedure can be used to demonstrate that the second complex exponential
term in (3-31) represents a wave that travels in the −z direction.

B. Source-Free and Lossy Media When the media in which the waves are traveling are
lossy (σ �= 0) but source-free (Ji = Mi = qve = qvm = 0), the vector wave equations that the
complex electric E and magnetic H field intensities must satisfy are (3-17a) and (3-17b). As for
the lossless case, let us examine the solution to one of them; the solution to the other can then be
written by inspection once the solution to the first has been obtained. We choose to consider the
solution for the electric field intensity E, which must satisfy (3-17a). An extended presentation
of electromagnetic wave propagation in lossy media can be found in [4].

In a rectangular coordinate system, the general solution for E(x , y , z ) can be written as

E(x , y , z ) = âx Ex (x , y , z ) + ây Ey(x , y , z ) + âz Ez (x , y , z ) (3-36)

When (3-36) is substituted into (3-17a), we can write that

∇2E − γ 2E = ∇2(âx Ex + ây Ey + âz Ez
) − γ 2(âx Ex + ây Ey + âz Ez

) = 0 (3-37)

which reduces to three scalar wave equations of

∇2Ex (x , y , z ) − γ 2Ex (x , y , z ) = 0 (3-37a)

∇2Ey(x , y , z ) − γ 2Ey(x , y , z ) = 0 (3-37b)

∇2Ez (x , y , z ) − γ 2Ez (x , y , z ) = 0 (3-37c)

where
γ 2 = jωμ(σ + jωε) (3-37d)

If we were to allow for positive and negative values of σ

γ = ±
√

jωμ(σ + jωε) =
{

±(α + jβ) for + σ

±(α − jβ) for − σ
(3-37e)
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In (3-37e),

γ = propagation constant

α = attenuation constant (Np/m)

β = phase constant (rad/m)

where α and β are assumed to be real and positive. Although some authors choose to represent
the phase constant by k , the symbol β will be used throughout this book.

Examining (3-37e) reveals that there are four possible combinations for the form of γ . That is,

γ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+(α + jβ)

−(α + jβ)

+(α − jβ)

−(α − jβ)

(3-38a)

(3-38b)

(3-38c)

(3-38d)

Of the four combinations, only one will be appropriate for our solution. That form will be selected
once the solutions to any of (3-37a) through (3-37c) have been decided.

Since all three equations represented by (3-37a) through (3-37c) are of the same form, let us
examine only one of them. We choose to work first with (3-37a) whose solution can be derived
using the method of separation of variables . Using a similar procedure as for the lossless case,
we can write that

Ex (x , y , z ) = f (x)g(y)h(z ) (3-39)

where it can be shown that f (x) has solutions of the form

f1(x) = A1e−γx x + B1e+γx x (3-40a)

or
f2(x) = C1 cosh(γx x) + D1 sinh(γx x) (3-40b)

and g(y) can be expressed as
g1(y) = A2e−γy y + B2e+γy y (3-41a)

or
g2(y) = C2 cosh(γy y) + D2 sinh(γy y) (3-41b)

and h(z ) as
h1(z ) = A3e−γz z + B3e+γz z (3-42a)

or
h2(z ) = C3 cosh(γz z ) + D3 sinh(γz z ) (3-42b)

Whereas (3-40a) through (3-42b) are appropriate solutions for f , g , and h of (3-39), which
satisfy (3-37a), the constraint (dispersion) equation takes the form of

γ 2
x + γ 2

y + γ 2
z = γ 2 (3-43)

The appropriate forms of f , g , and h chosen to represent the solution of Ex (x , y , z ), as given by
(3-39), must be made by examining the geometry of the problem in question. As for the lossless
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case, the exponentials represent attenuating traveling waves and the hyperbolic cosines and sines
represent attenuating standing waves. These and other waves types are listed in Table 3-1.

To decide on the appropriate form for any of the γ ’s (whether it be γx , γy , γz , or γ ), let us
choose the form of γz by examining one of the exponentials in (3-42a). We choose to work with
the first one. The four possible combinations for γz , according to (3-38a) through (3-38d) will
be

γz =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+(αz + jβz )

−(αz + jβz )

+(αz − jβz )

−(αz − jβz )

(3-44a)

(3-44b)

(3-44c)

(3-44d)

If we want the first exponential in (3-42a) to represent a decaying wave which travels in the
+z direction, then by substituting (3-44a) through (3-44d) into it we can write that

h+
1 (z ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A3e−γz z = A3e−αz z e−jβz z

A3e−γz z = A3e+αz z e+jβz z

A3e−γz z = A3e−αz z e+jβz z

A3e−γz z = A3e+αz z e−jβz z

(3-45a)

(3-45b)

(3-45c)

(3-45d)

By examining (3-45a) through (3-45d) and assuming ejωt time variations, the following state-
ments can be made:

1. Equation 3-45a represents a wave that travels in the +z direction, as determined by e−jβz z ,
and it decays in that direction, as determined by e−αz z .

2. Equation 3-45b represents a wave that travels in the −z direction, as determined by e+jβz z ,
and it decays in that direction, as determined by e+αz z .

3. Equation 3-45c represents a wave that travels in the −z direction, as determined by e+jβz z ,
and it is increasing in that direction, as determined by e−αz z .

4. Equation 3-45d represents a wave that travels in the +z direction, as determined by e−jβz z ,
and it is increasing in that direction, as determined by e+αz z .

From the preceding statements it is apparent that for e−γz z to represent a wave that travels in the
+z direction and that concurrently also decays (to represent propagation in passive lossy media),
and to satisfy the conservation of energy laws, the only correct form of γz is that of (3-44a). The
same conclusion will result if the second exponential of (3-42a) represents a wave that travels in
the −z direction and that concurrently also decays. Thus the general form of any γi (whether it
be γx , γy , γz , or γ ), as given by (3-38a) through (3-38d), is

γi = αi + jβi (3-46)

Whereas the forms of f , g , and h [as given by (3-40a) through (3-42b)] are used to arrive
at the solution for the complex form of Ex as given by (3-39), the instantaneous form of �x

can be obtained by using the relation of (3-32). A similar procedure can be used to derive the
solutions of the other components of E (Ey and Ez ), all those of H (Hx , Hy , and Hz ), and of their
instantaneous counterparts.
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3.4.2 Cylindrical Coordinate System

If the geometry of the system is of a cylindrical configuration, it would be very advisable to
solve the boundary-value problem for the E and H fields using cylindrical coordinates. Maxwell’s
equations and the vector wave equations, which the E and H fields must satisfy, should be solved
using cylindrical coordinates. Let us first consider the solution for E for a source-free and lossless
medium. A similar procedure can be used for H. To maintain some simplicity in the mathematics,
we will examine only lossless media.

In cylindrical coordinates a general solution to the vector wave equation for source-free and
lossless media, as given by (3-18a), can be written as

E(ρ, φ, z ) = âρEρ(ρ, φ, z ) + âφEφ(ρ, φ, z ) + âz Ez (ρ, φ, z ) (3-47)

where ρ, φ, and z are the cylindrical coordinates as illustrated in Figure 3-4. Substituting (3-47)
into (3-18a), we can write that

∇2(âρEρ + âφEφ + âz Ez ) = −β2(âρEρ + âφEφ + âz Ez ) (3-48)

which does not reduce to three simple scalar wave equations, similar to those of (3-20a) through
(3-20c) for (3-20), because

∇2(âρEρ) �= âρ∇2Eρ (3-49a)

∇2(âφEφ) �= âφ∇2Eφ (3-49b)

However, because
∇2(âz Ez ) = âz ∇2Ez (3-49c)

one of the three scalar equations to which (3-48) reduces is

∇2Ez + β2Ez = 0 (3-50)

The other two are of more complex form and they will be addressed in what follows.
Before we derive the other two scalar equations [in addition to (3-50)] to which (3-48) reduces,

let us attempt to give a physical explanation of (3-49a), (3-49b), and (3-49c). By examining two
different points (ρ1, φ1, z1) and (ρ2, φ2, z2) and their corresponding unit vectors on a cylindrical
surface (as shown in Figure 3-4), we see that the directions of âρ and âφ have changed from one
point to another (they are not parallel) and therefore cannot be treated as constants but rather are
functions of ρ, φ, and z . In contrast, the unit vector âz at the two points is pointed in the same
direction (is parallel). The same is true for the unit vectors âx and ây in Figure 3-1.

Let us now return to the solution of (3-48). Since (3-48) does not reduce to (3-49a) and (3-
49b), although it does satisfy (3-49c), how do we solve (3-48)? The procedure that follows can
be used to reduce (3-48) to three scalar partial differential equations.

The form of (3-48) written in general as

∇2E = −β2E (3-51)

was placed in this form by utilizing the vector identity of (3-5) during its derivation. Generally
we are under the impression that we do not know how to perform the Laplacian of a vector
(∇2E) as given by the left side of (3-51). However, by utilizing (3-5) we can rewrite the left
side of (3-51) as

∇2E = ∇(∇ • E) − ∇ × ∇ × E (3-52)
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Figure 3-4 Cylindrical coordinate system and corresponding unit vectors.

whose terms can be expanded in any coordinate system. Using (3-52) we can write (3-51) as

∇(∇ • E) − ∇ × ∇ × E = −β2E (3-53)

which is an alternate form, but not as commonly recognizable, of the vector wave equation for
the electric field in source-free and lossless media.

Assuming a solution for the electric field of the form given by (3-47), we can expand (3-53)
and reduce it to three scalar partial differential equations of the form

∇2Eρ +
(

−Eρ

ρ2
− 2

ρ2

∂Eφ

∂φ

)
= −β2Eρ (3-54a)

∇2Eφ +
(

−Eφ

ρ2
+ 2

ρ2

∂Eρ

∂φ

)
= −β2Eφ (3-54b)

∇2Ez = −β2Ez (3-54c)

In each of (3-54a) through (3-54c) ∇2ψ(ρ, φ, z ) is the Laplacian of a scalar that in cylindrical
coordinates takes the form of

∇2ψ(ρ, φ, z ) = 1

ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2

= ∂2ψ

∂ρ2
+ 1

ρ

∂ψ

∂ρ
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2
(3-55)

Equations 3-54a and 3-54b are coupled (each contains more than one electric field component)
second-order partial differential equations, which are the most difficult to solve. However, (3-54c)
is an uncoupled second-order partial differential equation whose solution will be most useful in
the construction of TEz and TMz mode solutions of boundary-value problems, as discussed in
Chapters 6 and 9.
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In expanded form (3-54c) can then be written as

∂2ψ

∂ρ2
+ 1

ρ

∂ψ

∂ρ
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2
= −β2ψ (3-56)

where ψ(ρ, φ, z ) is a scalar function that can represent a field or a vector potential component.
Assuming a separable solution for ψ(ρ, φ, z ) of the form

ψ(ρ, φ, z ) = f (ρ)g(φ)h(z ) (3-57)

and substituting it into (3-56), we can write that

gh
∂2f

∂ρ2
+ gh

1

ρ

∂f

∂ρ
+ fh

1

ρ2

∂2g

∂φ2
+ fg

∂2h

∂z 2
= −β2fgh (3-58)

Dividing both sides of (3-58) by fgh and replacing the partials by ordinary derivatives reduces
(3-58) to

1

f

d2f

dρ2
+ 1

f

1

ρ

df

dρ
+ 1

g

1

ρ2

d2g

dφ2
+ 1

h

d2h

dz 2
= −β2 (3-59)

The last term on the left side of (3-59) is only a function of z . Therefore, using the discussion
of Section 3.4.1, we can write that

1

h

d2h

dz 2
= −β2

z ⇒ d2h

dz 2
= −β2

z h (3-60)

where βz is a constant. Substituting (3-60) into (3-59) and multiplying both sides by ρ2, reduces
it to

ρ2

f

d2f

dρ2
+ ρ

f

df

dρ
+ 1

g

d2g

dφ2
+ (β2 − β2

z )ρ2 = 0 (3-61)

Since the third term on the left side of (3-61) is only a function of φ, it can be set equal to a
constant −m2. Thus we can write that

1

g

d2g

dφ2
= −m2 ⇒ d2g

dφ2
= −m2g (3-62)

Letting

β2 − β2
z = β2

ρ ⇒ β2
ρ + β2

z = β2 (3-63)

then using (3-62), and multiplying both sides of (3-61) by f , we can reduce (3-61) to

ρ2 d2f

dρ2
+ ρ

df

dρ
+ [

(βρρ)2 − m2] f = 0 (3-64)

Equation 3-63 is referred to as the constraint (dispersion) equation for the solution to the wave
equation in cylindrical coordinates, and (3-64) is recognized as the classic Bessel differential
equation [1–3, 5–10].

In summary then, the partial differential equation 3-56 whose solution was assumed to be
separable of the form given by (3-57) reduces to the three differential equations 3-60, 3-62, 3-64
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and the constraint equation 3-63. Thus

∇2ψ(ρ, φ, z ) = ∂2ψ

∂ρ2
+ 1

ρ

∂ψ

∂ρ
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2
= −β2ψ (3-65)

where
ψ(ρ, φ, z ) = f (ρ)g(φ)h(z ) (3-65a)

reduces to

ρ2 d2f

dρ2
+ ρ

df

dρ
+ [

(βρρ)2 − m2] f = 0 (3-66a)

d2g

dφ2
= −m2g (3-66b)

d2h

dz 2
= −β2

z h (3-66c)

with

β2
ρ + β2

z = β2 (3-66d)

Solutions to (3-66a), (3-66b), and (3-66c) take the form, respectively, of

f1(ρ) = A1Jm(βρρ) + B1Ym(βρρ) (3-67a)

or
f2(ρ) = C1H (1)

m (βρρ) + D1H (2)
m (βρρ) (3-67b)

and
g1(φ) = A2e−jmφ + B2e+jmφ (3-68a)

or
g2(φ) = C2 cos(mφ) + D2 sin(mφ) (3-68b)

and
h1(z ) = A3e−jβz z + B3e+jβz z (3-69a)

or
h2(z ) = C3 cos(βz z ) + D3 sin(βz z ) (3-69b)

In (3-67a) Jm(βρρ) and Ym(βρρ) represent, respectively, the Bessel functions of the first and
second kind; H (1)

m (βρρ) and H (2)
m (βρρ) in (3-67b) represent, respectively, the Hankel functions

of the first and second kind. A more detailed discussion of Bessel and Hankel functions is found
in Appendix IV.

Although (3-67a) through (3-69b) are valid solutions for f (ρ), g(φ), and h(z ), the most appro-
priate form will depend on the problem in question. For example, for the cylindrical waveguide of
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Figure 3-5 Cylindrical waveguide of the circular cross section.

Figure 3-5 the most convenient solutions for f (ρ), g(φ), and h(z ) are those given, respectively,
by (3-67a), (3-68b), and (3-69a). Thus we can write

ψ1(ρ, φ, z ) = f (ρ)g(φ)h(z )

= [
A1Jm(βρρ) + B1Ym(βρρ)

]
×[C2 cos(mφ) + D2 sin(mφ)]

[
A3e−jβz z + B3e+jβz z

]
(3-70)

These forms for f (ρ), g(φ), and h(z ) were chosen in cylindrical coordinates for the following
reasons.

1. Bessel functions of (3-67a) are used to represent standing waves, whereas Hankel functions
of (3-67b) represent traveling waves.

2. Exponentials of (3-68a) represent traveling waves, whereas the cosines and sines of (3-68b)
represent periodic waves.

3. Exponentials of (3-69a) represent traveling waves, whereas the cosines and sines of (3-69b)
represent standing waves.

Wave functions representing various radial waves in cylindrical coordinates are found listed in
Table 3-2.

Within the circular waveguide of Figure 3-5 standing waves are created in the radial (ρ)

direction, periodic waves in the phi (φ) direction, and traveling waves in the z direction. For the
fields to be finite at ρ = 0, where Ym(βρρ) possesses a singularity, (3-70) reduces to

ψ1(ρ, φ, z ) = A1Jm(βρρ)[C2 cos(mφ) + D2 sin(mφ)]
[
A3e−jβz z + B3e+jβz z

]
(3-70a)

To represent the fields in the region outside the cylinder, like scattering by the cylinder, a
typical solution for ψ(ρ, φ, z ) would take the form of

ψ2(ρ, φ, z ) = B1H (2)
m (βρρ)[C2 cos(mφ) + D2 sin(mφ)]

[
A3e−jβz z + B3e+jβz z

]
(3-70b)
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TABLE 3-2 Wave functions, zeroes, and infinities for radial wave functions in cylindrical
coordinates

Infinities
Wave Wave Zeroes of of wave
type functions wave functions functions

Traveling
waves

H (1)
m (βρ) = Jm(βρ) + jYm(βρ)

for −ρ travel
H (2)

m (βρ) = Jm(βρ) − jYm(βρ)

for +ρ travel

βρ → +j∞

βρ → −j∞

βρ = 0
βρ → −j∞
βρ = 0
βρ → +j∞

Standing
waves

Jm(βρ) for ± ρ

Ym(βρ) for ± ρ

Infinite number
(see Table 9-2)
Infinite number

βρ → ±j∞

βρ = 0
βρ → ±j∞

Evanescent
waves

Km(αρ) = π

2
(−j )m+1H (2)

m (−jαρ)

for + ρ

Im(αρ) = j m Jm(−jαρ) for − ρ

αρ → +∞ αρ → 0
αρ → +∞
for integer orders

Attenuating
traveling
waves

H (1)
m (−jγρ) = H (1)

m (−jαρ + βρ)

for − ρ travel
H (2)

m (−jγρ) = H (2)
m (−jαρ + βρ)

for + ρ travel

γρ → −∞

γρ → +∞

γρ → +∞

γρ → −∞

Attenuating
standing
waves

Jm(−jγρ) = Jm(−jαρ + βρ) for ±ρ

Ym(−jγρ) = Ym(−jαρ + βρ) for ± ρ

Infinite number
Infinite number

γρ → ±j∞
γρ → ±j∞

whereby the Hankel function of the second kind H (2)
m (βρρ) has replaced the Bessel function

of the first kind Jm(βρρ) because outward traveling waves are formed outside the cylinder, in
contrast to the standing waves inside the cylinder.

More details concerning the application and properties of Bessel and Hankel function can be
found in Chapters 9 and 11.

3.4.3 Spherical Coordinate System

Spherical coordinates should be utilized in solving problems that exhibit spherical geometries.
As for the rectangular and cylindrical geometries, the electric and magnetic fields of a spherical
geometry boundary-value problem must satisfy the corresponding vector wave equation, which
is most conveniently solved in spherical coordinates as illustrated in Figure 3-6.

To simplify the problem, let us assume that the space in which the electric and magnetic fields
must be solved is source-free and lossless. A general solution for the electric field can then be
written as

E(r , θ , φ) = âr Er (r , θ , φ) + âθEθ (r , θ , φ) + âφEφ(r , θ , φ) (3-71)

Substituting (3-71) into the vector wave equation of (3-18a), we can write that

∇2(âr Er + âθEθ + âφEφ) = −β2(âr Er + âθEθ + âφEφ) (3-72)
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Figure 3-6 Spherical coordinate system and corresponding unit vectors.

Since

∇2(âr Er ) �= âr∇2Er (3-73a)

∇2(âθEθ ) �= âθ∇2Eθ (3-73b)

∇2(âφEφ) �= âφ∇2Eφ (3-73c)

(3-72) does not reduce to three simple scalar wave equations, similar to those of (3-20a) through
(3-20c) for (3-20). Therefore the reduction of (3-72) to three scalar partial differential equations
must proceed in a different manner. In fact, the method used here will be similar to that utilized
in cylindrical coordinates to reduce the vector wave equation to three scalar partial differential
equations.

To accomplish this, we first rewrite the vector wave equation of (3-51) in a form given by
(3-53) where now all the operators on the left side can be performed in any coordinate system.
Substituting (3-71) into (3-53) shows that, after some lengthy mathematical manipulations, (3-53)
reduces to three scalar partial differential equations of the form

∇2Er − 2

r2

(
Er + Eθ cot θ + csc θ

∂Eφ

∂φ
+ ∂Eθ

∂θ

)
= −β2Er (3-74a)

∇2Eθ − 1

r2

(
Eθ csc2 θ − 2

∂Er

∂θ
+ 2 cot θ csc θ

∂Eφ

∂φ

)
= −β2Eθ (3-74b)

∇2Eφ − 1

r2

(
Eφ csc2 θ − 2 csc θ

∂Er

∂φ
− 2 cot θ csc θ

∂Eθ

∂φ

)
= −β2Eφ (3-74c)

Unfortunately, all three of the preceding partial differential equations are coupled. This means
each contains more than one component of the electric field and would be most difficult to solve
in its present form. However, as will be shown in Chapter 10, TEr and TMr wave mode solutions
can be formed that in spherical coordinates must satisfy the scalar wave equation of

∇2ψ(r , θ , φ) = −β2ψ(r , θ , φ) (3-75)
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where ψ(r , θ , φ) is a scalar function that can represent a field or a vector potential compo-
nent. Therefore, it would be advisable here to demonstrate the solution to (3-75) in spherical
coordinates.

Assuming a separable solution for ψ(r , θ , φ) of the form

ψ(r , θ , φ) = f (r)g(θ)h(φ) (3-76)

we can write the expanded form of (3-75)

1

r2

∂

∂r

{
r2 ∂ψ

∂r

}
+ 1

r2 sin θ

∂

∂θ

{
sin θ

∂ψ

∂θ

}
+ 1

r2 sin2 θ

∂2ψ

∂φ2
= −β2ψ (3-77)

as

gh
1

r2

∂

∂r

{
r2 ∂f

∂r

}
+ fh

1

r2 sin θ

∂

∂θ

{
sin θ

∂g

∂θ

}
+ fg

1

r2 sin2 θ

∂2h

∂φ2
= −β2fgh (3-78)

Dividing both sides by fgh , multiplying by r2 sin2 θ , and replacing the partials by ordinary
derivatives reduces (3-78) to

sin2 θ

f

d

dr

{
r2 df

dr

}
+ sin θ

g

d

dθ

{
sin θ

dg

dθ

}
+ 1

h

d2h

dφ2
= −(βr sin θ)2 (3-79)

Since the last term on the left side of (3-79) is only a function of φ, it can be set equal to

1

h

d2h

dφ2
= −m2 ⇒ d2h

dφ2
= −m2h (3-80)

where m is a constant.
Substituting (3-80) into (3-79), dividing both sides by sin2 θ , and transposing the term from

the right to the left side reduces (3-79) to

1

f

d

dr

{
r2 df

dr

}
+ (βr)2 + 1

g sin θ

d

dθ

{
sin θ

dg

dθ

}
−

{ m

sin θ

}2
= 0 (3-81)

Since the last two terms on the left side of (3-81) are only a function of θ , we can set them equal
to

1

g sin θ

d

dθ

{
sin θ

dg

dθ

}
−

{ m

sin θ

}2
= −n(n + 1) (3-82)

where n is usually an integer. Equation 3-82 is closely related to the well-known Legendre
differential equation (see Appendix V) [1–3, 6–10].

Substituting (3-82) into (3-81) reduces it to

1

f

d

dr

{
r2 df

dr

}
+ (βr)2 − n(n + 1) = 0 (3-83)

which is closely related to the Bessel differential equation (see Appendix IV).
In summary then, the scalar wave equation 3-75 whose expanded form in spherical coordinates

can be written as

1

r2

∂

∂r

{
r2 ∂ψ

∂r

}
+ 1

r2 sin θ

∂

∂θ

{
sin θ

∂ψ

∂θ

}
+ 1

r2 sin2 θ

∂2ψ

∂φ2
= −β2ψ (3-84)
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and whose separable solution takes the form of

ψ(r , θ , φ) = f (r)g(θ)h(φ) (3-85)

reduces to the three scalar differential equations

d

dr

{
r2 df

dr

}
+ [

(βr)2 − n(n + 1)
]

f = 0 (3-86a)

1

sin θ

d

dθ

{
sin θ

dg

dθ

}
+

[
n(n + 1) −

{ m

sin θ

}2
]

g = 0 (3-86b)

d2h

dφ2
= −m2h (3-86c)

where m and n are constants (usually integers).
Solutions to (3-86a) through (3-86c) take the forms, respectively, of

f1(r) = A1jn(βr) + B1yn(βr) (3-87a)

or
f2(r) = C1h(1)

n (βr) + D1h(2)
n (βr) (3-87b)

and
g1(θ) = A2Pm

n (cos θ) + B2Pm
n (− cos θ) n �= integer (3-88a)

or
g2(θ) = C2Pm

n (cos θ) + D2Qm
n (cos θ) n = integer (3-88b)

and
h1(φ) = A3e−jmφ + B3e+jmφ (3-89a)

or
h2(φ) = C3 cos(mφ) + D3 sin(mφ) (3-89b)

In (3-87a) jn(βr) and yn(βr) are referred to, respectively, as the spherical Bessel functions of
the first and second kind. They are used to represent radial standing waves, and they are related,
respectively, to the corresponding regular Bessel functions Jn+1/2(βr) and Yn+1/2(βr) by

jn(βr) =
√

π

2βr
Jn+1/2(βr) (3-90a)

yn(βr) =
√

π

2βr
Yn+1/2(βr) (3-90b)

In (3-87b) h(1)
n (βr) and h(2)

n (βr) are referred to, respectively, as the spherical Hankel functions
of the first and second kind. They are used to represent radial traveling waves, and they are related,
respectively, to the regular Hankel functions H (1)

n+1/2(βr) and H (2)
n+1/2(βr) by

h(1)
n (βr) =

√
π

2βr
H (1)

n+1/2(βr) (3-91a)

h(2)
n (βr) =

√
π

2βr
H (2)

n+1/2(βr) (3-91b)
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TABLE 3-3 Wave functions, zeroes, and infinities for radial waves in spherical
coordinates

Infinities
Wave Wave Zeroes of of wave
type functions wave functions functions

Traveling
waves

h(1)
n (βr) = jn(βr) + jyn(βr)

for −r travel
h(2)

n (βr) = jn(βr) − jyn(βr)

for +r travel

βr → +j∞

βr → −j∞

βr = 0
βr → −j∞
βr = 0
βr → +j∞

Standing
waves

jn(βr) for ± r
yn(βr) for ± r

Infinite number
Infinite number

βr → ±j∞
βr = 0
βr → ±j∞

Wave functions used to represent radial traveling and standing waves in spherical coordinates are
listed in Table 3-3. More details on the spherical Bessel and Hankel functions can be found in
Chapters 10 and 11 and Appendix IV.

In (3-88a) and (3-88b) Pm
n (cos θ) and Qm

n (cos θ) are referred to, respectively, as the associated
Legendre functions of the first and second kind (more details can be found in Chapter 10 and
Appendix V).

The appropriate solution forms of f , g , and h will depend on the problem in question. For
example, a typical solution for ψ(r , θ , φ) of (3-85) to represent the fields within a sphere as
shown in Figure 3-7 may take the form

ψ1(r , θ , φ) = [A1jn(βr) + B1yn(βr)]

×[C2Pm
n (cos θ) + D2Qm

n (cos θ)][C3 cos(mφ) + D3 sin(mφ)] (3-92)

For the fields to be finite at r = 0, where yn(βr) possesses a singularity, and for any value of
θ , including θ = 0, π where Qm

n (cos θ) possesses singularities, (3-92) reduces to

ψ1(r , θ , φ) = Amnjn(βr)Pm
n (cos θ)[C3 cos(mφ) + D3 sin(mφ)] (3-92a)

To represent the fields outside a sphere, like for scattering, a typical solution for ψ(r , θ , φ) would
take the form of

ψ2(r , θ , φ) = Bmnh(2)
n (βr)Pm

n (cos θ)[C3 cos(mφ) + D3 sin(mφ)] (3-92b)

z

y

x

a

Figure 3-7 Geometry of a sphere of radius a .
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whereby the spherical Hankel function of the second kind h(2)
n (βr) has replaced the spherical

Bessel function of the first kind jn(βr) because outward traveling waves are formed outside the
sphere, in contrast to the standing waves inside the sphere.

Other spherical Bessel and Hankel functions that are most often encountered in boundary-
value electromagnetic problems are those utilized by Schelkunoff [3, 11]. These spherical Bessel
and Hankel functions, denoted in general by B̂n(βr) to represent any of them, must satisfy the
differential equation

d2B̂n

dr2
+

[
β2 − n(n + 1)

r2

]
B̂n = 0 (3-93)

The spherical Bessel and Hankel functions that are solutions to this equation are related to other
spherical Bessel and Hankel functions of (3-90a) through (3-91b), denoted here by bn(βr), and
to the regular Bessel and Hankel functions, denoted here by Bn+1/2(βr), by

B̂n(βr) = βr bn(βr) = βr
√

π

2βr
Bn+1/2(βr) =

√
πβr

2
Bn+1/2(βr) (3-94)

More details concerning the application and properties of the spherical Bessel and Hankel
functions can be found in Chapter 10.

3.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

3.1. Derive the vector wave equations 3-16a and
3-16b for time-harmonic fields using the
Maxwell equations of Table 1-4 for time-
harmonic fields.

3.2. Verify that (3-28a) and (3-28b) are solutions
to (3-26a).

3.3. Show that the second complex exponential
in (3-31) represents a wave traveling in the
−z direction. Determine its phase velocity.

3.4. Using the method of separation of variables
show that a solution to (3-37a) of the form
(3-39) can be represented by (3-40a) through
(3-43).

3.5. Show that the vector wave equation of (3-
53) reduces, when E has a solution of
the form (3-47), to the three scalar wave
equations 3-54a through 3-54c.

3.6. Reduce (3-51) to (3-54a) through (3-54c) by
expanding ∇2E. Do not use (3-52); rather
use the scalar Laplacian in cylindrical coor-
dinates and treat E as a vector given by
(3-47). Use that

∂ âρ

∂ρ
= ∂ âφ

∂ρ
= ∂ âz

∂ρ
= 0 = ∂ âz

∂φ
= ∂ âρ

∂z

= ∂ âφ

∂z
= ∂ âz

∂z
∂ âρ

∂φ
= âφ

∂ âφ

∂φ
= −âρ

3.7. Using large argument asymptotic forms,
show that Bessel and Hankel functions rep-
resent, respectively, standing and traveling
waves in the radial direction.

3.8. Using large argument asymptotic forms and
assuming ejωt time convention, show that
Hankel functions of the first kind represent
traveling waves in the −ρ direction whereas
Hankel functions of the second kind repre-
sent traveling waves in the +ρ direction.
The opposite would be true were the time
variations of the e−jωt form.

3.9. Using large argument asymptotic forms,
show that Bessel functions of complex argu-
ment represent attenuating standing waves.

3.10. Assuming time variations of ejωt and using
large argument asymptotic forms, show that
Hankel functions of the first and second kind
with complex arguments represent, respec-
tively, attenuating traveling waves in the −ρ

and +ρ directions.

3.11. Show that when E can be expressed as
(3-71), the vector wave equation 3-53 redu-
ces to the three scalar wave equations 3-74a
through 3-74c.

3.12. Reduce (3-51) to (3-74a) through (3-74c) by
expanding ∇2E. Do not use (3-52); rather
use the scalar Laplacian in spherical coordi-
nates and treat E as a vector given by (3-71).
Use that

∂ âr

∂r
= ∂ âθ

∂r
= ∂ âφ

∂r
= 0

∂ âr

∂θ
= âθ

∂ âθ

∂θ
= −âr

∂ âφ

∂θ
= 0

∂ âr

∂φ
= sin θ âφ

∂ âθ

∂φ
= cos θ âφ

∂ âφ

∂φ
= − sin θ âr − cos θ âθ

3.13. Using large argument asymptotic forms,
show that spherical Bessel functions repre-
sent standing waves in the radial direction.

3.14. Show that spherical Hankel functions of the
first and second kind represent, respectively,
radial traveling waves in the −r and +r
directions. Assume time variations of ejωt

and large argument asymptotic expansions
for the spherical Hankel functions.

3.15. Justify that associated Legendre functions
represent standing waves in the θ direction
of the spherical coordinate system.

3.16. Verify the relation (3-94) between the vari-
ous forms of the spherical Bessel and Hankel
functions and the regular Bessel and Hankel
functions.





CHAPTER 4
Wave Propagation and Polarization

4.1 INTRODUCTION

In Chapter 3 we developed the vector wave equations for the electric and magnetic fields in
lossless and lossy media. Solutions to the wave equations were also demonstrated in rectangular,
cylindrical, and spherical coordinates using the method of separation of variables . In this chapter
we want to consider solutions for the electric and magnetic fields of time-harmonic waves that
travel in infinite lossless and lossy media. In particular, we want to develop expressions for
transverse electromagnetic (TEM) waves (or modes) traveling along principal axes and oblique
angles. The parameters of wave impedance, phase and group velocities, and power and energy
densities will be discussed for each.

The concept of wave polarization will be introduced, and the necessary and sufficient conditions
to achieve linear, circular, and elliptical polarizations will be discussed and illustrated. The sense
of rotation, clockwise (right-hand) or counterclockwise (left-hand), will also be introduced.

4.2 TRANSVERSE ELECTROMAGNETIC MODES

A mode is a particular field configuration. For a given electromagnetic boundary-value problem,
many field configurations that satisfy the wave equations, Maxwell’s equations, and the boundary
conditions usually exist. All these different field configurations (solutions) are usually referred to
as modes .

A TEM mode is one whose field intensities, both E (electric) and H (magnetic), at every point
in space are contained on a local plane, referred to as equiphase plane, that is independent of
time. In general, the orientations of the local planes associated with the TEM wave are different
at different points in space. In other words, at point (x1, y1, z1) all the field components are
contained on a plane. At another point (x2, y2, z2) all field components are again contained on a
plane; however, the two planes need not be parallel. This is illustrated in Figure 4-1a .

If the space orientation of the planes for a TEM mode is the same (equiphase planes are
parallel), as shown in Figure 4-1b, then the fields form plane waves . In other words, the equiphase
surfaces are parallel planar surfaces. If in addition to having planar equiphases the field has
equiamplitude planar surfaces (the amplitude is the same over each plane), then it is called a
uniform plane wave; that is, the field is not a function of the coordinates that form the equiphase
and equiamplitude planes.

123
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Figure 4-1 Phase fronts of waves. (a) TEM. (b) Plane.

4.2.1 Uniform Plane Waves in an Unbounded Lossless Medium—Principal Axis

In this section we will write expressions for the electric and magnetic fields of a uniform plane
wave traveling in an unbounded medium. In addition the wave impedance, phase and energy
(group) velocities, and power and energy densities of the wave will be discussed.

A. Electric and Magnetic Fields Let us assume that a time-harmonic uniform plane wave is
traveling in an unbounded lossless medium (ε, μ) in the z direction (either positive or negative),
as shown in Figure 4-2a . In addition, for simplicity, let us assume the electric field of the wave
has only an x component. We want to write expressions for the electric and magnetic fields
associated with this wave.
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Figure 4-2 Uniform plane wave fields. (a) Complex. (b) Instantaneous.

For the electric and magnetic field components to be valid solutions of a time-harmonic electro-
magnetic wave, they must satisfy Maxwell’s equations as given in Table 1-4 or the corresponding
wave equations as given, respectively, by (3-18a) and (3-18b). Here the approach will be to initiate
the solution by solving the wave equation for either the electric or magnetic field and then finding
the other field using Maxwell’s equations. An alternate procedure, which has been assigned as an
end-of-chapter problem, would be to follow the entire solution using only Maxwell’s equations.

Since the electric field has only an x component, it must satisfy the scalar wave equation of
(3-20a) or (3-22), whose general solution is given by (3-23). Because the wave is a uniform plane
wave that travels in the z direction, its solution is not a function of x and y . Therefore (3-23)
reduces to

Ex (z ) = h(z ) (4-1)

The solutions of h(z ) are given by (3-30a) or (3-30b). Since the wave in question is a traveling
wave, instead of a standing wave, its most appropriate solution is that given by (3-30a). The first
term in (3-30a) represents a wave that travels in the +z direction and the second term represents
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a wave that travels in the −z direction. Therefore the solution of (4-1), using (3-30a), can be
written as

Ex (z ) = A3e−jβz + B3e+jβz = E+
x + E−

x (4-2)

or

Ex (z ) = E+
0 e−jβz + E−

0 e+jβz = E+
x + E−

x (4-2a)

E+
x (z ) = E+

0 e−jβz (4-2b)

E−
x (z ) = E−

0 e+jβz (4-2c)

since βz = β because βx = βy = 0. E+
0 and E−

0 represent, respectively, the amplitudes of the
positive and negative (in the z direction) traveling waves.

The corresponding magnetic field must also be a solution of its wave equation 3-18b, and its
form will be similar to (4-2). However, since we do not know which components of magnetic
field coexist with the x component of the electric field, they are most appropriately determined
by using one of Maxwell’s equations as given in Table 1-4. Since the electric field is known, as
given by (4-2), the magnetic field can best be found using

∇ × E = −jωμH (4-3)

or

H = − 1

jωμ
∇ × E = − 1

jωμ

⎡⎢⎢⎣
âx ây âz

∂

∂x

∂

∂y

∂

∂z
Ex 0 0

⎤⎥⎥⎦ (4-3a)

which, using (4-2a), reduces to

H = −ây
1

jωμ

{
∂Ex

∂z

}
= ây

β

ωμ

{
E+

0 e−jβz − E−
0 e+jβz

}
H = ây

1√
μ/ε

{
E+

0 e−jβz − E−
0 e+jβz

} = ây
1√
μ/ε

{
E+

x − E−
x

} = ây

{
H +

y + H −
y

}
(4-3b)

where

H +
y = 1√

μ/ε
E+

x (4-3c)

H −
y = − 1√

μ/ε
E−

x (4-3d)

Plots of the instantaneous positive traveling electric and magnetic fields at t = 0 as a function
of z are shown in Figure 4-2b. Similar plots can be drawn for the negative traveling fields.

B. Wave Impedance Since each term for the magnetic field (A/m) in (4-3c) and (4-3d) is
individually identical to the corresponding term for the electric field (V/m) in (4-2a), the factor√

μ/ε in the denominator in (4-3c) and (4-3d) must have units of ohms (V/A). Therefore the
factor

√
μ/ε is known as the wave impedance, Zw, denoted by the ratio of the electric to magnetic

field, and it is usually represented by η

Zw = E+
x

H +
y

= − E−
x

H −
y

= η =
√

μ

ε
(4-4)
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The wave impedance of (4-4) is identical to a quantity that is referred to as the intrinsic impedance
η = √

μ/ε of the medium. In general, this is true not only for uniform plane waves but also for
plane and TEM waves; however, it is not true for TE or TM modes.

In (4-3d) it is also observed that a negative sign is found in front of the magnetic field
component that travels in the −z direction; a positive sign is noted in front of the positive traveling
wave. The general procedure that can be followed to find the magnetic field components, given
the electric field components, or to find the electric field components, given the magnetic field
components, is the following:

1. Place the fingers of your right hand in the direction of the electric field component.
2. Direct your thumb toward the direction of wave travel (power flow).
3. Rotate your fingers 90◦ in a direction so that a right-hand screw is formed.
4. The new direction of your fingers is the direction of the magnetic field component.
5. Divide the electric field component by the wave impedance to obtain the corresponding

magnetic field component.

The foregoing procedure must be followed for each term of each component of an electric
or magnetic field. The results are identical to those that would be obtained by using Maxwell’s
equations. If the wave impedance is known in advance, as it is for TEM waves, this procedure
is simpler and much more rapid than using Maxwell’s equations. By following this procedure,
the answers (including the signs) in (4-3c) and (4-3d) given (4-2b) and (4-2c) are obvious.

To illustrate the procedure, let us consider another example.

Example 4-1

The electric field of a uniform plane wave traveling in free space is given by

E = ây
(
E+

0 e−jβz + E−
0 e+jβz ) = ây

(
E+

y + E−
y

)
where E+

0 and E−
0 are constants. Find the corresponding magnetic field using the outlined procedure.

Solution: For the electric field component that is traveling in the +z direction, the corresponding
magnetic field component is given by

H+ = −âx
E+

0

η0

e−jβz � −âx
E+

0

377
e−jβz

where

η0 = Zw =
√

μ0

ε0
� 377 ohms

Similarly, for the wave that is traveling in the −z direction we can write that

H− = âx
E−

0

η0

e+jβz � âx
E−

0

377
e+jβz

Therefore the total magnetic field is equal to

H = H+ + H− = âx
1

η0

(−E+
0 e−jβz + E−

0 e+jβz )
The same answer would be obtained if Maxwell’s equations were used, and it is assigned as an end-of-
chapter problem.
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The term in the expression for the electric field in (4-2a) that identifies the direction of wave
travel can also be written in vector notation. This is usually more convenient to use when dealing
with waves traveling at oblique angles. Equation 4-2a can therefore take the more general form of

Ex (z ) = E+
0 e−jβ+ • r + E−

0 e−jβ− • r (4-5)

where

β+ = β̂+β = âxβ
+
x + âyβ

+
y + âz β

+
z

∣∣ = âz β
β+

x =β+
y =0

β+
z =β

(4-5a)

β− = β̂−β = âxβ
−
x + âyβ

−
y − âz β

−
z

∣∣= −âz β
β−

x =β−
y =0

β−
z =β

(4-5b)

r = position vector = âx x + ây y + âz z (4-5c)

In (4-5a) through (4-5c), βx , βy , βz represent, respectively, the phase constants of the wave in
the x , y , z directions, r represents the position vector in rectangular coordinates, and β̂+ and β̂−
represent unit vectors in the directions of β+ and β−. The notation used in (4-5) through (4-5c)
to represent the wave travel will be most convenient to express wave travel at oblique angles,
as will be the case in Section 4.2.2.

C. Phase and Energy (Group) Velocities, Power, and Energy Densities The expressions
for the electric and magnetic fields, as given by (4-2a) and (4-3b), represent the spatial variations
of the field intensities. The corresponding instantaneous forms of each can be written, using
(1-61a) and (1-61b) and assuming E+

0 and E−
0 are real constants, as

�x (z ; t) = �+
x (z ; t) + �−

x (z ; t) = Re
[
E+

0 e−jβz ejωt
] + Re

[
E−

0 e+jβz ejωt
]

= E+
0 cos (ωt − βz ) + E−

0 cos (ωt + βz ) (4-6a)

�y (z ; t) = �+
y (z ; t) + �−

y (z ; t)

= 1√
μ/ε

[
E+

0 cos (ωt − βz ) − E−
0 cos (ωt + βz )

]
(4-6b)

In each of the fields, as given by (4-6a) and (4-6b), the first term represents, according to
(3-34) through (3-35) and Figure 3-3, a wave that travels in the +z direction; the second term
represents a wave that travels in the −z direction. To maintain a constant phase in the first term
of (4-6a), the velocity must be equal, according to (3-35), to

v+
p = +dz

dt
= ω

β
= ω

ω
√

με
= 1√

με
(4-7)

The corresponding velocity of the second term in (4-6a) is identical in magnitude to (4-7) but
with a negative sign to reflect the direction of wave travel. The velocity of (4-7) is referred to
as the phase velocity , and it represents the velocity that must be maintained in order to keep in
step with a constant phase front of the wave. As will be shown for oblique traveling waves, the
phase velocity of such waves can exceed the velocity of light. This is only a hypothetical speed,
as will be explained in Section 4.2.2C. Aside of nonuniform plane waves, also referred to as
slow surface waves (see Section 5.3.4A), in general the phase velocity can be equal to or even
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greater than the speed of light. Variations of the instantaneous positive traveling electric �+
x (z ; t)

and magnetic �+
y (z ; t) fields as a function of z for t = 0 are shown in Figure 4-2b. As time

increases, both curves will shift in the positive z direction. A similar set of curves can be drawn
for the negative traveling electric �−

x (z ; t) and magnetic �−
y (z ; t) fields.

The electric and magnetic energies (W-s/m3) and power densities (W/m2) associated
with the positive traveling waves of (4-6a) and (4-6b) can be written, according to (l-58f) and
(l-58e), as

w+
e = 1

2
ε�+2

x = 1

2
εE+2

0 cos2 (ωt − βz ) (4-8a)

w+
m = 1

2
μ�+2

y = 1

2
μ

[
(ε/μ) E+2

0 cos2 (ωt − βz )
] = 1

2
εE+2

0 cos2 (ωt − βz ) (4-8b)

	+ = �+ × �+ = âx E+
0 cos (ωt − βz ) ×

[
ây

(
1/

√
μ/ε

)
E+

0 cos (ωt − βz )
]

= âz 
+ = âz

(
1/

√
μ/ε

)
E+2

0 cos2 (ωt − βz ) (4-8c)

The ratio formed by dividing the power density 
 (W/m2) by the total energy density w =
we + wm (J/m3 = W-s/m3) is referred to as the energy (group) velocity ve , and it is given by

v+
e = 
+

w+ = 
+

w+
e + w+

m
=

(
1/

√
μ/ε

)
E+2

0 cos2 (ωt − βz )

εE+2
0 cos2 (ωt − βz )

= 1√
με

(4-9)

The energy velocity represents the velocity with which the wave energy is transported. It is
apparent that (4-9) is identical to (4-7). In general that is not the case. In fact, the energy velocity
v+

e can be equal to, but not exceed, the speed of light, and the product of the phase velocity vp

and energy velocity ve must always be equal to

v+
p v+

e = (v+)2 = 1

με
(4-10)

where v+ = 1/
√

με is the speed of light. The same holds for the negative traveling waves.
The time-average power density (Poynting vector) associated with the positive traveling wave

can be written, using (l-70) and the first terms of (4-2a) and (4-3b), as

	+
av = 1

2
Re

(
E+ × H+∗) = âz

1

2
√

μ/ε
|E+

x |2 = âz
|E+

0 |2
2
√

μ/ε
= âz

|E+
0 |2

2η
(4-11)

A similar expression is derived for the negative traveling wave.

D. Standing Waves Each of the terms in (4-2a) and (4-3b) represents individually traveling
waves, the first traveling in the positive z direction and the second in the negative z direction.
The two together form a so-called standing wave, which is comprised of two oppositely traveling
waves.

To examine the characteristics of a standing wave, let us rewrite (4-2a) as

Ex (z ) = E+
0 e−jβz + E−

0 e+jβz

= E+
0

[
cos (βz ) − j sin (βz )

] + E−
0

[
cos (βz ) + j sin (βz )

]
= (

E+
0 + E−

0

)
cos (βz ) − j

(
E+

0 − E−
0

)
sin (βz )
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Ex (z ) =
√(

E+
0 + E−

0

)2
cos2 (βz ) + (

E+
0 − E−

0

)2
sin2 (βz )

× exp

{
−j tan−1

[ (
E+

0 − E−
0

)
sin (βz )(

E+
0 + E−

0

)
cos (βz )

]}

Ex (z ) =
√(

E+
0

)2 + (
E−

0

)2 + 2E+
0 E−

0 cos (2βz )

× exp

{
−j tan−1

[(
E+

0 − E−
0

)(
E+

0 + E−
0

) tan (βz )

]}
(4-12)

The amplitude of the waveform given by (4-12) is equal to

|Ex (z ) | =
√(

E+
0

)2 + (
E−

0

)2 + 2E+
0 E−

0 cos (2βz ) (4-12a)

By examining (4-12a), it is evident that its maximum and minimum values are given, respectively,
by

|Ex (z ) |max = |E+
0 | + |E−

0 | when βz = mπ , m = 0, 1, 2, . . . (4-13a)

and for |E+
0 | > |E−

0 |,

|Ex (z ) |min = |E+
0 | − |E−

0 | when βz = (2m + 1)π

2
, m = 0, 1, 2, . . . (4-13b)

Neighboring maximum and minimum values are separated by a distance of λ/4 or successive
maxima or minima are separated by λ/2.

The instantaneous field of (4-12) can also be written as

�x (z ; t) = Re
[
Ex (z ) ejωt

]
=

√(
E+

0

)2 + (
E−

0

)2 + 2E+
0 E−

0 cos (2βz )

× cos

[
ωt − tan−1

{
E+

0 − E−
0

E+
0 + E−

0

tan (βz )

}]
(4-14)

It is apparent that (4-12a) represents the envelope of the maximum values the instantaneous field
of (4-14) will achieve as a function of time at a given position. Since this envelope of maximum
values does not move (change) in position as a function of time, it is referred to as the standing
wave pattern and the associated wave of (4-12) or (4-14) is referred to as the standing wave.

The ratio of the maximum/minimum values of the standing wave pattern of (4-12a), as given
by (4-13a) and (4-13b), is referred to as the standing wave ratio (SWR), and it is given by

SWR = |Ex (z ) |max

|Ex (z ) |min
= |E+

0 | + |E−
0 |

|E+
0 | − |E−

0 | =
1 + |E−

0 |
|E+

0 |

1 − |E−
0 |

|E+
0 |

= 1 + |�|
1 − |�| (4-15)

where � is the reflection coefficient. Since in transmission lines we usually deal with voltages and
currents (instead of electric and magnetic fields), the SWR is usually referred to as the VSWR
(voltage standing wave ratio). Plots of the standing wave pattern in terms of E+

0 as a function of
z (−λ ≤ z ≤ λ) for |�| = 0, 0.2, 0.4, 0.6, 0.8, and 1 are shown in Figure 4-3.

The SWR is a quantity that can be measured with instrumentation [1, 2]. SWR has values
in the range of 1 ≤ SWR ≤ ∞. The value of the SWR indicates the amount of interference
between the two opposite traveling waves; the smaller the SWR value, the lesser the interference.
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Figure 4-3 Standing wave pattern as a function of distance for a uniform plane wave with different
reflection coefficients.

The minimum SWR value of unity occurs when |�| = E−
0 /E+

0 = 0, and it indicates that no
interference is formed. Thus the standing wave reduces to a pure traveling wave. The maximum
SWR of infinity occurs when |�| = E−

0 /E+
0 = 1, and it indicates that the negative traveling wave

is of the same intensity as the positive traveling wave. This provides the maximum interference,
and the wave forms a pure standing wave pattern given by

|Ex (z ) |E+
0 =E−

0
= 2E+

0 | cos(βz )| = 2E−
0 | cos (βz ) | (4-16)

The pattern of this is a rectified cosine function, and it is represented in Figure 4-3 by the |�| = 1
curve. The pattern exhibits pure nulls and peak values of twice the amplitude of the incident wave.

4.2.2 Uniform Plane Waves in an Unbounded Lossless Medium—Oblique Angle

In this section, expressions for the electric and magnetic fields, wave impedance, phase and group
velocities, and power and energy densities will be written for uniform plane waves traveling at
oblique angles in an unbounded medium. All of these will be done for waves that are uniform
plane waves to the direction of travel.
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A. Electric and Magnetic Fields Let us assume that a uniform plane wave is traveling in
an unbounded medium in a direction shown in Figure 4-4a . The amplitudes of the positive and
negative traveling electric fields are E+

0 and E−
0 , respectively, and the assumed directions of each

are also illustrated in Figure 4-4a . It is desirable to write expressions for the positive and negative
traveling electric and magnetic field components.
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Figure 4-4 Transverse electric and magnetic uniform plane waves in an unbounded medium at an oblique
angle. (a) TEy mode. (b) TMy mode.
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Since the electric field of the wave of Figure 4-4a does not have a y component, the field
configuration is referred to as transverse electric to y (TEy ). More detailed discussion on the
construction of transverse electric (TE) and transverse magnetic (TM) field configurations, as
well as transverse electromagnetic (TEM), can be found in Chapter 6.

Because for the TEy wave of Figure 4-4a the electric field is pointing along a direction that
does not coincide with any of the principal axes, it can be decomposed into components coincident
with the principal axes. According to the geometry of Figure 4-4a , it is evident that the electric
field can be written as

E = E+ + E− = E+
0 (âx cos θi − âz sin θi ) e−jβ+ • r

+E−
0 (âx cos θi − âz sin θi ) e−jβ− • r (4-17)

where r is the position vector of (4-5c), and it is displayed graphically in Figure 4-5. Since the
phase constants β+ and β− can be written, respectively, as

β+ = β̂+β = âxβ
+
x + âz β

+
z = β (âx sin θi + âz cos θi ) (4-17a)

β− = β̂−β = âxβ
−
x + âz β

−
z = −β (âx sin θi + âz cos θi ) (4-17b)

(4-17) can be expressed as

E = E+
0 (âx cos θi − âz sin θi ) e−jβ(x sin θi +z cos θi )

+E−
0 (âx cos θi − âz sin θi ) e+jβ(x sin θi +z cos θi ) (4-18a)

Since the wave is a uniform plane wave, the amplitude of its magnetic field is related to
the amplitude of its electric field by the wave impedance (in this case also by the intrinsic
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Figure 4-5 Phase front of a TEM wave traveling in a general direction.
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impedance) as given by (4-4). Since the magnetic field is traveling in the same direction as the
electric field, the exponentials used to indicate its directions of travel are the same as those of
the electric field as given in (4-18a). The directions of the magnetic field can be found using the
right-hand procedure outlined in Section 4.2.1 and illustrated graphically in Figure 4-2b for the
positive traveling wave. Using all of the preceding information, it is evident that the magnetic
field corresponding to the electric field of (4-18a) can be written as

H = H+ + H− = ây

[
E+

0

η
e−jβ(x sin θi +z cos θi ) − E−

0

η
e+jβ(x sin θi +z cos θi )

]
(4-18b)

In vector form, (4-18b) can also be written as

H = 1

η

[
β̂+ × E+ + β̂− × E−

]
(4-18c)

The same form can be used to relate the E and H for any TEM wave traveling in any direction. It
is apparent that when θi = 0, (4-18a) and (4-18b) reduce to (4-2a) and (4-3b), respectively. The
same answer for the magnetic field of (4-18b) can be obtained by applying Maxwell’s equation 4-3
to the electric field of (4-18a). This is left for the reader as an end-of-the-chapter exercise.

The planes of constant phase at any time t are obtained by setting the phases of (4-18a) or
(4-18b) equal to a constant, that is

β+ • r = β+
x x + β+

y y + β+
z z |y=0 = β (x sin θi + z cos θi ) = C + (4-19a)

β− • r = β−
x x + β−

y y + β−
z z |y=0 = −β (x sin θi + z cos θi ) = C − (4-19b)

Each of (4-19a) and (4-19b) are equations of a plane in either the spherical or rectangular
coordinates with unit vectors β̂+ and β̂− normal to each of the respective surfaces. The respective
phase velocities in any direction (r , x , or z ) are obtained by letting

β+ • r − ωt = β (x sin θi + z cos θi ) − ωt = C +
0 (4-19c)

β− • r − ωt = −β (x sin θi + z cos θi ) − ωt = C −
0 (4-19d)

and taking a derivative with respect to time.

Example 4-2

Another exercise of interest is that in which the electric field is directed along the +y direction and the
wave is traveling along an oblique angle θi , as shown in Figure 4-4b. This is referred to as a TMy wave.
The objective here is again to write expressions for the positive and negative electric and magnetic field
components, assuming the amplitudes of the positive and negative electric field components are E+

0 and
E−

0 , respectively.

Solution: Since this wave only has a y electric field component, and it is traveling in the same
direction as that of Figure 4-4a , we can write the electric field as

E = E+ + E− = ây
[
E+

0 e−jβ(x sin θi +z cos θi ) + E−
0 e+jβ(x sin θi +z cos θi )

]
Using the right-hand procedure outlined in Section 4.2.1, the corresponding magnetic field components
are pointed along directions indicated in Figure 4-4b. Since the magnetic field is not directed along any
of the principal axes, it can be decomposed into components that coincide with the principal axes, as
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shown in Figure 4-4b. Doing this and relating the amplitude of the electric and magnetic fields by the
intrinsic impedance, we can write the magnetic field as

H = H+ + H− = E+
0

η
(−âx cos θi + âz sin θi ) e−jβ(x sin θi +z cos θi )

+E−
0

η
(âx cos θi − âz sin θi ) e+jβ(x sin θi +z cos θi )

The same answers could have been obtained if Maxwell’s equation 4-3 were used. Since the
magnetic field does not have any y components, this field configuration is referred to as transverse
magnetic to y (TMy ), which will be discussed in more detail in Chapter 6.

B. Wave Impedance Since the TEy and TMy fields of Section 4.2.2A were TEM to the
direction of travel, the wave impedance of each in the direction β of wave travel is the same as
the intrinsic impedance of the medium. However, there are other directional impedances toward
the x and z directions. These impedances are obtained by dividing the electric field component
by the corresponding orthogonal magnetic field component. These two components are chosen
so that the cross product of the electric field and the magnetic field, which corresponds to the
direction of power flow, is in the direction of the wave travel.

Following the aforementioned procedure, the directional impedances for the TEy fields of
(4-18a) and (4-18b) can be written as

TEy

Z +
x = − E+

z

H +
y

= η sin θi = Z −
x = E−

z

H −
y

(4-20a)

Z +
z = E+

x

H +
y

= η cos θi = Z −
z = − E−

x

H −
y

(4-20b)

In the same manner, the directional impedances of the TMy fields of Example 4-2 can be
written as

TMy

Z +
x = E+

y

H +
z

= η

sin θi
= Z −

x = − E−
y

H −
z

(4-21a)

Z +
z = − E+

y

H +
x

= η

cos θi
= Z −

z = E−
y

H −
x

(4-21b)

It is apparent from the preceding results that the directional impedances of the TEy oblique
incidence traveling waves are equal to or smaller than the intrinsic impedance and those of the
TMy are equal to or larger than the intrinsic impedance. In addition, the positive and negative
directional impedances of the same orientation are the same. This is the main principle of the
transverse resonance method (see Section 8.6), which is used to analyze microwave circuits and
antenna systems [3, 4].
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C. Phase and Energy (Group) Velocities The wave velocity vr of the fields given by
(4-18a) and (4-18b) in the direction β of travel is equal to the speed of light v. Since the wave is
a plane wave to the direction β of travel, the planes over which the phase is constant (constant
phase planes) are perpendicular to the direction β of wave travel. This is illustrated graphically
in Figure 4-6. To maintain a constant phase (or to keep in step with a constant phase plane),
a velocity equal to the speed of light must be maintained in the direction β of travel. This is
referred to as the phase velocity vpr along the direction β of travel. Since the energy also is being
transported with the same speed, the energy velocity ver in the direction β of travel is also equal
to the speed of light. Thus

vr = vpr = ver = v = 1√
με

(4-22)

where
vr = wave velocity in the direction of wave travel

vpr = phase velocity in the direction of wave travel
ver = energy (group) velocity in the direction of wave travel
v = speed of light

To keep in step with a constant phase plane of the wave of Figure 4-6, a velocity in the z
direction equal to

vpz = v

cos θi
= 1√

με cos θi
≥ v (4-23)

must be maintained. This is referred to as the phase velocity vpz in the z direction, and it is
greater than the speed of light. Since nothing travels with speeds greater than the speed of light,
it must be remembered that this is a hypothetical velocity that must be maintained in order to
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Figure 4-6 Phase and energy (group) velocities of a uniform plane wave.
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keep in step with a constant phase plane of the wave that itself travels with the speed of light in
the direction β of travel. The phase velocities of (4-22) and (4-23) can be obtained, respectively,
by using (4-19c) and (4-19d). These are left as end-of-chapter exercises for the reader.

Whereas a velocity greater than the speed of light must be maintained in the z direction to
keep in step with a constant phase plane of Figure 4-6, the energy is transported in the z direction
with a velocity that is equal to

vez = v cos θi = cos θi√
με

≤ v (4-24)

This is referred to as the energy (group) velocity vez in the z direction, and it is equal to or
smaller than the speed of light. Graphically this is illustrated in Figure 4-6.

For any wave, the product of the phase and energy velocities in any direction must be equal
to the speed of light squared or

vprver = vpz vez = v2 = 1

με
(4-25)

This obviously is satisfied by the previously derived results.
The energy velocity of (4-24) can be derived using (4-18a) and (4-18b) along with the definition

(4-9). This is left for the reader as an end-of-chapter exercise.
Since the fields of (4-18a) and (4-18b) form a uniform plane wave, the planes over which the

amplitude is maintained constant are also constant planes that are perpendicular to the direction
β of travel. These are illustrated in Figure 4-6 and coincide with the constant phase planes. For
other types of waves, the constant phase and amplitude planes do not in general coincide.

D. Power and Energy Densities The average power density associated with the fields of
(4-18a) and (4-18b) that travel in the β+ direction is given by

(
S+

av

)
r = 1

2
Re

[(
E+) × (

H+)∗]
= 1

2
Re

[
E+

0 (âx cos θi − âz sin θi ) e−jβ(x sin θi +z cos θi )

×ây
E+∗

0

η
e+jβ(x sin θi +z cos θi )

]
(
S+

av

)
r = (âx sin θi + âz cos θi )

|E+
0 |2

2η
= âr

|E+
0 |2

2η
= âx

(
S +

av

)
x + âz

(
S +

av

)
z

(4-26)

where

(
S +

av

)
x = sin θi

|E+
0 |2

2η
= sin θi

(
S +

av

)
r (4-26a)

(
S +

av

)
z = cos θi

|E+
0 |2

2η
= cos θi

(
S +

av

)
r (4-26b)

(S +
av)r represents the average power density along the principal β+ direction of travel and (S +

av)x

and (S +
av)z represent the directional power densities of the wave in the +x and +z directions,

respectively. Similar expressions can be derived for the wave that travels along the β− direction.
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Example 4-3

For the TMy fields of Example 4-2, derive expressions for the average power density along the principal
β+ direction of travel and for the directional power densities along the +x and +z directions.

Solution: Using the electric and magnetic fields of the solution of Example 4-2 and following the
procedure used to derive (4-26) through (4-26b), it can be shown that(

S+
av

)
r = 1

2
Re

[(
E+) × (

H+)∗]
= 1

2
Re

[
ây E+

0 e−jβ(x cos θi +y sin θi )

×
(
E+

0

)∗

η
(−âx cos θi + âz sin θi ) e+jβ(x cos θi +y sin θi )

]
(
S+

av

)
r = (âx sin θi + âz cos θi )

|E+
0 |2
2η

= âr
|E+

0 |2
2η

= âx
(
S +

av

)
x + âz

(
S +

av

)
z

where (
S +

av

)
x = sin θi

|E+
0 |2
2η

= sin θi
(
S +

av

)
r

(
S +

av

)
z = cos θi

|E+
0 |2
2η

= cos θi
(
S +

av

)
r

(S +
av), (S +

av)x , and (S +
av)z of this TMy wave are identical to the corresponding ones of the TEy wave,

given by (4-26) through (4-26b).

4.3 TRANSVERSE ELECTROMAGNETIC MODES IN LOSSY MEDIA

In addition to the accumulation of phase, electromagnetic waves that travel in lossy media undergo
attenuation. To account for the attenuation, an attenuation constant is introduced as discussed in
Chapter 3, Section 3.4.1B. In this section we want to discuss the solution for the electric and
magnetic fields of uniform plane waves as they travel in lossy media [5].

4.3.1 Uniform Plane Waves in an Unbounded Lossy Medium—Principal Axis

As for the electromagnetic wave of Section 4.2.1, let us assume that a uniform plane wave is
traveling in a lossy medium. Using the coordinate system of Figure 4-1, the electric field is
assumed to have an x component and the wave is traveling in the ±z direction. Since the electric
field must satisfy the wave equation for lossy media, its expression takes, according to (3-42a),
the form

E (z ) = âx Ex (z ) = âx
(
E+

0 e−γ z + E−
0 e+γ z

) = âx
(
E+

0 e−αz e−jβz + E−
0 e+αz e+jβz

)
(4-27)

where γx = γy = 0 and γz = γ . The first term represents the positive traveling wave and the
second term represents the negative traveling wave. In (4-27) γ is the propagation constant whose
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real α and imaginary β parts are defined, respectively, as the attenuation and phase constants.
According to (3-37e) and (3-46), γ takes the form

γ = α + jβ =
√

jωμ (σ + jωε) =
√

−ω2με + jωμσ (4-28)

Squaring (4-28) and equating real and imaginary from both sides reduces it to

α2 − β2 = −ω2με (4-28a)

2αβ = ωμσ (4-28b)

Solving (4-28a) and (4-28b) simultaneously, we can write α and β as

α = ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2
− 1

]}1/2

Np/m (4-28c)

β = ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2
+ 1

]}1/2

rad/m (4-28d)

In the literature, the phase constant β is also represented by k .
The attenuation constant α is often expressed in decibels per meter (dB/m). The conversion

between Nepers per meter and decibels per meter is obtained by examining the real exponential
in (4-27) that represents the attenuation factor of the wave in a lossy medium. Since that factor
represents the relative attenuation of the electric or magnetic field, its conversion to decibels (dB)
is obtained by

dB = 20 log10

(
e−αz

) = 20 (−αz ) log10 (e)

= 20 (−αz ) (0.434) = −8.68 (αz ) (4-28e)

or

|α (Np/m) | = 1

8.68
|α (dB/m) | (4-28f)

The magnetic field associated with the electric field of (4-27) can be obtained using Maxwell’s
equation 4-3 or 4-3a, that is,

H = − 1

jωμ
∇ × E = −ây

1

jωμ

∂Ex

∂z
(4-29)

Using (4-27) reduces (4-29) to

H = +ây
γ

jωμ

(
E+

0 e−γ z − E−
0 e+γ z

)
= ây

√
jωμ (σ + jωε)

jωμ

(
E+

0 e−γ z − E−
0 e+γ z

)
= ây

√
σ + jωε

jωμ

(
E+

0 e−γ z − E−
0 e+γ z

)
H = ây

1

Zw

(
E+

0 e−γ z − E−
0 e+yz

)
(4-29a)
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In (4-29a), Zw is the wave impedance of the wave, and it takes the form

Zw =
√

jωμ

σ + jωε
= ηc (4-30)

which is also equal to the intrinsic impedance ηc of the lossy medium. The equality between the
wave and intrinsic impedances for TEM waves in lossy media is identical to that for lossless
media of Section 4.2.1B.

The average power density associated with the positive traveling fields of (4-27) and (4-29a)
can be written as

S+ = 1

2
Re

(
E+ × H+∗) = 1

2
Re

(
âx E+

0 e−αz e−jβz × ây
E+∗

0

η∗
c

e−αz e+jβz

)
S+ = âz

|E+
0 |2
2

e−2αz Re

[
1

η∗
c

]
(4-31)

Individually each term of (4-27) or (4-29a) represents a traveling wave in its respective direc-
tion. The magnitude of each term in (4-27) takes the form

|E+
x (z ) | = |E+

0 |e−αz (4-32a)

|E−
x (z ) | = |E−

0 |e+αz (4-32b)

which, when plotted for −λ ≤ z ≤ +λ and |�| = 0.2 through 1 (in increments of 0.2), take the
form shown in Figure 4-7a .

Collectively, both terms in each of the fields in (4-27) or (4-29a) represent a standing wave.
Using the procedure outlined in Section 4.2.1D, (4-27) can also be written as

Ex (z ) =
√(

E+
0

)2
e−2αz + (

E−
0

)2
e+2αz + 2E+

0 E−
0 cos (2βz )

× exp

{
−j tan−1

[
E+

0 e−αz − E−
0 e+αz

E+
0 e−αz + E−

0 e+αz
tan (βz )

]}
(4-33)

The standing wave pattern is given by the amplitude term of

|Ex (z )| =
√(

E+
0

)2
e−2αz + (

E−
0

)2
e+2αz + 2E+

0 E−
0 cos (2βz ) (4-33a)

which for |�| = E−
0 /E+

0 = 0.2 through 1, in increments of 0.2, is shown plotted in Figure 4-7b
in the range −λ ≤ z ≤ λ when f = 100 MHz, εr = 2.56, μr = 1, and σ = 0.03 S/m.

The distance the wave must travel in a lossy medium to reduce its value to e−1 = 0.368 = 36.8%
is defined as the skin depth δ. For each of the terms of (4-27) or (4-29a), this distance is

δ = skin depth = 1

α
= 1

ω
√

με
{

1
2

[√
1 + (σ/ωε)2 − 1

]}1/2 m (4-34)

In summary, the attenuation constant α, phase constant β, wave Zw and intrinsic ηc impedances,
wavelength λ, velocity v, and skin depth δ for a uniform plane wave traveling in a lossy medium
are listed in the second column of Table 4-1. The same expressions are valid for plane and TEM
waves. Simpler expressions for each can be derived depending upon the value of the (σ/ωε)2

ratio. Media whose (σ/ωε)2 is much less than unity [(σ/ωε)2 � 1] are referred to as good
dielectrics and those whose (σ/ωε)2 is much greater than unity [(σ/ωε)2 � 1] are referred to
as good conductors [6]; each will now be discussed.
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Figure 4-7 Wave patterns of uniform plane waves in a lossy medium. (a) Traveling. (b) Standing.
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TABLE 4-1 Propagation constant, wave impedance, wavelength, velocity, and skin depth of TEM
wave in lossy media

Good Good
dielectric conductor

Exact
( σ

ωε

)2 � 1
( σ

ωε

)2 � 1

Attenuation
constant α

= ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2 − 1

]}1/2

� σ

2

√
μ

ε
�

√
ωμσ

2

Phase
constant β

= ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2 + 1

]}1/2

� ω
√

με �
√

ωμσ

2

Wave Zw

intrinsic ηc
impedances
Zw = ηc

=
√

jωμ

σ + jωε
�

√
μ

ε
�

√
ωμ

2σ
(1 + j )

Wavelength λ = 2π

β
� 2π

ω
√

με
� 2π

√
2

ωμσ

Velocity v = ω

β
� 1√

με
�

√
2ω

μσ

Skin depth δ = 1

α
� 2

σ

√
ε

μ
�

√
2

ωμσ

A. Good Dielectrics [(σ/ωε)2 � 1] For source-free lossy media, Maxwell’s equation in dif-
ferential form as derived from Ampere’s law takes the form, by referring to Table 1-4, of

∇ × H = Jc + Jd = σE + jωεE = (σ + jωε) E (4-35)

where Jc and Jd represent, respectively, the conduction and displacement current densities. When
σ/ωε � 1, the displacement current density is much greater than the conduction current density;
when σ/ωε � 1 the conduction current density is much greater than the displacement current
density. For each of these two cases, the exact forms of the field parameters of Table 4-1 can be
approximated by simpler forms. This will be demonstrated next.

For a good dielectric [when (σ/ωε)2 � 1], the exact expression for the attenuation constant
of (4-28c) can be written using the binomial expansion and it takes the form

α = ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2
− 1

]}1/2

α = ω
√

με

{
1

2

[(
1 + 1

2

( σ

ωε

)2
− 1

8

( σ

ωε

)4
· · ·

)
− 1

]}1/2

(4-36)

Retaining only the first two terms of the infinite series, (4-36) can be approximated by

α � ω
√

με

[
1

4

( σ

ωε

)2
]1/2

= σ

2

√
μ

ε
(4-36a)

In a similar manner it can be shown that by following the same procedure but only retaining
the first term of the infinite series, the exact expression for β of (4-28d) can be approximated
by

β � ω
√

με (4-37)
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For good dielectrics, the wave and intrinsic impedances of (4-30) can be approximated by

Zw = ηc =
√

jωμ

σ + jωε
=

√
jωμ/jωε

σ/jωε + 1
�

√
μ

ε
(4-38)

while the skin depth can be represented by

δ = 1

α
� 2

σ

√
ε

μ
(4-39)

These and other approximate forms for the parameters of good dielectrics are summarized on the
third column of Table 4-1.

B. Good Conductors [(σ/ωε)2 � 1] For good conductors, the exact expression for the atten-
uation constant of (4-28c) can be written using the binomial expansion and takes the form

α = ω
√

με

{
1

2

[√( σ

ωε

)2
+ 1 − 1

]}1/2

= ω
√

με

{
1

2

[
σ

ωε

(
1 + 1

(σ/ωε)2

)1/2

− 1

]}1/2

α = ω
√

με

{
1

2

[
σ

ωε
+ 1

2

1

σ/ωε
− 1

8

1

(σ/ωε)3
+ · · · − 1

]}1/2

(4-40)

Retaining only the first term of the infinite series expansion, (4-40) can be approximated by

α � ω
√

με

(
1

2

σ

ωε

)1/2

=
√

ωμσ

2
(4-40a)

Following a similar procedure, the phase constant of (4-28d) can be approximated by

β �
√

ωμσ

2
(4-41)

which is identical to the approximate expression for the attenuation constant of (4-40a).
For good conductors, the wave and intrinsic impedances of (4-30) can be approximated by

Zw = ηc =
√

jωμ

σ + jωε
=

√
jωμ/ωε

σ/ωε + j
�

√
j
ωμ

σ
=

√
ωμ

2σ
(1 + j ) (4-42)

whose real and imaginary parts are identical. For the same conditions, the skin depth can be
approximated by

δ = 1

α
�

√
2

ωμσ
(4-43)

This is the most widely recognized form for the skin depth.

4.3.2 Uniform Plane Waves in an Unbounded Lossy Medium—Oblique Angle

For lossy media the difference between principal axes propagation and propagation at oblique
angles is that the propagation constant γr along the direction β of propagation must be decomposed
into its directional components along the principal axes of the coordinate system. In addition,
since the propagation constant γ has real (α) and imaginary (β) parts, constant amplitude and
constant phase planes are associated with the wave. As discussed in Section 4.2.2C and illustrated
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in Figure 4-6, the constant phase planes for a uniform plane wave are planes that are parallel to
each other, perpendicular to the direction of propagation, and coincide with the constant amplitude
planes. The constant amplitude planes are planes over which the amplitude remains constant. For
a uniform plane wave traveling in a lossy medium, the constant amplitude planes are also parallel
to each other, are perpendicular to the direction of travel, and coincide with the constant phase
planes. This is illustrated in Figure 4-6 for a uniform plane wave traveling at an oblique angle
in a lossless medium.

Let us assume that a uniform plane wave that is also TEy is traveling in a lossy medium at
an angle θi , as shown in Figure 4-4a . Following a procedure similar to the lossless case and
referring to (4-17a) and (4-17b), the propagation constant of (4-28) can now be written for the
positive and negative traveling waves as

γ+ = γ (âx sin θi + âz cos θi ) = (α + jβ) (âx sin θi + âz cos θi ) (4-44a)

γ− = −γ (âx sin θi + âz cos θi ) = − (α + jβ) (âx sin θi + âz cos θi ) (4-44b)

where the real (α) and imaginary (β) parts of γ are given by (4-28c) and (4-28d), respectively.
Using (4-44a) and (4-44b), the electric and magnetic fields can be written, by referring to (4-17)
through (4-18c), as

E = E+
0 (âx cos θi − âz sin θi ) e−γ+ • r + E−

0 (âx cos θi − âz sin θi ) e−γ− • r

E = E+
0 (âx cos θi − âz sin θi ) e−(α+jβ)(x sin θi +z cos θi )

+E−
0 (âx cos θi − âz sin θi ) e+(α+jβ)(x sin θi +z cos θi ) (4-45a)

H = ây

[
E+

0

ηc

e−(α+jβ)(x sin θi +z cos θi ) − E−
0

ηc

e+(α+jβ)(x sin θi +z cos θi )

]
(4-45b)

Because the wave is a uniform plane wave in the β direction of propagation, the wave
impedance Zwr in the direction of propagation is equal to the intrinsic impedance ηc of the
lossy medium given by (4-30) or

Zwr = ηc =
√

jωμ

σ + jωε
(4-46)

However, the directional impedances in the x and z directions are given, by referring to (4-20a)
and (4-20b), by

Z +
x = − E+

z

H +
y

= ηc sin θi = Z −
x = E−

z

H −
y

(4-47a)

Z +
z = E+

x

H +
y

= ηc cos θi = Z −
z = − E−

x

H −
y

(4-47b)

According to (4-22) through (4-24) the phase and energy velocities in the principal β direction
of travel and in the z direction are given, respectively, by

vr = vpr = ver = v = ω

β
(4-48a)

vpz = v

cos θi
= ω

β cos θi
≥ v = ω

β
(4-48b)

vez = v cos θi = ω

β
cos θi ≤ v = ω

β
(4-48c)
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where β for a lossy medium is given by (4-28d) or

β = ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2
+ 1

]}1/2

(4-48d)

As for the lossless medium, the product of the phase and energy velocities is equal to the square
of the velocity of light v in the lossy medium, or

vprver = vpz vez = v2 (4-48e)

Using the procedure followed to derive (4-26) through (4-26b) and (4-31), the average power
density along the principal direction β of travel and the directional power densities along the x
and z directions can be written for the fields of (4-45a) and (4-45b) as

(
S+

av

)
r = (âx sin θi + âz cos θi )

∣∣E+
0

∣∣2

2
e−2α(x sin θi +z cos θi )Re

[
1

η∗
c

]

= âr

∣∣E+
0

∣∣2

2
e−2αr Re

[
1

η∗
c

]
(4-49a)

(
S +

av

)
x = sin θi

∣∣E+
0

∣∣2

2
e−2α(x sin θi +z cos θi )Re

[
1

η∗
c

]

= sin θi

∣∣E+
0

∣∣2

2
e−2αr Re

[
1

η∗
c

]
(4-49b)

(
S +

av

)
z = cos θi

∣∣E+
0

∣∣2

2
e−2α(x sin θi +z cos θi )Re

[
1

η∗
c

]

= cos θi

∣∣E+
0

∣∣2

2
e−2αr Re

[
1

η∗
c

]
(4-49c)

Example 4-4

For a TMy wave traveling in a lossy medium at an oblique angle θi , derive expressions for the fields,
wave impedances, phase and energy velocities, and average power densities.

Solution: The solution to this problem can be accomplished by following the procedure used to derive
the expressions of the fields and other wave characteristics of a TEy wave traveling at an oblique angle
in a lossy medium, as outlined in this section, and referring to the solution of Examples 4-2 and 4-3.
Doing this we can write the fields of a TMy traveling in a lossy medium at an oblique angle θi , the
coordinate system of which is illustrated in Figure 4-4b, as

E = E+ + E− = ây
[
E+

0 e−(α+jβ)(x sin θi +z cos θi ) + E−
0 e+(α+jβ)(x sin θi +z cos θi )

]
H = H+ + H− = E+

0

ηc
(−âx cos θi + âz sin θi ) e−(α+jβ)(x sin θi +z cos θi )

+E−
0

ηc
(âx cos θi − âz sin θi ) e+(α+jβ)(x sin θi +z cos θi )
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In addition, the wave impedances are given, by referring to (4-21a) and (4-21b), by

Z +
x = E+

y

H +
z

= ηc

sin θi
= Z −

x = − E−
y

H −
z

Z +
z = − E+

y

H +
x

= ηc

cos θi
= Z −

z = E−
y

H −
x

The phase and energy velocities, and their relationships, are the same as those for the TEy wave,
as given by (4-48a) through (4-48e). Similarly, the average power densities are those given by
(4-49a) through (4-49c).

4.4 POLARIZATION

According to the IEEE Standard Definitions for Antennas [7, 8], the polarization of a radiated
wave is defined as “that property of a radiated electromagnetic wave describing the time-varying
direction and relative magnitude of the electric field vector; specifically, the figure traced as a
function of time by the extremity of the vector at a fixed location in space, and the sense in
which it is traced, as observed along the direction of propagation.” In other words, polarization
is the curve traced out, at a given observation point as a function of time, by the end point of the
arrow representing the instantaneous electric field. The field must be observed along the direction
of propagation. A typical trace as a function of time is shown in Figure 4-8 [8].

0

2p

4p

6p

6p

wt

wt

4p

2p

�y

�x

�x

Figure 4-8 Rotation of a plane electromagnetic wave at z = 0 as a function of time. (Source: C. A.
Balanis, Antenna Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc.
Reprinted by permission of John Wiley & Sons, Inc.).
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Polarization may be classified into three categories: linear, circular, and elliptical [8]. If the
vector that describes the electric field at a point in space as a function of time is always directed
along a line, which is normal to the direction of propagation, the field is said to be linearly polar-
ized. In general, however, the figure that the electric field traces is an ellipse, and the field is said
to be elliptically polarized. Linear and circular polarizations are special cases of elliptical, and
they can be obtained when the ellipse becomes a straight line or a circle, respectively. The figure
of the electric field is traced in a clockwise (CW) or counterclockwise (CCW) sense. Clockwise
rotation of the electric field vector is also designated as right-hand polarization and counterclock-
wise as left-hand polarization . In Figure 4-9 we show the figure traced by the extremity of the
time-varying field vector for linear, circular, and elliptical polarizations.

The mathematical details for defining linear, circular, and elliptical polarizations follow.

(a)

(c)

(b)

�y �y

�x

�y

�x

�x

z

z

z

Figure 4-9 Polarization figure traces of an electric field extremity as a function of time for a fixed position .
(a) Linear. (b) Circular. (c) Elliptical.
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4.4.1 Linear Polarization

Let us consider a harmonic plane wave, with x and y electric field components, traveling in the
positive z direction (into the page), as shown in Figure 4-10 [8]. The instantaneous electric and
magnetic fields are given by

� = âx �x + ây �y = Re
[
âx E+

x ej (ωt−βz ) + ây E+
y ej (ωt−βz )

]
= âx E+

x0
cos (ωt − βz + φx ) + ây E+

y0
cos

(
ωt − βz + φy

)
(4-50a)

� = ây �y + âx �x = Re

[
ây

E+
x

η
ej (ωt−βz ) − âx

E+
y

η
ej (ωt−βz )

]

= ây

E+
x0

η
cos (ωt − βz + φx ) − âx

E+
y0

η
cos

(
ωt − βz + φy

)
(4-50b)

where E+
x , E+

y are complex and E+
x0

, E+
y0

are real.
Let us now examine the variation of the instantaneous electric field vector � as given by

(4-50a) at the z = 0 plane. Other planes may be considered, but the z = 0 plane is chosen for
convenience and simplicity. For the first example, let

E+
y0

= 0 (4-51)

in (4-50a). Then

�x = E+
x0

cos (ωt + φx )

�y = 0 (4-51a)

The locus of the instantaneous electric field vector is given by

� = âx E+
x0

cos (ωt + φx ) (4-51b)

which is a straight line, and it will always be directed along the x axis at all times, as shown in
Figure 4-10. The field is said to be linearly polarized in the x direction .

E + cos (wt + fx)0x

z �y

�x

Figure 4-10 Linearly polarized field in the x direction.
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Example 4-5

Determine the polarization of the wave given by (4-50a) when E+
x0

= 0.

Solution: Since
E+

x0
= 0

then

�x = 0

�y = E+
y0

cos
(
ωt + φy

)
The locus of the instantaneous electric field vector is given by

� = ây E+
y0

cos
(
ωt + φy

)
which again is a straight line but directed along the y axis at all times, as shown in Figure 4-11. The
field is said to be linearly polarized in the y direction .

E + cos (wt + fy)y0

�y

�x

Figure 4-11 Linearly polarized field in the y direction.

Example 4-6

Determine the polarization and direction of polarization of the wave given by (4-50a) when φx =φy = φ.

Solution: Since
φx = φy = φ

then

�x = E+
x0

cos (ωt + φ)

�y = E+
y0

cos (ωt + φ)
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The amplitude of the electric field vector is given by

� =
√

�2
x + �2

y =
√(

E+
x0

)2 + (
E+

y0

)2
cos (ωt + φ)

which is a straight line directed at all times along a line that makes an angle ψ with the x axis as shown
in Figure 4-12. The angle ψ is given by

ψ = tan−1
[

�y

�x

]
= tan−1

[
E+

y0

E+
x0

]
The field is said to be linearly polarized in the ψ direction .

E + cos (wt + f)y0

E + cos (wt + f)x0

E ++ cos (wt + f) ( y0
2E +

x0
2

z

)

�y

�x

y

Figure 4-12 Linearly polarized field in the ψ direction.

It is evident from the preceding examples that a time-harmonic field is linearly polarized at a
given point in space if the electric field (or magnetic field ) vector at that point is oriented along
the same straight line at every instant of time. This is accomplished if the field vector (electric or
magnetic) possesses (a) only one component or (b) two orthogonal linearly polarized components
that are in time phase or integer multiples of 180◦ out of phase.

4.4.2 Circular Polarization

A wave is said to be circularly polarized if the tip of the electric field vector traces out a circular
locus in space. At various instants of time, the electric field intensity of such a wave always has
the same amplitude and the orientation in space of the electric field vector changes continuously
with time in such a manner as to describe a circular locus [8, 9].

A. Right-Hand (Clockwise) Circular Polarization A wave has right-hand circular polar-
ization if its electric field vector has a clockwise sense of rotation when it is viewed along the
axis of propagation . In addition, the electric field vector must trace a circular locus if the wave
is to have also a circular polarization.
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Let us examine the locus of the instantaneous electric field vector (�) at the z = 0 plane at
all times. For this particular example, let in (4-50a)

φx = 0

φy = −π/2

E+
x0

= E+
y0

= ER (4-52)

Then

�x = ER cos(ωt)

�y = ER cos
(
ωt − π

2

)
= ER sin(ωt) (4-52a)

The locus of the amplitude of the electric field vector is given by

� =
√

�2
x + �2

y =
√

E 2
R(cos2 ωt + sin2 ωt) = ER (4-52b)

and it is directed along a line making an angle ψ with the x axis, which is given by

ψ = tan−1

[
�y

�x

]
= tan−1

[
ER sin(ωt)

ER cos(ωt)

]
= tan−1[tan(ωt)] = ωt (4-52c)

If we plot the locus of the electric field vector for various times at the z = 0 plane, we see that
it forms a circle of radius ER and it rotates clockwise with an angular frequency ω, as shown in
Figure 4-13. Thus the wave is said to have a right-hand circular polarization . Remember that the
rotation is viewed from the “rear” of the wave in the direction of propagation. In this example,
the wave is traveling in the positive z direction (into the page) so that the rotation is examined
from an observation point looking into the page and perpendicular to it.

We can write the instantaneous electric field vector as

� = Re
[
âx ERej (ωt−βz ) + ây ERej (ωt−βz−π/2)

]
= ERRe

{[
âx − j ây

]
ej (ωt−βz )

}
(4-52d)

We note that there is a 90◦ phase difference between the two orthogonal components of the
electric field vector.

wt = 0

wt = 5p/4

y

wt = p/2

wt = 7p/4

wt = 3p/2
z

wt = p/4

wt = 3p/4

wt = p

�y

�x

Figure 4-13 Right-hand circularly polarized wave.
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Example 4-7

If φx = +π/2, φy = 0, and E+
x0

= E+
y0

= ER, determine the polarization and sense of rotation of the
wave of (4-50a).

Solution: Since

φx = +π

2
φy = 0

E+
x0

= E+
y0

= ER

then

�x = ER cos
(
ωt + π

2

)
= −ER sin ωt

�y = ER cos(ωt)

and the locus of the amplitude of the electric field vector is given by

� =
√

�2
x + �2

y =
√

E 2
R(cos2 ωt + sin2 ωt) = ER

The angle ψ along which the field is directed is given by

ψ = tan−1
[

�y

�x

]
= tan−1

[
−ER cos(ωt)

ER sin(ωt)

]
= tan−1 [− cot(ωt)] = ωt + π

2

The locus of the field vector is a circle of radius ER, and it rotates clockwise with an angular frequency
ω as shown in Figure 4-14; hence, it is a right-hand circular polarization .

The expression for the instantaneous electric field vector is

� = Re
[
âx ERej (ωt−βz+π/2) + ây ERej (ωt−βz )

]
= ERRe

{[
j âx + ây

]
ej (ωt−βz )

}

wt = 0

wt = 5p/4

y

wt = p/2

wt = 7p/4

wt = 3p/2

z

wt = p/4wt = 3p/4

wt = p

�y

�x

Figure 4-14 Right-hand circularly polarized wave.
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Again we note a 90◦ phase difference between the orthogonal components.
From the previous discussion we see that a right-hand circular polarization can be achieved

if and only if its two orthogonal linearly polarized components have equal amplitudes and a 90◦
phase difference of one relative to the other. The sense of rotation (clockwise here) is determined by
rotating the phase-leading component (in this instance �x ) toward the phase-lagging component
(in this instance �y ). The field rotation must be viewed as the wave travels away from the observer .

B. Left-Hand (Counterclockwise) Circular Polarization If the electric field vector has a
counterclockwise sense of rotation, the polarization is designated as left-hand polarization . To
demonstrate this, let in (4-50a)

φx = 0

φy = π

2

E+
x0

= E+
y0

= EL (4-53)

then

�x = EL cos(ωt)

�y = EL cos
(
ωt + π

2

)
= −EL sin(ωt) (4-53a)

and the locus of the amplitude is

� =
√

�2
x + �2

y =
√

E 2
L(cos2 ωt + sin2 ωt) = EL (4-53b)

The angle ψ is given by

ψ = tan−1

[
�y

�x

]
= tan−1

[−EL sin(ωt)

EL cos(ωt)

]
= −ωt (4-53c)

The locus of the field vector is a circle of radius EL, and it rotates counterclockwise with an
angular frequency ω as shown in Figure 4-15; hence, it is a left-hand circular polarization .

wt = 0

wt = 5p/4

y

wt = p/2

wt = 7p/4

wt = 3p/2z

wt = p/4

wt = 3p/4

wt = p

�y

�x

Figure 4-15 Left-hand circularly polarized wave.
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The instantaneous electric field vector can be written as

� = Re
[
âx ELej (ωt−βz ) + ây ELej (ωt−βz+π/2)

]
= ELRe

{[
âx + j ây

]
ej (ωt−βz )

}
(4-53d)

In (4-53d) we note a 90◦ phase advance of the �y component relative to the �x component.

Example 4-8

Determine the polarization and sense of rotation of the wave given by (4-50a) if φx = −π/2, φy = 0,
and E+

x0
= E+

y0
= EL.

Solution: Since

φx = −π

2
φy = 0

E+
x0

= E+
y0

= EL

then

�x = EL cos
(
ωt − π

2

)
= EL sin(ωt)

�y = EL cos(ωt)

and the locus of the amplitude is

� =
√

�2
x + �2

y =
√

E 2
L(sin2 ωt + cos2 ωt) = EL

The angle ψ is given by

ψ = tan−1
[

�y

�x

]
= tan−1

[
EL cos(ωt)

EL sin(ωt)

]
= tan−1 [cot(ωt)] = π

2
− ωt

The locus of the electric field vector is a circle of radius EL, and it rotates counterclockwise with an
angular frequency ω as shown in Figure 4-16; hence, it is a left-hand circular polarization . For this case
we can write the electric field as

wt = 0

wt = 5p/4

y

wt = p/2

wt = 7p/4

wt = 3p/2

z

wt = p/4wt = 3p/4

wt = p

�y

�x

Figure 4-16 Left-hand circularly polarized wave.
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� = Re
[
âx ELej (ωt−βz−π/2) + ây ELej (ωt−βz )

]
= ELRe

{[−j âx + ây
]

ej (ωt−βz )
}

and we note a 90◦ phase delay of the �x component relative to �y .

From the previous discussion we see that left-hand circular polarization can be achieved if
and only if its two orthogonal components have equal amplitudes and odd multiples of 90◦ phase
difference of one component relative to the other. The sense of rotation (counterclockwise here)
is determined by rotating the phase-leading component (in this instance �y ) toward the phase-
lagging component (in this instance �x ). The field rotation must be viewed as the wave travels
away from the observer .

The necessary and sufficient conditions for circular polarization are the following:

1. The field must have two orthogonal linearly polarized components.
2. The two components must have the same magnitude.
3. The two components must have a time-phase difference of odd multiples of 90◦.

The sense of rotation is always determined by rotating the phase-leading component toward
the phase-lagging component and observing the field rotation as the wave is traveling away from
the observer. The rotation of the phase-leading component toward the phase-lagging component
should be done along the angular separation between the two components that is less than 180◦.
Phases equal to or greater than 0◦ and less than 180◦ should be considered leading whereas those
equal to or greater than 180◦ and less than 360◦ should be considered lagging .

4.4.3 Elliptical Polarization

A wave is said to be elliptically polarized if the tip of the electric field vector traces, as a
function of time, an elliptical locus in space. At various instants of time the electric field vector
changes continuously with time in such a manner as to describe an elliptical locus. It is right-hand
elliptically polarized if the electric field vector of the ellipse rotates clockwise, and it is left-hand
elliptically polarized if the electric field vector of the ellipse rotates counterclockwise [8, 10–14].

Let us examine the locus of the instantaneous electric field vector (�) at the z = 0 plane at
all times. For this particular example, let in (4-50a)

φx = π

2
φy = 0

E+
x0

= (ER + EL)

E+
y0

= (ER − EL) (4-54)

Then,

�x = (ER + EL) cos
(
ωt + π

2

)
= − (ER + EL) sin ωt

�y = (ER − EL) cos(ωt) (4-54a)
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We can write the locus for the amplitude of the electric field vector as

�2 = �2
x + �2

y = (ER + EL)2 sin2 ωt + (ER − EL)2 cos2 ωt

= E 2
R sin2 ωt + E 2

L sin2 ωt + 2EREL sin2 ωt

+E 2
R cos2 ωt + E 2

L cos2 ωt − 2EREL cos2 ωt

�2
x + �2

y = E 2
R + E 2

L + 2EREL
[
sin2 ωt − cos2 ωt

]
(4-54b)

However,

sin ωt = −�x/(ER + EL)

cos ωt = �y/(ER − EL) (4-54c)

Substituting (4-54c) into (4-54b) reduces to{
�x

ER + EL

}2

+
{

�y

ER − EL

}2

= 1 (4-54d)

which is the equation for an ellipse with the major axis |�|max = |ER + EL| and the minor axis
|�|min = |ER − EL|. As time elapses, the electric vector rotates and its length varies with its tip
tracing an ellipse, as shown in Figure 4-17. The maximum and minimum lengths of the electric
vector are the major and minor axes, given by

|�|max = |ER + EL|, when ωt = (2n + 1)
π

2
, n = 0, 1, 2, . . . (4-54e)

|�|min = |ER − EL|, when ωt = nπ , n = 0, 1, 2, . . . (4-54f)

The axial ratio (AR) is defined to be the ratio of the major axis (including its sign) of the
polarization ellipse to the minor axis, or

AR = −�max

�min
= −2(ER + EL)

2(ER − EL)
= − (ER + EL)

(ER − EL)
(4-54g)

where ER and EL are positive real quantities. As defined in (4-54g), the axial ratio AR can take
positive (for left-hand polarization) or negative (for right-hand polarization) values in the range
1 ≤ |AR| ≤ ∞. The instantaneous electric field vector can be written as

� = Re
{
âx [ER + EL] ej (ωt−βz+π/2) + ây [ER − EL] ej (ωt−βz )

}
= Re

{[
âx j (ER + EL) + ây(ER − EL)

]
ej (ωt−βz )

}
� = Re

{[
ER(j âx + ây) + EL(j âx − ây)

]
ej (ωt−βz )

}
(4-54h)

From (4-54h) we see that we can represent an elliptical wave as the sum of a right-hand [first term
of (4-54h)] and a left-hand [second term of (4-54h)] circularly polarized waves with amplitudes
ER and EL, respectively. If ER > EL, the axial ratio will be negative and the right-hand circular
component will be stronger than the left-hand circular component. Thus, the electric vector rotate
in the same direction as that of the right-hand circularly polarized wave, producing a right-hand
elliptically polarized wave, as shown in Figure 4-17a . If EL > ER, the axial ratio will be positive
and the left-hand circularly polarized component will be stronger than the right-hand circularly
polarized component. The electric field vector will rotate in the same direction as that of the
left-hand circularly polarized component, producing a left-hand elliptically polarized wave, as
shown in Figure 4-17b. The sign of the axial ratio carries information on the direction of rotation
of the electric field vector.
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wt = p

wt = p

wt = 0

wt = 0

wt = p/2

wt = p/2

(a)

(b)

wt = 3p/2

wt = 3p/2

ER + EL

y

z

y

z

ER − EL

ER + EL

�y

�x

�x

�y

�min =

ER − EL�min =

�max =

�max =

Figure 4-17 Right- and left-hand elliptical polarizations with major axis along the x axis. (a) Right-hand
(clockwise) when ER > EL. (b) Left-hand (counterclockwise) when ER < EL.

An analogous situation exists when

φx = π

2
φy = 0

E+
x0

= (ER − EL) (4-55)

E+
y0

= (ER + EL)
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wt = p

wt = p

(b)

(a)

wt = 0

wt = 0

wt = p/2

wt = p/2

wt = 3p/2

wt = 3p/2

z

z

y

y

ER + EL�max =

ER + EL�max

�x

�x

�y

�y

=

ER − EL�min =

ER − EL�min =

Figure 4-18 Right- and left-hand elliptical polarizations with major axis along the y axis. (a) Right-hand
(clockwise) when ER > EL. (b) Left-hand (counterclockwise) when ER < EL.

The polarization loci are shown in Figure 4-18a and 4-18b when ER > EL and ER < EL, respec-
tively.

From (4-54e) and (4-54f), it can be seen that the component of � measured along the major
axis of the polarization ellipse is 90◦ out of phase with the component of � measured along the
minor axis. Also with the aid of (4-54b), it can be shown that the electric vector rotates through
90◦ in space between the instants of time given by (4-54e) and (4-54f) when the vector has
maximum and minimum lengths, respectively. Thus the major and minor axes of the polarization
ellipse are orthogonal in space, just as we might anticipate.

Since linear polarization is a special kind of elliptical polarization, we can represent a lin-
ear polarization as the sum of a right- and a left-hand circularly polarized components of
equal amplitudes . We see that for this case (ER = EL), (4-54h) will degenerate into a linear
polarization.
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Figure 4-19 Rotation of a plane electromagnetic wave and its tilted ellipse at z = 0 as a function of time.

A more general orientation of an elliptically polarized locus is the tilted ellipse of Figure 4-19.
This is representative of the fields of (4-50a) when

	φ = φx − φy �= nπ

2
n = 0, 2, 4 . . .

≥ 0

{
for CW if ER > EL

for CCW if ER < EL

(4-56a)

≤ 0

{
for CW if ER < EL

for CCW if ER > EL

(4-56b)

E+
x0

= ER + EL

E+
y0

= ER − EL (4-56c)

Thus the major and minor axes of the ellipse do not, in general, coincide with the principal axes
of the coordinate system unless the magnitudes are not equal and the phase difference between
the two orthogonal components is equal to odd multiples of ±90◦.
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The ratio of the major to the minor axes, which is defined as the axial ratio (AR), is equal
to [8]

AR = ±major axis

minor axis
= ± OA

OB
, 1 ≤ |AR| ≤ ∞ (4-57)

where

OA =
[

1

2

{
(E+

x0
)2 + (E+

y0
)2 +

[
(E+

x0
)4 + (E+

y0
)4 + 2(E+

x0
)2(E+

y0
)2 cos(2	φ)

]1/2
}]1/2

(4-57a)

OB =
[

1

2

{
(E+

x0
)2 + (E+

y0
)2 −

[
(E+

x0
)4 + (E+

y0
)4 + 2(E+

x0
)2(E+

y0
)2 cos(2	φ)

]1/2
}]1/2

(4-57b)

E+
x0

and E+
y0

are given by (4-56c). The plus (+) sign in (4-57) is for left-hand and the minus (−)
sign is for right-hand polarization.

The tilt of the ellipse, relative to the x axis , is represented by the angle τ given by

τ = π

2
− 1

2
tan−1

[
2E+

x0
E+

y0

(E+
x0 )

2 − (E+
y0 )

2
cos(	φ)

]
(4-57c)

4.4.4 Poincaré Sphere

The polarization state, defined here as P , of any wave can be uniquely represented by a point on
the surface of a sphere [15–19]. This is accomplished by either of the two pairs of angles (γ , δ)
or (ε, τ). By referring to (4-50a) and Figure 4-20a , we can define the two pairs of angles:

(γ , δ) set

γ = tan−1

[
E+

y0

E+
x0

]
or γ = tan−1

[
E+

x0

E+
y0

]
, 0◦ ≤ γ ≤ 90◦ (4-58a)

δ = φy − φx = phase difference between �y and �x , −180◦ ≤ δ ≤ 180◦

(4-58b)

where 2γ is the great-circle angle drawn from a reference point on the equator and δ is the
equator to great-circle angle;

(ε, τ) set

ε = cot−1(AR) ⇒ AR = cot(ε), −45◦ ≤ ε ≤ +45◦ (4-59a)

τ = tilt angle, 0◦ ≤ τ ≤ 180◦ (4-59b)

where

2ε = latitude

2τ = longitude

In (4-58a) the appropriate ratio is the one that satisfies the angular limits of all the Poincaré
sphere angles (especially those of ε). The axial ratio AR is positive for left-hand polarization and
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Elliptical polarization
(left hand; t= 22.5°, e= 22.5°)

Elliptical polarization
(left hand; t= 0°, e= 22.5°)
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Elliptical polarization
(left hand; t= 45°, e= 22.5°)

Linear polarization
(t= 0°, e= 0°)

Linear polarization
(t= 45°, e= 0°)

Linear polarization
(t= 22.5°, e= 0°)

Figure 4-20 Poincaré sphere for the polarization state of an electromagnetic wave. (Source: J. D. Kraus,
Electromagnetics , 1984, McGraw-Hill Book Co.). (a) Poincaré sphere. (b) Polarization state.

negative for right-hand polarization . Some polarization states are displayed on the first octant of
the Poincaré sphere in Figure 4-20b. The polarization states on a planar surface representation
(projection) of the Poincaré sphere (−45◦ ≤ ε ≤ +45◦ , 0◦ ≤ τ ≤ 180◦) are shown in Figure 4-21.

For the polarization ellipse of Figure 4-19, the two sets of angles are related geometrically as
shown in Figure 4-20. Analytically, it can be shown through spherical trigonometry [20] that the
two pairs of angles (γ , δ) and (ε, τ ) are related by

cos(2γ ) = cos(2ε) cos(2τ)

tan(δ) = tan(2ε)

sin(2τ)

(4-60a)

(4-60b)
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Right circular polarization

e= −45°

e= 0°

t= 0° t= 45° t= 90°  t= 135°  t= 180°

e= 45°

e= −22½°

e= 22½°

Right elliptical

polarization

polarization

Linear polarization

Left elliptical

Left circular polarization

Figure 4-21 Polarization states of electromagnetic waves on a planar surface projection of a Poincaré
sphere. (Source: J. D. Kraus, Electromagnetics , 1984, McGraw-Hill Book Co.).

or

sin(2ε) = sin(2γ ) sin(δ)

tan(2τ) = tan(2γ ) cos(δ)

(4-61a)

(4-61b)

Thus one set can be obtained by knowing the other.
It is apparent from Figure 4-20 that the linear polarization is always found along the equator; the

right-hand circular resides along the south pole and the left-hand circular along the north pole.
The remaining surface of the sphere is used to represent elliptical polarization with left-hand
elliptical in the upper hemisphere and right-hand elliptical on the lower hemisphere.

Because the Poincaré sphere parameter pairs (γ , δ) and (ε, τ ) are related by transcendental
functions, of (4-60a) and (4-60b), there may be some ambiguity at which quadrant should the
angles be chosen. The angles should be selected to each satisfy respectively the range of values
given by (4-58a) and (4-58b), and (4-57c), and each set should represent the same point on
the Poincaré sphere. Also the range of values of the axial ratio (AR) should be 1 ≤ |AR| ≤ ∞,
with positive values to represent CCW (left-hand) polarization and negative values to represent
CW (right-hand) polarization. A MATLAB computer program, Polarization_Propag, has been
written and it is part of the website that accompanies this book.
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Example 4-9

Determine the point on the Poincaré sphere of Figure 4-20 when the wave represented by (4-50a) is
such that

�x = E+
x0

cos(ωt − βz + φx )

�y = 0

Solution: Using (4-58a) and (4-58b)

γ = tan−1

[
E+

y0

E+
x0

]
= tan−1

[
0

E+
x0

]
= 0◦

and δ could be of any value, i.e., −180◦ ≤ δ ≤ 180◦. The values of ε and τ can now be obtained from
(4-61a) and (4-61b), and they are equal to

2ε = sin−1 [
sin(2γ ) sin(δ)

] = sin−1(0) = 0◦

2τ = tan−1 [
tan(2γ ) cos(δ)

] = tan−1(0) = 0◦

It is apparent that for this wave, which is obviously linearly polarized, the polarization state (point) is
at the reference point of Figure 4-20. The axial ratio is obtained from (4-59a), and it is equal to

AR = cot(ε) = cot(0) = ∞
An axial ratio of infinity always represents linear polarization.

Example 4-10

Repeat Example 4-9 when the wave of (4-50a) is such that

�x = 0

�y = E+
y0

cos(ωt − βz + φy )

Solution: Using (4-58a) and (4-58b),

γ = tan−1

[
E+

y0

E+
x0

]
= tan−1(∞) = 90◦

and δ could be of any value, i.e., −180◦ ≤ δ ≤ 180◦. The values of ε and τ can now be obtained from
(4-61a) and (4-61b), and they are equal to

2ε = sin−1 [
sin(2γ ) sin(δ)

] = sin−1(0) = 0◦

2τ = tan−1 [
tan(2γ ) cos(δ)

] = tan−1(0) = 180◦

The polarization state (point) of this linearly polarized wave is diametrically opposed to that in
Example 4-9. The axial ratio is also infinity.
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Example 4-11

Determine the polarization state (point) on the Poincaré sphere of Figure 4-20 when the wave of (4-50a)
is such that

�x = E+
x0

cos(ωt − βz + φx ) = 2E0 cos
(
ωt − βz + π

2

)
�y = E+

y0
cos(ωt − βz + φy ) = E0 cos(ωt − βz )

Solution: Using (4-58a) and (4-58b),

γ = tan−1

[
E+

y0

E+
x0

]
= tan−1

[
E0

2E0

]
= 26.56◦

δ = φy − φx = −90◦

The values of ε and τ can now be obtained from (4-61a) and (4-61b), and they are equal to

2ε = sin−1 [
sin(2γ ) sin(δ)

] = sin−1 [− sin(2γ )
] = −2γ = −53.12◦

2τ = tan−1 [
tan(2γ ) cos(δ)

] = tan−1(0) = 0◦

Therefore, this point is situated on the principal xz plane at an angle of 2γ = −2ε = 53.12◦ from
the reference point of the x axis of Figure 4-20. The axial ratio is obtained using (4-59a), and it is
equal to

AR = cot(ε) = cot(−26.56◦) = −2

The negative sign indicates that the wave has a right-hand (clockwise) polarization. Therefore the wave
is right-hand elliptically polarized with AR = −2.

In general, points on the principal xz elevation plane, aside from the two intersecting points
on the equator and the north and south poles, are used to represent elliptical polarization when
the major and minor axes of the polarization ellipse of Figure 4-19 coincide with the principal
axes.

If the polarization state of a wave is defined as Pw and that of an antenna as Pa , then the
voltage response of the antenna due to the wave is obtained by [10, 19]

V = C cos

[
Pw Pa

2

]
(4-62)

where
C = constant that is a function of the antenna size and field strength of the wave

Pw = polarization state of the wave
Pa = polarization state of the antenna

Pw Pa = angle subtended by a great-circle arc from polarization Pw to Pa

Remember that the polarization of a wave, by IEEE standards [7, 8], is determined as the wave
is observed from the rear (is receding). Therefore the polarization of the antenna is determined
by its radiated field in the transmitting mode.
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Example 4-12

If the polarization states of the wave and antenna are given, respectively, by those of Examples 4-9
and 4-10, determine the voltage response of the antenna due to that wave.

Solution: Since the polarization state Pw of the wave is at the +x axis and that of the antenna Pa is
at the −x axis of Figure 4-20, then the angle Pw Pa subtended by a great-circle arc from Pw to Pa is
equal to

Pw Pa = 180◦

Therefore the voltage response of the antenna is, according to (4-62), equal to

V = C cos

[
Pw Pa

2

]
= C cos(90◦) = 0

This is expected since the fields of the wave and those of the antenna are orthogonal (cross-polarized)
to each other.

Example 4-13

The polarization of a wave that impinges upon a left-hand (counterclockwise) circularly polarized
antenna is circularly polarized. Determine the response of the antenna when the sense of rotation of the
incident wave is

1. Left-hand (counterclockwise).
2. Right-hand (clockwise).

Solution:

1. Since the antenna is left-hand circularly polarized, its polarization state (point) on the Poincaré
sphere is on the north pole (2γ = δ = 90◦). When the wave is also left-hand circularly polarized,
its polarization state (point) is also on the north pole (2γ = δ = 90◦). Therefore, the subtended
angle Pw Pa between the two polarization states is equal to

Pw Pa = 0◦

and the voltage response of the antenna, according to (4-62), is equal to

V = C cos

[
Pw Pa

2

]
= C cos(0) = C

This represents the maximum response of the antenna, and it occurs when the polarization (includ-
ing sense of rotation) of the wave is the same as that of the antenna.

2. When the sense of rotation of the wave is right-hand circularly polarized, its polarization state
(point) is on the south pole (2γ = 90◦, δ = −90◦). Therefore, the subtended angle Pw Pa between
the two polarization states is equal to

Pw Pa = 180◦

and the response of the antenna, according to (4-62), is equal to
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V = C cos

[
Pw Pa

2

]
= C cos

[
180◦

2

]
= C cos(90◦) = 0

This represents a null response of the antenna, and it occurs when the sense of rotation of the
circularly polarized wave is opposite to that of the circularly polarized antenna. This is one
technique, in addition to those shown in Example 4-12, that can be used to null the response of
an antenna system.

4.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• MATLAB computer programs:
a. Polarization_Diagram_Ellipse_Animation: Animates the 3-D polarization diagram of

a rotating electric field vector (Figure 4-8). It also animates the 2-D polarization ellipse
(Figure 4-19) for linear, circular and elliptical polarized waves, and sense of rotation. It
also computes the axial ratio (AR).

b. Polarization_Propag: Computes the Poincaré sphere angles, and thus the polarization
wave traveling in an infinite homogeneous medium.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

4.1. A uniform plane wave having only an x
component of the electric field is traveling
in the +z direction in an unbounded loss-
less, source-free region. Using Maxwell’s
equations write expressions for the electric
and corresponding magnetic field intensi-
ties. Compare your answers to those of
(4-2b) and (4-3c).

4.2. Using Maxwell’s equations, find the mag-
netic field components for the wave whose
electric field is given in Example 4-1.
Compare your answer with that obtained
in the solution of Example 4-1.

4.3. The complex H field of a uniform plane
wave, traveling in an unbounded source-
free medium of free space, is given by

H = 1

120π
(âx − 2ây )e

−jβ0z

Find the:
(a) Corresponding electric field.
(b) Instantaneous power density vector.
(c) Time-average power density.

4.4. The complex E field of a uniform plane
wave is given by

E = (âx + j âz )e
−jβ0y + (2âx − j âz )e

+jβ0y

Assuming an unbounded source-free, free-
space medium, find the:
(a) Corresponding magnetic field.
(b) Time-average power density flowing in

the +y direction.
(c) Time-average power density flowing in

the −y direction.

4.5. The magnetic field of a uniform plane wave
in a source-free region is given by

H = 10−6 [−âx (2 + j ) + âz (1 + j 3)
]

e+jβy

Assuming that the medium is free space,
determine the:

(a) Corresponding electric field.
(b) Time-average power density.

4.6. The electric field of a uniform plane wave
traveling in a source-free region of free
space is given by

E = 10−3(âx + j ây ) sin(β0z )

(a) Is this a traveling or a standing wave?
(b) Identify the traveling wave(s) of the

electric field and the direction(s) of
travel.

(c) Find the corresponding magnetic field.
(d) Determine the time-average power

density of the wave.

4.7. The magnetic field of a uniform plane wave
traveling in a source-free, free-space region
is given by

H = 10−6(ây + j âz ) cos(β0x)

(a) Is this a traveling or a standing wave?
(b) Identify the traveling wave(s) of the

magnetic field and the direction(s) of
travel.

(c) Find the corresponding electric field.
(d) Determine the time-average power

density of the wave.

4.8. A uniform plane wave is traveling in the
−z direction inside an unbounded source-
free, free-space region. Assuming that the
electric field has only an Ex component, its
value at z = 0 is 4 × 10−3 V/m, and its
frequency of operation is 300 MHz, write
expressions for the:
(a) Complex electric and magnetic fields.
(b) Instantaneous electric and magnetic

fields.
(c) Time-average and instantaneous pow-

er densities.
(d) Time-average and instantaneous elec-

tric and magnetic energy densities.
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4.9. A uniform plane wave traveling inside an
unbounded free-space medium has peak
electric and magnetic fields given by

E = âx E0e−jβ0z

H = ây H0e−jβ0z

where E0 = 1 mV/m.
(a) Evaluate H0.
(b) Find the corresponding average power

density. Evaluate all the constants.
(c) Determine the volume electric and

magnetic energy densities. Evaluate all
the constants.

4.10. The complex electric field of a uniform
plane wave traveling in an unbounded non-
ferromagnetic dielectric medium is given
by

E = ây 10−3e−j 2πz

where z is measured in meters. Assuming
that the frequency of operation is 100 MHz,
find the:
(a) Phase velocity of the wave (give units).
(b) Dielectric constant of the medium.
(c) Wavelength (in meters).
(d) Time-average power density.
(e) Time-average total energy density.

4.11. The complex electric field of a time-
harmonic field in free space is given by

E = âz 10−3(1 + j )e−j (2/3)πx

Assuming the distance x is measured in
meters, find the:
(a) Wavelength (in meters).
(b) Frequency.
(c) Associated magnetic field.

4.12. A uniform plane wave is traveling inside
the earth, which is assumed to be a perfect
dielectric infinite in extent. If the relative
permittivity of the earth is 9, find, at a fre-
quency of 1 MHz, the:
(a) Phase velocity.
(b) Wave impedance.
(c) Intrinsic impedance.
(d) Wavelength of the wave inside the

earth.

4.13. An 11-GHz transmitter radiates its power
isotropically in a free-space medium.
Assuming its total radiated power is 50
mW, at a distance of 3 km, find the:
(a) Time-average power density.

(b) RMS electric and magnetic fields.
(c) Total time-average volume energy den-

sities.
In all cases, specify the units.

4.14. The electric field of a time-harmonic wave
traveling in free space is given by

E = âx 10−4(1 + j )e−jβ0z

Find the amount of real power crossing a
rectangular aperture whose cross section is
perpendicular to the z axis. The area of the
aperture is 20 cm2.

4.15. The following complex electric field of a
time-harmonic wave traveling in a source-
free, free-space region is given by

E = 5 × 10−3(4ây + 3âz )e
j (6y−8z )

Assuming y and z represent their respec-
tive distances in meters, determine the:
(a) Angle of wave travel (relative to the z

axis).
(b) Three phase constants of the wave

along its oblique direction of travel, the
y axis, and the z axis (in radians per
meter).

(c) Three wavelengths of the wave along
its oblique direction of travel, the y
axis, and the z axis (in meters).

(d) Three phase velocities of the wave
along the oblique direction of travel,
the y axis, and the z axis (in meters
per second).

(e) Three energy velocities of the wave
along the oblique direction of travel,
the y axis, and the z axis (in meters
per second).

(f) Frequency of the wave.
(g) Associated magnetic field.

4.16. Using Maxwell’s equations, determine the
magnetic field of (4-18b) given the electric
field of (4-18a).

4.17. Given the electric field of Example 4-2 and
using Maxwell’s equations, determine the
magnetic field. Compare it with that found
in the solution of Example 4-2.

4.18. Given (4-19a) and (4-19c), determine the
phase velocities of (4-22) and (4-23).

4.19. Derive the energy velocity of (4-24) using
the definition of (4-9), (4-18a), and (4-18b).
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4.20. A uniform plane wave of 3 GHz is incident
upon an unbounded conducting medium of
copper that has a conductivity of 5.76 ×
107 S/m, ε = ε0, and μ = μ0. Find the
approximate:
(a) Intrinsic impedance of copper.
(b) Skin depth (in meters).

4.21. The magnetic field intensity of a plane
wave traveling in a lossy earth is given by

H = (ây + j 2âz )H0e−αx e−jβx

where H0 = 1 μA/m. Assuming the lossy
earth has a conductivity of 10−4 S/m, a
dielectric constant of 9, and the frequency
of operation is 1 GHz, find inside the earth
the:
(a) Corresponding electric field vector.
(b) Average power density vector.
(c) Phase constant (radians per meter).
(d) Phase velocity (meters per second).
(e) Wavelength (meters).
(f) Attenuation constant (Nepers per

meter).
(g) Skin depth (meters).

4.22. Sea water is an important medium in
communication between submerged sub-
marines or between submerged submarines
and receiving and transmitting stations
located above the surface of the sea.
Assuming the constitutive electrical param-
eters of the sea are σ = 4 S/m, εr = 81,
μr = 1, and f = 104 Hz, find the:
(a) Complex propagation constant (per

meter).
(b) Phase velocity (meters per second).
(c) Wavelength (meters).
(d) Attenuation constant (Nepers per

meter).
(e) Skin depth (meters).

4.23. The electrical constitutive parameters of
moist earth at a frequency of 1 MHz
are σ = 10−1 S/m, εr = 4, and μr = 1.
Assuming that the electric field of a uni-
form plane wave at the interface (on the
side of the earth) is 3 × 10−2 V/m, find
the:
(a) Distance through which the wave

must travel before the magnitude of
the electric field reduces to 1.104 ×
10−2 V/m.

(b) Attenuation the electric field undergoes
in part (a) (in decibels).

(c) Wavelength inside the earth (in
meters).

(d) Phase velocity inside the earth (in
meters per second).

(e) Intrinsic impedance of the earth.

4.24. The complex electric field of a uniform
plane wave is given by

E = 10−2
[
âx

√
2 + âz (1 + j )ejπ/4

]
e−jβy

(a) Find the polarization of the wave (lin-
ear, circular, or elliptical).

(b) Determine the sense of rotation (clock-
wise or counterclockwise).

(c) Sketch the figure the electric field
traces as a function of ωt .

4.25. The complex magnetic field of a uniform
plane wave is given by

H = 10−3

120π
(âx − j âz )e

+jβy

(a) Find the polarization of the wave (lin-
ear, circular, or elliptical).

(b) State the direction of rotation (clock-
wise or counterclockwise). Justify your
answer.

(c) Sketch the polarization curve denoting
the �-field amplitude, and direction of
rotation. Indicate on the curve the vari-
ous times for the rotation of the vector.

4.26. In a source-free, free-space region, the
complex magnetic field of a time-harmonic
field is represented by

H =
[̂
ax (1 + j )+ âz

√
2ejπ/4

] E0

η0

e−jβ0y

where E0 is a constant and η0 is the intrin-
sic impedance of free space. Determine the:
(a) Polarization of the wave (linear, circu-

lar, or elliptical). Justify your answer.
(b) Sense of rotation, if any.
(c) Corresponding electric field.

4.27. Show that any linearly polarized wave can
be decomposed into two circularly polar-
ized waves (one CW and the other CCW)
but both traveling in the same direction as
the linearly polarized wave.

4.28. The electric field of a f = 10 GHz time-
harmonic uniform plane wave traveling in
a perfect dielectric medium is given by

E = (
âx + j 2ây

)
e−j 600πz
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where z is in meters. Determine, assuming
the permeability of the medium is the same
as that of free space, the:
(a) Wavelength of the wave (in meters).
(b) Velocity of the wave (in meters/sec).
(c) Dielectric constant (relative permittiv-

ity) of the medium (dimensionless).
(d) Intrinsic impedance of the medium (in

ohms).
(e) Wave impedance of the medium (in

ohms).
(f) Vector magnetic field of the wave.
(g) Polarization of the wave (linear, circu-

lar, elliptical; AR; and sense of rota-
tion).

4.29. The spatial variations of the electric field
of a time-harmonic wave traveling in free
space are given by

E(x) = ây e−j (β0x− π
4 ) + âz e−j (β0x− π

2 )

Determine, using the necessary and suffi-
cient conditions of the wave, the:
(a) Direction of wave travel (+x , −x , +y ,

−y , +z or −z ) based on e+jωt time.
(b) Polarization of the wave (linear, circu-

lar or elliptical). Justify your answer.
(c) Sense of rotation (CW or CCW), if

any, of the wave. Justify your answer.

4.30. The spatial variations of the electric field
of a time-harmonic wave traveling in free
space are given by

E(z ) = âx 2e−j (β0z− π
4 ) + ây e−j (β0z− 3π

4 )

Determine the:
(a) Direction of wave travel (+x , −x , +y ,

−y , +z or −z ) based on e+jωt time.
(b) Two pairs of Poincaré sphere polariza-

tion parameters (γ , δ) and (ε, τ ).
(c) Based on either one of the two pairs of

parameters from part (b), state the:
• Polarization of the wave (linear,

circular or elliptical). Justify your
answer.

• Sense of rotation (CW or CCW) of
the wave. Justify your answer.

• Axial Ratio. Justify your answer.

4.31. The time-harmonic electric field traveling
inside an infinite lossless dielectric medium
is given by

Ei (z ) = (
j 2âx + 5ây

)
E0e−jβz

where β and Eo are real constants.
Assuming a e+jωt time convention,
determine the:
(a) Polarization of the wave (linear, circu-

lar or elliptical). You must justify your
answer. Be specific.

(b) Sense of rotation (CW or CCW). You
must justify your answer. Be specific.

(c) Axial Ratio (AR) based on the expres-
sion of the electric field. You must jus-
tify your answer. Be specific.

(d) Poincaré sphere angles (in degrees):
• γ and δ

• ε and τ

Make sure that the polarization point
on the Poincaré sphere based on the
pair of angles (γ , δ) is the same as that
based on the set of angles (ε, τ ).

(e) Axial Ratio (AR) based on the
Poincaré sphere angles. Compare with
that in part (c).

4.32. In a source-free, free-space region the com-
plex magnetic field is given by

H = j (ây − j âz )
E0

η0

e+jβ0x

where E0 is a constant and η0 is the intrin-
sic impedance of free space. Find the:
(a) Polarization of the wave (linear, circu-

lar, or elliptical). Justify your answer.
(b) Sense of rotation, if any (CW or

CCW). Justify your answer.
(c) Time-average power density.
(d) Polarization of the wave on the

Poincaré sphere.

4.33. The electric field of a time-harmonic wave
is given by

E = 2 × 10−3(âx + ây )e
−j 2z

(a) State the polarization of the wave (lin-
ear, circular, or elliptical).

(b) Find the polarization on the Poincaré
sphere by identifying the angles δ, γ ,
τ and ε (in degrees).

(c) Locate the polarization point on the
Poincaré sphere.

4.34. For a uniform plane wave represented by
the electric field

E = E0(âx − j 2ây )e
−jβz

where E0 is constant, do the following.
(a) Determine the longitude angle 2τ ,

latitude angle 2ε, great-circle angle 2γ ,
and equator to great-circle angle δ (all
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in degrees) that are used to identify and
locate the polarization of the wave on
the Poincaré sphere.

(b) Using the answers from part (a), state
the polarization of the wave (linear, cir-
cular, or elliptical), its sense of rotation
(CW or CCW), and its Axial Ratio.

(c) Find the signal loss (in decibels) when
the wave is received by a right-hand
circularly polarized antenna.

4.35. The electric field of (4-50a) has an Axial
Ratio of infinity and a great-circle angle of
2γ = 109.47◦.
(a) Find the relative magnitude (ratio) of

E+
y0

to E+
x0

. Which component is more
dominant, Ex or Ey ? Use the first def-
inition of γ in (4-58a).

(b) Identify the polarization point on the
Poincaré sphere (i.e., find δ, τ , and ε

in degrees).
(c) State the polarization of the wave (lin-

ear, circular, or elliptical).

4.36. A uniform plane wave is traveling along
the +z axis and its electric field is given
by

Ew = (âx + j ây )e
−jβz E0

This incident plane wave impinges upon
an antenna whose field radiated along the
z axis is given by
(a) Eaa = (âx + j ây )e+jβz Ea

(b) Eab = (âx − j ây )e+jβz Ea

Determine the:
1. Polarization of the incident wave

(linear, circular, elliptical; sense of
rotation; and AR).

2. Polarization of antenna of part (a)
(linear, circular, elliptical; sense of
rotation; and AR).

3. Polarization of antenna of part (b)
(linear, circular, elliptical; sense of
rotation; and AR).

4. Normalized output voltage when the
incident wave impinges upon the
antenna whose electric field is that
of part (a).

5. Normalized output voltage when the
incident wave impinges upon the
antenna whose electric field is that
of part (b).

4.37. The field radiated by an antenna has
electric field components represented by
(4-50a) such that E+

x0
= E+

y0
and its Axial

Ratio is infinity.
(a) Identify the polarization point on the

Poincaré sphere (i.e., find γ , δ, τ , and
ε in degrees).

(b) If this antenna is used to receive the
wave of Problem 4.35, find the polar-
ization loss (in decibels). To do this
part, use the Poincaré sphere param-
eters.
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CHAPTER 5
Reflection and Transmission

5.1 INTRODUCTION

In the previous chapter we discussed solutions to TEM waves in unbounded media. In real-world
problems, however, the fields encounter boundaries, scatterers, and other objects. Therefore the
fields must be found by taking into account these discontinuities.

In this chapter we want to discuss TEM field solutions in two semi-infinite lossless and lossy
media bounded by a planar boundary of infinite extent. Reflection and transmission coefficients
will be derived to account for the reflection and transmission of the fields by the boundary. These
coefficients will be functions of the constitutive parameters of the two media, the direction of
wave travel (angle of incidence), and the direction of the electric and magnetic fields (wave
polarization).

In general, the reflection and transmission coefficients are complex quantities. It will be demon-
strated that their amplitudes and phases can be varied by controlling the direction of wave travel
(angle of incidence). In fact, for one wave polarization (parallel polarization) the reflection coef-
ficient can be made equal to zero. When this occurs, the angle of incidence is known as the
Brewster angle. This principle is used in the design of many instruments (such as binoculars).

The magnitude of the reflection coefficient can also be made equal to unity by properly selecting
the wave incidence angle. This angle is known as the critical angle, and it is independent of wave
polarization; however, in order for this angle to occur, the incident wave must exist in the denser
medium. The critical angle concept plays a crucial role in the design of transmission lines (such
as optical fiber, slab wave-guides, and coated conductors; the microstrip is one example).

5.2 NORMAL INCIDENCE—LOSSLESS MEDIA

We begin the discussion of reflection and transmission from planar boundaries of lossless media
by assuming the wave travels perpendicular (normal incidence) to the planar interface formed
by two semi-infinite lossless media, as shown in Figure 5-1, each characterized by the con-
stitutive parameters of ε1, μ1 and ε2, μ2. When the incident wave encounters the interface, a
fraction of the wave intensity will be reflected into medium 1 and part will be transmitted into
medium 2.

Assuming the incident electric field of amplitude E0 is polarized in the x direction, we can write
expressions for its incident, reflected, and transmitted electric field components, respectively, as

Ei = âx E0e−jβ1z (5-1a)

173
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Figure 5-1 Wave reflection and transmission at normal incidence by a planar interface.

Er = âx�
bE0e+jβ1z (5-1b)

Et = âx T bE0e−jβ2z (5-1c)

where �b and T b are used here to represent, respectively, the reflection and transmission coef-
ficients at the interface. Presently these coefficients are unknowns and will be determined by
applying boundary conditions on the fields along the interface. Since the incident fields are lin-
early polarized and the reflecting surface is planar, the reflected and transmitted fields will also
be linearly polarized. Because we do not know the direction of polarization (positive or negative)
of the reflected and transmitted electric fields, they are assumed here to be in the same direc-
tion (positive) as the incident electric fields. If that is not the case, it will be corrected by the
appropriate signs on the reflection and transmission coefficients.

Using the right-hand procedure outlined in Section 4.2.1 or Maxwell’s equations 4-3 or 4-3a,
the magnetic field components corresponding to (5-1a) through (5-1c) can be written as

Hi = ây
E0

η1
e−jβ1z (5-2a)

Hr = −ây
�bE0

η1
e+jβ1z (5-2b)

Ht = ây
T bE0

η2
e−jβ2z (5-2c)
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The reflection and transmission coefficients will now be determined by enforcing continuity
of the tangential components of the electric and magnetic fields across the interface. Using (5-1a)
through (5-2c), continuity of the tangential components of the electric and magnetic fields at the
interface (z = 0) leads, respectively, to

1 + �b = T b (5-3a)

1

η1
(1 − �b) = 1

η2
T b (5-3b)

Solving these two equations for �b and T b , we can write that

�b = η2 − η1

η2 + η1
= E r

E i
= −H r

H i
(5-4a)

T b = 2η2

η1 + η2
= 1 + �b = E t

E i
= η2

η1

H t

H i
(5-4b)

Therefore the plane wave reflection and transmission coefficients of a planar interface for
normal incidence are functions of the constitutive properties, and they are given by (5-4a) and
(5-4b). Since the angle of incidence is fixed at normal, the reflection coefficient cannot be equal
to zero unless η2 = η1. For most dielectric material, aside from ferromagnetics, this implies that
ε2 = ε1 since for them μ1 � μ2.

Away from the interface the reflection � and transmission T coefficients are related to those
at the boundary (�b , T b) and can be written, respectively, as

�(z = −�1) = E r (z )

E i (z )

∣∣∣∣
z=−�1

= �bE0e+jβ1z

E0e−jβ1z

∣∣∣∣
z=−�1

= �be−j 2β1�1 (5-5a)

T

(
z2 = �2,
z1 = −�1

)
= E t (z2)|z2=�2

E i (z1)|z1=−�1

= T bE0e−jβ2�2

E0e+jβ1�1
= T be−j (β2�2+β1�1) (5-5b)

where �1 and �2 are positive distances measured from the interface to media 1 and 2, respectively.
Associated with the electric and magnetic fields (5-1a) through (5-2c) are corresponding aver-

age power densities that can be written as

Si
av = 1

2
Re(Ei × Hi∗) = âz

|E0|2
2η1

(5-6a)

Sr
av = 1

2
Re(Er × Hr∗

) = −âz |�b |2 |E0|2
2η1

= −âz |�b |2S i
av (5-6b)

St
av = 1

2
Re(Et × Ht∗) = âz |T b |2 |E0|2

2η2
= âz |T b |2 η1

η2

|E0|2
2η1

= âz |T b |2 η1

η2
S i

av = âz
(
1 − |�b |2) S i

av (5-6c)
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It is apparent that the ratio of the reflected to the incident power densities is equal to the
square of the magnitude of the reflection coefficient. However, the ratio of the transmitted to the
incident power density is not equal to the square of the magnitude of the transmission coefficient;
this is one of the most common errors. Instead the ratio is proportional to the magnitude of the
transmission coefficient squared and weighted by the intrinsic impedances of the two media, as
given by (5-6c). Remember that the reflection and transmission coefficients relate the reflected and
transmitted field intensities to the incident field intensity. Since the total tangential components of
these field intensities on either side must be continuous across the boundary, the transmitted field
could be greater than the incident field, which would require a transmission coefficient greater
than unity. However, by the conservation of power, it is well known that the transmitted power
density cannot exceed the incident power density.

Example 5-1

A uniform plane wave traveling in free space is incident normally upon a flat semi-infinite lossless
medium with a dielectric constant of 2.56 (being representative of polystyrene). Determine the reflection
and transmission coefficients as well as the incident, reflected, and transmitted power densities. Assume
that the amplitude of the incident electric field at the interface is 1 mV/m.

Solution: Since ε1 = ε0 and ε2 = 2.56ε0,

μ1 = μ2 = μ0

then

η1 =
√

μ1

ε1
=

√
μ0

ε0

η2 =
√

μ2

ε2
=

√
μ0

2.56ε0
= 1

1.6

√
μ0

ε0
= η1

1.6

Thus according to (5-4a) and (5-4b)

�b = η2 − η1

η2 + η1
=

1

1.6
− 1

1

1.6
+ 1

= 1 − 1.6

1 + 1.6
= −0.231

T b = 2η2

η1 + η2
=

2

(
1

1.6

)
1 + 1

1.6

= 2

2.6
= 0.769

In addition, the incident, reflected, and transmitted power densities are obtained using, respectively,
(5-6a), (5-6b), and (5-6c). Thus

S i
av = |E0|2

2η1
= (10−3)2

2(376.73)
= 1.327 × 10−9 W/m2 = 1.327 nW/m2

S r
av = |�b |2S i

av = | − 0.231|2(1.327) × 10−9 = 0.071 nW/m2

S t
av = |T b |2 η1

η2
S i

av = |0.769|2 1

1/1.6
(1.327) × 10−9 = 1.256 nW/m2

or
S t

av = (1 − |�b |2)S i
av = (1 − |0.231|2)(1.327) × 10−9 = 1.256 nW/m2
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In medium 1, the total field is equal to the sum of the incident and reflected fields. Thus, for the
total electric and magnetic fields in medium 1, we can write that

E1 = Ei + Er = âx E0e−jβ1z︸ ︷︷ ︸
traveling

wave

(1 + �be+j 2β1z )︸ ︷︷ ︸
standing

wave

= âx E0e−jβ1z [1 + �(z )] (5-7a)

H1 = Hi + Hr = ây (E0/η1)e
−jβ1z︸ ︷︷ ︸

traveling
wave

(1 − �be+j 2β1z )︸ ︷︷ ︸
standing

wave

= ây
E0

η1
e−jβ1z [1 − �(z )] (5-7b)

In each expression the factors outside the parentheses represent the traveling wave part of the wave
and those within the parentheses represent the standing wave part . Therefore the total field of two waves
is the product of one of the waves times a factor that in this case is the standing wave pattern. This
is analogous to the array multiplication rule in antennas where the total field of an array of identical
elements is equal to the product of the field of a single element times a factor that is referred to as the
array factor [1].

As discussed in Section 4.2.1D, the ratio of the maximum value of the electric field magnitude to
that of the minimum is defined as the standing wave ratio (SWR), and it is given here by

SWR = |E1|max

|E1|min
= 1 + |�b |

1 − |�b | =
1 +

∣∣∣∣η2 − η1

η2 + η1

∣∣∣∣
1 −

∣∣∣∣η2 − η1

η2 + η1

∣∣∣∣ (5-8)

For two media with identical permeabilities (μ1 = μ2), the SWR can be written as

SWR =
∣∣√ε1 + √

ε2
∣∣ + ∣∣√ε1 − √

ε2
∣∣∣∣√ε1 + √

ε2
∣∣ − ∣∣√ε1 − √

ε2
∣∣ =

⎧⎪⎪⎨⎪⎪⎩
√

ε1

ε2
, ε1 > ε2√

ε2

ε1
, ε2 > ε1

(5-9a)

(5-9b)

5.3 OBLIQUE INCIDENCE—LOSSLESS MEDIA

To analyze reflections and transmissions at oblique wave incidence, we need to introduce the
plane of incidence, which is defined as the plane formed by a unit vector normal to the reflecting
interface and the vector in the direction of incidence. For a wave whose wave vector is on the xz
plane and is incident upon an interface that is parallel to the xy plane, as shown in Figure 5-2,
the plane of incidence is the xz plane.

To examine reflections and transmissions at oblique angles of incidence for a general wave
polarization, it is most convenient to decompose the electric field into its perpendicular and
parallel components (relative to the plane of incidence) and analyze each one of them individually.
The total reflected and transmitted field will be the vector sum of these two polarizations.

When the electric field is perpendicular to the plane of incidence, the polarization of the wave
is referred to as perpendicular polarization . Since the electric field is parallel to the interface,
it is also known as horizontal or E polarization . When the electric field is parallel to the plane
of incidence, the polarization is referred to as parallel polarization . Because a component of
the electric field is also perpendicular to the interface when the magnetic field is parallel to the
interface, it is also known as vertical or H polarization . Each type of polarization will be further
examined.
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Figure 5-2 Perpendicular (horizontal) polarized uniform plane wave incident at an oblique angle on an
interface.

5.3.1 Perpendicular (Horizontal or E) Polarization

Let us now assume that the electric field of the uniform plane wave incident on a planar interface
at an oblique angle, as shown in Figure 5-2, is oriented perpendicularly to the plane of incidence.
As previously stated, this is referred to as the perpendicular polarization.

Using the techniques outlined in Section 4.2.2, the incident electric and magnetic fields can
be written as

Ei
⊥ = ây E i

⊥e−jβi • r = ây E0e−jβ1(x sin θi +z cos θi ) (5-10a)

Hi
⊥ = (−âx cos θi + âz sin θi ) H i

⊥e−jβi • r

= (−âx cos θi + âz sin θi )
E0

η1
e−jβ1(x sin θi +z cos θi ) (5-10b)

where

E i
⊥ = E0 (5-10c)

H i
⊥ = E i

⊥
η1

= E0

η1
(5-10d)

Similarly, the reflected fields can be expressed as

Er
⊥ = ây E r

⊥e−jβr • r = ây�
b
⊥E0e−jβ1(x sin θr −z cos θr ) (5-11a)

Hr
⊥ = (âx cos θr + âz sin θr ) H r

⊥e−jβr • r

= (âx cos θr + âz sin θr )
�b

⊥E0

η1
e−jβ1(x sin θr −z cos θr ) (5-11b)

where

E r
⊥ = �b

⊥E i = �b
⊥E0 (5-11c)

H r
⊥ = E r

⊥
η1

= �b
⊥E0

η1
(5-11d)
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Also the transmitted fields can be written as

Et
⊥ = ây E t

⊥e−jβt • r = ây T b
⊥E0e−jβ2(x sin θt +z cos θt ) (5-12a)

Ht
⊥ = (−âx cos θt + âz sin θt ) H t

⊥e−jβt • r

= (−âx cos θt + âz sin θt )
T b

⊥E0

η2
e−jβ2(x sin θt +z cos θt ) (5-12b)

where

E t
⊥ = T b

⊥E i
⊥ = T b

⊥E0 (5-12c)

H t
⊥ = E t

⊥
η2

= T b
⊥E0

η2
(5-12d)

The reflection �b
⊥ and transmission T b

⊥ coefficients, and the relation between the incident θi ,
reflected θr , and transmission (refracted) θt angles can be obtained by applying the boundary
conditions on the continuity of the tangential components of the electric and magnetic fields.
That is (

Ei
⊥ + Er

⊥
) ∣∣tan

z=0
= (

Et
⊥
) ∣∣tan

z=0
(5-13a)(

Hi
⊥ + Hr

⊥
) ∣∣tan

z=0
= (

Ht
⊥
) ∣∣tan

z=0
(5-13b)

Using the appropriate terms of (5-10a) through (5-12d), (5-13a) and (5-13b) can be written,
respectively, as

e−jβ1x sin θi + �b
⊥e−jβ1x sin θr = T b

⊥e−jβ2x sin θt (5-14a)

1

η1

(− cos θi e
−jβ1x sin θi + �b

⊥ cos θr e−jβ1x sin θr
) = −T b

⊥
η2

cos θt e
−jβ2x sin θt (5-14b)

Whereas (5-14a) and (5-14b) represent two equations with four unknowns (�b
⊥, T b

⊥, θr , θt ), it
should be noted that each equation is complex. By equating the corresponding real and imaginary
parts of each side, each can be reduced to two equations (a total of four). If this procedure is
utilized, it will be concluded that (5-14a) and (5-14b) lead to the following two relations:

θr = θi (Snell’s law of reflection) (5-15a)

β1 sin θi = β2 sin θt (Snell’s law of refraction) (5-15b)

Using (5-15a) and (5-15b) reduces (5-14a) and (5-14b) to

1 + �b
⊥ = T b

⊥ (5-16a)

cos θi

η1

(−1 + �b
⊥
) = −cos θt

η2
T b

⊥ (5-16b)

Solving (5-16a) and (5-16b) simultaneously for �b
⊥ and T b

⊥ leads to

�b
⊥ = E r

⊥
E i

⊥
= η2 cos θi − η1 cos θt

η2 cos θi + η1 cos θt
=

√
μ2

ε2
cos θi −

√
μ1

ε1
cos θt√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

(5-17a)
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T b
⊥ = E t

⊥
E i

⊥
= 2η2 cos θi

η2 cos θi + η1 cos θt
=

2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

(5-17b)

�b
⊥ and T b

⊥ of (5-17a) and (5-17b) are usually referred to as the plane wave Fresnel reflection
and transmission coefficients for perpendicular polarization.

Since for most dielectric media (excluding ferromagnetic material) μ1 � μ2 � μ0, (5-17a) and
(5-17b) reduce, by also utilizing (5-15b), to

�b
⊥
∣∣
μ1=μ2

=
cos θi −

√
ε2

ε1

√
1 −

(
ε1

ε2

)
sin2 θi

cos θi +
√

ε2

ε1

√
1 −

(
ε1

ε2

)
sin2 θi

(5-18a)

T b
⊥
∣∣
μ1=μ2

= 2 cos θi

cos θi +
√

ε2

ε1

√
1 −

(
ε1

ε2

)
sin2 θi

(5-18b)

Plots of |�b
⊥| and |T b

⊥| of (5-18a) and (5-18b) for ε2/ε1 = 2.56, 4, 9, 16, 25, and 81 as a
function of θi are shown in Figure 5-3. It is apparent that as the relative ratio of ε2/ε1 increases,
the magnitude of the reflection coefficient increases, whereas that of the transmission coeffi-
cient decreases. This is expected since large ratios of ε2/ε1 project larger discontinuities in the
dielectric properties of the media along the interface. Also it is observed that for ε2 > ε1 the
magnitude of the reflection coefficient never vanishes regardless of the ε2/ε1 ratio or the angle of
incidence.

For ε2/ε1 > 1, both �b
⊥ and T b

⊥ are real with �b
⊥ being negative and T b

⊥ being positive for all
angles of incidence. Therefore, as a function of θi , the phase of �b

⊥ is equal to 180◦ and that
of the transmission coefficient T b

⊥ is zero. When ε2/ε1 = 1 the reflection coefficient vanishes
and the transmission coefficient reduces to unity. When ε2/ε1 < 1, both �b

⊥ and T b
⊥ are real

when the incidence angle θi ≤ θc ; for θi > θc , they become complex. The angle θi for which
|�b

⊥|ε2/ε1<1(θi = θc) = 1 is referred to as the critical angle, and it represents conditions of total
internal reflection. More discussion on the critical angle (θi = θc) and the wave propagation for
θi > θc can be found in Section 5.3.4.

In medium 1 the total electric field can be written as

E1
⊥ = Ei

⊥ + Er
⊥ = ây E0e−jβ1(x sin θ1+z cos θi )︸ ︷︷ ︸

traveling wave

[
1 + �b

⊥e+j 2β1z cos θi
]︸ ︷︷ ︸

standing wave

= ây E0e−jβ1(x sin θi +z cos θi ) [1 + �⊥(z )] (5-19)

where

�⊥(z ) = �b
⊥e+j 2β1z cos θi (5-19a)
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Figure 5-3 Magnitude of coefficients for perpendicular polarization as a function of incident angle.
(a) Reflection. (b) Transmission.
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Figure 5-4 Parallel (vertical) polarized uniform plane wave incident at an oblique angle on an interface.

5.3.2 Parallel (Vertical or H) Polarization

For this polarization the electric field is parallel to the plane of incidence and it impinges upon a
planar interface as shown in Figure 5-4. The directions of the incident, reflected, and transmitted
electric and magnetic fields in Figure 5-4 are chosen so that for the special case of θi = 0 they
reduce to those of Figure 5-1.

Using the techniques outlined in Section 4.2.2, we can write that

Ei
|| = (âx cos θi − âz sin θi )E0e−jβi • r

= (âx cos θi − âz sin θi )E0e−jβ1(x sin θi +z cos θi ) (5-20a)

Hi
|| = ây H i

|| e
−jβi • r = ây

E0

η1
e−jβ1(x sin θi +z cos θi ) (5-20b)

where

E i
|| = E0 (5-20c)

H i
|| = E i

||
η1

= E0

η1
(5-20d)

Similarly,

Er
|| = (âx cos θr + âz sin θr )E

r e−jβr • r

= (âx cos θr + âz sin θr )�
b
|| E0e−jβ1(x sin θr −z cos θr ) (5-21a)

Hr
|| = −ây H r

|| e−jβr • r = −ây

�b
|| E0

η1
e−jβ1(x sin θr −z cos θr ) (5-21b)

where

E r
|| = �b

|| E
i = �b

|| E0 (5-21c)

H r
|| = E r

||
η1

= �b
|| E0

η1
(5-21d)
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Also,

Et
|| = (âx cos θt − âz sin θt )E

t
||e

−jβt • r

= (âx cos θt − âz sin θt )T
b
|| E0e−jβ2(x sin θt +z cos θt ) (5-22a)

Ht
|| = ây H t

|| e
−jβt • r = ây

T b
|| E0

η2
e−jβ2(x sin θt +z cos θt ) (5-22b)

where

E t
|| = T b

|| E i = T b
|| E0 (5-22c)

H t
|| = E t

||
η2

= T b
|| E0

η2
(5-22d)

As before, the reflection �b
|| and transmission T b

|| coefficients, and the reflection θr and trans-
mission (refraction) θt angles are the four unknowns. These can be determined and expressed in
terms of the incident angle θi and the constitutive parameters of the two media by applying the
boundary conditions on the continuity across the interface (z = 0) of the tangential components
of the electric and magnetic fields as given by (5-13a) and (5-13b) and applied to parallel polar-
ization. Using the appropriate terms of (5-20a) through (5-22d), we can write (5-13a) and (5-13b)
as applied to parallel polarization, respectively, as

cos θi e
−jβ1x sin θi + �b

|| cos θr e−jβ1x sin θr = T b
|| cos θt e

−jβ2x sin θt (5-23a)

1

η1

(
e−jβ1x sin θi − �b

|| e
−jβ1x sin θr

) = 1

η2
T b

|| e−jβ2x sin θt (5-23b)

Following the procedure outlined in Section 5.3.1 for the solution of (5-14a) and (5-14b), it
can be shown that (5-23a) and (5-23b) reduce to

θr = θi (Snell’s law of reflection) (5-24a)

β1 sin θi = β2 sin θt (Snell’s law of refraction) (5-24b)

�b
|| = −η1 cos θi + η2 cos θt

η1 cos θi + η2 cos θt
=

−
√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt

(5-24c)

T b
|| = 2η2 cos θi

η1 cos θi + η2 cos θt
=

2
√

μ2

ε2
cos θi√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt

(5-24d)

�b
|| and T b

|| of (5-24c) and (5-24d) are usually referred to as the plane wave Fresnel reflection
and transmission coefficients for parallel polarization.
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Excluding ferromagnetic material, (5-24c) and (5-24d) reduce, using also (5-24b), to

�b
||
∣∣
μ1=μ2

=
− cos θi +

√
ε1

ε2

√
1 −

(
ε1

ε2

)
sin2 θi

cos θi +
√

ε1

ε2

√
1 −

(
ε1

ε2

)
sin2 θi

(5-25a)

T b
||
∣∣
μ1=μ2

=
2
√

ε1

ε2
cos θi

cos θi +
√

ε1

ε2

√
1 −

(
ε1

ε2

)
sin2 θi

(5-25b)

Plots of |�b
|| | and |T b

|| | of (5-25a) and (5-25b) for ε2/ε1 = 2.56, 4, 9, 16, 25, and 81 as a function of
θi are shown in Figure 5-5. It is observed in Figure 5-5a that for this polarization there is an angle
where the reflection coefficient does vanish. The angle where the reflection coefficient vanishes
is referred to as the Brewster angle, θB, and it increases toward 90◦ as the ratio ε2/ε1 becomes
larger. More discussion on the Brewster angle can be found in the next section (Section 5.3.3).

For ε2/ε1 > 1, �b
|| and T b

|| are both real. For angles of incidence less than the Brewster angle
(θi < θB), �b

|| is negative, indicating a 180◦ phase as a function of the incident angle; for
θi > θB, �b

|| is positive, representing a 0◦ phase. The transmission coefficient T b
|| is positive for all

values of θi , indicating a 0◦ phase. When ε2/ε1 = 1, the reflection coefficient vanishes and the
transmission coefficient reduces to unity. As for the perpendicular polarization, when ε2/ε1 < 1
both �b

|| and T b
|| are real when the incident angle θi ≤ θc ; after that, they become complex. The

angle for which |�b
|| |ε2/ε1<1(θi = θc) = 1 is again referred to as critical angle, and it represents

conditions of total internal reflection. Further discussion of the critical angle (θi = θc) and the
wave propagation for θi > θc can be found in Section 5.3.4. It is evident that the critical angle is
not a function of polarization; it occurs only when the wave propagates from the more dense to
the less dense medium.

The total electric field in medium 1 can be written as

E1
|| = Ei

|| + Er
|| = âx cos θi E0e−jβ1(x sin θi +z cos θi )︸ ︷︷ ︸

traveling wave

[
1 + �b

|| e
+j 2β1z cos θi

]︸ ︷︷ ︸
standing wave

−âz sin θi E0e−jβ1(x sin θi +z cos θi )︸ ︷︷ ︸
traveling wave

[
1 − �b

|| e
+j 2β1z cos θi

]︸ ︷︷ ︸
standing wave

E1
|| = E1

x + E1
z = âx cos θi E0e−jβ1(x sin θi +z cos θi )

[
1 + �|| (z )

]
−âz sin θi E0e−jβ1(x sin θi +x cos θi )

[
1 − �|| (z )

]
(5-26)

where

�|| (z ) = �b
|| e

+j 2β1z cos θi (5-26a)

5.3.3 Total Transmission–Brewster Angle

The reflection and transmission coefficients for both perpendicular and parallel polarizations are
functions of the constitutive parameters of the two media forming the interface, the angle of
incidence, and the angle of refraction that is related to the angle of incidence through Snell’s law
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Figure 5-5 Magnitude of coefficients for parallel polarization as a function of incident angle. (a) Reflection.
(b) Transmission.
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of refraction. One may ask: “For a given set of constitutive parameters of two media forming
an interface, is there an incidence angle that allows no reflection, i.e., � = 0?” To answer this
we need to refer back to the expressions for the reflection coefficients as given by (5-17a) and
(5-24c).

A. Perpendicular (Horizontal) Polarization To see the conditions under which the reflection
coefficient of (5-17a) will vanish, we set it equal to zero, which leads to

�b
⊥ =

√
μ2

ε2
cos θi −

√
μ1

ε1
cos θt√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

= 0 (5-27)

or

cos θi =
√

μ1

μ2

(
ε2

ε1

)
cos θt (5-27a)

Using Snell’s law of refraction, as given by (5-15b), (5-27a) can be written as

(1 − sin2 θi ) = μ1

μ2

(
ε2

ε1

)
(1 − sin2 θt )

(1 − sin2 θi ) = μ1

μ2

(
ε2

ε1

)[
1 − μ1

μ2

(
ε1

ε2

)
sin2 θi

]
(5-28)

or

sin θi =

ε2

ε1
−

μ2

μ1
μ1

μ2
−

μ2

μ1
(5-28a)

Since the sine function cannot exceed unity, (5-28a) exists only if

ε2

ε1
− μ2

μ1
≤ μ1

μ2
− μ2

μ1
(5-29)

or
ε2

ε1
≤ μ1

μ2
(5-29a)

If however μ1 = μ2, (5-28a) indicates that

sin θi |μ1=μ2 = ∞ (5-29b)

Therefore there exists no real angle θi under this condition that will reduce the reflection coeffi-
cient to zero. Since the permeability for most dielectric material (aside from ferromagnetics) is
almost the same and equal to that of free space (μ1 � μ2 � μ0), for these materials there exists
no real incidence angle that will reduce the reflection coefficient for perpendicular polarization
to zero.
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B. Parallel (Vertical) Polarization To examine the conditions under which the reflection
coefficient for parallel polarization will vanish, we set (5-24c) equal to zero; that is

�b
|| =

−
√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt

= 0 (5-30)

or

cos θi =
√

μ2

μ1

(
ε1

ε2

)
cos θt (5-30a)

Using Snell’s law of refraction, as given by (5-24b), (5-30a) can be written as(
1 − sin2 θi

) = μ2

μ1

(
ε1

ε2

)
(1 − sin2 θt )

(1 − sin2 θi ) = μ2

μ1

(
ε1

ε2

)[
1 − μ1

μ2

(
ε1

ε2

)
sin2 θi

]
(5-31)

or

sin θi =

ε2

ε1
−

μ2

μ1

−
ε2

ε1

ε1

ε2
(5-31a)

Since the sine function cannot exceed unity, (5-31a) exists only if

ε2

ε1
− μ2

μ1
≤ ε2

ε1
− ε1

ε2
(5-32)

or
μ2

μ1
≥ ε1

ε2
(5-32a)

If, however, μ1 = μ2, (5-31a) reduces to

θi = θB = sin−1

(√
ε2

ε1 + ε2

)
(5-33)

The incident angle θi , as given by (5-31a) or (5-33), which reduces the reflection coefficient
for parallel polarization to zero, is referred to as the Brewster angle, θB. It should be noted that
when μ1 = μ2, the incidence Brewster angle θi = θB of (5-33) exists only if the polarization of
the wave is parallel (vertical).

Other forms of the Brewster angle, besides that given by (5-33), are

θi = θB = cos−1

(√
ε1

ε1 + ε2

)
(5-33a)

θi = θB = tan−1

(√
ε2

ε1

)
(5-33b)
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Example 5-2

A parallel polarized electromagnetic wave radiated from a submerged submarine impinges upon a
water–air planar interface. Assuming the water is lossless, its dielectric constant is 81, and the wave
approximates a plane wave at the interface, determine the angle of incidence to allow complete trans-
mission of the energy.

Solution: The angle of incidence that allows complete transmission of the energy is the Brewster
angle. Using (5-33b), the Brewster angle of the water–air interface is

θiwa = θBwa = tan−1
(√

ε0

81ε0

)
= tan−1

(
1

9

)
= 6.34◦

This indicates that the Brewster angle is close to the normal to the interface.

Example 5-3

Repeat the problem of Example 5-2 assuming that the same wave is radiated from a spacecraft in air,
and it impinges upon the air–water interface.

Solution: The Brewster angle for an air–water interface is

θiaw = θBaw = tan−1

(√
81ε0

ε0

)
= tan−1(9) = 83.66◦

It is apparent that the sum of the Brewster angle of Example 5-2 (water–air interface) plus that of
Example 5-3 (air–water interface) is equal to 90◦. That is

θBwa + θBaw = 6.34◦ + 83.66◦ = 90◦

From trigonometry, it is obvious that the preceding relation is always going to hold, no matter what
two media form the interface.

5.3.4 Total Reflection–Critical Angle

In Section 5.3.3 we found the angles that allow total transmission for perpendicular, (5-28a), and
parallel, (5-31a), polarizations. When the permeabilities of the two media forming the interface
are the same (μ1 = μ2), only parallel polarized fields possess an incidence angle that allows
total transmission. As before, that angle is known as the Brewster angle, and it is given by either
(5-33), (5-33a), or (5-33b).

The next question we will consider is: “Is there an incident angle that allows total reflection of
energy at a planar interface?” If this is possible, then |�| = 1. To determine the conditions under
which this can be accomplished, we proceed in a similar manner as for the total transmission
case of Section 5.3.3.

A. Perpendicular (Horizontal) Polarization To see the conditions under which the mag-
nitude of the reflection coefficient is equal to unity, we set the magnitude of (5-17a) equal
to ∣∣∣∣√μ2

ε2
cos θi −

√
μ1

ε1
cos θt

∣∣∣∣∣∣∣∣√μ2

ε2
cos θi +

√
μ1

ε1
cos θt

∣∣∣∣ = 1 (5-34)
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This is satisfied provided the second term in the numerator and denominator is imaginary. Using
Snell’s law of refraction, as given by (5-15b), the second term in the numerator and denominator
can be imaginary if

cos θt =
√

1 − sin2 θt =
√

1 − μ1ε1

μ2ε2
sin2 θi = −j

√
μ1ε1

μ2ε2
sin2 θi − 1 (5-35)

In order for (5-35) to hold
μ1ε1

μ2ε2
sin2 θi ≥ 1 (5-35a)

or

θi ≥ θc = sin−1

(√
μ2ε2

μ1ε1

)
(5-35b)

The incident angle θi of (5-35b) that allows total reflection is known as the critical angle. Since
the argument of the inverse sine function cannot exceed unity, then

μ2ε2 ≤ μ1ε1 (5-35c)

in order for the critical angle (5-35b) to be physically realizable.
If the permeabilities of the two media are the same (μ1 = μ2), then (5-35b) reduces to

θi ≥ θc = sin−1

(√
ε2

ε1

)
(5-36)

which leads to a physically realizable angle provided

ε2 ≤ ε1 (5-36a)

Therefore for two media with identical permeabilities (which is the case for most dielectrics,
aside from ferromagnetic material), the critical angle exists only if the wave propagates from a
more dense to a less dense medium, as stated by (5-36a).

Example 5-4

A perpendicularly polarized wave radiated from a submerged submarine impinges upon a water–air
interface. Assuming the water is lossless, its dielectric constant is 81, and the wave approximates a
plane wave at the interface, determine the angle of incidence that will allow complete reflection of the
energy at the interface.

Solution: The angle of incidence that allows complete reflection of energy is the critical angle. Since
for water μ2 = μ0, the critical angle is obtained using (5-36), which leads to

θi ≥ θc = sin−1
(√

ε0

81ε0

)
= 6.38◦

Since there is a large difference between the permittivities of the two media forming the interface, the
critical angle of this example is very nearly the same as the Brewster angle of Example 5-2.
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The next question we will answer is: “What happens to the angle of refraction and to the
propagation of the wave when the angle of incidence is equal to or greater than the critical
angle?”

When the angle of incidence is equal to the critical angle, the angle of refraction reduces,
through Snell’s law of refraction (5-15b) and (5-35b), to

θt = sin−1

(√
μ1ε1

μ2ε2
sin θi

)∣∣∣∣
θi =θc

= sin−1

(√
μ1ε1

μ2ε2

√
μ2ε2

μ1ε1

)
= sin−1(1) = 90◦ (5-37)

In turn the reflection and transmission coefficients reduce to

�b
⊥|θi =θc = 1 (5-38a)

T b
⊥|θi =θc = 2 (5-38b)

Also the transmitted fields of (5-12a) and (5-12b) can be written as

Et
⊥ = ây 2E0e−jβ2x (5-39a)

Ht
⊥ = âz

2E0

η2
e−jβ2x (5-39b)

which represent a plane wave that travels parallel to the interface in the +x direction as shown
in Figure 5-6a . The constant phase planes of the wave are parallel to the z axis. This wave is
referred to as a surface wave [2].

The average power density associated with the transmitted fields is given by

St
av|θi =θc = 1

2
Re

(
Et

⊥ × Ht∗
⊥
) ∣∣∣

θi =θc
= âx

2|E0|2
η2

(5-40)

and it does not contain any component normal to the interface. Therefore, there is no transfer of
real power across the interface in a direction normal to the boundary; thus, all power must be
reflected. This is also evident by examining the magnitude of the incident and reflected average
power densities associated with the fields (5-10a) through (5-11d) under critical angle incidence.
These are obviously identical and are given by

|Si
av|θi =θc =

∣∣∣∣1

2
Re

(
Ei

⊥ × Hi∗
⊥
)∣∣∣∣

θi =θc

= |E0|2
2ηi

|âx sin θi + âz cos θi | = |E0|2
2η1

(5-41a)

|Sr
av|θi =θc =

∣∣∣∣1

2
Re

(
Er

⊥ × Hr∗
⊥
)∣∣∣∣

θi =θc

= |E0|2
2η1

|âx sin θi − âz cos θi | = |E0|2
2η1

(5-41b)

When the angle of incidence θi is greater than the critical angle θc(θi > θc), Snell’s law of
refraction can be written as [3]

sin θt |θi > θc = β1

β2
sin θi

∣∣∣∣
θi >θc

=
√

μ1ε1

μ2ε2
sin θi

∣∣∣∣
θi > θc

> 1 (5-42a)

which can only be satisfied provided θt is complex, that is, θt = θR + jθX , where θX �= 0. Also

cos θt |θi > θc =
√

1 − sin2 θt

∣∣∣
θi > θc

=
√

1 − μ1ε1

μ2ε2
sin2 θi

∣∣∣∣
θi >θc

= ±j

√
μ1ε1

μ2ε2
sin2 θi − 1

∣∣∣∣
θi > θc

(5-42b)

which again indicates that θt is complex.
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Figure 5-6 Constant phase and amplitude planes for incident angles. (a) Critical (θi = θc). (b) Above
critical (θi >θc).

Therefore when θi > θc , there is no physically realizable angle θt . If not, what really does
happen to the wave propagation? Since under this condition θt is complex and not physically
realizable, this may be a clue that the wave in medium 2 is again a surface wave. To see this, let
us examine the field in medium 2, the reflection and transmission coefficients, and the average
power densities.

When the angle of incidence exceeds the critical angle (θi > θc), the transmitted E field of
(5-12a) can be written, using (5-15b) and (5-35b), as

Et
⊥|θi > θc = ây T b

⊥E0 exp(−jβ2x sin θt ) exp(−jβ2z cos θt )|θi > θc

= ây T b
⊥E0 exp

[
−jβ2x

(√
μ1ε1

μ2ε2
sin θi

)]
exp

(
−jβ2z

√
1 − sin2 θt

)∣∣∣∣
θi > θc
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Et
⊥|θi > θc = ây T b

⊥E0 exp

[
−jβ2x

(√
μ1ε1

μ2ε2
sin θi

)]
exp

(
−jβ2z

√
1 − μ1ε1

μ2ε2
sin2 θi

)∣∣∣∣
θi > θc

= ây T b
⊥E0 exp

[
−jβ2x

(√
μ1ε1

μ2ε2
sin θi

)]
exp

(
−β2z

√
μ1ε1

μ2ε2
sin2 θi − 1

)∣∣∣∣
θi > θc

= ây T b
⊥E0 exp

[
−β2z

(√
μ1ε1

μ2ε2
sin2 θi − 1

)]
exp

[
−jβ2x

(√
μ1ε1

μ2ε2
sin θi

)]∣∣∣∣
θi > θc

Et
⊥|θi > θc = ây T b

⊥E0e−αe z e−jβe x (5-43)

where

αe = β2

√
μ1ε1

μ2ε2
sin2 θi − 1

∣∣∣∣
θi > θc

= ω

√
μ1ε1 sin2 θi − μ2ε2

∣∣∣∣
θi > θc

(5-43a)

βe = β2

√
μ1ε1

μ2ε2
sin θi

∣∣∣∣
θi > θc

= ω
√

μ1ε1 sin θi

∣∣
θi > θc

(5-43b)

vpe = ω

βe
= ω

β2

√
μ1ε1

μ2ε2
sin θi

∣∣∣∣∣∣∣∣
θi >θc

= vp2√
μ1ε1

μ2ε2
sin θi

∣∣∣∣∣∣∣∣
θi >θc

= 1√
μ1ε1 sin θi

< vp2 (5-43c)

The wave associated with (5-43) also propagates parallel to the interface with constant phase
planes that are parallel to the z axis, as shown in Figure 5-6b. The effective phase velocity vpe of
the wave is given by (5-43c), and it is less than vp2 of an ordinary wave in medium 2. The wave
also possesses constant amplitude planes that are parallel to the x axis, as shown in Figure 5-6b.
The effective attenuation constant αe of the wave in the z direction is that given by (5-43a).
Its values are such that the wave decays very rapidly, and in a few wavelengths it essentially
vanishes. This wave is also a surface wave. Since its phase velocity is less than the speed of
light, it is a slow surface wave. Also since it decays very rapidly in a direction normal to the
interface, it is tightly bound to the surface—i.e., it is a tightly bound slow surface wave.

Phase velocities greater than the intrinsic phase velocity of an ordinary plane wave in a
given medium can be achieved by uniform plane waves at real oblique angles of propagation,
as illustrated in Section 4.2.2C; phase velocities smaller than the intrinsic velocity can only be
achieved by uniform plane waves at complex angles of propagation. Waves traveling at complex
angles are nonuniform plane waves oriented so as to provide small phase velocities or large rates
of change of phase in a given direction. The price for such large rates of change of phase or
small velocities in one direction is associated with large attenuation at perpendicular directions.

Example 5-5

Assume that θi >θc (so the angle of refraction θt = θR + jθX is complex, i.e. θX �= 0). Determine the
real (θR) and imaginary (θX ) parts of θt in terms of the constitutive parameters of the two media and
the angle of incidence.

Solution: Using (5-42a)

sin θt = sin(θR + jθX ) =
√

μ1ε1

μ2ε2
sin θi
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or

sin(θR) cosh(θX ) + j cos(θR) sinh(θX ) =
√

μ1ε1

μ2ε2
sin θi

Since the right side is real, then the only solution that exists is for the imaginary part of the left side to
vanish and the real part to be equal to the real part of the right side. Thus

cos(θR) sinh(θX ) = 0 ⇒ θR = π

2

sin(θR) cosh(θX ) =
√

μ1ε1

μ2ε2
sin θi ⇒ θX = cosh−1

(√
μ1ε1

μ2ε2
sin θi

)
In turn cos θt is defined as

cos θt = cos(θR + jθX ) = cos(θR) cosh(θX ) − j sin(θR) sinh(θX )

or
cos θt = −j sinh(θX )

which again is shown to be complex as was in (5-42b). When these expressions for sin θt and cos θt are
used to represent the fields in medium 2, it will be shown that the fields are nonuniform plane waves
as illustrated by (5-43).

Under the conditions where the angle of incidence is equal to or greater than the critical angle,
the reflection �b

⊥ and transmission T b
⊥ coefficients of (5-17a) and (5-17b) reduce, respectively, to

[3]

�b
⊥|θi ≥θc =

√
μ2

ε2
cos θi −

√
μ1

ε1
cos θt√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

∣∣∣∣∣∣∣∣
θi ≥θc

=

√
μ2

ε2
cos θi −

√
μ1

ε1

√
1 − sin2 θt√

μ2

ε2
cos θi +

√
μ1

ε1

√
1 − sin2 θt

∣∣∣∣∣∣∣∣
θi ≥θc

=

√
μ2

ε2
cos θi −

√
μ1

ε1

√
1 − μ1ε1

μ2ε2
sin2 θi√

μ2

ε2
cos θi +

√
μ1

ε1

√
1 − μ1ε1

μ2ε2
sin2 θi

∣∣∣∣∣∣∣∣
θi ≥θc

=

√
μ2

ε2
cos θi + j

√
μ1

ε1

√
μ1ε1

μ2ε2
sin2 θi − 1√

μ2

ε2
cos θi − j

√
μ1

ε1

√
μ1ε1

μ2ε2
sin2 θi − 1

∣∣∣∣∣∣∣∣
θi ≥θc

�b
⊥|θi ≥θc = |�b

⊥|ej 2ψ⊥ = ej 2ψ⊥ (5-44)

where

|�b
⊥| = 1 (5-44a)
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ψ⊥ = tan−1

[
X⊥
R⊥

]
(5-44b)

X⊥ =
√

μ1

ε1

√
μ1ε1

μ2ε2
sin2 θi − 1 (5-44c)

R⊥ =
√

μ2

ε2
cos θi (5-44d)

T b
⊥|θi ≥θc =

2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

∣∣∣∣∣∣∣∣
θi ≥θc

=
2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi +

√
μ1

ε1

√
1 − sin2 θt

∣∣∣∣∣∣∣∣
θi ≥θc

=
2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi +

√
μ1

ε1

√
1 − μ1ε1

μ2ε2
sin2 θi

∣∣∣∣∣∣∣∣
θi ≥θc

=
2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi − j

√
μ1

ε1

√
μ1ε1

μ2ε2
sin2 θi − 1

∣∣∣∣∣∣∣∣
θi ≥θc

T b
⊥|θi ≥θc = |T b

⊥|ejψ⊥ (5-45)

where

|T b
⊥| = 2R⊥√

R2
⊥ + X 2

⊥
(5-45a)

In addition, the transmitted average power density can now be written, using (5-12a) through
(5-12b) and the modified forms (5-43) through (5-43b) for the fields when the incidence angle is
equal to or greater than the critical angle, as

St
av|θi ≥θc = 1

2
Re(Et × Ht∗)θi ≥θc

= 1

2
Re

[(
ây T b

⊥E0e−αe z e−jβe x
)×(−âx cos θt +âz sin θt )

∗ (T b
⊥)∗E ∗

0

η2
e−αe z e+jβe x

]
θi ≥θc

= 1

2
Re

{[
âz (cos θt )

∗ + âx (sin θt )
∗] |T b

⊥|2|E0|2
η2

e−2αe z

}
θi ≥θc

St
av|θi ≥θc = 1

2
Re

{[
âz

(√
1 − sin2 θt

)∗
+ âx (sin θt )

∗
] |T b

⊥|2|E0|2
η2

e−2αe z

}
θi ≥θc
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St
av|θi ≥θc = 1

2
Re

{[
âz

(√
1 − μ1ε1

μ2ε2
sin2 θi

)∗

+âx

(√
μ1ε1

μ2ε2
sin θi

)∗] |T b
⊥|2|E0|2

η2
e−2αe z

}
θi ≥θc

= 1

2
Re

{[
âz

(
−j

√
μ1ε1

μ2ε2
sin2 θi − 1

)
+âx

(√
μ1ε1

μ2ε2
sin θi

)] |T b
⊥|2|E0|2

η2
e−2αe z

}
θi ≥θc

St
av|θi ≥θc = âx

√
μ1ε1

μ2ε2
sin θi

|T b
⊥|2|E0|2

2η2
e−2αe z

∣∣∣∣
θi ≥θc

(5-46)

Again, from (5-46), it is apparent that there is no real power transfer across the interface in
a direction normal to the boundary. Therefore all the power must be reflected into medium 1.
This can also be verified by formulating and examining the incident and reflected average power
densities. Doing this, using the fields (5-10a) through (5-11b) where the reflection coefficient is
that of (5-44), shows that the magnitudes of the incident and reflected average power densities
are those of (5-41a) and (5-41b), which are identical.

The propagation of a wave from a medium with higher density to one with lower density
(ε2 < ε1 when μ1 = μ2) under oblique incidence can be summarized as follows.

1. When the angle of incidence is smaller than the critical angle (θi < θc = sin−1(
√

ε2/ε1)),
a wave is transmitted into medium 2 at an angle θt , which is greater than the incident angle
θi . Real power is transferred into medium 2, and it is directed along angle θt as shown in
Figure 5-7a .

2. As the angle of incidence increases and reaches the critical angle θi = θc = sin−1(
√

ε2/ε1),
the refracted angle θt , which varies more rapidly than the incident angle θi , approaches
90◦. Although a wave into medium 2 exists under this condition (which is necessary to
satisfy the boundary conditions), the fields form a surface wave that is directed along the
x axis (which is parallel to the interface). There is no real power transfer normal to the
boundary into medium 2, and all the power is reflected in medium 1 along reflected angle
θr as shown in Figure 5-7b. The constant phase planes are parallel to the z axis.

3. When the incident angle θi exceeds the critical angle θc[θi > θc = sin−1(
√

ε2/ε1)], a wave
into medium 2 still exists, which travels along the x axis (which is parallel to the interface)
and is heavily attenuated in the z direction (which is normal to the interface). There is no
real power transfer normal to the boundary into medium 2, and all power is reflected into
medium 1 along reflection angle θr , as shown in Figure 5-7c. Although there is no power
transferred into medium 2, a wave exists there that is necessary to satisfy the boundary
conditions on the continuity of the tangential components of the electric and magnetic fields.
The wave in medium 2 travels parallel to the interface with a phase velocity that is less
than that of an ordinary wave in the same medium [as given by (5-43c)], and it is rapidly
attenuated in a direction normal to the interface with an effective attenuation constant given
by (5-43a). This wave is tightly bound to the surface, and it is referred to as a tightly bound
slow surface wave.

The critical angle is used to design many practical instruments and transmission lines, such as
binoculars, dielectric covered ground plane (surface wave) transmission lines, fiber optic cables,
etc. To see how the critical angle may be utilized, let us consider an example.
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Figure 5-7 Critical angle wave propagation along an interface.
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Example 5-6

Determine the range of values of the dielectric constant of a dielectric slab of thickness t so that, when
a wave is incident on it from one of its ends at an oblique angle 0◦ ≤ θi ≤ 90◦, the energy of the wave
in the dielectric is contained within the slab. The geometry of the problem is shown in the Figure 5-8.

Solution: We assume that the slab width is infinite (two-dimensional geometry). To contain the
energy of the wave within the slab, the reflection angle θr of the wave bouncing within the slab must
be equal to or greater than the critical angle θc . By referring to Figure 5-8, the critical angle can be
related to the refraction angle θt by

sin θr = sin
(π

2
− θt

)
= cos θt ≥ sin θc =

√
ε0

εrε0
= 1√

εr

or
cos θt ≥ 1√

εr

At the interface formed at the leading edge, Snell’s law of refraction must be satisfied. That is,

β0 sin θi = β1 sin θt ⇒ sin θt = β0

β1
sin θi = 1√

εr
sin θi

Using this, we can write the aforementioned cos θt as

cos θt =
√

1 − sin2 θt =
√

1 − 1

εr
sin2 θi ≥ 1√

εr

or √
1 − 1

εr
sin2 θi ≥ 1√

εr

Solving this leads to
εr − sin2 θi ≥ 1

or
εr ≥ 1 + sin2 θi

To accommodate all possible angles, the dielectric constant must be

εr ≥ 2

since the smallest and largest values of θi , are, respectively, 0◦ and 90◦. This is achievable by many
practical dielectric materials such as Teflon (εr � 2.1), polystyrene (εr � 2.56), and many others.

er, e0e0

t
qi

qt
qr

Figure 5-8 Dielectric slab of thickness t and wave containment within.
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B. Parallel (Vertical) Polarization The procedure used to derive the critical angle and to
examine the properties for perpendicular (horizontal) polarization can be repeated for parallel
(vertical) polarization. However, it can be shown that the critical angle is not a function of
polarization, and that it exists for both parallel and perpendicular polarizations. The only limitation
of the critical angle is that the wave propagation be to a less dense medium (μ2ε2 < μ1ε1 or
ε2 < ε1 when μ1 = μ2).

The expression for the critical angle for parallel polarization is the same as that for perpendic-
ular polarization as given by (5-35b) or (5-36). In addition, the wave propagation phenomena that
occur for perpendicular polarization when the incidence angle is less than, equal to, or greater
than the critical angle are also identical to those for parallel polarization. Although the formulas
for the reflection and transmission coefficients, �b

|| and T b
|| respectively, and transmitted average

power density St
|| for parallel polarization are not identical to those of perpendicular polarization

as given by (5-44) through (5-46), the principles stated previously are identical here. The deriva-
tion of the specific formulas for the parallel polarization for critical angle propagation are left as
an end-of-chapter exercise for the reader.

5.4 LOSSY MEDIA

In the previous sections we examined wave reflection and transmission under normal and oblique
wave incidence when both media forming the interface are lossless. Let us now examine the
reflection and transmission of waves under normal and oblique incidence when either one or both
media are lossy [4]. Although in some cases the formulas will be the same as for the lossless
cases, there are differences, especially under oblique wave incidence.

5.4.1 Normal Incidence: Conductor–Conductor Interface

When a uniform plane wave is normally incident upon a planar interface formed by two lossy
media (as shown in Figure 5-1 but allowing for losses in both media through the conductivity σ ),
the incident, reflected, and transmitted fields, reflection and transmission coefficients, and average
power densities are identical to (5-1a) through (5-6c) except that (a) an attenuation constant must
be included in each field and (b) the intrinsic impedances, and attenuation and phases constants
must be modified to include the conductivities of the media. Thus we can summarize the results
here as

Ei = âx E0e−α1z e−jβ1z (5-47a)

Hi = ây
E0

η1
e−α1z e−jβ1z (5-47b)

Er = âx�
bE0e+α1z e+jβ1z (5-48a)

Hr = −ây
�bE0

η1
e+α1z e+jβ1z (5-48b)

Et = âx T bE0e−α2z e−jβ2z (5-49a)

Ht = ây
T bE0

η2
e−α2z e−jβ2z (5-49b)

�b = η2 − η1

η2 + η1
(5-50a)
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T b = 2η2

η2 + η1
(5-50b)

Si
av = âz

|E0|2
2

e−2α1z Re

(
1

η∗
1

)
(5-51a)

Sr
av = −âz |�b |2 |E0|2

2
e+2α1z Re

(
1

η∗
1

)
(5-51b)

St
av = âz |T b |2 |E0|2

2
e−2α2z Re

(
1

η∗
2

)
(5-51c)

For each lossy medium the attenuation constants αi , phase constants βi , and intrinsic impedances
ηi are related to the corresponding constitutive parameters εi , μi , and σi , by the expressions in
Table 4-1.

The total electric and magnetic fields in medium 1 can be written as

E1 = Ei + Er = âx E0e−α1z e−jβ1z︸ ︷︷ ︸
traveling wave

(1 + �be+2α1z e+j 2β1z )︸ ︷︷ ︸
standing wave

(5-52a)

H1 = Hi + Hr = ây (E0/η1)e
−α1z e−jβ1z︸ ︷︷ ︸

traveling wave

(1 − �be+2α1z e+j 2β1z )︸ ︷︷ ︸
standing wave

(5-52b)

In each field the factors outside the parentheses form the traveling wave part of the total wave;
those within the parentheses form the standing wave part .

Example 5-7

A uniform plane wave, whose incident electric field has an x component with an amplitude at the
interface of 10−3 V/m, is traveling in a free-space medium and is normally incident upon a lossy flat
earth as shown in Figure 5-9. Assuming that the constitutive parameters of the earth are ε2 = 9ε0,
μ2 = μ0 and σ2 = 10−1 S/m, determine the variation of the conduction current density in the earth at a
frequency of 1 MHz.

Solution: At f = 106 Hz

σ2

ωε2
= 10−1

2π × 106(9 × 10−9/36π)
= 2 × 102 � 1

which classifies the material as a very good conductor.
On either side of the interface, the total electric field is equal to

Etotal|z=0 = âx × 10−3|1 + �b |
where

�b = η2 − η1

η2 + η1
= η2 − η0

η2 + η0

η2 �
√

ωμ

2σ
(1 + j ) =

√
2π × 106(4π × 10−7)

2 × 10−1
(1 + j ) = 2π(1 + j )
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Incident

Reflected

Hy

Γb

Ex

y

z

x

Jc

J0

e2 =  9e0, m2 = m0

s2 = 10−1 S/m

d

d

J  = J0e−z/d

Figure 5-9 Electric and magnetic field intensities, and electric current density distributions in a lossy
earth.

Thus

�b = 2π(1 + j ) − 377

2π(1 + j ) + 377
= −370.72 + j 2π

383.28 + j 2π

= 370.77
/

179.04◦

383.33
/

0.94◦ = 0.967
/

178.1◦

and

Etotal|z=0 = âx × 10−3|1 + 0.967
/

178.1◦|
= âx × 10−3|0.0335 + j 0.0321| = âx (4.64 × 10−5)

The conduction current density at the surface of the earth is equal to

Jc |z=0 = âx J0 = âx σE total|z=0 = âx × 10−1(4.64 × 10−5)

= âx (4.64 × 10−6)
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or
J0 = 4.64 μA/m2

The magnitude of the current density varies inside the earth as

|Jc | = J0|e−α2z e−jβ2z | = J0e−α2z = J0e−z/δ2

where

δ2 = skin depth =
√

2

ωμ2σ2
=

√
2

2π × 106(4π × 10−7) × 10−1

= 10

2π
= 1.5915 m

The magnitude variations of the current density inside the earth are shown in Figure 5-9 and they exhibit
an exponential decay. At one skin depth (z = δ2 = 1.5915 m), the current density has been reduced to

|Jc |z=δ2 = J0e−1 = 0.3679J0 = 0.3679(4.64 × 10−6) = 1.707 μA/m2

Therefore, at one skin depth the current is reduced to 36.79% of its value at the surface.
If the area under the current density curve is found, it is shown to be equal to

Js =
∫ ∞

0
|Jc |dz =

∫ ∞

0
J0e−z/δ2 dz = −δ2J0e−z/δ2

∣∣∞
0 = δ2J0

The same answer can be obtained by assuming that the current density maintains a constant surface
value J0 to a depth equal to the skin depth and equal to zero thereafter, as shown by the dashed curve
in Figure 5-9.

The area under the curve can then be interpreted as the total current density Js (A/m) per unit width
in the y direction. It can be obtained by finding the area formed by maintaining constant surface current
density J0 (A/m2) through a depth equal to the skin depth.

5.4.2 Oblique Incidence: Dielectric–Conductor Interface

Let us assume that a uniform plane wave is obliquely incident upon a planar interface where
medium 1 is a perfect dielectric and medium 2 is lossy, as shown in Figure 5-10 [3]. For either
the perpendicular or parallel polarization, the transmitted electric field into medium 2 can be
written, using modified forms of either (5-12a) or (5-22a), as

Et = E2 exp
[−γ2(x sin θt + z cos θt )

] = E2 exp
[−(α2 + jβ2)(x sin θt + z cos θt )

]
(5-53)

It can be shown that for lossy media, Snell’s law of refraction can be written as

γ1 sin θi = γ2 sin θt (5-54)

Therefore, for the geometry of Figure 5-10,

sin θt = γ1

γ2
sin θi = jβ1

α2 + jβ2
sin θi (5-55a)

and

cos θt =
√

1 − sin2 θt =
√

1 −
(

jβ1

α2 + jβ2

)2

sin2 θi = sejζ = s(cos ζ + j sin ζ ) (5-55b)
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e1, m1 e2, m2, s2

y2 = x2
α2e

x

zy

Constant phase planes

qi

qr

Constant amplitude planes

ny = β2e

Figure 5-10 Oblique wave incidence upon a dielectric–conductor interface.

Using (5-55a) and (5-55b) we can write (5-53) as

Et = E2 exp

{
−(α2 + jβ2)

[
x

jβ1

α2 + jβ2
sin θi + zs(cos ζ + j sin ζ )

]}
(5-56)

which reduces to

Et = E2 exp [−zs(α2 cos ζ − β2 sin ζ )]

× exp {−j [β1x sin θ1 + zs(α2 sin ζ + β2 cos ζ )]}
Et = E2e−zp exp

[−j (β1x sin θi + zq)
]

(5-57)

where

p = s(α2 cos ζ − β2 sin ζ ) = α2e (5-57a)

q = s(α2 sin ζ + β2 cos ζ ) (5-57b)

It is apparent that (5-57) represents a nonuniform wave.
The instantaneous field of (5-57) can be written, assuming E2 is real, as

�t = Re(Et ejωt ) = E2e−zpRe
(
exp

{
j
[
ωt − (β1x sin θi + zq)

]})
�t = E2e−zp cos

[
ωt − (β1x sin θi + zq)

]
(5-58)

The constant amplitude planes (z = constant) of (5-58) are parallel to the interface, and they are
shown dashed-dotted in Figure 5-10. The constant phase planes

[
ωt − (kx sin θi + zq) = constant

]
are inclined at an angle ψ2 that is no longer θt , and they are indicated by the dashed lines in
Figure 5-10.
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To determine the constant phase we write the argument of the exponential or of the cosine
function in (5-58) as

ωt − (β1x sin θi + zq) = ωt −
√

(β1 sin θi )2 + q2

×
[

(β1 sin θi )x√
(β1 sin θi )2 + q2

+ qz√
(β1 sin θi )2 + q2

]
(5-59)

If we define an angle ψ2 such that

u = β1 sin θi (5-60a)

sin ψ2 = β1 sin θi√
(β1 sin θi )2 + q2

= u√
u2 + q2

(5-60b)

cos ψ2 = q√
(β1 sin θi )2 + q2

= q√
u2 + q2

(5-60c)

or

ψ2 = tan−1

(
β1 sin θi

q

)
= tan−1

(
u

q

)
(5-60d)

we can write (5-59), and in turn (5-58), as

�t = E2e−zpRe

(
exp

{
j

[
ωt −

√
u2 + q2

(
ux√

u2 + q2
+ qz√

u2 + q2

)]})
= E2e−zpRe (exp {j [ωt − β2e(x sin ψ2 + z cos ψ2)]})

�t = E2e−zpRe
(
exp

{
j
[
ωt − β2e(n̂ψ • r)

]})
(5-61)

where

n̂ψ = âx sin ψ2 + âz cos ψ2 (5-61a)

β2e =
√

u2 + q2 (5-61b)

It is apparent from (5-60a) through (5-61a) that

1. The true angle of refraction is ψ2 and not θt (θt is complex).
2. The wave travels along a direction defined by unit vector n̂ψ .
3. The constant phase planes are perpendicular to unit vector n̂ψ , and they are shown as

dashed lines in Figure 5-10.

The phase velocity of the wave in medium 2 is obtained by setting the exponent of (5-61) to
a constant and differentiating it with respect to time. Doing this, we can write the phase velocity
vp of the wave as

ω(1) −
√

u2 + q2

(
n̂ψ •

dr
dt

)
= 0

ω(1) −
√

u2 + q2

(
n̂ψ •

dr
dt

)
= ω − β2e(n̂ψ • vp) = 0 (5-62)

or
vpr = ω

β2e
= ω√

u2 + q2
= ω√

(β1 sin θi )2 + q2
(5-62a)

It is evident that the phase velocity is a function of the incidence angle θi and the constitutive
parameters of the two media.
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Example 5-8

A plane wave of either perpendicular or parallel polarization traveling in air is obliquely incident upon
a planar interface of copper (σ = 5.76 × 107 S/m). At a frequency of 10 GHz, determine the angle of
refraction and reflection coefficients for each of the two polarizations.

Solution: For copper

σ2

ωε2
= 5.8 × 107(36π)

(2π × 1010) × 10−9
= 1.037 × 108 � 1

Therefore according to Table 4-1

α2 � β2 �
√

ωμ2σ2

2

Using (5-55a)

sin θt = jβ1

α2 + jβ2
sin θi � jβ1√

ωμ2σ2

2
(1 + j )

sin θt
σ2�1� 0 ⇒ θi � 0

Therefore (5-55b), (5-57a), and (5-57b) reduce to

cos θt = 1 = sejζ ⇒ s = 1 ζ = 0

p = s(α2 cos ζ − β2 sin ζ ) � α2 =
√

ωμ2σ2

2

q = s(α2 sin ζ + β2 cos ζ ) � β2 =
√

ωμ2σ2

2

Using (5-60d), the true angle of refraction is

ψ2 = tan−1
(

u

q

)
� tan−1

(
β1 sin θi

β2

)
= tan−1

⎛⎜⎜⎝ ω
√

μ0ε0√
ωμ0σ2

2

sin θi

⎞⎟⎟⎠
= tan−1

(√
2ωε0

σ2
sin θi

)
≤ tan−1

(√
2ωε0

σ2

)
= tan−1(0.139 × 10−3)

ψ2 = tan−1(0.139 × 10−3 sin θi ) ≤ 0.139 × 10−3 rad = (7.96 × 10−3)◦

Using (5-17a) and (5-24c), the reflection coefficients for perpendicular and parallel polarizations reduce
to

�b
⊥ = η2 cos θi − η1 cos θt

η2 cos θi + η1 cos θt
� η2 cos θi − η1

η2 cos θi + η1
= cos θi − η1/η2

cos θi + η1/η2

�b
|| = −η1 cos θi + η2 cos θt

η1 cos θi + η2 cos θt
� −η1 cos θi + η2

η1 cos θi + η2
= − cos θi + η2/η1

cos θi + η2/η1

Since

η1

η2
=

√
μ1

ε1√
jωμ2

σ2 + jωε2

�

√
μ0

ε0√
jωμ0

σ2

=
√

σ2

jωε0



Balanis c05.tex V3 - 11/23/2011 11:47 A.M. Page 205

REFLECTION AND TRANSMISSION OF MULTIPLE INTERFACES 205

η1

η2
� 1.02 × 104e−jπ/4 � 1 ≥ cos θi

Then

�b
⊥ � cos θi − η1/η2

cos θi + η1/η2
� −1

�b
|| � − cos θi + η2/η1

cos θi + η2/η1
� −1

Thus for a very good conductor, such as copper, the angle of refraction approaches zero and the
magnitude of the reflection coefficients for perpendicular and parallel polarizations approach unity, and
they are all essentially independent of the angle of incidence. The same will be true for all other good
conductors.

5.4.3 Oblique Incidence: Conductor–Conductor Interface

In Section 5.3.4 it was shown that when a uniform plane wave is incident upon a
dielectric–dielectric planar interface at an incidence angle θi equal to or greater than the critical
angle θc , the transmitted wave produced into medium 2 is a nonuniform plane wave. For
this plane wave, the constant amplitude planes (which are perpendicular to the α2e vector) of
Figure 5-7 are perpendicular to the constant phase planes (which are perpendicular to the β2e

vector), or the angle ξ2 between the α2e and β2e vectors is 90◦.
In Section 5.4.2 it was demonstrated that a uniform plane wave traveling in a lossless medium

and obliquely incident upon a lossy medium also produces a nonuniform plane wave where the
angle ξ2 between the α2e and β2e vectors in Figure 5-10 is greater than 0◦ but less than 90◦.
In fact, for a very good conductor the angle ξ2 between α2e and β2e is almost zero [for copper
with σ = 5.76 × 107 S/m, ξ2 ≤ (8 × 10−3)◦]. As the conducting medium becomes less lossy, the
angle ξ2 increases and in the limit it approaches 90◦ for a lossless medium. In fact for all lossless
media, the angle between the effective attenuation constant α2e and phase constant β2e should
always be 90◦, with reactive power flowing along α2e and positive real power along β2e [4]. This
is necessary since there are no real losses associated with the wave propagation along β2e . This
was well illustrated in Section 5.3.4 for the nonuniform wave produced in a lossless medium
when the incidence angle was equal to or greater than the critical angle.

It is very interesting to investigate the field characteristics of uniform or nonuniform plane
waves that are obliquely incident upon interfaces comprised of lossy–lossy interfaces. These types
of waves have been examined [5–6], but, because of the general complexity of the formulations,
they will not be repeated here. The reader is referred to the literature. An excellent discussion
of uniform and nonuniform plane waves propagating in lossless and lossy media and associated
interfaces is found in Chapters 7 and 8 of [4].

5.5 REFLECTION AND TRANSMISSION OF MULTIPLE INTERFACES

Many applications require dielectric interfaces that exhibit specific characteristics as a function
of frequency. Accomplishing this often requires multiple interfaces. The objective of this section
is to analyze the characteristics of multiple layer interfaces. To reduce the complexity of the
problem, we will consider only normal incidence and restrict most of our attention to lossless
media. A general formulation for lossy media will also be stated.
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5.5.1 Reflection Coefficient of a Single Slab Layer

Section 5.2 showed that for normal incidence the reflection coefficient �b at the boundary of a
single planar interface is given by (5-4a) or

�b = η2 − η1

η2 + η1
(5-63)

and at a distance z = −� from the boundary it is given by (5-5a) or

�in(z = −�) = �be−j 2β1� (5-64)

Just to the right of the boundary the input impedance in the +z direction is equal to the
intrinsic impedance η2 of medium 2, that is,

Zin(z = 0+) = η2 =
√

μ2

ε2
(5-65)

The input impedance at z = −� can be found by using the field expressions (5-1a) through (5-2c).
By definition Zin(z = −�) is equal to

Zin|z=−� = E total|z=−�

H total|z=−�

(5-66)

where

E total|z=−� = (E i + E r )|z=−� = E0e+jβ1�(1 + �be−j 2β1�) = E0e+jβ1� [1 + �in(�)]

(5-66a)

H total|z=−� = (H i − H r )|z=−� = E0

η1
e+jβ1�(1 − �be−j 2β1�) = E0

η1
e+jβ1� [1 − �in(�)]

(5-66b)

Therefore

Zin|z=−� = η1

(
1 + �be−j 2β1�

1 − �be−jβ1�

)
= η1

(
1 + �in(�)

1 − �in(�)

)
(5-66c)

which by using (5-63) can also be written as

Zin|z=−� = η1

(
1 + �be−j 2β1�

1 − �be−j 2β1�

)
= η1

(
1 + �in(�)

1 − �in(�)

)
= η1

(
η2 + jη1 tan(β1�)

η1 + jη2 tan(β1�)

)
(5-66d)

Equation 5-66d is analogous to the well-known impedance transfer equation that is widely used
in transmission line theory [7].

Using the foregoing procedure for normal wave incidence, we can derive expressions for
multiple layer interfaces [8]. Referring to Figure 5-11a the input impedance at z = 0+ is equal
to the intrinsic impedance η3 of medium 3, that is

Zin(z = 0+) = η3 (5-67)

In turn, the input reflection coefficient at the same interface can be written as

�in(z = 0−) = Zin(0+) − η2

Zin(0+) + η2
= η3 − η2

η3 + η2
(5-67a)
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z = − d−

z = − d
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Figure 5-11 Impedances and reflection and transmission coefficients for wave propagation in dielectric
slab. (a) Dielectric slab. (b) Reflection and transmission coefficients.
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At z = −d+ the input impedance can be written using (5-66d) as

Zin(z = −d+) = η2

(
1 + �in(z = 0−)e−j 2β2d

1 − �in(z = 0−)e−j 2β2d

)
= η2

(
(η3 + η2) + (η3 − η2)e−j 2β2d

(η3 + η2) − (η3 − η2)e−j 2β2d

)
(5-67b)

and the input reflection coefficient at z = −d− can be expressed as

�in(z = −d−) = Zin(z = −d+) − η1

Zin(z = −d+) + η1

= η2
[
(η3 + η2) + (η3 − η2)e−j 2β2d

] − η1
[
(η3 + η2) − (η3 − η2)e−j 2β2d

]
η2

[
(η3 + η2) + (η3 − η2)e−j 2β2d

] + η1
[
(η3 + η2) − (η3 − η2)e−j 2β2d

]
(5-67c)

In Figure 5-11a we have defined individual reflection coefficients at each of the boundaries.
Here these coefficients are referred to as intrinsic reflection coefficients, and they would exist at
each boundary if two semi-infinite media form each of the boundaries (neglecting the presence
of the other boundaries). Using the intrinsic reflection coefficients defined in Figure 5-11a , the
input reflection coefficient of (5-67c) can also be written as

�in(z = −d−) = �12 + �23e−j 2β2d

1 + �12�23e−j 2β2d
(5-67d)

Equation 5-67d can also be derived using the ray-tracing model of Figure 5-11b. At the leading
interface of Figure 5-11b, �12 represents the intrinsic reflection coefficient of the initial reflection
and T12�23T21e−j 2θ , etc., are the contributions to the input reflection due to the multiple bounces
within the medium 2 slab. The total input reflection coefficient can be written as a geometric
series that takes the form

�in(z = −d−) = �12 + T12�23T21e−j 2θ + T12�21�
2
23T21e−j 4θ + . . .

�in(z = −d−) = �12 + T12�23T21e−j 2θ [1 + �21�23e−j 2θ + (�21�23e−j 2θ )2 + . . .]

�in(z = −d−) = �12 + T12T21�23e−j 2θ

1 − �21�23e−j 2θ
(5-68)

where
θ = β2d (5-68a)

Since according to (5-4a) and (5-4b)

�21 = −�12 (5-69a)

T12 = 1 + �21 = 1 − �12 (5-69b)

T21 = 1 + �12 (5-69c)

(5-68) can be rewritten and reduced to the form of (5-67d).
If the magnitudes of the intrinsic reflection coefficients |�12| and |�23| are low compared to

unity, (5-67d) can be approximated by the numerator

�in(z = −d−) = �12 + �23e−j 2β2d

1 + �12�23e−j 2β2d

|�12|�1�
|�23|�1

�12 + �23e−j 2β2d (5-70)
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The approximate form of (5-70) yields good results if the individual intrinsic reflection coefficients
are low. Typically when |�12| = |�23| ≤ 0.2, the error of the approximate form of (5-70) is
equal to or less than about 4 percent. The approximate form of (5-70) will be very convenient
for representing the input reflection coefficient of multiple interfaces (> 2) when the individual
intrinsic reflection coefficients at each interface are low compared to unity.

Example 5-9

A uniform plane wave at a frequency of 10 GHz is incident normally on a dielectric slab of thickness
d and bounded on both sides by air. Assume that the dielectric constant of the slab is 2.56.

1. Determine the thickness of the slab so that the input reflection coefficient at 10 GHz is zero.
2. Plot the magnitude of the reflection coefficient as a function of frequency between

5 GHz ≤ f ≤ 15 GHz when the dielectric slab has a thickness of 0.9375 cm.

Solution:

1. For the input reflection coefficient to be equal to zero, the reflection coefficient of (5-70) must be
set equal to zero. This can be accomplished if

|�12 + �23e−j 2β2d | = 0

Since
�23 = −�12 = η1 − η2

η1 + η2

then
|�12||1 − e−j 2β2d | = 0 ⇒ 2β2d = 2nπ n = 0, 1, 2, . . .

For nontrivial solutions, the thickness must be

d = nπ

β2
= η

2
λ2 n = 1, 2, 3, . . .

where λ2 is the wavelength inside the dielectric slab. Thus the thickness of the slab must be an
integral number of half wavelengths inside the dielectric. At a frequency of 10 GHz and a dielectric
constant of 2.56, the wavelength inside the dielectric is

λ2 = 30 × 109

10 × 109
√

2.56
= 1.875 cm

2. At a frequency of 5 GHz, the dielectric slab of thickness 0.9375 cm is equal to

d = 0.9375
√

2.56λ2

30 × 109/5 × 109
= 0.25λ2 ⇒ 2β2d = 4π

λ2

(
λ2

4

)
= π

and at 15 GHz it is equal to

d = 0.9375
√

2.56λ2

30 × 109/15 × 109
= 0.75λ2 ⇒ 2β2d = 4π

λ2

(
3λ2

4

)
= 3π

Since

�12 = −�23 = η2 − η1

η2 + η1
= η2/η1 − 1

η2/η1 + 1
= 1 − √

εr

1 + √
εr

= −0.6

2.6
= −0.231
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the input reflection coefficient of (5-70), at f = 5 and 15 GHz, achieves the maximum magnitude
of

|�in(z = −d−)| =
∣∣∣∣ −0.231 − 0.231

1 − (−0.231)(0.231)

∣∣∣∣ = 2(0.231)

1 + (0.231)2
= 0.438

A complete plot of |�in(z = −d−)| for 5 GHz ≤ f ≤ 15 GHz is shown in the Figure 5-12.
Using the approximate form of (5-70), the magnitude of the input reflection coefficient is equal

to
|�in(z = −d−)| f =5,

15 GHz
� | − 0.231 − (0.231)| = 0.462

The percent error of this is

percent error =
(−0.438 + 0.462

0.438

)
× 100 = 5.48
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Figure 5-12 Input reflection coefficient, as a function of frequency, for wave propagation through a
dielectric slab.

Example 5-10

A uniform plane wave is incident normally upon a dielectric slab whose thickness at f0 = 10 GHz is
λ20/4 where λ20 is the wavelength in the dielectric slab. The slab is bounded on the left side by air and
on the right side by a semi-infinite medium of dielectric constant εr3 = 4.

1. Determine the intrinsic impedance η2 and dielectric constant εr2 of the sandwiched slab so that
the input reflection coefficient at f0 = 10 GHz is zero.

2. Plot the magnitude response of the input reflection coefficient for 0 ≤ f ≤ 20 GHz when the
intrinsic impedance and physical thickness of the slab are those found in part 1.

3. Using the ray-tracing model of Figure 5-11b, at f0 = 10 GHz determine the first and next two
higher-order terms that contribute to the overall input reflection coefficient. What is the input
reflection coefficient using these three terms?

Solution:

1. In order for the input reflection coefficient to vanish, the magnitude of (5-70) must be equal to
zero, that is

|�12 + �23e−j 2β2d | = 0
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Since at f0 = 10 GHz, d = λ20/4, then

2β2d |f =10 GHz = 2

(
2π

λ20

)(
λ20

4

)
= π

Also
�12 = η2 − η1

η2 + η1

and
�23 = η3 − η2

η3 + η2

Thus ∣∣�12 + �23e−j 2β2d
∣∣d=λ20 /4
f =10 GHz

=
∣∣∣∣η2 − η1

η2 + η1
− η3 − η2

η3 + η2

∣∣∣∣
=

∣∣∣∣ (η2 − η1)(η3 + η2) − (η3 − η2)(η2 + η1)

(η2 + η1)(η3 + η2)

∣∣∣∣ = 0

or
2|η2

2 − η1η3| = 0 ⇒ η2 = √
η1η3

Since η1 =
√

μ0

ε0
= 377 ohms and η3 =

√
μ0

4ε0
= 1

2
η1 = 188.5 ohms then

η2 = √
η1η3 = η1√

2
= 0.707η1 = 0.707(377) = 266.5 ohms

The dielectric constant of the slab must be equal to

εr2 = 2

whereas the physical thickness of the dielectric is

d = λ20

4
= 30 × 109

4(10 × 109)
√

2
= 0.53 cm

It is apparent then that whenever the dielectric is bounded by two semi-infinite media and its
thickness is a quarter of a wavelength in the dielectric, its intrinsic impedance must always be equal
to the square root of the product of the intrinsic impedances of the two media on each of its sides
in order for the input reflection coefficient to vanish. This is referred to as the quarter-wavelength
transformer that is so popular in transmission line design .

2. Since at f0 = 10 GHz, d = λ20/4 = 0.53 cm, then in the frequency range 0 ≤ f ≤ 20 GHz

2β2d = 2

(
2π

λ2

)(
λ20

4

)
= π

(
f

f0

)
also

�12 = η2 − η1

η2 + η1
= η2/η1 − 1

η2/η1 + 1
= 1 − √

2

1 + √
2

�23 = η3 − η2

η3 + η2
= η3/η2 − 1

η3/η2 + 1
= 1 − √

2

1 + √
2

= �12

Therefore, the magnitude of the input reflection coefficient of (5-70) can be written now as

|�in(z = −d−)| =
∣∣∣∣ �12(1 + e−jπ f /f0)

1 + (�12)2e−jπ f /f0

∣∣∣∣
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Figure 5-13 Responses of single-section, two-section binomial, and two-section Tschebyscheff quarter-
wavelength transformers. (Source: C. A. Balanis, Antenna Theory: Analysis and Design , 3rd Edition.
Copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

whose maximum value, which occurs when f = 0 and 2f0 = 20 GHz, is approximately equal to

|�in(z = −d−)|max = 2|�12|
(1 + |�12|2) = |�13| =

∣∣∣∣η3 − η1

η3 + η1

∣∣∣∣
= 0.333 � 2|�12| = 0.3431

A complete plot of |�in(z = −d−)|d=λ20 /4 when 0 ≤ f ≤ 20 GHz is shown in the Figure 5-13.
It is interesting to note that the magnitude of the input reflection coefficient monotonically

decreases from f = 0 to f0, and it monotonically increases from f0 to 2f0. It can also be noted that
the bandwidth of the response curve near f0 is very small, and any deviations of the frequency
from f0 will cause the reflection coefficient to rise sharply.

3. According to Figure 5-11b, the first-order term of the input reflection coefficient is

�12 = η2 − η1

η2 + η1
= 266.5 − 377

266.5 + 377
= −0.1717

The next two higher terms are equal to

T12�23T21e−j 2β2d = 2η1

η1 + η2

(
η3 − η2

η3 + η2

)(
2η2

η1 + η2

)
e−jπ

= − 2(377)

377 + 266.5

(
188.5 − 266.5

188.5 + 266.5

)
2(266.5)

377 + 266.5
= +0.1664

T12�21�
2
23T21e−j 4β2d = 2η1

η1 + η2

(
η1 − η2

η1 + η2

)(
η3 − η2

η3 + η2

)2 (
2η2

η1 + η2

)
e−j 2π
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T12�21�
2
23T21e−j 4β2d = 2(337)

377 + 266.5

(
377 − 266.5

377 + 266.5

)(
188.5 − 266.5

188.5 + 266.5

)2 2(266.5)

377 + 266.5

= 0.0049

�in � �12 + T12�23�21e−j 2β2d + T12�21�
2
23T21e−j 4β2d

= −0.1717 + 0.1664 + 0.0049

�in � −4 × 10−4 � 0

Thus, the first three terms, or even the first two terms, provide an excellent approximation to the
exact value of zero.

The bandwidth of the response curve can be increased by flattening the curve near f0. This
can be accomplished by increasing the number of layers bounded between the two semi-infinite
media. The analysis of such a configuration will be discussed in Section 5.5.2.

If the three media of Figure 5-11 are lossy, then it can be shown that the overall reflection
and transmission coefficients can be written as [3]

�in = E r

E i
= (1 − Z12)(1 + Z23) + (1 + Z12)(1 − Z23)e−2γ2d

(1 + Z12)(1 + Z23) + (1 − Z12)(1 − Z23)e−2γ2d
(5-71a)

T = E t

Ei
= 4

(1 − Z12)(1 − Z23)e−γ2d + (1 + Z12)(1 + Z23)eγ2d
(5-71b)

where

Zij = μi γj

μj γi
i , j = 1, 2, 3 (5-71c)

γk = ±
√

jωμk (σk + jωεk ) (5-71d)

The preceding equations are valid for lossless, lossy, or any combination of lossless and lossy
media.

5.5.2 Reflection Coefficient of Multiple Layers

The results of Example 5-10 indicate that for normal wave incidence the response of a single
dielectric layer sandwiched between two semi-infinite media did not exhibit very broad charac-
teristics around the center frequency f0, and its overall response was very sensitive to frequency
changes. The characteristics of such a response are very similar to the bandstop characteristics
of a single section filter or single section quarter-wavelength impedance transformer. To increase
the bandwidth of the system under normal wave incidence, multiple layers of dielectric slabs,
each with different dielectric constant, must be inserted between the two semi-infinite media.
Multiple section dielectric layers can be used to design dielectric filters [9]. Coating radar targets
with multilayer slabs can also be used to reduce or enhance their scattering characteristics.

When N layers, each with its own thickness and constitutive parameters, are sandwiched
between two semi-infinite media as shown in Figure 5-14, the analysis for the overall reflection
and transmission coefficients is quite cumbersome, although it is straightforward. However, an
approximate form of the input reflection coefficient for the entire system under normal wave
incidence can be obtained by utilizing the approximation first introduced to represent (5-70).
With this in mind, the input reflection coefficient under normal wave incidence for the system of
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Figure 5-14 Normal wave propagation through N layers sandwiched between two media.

Figure 5-14, referenced at the boundary of the leading interface, can be written approximately as
[1, 8]

�in � �0 + �1e−j 2β1d1 + �2e−j 2(β1d1+β2d2) + · · · + �N e−j 2(β1d1+β2d2+ ··· +βN dN ) (5-72)

where

�0 = η1 − η0

η1 + η0
(5-72a)

�1 = η2 − η1

η2 + η1
(5-72b)

�2 = η3 − η2

η3 + η2
(5-72c)

...

�N = ηL − ηN

ηL + ηN
(5-72d)

Expression 5-72 is accurate provided that at each boundary the intrinsic reflection coefficients of
(5-72a) through (5-72d) are small in comparison to unity.

A. Quarter-Wavelength Transformer Example 5-10 demonstrated that when a lossless
dielectric slab of thickness λ20/4 at a frequency f0 is sandwiched between two lossless
semi-infinite dielectric media, the input reflection coefficient at f0 is zero provided its intrinsic
impedance η1 is equal to

η1 = √
η0ηL (5-73)

where
η1 = intrinsic impedance of dielectric slab.
η0 = intrinsic impedance of the input semi-infinite medium.
ηL = intrinsic impedance of the load semi-infinite medium.
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However, as was illustrated in Figure 5-13, the response of the input reflection coefficient as a
function of frequency was not very broad near the center frequency f0.

Matchings that are less sensitive to frequency variations and that provide broader bandwidths
require multiple λ/4 sections. In fact the number of sections and the intrinsic impedance of each
section can be designed so that the reflection coefficient follows, within the desired frequency
bandwidth, prescribed variations that are symmetrical about the center frequency. This design
assumes that the semi-infinite media and the dielectric slabs are all lossless so that their intrinsic
impedances are all real. The discussion that follows parallels that of [1] and [8].

Referring to Figure 5-14, the total input reflection coefficient �in for an N-section quarter-
wavelength transformer with ηL > η0 can be written, using an extension of the approximation
used to represent (5-70), as [1, 8]

�in(f ) � �0 + �1e−j 2θ + �2e−j 4θ + . . . + �N e−j 2N θ =
N∑

n=0

�ne−j 2nθ (5-74)

where �n and θ are represented, respectively, by

�n = ηn+1 − ηn

ηn+1 + ηn
(5-74a)

θ = βndn = 2π

λn

(
λn0

4

)
= π

2

(
f

f0

)
(5-74b)

In (5-74) �n represents the reflection coefficient at the junction of two infinite lines that have
intrinsic impedances ηn and ηn+1, f0 represents the designed center frequency, and f represents
the operating frequency. Equation 5-74 is valid provided the �n ’s at each junction are small (the
requirements will be met if ηL � η0). For lossless dielectrics, the ηn ’s and �n ’s will all be real.

For a symmetrical transformer (�0 = �N , �1 = �N −1, etc.), (5-74) reduces to

�in(f ) � 2e−jN θ [�0 cos N θ + �1 cos(N − 2)θ + �2 cos(N − 4)θ + . . .] (5-75)

The last term in (5-75) should be

�[(N −1)/2] cos θ for N = odd integer (5-75a)

1
2�(N /2) for N = event integer (5-75b)

B. Binomial (Maximally Flat) Design One technique, used to design an N -section λ/4
transformer, requires that the input reflection coefficient (5-74) have maximally flat passband
characteristics. For this method, the junction reflection coefficients (�n ’s) are derived using the
binomial expansion and we can equate (5-74) to [1, 8]

�in(f ) �
N∑

n=0

�ne−j 2nθ = e−jN θ ηL − η0

ηL + η0
cosN (θ)

� 2−N ηL − η0

ηL + η0

N∑
n=0

C N
n e−j 2nθ

(5-76)

where

C N
n = N !

(N − n)!n!
n = 0, 1, 2, . . . , N (5-76a)
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From (5-76)

�n = 2−N ηL − η0

ηL + η0
C N

n (5-77)

For this type of design, the fractional bandwidth 	f /f0 is given by

	f

f0
= 2

f0 − fm
f0

= 2

(
1 − fm

f0

)
= 2

(
1 − 2

π
θm

)
(5-78)

Since

θm = 2π

λm

(
λ0

4

)
= π

2

(
fm
f0

)
(5-79)

(5-78) reduces, using (5-76), to

	f

f0
= 2 − 4

π
cos−1

∣∣∣∣ �m

(ηL − η0)/(ηL + η0)

∣∣∣∣1/N

(5-80)

where �m is the magnitude of the maximum value of reflection coefficient that can be tolerated
within the bandwidth.

The usual design procedure is to specify

1. the load intrinsic impedance ηL

2. the input intrinsic impedance η0

3. the number of sections N
4. the maximum tolerable reflection coefficient �m (or fractional bandwidth 	f /f0)

and to find

1. the intrinsic impedance of each section
2. the fractional bandwidth 	f /f0 (or maximum tolerable reflection coefficient �m )

To illustrate the principle, let us consider an example.

Example 5-11

Two lossless dielectric slabs each of thickness λ0/4 at a center frequency f0 = 10 GHz are sandwiched
between air to the left and a lossless semi-infinite medium of dielectric constant εL = 4 to the right.
Assuming a fractional bandwidth of 0.375 and a binomial design:

1. Determine the intrinsic impedances, dielectric constants, and thicknesses of the sandwiched slabs
so that the input reflection coefficient at f0 = 10 GHz is zero.

2. Determine the maximum reflection coefficient and SWR within the fractional bandwidth.
3. Plot the response of the input reflection coefficient for 0 ≤ f ≤ 20 GHz when the intrinsic

impedances and physical thicknesses of the slabs are those found in part 1. Compare the response
of the two-section binomial design with that of the single section of Example 5-10.

Solution:

1. Using (5-76a) and (5-77)

�n = 2−N ηL − η0

ηL + η0
C N

n = 2−N ηL − η0

ηL + η0

N !

(N − n)!n!
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Since the input dielectric is air and the load dielectric has a dielectric constant εL = 4, then

η0 = 377

ηL =
√

μ0

εLε0
= 377

2
= 188.5

Therefore,

n = 0 : �0 = η1 − η0

η1 + η0
= 2−2

(
188.5 − 377

188.5 + 377

)
2!

2!0!
= − 1

12

⇒ η1 = η0

(
1 − 1/12

1 + 1/12

)
= 0.846η0 = 318.94 ohms

⇒ εr1 = 1.40 d1 = λ10

4
= 0.634 cm

n = 1 : �1 = η2 − η1

η2 + η1
= 2−2

(
188.5 − 377

188.5 + 377

)
2!

1!1!
= −1

6

⇒ η2 = η1

(
1 − 1/6

1 + 1/6

)
= 0.714η1 = 227.72 ohms

⇒ εr2 = 2.74 d2 = λ20/4 = 0.453 cm

2. For a fractional bandwidth of 0.375, the magnitude of the maximum reflection coefficient �m is
obtained using (5-80) or

	f

f0
= 0.375 = 2 − 4

π
cos−1

∣∣∣∣ �m

(ηL − η0)/(ηL + η0)

∣∣∣∣1/2

which for ηL = 188.5 and η0 = 377 leads to

�m = 0.028

The maximum standing wave ratio is

SWRm = 1 + �m

1 − �m
= 1 + 0.028

1 − 0.028
= 1.058

3. The magnitude of the input reflection coefficient is given by (5-76) as

|�in| =
∣∣∣∣ηL − η0

ηL + η0

∣∣∣∣ cos2 θ = 1

3
cos2 θ = 1

3
cos2

[
π

2

(
f

f0

)]
which is shown plotted in Figure 5-13 where it is also compared with that of the one- and
two-section Tschebyscheff design to be discussed next.

C. Tschebyscheff (Equal-Ripple) Design The reflection coefficient can be made to vary
within the bandwidth in an oscillatory manner and have equal-ripple characteristics [10–12]. This
can be accomplished by making �in vary similarly as a Tschebyscheff (Chebyshev) polynomial.
For the Tschebyscheff design, the equation that corresponds to (5-76) is [1, 8]

�in(f ) = e−jN θ ηL − η0

ηL + η0

TN (sec θm cos θ)

TN (sec θm)
(5-81)

where TN (z ) is the Tschebyscheff polynomial of order N .
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The maximum allowable reflection coefficient occurs at the edges of the passband where
θ = θm and |TN (sec θm cos θ)|θ=θm = 1. Thus,

ρm =
∣∣∣∣ηL − η0

ηL + η0

1

TN (sec θm)

∣∣∣∣ (5-82)

or

|TN (sec θm)| =
∣∣∣∣ 1

ρm

ηL − η0

ηL + η0

∣∣∣∣ (5-82a)

Using (5-82), we can write (5-81) as

�in (f ) = e−jN θρmTN (sec θm cos θ) (5-83)

and its magnitude as
|�in (f )| = ρin(f ) = |ρmTN (sec θm cos θ)| (5-83a)

For this type of a design, the fractional bandwidth 	f /fo is also given by (5-78).
To be physical, ρm must be smaller than the reflection coefficient when there are no matching

layers. Therefore, from (5-82),

ρm =
∣∣∣∣ηL − η0

ηL + η0

1

TN (sec θm)

∣∣∣∣ <

∣∣∣∣ηL − η0

ηL + η0

∣∣∣∣ (5-84)

or
|TN (sec θm)|> 1 (5-84a)

The Tschebyscheff polynomial can be expressed by either (6-71a) or (6-71b) of [1], or

Tm(z ) = cos[mcos−1(z )] − 1 ≤ z ≤ +1 (5-85a)

Tm(z ) = cosh[mcosh−1(z )] z < −1, z > +1 (5-85b)

Since |TN (sec θm)| > 1, using (5-85b) we can express TN (sec θm) as

TN (sec θm) = cosh
[
N cosh−1 (sec θm)

]
(5-86)

or by using (5-82a), as

|TN (sec θm)| = ∣∣cosh
[
N cosh−1 (sec θm)

]∣∣ =
∣∣∣∣ 1

ρm

ηL − η0

ηL + η0

∣∣∣∣ (5-86a)

Thus,

sec θm = cosh

[
1

N
cosh−1

(∣∣∣∣ 1

ρm

ηL − η0

ηL + η0

∣∣∣∣)]
(5-87)

or

θm = sec−1

{
cosh

[
1

N
cosh−1

(∣∣∣∣ 1

ρm

ηL − η0

ηL + η0

∣∣∣∣)]}
(5-87a)

Using (5-83) we can write the reflection coefficient of (5-75) as

�in (θ) = 2e−jN θ {ρ0 cos (N θ) + ρ1 cos [(N − 2) θ ] + . . .}
= e−jN θρmTN (sec θm cos θ) (5-88)

For a given N , replace TN (sec θm cos θ) in (5-88) by its polynomial series of (6-69) of [1] and
then match terms . This will allow you to determine the intrinsic reflection coefficients ρ ′

ns and
subsequently the η′

ns . The design procedure for the Tschebyscheff design is the same as that of
the binomial design, as outlined previously.
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The first few Tschebyscheff polynomials can be found in [1, 8]. For z = sec θm cos θ , the first
three polynomials reduce to

T1(sec θm cos θ) = sec θm cos θ

T2(sec θm cos θ) = 2(sec θm cos θ)2 − 1 = sec2 θm cos 2θ + (sec2 θm − 1)

T3(sec θm cos θ) = 4(sec θm cos θ)3 − 3(sec θm cos θ)

= sec3 θm cos 3θ + 3(sec3 θm − sec θm) cos θ (5-89)

The remaining details of the analysis are found in [1, 8].
The design of Example 5-11 using a Tschebyscheff transformer is assigned as an exercise to

the reader. However, its response is plotted in Figure 5-13 for comparison.
In general, multiple sections (either binomial or Tschebyscheff) provide greater bandwidths

than a single section. As the number of sections increases, the bandwidth also increases. The
advantage of the binomial design is that the reflection coefficient values within the bandwidth
monotonically decreases from both ends toward the center. Thus the values are always smaller
than an acceptable and designed value that occurs at the “skirts” of the bandwidth. For the
Tschebyscheff design, the reflection coefficient values within the designed bandwidth are equal
to or smaller than an acceptable and designed value. The number of times the reflection coefficient
reaches the maximum value within the bandwidth is determined by the number of sections. In
fact, for an even number of sections the reflection coefficient at the designed center frequency
is equal to the maximum allowable value, whereas for an odd number of sections it is zero. For
a maximum tolerable reflection coefficient, the N -section Tschebyscheff transformer provides a
larger bandwidth than a corresponding N -section binomial design, or for a given bandwidth the
maximum tolerable reflection coefficient is smaller for a Tschebyscheff design.

D. Oblique-Wave Incidence A more general formulation of the reflection and transmission
coefficients can be developed by considering the geometry of Figure 5-15 where a uniform plane
wave is incident at an oblique angle upon N layers of planar slabs that are bordered on either
side by free space. This type of a geometry can be used to approximate the configuration of a
radome whose radius of curvature is large in comparison to the wavelength. It can be shown
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Figure 5-15 Oblique wave propagation through N layers of dielectric slabs.
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that the overall reflection and transmission coefficients for perpendicular (horizontal) and parallel
(vertical) polarizations can be written as [3]

Perpendicular (Horizontal)

�⊥ = E r
⊥

E i
⊥

= B0

A0
(5-90a)

T⊥ = E t
⊥

E i
⊥

= 1

A0
(5-90b)

Parallel (Vertical)

�|| = E r
||

E i
||

= C0

D0
(5-91a)

T|| = E t
||

E i
||

= 1

D0
(5-91b)

The functions A0, B0, C0, and D0 are found using the recursive formulas

Aj = eψj

2
[Aj+1(1 + Yj+1) + Bj+1(1 − Yj+1)] (5-92a)

Bj = e−ψj

2
[Aj+1(1 − Yj+1) + Bj+1(1 + Yj+1)] (5-92b)

Cj = eψj

2
[Cj+1(1 + Zj+1) + Dj+1(1 − Zj+1)] (5-92c)

Dj = e−ψj

2
[Cj+1(1 − Zj+1) + Dj+1(1 + Zj+1)] (5-92d)

where

AN +1 = CN +1 = 1 (5-92e)

BN +1 = DN +1 = 0 (5-92f)

Yj+1 = cos θj+1

cos θj

√
εj+1(1 − j tan δj+1)μj

εj (1 − j tan δj )μj+1
(5-92g)

Zj+1 = cos θj+1

cos θj

√
εj (1 − j tan δj )μj+1

εj+1(1 − j tan δj+1)μj
(5-92h)

ψj = dj γj cos θj (5-92i)

γj = ±√
jωμj (σj + jωεj ) (5-92j)

θj = complex angle of refraction in the j th layer (5-92k)

where d0 is the distance from the leading interface, which serves as the reference for the reflection
and transmission coefficients [see (5-5a) and (5-5b)].

5.6 POLARIZATION CHARACTERISTICS ON REFLECTION

When linearly polarized fields are reflected from smooth flat surfaces, the reflected fields main-
tain their linear polarization characteristics. However, when the reflected surfaces are curved or
rough, a linearly polarized component orthogonal to that of the incident field is introduced during
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reflection. Therefore, the total field exhibits two components: one with the same polarization as
the incident field (main polarization) and one orthogonal to it (cross polarization). During this
process, the field is depolarized due to reflection.

Circularly polarized fields in free space incident upon flat surfaces:

1. Maintain their circular polarization but reverse their sense of rotation when the reflecting
surface is perfectly conducting.

2. Are transformed to elliptically polarized fields of opposite sense of rotation when the flat
surface is a lossless dielectric and the angle of incidence is smaller than the Brewster
angle.

Similarly, elliptically polarized fields in free space upon reflection from flat surfaces

1. Maintain their elliptical polarization and magnitude of axial ratio but reverse their sense of
rotation when reflected from a perfectly conducting surface.

2. Maintain their elliptical polarization but change their axial ratio and sense of rotation when
the reflecting surface is a dielectric and the angle of incidence is smaller than the Brewster
angle.

To analyze the polarization properties of a wave when it is reflected by a surface, let us assume
that an elliptically polarized wave is obliquely incident upon a flat surface of infinite extent as
shown in Figure 5-16 [7]. Using the localized coordinate system (x ′, y , z ′) of Figure 5-16, the
incident electric field components can be written as

Ei
|| = âx ′E i

||e
−jβi • r = âx ′E 0

|| e−jβi • r (5-93a)

Ei
⊥ = ây E i

⊥e−jβi • r = ây E 0
⊥e−j (βi • r−φi

⊥) (5-93b)

where E 0
|| and E 0

⊥ are assumed to be real.
For this set of field components, the Poincaré sphere angles (4-58a) through (4-59b) can be

written [assuming that the ratio in (4-58a), selected here to demonstrate the procedure, satisfies
the angular limits of all the Poincaré sphere angles] as

γ i = tan−1

(
|E 0

⊥|
|E 0

|| |

)

δi = φi
⊥ − φi

|| = φi
⊥

(5-94a)

(5-94b)

εi = cot−1(ARi )

τ i = tilt angle of incident wave

(5-94c)

(5-94d)

where δi is the phase angle by which the perpendicular component of the incident field leads
the parallel component. It is assumed that (ARi ) is positive for left-hand and negative for right-
hand polarized fields. These two sets of angles are related to each other by (4-60a) through
(4-61b), or

cos(2γ i ) = cos(2εi ) cos(2τ i ) (5-95a)

tan(δi ) = tan(2εi )

sin(2τ i )
(5-95b)



Balanis c05.tex V3 - 11/23/2011 11:47 A.M. Page 222

222 REFLECTION AND TRANSMISSION

x′
x′′

x′′′

z′′′

x

y

y

z

z′′

z′

e1, m1, s1

e2, m2, s2

E i 

qi qr 

qt 

E r 

Et
⊥

Ei
⊥

E t 

Er
⊥

yy

Figure 5-16 Elliptically polarized wave incident on a flat lossy surface.

or

sin(2εi ) = sin(2γ i ) sin(δi ) (5-95c)

tan(2τ i ) = tan(2γ i ) cos(δi ) (5-95d)

In a similar manner, the reflected fields of the elliptically polarized wave can be written
according to the localized coordinate system (x ′′, y , z ′′) of Figure 5-16 as

Er
|| = âx ′′E r

|| e−jβr • r = −âx ′′�b
|| E

0
|| e−jβr • r = âx ′′ |�b

|| |E 0
|| e−j (βr • r−π−ζ r

|| )

= âx ′′ |�b
|| |E 0

|| e−j (βr • r−φr
|| ) (5-96a)

Er
⊥ = ây E r

⊥e−jβr • r = ây�
b
⊥E 0

⊥e−j (βr • r−φi
⊥) = ây |�b

⊥|E 0
⊥e−j (βr • r−δi −ζ r

⊥)

= ây |�b
⊥|E 0

⊥e−j (βr • r−φr
⊥) (5-96b)

where ζ r
|| and ζ r

⊥ are the phases of the reflection coefficients for parallel and perpendicular
polarizations, respectively. The Poincaré sphere angles γ r and δr of the reflected field can now
be written by referring to (5-96a) and (5-96b) as

γ r = tan−1

(
|Er

⊥|
|Er

|||

)
= tan−1

(
|�b

⊥|E 0
⊥

|�b
|| |E 0

||

)
= tan−1

(
|�b

⊥|
|�b

|| |
tan γ i

)

δr = φr
⊥ − φr

|| = (δi + ζ r
⊥) − (π + ζ r

|| ) = (δi − π) + (ζ r
⊥ − ζ r

|| )

(5-97a)

(5-97b)
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where δr is the phase angle by which the perpendicular (y) component leads the parallel (x ′′)
component of the reflected field. Using the angles γ r and δr of (5-97a) and (5-97b), the corre-
sponding Poincaré sphere angles εr , τ r (tilt angle of ellipse) and axial ratio (AR)r of the reflected
field can be found using the relations

sin(2εr ) = sin(2γ r ) sin(δr )

tan(2τ r ) = tan(2γ r ) cos(δr )

(AR)r = cot(εr )

(5-98a)

(5-98b)

(5-98c)

Following a similar procedure, the transmitted fields can be expressed as

Et
|| = âx ′′′E t

||e
−jβt • r = âx ′′′T b

|| E 0
|| e−jβt • r = âx ′′′ |T b

|| |E 0
|| e−j (βt • r−ξ t

||)

= âx ′′′ |T b
|| |E 0

|| e−j (βt • r−φt
||) (5-99a)

Et
⊥ = ây E t

⊥e−jβt • r = ây T b
⊥E 0

⊥e−j (βt • r−φt
⊥) = ây |T b

⊥|E 0
⊥e−j (βt • r−δi −ξ r

⊥)

= ây |T b
⊥|E 0

⊥e−j (βt • r−φt
⊥) (5-99b)

where ξ t
|| , and ξ t

⊥ are the phases of the transmission coefficients for parallel and perpendicular
polarizations, respectively. The Poincaré sphere angles δt and γ t can now be written by referring
to (5-99a) and (5-99b) as

γ t = tan−1

(
|Et

⊥|
|Et

|||

)
= tan−1

(
|T b

⊥|E 0
⊥

|T b
|| |E 0

||

)
= tan−1

(
|T b

⊥|
|T b

|| |
tanγ i

)

δt = φt
⊥ − φt

|| = (δi + ξ t
⊥) − ξ t

|| = δi + (ξ t
⊥ − ξ t

||)

(5-100a)

(5-100b)

where δt is the phase angle by which the perpendicular (y) component of the transmitted field
leads the parallel (x ′′′) component of the transmitted field. Using the angles γ t and δt of (5-100a)
and (5-100b), the corresponding Poincaré sphere angles εt , τ t (tilt angle of ellipse) and axial
ratio (AR)t of the transmitted field can be found using the relations

sin(2εt ) = sin(2γ t ) sin(δt )

tan(2τ t ) = tan(2γ t ) cos(δt )

(AR)t = cot(εt )

(5-101a)

(5-101b)

(5-101c)

The set of (5-96a) through (5-98c) and (5-99a) through (5-101c) can be used to find, respec-
tively, the polarization of the reflected and transmitted fields once the polarization of the incident
fields of (5-93a) through (5-94d) has been stated. A block diagram of the relations between the
incident, reflected, and transmitted fields is shown in Figure 5-17. The parallel component of the
incident field is taken as the reference for the phase of all of the other components.
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Figure 5-17 Block diagram for polarization analysis of reflected and transmitted waves.

Example 5-12

A left-hand (CCW) circularly polarized field traveling in free space at an angle of θi = 30◦ is incident
on a flat perfect electric conductor of infinite extent. Find the polarization of the reflected wave.

Solution: A circularly polarized wave is made of two orthogonal linearly polarized components
with a 90◦ phase difference between them. Therefore we can assume that these two orthogonal linearly
polarized components represent the perpendicular and parallel polarizations. Since the reflecting surface
is perfectly conducting (η2 = 0), the reflection coefficients of (5-17a) and (5-24c) reduce to

�b
⊥ = −1 = 1

/
π ⇒ |�b

⊥| = 1 ζ r
⊥ = π

�b
|| = −1 = 1

/
π ⇒ |�b

|| | = 1 ζ r
|| = π

Since the incident field is left-hand circularly polarized, then according to (5-93a) through (5-94b)

E 0
|| = E 0

⊥

δi = φi
⊥ = π

2

γ i = tan−1

(
E 0

⊥
E 0

||

)
= π

4
⇒ tan γ i = 1

Thus according to (5-97a) and (5-97b)

γ r = tan−1

(
|�b

⊥|
|�b

|| |
tan γ i

)
= π

4

δr = δi − π + (ζ r
⊥ − ζ r

|| ) = π

2
− π + (π − π) = −π

2

On the Poincaré sphere of Figure 4-20 the angles γ r = π/4 and δr = −π/2 define the south pole,
which represents right-hand (CW) circular polarization. Therefore, the reflected field is right-hand (CW)
circularly polarized, and it is opposite in rotation to that of the incident field as shown in Figure 5-18a .
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Example 5-13

A left-hand (CCW) circularly polarized field traveling in free space at an angle of θi = 30◦ is incident
on a flat lossless (σ2 = 0) ocean (ε2 = 81ε0, μ2 = μ0) of infinite extent. Find the polarization of the
reflected and transmitted fields.

Solution: Since the incident field is left-hand circularly polarized, then according to (5-93a) through
(5-94b)

E 0
|| = E 0

⊥

δi = φi
⊥ = π

2

γ i = tan−1

(
E 0

⊥
E 0

||

)
= π

4
⇒ tan γ i = 1

To find the polarization of the reflected field, we proceed as follows. Using (5-18a)

�b
⊥ =

cos(30◦) − √
81

√
1 − ( 1

81

)
sin2(30◦)

cos(30◦) + √
81

√
1 − ( 1

81

)
sin2(30◦)

=
0.866 − 9

√
1 − 1

81

( 1
4

)
0.866 + 9

√
1 − 1

81

( 1
4

)
= 0.866 − 8.986

0.866 + 8.986

�b
⊥ = −0.824 ⇒ |�b

⊥| = 0.824 ζ r
⊥ = π

Using (5-25a)

�b
|| =

− cos(30◦) +
√

1
81

√
1 − ( 1

81

)
sin2(30◦)

cos(30◦) +
√

1
81

√
1 − ( 1

81

)
sin2(30◦)

=
−0.866 + 1

9

√
1 − 1

81

( 1
4

)
0.866 + 1

9

√
1 − 1

81

( 1
4

)
= −0.866 + 0.111

0.866 + 0.111

�b
|| = −0.773 ⇒ |�b

|| | = 0.773 ζ r
|| = π

According to (5-97a) and (5-97b)

γ r = tan−1

(
|�b

⊥|
|�b

|| |
tan γ i

)
= tan−1

(
0.824

0.773

)
= 46.83◦ = 0.817 rad

δr = δi − π + (ζ r
⊥ − ζ r

|| ) = π

2
− π + (π − π) = −π

2

Using (5-98a) through (5-98c)

2εr = sin−1[sin(2γ r ) sin(δr )]

= sin−1
[
sin(93.66◦) sin

(
−π

2

)]
= −86.34◦

⇒ εr = −43.17◦

2τ r = tan−1[tan(2γ r ) cos(δr )]

= tan−1
[
tan(93.66◦) cos

(
−π

2

)]
= 180◦

⇒ τ r = 90◦
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(AR)r = cot(εr ) = cot(−43.17◦) = −1.066

On the Poincaré sphere of Figure 4-20 the angles γ r = 0.817 and δr = −π/2 locate a point on the
lower hemisphere on the principal xz plane. Therefore the reflected field is right-hand (CW) elliptically
polarized, and it has an opposite sense of rotation compared to the left-hand (CCW) circularly polarized
incident field as shown in Figure 5-18b. Its axial ratio is −1.066.

To find the polarization of the transmitted field we proceed as follows. Using (5-18b)

T b
⊥ = 2 cos(30◦)

cos(30◦) + √
81

√
1 − ( 1

81

)
sin2(30◦)

= 2(0.866)

0.866 + 8.986

= 0.1758 ⇒ |T b
⊥| = 0.1758 ξ t

⊥ = 0

Using (5-25b)

T b
|| =

2
√

1
81 cos(30◦)

cos(30◦) +
√

1
81

√
1 − ( 1

81

)
sin2(30◦)

= 2
( 1

9

)
0.866

0.866 + 0.111

= 0.197 ⇒ |T b
|| | = 0.197 ξ t

|| = 0

According to (5-100a) and (5-100b)

γ t = tan−1

(
|T b

⊥|
|T b

|| |
tan γ i

)
= tan−1

(
0.1758

0.197

)
= 41.75◦ = 0.729 rad

δt = δi + (ξ t
⊥ − ξ t

||) = π

2
+ (0 − 0) = π

2

Using (5-101a) through (5-101c)

2εt = sin−1[sin(2γ t ) sin(δt )] = sin−1[sin(83.5◦) sin(90◦)] = 83.5◦

⇒ εt = 41.75◦

2τ t = tan−1[tan(2γ t ) cos(δt )] = tan−1[tan(83.5◦) cos(90◦)] = 0

⇒ τ t = 0◦

(AR)t = cot(εt ) = cot(41.75◦) = 1.12

On the Poincaré sphere of Figure 4-20 the angles γ t = 0.729 and δt = π/2 locate a point on the upper
hemisphere on the principal xz plane. Therefore the transmitted field is left-hand (CCW) elliptically
polarized, and it is of the same sense of rotation as the left-hand (CCW) circularly polarized incident
field as shown in Figure 5-18b. Its axial ratio is 1.12.

5.7 METAMATERIALS

The decades of the 1990s and 2000s had renewed interest and excitement into the field of
electromagnetics, especially as they relate to the integration of a special type of artificial dielec-
tric materials, coined metamaterials [13–18]. Using a ‘broad brush,’ the word metamaterials
can encompass engineered textured surfaces, artificial impedance surfaces, artificial magnetic
conductors, double negative materials, frequency selective surfaces, Photonic Band-Gap (PBG)
surfaces, Electromagnetic Band-Gap (EBG) surfaces/structures , and even fractals or chirals .
Artificial impedance surfaces are discussed in Section 8.8. In this section we want to focus
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more on material structures whose constitutive parameters (permittivity and permeability) are
both negative, often referred to as Double Negative (DNG). Artificial magnetic conductors can
also be included in the DNG class of materials. It is the class of DNG materials that has capti-
vated the interest and imagination of many leading researchers and practitioners, scientists and
engineers, from academia, industry, and government. When electromagnetic waves interact with
such materials, they exhibit some very unique and intriguing characteristics and phenomena that
can be used, for example, to optimize the performance of antennas, microwave components and
circuits, transmission lines, scatterers, and optical devices such as lenses. While the revitalization
of metamaterials introduced welcomed renewed interest in materials for electromagnetics, it also
brought along some spirited dialogue, which will be referred to in the pages that follow.

The word meta , in metamaterials , is a Greek word that means beyond/after. The term meta-
materials was coined in 1999 by Dr. Rodger Walser, of the University of Texas-Austin and
Metamaterial, Inc., to present materials that are artificially fabricated so that they have electro-
magnetic properties that go beyond those found readily in nature. In fact, the word has been used
to represent materials that microscopically are intrinsically inhomogeneous and constructed from
metallic arrangements that exhibit periodic formations whose period is much smaller than the
free-space and/or guided wavelenth. Using Dr. Walser’s own words, he defined metamaterials
as ‘Macroscopic composites having man-made, three-dimensional, periodic cellular architecture
designed to produce an optimized combination, not available in nature, of two or more responses
to specific excitation’ [19]. Because of the very small period, such structures can be treated as
homogeneous materials, similarly to materials found in nature, and they can then be represented
using bulk constitutive parameters, such as permittivity and permeability. When the period is not
small compared to the free-space or guided wavelength, then such materials can be examined
using periodic analysis (i.e., the Floquet Theorem). Typically the construction of metamaterials
is usually performed by embedding inclusions or inhomogeneities in the host medium, as shown
in Figure 5-19 [13].

5.7.1 Classification of Materials

In general, materials, using their constitutive parameters ε (permittivity) and μ (permeability) as
a reference, can be classified into four categories. They are those that exhibit:

• Negative ε and positive μ; they are usually coined as ENG (epsilon negative) material.
• Positive ε and positive μ; they are usually coined as DPS (double positive) material.

Figure 5-19 Metamaterial representation using embedded periodic inclusions (after [13]).
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Figure 5-20 Characterization of materials according to the values of their permittivity and permeability
(after [13], [17]).

• Negative ε and negative μ; they are usually coined as DNG (double negative) material.
• Positive ε and negative μ; they are usually coined as MNG (mu negative) material.

These are shown schematically in Figure 5-20.
Of the materials shown in Figure 5-20, the ones that usually are encountered in nature are those

of DPS (double positive; first quadrant, like dielectrics such as water, glass, plastics, etc.), ENG
(epsilon negative; second quadrant, like plasmas) and MNG (mu negative; fourth quadrant, like
magnetic materials). Obviously the one set that is most widely familiar and used in applications
is that of DPS, although the other two, ENG and MNG, are used in a wide range of applications.

5.7.2 Double Negative (DNG) Materials

The materials that have recently captured the attention and imagination of electromagnetic engi-
neers and scientists are the DNG, which, as indicated, are not found in nature but may be
artificially realizable. The DNG materials are also referred to as NRI (negative refractive index),
NIM (negative index material), BW (backward) media, and left-handed (LH) media, to name a
few. For clarity and simplicity, we will stay with the DNG designation. The DNG class has cre-
ated an intense activity as many have attempted to incorporate material with such characteristics
to design, enhance, or increase the performance of lenses, microwave circuits, transmission lines,
antennas, phase shifters, broadband power dividers, backward and forward leaky-wave antennas,
electrically small ring antennas, cloaking, plasmonic nanowires, photonic crystals, and miniatur-
ization [13–21]. More specifically, using antennas as an example, it has been reported that the
integration of materials with radiating elements can increase the radiated power, enhance the
gain, and tune the frequency of operation.

While there has been a lot of activity since the recent revival of metamaterials, their intro-
duction has also created some spirited dialogue about the negative index-of-refraction, negative
refraction angle, and phase advancement [19–21]. What may have elevated this dialogue to a
greater level is that some of the reported results using DNG metamaterials may have been over-
stated, and lacked verification, interpretation and practical physical realization [22] Appendix C
of [23]. However, within the broader definition of metamaterials, there have been metamate-
rial structures whose performance, when combined with devices and circuits, has been validated
not only by simulations but also by careful experimentation. For such structures not only good
agreement between simulations and measurements has been found, but also the results have been
within limits of physical reality and interpretation. Some of these have been acknowledged for
their validity, and they have also often been referred to as engineered textured surfaces, artificial
impedance surfaces (AIS), artificial magnetic conductors (AMC), photonic band-gap structures
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(PBG), and electromagnetic band-gap structures (EBG). This class of metamaterials is discussed
in Section 8.8, and the reader is referred to that section for details and references.

Because of the interest in the electromagnetic community, it is important that the topic of
metamaterials be introduced to graduate students, and maybe even to undergraduates, but pre-
sented in the proper context. Because of space limitations, only an introductory overview of the
subject is included in this book. A succinct chronological sequence of the basic events that led to
this immense interest in metamaterials is also presented. The reader is referred to the literature
for an in-depth presentation of the topic and its applications.

5.7.3 Historical Perspective

The origins of metamaterials can be traced back to the end of the 19th century, and they are
outlined in many publications. Since metamaterials is a rather new designation, it is a branch of
artificial dielectrics. In fact, it was indicated in 1898 that Jajadis Chunder Bose may have emulated
chiral media by using man-made twisted fibers to rotate the polarization of electromagnetic waves
[24]. In 1914, Lindman examined artificial chiral media when he attempted to embed into the
material an ensemble of randomly oriented small wire helices [25]. In 1948, Winston E. Kock
of Bell Laboratories introduced the basic principles of artificial dielectrics to design lightweight
lenses in the microwave frequency range (around 3–5 GHz) [26]. His attempt was to replace
at these frequencies, where the wavelength is 10-6 centimeters, heavy and bulky lenses made
of natural dielectric materials. He realized his concept of artificial dielectrics by controlling the
effective index-of-refraction of the materials by embedding into them, and arranging periodically,
metallic disks and spheres in a concave lens shape.

The paper that revived the interest in the special class of artificial materials, now coined
metamaterials and not found in nature, was that of Victor Veselago in 1968 who analyzed
the propagation of uniform waves in materials that exhibited, simultaneously, both negative
permittivity and permeability (DNG; double negative) [27]. Although Veselago may not have
been interested in dielectric materials, he examined analytically the wave propagation through
materials that exhibited, simultaneously, negative ε and negative μ. One of the materials that can
be created in nature is plasma, which can exhibit negative permittivity. Plasma is an ionized gas of
which a significant number of its charged particles interact strongly with electromagnetic fields and
make it electrically conductive. For those that lived through the birth of the U.S. space program
in the mid-1960s, led by NASA, there was a lot of interest and research in plasmas, formed
beneath and around the nose of the spacecraft during re-entry that caused loss of communication
with the astronauts during the final 10–15 minutes of landing. To attempt to alleviate this loss of
communication (referred to then as blackout), due to the formed plasma sheath near the nose and
belly of the spacecraft, NASA initiated and carried out an intense research program on plasma.
The plasma was modeled with a negative dielectric constant (negative permittivity), and it was
verified through many experiments.

Although Veselago may have known that negative ε can be obtained by plasma-type materials,
he did not speculate, at least in [27], how and what kind of materials may exhibit DNG properties.
However, he was able to show and conclude, through analytical formulation, that for wave
propagation through DNG type of materials, the direction of the power density flow (Poynting
vector) is opposite to the wave propagation (phase vector). He referred to such materials as
left-handed . Based on his conclusions, the directions of power density flow and phase velocity for
DPS materials (double positive, which are conventional dielectrics) and DNG materials (double
negative, not found in nature) are illustrated graphically in Figure 5-21, where a uniform plane
wave propagates in DPS (Figure 5-21a) and DNG (Figure 5-21b) materials. The DPS materials
are also dubbed Right-Handed Materials (RHM) while the DNG materials are dubbed as
Left-Handed Materials (LHM). The solid arrows represent the directions of wave vectors (phase
velocities) while the dashed arrows represent power flow (Poynting vectors). While the arrows



Balanis c05.tex V3 - 11/23/2011 11:47 A.M. Page 231

METAMATERIALS 231

(a) (b)

E

H

 azSz

βDPS = az bz βDNG = az bz

z
1

Re(E × H*) =
2

SDPS =  azSz
1

Re(E × H*) =
2

SDNG =

H

E

z

Figure 5-21 Direction of phase vector (β) and Poynting vector (S) for uniform wave propagation in double
positive (DPS) and double negative (DNG) materials. (a) RHM: double positive material (DPS). (b) LHM:
double negative material (DNG).

in Figure 5-21a illustrate the directions that we expect from conventional dielectrics, the arrows
in Figure 5-21b point in the opposite direction, which will indicate that there is a phase advance
(phase wave fronts move toward the source) for the wave in Figure 5-21b and a phase delay for
the wave in Figure 5-21a , which is what we are accustomed to from conventional dielectrics.
To get the phase advance of Figure 5-21b requires that the phase constant (wave number) is
negative. This is accomplished by defining both the permittivity and permeability negative;
thus the name of DNG material. These concepts will be presented here analytically, but first an
outline will be created to lay the groundwork of metamaterials, at least as of this writing.

5.7.4 Propagation Characteristics of DNG Materials

Veselago in his seminal paper showed, using a slab of DNG material embedded into a host DPS
medium (the same DPS to the left and to the right of the DNG slab), that an impinging wave
emanating from a source to the left of the DNG slab will focus, creating caustics at two different
points (one within the DNG slab and the other one to the right of the DNG slab), as long as
the slab is sufficiently thick. This is accomplished by using, for the DNG slab, permittivity and
permeability that are of the same magnitudes but opposite signs as those of the host DPS medium
(ε2 = −ε1, μ2 = −μ1; index-of-refraction n2 = −n1). This is shown graphically in Figure 5-22,
and it is often referred to as the Veselago planar lens . This, of course, seemed very attractive and
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m2 = −m1

e2 = −e1
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Figure 5-22 Veselago’s planar/flat lens: focusing by a DNG slab between two DPS materials [19].
Reprinted with permission from John Wiley & Sons, Inc.
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was probably one of the reasons the genesis of the renewed interest of modern metamaterials.
However, the Veselago planar lens was also analyzed using a classical method based on Fourier
transforms in the frequency domain, and the sinusoidal field exciting the lens expressed in terms
of even and odd resonant surface wave modes whose amplitudes were evaluated by residues at
the poles [28], Appendix D of [23]. Based on this analytical approach, the following observations
were made in [28], Appendix D of [23]: A CW sinusoidal source solution to “a lossless Veselago
flat lens with super resolution is not physically possible” because of the presence of surface waves
that produce divergent fields over a region within and near the Veselago lens. If losses are included,
the excited interfering surface wave modes will decay in a short time interval; however, the lens
resolution will depend on the losses, and it will be substantially reduced if they are moderate to
large [28], Appendix D of [23]. The analysis assumes that the incident field has a finite continuous
frequency spectrum, and the negative epsilon and mu are frequency dispersive, which Veselago
indicates are necessary for the field energy to be positive.

The time-domain solution to a frequency dispersive Veselago lens illuminated by a sinusoidal
source that begins at t = 0 has also been determined [29]. The time-domain fields remain finite
everywhere for finite time t and approach the fields of a CW source only as t → ∞. In particular,
the divergent fields encountered in the CW solution to the lossless Veselago lens are caused by
the infinite CW energy imparted (during the infinite amount of time between t → −∞ and the
present time t) to the evanescent fields in the vicinity of the slab; analogous to the divergent
fields produced by a CW source inside a lossless cavity at a resonant frequency.

The work of Veselago remained dormant for about 30 years, and it was not until the late 1990s
when Pendry and his colleagues suggested that DNG materials could be created artificially by
using periodic structures [30–33]. Not long after Pendry, Smith and his collaborators [34–38]
built materials that exhibited DNG characteristics. This was accomplished by the use of a structure
consisting of split-ring resonators and wires, a unit cell of which is shown in Figure 5-23. It
was suggested that the split-ring element, of the type shown in Figure 5-23a , will contribute a
negative permeability while the infinite length wire of Figure 5-23b will contribute a negative
permittivity; the combination of the two will, in a periodic structure, contribute a negative index-
of-refraction. An experimental array of split-ring resonators and wires is shown in Figure 5-24.
In fact, Smith and his team claimed to have observed experimentally negative refraction. In [19]
this phenomenon was claimed to be radiation from either a surface wave characteristic of finite
periodic structures or possibly a sidelobe from the main beam [39].

Because of the immense interest in DNG materials, with negative permittivity and permeability,
there were a number of subsequent experiments, in addition to that in [38], to attempt to verify
the negative permittivity and permeability, and thus negative index-of-refraction. Some of these

(a) (b)

Figure 5-23 Simulation of DNG material (negative refraction) using split-ring resonators and wires.
(a) Split ring. (b) Wire.
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Figure 5-24 Simulation of DNG material (negative refraction) using split-ring resonators and wires [38].
“From R. A. Shelby, D. R. Smith, S. Shultz, ‘Experimental verification of a negative index-of-refraction,’
Science, vol. 292, pp. 77–79, April 2001. Reprinted with permission from AAAS.”

experiments, along with the corresponding references, are summarized in [40]. For the simulations,
a frequency-dispersive Drude model [13] was used to represent the negative permittivity of the
infinite wires while a frequency-dispersive Lorentz model [32] was utilized for the representation
of the negative permeability of the split-rings of Figure 5-23. The experiments consisted of
parallel plate waveguide techniques utilizing both metamaterial slabs and prisms [40], and most
of the measurements were carried out in the 4–20 GHz region. The refraction could be observed
by having the slab samples rotated or by having the plane wave incident at an oblique angle.
While the nearly plane wave incidence was easier to implement experimentally, the rotation of the
samples yield good experimental results. The use of prisms was also an alternative and popular
experiment. The metamaterial slabs and prisms were fabricated by embedding various geometrical
shapes to represent the characteristics of both wire and different shape split-ring inclusions. In
some of the experiments, the metamaterials included only split-ring type of inclusions to verify
the negative permeability. The use of an S-shaped unit cell in the metamaterial structure provided
an alternative geometry that simulated both a negative permittivity and permeability, and thus
did not require the straight wire to represent the negative permittivity; alternate S-ring designs
could also be used to possibly achieve dual frequency bands [40]. Gaussian beams and nearly
simulated plane waves were used to perform transmission and focusing experiments to validate
the negative index-of-refraction, using both dielectric and solid state structures. The solid state
metamaterial structures were introduced to minimize the mismatch losses (which were greater
for dielectric structures and led to low power levels), improve the mechanical fragility, and
make metamaterials more attractive for industrial applications [40]. It was reported that both the
transmission and focusing experiments produced results that indicated negative permittivity and
permeability, and thus, the creation of a negative effective index-of-refraction [40].

The attractive performance of devices and systems that incorporated metamaterials led to
the genesis of the enormous interest on the subject by many teams around the world, and the
avalanche of papers published in transactions and journals, presented in symposia and conferences,
and applied to numerous problems with exotic characteristics and performances. The word meta-
materials became a ‘household’ word in the electromagnetic community in the 2000–2010 time
period. This type of materials exhibit narrow bandwidths, which may have limited its applications.

5.7.5 Refraction and Propagation Through DNG Interfaces and Materials

Now that a brief historical and chronological background of the evolution of metamaterials
has been outlined, we will present a special case of what initially were referred to as artificial
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dielectrics, the basics from the analytical point of view as well as from a sample of simulations,
and experiments. It should be pointed out, however, that what ensued after the work by Pendry
and Smith was a plethora of publications which are too numerous to include here. Up to this
point an attempt was made to reference some of the most basic books and papers. The reader
is referred to the technical transactions, journals, and letters where most of these ensuing papers
were published or presented at leading international conferences and symposia. Most of these
can be found in references [41–46].

The greatest potential of the DNG materials is the creation of a structure with a negative
index-of-refraction n defined as

n2 = εrμr ⇒ n = ±√
εrμr = ±√−|εr |(−|μr |) = ±(j

√|εr |)(j
√|μr |) = ±j 2√|εrμr |

n = ∓√|εrμr | (5-102)

Which sign of n should be chosen for DNG materials (with both εr and μr negative)? It seems
from (5-102) that there are two basic choices; either negative or positive n . If a positive n is
selected, that resorts back to the DPS representation. If the negative value of n in (5-102) is
selected, then that is the basis of DNG materials.

Materials with negative index-of-refraction have some interesting properties, some of which
have been mentioned and illustrated in Figure 5-21. Now let us examine two interface options
using Snell’s law of refraction which is the manifest of phase match across the interface. Of
particular interest are materials with negative index-of-refraction.

• Snell’s law of refraction, represented by (5-15b) and (5-24b), or

β1 sin θi = ω
√

μ1ε1 sin θi ≡ β2 sin θt = ω
√

μ2ε2 sin θt (5-103)

can also be written as
n1 sin θi = n2 sin θt (5-104)

When the index-of-refraction of both materials forming the interface is positive, then the
refracted ray (transmitted wave) will be, as expected for conventional materials, on the
same side (relative to the normal to the interface) as the reflected ray, as illustrated in
Figure 5-25a . However, when the index-of-refraction of one material is positive while that
of the other is negative, the refracted ray (transmitted wave) will be in the opposite direction
of the reflected ray, as illustrated in Figure 5-25b.

• For DNG materials with a negative index-of-refraction the phase constant (wave number) of
the wave traveling in the DNG material is negative, or based on the definition of (5-103)

β2 = ω
√

μ2ε2 = −ω
√

|μ2| |ε2| (5-105)

This implies that, for positive time, there will be a phase advance (phase wavefronts move
toward the source), instead of a phase delay that we have been accustomed to. This is an
interesting phenomenon, which has been part of the spirited dialogue.

So, based on the above, a negative index-of-refraction leads to:

• A refracted angle that is on the same side, relative to the normal to the interface, as the
incident angle, and the power flow (Poynting vector) is outward (as expected); however, the
phase vector in inward (opposite to the Poynting vector).

• Phase advance, instead of phase delay that is typical of DPS materials.

Based on the above, let us examine through an example a more general case of the planar lens
that was illustrated in Figure 5-22.
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Figure 5-25 Refraction by planar interface created by double positive (DPS) and double negative (DNG)
materials. (a) DPS-DPS. (b) DPS-DNG.
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Example 5-14

Figure 5-22 displays Veselago’s planar/flat lens. A more general one is the one of Figure 5-26 where a
DNG slab is sandwiched within free space. Given the dimensions of the DNG slab of thickness d and
the source position s , as shown in the Figure 5-26, determine the location of the foci (caustics) f0 and f1
(one within the DNG slab and one outside it) in terms of the incidence angle θi , position of the source s ,
and thickness d and index-of-refraction n1 of the DNG slab. Assume the DNG slab possesses negative
permittivity −ε1, negative permeability −μ1, and negative index-of-refraction −n1. Furthermore, let us
assume that we are looking for a solution based on geometrical optics.

Solution: Using (5-103) through (5-105), we can write for the leading interface between free space
and the DNG slab that

θ1 = sin−1
(

1

|n1| sin θi

)
Also from Figure 5-26

tan θi = h1

s
⇒ h1 = s tan θi

tan θ1 = h1

f0
⇒ h1 = f0 tan θ1

Equating the two previous equations leads to

s tan θi = f0 tan θ1 ⇒ f0 = s
tan θi

tan θ1
⇒ tan θ1 = s

f0
tan θi

From Figure 5-26

tan θ0 = h2

f1
⇒ h2 = f1 tan θ0

tan θ1 = h2

d − f0
⇒ h2 = (d − f0) tan θ1

Equating the last two equations leads to

f1 tan θ0 = (d − f0) tan θ1 ⇒ f1 = (d − f0)
tan θ1

tan θ0

which can also be expressed, assuming d > f0, as

f1 = (d − f0)
tan θ1

tan θ0
= (d − f0)

s

f0

tan θi

tan θ0

Since θ0 = θi , the above equation reduces to

f1 = (d − f0)
s

f0

As the magnitude of −ε1 approaches that of free space (that is |−ε1| → |ε0| ⇒ |−n1| → |n0| = 1),
the focal distance f0 approaches s(f0 → s) and f1 approaches d − s(f1 → d − s). Then Figure 5-26
reduces, in this limiting case, to Figure 5-22. When s becomes very large (approaching infinity), the
incident wave reduces to near normal incidence. In this case the focusing moves toward infinity (ideally
no focusing).
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Figure 5-26 DNG dielectric slab bounded on both sides by free space.

n = +1 n = +1

d

Figure 5-27 Negative refraction from a DNG slab [48]. Copyright © by The Optical Society of America.
Permission and courtesy of R. W. Ziolkowski.

To illustrate the DNG refraction, a simulation has been performed, using the Finite-Difference
Time-Domain method, of a 30 GHz perpendicularly polarized CW Gaussian beam incident at
20◦ on a DNG slab bordered from the left and right by free space, as shown in Figure 5-27 [48].
Because the incident wave is a plane wave, there is no focusing. The index-of-refraction of the
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Figure 5-28 Reflection and transmission through a DNG slab.

DNG slab is n = −1, and it was chosen to minimize reflections. Identical electric and magnetic
Drude models were selected with parameters chosen so that only small losses were considered
[13, 48]. Assuming the stated parameters of the media, the negative refraction is visible at the
leading and trailing interfaces.

Another interesting observation will be to illustrate, through an example, the propagation
of a plane wave through a slab of metamaterial, of thickness d , when it is embedded into a
conventional dielectric material, as shown in Figure 5-28. This is similar to the problem for
ordinary dielectrics, illustrated in Figure 5-11. For convenience, it is assumed that in Figure 5-28
the media to the left and right of the metamaterial DNG slab are both conventional dielectrics
and identical . Also, at first we examine wave propagation at normal incidence, which is similar
to that of conventional dielectrics, shown in Figure 5-11. The phase vectors β ( ) and
Poynting vectors S ( ) in each region are also indicated by their respective arrows. The
analytical formulation of the reflection and transmission coefficients follows.

Example 5-15

For the DNG geometry of Figure 5-28, derive a simplified expression for the total input reflection at
the initial interface and the total transmission coefficient through the entire DNG slab.

Solution: Using (5-67d), the total input reflection coefficient at the leading edge of the slab can be
written as

� = E r

E t
= �12 + �23e−j 2β2d

1 + �12�23e−j 2β2d

�23=−�12
η3=η1 �12

(
1 − e−j 2β2d

)
1 − (�12)2e−j 2β2d

which for a DNG slab, based on (5-105), reduces to

� = E r

E t
= �12 + �23e+j 2|β2|d

1 + �12�23e+j 2|β2|d

�23=−�12
η3=η1 �12

(
1 − e+j 2|β2|d )

1 − (�12)2e+j 2|β2|d
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since

�12 =
[

η2 − η1

η2 + η1

]
= −�23

Similarly, it can be shown that the transmission coefficient can be written as [13]

T = E t

E i
= 4η2η3e−jβ2d

(η1 + η2) (η2 + η3)

1(
1 + �12�23e−jβ2d

)
T = E t

E i

�23=−�12
η3=η1 4η2η1e−jβ2d

(η1 + η2)
2

1[
1 − (�12)

2 e−jβ2d
]

which for the DNG slab reduces to

T = E t

E i

�23=−�12
η3=η1 4η2η1e+j 2|β2|d

(η1 + η2)
2

1[
1 − (�12)

2 e+j 2|β2|d ]

An interesting observation is made if the DNG dielectric slab of Example 5-15 is matched
to the medium it is embedded; that is, if η2 = η1. For this case, �12 = 0, and the total input
reflection and the transmission coefficients of Example 5-15 reduce, respectively, to

� = 0 (5-106a)

T = e+j 2|β2|d (5-106b)

The transmission coefficient of (5-106b) indicates a phase advance (phase wavefront moving
toward the source), instead of a phase delay as we are accustomed for wave propagation through
conventional materials. This wave propagation through DNG materials is a unique feature that
can be taken advantage of in various applications. As an example, the usual phase delay in
conventional dielectric slabs and/or transmission lines can be compensated by phase advance in
DNG type of slabs and/or transmission lines [13, 15, 16, 47] and others.

Now consider a uniform plane wave propagating at oblique incidence through a planar interface
consisting of two materials. The case where both media are DPS has been treated in Section 5.3.1
for perpendicular polarization (Figure 5-2) and in Section 5.3.2 for parallel polarization
(Figure 5-4). Now we will examine the wave propagation through a DNG medium; in this case
medium 2 is DNG, when the first medium is DPS. However, before this is done, the interface
formed by two DPS materials will be examined first. The planar interface formed by one DPS
and one DNG material is examined afterwards. Only the perpendicular polarization of Figure 5-2
is considered. The same procedure can be applied to Figure 5-4 for the parallel polarization.

Based on the geometry of Figure 5-2, the vector wavenumbers for the incident, reflected, and
transmitted fields can be written as

βi = β1 (âx sin θi + âz cos θi ) = n1
ω

v0
(âx sin θi + âz cos θi ) (5-107a)

βr = β1 (âx sin θi − âz cos θi ) = n1
ω

v0
(âx sin θi − âz cos θi ) (5-107b)

βt = β2 (âx sin θt + âz cos θt ) = n2
ω

v0
(âx sin θt + âz cos θt ) (5-107c)
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Using the expressions for the electric and magnetic fields of (5-10a) through (5-12b), the Poynting
vectors for the respective three fields (incident, reflected, and refracted) can be written as

Si = 1

2

|E0|2
η1

(âx sin θi + âz cos θi ) (5-108a)

Sr = 1

2

|�E0|2
η1

(âx sin θi − âz cos θi ) (5-108b)

St = 1

2

|TE0|2
η2

(âx sin θt + âz cos θt ) (5-108c)

This is left as end-of-the-chapter exercises for the reader. It is apparent, from the vectors within
the parentheses in (5-107a) through (5-108c), that for a DPS-DPS interface the phase vectors and
the Poynting vectors for all three fields (incident, reflected, and refracted) are all parallel to each
other and in the same directions.

Now let us consider the same oblique incidence upon a DPS-DNG interface, as shown in
Figure 5-29. Snell’s law of refraction, which is given by (5-103) and (5-104), can be expressed
as

sin θt = ω
√

μ1ε1

ω
√

μ2ε2
sin θi = n1

n2
sin θi ⇒ θt = sin−1

(
n1

n2
sin θi

)
(5-109)

For positive n1 and n2, the angle θt is positive, and everything follows what we already have
experienced with DPS materials. However, when n1 and n2 have opposite signs, the angle θt

is negative, as indicated in Figures 5-25, 5-26, and 5-29, and simulated in Figure 5-27. Based
on these figures, whose interface is formed by a DPS and a DNG material (which leads to a
negative angle of refraction), we will examine the directions of the phase vectors of (5-107) and
Poynting vectors of (5-108) for the perpendicular polarization. The same can be done for the
parallel polarization. This is left as an end-of-the-chapter exercise for the reader.

DPS 
(e1, m1, n1)

DNG 
(−e2, −m2, −n2)

qi

qr

βt

St

βi

βr

Si

Sr

qt

Reflected

Incident

Transmitted

z
y

Ei

Hi

Et

Ht

Hr

Er

x

Figure 5-29 Uniform plane wave reflection and refraction of perpendicular polarization by a planar inter-
face formed by DPS and DNG materials.
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Since for the interface of Figure 5-29 the index-of-refraction of medium 2 is negative and
the wavenumber is also negative, as expressed by (5-105), the wave vectors of (5-107a) and the
Poynting vectors of (5-108a) can now be written, respectively, as

βi = β1 (âx sin θi + âz cos θi ) = n1
ω

v0
(âx sin θi + âz cos θi ) (5-110a)

βr = β1 (âx sin θi − âz cos θi ) = n1
ω

v0
(âx sin θi − âz cos θi ) (5-110b)

βt = |β2| (âx sin |θt | − âz cos |θt |) = |n2| ω

v0
(âx sin |θt | − âz cos |θt |) (5-110c)

Si = 1

2

|E0|2
η1

(âx sin θi + âz cos θi ) (5-111a)

Sr = 1

2

|�E0|2
η1

(âx sin θi − âz cos θi ) (5-111b)

St = 1

2

|TE0|2
η2

(−âx sin |θt | + âz cos |θt |) (5-111c)

While the wave and Poynting vectors of the incident and reflected fields are unaffected by the
presence of the DNG material forming the interface in Figure 5-29 [they are the same as in
(5-107) and (5-108)], those of the transmitted fields, as represented by (5-110c) and (5-111c) are
different from the corresponding ones of (5-107c) and (5-108c) in two ways.

The first difference is that the wave vector of (5-110c) is antiparallel to the Poynting vector
of (5-111c), whereas they were parallel for (5-107c) and (5-108c). Also, for positive time, the
wavenumber of (5-107c) leads to a phase delay, but the wavenumber of (5-110c) leads to a phase
advance. In addition, while the phase vector of (5-107c) and the Poynting vector of (5-108c)
are both directed away from the source (point of refraction in the first quadrant), the Poynting
vector of (5-111c) is also directed away from the source, but in the fourth quadrant. These are
also illustrated graphically in Figures 5-21a and 5-21b. These are some of the similarities and
differences in the transmitted fields for DPS-DPS and DPS-DNG interfaces.

5.7.6 Negative-Refractive-Index (NRI) Transmission Lines

Another application of the DNG material is the design of Negative-Refractive-Index Transmission
Lines (NRI-TL) [15, 16, 47]. This concept can be used to design:

• nonradiating phase-shifting lines that can produce either positive or negative phase shift
• broadband series power dividers
• forward leaky-wave antennas

and other applications [16]. When a wave propagates through a DPS medium, like in a conven-
tional dielectric slab of thickness d1, it will accumulate phase lag |φ1| of β1d1(φ1 = −β1d1), also
referred to as negative phase shift, where β1 is the phase constant (wave number). This negative
phase shift can be compensated by a positive phase shift φ2 (φ2 = +|β2|d2) through a DNG
slab that follows the DPS slab. In fact, ideally, the negative phase shift accumulated through
propagation in the DPS slab (φ1 = −β1d1) can be totally eliminated if the positive phase φ2

(φ2 = +|β2|d2) can be created by propagation through the DNG slab such that |φ1| = |φ2| so that
the total phase φ by wave propagation through both slabs is equal to zero (φ = φ1 + φ2 = 0).
Such an arrangement is shown graphically in Figure 5-30 where the arrows are used to designate
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β0

β1 β2

βt

Figure 5-30 Wave propagation through two successive dielectric slabs, one made of DPS material and
the other, of DNG material, for phase wave compensation.

the directions of the phase vectors β and the Poynting vectors S. This phase compensation can
also be used to create any other desired total phase shift by appropriately choosing the phase
constants and thicknesses of the DPS and DNG slabs. The special case of zero phase shift of
wave propagation through both slabs is accomplished provided

|φ1| = ω
√

μ1ε1d1 = |φ2| = ω
√

|μ2| |ε2|d2 ⇒ n1d1 = n2d2 ⇒ d1

d2
= n1

n2
(5-112)

A graphical illustration of such phase compensation of the electric field intensity of a perpen-
dicularly polarized field, simulated using the FDTD method, is exhibited in Figure 5-31 [13]. The
incident field is a Gaussian beam traveling in a free-space medium and normally incident upon
the DPS slab followed by a DNG slab. The indices of refraction were chosen to be nreal(ω) = +3
for the DPS slab and nreal(ω) = −3 for the DNG slab. Observing the phase fronts of the beam
inside the two slabs, it is evident that the beam expands (diverges) in the DPS slab while it
refocuses (converges) in the DNG slab. Ultimately, the phase fronts of the exiting beam in the
free-space medium to the right of the DNG slab begin to expand and match those of the incident
field to the left of the DPS slab. According to [13], there was only 0.323 dB attenuation of wave
propagation through the two slabs that span a total distance of 4λo. However, the total phase
accumulation from the leading edge of the DPS slab to the trailing edge of the DNG slab is zero.
Thus, the output field exits the trailing edge, along the symmetry line of the source/beam which
is perpendicular to the interface, with the same phase as the input field and with only a slight
attenuation in the peak value of about of 0.323 dB, which is due to a small loss in the medium
and to the Gaussian beam diverging from the source. While the negative (second) layer refocuses
the beam, the small loss by the first layer is not totally compensated by the second layer and
leads to the slight attenuation at the output face of the system. Such an arrangement of slabs is
usually referred to, for obvious reasons, as a beam translator [13].

This phase compensation concept can also be applied to compensate for negative phase shift
by wave propagation through a conventional DPS transmission line followed by a NRI line
with DNG material, often referred to as BW (backward-wave) line, as shown graphically in
Figure 5-32 [16].
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d = 2l0d = 2l0

nreal(w) = +3 nreal(w) = −3

Figure 5-31 Phase compensation by successive conventional DPS and DNG slabs [13]. Reprinted with
permission from John Wiley & Sons, Inc. Original courtesy of R. W. Ziolkowski.
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Figure 5-32 Phase compensation by successive conventional and backward-wave transmission lines [16].
Reprinted with permission from John Wiley & Sons, Inc. Originals courtesy of G. V. Eleftheriades and
M. Antoniades. (a) Conventional transmission line followed by a backward-wave line. (b) Equivalent circuit
of conventional transmission line followed by a backward-wave line.
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Figure 5-33 Experimental units, and simulated and measured responses of two- and four-stage phase
shifting lines [16]. Reprinted with permission from John Wiley & Sons, Inc. Originals courtesy of G. V.
Eleftheriades and M. Antoniades. (a) Two-stage phase shifting line (16 mm) (top) and a four-stage phase-
shifting line (32 mm) both at 0.9 GHz [16]. (b) Phase and magnitude responses of a two-stage and four-stage
phase-shifting lines compared to conventional −360◦ TL and a −360◦ low-pass loaded line at 0.9 GHz [16].
Phase: Measured Simulated (Agilent ADS)
Magnitude: . . . Measured Simulated (Agilent ADS)

In Figure 5-32b the equivalent circuit of BW line indicates that the phase advance through the
unit cell of a BW line is given by

φBW = 1

ω
√

LoCo
(5-113)

which is representative of the phase through a high-pass LC filter of the type shown in the unit
cell of the BW line in Figure 5-32b. Such a backward type of a wave, for the equivalent circuit
of the backward section of the line, has also been addressed in [49], which states that “a wave in
which the phase velocity and group velocity have opposite signs is known as a backward wave.
Conditions for these may seem unexpected or rare, but they are not.” In fact, it is also stated
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in [49] that many filter type of lines have backward waves and that periodic circuits exhibit an
equal number of forward and backward “space harmonics.”

The low-pass filter (regular transmission line) and high-pass filter (backward-wave line) char-
acteristics can be verified using the Brillouin dispersion diagram [49, 50], which is a plot of ω

vs. β with the phase velocity defined as

vp = ω

β
(5-114)

while the group velocity is defined as

vg = ∂ω

∂β
(5-115)

For the regular transmission type line vp and vg have the same sign while for the backward-wave
type of line, vp and vg have opposite signs.

Therefore, it seems that in Figure 5-32 there is a low-pass filter (conventional) line followed
by a high-pass filter (BW line) with a total phase shift for the two of

φMTM = φTL + φBW = −ω
√

LC d + 1

ω
√

LoCo
(5-116)

The transmission line is of the delay type while the backward-wave line is of the phase advance
type.

Various one-dimensional phase-shifting lines were constructed at 0.9 GHz using coplanar
waveguide (CPW) technology [16]. Two such units, one a two-stage and the other a four-stage
phase shifters, are shown in Figure 5-33a . The corresponding simulated and measured phase
responses of both units are shown in Figure 5-33b where they are compared with the phase
responses of a conventional −360◦ TL line and a −360◦ low-pass loaded line. The corresponding
magnitudes of both units of 0◦ phase shift are also indicated in Figure 5-33b. A good comparison
is observed between the simulated and measured results and confirms the broadband nature of
the phase shifting lines which also exhibit rather small losses [16].

5.8 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, and presentation of the material of this chapter.

• MATLAB computer programs:
a. SWR_Animation_�_SWR_Impedance: Animates the standing wave pattern of a plane

wave traveling in a semi-infinite lossless medium and impinging, at normal incidence,
upon a planar interface formed by two semi-infinite planar media; the second medium
can be lossy (see Figure 5-1). It also computes the input reflection coefficient �, SWR,
and input impedance.

b. QuarterWave_Match: Designs a quarter-wavelength impedance transformer of N slabs
to match a given semi-infinite medium (input) to another semi-infinite medium (load).

c. Single_Slab: Characterizes the reflection and transmission characteristics of a single layer
slab bounded on both sides by two semi-infinite media.

d. Refl_Trans_Multilayer: Computes the reflection and transmission coefficients of a uni-
form plane wave incident at oblique angle upon N layers of planar slabs bordered on
either side by free space.

e. Polarization_Refl_Trans: Computes the Poincaré sphere angles, and thus, the polariza-
tion, of a plane wave incident at oblique angles upon a planar interface.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

5.1. A uniform plane wave traveling in a dielec-
tric medium with εr = 4 and μr = 1 is inci-
dent normally upon a free-space medium. If
the incident electric field is given by

Ei = ây 2 × 10−3e−jβz V/m

write the:

(a) Corresponding incident magnetic field.
(b) Reflection and transmission coefficients.
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(c) Reflected and transmitted electric and
magnetic fields.

(d) Incident, reflected, and transmitted po-
wer densities.

zy

x

e0, m0er = 4

mr = 1

Figure P5-1

5.2. The dielectric constant of water is 81.
Calculate the percentage of power density
reflected and transmitted when a uniform
plane wave traveling in air is incident nor-
mally upon a calm lake. Assume that the
water in the lake is lossless.

5.3. A uniform plane wave propagating in a me-
dium with relative permittivity of 4 is inci-
dent normally upon a dielectric medium with
dielectric constant of 9. Assuming both media
are nonferromagnetic and lossless, determine
the:
(a) Reflection and transmission coefficients.
(b) Percentage of incident power density

that is reflected and transmitted.

5.4. A vertical interface is formed by having
free space to its left and a lossless dielec-
tric medium to its right with ε = 4ε0 and
μ = μ0, as shown in Figure P5-4. The inci-
dent electric field of a uniform plane wave
traveling in the free-space medium and inci-
dent normally upon the interface has a value

x

z

e0, m0 4e0, m0

y

Figure P5-4

of 2 × 10−3 V/m right before it strikes the
boundary. At a frequency of 3 GHz, find the:
(a) Reflection coefficient.
(b) SWR in the free-space medium.
(c) Positions (in meters) in the free-space

medium where the electric field maxima
and minima occur.

(d) Maximum and minimum values of the
electric field in the free-space medium.

5.5. A uniform plane wave traveling in air is
incident upon a flat, lossless, and infinite in
extent dielectric interface with a dielectric
constant of 4. In the air medium, a standing
wave is formed. If the normalized magnitude
of the incident E-field is Eo = 1, determine
the:
(a) Maximum value of the E-field standing

wave pattern in air.
(b) Shortest distance l (in λo) from the

interface where the first maximum in the
E- field standing wave pattern will occur
(normalized to the incident field).

(c) Minimum value of the E-field standing
wave pattern in air (normalized to the
incident field).

(d) Shortest distance l (in λo) in air from
the interface where the first minimum
in the E-field standing wave pattern will
occur (normalized to the incident field).

(e) Standing Wave Ratio (SWR) measured
in the air medium.

(f) Input wave impedance inside the air
medium where the:
1. First maximum in the E-field stand-

ing wave pattern occurs.
2. First minimum in the E-field standing

wave pattern occurs.

5.6. A CW circularly-polarized wave of f =
100 MHz of the form

Ei (z ) = (
âx − j ây

)
e−j 6πz

where z is in meters, is traveling inside a
lossless dielectric medium and is normally
incident upon a flat planar interface formed
by the dielectric medium and air. The inter-
face is on the xy-plane. Assuming the per-
meability of the dielectric medium is the
same as free space, determine the:
(a) Dielectric constant (relative permittiv-

ity) of the dielectric medium.
(b) Reflection coefficients for the âx and ây

components.
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(c) Transmission coefficients for the âx and
ây components.

(d) Polarization (linear, circular or ellipti-
cal) of the reflected field.

(e) Sense of polarization rotation, if any, of
the reflected field.

(f) Polarization (linear, circular or ellipti-
cal) of the transmitted field.

(g) Sense of polarization rotation, if any, of
the transmitted field.

x

z
y

Free
space

Dielectric
medium

Incident

Reflected

Transmitted

Figure P5-6

5.7. The field radiated by an antenna along
the +z axis is a uniform plane wave
whose polarization is right-hand circularly-
polarized (RHC). The field radiated by the
antenna impinges, at normal incidence, upon
a perfectly electric conducting (PEC) flat
and infinite in extend ground plane. Deter-
mine the:
(a) Polarization of the field reflected by

the ground plane toward the antenna,
including the sense of rotation (if any).
Justify your answer.

(b) Normalized output voltage (dimension-
less and in dB) at the transmitting
antenna, which is now acting as a receiv-
ing antenna, based on its reception of
the reflected field. Justify your answer.
Is it what you are expecting or is it a
surprise?

PECAntenna z

Incident

Reflectedy

x

Figure P5-7

5.8. A time-harmonic electromagnetic wave
traveling in free space is incident normally
upon a perfect conducting planar surface, as
shown in Figure P5-8. Assuming the inci-
dent electric field is given by

Ei = âx E0e−jβ0z

find the (a) reflected electric field, (b) inci-
dent and reflected magnetic fields, and (c)
current density Js induced on the conducting
surface.

x

z

e0, m0 s = ∞

y

Incident

Reflected

Figure P5-8

5.9. A uniform plane wave traveling in air is
incident normally on a half space occupied
by a lossless dielectric medium of relative
permittivity of 4. The reflections can be
eliminated by placing another dielectric slab,
λ1/4 thick, between the air and the original
dielectric medium, as shown in Figure P5-9.
To accomplish this, the intrinsic impedance
η1 of the slab must be equal to

√
η0η2 where

η0 and η2 are, respectively, the intrinsic
impedances of air and the original dielectric
medium. Assuming that the relative perme-
abilities of all the media are unity, what
should the relative permittivity of the dielec-
tric slab be to accomplish this?

h0 h1 h2

er1 = ? er2 = 4

l1/4

Figure P5-9
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5.10. A uniform plane wave traveling in free
space is incident normally upon a lossless
dielectric slab of thickness t , as shown in
Figure P5-10. Free space is found on the
other side of the slab. Derive expressions
for the total reflection and transmission coef-
ficients in terms of the media constitutive
electrical parameters and thickness of the
slab.

t

x

zy

e0, m0 e0, m0e1, m1

Figure P5-10

5.11. The vertical height from the ground to a per-
son’s eyes is h , and from his eyes to the top
of his head is 	h . A flat mirror of height y
is hung vertically at a distance x from the
person. The top of the mirror is at a height
of h + (	h/2) from the ground, as shown in
Figure P5-11. What is the minimum length
of the mirror in the vertical direction so that
the person only sees his entire image in the
mirror?

Δh

Δh
2

Mirror

h

x

h

y

+

Figure P5-11

5.12. A linearly polarized wave is incident on an
isosceles right triangle (prism) of glass, and
it exits as shown in Figure P5-12. Assum-
ing that the dielectric constant of the prism
is 2.25, find the ratio of the exited average
power density Se to that of the incident Si .

er = 2.25

45°

45°

Figure P5-12

5.13. A uniform plane wave is obliquely incident
at an angle of 30◦ on a dielectric slab of
thickness d with ε = 4ε0 and μ = μ0 that
is embedded in free space, as shown in
Figure P5-13. Find the angles θ2 and θ3 (in
degrees).

d

q3

q2

30°

q3

Figure P5-13

5.14. A perpendicularly polarized uniform plane
wave traveling in free space is obliquely
incident on a dielectric with a relative per-
mittivity of 4, as shown in Figure 5-2. What
should the incident angle be so that the
reflected power density is 25% of the inci-
dent power density?

5.15. Repeat Problem 5-14 for a parallel polarized
uniform plane wave.

5.16. Find the Brewster angles for the interfaces
whose reflection coefficients are plotted in
Figure 5-5.

5.17. A parallel-polarized uniform plane wave
is incident obliquely on a lossless dielec-
tric slab that is embedded in a free-space
medium, as shown in Figure P5-17. Derive
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expressions for the total reflection and trans-
mission coefficients in terms of the electri-
cal constitutive parameters, thickness of the
slab, and angle of incidence.

e0, m0

t

qt

qi

Ei

Hi

e0, m0e1, m1

Figure P5-17

5.18. Repeat Problem 5-17 for a perpendicu-
larly polarized plane wave, as shown in
Figure P5-18.

e0, m0

qt

qi

Ei

Hi

e0, m0e1, m1

t

Figure P5-18

5.19. A perpendicularly polarized plane wave
traveling in a dielectric medium with rel-
ative permittivity of 9 is obliquely incident
on another dielectric with relative permit-
tivity of 4. Assuming that the permeabilities
of both media are the same, find the inci-
dent angle (measured from the normal to the
interface) that results in total reflection.

5.20. Calculate the Brewster and critical angles
for a parallel-polarized wave when the plane
interface is:
(a) Water to air (εr of water is 81).
(b) Air to water.
(c) High density glass to air (εr of

glass is 9).

5.21. A uniform plane wave traveling in a loss-
less dielectric is incident normally on a flat
interface formed by the presence of air. For
εr ’s of 2.56, 4, 9, 16, 25, and 81:
(a) Determine the critical angles.
(b) Find the Brewster angles if the wave is

of parallel polarization.
(c) Compare the critical and Brewster

angles found in parts (a) and (b).
(d) Plot the magnitudes of the reflec-

tion coefficients for both perpendi-
cular, |�⊥|, and parallel, |�|||, polariza-
tions versus incidence angle.

(e) Plot the phase (in degrees) of the reflec-
tion coefficients for both perpendicular
and parallel polarizations versus inci-
dence angle.

5.22. The transmitting antenna of a ground-to-
air communication system is placed at a
height of 10 m above the water, as shown
in Figure P5-22. For a ground separation
of 10 km between the transmitter and the
receiver, which is placed on an airborne plat-
form, find the height h2 above water of the
receiving system so that the wave reflected
by the water does not possess a parallel
polarized component. Assume that the water
surface is flat and lossless.

10 m

104 m

h2

Water (er = 81)

e0, m0

Figure P5-22

5.23. For the geometry of Problem 5-22, the trans-
mitter is radiating a right-hand circularly
polarized wave. Assuming the aircraft is at
a height of 1,101.11 m, give the polarization
(linear, circular, or elliptical) and sense of
rotation (right or left hand) of the following.
(a) A wave reflected by the sea and inter-

cepted by the receiving antenna.
(b) A wave transmitted, at the same reflec-

tion point as in part (a), into the sea.

5.24. The heights above the earth of a transmit-
ter and receiver are, respectively, 100 and
10 m, as shown in Figure P5-24. Assuming
that the transmitter radiates both perpen-
dicular and parallel polarizations, how far
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apart (in meters) should the transmitter and
receiver be placed so that the reflected wave
has no parallel polarization? Assume that the
reflecting medium is a lossless flat earth with
a dielectric constant of 16.

Transmitter

100 m
Receiver

Earth (er = 16)

10 m

s

e0, m0

Figure P5-24

5.25. A light source that shines isotropically is
submerged at a depth d below the surface of
water, as shown in Figure P5-25. How far in
the x direction (both positive and negative)
can an observer (just above the water inter-
face) go and still see the light? Assume that
the water is flat and lossless with a dielectric
constant of 81.

Water

er = 81

d

x1 x1

x

Figure P5-25

5.26. The 30◦ to 60◦ dielectric prism shown in
Figure P5-26 is surrounded by free space.
(a) What is the minimum value of the

prism’s dielectric constant so that there
is no time-average power density trans-
mitted across the hypotenuse when a

30°

60°

er = ?

qe

Figure P5-26

plane wave is incident on the prism, as
shown in the figure?

(b) What is the exiting angle θe if the dielec-
tric constant of the prism is that found
in part (a)?

5.27. A uniform plane wave of parallel polar-
ization, traveling in a lossless dielectric
medium with relative permittivity of 4, is
obliquely incident on a free-space medium.
What is the angle of incidence so that the
wave results in a complete (a) transmission
into the free-space medium and (b) reflec-
tion from the free-space medium?

5.28. A fish is swimming in water beneath a
circular boat of diameter D , as shown in
Figure P5-28.
(a) Find the largest included angle 2θc of

an imaginary cone within which the fish
can swim and not be seen by an observer
at the surface of the water.

(b) Find the smallest height of the cone.
Assume that light strikes the boat at
grazing incidence θi = π/2 and refracts
into the water.

Water

2qc

D

er = 81

qi qi

Figure P5-28

5.29. Any object above absolute zero temperature
(0 K or −273◦C) emits electromagnetic radi-
ation. According to the reciprocity theorem,
the amount of electromagnetic energy emit-
ted by the object toward an angle θi is equal
to the energy received by the object when
an electromagnetic wave is incident at an
angle θi , as shown in Figure P5-29. The elec-
tromagnetic power emitted by the object is
sensed by a microwave remote detection sys-
tem as a brightness temperature TB given by

TB = eTm = (1 − |�|2)Tm

where
e = emissivity of the object

(dimensionless)
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Water

er = 81, s = 0

e0, m0

qi

qt

Figure P5-29

� = reflection coefficient for the
interface

Tm = thermal (molecular) temperature
of object (water)

It is desired to make the brightness temper-
ature TB equal to the thermal (molecular)
temperature Tm .
(a) State the polarization (perpendicular,

parallel, or both) that will accomplish
this.

(b) At what angle θi (in degrees) will this
occur when the object is a flat water sur-
face?

5.30. A uniform plane wave at a frequency of
104 Hz is traveling in air, and it is incident
normally on a large body of salt water with
constants of σ = 3 S/m and εr = 81. If the
magnitude of the electric field on the salt
water side of the interface is 10−3 V/m, find
the depth (in meters) inside the salt water at
which the magnitude of the electric field has
been reduced to 0.368 × 10−3 V/m.

5.31. At large observation distances, the field radi-
ated by a satellite antenna that is attempt-
ing to communicate with a submerged
submarine is locally TEM (also assume uni-
form plane wave), as shown in Figure P5-31.
Assuming the incident electric field before

er = 81

e0, m0

s = 1 S/m Submarine

Satellite

d

Figure P5-31

it impinges on the water is 1 mV/m and the
submarine is directly below the satellite, find
at 1 MHz the:
(a) Intensity of the reflected E field.
(b) SWR created in air.
(c) Incident and reflected power densities.
(d) Intensity of the transmitted E field.
(e) Intensity of the transmitted power den-

sity.
(f) Depth d (in meters) of the submarine

where the intensity of the transmitted
electric field is 0.368 of its value imme-
diately after it enters the water.

(g) Depth (in meters) of the submarine so
that the distance from the surface of
the ocean to the submarine is 20λ (λ
in water).

(h) Time (in seconds) it takes the wave to
travel from the surface of the ocean to
the submarine at a depth of 100 m.

(i) Ratio of velocity of the wave in water
to that in air (v/v0).

5.32. A uniform plane wave traveling inside a
good conductor with conductivity σ1 is inci-
dent normally on another good conductor
with conductivity σ2, where σ1 >σ2. Deter-
mine the ratio of σ1/σ2 so that the SWR
inside medium 1 near the interface is 1.5.

5.33. A right-hand circularly polarized uniform
plane wave traveling in air is incident nor-
mally on a flat and smooth water surface
with εr = 81 and σ = 0.1 S/m, as shown
in Figure P5-33. Assuming a frequency of
1 GHz and an incident electric field of

Water er = 81

s = 0.1 S/m

z

y

x

Reflected lncident

Figure P5-33

Ei = (ây + âz ejψ)E0ejβ0x

do the following.
(a) Determine the value of ψ .
(b) Write an expression for the correspond-

ing incident magnetic field.
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(c) Write expressions for the reflected elec-
tric and magnetic fields.

(d) Determine the polarization (including
sense of rotation) of the reflected wave.

(e) Write expressions for the transmitted
electric and magnetic fields.

(f) Determine the polarization (including
sense of rotation) of the transmitted
wave.

(g) Determine the percentage (compared to
the incident) of the reflected and trans-
mitted power densities.

5.34. A right-hand circularly polarized wave is
incident normally on a perfect conducting
flat surface (σ = ∞).
(a) What is the polarization and sense of

rotation of the reflected field?
(b) What is the normalized (maximum

unity) output voltage if the reflected
wave is received by a right-hand circu-
larly polarized antenna?

(c) Repeat part b if the receiving antenna is
left-hand circularly polarized.

5.35. Repeat Problem 5.34 if the reflecting sur-
face is water (f = 10 MHz, εr = 81 and
σ = 4 S/m).

5.36. A parallel polarized plane wave traveling
in a dielectric medium with ε1, μ1 is inci-
dent obliquely on a planar interface formed
by the dielectric medium with ε2, μ2 such
that ε2μ2 < ε1μ1. Assuming that the inci-
dent angle θi is equal to or greater than the
critical angle θc of (5-35b), derive expres-
sions for the reflection coefficient �b

|| and
transmission coefficient T b

|| , and the incident
Si

||, reflected Sr
||, and transmitted St

|| average
power densities respectively.

5.37. A perpendicularly polarized uniform plane
wave traveling inside a free-space medium
is obliquely incident, at an incident angle
θi = 60◦, upon a planar dielectric medium
with constitutive parameters of ε2 = 4ε0,
μ2 = μ0. Using Figure 5-2 as a reference
geometry, determine the:
(a) Wave impedance of the:

• Incident wave
• Reflected wave
• Transmitted wave

(b) Directional impedance in the +z and
+x directions, respectively, of the:
• Incident wave Z +z

to , Z +x
to

• Transmitted wave Z +z
t2 , Z +x

t2

(c) Reflection coefficient �+z
in in the +z

direction (magnitude and phase) inside
the free-space medium based on:
• The directional impedances
• An alternate equation
• Compare the two answers. Are the

answers the same or different in both
magnitude and phase? Should they be
the same or different in magnitude
and phase?

(d) SWR inside the free-space medium.

5.38. A uniform plane wave of either parallel or
perpendicular polarization, as shown respec-
tively in Figures 5-2 and 5-4, traveling
in free space is incident upon a dielec-
tric/magnetic material such that the product
of the relative permittivity and permeability
of the dielectric/magnetic material is much
greater than unity; that is

εrμr � 1

The intrinsic impedances of the two media
are, respectively, η0 (free space) and η

(dielectric/magnetic material).
(a) Determine an approximate value of the

refraction angle θt (in degrees) for:
1. Perpendicular polarization.
2. Parallel polarization.

(b) Obtain simplified expressions, in terms
η0 and η, of the Brewster angle θi = θB

for:
1. Perpendicular polarization.
2. Parallel polarization.

5.39. A dielectric slab of polystyrene (εr = 2.56),
of any thickness, is bounded on both of its
sides by air. In order to eliminate reflections
on each of its interfaces, the slab is cov-
ered on each of its faces with a dielectric
material.
At a frequency of 10 GHz, determine, for
each dielectric material that must cover each
of the faces of the slab, the:
(a) Thickness (in λi ; wavelength in the cor-

responding dielectric).
(b) Thickness (in cm).
(c) Dielectric constant.
(d) Intrinsic impedance of its medium.
(e) SWR created in air when a plane wave

impinges at normal incidence from one
of its sides when the slab is covered with
the selected cover material.

5.40. For Example 5-10, determine the bandwidth,
and the lower and upper frequencies of the
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bandwidth, over which the system can oper-
ate so that the magnitude of the reflection
coefficient is equal to:
(a) 0.05
(b) 0.10
Assume a center frequency of 10 GHz
within the bandwidth.

5.41. For the one-slab reflection problem of
Figure 5-11a , write the expressions for the:
(a) Exact transmission-line model.
(b) Exact ray-tracing model.
(c) Approximate ray-tracing model.
For Example 5-9, when d = 0.9375 cm, plot
the magnitude of the input reflection coeffi-
cient for 5 GHz ≤ f ≤ 15 GHz using the:
(d) Exact transmission line-model.
(e) Exact ray-tracing model.
(f) Approximate ray-tracing model.
For Example 5-10, when d = λ20/4 at
the center frequency f0 = 10 GHz, plot the
magnitude of the input reflection coefficient
for 5 GHz ≤ f ≤ 15 GHz using the:
(g) Exact transmission line-model.
(h) Exact ray-tracing model.
(i) Approximate ray-tracing model.

5.42. A dielectric slab of thickness d , as shown
in Figure 5-11a , is surrounded with air on
its left and with a dielectric material, whose
dielectric constant (relative permittivity) is
16, on its right. You are asked as an elec-
tromagnetic engineer/scientist to design a
dielectric slab with the smallest nonzero
thickness that will reduce the input reflec-
tion coefficient, at normal incidence, to zero
at a frequency of 1 GHz.
What should one set of parameters of the
dielectric slab be that will reduce the reflec-
tion coefficient to zero? State the:
(a) Smallest thickness of the slab in terms

of the wavelength in the dielectric slab.
(b) Smallest thickness of the slab, in cm, at

1 GHz.
(c) Dielectric constant of the dielectric

material of the slab.
Justify your answers. Assume that the per-
meability of all three media is the same as
free space.

5.43. A symmetrical three-layer dielectric slab is
bounded at both sides by air, and it is
designed to filter the signal that can pass
through it. The dielectric constant of all the
5 media, including the medium to the left
(air), the 3 slabs, and the medium to the

right (air) are, respectively, εr0 = 1, εr1 =
4, εr2 = 9, εr3 = 4, εr4 = 1.
Assuming that at the operating frequency
the width dm , n = 1, 2, 3, of each layer is
one quarter-of-a wavelength in its respective
medium, determine the:
(a) Corresponding intrinsic reflection coef-

ficients at each interface (�01, �12, �23,
�30).

(b) Approximate total input reflection coef-
ficient at the leading interface between
air and the first layer (�in) at the center
operating frequency.

5.44. A uniform plane wave traveling in air,
whose amplitude of the magnetic field is
Eo , is incident normally upon a perfect elec-
tric conductor that is coated with a lossless
dielectric material with ε = 4εo , μ = μo ,
σ = 0, and thickness of λ/8 (λ is the wave-
length in the dielectric). Just to the left of the
air side of the air-dielectric interface, deter-
mine the:
(a) Exact reflection coefficient looking nor-

mally just to the left of the air/dielectric
interface (z = −d−, i.e., toward the
conductor).

(b) SWR looking normally just to the left
of the air/dielectric interface (z = −d−,
i.e., toward the conductor).

Air
e = 4e0
m = m0
s = 0

z

Incident
PEC

Γin, SWR

Reflected
d = l/8

Figure P5-44

5.45. Two vertical lossless dielectric slabs, each of
thickness equal to λ0/4 at a center frequency
of f0 = 2 GHz, are sandwiched between a
lossless semi-infinite medium of dielectric
constant εr = 2.25 to the left and air to the
right. Assume a fractional bandwidth of 0.5
and a binomial design.
(a) Find the magnitude of the maximum

reflection coefficient within the allow-
able bandwidth.

(b) Determine the magnitude of the reflec-
tion coefficients at each interface (junc-
tion).
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(c) Compute the intrinsic impedances,
dielectric constants, and thickness (in
centimeters) of each dielectric slab.

(d) Determine the lower and upper frequen-
cies of the bandwidth.

(e) Plot the magnitude of the reflection
coefficient inside the dielectric medium
with εr = 2.25 as a function of fre-
quency (within 0 ≤ f /f0 ≤ 2).

5.46. It is desired to design a three-layer (each
layer of λ0/4 thickness) impedance trans-
former to match a semi-infinite dielectric
medium of εr = 9 on one of its sides and
one with εr = 2.25 on the other side. The
maximum SWR that can be tolerated inside
the dielectric medium with εr = 9 is 1.1.
Assume a center frequency of f0 = 3 GHz
and a binomial design.
(a) Determine the allowable fractional

bandwidth and the lower and upper fre-
quencies of the bandwidth.

(b) Find the magnitude of reflection coeffi-
cients at each junction.

(c) Compute the magnitude of the max-
imum reflection coefficient within the
bandwidth.

(d) Determine the intrinsic impedances,
dielectric constants, and thicknesses (in
centimeters) of each dielectric slab.

(e) Plot the magnitude of the reflection
coefficient inside the dielectric medium
with εr = 9 as a function of frequency
(within 0 ≤ f /f0 ≤ 2).

5.47. Repeat Example 5-11 using a Tschebyscheff
design.

5.48. Repeat Problem 5.45 using a Tschebyscheff
design.

5.49. Repeat Problem 5.46 using a Tschebyscheff
design.

5.50. A right-hand (CW) elliptically polarized
wave traveling in free space is obliquely
incident at an angle θi = 30◦, measured
from the normal, on a flat perfect electric
conductor of infinite extent. If the incident
field has an axial ratio of −2, determine the
polarization of the reflected field. This is to
include the axial ratio as well as its sense of
rotation. Assume that the time-phase differ-
ence between the components of the incident
field is 90◦.

5.51. Repeat Problem 5.50 if the reflecting surface
is a flat lossless (σ2 = 0) ocean (ε2 = 81ε0

and μ2 = μ0) of infinite extent. Also find
the polarization of the wave transmitted into
the water.

5.52. A uniform plane wave is normally inci-
dent upon a Perfect Electric Conductor
(PEC) medium. The incident electric field is
given by

Ei (z ) = (
âz + j 2ây

)
Eoe−jβo x

where βo and Eo are real constants. Assum-
ing a e+jωt time convention:
(a) Write an expression for the reflected

electric field.
(b) For the incident wave, determine the:

• Polarization (linear, circular, or ellip-
tical). Justify your answer.

• Sense of rotation of the incident wave
(CW or CCW). Justify your answer.

• Axial Ratio (AR). Justify your
answer.

(c) For the reflected wave, determine the:
• Polarization (linear, circular or ellip-

tical). Justify your answer.
• Sense of rotation of the incident wave

(CW or CCW). Justify your answer.
• Axial Ratio (AR). Justify your

answer.
For all of the above, be sure to justify
your answers. Verify with the MATLAB
computer program Polarization_Refl_-
Trans.

5.53. A uniform plane wave is normally incident
upon a Perfect Magnetic Conductor (PMC).
The incident electric field is given by

Ei (z ) = (2âx − j âz ) Eoe−jβo y

where βo and Eo are real constants. Assum-
ing a e+jωt time convention:
(a) Write an expression for the reflected

electric field.
(b) For the incident wave, determine the:

• Polarization (linear, circular, or ellip-
tical). Justify your answer.

• Sense of rotation of the incident wave
(CW or CCW). Justify your answer.

• Axial Ratio (AR). Justify your
answer.

(c) For the reflected wave, determine the:
• Polarization (linear, circular, or ellip-

tical). Justify your answer.
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• Sense of rotation of the incident wave
(CW or CCW). Justify your answer.

• Axial Ratio (AR). Justify your
answer.

For all of the above, be sure to jus-
tify your answers. Also verify with
MATLAB computer program Polariza-
tion_Refl_Trans.

5.54. A left-hand (CCW) circularly polarized
wave traveling inside a lossless earth, with
a dielectric constant of 9, is incident upon a
planar interface formed by the earth and air.
The angle of incidence is 18.43495◦. Deter-
mine the:
(a) Polarization of the reflected wave (lin-

ear, circular, elliptical).
(b) Sense of rotation of the reflected wave;

(CW or CCW), if appropriate.
(c) Polarization of the transmitted wave

(linear, circular, elliptical).
(d) Sense of rotation of the transmitted

wave; (CW, CCW), if appropriate.
As an option, you do not have to use too
many analytical equations as long as you can

justify the correct answers using words/text
(you can keep the formulations minimal).

Air
z

Incident

18.43495°

Earth
e = 9e0

m = m0
s = 0

yx

Figure P5-54

5.55. Repeat Problem 5.54 when the incident
wave is right-hand (CW) circularly polar-
ized.

5.56. Derive the transmission coefficient for the
dielectric slab of Example 5-15.

5.57. For a planar interface formed by DPS-
DNG materials and assuming parallel polar-
ization wave incidence, write expressions
for the wavenumbers and Poynting vectors,
similar in form to the ones of Figure 5-
29, (5-110a) through (5-110c) and (5-111a)
through (5-111c). Examine the directions
of the wavenumbers and Poynting vectors
of the transmitted wave and compare with
those for a DPS-DPS interface.
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CHAPTER 6
Auxiliary Vector Potentials, Construction of

Solutions, and Radiation and
Scattering Equations

6.1 INTRODUCTION

It is common practice in the analysis of electromagnetic boundary-value problems to use auxiliary
vector potentials as aids in obtaining solutions for the electric (E) and magnetic (H) fields. The
most common vector potential functions are the A, magnetic vector potential, and F, electric
vector potential. They are the same pair that were introduced and used extensively in the solution
of antenna radiation problems [1]. Although the electric and magnetic field intensities (E and H)
represent physically measurable quantities, for most engineers the vector potentials are strictly
mathematical tools . The introduction of the potentials often simplifies the solution, even though
it may require determination of additional functions. Much of the discussion in this chapter is
borrowed from [1].

The Hertz vector potentials �e and �h make up another pair. The Hertz vector potential
�e is analogous to A and �h is analogous to F. The functional relation between them is a
proportionality constant that is a function of the frequency and the constitutive parameters of the
medium. In the solution of a problem, only one set, A and F or �e and �h , is required. The
author prefers A and F, and they will be used throughout this book.

The main objective of this book is to obtain electromagnetic field configurations (modes)
of boundary-value propagation, radiation, and scattering problems. These field configurations
must satisfy Maxwell’s equations or the wave equation, as well as the appropriate boundary
conditions. The procedure is to specify the electromagnetic boundary-value problem, which may
or may not contain sources, and to obtain the field configurations that can exist within the region
of the boundary-value problem. This can be accomplished in either of two ways, as shown in
Figure 6-1.

One procedure for obtaining the electric and magnetic fields of a desired boundary-value
problem is to use Maxwell’s or the wave equations. This is accomplished essentially in one step,
and it is represented in Figure 6-1 by path 1. The formulation using such a procedure is assigned
to the reader as an end-of-chapter problem.

The other procedure requires two steps. In the first step, the vector potentials A and F (or
�e and �h ) are found, once the boundary-value problem is specified. In the second step, the
electric and magnetic fields are found, after the vector potentials are determined. The electric and
magnetic fields are functions of the vector potentials. This procedure is represented by path 2
of Figure 6-1, and, although it requires two steps, it is often simpler and more straightforward;
hence it is often preferred. The mathematical equations of this procedure will be developed next,

259
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Integration
Path 1 Radiated fields

E, H
Sources

J, M

Integration
Path 2

Vector potentials
A, F

(Πe, Πh)

Differentiation
Path 2

Figure 6-1 Block diagram for computing radiated fields from electric and magnetic sources. (Source:
C. A. Balanis, Antenna Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons,
Inc. Reprinted by permission of John Wiley & Sons, Inc.)

and they will be utilized in this book to illustrate solutions of boundary-value electromagnetic
problems.

In a homogeneous medium, any solution for the time-harmonic electric and magnetic fields
must satisfy Maxwell’s equations

∇ × E = −M − jωμH (6-1a)

∇ × H = J + jωεE (6-1b)

∇ • E = qev

ε
(6-1c)

∇ • H = qmv

μ
(6-1d)

or the vector wave equations

∇2E + β2E = ∇ × M + jωμJ + 1

ε
∇qev (6-2a)

∇2H + β2H = −∇ × J + jωεM + 1

μ
∇qmv (6-2b)

where
β2 = ω2με (6-2c)

In regions where there are no sources, J = M = qev = qmv = 0. In these regions, the preceding
equations are of simpler form. Whereas the electric current density J may represent either actual
or equivalent sources, the magnetic current density M can only represent equivalent sources.
Although all of these equations will still be satisfied, an alternate procedure is developed next
for the solution of the electric and magnetic fields in terms of the auxiliary vector potentials, A
and F.

6.2 THE VECTOR POTENTIAL A

In a source-free region, the magnetic flux density B is always solenoidal, that is, ∇ · B = 0.
Therefore, it can be represented as the curl of another vector because it obeys the vector identity

∇ • (∇ × A) = 0 (6-3)
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where A is an arbitrary vector. Thus, we define

BA = μHA = ∇ × A (6-4)

or

HA = 1

μ
∇ × A (6-4a)

where subscript a indicates the fields due to the A potential. Substituting (6-4a) into Maxwell’s
curl equation

∇ × EA = −jωμHA (6-5)

reduces it to
∇ × EA = −jωμHA = −jω∇ × A (6-6)

which can also be written as
∇ × [EA + jωA] = 0 (6-7)

From the vector identity
∇ × (−∇φe) = 0 (6-8)

and (6-7), it follows that
EA + jωA = −∇φe (6-9)

or

EA = −∇φe − jωA (6-9a)

φe represents an arbitrary electric scalar potential that is a function of position.
Taking the curl of both sides of (6-4) and using the vector identity

∇ × ∇ × A = ∇(∇ • A) − ∇2A (6-10)

leads to
∇ × (μHA) = ∇(∇ • A) − ∇2A (6-10a)

For a homogeneous medium, (6-10a) reduces to

μ∇ × HA = ∇(∇ • A) − ∇2A (6-11)

Equating Maxwell’s equation

∇ × HA = J + jωεEA (6-12)

to (6-11) leads to
μJ + jωμεEA = ∇(∇ • A) − ∇2A (6-13)

Substituting (6-9a) into (6-13) reduces it to

∇2A + β2A = −μJ + ∇(∇ • A) + ∇(jωμεφe) = −μJ + ∇(∇ • A + jωμεφe) (6-14)

where β2 = ω2με.
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In (6-4), the curl of A was defined. Now we are at liberty to define the divergence of A, which
is independent of its curl. Both are required to uniquely define A. In order to simplify (6-14),
let

∇ • A = −jωεμφe ⇒ φe = − 1

jωμε
∇ • A (6-15)

which is known as the Lorenz condition (or gauge). Other gauges may be defined. Substituting
(6-15) into (6-14) leads to

∇2A + β2A = −μJ (6-16)

In addition, (6-9a) reduces to

EA = −∇φe − jωA = −jωA − j
1

ωμε
∇(∇ • A) (6-17)

Once A is known, HA can be found from (6-4a) and EA from (6-17). EA can just as easily be
found from Maxwell’s equation 6-12 by setting J = 0. Since (6-16) is a vector wave equation,
solutions for A in rectangular, cylindrical, and spherical coordinate systems are similar to those
for E in Sections 3.4.1A, 3.4.2, and 3.4.3, respectively.

6.3 THE VECTOR POTENTIAL F

In a source-free region, the electric flux density D is always solenoidal, that is, ∇ · D = 0.
Therefore, it can be represented as the curl of another vector because it obeys the vector identity

∇ • (−∇ × F) = 0 (6-18)

where F is an arbitrary vector. Thus we can define DF by

DF = −∇ × F (6-19)

or

EF = −1

ε
∇ × F (6-19a)

where the subscript f indicates the fields due to the F potential. Substituting (6-19a) into
Maxwell’s curl equation

∇ × HF = jωεEF (6-20)

reduces it to
∇ × (HF + jωF) = 0 (6-21)

From the vector identity (6-8), it follows that

HF = −∇φm − jωF (6-22)

where φm represents an arbitrary magnetic scalar potential that is a function of position. Taking
the curl of (6-19a)

∇ × EF = −1

ε
∇ × ∇ × F = −1

ε
[∇(∇ • F) − ∇2F] (6-23)
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and equating it to Maxwell’s equation

∇ × EF = −M − jωμHF (6-24)

lead to
∇2F + jωμεHF = ∇(∇ • F) − εM (6-25)

Substituting (6-22) into (6-25) reduces it to

∇2F + β2F = −εM + ∇(∇ • F + jωμεφm) (6-26)

Letting

∇ • F = −jωμεφm ⇒ φm = − 1

jωμε
∇ • F (6-27)

reduces (6-26) to

∇2F + β2F = −εM (6-28)

and (6-22) to

HF = −jωF − j

ωμε
∇(∇ • F) (6-29)

Once F is known, EF can be found from (6-19a) and HF from (6-29) or (6-24) by setting M = 0.
Since (6-28) is a vector wave equation, solutions for F in rectangular, cylindrical, and spherical
coordinate systems are similar to those for E in Sections 3.4.1A, 3.4.2, and 3.4.3, respectively.

6.4 THE VECTOR POTENTIALS A AND F

In the previous two sections, we derived expressions for the E and H fields in terms of the vector
potentials A (EA, HA) and F (EF, HF). In addition, expressions that A and F must satisfy were
also derived. The total E and H fields are obtained by the superposition of the individual fields
due to A and F.

The procedure that can be used to find the fields of path 2 of Figure 6-1 is as follows.

SUMMARY

1. Specify the electromagnetic boundary-value problem, which may or may not contain any
sources within its boundaries, and its desired field configurations (modes).

2. a. Solve for A using (6-16),

∇2A + β2A = −μJ where β2 = ω2με (6-30)

Depending on the problem, solutions for A in rectangular, cylindrical, and spherical
coordinate systems take the forms found in Sections 3.4.1A, 3.4.2, and 3.4.3, respec-
tively.
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b. Solve for F using (6-28),

∇2F + β2F = −εM where β2 = ω2με (6-31)

Depending on the problem, solutions for F in rectangular, cylindrical, and spherical
coordinate systems take the forms found in Sections 3.4.1A, 3.4.2, and 3.4.3, respec-
tively.

3. a. Find HA using (6-4a) and EA using (6-17). EA can also be found using (6-12) by letting
J = 0.

HA = 1

μ
∇ × A (6-32a)

EA = −jωA − j
1

ωμε
∇(∇ • A) (6-32b)

or

EA = 1

jωε
∇ × HA (6-32c)

b. Find EF using (6-19a) and HF using (6-29). HF can also be found using (6-24) by letting
M = 0.

EF = −1

ε
∇ × F (6-33a)

HF = −jωF − j
1

ωμε
∇(∇ • F) (6-33b)

or

HF = − 1

jωμ
∇ × EF (6-33c)

4. The total fields are then found by the superposition of those given in step 3, that is,

E = EA + EF = −jωA − j
1

ωμε
∇(∇ • A) − 1

ε
∇ × F (6-34)

or

E = EA + EF = 1

jωε
∇ × HA − 1

ε
∇ × F (6-34a)

and

H = HA + HF = 1

μ
∇ × A − jωF − j

1

ωμε
∇(∇ • F) (6-35)
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or

H = HA + HF = 1

μ
∇ × A − 1

jωμ
∇ × EF (6-35a)

Whether (6-32b) or (6-32c) is used to find EA and (6-33b) or (6-33c) to find HF depends
largely on the nature of the problem. In many instances, one may be more complex than the
other. For computing radiation fields in the far zone, it will be easier to use (6-32b) for EA

and (6-33b) for HF because, as it will be shown, the second term in each expression becomes
negligible in this region. The same solution should be obtained using either of the two choices
in each case.

6.5 CONSTRUCTION OF SOLUTIONS

For many electromagnetic boundary-value problems, there are usually many field configurations
(modes) that are solutions that satisfy Maxwell’s equations and the boundary conditions. The
most widely known modes are those that are referred to as Transverse Electromagnetic (TEM),
Transverse Electric (TE), and Transverse Magnetic (TM).

TEM modes are field configurations whose electric and magnetic field components are trans-
verse to a given direction. Often, but not necessarily, that direction is the path that the wave is
traveling. TE modes are field configurations whose electric field components are transverse to a
given direction; for TM modes the magnetic field components are transverse to a given direction.
Here, we will illustrate methods that utilize the vector potentials to construct TEM, TE, and TM
modes.

6.5.1 Transverse Electromagnetic Modes: Source-Free Region

TEM modes are usually the simplest forms of field configurations, and they are usually referred
to as the lowest-order modes . For these field configurations, both the electric and magnetic field
components are transverse to a given direction. To see how these modes can be constructed
using the vector potentials, let us illustrate the procedure using the rectangular and cylindrical
coordinate systems.

A. Rectangular Coordinate System According to (6-34), the electric field in terms of the
vector potentials A and F is given by

E = EA + EF = −jωA − j
1

ωμε
∇(∇ • A) − 1

ε
∇ × F (6-36)

Assuming the vector potentials A and F have solutions of the form

A(x , y , z ) = âx Ax (x , y , z ) + ây Ay(x , y , z ) + âz Az (x , y , z ) (6-37)

which satisfies (6-30) with J = 0
∇2A + β2A = 0 (6-38)

or

∇2Ax + β2Ax = 0 (6-38a)

∇2Ay + β2Ay = 0 (6-38b)

∇2Az + β2Az = 0 (6-38c)
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and
F(x , y , z ) = âx Fx (x , y , z ) + ây Fy(x , y , z ) + âz Fz (x , y , z ) (6-39)

which satisfies (6-31) with M = 0
∇2F + β2F = 0 (6-40)

or

∇2Fx + β2Fx = 0 (6-40a)

∇2Fy + β2Fy = 0 (6-40b)

∇2Fz + β2Fz = 0 (6-40c)

(6-36), when expanded, can be written as

E = âx

[
−jωAx − j

1

ωμε

(
∂2Ax

∂x 2
+ ∂2Ay

∂x ∂y
+ ∂2Az

∂x ∂z

)
− 1

ε

(
∂Fz

∂y
− ∂Fy

∂z

)]
+ ây

[
−jωAy − j

1

ωμε

(
∂2Ax

∂x ∂y
+ ∂2Ay

∂y2
+ ∂2Az

∂y ∂z

)
− 1

ε

(
∂Fx

∂z
− ∂Fz

∂x

)]
+ âz

[
−jωAz − j

1

ωμε

(
∂2Ax

∂x ∂z
+ ∂2Ay

∂y ∂z
+ ∂2Az

∂z 2

)
− 1

ε

(
∂Fy

∂x
− ∂Fx

∂y

)]
(6-41)

Similarly, (6-35)

H = HA + HF = 1

μ
∇ × A − jωF − j

1

ωμε
∇(∇ • F) (6-42)

when expanded using (6-37) and (6-39) can be written as

H = âx

[
−jωFx − j

1

ωμε

(
∂2Fx

∂x 2
+ ∂2Fy

∂x ∂y
+ ∂2Fz

∂x ∂z

)
+ 1

μ

(
∂Az

∂y
− ∂Ay

∂z

)]
+ ây

[
−jωFy − j

1

ωμε

(
∂2Fx

∂x ∂y
+ ∂2Fy

∂y2
+ ∂2Fz

∂y ∂z

)
+ 1

μ

(
∂Ax

∂z
− ∂Az

∂x

)]
+ âz

[
−jωFz − j

1

ωμε

(
∂2Fx

∂x ∂z
+ ∂2Fy

∂y ∂z
+ ∂2Fz

∂z 2

)
+ 1

μ

(
∂Ay

∂x
− ∂Ax

∂y

)]
(6-43)

Example 6-1

Using (6-41) and (6-43) derive expressions for the E and H fields, in terms of the components of the
A and F potentials, that are TEM to the z direction (TEMz ).

Solution: It is apparent by examining (6-41) and (6-43) that TEMz (Ez = Hz = 0) modes can be
obtained by any of the following three combinations.

1. Letting

Ax = Ay = Fx = Fy = 0 Az �= 0 Fz �= 0 ∂/∂x �= 0 ∂/∂y �= 0
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For this combination, according to (6-41)

Ez = −jωAz − j
1

ωμε

∂2Az

∂z 2
= −j

1

ωμε

(
∂2

∂z 2
+ ω2με

)
Az = 0

provided
Az (x , y , z ) = A+

z (x , y)e−jβz + A−
z (x , y)e+jβz

Similarly, according to (6-43)

Hz = −jωFz − j
1

ωμε

∂2Fz

∂z 2
= −j

1

ωμε

(
∂2

∂z 2
+ ω2με

)
Fz = 0

provided
Fz (x , y , z ) = F+

z (x , y)e−jβz + F−
z (x , y)e+jβz

Also according to (6-41) and (6-43)

Ex =
(

− 1√
με

∂A+
z

∂x
− 1

ε

∂F+
z

∂y

)
e−jβz +

(
1√
με

∂A−
z

∂x
− 1

ε

∂F−
z

∂y

)
e+jβz = E+

x + E−
x

Ey =
(

− 1√
με

∂A+
z

∂y
+ 1

ε

∂F+
z

∂x

)
e−jβz +

(
1√
με

∂A−
z

∂y
+ 1

ε

∂F−
z

∂x

)
e+jβz = E+

y + E−
y

Hx = −
√

ε

μ

(
− 1√

με

∂A+
z

∂y
+ 1

ε

∂F+
z

∂x

)
e−jβz

+
√

ε

μ

(
1√
με

∂A−
z

∂y
+ 1

ε

∂F−
z

∂x

)
e+jβz = H +

x + H −
x

Hx = −
√

ε

μ
(E+

y ) +
√

ε

μ
(E−

y )

Hy =
√

ε

μ

(
− 1√

με

∂A+
z

∂x
− 1

ε

∂F+
z

∂y

)
e−jβz

−
√

ε

μ

(
1√
με

∂A−
z

∂x
− 1

ε

∂F−
z

∂y

)
e+jβz = H +

y + H −
y

Hy =
√

ε

μ
(E+

x ) −
√

ε

μ
(E−

x )

Also

Z +
w = E+

x

H +
y

= − E+
y

H +
x

=
√

μ

ε

Z −
w = − E−

x

H −
y

= E−
y

H −
x

=
√

μ

ε

2. Letting
Ax = Ay = Az = Fx = Fy = 0 Fz �= 0 ∂/∂x �= 0 ∂/∂y �= 0

For this combination, according to (6-41) and (6-43)

Ez = 0

Hz = −jωFz − j
1

ωμε

∂2Fz

∂z 2
= −j

1

ωμε

(
∂2

∂z 2
+ ω2με

)
Fz = 0
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provided
Fz (x , y , z ) = F+

z (x , y)e−jβz + F−
z (x , y)e+jβz

Also according to (6-41) and (6-43)

Ex = −1

ε

∂F+
z

∂y
e−jβz − 1

ε

∂F−
z

∂y
e+jβz = E+

x + E−
x

Ey = +1

ε

∂F+
z

∂x
e−jβz + 1

ε

∂F−
z

∂x
e+jβz = E+

y + E−
y

Hx = −
√

ε

μ

(
1

ε

∂F+
z

∂x

)
e−jβz +

√
ε

μ

(
1

ε

∂F−
z

∂x

)
e+jβz = H +

x + H −
x

= −
√

ε

μ
(E+

y ) +
√

ε

μ
(E−

y )

Hy =
√

ε

μ

(
−1

ε

∂F+
z

∂y

)
e−jβz −

√
ε

μ

(
−1

ε

∂F−
z

∂y

)
e+jβz = H +

y + H −
y

= +
√

ε

μ
(E+

x ) −
√

ε

μ
(E−

x )

Also

Z +
w = E+

x

H +
y

= − E+
y

H +
x

=
√

μ

ε

Z −
w = − E−

x

H −
y

= E−
y

H −
x

=
√

μ

ε

3. Letting
Ax = Ay = Fx = Fy = Fz = 0 Az �= 0 ∂/∂x �= 0 ∂/∂y �= 0

For this combination, according to (6-41) and (6-43)

Hz = 0

Ez = −jωAz − j
1

ωμε

∂2Az

∂z 2
= −j

1

ωμε

(
∂2

∂z 2
+ ω2με

)
Az = 0

provided
Az (x , y , z ) = A+

z (x , y)e−jβz + A−
z (x , y)e+jβz

Also according to (6-41) and (6-43)

Ex = − 1√
με

∂A+
z

∂x
e−jβz + 1√

με

∂A−
z

∂x
e+jβz = E+

x + E−
x

Ey = − 1√
με

∂A+
z

∂y
e−jβz + 1√

με

∂A−
z

∂y
e+jβz = E+

y + E−
y

Hx = −
√

ε

μ

(
− 1√

με

∂A+
z

∂y

)
e−jβz +

√
ε

μ

(
1√
με

∂A−
z

∂y

)
e+jβz = H +

x + H −
x

= −
√

ε

μ
(E+

y ) +
√

ε

μ
(E−

y )
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Hy =
√

ε

μ

(
− 1√

με

∂A+
z

∂x

)
e−jβz −

√
ε

μ

(
1√
με

∂A−
z

∂x

)
e+jβz = H +

y + H −
y

=
√

ε

μ
(E+

x ) −
√

ε

μ
(E−

x )

Also

Z +
w = E+

x

H +
y

= − E+
y

H +
x

=
√

μ

ε

Z −
w = − E−

x

H −
y

= E−
y

H −
x

=
√

μ

ε

SUMMARY From the results of Example 6.1, it is evident that TEMz modes can be obtained
by any of the following three combinations:

TEMz

Ax = Ay = Fx = Fy = 0 ∂/∂x �= 0 ∂/∂y �= 0

Az = A+
z (x , y)e−jβz + A−

z (x , y)e+jβz

Fz = F+
z (x , y)e−jβz + F−

z (x , y)e+jβz

(6-44)

(6-44a)

(6-44b)

Ax = Ay = Az = Fx = Fy = 0 ∂/∂x �= 0 ∂/∂y �= 0

Fz = F+
z (x , y)e−jβz + F−

z (x , y)e+jβz

(6-45)

(6-45a)

Ax = Ay = Fx = Fy = Fz = 0 ∂/∂x �= 0 ∂/∂y �= 0

Az = A+
z (x , y)e−jβz + A−

z (x , y)e+jβz

(6-46)

(6-46a)

A similar procedure can be used to derive TEM modes in other directions such as TEMx and
TEMy .

B. Cylindrical Coordinate System To derive expressions for TEM modes in a cylindrical
coordinate system, a procedure similar to that in the rectangular coordinate system can be used.
When (6-34)

E = EA + EF = −jωA − j
1

ωμε
∇(∇ • A) − 1

ε
∇ × F (6-47)

and (6-35)

H = HA + HF = 1

μ
∇ × A − jωF − j

1

ωμε
∇(∇ • F) (6-48)

are expanded using

A(ρ, φ, z ) = âρAρ(ρ, φ, z ) + âφAφ(ρ, φ, z ) + âz Az (ρ, φ, z ) (6-49a)

F(ρ, φ, z ) = âρFρ(ρ, φ, z ) + âφFφ(ρ, φ, z ) + âz Fz (ρ, φ, z ) (6-49b)
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as solutions, they can be written as

E = âρ

{
−jωAρ − j

1

ωμε

∂

∂ρ

[
1

ρ

∂

∂ρ
(ρAρ) + 1

ρ

∂Aφ

∂φ
+ ∂Az

∂z

]
− 1

ε

(
1

ρ

∂Fz

∂φ
− ∂Fφ

∂z

)}

+ âφ

{
−jωAφ − j

1

ωμε

1

ρ

∂

∂φ

[
1

ρ

∂

∂ρ
(ρAρ) + 1

ρ

∂Aφ

∂φ
+ ∂Az

∂z

]
− 1

ε

(
∂Fρ

∂z
− ∂Fz

∂ρ

)}

+ âz

{
−jωAz − j

1

ωμε

∂

∂z

[
1

ρ

∂

∂ρ
(ρAρ) + 1

ρ

∂Aφ

∂φ
+ ∂Az

∂z

]
− 1

ερ

[
∂

∂ρ
(ρFφ) − ∂Fρ

∂φ

]}
(6-50)

H = âρ

{
−jωFρ − j

1

ωμε

∂

∂ρ

[
1

ρ

∂

∂ρ
(ρFρ) + 1

ρ

∂Fφ

∂φ
+ ∂Fz

∂z

]
+ 1

μ

(
1

ρ

∂Az

∂φ
− ∂Aφ

∂z

)}

+ âφ

{
−jωFφ − j

1

ωμε

1

ρ

∂

∂φ

[
1

ρ

∂

∂ρ
(ρFρ) + 1

ρ

∂Fφ

∂φ
+ ∂Fz

∂z

]
+ 1

μ

(
∂Aρ

∂z
− ∂Az

∂ρ

)}

+ âz

{
−jωFz − j

1

ωμε

∂

∂z

[
1

ρ

∂

∂ρ
(ρFρ) + 1

ρ

∂Fφ

∂φ
+ ∂Fz

∂z

]
+ 1

μρ

[
∂

∂ρ
(ρAφ) − ∂Aρ

∂φ

]}
(6-51)

Example 6-2

Using (6-50) and (6-51), derive expressions for the E and H fields, in terms of the components of the
A and F potentials, that are TEM to the ρ direction (TEMρ).

Solution: It is apparent by examining (6-50) and (6-51) that TEMρ (Eρ = Hρ = 0) modes can be
obtained by any of the following three combinations:

1. Letting
Aφ = Az = Fφ = Fz = 0 Aρ �= 0 Fρ �= 0 ∂/∂φ �= 0 ∂/∂z �= 0

For this combination, according to (6-50) and (6-51)

Eρ = −jωAρ − j
1

ωμε

∂

∂ρ

[
1

ρ

∂

∂ρ
(ρAρ)

]
= −j

1

ωμε

{
∂

∂ρ

[
1

ρ

∂

∂ρ
(ρAρ)

]
+ ω2μεAρ

}
= −j

1

ωμε

[
∂

∂ρ

(
∂Aρ

∂ρ
+ Aρ

ρ

)
+ ω2μεAρ

]
= −j

1

ωμε

(
∂2Aρ

∂ρ2
+ 1

ρ

∂Aρ

∂ρ
− Aρ

ρ2
+ ω2μεAρ

)
Eρ = −j

1

ωμε

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ β2

)
Aρ = 0

provided
Aρ(ρ, φ, z ) = A+

ρ (φ, z )H (2)
1 (βρ) + A−

ρ (φ, z )H (1)
1 (βρ)
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Also

Hρ = −jωFρ − j
1

ωμε

∂

∂ρ

[
1

ρ

∂

∂ρ
(ρFρ)

]
= −j

1

ωμε

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2
+ β2

)
Fρ = 0

provided
Fρ(ρ, φ, z ) = F+

ρ (φ, z )H (2)
1 (βρ) + F−

ρ (φ, z )H (1)
1 (βρ)

In addition,

Eφ = −j
1

ωμε

1

ρ

∂

∂φ

[
1

ρ

∂

∂ρ
(ρAρ)

]
− 1

ε

∂Fρ

∂z

Ez = −j
1

ωμε

∂

∂z

[
1

ρ

∂

∂ρ
(ρAρ)

]
− 1

ε

(
− 1

ρ

∂Fρ

∂φ

)
Hφ = −j

1

ωμε

1

ρ

∂

∂φ

[
1

ρ

∂

∂ρ
(ρFρ)

]
+ 1

μ

∂Aρ

∂z

Hz = −j
1

ωμε

∂

∂z

[
1

ρ

∂

∂ρ
(ρFρ)

]
+ 1

μ

(
− 1

ρ

∂Aρ

∂φ

)
2. Letting

Aρ = Aφ = Az = Fφ = Fz = 0 Fρ �= 0 ∂/∂φ �= 0 ∂/∂z �= 0

For this combination, according to (6-50) and (6-51)

Eρ = 0

Hρ = −jωFρ − j
1

ωμε

∂

∂ρ

[
1

ρ

∂

∂ρ
(ρFρ)

]
= −j

1

ωμε

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ β2

)
Fρ = 0

provided
Fρ(ρ, φ, z ) = F+

ρ (φ, z )H (2)
1 (βρ) + F−

ρ (φ, z )H (1)
1 (βρ)

In addition,

Eφ = −1

ε

∂Fρ

∂z

Ez = −1

ε

(
− 1

ρ

∂Fρ

∂φ

)
Hφ = −j

1

ωμε

1

ρ

∂

∂φ

[
1

ρ

∂

∂ρ
(ρFρ)

]
Hz = −j

1

ωμε

∂

∂z

[
1

ρ

∂

∂ρ
(ρFρ)

]
3. Letting

Aφ = Az = Fρ = Fφ = Fz = 0 Aρ �= 0 ∂/∂φ �= 0 ∂/∂z �= 0
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For this combination, according to (6-50) and (6-51)

Hρ = 0

Eρ = −jωAρ − j
1

ωμε

∂

∂ρ

[
1

ρ

∂

∂ρ
(ρAρ)

]
= −j

1

ωμε

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ β2

)
Aρ = 0

provided
Aρ(ρ, φ, z ) = A+

ρ (φ, z )H (2)
1 (βρ) + A−

ρ (φ, z )H (1)
1 (βρ)

In addition,

Eφ = −j
1

ωμε

1

ρ

∂

∂φ

[
1

ρ

∂

∂ρ
(ρAρ)

]
Ez = −j

1

ωμε

∂

∂z

[
1

ρ

∂

∂ρ
(ρAρ)

]
Hφ = 1

μ

(
∂Aρ

∂z

)
Hz = 1

μ

(
− 1

ρ

∂Aρ

∂φ

)

SUMMARY From the results of Example 6-2, it is evident that TEMρ modes can be obtained
by any of the following three combinations:

Aφ = Az = Fφ = Fz = 0 ∂/∂φ �= 0 ∂/∂z �= 0

Aρ(ρ, φ, z ) = A+
ρ (φ, z )H (2)

1 (βρ) + A−
ρ (φ, z )H (1)

1 (βρ)

Fρ(ρ, φ, z ) = F+
ρ (φ, z )H (2)

1 (βρ) + F−
ρ (φ, z )H (1)

1 (βρ)

(6-52)

(6-52a)

(6-52b)

Aρ = Aφ = Az = Fφ = Fz = 0 ∂/∂φ �= 0 ∂/∂z �= 0

Fρ(ρ, φ, z ) = F+
ρ (φ, z )H (2)

1 (βρ) + F−
ρ (φ, z )H (1)

1 (βρ)

(6-53)

(6-53a)

Aφ = Az = Fρ = Fφ = Fz = 0 ∂/∂φ �= 0 ∂/∂z �= 0

Aρ(ρ, φ, z ) = A+
ρ (φ, z )H (2)

1 (βρ) + A−
ρ (φ, z )H (1)

1 (βρ)

(6-54)

(6-54a)

A similar procedure can be used to derive TEM modes in other directions such as TEMφ and
TEMz .

6.5.2 Transverse Magnetic Modes: Source-Free Region

Often we seek solutions of higher-order modes, other than transverse electromagnetic (TEM).
Some of the higher-order modes, often required to satisfy boundary conditions, are designated as
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transverse magnetic (TM) and transverse electric (TE). Classical examples of the need for TM
and TE modes are modes of propagation in waveguides [2].

Transverse magnetic modes (often also known as transverse magnetic fields) are field config-
urations whose magnetic field components lie in a plane that is transverse to a given direction.
That direction is often chosen to be the path of wave propagation. For example, if the desired
fields are TM to z (TMz ), this implies that Hz = 0. Each of the other two magnetic field com-
ponents (Hx and Hy ) and three electric field components (Ex , Ey , and Ez ) may or may not
exist.

By examining (6-43) and (6-51) it is evident that to derive the field expressions that are TM to
a given direction, independent of the coordinate system, it is sufficient to let the vector potential
A have only a component in the direction in which the fields are desired to be TM. The remaining
components of A as well as all of F are set equal to zero.

A. Rectangular Coordinate System

TMz

To demonstrate the aforementioned procedure, let us assume that we wish to derive field expres-
sions that are TM to z (TMz ). To accomplish this, we let

A = âz Az (x , y , z )

F = 0

(6-55a)

(6-55b)

The vector potential A must satisfy (6-30), which reduces from a vector wave equation to a
scalar wave equation

∇2Az (x , y , z ) + β2Az (x , y , z ) = 0 (6-56)

Since (6-56) is of the same form as (3-20a), its solution using the separation-of-variables method
can be written, according to (3-23), as

Az (x , y , z ) = f (x)g(y)h(z ) (6-57)

The solutions of f (x), g(y), and h(z ) take the forms given by (3-28a) through (3-30b). The most
appropriate forms for f (x), g(y), and h(z ) must be chosen judiciously to reduce the complexity
of the problem, and they will depend on the configuration of the problem. For the rectangular
waveguide of Figure 3-2, for example, the most appropriate forms for f (x), g(y), and h(z ) are
those given, respectively, by (3-28b), (3-29b), and (3-30a). Thus, for the rectangular waveguide,
(6-57) can be written as

Az (x , y , z ) = [C1 cos(βx x) + D1 sin(βx x)][C2 cos(βy y) + D2 sin(βy y)]

×(A3e−jβz z + B3e+jβz z ) (6-58)

where

β2
x + β2

y + β2
z = β2 = ω2με (6-58a)

Once Az is found, the next step is to use (6-41) and (6-43) to find the E and H field components.
Doing this, it can be shown that by using (6-55a) and (6-55b) we can reduce (6-41) and (6-43)
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to

TMz Rectangular Coordinate System

Ex = −j
1

ωμε

∂2Az

∂x ∂z
Hx = 1

μ

∂Az

∂y

Ey = −j
1

ωμε

∂2Az

∂y ∂z
Hy = − 1

μ

∂Az

∂x

Ez = −j
1

ωμε

(
∂2

∂z 2
+ β2

)
Az Hz = 0

(6-59)

which satisfy the definition of TMz (i.e., Hz = 0).
For the specific example for which the solution of Az as given by (6-58) is applicable, the

unknown constants C1, D1, C2, D2, A3, B3, βx , βy , and βz can be evaluated by substituting Az of (6-
58) into the expressions for E and H in (6-59) and enforcing the appropriate boundary conditions
on the E and H field components. This will be demonstrated in Chapter 8, and elsewhere, where
specific problem configurations are attempted. Following these or similar procedures should lead
to the solution of the problem in question.

Expressions for the E and H field components that are TMx and TMy are given, respectively,
by

TMx Rectangular Coordinate System

Let

A = âx Ax (x , y , z )

F = 0

(6-60a)

(6-60b)

Then

Ex = −j
1

ωμε

(
∂2

∂x 2
+ β2

)
Ax Hx = 0

Ey = −j
1

ωμε

∂2Ax

∂x ∂y
Hy = 1

μ

∂Ax

∂z

Ez = −j
1

ωμε

∂2Ax

∂x ∂z
Hz = − 1

μ

∂Ax

∂y

(6-61)

where Ax must satisfy the scalar wave equation

∇2Ax (x , y , z ) + β2Ax (x , y , z ) = 0 (6-62)

TMy Rectangular Coordinate System

Let

A = ây Ay(x , y , z )

F = 0

(6-63a)

(6-63b)
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Then

Ex = −j
1

ωμε

∂2Ay

∂x ∂y
Hx = − 1

μ

∂Ay

∂z

Ey = −j
1

ωμε

(
∂2

∂y2
+ β2

)
Ay Hy = 0

Ez = −j
1

ωμε

∂2Ay

∂y ∂z
Hz = 1

μ

∂Ay

∂x

(6-64)

where Ay must satisfy the scalar wave equation of

∇2Ay(x , y , z ) + β2Ay(x , y , z ) = 0 (6-65)

The derivations of (6-61) and (6-64) are left to the reader as end-of-chapter assignments.
The expressions of (6-59), (6-61), and (6-64) are valid forms for the E and H field components

of any problem in a rectangular coordinate system, which are, respectively, TMz , TMx , and TMy .
A similar procedure can be used to find expressions for the E and H field components that are
TM to any direction in any coordinate system.

B. Cylindrical Coordinate System In terms of complexity, the next higher-order coordinate
system is that of the cylindrical coordinate system. We will derive expressions that will be valid
for TMz . TMρ and TMφ are more difficult and are not usually utilized. Therefore, they will not
be attempted here. The procedure for TMz in a cylindrical coordinate system is the same as that
used for the rectangular coordinate system, as outlined previously in this section.

To accomplish this, let

A = âz Az (ρ, φ, z )

F = 0

(6-66a)

(6-66b)

The vector potential A must satisfy (6-30) with J = 0, which reduces from its vector form to
the scalar wave equation

∇2Az (ρ, φ, z ) + β2Az (ρ, φ, z ) = 0 (6-67)

Since (6-67) is of the same form as (3-54c), its solution using the separation-of-variables
method can be written, according to (3-57), as

Az (ρ, φ, z ) = f (ρ)g(φ)h(z ) (6-68)

The solutions of f (ρ), g(φ), and h(z ) take the forms given by (3-67a) through (3-69b). The most
appropriate forms for f (ρ), g(φ), and h(z ) must be chosen judiciously to reduce the complexity
of the problem, and they will depend upon the configuration of the problem. For the cylindrical
waveguide of Figure 3-5, for example, the most appropriate forms for f (ρ), g(φ), and h(z ) are
those given, respectively, by (3-67a), (3-68b), and (3-69a). Thus, for the cylindrical waveguide,
(6-68) can be written as

Az (ρ, φ, z ) = [A1Jm(βρρ) + B1Ym(βρρ)][C2 cos(mφ) + D2 sin(mφ)]

×(A3e−jβz z + B3e+jβz z ) (6-69)
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where

β2
ρ + β2

z = β2 (6-69a)

Once Az is found, the next step is to use (6-50) and (6-51) to find the E and H field components.
Then we can show that by using (6-66a) and (6-66b), (6-50) and (6-51) can be reduced to

TMz Cylindrical Coordinate System

Eρ = −j
1

ωμε

∂2Az

∂ρ ∂z
Hρ = 1

μ

1

ρ

∂Az

∂φ

Eφ = −j
1

ωμε

1

ρ

∂2Az

∂φ ∂z
Hφ = − 1

μ

∂Az

∂ρ

Ez = −j
1

ωμε

(
∂2

∂z 2
+ β2

)
Az Hz = 0

(6-70)

which also satisfies the TMz definition (i.e., Hz = 0).
For the specific example for which the solution of Az as given by (6-69) is applicable, the

unknown constants A1, B1, C2, D2, A3, B3, βρ , and βz can be evaluated by substituting Az of (6-69)
into the expressions for E and H in (6-70) and enforcing the appropriate boundary conditions on
the E and H field components. This will be demonstrated in Chapter 9, and elsewhere, where
specific problem configurations are attempted. Following these or similar procedures should lead
to the solution of the problem in question.

It should be stated that the same TM mode field constructions can be obtained by initiating
the procedure with a solution to the scalar wave equation for the electric field component in the
direction in which TM mode fields are desired. For example, if TMz modes are desired, assume
a solution for Ez of the same form as the vector potential component Az . It can then be shown
through Maxwell’s equations that all the remaining electric and magnetic field components (with
Hz = 0) can be expressed in terms of Ez . The same can be done for other TMi modes by beginning
with a solution for Ei having the same form as the vector potential component Ai . The only
difference between the two formulations, one of which uses the vector potentials adopted in this
book and the other that uses the fields themselves, is a normalization constant. For TMz modes,
for example, this normalization constant according to (6-59) is equal to −j (∂2/∂z 2 + β2)/ωμε =
−j (β2 − β2

z )/ωμε. The preceding procedure is a very popular method used by many authors,
and it is assigned to the reader as end-of-chapter exercises.

6.5.3 Transverse Electric Modes: Source-Free Region

Transverse electric (TE) modes can be derived in a fashion similar to the TM fields of
Section 6.5.2. This time, however, we let the F vector potential have a nonvanishing component
in the direction in which the TE fields are desired, and all the remaining components of F and
A are set equal to zero. Without going through any of the details, we will list the expressions
for the E and H field components for TEz , TEx , and TEy in rectangular coordinates and TEz in
cylindrical coordinates. The details are left as exercises for the reader.

A. Rectangular Coordinate System Modes that are TEz , TEx , and TEy are obtained as
follows.
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TEz Rectangular Coordinate System

Let
A = 0

F = âz Fz (x , y , z )

(6-71a)

(6-71b)

Then

Ex = −1

ε

∂Fz

∂y
Hx = −j

1

ωμε

∂2Fz

∂x ∂z

Ey = 1

ε

∂Fz

∂x
Hy = −j

1

ωμε

∂2Fz

∂y ∂z

Ez = 0 Hz = −j
1

ωμε

(
∂2

∂z 2
+ β2

)
Fz

(6-72)

where Fz must satisfy the scalar wave equation

∇2Fz (x , y , z ) + β2Fz (x , y , z ) = 0 (6-73)

TEx Rectangular Coordinate System

Let
A = 0

F = âx Fx (x , y , z )

(6-73a)

(6-73b)

Then

Ex = 0 Hx = −j
1

ωμε

(
∂2

∂x 2
+ β2

)
Fx

Ey = −1

ε

∂Fx

∂z
Hy = −j

1

ωμε

∂2Fx

∂x ∂y

Ez = 1

ε

∂Fx

∂y
Hz = −j

1

ωμε

∂2Fx

∂x ∂z

(6-74)

where Fx must satisfy the scalar wave equation

∇2Fx (x , y , z ) + β2Fx (x , y , z ) = 0 (6-75)

TEy Rectangular Coordinate System

Let
A = 0

F = ây Fy(x , y , z )

(6-76a)

(6-76b)
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Then

Ex = 1

ε

∂Fy

∂z
Hx = −j

1

ωμε

∂2Fy

∂x ∂y

Ey = 0 Hy = −j
1

ωμε

(
∂2

∂y2
+ β2

)
Fy

Ez = −1

ε

∂Fy

∂x
Hz = −j

1

ωμε

∂2Fy

∂y∂z

(6-77)

where Fy must satisfy the scalar wave equation

∇2Fy(x , y , z ) + β2Fy(x , y , z ) = 0 (6-78)

B. Cylindrical Coordinate System Modes that are TEz are obtained as follows.

TEz Cylindrical Coordinate System

Let

A = 0

F = âz Fz (ρ, φ, z )

(6-79a)

(6-79b)

Then

Eρ = − 1

ερ

∂Fz

∂φ
Hρ = −j

1

ωμε

∂2Fz

∂ρ ∂z

Eφ = 1

ε

∂Fz

∂ρ
Hφ = −j

1

ωμερ

∂2Fz

∂φ ∂z

Ez = 0 Hz = −j
1

ωμε

(
∂2

∂z 2
+ β2

)
Fz

(6-80)

where Fz must satisfy the scalar wave equation

∇2Fz (ρ, φ, z ) + β2Fz (ρ, φ, z ) = 0 (6-81)

As was suggested earlier for the TM modes, an alternate procedure for construction of TEi

field configurations will be to initiate the procedure with a solution for the Hi component with
the same form as the vector potential component Fi . For example, if TEz modes are desired,
assume a solution for Hz of the same form as the vector potential component Fz . It can then
be shown through Maxwell’s equations that all the remaining electric and magnetic fields (with
Ez = 0) can be expressed in terms of Hz . The only difference between the two formulations, one
that uses the vector potentials adopted in this book and the other that uses the fields themselves,
is a normalization. For TEz modes, for example, this normalization constant according to (6-72)
is equal to −j (∂2/∂z 2 + β2)/ωμε = −j (β2 − β2

z )/ωμε. The preceding procedure is also a very
popular method used by many authors, and it is assigned to the reader as end-of-chapter exercises.
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6.6 SOLUTION OF THE INHOMOGENEOUS VECTOR POTENTIAL
WAVE EQUATION

In Sections 6.2 and 6.3, we derived the inhomogeneous vector wave equations 6-16 and 6-28. In
this section, we want to derive the solutions to each equation.

Let us assume that a source with current density Jz , which in the limit is an infinitesimal point
source, is placed at the origin of a x , y , z coordinate system, as shown in Figure 6-2a . Since the
current density Jz is directed along the z axis, only an Az component will exist. Thus, we can
write (6-16) as

∇2Az + β2Az = −μJz (6-82)

At points removed from the source (Jz = 0), the wave equation reduces to

∇2Az + β2Az = 0 (6-83)

Since in the limit the source is a point, it requires that Az is not a function of direction (θ and
φ); in a spherical coordinate system, Az = Az (r) where r is the radial distance. Thus, (6-83) can
be written as

∇2Az (r) + β2Az (r) = 1

r2

∂

∂r

[
r2 ∂Az (r)

∂r

]
+ β2Az (r) = 0 (6-84)

which when expanded reduces to

d2Az (r)

dr2
+ 2

r

dAz (r)

dr
+ β2Az (r) = 0 (6-84a)

The partial derivatives have been replaced by the ordinary derivative since Az is only a function
of the radial coordinate.

(x, y, z)

(x, y, z)

(x′, y′, z′)

r

r′ r

R

x x

y

y

z

(a) (b)

z

f
f

f′

q

q

q′

(x′, y′, z′)

Figure 6-2 Coordinate systems for computing radiation fields. (Source: C. A. Balanis, Antenna Theory:
Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of
John Wiley & Sons, Inc.). (a) Source at origin. (b) Source not at origin.
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The differential equation 6-84a has two independent solutions

Az1 = C1
e−jβr

r
(6-85a)

Az2 = C2
e+jβr

r
(6-85b)

Equation 6-85a represents an outwardly (in the radial direction) traveling wave and (6-85b)
describes an inwardly traveling wave, assuming ejωt time variations. For this problem, the source
is placed at the origin with the radiated fields traveling in the outward radial direction. Therefore,
we choose the solution of (6-85a), or

Az = Az1 = C1
e−jβr

r
(6-86)

In the static case, ω = 0, β = 0, so (6-86) simplifies to

Az = C1

r
(6-86a)

which is a solution to the wave equation 6-83, 6-84, or 6-84a when β = 0. Thus, at points
removed from the source, the time-varying and the static solutions of (6-86) and (6-86a) differ
only by the e−jβr factor, or the time-varying solution of (6-86) can be obtained by multiplying
the static solution of (6-86a) by e−jβr .

In the presence of the source (Jz �= 0) and with β = 0, the wave equation 6-82 reduces to

∇2Az = −μJz (6-87)

This equation is recognized as Poisson’s equation whose solution is widely documented. The
most familiar equation with Poisson form is that relating the scalar electric potential φ to the
electric charge density q . This is given by

∇2φ = −q

ε
(6-88)

whose solution is
φ = 1

4πε

∫∫∫
V

q

r
dv′ (6-89)

where r is the distance from any point on the charge density to the observation point. Since
(6-87) is similar in form to (6-88), its solution is similar to (6-89), or

Az = μ

4π

∫∫∫
V

Jz

r
dv′ (6-90)

Equation 6-90 represents the solution to (6-82) when β = 0, the static case. Using the comparative
analogy between (6-86) and (6-86a), the time-varying solution of (6-82) can be obtained by
multiplying the static solution of (6-90) by e−jβr . Thus,

Az = μ

4π

∫∫∫
V

Jz
e−jβr

r
dv′ (6-91)

which is a solution to (6-82).
If the current densities were in the x and y directions (Jx and Jy ), the wave equation for each

would reduce to

∇2Ax + β2Ax = −μJx (6-92a)
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∇2Ay + β2Ay = −μJy (6-92b)

with corresponding solutions similar in form to (6-91), or

Ax = μ

4π

∫∫∫
V

Jx
e−jβr

r
dv′ (6-93a)

Ay = μ

4π

∫∫∫
V

Jy
e−jβr

r
dv′ (6-93b)

The solutions of (6-91), (6-93a), and (6-93b) allow us to write the solution to the vector wave
equation 6-16 as

A = μ

4π

∫∫∫
V

J
e−jβr

r
dv′ (6-94)

If the source is removed from the origin and placed at a position represented by the primed
coordinates (x ′, y ′, z ′), as shown in Figure 6-2b, (6-94) can be written as

A(x , y , z ) = μ

4π

∫∫∫
V

J(x ′, y ′, z ′)
e−jβR

R
dv′ (6-95a)

where the primed coordinates represent the source, the unprimed coordinates represent the obser-
vation point, and R represents the distance from any point in the source to the observation point.
In a similar fashion, we can show that the solution of (6-28) is given by

F(x , y , z ) = ε

4π

∫∫∫
V

M(x ′, y ′, z ′)
e−jβR

R
dv′ (6-95b)

If J and M represent linear densities (m−1), (6-95a) and (6-95b) reduce, respectively, to the
following surface integrals.

A = μ

4π

∫∫
S

Js(x
′, y ′, z ′)

e−jβR

R
ds ′ (6-96a)

F = ε

4π

∫∫
S

Ms(x
′, y ′, z ′)

e−jβR

R
ds ′ (6-96b)

For electric and magnetic currents Ie and Im , they in turn reduce to line integrals of the form

A = μ

4π

∫
C

Ie(x
′, y ′, z ′)

e−jβR

R
dl ′ (6-97a)

F = ε

4π

∫
C

Im(x ′, y ′, z ′)
e−jβR

R
dl ′ (6-97b)
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Example 6-3

A very thin linear electric current element of very short length (� � λ) and with a constant current

Ie(z
′) = âz Ie

such that Ie� = constant, is positioned symmetrically at the origin and oriented along the z axis, as
shown in Figure 6-2a . Such an element is usually referred to as an infinitesimal dipole [1]. Determine
the electric and magnetic fields radiated by the dipole.

Solution: The solution will be obtained using the procedure summarized in Section 6.4. Since the
element (source) carries only an electric current Ie , the magnetic current Im and the vector potential F
of (6-97b) are both zero. The vector potential A of (6-97a) is then written as

A(x , y , z ) = μ

4π

∫ +�/2

−�/2
âz Ie

e−jβR

R
dz ′

where R is the distance from any point on the element, −�/2 ≤ z ′ ≤ �/2, to the observation point. Since
in the limit as � → 0 (� � λ),

R = r

then

A(x , y , z ) = âz
μIee−jβr

4πr

∫ +�/2

−�/2
dz ′ = âz

μIe�

4πr
e−jβr

Transforming the vector potential A from rectangular to spherical components using the inverse (in this
case also transpose) transformation of (II-9) from Appendix II, we can write

Ar = Az cos θ = μIe�e−jβr

4πr
cos θ

Aθ = −Az sin θ = −μIe�e−jβr

4πr
sin θ

Aφ = 0

Using the symmetry of the problem, that is, no variations in φ, (6-32a) can be expanded in spherical
coordinates and written in simplified form as

H = âφ

1

μr

[
∂

∂r
(rAθ ) − ∂Ar

∂θ

]
which reduces to

Hr = Hθ = 0

Hφ = j
βIe� sin θ

4πr

(
1 + 1

jβr

)
e−jβr

The electric field E can be found using either (6-32b) or (6-32c), that is,

E = −jωA − j
1

ωμε
∇(∇ • A) = 1

jωε
∇ × H

and either leads to

Er = η
Ie� cos θ

2πr2

(
1 + 1

jβr

)
e−jβr

Eθ = jη
βIe� sin θ

4πr

[
1 + 1

jβr
− 1

(βr)2

]
e−jβr

Eφ = 0

The E- and H-field components are valid everywhere except on the source itself.
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6.7 FAR-FIELD RADIATION

The fields radiated by antennas of finite dimensions are spherical waves. For these radiators, a
general solution to the vector wave equation 6-16 in spherical components, each as a function of
r , θ , and φ, takes the general form

A = âr Ar (r , θ , φ) + âθAθ (r , θ , φ) + âφAφ(r , θ , φ) (6-98)

The amplitude variations of r in each component of (6-98) are of the form 1/rn , n = 1, 2, . . .
[1]. Neglecting higher-order terms of 1/rn (1/rn = 0, n = 2, 3, . . .) reduces (6-98) to

A � [âr A′
r (θ , φ) + âθA′

θ (θ , φ) + âφA′
φ(θ , φ)]

e−jβr

r
r → ∞ (6-99)

The r variations are separable from those of θ and φ. This will be demonstrated by many examples
in the chapters that follow.

Substituting (6-99) into (6-17) reduces it to

E = 1

r
{−jωe−jβr [âr (0) + âθA′

θ (θ , φ) + âφA′
φ(θ , φ)]} + 1

r2
{· · · } + · · · (6-100a)

The radial E -field component has no 1/r terms because its contributions from the first and second
terms of (6-17) cancel each other.

Similarly, by using (6-99), we can write (6-4a) as

H = 1

r

{
−j

ω

η
e−jβr [âr (0) + âθA′

θ (θ , φ) − âφA′
θ (θ , φ)]

}
+ 1

r2
{· · · } + · · · (6-100b)

where η = √
μ/ε is the intrinsic impedance of the medium.

Neglecting higher-order terms of 1/rn , the radiated E and H fields have only θ and φ com-
ponents. They can be expressed as

Far-Field Region

Er � 0
Eθ � −jωAθ

Eφ � −jωAφ

⎫⎬⎭ ⇒
EA � −jωA

(for the θ and φ components
only since Er � 0)

(6-101a)

Hr � 0

Hθ � +j
ω

η
Aφ = −Eφ

η

Hφ � −j
ω

η
Aθ = +Eθ

η

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇒
HA � âr

η
× EA = −j

ω

η
âr × A

(for the θ and φ components
only since Hr � 0)

(6-101b)

Radial field components exist only for higher-order terms of 1/rn .
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In a similar manner, the far-zone fields that are due to a magnetic source M (potential F) can
be written as

Far-Field Region

Hr � 0
Hθ � −jωFθ

Hφ � −jωFφ

⎫⎬⎭ ⇒
HF � −jωF

(for the θ and φ components
only since Hr � 0)

(6-102a)

Er � 0
Eθ � −jωηFφ = +ηHφ

Eφ � +jωηFθ = −ηHθ

⎫⎬⎭ ⇒
EF = −ηâr × HF = jωηâr × F

(for the θ and φ components
only since Er � 0)

(6-102b)

Simply stated, the corresponding far-zone E- and H-field components are orthogonal to each
other and form TEM (to r) mode fields. This is a very useful relation, and it will be adopted
in the following chapters for the solution of the far-zone radiated fields. The far-zone (far-field)
region for a radiator is defined as the region whose smallest radial distance is 2D2/λ where D
is the largest dimension of the radiator (provided D is large compared to the wavelength) [1].

6.8 RADIATION AND SCATTERING EQUATIONS

In Sections 6.4 and 6.6, it was stated that the fields radiated by sources represented by J and M in
an unbounded medium can be computed using (6-32a) through (6-35a), where A and F are found
using (6-95a) and (6-95b). For (6-95a) and (6-95b), the integration is performed over the entire
space occupied by J and M of Figure 6-2b [or Js and Ms of (6-96a) and (6-96b), or Ie and Im of
(6-97a) and (6-97b)]. These equations yield valid solutions for all observation points. For most
problems, the main difficulty is the inability to perform the integrations in (6-95a) and (6-95b),
(6-96a) and (6-96b), or (6-97a) and (6-97b). However, for far-field observations the complexity
of the formulation can be reduced.

6.8.1 Near Field

According to Figure 6-2b and equation 6-95a, the vector potential A that is due to current density
J is given by

A(x , y , z ) = μ

4π

∫∫∫
V

J(x ′, y ′, z ′)
e−jβR

R
dv′ (6-103)

where the primed coordinates (x ′, y ′, z ′) represent the source and the unprimed coordinates (x ,
y , z ) represent the observation point. Here, we intend to write expressions for the E and H fields
that are due to the potential of (6-103), which would be valid everywhere [3, 4], The equations
will not be in closed form, but will be convenient for computational purposes. The development
will be restricted to the rectangular coordinate system.

The magnetic field due to the potential of (6-103) is given by (6-32a) as

HA = 1

μ
∇ × A = 1

4π
∇ ×

∫∫∫
V

J(x ′, y ′, z ′)
e−jβR

R
dv′ (6-104)

Interchanging integration and differentiation, we can write (6-104) as

HA = 1

4π

∫∫∫
V

∇ ×
[

J(x ′, y ′, z ′)
e−jβR

R

]
dv′ (6-104a)
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Using the vector identity
∇ × (gF) = (∇g) × F + g(∇ × F) (6-105)

we can write

∇ ×
[

e−jβR

R
J(x ′, y ′, z ′)

]
= ∇

(
e−jβR

R

)
× J(x ′, y ′, z ′) + e−jβR

R
∇ × J(x ′, y ′, z ′) (6-106)

Since J is only a function of the primed coordinates and ∇ is a function of the unprimed
coordinates,

∇ × J(x ′, y ′, z ′) = 0 (6-106a)

Also

∇
(

e−jβR

R

)
= −R̂

(
1 + jβR

R2

)
e−jβR (6-106b)

where R̂ is a unit vector directed along the line joining any point of the source and the observation
point. Using (6-106) through (6-106b), we can write (6-104a) as

HA(x , y , z ) = − 1

4π

∫∫∫
V
(R̂ × J)

1 + jβR

R2
e−jβRdx ′dy ′dz ′ (6-107)

which can be expanded in its three rectangular components [3, 4]

HAx = 1

4π

∫∫∫
V

[
(z − z ′)Jy − (y − y ′)Jz

] 1 + jβR

R3
e−jβRdx ′ dy ′ dz ′ (6-107a)

HAy = 1

4π

∫∫∫
V

[
(x − x ′)Jz − (z − z ′)Jx

] 1 + jβR

R3
e−jβRdx ′ dy ′ dz ′ (6-107b)

HAz = 1

4π

∫∫∫
V

[
(y − y ′)Jx − (x − x ′)Jy

] 1 + jβR

R3
e−jβRdx ′ dy ′ dz ′ (6-107c)

Using (6-32b) or Maxwell’s equation 6-32c, we can write the corresponding electric field
components as

EA = âx EAx + ây EAy + âz EAz = −jωA − j
1

ωμε
∇(∇ • A) = 1

jωε
∇ × HA (6-108)

which with the aid of (6-107a) through (6-107c) reduce to

EAx = − jη

4πβ

∫∫∫
V

{
G1Jx + (x − x ′)G2

×[(x − x ′)Jx + (y − y ′)Jy + (z − z ′)Jz ]
}

e−jβRdx ′ dy ′ dz ′ (6-108a)

EAy = − jη

4πβ

∫∫∫
V

{
G1Jy + (y − y ′)G2

×[(x − x ′)Jx + (y − y ′)Jy + (z − z ′)Jz ]
}

e−jβRdx ′ dy ′ dz ′ (6-108b)

EAz = − jη

4πβ

∫∫∫
V

{
G1Jz + (z − z ′)G2

×[(x − x ′)Jx + (y − y ′)Jy + (z − z ′)Jz ]
}

e−jβRdx ′ dy ′ dz ′ (6-108c)
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where

G1 = −1 − jβR + β2R2

R3
(6-108d)

G2 = 3 + j 3βR − β2R2

R5
(6-108e)

In the same manner, we can write for the vector potential of (6-95b)

F(x , y , z ) = ε

4π

∫∫∫
V

M(x ′, y ′, z ′)
e−jβR

R
dv′ (6-109)

the electric field components using (6-33a),

EF = −1

ε
∇ × F (6-110)

as

EFx = − 1

4π

∫∫∫
V

[
(z − z ′)My − (y − y ′)Mz

] 1 + jβR

R3
e−jβRdx ′dy ′dz ′ (6-110a)

EFy = − 1

4π

∫∫∫
V

[
(x − x ′)Mz − (z − z ′)Mx

] 1 + jβR

R3
e−jβRdx ′dy ′dz ′ (6-110b)

EFz = − 1

4π

∫∫∫
V

[
(y − y ′)Mx − (x − x ′)My

] 1 + jβR

R3
e−jβRdx ′dy ′dz ′ (6-110c)

Similarly, the corresponding magnetic field components can be written using (6-33b) or (6-33c)

HF = −jωF − j
1

ωμε
∇(∇ • F) = − 1

jωμ
∇ × EF (6-111)

as

HFx = − j

4πβη

∫∫∫
V

{
G1Mx + (x − x ′)G2

×[(x − x ′)Mx + (y − y ′)My + (z − z ′)Mz ]
}

e−jβRdx ′ dy ′ dz ′ (6-111a)

HFy = − j

4πβη

∫∫∫
V

{
G1My + (y − y ′)G2

×[(x − x ′)Mx + (y − y ′)My + (z − z ′)Mz ]
}

e−jβRdx ′ dy ′ dz ′ (6-111b)

HFz = − j

4πβη

∫∫∫
V

{
G1Mz + (z − z ′)G2

×[(x − x ′)Mx + (y − y ′)My + (z − z ′)Mz ]
}

e−jβRdx ′ dy ′ dz ′ (6-111c)

where G1 and G2 are given by (6-108d) and (6-108e).

6.8.2 Far Field

It was shown in Section 6.7 that the field equations for far-field (βr � 1) observations simplify
considerably. Also in the far zone the E- and H-field components are orthogonal to each other and
form TEM (to r) mode fields. Although the field equations in the far zone simplify, integrations
still need to be performed to find the vector potentials of A and F given, respectively, by (6-95a)
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and (6-95b), or (6-96a) and (6-96b), or (6-97a) and (6-97b). However, the integrations, as will
be shown next, can be simplified if the observations are made in the far field.

If the observations are made in the far field (βr � 1), it can be shown [1] that the radial
distance R of Figure 6-3a from any point on the source or scatterer to the observation point
can be assumed to be parallel to the radial distance r from the origin to the observation point,
as shown in Figure 6-3b. In such cases, the relation between the magnitudes of R and r of
Figure 6-3a , given by

R = [
r2 + (r ′)2 − 2rr ′ cos ψ

]1/2
(6-112)

r′
r

R

x

x

y

y

z

z

(a)

(b)

f

f

f′

f′

q

q′

r′

r

R

q

q′

x′, y′, z′ on S

x′, y′, z′ on S

Observation point
(x, y, z)

Figure 6-3 Coordinate system for antenna analysis. (Source: C. A. Balanis, Antenna Theory: Analysis and
Design. 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John Wiley
& Sons, Inc.). (a) Near and far fields. (b) Far field.



Balanis c06.tex V2 - 11/22/2011 3:14 P.M. Page 288

288 AUXILIARY VECTOR POTENTIALS, CONSTRUCTION OF SOLUTIONS, AND RADIATION AND SCATTERING EQUATIONS

can be approximated, according to Figure 6-3b, most commonly by [1]

R =
{

r − r ′ cos ψ for phase variations

r for amplitude variations

(6-112a)

(6-112b)

where ψ is the angle between r and r′. These approximations yield a maximum phase error of
π/8 (22.5◦) provided the observations are made at distances

r ≥ 2D2

λ
(6-113)

where D is the largest dimension of the radiator or scatterer. The distance (6-113) represents
the minimum distance to the far-field region. The derivation of (6-113), as well as distances for
other zones, can be found in [1]. Using (6-112a) and (6-112b), we can write (6-96a) and (6-96b),
assuming the current densities reside on the surface of the source, as

A = μ

4π

∫∫
S

Js
e−jβR

R
ds ′ � μe−jβr

4πr
N (6-114a)

F = ε

4π

∫∫
S

Ms
e−jβR

R
ds ′ � εe−jβr

4πr
L (6-114b)

where

N =
∫∫

S
Js ejβr ′ cos ψds ′ (6-114c)

L =
∫∫

S
Ms ejβr ′ cos ψds ′ (6-114d)

It was shown in Section 6.7 that in the far field only the θ and φ components of the E and H
fields are dominant. Although the radial components are not necessarily zero, they are negligible
compared to the θ and φ components. Also it was shown that for (6-32b) and (6-33b), or

EA = −jω

[
A + 1

β2
∇(∇ • A)

]
(6-115a)

HF = −jω

[
F + 1

β2
∇(∇ • F)

]
(6-115b)

where A and F are given by (6-114a) and (6-114b), the second terms within the brackets only
contribute variations of the order 1/r2, 1/r3, 1/r4, etc. Since observations are made in the far
field, the dominant variation is of the order 1/r and it is contained in the first term of (6-115a)
and (6-115b). Thus, for far-field observations, (6-115a) and (6-115b) reduce to

EA � −jωA (θ and φ components only) (6-116a)

HF � −jωF (θ and φ components only) (6-116b)

which can be expanded and written as

(EA)θ � −jωAθ (6-117a)

(EA)φ � −jωAφ (6-117b)

(HF)θ � −jωFθ (6-117c)

(HF)φ � −jωFφ (6-117d)
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The radial components are neglected because they are very small compared to the θ and φ

components.
To find the remaining E and H fields contributed by the F and A potentials, that is EF and

HA, we can use (6-33a) and (6-32a), or

EF = −1

ε
∇ × F (6-118a)

HA = 1

μ
∇ × A (6-118b)

However, we resort instead to (6-117a) through (6-117d). Since the observations are made in the
far field and we know that the E- and H-field components are orthogonal to each other and to
the radial direction (plane waves) and are related by the intrinsic impedance of the medium, we
can write, using (6-117a) through (6-117d),

(EF)θ � +η(HF)φ = −jωηFφ (6-119a)

(EF)φ � −η(HF)θ = +jωηFθ (6-119b)

(HA)θ � − (EA)φ

η
= +jω

Aφ

η
(6-119c)

(HA)φ � + (EA)θ

η
= −jω

Aθ

η
(6-119d)

Combining (6-117a) through (6-117d) with (6-119a) through (6-119d) and remembering that the
radial components are negligible, we can write the E- and H-field components in the far field
as

Er � 0 (6-120a)

Eθ � (EA)θ + (EF)θ = −jω
[
Aθ + ηFφ

]
(6-120b)

Eφ � (EA)φ + (EF)φ = −jω
[
Aφ − ηFθ

]
(6-120c)

Hr � 0 (6-120d)

Hθ � (HA)θ + (HF)θ = + jω

η

[
Aφ − ηFθ

]
(6-120e)

Hφ � (HA)φ + (HF)φ = − jω

η

[
Aθ + ηFφ

]
(6-120f)

Using Aθ , Aφ , Fθ , and Fφ from (6-114a) through (6-114d), that is,

Aθ = μe−jβr

4πr
Nθ (6-121a)

Aφ = μe−jβr

4πr
Nφ (6-121b)

Fθ = εe−jβr

4πr
Lθ (6-121c)

Fφ = εe−jβr

4πr
Lφ (6-121d)
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we can reduce (6-120a) through (6-120f) to

Er � 0

Eθ � − jβe−jβr

4πr
(Lφ + ηNθ )

Eφ � + jβe−jβr

4πr
(Lθ − ηNφ)

Hr � 0

Hθ � + jβe−jβr

4πr

(
Nφ − Lθ

η

)

Hφ � − jβe−jβr

4πr

(
Nθ + Lφ

η

)

(6-122a)

(6-122b)

(6-122c)

(6-122d)

(6-122e)

(6-122f)

A. Rectangular Coordinate System To find the fields of (6-122a) through (6-122f), the
functions Nθ , Nφ , Lθ , and Lφ must be evaluated from (6-114c) and (6-114d). The evaluation
of (6-114c) and (6-114d) can best be accomplished if the most convenient coordinate system is
chosen.

For radiators or scatterers whose geometries are most conveniently represented by rectangular
coordinates, (6-114c) and (6-114d) can best be expressed as

N =
∫∫

S
Jse+jβr ′ cos ψds ′ =

∫∫
S
(âx Jx + ây Jy + âz Jz )e

+jβr ′ cos ψds ′ (6-123a)

L =
∫∫

S
Mse+jβr ′ cos ψds ′ =

∫∫
S
(âx Mx + ây My + âz Mz )e

+jβr ′ cos ψds ′ (6-123b)

Using the rectangular-to-spherical component transformation of (II-13a)⎡⎣ âx

ây

âz

⎤⎦ =
⎡⎣ sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎤⎦⎡⎣ âr

âθ

âφ

⎤⎦ (6-124)

we can reduce (6-123a) and (6-123b) for the θ and φ components to

Nθ =
∫∫

S
(Jx cos θ cos φ + Jy cos θ sin φ − Jz sin θ)e+jβr ′ cos ψds ′

Nφ =
∫∫

S
(−Jx sin φ + Jy cos φ)e+jβr ′ cos ψds ′

Lθ =
∫∫

S
(Mx cos θ cos φ + My cos θ sin φ − Mz sin θ)e+jβr ′ cos ψds ′

Lφ =
∫∫

S
(−Mx sin φ + My cos φ)e+jβr ′ cos ψds ′

(6-125a)

(6-125b)

(6-125c)

(6-125d)
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Figure 6-4 Rectangular aperture and plate positions for antenna and scattering system analysis. (Source:
C. A. Balanis, Antenna Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons,
Inc. Reprinted by permission of John Wiley & Sons, Inc.). (a) yz plane. (b) xz plane. (c) xy plane.

Some of the most common and practical radiators and scatterers are represented by rectangular
geometries. Because of their configuration, the most convenient coordinate system for expressing
the fields or current densities on the structure, and performing the integration over it, would be the
rectangular. The three most common and convenient coordinate positions used for the solution
of the problem are shown in Figure 6-4. Figures 6-4a , 6-4b and 6-4c show, respectively, the
structure in the yz plane, in the xz plane, and in the xy plane. For a given field or current density
distribution, the analytical forms for the radiated or scattered fields for each of the arrangements
would not be the same. However, the computed values will be the same because the problem is
physically identical.

For each of the geometries shown in Figure 6-4, the only difference in the analysis will be in
the following formulations.
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1. The components of the equivalent currents, Jx , Jy , Jz , Mx , My , and Mz .
2. The difference in paths from the source to the observation point, r ′ cos ψ .
3. The differential area ds ′.

In general, the nonzero components of Js and Ms will be

Jy , Jz , My , and Mz (Fig. 6-4a) (6-126a)

Jx , Jz , Mx , and Mz (Fig. 6-4b) (6-126b)

Jx , Jy , Mx , and My (Fig. 6-4c) (6-126c)

The differential paths will be of the form

r ′ cos ψ = r′ • âr = (ây y ′ + âz z ′) • (âx sin θ cos φ + ây sin θ sin φ + âz cos θ)

= y ′ sin θ sin φ + z ′ cos θ (Fig. 6-4a) (6-127a)

r ′ cos ψ = r′ • âr = (âx x ′ + âz z ′) • (âx sin θ cos φ + ây sin θ sin φ + âz cos θ)

= x ′ sin θ cos φ + z ′ cos θ (Fig. 6-4b) (6-127b)

r ′ cos ψ = r′ • âr = (âx x ′ + ây y ′) • (âx sin θ cos φ + ây sin θ sin φ + âz cos θ)

= x ′ sin θ cos φ + y ′ sin θ sin φ (Fig. 6-4c) (6-127c)

and the differential areas of

ds ′ = dy ′dz ′ (Fig. 6-4a) (6-128a)

ds ′ = dx ′dz ′ (Fig. 6-4b) (6-128b)

ds ′ = dx ′dy ′ (Fig. 6-4c) (6-128c)

SUMMARY To summarize the results, we will outline the procedure that must be followed
to solve a problem using the radiation or scattering integrals. Figure 6-3 is used to indicate the
geometry.

1. Select a closed surface over which the actual current density Js or the equivalent current
densities Js and Ms exist.

2. Specify the actual current density Js or form the equivalent currents Js and Ms over S
using [1, 3, 5]

Js = n̂ × Ha (6-129a)

Ms = −n̂ × Ea (6-129b)

where n̂ = unit vector normal to the surface S
Ea = total electric field over the surface S
Ha = total magnetic field over the surface S

3. (Optional ) Determine the potentials A and F using, respectively, (6-103) and (6-109) where
the integration is over the surface S of the sources.

4. Determine the corresponding E- and H-field components that are due to Js and Ms using
(6-107a) through (6-107c), (6-108a) through (6-108e), (6-110a) through (6-110c), and (6-
111a) through (6-111c). Combine the E- and H-field components that are due to both Js

and Ms to find the total E and H fields.
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These steps are valid for all regions (near field and far field) outside the surface S. If, however,
the observation point is in the far field, steps 3 and 4 can be replaced by 3′ and 4′.

3′. Determine Nθ , Nφ , Lθ , and Lφ using (6-125a) through (6-125d).
4′. Determine the radiated E and H fields using (6-122a) through (6-122f).

This procedure can be used to analyze radiation and scattering problems. The radiation prob-
lems most conducive to this procedure are aperture antennas, such as waveguides, horns, reflectors,
and others. These aperture antennas are usually best represented by specifying their fields over
their apertures.

Example 6-4

The tangential E and H fields over a rectangular aperture of dimensions a and b, shown in Figure 6-5,
are given by

Ea = ây E0

Ha = −âx
E0

η

⎫⎪⎬⎪⎭
−a

2
≤ x ′ ≤ a

2

−b

2
≤ y ′ ≤ b

2

Ea � Ha � 0 elsewhere

Find the far-zone fields radiated by the aperture, and plot the three-dimensional pattern when a = 3λ and
b = 2λ. The fields over the aperture and elsewhere have been simplified in order to reduce the complexity
of the problem and to avoid having the analytical formulations obscure the analysis procedure.

Solution:

1. The surface of the radiator is defined by −a/2 ≤ x ≤ a/2 and −b/2 ≤ y ≤ b/2.
2. Since the electric and magnetic fields exist only over the bounds of the aperture, the equivalent

current densities Js and Ms representing the aperture exist only over the bounds of the aperture as
well. This is a good approximation, and it is derived by the equivalence principle in Chapter 7 [1,
3, 5]. Using (6-129a) and (6-129b) the current densities Js and Ms can be written, by referring
to Figure 6-5, as

Js = n̂ × Ha = âz ×
(

−âx
E0

η

)
= −ây

E0

η
⇒ Jx = Jz = 0 Jy = −E0

η

Ms = −n̂ × Ea = −âz × ây E0 = âx E0 ⇒ Mx = E0 My = Mz = 0

3. Using (6-125a), (6-127c), and (6-128c), we can reduce Nθ to

Nθ =
∫∫

S

[
Jx cos θ cos φ + Jy cos θ sin φ − Jz sin θ

]
ejβr ′ cos ψds ′

= −E0

η
cos θ sin φ

∫ b/2

−b/2

∫ a/2

−a/2
ejβ(x ′ sin θ cos φ+y ′ sin θ sin φ)dx ′dy ′

Using the integral ∫ c/2

−c/2
ejαz dz = c

⎡⎢⎣ sin
(α

2
c
)

α

2
c

⎤⎥⎦
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a

dy′
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R
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q′

q
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f

Figure 6-5 Rectangular aperture geometry for radiation problem.

reduces Nθ to

Nθ = −abE0

η

{
cos θ sin φ

[
sin(X )

X

] [
sin(Y )

Y

]}

where X = βa

2
sin θ cos φ

Y = βb

2
sin θ sin φ

In a similar manner, Nφ , Lθ , and Lφ of (6-125b), (6-125c), and (6-125d) can be written as

Nφ =
∫∫

S

(−Jx sin φ + Jy cos φ
)

ejβr ′ cos ψds ′

= −abE0

η

{
cos φ

[
sin(X )

X

] [
sin(Y )

Y

]}
Lθ =

∫∫
S
(Mx cos θ cos φ + My cos θ sin φ − Mz sin θ)ejβr ′ cos ψds ′

= abE0

{
cos θ cos φ

[
sin(X )

X

] [
sin(Y )

Y

]}
Lφ =

∫∫
S

[−Mx sin φ + My cos φ
]

ejβr ′ cos ψds ′

= −abE0

{
sin φ

[
sin(X )

X

] [
sin(Y )

Y

]}
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The corresponding far-zone E- and H-field components radiated by the aperture are obtained using
(6-122a) through (6-122f), and they can be written as

Er � Hr � 0

Eθ � C

2
sin φ(1 + cos θ)

[
sin(X )

X

] [
sin(Y )

Y

]
Eφ � C

2
cos φ(1 + cos θ)

[
sin(X )

X

] [
sin(Y )

Y

]
Hθ � −Eφ

η

Hφ � +Eθ

η

C = j
abβE0e−jβr

2πr

Relative
magnitude

1.0

180°180°
qq

H-plane (x−z, f = 0°) E-plane (y−z, f = 90°) 

Figure 6-6 Three-dimensional field pattern of a constant field rectangular aperture (a = 3λ and b =
2λ). (Source: C. A. Balanis, Antenna Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John
Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.).
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In the principal E and H planes, the electric field components reduce to

E Plane (φ = π/2)

Er � Eφ = 0

Eθ = C

2
(1 + cos θ)

sin

(
βb

2
sin θ

)
βb

2
sin θ

H Plane (φ = 0)

Er � Eθ = 0

Eφ = C

2
(1 + cos θ)

sin

(
βa

2
sin θ

)
βa

2
sin θ

A three-dimensional plot of the normalized magnitude of the total electric field intensity E
(

E �√
E 2

θ + E 2
φ

)
for an aperture with a = 3λ, b = 2λ as a function of θ , and φ (0◦ ≤ θ ≤ 180◦, 0◦ ≤ φ ≤

360◦) is shown plotted in Figure 6-6. Because the aperture is larger in the x direction (a = 3λ), its
pattern in the xz plane exhibits a larger number of lobes compared to the yz plane, as shown also in
the two-dimensional E - and H -plane patterns in Figure 6-7.
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Figure 6-7 E -(φ = 90◦) and H -plane (φ = 0◦) power patterns of a rectangular aperture with a uniform
field distribution.
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To demonstrate the application of the techniques to scattering, let us consider a scattering
problem.

Example 6-5

A parallel polarized uniform plane wave traveling on the yz plane at an angle θi from the z axis is
incident upon a rectangular electric perfectly conducting flat plate of dimensions a and b, as shown in
Figure 6-8. Assuming that the induced current density on the plate is the same as that on an infinite
conducting flat plate, find the far-zone spherical scattered electric and magnetic field components in
directions specified by θs , φs . Plot the three-dimensional scattering pattern when a = 3λ and b = 2λ.

Solution: Since the incident wave is a parallel polarized uniform plane wave, the incident electric
and magnetic fields can be written as

Ei = E0(ây cos θi + âz sin θi )e
−jβ(y ′ sin θi −z ′ cos θi )

Hi = E0

η
âx e−jβ(y ′ sin θi −z ′ cos θi )

The electric current density induced on the surface of the plate is given by

Js = n̂ × Htotal|z=0 = âz × (Hi + Hr )|z=0

According to Figure 5-4 and (5-24c), the reflected magnetic field of (5-21b) can be written as

Hr = −�‖Hi = −(−Hi ) = Hi

Then
Js = âz × (Hi + Hi )|z=0 = 2ây H i |z=0 = ây 2

E0

η
e−jβy ′ sin θi

dx′
dy′y′

x′

x

z

y

b

(r, qs, fs)

a

Hi

Ei

r′

r

R

y

q′

f′

fs

qs

qi

Figure 6-8 Uniform plane wave incident on a rectangular conducting plate.
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or
Jx = Jz = 0 everywhere

Jy = 2
E0

η
e−jβy ′ sin θi for

{
−a/2 ≤ x ′ ≤ a/2

−b/2 ≤ y ′ ≤ b/2
and zero elsewhere

Because the geometry of the plate corresponds to the coordinate system of Figure 6-4c, equation 6-125a
can be written using (6-127c) and (6-128c) as

Nθ =
∫∫

S

[
Jx cos θs cos φs + Jy cos θs sin φs − Jz sin θs

]
ejβr ′ cos ψds ′

= 2
E0

η
cos θs sin φs

∫ b/2

−b/2

∫ a/2

−a/2
ejβx ′ sin θs cos φs ejβy ′(sin θs sin φs −sin θi )dx ′dy ′

Using the integral ∫ c/2

−c/2
ejαz dz = c

⎡⎢⎣ sin
(α

2
c
)

α

2
c

⎤⎥⎦
reduces Nθ to

Nθ = 2ab
E0

η

{
cos θs sin φs

[
sin(X )

X

] [
sin(Y )

Y

]}

where X = βa

2
sin θs cos φs

Y = βb

2
(sin θs sin φs − sin θi )

Similarly, according to (6-125b), Nφ can be written as

Nφ =
∫∫

S

(−Jx sin φs + Jy cos φs
)

ejβr ′ cos ψds ′

= 2ab
E0

η

{
cos φs

[
sin(X )

X

] [
sin(Y )

Y

]}
Because the plate is a perfect electric conductor,

Mx = My = Mz = 0 everywhere

Therefore, according to (6-125c) and (6-125d),

Lθ = Lφ = 0

Thus the scattered electric and magnetic field components can be reduced according to (6-122a) through
(6-122f) to

E s
r � H s

r � 0

E s
θ � −jab

βE0e−jβr

2πr

{
cos θs sin φs

[
sin(X )

X

] [
sin(Y )

Y

]}
E s

φ � −jab
βE0e−jβr

2πr

{
cos φs

[
sin(X )

X

] [
sin(Y )

Y

]}
H s

θ � −E s
φ

η

H s
φ � +E s

θ

η
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In the principal E and H planes, the electric field components reduce, respectively, as follows.

E Plane (φs = π/2, 3π/2)

E s
r � E s

φ � 0

E s
θ � −jab

βE0e−jβr

2πr
cos θs

sin

[
βb

2
(± sin θs − sin θi )

]
βb

2
(± sin θs − sin θi )

+for φs = π/2
−for φs = 3π/2

H Plane (φs = 0, π)

E s
r � E s

θ � 0

E s
φ � −jab

βE0e−jβr

2πr

sin

(
βa

2
sin θs

)
βa

2
sin θs

sin

(
βb

2
sin θi

)
βb

2
sin θi

A three-dimensional plot of the normalized magnitude of the total electric field E s
[
E s =√

(E s
θ )2 + (E s

φ)2
]

for a plate of dimensions a = 3λ and b = 2λ when the incidence angle θi = 30◦

is shown in Figure 6-9. Its corresponding two-dimensional pattern in the yz plane (φs = 90◦, 270◦)
is exhibited in Figure 6-10. It can be observed that the maximum scattered field is directed near
θs = 30◦, which is near the direction of specular reflection (defined as the direction along which
the angle of reflection is equal to the angle of incidence). For more details see Section 11.3.

By using such a procedure for plates of finite size, the scattering fields are accurate at and
near the specular direction. The angular extent over which the accuracy is acceptable increases
as the size of the scatterer increases. Other techniques, such as those discussed in Chapters 12
and 13, can be used to improve the accuracy everywhere.

B. Cylindrical Coordinate System When the radiating or scattering structure is of circular
geometry, the radiation or scattering fields can still be found using (6-122a) through (6-122f).
The Nθ , Nφ , Lθ , and Lφ functions must still be obtained from (6-114c) and (6-114d) but must be
expressed in a form that is convenient for cylindrical geometries. Although the general procedure
of analysis for circular geometry is identical to that of the rectangular, as outlined in the previous
section, the primary differences lie in the following.

1. The formulation of the equivalent currents, Jx , Jy , Jz , Mx , My , and Mz .
2. The differential paths from the source to the observation point, r ′ cos ψ .
3. The differential area ds ′.

Before we consider an example, we will reformulate these differences for the circular aperture.
Because of the circular profile of the aperture, it is often convenient and desirable to adopt

cylindrical coordinates for the solution of the fields. In most cases, therefore, the radiated or
scattered electric and magnetic field components over the circular geometry will be known in
cylindrical form, that is, Eρ , Eφ , Ez , Hρ , Hφ , and Hz . Thus, the components of the equivalent
currents Ms and Js would also be conveniently expressed in cylindrical form, Mρ , Mφ , Mz , Jρ ,
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Figure 6-9 Three-dimensional normalized scattering field pattern of a plane wave incident on a rectangular
ground plane.
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Figure 6-10 Two-dimensional normalized electric field scattering pattern for a plane wave incident (θi =
30◦ and φs = 90◦, 270◦) on a flat conducting plate with a = 3λ and b = 2λ.
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Jφ , and Jz . In addition, the required integration over the aperture to find Nθ , Nφ , Lθ , and Lφ of
(6-125a) through (6-125d) should also be done in cylindrical coordinates. It is then desirable to
reformulate r ′ cos ψ and ds ′, as given by (6-127a) through (6-128c).

The most convenient position for placing the structure is that shown in Figure 6-11 (structure
on xy plane). The transformation between the rectangular and cylindrical components of Js is
given in Appendix II, equation II-7a, or⎡⎣ Jx

Jy

Jz

⎤⎦ =
⎡⎣ cos φ′ − sin φ′ 0

sin φ′ cos φ′ 0
0 0 1

⎤⎦⎡⎣ Jρ

Jφ

Jz

⎤⎦ (6-130a)

A similar transformation exists for the components of Ms . The rectangular and cylindrical coor-
dinates are related by (see Appendix II)

x ′ = ρ ′ cos φ′

y ′ = ρ ′ sin φ′ (6-130b)

z ′ = z ′

x

z

r

R

a

r′ = ρ′ 

dr′ r′df′

y

f′

f

q′

q

y

Figure 6-11 Circular aperture mounted on an infinite ground plane. (Source: C. A. Balanis, Antenna
Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.).
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Using (6-130a), equations 6-125a through 6-125d can be written as

Nθ =
∫∫

S

[
Jρ cos θ cos(φ − φ′) + Jφ cos θ sin(φ − φ′) − Jz sin θ

]
ejβr ′ cos ψds ′

Nφ =
∫∫

S

[−Jρ sin(φ − φ′) + Jφ cos(φ − φ′)
]

ejβr ′ cos ψds ′

Lθ =
∫∫

S

[
Mρ cos θ cos(φ − φ′) + Mφ cos θ sin(φ − φ′) − Mz sin θ

]
ejβr ′ cos ψds ′

Lφ =
∫∫

S

[−Mρ sin(φ − φ′) + Mφ cos(φ − φ′)
]

ejβr ′ cos ψds ′

(6-131a)

(6-131b)

(6-131c)

(6-131d)

where r ′ cos ψ and ds ′ can be written, using (6-127c), (6-128c), and (6-130b), as

r ′ cos ψ = x ′ sin θ cos φ + y ′ sin θ sin φ = ρ ′ sin θ cos(φ − φ′)

ds ′ = dx ′dy ′ = ρ ′dρ ′dφ′
(6-132a)

(6-132b)

In summary, for a circular aperture antenna the fields radiated can be obtained by either of
the following methods.

1. If the fields over the aperture are known in rectangular components, use the same procedure
as for the rectangular aperture except that (6-132a) and (6-132b) should be substituted in
(6-125a) through (6-125d).

2. If the fields over the aperture are known in cylindrical components, use the same procedure
as for the rectangular aperture with (6-131a) through (6-131d), along (6-132a) and (6-132b),
taking the place of (6-125a) through (6-125d).

Example 6-6

To demonstrate the methods, the field radiated by a circular aperture mounted on an infinite ground
plane will be formulated. To simplify the mathematical details, the field over the aperture of Figure 6-11
will be assumed to be

Ea = ây E0

Ha = −âx
E0

η

⎫⎬⎭ ρ ′ ≤ a

The objective is to find the far-zone fields radiated by the aperture. The fields over the aperture have
been simplified in order to reduce the complexity of the problem and to avoid having the analytical
formulations obscure the analysis procedure.

Solution:

1. The surface of the radiating aperture is that defined by ρ ′ ≤ a .
2. Since the aperture is mounted on an infinite ground plane, it is shown, by the equivalence principle

in Chapter 7 and elsewhere [1, 3, 5], that the equivalent current densities that lead to the appropriate
radiated fields are given by

Ms =
{

−2n̂ × Ea = âx 2E0 ρ ′ ≤ a

0 elsewhere

Js = 0 elsewhere



Balanis c06.tex V2 - 11/22/2011 3:14 P.M. Page 303

RADIATION AND SCATTERING EQUATIONS 303

This equivalent model for the current densities is valid for any aperture mounted on an infinite
perfectly conducting electric ground plane. Thus, according to (6-125a) and (6-125b),

Nθ = Nφ = 0

Using (6-125c), (6-132a), and (6-132b)

Lθ = 2E0 cos θ cos φ

∫ a

0
ρ ′

[∫ 2π

0
e+jβρ′ sin θ cos(φ−φ′)dφ′

]
dρ ′

Because ∫ 2π

0
e+jβρ′ sin θ cos(φ−φ′)dφ′ = 2πJ0(βρ ′ sin θ)

we can write Lθ as

Lθ = 4πE0 cos θ cos φ

∫ a

0
J0(βρ ′ sin θ)ρ ′dρ ′

where J0(t) is the Bessel function of the first kind of order zero. Making the substitution

t = βρ ′ sin θ

dt = β sin θdρ ′

reduces Lθ to

Lθ = 4πE0 cos θ cos φ

(β sin θ)2

∫ βa sin θ

0
tJ0(t)dt

Since ∫ δ

0
zJ0(z )dz = zJ1(z )|δ0 = δJ1(δ)

where J1(δ) is the Bessel function of order 1, Lθ takes the form

Lθ = 4πa2E0

{
cos θ cos φ

[
J1(βa sin θ)

βa sin θ

]}
Similarly, Lφ of (6-125d) reduces to

Lφ = −4πa2E0

{
sin φ

[
J1(βa sin θ)

βa sin θ

]}
Using Nθ , Nφ , Lθ , and Lφ previously derived, the electric field components of (6-122a) through
(6-122c) can be written as

Er = 0

Eθ = j
βa2E0e−jβr

r

{
sin φ

[
J1(βa sin θ)

βa sin θ

]}
Eφ = j

βa2E0e−jβr

r

{
cos θ cos φ

[
J1(βa sin θ)

βa sin θ

]}
In the principal E and H planes, the electric field components simplify to

E Plane (φ = π/2)

Er = Eφ = 0

Eθ = j
βa2E0e−jβr

r

[
J1(βa sin θ)

βa sin θ

]
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H Plane (φ = 0)

Er = Eθ = 0

Eφ = j
βa2E0e−jβr

r

{
cos θ

[
J1(βa sin θ)

βa sin θ

]}

A three-dimensional plot of the normalized magnitude of the total electric field intensity E(
E �

√
E 2

θ + E 2
φ

)
for an aperture of a = 1.5λ as a function of θ and φ (0◦ ≤ θ ≤ 90◦ and

0◦ ≤ φ ≤ 360◦) is shown plotted in Figure 6-12, and it seems to be symmetrical. However,
closer observation, especially through the two-dimensional E - and H -plane patterns of Figure 6-
13, reveals that the pattern is not symmetrical. It does, however, possess characteristics that are
almost identical.

Relative
magnitude

1.0

90°90°
qq

H-plane (x−z, f = 0°) E-plane (y−z, f = 90°) 

Figure 6-12 Three-dimensional field pattern of a constant field circular aperture mounted on an infi-
nite ground plane (a = 1.5λ). (Source: C. A. Balanis, Antenna Theory: Analysis and Design . 3rd Edition.
Copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.).



Balanis c06.tex V2 - 11/22/2011 3:14 P.M. Page 305

MULTIMEDIA 305

30°

10

20

30

60°

90°

120°

150°

180°

150°

120°

90°

60°

30°

0

R
el

at
iv

e 
po

w
er

 (
dB

 d
ow

n)

E plane (f = 90°) 
H plane (f = 0°) 

a = 1.5λ

q q

Figure 6-13 E -(φ = 90◦) and H -plane (φ = 0◦) power patterns of a circular aperture with a uniform field
distribution.

6.9 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

6.1. If He = jωε∇ × �e , where �e is the elec-
tric Hertzian potential, show that
(a) ∇2�e + β2�e = j (1/ωε)J.
(b) Ee = β2�e + ∇(∇ · �e).
(c) �e = −j (1/ωμε)A.

6.2. If Eh = −jωμ∇ × �h , where �h is the
magnetic Hertzian potential, show that
(a) ∇2�h + β2�h = j (1/ωμ)M.
(b) Hh = β2�h + ∇(∇ · �h).
(c) �h = −j (1/ωμε)F.

6.3. Develop expressions for EA and HA in terms
of J using the path-1 procedure of Figure 6-
1. These expressions should be valid every-
where.

6.4. Develop expressions for EF and HF in terms
of M using the path-1 procedure of Figure 6-
1. These expressions should be valid every-
where.

6.5. In rectangular coordinates derive expres-
sions for E and H, in terms of the com-
ponents of the A and F potentials, that are
TEMx and TEMy . The procedure should be
similar to that of Example 6.1, and it should
state all the combinations that lead to the
desired modes.

6.6. In cylindrical coordinates derive expressions
for E and H, in terms of the components
of the A and F potentials, that are TEMφ

and TEMz . The procedure should be similar
to that of Example 6-2, and it should state
all the combinations that lead to the desired
modes.

6.7. Derive the expressions for the components
of E and H of (6-61) and (6-64), in terms
of the components of A and F, so that the
fields are TMx and TMy .

6.8. Select one component of E and write the
other components of E and all of H in terms
of the initial component of E so that the
fields are TMx , TMy , and TMz . Do this in
rectangular coordinates.

6.9. For the TEz modes (Ez = 0) in rectan-
gular coordinates, with z variations of
the form e−jβz z , derive expressions for
the E- and H-field rectangular components
in terms of Hz = f (x)g(y)e−jβz z , where
∇2Hz (x , y , z ) + β2Hz (x , y , z ) = 0. In other
words, instead of expressing the electric and

magnetic field components for TEz modes
(Ez = 0) in terms of Fz [as is done in (6-
72)], this time you start with Hz not being
equal to zero and express all the electric
and magnetic field components, except Hz,
in terms of Hz. This is an alternate way of
finding the TEz modes. Simplify the expres-
sions. They should be in a form similar to
those of (6-72).
Hint: You should use Maxwell’s equations
back and forth.

6.10. For the TMz modes (Hz = 0) in rect-
angular coordinates, with z variations of
the form e−jβz z , derive expressions for
the E- and H-field rectangular components
in terms of Ez = f (x)g(y)e−jβz z , where
∇2Ez (x , y , z ) + β2Ez (x , y , z ) = 0. In other
words, instead of expressing the electric and
magnetic field components for TMz modes
(Hz = 0) in terms of Az [as is done in (6-
59)], this time you start with Ez not being
equal to zero and express all the electric
and magnetic field components, except Ez,
in terms of Ez. This is an alternate way of
finding the TMz modes. Simplify the expres-
sions. They should be in a form similar to
those of (6-59).
Hint : You should use Maxwell’s equations
back and forth.

6.11. In cylindrical coordinates, select one com-
ponent of E and write the other components
of E and all of H in terms of the initial
component of E so that the fields are TMz .

6.12. In rectangular coordinates, derive the
expressions for the components of E and H
as given by (6-72), (6-74), and (6-77) that
are TEz , TEx , and TEy .

6.13. In cylindrical coordinates, derive the expres-
sions for E and H as given by (6-80), which
are TEz .

6.14. Select one component of H and write the
other components of H and all of E in terms
of the initial component of H so that the
fields are TEx , TEy , and TEz . Do this in
rectangular coordinates.

6.15. In cylindrical coordinates, select one compo-
nent of H and write the other components
of H and all of E in terms of the initial
component of H so that the fields are TEz .
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6.16. Verify that (6-85a) and (6-85b) are solutions
to (6-84a).

6.17. Show that (6-90) is a solution to (6-87) and
that (6-91) is a solution to (6-82).

6.18. For Example 6-3 derive the components of
E, given the components of H.

6.19. Show that for observations made at very
large distance (βr � 1) the electric and
magnetic fields of Example 6-3 reduce to

Eθ = jη
βIe�e−jβr

4πr
sin θ

Hφ � Eθ

η

Er � 0

Eφ = Hr = Hθ = 0

6.20. For Problem 6.19, show that the:
• Time-average power density is

Sav = 1

2
Re

[
E × H∗] = âr Wav = âr Wr

= âr
η

8

∣∣∣∣ Io�

λ

∣∣∣∣2 sin2 θ

r2

• Radiation intensity is

U = r2Sav = η

8

∣∣∣∣ Io�

λ

∣∣∣∣2 sin2 θ

• Radiated power is

Prad =
2π∫

0

π∫
0

U (θ , φ)

× sin θdθdφ = η
(π

3

) ∣∣∣∣ I0�

λ

∣∣∣∣2

• Directivity is Do = 4πUmax (θ , φ)

Prad

= 3

2
(dimensionless) = 1.761 dB

• Radiation resistance is

Rr = 2Prad

|Io |2 = 80π2
(

�

λ

)2

6.21. An infinitesimal electric dipole of length �

and constant current Io is placed symmet-
rically about the origin and it is directed
along the x axis. Using the procedure out-
lined in Section 6.7, derive the following
expressions for the far zone:
• Magnetic vector potential components

(Ar , Aθ , Aφ).
• Electric field components (Er , Eθ , Eφ).
• Magnetic field components (Hr , Hθ , Hφ).

• Time-average power density as defined in
Problem 6.20.

• Radiation intensity as defined in Prob-
lem 6.20.

• Directivity as defined in Problem 6.20.
• Radiation resistance as defined in Prob-

lem 6.20.

6.22. Repeat the procedure of Problem 6.21 when
the electric dipole is directed along the y
axis.

6.23. Verify (6-100a) and (6-100b).

6.24. Show that (6-112) reduces to (6-112a) pro-
vided r ≥ 2D2/λ, where D is the largest
dimension of the radiator or scatterer. Such
an approximation leads to a phase error that
is equal to or smaller than 22.5◦.

6.25. The current distribution on a very thin wire
dipole antenna of overall length � is given
by

Ie =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
âz I0 sin

[
β

(
�

2
−z ′

)]
0≤z ′ ≤ �

2

âz I0 sin

[
β

(
�

2
+z ′

)]
− �

2
≤z ′ ≤0

where I0 is a constant. Representing the dis-
tance R of (6-112) by the far-field approx-
imations of (6-112a) through (6-112b),
derive the far-zone electric and magnetic
fields radiated by the dipole using (6-97a)
and the far-field formulations of Section 6.7.

6.26. Show that the radiated far-zone electric and
magnetic fields derived in Problem 6.25
reduce for a half-wavelength dipole (� =
λ/2) to

Eθ � jη
I0e−jβr

2πr

⎡⎢⎣cos
(π

2
cos θ

)
sin θ

⎤⎥⎦
Hφ � Eθ

η

Er � Eφ � Hr � Hθ � 0

6.27. Simplify the expressions of Problem 6.3, if
the observations are made in the far field.

6.28. Simplify the expressions of Problem 6.4, if
the observations are made in the far field.
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6.29. The rectangular aperture of Figure 6-4a is
mounted on an infinite ground plane that
coincides with the yz plane. Assuming that
the tangential field over the aperture is given
by

Ea = âz E0, for − a/2 ≤ y ′ ≤ a/2
− b/2 ≤ z ′ ≤ b/2

and the equivalent currents are

Ms =

⎧⎪⎨⎪⎩
−2n̂×Ea , for −a/2≤y ′ ≤a/2

−b/2≤z ′ ≤b/2

0 elsewhere

Js =0 everywhere

find the far-zone spherical electric and mag-
netic field components radiated by the aper-
ture.

6.30. Repeat Problem 6.29 when the same aper-
ture is not mounted on an infinite PEC
ground plane. For this problem, use both
electric and magnetic current densities over
the aperture, as was done for Example 6-
4. The E- and H-fields at the aperture are
related by the intrinsic impedance, as in
Example 6-4, such that E × H is in the +x
direction.
Hint : You should use Maxwell’s equations
back and forth.

6.31. Repeat Problem 6.29 when the same aper-
ture is analyzed using the coordinate system
of Figure 6-4b. The tangential aperture field
distribution is given by

Ea = âx E0 for − b/2 ≤ x ′ ≤ b/2
− a/2 ≤ z ′ ≤ a/2

and the equivalent currents are

Ms =

⎧⎪⎨⎪⎩
−2n̂×Ea , for −b/2≤x ′ ≤b/2

−a/2 ≤ z ′ ≤a/2

0 elsewhere

Js =0 everywhere

6.32. Repeat Problem 6.29 when the same aper-
ture is analyzed using the coordinate system
of Figure 6-4c. The tangential aperture field
distribution is given by

Ea = ây E0, for − a/2 ≤ x ′ ≤ a/2 and
− b/2 ≤ y ′ ≤ b/2

and the equivalent currents are

Ms =

⎧⎪⎨⎪⎩
−2n̂×Ea , −a/2≤x ′ ≤a/2

−b/2≤y ′ ≤b/2

0 elsewhere

Js =0 everywhere

6.33. Repeat Problem 6.29 when the aperture field
distribution is given by

Ea = âz E0 cos
(π

a
y ′
)

, − a/2≤y ′ ≤a/2

− b/2≤z ′ ≤b/2

6.34. Repeat Problem 6.31 when the aperture field
distribution is given by

Ea = âx E0 cos
(π

a
z ′
)

, − b/2 ≤ x ′ ≤ b/2

− a/2 ≤ z ′ ≤ a/2

6.35. Repeat Problem 6.32 when the aperture field
distribution is given by

Ea = ây E0 cos
(π

a
x ′

)
, − a/2 ≤ x ′ ≤ a/2

− b/2 ≤ y ′ ≤ b/2

6.36. For the aperture of Example 6-4, find the
angular separation (in degrees) between
two points whose radiated electric field
value is 0.707 of the maximum (half-power
beamwidth). Do this for the radiated fields in
the (a) E plane (φ = π/2) and (b) H plane
(φ = 0). Assume the aperture has dimen-
sions a = 4λ and b = 3λ.

6.37. For the circular aperture of Figure 6-11,
derive expressions for the far-zone radiated
spherical fields when the aperture field dis-
tribution is given by
(a) Ea = ây E0[1 − (ρ ′/a)2], ρ ′ ≤ a .
(b) Ea = ây E0[1 − (ρ ′/a)2]2, ρ ′ ≤ a .
For both cases use equivalent currents Ms

and Js such that

Ms =
{

−2n̂ × Ea , ρ ′ ≤ a ,

0 elsewhere

Js = 0 everywhere

6.38. A coaxial line of inner and outer radii a
and b, respectively, is mounted on an infinite
conducting ground plane. Assuming that the
electric field over the aperture of the coax is

Ea = −âρ

V

ε ln(b/a)

1

ρ ′ , a ≤ ρ ′ ≤ b

where V is the applied voltage and ε is
the permittivity of medium in the coax, find
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the far-zone spherical electric and magnetic
field components radiated by the aperture.

z

y
a

b

x

e

s = ∞ 

Figure P6-38

Use equivalent currents Ms and Js such
that

Ms =
{

−2n̂ × Ea , a ≤ ρ ′ ≤ b

0 elsewhere

Js = 0 everywhere

6.39. For the aperture of Example 6-6, find the
angular separation (in degrees) between
two points whose radiated electric field
value is 0.707 of the maximum (half-power
beamwidth). Do this for the radiated fields in
the (a) E plane (φ = π/2) and (b) H plane
(φ = 0). Assume that the radius of the aper-
ture is 3λ.
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CHAPTER 7
Electromagnetic Theorems and Principles

7.1 INTRODUCTION

In electromagnetics there are a number of theorems and principles that are fundamental to the
understanding of electromagnetic generation, radiation, propagation, scattering, and reception.
Many of these are often used to facilitate the solution of interrelated problems. Those that will
be discussed here are the theorems of duality, uniqueness, image, reciprocity, reaction, volume
equivalence, surface equivalence, induction , and physical equivalent (physical optics). When
appropriate, examples will be given to illustrate the principles.

7.2 DUALITY THEOREM

When two equations that describe the behavior of two different variables are of the same math-
ematical form, their solutions will also be identical. The variables in the two equations that
occupy identical positions are known as dual quantities, and a solution for one can be formed by
a systematic interchange of symbols with the other. This concept is known as the duality theorem.

Comparison of (6-30), (6-32a), (6-32b), (6-32c), and (6-95a), respectively, to (6-31), (6-33a),
(6-33b), (6-33c), and (6-95b), shows that they are dual equations and their variables are dual
quantities. Thus, if we know the solutions to one set (J �= 0, M = 0), the solutions to the other
set (J = 0, M �= 0) can be formed by a proper interchange of quantities. The dual equations
and their dual quantities are listed in Tables 7-1 and 7-2 for electric and magnetic sources,
respectively. Duality only serves as a guide to forming mathematical solutions. It can be used in
an abstract manner to explain the motion of magnetic charges giving rise to magnetic currents,
when compared to their dual quantities of moving electric charges creating electric currents [1].
It must, however, be emphasized that this is purely mathematical in nature since at present there
are no known magnetic charges or currents in nature.

Example 7-1

A very thin linear magnetic current element of very small length (� � λ), although nonphysically
realizable, is often used to represent the fields of a very small electric loop radiator. It can be shown
that the fields radiated by a small linear magnetic current element are identical to those radiated by a
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small loop whose area is perpendicular to the length of the dipole [2]. Assume that the magnetic dipole
is placed at the origin and is symmetric along the z axis with a constant magnetic current of

Im = âz Im

Find the fields radiated by the dipole using duality.

Solution: Since the linear magnetic dipole is the dual of the linear electric dipole of Example 6-3,
the fields radiated by the magnetic dipole can be written, using the dual quantities of Table 7-2 and the
solution of Example 6-3, as

Er = Eθ = 0

Eφ = −j
βIm� sin θ

4πr

(
1 + 1

jβr

)
e−jβr

Hr = 1

η

Im� cos θ

2πr2

(
1 + 1

jβr

)
e−jβr

Hθ = j
1

η

βIm� sin θ

4πr

[
1 + 1

jβr
− 1

(βr)2

]
e−jβr

Hφ = 0

TABLE 7-1 Dual equations for electric (J) and magnetic (M) current sources

Electric sources (J �= 0, M = 0) Magnetic sources (J = 0, M �= 0)

∇ × EA = −jωμHA ∇ × HF = jωεEF

∇ × HA = J + jωεEA −∇ × EF = M + jωμHF

∇2A + β2A = −μJ ∇2F + β2F = −εM

A = μ

4π

∫∫∫
V

J
e−jβR

R
dv′ F = ε

4π

∫∫∫
V

M
e−jβR

R
dv′

HA = 1

μ
∇ × A EF = −1

ε
∇ × F

HA = −jωA − j
1

ωμε
∇(∇ · A) HF = −jωF − j

1

ωμε
∇(∇ · F)

TABLE 7-2 Dual quantities for electric (J) and magnetic (M) current sources

Electric sources (J �= 0, M = 0) Magnetic sources (J = 0, M �= 0)

EA HF

HA −EF

J M
A F
ε μ

μ ε

β β

η 1/η

1/η η
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7.3 UNIQUENESS THEOREM

Whenever a problem is solved, it is always gratifying to know that the obtained solution is
unique, that is, it is the only solution. If so, we would like to know under what conditions or
what information is needed to obtain such solutions.

Given the electric and magnetic sources Ji and Mi , let us assume that the fields generated in
a lossy medium of complex constitutive parameters ε̇ and μ̇ within a surface S are (Ea , Ha ) and
(Eb , Hb). Each set must satisfy Maxwell’s equations

−∇ × E = Mi + jωμH ∇ × H = Ji + Jc + jωεE (7-1)

or

−∇ × Ea = Mi + jωμ̇Ha ∇ × Ha = Ji + Ja
c + jωε̇Ea (7-1a)

−∇ × Eb = Mi + jωμ̇Hb ∇ × Hb = Ji + Jb
c + jωε̇Eb (7-1b)

Subtracting (7-1b) from (7-1a), we have that

−∇ × (Ea − Eb) = jωμ̇(Ha − Hb) ∇ × (Ha − Hb) = (σ + jωε̇)(Ea − Eb) (7-2)

or
−∇ × δE = jωμ̇δH = δMt

+∇ × δH = (σ + jωε̇)δE = δJt

}
within S (7-2a)

Thus, the difference fields satisfy the source-free field equations within S. The conditions for
uniqueness are those for which δE = δH = 0 or Ea = Eb and Ha = Hb .

Let us now apply the conservation-of-energy equation 1-55a using S as the boundary and δE,
δH, δJt , and δMt , as the sources [1]. For a time-harmonic field, (1-55a) can be written as

#S
E × H∗ • ds +

∫∫∫
V
(E • Jt

∗ + H∗ • Mt ) dv′ = 0 (7-3)

which for our case must be

#S
(δE × δH∗) • ds +

∫∫∫
V

[δE • (σ + jωε̇)∗δE∗ + δH∗ • ( jωμ̇)δH] dv′ = 0 (7-4)

or

#S
(δE × δH∗) • ds +

∫∫∫
V

[
(σ + jωε̇)∗|δE|2 + ( jωμ̇)|δH|2] dv′ = 0 (7-4a)

where

(σ + jωε̇)∗ = [σ + jω(ε′ − jε′′)]∗ = [(σ + ωε′′) + jωε′]∗ = (σ + ωε′′) − jωε′ (7-4b)

jωμ̇ = jω(μ′ − jμ′′) = ωμ′′ + jωμ′ (7-4c)

If we can show that

#S
(δE × δH∗) • ds = 0 (7-5)
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then the volume integral must also be zero, or∫∫∫
V

[
(σ + jωε̇)∗|δE|2 + ( jωμ̇)|δH|2] dv′

= Re
∫∫∫

V

[
(σ + jωε̇)∗|δE|2 + ( jωμ̇)|δH|2] dv′

+Im
∫∫∫

V

[
(σ + jωε̇)∗|δE|2 + ( jωμ̇)|δH|2] dv′ = 0 (7-6)

Using (7-4b) and (7-4c), reduce (7-6) to∫∫∫
V

[(σ + ωε′′)|δE|2 + ωμ′′|δH|2] dv′ = 0 (7-6a)∫∫∫
V

[−ωε′|δE|2 + ωμ′|δH|2] dv′ = 0 (7-6b)

Since σ + ωε′′ and ωμ′′ are positive for dissipative media, the only way for (7-6a) to be zero
would be for |δE|2 = |δH|2 = 0 or δE = δH = 0. Therefore, we have proved uniqueness. How-
ever, all these were based upon the premise that (7-5) applies [1]. Using the vector identity

A • B × C = B • C × A = C • A × B (7-7)

we can write (7-5) as

#S
(δE × δH∗) • n̂ da =#S

(n̂ × δE) • δH∗ da =#S
(δH∗ × n̂) • δE da = 0 (7-8)

If we can state the conditions under which (7-8) is satisfied, then will we have proved uniqueness.
This, however, will only be applicable for dissipative media. We can treat lossless media as special
cases of dissipative media as the losses diminish.

Let us examine some of the important cases where (7-8) is satisfied and uniqueness is obtained
in lossy media.

1. A field (E, H) is unique when n̂ × E is specified on S ; then n̂ × δE = 0 over S . This results
from exact specification of the tangential components of E and satisfaction of (7-8). No
specification of the normal components is necessary.

2. A field (E, H) is unique when n̂ × H is specified on S ; then n̂ × δH = 0 over S . This
results from exact specification of the tangential components of H and satisfaction of (7-8).
No specification of the normal components is necessary.

3. A field (E, H) is unique when n̂ × E is specified over part of S and n̂ × H is specified over
the rest of S . No specification on the normal components is necessary.

SUMMARY A field in a lossy region, created by sources Ji and Mi , is unique within the region
when one of the following alternatives is specified.

1. The tangential components of E over the boundary.
2. The tangential components of H over the boundary.
3. The former over part of the boundary and the latter over the rest of the boundary.
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Note: In general, the uniqueness theorem breaks down for lossless media. To justify uniqueness in
this case, the fields in a lossless medium, as the dissipation approaches zero, can be considered
to be the limit of the corresponding fields in a lossy medium . In some cases, however, unique
solutions for lossless problems can be obtained on their own merits without treating them as
special cases of lossy solutions.

7.4 IMAGE THEORY

The presence of an obstacle, especially when it is near the radiating element, can significantly
alter the overall radiation properties of the radiating system, as illustrated in Chapter 5. In practice,
the most common obstacle that is always present, even in the absence of anything else, is the
ground. Any energy from the radiating element directed toward the ground undergoes reflection.
The amount of reflected energy and its direction are controlled by the geometry and constitutive
parameters of the ground.

In general, the ground is a lossy medium (σ �= 0) whose effective conductivity increases
with frequency. Therefore, it should be expected to act as a very good conductor above a certain
frequency, depending primarily upon its moisture content. To simplify the analysis, we will assume
that the ground is a perfect electric conductor, flat, and infinite in extent. The same procedure
can also be used to investigate the characteristics of any radiating element near any other infinite,
flat, perfect electric conductor. In practice, it is impossible to have infinite dimensions but we
can simulate (electrically) very large obstacles. The effects that finite dimensions have on the
radiation properties of a radiating element will be discussed in Chapters 12 through 14.

To analyze the performance of a radiating element near an infinite plane conductor, we will
introduce virtual sources (images) that account for the reflections. The discussion here follows that
of [2]. As the name implies, these are not real sources but imaginary ones that, in combination
with the real sources, form an equivalent system that replaces the actual system for analysis
purposes only and gives the same radiated field above the conductor as the actual system itself.
Below the conductor the equivalent system does not give the correct field; however, the field
there is zero and the equivalent model is not necessary.

To begin our discussion, let us assume that a vertical electric dipole is placed a distance h
above an infinite, flat, perfect electric conductor, as shown in Figure 7-1a . Assuming that there
is no mutual coupling, energy from the actual source is radiated in all directions in a manner
determined by its unbounded medium directional properties. For an observation point P1, there is
a direct wave. In addition, a wave from the actual source radiated toward point QR1 of the interface
will undergo reflection with a direction determined by the law of reflection, θ r

1 = θ i
1. This follows

from the fact that energy in homogeneous media travels in straight lines along the shortest paths.
The wave will pass through the observation point P1 and, by extending its actual path below
the interface, it will seem to originate from a virtual source positioned a distance h below the
boundary. For another observation point P2, the point of reflection is QR2 but the virtual source is
the same as before. The same conclusions can be drawn for all other points above the interface.

The amount of reflection is generally determined by the constitutive parameters of the medium
below the interface relative to those above. For a perfect electric conductor below the interface,
the incident wave is completely reflected with zero fields below the boundary. According to the
boundary conditions, the tangential components of the electric field must vanish at all points
along the interface. This condition is used to determine the polarization of the reflected field,
compared to the direct wave, as shown in Figure 7-1b. To excite the polarization of the reflected
waves, the virtual source must also be vertical and have polarity in the same direction as the
actual source. Thus, a reflection coefficient of +1 is required. Since the boundary conditions on
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Figure 7-1 Vertical and horizontal dipoles, and their image, for reflection from a flat conducting surface
of infinite extent. (a) Vertical: Actual source and its image. (b) Vertical: Field components at point of
reflection. (c) Horizontal: Direct and reflected components.

the tangential electric field components are satisfied over a closed surface, in this case along the
interface from −∞ to +∞, then the solution is unique according to the uniqueness theorem of
Section 7.3.

Another source orientation is to have the radiating element in a horizontal position, as shown in
Figure 7-1c. If we follow a procedure similar to that of the vertical dipole, we see that the virtual
source (image) is also placed a distance h below the interface but with a 180◦ polarity difference
relative to the actual source, thus requiring a reflection coefficient of −1. Again according to the
uniqueness theorem of Section 7.3, the solution is unique because the boundary conditions are
satisfied along the closed surface, this time again along the interface extending from −∞ to +∞.
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In addition to electric sources, we have equivalent “magnetic” sources and magnetic con-
ductors, such that tangential components of the magnetic field vanish next to their surface. In
Figure 7-2a , we have sketched the sources and their images for an electric plane conductor [2].
The single arrow indicates an electric element and the double arrow signifies a magnetic element.
The direction of the arrow identifies the polarity. Since many problems can be solved using
duality, in Figure 7-2b, we have sketched the sources and their images when the obstacle is an
infinite, flat, perfect “magnetic” conductor.

7.4.1 Vertical Electric Dipole

In the previous section we graphically illustrated the analysis procedure, using image theory, for
vertical and horizontal electric and magnetic elements near infinite electric and magnetic plane
conductors. In this section, we want to derive the mathematical expressions for the fields of a
vertical linear element near a perfect electric conductor, and the derivation will be based on the
image solution of Figure 7-1a . For simplicity, only far-field [2] observations will be considered.

Let us refer now to the geometry of Figure 7-3a . The far-zone direct component of the electric
field, of the infinitesimal dipole of length �, constant current I0, and observation point P1, is given
according to the dominant terms (βr � 1) of the fields in Example 6-3 by

E d
θ

r�λ� jη
βIo�e−jβr1

4πr1
sin θ1 (7-9)

The reflected component can be accounted for by the introduction of the virtual source (image),
as shown in Figure 7-3a , and we can write it as

E r
θ

r�λ� jRvη
βI0�e−jβr2

4πr2
sin θ2

E r
θ

r�λ� jη
βI0�e−jβr2

4πr2
sin θ2 (7-10)

since the reflection coefficient Rv is equal to unity.
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Figure 7-2 Electric and magnetic sources and their images near (a) electric and (b) magnetic conductors.
(Source: C. A. Balanis, Antenna Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley
& Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

The total field above the interface (z ≥ 0) is equal to the sum of the incident and reflected
components, as given by (7-9) and (7-10). Since an electric field cannot exist inside a perfect
electric conductor, it is equal to zero below the interface. To simplify the expression for the total
electric field, we would like to refer it to the origin of the coordinate system (z = 0) and express
it in terms of r and θ . In general, we can write that

r1 = (r2 + h2 − 2rh cos θ)1/2 (7-11a)

r2 = [r2 + h2 − 2rh cos(π − θ)]1/2 (7-11b)

However, for r � h we can simplify and, using the binomial expansion, write [2]

r1 � r − h cos θ

r2 � r + h cos θ

}
for phase variations

(7-12a)

(7-12b)
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Figure 7-3 Vertical electric dipole above an infinite electric conductor. (Source: C. A. Balanis, Antenna
Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.). (a) Vertical electric dipole. (b) Far-field observations.

θ1 � θ2 � θ (7-12c)

As shown in Figure 7-3b, (7-12a) and (7-12b) geometrically represent parallel lines. Since the
amplitude variations are not as critical,

r1 � r2 � r for amplitude variations (7-12d)
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Use of (7-12a) through (7-12d) allows us to write the sum of (7-9) and (7-10) as

Eθ = E d
θ + E r

θ � jη
βI0�e−jβr

4πr
sin θ

(
e+jβh cos θ + e−jβh cos θ

)
z ≥ 0

Eθ = 0 z < 0

(7-13)

which can be reduced to

Eθ = jη
βI0�e−jβr

4πr
sin θ[2 cos(βh cos θ)] z ≥ 0

Eθ = 0 z < 0

(7-13a)

It is evident that the total electric field is equal to the product of the field of a single source
and a factor [within the brackets in (7-13a)] that is a function of the element height, h , and the
observation point θ . This product is referred to as the pattern multiplication rule, and the factor
is known as the array factor . More details can be found in Chapter 6 of [2].

The shape and amplitude of the field is not only controlled by the single element but also by
the positioning of the element relative to the ground. To examine the field variations as a function
of the height h , we have plotted the power patterns for h = 2λ and 5λ in Figure 7-4. Because of
symmetry, only half of each pattern is shown. It is apparent that the total field pattern is altered
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Figure 7-4 Elevation plane amplitude patterns of a vertical infinitesimal electric dipole for heights of 2λ

and 5λ above an infinite plane electric conductor.



IMAGE THEORY 321

appreciably by the presence of the ground plane. The height of the element above the interface
plays a major role [3, 4]. More details concerning this system configuration can be found in [2].

7.4.2 Horizontal Electric Dipole

Another system configuration is to have the linear antenna placed horizontally relative to the
infinite electric ground plane, as shown in Figure 7-5a . The analysis procedure is identical to that
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Figure 7-5 Horizontal electric dipole above an infinite electric conductor. (Source: C. A. Balanis, Antenna
Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.). (a) Horizontal electric dipole. (b) Far-field observations.
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of the vertical dipole. By introducing an image and assuming far-field observations, as shown in
Figure 7-5b, we can write that the dominant terms of the direct component are given by [2]

E d
ψ

r�λ� jη
βI0�e−jβr1

4πr1
sin ψ (7-14)

and the reflected terms by

E r
ψ

r�λ� jRhη
βI0�e−jβr2

4πr2
sin ψ

E r
ψ

r�λ� − jη
βI0�e−jβr2

4πr2
sin ψ (7-15)

since the reflection coefficient is equal to Rh = −1.
To find the angle ψ , which is measured from the y axis toward the observation point, we first

form

cos ψ = ây • âr = ây • (âx sin θ cos φ + ây sin θ sin φ + âz cos θ)

cos ψ = sin θ sin φ (7-16)

from which we find

sin ψ =
√

1 − cos2 ψ =
√

1 − sin2 θ sin2 φ (7-16a)

Since for far-field observations

r1 � r − h cos θ

r2 � r + h cos θ

}
for phase variations (7-16b)

θ1 � θ2 � θ (7-16c)

r1 � r2 � r for amplitude variations (7-16d)

we can write the total field, which is valid only above the ground plane (z ≥ 0, 0 ≤ θ ≤ π/2,
0 ≤ φ ≤ 2π), as

Eψ = E d
ψ + E r

ψ = jη
βI0�e−jβr

4πr

√
1 − sin2 θ sin2 φ [2j sin(βh cos θ)] (7-17)

Equation 7-17 again is recognized to consist of the product of the field of a single isolated element
placed at the origin and a factor (within the brackets) known as the array factor. This, again, is
the pattern multiplication rule.

To examine the variations of the total field as a function of the element height above the ground
plane, in Figure 7-6 we have plotted two-dimensional elevation plane patterns for φ = 90◦ (yz
plane) when h = 2λ and 5λ. Again, we see that the height of the element above the interface
plays a significant role in the radiation pattern formation of the radiating system.

Problems that require multiple images, such as corner reflectors, are assigned as exercises at
the end of the chapter.
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Figure 7-6 Elevation plane (φ = 90◦) amplitude patterns of a horizontal infinitesimal dipole for heights
of 2λ and 5λ above an infinite plane electric conductor.

7.5 RECIPROCITY THEOREM

We are all well familiar with the reciprocity theorem, as applied to circuits, which states that in any
physical linear network, the positions of an ideal voltage source (zero internal impedance) and an
ideal ammeter (infinite internal impedance) can be interchanged without affecting their readings
[5]. Now, we want to discuss the reciprocity theorem as it applies to electromagnetic theory [6].
This is done best by using Maxwell’s equations. The reciprocity theorem has many applications;
one of the most common relating the transmitting and receiving properties of radiating systems [2].

Let us assume that within a linear, isotropic medium, which is not necessarily homogeneous,
there exist two sets of sources (J1, M1) and (J2, M2) that are allowed to radiate simultaneously
or individually inside the same medium at the same frequency and produce fields (E1, H1) and
(E2, H2), respectively. For the fields to be valid, they must satisfy Maxwell’s equations

∇ × E1 = −M1 − jωμH1

∇ × H1 = J1 + jωεE1

⎫⎬⎭ for sources J1, M1

(7-18a)

(7-18b)

∇ × E2 = −M2 − jωμH2

∇ × H2 = J2 + jωεE2

⎫⎬⎭ for sources J2, M2

(7-19a)

(7-19b)
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If we dot multiply (7-18a) by H2 and (7-19b) by E1, we can write that

H2 • ∇ × E1 = −H2 • M1 − jωμH2 • H1 (7-20a)

E1 • ∇ × H2 = E1 • J2 + jωεE1 • E2 (7-20b)

Subtracting (7-20a) from (7-20b) yields

E1 • ∇ × H2 − H2 • ∇ × E1 = E1 • J2 + H2 • M1 + jωεE1 • E2 + jωμH2 • H1 (7-21)

which by use of the vector identity

∇ • (A × B) = B • (∇ × A) − A • (∇ × B) (7-22)

can be written as

∇ • (H2 × E1) = −∇ • (E1 × H2)

= E1 • J2 + H2 • M1 + jωεE1 • E2 + jωμH2 • H1 (7-23)

In a similar manner, if we dot multiply (7-18b) by E2 and (7-19a) by H1, we can write

E2 • ∇ × H1 = E2 • J1 + jωεE2 • E1 (7-24a)

H1 • ∇ × E2 = −H1 • M2 − jωμH1 • H2 (7-24b)

Subtraction of (7-24b) from (7-24a) leads to

E2 • ∇ × H1 − H1 • ∇ × E2 = E2 • J1 + H1 • M2 + jωεE2 • E1 + jωμH1 • H2 (7-25)

which by use of (7-22) can be written as

∇ • (H1 × E2) = −∇ • (E2 × H1)

= E2 • J1 + H1 • M2 + jωE2 • E1 + jωμH1 • H2 (7-26)

Subtraction of (7-26) from (7-23) leads to

−∇ • (E1 × H2 − E2 × H1) = E1 • J2 + H2 • M1 − E2 • J1 − H1 • M2 (7-27)

which is called the Lorentz reciprocity theorem in differential form [7].
By taking a volume integral of both sides of (7-27) and using the divergence theorem on the

left side, we can write (7-27) as

−#S
(E1 × H2 − E2 × H1) • ds′

=
∫∫∫

V
(E1 • J2 + H2 • M1 − E2 • J1 − H1 • M2) dv′

(7-28)

which is known as the Lorentz reciprocity theorem in integral form.
For a source-free (J1 = J2 = M1 = M2 = 0) region, (7-27) and (7-28) reduce, respectively, to

∇ • (E1 × H2 − E2 × H1) = 0 (7-29)

#S
(E1 × H2 − E2 × H1) • ds′ = 0 (7-30)
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Equations 7-29 and 7-30 are special cases of the Lorentz reciprocity theorem and must be satisfied
in source-free regions.

As an example of where (7-29) and (7-30) may be applied and what they would represent,
consider a section of a waveguide where two different modes exist with fields (E1, H1) and
(E2, H2). For the expressions of the fields for the two modes to be valid, they must satisfy (7-29)
and/or (7-30).

Another useful form of (7-28) is to consider that the fields (E1, H1, E2, H2) and the sources
(J1, M1, J2, M2) are within a medium that is enclosed by a sphere of infinite radius. Assume
that the sources are positioned within a finite region and that the fields are observed in the far
field (ideally at infinity). Then the left side of (7-28) is equal to zero, or

#S
(E1 × H2 − E2 × H1) • ds′ = 0 (7-31)

which reduces (7-28) to∫∫∫
V
(E1 • J2 + H2 • M1 − E2 • J1 − H1 • M2) dv′ = 0 (7-32)

Equation 7-32 can also be written as∫∫∫
V
(E1 • J2 − H1 • M2) dv′ =

∫∫∫
V
(E2 • J1 − H2 • M1) dv′ (7-32a)

The reciprocity theorem, as expressed by (7-32a), is the most useful form.

7.6 REACTION THEOREM

Close observation of (7-28) reveals that it does not, in general, represent relations of power
because no conjugates appear. The same is true for (7-30) and (7-32a). Each of the integrals
in (7-32a) can be interpreted as a coupling between a set of fields and a set of sources, which
produce another set of fields. This coupling has been defined as reaction [8, 9] and each of the
integrals in (7-32a) has been denoted by

〈1, 2〉 =
∫∫∫

V
(E1 • J2 − H1 • M2) dv′ (7-33a)

〈2, 1〉 =
∫∫∫

V
(E2 • J1 − H2 • M1) dv′ (7-33b)

The relation 〈1, 2〉 relates the reaction (coupling) of the fields (E1, H1), which are produced
by sources (J1, M1), to the sources (J2, M2), which produce fields (E2, H2); 〈2, 1〉 relates the
reaction (coupling) of the fields (E2, H2) to the sources (J1, M1). A requirement for reciprocity
to hold is that the reactions (couplings) of the sources with their corresponding fields must be
equal. In equation form

〈1, 2〉 = 〈2, 1〉 (7-34)

The reaction theorem can also be expressed in terms of the voltages and currents induced in
one antenna by another [9]. In a general form, it can be written as

〈i , j 〉 = Vj Iji = 〈j , i 〉 = Vi Iij (7-34a)

where Vi = voltage of source i(j)
Iij = current through source j due to source at i
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The reactions forms of (7-34) and (7-34a) are most convenient to calculate the mutual impedance
and admittance between aperture antennas.

Example 7-2

Derive an expression for the mutual admittance between two aperture antennas. The expression should
be in terms of the electric and magnetic fields on the apertures and radiated by the apertures.

Solution: In a multiport network, the Y-parameter matrix can be written as

[Ii ] = [Yij ][Vj ]

Assuming that the voltages at all ports other than port j are zero, we can write that the current Iij at
port i due to the voltage at port j can be written as

Iij = Yij Vj ⇒ Yij = Iij

Vj

Using (7-34a), we can write that

Iij = 〈i , j 〉
Vi

This allows us to write the mutual admittance as

Yij = Iij

Vj
= 〈i , j 〉

Vi Vj

which by using (7-33a) or (7-33b) can be expressed as

Yij = 〈i , j 〉
Vi Vj

= 1

Vi Vj

∫∫∫
V
(Ei • Jj − Hi • Mj ) dv′

Since aperture antennas can be represented by magnetic equivalent currents, then

Jj = 0

Mj = −n̂ × Ej

Using these and reducing the volume integral to a surface integral over the aperture of the antenna, we
can write the mutual admittance as

Yij = − 1

Vi Vj

∫∫
Sa

(Hi • Mj ) ds ′ = − 1

Vi Vj

∫∫
Sa

[Hi • (−n̂ × Ej )] ds ′

Yij = 1

Vi Vj

∫∫
Sa

(Ej × Hi ) • n̂ ds ′

where Ej = electric field in aperture j with aperture i shorted
Hi = magnetic field at shorted aperture i due to excitation of aperture j

Vi (j ) = voltage amplitudes at each aperture in the absence of the other

7.7 VOLUME EQUIVALENCE THEOREM

Through use of the equivalent electric and magnetic current sources, the volume equivalence
theorem can be used to determine the scattered fields when a material obstacle is introduced
in a free-space environment where fields (E0, H0) were previously generated by sources
(Ji , Mi ) [7, 10].
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To derive the volume equivalence theorem, let us assume that in the free-space environ-
ment sources (Ji , Mi ) generate fields (E0, H0). These sources and fields must satisfy Maxwell’s
equations

∇ × E0 = −Mi − jωμ0H0 (7-35a)

∇ × H0 = Ji + jωε0E0 (7-35b)

When the same sources (Ji , Mi ) radiate in a medium represented by (ε, μ), they generate fields
(E, H) that satisfy Maxwell’s equations

∇ × E = −Mi − jωμH (7-36a)

∇ × H = Ji + jωεE (7-36b)

Subtraction of (7-35a) from (7-36a) and (7-35b) from (7-36b), allows us to write that

∇ × (E − E0) = −jω(μH − μ0H0) (7-37a)

∇ × (H − H0) = jω(εE − ε0E0) (7-37b)

Let us define the difference between the fields E and E0, and H and H0 as the scattered (distur-
bance) fields Es and Hs , that is,

Es = E − E0 ⇒ E0 = E − Es (7-38a)

Hs = H − H0 ⇒ H0 = H − Hs (7-38b)

By using the definitions for the scattered fields of (7-38a) and (7-38b), we can write (7-37a) and
(7-37b) as

∇ × Es = −jω[μH − μ0(H − Hs)] = −jω(μ − μ0)H − jωμ0Hs (7-39a)

∇ × Hs = jω[εE − ε0(E − Es)] = jω(ε − ε0)E + jωε0Es (7-39b)

By defining volume equivalent electric Jeq and magnetic Meq current densities

Jeq = jω(ε − ε0)E (7-40a)

Meq = jω(μ − μ0)H (7-40b)

which exist only in the region where ε �= ε0 and μ �= μ0 (only in the material itself), we can
express (7-39a) and (7-39b) as

∇ × Es = −Meq − jωμ0Hs (7-41a)

∇ × Hs = Jeq + jωε0Es (7-41b)

Equations 7-41a and 7-41b state that the electric Es and magnetic Hs fields scattered by a mate-
rial obstacle can be generated by using equivalent electric Jeq (A/m2) and magnetic Meq (V/m2)
volume current densities, that are given by (7-40a) and (7-40b), that exist only within the material
and radiate in a free-space environment. Although, in principle, the formulation of the problem
seems to have been simplified, it is still very difficult to solve because the equivalent current
densities are in terms of E and H, which are unknown. However, the formulation does provide
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some physical interpretation of scattering and lends itself to development of integral equations
for the solution of Es and Hs , which are discussed in Chapter 12. The volume equivalent current
densities are most useful for finding the fields scattered by dielectric obstacles. The fields scat-
tered by perfectly conducting surfaces can best be determined using surface equivalent densities,
especially those discussed in Sections 7.9 and 7.10. The surface equivalence theorem that follows
is, usually, best utilized for analysis of antenna aperture radiation.

7.8 SURFACE EQUIVALENCE THEOREM: HUYGENS’S PRINCIPLE

The surface equivalence theorem is a principle by which actual sources, such as an antenna and
transmitter, are replaced by equivalent sources. The fictitious sources are said to be equivalent
within a region because they produce within that region the same fields as the actual sources.
The formulations of scattering and diffraction problems by the surface equivalence theorem are
more suggestive of approximations.

The surface equivalence was introduced in 1936 by Schelkunoff [11], and it is a more rigorous
formulation of Huygens’s principle [12], which states [13] that “each point on a primary wavefront
can be considered to be a new source of a secondary spherical wave and that a secondary
wavefront can be constructed as the envelope of these secondary spherical waves.” The surface
equivalence theorem is based on the uniqueness theorem of Section 7.3, which states [1] that “a
field in a lossy region is uniquely specified by the sources within the region plus the tangential
components of the electric field over the boundary, or the tangential components of the magnetic
field over the boundary, or the former over part of the boundary and the latter over the rest of the
boundary.” The fields in a lossless medium are considered to be the limit, as the losses go to zero,
of the corresponding fields in a lossy medium. Thus, if the tangential electric and magnetic fields
are completely known over a closed surface, the fields in the source-free region can be determined.

By the surface equivalence theorem, the fields outside an imaginary closed surface are obtained
by placing, over the closed surface, suitable electric and magnetic current densities that satisfy the
boundary conditions. The current densities are selected so that the fields inside the closed surface
are zero and outside are equal to the radiation produced by the actual sources. Thus, the technique
can be used to obtain the fields radiated outside a closed surface by sources enclosed within it.
The formulation is exact but requires integration over the closed surface. The degree of accuracy
depends on the knowledge of the tangential components of the fields over the closed surface.

In the majority of applications, the closed surface is selected so that most of it coincides with
the conducting parts of the physical structure. This is preferred because the tangential electric
field components vanish over the conducting parts of the surface, which results in reduction of
the physical limits of integration.

The surface equivalence theorem is developed by considering an actual radiating source, which
is represented electrically by current densities J1 and M1, as shown in Figure 7-7a . The source
radiates fields E1 and H1 everywhere. However, we wish to develop a method that will yield
the fields outside a closed surface. To accomplish this, a closed surface S is chosen, shown
dashed in Figure 7-7a , which encloses the current densities J1 and M1. The volume within S is
denoted by V1 and outside S by V2. The primary task is to replace the original problem, shown
in Figure 7-7a , with an equivalent that will yield the same fields E1 and H1 outside S (within
V2). The formulation of the problem can be aided immensely if the closed surface is chosen
judiciously so that fields over most, if not the entire surface, are known a priori .

An equivalent problem to Figure 7-7a is shown in Figure 7-7b. The original sources J1 and
M1 are removed, and we assume that there exist fields (E, H) inside S and fields (E1, H1) outside
S . For these fields to exist within and outside S , they must satisfy the boundary conditions on the
tangential electric and magnetic field components of Table 1-5. Thus, on the imaginary surface
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Figure 7-7 (a) Actual and (b) equivalent problem models. (Source: C. A. Balanis, Antenna Theory:
Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted with permission
of John Wiley & Sons, Inc.)

S there must exist the equivalent sources

Js = n̂ × (H1 − H) (7-42a)

Ms = −n̂ × (E1 − E) (7-42b)

which radiate into an unbounded space (same medium everywhere). The current densities of
(7-42a) and (7-42b) are said to be equivalent only within V2, because they will produce the
original field (E1, H1) only outside S. A field (E, H), different from the original (E1, H1), will
result within V1. Since the currents of (7-42a) and (7-42b) radiate in an unbounded space, the
fields can be determined using (6-30) through (6-35a) and the geometry of Figure 6-3a . In Figure
6-3a , R is the distance from any point on the surface S , where Js and Ms exist, to the observation
point.

So far, the tangential components of both E and H have been used to set up the equivalent
problem. From electromagnetic uniqueness concepts, we know that the tangential components of
only E or H are needed to determine the field. It will be demonstrated that equivalent problems
that require only magnetic currents (tangential E) or only electric currents (tangential H) can be
found. This will require modifications to the equivalent problem of Figure 7-7b.

Since the fields (E, H) within S , which is not the region of interest, can be anything, it can
be assumed that they are zero. Then the equivalent problem of Figure 7-7b reduces to that of
Figure 7-8a with equivalent current densities equal to

Js = n̂ × (H1 − H)|H=0 = n̂ × H1 (7-43a)

Ms = −n̂ × (E1 − E)|E=0 = −n̂ × E1 (7-43b)

This form of the field equivalence principle is known as Love’s equivalence principle [7, 14].
Since the current densities of (7-43a) and (7-43b) radiate in an unbounded medium, that is, have
the same μ1, ε1 everywhere, they can be used in conjunction with (6-30) through (6-35a) to find
the fields everywhere.

Love’s equivalence principle in Figure 7-8a produces a null field within the imaginary surface
S . Since the value of the E = H = 0 within S cannot be disturbed if the properties of the
medium within it are changed, let us assume that it is replaced by a perfect electric conductor
(PEC, σ = ∞). The introduction of the perfect conductor will have an effect on the equivalent
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Figure 7-8 Equivalence principle models. (Source: C. A. Balanis, Antenna Theory: Analysis and Design .
3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons,
Inc.). (a) Love’s equivalent. (b) Electric conductor equivalent. (c) Magnetic conductor equivalent.

source Js , and it will prohibit the use of (6-30) through (6-35a) because the current densities
no longer radiate into an unbounded medium. Imagine that the geometrical configuration of the
electric conductor is identical to the profile of the imaginary surface S , over which Js and Ms exist.
As the electric conductor takes its place, as shown in Figure 7-8b, according to the uniqueness
theorem of Section 7.3 , the equivalent problem of Figure 7-8a reduces to that of Figure 7-8b.
Only a magnetic current density Ms (tangential component of electric field) is necessary over the
entire S, and it radiates in the presence of the electric conductor producing the original fields E1,
H1 outside S . Within S the fields are zero but, as before, this is not a region of interest. The
difficulty in trying to use the equivalent problem of Figure 7-8b is that (6-30) through (6-35a)
cannot be used, because the current densities do not radiate into an unbounded medium. The
problem of a magnetic current radiating in the presence of an electric conducting surface must be
solved. Therefore, it seems that the equivalent problem is just as difficult as the original problem.

Before some special simple geometries are considered and some suggestions are made
for approximating complex geometries, let us introduce another equivalent problem. Refer
to Figure 7-8a and assume that instead of placing a perfect electric conductor within S , we
introduce a perfect magnetic conductor (PMC). Again, according to the uniqueness theorem
of Section 7.3 , the equivalent problem of Figure 7-8a reduces to that shown in Figure 7-8c
(requires only a Js over the entire surface S, i.e., tangential components of the magnetic field).
Coincident with the equivalent problem of Figure 7-8b, (6-30) through (6-35a) cannot be used
with Figure 7-8c, and the problem is just as difficult as that of Figure 7-8b or the original
Figure 7-7a .
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Figure 7-9 Equivalent models for magnetic source radiation near a perfect electric conductor. (Source:
C. A. Balanis, Antenna Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons,
Inc. Reprinted with permission of John Wiley & Sons, Inc.).

To initiate awareness of the utility of the field equivalence principle, especially that of Figure 7-
8b, let us assume that the surface of the electric conductor is flat and extends to infinity, as shown
in Figure 7-9a . For this geometry, the problem is to determine how a magnetic source radiates
in the presence of a flat electric conductor. From image theory, this problem reduces to that of
Figure 7-9b, where an imaginary source is introduced on the side of the conductor and takes
its place (removes the conductor). Since the imaginary source is in the same direction as the
equivalent source, the equivalent problem of Figure 7-9b reduces to that of Figure 7-9c. The
magnetic current is doubled, it radiates in an unbounded medium, and (6-30) through (6-35a)
can be used. The equivalent problem of Figure 7-9c will yield the correct (E, H) fields to the
right side of the interface. If the surface of the obstacle is not flat and infinite, but its curvature
is large compared to the wavelength, a good approximation will be the equivalent problem of
Figure 7-9c.

SUMMARY In the analysis of electromagnetic problems, many times it is easier to form
equivalent problems that will yield the same solution within a region of interest. This is true for
scattering, diffraction, and aperture antenna radiation problems. In this section, the main emphasis
is on aperture antennas, and concepts will be demonstrated by examples.

The following steps must be used to form an equivalent problem to solve an aperture problem.

1. Select an imaginary surface that encloses the actual sources (the aperture). The surface must
be chosen judiciously so that the tangential components of the electric and/or the magnetic
field are known, ideally exactly (or approximately), over its entire span. In many cases this
surface is a flat plane extending to infinity.

2. Over the imaginary surface, form equivalent current densities Js , Ms , that take one of the
following forms.
a. Js and Ms over S assuming that the E and H fields within S are not zero.
b. Js and Ms over S assuming that the E and H fields within S are zero (Love’s theorem).
c. Ms over S (Js = 0) assuming that within S the medium is a perfect electric conductor.
d. Js over S (Ms = 0) assuming that within S the medium is a perfect magnetic conductor.
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3. Solve the equivalent problem. For equivalents (a) and (b), equations 6-30 through 6-35a
can be used. For form (c), the problem of a magnetic current source next to a perfect
electric conductor must be solved [(6-30) through (6-35a) cannot be used directly, because
the current density does not radiate into an unbounded medium]. If the electric conductor
is an infinite flat plane, the problem can be solved exactly by image theory. For form (d),
the problem of an electric current source next to a perfect magnetic conductor must be
solved. Again (6-30) through (6-35a) cannot be used directly. If the magnetic conductor is
an infinite flat plane, the problem can be solved exactly by image theory.

To demonstrate the usefulness and application of the field equivalence theorem to aperture
antenna radiation, we consider the following example.

Example 7-3

A waveguide aperture is mounted on an infinite ground plane, as shown in Figure 7-10a . Assume that
the tangential components of the electric field over the aperture are known and are given by Ea . Then
find an equivalent problem that will yield the same fields E, H radiated by the aperture to the right side
of the interface.
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Figure 7-10 Equivalent models for a waveguide aperture mounted on an infinite flat electric ground
plane. (Source: C. A. Balanis, Antenna Theory: Analysis and Design . 3rd Edition. Copyright © 2005,
John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc.).
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Solution: First an imaginary closed surface is chosen. For this problem it is appropriate to select a
flat plane extending from −∞ to +∞ as shown in Figure 7-10b. Over the infinite plane, the equivalent
current densities Js and Ms are formed. Since the tangential components of E do not exist outside the
aperture, because of vanishing boundary conditions, the magnetic current density Ms is only nonzero
over the aperture. The electric current density Js is nonzero everywhere and is yet unknown. Now let
us assume that an imaginary flat electric conductor is placed next to the surface S and it shorts out the
current density Js everywhere. Ms exists only over the space occupied originally by the aperture, and
it radiates in the presence of the conductor (see Figure 7-10c). By image theory, the conductor can be
removed and replaced by an imaginary (equivalent) source Ms , as shown in Figure 7-10d , which is
analogous to Figure 7-9b. Finally, the equivalent problem of Figure 7-10d reduces to that of Figure 7-
10e, which is analogous to that of Figure 7-9c. The original problem has been reduced to a very simple
equivalent, and (6-30) through (6-35a) can be utilized for its solution. For far-field observations, the
radiation integrals of Section 6-6.8.2 can be used instead.

7.9 INDUCTION THEOREM (INDUCTION EQUIVALENT)

Let us now consider a theorem that is closely related to the surface equivalence theorem. It is,
however, used more for scattering than for aperture radiation. Equivalent electric and magnetic
current densities are introduced to replace physical obstacles. Figure 7-11a shows sources (J1, M1)

in an unbounded medium with constitutive parameters μ1 and ε1 and radiating fields (E1, H1)

everywhere, including the region V1 enclosed by the imaginary surface S1.
Now let us assume that the space within the imaginary surface S1 is being replaced by another

medium with constitutive parameters μ2, ε2, which are different from those of the medium outside
S1, as shown in Figure 7-11b. The same sources (J1, M1), embedded in the original medium (μ1,
ε1) outside S1 are now allowed to radiate in the presence of the obstacle that is occupying region
V1. The total field outside region V1, produced by the sources (J1, M1), is (E, H) and inside V1

is (Et , Ht ).
The total field outside V1 is equal to the original field in the absence of the obstacle (E1, H1)

plus a perturbation field (Es , Hs ), usually referred to as scattered field , introduced by the obstacle.
In equation form, we can write

E = E1 + Es (7-44a)

H = H1 + Hs (7-44b)

where E, H = total electric and magnetic fields in the presence of the obstacle
E1, H1 = total electric and magnetic fields in the absence of the obstacle
Es , Hs = scattered (perturbed) electric and magnetic fields due to the obstacle

It is assumed here that the original fields (E1, H1), in the absence of the obstacle, can be found
everywhere. Here we intend to compute (E, H) outside V1 and (Et , Ht ) inside V1. It should be
pointed out, however, that total (E, H) can be found if we can determine (Es , Hs), which when
added to (E1, H1) will give (E, H) [through (7-44a) and (7-44b)].

Let us now formulate an equivalent problem that will allow us to determine (Es , Hs) outside
V1 and (Et , Ht ) inside V1. Figure 7-11c shows the obstacle occupying region V1 with fields
(Es , Hs) and (Et , Ht ) outside and inside V1, respectively. To support such fields and satisfy the
boundary conditions of Table 1-5, we must introduce equivalent current densities (Ji , Mi ) on the
boundary such that

Ji = n̂ × (Hs − Ht ) (7-45a)

Mi = −n̂ × (Es − Et ) (7-45b)
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Figure 7-11 Field geometry for the induction theorem (equivalent).

Remember that (Es , Hs) are solutions to Maxwell’s equations outside V1 and (Et , Ht ) are solutions
within V1. Therefore, we retain the corresponding media outside and inside V1.

From Figure 7-11b, we also know that the tangential components of E and H must be con-
tinuous across the boundary, that is,

E1|tan + Es |tan = Et |tan ⇒ n̂ × (E1 + Es) = n̂ × Et (7-46a)

H1|tan + Hs |tan = Ht |tan ⇒ n̂ × (H1 + Hs) = n̂ × Ht (7-46b)

which can also be written as

Es |tan − Et |tan = −E1|tan ⇒ n̂ × (Es − Et ) = −n̂ × E1 (7-47a)

Hs |tan − Ht |tan = −H1|tan ⇒ n̂ × (Hs − Ht ) = −n̂ × H1 (7-47b)

Substitution of (7-47a) into (7-45b) and (7-47b) into (7-45a), allows us to write the equivalent
currents as

Ji = −n̂ × H1 (7-48a)

Mi = n̂ × E1 (7-48b)
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Now it is quite clear that the equivalent sources of Figure 7-11c have been written, as shown
in (7-48a) and (7-48b), in terms of the tangential components (−n̂ × H1, n̂ × E1) of the known
fields E1 and H1 over the surface occupied by the obstacle.

The equivalent problem of Figure 7-11c is then further reduced to the equivalent problem
shown in Figure 7-11d . In words, the equivalent problem of Figure 7-11d states that the scattered
fields (Es , Hs) outside V1 and the transmitted fields (Et , Ht ) inside V1 can be computed by placing,
along the boundary of the obstacle, equivalent current densities given by (7-48a) and (7-48b) that
radiate in the presence of the obstacle that is occupying region V1 and that outside V1 have the
original medium (μ1, ε1). The equivalent problem of Figure 7-11d is now no simpler to solve
than the original problem because we cannot use (6-30) through (6-35a), which assume that we
have the same medium everywhere. The equivalent of Figure 7-11d has two media: ε2, μ2 inside
and ε1, μ1 outside. However, even though the equivalent problem of Figure 7-11d is just as
difficult to solve exactly as that of Figure 7-11b, it does suggest approximate solutions as will
be shown later. We call the problem of Figure 7-11d an induction equivalent [1].

Let us now assume that the obstacle occupying region V1 is a perfect electric conductor (PEC)
with σ = ∞. Again we have the medium with parameters (μ1, ε1) outside V1 and the sources
(J1, M1) radiating in the presence of the conductor (obstacle), as shown in Figure 7-12a . We now
need to determine the scattered fields (Es , Hs), which, when added to (E1, H1), will allow us to
determine the total fields (E, H).
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Figure 7-12 Induction equivalents for perfect electric conductor (PEC) scattering.
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To compute (Es , Hs) outside V1 and Et = Ht = 0 inside V1, we form the equivalent problem
of Figure 7-12b, analogous to that of Figure 7-11d , with equivalent sources Ji = −n̂ × H1 and
Mi = n̂ × E1 over the boundary. The equivalent problem of Figure 7-12b states that the perturbed
fields Es and Hs scattered by the perfect conductor of Figure 7-12a can be computed by placing
equivalent current densities Ji and Mi given by

Ji = −n̂ × H1 (7-49a)

Mi = n̂ × E1 (7-49b)

along the boundary of the conductor and radiating in its presence. However, due to the uniqueness
theorem, we do not need to specify both the electric current density Ji (tangential magnetic
field) and the magnetic current density Mi (tangential electric field). Therefore keeping only the
magnetic current density Mi , the equivalent of Figure 7-12b reduces to that of Figure 7-12c.
The problem of 7-12c is an induction equivalent for a perfect electric conductor scatterer.

When the surface S1 is of complex geometry, the exact solution to the equivalent problem of
Figure 7-12c is no easier to compute than the original one shown in Figure 7-12a . However, if the
obstacle is an infinite, flat, perfect electric conductor (infinite ground plane), then the equivalent
problem for computing the scattered fields is that shown in Figure 7-13a . The exact solution to
the equivalent problem of Figure 7-13a of infinite dimension can be obtained by image theory,
which allows us to reduce the equivalent problem of Figure 7-13a to that of Figure 7-13b. The
equivalent problem of Figure 7-13b permits the solution for the scattered field Es , Hs reflected
by the perfect electric conductor. The fields radiated by the equivalent source of Figure 7-13b
can be obtained by using (6-30) through (6-35a) since we have one medium (μ1, ε1 everywhere).
The fields obtained using the equivalent problem of Figure 7-13b give nearly the correct answers
for the scattered field, for a finite but electrically large plate, only for the region to the left of
the boundary S1 since the flat plate has a strong backscattered field toward that direction. To find
the field everywhere and more accurately using the Induction Equivalent , for the PEC plate of
Figure 7-13a but with finite dimensions, a current density must be placed on each side of the
PEC plate, as shown in Figure 7-13c; the current densities must have opposite directions.
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Mi = n × E1 Et = Ht = 0

Et = Ht = 0

e1, m1 e1, m1 e1, m1 e1, m1
s = ∞
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Figure 7-13 Induction equivalent for scattering by flat conducting surface of infinite extent.
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7.10 PHYSICAL EQUIVALENT AND PHYSICAL OPTICS EQUIVALENT

The problem of Figure 7-12a , scattering of (E, H) by a perfect electric conducting obstacle
(PEC), is of much practical concern and will also be formulated by an alternate method known
as physical equivalent [1]. The solutions of the physical equivalent will be compared with those
of the induction theorem (induction equivalent) that was discussed in the previous section.

Let us again postulate the problem of Figure 7-12a . In the absence of the obstacle, the fields
produced by (J1, M1) are (E1, H1), which we assume can be calculated. In the presence of the
obstacle (perfect conductor in this case), the fields outside the obstacle are (E, H) and inside the
obstacle are equal to zero. The fields (E, H) are related to (E1, H1) by

E = E1 + Es (7-50a)

H = H1 + Hs (7-50b)

The original problem is again shown in Figure 7-14a . Again, due to the uniqueness theorem,
we do not need to specify both the electric current density J1 (tangential magnetic field) and
the magnetic current density M1 (tangential electric field). Therefore, keeping only the electric
current density J1, the equivalent of Figure 7-14a reduces to that of Figure 7-14b (J1 = Jp). The
magnetic current density M1 of 7-14a is set to zero in 7-14b (M1 = Mp = 0). Therefore, the
total tangential components of the H field are equal to the induced current density Jp . In equation
form, we have over S1,

Mp = −n̂ × (E − Et ) = −n̂ × E = −n̂ × (E1 + Es) = 0 (7-51a)

or
−n̂ × E1 = n̂ × Es (7-51b)

and
Jp = n̂ × (H − Ht ) = n̂ × H = n̂ × (H1 + Hs) (7-52a)

or
Jp = n̂ × H1 + n̂ × Hs (7-52b)

Therefore, the equivalent to the problem of Figure 7-14a , computation of (Es , Hs) outside of
S1, is that of Figure 7-14b. Remember that (E1, H1) and (Es , Hs) are solutions to Maxwell’s
equations outside V1, so in the equivalent problems we retain the same medium μ1, ε1 inside and

M1

J1

Et = Ht = 0 −E1,−H1

S1S1

Es, Hs

E = E1+ Es

H = H1+ Hs

e1, m1

e1, m1

e1, m1

Jp = n × H

Mp = 0V1

V1

(a) (b)

s = ∞

n n

Figure 7-14 Physical equivalent for scattering by a perfect electric conductor (PEC). (a) Actual problem.
(b) Physical equivalent.
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outside V1. The equivalent of Figure 7-14b will give (Es , Hs) outside of S1 and (−E1, −H1)

inside of S1 because

Jp = n̂ × H = n̂ × (Hs + H1) = n̂ × [
Hs − (−H1)

]
(7-53a)

Mp = −n̂ × E = −n̂ × (Es + E1) = −n̂ × [
Es − (−E1)

] = 0 (7-53b)

We call the problem of Figure 7-14b the physical equivalent . It can be solved by using (6-30)
through (6-35a) since we assume that Jp radiates in one medium (μ1, ε1 everywhere). To form
Jp on S1 we must know the tangential components of H on S1, which are unknown. So the
equivalent problem of Figure 7-14b has not aided us in solving the problem of Figure 7-14a .
The exact solution of the problem of Figure 7-14b is just as difficult as that of Figure 7-14a .
However, as will be discussed later, the formulation of Figure 7-14b is more suggestive when it
comes time to make approximations.

The physical equivalent of Figure 7-14b is used in Sections 12.3.1 and 12.3.2 to develop
electric and magnetic field integral equations designated, respectively, as EFIE and MFIE. These
integral equations are then solved for the unknown current density Jp by representing it with a
series of finite terms of known functions (referred to as basis functions) but with unknown ampli-
tude coefficients. This then allows the reduction of the integral equation to a number of algebraic
equations that are usually solved by use of either matrix or iterative techniques. To date, the most
popular numerical technique in applied electromagnetics for solving these integral equations is
the moment method [15] which is discussed in Sections 12.2.4 through 12.2.8. In particular,
in Section 12.3.1 the scattered electric field Es is written in terms of Jp . When the observations
are restricted to the surface of the electric conducting target, the tangential components of Es

are related to the negative of the tangential components of E1, as represented by (7-51b). This
allows the development of the electric field integral equation (EFIE) for the unknown current
density Jp in terms of the known tangential components of the electric field E1, as represented
by (12-54). In Section 12.3.2, the equivalent of Figure 7-14b, and in particular the relation of
(7-52a) or (7-53a), is used to write an expression for the scattered magnetic field Hs in terms of
the tangential components of the magnetic field H1. This allows the development of the magnetic
field integral equation (MFIE) for the unknown current density Jp , as represented by (12-59a).

If the conducting obstacle of Figure 7-14a is an infinite, flat, perfect electric conductor (infinite
ground plane), then the physical equivalent problem of Figure 7-14b is that of Figure 7-15 where

S1

e1, m1 e1, m1

Es, Hs

Mp = 0

Jp = 2n × H1

n

Figure 7-15 Physical equivalent of a flat conducting surface of infinite extent.
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the electric current Jp is equal to

Jp = n̂ × H = n̂ × (H1 + Hs) = 2n̂ × H1 (7-54)

since the tangential components of the scattered Hs field (Hs |tan) are in phase and equal in
amplitude to the tangential components of the H1 field (H1|tan). The equivalent of Figure 7-15
is also referred to as the physical optics [16].

We have until now discussed two different methods, induction equivalent and physical equiv-
alent , for the solution of the same problem, that is, the determination of the field scattered by a
perfect electric conductor. The induction equivalent is shown in Figure 7-12c and the physical
equivalent in Figure 7-14b. The question now is whether both give the same result. The answer
to this is yes. However, it must be pointed out that when the geometry of the obstacle is complex,
neither of the equivalents is easy to use to obtain convenient results. The next question may then
be: Why bother introducing the equivalents if they are not easy to apply? There is a two-part
answer to this. The first part of the answer is that when the obstacle is an infinite, flat, perfect
electric conductor, the solution to each equivalent is easy to formulate by using “image theory,”
shown in Figures 7-13a and 7-13b, for the induction equivalent, and in Figure 7-15 for the
physical equivalent. The second part of the answer is that the induction and physical equivalent
modelings suggest more appropriate approximations or simplifications that can be made when
we attempt to solve a problem whose exact solution is not easily obtainable.

The last question then may be stated as follows: “When making approximations or simplifi-
cations to solve an otherwise intractable problem, do both of the equivalents lead to identical
approximate results or is one superior to the other? The answer is that the induction equivalent
and the physical equivalent do not, in general, lead to identical results when simplifications or
approximations are made to a given problem. For some special approximations, to be discussed
later, they give identical results only when the source and the observer are at the same location
(backscattering). However, for any general approximation, they do not yield identical results even
for backscattering. One should then use the method that results in the best approximation for the
allowable degree of complexity .

In an attempt to make use of the equivalents of Figure 7-12c and 7-14b to solve a scattering
problem, difficulties are encountered. Here we will summarize these difficulties, and in the next
section we will discuss appropriate simplifications that allow us to obtain approximate solutions.
The induction equivalent of Figure 7-12c is represented by a known current (Mi = n̂ × E1) that
is placed on the surface of the obstacle and that radiates in its presence. Because the medium
within and outside the obstacle is not the same, we cannot use (6-30) through (6-35a) to solve
for the scattered fields. We must solve a new boundary-value problem, which may be as difficult
as the original problem, even though we know the currents on the surface of the obstacle. In
other words, we must derive new formulas that will allow us to compute the scattered fields. The
physical equivalent of Figure 7-14b is represented by an unknown current density (Jp = n̂ × H)

that is placed on the imaginary surface S1, which represents the geometry of the obstacle. In this
case, however, we can use (6-30) through (6-35a) to solve for the scattered fields because we
have the same medium within and outside S1. The difficulty here is that we do not know the
current density on the surface of the obstacle, which in most cases is just as difficult to find as
the solution of the original problem, because it requires knowledge of the total H field, which is
the answer to the original problem.

7.11 INDUCTION AND PHYSICAL EQUIVALENT APPROXIMATIONS

Let us now concentrate on suggesting appropriate simplifications to be made in the induction and
physical equivalent formulations so that we obtain approximate solutions when exact solutions
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S1

Es, Hs

e1, m1e1, m1

Mi = 2n × E1
V1

n

Figure 7-16 Approximate induction equivalent for scattering from a perfect electric conductor (PEC).

are not feasible. In many cases the approximate solutions will lead to results that are well within
measuring accuracies of laboratory experiments.

In the induction equivalent form, the difficulty in obtaining a solution arises from the lack
of equations that can be used with the known current density. The crudest approximation to
the problem is the assumption that the obstacle is large electrically and so we can use image
theory to solve the problem. This assumes that locally on the surface of the obstacle each point
and its immediate neighbors form a flat surface. The best results with this simplification will be
for scatterers whose electrical dimensions are large in comparison to the wavelength. Thus, the
induction equivalent of Figure 7-12c can be approximated by that in Figure 7-16. Now (6-30)
through (6-35a) can be used to compute the scattered fields because we have the same medium
inside and outside S1.

In many cases, even this approximation may not be amenable to a closed-form solution because
of the inability to integrate over the entire closed surface. To simplify this even further, we may
restrict our integration over only part of the surface where the current density is more intense and
will provide the major contributions to the scattered field. This surface is usually the part that is
“visible” by the transmitter (sources J1 and M1).

In the physical equivalent, the difficulty in solving the problem arises because we do not know
the current density Jp (Jp = n̂ × H) that must be placed along the surface S1 (see Figure 7-14b).
Once we decide on an approximation for the current density, the solution can be carried out
because we can use (6-30) through (6-35a). The crudest approximation for this problem is the
assumption that the total tangential H field on the surface of the conductor of Figure 7-14a is
equal to twice that of the tangential H1. Thus, the current density to be placed on the surface of
the physical equivalent of Figure 7-14b is

Jp � 2n̂ × H1 (7-55)

which is a good approximation provided that the scatterer is large electrically (in the limit infinite,
flat, perfect conductor). In the shadow region of the scatterer, the physical equivalent current
density Jp is set to zero. We can then approximate the physical equivalent of Figure 7-14b by
that of Figure 7-17. This is usually referred to as the physical optics approximation [16], because
it is similar to the formulation of the infinite, flat, ground plane. Thus, physical optics approximate
the boundary conditions that concern only the fields on the closed surface S1. If a closed-form
solution still cannot be obtained because of the inability to integrate over the entire surface,
then integration over a part of the scattering surface may be sufficient, as was discussed for the
induction equivalent.

It should be pointed out that making the aforementioned crude approximations (image theory
for the induction equivalent and physical optics for the physical equivalent), the two methods lead
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Es, Hs

e1, m1 e1, m1

V1

Jp = 2n × H1

n

Figure 7-17 Approximate physical equivalent for scattering from a perfect electric conductor (PEC).

to identical results only for backscattering . Any further simplifications may lead to solutions that
may not be identical even for backscattering. This is discussed in more detail in [17]. The theory
can be extended to include imperfect conductors and dielectrics but the formulations become
quite complex even when approximations are made.

The best way to illustrate the two different methods, when approximations are made, is to
solve the same problem using both methods and compare the results.

Example 7-4

A parallel polarized uniform plane wave on the xy plane, in a free-space medium, is obliquely incident
upon a rectangular, flat, perfectly conducting (σ = ∞) plate, as shown in Figure 7-18a . The dimensions
of the plate are a in the y direction and b in the z direction.

Find the electric and magnetic fields scattered by the flat plate, assuming that observations are made
in the far zone. Solve the problem by using the induction equivalent and physical equivalent . Make
appropriate simplifications, and compare the results.

Solution: Induction Equivalent : The simplification to be made in the use of induction equivalent
modeling is to assume that the dominant part of the magnetic current Mi resides only in the front face
of the plate and that image theory holds for a finite plate. With these approximations, we reduce the
equivalent to that of Figure 7-18b, where the magnetic current exists only over the area occupied by
the plate. Thus, we can write the E and H fields as

Hi = âz H0e+jβ(x cos φi +y sin φi )

Ei = η0H0
[
âx sin φi − ây cos φi

]
e+jβ(x cos φi +y sin φi )

and the magnetic current density as

Mi = 2n̂ × Ei |x=0 = −âz 2η0H0 cos φi e
+jβy ′ sin φi

or
Mx = My = 0 Mz = −2η0H0 cos φi e

+jβy ′ sin φi

The scattered electric and magnetic fields in the far zone can be written, according to (6-122a) through
(6-122f), (6-125a) through (6-125d), (6-127a), and (6-128a), as

E s
θ = 0

E s
φ = +j

βe−jβr

4πr
Lθ
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Figure 7-18 Plane wave scattering from a flat rectangular conducting plate. (a) Actual problem. (b)
Induction equivalent. (c) Physical equivalent.

where

Lθ =
∫ +a/2

−a/2

∫ +b/2

−b/2
−Mz sin θs e+jβ(y ′ sin θs sin φs +z ′ cos θs )dz ′dy ′

Lθ = 2abη0H0 cos φi sin θs

(
sin Y

Y

)(
sin Z

Z

)
Y = βa

2
(sin θs sin φs + sin φi )

Z = βb

2
cos θs

In summary,

E s
θ = 0

E s
φ = j

abβη0H0e−jβr

2πr

[
cos φi sin θx

(
sin Y

Y

)(
sin Z

Z

)]
H s

θ = −E s
φ

η0

H s
φ = E s

θ

η0
= 0
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For backscattering observations (θs = π/2, φs = φi ), the fields reduce to

E s
θ = 0

E s
φ = j

abβη0H0e−jβr

2πr

{
cos φi

[
sin(βa sin φi )

βa sin φi

]}
H s

θ = −E s
φ

η0

H s
φ = 0

Physical Equivalent : The simplifications for the physical equivalent will be similar to those for the
induction equivalent. That is, we will assume that the major contributing current density Jp resides in
the front face of the plate for which the physical equivalent reduces to that of Figure 7-18c. Thus, we
can write the current density as

Jp = 2n̂ × Hi |x=0 = −ây 2 H0e+jβy ′ sin φi

and the scattered E and H fields, according to (6-122a) through (6-122f), (6-125a) through (6-125d),
(6-127a), and (6-128a), as

E s
θ = −j

βη0e−jβr

4πr
Nθ

E s
φ = −j

βη0e−jβr

4πr
Nφ

where

Nθ =
∫ a/2

−a/2

∫ b/2

−b/2
Jy cos θs sin φs e+jβ(y ′ sin θs sin φs +z ′ cos θs )dz ′dy ′

Nθ = −2abH0

{
cos θs sin φs

[
sin(Y )

Y

] [
sin(Z )

Z

]}
Nφ =

∫ a/2

−a/2

∫ b/2

−b/2
Jy cos φs e+jβ(y ′ sin θs sin φs +z ′ cos θs )dz ′dy ′

Nφ = −2abH0

{
cos φs

[
sin(Y )

Y

] [
sin(Z )

Z

]}
Y = βa

2
(sin θs sin φs + sin φi )

Z = βb

2
cos θs

In summary,

E s
θ = j

abβη0H0e−jβr

2πr

{
cos θs sin φs

[
sin(Y )

Y

] [
sin(Z )

Z

]}
E s

φ = j
abβη0H0e−jβr

2πr

{
cos φs

[
sin(Y )

Y

] [
sin(Z )

Z

]}
H s

θ = −E s
φ

η0

H s
φ = E s

θ

η0
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For backscattering observations (θs = π/2, φs = φi ), the fields reduce to

E s
θ = 0

E s
φ = j

abβη0H0e−jβr

2πr

{
cos φi

[
sin(βa sin φi )

βa sin φi

]}
H s

θ = −E s
φ

η0

H s
φ = 0

It is quite clear that the solutions of the two different methods do not lead to identical results
except for backscatter observations. It seems that the physical equivalent solution gives the best
results for general observations because it requires the least simplification in the formulation.

7.12 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

7.1. For the infinitesimal vertical electric dipole
whose far-zone electric field is given by
(7-13a):
(a) Find the corresponding magnetic field.
(b) Determine the corresponding time-

average power density.
(c) Show that the radiated power, obtained

by integrating the power density of part
(b) over a sphere of radius r , can be
written as

Prad = πη

∣∣∣∣ I0�

λ

∣∣∣∣2
×

[
1

3
− cos(2βh)

(2βh)2
+ sin(2βh)

(2βh)3

]
7.2. For Problem 7.1, show the following:

(a) The radiation intensity U, defined in the
far field as U ≈ r2Sav, where Sav is
the far-field time-average power density,
can be written as

U = η

2

∣∣∣∣ I0�

λ

∣∣∣∣2

sin2 θ cos2(βh cos θ)

(b) The maximum directivity D0 of the ele-
ment, defined as

D0 = 4πUmax

Prad

where Umax is the maximum radiation
intensity, can be written as

D0 = 2

F (βh)

F (βh) =
[

1

3
− cos(2βh)

(2βh)2
+ sin(2βh)

(2βh)3

]
(c) The radiation resistance, defined as

Rr = 2Prad

|I0|2
can be expressed as

Rr = 2πη

(
�

λ

)2

F (βh)

where F (βh) is that given in part (b).

7.3. An infinitesimal vertical magnetic dipole of
length l and constant current Im is placed
symmetrically about the origin and it is
directed along the z axis, as shown in
Figure 6-2a . Derive expressions valid every-
where, near and far field, for the:
• Electric vector potential components

(Fr , Fθ , Fφ).
• Electric field components (Er , Eθ , Eφ).
• Magnetic field components (Hr , Hθ , Hφ).
• Time-average power density, defined as

Sav = 1

2
Re

[
E × H∗].

• Radiation intensity, defined in the far field
as U ≈ r2Sav .

• Power radiated, defined as
Prad = ∫ 2π

0

∫ π

0 U (θ , φ) sin θdθdφ.
• Maximum directivity, defined as

D0 = 4πUmax (θ , φ)

Prad• Radiation resistance, defined as

Rr = 2Prad

|Im |2
You can minimize the derivations as long as
you justify the procedure.

7.4. For the infinitesimal vertical magnetic
dipole of Problem 7.3, simplify the expres-
sions for the electric vector potential, and
electric and magnetic fields, when the obser-
vations are made in the far field.

7.5. An infinitesimal magnetic dipole of length l
and constant current Im is placed symmetri-
cally about the origin and it is directed along
the x axis. Derive the following expressions
for the far zone:
• Electric vector potential components

(Fr , Fθ , Fφ).

• Electric field components (Er , Eθ , Eφ).
• Magnetic field components (Hr , Hθ , Hφ).
• Time-average power density as defined in

Problem 7.3.
• Radiation intensity as defined in Prob-

lem 7.3.
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• Directivity as defined in Problem 7.3.
• Radiation resistance as defined in Prob-

lem 7.3.

7.6. Repeat Problem 7.4 for an infinitesimal
magnetic dipole of length l and constant cur-
rent Im but directed along the y axis.

7.7. Repeat Problem 7.1 for the horizontal
infinitesimal electric dipole of Section 7.4.2
and Figure 7-5, and show that the:
• Radiation intensity is

U (θ , φ) = η

2
|I0|2

(
l

λ

)2

× (
cos2 θ sin2 φ + cos2 φ

)
× sin2(βh cos θ) , 0 ≤ θ ≤ π

2

• Power radiated is

Prad =
2π∫

0

π/2∫
0

U (θ , φ) sin θdθdφ

= η
π

2
|I0|2

(
l

λ

)2 [
2

3
− sin (2βh)

2βh

− cos (2βh)

(2βh)2 + sin (2βh)

(2βh)3

]
• Maximum directivity is

D0 = 4πUmax

Prad

=

⎧⎪⎪⎨⎪⎪⎩
4 sin2(βh)

R(βh)
βh ≤π/2 (h ≤ λ/4)

4

R(βh)
βh >π/2 (h > λ/4)

R(βh) =
[

2

3
− sin (2βh)

2βh
− cos (2βh)

(2βh)2

+ sin (2βh)

(2βh)3

]
• Radiation resistance is

Rr = 2Prad

|I0|2
= ηπ

(
l

λ

)2 [
2

3
− sin (2βh)

2βh

− cos (2βh)

(2βh)2 + sin (2βh)

(2βh)3

]
7.8. Using the electric field of (7-13a), where r is

fixed, plot the normalized radiation pattern
(in dB) versus the angle θ when the height

h of the element above the ground is h = 0,
λ/8, λ/4, 3λ/8, λ/2, and λ.

7.9. A quarter-wavelength (�/2 = λ/4) wire
radiator is placed vertically above an infi-
nite electric ground plane and it is fed at its
base, as shown in Figure P7-9. This is usu-
ally referred to as a λ/4 monopole. Assume
that the current on the wire is represented
by

I = âz I0 sin

[
β

(
�

2
− z ′

)]
, 0 ≤ z ′ ≤ �/2

where z ′ is any point on the monopole
and show, using image theory, (6-97a),
(6-112a) and (6-112b), and the formulations
of Section 6.7, that the far-zone electric
and magnetic fields radiated by the element
above the ground plane are given by

Er � Eφ � Hr � Hθ � 0

Eθ � jη
I0e−jβr

2πr

⎡⎢⎣cos
(π

2
cos θ

)
sin θ

⎤⎥⎦
Hφ � Eφ

η

These expressions are identical to those of
Problem 6.26.

l/2 = l/4

s = ∞

Figure P7-9

7.10. A very small (� � λ) linear radiating cur-
rent element is placed between two infi-
nite plates forming a 90◦ corner reflector.
Assume that the length of the element is
placed parallel to the plates of the corner
reflector.
(a) Determine the number of images, their

polarizations, and their positions that are
necessary to account for all the reflec-
tions from the plates of the reflector
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and to find the radiated fields within the
internal space of the reflector.

(b) Show that the total far-zone radiated
fields within the internal region of the
reflector can be written as

E t
θ = E 0

θ F (βs)

E 0
θ = jη

βI0�e−jβr

4πr
sin θ

F (βs) = 2[cos (βs sin θ cos φ)

− cos (βs sin θ sin φ)]

0◦ ≤ θ ≤ 180◦

315◦ ≤ φ ≤ 360◦, 0 ≤ φ ≤ 45◦

where θ is measured from the z axis
toward the observation point. E 0

θ is the
far-zone field radiated by a very small
(� � λ) linear element radiating in an
unbounded medium (see Example 6-3)
and F (βs) is referred to as the array
factor representing the array of elements
that includes the actual radiating ele-
ment and its associated images.

y

x
z s

fa

Figure P7-10

7.11. For Problem 7.10 plot the magnitude of
F (βs) as a function of s (0 ≤ s ≤ 10λ)
when θ = 90◦ and φ = 0◦. What is the max-
imum value of |F (βs)|? Is the function peri-
odic? If so, what is the period?

7.12. For Problem 7.10 plot the normalized value
of the magnitude of F (βs) (in dB) as a func-
tion of φ (315◦ ≤ φ ≤ 360◦, 0 ≤ φ ≤ 45◦)
when θ = 90◦. Do this when s = 0.1λ, s =
0.7λ, s = 0.8λ, s = 0.9λ, and s = 1.0λ.

7.13. Repeat Problem 7.10 when the included
angle α of the corner reflector is 60◦, 45◦,

and 30◦, and show that F (βs) takes the fol-
lowing forms.
(a) α = 60◦

F (βs) = 4 sin

(
X

2

)
×

[
cos

(
X

2

)
− cos

(√
3

Y

2

)]
(b) α = 45◦

F (βs) = 2 [cos(X ) + cos(Y )−

2 cos

(
X√

2

)
cos

(
Y√

2

)]
(c) α = 30◦

F (βs)=2

[
cos(X )−2 cos

(√
3

X

2

)
cos

(
Y

2

)
− cos(Y )+2 cos

(
X

2

)
cos

(√
3

X

2

)]
where X =βs sin θ cos φ, Y =βs sin θ sin φ

7.14. For Problem 7.13 and the three values (α =
60◦, 45◦, and 30◦), plot the magnitude of
F (βs) as a function of s (0 ≤ s ≤ 10λ)
when θ = 90◦ and φ = 0◦. What is the max-
imum value |F (βs) will ever achieve if
plotted as a function of s? Is the function
periodic? If so, what is the period?

7.15. An infinitesimal electric dipole is placed
at an angle of 30◦ at a height h above a
perfectly conducting electric ground plane.
Determine the location and orientation of its
image. Do this by sketching the image.

h

s = ∞

30°

Figure P7-15

7.16. A small circular loop of radius a is placed
vertically at a height h above a perfectly
conducting electric ground plane. Determine
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the location and direction of current flow of
its image. Do this by sketching the image.

h

s = ∞

Figure P7-16

7.17. A small electric circular loop antenna, of
radius a and constant electric current I0, is
placed in parallel (parallel to xy-plane) a
height h above a perfect magnetic (PMC),
flat and infinite in extent, horizontal ground
plane. The electric current flowing in the
loop antenna is in the counterclockwise
(CCW) direction, as viewed from the top
(looking from the top downwards, i.e., -z
direction).
(a) To account for the direct field, and the

reflected one from the PMC, determine
the equivalent problem that will account
for the total field (direct and reflected)
on and above the PMC ground plane.
State, in words, the magnitude (equal or
unequal ) and relative phase (in degrees)
of the image loop compared to those of
the actual loop.

(b) In what direction, as viewed again from
the top (looking downwards), is the elec-
tric current flowing in the image electric
loop? CCW or CW?

PMC

I0

View

Loop 
Antenna

x

z

h

y

Figure P7-17

7.18. A horizontal magnetic dipole is placed
above a planar Perfect Electric Conductor
(PEC) of infinite extent, as shown in Figures
P7-18 and 7-2.

In order to maintain the maximum total radi-
ation, due to the magnetic dipole itself and
its image (to account for reflections), toward
the z-axis (perpendicular to the interface),
what is the smallest nonzero height h that
the magnetic dipole should be placed above
the PEC:

• In wavelengths.
• In cm, for a frequency of 10 GHz.

PEC

Magnetic
dipole

y

z

h

Figure P7-18

7.19. Repeat Problem 7.18 when the element is a
magnetic dipole and the ground plane is a
PMC.

7.20. Repeat Problem 7.18 when the element is
an electric dipole and the ground plane is a
PEC.

7.21. Repeat Problem 7.18 when the element is
an electric dipole and the ground plane is a
PMC.

7.22. A linearly polarized uniform plane wave
traveling in free space is incident normally
upon a flat dielectric surface. Assume that
the incident electric field is given by

E = âx E0e−jβ0z

x

y z

e0, m0 e, m0

Figure P7-22
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Derive expressions for the equivalent vol-
ume electric and magnetic current densities,
and the regions over which they exist. These
current densities can then be used, in princi-
ple, to find the fields scattered by the dielec-
tric surface.

7.23. A uniform plane wave traveling in free
space is incident, at normal incidence angle,
upon an infinite PMC plate, which is paral-
lel to the xy-plane, as shown in the Figure
P7-23.
(a) Write an expression, in vector form, of

the incident magnetic field in terms of
the incident electric field Eo and what-
ever else is needed.

(b) To determine the scattered field to the
left of the PMC infinite plate (-z direc-
tion), formulate (do not have to derive)
in vector form, the Induction Equivalent
electric Ji or magnetic Mi current den-
sity that must be used to determine the
fields scattered to the left (-z direction)
of the PMC. The current density, Ji or
Mi (only one of them), must be in terms
of Eo and whatever else is needed.

E i = âx Eoe−jβo z

Incident

Scattered

PMC
x

y z

n

Figure P7-23

7.24. Repeat Example 7-4 when:

Ei = −âz Eoejβ(x cos φi +y sin φi )

7.25. For the aperture shown in Figure 6-4a and
assuming it is mounted on an infinite PEC
ground plane:
(a) Form the most practical, exact or

approximate (when necessary to solve
the problem), equivalent currents Js and
Ms.

(b) Find the far-zone electric and magnetic
fields. The electric field distribution at

the aperture is given by (Eo is a con-
stant)

Ea = âz Eo

−a/2 ≤ y ′ ≤ a/2; −b/2 ≤ z ′ ≤ b/2

7.26. Repeat Problem 7.25 when the aperture is
mounted on an infinite PMC surface.

7.27. Repeat Problem 7.25 when the aperture
is not mounted on a PEC ground plane.
Assume the tangential electric and magnetic
fields are related by the intrinsic impedance.

7.28. Repeat the Problem 7.25 when the aperture
is mounted on an infinite PEC but its
tangential electric field at the aperture is
given by (Eo is a constant)

Ea = âz Eo cos
(π

a
y ′
)

−a/2 ≤ y ′ ≤ a/2;−b/2 ≤ z ′ ≤ b/2

7.29. Repeat Problem 7.28 when the aperture is
mounted on an infinite PMC surface.

7.30. Repeat Problem 7.28 when the aperture
is not mounted on a PEC ground plane.
Assume the tangential electric and magnetic
fields are related by the intrinsic impedance.

7.31. For the aperture shown in Figure 6-4b and
assuming it is mounted on an infinite PEC
ground plane:
(a) Form the most practical, exact or

approximate (when necessary to solve
the problem), equivalent currents Js and
Ms.

(b) Find the far-zone electric and magnetic
fields.

The electric field distribution at the aperture is
given by (Eo is a constant):

Ea = âx Eo

−b/2 ≤ x ′ ≤ b/2;−a/2 ≤ z ′ ≤ a/2

7.32. Repeat Problem 7.31 when the aperture is
mounted on an infinite PMC surface.

7.33. Repeat Problem 7.31 when the aperture
is not mounted on a PEC ground plane.
Assume the tangential electric and magnetic
fields are related by the intrinsic impedance.
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7.34. Repeat Problem 7.31 when the aperture is
mounted on an infinite PEC but its tangen-
tial electric field at the aperture is given by

Ea = âx Eo cos
(π

a
z ′
)

−b/2 ≤ y ′ ≤ b/2; − a/2 ≤ z ′ ≤ a/2

7.35. Repeat Problem 7.34 when the aperture is
mounted on a PMC surface.

7.36. Repeat Problem 7.34 when the aperture
is not mounted on a PEC ground plane.
Assume the tangential electric and magnetic
fields are related by the intrinsic impedance.

7.37. For the aperture shown in Figure 6-4c and
assuming it is mounted on an infinite PEC
ground plane:
(a) Form the most practical, exact or

approximate (when necessary to solve
the problem), equivalent currents Js and
Ms.

(b) Find the far-zone electric and magnetic
fields. The electric field distribution at
the aperture is given by (Eo is a con-
stant)

Ea = ây Eo

−a/2 ≤ x ′ ≤ a/2;−b/2 ≤ y ′ ≤ b/2

7.38. Repeat Problem 7.37 when the aperture is
mounted on an infinite PMC surface.

7.39. Repeat Problem 7.37 when the aperture
is not mounted on a PEC ground plane.
Assume the tangential electric and magnetic
fields are related by the intrinsic impedance.

7.40. Repeat Problem 7.37 when the aperture is
mounted on an infinite PEC but its tangen-
tial electric field at the aperture is given by
(Eo is a constant)

Ea = ây Eo cos
(π

a
x ′

)
−a/2 ≤ x ′ ≤ a/2; − b/2 ≤ y ′ ≤ b/2

7.41. Repeat Problem 7.40 when the aperture
mounted on an infinite PMC surface.

7.42. Repeat Problem 7.40 when the aperture
is not mounted on a PEC ground plane.
Assume the tangential electric and magnetic
fields are related by the intrinsic impedance.

7.43. The electric and magnetic fields at the aper-
ture of a circular waveguide are given by

Ea = âρEρ + âφEφ

Eρ = E0J1

(
χ ′

11

a
ρ ′

)
sin φ′

ρ ′

Eφ = E0J ′
1

(
χ ′

11

a
ρ ′

)
cos φ′

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

ρ ′ ≤ a

χ ′
11 = 1.841

′ = ∂

∂ρ ′
Ea = 0 elsewhere

Develop the surface equivalent that can be
used to find the fields radiated by the aper-
ture. State the equivalent by giving expres-
sions for the electric Js and magnetic Ms

surface current densities and the regions
over which they exist.

x

z

y

a

f
r′

Figure P7-43

7.44. A uniform plane wave on the yz plane is
incident upon a flat circular conducting plate
of radius a . Assume that the incident electric
field is given by

Ei = âx E0e−jβ0(y sin θi −z cos θi )

Determine the scattered field using (a) the
induction equivalent and (b) the physical
equivalent. Reduce and compare the expres-
sions for backscatter observations.

x

y

z

a

fs

qi qs

Figure P7-44

7.45. Repeat Problem 7.44 when the incident
magnetic field is given by

Hi = âx H0e−jβ0(y sin θi −z cos θi )
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CHAPTER 8
Rectangular Cross-Section Waveguides

and Cavities

8.1 INTRODUCTION

Rectangular waveguides became popular during and after World War II because microwave
sources and amplifiers, such as klystrons, magnetrons, and traveling-wave tube amplifiers, were
developed before, during, and after that period. Because the physical cross-section dimensions are
typically around half of a guide wavelength (λg/2), such transmission lines are most commonly
used in the microwave region—typically 1 GHz and above (most commonly several GHz’s),
although they have also been used in the UHF band. The dimensions of the rigid rectangular
waveguide have been standardized according to different bands, whose designations and charac-
teristics are listed on Table 8-4. The standard X-band (8.2–12.4 GHz) was one of the most widely
used bands, and it was the band of communication, at least in the 1960s, of the NASA space
program (actually it started with S-band and transitioned to the X-band). The inner dimensions
of an X-band waveguide are 0.9 inches (2.286 cm) by 0.4 inches (1.016 cm), whereas those of
the Ku-band (12.4–18 GHz) are 0.622 inches (1.580 cm) by 0.311 inches (0.790 cm). Two such
waveguides are shown in Figure 8-1 along with two standard flanges on each end to be connected
to other devices, such as isolators, attenuators, phase shifters, circulators, and microwave sources.
One very popular X-band microwave source, with an output of about 100 mW, was the Varian
X-13 klystron shown in Figures 8-2a and 8-2b. The knob dial is used to vary the frequency by
changing the klystron’s inner cavity dimensions, which can also be altered slightly by controlling
the reflector voltage.

Eventually, in the 1960s, solid-state microwave sources began to appear. One such source
was the Gunn diode oscillator, a transferred electron device invented by J. B. Gunn in 1963,
with an output power, depending on the frequency, of several milliwatts; maybe as high as 1
watt around 10 GHz. This device is very compact, and it only needs a DC voltage bias of a few
volts (typically 10–15 volts) to oscillate and to convert to RF power. A Gunn diode mounted
on an X-band wafer is shown in Figure 8-2c. Another solid-state source is the IMPATT diode,
which uses a reverse-biased pn junction, typically of silicon or gallium arsenide, to generate RF
power. Today waveguides are still popular, and they are widely used as transmission lines in
communication systems operating at even higher frequencies, such as Ku-band (12.4–18 GHz),
K-band (18–26.5 GHz), Ka-band (26.5–40 GHz), etc. It is then very important that we understand
the field configurations (modes), and their characteristics, that such transmission lines can support
and sustain.

351



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 352

352 RECTANGULAR CROSS-SECTION WAVEGUIDES AND CAVITIES

Figure 8-1 Two rectangular waveguides (Ku-band and X-band) with flanges.

(a) (b) (c)

Figure 8-2 X-band microwave sources: X-13 klystron and Gunn diode wafer. (a) Rear view of X-13. (b)
Front view of X-13. (c) Gunn diode wafer.

Rectangular transmission lines (such as rectangular waveguides, dielectric slab lines, striplines,
and microstrips) and their corresponding cavities represent a significant section of lines used in
many practical radio-frequency systems. The objective in this chapter is to introduce and analyze
some of them, and to present some data on their propagation characteristics. The parameters of
interest include field configurations (modes) that can be supported by such structures and their
corresponding cutoff frequencies, guide wavelengths, wave impedances, phase and attenuation
constants, and quality factors Q . Because of their general rectilinear geometrical shapes, it is most
convenient to use the rectangular coordinate system for the analyses. The field configurations that
can be supported by these structures must satisfy Maxwell’s equations or the wave equation, and
the corresponding boundary conditions.

8.2 RECTANGULAR WAVEGUIDE

Let us consider a rectangular waveguide of lateral dimensions a and b, as shown in Figure 8-
3. Initially assume that the waveguide is of infinite length and is empty. It is our purpose to
determine the various field configurations (modes) that can exist inside the guide. Although a
TEMz field configuration is of the simplest structure, it cannot satisfy the boundary conditions
on the waveguide walls. Therefore, it is not a valid solution. It can be shown that modes TEx ,
TMx , TEy , TMy , TEz , and TMz satisfy the boundary conditions and are therefore appropriate
modes (field configurations) for the rectangular waveguide. We will initially consider TEz and
TMz ; others will follow.
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y

x
a

b

z

Figure 8-3 Rectangular waveguide with its appropriate dimensions.

8.2.1 Transverse Electric (TEz)

According to (6-71a) through (6-72), TEz electric and magnetic fields satisfy the following set
of equations:

Ex = −1

ε

∂Fz

∂y
Hx = −j

1

ωμε

∂2Fz

∂x ∂z

Ey = 1

ε

∂Fz

∂x
Hy = −j

1

ωμε

∂2Fz

∂y ∂z

Ez = 0 Hz = −j
1

ωμε

(
∂2

∂z 2
+ β2

)
Fz (8-1)

where Fz (x , y , z ) is a scalar potential function, and it represents the z component of the vector
potential function F. The potential F, and in turn Fz , must satisfy (6-73) or

∇2Fz (x , y , z ) + β2Fz (x , y , z ) = 0 (8-2)

which can be reduced to
∂2Fz

∂x 2
+ ∂2Fz

∂y2
+ ∂2Fz

∂z 2
+ β2Fz = 0 (8-2a)

The solution to (8-2) or (8-2a) is obtained by using the separation-of-variables method outlined
in Section 3.4.1. In general, the solution to Fz (x , y , z ) can be written initially as

Fz (x , y , z ) = f (x)g(y)h(z ) (8-3)

The objective here is to choose judiciously the most appropriate forms for f (x), g(y), and h(z )

from (3-28a) through (3-30b).
Since the waveguide is bounded in the x and y directions, the forms of f (x) and g(y) must be

chosen to represent standing waves. The most appropriate forms are those of (3-28b) and (3-29b).
Thus,

f (x) = f2(x) = C1 cos(βx x) + D1 sin(βx x) (8-4a)

g(y) = g2(y) = C2 cos(βy y) + D2 sin(βy y) (8-4b)
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Because the waveguide is infinite in length, the variations of the fields in the z direction must
represent traveling waves as given by (3-30a). Thus,

h(z ) = h1(z ) = A3e−jβz z + B3e+jβz z (8-5)

Substituting (8-4a) through (8-5) into (8-3), we can write that

Fz (x , y , z ) = [C1 cos(βx x) + D1 sin(βx x)]
[
C2 cos(βy y) + D2 sin(βy y)

]
× [

A3e−jβz z + B3e+jβz z
]

(8-6)

The first exponential in (8-6) represents waves traveling in the +z direction (assuming an ejωt

time variation) and the second term designates waves traveling in the −z direction. To simplify
the notation, assume that the source is located such that the waves are traveling only in the
+z direction. Then the second term is not present, so B3 = 0. If the waves are traveling in the
−z direction, then the second exponential in (8-6) is appropriate and A3 = 0. If the waves are
traveling in both directions, superposition can be used to sum the field expressions for the +z
and −z traveling waves.

For +z traveling waves, Fz of (8-6) reduces with B3 = 0 to

F+
z (x , y , z ) = [C1 cos(βx x) + D1 sin(βx x)]

× [
C2 cos(βy y) + D2 sin(βy y)

]
A3e−jβz z (8-7)

where, according to (3-27), the constraint (dispersion) equation is

β2
x + β2

y + β2
z = β2 = ω2με (8-7a)

C1, D1, C2, D2, A3, βx , βy , and βz are constants that will be evaluated by substituting (8-7) into
(8-1) and applying the appropriate boundary conditions on the walls of the waveguide.

For the waveguide structure of Figure 8-3, the necessary and sufficient boundary conditions
are those that require the tangential components of the electric field to vanish on the walls of the
waveguide. Thus, in general, on the bottom and top walls

Ex (0 ≤ x ≤ a , y = 0, z ) = Ex (0 ≤ x ≤ a , y = b, z ) = 0 (8-8a)

Ez (0 ≤ x ≤ a , y = 0, z ) = Ez (0 ≤ x ≤ a , y = b, z ) = 0 (8-8b)

and on the left and right walls

Ey(x = 0, 0 ≤ y ≤ b, z ) = Ey(x = a , 0 ≤ y ≤ b, z ) = 0 (8-8c)

Ez (x = 0, 0 ≤ y ≤ b, z ) = Ez (x = a , 0 ≤ y ≤ b, z ) = 0 (8-8d)

For the TEz modes, Ez = 0, and the boundary conditions of (8-8b) and (8-8d) are automatically
satisfied. However, in general, the boundary conditions of (8-8b) and (8-8d) are not independent,
but they represent the same conditions as given, respectively, by (8-8a) and (8-8c). Therefore, the
necessary and sufficient independent boundary conditions, in general, will be to enforce either
(8-8a) or (8-8b) and either (8-8c) or (8-8d).

Substituting (8-7) into (8-1), we can write the x component of the electric field as

E+
x (x , y , z ) = −A3

βy

ε
[C1 cos(βx x) + D1 sin(βx x)]

× [−C2 sin(βy y) + D2 cos(βy y)
]

e−jβz z (8-9)
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Enforcing on (8-9) the boundary conditions (8-8a) on the bottom wall, we have that

E+
x (0 ≤ x ≤ a , y = 0, z ) = −A3

βy

ε
[C1 cos(βx x) + D1 sin(βx x)]

× [−C2(0) + D2(1)] e−jβz z = 0 (8-10)

The only way for (8-10) to be satisfied and not lead to a trivial solution will be for D2 = 0.
Thus,

D2 = 0 (8-10a)

Now by enforcing on (8-9) the boundary conditions (8-8a) on the top wall, and using (8-10a),
we can write that

E+
x (0 ≤ x ≤ a , y = b, z ) = −A3

βy

ε
[C1 cos(βx x) + D1 sin(βx x)]

× [−C2 sin(βy b)
]

e−jβz z = 0 (8-11)

For nontrivial solutions, (8-11) can only be satisfied provided that

sin(βy b) = 0 (8-12)

which leads to
βy b = sin−1(0) = nπ , n = 0, 1, 2, . . . (8-12a)

or
βy = nπ

b
, n = 0, 1, 2, . . . (8-12b)

Equation 8-12 is usually referred to as the eigenfunction and (8-12b) as the eigenvalue.
In a similar manner, we can enforce the boundary conditions on the left and right walls as

given by (8-8c). By doing this, it can be shown that

D1 = 0 (8-13)

and
βx = mπ

a
, m = 0, 1, 2, . . . (8-13a)

Use of (8-10a), (8-12b), (8-13), and (8-13a) reduces (8-7) to

F+
z (x , y , z ) = C1C2A3 cos(βx x) cos(βy y)e−jβz z (8-14)

or, by combining C1C2A3 = Amn , to

F+
z (x , y , z ) = Amn cos(βx x) cos(βy y)e−jβz z (8-14a)

with

βx = mπ

a
= 2π

λx
⇒ λx = 2a

m

βy = nπ

b
= 2π

λy
⇒ λy = 2b

n

m = 0, 1, 2, . . .
n = 0, 1, 2, . . .
m and n not zero simultaneously

(8-14b)

In (8-14b) combination m = n = 0 is excluded because for that combination, Fz of (8-14a)
is a constant and all the components of E and H as given by (8-1) vanish; thus, it is a trivial
solution. Since individually C1, C2, and A3 are constants, their product Amn is also a constant.
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The subscripts m and n are used to designate the eigenvalues of βx and βy and in turn the field
configurations (modes). Thus, a given combination of m and n in (8-14b) designates a given
TEz

mn mode. Since there are infinite combinations of m and n , there are an infinite number of
TEz

mn modes.
In (8-14b), βx and βy represent the mode wave numbers (eigenvalues) in the x and y directions,

respectively. These are related to the wave number in the z direction (βz ) and to that of the
unbounded medium (β) by (8-7a). In (8-14b), λx and λy represent, respectively, the wavelengths
of the wave inside the guide in the x and y directions. These are related to the wavelength in the
z direction (λz = λg ) and to that in an unbounded medium (λ), according to (8-7a), by

1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

= 1

λ2
(8-14c)

In summary then, the appropriate expressions for the TEz
mn modes are, according to (8-1),

(8-14a), and (8-14b),
TE+z

mn

E+
x = Amn

βy

ε
cos(βx x) sin(βy y)e−jβz z (8-15a)

E+
y = −Amn

βx

ε
sin(βx x) cos(βy y)e−jβz z (8-15b)

E+
z = 0 (8-15c)

H +
x = Amn

βxβz

ωμε
sin(βx x) cos(βy y)e−jβz z (8-15d)

H +
y = Amn

βyβz

ωμε
cos(βx x) sin(βy y)e−jβz z (8-15e)

H +
z = −jAmn

β2
c

ωμε
cos(βx x) cos(βy y)e−jβz z (8-15f)

where

β2
c ≡

(
2π

λc

)2

= β2 − β2
z = β2

x + β2
y =

(mπ

a

)2
+

(nπ

b

)2
(8-15g)

The constant βc is the value of β when βz = 0, and it will be referred to as the cutoff wave
number . Thus,

βc = β|βz =0 = ω
√

με|βz =0 = ωc
√

με = 2π fc
√

με =
√(mπ

a

)2
+

(nπ

b

)2

or

(fc)mn = 1

2π
√

με

√(mπ

a

)2
+

(nπ

b

)2 m = 0, 1, 2, . . .
n = 0, 1, 2, . . .
m and n not zero simultaneously

(8-16)

where (fc)mn represents the cutoff frequency of a given mn mode. Modes that have the same
cutoff frequency are called degenerate.
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To determine the significance of the cutoff frequency, let us examine the values of βz . Using
(8-15g), we can write that

β2
z = β2 − β2

c = β2 −
[(mπ

a

)2
+

(nπ

b

)2
]

(8-17)

or

(βz )mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±
√

β2 − β2
c = ±β

√
1 −

(
βc

β

)2

= ±β

√
1 −

(
λ

λc

)2

= ±β

√
1 −

(
fc
f

)2

for β > βc , f > fc

0 for β = βc , f = fc

± j
√

β2
c − β2 = ±jβ

√(
βc

β

)2

− 1

= ±jβ

√(
λ

λc

)2

− 1 = ±jβ

√(
fc
f

)2

− 1 for β < βc , f < fc

(8-17a)

(8-17b)

(8-17c)

In order for the waves to be traveling in the +z direction, the expressions for βz as given by
(8-17a) through (8-17c) reduce to

(βz )mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β

√
1 −

(
λ

λc

)2

= β

√
1 −

(
fc
c

)2

for f > fc

0 for f = fc

− jβ

√(
λ

λc

)2

− 1 = −jβ

√(
fc
f

)2

− 1 for f < fc

(8-18a)

(8-18b)

(8-18c)

Substituting the expressions for βz as given by (8-18a) through (8-18c) in the expressions for
E and H as given by (8-15a) through (8-15f), it is evident that (8-18a) leads to propagating
waves, (8-18b) to standing waves, and (8-18c) to evanescent (reactive) or nonpropagating waves.
Evanescent fields are exponentially decaying fields that do not possess real power. Thus, (8-18b)
serves as the boundary between propagating and nonpropagating waves, and it is usually referred
to as the cutoff, which occurs when βz = 0. When the frequency of operation is selected to be
higher than the value of (fc)mn for a given mn mode, as given by (8-16), then the fields propagate
unattenuated. If, however, f is selected to be smaller then (fc)mn , then the fields are attenuated.
Thus, the waveguide serves as a high pass filter.

The ratios of Ex/Hy and −Ey/Hx have the units of impedance. Use of (8-15a) through (8-15f)
shows that

Z +z
w (TEz

mn) ≡ Ex

Hy
= − Ey

Hx
= ωμ

βz
(8-19)
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which can be written by using (8-18a) through (8-18c) as

Z +z
w (TEz

mn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωμ

β

√
1 −

(
fc
f

)2
=

√
μ

ε√
1 −

(
fc
f

)2
= η√

1 −
(

fc
f

)2

for f > fc

∞ for f = fc

+ j
ωμ

β

√(
fc
f

)2

− 1

= +j

√
μ

ε√(
fc
f

)2

− 1

= +j
η√(

fc
f

)2

− 1

for f < fc

(8-20a)

(8-20b)

(8-20c)

Z +z
w in (8-20a) through (8-20c) is referred to as the wave impedance in the +z direction, which

is real and greater than the intrinsic impedance η of the medium inside the guide for values
of f > fc , infinity at f = fc , and reactively inductive for f < fc . Thus, the waveguide for TEz

mn
modes behaves as an inductive storage element for f < fc . A plot of Z +z

w for any TEmn mode in
the range of 0 ≤ f /fc ≤ 3 is shown in Figure 8-4.

The expressions of (8-18a) through (8-18c) for βz can also be used to define a wavelength
along the axis of the guide. Thus, we can write that

βz ≡ 2π

λz
⇒ λz = λg = 2π

βz
(8-21)
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Figure 8-4 Wave impedance for a rectangular waveguide.
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or

(λz )mn = (λg)mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π

β

√
1 −

(
fc
f

)2
= λ√

1 −
(

fc
f

)2
= λ√

1 −
(

λ

λc

)2

for f > fc

∞ for f = fc

+ j
2π

β

√(
fc
f

)2

− 1

= +j
λ√(

fc
f

)2

− 1

= +j
λ√(

λ

λc

)2

− 1

(nonphysical) for f < fc

(8-21a)

(8-21b)

(8-21c)

In (8-21a) through (8-21c) λz represents the wavelength of the wave along the axis of the
guide, and it is referred to as the guide wavelength λg . In the same expressions, λ refers to the
wavelength of the wave at the same frequency but traveling in an unbounded medium whose
electrical parameters ε and μ are the same as those of the medium inside the waveguide. Cutoff
wavelength corresponding to the cutoff frequency fc is represented by λc .

Inspection of (8-21a) through (8-21c) indicates that the guide wavelength λg is greater than
the unbounded medium wavelength λ for f > fc , it is infinity for f = fc , and has no physical
meaning for f < fc since it is purely imaginary. A plot of λg/λ for 1 ≤ f /fc ≤ 3 is shown in
Figure 8-5.

The values of (fc)mn for different combinations of m and n but fixed values of ε, μ, a , and
b determine the cutoff frequencies and order of existence of each mode above its corresponding
cutoff frequency. Assuming a > b, the mode with the smallest cutoff frequency is that of TE10.
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Figure 8-5 Normalized wavelength for a rectangular waveguide.
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Its cutoff frequency is equal to

(fc)10 = 1

2π
√

με

π

a
= 1

2a
√

με
(8-22)

In general, the mode with the smallest cutoff frequency is referred to as the dominant mode. Thus
for a waveguide with a > b, the dominant mode is the TE10 mode. (If b > a , the dominant mode
is the TE01.)

The ratio Rmn = (fc)TE
mn/(fc)

TE
10 can be written as

Rmn = (fc)TE
mn

(fc)TE
10

=
√

(m)2 +
(na

b

)2 m = 0, 1, 2, 3, . . .
n = 0, 1, 2, 3, . . .

m and n not zero simultaneously
(8-23)

whose values for a/b = 10, 5, 2.25, 2, and 1, for the allowable values of m and n , are listed
in Table 8-1. The ratio value Rmn of a given m , n combination represents the relative frequency
range over which the TE10 mode can operate before that m , n mode will begin to appear. For a
given a/b ratio, the smallest value of (8-23), above unity, indicates the relative frequency range
over which the waveguide can operate in a single TE10 mode.

TABLE 8-1 Ratio of cutoff frequency of TEz
mn mode to that of TEz

10

Rmn = (fc)
TEz

mn

(fc)
TEz

10

=
√

m2 +
(na

b

)2 m = 0, 1, 2, . . .
n = 0, 1, 2, . . .

m and n not zero simultaneously

a/b 10 5 2.25 2 1

m , n 1,0 1,0 1,0 1,0 1,0; 0,1
Rmn 1 1 1 1 1

m , n 2,0 2,0 2,0 2,0;0,1 1,1
Rmn 2 2 2 2 1.414

m , n 3,0 3,0 0,1 1,1 2,0
Rmn 3 3 2.25 2.236 2

m , n 4,0 4,0 1,1 2,1 2,1;1,2
Rmn 4 4 2.462 2.828 2.236

m , n 5,0 5,0;0,1 3,0 3,0 2,2
Rmn 5 5 3 3 2.828

m , n 6,0 1,1 2,1 3,1 3,0;0,3
Rmn 6 5.099 3.010 3.606 3

m , n 7,0 2,1 3,1 4,0;0,2 3,1;1,3
Rmn 7 5.385 3.75 4 3.162

m , n 8,0 3,1 4,0 1,2 3,2;2,3
Rmn 8 5.831 4 4.123 3.606

m , n 9,0 6,0 0,2 4,1;2,2 4,0;0,4
Rmn 9 6 4.5 4.472 4

m , n 10,0;0,1 4,1 4,1 5,0;3,2 4,1;1,4
Rmn 10 6.403 4.589 5 4.123
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Example 8-1

A rectangular waveguide of dimensions a and b (a > b), as shown in Figure 8-3, is to be operated in a
single mode. Determine the smallest ratio of the a/b dimensions that will allow the largest bandwidth of
the single-mode operation. State the dominant mode and its largest bandwidth of single-mode operation.

Solution: According to (8-16), the dominant mode for a > b is the TE10 whose cutoff frequency is
given by (8-22), i.e.,

(fc)10 = 1

2a
√

με

The mode with the next higher cutoff frequency would be either the TE20 or TE01 mode whose cutoff
frequencies are given, respectively, by

(fc)20 = 1

a
√

με
= 2(fc)10

(fc)01 = 1

2b
√

με

It is apparent that the largest bandwidth of single TE10 mode operation would be

(fc)10 ≤ f ≤ 2(fc)10 = (fc)20 ≤ (fc)01

and would occur provided
2b ≤ a ⇒ 2 ≤ a/b

8.2.2 Transverse Magnetic (TMz)

A procedure similar to that used for the TEz modes can be used to derive the TMz fields and the
other appropriate parameters for a rectangular waveguide of the geometry shown in Figure 8-3.
According to (6-55a) and (6-55b) these can be obtained by letting A = âz Az (x , y , z ) and F = 0.
Without repeating the entire procedure, the most important equations 6-59, 6-56, and 6-58 are
summarized:

Ex = −j
1

ωμε

∂2Az

∂x ∂z
Hx = 1

μ

∂Az

∂y

Ey = −j
1

ωμε

∂2Az

∂y ∂z
Hy = − 1

μ

∂Az

∂x

Ez = −j
1

ωμε

(
∂2

∂z 2
+ β2

)
Az Hz = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8-24)

∇2Az + β2Az = ∂2Az

∂x 2
+ ∂2Az

∂y2
+ ∂2Az

∂z 2
+ β2Az = 0 (8-25)

Az (x , y , z ) = [C1 cos(βx x) + D1 sin(βx x)][C2 cos(βy y) + D2 sin(βy y)]

×[A3e−jβz z + B3e+jβz z ] (8-26)

For waves that travel in the +z direction and satisfy the boundary conditions of Figure 8-3, as
outlined by (8-8a) through (8-8d), (8-26) reduces to

A+
z (x , y , z ) = D1D2A3 sin(βx x) sin(βy y)e−jβz z

= Bmn sin(βx x) sin(βy y)e−jβz z (8-26a)
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where

βx ≡ 2π

λx
= mπ

a
⇒ λx = 2a

m
, m = 1, 2, 3, . . . (8-27a)

βy ≡ 2π

λy
= nπ

b
⇒ λy = 2b

n
, n = 1, 2, 3, . . . (8-27b)

m = 0 and n = 0 are not allowable eigenvalues; they are needed as trivial solutions.
Use of (8-26) allows the fields of (8-24) to be written as

E+
x = −Bmn

βxβz

ωμε
cos(βx x) sin(βy y)e−jβz z (8-28a)

E+
y = −Bmn

βyβz

ωμε
sin(βx x) cos(βy y)e−jβz z (8-28b)

E+
z = −jBmn

β2
c

ωμε
sin(βx x) sin(βy y)e−jβz z (8-28c)

H +
x = Bmn

βy

μ
sin(βx x) cos(βy y)e−jβz z (8-28d)

H +
y = −Bmn

βx

μ
cos(βx x) sin(βy y)e−jβz z (8-28e)

H +
z = 0 (8-28f)

In turn, the wave impedance, propagation constant, cutoff frequency, and guide wavelength can
be expressed as

Z +z
w (TMz

mn) ≡ E+
x

H +
y

= − E+
y

H +
x

= βz

ωε
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+ η

√
1 −

(
fc
f

)2

for f > fc

0 for f = fc

− jη

√(
fc
f

)2

− 1 for f < fc

(8-29a)

(8-29b)

(8-29c)

(βz )mn ≡ 2π

λz
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β

√
1 −

(
fc
f

)2

for f > fc

0 for f = fc

− jβ

√(
fc
f

)2

− 1 for f < fc

(8-30a)

(8-30b)

(8-30c)

β2
c ≡

(
2π

λc

)2

= β2 − β2
z = β2

x + β2
y =

(mπ

a

)2
+

(nπ

b

)2
(8-31)

(fc)mn = 1

2π
√

με

√(mπ

a

)2
+

(nπ

b

)2 m = 1, 2, 3, . . .
n = 1, 2, 3, . . .

(8-32)
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(λz )mn = (λg)mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ√
1 −

(
fc
f

)2
= λ√

1 −
(

λ

λc

)2
for f > fc

∞ for f = fc

j
λ√(

fc
f

)2

− 1

= j
λ√(

λ

λc

)2

− 1

(nonphysical) for f < fc

(8-33a)

(8-33b)

(8-33c)

It is apparent from (8-29c) that below cutoff (f < fc) the waveguide for TMz
mn modes behaves

as a capacitive storage element. A plot of Z +z
w for any TMz

mn mode in the range of 0 ≤ f /fc ≤ 3
is shown in Figure 8-4.

For TMz , we can classify the modes according to the order of their cutoff frequency. The
TMz mode with the smallest cutoff frequency, according to (8-32), is the TMz

11 whose cutoff
frequency is equal to

(fc)11 = 1

2
√

με

√(
1

a

)2

+
(

1

b

)2

= 1

2a
√

με

√
1 +

(a

b

)2
>

1

2a
√

με
(8-34)

Since the cutoff frequency of the TMz
11 mode, as given by (8-34), is greater than the cutoff

frequency of the TEz
10, as given by (8-22), then the TEz

10 mode is always the dominant mode if
a > b. If a = b, the dominant modes are the TEz

10 and TEz
01 modes (degenerate), and if a < b

the dominant mode is the TEz
01 mode.

The order in which the TMz
mn modes occur, relative to the TEz

10 mode, can be determined by
forming the ratio Tmn of the cutoff frequency of any TMz

mn mode to the cutoff frequency of the
TEz

10 mode. Then we use (8-32) and (8-22) to write that

Tmn = (fc)TM
mn

(fc)TE
10

=
√

m2 +
(na

b

)2 m = 1, 2, 3, . . .
n = 1, 2, 3, . . .

(8-35)

The values of Tmn for a/b = 10, 5, 2.25, 2, and 1, for the allowable values of m and n , are listed
in Table 8-2. Each value of Tmn in Table 8-2 represents the relative frequency range over which
the TE10 mode can operate before that m , n mode will begin to appear.

For a given ratio of a/b, the values of Rmn of (8-23) and Table 8-1, and those of Tmn of (8-35)
and Table 8-2 represent the order, in terms of ascending cutoff frequencies, in which the TEz

mn
and TMz

mn modes occur relative to the dominant TEz
10 mode.

The xy cross-section field distributions for the first 18 modes [1] of a rectangular waveguide
with cross-sectional dimensions a/b = 2 are plotted in Figure 8-6. Field configurations of another
18 modes plus the first 30 for a square waveguide (a/b = 1) can be found in [1].
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TABLE 8-2 Ratio of cutoff frequency of TMz
mn mode to that of TEz

10

Tmn = (fc)
TMz

mn

(fc)
TEz

10

=
√

m2 +
(na

b

)2 m = 1, 2, 3, . . .
n = 1, 2, 3, . . .

a/b ⇒ 10 5 2.25 2 1

m , n ⇒ 1,1 1,1 1,1 1,1 1,1
Tmn ⇒ 10.05 5.10 2.46 2.23 1.414

m , n ⇒ 2,1 2,1 2,1 2,1 2,1;1,2
Tmn ⇒ 10.19 5.38 3.01 2.83 2.236

m , n ⇒ 3,1 3,1 3,1 3,1 2,2
Tmn ⇒ 10.44 6.00 3.75 3.61 2.828

m , n ⇒ 4,1 4,1 4,1 1,2 3,1;1,3
Tmn ⇒ 10.77 6.40 4.59 4.12 3.162

m , n ⇒ 5,1 5,1 1,2 4,1;2,2 3,2;2,3
Tmn ⇒ 11.18 7.07 5.09 4.47 3.606

m , n ⇒ 6,1 6,1 2,2 3,2 4,1;1,4
Tmn ⇒ 11.66 7.81 5.38 5.00 4.123

m , n ⇒ 7,1 7,1 3,2 5,1 3,3
Tmn ⇒ 12.21 8.60 5.41 5.39 4.243

m , n ⇒ 8,1 8,1 5,1 4,2 4,2;2,4
Tmn ⇒ 12.81 9.43 5.48 5.66 4.472

m , n ⇒ 9,1 1,2 4,2 1,3 4,3;3,4
Tmn ⇒ 13.82 10.04 6.40 6.08 5.00

m , n ⇒ 10,1 2,2 6,1 2,3 5,1;1,5
Tmn ⇒ 14.14 10.20 6.41 6.32 5.09

Example 8-2

The inner dimensions of an X-band WR90 rectangular waveguide are a = 0.9 in. (2.286 cm) and b = 0.4
in. (1.016 cm). Assume free space within the guide and determine (in GHz) the cutoff frequencies, in
ascending order, of the first 10 TEz and/or TMz modes.

Solution: Since a/b = 0.9/0.4 = 2.25, then according to Tables 8-1 and 8-2, the cutoff frequencies
of the first 10 TEz

mn and/or TMz
mn modes in order of ascending frequency are

1. TE10 = 6.562 GHz
2. TE20 = 13.124 GHz
3. TE01 = 14.764 GHz

4, 5. TE11 = TM11 = 16.16 GHz
6. TE30 = 19.685 GHz

7, 8. TE21 = TM21 = 19.754 GHz
9, 10. TE31 = TM31 = 24.607 GHz
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Figure 8-6 Field patterns for the first 18 TEz and/or TMz modes in a rectangular waveguide with a/b = 2.
(Source: C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular
waveguides,” IEEE Trans. Microwave Theory Tech., © 1985, IEEE.).

8.2.3 Dominant TE10 Mode

From the discussion and analysis of the previous two sections, it is evident that there are an
infinite number of TEz

mn and TMz
mn modes that satisfy Maxwell’s equations and the boundary

conditions, and that they can exist inside the rectangular waveguide of Figure 8-3. In addition,
other modes, such as TEx , TMx , TEy , and TMy , can also exist inside that same waveguide. The
analysis of the TEx and TMx modes has been assigned to the reader as an end-of-chapter problem
while the TEy and TMy modes are analyzed in Sections 8.5.1 and 8.5.2.
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In a given system, the modes that can exist inside a waveguide depend upon the dimensions
of the waveguide, the medium inside it which determines the cutoff frequencies of the different
modes, and the excitation and coupling of energy from the source (oscillator) to the waveguide.
Since in a multimode waveguide operation the total power is distributed among the existing
modes (this will be shown later in this chapter) and the instrumentation (detectors, probes, etc.)
required to detect the total power of multimodes is more complex and expensive, it is often most
desirable to operate the waveguide in a single mode.

The order in which the different modes enter a waveguide depends upon their cutoff frequency.
The modes with cutoff frequencies equal to or smaller than the operational frequency can exist
inside the waveguide. Because, in practice, most systems that utilize a rectangular waveguide
design require excitation and detection instrumentation for a dominant TE10 mode operation, it
is prudent at this time to devote some extra effort to examination of the characteristics of this
mode.

For the TEz
10 mode the pertinent expressions for the field intensities and the various character-

istic parameters are obtained from Section 8.2.1 by letting m = 1 and n = 0. Then we can write
the following summary.

TEz
10 Mode (m = 1, n = 0)

F+
z (x , z ) = A10 cos

(π

a
x
)

e−jβz z (8-36)

βx = π

a
= 2π

λx
⇒ λx = 2a (8-37a)

βy = 0 = 2π

λy
⇒ λy = ∞ (8-37b)

βc = βx = π

a
= 2π

λc
⇒ λc = 2a (8-37c)

βz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
β2 −

(π

a

)2
= β

√
1 −

(
λ

2a

)2

= β

√
1 −

(
λ

λc

)2

= β

√
1 −

(
fc
f

)2

for f > fc

0 for f = fc

− j

√(π

a

)2
− β2 = −jβ

√(
λ

2a

)2

− 1

= −jβ

√(
λ

λc

)2

− 1 = −jβ

√(
fc
f

)2

− 1 for f < fc

(8-38a)

(8-38b)

(8-38c)

E+
x = 0 (8-39a)

E+
y = −A10

ε

π

a
sin

(π

a
x
)

e−jβz z (8-39b)

E+
z = 0 (8-39c)
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H +
x = A10

βz

ωμε

π

a
sin

(π

a
x
)

e−jβz z (8-39d)

H +
y = 0 (8-39e)

H +
z = −j

A10

ωμε

(π

a

)2
cos

(π

a
x
)

e−jβz z (8-39f)

J+ = n̂ × H+|wall =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ây × (âx H +
x + âz H +

z )|y=0 = (+âx H +
z − âz H +

x )|y=0

= −âx j
A10

ωμε

(π

a

)2
cos

(π

a
x
)

e−jβz z − âz A10
βz

ωμε

π

a
sin

(π

a
x
)

e−jβz z︸ ︷︷ ︸
for the bottom wall

= âx × âz H +
z |x=0 = −ây H +

z |x=0 = ây j
A10

ωμε

(π

a

)2
e−jβz z︸ ︷︷ ︸

for the left wall

(8-39g)

(8-39h)

(λz )10 = (λg)10 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ√
1 −

(
fc
f

)2
= λ√

1 −
(

λ

λc

)2

= λ√
1 −

(
λ

2a

)2
for f > fc

∞ for f = fc

j
λ√(

fc
f

)2

− 1

= j
λ√(

λ

λc

)2

− 1

= j
λ√(

λ

2a

)2

− 1

(nonphysical) for f < fc

(8-40a)

(8-40b)

(8-40c)

(fc)10 = 1

2a
√

με
= v

2a
= v

(λc)10
(8-41)

Z +z
w (TEz

10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η√
1 −

(
fc
f

)2
for f > fc

∞ for f = fc

j
η√(

fc
f

)2

− 1

for f < fc

(8-42a)

(8-42b)

(8-42c)
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For the TE10 mode at cutoff (βz = 0 ⇒ λz = ∞) the wavelength of the wave inside the guide in
the x direction (λx ) is, according to (8-14c), equal to the wavelength of the wave in an unbounded
medium (λ). That is (λx )10 = λ at cutoff.

From the preceding information, it is evident that the electric field intensity inside the guide
has only one component, Ey . The E - and H -field variations on the top, front, and side views
of the guide are shown graphically in Figure 8-7, and the current density and H -field lines on
the top and side views are shown in Figure 8-8 [2]. It is instructive at this time to examine the
electric field intensity a little closer and attempt to provide some physical interpretation of the
propagation characteristics of the waveguide. The total electric field of (8-39a) through (8-39c)
can also be written, by representing the sine function with exponentials, as

E+(x , z ) = ây E+
y (x , z ) = −ây

A10

ε

π

a
sin

(π

a
x
)

e−jβz z

= −ây
A10

ε

π

a

[
ej [(π/a)x−βz z ] − e−j [(π/a)x+βz z ]

2j

]
E+(x , z ) = ây j

A10

2ε

π

a

[
ej [(π/a)x−βz z ] − e−j [(π/a)x+βz z ]] (8-43)

Letting

π

a
= βx = β sin ψ (8-44a)

βz = β cos ψ (8-44b)

y

z

3

E field

H field

TE10

2: Front 3: Side

1: Top

2

1

x

Figure 8-7 Electric field patterns for TE10 mode in a rectangular waveguide. (Source: S. Ramo, J. R. Whin-
nery, and T. Van Duzer, Fields and Waves in Communication Electronics, 1984. Reprinted with permission
of John Wiley & Sons, Inc.).
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Current density

a

b

Magnetic field

Top view

Side view

Figure 8-8 Magnetic field and electric current density patterns for the TE10 mode in a rectangular wave-
guide. (Source: S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics,
1984. Reprinted with permission of John Wiley & Sons, Inc.).

which satisfy the constraint equation 8-7a, or

β2
x + β2

y + β2
z = β2 sin2 ψ + β2 cos2 ψ = β2 (8-45)

We can write (8-43), using (8-44a) and (8-44b), as

E+(x , z ) = ây j
A10

2ε

π

a

[
ejβ(x sin ψ−z cos ψ) − e−jβ(x sin ψ+z cos ψ)

]
(8-46)

A close inspection of the two exponential terms inside the brackets indicates, by referring to
the contents of Section 4.2.2, that each represents a uniform plane wave traveling in a direction
determined by the angle ψ . In Figure 8-9a , which represents a top view of the waveguide of
Figure 8-3, the two plane waves representing (8-46) or

E+(x , z ) = E+
1 (x , z ) + E+

2 (x , z ) (8-47)

where

E+
1 (x , z ) = ây j

A10

2ε

π

a
[ejβ(x sin ψ−z cos ψ)] (8-47a)

E+
2 (x , z ) = −ây j

A10

2ε

π

a
[e−jβ(x sin ψ+z cos ψ)] (8-47b)

are indicated as two plane waves that bounce back and forth between the side walls of the
waveguide at an angle ψ . There is a 180◦ phase reversal between the two, which is also indicated
in Figure 8-9a .

According to (8-44b)

βz = β cos ψ ⇒ ψ = cos−1

(
βz

β

)
(8-48)

By using (8-38a), we can write (8-48) as

ψ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0◦ for f = ∞

cos−1

⎡⎣√
1 −

(
fc
f

)2
⎤⎦ for fc ≤ f < ∞

90◦ for f = fc

(8-49a)

(8-49b)

(8-49c)
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E2

E1

y

(a)

(b)

yy

y

z

x

a

y

vg

vp

z

x

a
v

Figure 8-9 Uniform plane wave representation of the TE10 mode electric field inside a rectangular wave-
guide. (a) Two uniform plane waves. (b) Phase and group velocities.

It is apparent that as f → fc , the angle ψ approaches 90◦ and exactly at cutoff (f = fc ⇒ ψ = 90◦)
the plane waves bounce back and forth between the side walls of the waveguide without moving
in the z direction. This reduces the fields into standing waves at cutoff.

By using (8-44b), the guide wavelength can be written as

βz = 2π

λz
= 2π

λg
= β cos ψ ⇒ λg = 2π

β cos ψ
= λ

cos ψ
(8-50)

which indicates that as cutoff approaches (ψ → 90◦), the guide wavelength approaches infinity.
In addition, the phase velocity vp can also be obtained using (8-44b), that is

βz ≡ ω

vp
= β cos ψ = ω

v
cos ψ ⇒ vp = v

cos ψ
(8-51)

where v is the velocity with which the plane wave travels along the direction determined by
ψ . Since the phase velocity, as given by (8-51), is greater than the velocity of light, it may be
appropriate to illustrate graphically its meaning. By referring to Figure 8-9b, it is evident that
whereas v is the velocity of the uniform plane wave along the direction determined by ψ , vp

(vp ≥ v) is the phase velocity, that is, the velocity that must be maintained to keep in step with
a constant phase front of the wave, and vg (vg ≤ v) is the group velocity, that is, the velocity
with which a uniform plane wave travels along the z direction. According to Figure 8-9b

vp = v

cos ψ
(8-52a)

vg = v cos ψ (8-52b)
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0
0

1 v

2 v

3 v

vp

vg

1 2 3

Normalized frequency f /fc

Figure 8-10 Phase and group (energy) velocities for the TE10 mode in a rectangular waveguide.

and

vpvg = v2 (8-52c)

These are the same interpretations given to the oblique plane wave propagation in Section 4.2.2C
and Figure 4-6. A plot of vp and vg as a function of frequency in the range 0 ≤ f /fc ≤ 3 is shown
in Figure 8-10.

Above cutoff, the wave impedance of (8-19) can be written in terms of the angle ψ as

Z +z
w (TE10) = ωμ

βz
= ωμ

β cos ψ
= η

cos ψ
(8-53)

whose values are equal to or greater than the intrinsic impedance η of the medium inside the
waveguide.

Example 8-3

Design an air-filled rectangular waveguide with dimensions a and b (a > b) that will operate in the
dominant TE10 mode at f = 10 GHz. The dimensions a and b of the waveguide should be chosen so
that at f = 10 GHz the waveguide not only operates on the single TE10 mode but also that f = 10 GHz
is simultaneously 25% above the cutoff frequency of the dominant TE10 mode and 25% below the next
higher-order TE01 mode.

Solution: According to (8-22), the cutoff frequency of the TE10 mode with a free-space medium in
the guide is

(fc)10 = 1

2a
√

μ0ε0
= 30 × 109

2a

Since f = 10 GHz must be greater by 25% above the cutoff frequency of the TE10 mode, then

10 × 109 ≥ 1.25

(
30 × 109

2a

)
⇒ a ≥ 1.875 cm = 0.738 in.
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Since the next higher-order mode is the TE01 mode, whose cutoff frequency with a free-space medium
in the guide is

(fc)01 = 1

2b
√

μ0ε0
= 30 × 109

2b

then

10 × 109 ≤ 0.75

(
30 × 109

2b

)
⇒ b ≤ 1.125 cm = 0.443 in.

Example 8-4

Design a rectangular waveguide with dimensions a and b (a > b) that will operate in a single mode
between 9 and 14 GHz. Assuming free space inside the waveguide, determine the waveguide dimensions
that will ensure single-mode operation over that band.

Solution: Since a > b, the dominant mode is the TE10, whose cutoff frequency must be

(fc)10 = 1

2a
√

μ0ε0
= 30 × 109

2a
= 9 × 109 ⇒ a = 1.667 cm = 0.656 in.

The cutoff frequency of the TE20 mode is 18 GHz. Therefore, the next higher-order mode is TE01,
whose cutoff frequency must be

(fc)01 = 1

2b
√

μ0ε0
= 30 × 109

2b
= 14 × 109 ⇒ b = 1.071 cm = 0.422 in.

8.2.4 Power Density and Power

The fields that are created and propagating inside the waveguide have power associated with
them. To find the power flowing down the guide, it is first necessary to find the average power
density directed along the axis of the waveguide. The power flowing along the guide can then be
found by integrating the axial directed power density over the cross section of the waveguide.

For the waveguide geometry of Figure 8-3, the z -directed power density can be written as

(Sz )mn = âz Sz = 1
2 Re

[(
âx Ex + ây Ey

) × (
âx Hx + ây Hy

)∗]
(Sz )mn = âz Sz = âz

1
2 Re

[
Ex H ∗

y − Ey H ∗
x

]
(8-54)

TEz
mn Modes

Use of the field expressions (8-15a) through (8-15f) allows the z -directed power density of (8-54)
for the TEz

mn modes to be written as

(Sz )mn = âz Sz = âz
|Amn |2

2
Re

[
β2

y βz

ωμε2
cos2(βx x) sin2(βy y)

+ β2
x βz

ωμε2
sin2(βx x) cos2(βy y)

]
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(Sz )mn = âz Sz = âz |Amn |2 βz

2ωμε2

[
β2

y cos2(βx x) sin2(βy y)

+β2
x sin2(βx x) cos2(βy y)

]
(8-55)

The associated power is obtained by integrating (8-55) over a cross section A0 of the guide, or

Pmn =
∫∫

A0

(Sz )mn • ds =
∫ b

0

∫ a

0
(âz Sz ) • (âz dx dy) =

∫ b

0

∫ a

0
Sz dx dy (8-56)

Since ∫ a

0
cos2

(mπ

a
x
)

dx =
{

a/2 m �= 0
a m = 0

(8-56a)∫ a

0
sin2

(mπ

a
x
)

dx =
{

a/2 m �= 0
0 m = 0

(8-56b)

and similar equalities exist for the y variations, (8-56) reduces by using (8-55), (8-56a), and
(8-56b) to

PTEz

mn = |Amn |2 βz

2ωμε2

[
β2

y

(
a

ε0m

)(
b

ε0n

)
+ β2

x

(
a

ε0m

)(
b

ε0n

)]
= |Amn |2 βz

2ωμε2

(
a

ε0m

)(
b

ε0n

)
(β2

x + β2
y )

PTEz

mn = |Amn |2 βz β
2
c

2ωμε2

(
a

ε0m

)(
b

ε0n

)
= |Amn |2 β2

c

2ηε2

(
a

ε0m

)(
b

ε0n

)√
1 −

(
fc,mn

f

)2

(8-57)
where

ε0q =
{

1 q = 0
2 q �= 0

(8-57a)

TMz
mn Modes

Use of a similar procedure, with (8-28a) through (8-28f), allows us to write that for the TMz
mn

modes

(Sz )mn = âz Sz = âz |Bmn |2 βz

2ωεμ2

[
β2

x cos2(βx x) sin2(βy y)

+β2
y sin2(βx x) cos2(βy y)

]
(8-58)

PTMz

mn = |Bmn |2 β2
c η

2μ2

(a

2

)(
b

2

)√
1 −

(
fc,mn

f

)2

(8-59)

By the use of superposition, the total power associated with a wave is equal to the sum of all
the power components associated with each mode that exists inside the waveguide. Thus

Ptotal =
∑
m ,n

PTEz

mn +
∑
m ,n

PTMz

mn (8-60)

where PTEz

mn and PTMz

mn are given, respectively, by (8-57) and (8-59).
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Example 8-5

The inside dimensions of an X-band WR90 waveguide are a = 0.9 in. (2.286 cm) and b = 0.4 in. (1.016
cm). Assume that the waveguide is air-filled and operates in the dominant TE10 mode, and that the air
will break down when the maximum electric field intensity is 3 × 106 V/m. Find the maximum power
that can be transmitted at f = 9 GHz in the waveguide before air breakdown occurs.

Solution: Since air will break down when the maximum electric field intensity in the waveguide
reaches 3 × 106 V/m, then according to (8-39b)∣∣Ey

∣∣
max = |A10|

ε0

π

a

∣∣∣sin
(π

a
x
)∣∣∣

max
= A10

ε0

π

a
= 3 × 106 ⇒ A10 = 1.933 × 10−7

By using (8-57)

PTE
10 = |A10|2

(βc)
2
10

2η0ε
2
0

(
a

ε01

)(
b

ε00

)√
1 −

[
(fc)10

f

]2

Since the cutoff frequency of the dominant TE10 mode is

(fc)10 = 1

2a
√

μ0ε0
= 30 × 109

2(2.286)
= 6.562 GHz

and
(βc)10 = π

a

then

PTE
10 = (1.933 × 10−7)2 (π/2.286 × 10−2)2

2(377)(8.854 × 10−12)2

(
2.286 × 10−2

2

)

×
(

1.016 × 10−2

1

)√
1 −

(
6.562

9

)2

PTE
10 = 948.9 × 103 W = 948.9 kW

8.2.5 Attenuation

Ideally, if the waveguide were made out of a perfect conductor, there would not be any atten-
uation associated with the guide above cutoff. Below cutoff, the fields reduce to evanescent
(nonpropagating) waves that are highly attenuated. In practice, however, no perfect conductors
exist, although many (such as metals) are very good conductors, with conductivities on the order
of 107 –108 S/m. For waveguides made out of such conductors (metals), there must be some atten-
uation due to the conduction (ohmic) losses in the waveguides themselves. This is accounted
for by introducing an attenuation coefficient αc . Another factor that contributes to the waveguide
attenuation is the losses associated with lossy dielectric materials that are inserted inside the
guide. These losses are referred to as dielectric losses and are accounted for by introducing an
attenuation coefficient αd .

A. Conduction (Ohmic) Losses To find the losses associated with a waveguide whose walls
are not perfectly conducting, a new boundary-value problem must be solved. That problem would
be the same one shown in Figure 8-3 but with nonperfectly conducting walls. To solve such a
problem exactly is an ambitious and complicated task. Instead an alternate procedure is almost
always used whereby the solution is obtained using a perturbational method. With that method,
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it is assumed that the fields inside the waveguide with lossy walls, but of very high conductivity,
are slightly perturbed from those of perfectly conducting walls. The differences between the two
sets of fields are so small that the fields are usually assumed to be essentially the same. However,
the walls themselves are considered as lossy surfaces represented by a surface impedance Zs

given by (4-42), or

Zs = Rs + jXs =
√

jωμ

σ + jωε

σ�ωε�
√

jωμ

σ
=

√
ωμ

2σ
(1 + j ) (8-61)

The power Pc absorbed and dissipated as heat by each surface (wall) Am of the waveguide is
obtained using an expression analogous to I 2R/2 used in lumped-circuit theory, that is

Pc = Rs

2

∫∫
Am

Js • J∗
s ds (8-62)

where
Js � n̂ × H|surface (8-62a)

In (8-62a), Js represents the linear current density in (A/m) induced on the surface of a lossy
conductor, as discussed in Example 5-7, and illustrated graphically in Figure 5-11.

Once the total conduction power Pc dissipated as heat on the waveguide has been found by
applying (8-62) on all four walls of the guide, the next step is to define and derive an expression
for the attenuation coefficient αc . This can be accomplished by referring to Figure 8-11, which
represents the lossy waveguide in its axial direction. If P0 represents the power at some reference
point (e.g., z = 0), then the power Pmn at some other point z is related to P0 (Pmn at z = 0) by

Pmn(z ) = Pmn |z=0e−2αc z = P0e−2αc z (8-63)

The negative rate of change (with respect to z ) of Pmn represents the dissipated power per
unit length. Thus, for a length � of a waveguide, the total dissipated power Pc is found using

Pc = −z
dPmn

dz

∣∣∣∣
z=�

= −z
d

dz

(
P0e−2αc z

)∣∣∣∣
z=�

= 2αczP0e−2αc z
∣∣
z=�

Pc = 2αc�Pmn (8-64)

b

a

z

y

x

z = 0

P0Pmn = P0 e
−2acz

z = l
l

Figure 8-11 Rectangular waveguide geometry for attenuation constant derivation.
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or

αc = Pc/�

2Pmn
(8-64a)

In (8-64a), Pc is obtained using (8-62) and Pmn is represented by (8-57) or (8-59).
The derivation of Pc , as given by (8-62), for any m , n TEz or TMz mode is a straightforward

but tedious process. To reduce the complexity, we will illustrate the procedure for the TE10 mode.
The derivation for the m, n mode is assigned as an end-of-chapter problem.

Use of the geometry of Figure 8-3 allows the total power Pc dissipated on the walls of the
waveguide to be written as

(Pc)10 = 2

[
Rs

2

∫∫
bottom wall

(y=0)

Jsb • J∗
sb ds + Rs

2

∫∫
left wall
(x=0)

Js� • J∗
s� ds

]

(Pc)10 = Rs

[∫∫
bottom wall

(y=0)

Jsb • J∗
sb ds +

∫∫
left wall
(x=0)

Js� • J∗
s� ds

]
(8-65)

Since the losses on the top wall are the same as those on the bottom and those on the right wall
are the same as those on the left, a factor of 2 was used in (8-65) to multiply the losses of the
bottom and left walls.

In (8-65), Jsb and Js� represent the linear current densities on the bottom and left walls of the
guide, which are equal to

Jsb = n̂ × H|y=0 = ây × (âx Hx + âz Hz )|y=0 = (âx Hz − âz Hx )|y=0

= −âx j
A10

ωμε

(π

a

)2
cos

(π

a
x
)

e−jβz z − âz A10
βz

ωμε

(π

a

)
sin

(π

a
x
)

e−jβz z (8-66a)

Js� = n̂ × H|x=0 = âx × (âx Hx + âz Hz )|x=0 = −ây Hz |x=0

= ây j
A10

ωμε

(π

a

)2
e−jβz z (8-66b)

Use of (8-66a) and (8-66b) allows us to write the losses associated with the bottom–top and
left–right walls, as given by (8-65), as

Rs

∫∫
bottom wall

(y=0)

Jsb • J∗
sb ds = Rs |A10|2

(π

a

)2 1

(ωμε)2

{(π

a

)2
∫ �

0

∫ a

0
cos2

(π

a
x
)

dx dz

+ β2
z

∫ �

0

∫ a

0
sin2

(π

a
x
)

dx dz

}
= �Rs

|A10|2
(ωμε)2

a

2

[(π

a

)2
+ β2

z

] (π

a

)2
(8-67a)

Rs

∫∫
left wall
(x=0)

Js� • J∗
s� ds = Rs |A10|2 b�

(ωμε)2

(π

a

)4
(8-67b)

The total dissipated power per unit length can be obtained by combining (8-67a) and (8-67b).
Thus, it can be shown that

(Pc)10

�
= aRs

2η2

|A10|2
ε2

(π

a

)2
[

1 + 2b

a

(
fc
f

)2
]

(8-68)
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By using (8-57) for m = 1 and n = 0, and (8-68), the attenuation coefficient of (8-64a) for
the TE10 mode can be written as

(αc)10 =
[
(Pc)10/�

2Pmn

]
m=1
n=0

=

aRs

2η2

|A10|2
ε2

(π

a

)2
[

1 + 2b

a

(
fc
f

)2
]

|A10|2 β2
c

ηε2

(a

2

)
(b)

√
1 −

(
fc
f

)2
(8-69)

which reduces to

(αc)10 = Rs

ηb

[
1 + 2b

a

(
fc
f

)2
]

√
1 −

(
fc
f

)2
(in Np/m) (8-69a)

For an X-band WR waveguide with inner dimensions a = 0.9 in. (2.286 cm) and b = 0.4 in.
(1.016 cm), made of copper (σ = 5.7 × 107S/m) and filled with a lossless dielectric, we can plot
the attenuation coefficient (αc)10 (in Np/m and dB/m) for ε = ε0, 2.56ε0, and 4ε0 as shown in
Figure 8-12. The attenuation coefficient for any mode (TEmn or TMmn ) is given by

TEz
mn

(αc)mn = 2Rs

εmεnbη

√
1 −

(
fc,mn

f

)2

{(
εm + εn

b

a

)(
fc,mn

f

)2

+b

a

[
1 −

(
fc,mn

f

)2
]

m2ab + (na)2

(mb)2 + (na)2

} (8-70a)
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Figure 8-12 TE10 mode attenuation constant for the X-band rectangular waveguide.
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where

εp =
{

2 p = 0

1 p �= 0
(8-70b)

TMz
mn

(αc)mn = 2Rs

abη

√
1 −

(
fc,mn

f

)2

m2b3 + n2a3

(mb)2 + (na)2
(8-70c)

The most pertinent equations used to describe the characteristics of TEmn and TMmn modes
inside a rectangular waveguide are summarized in Table 8-3.

B. Dielectric Losses When waveguides are filled with lossy dielectric material, an additional
attenuation constant must be introduced to account for losses in the dielectric material and are
usually designated as dielectric losses . Thus, the total attenuation constant αt for the waveguide
above cutoff is given by

αt = αc + αd (8-71)

where αt = total attenuation constant
αc = ohmic losses attenuation constant [(8-70a) and (8-70c)]
αd = dielectric losses attenuation constant

To derive αd , let us refer to the constraint equation (8-7a), which, for a lossy medium (β = β̇e),
can be written for the complex β̇z as

β̇2
z = β̇2

e − (β2
x + β2

y ) = β̇2
e − β2

c (8-72)

or
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√
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√
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√
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√
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√
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√
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c

[
1 − j

ωμσe

β ′2
e − β2

c

]1/2

(8-72a)

where
β ′

e = ω
√

με′
e (8-72b)

By using the binomial expansion, (8-72a) can be approximated by
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(
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TABLE 8-3 Summary of TEz
mn and TMz

mn mode characteristics of rectangular waveguide

TEz
mn

⎛
⎝ m = 0, 1, 2, . . .

n = 0, 1, 2, . . .
m and n not both zero simultaneously

⎞
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n = 1, 2, 3, . . .
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{

2 p = 0
1 p �= 0
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β̇z � ω
√
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where

η′
e =

√
μ

ε′
e

(8-73a)

Let us define the complex β̇z as

β̇z ≡ βd − jαd � β ′
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αd ≡ attenuation constant � η′
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(8-74a)
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Another form of (8-74a) would be to write it as
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where λ is the wavelength inside an unbounded infinite lossy dielectric medium and λg is the
guide wavelength filled with the lossy dielectric material. In decibels, αd of (8-75) can be written
as

αd � 8.68

(
ε′′

e

ε′
e

)
π

λ

(
λg

λ

)
= 27.27

λ

(
ε′′

e

ε′
e

)(
λg

λ

)
, in dB/m (λ in meters) (8-75a)
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Example 8-6

An X-band (8.2–12.4 GHz) rectangular waveguide is filled with polystyrene whose electrical properties
at 6 GHz are εr = 2.56 and tan δe = 2.55 × 10−4. Determine the dielectric attenuation at a frequency
of f = 6 GHz when the inside dimensions of the waveguide are a = 0.9 in. (2.286 cm) and b = 0.4 in.
(1.016 cm). Assume TE10 mode propagation.

Solution: According to (2-68a)

tan δe = ε′′
e

ε′
e

= 2.55 × 10−4

At f = 6 GHz,

λ0 = 30 × 109

6 × 109
= 5 cm λ = λ0√

εr
= 5√

2.56
= 3.125 cm

(fc)10 = 1

2a
√

με
= 30 × 109

2(2.286)(1.6)
= 4.10 GHz

λg = λ√
1 −

(
fc
f

)2
= 3.125√

1 − ( 4.10
6

)2
= 4.280 cm

Thus, the dielectric attenuation of (8-75) is equal to

αd = ε′′
e

ε′
e

π

λ

(
λg

λ

)
= 2.55 × 10−4

( π

3.125

)(
4.280

3.125

)
= 3.511 × 10−4 Np/cm

= 3.511 × 10−2 Np/m = 30.476 × 10−2 dB/m

C. Coupling Whenever a given mode is to be excited or detected, the excitation or detection
scheme must be such that it maximizes the energy exchange or transfer between the source and
the guide or the guide and the receiver. Typically, there are a number of techniques that can be
used to accomplish this. Some suggested methods that are popular in practice are the following.

1. If the energy exchange is from one waveguide to another, use an iris or hole placed in a
location and orientation so that the field distribution of both guides over the extent of the
hole or iris are almost identical.

2. If the energy exchange is from a transmission line, such as a coaxial line, to a waveguide, or
vice versa, use a linear probe or antenna oriented so that its length is parallel to the electric
field lines in the waveguide and placed near the maximum of the electric field mode pattern,
as shown in Figure 8-13a . This is usually referred to as electric field coupling . Sometimes
the position is varied slightly to achieve better impedance matching.

3. If the energy transfer is from a transmission line, such as a coaxial line, to a waveguide,
or vice versa, use a loop antenna oriented so that the plane of the loop is perpendicular to
the magnetic field lines, as shown in Figure 8-13c. This is usually referred to as magnetic
field coupling .

4. If the energy transfer is from a transmission line, such as a two-conductor line, or other
sources to a waveguide, or vice versa, use the transmission line or other sources so that
they excite currents on the waveguide that match those of the desired modes in the guide.

5. A number of probes, antennas, or transmission lines properly phased can also be used to
excite or detect any mode, especially higher-order modes. Shown in Figure 8-13 are some



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 382

382 RECTANGULAR CROSS-SECTION WAVEGUIDES AND CAVITIES

b
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Figure 8-13 Coaxial transmission line to rectangular waveguide coupling. (a) The side and (b) the
end views of the coax to waveguide electric field coupling for the TE10 mode. (c) The side and (d ) the end
view for the coax to waveguide magnetic field coupling for the TE10 mode. (e) The side and (f ) the
end view for the coax to waveguide electric field coupling for the TE20 mode.

typical arrangements for coupling energy from a transmission line, such as a coax, to a
rectangular waveguide to excite or detect the TE10 and TE20 modes.

The sizes, flanges, frequency bands, and other parameters pertaining to rectangular waveguides
have been standardized so that uniformity is maintained throughout the industry. Standardized
reference data on rectangular waveguides are displayed in Table 8-4.

8.3 RECTANGULAR RESONANT CAVITIES

Waveguide cavities represent a very important class of microwave components. Their applications
are numerous and range from use as frequency meters to cavities for measuring the electrical
properties of material. The attractive characteristics of waveguide cavities are their very high
quality factors Q , typically on the order of 5,000–10,000, and their simplicity of construction
and use. The most common geometries of cavities are rectangular, cylindrical, and spherical. The
rectangular geometry will be discussed in this chapter, whereas the cylindrical will be examined
in Chapter 9, and the spherical will be analyzed in Chapter 10.

A rectangular waveguide cavity is formed by taking a section of a waveguide and enclosing its
front and back faces with conducting plates, as shown in Figure 8-14. Coupling into and out of
the cavities is done through coupling probes or holes. The coupling probes may be either electric
or magnetic, as shown in Figures 8-13a and 8-13c, whereas coupling holes may also be used
either on the front, back, top, or bottom walls.
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TABLE 8-4 Reference table of rigid rectangular waveguide data and fittings

Waveguide

Recommended
Dimensions (in.) operating range

for TE10 mode

EIA MDL JAN Wall
designation designation designation Material thickness Frequency Wavelength

WR ( ) ( ) band RG ( )/U alloy Inside Tol. Outside Tol. nominal (GHz) (cm)

2300 2300 Alum. 23.000–11.500 ±0.020 23.250–11.750 ±0.020 0.125 0.32–0.49 93.68–61.18
2100 2100 Alum. 21.000–10.500 ±0.020 21.250–10.750 ±0.020 0.125 0.35–0.53 85.65–56.56
1800 1800 201 Alum. 18.000–9.000 ±0.020 18.250–9.250 ±0.020 0.125 0.41–0.625 73.11–47.96
1500 1500 202 Alum. 15.000–7.500 ±0.015 15.250–7.750 ±0.015 0.125 0.49–0.75 61.18–39.97
1150 1150 203 Alum. 11.500–5.750 ±0.015 11.750–6.000 ±0.015 0.125 0.64–0.96 46.84–31.23
975 975 204 Alum. 9.750–4.875 ±0.010 10.000–5.125 ±0.010 0.125 0.75–1.12 39.95–26.76
770 770 205 Alum. 7.700–3.850 ±0.005 7.950–4.100 ±0.005 0.125 0.96–1.45 31.23–20.67

650 L
69

103
Copper
Alum.

6.500–3.250 ±0.005 6.660–3.410 ±0.005 0.080 1.12–1.70 26.76–17.63

510 510 5.100–2.550 ±0.005 5.260–2.710 ±0.005 0.080 1.45–2.20 20.67–13.62

430 W
104
105

Copper
Alum.

4.300–2.150 ±0.005 4.460–2.310 ±0.005 0.080 1.70–2.60 17.63–11.53

340 340
112
113

Copper
Alum.

3.400–1.700 ±0.005 3.560–1.860 ±0.005 0.080 2.20–3.30 13.63–9.08

284 S
48
75

Copper
Alum.

2.840–1.340 ±0.005 3.000–1.500 ±0.005 0.080 2.60–3.95 11.53–7.59

229 229 2.290–1.145 ±0.005 2.418–1.273 ±0.005 0.064 3.30–4.90 9.08–6.12

187 C
49
95

Copper
Alum.

1.872–0.872 ±0.005 2.000–1.000 ±0.005 0.064 3.95–5.85 7.59–5.12

159 159 1.590–0.795 ±0.004 1.718–0.923 ±0.004 0.064 4.90–7.05 6.12–4.25

137 xB
50

106
Copper
Alum.

1.372–0.622 ±0.004 1.500–0.750 ±0.004 0.064 5.85–8.20 5.12–3.66

112 XL
51
68

Copper
Alum.

1.122–0.497 ±0.004 1.250–0.625 ±0.004 0.064 7.05–10.00 4.25–2.99

90 X
52
67

Copper
Alum.

0.900–0.400 ±0.003 1.000–0.500 ±0.003 0.050 8.20–12.40 3.66–2.42

75 75 0.750–0.375 ±0.003 0.850–0.475 ±0.003 0.050 10.00–15.00 2.99–2.00

62 KU
91

107

Copper
Alum.
Silver

0.622–0.311 ±0.0025 0.702–0.391 ±0.003 0.040 12.4–18.00 2.42–1.66

51 51 0.510–0.255 ±0.0025 0.590–0.335 ±0.003 0.040 15.00–22.00 2.00–1.36

42 K
53

121
66

Copper
Alum.
Silver

0.420–0.170 ±0.0020 0.500–0.250 ±0.003 0.040 18.00–26.50 1.66–1.13

34 34 0.340–0.170 ±0.0020 0.420–0.250 ±0.003 0.040 22.00–33.00 1.36–0.91

28 KA 96
Copper
Alum.
Silver

0.280–0.140 ±0.0015 0.360–0.220 ±0.002 0.040 26.50–40.00 1.13–0.75

22 Q 97
Copper
Silver

0.224–0.112 ±0.0010 0.304–0.192 ±0.002 0.040 33.00–50.00 0.91–0.60

19 19 0.188–0.094 ±0.0010 0.268–0.174 ±0.002 0.040 40.00–60.00 0.75–0.50

15 V 98
Copper
Silver

0.148–0.074 ±0.0010 0.228–0.154 ±0.002 0.040 50.00–75.00 0.60–0.40

12 12 99
Copper
Silver

0.122–0.061 ±0.0005 0.202–0.141 ±0.002 0.040 60.00–90.00 0.50–0.33

10 10 0.100–0.050 ±0.0005 0.180–0.130 ±0.002 0.040 75.00–110.00 0.40–0.27

Source: Microwave Development Laboratories, Inc.
aThis is an MDL Range Number.
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Waveguide Fittings

Theoretical Theoretical

Cutoff for attenuation C/W power

TE10 mode lowest to rating Flange

highest lowest to EJA

Frequency Wavelength Range in Range in frequency highest Choke Cover designation

(GHz) (cm) 2λ
λc

λg
λ (dB/100 ft) frequency (MW) UG( )/U UG( )/U WR ( )

0.256 116.84 1.60–1.05 1.68–1.17 0.051–0.031 153.0–212.0 2300

0.281 106.68 1.62–1.06 1.68–1.18 0.054–0.034 120.0–173.0 FA168Aa 2100

0.328 91.44 1.60–1.05 1.67–1.18 0.056–0.038 93.4–131.9 1800

0.393 76.20 1.61–1.05 1.62–1.17 0.069–0.050 67.6–93.3 1500

0.513 58.42 1.60–1.07 1.82–1.18 0.128–0.075 35.0–53.8 1150

0.605 49.53 1.61–1.08 1.70–1.19 0.137–0.095 27.0–38.5 975

0.766 39.12 1.60–1.06 1.66–1.18 0.201–0.136 17.2–24.1 770

0.908 33.02 1.62–1.07 1.70–1.18
0.317–0.212

0.269–0.178
11.9–17.2

417A

418A
650

1.157 25.91 1.60–1.05 1.67–1.18 510

1.372 21.84 1.61–1.06 1.70–1.18
0.588–0.385

0.501–0.330
5.2–7.5

435A

437A
430

1.736 17.27 1.58–1.05 1.78–1.22
0.877–0.572

0.751–0.492
3.1–4.5

553

554
340

2.078 14.43 1.60–1.05 1.67–1.17
1.102–0.752

0940–0.641
2.2–3.2

54A

585

53

584
284

2.577 11.63 1.56–1.05 1.62–1.17 229

3.152 9.510 1.60–1.08 1.67–1.19
2.08–1.44

1.77–1.12
1.4–2.0

148B

406A

149A

407
187

3.711 8.078 1.51–1.05 1.52–1.19 159

4.301 6.970 1.47–1.05 1.48–1.17
2.87–2.30

2.45–1.94
0.56–0.71

343A

440A

344

441
137

5.259 5.700 1.49–1.05 1.51–1.17
4.12–3.21

3.50–2.74
0.35–0.46

52A

137A

51

138
112

6.557 4.572 1.60–1.06 1.68–1.18
6.45–4.48

5.49–3.83
0.20–0.29

40A

136A

39

135
90

7.868 3.810 1.57–1.05 1.64–1.17 75

9.51–8.31 541 419

9.486 3.160 1.53–1.05 1.55–1.18 0.12–0.16 FA190Aa FA191Aa 62

6.14–5.36

11.574 2.590 1.54–1.05 1.58–1.18 51

14.047 2.134 1.56–1.06 1.60–1.18
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26.342 1.138 1.60–1.05 1.67–1.17 0.014–0.020 383 22
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31.357 0.956 1.57–1.05 1.63–1.16 19

385

39.863 0.752 1.60–1.06 1.67–1.17 0.0063–0.0090 15

52.9–39.1

48.350 0.620 1.61–1.06 1.68–1.18 0.0042–0.060 387 12

93.3–52.2

59.010 0.508 1.57–1.06 1.61–1.18 10
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Figure 8-14 Geometry for the rectangular cavity.

The field configurations inside the rectangular cavity of Figure 8-14 may be either TEz or
TMz , or any other TE or TM mode, and they are derived in a manner similar to those of the
waveguide. The only differences are that we must allow for standing waves, instead of traveling
waves, along the length (z axis) of the waveguide, and we must impose additional boundary
conditions along the front and back walls. The field forms along the x and y directions and
the boundary conditions on the left, right, top, and bottom walls are identical to those of the
rectangular waveguide.

8.3.1 Transverse Electric (TEz) Modes

Since TEz modes for a rectangular cavity must be derived in a manner similar to those of a
rectangular waveguide, they must satisfy (8-1) and (8-2). Therefore, Fz (x , y , z ) must take a form
similar to (8-6) except that standing wave functions (sines and cosines) must be used to represent
the variations in the z direction. Since the boundary conditions on the bottom, top, left, and right
walls are, respectively, (8-8a) to (8-8d), the Fz (x , y , z ) function for the rectangular cavity can be
written as

Fz (x , y , z ) = Amn cos(βx x) cos(βy y)[C3 cos(βz z ) + D3 sin(βz z )] (8-76)

βx = mπ

a
m = 0, 1, 2, . . .

βy = nπ

b
n = 0, 1, 2, . . .

m and n not both zero simultaneously

(8-76a)

which are similar to (8-14a) and (8-14b) except for the standing wave functions representing the
z variations. The additional boundary conditions on the front and back walls of the cavity are

Ex (0 ≤ x ≤ a , 0 ≤ y ≤ b, z = 0) = Ex (0 ≤ x ≤ a , 0 ≤ y ≤ b, z = c) = 0 (8-77a)

Ey(0 ≤ x ≤ a , 0 ≤ y ≤ b, z = 0) = Ey(0 ≤ x ≤ a , 0 ≤ y ≤ b, z = c) = 0 (8-77b)

The boundary conditions (8-77a) and (8-77b) are not independent and either will be sufficient.
By using (8-76), we can write the Ex component, according to (8-1), as

Ex (x , y , z ) = −1

ε

∂Fz

∂y
= βy

ε
Amn cos(βx x) sin(βy y)[C3 cos(βz z ) + D3 sin(βz z )] (8-78)
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By applying (8-77a) to (8-78), we can write that

Ex (0 ≤ x ≤ a , 0 ≤ y ≤ b, z = 0) = βy

ε
Amn cos(βx x) sin(βy y)[C3(1) + D3(0)] = 0

⇒ C3 = 0 (8-79a)

Ex (0 ≤ x ≤ a , 0 ≤ y ≤ b, z = c) = βy

ε
Amn cos(βx x) sin(βy y)D3 sin(βz c) = 0

⇒ sin(βz c) = 0 ⇒ βz c = sin−1(0) = pπ

⇒ βz = pπ

c
, p = 1, 2, 3, . . . (8-79b)

Thus, (8-76) reduces to

Fz (x , y , z ) = AmnD3 cos(βx x) cos(βy y) sin(βz z )

Fz (x , y , z ) = Amnp cos(βx x) cos(βy y) sin(βz z ) (8-80)

where

βx = mπ

a
, m = 0, 1, 2, . . .

βy = nπ

b
, n = 0, 1, 2, . . .

βz = pπ

c
, p = 1, 2, 3, . . .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
m and n not both zero simultaneously (8-80a)

Thus, for each mode, the dimensions of the cavity in each direction must be an integral number
of half wavelengths of the wave in that direction. In addition, the electric and magnetic field
components of (8-1) can be expressed as

Ex = βy

ε
Amnp cos(βx x) sin(βy y) sin(βz z ) (8-81a)

Ey = −βx

ε
Amnp sin(βx x) cos(βy y) sin(βz z ) (8-81b)

Ez = 0 (8-81c)

Hx = j
βxβy

ωμε
Amnp sin(βx x) cos(βy y) cos(βz z ) (8-81d)

Hy = j
βyβz

ωμε
Amnp cos(βx x) sin(βy y) cos(βz z ) (8-81e)

Hz = −j
Amnp

ωμε
(−β2

z + β2) cos(βx x) cos(βy y) sin(βz z ) (8-81f)

By Using (8-80a) we can write (8-7a) as

β2
x + β2

y + β2
z =

(mπ

a

)2
+

(nπ

b

)2
+

(pπ

c

)2
= β2

r = ω2
r με = (2π fr )

2με (8-82)

or

(fr )
TE
mnp = 1

2π
√

με

√(mπ

a

)2
+

(nπ

b

)2
+

(pπ

c

)2
m = 0, 1, 2, . . .
n = 0, 1, 2, . . .
p = 1, 2, 3, . . .
m and n not zero simultaneously

(8-82a)
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In (8-82a), (fr )mnp represents the resonant frequency for the TEz
mnp mode. If c > a > b, the mode

with the lowest-order is the TEz
101 mode, whose resonant frequency is represented by

(fr )
TE
101 = 1

2
√

με

√(
1

a

)2

+
(

1

c

)2

(8-83)

In addition to its resonant frequency, one of the most important parameters of a resonant cavity
is its quality factor Q defined as

Q ≡ ω
stored energy

dissipated power
= ω

Wt

Pd
= ω

We + Wm

Pd
= ω

2We

Pd
= ω

2Wm

Pd
(8-84)

which is proportional to volume and inversely proportional to surface. By using the field expres-
sions of (8-81a) through (8-81f) for the m = 1, n = 0, and p = 1 (101) mode, the total stored
energy can be written as

W = 2We = 2

[
ε

4

∫∫∫
V

|E|2 dv

]
= ε

2

[ |A101|
ε

π

a

]2 ∫ c

0

∫ b

0

∫ a

0
sin2

(π

a
x
)

sin2
(π

c
z
)

dx dy dz

W = |A101|2
ε

(π

a

)2 abc

8
(8-85)

The total dissipated power is found by adding the power that is dissipated in each of the six
walls of the cylinder. Since the dissipated power on the top wall is the same as that on the bottom,
that on the right wall is the same as that on the left, and that on the back is the same as that on
the front, we can write the total dissipated power as

Pd = Rs

2

{
2
∫∫

bottom
Jb • J∗

b ds + 2
∫∫

left
J� • J∗

� ds + 2
∫∫

front
Jf • J∗

f ds

}
= Rs

{∫∫
bottom

Jb • J∗
b ds +

∫∫
left

J� • J∗
� ds +

∫∫
front

Jf • J∗
f ds

}
Pd = Pb + P� + Pf (8-86)

where

Pb = Rs

∫∫
bottom

Jb • J∗
b ds = Rs

∫ c

0

∫ a

0
|Jb |2 dx dz (8-86a)

P� = Rs

∫∫
left

J� • J∗
� ds = Rs

∫ c

0

∫ b

0
|J�|2 dy dz (8-86b)

Pf = Rs

∫∫
front

Jf • J∗
f ds = Rs

∫ b

0

∫ a

0
|Jf |2 dx dy (8-86c)

Jb = n̂ × H|y=0 = −âz j
π

a

π

c

A101

ωμε
sin

(π

a
x
)

cos
(π

c
z
)

−âx j
(π

a

)2 A101

ωμε
cos

(π

a
x
)

sin
(π

c
z
)

(8-86d)

J� = n̂ × H|x=0 = ây j
A101

ωμε

(π

a

)2
sin

(π

c
z
)

(8-86e)

Jf = n̂ × H|z=c = −ây j
π

a

π

c

A101

ωμε
sin

(π

a
x
)

(8-86f)
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Application of the fields of (8-81a) through (8-81f) for m = 1, n = 0, and p = 1 in (8-86)
through (8-86f) leads to

Pb = Rs

[
π2

ac

A101

ωμε

]2 (
c

2

)(
a

2

)
+ Rs

[(π

a

)2 A101

ωμε

]2 (
c

2

)(
a

2

)
(8-87a)

P� = Rs

[(π

a

)2 A101

ωμε

]2

(c)

(
b

2

)
(8-87b)

Pf = Rs

[
π2

ac

A101

ωμε

]2

(b)

(
a

2

)
(8-87c)

Pd = Rs

4

|A101|2
(εη)2

(π

a

)2 1

a2 + c2
[ac(a2 + c2) + 2b(a3 + c3)] (8-87d)

Ultimately then, the Q of (8-84) can be expressed, using (8-85) and (8-87d), as

(Q)TE
101 = πη

2Rs

[
b(a2 + c2)3/2

ac(a2 + c2) + 2b(a3 + c3)

]
(8-88)

For a square-based (a = c) cavity

(Q)TE
101 = πη

2
√

2Rs

⎡⎢⎣ 1

1 + a

2b

⎤⎥⎦ = 1.1107
η

Rs

⎡⎢⎣ 1

1 + a/2

b

⎤⎥⎦ (8-88a)

Example 8-7

A square-based (a = c) cavity of rectangular cross section is constructed of an X-band (8.2–12.4 GHz)
copper (σ = 5.7 × 107 S/m) waveguide that has inner dimensions of a = 0.9 in. (2.286 cm) and b = 0.4
in. (1.016 cm). For the dominant TE101 mode, determine the Q of the cavity. Assume a free-space
medium inside the cavity.

Solution: According to (8-82a), the resonant frequency of the TE101 mode for the square-based
(a = c) cavity is

(fr )101 = 1

2π
√

με

√(π

a

)2 +
(π

c

)2 =
√

2

2a
√

με

= 1√
2a

√
με

= 30 × 109

√
2(2.286)

= 9.28 GHz

Thus, the surface resistance Rs of (8-61) is equal to

Rs =
√

ωrμ

2σ
=

√
2π(9.28 × 109)(4π × 10−7)

2(5.7 × 107)

= 2π

√
92.8

5.7
× 10−3 = 0.0254 ohms

Therefore, the Q of (8-88a) reduces to

(Q)101 = 1.1107
377

0.0254

⎡⎢⎢⎣ 1

1 + 2.286

2(1.016)

⎤⎥⎥⎦ = 7757.9 � 7758
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8.3.2 Transverse Magnetic (TMz) Modes

In addition to TEz
mnp modes inside a rectangular cavity, TMz

mnp modes can also be supported by
such a structure. These modes can be derived in a manner similar to the TEz

mnp field configurations.
Using the results of Section 8.2.2, we can write the vector potential component Az (x , y , z ) of

(8-26a) for the TMz
mnp modes of Figure 8-14 without applying the boundary conditions on the

front and back walls, as

Az (x , y , z ) = Bmn sin(βx x) sin(βy y)[C3 cos(βz z ) + D3 sin(βz z )] (8-89)

where
βx = mπ

a
, m = 1, 2, 3, . . . (8-89a)

βy = nπ

b
, n = 1, 2, 3, . . . (8-89b)

The boundary conditions that have not yet been applied on (8-24) are (8-77a) or (8-77b). Using
(8-89), we can write the Ex component of (8-24) as

Ex (x , y , z ) = −j
1

ωμε

∂2Az

∂x ∂z

= −j
βxβz

ωμε
Bmn cos(βx x) sin(βy y)[−C3 sin(βz z ) + D3 cos(βz z )] (8-90)

Applying the boundary conditions (8-77a), we can write that

Ex (0 ≤ x ≤ a , 0 ≤ y ≤ b, z = 0) = −j
βxβz

ωμε
Bmn cos(βx x) sin(βy y)

×[−C3(0) + D3(1)] = 0 ⇒ D3 = 0 (8-91a)

Ex (0 ≤ x ≤ a , 0 ≤ y ≤ b, z = c) = −j
βxβz

ωμε
Bmn cos(βx x) sin(βy y)

×[−C3 sin(βz c)] = 0

⇒ sin(βz c) = 0 ⇒ βz c = sin−1(0) = pπ

βz = pπ

c
, p = 0, 1, 2, 3, . . . (8-91b)

Thus, (8-89) reduces to
Az (x , y , z ) = BmnC3 sin(βx x) sin(βy y) cos(βz z )

Az (x , y , z ) = Bmnp sin(βx x) sin(βy y) cos(βz z ) (8-92)
where

βx = mπ

a
, m = 1, 2, 3, . . .

βy = nπ

b
, n = 1, 2, 3, . . . (8-92a)

βz = pπ

c
, p = 0, 1, 2, . . .

Using (8-7a) and (8-92a), the corresponding resonant frequency can be written as

(fr )
TM
mnp = 1

2π
√

με

√(mπ

a

)2
+

(nπ

b

)2
+

(pπ

c

)2 m = 1, 2, 3, . . .
n = 1, 2, 3, . . .
p = 0, 1, 2, . . .

(8-93)
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Since the expression for the resonant frequency of the TMmnp modes is the same as for the
TEmnp , the order in which the modes occur can be found by forming the ratio of the resonant
frequency of any mnp mode (TE or TM) to that of the TE101, that is,

Rmnp
101 = (fr )mnp

(fr )TEz

101

=
m

a

2
+ n

b

2
+ p

c

2

1

a

2

+ 1

c

2

(8-94)

whose values for c ≥ a ≥ b and different ratios of a/b and c/b are found listed in Table 8-5.

8.4 HYBRID (LSE AND LSM) MODES

For some waveguide configurations, such as partially filled waveguides with the material interface
perpendicular to the x or y axis of Figure 8-3, TEz or TMz modes cannot satisfy the boundary
conditions of the structure. This will be discussed in the next section. Therefore, some other mode
configurations may exist within such a structure. It will be shown that field configurations that
are combinations of TEz and TMz modes can be solutions and satisfy the boundary conditions of
such a partially filled waveguide [3]. The modes are referred to as hybrid modes , or longitudinal
section electric (LSE) or longitudinal section magnetic (LSM), or H or E modes [4].

In the next section it will be shown that for a partially filled waveguide of the form shown in
Figure 8-15a , the hybrid modes that are solutions and satisfy the boundary conditions are TEy

(LSEy or H y ) and/or TMy (LSMy or E y ). Here the modes are LSE and/or LSM to a direction that
is perpendicular to the interface. Similarly, for the configuration of Figure 8-15b, the appropriate
hybrid modes will be TEx (LSEx ) and/or TMx (LSMx ). Before proceeding with the analysis of
these waveguide configurations, let us examine TEy (LSEy ) and TMy (LSMy ) modes for the
empty waveguide of Figure 8-3.

8.4.1 Longitudinal Section Electric (LSEy) or Transverse Electric (TEy) or H y Modes

Just as for other transverse electric modes, TEy modes are derived using (6-77), i.e.,

Ex = 1

ε

∂Fy

∂z
Hx = −j

1

ωμε

∂2Fy

∂x ∂y

Ey = 0 Hy = −j
1

ωμε

(
∂2

∂y2
+ β2

)
Fy

Ez = −1

ε

∂Fy

∂x
Hz = −j

1

ωμε

∂2Fy

∂y ∂z

(8-95)

TABLE 8-5 Values of Rmnp
101 for a rectangular cavity

a
b

c
b

TE101 TE011 TM110
TE111
TM111

TE102 TE201 TE021 TE012 TM210 TM120
TE112
TM112

1 1 1 1 1 1.22 1.58 1.58 1.58 1.58 1.58 1.58 1.73
1 2 1 1 1.26 1.34 1.26 1.84 1.84 1.26 2.00 2.00 1.55
2 2 1 1.58 1.58 1.73 1.58 1.58 2.91 2.00 2.00 2.91 2.12
2.25 2.25 1 1.74 1.74 1.88 1.58 1.58 3.26 2.13 2.13 3.26 2.24
2 4 1 1.84 2.00 2.05 1.26 1.84 3.60 2.00 2.53 3.68 2.19
2.25 4 1 2.02 2.15 2.20 1.31 1.81 3.95 2.19 2.62 4.02 2.36
4 4 1 2.91 2.91 3.00 1.58 1.58 5.71 3.16 3.16 5.71 3.24
4 8 1 3.62 3.65 3.66 1.26 1.84 7.20 3.65 4.03 7.25 3.82
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w

Figure 8-15 Geometry of the dielectric loaded rectangular waveguide. (a) Slab along broad wall. (b) Slab
along narrow wall.

where for the +z traveling wave

F+
y (x , y , z ) = [C1 cos(βx x) + D1 sin(βx x)]

×[C2 cos(βy y) + D2 sin(βy y)]A3e−jβz z (8-95a)

β2
x + β2

y + β2
z = β2 = ω2με (8-95b)

The boundary conditions are (8-8a) through (8-8d).
By using (8-95a), we can write the Ez of (8-95) as

E+
z (x , y , z ) = −βx

ε
[−C1 sin(βx x) + D1 cos(βx x)]

×[C2 cos(βy y) + D2 sin(βy y)]A3e−jβz z (8-96)
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Application of the boundary condition (8-8b) on (8-96) gives

E+
z (0 ≤ x ≤ a , y = 0, z )

= −βx

ε
[−C1 sin(βx x) + D1 cos(βx x)][C2(1) + D2(0)]A3e−jβz z = 0

⇒ C2 = 0 (8-97a)

E+
z (0 ≤ x ≤ a , y = b, z )

= −βx

ε
[−C1 sin(βx x) + D1 cos(βx x)]D2 sin(βy b)A3e−jβz z = 0

⇒ sin(βy b) = 0 ⇒ βy b = sin−1(0) = nπ

βy = nπ

b
, n = 1, 2, 3, . . . (8-97b)

By following the same procedure, the boundary condition (8-8d) leads to

E+
z (x = 0, 0 ≤ y ≤ b, z )

= −βx

ε
[−C1(0) + D1(1)]D2A3 sin(βy y)e−jβz z = 0 ⇒ D1 = 0 (8-98a)

E+
z (x = a , 0 ≤ y ≤ b, z ) = −βx

ε
[−C1 sin(βx a)]D2A3e−jβz z = 0

⇒ sin(βx a) = 0 ⇒ βx = mπ

a
, m = 0, 1, 2, . . . (8-98b)

Therefore, (8-95a) reduces to

F+
y (x , y , z ) = C1D2A3 cos(βx x) sin(βy y)e−jβz z = Amn cos(βx x) sin(βy y)e−jβz z (8-99)

where

βx = mπ

a
, m = 0, 1, 2, . . . (8-99a)

βy = nπ

b
, n = 1, 2, 3, . . . (8-99b)

By using (8-95b),

βz = ±
√

β2 − (β2
x + β2

y ) = ±
√

β2 − β2
c (8-100)

where

β2
c = ω2

cμε = (2π fc)
2με = β2

x + β2
y =

(mπ

a

)2
+

(nπ

b

)2

or

(fc)
TEy

mn = 1

2π
√

με

√(mπ

a

)2
+

(nπ

b

)2 m = 0, 1, 2, . . .
n = 1, 2, 3, . . .

(8-100a)

The dominant mode is the TEy
01 whose cutoff frequency is

(fc)
TEy

01 = 1

2b
√

με
(8-100b)
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8.4.2 Longitudinal Section Magnetic (LSMy) or Transverse Magnetic (TMy) or E y

Modes

By following a procedure similar to that for the TEy modes of the previous section, it can be
shown that for the TMy modes of Figure 8-3 the field components of (6-64), i.e.,

Ex = −j
1

ωμε

∂2Ay

∂x ∂y
Hx = − 1

μ

∂Ay

∂z

Ey = −j
1

ωμε

(
∂2

∂y2
+ β2

)
Ay Hy = 0

Ez = −j
1

ωμε

∂2Ay

∂y ∂z
Hz = 1

μ

∂Ay

∂x

(8-101)

and the boundary conditions (8-8a) through (8-8d) lead to

Ay(x , y , z ) = Bmn sin(βx x) cos(βy y)e−jβz z (8-101a)

βx = mπ

a
, m = 1, 2, 3, . . . (8-101b)

βy = nπ

b
, n = 0, 1, 2, . . . (8-101c)

(fc)
TMy

mn = 1

2π
√

με

√(mπ

a

)2
+

(nπ

b

)2
(8-101d)

The dominant mode is the TMy
10 whose cutoff frequency is

(fc)
TMy

10 = 1

2a
√

με
(8-101e)

8.5 PARTIALLY FILLED WAVEGUIDE

Let us now consider in detail the analysis of the field configurations in the partially filled waveg-
uide of Figure 8-15a . The analysis of the configuration of Figure 8-15b is left as an end-of-chapter
exercise. It can be shown that for either waveguide configuration, neither TEz nor TMz modes
individually can satisfy the boundary conditions. In fact, for the configuration of Figure 8-15a ,
TEy(LSEy) or TMy(LSMy) are the appropriate modes, whereas TEx (LSEx ) or TMx (LSMx ) sat-
isfy the boundary conditions of Figure 8-15b. For either configuration, the appropriate modes are
LSE or LSM to a direction that is perpendicular to the material interface.

8.5.1 Longitudinal Section Electric (LSEy) or Transverse Electric (TEy)

For the configuration of Figure 8-15a , there are two sets of fields: one for the dielectric region
(0 ≤ x ≤ a , 0 ≤ y ≤ h , z ), designated by superscript d , and the other for the free-space region
(0 ≤ x ≤ a , h ≤ y ≤ b, z ), designated by superscript 0. For each region, the TEy field components
are those of (8-95) and the corresponding potential functions are

F d
y (x , 0 ≤ y ≤ h , z ) = [

C d
1 cos(βxd x) + Dd

1 sin(βxd x)
]

× [
C d

2 cos(βyd y) + Dd
2 sin(βyd y)

]
Ad

3 e−jβz z (8-102)
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β2
xd + β2

yd + β2
z = β2

d = ω2μdεd (8-102a)

for the dielectric region, and

F 0
y (x , h ≤ y ≤ b, z ) = [

C 0
1 cos(βx0x) + D0

1 sin(βx0x)
]

× {
C 0

2 cos
[
βy0(b − y)

] + D0
2 sin

[
βy0(b − y)

]}
A0

3e−jβz z (8-103)

β2
x0 + β2

y0 + β2
z = β2

0 = ω2μ0ε0 (8-103a)

for the free-space region. In both sets of fields, βz is the same, since for propagation along the
interface both sets of fields must be common.

For this waveguide configuration, the appropriate independent boundary conditions are

E d
z (x = 0, 0 ≤ y ≤ h , z ) = E d

z (x = a , 0 ≤ y ≤ h , z ) = 0 (8-104a)

E d
z (0 ≤ x ≤ a , y = 0, z ) = 0 (8-104b)

E d
z (0 ≤ x ≤ a , y = h , z ) = E 0

z (0 ≤ x ≤ a , y = h , z ) (8-104c)

E 0
z (x = 0, h ≤ y ≤ b, z ) = E 0

z (x = a , h ≤ y ≤ b, z ) = 0 (8-104d)

E 0
z (0 ≤ x ≤ a , y = b, z ) = 0 (8-104e)

H d
z (0 ≤ x ≤ a , y = h , z ) = H 0

z (0 ≤ x ≤ a , y = h , z ) (8-104f)

Another set of dependent boundary conditions is

E d
y (x = 0, 0 ≤ y ≤ h , z ) = E d

y (x = a , 0 ≤ y ≤ h , z ) = 0 (8-105a)

E d
x (0 ≤ x ≤ a , y = 0, z ) = 0 (8-105b)

E d
x (0 ≤ x ≤ a , y = h , z ) = E 0

x (0 ≤ x ≤ a , y = h , z ) (8-105c)

E 0
y (x = 0, h ≤ y ≤ b, z ) = E 0

y (x = a , h ≤ y ≤ b, z ) = 0 (8-105d)

E 0
x (0 ≤ x ≤ a , y = b, z ) = 0 (8-105e)

H d
x (0 ≤ x ≤ a , y = h , z ) = H 0

x (0 ≤ x ≤ a , y = h , z ) (8-105f)

By using (8-95) and (8-103), we can write that

E 0
z = − 1

ε0

∂F 0
y

∂x
= − βx0

ε0

[−C 0
1 sin(βx0x) + D0

1 cos(βx0x)
]

× {
C 0

2 cos
[
βy0(b − y)

] + D0
2 sin

[
βy0(b − y)

]}
A0

3e−jβz z (8-106)

Application of boundary condition (8-104d) leads to

E 0
z (x = 0, h ≤ y ≤ b, z )

= −βx0

ε0

[−C 0
1 (0) + D0

1 (1)
]

× {
C 0

2 cos
[
βy0(b − y)

] + D0
2 sin

[
βy0(b − y)

]}
A0

3e−jβz z = 0

⇒ D0
1 = 0 (8-106a)
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E 0
z (x = a , h ≤ y ≤ b, z )

= −βx0

ε0

[−C 0
1 sin(βx0a)

]
× {

C 0
2 cos

[
βy0(b − y)

] + D0
2 sin

[
βy0(b − y)

]}
A0

3e−jβz z = 0

⇒ sin(βx0a) = 0 ⇒ βx0 = mπ

a
, m = 0, 1, 2, . . . (8-106b)

Application of (8-104e) leads to

E 0
z (0 ≤ x ≤ a , y = b, z )

= −βx0

ε0

[−C 0
1 sin(βx0x)

] {
C 0

2 (1) + D0
2 (0)

}
A0

3e−jβz z = 0

⇒ C 0
2 = 0 (8-106c)

Thus, (8-103) reduces to

F 0
y = A0

mn cos(βx0x) sin
[
βy0(b − y)

]
e−jβz z

βx0 = mπ

a
, m = 0, 1, 2, . . .

β2
x0 + β2

y0 + β2
z =

(mπ

a

)2
+ β2

y0 + β2
z = β2

0 = ω2μ0ε0

(8-107)

(8-107a)

(8-107b)

with

E 0
z = − 1

ε0

∂F 0
y

∂x
= βx0

ε0
A0

mn sin(βx0x) sin
[
βy0(b − y)

]
e−jβz z (8-108)

Use of (8-95) and (8-102) gives

E d
z = − 1

εd

∂F d
y

∂x
= − βxd

εd

[−C d
1 sin(βxd x) + Dd

1 cos(βxd x)
]

× [
C d

2 cos(βyd y) + Dd
2 sin(βyd y)

]
Ad

3 e−jβz z (8-109)

Application of boundary condition (8-104a) leads to

E d
z (x = 0, 0 ≤ y ≤ h , z )

= −βxd

εd

[−C d
1 (0) + Dd

1 (1)
] [

C d
2 cos(βyd y) + Dd

2 sin(βyd y)
]

Ad
3 e−jβz z = 0

⇒ Dd
1 = 0 (8-109a)

E d
z (x = a , 0 ≤ y ≤ h , z )

= −βxd

εd

[−C d
1 sin(βxd a)

] [
C d

2 cos(βyd y) + Dd
2 sin(βyd y)

]
Ad

3 e−jβz z = 0

⇒ sin(βxd a) = 0 ⇒ βxd = mπ

a
, m = 0, 1, 2, . . . (8-109b)
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Application of (8-104b) leads to

E d
z (0 ≤ x ≤ a , y = 0, z ) = −βxd

εd

[−C d
1 sin(βxd x)

] [
C d

2 (1) + Dd
2 (0)

]
Ad

3 e−jβz z = 0

⇒ C d
2 = 0 (8-109c)

Thus, (8-102) reduces to

F d
y = Ad

mn cos(βxd x) sin(βyd y)e−jβz z

βxd = mπ

a
= βx0, m = 0, 1, 2, . . .

β2
xd + β2

yd + β2
z =

(mπ

a

)2
+ β2

yd + β2
z = β2

d = ω2μdεd

(8-110)

(8-110a)

(8-110b)

with

E d
z = − 1

εd

∂F d
y

∂x
= βxd

εd
Ad

mn sin(βxd x) sin(βyd y)e−jβz z

= βx0

εd
Ad

mn sin(βx0x) sin(βyd y)e−jβz z (8-111)

Application of boundary condition (8-104c) and use of (8-108) and (8-111) leads to

βx0

ε0
A0

mn sin(βx0x) sin
[
βy0(b − h)

]
e−jβz z = βx0

εd
Ad

mn sin(βxd x) sin(βyd h)e−jβz z

1

ε0
A0

mn sin
[
βy0(b − h)

] = 1

εd
Ad

mn sin(βyd h) (8-112)

By using (8-107) and (8-110), the z component of the H field from (8-95) can be written as

H 0
z = −j

1

ωμ0ε0

∂2F 0
y

∂y ∂z
= βy0βz

ωμ0ε0
A0

mn cos(βx0x) cos
[
βy0(b − y)

]
e−jβz z (8-113a)

H d
z = −j

1

ωμdεd

∂2F d
y

∂y ∂z
= − βydβz

ωμdεd
Ad

mn cos(βxd x) cos(βyd y)e−jβz z (8-113b)

Application of the boundary condition of (8-104f) reduces, with βxd = βx0, to

βy0βz

ωμ0ε0
A0

mn cos(βx0x) cos
[
βy0(b − h)

]
e−jβz z

= − βydβz

ωμdεd
Ad

mn cos(βxd x) cos(βyd h)e−jβz z

βy0

μ0ε0
A0

mn cos
[
βy0(b − h)

] = − βyd

μdεd
Ad

mn cos(βyd h) (8-114)
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Division of (8-114) by (8-112) leads to

βy0

μ0
cot

[
βy0(b − h)

] = −βyd

μd
cot(βyd h)

β2
x0 + β2

y0 + β2
z =

(mπ

a

)2
+ β2

y0 + β2
z = β2

0 = ω2μ0ε0 m = 0, 1, 2, . . .

β2
xd + β2

yd + β2
z =

(mπ

a

)2
+ β2

yd + β2
z = β2

d = ω2μdεd m = 0, 1, 2, . . .

(8-115)

(8-115a)

(8-115b)

Whereas βx0 = βxd = mπ/a , m = 0, 1, 2, . . ., have been determined, βy0, βyd , and βz have not
yet been found. They can be determined for each mode using (8-115) through (8-115b), and their
values vary as a function of frequency. Thus, for each frequency a new set of values for βy0, βyd ,
and βz must be found that satisfy (8-115) through (8-115b). One procedure that can be used to
accomplish this will be to solve (8-115a) for βy0 (as a function of βz and β0) and (8-115b) for
βyd (as a function of βz and βd ), and then substitute these expressions in (8-115) for βy0 and
βyd . The new form of (8-115) will be a function of βz , β0, and βd . Thus, for a given mode,
determined by the value of m , at a given frequency, a particular value of βz will satisfy the new
form of the transcendental equation 8-115; that value of βz can be found iteratively. The range
of βz will be β0

z < βz < βd
z where β0

z represents the values of the same mode of an air-filled
waveguide and βd

z represents the values of the same mode of a waveguide completely filled with
the dielectric. Once βz has been found at a given frequency for a given mode, the corresponding
values of βy0 and βyd for the same mode at the same frequency can be determined by using,
respectively, (8-115a) and (8-115b). It must be remembered that for each value of m there are
infinite values of n (n = 1, 2, 3, . . .). Thus, the dominant mode is the one for which m = 0 and
n = 1, i.e., TEy

01.
For m = 0, the modes will be denoted as TE0n . For these modes, (8-115a) and (8-115b) reduce

to

β2
y0 + β2

z = ω2μ0ε0 ⇒ βz = ±
√

ω2μ0ε0 − β2
y0 (8-116a)

β2
yd + β2

z = ω2μdεd ⇒ βz = ±
√

ω2μdεd − β2
yd (8-116b)

Cutoff occurs when βz = 0. Thus, at cutoff (8-116a) and (8-116b) reduce to

βz = 0 = ±
√

ω2μ0ε0 − β2
y0|ω=ωc ⇒ ω2

cμ0ε0 = β2
y0 ⇒ βy0 = ωc

√
μ0ε0 (8-117a)

βz = 0 = ±
√

ω2μdεd − β2
yd |ω=ωc ⇒ ω2

cμdεd = β2
yd ⇒ βyd = ωc

√
μdεd (8-117b)

which can be used to find βy0 and βyd at cutoff (actually slightly above), once the cutoff frequency
has been determined. By using (8-117a) and (8-117b), we can write (8-115) as

ωc
√

μ0ε0

μ0
cot

[
ωc

√
μ0ε0(b − h)

] = −ωc
√

μdεd

μd
cot

(
ωc

√
μdεd h

)
or √

ε0

μ0
cot

[
ωc

√
μ0ε0(b − h)

] = −
√

εd

μd
cot

(
ωc

√
μdεd h

)
(8-118)

which can be used to find the cutoff frequencies of the TEy
0n modes in a partially filled waveguide.

A similar expression must be written for the other modes.
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For a rectangular waveguide filled completely either with free space or with a dielectric material
with εd , μd , the cutoff frequency of the TEy

01 mode is given, respectively, according to (8-100b),
by

(
f 0
c

)TEy

01 = 1

2b
√

μ0ε0
(8-119a)

(
f d
c

)TEy

01 = 1

2b
√

μdεd
(8-119b)

Use of perturbational techniques shows that, in general, the cutoff frequency of the partially filled
waveguide (part free space and part dielectric) is greater than the cutoff frequency of the same
mode in the same waveguide filled with a dielectric material with εd , μd and is smaller than the
cutoff frequency of the same waveguide filled with free space. Thus, the cutoff frequency of the
TEy

01 mode of a partially filled waveguide (part free space and part dielectric) is greater than
(8-119b) and smaller than (8-119a), that is,

1

2b
√

μdεd
≤ (fc)

TEy

01 ≤ 1

2b
√

μ0ε0
(8-120)

or
π

b
√

μdεd
≤ (ωc)

TEy

01 ≤ π

b
√

μ0ε0
(8-120a)

With this permissible range, the exact values can be found using (8-118). The propagation constant
βz must be solved at each frequency on an individual basis using (8-116a) or (8-116b).

Example 8-8

A WR90 X-band (8.2–12.4 GHz) waveguide of Figure 8-15a with inner dimensions of a = 0.9 in.
(2.286 cm), b = 0.4 in. (1.016 cm), and a/b = 2.25, is partially filled with free space and polystyrene
(εd = 2.56ε0, μd = μ0, and h = b/3). For m = 0 determine the following.

1. The cutoff frequencies of the hybrid TEy
0n (LSEy

0n ) modes for n = 1, 2, 3.
2. The values of βy0 and βyd for each mode at sightly above their corresponding cutoff frequencies.
3. The corresponding values of βy0, βyd , and βz for the TEy

01 mode in the frequency range (fc)01 ≤
f ≤ 2(fc)01.

How do the cutoff frequencies of the first three TEy
0n modes (n = 1, 2, 3) of the partially filled

waveguide compare with those of the TEy
0n modes of the empty waveguide?

Solution:

1. The cutoff frequencies of the partially filled waveguide are found using (8-118). According to
(8-120) and (8-100a), the cutoff frequencies for each of the desired modes must fall in the ranges

9.23 GHz ≤ (fc)01 ≤ 14.76 GHz

18.45 GHz ≤ (fc)02 ≤ 29.53 GHz

27.68 GHz ≤ (fc)03 ≤ 44.29 GHz
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The actual frequencies are listed in Table 8-6.
2. Once the cutoff frequencies are found, the corresponding wave numbers βz , βy0 and βyd slightly

above cutoff can be found by using (8-117a) and (8-117b). These are also listed in Table 8-6. Also
listed in Table 8-6 are the values of the cutoff frequencies, and at slightly above their corresponding
cutoff frequencies, the wave numbers for the air-filled and dielectric-filled waveguides.

3. Finally, the wave numbers βy0, βyd , and βz for each frequency in the range (fc)0n ≤ f ≤ 2(fc)0n

are found by solving (8-115) through (8-115b) as outlined previously. These are shown plotted
in Figure 8-16 for the TEy

01 mode where they are compared with those of the waveguide filled
completely with air (β0

z ) or with the dielectric (βd
z ). The others for the TEy

02, and TEy
03 modes are

assigned as an end-of-chapter exercise.

TABLE 8-6 Cutoff frequencies and phase constants of partially filled, air-filled, and
dielectric-filled rectangular waveguide.∗

TEy
0n modes n = 1 n = 2 n = 3

(fc)0n(GHz) 12.61 24.02 37.68
βz (rad/m) 11.56 18.11 19.19

Partially filled waveguide (βy0)0n at (fc)0n (rad/m) 264.32 503.38 789.75
(βyd )0n at (fc)0n (rad/m) 422.91 805.41 1263.60

(f 0
c )0n (GHz) 14.75 29.51 44.26

Air filled waveguide βz (rad/m) 9.02 18.04 18.53
(β0

y )0n (rad/m) 309.21 618.42 927.64

(f d
c )0n (GHz) 9.22 18.44 27.66

Dielectric-filled waveguide βz (rad/m) 13.61 18.04 20.52
(βd

y )0n (rad/m) 309.21 618.42 927.64

∗a = 0.9 in. (2.286 cm), b = 0.4 in. (1.016 cm), h = b/3, μd = μd , and εd = 2.56ε0.
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Figure 8-16 Propagation constants of TEy
01 modes for a partially filled rectangular waveguide.
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8.5.2 Longitudinal Section Magnetic (LSMy) or Transverse Magnetic (TMy)

For the waveguide configuration of Figure 8-15a , the TMy field components are those of (8-101),
where the corresponding vector potentials in the dielectric and free space regions for the waves
traveling in the +z direction are given, respectively, by

Ad
y = [

C d
1 cos(βxd x) + Dd

1 sin(βxd x)
] [

C d
2 cos(βyd y) + Dd

2 sin(βyd y)
]

Ad
3 e−jβz z (8-121)

β2
xd + β2

yd + β2
z = β2

d = ω2μdεd (8-121a)

A0
y = [

C 0
1 cos(βx0x) + D0

1 sin(βx0x)
]

× {
C 0

2 cos
[
βy0(b − y)

] + D0
2 sin

[
βy0(b − y)

]}
A0

3e−jβz z (8-122)

β2
x0 + β2

y0 + β2
z = β2

0 = ω2μ0ε0 (8-122a)

The appropriate boundary conditions are (8-104a) through (8-105f).
Application of the boundary conditions (8-104a) through (8-105f) shows that the following

relations follow:

A0
y = B0

mn sin(βx0x) cos
[
βy0(b − y)

]
e−jβz z

βx0 = mπ

a
, m = 1, 2, 3, . . .

β2
x0 + β2

y0 + β2
z =

(mπ

a

)2
+ β2

y0 + β2
z = β2

0 = ω2μ0ε0

(8-123)

(8-123a)

(8-123b)

Ad
y = Bd

mn sin(βxd x) cos(βyd y)e−jβz z

βxd = mπ

a
, m = 1, 2, 3, . . .

β2
xd + β2

yd + β2
z =

(mπ

a

)2
+ β2

yd + β2
z = β2

d = ω2μdεd

(8-124)

(8-124a)

(8-124b)

− βy0

μ0ε0
B0

mn sin
[
βy0(b − h)

] = βyd

μdεd
Bd

mn sin(βyd h)

1

μ0
B0

mn cos
[
βy0(b − h)

] = 1

μd
Bd

mn cos(βyd h)

(8-125)

(8-126)

βy0

ε0
tan

[
βy0(b − h)

] = −βyd

εd
tan(βyd h)

β2
x0 + β2

y0 + β2
z =

(mπ

a

)2
+ β2

y0 + β2
z = β2

0 = ω2μ0ε0 m = 1, 2, 3, . . .

β2
xd + β2

yd + β2
z =

(mπ

a

)2
+ β2

yd + β2
z = β2

d = ω2μdεd m = 1, 2, 3, . . .

(8-127)

(8-127a)

(8-127b)
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Whereas βx0 = βxd = mπ/a , m = 1, 2, 3, . . ., have been determined, βy0, βyd , and βz have not
yet been found. They can be determined by using (8-127) through (8-127b) and following a
procedure similar to that outlined in the previous section for the TEy modes. For each value
of m , there are infinite values of n (n = 0, 1, 2, . . .). Thus the dominant mode is that for which
m = 1 and n = 0, i.e., the dominant mode is the TMy

10.
For m = 1, the modes will be denoted as TMy

1n . For these modes, (8-127a) and (8-127b)
reduce to (π

a

)2
+ β2

y0 + β2
z = ω2μ0ε0 ⇒ βz = ±

√
ω2μ0ε0 −

[
β2

y0 +
(π

a

)2
]

(8-128a)

(π

a

)2
+ β2

yd + β2
z = ω2μdεd ⇒ βz = ±

√
ω2μdεd −

[
β2

yd +
(π

a

)2
]

(8-128b)

Cutoff occurs when βz = 0. Thus, at cutoff, (8-128a) and (8-128b) reduce to

ω2
cμ0ε0 = β2

y0 +
(π

a

)2
⇒ βy0 =

√
ω2

cμ0ε0 −
(π

a

)2
(8-129a)

ω2
cμdεd = β2

yd +
(π

a

)2
⇒ βyd =

√
ω2

cμdεd −
(π

a

)2
(8-129b)

which can be used to find βy0 and βyd slightly above cutoff , once the cutoff frequency has been
determined. By using (8-129a) and (8-129b), we can write (8-127) as

1

ε0

√
ω2

cμ0ε0 −
(π

a

)2
tan

[√
ω2

cμ0ε0 −
(π

a

)2
(b − h)

]

= − 1

εd

√
ω2

cμdεd −
(π

a

)2
tan

[
h

√
ω2

cμdεd −
(π

a

)2
]

or

εd

ε0

√
ω2

cμ0ε0 −
(π

a

)2
tan

[√
ω2

cμ0ε0 −
(π

a

)2
(b − h)

]

= −
√

ω2
cμdεd −

(π

a

)2
tan

[
h

√
ω2

cμdεd −
(π

a

)2
] (8-130)

which can be used to find the cutoff frequencies of the TMy
1n modes in a partially filled waveguide.

For a rectangular waveguide filled completely either with free space (μ0, ε0) or with a dielectric
material (εd , μd ), the cutoff frequency of the hybrid TMy

10 mode is given, respectively, according
to (8-101d) by (

f 0
c

)TMy

10 = 1

2a
√

μ0ε0
(8-131a)

(
f d
c

)TMy

10 = 1

2a
√

μdεd
(8-131b)

By using perturbational techniques, it can be shown that, in general, the cutoff frequency of the
partially filled waveguide (part free space and part dielectric) is greater than the cutoff frequency
of the same mode in the same waveguide filled with a dielectric material with εd , μd and smaller
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than the cutoff frequency of the same waveguide filled with free space. Thus, the cutoff frequency
of the TMy

10 mode of a partially filled waveguide (part free space and part dielectric) is greater
than (8-131b) and smaller than (8-131a), that is

1

2a
√

μdεd
≤ (fc)

TMy

10 ≤ 1

2a
√

μ0ε0
(8-132)

or
π

a
√

μdεd
≤ (ωc)

TMy

10 ≤ π

a
√

μ0ε0
(8-132a)

With this permissible range, the exact values can be found by using (8-130). The propagation
constant βz must be solved at each frequency on an individual basis using (8-128a) or (8-128b)
once the values of βy0 and βyd have been determined at that frequency.

Example 8-9

A WR90 X-band (8.2–12.4 GHz) waveguide of Figure 8-15a with inner dimensions of a = 0.9 in.
(2.286 cm), b = 0.4 in. (1.016 cm), and a/b = 2.25, is partially filled with free space and polystyrene
(εd = 2.56, μd = μ0, and h = b/3). For m = 1 determine the following.

1. The cutoff frequencies of the hybrid TMy
1n (LSMy

1n) modes for n = 0, 1, 2.
2. The values of βy0 and βyd for each model at slightly above their corresponding cutoff frequencies.
3. The corresponding values of βy0, βyd , and βz for the TMy

10 mode in the frequency range (fc)10 ≤
f ≤ 2(fc)10.

How do the cutoff frequencies of the first three TMy
1n(n = 0, 1, 2) of the partially filled waveguide

compare with those of the TMy
1n of the empty waveguide?

Solution: Follow a procedure similar to that for the TEy
0n modes, as was done for the solution of

Example 8-8. Then the parameters and their associated values are obtained as listed in Table 8-7 and

TABLE 8-7 Cutoff frequencies and phase constants of partially filled, air-filled, and
dielectric-filled rectangular waveguide∗

TMy
1n modes n = 0 n = 1 n = 2

(fc)1n (GHz) 5.78 13.67 24.73
βz (rad/m) 6.58 13.94 12.07

Partially filled waveguide (βy0)1n at (fc)1n (rad/m) ±j 64.76 251.37 499.84
(βyd )1n at (fc)1n (rad/m) 136.84 437.29 817.96

(f 0
c )1n (GHz) 6.56 16.15 30.23

Air-filled waveguide βz (rad/m) 8.59 14.46 18.41
(β0

y )1n (rad/m) 0 309.21 618.42

(f d
c )1n (GHz) 4.10 10.09 18.89

Dielectric-filled waveguide βz (rad/m) 10.41 14.46 18.41
(βd

y )1n (rad/m) 0 309.21 618.42

∗a = 0.9 in. (2.286 cm), b = 0.4 in. (1.016 cm), h = b/3, μd = μ0, and εd = 2.56ε0.
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Figure 8-17 Propagation constants of TMy
10 modes for a partially filled rectangular waveguide.

shown Figure 8-17. The parameters versus frequency for the TMy
11 and TMy

12 modes are assigned as an
end-of-chapter exercise. The cutoff frequencies of the partially filled waveguide are found using (8-130).
According to (8-132) and (8-101d), the cutoff frequencies for each of the desired modes must fall in
the ranges

4.101 GHz ≤ (fc)10 ≤ 6.56 GHz

10.098 GHz ≤ (fc)11 ≤ 16.16 GHz

18.905 GHz ≤ (fc)12 ≤ 30.25 GHz

The actual frequencies, as well as the other desired parameters of this problem, are listed in Table 8-7.

When the dielectric properties of the dielectric material inserted into the waveguide are such
that εd � ε0 and μd � μ0, the wave constants of the TMmn modes of the partially filled waveguide
are approximately equal to the corresponding wave constants of the TMy

mn modes of the totally
filled waveguide. Thus, according to (8-101c)

(βy0)m0 � (βyd )m0 � small � 0 (8-133)

Therefore, (8-127) can be approximated by

βy0

ε0
tan

[
βy0(b − h)

] � βy0

ε0

[
βy0(b − h)

] = −βyd

εd
tan(βyd h) � −βyd

εd
(βyd h)

β2
y0

ε0
(b − h) � −β2

yd

εd
h

εd

ε0
β2

y0(b − h) � −β2
yd h (8-134)
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At cutoff, βz = 0. Therefore, using (8-129a) and (8-129b), we can write (8-134) as

εd

ε0

[
ω2

cμ0ε0 −
(π

2

)2
]

(b − h) � −
[
ω2

cμdεd −
(π

a

)2
]

h (8-134a)

which reduces to

(ωc)
TMy

10 � π

a
√

εrμ0ε0

√
h + εr (b − h)

(b − h) + μr h
(8-135)

where

εr = εd

ε0
(8-135a)

μr = μd

μ0
(8-135b)

Example 8-10

By using the approximate expression of (8-135), determine the cutoff frequency of the dominant TMy
10

hybrid mode for the following cases.

1. εr = 1 and μr = 1.
2. h = 0.
3. h = b.
4. εr = 2.56, μr = 1, a = 0.9 in. (2.286 cm), b = 0.4 in. (1.016 cm), a/b = 2.25, and h = b/3.

Solution:

1. When εr = 1 and μr = 1, (8-135) reduces to

(ωc)
TMy

10 � π

a
√

μ0ε0

which is equal to the exact value as predicted by (8-101d).
2. When h = 0, (8-135) reduces to

(ωc)
TMy

10 � π

a
√

μ0ε0

which again is equal to the exact value predicted by (8-101d).
3. When h = b, (8-135) reduces to

(ωc)
TMy

10 � π

a
√

μ0μrε0εr
= π

a
√

μd εd

which again is equal to the exact value predicted by (8-101d).
4. When εr = 2.56, μr = 1, a = 2.286 cm, b = 1.016 cm, and h = b/3, (8-135) reduces to

(ωc)
TMy

10 � π

a
√

εrμ0ε0

√
b/3 + 2.56(b − b/3)

(b − b/3) + b/3

=
√

2.04

2.56

π

a
√

μ0ε0
= 0.8927

π

a
√

μ0ε0

(fc)
TMy

10 � 5.8576 GHz
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whose exact value, according to Example 8-9, is equal to 5.786 GHz. It should be noted that the
preceding approximate expression for (ωc)10 of

(ωc)10 � 0.8927
π

a
√

μ0ε0

falls in the permissible range of

π

a
√

μ0εrε0
= π√

2.56 a
√

μ0ε0
= 0.6250

π

a
√

μ0ε0
≤ (ωc)

TMy

10 ≤ π

a
√

μ0ε0

as given by (8-132a).

8.6 TRANSVERSE RESONANCE METHOD

The transverse resonance method (TRM) is a technique that can be used to find the propagation
constant of many practical composite waveguide structures [5, 6], as well as many traveling wave
antenna systems [6–8]. By using this method, the cross section of the waveguide or traveling wave
antenna structure is represented as a transmission line system. The fields of such a structure must
satisfy the transverse wave equation, and the resonances of this transverse network will yield
expressions for the propagation constants of the waveguide or antenna structure. Whereas the
formulations of this method are much simpler when applied to finding the propagation constants,
they do not contain the details for finding other parameters of interest (such as field distributions,
wave impedances, etc.).

The objective here is to analyze the waveguide geometry of Figure 8-15a using the trans-
verse resonance method. Although the method will not yield all the details of the analysis of
Sections 8.5.1 and 8.5.2, it will lead to the same characteristic equations 8-115 and 8-127. The
problem will be modeled as a two-dimensional structure represented by two transmission lines;
one dielectric-filled (0 ≤ y ≤ h) with characteristic impedance Zcd and wave number βtd and the
other air-filled (h ≤ y ≤ b) with characteristic impedance Zc0 and wave number βt0, as shown in
Figure 8-18. Each line is considered shorted at its load, that is, ZL = 0 at y = 0 and y = b.

It was shown in Section 3.4.1A that the solution to the scalar wave equation for any of the
electric field components, for example, that for Ex of (3-22) as given by (3-23), takes the general
form of

∇2ψ + β2ψ = ∂2ψ

∂x 2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z 2
+ β2ψ = 0 (8-136)

where
ψ(x , y , z ) = f (x)g(y)h(z ) (8-136a)

The scalar function ψ represents any of the electric or magnetic field components. For waves
traveling in the z direction, the variations of h(z ) are represented by exponentials of the form
e±jβz z . Therefore, for such waves, (8-136) reduces to

∇2ψ + β2ψ =
(

∇2
t + ∂2

∂z 2

)
ψ + β2ψ = (∇2

t − β2
z )ψ + β2ψ = 0

∇2
t ψ + (β2 − β2

z )ψ = 0 (8-137)

where

∇2
t = ∂2

∂x 2
+ ∂2

∂y2
(8-137a)
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Figure 8-18 (a) Cross section of rectangular waveguide. (b) Transmission line equivalent for transverse
resonance method (TRM).

The wave numbers associated with (8-137) are related by(
β2

x + β2
y

)
+ β2

z = β2
t + β2

z = β2 (8-138)

where
β2

t = β2
x + β2

y (8-138a)

The constant βt is referred to as the transverse direction wave number and (8-137) is referred to
as the transverse wave equation .

Each of the electric and magnetic field components in the dielectric- and air-filled sections
of the two-dimensional structure of Figure 8-18 must satisfy the transverse wave equation 8-137
with corresponding transverse wave numbers of βtd and βt0, where

β2
td + β2

z = β2
d = ω2μdεd (8-139a)

β2
t0 + β2

z = β2
0 = ω2μ0ε0 (8-139b)

In Section 4.2.2B it was shown by (4-20a) through (4-21b) that the wave impedances of the
waves in the positive and negative directions are equal. However, the ratios of the corresponding
electric/magnetic field component magnitudes were equal but opposite in direction. Since the
input impedance of a line is defined as the ratio of the electric/magnetic field components (or
voltage/current), then at any point along the transverse direction of the waveguide structure, the
input impedance of the transmission line network looking in the positive y direction is equal
in magnitude but opposite in phase to that looking in the negative y direction. This follows
from the boundary conditions that require continuous tangential components of the electric (E)
and magnetic (H) fields at any point on a plane orthogonal to the transverse structure of the
waveguide.

For the transmission line model of Figure 8-18b, the input impedance at the interface looking
in the +y direction of the air-filled portion toward the shorted load is given, according to the
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impedance transfer equation 5-66d, as

Z +y
in = Zc0

[
ZL + jZc0 tan[βt0(b − h)]

Zc0 + jZL tan[βt0(b − h)]

]
ZL=0

= jZc0 tan [βt0(b − h)] (8-140a)

In a similar manner, the input impedance at the interface looking in the −y direction of the
dielectric-filled portion toward the shorted load is given by

Z −y
in = jZcd tan (βtd h) (8-140b)

Since these two impedances must be equal in magnitude but of opposite signs, then

Z +y
in = −Z −y

in = jZc0 tan [βt0(b − h)] = −jZcd tan (βtd h)

Zc0 tan [βt0(b − h)] = −Zcd tan (βtd h) (8-141)

The preceding equation is applicable for both TE and TM modes. It will be applied in the next two
sections to examine the TEy and TMy modes of the partially filled waveguide of Figure 8-18a .

8.6.1 Transverse Electric (TEy) or Longitudinal Section Electric (LSEy) or Hy

The characteristic equation 8-141 will now be applied to examine the TEy modes of the partially
filled waveguide of Figure 8-18a . It was shown in Section 8.2.1 that the wave impedance of the
TEz

mn modes is given by (8-19), i.e.,

Z TEz

w = ωμ

βz
(8-142)

Allow the characteristic impedances for the TEy modes of the dielectric- and air-filled sections
of the waveguide, represented by the two-section transmission line of Figure 8-18b, to be of the
same form as (8-142), or

Zcd = Z h
d = ωμd

βyd
(8-143a)

Zc0 = Z h
0 = ωμ0

βy0
(8-143b)

βtd = βyd (8-143c)

βt0 = βy0 (8-143d)

Then (8-141) reduces to

ωμ0

βy0
tan

[
βy0(b − h)

] = −ωμd

βyd
tan(βyd h)

or

βy0

μ0
cot[βy0(b − h)] = −βyd

μd
cot(βyd h) (8-144)

Equation 8-144 is identical to (8-115), and it can be solved using the same procedures used in
Section 8.5.1 to solve (8-115).
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8.6.2 Transverse Magnetic (TMy) or Longitudinal Section Magnetic (LSMy) or Ey

The same procedure used in Section 8.6.1 for the TEy modes can also be used to examine the
TMy modes of the partially filled waveguide of Figure 8-18a . According to (8-29a), the wave
impedance of TMz

mn modes is given by

Z TMz

w = βz

ωε
(8-145)

Allow the characteristic impedances for the TMy modes of the dielectric- and air-filled sections
of the waveguide to be of the same form as (8-145), or

Zcd = Z e
d = βyd

ωεd
(8-146a)

Zc0 = Z e
0 = βy0

ωε0
(8-146b)

βtd = βyd (8-146c)

βt0 = βy0 (8-146d)

Then (8-141) reduces to

βy0

ωε0
tan

[
βy0(b − h)

] = − βyd

ωεd
tan(βyd h)

or
βy0

ε0
tan

[
βy0(b − h)

] = −βyd

εd
tan(βyd h) (8-147)

Equation 8-147 is identical to (8-127), and it can be solved using the same procedures used in
Section 8.5.2 to solve (8-127).

The transverse resonance method can be used to solve other transmission line discontinuity
problems [5] as well as many traveling wave antenna systems [6].

8.7 DIELECTRIC WAVEGUIDE

Transmission lines are used to contain the energy associated with a wave within a given space and
guide it in a given direction. Typically, many people associate these types of transmission lines
with either coaxial and twin lead lines or metal pipes (usually referred to as waveguides) with
part or all of their structure being metal. However, dielectric slabs and rods, with or without any
associated metal, can also be used to guide waves and serve as transmission lines. Usually these
are referred to as dielectric waveguides , and the field modes that they can support are known as
surface wave modes [9].

8.7.1 Dielectric Slab Waveguide

One type of dielectric waveguide is a dielectric slab of height 2h , as shown in Figure 8-19.
To simplify the analysis of the structure, we reduce the problem to a two-dimensional one (its
width in the x direction is infinite) so that ∂/∂x = 0. Although in practice the dimensions of
the structure are finite, the two-dimensional approximation not only simplifies the analysis but
also sheds insight into the characteristics of the structure. Typically, the cross section of the slab
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Figure 8-19 Geometry for dielectric slab waveguide. (a) Perspective. (b) Side view.

in Figure 8-19a would be rectangular with height 2h and finite width a . We also assume that
the waves are traveling in the ±z directions, and the structure is infinite in that direction, as
illustrated in Figure 8-19b.

Another practical configuration for a dielectric transmission line is a dielectric rod of circular
cross section. Because of the cylindrical geometry of the structure, the field solutions will be in
terms of Bessel functions. Therefore, the discussion of this line will be postponed until Chapter 9.

A very popular dielectric rod waveguide is the fiber optics cable. Typically, this cable is made
of two different materials, one that occupies the center core and the other that serves as a cladding
to the center core. This configuration is usually referred to as the step index , and the index of
refraction of the center core is slightly greater than that of the cladding. Another configuration
has the index of refraction distribution along the cross section of the line graded so that there is
a smooth variation in the radial direction from the larger values at the center toward the smaller
values at the periphery. This is referred to as the graded index . This line is discussed in more
detail in Section 9.5.3.

The objective in a dielectric slab waveguide, or any type of waveguide, is to contain the energy
within the structure and direct it toward a given direction. For the dielectric slab waveguide this is
accomplished by having the wave bounce back and forth between its upper and lower interfaces
at an incidence angle greater than the critical angle. When this is accomplished, the refracted
fields outside the dielectric form evanescent (decaying) waves and all the real energy is reflected
and contained within the structure. The characteristics of this line can be analyzed by treating
the structure as a boundary-value problem whose modal solution is obtained by solving the
wave equation and enforcing the boundary conditions. The other approach is to examine the
characteristics of the line using ray-tracing (geometrical optics) techniques. This approach is
simpler and sheds more physical insight onto the propagation characteristics of the line but does
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not provide the details of the more cumbersome modal solution. Both methods will be examined
here. We will begin with the modal solution approach.

It can be shown that the waveguide structure of Figure 8-19 can support TEz , TMz , TEy , and
TMy modes. We will examine here both the TMz and TEz modes. We will treat TMz in detail
and then summarize the TEz .

8.7.2 Transverse Magnetic (TMz) Modes

The TMz mode fields that can exist within and outside the dielectric slab of Figure 8-19 must
satisfy (8-24), where Az is the potential function representing the fields either within or outside
the dielectric slab. Inside and outside the dielectric region, the fields can be represented by a
combination of even and odd modes, as shown in Figure 8-20 [10].

For the fields within the dielectric slab, the potential function Az takes the following form:

−h ≤ y ≤ h

Ad
z = [

C d
2 cos(βyd y) + Dd

2 sin (βyd y)
]

Ad
3 e−jβz z = Ad

ze + Ad
zo (8-148)

where

Ad
ze = C d

2 Ad
3 cos (βyd y)e−jβz z = Ad

me cos (βyd y)e−jβz z (8-148a)

Ad
zo = Dd

2 Ad
3 sin (βyd y)e−jβz z = Ad

mo sin (βyd y)e−jβz z (8-148b)

β2
yd + β2

z = β2
d = ω2μdεd (8-148c)

In (8-148), Ad
ze and Ad

zo represent, respectively, the even and odd modes. For the slab to function
as a waveguide, the fields outside the dielectric slab must be of evanescent form. Therefore, the

y

z
2h

+h

Even mode Odd mode

sin (bydy)cos (bydy)

e−a(y−h)

ea(y−h)

−h

ed, md

e0, m0

e0, m0

Figure 8-20 Even and odd mode field distributions in a dielectric slab waveguide. (Source: M. Zahn,
Electromagnetic Field Theory , 1979. Reprinted with permission of John Wiley & Sons, Inc.)
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potential function Az takes the following form:

y ≥ h

A0+
z = (

A0+
2e e−jβy0 y + B0+

2o e−jβy0y
)

A0+
3o e−jβz z = A0+

ze + A0+
zo (8-149)

where

A0+
ze = A0+

2e A0+
3o e−jβy0y e−jβz z = A0+

me e−αy0y e−jβz z (8-149a)

A0+
zo = B0+

2o A0+
3o e−jβy0y e−jβz z = B0+

mo e−αy0y e−jβz z (8-149b)

β2
y0 + β2

z = −α2
y0 + β2

z = β2
0 = ω2μ0ε0 (8-149c)

y ≤ −h

A0−
z = (

A0−
2e e+jβy0 y + B0−

2o e+jβy0y
)

A0−
3o e−jβz z = A0−

ze + A0−
zo (8-150)

where

A0−
ze = A0−

2e A0−
3o e+jβy0y e−jβz z = A0−

me e+αy0y e−jβz z (8-150a)

A0−
zo = B0−

2o A0−
3o e+jβy0y e−jβz z = B0−

me e+αy0y e−jβz z (8-150b)

β2
y0 + β2

z = −α2
y0 + β2

z = β2
0 = ω2μ0ε0 (8-150c)

For the fields of (8-149) through (8-150c) to be of evanescent form, αy0 must be real and positive.
Since the fields within and outside the slab have been separated into even and odd modes,

we can examine them separately and then apply superposition. We will examine the even modes
first and then the odd. For each mode (even or odd), a number of dependent and independent
boundary conditions must be satisfied. A sufficient set of independent boundary conditions chosen
here are

E d
z (y = h , z ) = E 0+

z (y = h , z ) (8-151a)

E d
z (y = −h , z ) = E 0−

z (y = −h , z ) (8-151b)

H d
x (y = h , z ) = H 0+

x (y = h , z ) (8-151c)

H d
x (y = −h , z ) = H 0−

x (y = −h , z ) (8-151d)

A. TMz (Even) By using (8-24) along with the appropriate potential function of (8-148) through
(8-150c), we can write the field components as follows.

−h ≤ y ≤ h

E d
xe = −j

1

ωμdεd

∂2Ad
ze

∂x ∂z
= 0 (8-152a)

E d
ye = −j

1

ωμdεd

∂2Ad
ze

∂y ∂z
= βydβz

ωμdεd
Ad

me sin(βyd y)e−jβz z (8-152b)

E d
ze = −j

1

ωμdεd

(
∂2

∂z 2
+ β2

d

)
Ad

ze = −j
β2

d − β2
z

ωμdεd
Ad

me cos(βyd y)e−jβz z (8-152c)
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H d
xe = 1

μd

∂Ad
ze

∂y
= −βyd

μd
Ad

me sin(βyd y)e−jβz z (8-152d)

H d
ye = − 1

μd

∂Ad
ze

∂x
= 0 (8-152e)

H d
ze = 0 (8-152f)

y ≥ +h

E 0+
xe = −j

1

ωμ0ε0

∂2A0+
ze

∂x ∂z
= 0 (8-153a)

E 0+
ye = −j

1

ωμ0ε0

∂2A0+
ze

∂y ∂z
= αy0βz

ωμ0ε0
A0+

me e−αy0y e−jβz z (8-153b)

E 0+
ze = −j

1

ωμ0ε0

(
∂2

∂z 2
+ β2

0

)
A0+

ze = −j
β2

0 − β2
z

ωμ0ε0
A0+

me e−αy0y e−jβz z (8-153c)

H 0+
xe = 1

μ0

∂A0+
ze

∂y
= −αy0

μ0
A0+

me e−αy0y e−jβz z (8-153d)

H 0+
ye = − 1

μ0

∂A0+
ze

∂x
= 0 (8-153e)

H 0+
ze = 0 (8-153f)

y ≤ −h

E 0−
xe = −j

1

ωμ0ε0

∂2A0−
ze

∂x ∂z
= 0 (8-154a)

E 0−
ye = −j

1

ωμ0ε0

∂2A0−
ze

∂y ∂z
= − αy0βz

ωμ0ε0
A0−

me e+αy0y e−jβz z (8-154b)

E 0−
ze = −j

1

ωμ0ε0

(
∂2

∂z 2
+ β2

0

)
A0−

ze = −j
β2

0 − β2
z

ωμ0ε0
A0−

me e+αy0y e−jβz z (8-154c)

H 0−
xe = 1

μ0

∂A0−
ze

∂y
= αy0

μ0
A0−

me e+αy0y e−jβz z (8-154d)

H 0−
ye = − 1

μ0

∂A0−
ze

∂x
= 0 (8-154e)

H 0−
ze = 0 (8-154f)

Applying the boundary condition (8-151a) and using (8-148c) and (8-149c) yields

−j
β2

d − β2
z

ωμdεd
Ad

me cos (βyd h)e−jβz z = −j
β2

0 − β2
z

ωμ0ε0
A0+

me e−αy0he−jβz z

β2
d − β2

z

μdεd
Ad

me cos (βyd h) = β2
0 − β2

z

μ0ε0
A0+

me e−αy0h

β2
yd

μdεd
Ad

me cos (βyd h) = − α2
y0

μ0ε0
A0+

me e−αy0h (8-155a)
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In a similar manner, enforcing (8-151b) and using (8-148c) and (8-149c) yields

β2
yd

μdεd
Ad

me cos (βyd h) = − α2
y0

μ0ε0
A0−

me e−αy0h (8-155b)

Comparison of (8-155a) and (8-155b) makes it apparent that

A0+
me = A0−

me = A0
me (8-155c)

Thus, (8-155a) and (8-155b) are the same and both can be represented by

β2
yd

μdεd
Ad

me cos (βyd h) = − α2
y0

μ0ε0
A0

mee−αy0h (8-156)

Follow a similar procedure by applying (8-151c) and (8-151d) and using (8-155c). Then we arrive
at

βyd

μd
Ad

me sin (βyd h) = αy0

μ0
A0

mee−αy0h (8-157)

Division of (8-157) by (8-156) allows us to write that

εd

βyd
tan (βyd h) = − ε0

αy0

βyd cot (βyd h) = −εd

ε0
αy0

− ε0

εd
(βyd h) cot (βyd h) = αy0h (8-158)

where according to (8-148c) and (8-149c)

β2
yd + β2

z = β2
d = ω2μdεd ⇒ β2

yd = β2
d − β2

z = ω2μdεd − β2
z (8-158a)

−α2
y0 + β2

z = β2
0 = ω2μ0ε0 ⇒ α2

y0 = β2
z − β2

0 = β2
z − ω2μ0ε0 (8-158b)

From the free space looking down the slab we can define an impedance, which, by using
(8-153a) through (8-153f) and (8-158b), can be written as

Z −y0
w = − E 0+

ze

H 0+
xe

= E 0−
ze

H 0−
xe

= −j
β2

0 − β2
z

ωε0αy0
= j

αy0

ωε0
(8-158c)

which is inductive, and it indicates that TM mode surface waves are supported by inductive
surfaces . In fact, surfaces with inductive impedance characteristics, such as dielectric slabs,
dielectric-covered ground planes, and corrugated surfaces with certain heights and constitutive
parameters, are designed to support TM surface waves.
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B. TMz (Odd) By following a procedure similar to that used for the TMz (even), utilizing the
odd mode TMz potential functions (8-148) through (8-150c), it can be shown that the expression
corresponding to (8-158) is

ε0

εd
(βyd h) tan (βyd h) = αy0h (8-159)

where (8-158a) and (8-158b) also apply for the TMz odd modes.

C. Summary of TMz (Even) and TMz (Odd) Modes The most important expressions that
are applicable for TMz even and odd modes for a dielectric slab waveguide are (8-158) through
(8-159), which are summarized here.

− ε0

εd
(βyd h) cot(βyd h) = αy0h TMz (even) (8-160a)

ε0

εd
(βyd h) tan(βyd h) = αy0h TMz (odd) (8-160b)

β2
yd + β2

z = β2
d = ω2μdεd ⇒ β2

yd = β2
d − β2

z = ω2μdεd − β2
z

TMz (even and odd) (8-160c)

−α2
y0 + β2

z = β2
0 = ω2μ0ε0 ⇒ α2

y0 = β2
z − β2

0 = β2
z − ω2μ0ε0

TMz (even and odd) (8-160d)

Z −y0
w = − E 0+

z

H 0+
x

= E 0−
z

H 0−
x

= j
αy0

ωε0
TMz (even and odd) (8-160e)

The objective here is to determine which modes can be supported by the dielectric slab when
it is used as a waveguide, and to solve for βyd , αy0, βz , and the cutoff frequencies for each of
these modes by using (8-160a) through (8-160d). We will begin by determining the modes and
their corresponding frequencies.

It is apparent from (8-160c) and (8-160d) that if βz is real, then

1. βz < β0 < βd :

βyd = ±
√

β2
d − β2

z = real (8-161a)

αy0 = ±j
√

β2
0 − β2

z = imaginary (8-161b)

2. βz > βd > β0:

βyd = ±j
√

β2
z − β2

d = imaginary (8-162a)

αy0 = ±
√

β2
z − β2

0 = real (8-162b)
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3. β0 < βz < βd :

βyd = ±
√

β2
d − β2

z = real (8-163a)

αy0 = ±
√

β2
z − β2

0 = real (8-163b)

For the dielectric slab to perform as a lossless transmission line, βyd , αy0, and βz must all be
real . Therefore, for this to occur,

ω
√

μ0ε0 = β0 < βz < βd = ω
√

μdεd (8-164)

The lowest frequency for which unattenuated propagation occurs is called the cutoff frequency .
For the dielectric slab this occurs when βz = β0. Thus, at cutoff, βz = β0, and (8-158a) and
(8-158b) reduce to

βyd |βz =β0 = ±
√

ω2μdεd − β2
z |βz =β0 = ±ωc

√
μdεd − μ0ε0 = ±ωc

√
μ0ε0

√
μrεr − 1 (8-165a)

αy0|βz =β0 = ±
√

β2
z − ω2μ0ε0|βz =β0 = 0 (8-165b)

Through the use of (8-165a) and (8-165b), the nonlinear transcendental equations 8-160a and
8-160b are satisfied, respectively, when the following equations hold.

TMz
m (even)

cot(βyd h) = 0 ⇒ βyd h = ωch
√

μdεd − μ0ε0 = mπ

2

(fc)m = m

4h
√

μdεd − μ0ε0
, m = 1, 3, 5, . . . (8-166a)

TMz
m (odd)

tan(βyd h) = 0 ⇒ βyd h = ωch
√

μdεd − μ0ε0 = mπ

2

(fc)m = m

4h
√

μdεd − μ0ε0
, m = 0, 2, 4, . . . (8-166b)

It is apparent that the cutoff frequency of a given mode is a function of the electrical constitutive
parameters of the dielectric slab and its height. The modes are referred to as odd TMz

m (when
m = 0, 2, 4, . . .), and even TMz

m (when m = 1, 3, 5, . . .). The dominant mode is the TM0, which
is an odd mode and its cutoff frequency is zero. This means that the TM0 mode will always
propagate unattenuated no matter what the frequency of operation. Other higher-order modes can
be cut off by selecting a frequency of operation smaller than their cutoff frequencies.

Now that the TMz
m (even) and TMz

m (odd) modes and their corresponding cutoff frequencies
have been determined, the next step is to find βyd , ay0, and βz for any TMz even or odd mode
at any frequency above its corresponding cutoff frequency. This is accomplished by solving the
transcendental equations 8-160a and 8-160b.

Assume that ε0/εd , h , and the frequency of operation f are specified. Then (8-160a) and
(8-160b) can be solved numerically through the use of iterative techniques by selecting values of
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βyd and αy0 that balance them. Since multiple combinations of βyd and αy0 are possible solutions
of (8-160a) and (8-160b), each combination corresponds to a given mode. Once the combination
of βyd and αy0 values that correspond to a given mode is found, the corresponding value of the
phase constant βz is found by using either (8-160c) or (8-160d).

The solution of (8-160a) through (8-160d) for the values of βy0, αy0, and βz of a given TMz

mode, once ε0/εd , h , and f are specified, can also be accomplished graphically. Although such a
procedure is considered approximate (its accuracy will depend upon the size of the graph), it does
shed much more physical insight onto the radiation characteristics of the modes for the dielectric
slab waveguide. With such a procedure it becomes more apparent what must be done to limit the
number of unattenuated modes that can be supported by the structure and how to control their
characteristics. Let us now demonstrate the graphical solution of (8-160a) through (8-160d).

D. Graphical Solution for TMz
m (Even) and TMz

m (Odd) Modes Equations 8-160a through
8-160d can be solved graphically for the characteristics of the TMz even and odd modes. This
is accomplished by referring to Figure 8-21 where the abscissa represents βyd h and the ordinate,
αy0h . The procedure can best be illustrated by considering a specific value of ε0/εd .

Let us assume that ε0/εd = 1/2.56. With this value of ε0/εd , (8-160a) and (8-160b) are plotted
for αy0h (ordinate) as a function of βyd h (abscissa), as shown in Figure 8-21. The next step is
to solve graphically (8-160c) and (8-160d). By combining (8-160c) and (8-160d), we can write
that

α2
y0 + β2

yd = β2
d − β2

0 = ω2(μdεd − μ0ε0) (8-167)

(bydh)1 (bydh)2 (bydh)3

(bydh)

(ay0h)

(ay0h)1

(a)
(b)

(ay0h)2

a 
= 
w

m
0
e 0

h
m

re
r 

− 
1

(ay0h)3

a 
= 

(b
0
h)

p/2

p/2 p0

p

3p/2

3p/2 2p

m
re

r 
− 

1

Figure 8-21 Graphical solution representation for attenuation and phase constants for a dielectric slab
waveguide. (a) TMz0

m odd, ε0/εd (βyd h) tan(βyd h), m = 0, 2, 4, . . .. (b) TMze
m even, −ε0/εd (βyd h) cot(βyd h),

m = 1, 3, 5, . . ..
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By multiplying both sides by h2, we can write (8-167) as

(αy0h)2 + (βyd h)2 = (ωh)2(μdεd − μ0ε0) = (ωh)2μ0ε0(μrεr − 1)

(αy0h)2 + (βyd h)2 = a2 TMz (even and odd) (8-168)

where

a = ωh
√

μ0ε0

√
μrεr − 1 = β0h

√
μrεr − 1 TMz (even and odd) (8-168a)

It is recognized that by using the axes αy0h (ordinate) and βyd h (abscissa), (8-168) represents
a circle with a radius a determined by (8-168a). The radius is determined by the frequency
of operation, the height, and the constitutive electrical parameters of the dielectric slab. The
intersections of the circle of (8-168) and (8-168a) with the curves representing (8-160a) and
(8-160b), as illustrated in Figure 8-21, determine the modes that propagate unattenuated within
the dielectric slab waveguide. For a given intersection representing a given mode, the point of
intersection is used to determine the values of βyd h and αy0h , or βyd and αy0 for a specified h , for
that mode, as shown in Figure 8-21. Once this is accomplished, the corresponding values of βz

are determined using either (8-160c) or (8-160d). This procedure is followed for each intersection
point between the curves representing (8-160a), (8-160b), (8-168), and (8-168a). To illustrate the
principles, let us consider a specific example.

Example 8-11

A dielectric slab of polystyrene of half thickness h = 0.125 in. (0.3175 cm) and with electrical properties
of εr = 2.56 and μr = 1 is bounded above and below by air. The frequency of operation is 30 GHz.

1. Determine the TMz
m , modes, and their corresponding cutoff frequencies, that propagate unattenu-

ated.
2. Calculate βyd (rad/cm), αy0 (Np/cm), βz (rad/cm), and (βz /β0)

2 for the unattenuated TMz
m , modes.

Solution:

1. By using (8-166a) and (8-166b), the cutoff frequencies of the TMz
m , modes that are lower than

30 GHz are (
fc
)

0 = 0 TMz
0 (odd)(

fc
)

1 = 30 × 109

4(0.3175)
√

2.56 − 1
= 18.913 GHz TMz

1 (even)

The remaining modes have cutoff frequencies that are higher than the desired operational fre-
quency.

2. The corresponding wave numbers for these two modes [TMz
0 (odd) and TMz

1 (even)] will be
found by referring to Figure 8-22. Since (8-160a) and (8-160b) are plotted in Figure 8-22 for
ε0/εd = 1/2.56, the only thing that remains is to plot (8-168) where the radius a is given by
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(bydh)0

(bydh)1

bydh

(ay0h)0

(ay0h)1

ay0h

5

4

3

2.492

2.108

0.872

1.329

2.334

2.492

2

1

0
0 1 2 3 4 5

TM1
 (even)

TM0
 (odd)z

z

Figure 8-22 Graphical solution for attenuation and phase constants of TMz
m modes in a dielectric slab

waveguide (εr = 2.56, μr = 1, h = 0.3175 cm, f = 30 GHz).

(8-168a). For f = 30 GHz, the radius of (8-168a) the circle (8-168) is equal to

a = 2π(30 × 109)(0.3175)

30 × 109

√
2.56 − 1 = 2.492

This is also plotted in Figure 8-22. The projections from each intersection point to the abscissa
(βyd h axis) and ordinate (αy0h axis) allow the determination of the corresponding wave numbers.
From Figure 8-22

TMz
0 (odd)

(βyd h)0 = 1.329 ⇒ βyd = 4.186 rad/cm

(αy0h)0 = 2.108 ⇒ αy0 = 6.639 Np/cm

When these values are substituted in (8-160c) or (8-160d), they lead to

βz = 9.140 rad/cm (βz /β0)
2 = 2.116

TMz
1 (even)

(βyd h)1 = 2.334 ⇒ βyd = 7.351 rad/cm

(αy0h)1 = 0.872 ⇒ αy0 = 2.747 Np/cm

When these values are substituted in (8-160c) or (8-160d), they lead to

βz = 6.857 rad/cm (βz /β0)
2 = 1.191
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Equations 8-160a through 8-160d can also be solved simultaneously and analytically for αy0,
βyd , and βz through use of a procedure very similar to that outlined in Section 8.5.1 for the
TEy modes of a partially filled rectangular waveguide. The results are shown, respectively, in
Figures 8-23a and 8-23b for the TMz

0 and TMz
1 modes of Example 8-11 in the frequency range

0 ≤ f ≤ 2(fc)1, where (fc)1 is the cutoff frequency of the TMz
1 mode.

Curves similar to those of Figures 8-21 and 8-22 were generated for εr = 1, 2.56, 4, 9, 16, and
25 and are shown in Figure 8-24. These can be used for the solution of TMz

m , problems where
the values in the curves will be representing μr ’s instead of εr ’s. This will be seen in the next
section.

8.7.3 Transverse Electric (TEz) Modes

By following a procedure similar to that for the TMz modes, it can be shown (by leaving out
the details) that the critical expressions for the TEz modes that correspond to those of the TMz

modes of (8-160a) through (8-160d), (8-166a) through (8-166b), (8-168), (8-168a), and (8-160e)
are

TEz (even) and TEz (odd)

−μ0

μd
(βyd h) cot(βyd h) = αy0h TEz (even) (8-169a)

μ0

μd
(βyd h) tan(βyd h) = αy0h TEz (odd) (8-169b)

β2
yd + β2

z = β2
d = ω2μdεd ⇒ β2

yd = β2
d − β2

z = ω2μdεd − β2
z

TEz (even and odd) (8-169c)

−α2
y0 + β2

z = β2
0 = ω2μ0ε0 ⇒ α2

y0 = β2
z − β2

0 = β2
z − ω2μ0ε0

TEz (even and odd) (8-169d)

(fc)m = m

4h
√

μdεd − μ0ε0

m = 1, 3, 5, . . . , TEz (even)

m = 0, 2, 4, . . . , TEz (odd)
(8-169e)

(8-169f)

(αy0h)2 + (βyd h)2 = a2 TEz (even and odd) (8-169g)

a = ωh
√

μ0ε0

√
μrεr − 1 = β0h

√
μrεr − 1 TEz (even and odd) (8-169h)

Z −y0
w = E 0+

x

H 0+
z

= − E 0−
x

H 0−
z

= −j
ωμ0

αy0
TEz (even and odd) (8-169i)

Therefore, TE surface waves are capacitive and are supported by capacitive surfaces , whether
they are dielectric slabs, dielectric covered ground planes, or corrugated surfaces.

The solution of these proceeds in the same manner as before. The curves shown in Figure 8-24
must be used and the appropriate value of μr = μd/μ0 must be selected.
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(bz/b0)2

byd

ay0

bz

byd

bz

(bz/b0)2

ay0

9.0

7.2

5.4

3.6

1.8

0.0

9.0

7.2

5.4

3.6

1.8

0.0
0.0 0.4 0.8 1.2 1.6 2.0

0.0 0.4 0.8

(a)

(b)

1.2 1.6 2.0

Normalized frequency f/fc1

Normalized frequency f/fc1

Figure 8-23 Attenuation and phase constants of TMz
m modes in a dielectric slab waveguide (εr = 2.56,

μr = 1, h = 0.3175 cm, f = 30 GHz). (a) TMz
0 mode. (b) TMz

1 mode.
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by0h

a
y0

h

4.712

3.927

3.142

2.356

1.571

0.785

2.
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56 2.
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4
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4

4
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25 25
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,  m
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Figure 8-24 Curves to be used for graphical solution of attenuation and phase constants for TMz
m and

TEz
m modes in a dielectric slab waveguide.

Example 8-12

Repeat the problem of Example 8-11 for the TEz
m modes.

Solution:

1. By using (8-169e) and (8-169f), the cutoff frequencies of the TEz
m modes that are smaller than

30 GHz are

(fc)0 = 0 TEz
0 (odd)

(fc)1 = 30 × 109

4(0.3175)
√

2.56 − 1
= 18.913 GHz TEz

1 (even)

These correspond to the cutoff frequencies of the TMz
m modes of Example 8-11.

2. The corresponding wave numbers of the two modes TEz
0 (odd) and TEz

1 (even) are obtained using
Figure 8-25. For f = 30 GHz the radius of (8-169h), which defines the circle (8-169g), is the same
as that of the TMz

m modes of Example 8-11, and it is equal to

a = 2π(30 × 109)(0.3175)

30 × 109

√
2.56 − 1 = 2.492
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This is plotted in Figure 8-25. The projections from each intersection point on the abscissa (βyd h
axis) and ordinate (ay0h axis) allows the determination of the corresponding wave numbers. From
Figure 8-25:

TEz
0 (odd)

(βyd h)0 = 1.109 ⇒ βyd = 3.494 rad/cm

(αy0h)0 = 2.231 ⇒ αy0 = 7.027 Np/cm

When these are substituted in (8-169c) or (8-169d),

βz = 9.426 rad/cm (βz /β0)
2 = 2.251

TEz
1 (even)

(βyd h)1 = 2.122 ⇒ βyd = 6.684 rad/cm

(αy0h)1 = 1.306 ⇒ αy0 = 4.113 Np/cm

When these are substituted in (8-169c) or (8-169d),

βz = 7.510 rad/cm (βz /β0)
2 = 1.428

bydh

(bydh)1

(ay0h)1

(bydh)0

(ay0h)0

ay0h

1.109

2.122

1.306

2.231

2.492

2.492

0

1

2

3

4

5

0 1 2 3 4 5

TE0 (odd)z

TE1 (even)z

Figure 8-25 Graphical solution for attenuation and phase constants of TEz
m modes in a dielectric slab

waveguide (εr = 2.56, μr = 1, h = 0.3175 cm, f = 30 GHz).
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For the TEz modes, (8-169a) through (8-169d) can be solved simultaneously and analytically
for αy0, βyd , and βz using a procedure very similar to that outlined in Section 8.5.1 for the
TEy modes of a partially filled rectangular waveguide. The results are shown in Figures 8-26a
and 8-26b for the TEz

0 and TEz
1 modes, respectively, of Example 8-12 in the frequency range

0 ≤ f ≤ 2(fc)1 where (fc)1 is the cutoff frequency of the TEz
1 mode.

8.7.4 Ray-Tracing Method

In Sections 8.7.2, and 8.7.3 we analyzed the dielectric slab waveguide as a boundary-value
problem using modal techniques. In this section we want to repeat the analysis of both TEz and
TMz modes by using a ray-tracing method that sheds more physical insight onto the propagation
characteristics of the dielectric slab waveguide but is not as detailed.

A wave beam that is fed into the dielectric slab can propagate into three possible modes [11].
Let us assume that the slab is bounded above by air and below by another dielectric slab, as
shown in Figure 8-27, such that ε1 > ε2 > ε0. Mathematically the problem involves a solution of
Maxwell’s equations and the appropriate boundary conditions at the two interfaces, as was done
in Sections 8.7.2 and 8.7.3. The wave beam has the following properties.

1. It can radiate from the slab into both air and substrate, referred to as the air-substrate
modes, as shown in Figure 8-27a .

2. It can radiate from the slab only into the substrate, referred to as the substrate modes , as
shown in Figure 8-27b.

3. It can be bounded and be guided by the slab, referred to as the waveguide modes , as shown
in Figure 8-27c.

To demonstrate these properties, let us assume that a wave enters the slab, which is bounded
above by air and below by a substrate such that ε1 > ε2 > ε0.

1. Air-Substrate Modes: Referring to Figure 8-27a , let us increase θ1 gradually starting at
θ1 = 0. When θ1 is small, a wave that enters the slab will be refracted and will exit into the
air and the substrate provided that θ1 < (θc)10 = sin−1(

√
ε0/ε1) < (θc)12 = sin−1(

√
ε2/ε1).

The angles (θc)10 and (θc)12 represent, respectively, the critical angles at the slab–air and
slab–substrate interfaces. In this situation, wave energy can propagate freely in all three
media (air, slab, and substrate) and can create radiation fields (air–substrate modes).

2. Substrate Modes: When θ1 increases such that it passes the critical angle (θc)10 of the
slab–air interface but is smaller than the critical angle (θc)12 of the slab–substrate interface
[(θc)12 = sin−1(

√
ε2/ε1)> θ1 >(θc)10 = sin−1(

√
ε0/ε1)], sin θ0 > 1, which indicates that the

wave is totally reflected at the slab–air interface. This describes a solution that wave energy
in the slab radiates only in the substrate, as shown in Figure 8-27b. These are referred to
as substrate modes.

3. Waveguide Modes: Finally when θ1 is larger than the critical angle (θc)12 of the
slab–substrate interface [θ1 >(θc)12 = sin−1(

√
ε2/ε1)>(θc)10 = sin−1(

√
ε0/ε1)], then

sin θ0 > 1 and sin θ2 > 1, which indicate that the wave is totally reflected at both interfaces.
These are referred to as waveguide modes , as shown in Figure 8-27c. For these modes
the energy is trapped inside the slab, and the waves follow the wave motion pattern
represented by two wave vectors A1 and B1 as shown in Figure 8-28a . These two vectors
are decomposed into their horizontal and vertical components (A1z , A1y ) and (B1z , B1y ).

The horizontal wave vector components are equal, which indicates that the waves propagate
with a constant velocity in the z direction. However, the vertical components of A1 and B1



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 424

424 RECTANGULAR CROSS-SECTION WAVEGUIDES AND CAVITIES

9.0

7.2

5.4

3.6

1.8

0.0

2.59

0.5 1.0 1.5 2.00

5.19

7.78

10.37

0

0.0 0.4 0.8 1.2 1.6 2.0

(bz/b0)2

bz

(bz/b0)2

bz

(b)

Normalized frequency f/fc1

(a)

Normalized frequency f/fc1

byd

byd

ay0

ay0

Figure 8-26 Attenuation and phase constants of TEz
m modes in a dielectric slab waveguide (εr = 2.56,
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0 mode. (b) TEz

1 mode.



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 425

DIELECTRIC WAVEGUIDE 425

e1, m0

e0, m0

e1, m0

e1, m0

e1, m0

e2, m0

e1> e2>e0 

e1> e2>e0 

e2, m0

q1

q0

q1
q1

q2

q2 q2

q1 q1 q1

Substrate

Slab

Substrate

Slab

Air

e0, m0

Air

(a)

(b)

e0

e1
(qc)10 = sin−1 

e0

e1
(qc)10 = sin−1 

e2

e1
(qc)12 = sin−1

e2

e1
(qc)12 = sin−1

(qc)10 < q1< (qc)12 

q1 < (qc)10 < (qc)12 

Figure 8-27 Propagation modes in a dielectric slab waveguide. (a) Air-substrate modes. (b) Substrate
modes. (c) Waveguide modes.
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Figure 8-27 (Continued)

represent opposite traveling waves, which when combined form a standing wave. By changing
the angle θ1, we change the direction of A1 and B1. This results in changes in the horizontal and
vertical components of A1 and B1, in the wave velocity in the z direction, and in the standing
wave pattern across the slab.

The wave vectors A1 and B1 can be thought to represent a plane wave, which bounces back
and forth inside the slab. The phase fronts of this plane wave are dashed in Figure 8-28b. An
observer who moves in a direction parallel to the z axis does not see the horizontal components of
the wave vectors. He does, however, observe a plane wave that bounces upward and downward,
which folds one directly on top of the other. In order for the standing wave pattern across the
slab to remain the same as the observer travels along the z axis, all multiple reflected waves
must add in phase. This is accomplished by having the plane wave that makes one round trip,
up and down across the slab, experience a phase shift equal to 2mπ , where m is an integer [11].
Otherwise if after the first round trip the wave experiences a small differential phase shift of δ

away from 2mπ , it will experience differential phase shifts 2δ, 3δ, . . . after the second, third, . . .

trips. Therefore, these higher-order reflected waves will experience larger differential phase shifts
which when added will eventually equal zero and the broadside wave pattern of Figure 8-28c
will be a function of the axial position.

A one round-trip phase shift must include not only the phase change that is due to the distance
traveled by the wave but also the changes in the wave phase that are due to reflections from the
upper and lower interfaces. If the phase constant of the plane wave along wave vectors A1 and
B1 is β1, then the wave constant along the vertical direction y is β1 cos θ1. Therefore, the total
phase shift to one round trip (up and down) of wave travel, including the phase changes due to
reflection, must be equal to

4β1h cos θ1 − φ10 − φ12 = 2mπ m = 0, 1, 2, . . . (8-170)

where φ10 = phase of reflection coefficient at slab–air interface
φ12 = phase of reflection coefficient at slab–substrate interface
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Figure 8-28 (a) Reflecting plane wave representation. (b) Phase wavefronts. (c) Broadside amplitude
pattern of waveguide modes in a dielectric slab waveguide.
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The phases of the reflection coefficients are assumed to be leading. Assume that the media above
and below the slab are the same. Then φ10 = φ12 = φ. Thus, (8-170) reduces to

4β1h cos θ1 − 2φ = 2mπ m = 0, 1, 2, . . . (8-170a)

The preceding equations will now be applied to both TMz and TEz modes.

A. Transverse Magnetic ( TMz) Modes (Parallel Polarization) Let us assume that the
bouncing plane wave of Figure 8-28a is such that its polarization is TMz (or parallel polarization),
as shown in Figure 8-29a , where the slab is bounded on both sides by air. For the orientation of
the fields taken as shown in Figure 8-29a , the reflected electric field Er

|| is related to the incident

e0, m0z
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(b)
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Figure 8-29 Modes in a dielectric slab waveguide. (a) TMz (parallel polarization). (b) TEz (perpendicular
polarization).
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electric field Ei
|| by

E r
||

E i
||

= −�b
|| = −

[−η1 cos θ1 + η0 cos θ0

+η1 cos θ1 + η0 cos θ0

]
= η1 cos θ1 − η0 cos θ0

η1 cos θ1 + η0 cos θ0
(8-171)

where �b
|| is the reflection coefficient of (5-24c).

For μ1 = μ0 and for an incidence angle θ1 greater than the critical angle (θc)10 [θ1 >(θc)10 =
sin−1(

√
ε0/ε1)], (8-171) reduces, using Snell’s law of refraction, (5-24b) or (5-35), to

−�b
|| =

cos θ1 + j
√

ε1

ε0

cos θ1 − j
√

ε1

ε0

√
ε1

ε0
sin2 θ1 − 1√

ε1

ε0
sin2 θ1 − 1

= |�b
|| |
/
φ′

|| = 1
/
φ|| (8-172)

where

φ|| = 2 tan−1

⎡⎢⎢⎣
√

ε1

ε0

√
ε1

ε0
sin2 θ1 − 1

cos θ1

⎤⎥⎥⎦ (8-172a)

Therefore, the transcendental equation that governs these modes is derived by using (8-170a)
and (8-172a). Thus,

4β1h cos θ1 − 2φ|| = 4β1h cos θ1 − 4 tan−1

⎡⎢⎢⎣
√

ε1

ε0

√
ε1

ε0
sin2 θ1 − 1

cos θ1

⎤⎥⎥⎦ = 2mπ

β1h cos θ1 − mπ

2
= tan−1

⎡⎢⎢⎣
√

ε1

ε0

√
ε1

ε0
sin2 θ1 − 1

cos θ1

⎤⎥⎥⎦

tan
(
β1h cos θ1 − mπ

2

)
=

⎡⎢⎢⎣
√

ε1

ε0

√
ε1

ε0
sin2 θ1 − 1

cos θ1

⎤⎥⎥⎦

tan
(
β1h cos θ1 − mπ

2

)
=

√
εr

√
εr sin2 θ1 − 1

cos θ1
m = 0, 1, 2, . . . (8-173)

Example 8-13

The polystyrene dielectric slab of Example 8-11 of half thickness h = 0.125 in. (0.3175 cm) and with
electrical properties εr = 2.56 and μr = 1 is bounded above and below by air. For a frequency of
operation of 30 GHz determine the TMz modes and their corresponding angles of incidence within the
slab. Plot the incidence angles as a function of frequency in the range 0 ≤ f /(fc)1 ≤ 2 where (fc)1 is
the cutoff frequency of the TMz

1 mode.
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Figure 8-30 Graphical solution for angles of incidence of TMz
m and TEz

m modes in a dielectric slab
waveguide.

Solution: The solution for this set of modes is governed by (8-173). For εr = 2.56 the right side of
(8-173) is plotted in Figure 8-30. For f = 30 GHz, the height h of the slab is equal to

λ1 = 30 × 109

√
2.56 30 × 109

= 0.6250 cm ⇒ h = 0.3175

0.6250
λ1 = 0.5080λ1

Thus, (8-173) reduces to

tan
(
β1h cos θ1 − mπ

2

)
= tan

[
2π

λ1
(0.5080λ1) cos θ1 − mπ

2

]

= tan
(

3.1919 cos θ1 − mπ

2

)
= 1.6

√
2.56 sin2 θ1 − 1

cos θ1

The left side is plotted for m = 0, 1 in Figure 8-30, and the solutions are intersections of these curves with
the curve representing the right side of (8-173). From Figure 8-30, there are two intersections that occur
at θ1 = 65.4◦ and 43◦, which represent, respectively, the modes TMz

0 (θ1 = 65.4◦) and TMz
1 (θ1 = 43◦).

They agree with the modes of Example 8-11. No other modes are present because curves of the left
side of (8-173) for higher orders of m (m = 2, 3, . . .) do not intersect with the curve that represents the
right side of (8-173). Remember also that the critical angle for the slab–air interface is equal to

(θc)10 = sin−1(
√

ε0/ε1) = sin−1(
√

1/2.56) = 38.68◦

and the curve that represents the right side of (8-173) does not exist in Figure 8-30 below 38.68◦.
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Figure 8-31 Angles of incidence for TMz
m and TEz

m modes in a dielectric slab waveguide.

In the slab, the wave number in the direction of incidence is equal to

β1 = 2π

λ1
= 2π

0.6250
= 10.053 rad/cm

Therefore, for each mode, the wave numbers in the y direction are equal to

TMz
0: βyd = β1 cos θ1 = 10.053 cos (65.4◦) = 4.185 rad/cm

TMz
1: βyd = β1 cos θ1 = 10.053 cos (43◦) = 7.352 rad/cm

which closely agree with the corresponding wave numbers obtained graphically in Example 8-11. The
angles of incidence as a function of frequency in the range 0 ≤ f /(fc)1 ≤ 2, where (fc)1 is the cutoff
frequency of the TMz

1 mode, are shown plotted in Figure 8-31.

B. Transverse Electric ( TEz) Modes (Perpendicular Polarization) Let us now assume
that the bouncing plane wave of Figure 8-28a is such that its polarization is TEz (or perpendicular
polarization) as shown in Figure 8-29b where the slab is bounded on both sides by air. For the
orientation of the fields taken as shown in Figure 8-29b, the reflected electric field Er

⊥ is related
to the incident electric field Ei

⊥ by

E r
⊥

E i
⊥

= �b
⊥ = η0 cos θ1 − η1 cos θ0

η0 cos θ1 + η1 cos θ0
(8-174)

where �b
⊥ is the reflection coefficient of (5-17a).
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For μ1 = μ0 and for an incidence angle θ1 greater than the critical angle (θc)10 [θ1 >(θc)10 =
sin−1(

√
ε0/ε1)], (8-174) reduces, using Snell’s law of refraction, (5-15b) or (5-35) to

�b
⊥ =

cos θ1 + j
√

sin2 θ1 − ε0

ε1

cos θ1 − j
√

sin2 θ1 − ε0

ε1

= |�b
⊥|/φ⊥ = 1

/
φ⊥ (8-175)

where

φ⊥ = 2 tan−1

⎡⎢⎢⎣
√

sin2 θ1 − ε0

ε1

cos θ1

⎤⎥⎥⎦ (8-175a)

Therefore, the transcendental equation that governs these modes is derived by using (8-170a)
and (8-175a). Thus,

4β1h cos θ1 − 2φ⊥ = 4β1h cos θ1 − 4 tan−1

⎛⎜⎜⎝
√

sin2 θ1 − ε0

ε1

cos θ1

⎞⎟⎟⎠ = 2mπ

β1h cos θ1 − mπ

2
= tan−1

⎛⎜⎜⎝
√

sin2 θ1 − ε0

ε1

cos θ1

⎞⎟⎟⎠

tan
(
β1h cos θ1 − mπ

2

)
=

√
sin2 θ1 − ε0

ε1

cos θ1

tan
(
β1h cos θ1 − mπ

2

)
=

√
sin2 θ1 − 1

εr

cos θ1

tan
(
β1h cos θ1 − mπ

2

)
=

√
εr sin2 θ1 − 1√

εr cos θ1
m = 0, 1, 2, . . . (8-176)

Example 8-14

For the polystyrene slab of Examples 8-12 and 8-13, determine the TEz
m modes and their corresponding

angles of incidence within the slab. Plot the angles of incidence as a function of frequency in the range
0 ≤ f /(fc)1 ≤ 2 where (fc)1 is the cutoff frequency of the TEz

1 mode.

Solution: The solution for this set of modes is governed by (8-176). From the solution of
Example 8-13

h = 0.5080λ1
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and (8-176) reduces to

tan
(

3.1919 cos θ1 − mπ

2

)
=

√
2.56 sin2 θ1 − 1

1.6 cos θ1
, m = 0, 1, 2, . . .

The right side is plotted in Figure 8-30. The left side for m = 0,1 is also plotted in Figure 8-30. The
intersections of these curves represent the solutions that from Figure 8-30 correspond, respectively, to
the modes TEz

0 (θ1 = 69.65◦) and TEz
1 (θ1 = 48.3◦). These agree with the modes of Example 8-12. In

the slab, the wave number in the direction of incidence is equal to

β1 = 2π

λ1
= 2π

0.6250
= 10.053 rad/cm

Therefore, for each mode, the wave numbers in the y direction are equal to

TEz
0 : βyd = β1 cos θ1 = 10.053 cos (69.65◦) = 3.496 rad/cm

TEz
1 : βyd = β1 cos θ1 = 10.053 cos (48.3◦) = 6.688 rad/cm

which closely agree with the corresponding wave numbers obtained graphically in Example 8-12. The
angles of incidence as a function of frequency in the range 0 ≤ f /(fc)1, where (fc)1 is the cutoff
frequency of the TE1 mode, are shown plotted in Figure 8-31.

8.7.5 Dielectric-Covered Ground Plane

Another type of dielectric waveguide is that of a ground plane covered with a dielectric slab of
height h , as shown in Figure 8-32. The field analysis of this is similar to the dielectric slab of
Sections 8.7.2 and 8.7.3. However, instead of going through all of the details, the solution can

er, mr

er, mr

(a)(a)

yy

xx

zz

zz

hh

hh

(b)(b)

yy

xx

Figure 8-32 Geometry for dielectric-covered ground plane waveguide. (a) Perspective. (b) Side view.
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be obtained by examining the solutions for the dielectric slab as applied to the dielectric covered
ground plane. For y ≥ h , the main differences between the two geometries are the additional
boundary conditions at y = 0 for the dielectric-covered ground plane.

For the dielectric slab of Figure 8-19, the electric field components within the dielectric slab
for the TMz and TEz modes (even and odd) of Figure 8-20 can be written from Sections 8.7.2
and 8.7.3 as

TMz (even)

E d
xe = 0

E d
ye = βydβz

ωμdεd
Ad

me sin(βyd y)e−jβz z

E d
ze = −j

β2
d − β2

z

ωμdεd
Ad

me cos(βyd y)e−jβz z

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
|y | ≤ h (8-177a)

TMz (odd)

E d
xo = 0

E d
yo = − βydβz

ωμdεd
Ad

mo cos(βyd y)e−jβz z

E d
zo = −j

β2
d − β2

z

ωμdεd
Ad

mo sin(βyd y)e−jβz z

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
|y | ≤ h (8-177b)

TEz (even)

E d
xe = βyd

εd
Bd

me sin(βyd y)e−jβz z

E d
ye = 0

E d
ze = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ |y | ≤ h (8-177c)

TEz (odd)

E d
xo = −βyd

εd
Bd

mo cos(βyd y)e−jβz z

E d
yo = 0

E d
zo = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ |y | ≤ h (8-177d)

By examining (8-177a) through (8-177d), it is apparent that the tangential electric field com-
ponents TMz (odd) of (8-177b) and TEz (even) of (8-177c) do satisfy the boundary conditions
of Figure 8-32 at y = 0 (vanishing tangential electric components at y = 0). However, those
TMz (even) of (8-177a) and TEz (odd) of (8-177d) do not satisfy the boundary conditions of
the tangential electric field components at y = 0. Therefore, the geometry of Figure 8-32 supports



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 435

DIELECTRIC WAVEGUIDE 435

only modes that are TMz (odd ) and TEz (even). From Sections 8.7.2 and 8.7.3, the governing
equations for the geometry of Figure 8-32 for TMz (odd) and TEz (even) modes are

ε0

εd
(βyd h) tan(βyd h) = (αy0h) TMz (odd) (8-178a)

−μ0

μd
(βyd h) cot(βyd h) = (αy0h) TEz (even) (8-178b)

β2
yd + β2

z = β2
d = ω2μdεd TMz (odd), TEz (even) (8-178c)

−α2
y0 + β2

z = β2
0 = ω2μ0ε0 TMz (odd), TEz (even) (8-178d)

(fc)m = m

4h
√

μdεd − μ0ε0

m = 0, 2, 4, . . . , TMz (odd)

m = 1, 3, 5, . . . , TEz (even)

(8-178e)

(8-178f)

Thus, the dominant mode is the TMz
0 with a zero cutoff frequency. All the modes in a dielectric-

covered ground plane are usually referred to as surface wave modes , and their solutions are
obtained in the same manner as outlined in Sections 8.7.2, 8.7.3, and 8.7.4 for the dielectric slab
waveguide. The only difference is that for the dielectric covered ground plane we only have TMz

m
(odd) and TEz

m (even) modes. The structure cannot support TMz
m (even) and TEz

m (odd) modes.
The attenuation rate of the evanescent fields in air above the dielectric cover is determined by

the value of αy0, which is found using (8-178d). Above cutoff, it is expressed as

αy0 =
√

β2
z − β2

0 =
√

β2
z − ω2μ0ε0 (8-179)

For very thick dielectrics (h → large) the phase constant βz approaches βd (βz → βd ).
Thus,

αy0|h→large =
√

β2
z − ω2μ0ε0 � ω

√
μdεd − μ0ε0 = ω

√
μ0ε0

√
μdεd

μ0ε0
− 1 (8-180)

which is usually very large.
For very thin dielectrics (h → small), the phase constant βz approaches β0 (βz → β0). Thus,

from (8-178c) and (8-178d),

β2
yd |h→small = β2

d − β2
z � β2

d − β2
0 = ω2(μdεd − μ0ε0) = ω2μ0ε0

(
μdεd

μ0ε0
− 1

)
(8-181a)

α2
y0|h→small = β2

z − β2
0 � small (8-181b)

For small values of h , (8-178a) reduces for αy0 to

αy0

∣∣
h→small = βyd

ε0

εd
tan(βyd h)

h→0� h
ε0

εd
(βyd )2 (8-182)



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 436

436 RECTANGULAR CROSS-SECTION WAVEGUIDES AND CAVITIES

Substituting (8-181a) into (8-182) reduced it to

αy0

∣∣
h→small � h

ε0

εd

[
ω2μ0ε0

(
μdεd

μ0ε0
− 1

)]
= hβ2

0

(
μd

μ0
− ε0

εd

)
= 2πβ0

(
μd

μ0
− ε0

εd

)
h

λ0
(8-182a)

which is usually very small.

Example 8-15

A ground plane is covered with a dielectric sheet of polystyrene of height h . Determine the distance δ

(skin depth) above the dielectric–air interface so that the evanescent fields above the sheet will decay
to e−1 = 0.368 of their value at the interface, when h is very large and h is very small (= 10−3λ0).

Solution: The distance the wave travels and decays to 36.84% of its value is referred to as the skin
depth.

For h very large, according to (8-180),

δ = 1

αy0
� 1

β0

√
μd εd

μ0ε0
− 1

= λ0

2π
√

2.56 − 1
= 0.126λ0

and the wave is said to be “tightly bound” to the thick dielectric sheet.
For h very small (h = 10−3λ0), according to (8-182a),

δ = 1

αy0
� λ0

2πβ0

(
μd

μ0
− ε0

εd

)
h

= λ0

(2π)2

(
1 − 1

2.56

)
× 10−3

= 41.6λ0

and this wave is said to be “loosely bound” to the thin dielectric sheet.

8.8 ARTIFICIAL IMPEDANCE SURFACES

Artificial impedance surfaces, also referred to as engineered electromagnetic surfaces , have been
developed over the last few decades to alter the impedance boundary conditions of the surface of
a structure and thus control the radiation characteristics, such as radiation efficiency and pattern,
of antenna elements placed at or near them, or the scattering of impinging electromagnetic waves
[12–17]. When electromagnetic waves interact with surfaces that exhibit geometrical periodicity,
they result in some interesting and exciting characteristics, which typically have numerous appli-
cations that have captured the attention and imagination of engineers and scientists. Using a ‘broad
brush’ designation, these surfaces can also be referred to as metamaterials , which were discussed
in Section 5.7. Since metamaterials may be used to designate double negative (DNG) type mate-
rials, there have been other designations of artificial impedance or engineered electromagnetic
surfaces. These designations began initially as Photonic Band-Gap (PBG) structures [18, 19],
which targeted primarily optics type of structures and frequencies. PBG structures are 1-D, 2-D,
and 3-D periodic configurations, both dielectric and conducting, which have the ability to manip-
ulate the electromagnetic radiation so as to not allow it to propagate within certain frequency
ranges, or band-gaps. Most of the focus of PBG has been devoted to dielectric structures, although
the applications have expanded to metallic structures, such as waveguides, resonators, filters, and
antennas, which usually exhibit metallic losses that are more dominant at higher frequencies,
compared to dielectric losses. The PBG structures are analogous to semiconductor materials that
manipulate the electrons to exhibit electronic band-gaps. The PBG designation was expanded to
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include other type of structures and frequencies, such as Electromagnetic Band-Gap (EBG) struc-
tures, Frequency Selective Surfaces (FSS), High Impedance Surfaces (HIS), Artificial Magnetic
Conductors (AMC), Perfect Magnetic Conductors [PMC], etc. A comprehensive list of various
EBG designations and references, organized by topics, can be found in the appendix of [17]. In
[14] the EBG designation was introduced as a more broad classification to encompass the others.

Artificial impedance surfaces can be used for, but are not limited to:

• Change the surface impedance
• Control the phase of the reflection coefficient
• Manipulate the propagation of surface waves
• Control the frequency band (stop band, pass band, band gaps)
• Control the edge diffractions, especially of horns and reflectors
• Design new boundary conditions to control the radiation pattern of small antennas
• Provide detailed control over the scattering properties
• Design tunable impedance surfaces to be used as:

a. Steerable reflectors
b. Steerable leaky-wave antennas

This is accomplished by altering the surface of a structure, by modifying its geometry and/or
adding other layers, so that the surface waves and/or the phase of the reflection coefficient of
the modified surface can be controlled. Although the magnitude of the reflection coefficient will
also be affected, it is the phase that primarily has the most significant impact. While an ideal
PMC surface introduces, through its image, a zero-phase shift in the reflected field, in contrast
to a PEC, which presents a 180◦ phase shift, the reflection phase of an EBG surface can, in
general, vary from −180◦ to +180◦, which makes the EBG more versatile and unique [12, 13].
This will be demonstrated in section 8.8.2. While, in general, PEC, PMC, and EBG surfaces pos-
sess individually attractive characteristics, they also exhibit shortcomings when electromagnetic
radiating elements are mounted on such structures, especially when the designs are judged using
aerodynamic, stealth, and conformal criteria. For example, when an electric element is mounted
vertically on a PEC surface, its image reinforces its radiation and system efficiency; however, its
geometry is not low-profile, an undesirable characteristic for aerodynamic, stealth, and conformal
designs. However, when the same electric radiating element is placed horizontally on a PEC
surface, its radiation efficiency suffers because its image possesses a 180◦ phase shift and its
radiation cancels that of the actual element; however, the design exhibits low profile character-
istics usually desirable for aerodynamic, stealth, and conformal applications. In contrast, when
the same electric radiating element is placed horizontally on a PMC surface, its image possesses
a 0◦ phase and reinforces the radiation of the actual element, in addition to having low-profile
characteristics. The characteristics of vertical and horizontal electric elements placed vertically
and horizontally on PEC and PMC surfaces are based on image theory of Figure 7-2, and they
are visually contrasted in Figure 8-33 [20].

While EBG surfaces exhibit similar characteristics as PMCs when radiating elements are
mounted on them, they also have the ability to suppress surface waves of low-profile antenna
designs, such as microstrip arrays. Surface waves are introduced in microstrip arrays, which
primarily travel within the substrate and are instrumental in developing coupling between the
array elements. This can limit the beam scanning capabilities of the microstrip arrays; ultimately,
surface waves and coupling may even lead to scan blindness, discussed in Section 8.8.3.

An EBG surface emulates a nearly PMC surface and suppresses surface waves only over a
frequency range; thus, it is usually referred to as a band-gap structure. In general, the frequency
range (band-gap) over which an EBG structure operates more efficiently depends upon the appli-
cation. For example, the frequency range over which a radiating element in the presence of an
EBG possesses a good impedance match, which in [16] is referred to as the input-match
frequency band , may not be the same frequency range over which a microstrip array suppresses
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Figure 8-33 Efficiency and conformal characteristics of a vertical and horizontal electric J current source
at and near PEC and PMC surfaces [20]. Reprinted with permission from John Wiley & Sons, Inc.

the surface waves, which in [16] is referred to as the surface-wave frequency bandgap. The
operational band was introduced to define “the frequency region within which a low profile
wire antenna radiates efficiently, namely, having a good return loss and radiation patterns.
The operational band is the overlap of the input-match frequency band and the surface-wave
frequency bandgap” [16]. Generally, for EBG structures, the input-match frequency band and
the surface-wave frequency bandgap are not necessarily the same. However, for a mushroom
type of EBG surface, which will be introduced later, the input-match and surface-wave bands
are nearly the same, which results in an overall operational band, which is a near overlap of the
two other bands. It should be stated that for a mushroom type of EBG surface, the frequency
band of its surface-wave suppression capability is determined by simulating and/or measuring its
insertion loss amplitude, as shown later in Figure 8-40a , or by simulating the dispersion diagram
of Figure 8-50. It should also be pointed out that the surface wave suppression bandwidth of an
EBG surface is not necessarily the same as the bandwidth over which the EBG surface behaves
as a PMC type of surface. When a plane wave is normally incident upon a surface with a surface
impedance Zs , the +90◦ to −90◦ phase variation is also evident when the magnitude of the
surface impedance exceeds the free-space intrinsic impedance, η [13]. An EBG surface that does
not include the vias does not suppress the surface waves, even though its reflection phase changes
between +180◦ to −180◦. Better representatives of the surface wave suppression ability of an
EBG surface is the dispersion diagram, which for Example 8-16 is displayed in Figure 8-50.

Whether a PEC, PMC, or EBG surface outperforms the others as a ground plane depends
upon the application. This is best illustrated by a very basic example; a 0.4λ12 dipole (λ12 is the
free-space wavelength at f = 12 GHz) placed horizontally above PEC, PMC, and EBG surfaces
as shown in Figure 8-34. The EBG surface has a height of 0.04λ12. The dipole is placed at a
height h of 0.06λ12 (h = 0.06λ12) above a λ12 × λ12 PEC, PMC square surface, which means
that the dipole is placed at a height of 0.02λ12 above the EBG surface. The S11 of this system
was simulated, using the FDTD method, over a frequency range of 10–18 GHz [16, 20]. Based
on a 50-ohm line impedance, the results are shown in Figure 8-34b, where it is clear that the
EBG surface (which has a reflection phase variation from +180◦ to −180◦) exhibits a best
return loss of −27 dB while the PMC (which has a reflection phase of 0◦) has a best return
loss of −7.2 dB and the PEC (which has a reflection phase of 180◦) has a best return loss of
only −3.5 dB. For the PMC surface, the return loss is influenced by the mutual coupling, due
to the close proximity between the main element and its in-phase image, whereas for the PEC
the return loss is influenced by the 180◦ phase reversal, which severely impacts the radiation
efficiency. In this example, the EBG surface, because of its +180◦ to −180◦ phase variation
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Figure 8-34 Geometry and S11 of horizontal dipole above PEC, PMC and EBG surfaces [20]. Reprinted
with permission from John Wiley & Sons, Inc. (a) Geometry. (b) Reflection coefficient.

over the frequency band-gap of the EBG design, outperforms the PEC and PMC and serves
as a good ground plane. The other two, the PEC and PMC, possess constant out-of-phase and
in-phase phase characteristics, respectively, over the entire frequency range.

Now that we have introduced some of the basic definitions of artificial impedance surfaces,
we examine some basic structures—corrugations in Section 8.8.1 and mushroom EBG surface
in Section 8.8.2—that exhibit such characteristics. Application of mushroom EBG surfaces to
antenna technology is discussed in Section 8.8.3. A semi-empirical procedure for the design of
mushroom EBG surfaces is outlined in Section 8.8.4. The design leads, in some cases, to rather
excellent results when compared to simulations based on a full-wave electromagnetic solver. The
limitations of the design are summarized in Section 8.8.6.

8.8.1 Corrugations

There are a number of surfaces that have been developed over the years whose surface impedance
has been altered by introducing changes on the surface of the structure. One such surface alter-
ation, which has been in use for many decades, is the introduction of grooves, usually referred
to as corrugations , with a depth at or near quarter of a wavelength, as shown in Figure 8-35.
Since the width of the corrugations, w , is usually equal or less than about λ/10 (w ≤ λ/10 and
the thickness t is also about 1/10 of the width, or t ≤ w/10 ≤ λ/100), each corrugation can be
treated as a shorted transmission line. Since the input impedance of a shorted transmission line
of length � is

Zin = jZc tan(β�) (8-183)
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then, for a corrugation of depth d = � = λ/4 the input impedance at the surface is ideally infinity
(Zin = ∞). Such a structure is classified as an anisotropic impedance surface since its impedance
is high when the polarization of the electric field is perpendicular to the grooves, and it is a
low-impedance surface when the electric field is parallel to the grooves, as shown in Figure 8-
35a . No matter what the polarization of the wave is, the surface is referred to as ‘hard’ when the
wave propagates parallel to the grooves and ‘soft’ when the wave propagates perpendicular to the
grooves, as shown in Figure 8-35b [13, 21, 22]. This type of designation of the surface is used
to match the corresponding boundary conditions from acoustics, and it has been used extensively
to design corrugated horns (see Figure 8-36) whose radiation characteristics are controlled by the
design of the corrugations [23]. For a pyramidal horn, for example, the corrugations on the upper
and lower wall of the horn are introduced to create a surface which nearly nulls the vertical
electric field components of the wave [23]. Therefore, the impedance of the upper and lower
walls of the pyramidal horn nearly match those of the side walls, and they can be used to create
nearly identical E- and H-plane patterns and nearly rotational by symmetric patterns in all planes,
especially in conical horns such as the one in Figure 8-36. Such an antenna element is widely used
in many practical applications, especially as a feed for reflector antennas (dishes). A number of
designs of corrugations can be found in [21]-[31], and they have been used to control the radiation
characteristics of the horns, especially to lower the minor lobes, provide better impedance match,

(a)

(b)

l/4

Wave Propagation

Soft
Polarization

w

Hard
Polarization

t

Electric Field

l/4

High
Impedance

w

Low
Impedance

t

Figure 8-35 Corrugated surface and electric field direction for high and low impedance surface, and
direction of wave propagation for soft and hard polarization impedance surfaces [13]. Reprinted with
permission from John Wiley & Sons, Inc. (a) Electric field directions for high and low impedance surfaces.
(b) Wave velocity for soft and hard polarization impedance surfaces.
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Figure 8-36 Conical corrugated horn antenna [23]. Reprinted with permission from John Wiley & Sons,
Inc.

minimize the diffractions from the edges at the aperture of the horn, and attempt to synthesize a
nearly symmetrical amplitude pattern by equalizing those of the E- and H-planes.

Just like corrugations/grooves have been introduced on PEC surfaces, conducting strips have
also been placed circumferentially (T-strips) and axially (L-strips) on the surface of dielectric
circular cylinders to create anisotropic boundary conditions and polarization selective surfaces to
control the scattering from cylinders [32]. Electric fields that are perpendicular to the length of the
strips are ideally transmitted while those parallel to the length of the strips are ideally reflected.
This procedure creates an impedance surface that can perform as dichroic polarization-sensitive
filter for electromagnetic waves.

8.8.2 Artificial Magnetic Conductors (AMC), Electromagnetic Band-Gap (EBG), and
Photonic Band-Gap (PBG) Surfaces

While perfect electric conductors (PECs) exist in nature, perfect magnetic conductors (PMCs) do
not. However, it will be of benefit to fabricate PMCs, even artificially. From the electromagnetic
boundary conditions, PEC surfaces are those over which the tangential components of electric
fields vanish. Therefore, this precludes the placement at, or even near, their surfaces of radiat-
ing elements such as tangential electric dipoles, spirals, etc., because their radiated fields over
them will be shorted out, or nearly so. This of course is obvious from image theory where the
actual source and its image are next to each other but are oriented in opposite directions. This is
illustrated in Figure 7-2. Such arrangements even exhibit low radiation efficiency for low heights
because of the 180◦ phase reversal of its image. In fact, when locating a horizontal electric ele-
ment, such as a horizontal dipole, next to a PEC, it must be placed at a height h = λ/4 above it in
order for the radiation, in a direction normal to the surface, to be maximum. Such an arrangement
is usually not desired, especially when the elements are placed on spaceborne platforms, because
of aerodynamic considerations. Also, for stealth type of targets, such configurations are quite
visible and create large radar cross section (RCS) signature. Therefore, it is quite beneficial if
PMC surfaces can be created, even artificially.

Within recent years, PMC surfaces have been synthesized and fabricated artificially and exhibit
PMC-type properties within a frequency range; therefore, these surfaces often are referred to as
band-gap or band-limited surfaces. There have been many such surfaces—too numerous to
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(a)
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Figure 8-37 Mushroom engineered texture surface [13]. Reprinted with permission from John Wiley &
Sons, Inc. (a) Perspective view. (b) Side view.

mention here. The reader is referred to the literature, especially [12–22], [33–35]. One of the
first and most widely utilized PMC surfaces, is that shown in Figure 8-37. This surface consists
of an array of periodic patches of different shapes, in this case hexagons, placed above a very
thin substrate (which could be air) and connected to the ground plane by posts through vias, if an
actual substrate is utilized. The height of the substrate is usually less than a tenth of a wavelength
(h < λ/10). The vias are necessary to suppress surface waves within the substrate.

This structure is also referred to as EBG and PBG. It is a practical form of engineered textured
surfaces or metamaterials, discussed in Section 5.7. Because of the directional characteristics of
EBG/PBG structures, integration of antenna elements with such structures can have some unique
characteristics [18, 19, 36]. A semi-empirical model of the mushroom EBG surface of Figure 8-37
was developed in [12, 13]. The presentation here follows that of [13].

Of the mushroom AMC/EBG/PBG structure shown in Figure 8-37, a unit cell of its structure is
displayed in Figure 8-38a . When a wave impinges upon an array of such unit cells, electric fields
are created across the gap of the unit cells that can be represented by an effective capacitance C .

(a)

(b)

L

C

C

L

−−−++
+

Figure 8-38 Unit cell and equivalent circuit of mushroom textured surface [12, 13]. Reprinted with
permission from John Wiley & Sons, Inc. (a) Unit cell. (b) Equivalent circuit.
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Also, such impinging fields create currents that circulate between adjacent unit cells. The effects
of these current paths through the neighboring walls or vias, can be represented by an equivalent
inductance L. Therefore, the equivalent circuit of the unit cell of Figure 8-38a is shown in
Figure 8-38b, which consists of a capacitance C in parallel with an inductance L [13].

The surface impedance of the individual unit cell of Figure 8-38 is given by

Zs = j
ωL

1 − ω2LC
(8-184)

while its resonant frequency is represented by

ωo = 1√
LC

(8-185)

However, for design purposes, as it will be shown in section 8.8.4, sheet inductance Ls and
sheet capacitance Cs must be used to define the resonant frequency. The sheet inductance and
capacitance take into account not only the geometry of the individual unit cells but also the
geometrical arrangement of the unit cells [13]. It is apparent from (8-184) that the surface of
the unit cell is inductive below the resonant frequency, capacitive above the resonant frequency,
infinity at resonance, and very high near resonance. Based on (8-158c) of Section 8.7.2, inductive
surfaces support TM types of surface waves while based on (8-169i) of Section 8.7.3, capacitive
surfaces support TE type of surface waves.

The support of either TE or TM surface wave modes, or both, was verified by measuring
the transmission between a pair of coaxial probes placed near the surface of a fabricated 12-cm
high impedance surface reported in [13]. The artificially fabricated PMC surface consisted of
a triangular lattice of metallic hexagons placed on the surface of a grounded substrate with a
dielectric constant of 2.2, as shown in Figure 8-39. The excitation of the surface waves, TE or
TM modes, is controlled by the orientation of the probes. The amplitude of the transmission
between the probes is shown in Figure 8-40a while the phase, based on a plane wave normal
incidence, is displayed in Figure 8-40b [13]. It is apparent from Figure 8-40a that the fabricated
and tested surface exhibits high impedance between approximately 11-16 GHz (band-gap) while
it supports TM surface waves (inductive surface) below the band gap and TE surface waves
(capacitive surface) above the band gap. By examining the plane wave incidence phase response
of the mushroom surface in Figure 8-40b, it is apparent that the edges of the band-gap occur
where the phase varies nearly from +90◦ to −90◦, and it is basically zero at resonance. While
the transmission amplitude and phase characteristics shown in Figures 8-40a and 8-40b are those
of a mushroom type of high impedance surface, they may be different for other type of surfaces,
particularly those that may not include vertical vias [13]. A semi-empirical design procedure for
high impedance surfaces can be found in [13], and it will be presented here in Section 8.8.4.

w = 0.7794 mm

a = 1.5 mm

h

g = 0.15 mm

1.6 mm

Figure 8-39 Triangular lattice of hexagons, built on a grounded substrate with a relative dielectric constant
of 2.2 [13]. Reprinted with permission from John Wiley & Sons, Inc.
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Figure 8-40 Transmission characteristics, amplitude and phase, of mushroom textured surface [13].
Reprinted with permission from John Wiley & Sons, Inc. (a) Amplitude: TM modes (solid), TE (dotted).
(b) Phase.

8.8.3 Antenna Applications

As indicated previously, artificially fabricated surfaces have many applications, especially related
to suppression or enhancement of surface waves and/or controlling the phase characteristics of
the reflection coefficient.

A. Monopole A basic illustrative example is to examine the radiation characteristics of a
monopole mounted on a finite size ground plane, PEC and high impedance surface. The monopole
and its measured radiation patterns are shown in Figures 8-41a through 8-41d .

The basic geometry shown in Figure 8-41a consists of a 3-mm monopole mounted on a 5-cm
ground plane. Its amplitude patterns were measured at 35 GHz. When mounted on a PEC ground
plane, the amplitude pattern displayed in Figure 8-41b is basically that which is expected and
shown in Figure 13.33. It exhibits radiation not only in the upper hemisphere but also in the
lower one due to diffractions from the edges of the ground plane. However, when the monopole
is mounted on a high impedance surface designed at the band-gap frequency of 35 GHz, the
radiation in the lower hemisphere, as displayed in Figure 8-41c, is diminished as the diffractions
from the edges of the ground plane have been reduced because the high impedance surface
suppresses the surface waves as they travel from the center of the ground plane toward its edges.
Even in the upper hemisphere the pattern is very smooth, compared to that of Figure 8-41a ,
because the diffractions from the edges of the ground plane are basically insignificant compared
to the direct radiation (geometrical optics) from the radiating element and its image. However,
when the monopole is operated below the band-gap (f = 26 GHz), as shown in Figure 8-41d ,
the pattern is scalloped both in the upper and lower hemispheres, with considerable radiation in
the lower hemisphere. The measured patterns in Figure 8-41 exhibit slight asymmetries probably
due to system errors introduced by cables and mounting structures.

B. Aperture Another example of diffraction control, that can be provided by a textured high
impedance surface, is to examine the radiation of an aperture mounted on a high impedance
surface ground plane. The geometry of the radiator is shown in Figure 8-42, and it consists of
an aperture mounted on a 12.7-cm ground plane, both PEC and high impedance [13]. Each unit
cell measures 3.7 mm and the textured high impedance surface has been designed for a band gap
in the range 12–18 GHz. The measured patterns, both for the PEC and high impedance surface,
are shown in Figure 8-43, and they were measured at 13 GHz, which is within the designed band
gap. In general, the shape of the radiation pattern is influenced not only by the shape and size of
the aperture but also by the ground plane and its texture.
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Figure 8-41 Monopole and its patterns on a ground plane; PEC and PMC [13]. Reprinted with permission
from John Wiley & Sons, Inc. (a) Monopole geometry (3 mm monopole, 5 cm ground plane). (b) PEC
ground plane (f = 35 GHz). (c) PMC ground plane (f = 35 GHz). (d ) PMC ground plane (f = 26 GHz).

(a) (b)

Figure 8-42 Aperture antenna in a high-impedance surface. The unit cells of the high-impedance surface
measure 3.7 mm, and the size of the ground plane (not shown to scale) is 12.7 cm. The aperture is fed by
a coax to Ku-band rectangular waveguide transition [13]. Reprinted with permission from John Wiley &
Sons, Inc. (a) Side view. (b) Front view.
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Figure 8-43 Amplitude far-field pattern of an aperture on a ground plane; PEC and AMC [13]. Reprinted
with permission from John Wiley & Sons, Inc. (a) PEC. (b) AMC (f = 13 GHz) (high-impedance).
(c) AMC (high-impedance near edge of TE band).

The patterns in Figure 8-43a , E- and H-plane, are those of the aperture on a PEC ground
plane, and they are representative, as shown in Figures 12-27a and 12-27b of [23]. The
E-plane is usually broader than the H-plane, because for the E-plane its vertical polarized fields
are not shorted out by the PEC ground plane while for the H-plane its horizontally polarized fields
are, ideally, nulled. When the aperture is mounted on a textured high-impedance surface and oper-
ated within its band gap (specifically 13 GHz), its patterns in both the E- and H-planes, shown in
Figure 8-43b, are nearly the same and symmetrical because the textured surface suppresses
both the TM and TE surface waves near the resonant frequency. However, when the aperture is
mounted on the same textured surface but operated at the leading edge of the TE band where
TM waves are suppressed, the H-plane pattern is broader than the E-plane (Figure 8-43c), which
is the opposite of that observed for the patterns in Figure 8-43a for the PEC ground plane. Since
the behavior of the E- and H-plane patterns in Figure 8-43c is opposite of that of the patterns
in Figure 8-43a , the textured ground plane acts as a PMC (ideally shorts out the tangential
magnetic fields), which is the opposite of that for the PEC.

C. Microstrip In microstrip arrays, a detrimental phenomenon that leads to an increase in the
input reflection coefficient of the array, as a function of the scan angle, are the surface waves
created, sustained, and traveling within the substrate. Space waves also contribute but they are
not as dominant as the surface waves, which can also lead to scan blindness [37]. One way to
eliminate the surface waves and reduce the input reflection coefficient, and even eliminate scan
blindness, is to use cavities to surround each of the patches [38]. This is a rather expensive design
but it does work.

Another way to minimize the surface waves, without the use of cavities, is to mount the patches
on EBG textured surfaces, as shown in Figure 8-44a for a 3 × 3 array. A 2 × 2 unit cell of EBG
surface, with a dipole in its middle, is displayed in Figure 8-44b [39]. Such surfaces have the
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Figure 8-44 Dipole phased array on a PBG surface [39]. © IEEE. Reprinted with permission from IEEE.
(a) 3 × 3 array. (b) Dipole between 2 × 2 unit cell.

ability to control and minimize surface waves in substrates. A microstrip dipole element, placed
within a textured high-impedance surface, was designed, simulated, fabricated, and measured
[39]. It consists of a dipole patch of length 9.766 mm placed in the middle of 4 × 4 EBG unit
cells; each cell had dimensions of w = l = 1.22 mm and a separation gap between them of
g = 1.66 mm. The substrate had a dielectric constant of εr = 2.2 and a height of h = 4.771
mm. The scanned magnitude of the simulated reflection coefficient at 13 GHz of such a design
is shown in Figure 8-45. The band-gap frequency range was 9.7–15.1 GHz. The E-plane curves
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Figure 8-45 Reflection coefficient of phase array of dipoles on a regular and 4 × 4 unit cell PBG substrate
[39]. © IEEE. Reprinted with permission from IEEE.
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are presented by the E curves, the H-plane by the H curves and the diagonal (45◦) plane by
the D curves. It is clear that using conventional substrates, the reflection coefficient varies as a
function of the scan angle, and in fact creates scan blindness around 50◦. However, when the
same elements were placed on a textured high-impedance surface, the reflection coefficient was
reduced, especially in the E-plane, and in fact the scan blindness was eliminated.

There are many other applications where textured high-impedance surfaces can be used to
control the radiation characteristics of electromagnetic problems. Such applications include, but
are not limited to, reflective beam steering, leaky wave beam steering, microwave holography,
low-profile antennas, etc. These are accomplished by using textured high-impedance surfaces
to control, and even suppress, the surface waves within the band gap and/or the phase of the
reflection coefficient, which can even be made zero (PMC surface) at resonance. Other examples
of interest utilizing EBG surfaces to suppress surface waves can be found in [17].

8.8.4 Design of Mushroom AMC

Now that the AMC surface and its general properties and applications have been introduced, an
objective is how to design such a surface based on desired specifications. Given the procedure
reported in [12]–[13], the design is outlined here. Other design methods can be found in [17].

The design center-radian frequency, ωo , of (8-185), where the reflection coefficient is zero and
where AMC surface exhibits PMC characteristics, can be written as

ωo = 1√
LsCs

(8-186)

where Ls and Cs are, respectively, the sheet inductance and capacitance, which take into account
not only the geometry of the individual unit cells of Figure 8-38 but also of the geometrical
arrangement of the unit cells, as shown in Figure 8-46.

The fractional bandwidth BW , over which the phase of the reflection coefficient is between
+90◦ and −90◦, can be expressed as

BW = 	ω

ωo
=

√
Ls/Cs√
μ2/ε2

(8-187)

where ε2 and μ2 are, respectively, the permittivity and permeability of the superstrate (upper
layer). Specifying the design radian frequency of (8-186) and the fractional bandwidth of (8-187),
the sheet inductance Ls and sheet capacitance Cs can be determined.

h

a

g

w

Figure 8-46 Geometry of hexagons lattice built on a substrate of height h [13]. Reprinted with permission
from John Wiley & Sons, Inc.
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Equations (8-186) and (8-187) can be solved for Ls and Cs in terms of ωo and 	ω/ωo , that
is

Ls = f (ωo , 	ω/ωo) = BW

ωo

√
μ2/ε2 (8-188a)

Cs = g(ωo , 	ω/ωo) = 1

ωoBW
√

μ2/ε2
(8-188b)

The sheet inductance Ls can also be written as

Ls = μ1h (8-189)

Equating (8-188a) to (8-189), it can be shown that the fractional bandwidth can be written in
terms of the height h of the substrate, or

BW = 	ω

ωo
= β2h = ωo

√
μ2ε2h ⇒ h = BW

ωo
√

μ2ε2
(8-190)

Substituting (8-190) for the height in (8-189), the sheet inductance can be written as

Ls = μ1h = μ1
BW

ωo
√

μ2ε2
= μ1√

μ2ε2

(
BW

ωo

) μ1=μ2︷︸︸︷= η2

(
BW

ωo

)
(8-191)

In turn, substituting (8-191) into (8-186), the sheet capacitance can be expressed as

Cs = 1

(ωo)
2 Ls

= 1

ωoη2 • BW
(8-192)

To design each unit cell of Figure 8-46 (i.e., find its dimensions), the capacitance C of each
unit cell is related to the sheet capacitance Cs by

Cs = C × F (8-193)

where F is a geometrical correction factor given by [12, 13]

Geometry Geometrical correction Factor (F )

Square 1
Triangle

√
3

Hexagon 1/
√

3

Once the individual capacitance C of each unit cell is determined using (8-193) and the
geometrical correction factor of the desired unit geometry, then the dimensions of the unit cell of
Figure 8-46, for a two-layer design (superstrate with permittivity ε2 and substrate with permittivity
ε1), can be determined using [12, 13]

C = w(ε1 + ε2)

π
cosh−1

(
a

g

)
(8-194)

If the upper layer (superstrate) of the two-layer structure is free space (ε2 = εo), then (8-194)
reduces to

C = wεo(εr + 1)

π
cosh−1

(
a

g

)
(8-195)
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where εr is the dielectric constant of the substrate. Using Figure 8-46, the designer chooses one
of the three dimensions (a , g , w ) and determines the other two using either (8-194) or (8-195)
and one of the two following relationships:

For square patch: a = w + g (8-196a)

For hexagonal patch: a =
√

3w + g (8-196b)

According to [12, 13], the thickness of the substrate is usually chosen to be much smaller than
the operating wavelength, which reduces the bandwidth since the inductance is related by (8-191)
to the thickness and inversely proportional to the capacitance for a constant center frequency.
Because the thickness of a two-layer structure is very small, large inductance values cannot be
achieved. Thus, low frequencies are achieved by loading the structure with large capacitances. On
the other hand, large capacitances usually cannot be achieved by two-layer structures. Therefore,
the designer is encouraged to use three-layer structures, with overlapping plates/patches, for low-
frequency applications [12, 13]. The trade-off in designs is between thickness and bandwidth.
By selecting different geometries and materials with dielectric constants in the range of 2-10, it
is possible to obtain capacitances on the order of 0.01–1 pf. With conventional printed circuit
fabrication facilities and techniques, minimum gap separations between metallic regions should
be around 100–200 μm (microns).

Example 8-16

Design a two-layer mushroom textured surface with square patches and air as the upper layer (ε2 =
εo , μ2 = μo), as shown in Figure 8-47, to exhibit PMC characteristics between 10–14 GHz with a center
frequency of fo = 12 GHz. Use a Rogers RT/Duroid 5880 with a dielectric constant of εr = 2.2. The
square patches are supported by metallic circular posts that connect the patches to the bottom ground
plane through vias in the substrate.

Solution: Based on the specifications with air as the upper layer and a fractional bandwidth of

BW = 	f

fo
= (14 − 10)109

12 × 109
= 1

3
, εr = 2.2 and using (8-190), the height of the substrate is

h = BW

ωo
√

μ2ε2
= BW

ωo
√

μoεo
= 3 × 108

3(2π × 12 × 109)
= 1.3263 × 10−3 = 1.3263 mm

The sheet inductance and sheet capacitance based, respectively, on (8-191) and (8-192) are

Ls = μ1h = μoh = 4π × 10−7
(
1.3263 × 10−3

) = 16.6668 × 10−10 = 1.66668 nh

Cs = 1

ωoη2 • BW
= 1

ωoηo • BW
= 3

2π × 12 × 109(377)
= 0.10554 × 10−12 = 0.10554 pf

Since we are using square patches, the geometrical factor F is unity and, according to (8-193), the
capacitance of each unit cell C is equal to the sheet capacitance Cs , i.e., C = Cs .

A suitable value for the gap spacing g for integrated circuit technology between patches is 100 μm or
g = 100 μm. Using the previously obtained values and the geometrical relation of (8-196a), a = w + g
for a square patch, the nonlinear design equation 8-195

C = wεo(εr + 1)

π
cosh−1

(
a

g

)
= wεo(2.2 + 1)

π
cosh−1

(
w + 0.1 × 10−3

0.1 × 10−3

)
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can be solved, using a nonlinear solver, for w of the PMC surface. Doing this leads to

w = 2.85 mm, and then a = w + g = 2.95 mm

e1

a

g

w

h

(a)

(b)

(c)

e1

w

a

g

h

Figure 8-47 Geometry of PMC textured surface of square patches. (a) Perspective view. (b) Top view.
(c) Side view.

To verify the performance of the mushroom PMC surface based on the specified and obtained
geometrical dimensions, the commercial software HFSS [40] was used to simulate it. The plane
wave normal incidence reflection phase variations of S11 of the mushroom textured surface of
square patches of Figure 8-47 between +90◦ and −90◦, similar to those of Figure 8-40b, are
shown in Figure 8-48 where they are compared with the results based on the design equations of
Section 8.4.4. A very good agreement is indicated between the two. The simulated data indicate
a bandwidth of 3.9 GHz (fl = 10.35 GHz and fh = 14.25 GHz), compared to the specified one of
4 GHz (fl = 10 GHz and fh = 14 GHz), a center frequency of 12.15 GHz (compared to 12 GHz),
and a fractional bandwidth of 0.321 (compared to 0.333). Overall, the performance indicates a
very favorable design.

8.8.5 Surface Wave Dispersion Characteristics

The plane wave normal-incidence-reflection phase characteristics of the mushroom surface of
Figure 8-47, as displayed in Figure 8-48, can be simulated by using the geometrical arrangement
illustrated in Figure 8-49a . Since the structure is periodic, the problem can be solved by
considering only a unit cell and by assigning the proper boundary conditions. To emulate
periodicity based on the polarization of the plane wave incidence indicated in Figure 8-49a , with
the electric field E parallel to the yz -plane and the magnetic field H parallel to the xy-plane, PEC



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 452

452 RECTANGULAR CROSS-SECTION WAVEGUIDES AND CAVITIES

4 6 8 10 12 14 16 18 20
–150

–100

0

50

100

150

200

Frequency (GHz)

P
ha

se
 o

f 
 S

1
1
 (

de
gr

ee
s)

Δf

14.25 GHz10.35 GHz
–50

HFSS Simulation
Design Equations

Figure 8-48 Phase of reflection coefficient S11 of PMC textured surface with square patches simulated
using HFSS and design equations.

boundary conditions are assigned on the front and rear walls of the unit cell, and PMC boundary
conditions are assigned on the left and right walls of the unit cell. The assignment of the
boundary conditions should be based on the polarization of the incident electric (E) and magnetic
(H) fields. The images of E and H fields should be in the same direction as the actual field.
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Figure 8-49 Unit cells for reflection phase and dispersion diagram simulations. (a) Reflection phase.
(b) Dispersion diagram.
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In addition to their unique plane wave normal-incidence-reflection phase characteristics, mush-
room surfaces generate forbidden band gaps within which the propagation of surface waves is
suppressed. These forbidden bands can be observed via dispersion diagrams or directly by the
amplitude variation of surface waves. A dispersion diagram is a plot that displays the relation
between the frequency of the propagating modes and the wave vector. The dispersion diagram of
a mushroom surface can be obtained by computing the allowable frequencies of different modes
for certain values of the amplitude of the wave vector. This can be achieved by computing the
eigenmodes of the periodic structure.

To understand the numerical approach, let us consider the vector wave equation for the electric
field ∇2E = −ω2μεE as a starting point, where −ω2με are the eigenvalues and the solutions
to the wave equation are the corresponding eigenvectors. For the case of an infinite medium,
the eigenvalues, as well as the ω’s, have a continuous spectrum on the complex plane. On the
other hand, in the case of a periodic structure, particularly a mushroom surface and because of
the translational symmetry of the geometry, the solutions to the wave equation can be written in
the form E = Enejφ where En is a periodic function, which is referred to as Bloch mode [41].
The periodic function En is a solution to another problem referred to as the reduced Hermitian
eigen problem [42]. Again due to the periodicity of the structure, the wave vectors in the x and
z directions can be written, respectively, as βn

x = βx + m
(

2π
a

)
and βm

z = βz + n
(

2π
a

)
. The wave

vectors can also be obtained by the spatial harmonic expansion of E [43]. Since En is periodic, we
can solve the eigen problem only over the finite domain referred to as the Brillouin zone, in which
βx and βz take values between −π/a and +π/a . As a consequence of the finite nature of this
problem, the eigenvalues would have a discrete spectrum generating some bands. Furthermore,
due to the other types of symmetries including rotation, mirror reflection, and inversion, the
domain of the problem can be reduced into a smaller one that is called the irreducible Brillouin
zone [41]. Figure 8-49b shows the Brillouin and irreducible Brillouin zones of a unit cell of a
mushroom EBG structure. Surface 1 represents the rear wall, surface 2 the front wall, surface
3 the left wall, and surface 4 the right wall of the unit cell. The unit cell is truncated in the y
direction by a PML design. To be able to plot the band structure in a regular two-dimensional
diagram, it is sufficient to consider only the extrema of the frequency bands. This can be obtained
by solving the problem on the boundary of the irreducible Brillouin zone.

For numerical computation of the eigenvalues, surfaces 1 (rear) and 2 (front) of Figure 8-
49b should be connected to each other through the relation E2 = E1ejφz . Similarly, surfaces
3 (left) and 4 (right) can be related by E4 = E3ejφx . This is accomplished by assigning Bloch
boundary conditions [sometimes referred to as linked boundary conditions (LBC)] to each pair. In
contrast to the PEC or PMC boundary conditions, LBC supports both tangential and perpendicular
components of the electric (E) and magnetic (H) fields, over the surface where they are defined.
For Figure 8-49b, φx and φz should take values between −π and π , which is a direct consequence
of the periodicity of the structure, within the Brillouin zone. Since the wave vector is also related
to the phase of the fields, the inputs of the numerical simulation can be these phase terms. In
the path from 	 to X, φz should be varied from 0 to π , while φx is maintained constant at 0.
Similarly, in the path from X to M, φx should be varied from 0 to π , while φz is kept constant
at π . Finally, from M back to 	 both φx and φz should be varied from π to 0, simultaneously.
Using the HFSS software for simulations, surface 1 is referred to as the master and surface 2
as the slave for the z variations. Similarly, for the x variations, surface 3 is referred to as the
master and surface 4 as the slave.

The dispersion diagram, obtained by HFSS [40] simulation for the geometry of Example 8-16,
is illustrated in Figure 8-50. It is evident that the band-gap for the surface wave suppression is
approximately between 9.5 and 13.5 GHz, which nearly matches that based on the phase diagram
of Figure 8-48. That is, the bandwidth over which the mushroom EBG structure of Figure 8-
47 and Example 8-16 behaves nearly as a PMC, which is based on the phase diagram of a
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Figure 8-50 Dispersion diagram.

plane wave normal incidence (Figure 8-48), is nearly the same as the surface wave suppression
bandwidth indicated in the dispersion diagram of Figure 8-50. The lower end of the band gap of
the surface wave suppression is determined from the dispersion diagram of Figure 8-50, when
the group velocity of the TM surface waves becomes zero. The upper bound of the band gap
is the frequency at which the TE mode crosses the light line because the surface waves can
propagate when their group velocity is smaller than the velocity of light (slow waves). However,
particularly for this example, the upper bound is selected as the point where the group velocity
of the TE mode significantly deviates from that of light. Since the attenuation constant of (8-179)
will be very small up to this point, practically there will not be any surface wave propagation.

Another evidence of the EBG structure band-gap characteristics is to model and simulate the
amplitude transmission of the TM and TE modes, as was accomplished in Figure 8-40 through
measurements.

8.8.6 Limitations of the Design

The design procedure, which has been outlined and demonstrated by Example 8-16, is limited
by the bandwidth that is independent of all of the physical dimensions of the structure except
the thickness of the substrate. Therefore, special care must be exercised to design the physical
geometry of the mushroom type surface for a desired center frequency and bandwidth. Indeed,
for a fixed substrate thickness, we do not have simultaneous control of both the center frequency
and bandwidth. The design is based primarily on three parameters: substrate thickness, center
frequency, and bandwidth. Once two of these three parameters are specified, we have no control
of the third one. In addition to this, if the thickness of the substrate is fixed, the entire frequency
range cannot be covered by using reasonable patch dimensions. Furthermore, the design equations,
outlined in the design procedure, are valid only if the wavelength within the substrate is much
larger than the dimensions of the unit cell. Hence, if very large patches are used for the design
to cover a large frequency range, the design equations will lead to less accurate designs.

To overcome some of the limitations mentioned above, there are other methods that can be used
but are more complex. One method is the so-called dynamic model [44]. In this method, a different
expression is used for the surface capacitance while the expression for the inductance is the same
as in [12, 13]. In this technique, the capacitance is expressed in terms of an infinite summation
without assuming that the dimensions of the unit cell are much smaller than the wavelength. This
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model can also take into account the influence of the higher-order modes generated within the
high-impedance surface. If the dimensions of the unit cell are much smaller than the wavelength,
the dynamic model reduces to a simpler expression for the surface capacitance, which leads to
similar results as [12, 13]. However, because of its complexity and limitations in space, it will
not be presented here. The reader is directed to [44] for the details.

8.9 STRIPLINE AND MICROSTRIP LINES

Microwave printed circuit technology has advanced considerably with the introduction of the
stripline and microstrip transmission lines [45–60]. These lines are shown, respectively, in
Figures 8-51a and 8-51b. The stripline consists of a center conductor embedded in a dielec-
tric material that is sandwiched between two conducting plates. The microstrip consists of a thin
conducting strip placed above a dielectric material, usually referred to as the substrate, which is
supported on its bottom by a conducting plate. Both of these lines have evolved from the coaxial
line in stages illustrated in Figure 8-52. In general the stripline and microstrip are lightweight,
miniature, easy to fabricate with integrated circuit techniques, and cost effective. Their principal
mode of operation is that of the quasi-TEM mode, although higher-order modes, including surface
waves, are evident at higher frequencies. In comparison to other popular transmission lines, such
as the coax and the waveguide, the stripline and microstrip possess characteristics that are shown
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Figure 8-51 Geometries for stripline and microstrip transmission lines. (a) Stripline. (b) Microstrip.
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TABLE 8-8 Characteristic comparison of popular transmission lines

Characteristic Coaxial Waveguide Stripline Microstrip

Line losses Medium Low High High
Unloaded Q Medium High Low Low
Power Capability Medium High Low Low
Bandwidth Large Small Large Large
Miniaturization Poor Poor Very good Excellent
Volume and weight Large Large Medium Small
Isolation between

neighboring circuits
Very good Very good Fair Poor

Realization of passive
circuits

Easy Easy Very easy Very easy

Integration with chip
devices

Poor Poor Fair Very good
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listed in Table 8-8. Each of the lines will be discussed by using the most elementary approach
to their basic operation. More advanced techniques of analysis can be found in the literature.

8.9.1 Stripline

Two of the most important parameters of any transmission line are its characteristic impedance
and phase velocity. Since the basic mode of operation is the TEM, its characteristic impedance
Zc and phase velocity vp can be written, respectively, as

Zc =
√

L

C
(8-197a)

vp = 1√
LC

= 1√
με

⇒
√

L = 1

vp

√
C

=
√

με√
C

(8-197b)

where L = inductance of line per unit length
C = capacitance of line per unit length

Substituting (8-197b) into (8-197a) reduces it to

Zc =
√

L

C
= 1

vpC
=

√
με

C
=

√
μ0ε0

√
μrεr

C
=

√
μrεr

v0C
(8-198)

where v0 is the speed of light in free space. Therefore, the characteristic impedance can be
determined if the capacitance of the line is known.

The total capacitance Ct of a stripline can be modeled as shown in Figure 8-53, and it is given
by

Ct = 2Cp + 4Cf (8-199)

where

Ct = total capacitance per unit length (8-199a)

Cp = parallel plate capacitance per unit length

(in the absence of fringing)

Cp

Cp

Cf

CfCf

Cf
h

w

t b

h

Figure 8-53 Capacitance model for stripline transmission line.
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Cp = ε
2w

b − t
= 2εrε0

w

b

1 − t

b

(8-199b)

Cf = fringing capacitance per unit length (8-199c)

Assume that the dielectric medium between the plates is not ferromagnetic. Then the charac-
teristic impedance of (8-198) can also be written by using (8-199) and (8-199b) as

Zc =
√

με

Ct
= ε

Ct

√
μ

ε
= ε√

εr Ct

√
μ0

ε0
= 120πε√

εr Ct
(8-200)

or
Zc

√
εr = 120π

1

ε
Ct

= 120π

1

ε
(2Cp + 4Cf )

= 30π

w/b

1 − t/b
+ Cf

ε

(8-200a)

The fringing capacitance of the stripline can be approximated by using

Cf

ε
� 1

π

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

1 − t

b

ln

⎛⎜⎝1 + 1

1 − t

b

⎞⎟⎠ −

⎛⎜⎝ 1

1 − t

b

− 1

⎞⎟⎠ ln

⎡⎢⎢⎢⎣ 1(
1 − t

b

)2 − 1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8-201)

which for zero-thickness center conductor (t = 0), reduces to

Cf

ε
� 1

π
[2 ln(2)] = 0.4413 (8-201a)

For zero-thickness center conductor (t = 0), an exact solution based on conformal mapping
represents the characteristic impedance of (8-200a) by [51]

Zc
√

εr = 30π

K (k)/K (k ′)
= 30π

[
K (k ′)
K (k)

]
(8-202)

where K (k) is an elliptic function of the first kind and it is given by

K (k) =
∫ 1

0

1√
1 − q2

1√
1 − kq2

dq =
∫ π/2

0

1√
1 − k sin2 ψ

dψ (8-202a)

k = tanh
(π

2

w

b

)
(8-202b)

k ′ =
√

1 − k 2 =
√

1 − tanh2
(π

2

w

b

)
= sech

(π

2

w

b

)
(8-202c)

It can be shown that the ratio of the elliptic functions in (8-202) can be approximated by

K (k)

K (k ′)
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

π
ln

(
2

1 + √
k

1 − √
k

)
when

1√
2

≤ k = tanh
(π

2

w

b

)
≤ 1

π

ln

(
2

1 + √
k ′

1 − √
k ′

) when 0 ≤ k = tanh
(π

2

w

b

)
≤ 1√

2

(8-203a)

(8-203b)

Other forms to represent the characteristic impedance of the stripline are available, but the
preceding are considered to be sufficiently simple, practical, and accurate.
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Example 8-17

Determine the characteristic impedance of a zero-thickness center conductor stripline whose dielectric
constant is 2.20 and w/b ratio is w/b = 1 and 0.1.

Solution: The solution for the characteristic impedance will be based on the more accurate formulation
of (8-202) through (8-203b).

Since w/b = 1, then according to (8-202b)

k = tanh
(π

2

)
= 0.91715 < 1

Thus, by using (8-203a),

K (k)

K (k ′)
= 1

π
ln

(
2

1 + √
0.91715

1 − √
0.91715

)
= 1.4411

Therefore, the characteristic impedance of (8-202) is equal to

Zc = 30π

1.4411
√

2.2
= 44.09 ohms

For w/b = 0.1, according to (8-202b),

k = tanh
[π

2
(0.1)

]
= 0.1558

and from (8-202c),
k ′ =

√
1 − (0.1558)2 = 0.98779

Thus, by using (8-203b),
K (k)

K (k ′)
= π

ln

(
2

1 + √
0.98779

1 − √
0.98779

) = 0.4849

Therefore, the characteristic impedance of (8-202) is equal to

Zc = 30π

0.4849
√

2.2
= 131.04 ohms

8.9.2 Microstrip

The early investigations of the microstrip line in the early 1950s did not stimulate its widespread
acceptance because of the excitation of radiation and undesired modes caused by lines with dis-
continuities. However, the rapid rise in miniature microwave circuits, which are usually planar
in structure, caused renewed interest in microstrip circuit design. Also the development of high
dielectric-constant material began to bind the fringing fields more tightly to the center conduc-
tor, thus decreasing radiation losses, and simultaneously shrinking the overall circuit dimensions.
These developments, plus the advantages of convenient and economical integrated circuit fabri-
cation techniques, tended to lessen the previous concerns and finally allowed microstrip design
methods to achieve widespread application.

Because the upper part of the microstrip is usually exposed, some of the fringing field lines
will be in air while others will reside within the substrate. Therefore, overall, the microstrip can
be thought of as being a line composed of a homogeneous dielectric whose overall dielectric
constant is greater than air but smaller than that of the substrate. The overall dielectric constant is
usually referred to as the effective dielectric constant . Because most of the field lines reside within
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the substrate, the effective dielectric constant is usually closer in value to that of the substrate
than to that of air; this becomes even more pronounced as the dielectric constant of the substrate
increases. Since the microstrip is composed of two different dielectric materials (nonhomogeneous
line), it cannot support pure TEM modes. The lowest order modes are quasi-TEM.

There have been numerous investigations of the microstrip ([52–60], and many others).
Because of the plethora of information on the microstrip, we will summarize some of the
formulations for the characteristic impedance and effective dielectric constant that are simple,
accurate, and practical.

At low frequencies, the characteristic parameters of the microstrip can be found by using the
following expressions:

w eff(0)

h
≤ 1

Zc(0) = Zc(f = 0) = 60√
εr ,eff(0)

ln

[
8h

weff(0)
+ weff(0)

4h

]
(8-204a)

εr ,eff(0) = εr ,eff(f = 0) = εr + 1

2
+ εr − 1

2

×
{[

1 + 12
h

weff(0)

]−1/2

+ 0.04
[
1 − weff(0)

h

]2
}

(8-204b)

w eff(0)

h
> 1

Zc(0) = Zc(f = 0) =

120π√
εr ,eff(0)

weff(0)

h
+ 1.393 + 0.667 ln

[
weff(0)

h
+ 1.444

] (8-205a)

εr ,eff(0) = εr ,eff(f = 0) = εr + 1

2
+ εr − 1

2

[
1 + 12

h

weff(0)

]−1/2

(8-205b)

where
weff(0)

h
= weff(f = 0)

h
= w

h
+ 1.25

π

t

h

[
1 + ln

(
2h

t

)]
for

w

h
≥ 1

2π
(8-206a)

weff(0)

h
= weff(f = 0)

h
= w

h
+ 1.25

π

t

h

[
1 + ln

(
4πw

t

)]
for

w

h
<

1

2π
(8-206b)

εr ,eff and weff represent the effective dielectric constant and width of the line, respectively. Plots
of the characteristic impedance of (8-204a) or (8-205a) and the effective dielectric constant of
(8-204b) or (8-205b) as a function of w/h for three different dielectric constants (εr = 2.33, 6.80,
and 10.2) are shown, respectively, in Figures 8-54 and 8-55 [61]. These dielectric constants are
representative of common substrates such as RT/Duroid (� 2.33), beryllium oxide (� 6.8), and
alumina (� 10.2) used for microstrips. It is evident that the effective dielectric constant is not
very sensitive to the thickness of the center strip.

Example 8-18

For a microstrip line with w/h = 1, εr = 10, and t/h = 0, calculate at f = 0 the effective width,
effective dielectric constant, and characteristic impedance of the line.



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 461

STRIPLINE AND MICROSTRIP LINES 461

Solution: Since t/h = 0, then according to either (8-206a) or (8-206b),

weff(0)

h
= w

h
= 1

By using (8-204b) the effective dielectric constant is equal to

εr ,eff(0) = 10 + 1

2
+ 10 − 1

2
[1 + 12(1)]−1/2 = 6.748 < 10

The characteristic impedance of (8-204a) is now equal to

Zc(0) = 60√
6.748

ln

[
8(1) + 1

4
(1)

]
= 48.74 ohms

The microstrip line is considered to be a dispersive transmission line at frequencies about
equal to or greater than

fc ≥ 0.3

√
Zc(0)

h

1√
εr − 1

× 109 where h is in cm (8-207)

For many typical transmission lines this frequency will be in the 3–10 GHz range. This indicates
that the effective dielectric constant, phase velocity, and characteristic impedance will be a func-
tion of frequency. In addition, pulse wave propagation, whose spectrum spans a wide range of
frequencies that depend largely on the width and shape of the pulse, can greatly be affected by
the dispersive properties of the line [62–64, 75].
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Figure 8-54 Characteristic impedance of microstrip line as a function of w/h and t/h .



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 462

462 RECTANGULAR CROSS-SECTION WAVEGUIDES AND CAVITIES

10−2.0 10−1.5 10−1.0 10−0.5 100.0 100.5 101.0

w/h

t/h = 0.001

t/h = 0.005

t/h = 0.010

er = 10.20

er = 2.33

er = 6.80

e
r,

ef
f (

0)

1

2

3

4

5

6

7

8

9

Figure 8-55 Effective dielectric constant of microstrip line as a function of w/h and t/h at zero frequency.

Many models have been developed to predict the dispersive behavior of a microstrip [65–71].
One model which allows simple, accurate, and practical values computes the dispersive charac-
teristics using

Zc(f ) = Zc(0)

√
εr ,eff(0)

εr ,eff(f )
(8-208a)

vp(f ) = 1√
μεeff(f )

= 1√
μrμ0ε0εr ,eff(f )

= v0√
μrεr ,eff(f )

(8-208b)

λg(f ) = vp(f )

f
= v0

f
√

μrεr ,eff(f )
= λ0√

μrεr ,eff(f )
(8-208c)

εr ,eff(f ) = εr −

⎡⎢⎢⎢⎣ εr − εr ,eff(0)

1 + εr ,eff(0)

εr

(
f

ft

)2

⎤⎥⎥⎥⎦ (8-208d)

ft = Zc(0)

2μ0h
(8-208e)

Typical plots of εr ,eff(f ) versus frequency for three microstrip lines (εr = 2.33, 6.8, and 10.2)
are shown in Figures 8-56a and 8-56b for w/h = 0.2 and 5 [61]. It is evident that for w/h � 1
the variations are smaller than those for w/h � 1.
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Figure 8-56 Effective dielectric constant as a function of frequency for microstrip transmission line.
(a) w/h = 0.2. (b) w/h = 5.
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Example 8-19

For a microstrip line with w/h = 1, h = 0.025 in. (0.0635 cm), εr = 10, and t/h = 0, calculate the
effective dielectric constant, characteristic impedance, phase velocity, and guide wavelength at f = 3
and 10 GHz.

Solution: At zero frequency, from Example 8-18,

εr ,eff(0) = 6.748

Zc(0) = 48.74 ohms

The critical frequency, where dispersion begins to appear, according to (8-207), is equal to or greater
than

fc ≥ 0.3

√
48.74

0.0635
√

10 − 1
× 109 = 4.799 GHz

By using (8-208e),

ft = 48.74

2(4π × 10−7)(6.35 × 10−4)
= 30.54 × 109

f = 3 GHz: By using (8-208d),

εr ,eff(f = 3 GHz) = 10 −

⎡⎢⎢⎢⎣ 10 − 6.748

1 +
(

6.748

10

)(
3

30.54

)2

⎤⎥⎥⎥⎦ = 6.7691

Thus, the characteristic impedance of (8-208a), phase velocity of (8-208b), and guide wavelength of
(8-208c) are equal to

Zc(f = 3 GHz) = 48.74

√
6.748

6.7691
= 48.664 ohms

vp(f = 3 GHz) = 3 × 108

√
6.7691

= 1.153 × 108 m/sec

λg (f = 3 GHz) = 3 × 108

3 × 109
√

6.7691
= 0.0384 m = 3.84 cm

f = 10 GHz: By repeating the preceding calculations at f = 10 GHz, we obtain

εr ,eff(f = 10 GHz) = 10 −

⎡⎢⎢⎢⎣ 10 − 6.748

1 + 6.748

10

(
10

30.54

)2

⎤⎥⎥⎥⎦ = 6.968

Zc(f = 10 GHz) = 48.74

√
6.748

6.968
= 47.964 ohms

vp(f = 10 GHz) = 3 × 108

√
6.968

= 1.128 × 108 m/sec

λg (f = 10 GHz) = 3 × 108

10 × 109
√

6.968
= 0.0114 m = 1.14 cm



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 465

STRIPLINE AND MICROSTRIP LINES 465

8.9.3 Microstrip: Boundary-Value Problem

The open microstrip line can be analyzed as a boundary-value problem using modal solutions
of the form used for the partially filled waveguide or dielectric-covered ground plane. In fact,
the open microstrip line can be represented as a partially filled waveguide with the addition of a
center conductor placed along the air-dielectric interface, as shown in Figure 8-57. This shielded
configuration is considered a good model for the open microstrip provided that the dimensions
a and b of the waveguide are equal to or greater than about 10 to 20 times the center conductor
width. The fields configurations of this structure that satisfy all the boundary conditions are hybrid
modes that are a superposition of TEz and TMz modes [71–75].

Initially the vector potential functions used to represent, respectively, the TEz and TMz modes
are chosen so that individually they satisfy the field boundary conditions along the metallic
periphery of the waveguide. Then the total fields, which are due to the superposition of the TEz

and TMz fields, must be such that they satisfy all the additional boundary conditions along the
air-dielectric interface (y = h), including those at the center metallic strip (y = h , |x | ≤ w/2).
The end result of this procedure is an infinite set of coupled homogeneous simultaneous equations
that can be solved for the normalized propagation constant along the z direction (βn = βz /β0)
through the use of various techniques [72–75]. A complete formulation of this problem is very
lengthy, and is assigned to the reader as an end-of-chapter problem.

Another method that can also be used to solve for βz is to use spectral domain techniques,
which transforms the resulting field equations to the spectral domain, and allow for rapid
convergence [73–75]. Results obtained with these methods for open and shielded microstrip
geometries are shown in Figure 8-58 [75]. The waveguide width and height were chosen to
be 10 times greater than the center conductor strip width. As the waveguide width and height
are chosen to be even greater, the results of the open and shielded microstrips agree even
better [75].

e0, m0 
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h t
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Figure 8-57 Shielded configuration of microstrip transmission line.
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Figure 8-58 Effective dielectric constant as a function of logarithm of the frequency for open and shielded
microstrip lines.

8.10 RIDGED WAVEGUIDE

It was illustrated in Section 8.2.1 that the maximum bandwidth for a dominant single TE10 mode
operation that can be achieved by a standard rectangular waveguide is 2:1. For some applications,
such as coupling, matching, filters, arrays, and so forth, larger bandwidths may be desired. This
can be accomplished by using a ridged waveguide.

A ridged waveguide is formed by placing longitudinal metal strip(s) inside a rectangular
waveguide, as shown in Figure 8-59. This has the same effect as placing inward ridges on the
walls of the waveguide. The most common configurations of a ridged waveguide are those of
single, dual, and quadruple ridges, as illustrated in Figure 8-59. In general, the ridges act as
uniform distributed loadings, which tend to lower the phase velocity and reduce (by a factor of
25 or more) the characteristic impedance. The lowering of the phase velocity is accompanied by
a reduction (by a factor as large as 5 to 6) of the cutoff frequency of the TE10 mode, an increase
of the cutoff frequencies of the higher-order modes, an increase in the attenuation due to losses
on the boundary walls, and a decrease in the power-handling capability. The increases in the
bandwidth and attenuation depend upon the dimensions of the ridge compared to those of the
waveguide.

The single, dual, and quadruple ridged waveguides of Figures 8-59 and 8-60 have been inves-
tigated by many people [2, 76–79]. Since the ridged waveguide possesses an irregular shape, a
very appropriate technique that can be used to analyze it is the transverse resonance method of
Section 8.6. At cutoff (βz = 0) there are no waves traveling along the length (z direction) of the
waveguide, and the waves can be thought of as traveling along the transverse directions (x , y
directions) of the guide forming standing waves. For the TE10 mode, for example, there are field
variations only along the x direction and at cutoff the waveguide has a cutoff frequency that is
equal to the resonant frequency of a standing plane wave propagating only in the xdirection. The
transverse dimension (in the x direction) of the waveguide for the TE10 mode at resonance is
equal to a half wavelength.



Balanis c08.tex V3 - 11/22/2011 3:32 P.M. Page 467

RIDGED WAVEGUIDE 467

(a)

(b)

(c)

Figure 8-59 Various cross sections of a ridged waveguide. (a) Single. (b) Dual. (c) Quadruple.
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Figure 8-60 Geometry for ridged waveguides. (a) Single. (b) Dual.
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One very approximate equivalent model for representation of the ridged waveguide at reso-
nance is that of a parallel LC network [76], shown in Figure 8-60b. The gap between the ridges
is represented by the capacitance C , whose value for a waveguide of length � can be found by
using

C = ε

(
A0

b0

)
= ε

(
a0�

b0

)
(8-209)

Each side section of the ridged waveguide can be represented by a one-turn solenoidal inductance
whose value for a waveguide of length � can be found by using

L = μ

(
A

�

)
= μ

⎛⎜⎝b
a − a0

2
�

⎞⎟⎠ = μ

[
b(a − a0)

2�

]
(8-210)

Since the total inductance Lt is the parallel combination of the two L′s (Lt = L/2), the cutoff
frequency is obtained by using

ωc = 2π fc = 1√
Lt C

=
√

2

LC
(8-211)

Use of (8-209) and (8-210) reduces the cutoff frequency of (8-211) to

fc = 1

2a
√

με

2

π

a

a0

b0

b

1

1 − a0

a (8-212)

which is more valid for the smaller gaps where the bo/b ratio is very small. More accurate
equivalents can be obtained through use of the transverse resonance method, where the ridge
waveguide can be modelled at resonance as a parallel plate waveguide with a capacitance between
them that represents the discontinuity of the ridges.

Curves of available bandwidth of a single TE10 mode operation for single (Figure 8-60a) and
dual (Figure 8-60b) ridged waveguides are shown, respectively, in Figures 8-61a and 8-61b [78].
Bandwidth is defined here as the ratio of the cutoff frequency of the next higher-order mode to that
of the TE10 mode, and it is not necessarily the useful bandwidth. In many applications the lower
and upper frequencies of the useful bandwidth are chosen with about a 15 to 25 percent safety
factor from the corresponding cutoff frequencies. It is seen from the data in Figure 8-61 that a
single-mode bandwidth of about 6 : 1 is realistic with a ridged rectangular waveguide. However,
the penalty in realizing this extended bandwidth is the increase in attenuation. To illustrate this,
we have plotted in Figures 8-62a and 8-62b the normalized attenuation αn for single and dual
ridged waveguides, which is defined as the ratio of the ridged waveguide attenuation to that of
the rectangular waveguide attenuation, of identical cutoff frequency, evaluated at a frequency of
f = √

3fc . The curves of Figure 8-62 have been calculated assuming that the ratio b/a of the
ridged waveguide, which is 0.45 for the single ridge and 0.5 for the dual ridge, is the same as that
of the rectangular waveguide. The actual attenuation of the ridged waveguide at f = √

3fc can
be obtained by multiplying the normalized values of the attenuation coefficient from Figure 8-62
by the attenuation of the rectangular waveguide evaluated at f = √

3fc . It should be noted that
the increase in bandwidth of ridged waveguides is at the expense of reduced power handling
capabilities.
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Figure 8-61 Bandwidth for ridged waveguides. (a) Single. (b) Dual. (Source: S. Hopfer, “The design of
ridged waveguides,” IRE Trans. Microwave Theory Tech., © 1955, IEEE.)
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Figure 8-62 Normalized attenuation for ridged waveguides. (a) Single. (b) Dual. (Source: S. Hopfer, “The
design of ridged waveguides,” IRE Trans. Microwave Theory Tech., © 1955, IEEE.)
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Figure 8-62 (Continued)

8.11 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, and presentation of the material of this chapter.

• MATLAB computer programs:
a. Rect_Waveguide: Computes the propagation characteristics of a rectangular waveguide.
b. Rect_Resonator: Computes the resonant characteristics of a rectangular resonator.
c. LS_TE_TM_Y: Computes the TEy and TMy modes propagation characteristics of a

partially filled rectangular waveguide based on the geometry of Figure 8-15a .
d. LS_TE_TM_X: Computes the TEx and TMx modes propagation characteristics of a

partially filled rectangular waveguide based on the geometry of Figure 8-15b.
e. Slab_TE_TM_Graph: Computes the TEz and TMz modes, even and odd, propagation

characteristics, using the graphical procedure of Sections 8.7.2 and 8.7.3, of a dielectric
slab waveguide based on the geometry of Figure 8-19.

f. Slab_TE_TM_Ray: Computes the TEz and TMz modes, even and odd, propagation
characteristics, using the ray tracing procedure of Section 8.7.4, of a dielectric slab
waveguide based on the geometry of Figure 8-19.

g. Ground_TE_TM_Graph: Computes the TEz and TMz modes, even and odd, propaga-
tion characteristics of Section 8.7.5, using the graphical procedure of Sections 8.7.2 and
8.7.3, of a dielectric-covered ground plane based on the geometry of Figure 8-32.
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h. Ground_TE_TM_Ray: Computes the TEz and TMz modes, even and odd, propagation
characteristics of Section 8.7.5, using the ray tracing procedure of Section 8.7.4, of a
dielectric slab waveguide based on the geometry of Figure 8-32.

i. HIS_Mush: Designs and computes the characteristics of a high-impedance surface (HIS)
of Figures 8-37 and 8-47 based on the procedure, and designs closed-form equations of
Section 8.8.4.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

8.1. An air-filled section of an X-band
(8.2–12.4 GHz) rectangular waveguide of
length � is used as a delay line. Assume
that the inside dimensions of the waveguide
are 0.9 in. (2.286 cm) by 0.4 in. (1.016 cm)
and that it operates at its dominant mode.
Determine its length so that the delay at
10 GHz is 2 μs.

8.2. A standard X-band (8.2–12.4 GHz) rectan-
gular waveguide with inner dimensions of
0.9 in. (2.286 cm) by 0.4 in. (1.016 cm) is
filled with lossless polystyrene (εr = 2.56).
For the lowest-order mode of the waveguide,
determine at 10 GHz the following values.
(a) Cutoff frequency (in GHz).
(b) Guide wavelength (in cm).
(c) Wave impedance.
(d) Phase velocity (in m/s).
(e) Group velocity (in m/s).

8.3. A Ku-band (12.4–18 GHz) lossless rectan-
gular waveguide, operating at the dominant

TE10 mode, with inner dimensions 0.622
in. by 0.311 in. is used as a customized
phase shifter for a particular application. The
length of the waveguide is chosen so that
the total phase, introduced by the insertion
of the section of the waveguide, meets the
required specifications of the system design
operating at 15 GHz.
(a) For an air-filled waveguide, what is the

length (in cm) of the waveguide sections
if the total phase, at 15 GHz, intro-
duced by the insertion of this waveguide
section is 300◦?

(b) For the waveguide section, whose length
is equal to that found in part a , what
is the total phase shift (in degrees),
at 15 GHz, if the waveguide section is
totally filled with a lossless dielectric
material with a dielectric constant of 4?

8.4. Design an X-band rectangular waveguide,
with dimensions 2.286 cm and 1.026 cm and
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filled with a dielectric material with a dielec-
tric constant of 2.25, which is to be used
as a delay line. What should the length (in
meters) of the waveguide be so that the total
delay it presents by its insertion at 10 GHz
is 2 μs?

8.5. An empty X-band (8.2–12.4 GHz) rectangu-
lar waveguide, with dimensions of 2.286 cm
by 1.016 cm, is to be connected to an
X-band waveguide of the same dimen-
sions but filled with lossless polystyrene
(εr = 2.56). To avoid reflections, an X-
band waveguide (of the same dimensions)
quarter-wavelength long section is inserted
between the two. Assume dominant-mode
propagation and that matching is to be made
at 10 GHz. Determine the:
(a) Wave impedance of the quarter-

wavelength section waveguide.
(b) Dielectric constant of the loss-

less medium that must be used to
fill the quarter-wavelength section
waveguide.

(c) Length (in cm) of the quarter-
wavelength section waveguide.

8.6. Design a two-section binomial impedance
transformer to match an empty (εr = 1) X-
band waveguide to a dielectric-filled (εr =
2.56) X-band waveguide. Use two inter-
mediate X-band waveguide sections, each
quarter-wavelength long. Assume dominant
mode excitation, fo = 10 GHz, and waveg-
uide dimensions of 2.286 cm by 1.016 cm.
Determine the:
(a) Wave impedances of each section.
(b) Dielectric constants of the lossless

media that must be used to fill the inter-
mediate waveguide sections.

(c) Length (in cm) of each interme-
diate quarter-wavelength waveguide
section.

er = 1 e = 256er1 er2

4

λg1

4

λg2

Figure P8-6

8.7. Derive expressions for the attenuation coef-
ficient αc above cutoff for the rectangular
waveguide of Figure 8-3, assuming TEz

mn
modes and TMz

mn modes. Compare the
answers with those found in Table 8-3.

8.8. A parallel-plate waveguide is formed by
placing two infinite planar conductors at
y = 0 and y = b.
(a) Show that the electric field

Ex = E0 sin
(
βy y

)
e−γ z

defines a set of TEn modes where

γ =
√

β2
y − β2

0 β0 = ω
√

μ0ε0

(b) For the modes of part (a), find the
allowable eigenvalues, cutoff frequen-
cies, and power transmitted, per unit
width in the x direction.

8.9. A rectangular waveguide with dimensions
a = 2.25 cm and b = 1.125 cm, as shown
in Figure 8-3, is operating in the dominant
mode.
(a) Assume that the medium inside the

guide is free space. Then find the cutoff
frequency of the dominant mode.

(b) Assume that the physical dimensions of
the guide stay the same (as stated) and
that we want to reduce the cutoff fre-
quency of the dominant mode of the
guide by a factor of 3. Then find the
dielectric constant of the medium that
must be used to fill the guide to accom-
plish this.

8.10. If the dielectric constant of the material
that is used to construct a dielectric rod
waveguide is very large (typically 30 or
greater), a good approximation to the bound-
ary conditions is to represent the surface as
a perfect magnetic conductor (PMC); see
Section 9.5.2. For a PMC surface, the tan-
gential components of the magnetic field
vanish. Based on such a model for a rect-
angular cross-section cylindrical dielectric
waveguide and TEz modes, perform the fol-
lowing tasks.
(a) Write all the boundary conditions on the

electric and magnetic fields that must be
enforced.

(b) Derive simplified expressions for the
vector potential component, the electric
and magnetic fields, and the cutoff fre-
quencies.
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(c) If a > b, identify the lowest-order mode.

y

b

az
x

e, m  

Figure P8-10

8.11. Repeat Problem 8.10 for TMz modes.

8.12. The rectangular waveguide of Figure 8-3
is constructed of two horizontal perfectly
electric conducting (PEC) walls at y = 0
and y = b and two vertical perfectly mag-
netic conducting (PMC) walls at x = 0 and
x = a . Derive expressions for the appro-
priate vector potentials, electric and mag-
netic fields, eigenvalues, cutoff frequencies,
phase constants along the z axis, guide
wavelengths, and wave impedances for TEz

modes and TMz modes. Identify the lowest-
order mode for each set of modes and the
dominant mode for both sets.

8.13. Repeat Problem 8.12 for a rectangular
waveguide constructed of two horizontal
PMC walls at y = 0 and y = b and two ver-
tical PEC walls at x = 0 and x = a .

8.14. A rectangular dielectric waveguide with
dimensions a and b (a > b), as shown in the
figure, is used as a transmission line. The
dielectric waveguide consists of a dielec-
tric material with very high dielectric con-
stant (εr � 1). Also the waveguide has PEC
(perfectly electric conducting) plates only
on the top and bottom walls. The left and
right walls are not covered with anything
but can be treated as PMC (perfectly mag-
netic conducting) walls, where the tangential
components of the magnetic field vanish.
Assuming TEz modes only, determine:
(a) All of the allowable eigenvalues (βx , βy )

for the TEz modes for nontrivial solu-
tions.

(b) The dominant TEz mode and its cut-
off frequency (in GHz) when a = 0.9
in. (2.286 cm), b = 0.4 in. (1.016 cm),
εr = 81 and μr = 1.

er >> 1

PEC

PMC

z

x

a

b

y

Figure P8-14

8.15. An X-band waveguide with dimensions of
0.9 in. (2.286 cm) by 0.4 in. (1.016 cm) is
made of copper (σ = 5.76 × 107 S/m) and
it is filled with lossy polystyrene (ε′

r =
2.56, tan δe = 4 × 10−4). Assume that the
frequency of operation is 6.15 GHz. Then
determine the attenuation coefficient (in
Np/m and dB/m) that accounts for the finite
conductivity of the walls and the dielectric
losses.

8.16. For the dielectric-filled waveguide of Prob-
lem 8.15, assume that the polystyrene is
lossless. Determine the following values.
(a) Cutoff frequency of the dominant mode.
(b) Frequency of operation that will allow

the plane waves of the dominant mode
inside the waveguide to bounce back
and forth between its side walls at an
angle of 45◦.

(c) Guide wavelength (in cm) at the fre-
quency of part b.

(d) Distance (in cm) the wave must travel
along the axis of the waveguide to
undergo a 360◦ phase shift at the fre-
quency of part b.

8.17. An air-filled X-band waveguide with dimen-
sions of 0.9 in. (2.286 cm) by 0.4 in.
(1.016 cm) is operated at 10 GHz and is radi-
ating into free space.
(a) Find the reflection coefficient (magni-

tude and phase) at the waveguide aper-
ture junction.

(b) Find the standing wave ratio (SWR)
inside the waveguide. Assume that the
waveguide is made of a perfect electric
conductor.
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(c) Find the SWR at distances of z = 0,
λg/4, and λg/2 from the aperture junc-
tion when the waveguide walls are made
of copper (σ = 5.76 × 107 S/m).

8.18. A lossless dielectric waveguide (no PEC
walls), with εr � 1, μr = 1, of rectangu-
lar cross section, as shown in Figure P8-10,
is used as an insert line to provide a cer-
tain phase shift. Assuming a = 2.286 cm,
b = 1.016 cm, and εr = 81, determine the:
(a) Approximate expressions for the cutoff

frequency of the TEz and TMz modes.
Indicate the correct allowable indices of
both modes.

(b) Approximate expression for the cutoff
frequency of the dominant mode. Iden-
tify the mode and its expression. Be very
specific.

(c) Cutoff frequency (in GHz) of the dom-
inant mode.

(d) Length of the waveguide (in cm) so that
the total phase shift the wave undergoes
is 360◦ at f = 2fc as it travels through
this length of the waveguide.

8.19. For the rectangular cavity of Figure 8-14,
find the length c (in cm) that will res-
onate the cavity at 10 GHz. Assume dom-
inant mode excitation, c > a > b, a = 2 cm
and b = 1 cm, and free space inside the cav-
ity.

8.20. Design a square-based cavity like
Figure 8-14, with height one-half the width
of the base, to resonate at 1 GHz when the
cavity is:
(a) Air-filled.
(b) Filled with polystyrene (εr = 2.56).
Assume dominant-mode excitation.

8.21. A rectangular dielectric resonator is com-
posed of dielectric material with εr � 1.
The dimensions of the resonator are: width
a in the x direction, height b in the y direc-
tion, and length c in the z direction, such
that c > a > b.
(a) For TEz modes, write expressions for

the allowable eigenvalues βx , βy , and
βz (use m for x , n for y and p for z ).

(b) Repeat part (a) for TMz modes.
(c) Write general expressions for the res-

onant frequencies for TEz and TMz

modes.
(d) For a = 1 cm, b = 0.5 cm, c = 2 cm,

and εr = 81, compute the resonant

frequencies of the first two modes with
the lowest resonant frequencies (in order
of ascending resonant frequency). Iden-
tify the modes and their resonant fre-
quencies (in GHz).

You do NOT have to derive the expressions
for any of the parts as long as you justify
(in words) your answers.

8.22. The field between the plates is a linearly
polarized (in the y direction) uniform plane
wave traveling in the z direction.
(a) Assume that the plates are perfect elec-

tric conductors. Then find the E and
H field components between the plates.
Neglect the edge effects of the finite
plates. Referring to Figure P8-22:

(b) Find the separation d between the plates
that creates resonance.

(c) Derive an expression for the Q of the
cavity assuming a conductivity of σ for
the plates. Neglect any radiation losses
through the sides of the cavity.

(d) Compute the Q of the cavity when f =
60 GHz and d = 5λ and 10λ. Assume
a plate conductivity of σ = 5.76 ×
107 S/m.

e0, m0  

y

d

x

z a

bs s

Figure P8-22

8.23. An X-band (8.2–12.4 GHz) rectangular
waveguide of inner dimensions a = 0.9 in.
(2.286 cm) by b = 0.4 in. (1.016 cm) is par-
tially filled with styrofoam (εr = 1.1 � 1),
as shown in Figure 8-15a . Assume that the
height of the styrofoam is b/4. Determine
the following for the TMy

10 mode.
(a) Phase constants (in rad/cm) in the x

direction both in the air and in the sty-
rofoam at any frequency above cutoff.

(b) Approximate phase constants (in
rad/cm) in the y direction both in the air
and in the styrofoam at any frequency
above cutoff.
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(c) The approximate value of its cutoff fre-
quency.

(d) The phase constant (in rad/cm) in the
z direction at a frequency of f =
1.25(fc)TM

10 .
8.24. For the rectangular waveguide of Figure 8-

3, derive expressions for the E and H fields,
eigenvalues, and cutoff frequencies for:
(a) TEx (LSEx ) modes.
(b) TMx (LSMx ) modes.
Identify the lowest-order mode for each set
of modes and the dominant mode for both
sets.

8.25. For the partially filled waveguide of
Figure 8-15b, derive expressions similar to
(8-115) through (8-115b) or (8-127) through
(8-127b) for:
(a) LSEx (TEx ) modes.
(b) LSMx (TMx ) modes.

8.26. For a metallic rectangular waveguide filled
with air and with dimensions a and b
(b > a), as shown in Figure 8-3, and
with a = 0.4 in. (1.016 cm) and b = 0.9 in.
(2.286 cm):
(a) Identify the dominant TEz or TMz mode

and its cutoff frequency (in GHz).
(b) Identify the dominant TEy or TMy mode

and its cutoff frequency (in GHz).
(c) What is the second mode(s) after the

dominant TEz or TMz mode? Identify
it/them.

(d) To lower the cutoff frequency of the
dominant TEz or TMz mode to 4 GHz
by completely filling the inside of the
waveguide with a dielectric material,
what should the dielectric constant of
the dielectric material be?

8.27. For the partially filled waveguide of
Figure 8-15a , plot on a single figure βy0,
βyd , βz , βz0, and βzd , all in rad/m, ver-
sus frequency [(fc)0n ≤ f ≤ 2(fc)0n , where
(fc)0n is the cutoff frequency for the TEy

0n
mode] for the:
(a) TEy

02 mode.

(b) TEy
03 mode.

Assume a = 0.9 in. (2.286 cm), b = 0.4 in.
(1.016 cm), h = b/3, and εr = 2.56.

8.28. For the partially filled waveguide of
Figure 8-15a , plot on a single figure βy0,
βyd , βz , βz0, and βzd , all in rad/m, versus
frequency [(fc)1n ≤ f ≤ 2(fc)1n , where

(fc)1n is the cutoff frequency for the TMy
1n ,

mode] for the:
(a) TMy

11 mode.
(b) TMy

12 mode.
Assume a = 0.9 in. (2.286 cm), b = 0.4 in.
(1.016 cm), h = b/3, and εr = 2.56.

8.29. Use the Transverse Resonance Method
(TRM) to derive the basic transcenden-
tal eigenvalue and impedance equations of
Problem 8.25.

8.30. A metallic rectangular waveguide with
dimensions a and b (a > b) of Figure 8-15a ,
with a = 0.9 in. (2.286 cm) and b = 0.4
in. (1.016 cm), is partially filled with air
(ε0, μ0) and a ferromagnetic material with
εd = 4ε0 and μd = 4μ0. The height of the
ferromagnetic material is h = b/3. For each
of the cases below:
(a) Identify the dominant TEy

mn mode (for
parts 1, 2 and 3 below)

(b) Write an analytical expression (not
graphical or MATLAB solutions) for its
cutoff frequency (for parts 1, 2, 3 below)

(c) Compute, based on the analytical
expression only, the cutoff frequency
(for parts 1, 2, 3) when the waveguide is:
1. Completely filled with air (in GHz).
2. Completely filled with ferromag-

netic material with εd = 4ε0 and
μd = 4μ0 (in GHz).

3. Partially-filled with air (ε0, μ0) and
ferromagnetic material with εd = 4ε0

and μd = 4μ0, as shown in the
Figure 8-15 (in GHz). Not graph-
ical or MATLAB solutions; only
solutions based on the analytical
expression.

(d) Compare the cutoff frequency of the
partially filled waveguide with the other
two cutoff frequencies (completely filled
with air and completely filled with the
ferromagnetic material); i.e., is it higher,
lower, or in between the other two? Is it
in the correct frequency range?

8.31. A X-band waveguide is partially filled
with a dielectric material, as shown in
Figure 8-15b. Assuming TMx (LSMx )
modes and a = 2.286 cm, b = 1.016 cm,
εr = 1.1, μr = 1, and w = a/2, determine,
for the dominant mode, the:
(a) Cutoff frequency (in GHz) when the

waveguide is totally filled with free
space.
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(b) Cutoff frequency (in GHz) when the
waveguide is totally filled with the
stated dielectric (εr = 1.1).

(c) Approximate cutoff frequency (in GHz)
for the partially filled waveguide.

(d) Ascending order (lowest, middle, and
highest) of the above three cutoff fre-
quencies.

You do not have to derive the equations as
long as you justify them.

8.32. A dielectric slab waveguide, as shown in
Figure 8-19, is used to guide electromag-
netic energy along its axis. Assume that the
slab is 1 cm in height, its dielectric constant
is 5, and μ = μ0.
(a) Find the modes that can propagate unat-

tenuated at a frequency of 8 GHz. State
their cutoff frequencies.

(b) Find the respective attenuation (in
Np/m) and phase (in rad/m) constants
at 8 GHz for the unattenuated modes.

(c) Find the incidence angles, measured
from the normal to the interface, of
the bouncing waves within the slab at
8 GHz.

8.33. A ground plane is covered with a dielectric
material with a dielectric constant of 4. The
total height of the dielectric material, of the
dielectric cover, is 1.25 cm.
(a) Identify the first two modes with the

lowest cutoff frequencies, and determine
their corresponding cutoff frequencies.

(b) Determine for both modes of part (a)
the phase constant in the dielectric
(in rad/cm) in the direction normal to
the interface when the incidence angle
(measured from the normal to the inter-
face) is twice the critical angle.

8.34. Design a nonferromagnetic lossless dielec-
tric slab of total height 0.5 in. (1.27 cm)
bounded above and below by air so that at
f = 10 GHz the TEz

1 mode operates at 10%
above its cutoff frequency. Determine the
dielectric constant of the slab and the atten-
uation αy0 (in Np/cm) and βyd (in rad/cm)
for the TEz

1 mode at its cutoff frequency.

8.35. A planar perfect electric conductor of infi-
nite dimensions is coated with a dielec-
tric medium of thickness h , as shown in
Figure 8-32. Assume that the dielectric
constant of the coating is 5, its relative

permeability is unity, and its thickness is
5.625 cm.
(a) Find the cutoff frequencies of the first

four TEz and/or TMz modes and specify
to which group each one belongs.

(b) For an operating frequency of 1 GHz,
find the TEz modes that can propagate
inside the slab unattenuated.

(c) For each of the TEz modes found in
part b, find the corresponding propaga-
tion constant βz .

The medium above the coating is free space.

8.36. Coupling between distributive microwave
and millimeter-wave microstrip circuit ele-
ments (such as filters, couplers, antennas,
etc.), that are etched on the surface of
a grounded dielectric slab—referred to as
substrate and considered as a dielectric-
covered ground plane—is either through
space or surface waves. Space waves are
those radiated by the elements and travel
through air, while surface waves are those
excited and travelling within the substrate.
It is desired to design the system so that it
will eliminate all the surface-wave modes,
other than the dominant mode (static mode)
with zero cutoff frequency. The maximum
height of the substrate is 0.113 cm.
(a) Determine the dominant surface-wave

mode and its cutoff frequency.
(b) Determine the dielectric constant of

the substrate so that the designed cir-
cuits will operate in a single, dominant
surface-wave mode up to 20 GHz.

(c) Identify the next higher-order surface-
wave mode and its cutoff frequency.

(d) For the mode of part (c), determine at
its cutoff frequency the:
• Attenuation constant αyo (in dB/cm)
• Phase constant βyd (in degrees/cm)

(e) For the mode of part (c), determine at
25 GHz the approximate:
• Attenuation constant αyo (in dB/cm)
• Phase constant βyd (in degrees/cm)

8.37. A transmission line is composed of a
dielectric-covered ground plane immersed
into a homogeneous unbounded medium, as
shown in Figure P8-37. The dielectric con-
stant of the dielectric cover is εr1 = 2.56
while its height is 2 cm. It is desired to oper-
ate this transmission line in a single, domi-
nant mode over a bandwidth of 3.1 GHz.
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(a) Identify the dominant mode that can be
supported by the line and its cutoff fre-
quency.

(b) State which mode has the next highest
cutoff frequency.

(c) What should the dielectric constant
of the second (unbounded) medium
be to meet the desired bandwidth
requirements of the dominant-mode
operation?

(d) For the second mode, determine at
3.1 GHz the phase constant βyd (in
rad/cm) in the dielectric cover and the
attenuation constant αyo (in Nepers/cm)
in the unbounded medium.

y

z
x

2 cm

er2 = ?

er1 = 2.56

Figure P8-37

8.38. A infinite PMC ground plane is covered with
a losseless dielectric slab (εr , μr = 1). The
slab is of height h in the y direction, infinite
in the x and z directions, and the wave is
traveling in the +z direction. The geometry
is the same as that of Figure 8-32 except that
the ground plane is PMC instead of PEC.
Determine, assuming the dielectric-covered
PMC ground plane is used as a waveguide
(not as an antenna), the:
(a) Allowable TMz

m modes (even and/or
odd).

(b) Expression for the cutoff frequencies of
the allowable TMz (even and/or odd)
modes.

(c) Cutoff frequency (in GHz) of the domi-
nant TMz mode (even and/or odd) when
εr = 4 and h = 0.125 cm.

8.39. Repeat ALL parts of Problem 8.38 for TEz
m

modes.

8.40. For the stripline of Example 8-17, find
the characteristic impedances based on
the approximate formulas of (8-200a), (8-
201), and (8-201a). Compare the answers
with the more accurate values obtained in
Example 8-17, and comment on the com-
parisons.

8.41. Design a stripline with a characteristic
impedance of 30 ohms whose dielectric con-
stant is 4. Assume the thickness of the center
conductor is zero (t/b = 0).

8.42. A parallel plate transmission line (waveg-
uide) is formed by two finite width plates
placed at y = 0 and y = h , and it is used to
approximate a microstrip. Assume that the
electric field between the plates is given by

E � ây E0e−jβz provided w/h � 1

where E0 is a constant. Derive, for the con-
duction losses, an expression for the attenu-
ation constant αc (in Np/m) in terms of the
plate surface resistance Rs , w , h , ε, and μ.
The plates are made of metal with conduc-
tivity σ , and the medium between the plates
is a lossless dielectric.

e, m  

w

y

h

xs = ∞

Figure P8-42

8.43. A TEM line is composed of a ground plane
and a center conductor of width w and
thickness t placed at a height h above the
ground plane. Assume that the center con-
ductor thickness t is very small. Then the
center conductor can be approximated elec-
trically by a wire whose effective radius is

ae � 0.25w

e0, m0  

t

h w

2ae 

Figure P8-43
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Based upon this approximation, derive an
approximate expression for the capacitance
and for the characteristic impedance of the
line.

8.44. A microstrip line, whose center conductor
has zero thickness (t = 0), has a dielec-
tric constant of 6 and height of 1 mm. It
is desired to design a λ/4 impedance trans-
former to match two lines, one input (#1)
and the other output (#2), whose center strip
widths are, respectively w1 = 1.505 mm,
w3 = 0.549 mm, determine the:

(a) Effective dielectric constant of both
lines.

(b) Characteristic impedance of the input
(#1) and output (#2) lines.

(c) Characteristic impedance of the line that
is to perform as a λ/4 impedance trans-
former.

(d) Length (in cm), at 2 GHz, of the λ/4
impedance transformer.

8.45. Assume that the fields supported by the
microstrip line of Figure 8-51b are a combi-
nation of TEz and TMz modes. Then derive

expressions for the electric and magnetic
fields and their associated wave functions
and wave numbers by treating the geometry
as a boundary-value problem. Do this in the
space domain.

8.46. A microstrip transmission line of beryllium
oxide (εr = 6.8) has a width-to-height ratio
of w/h = 1.5. Assume that the thickness-to-
height ratio is t/h = 0.01 and determine the
following parameters.
(a) Effective width-to-height ratio at zero

frequency.
(b) Effective dielectric constant at zero fre-

quency.
(c) Characteristic impedance at zero fre-

quency.
(d) Approximate frequency where disper-

sion will begin when h = 0.05 cm.
(e) Effective dielectric constant at 15 GHz
(f) Characteristic impedance at 15 GHz.

Compare with the value if dispersion is
neglected.

(g) Phase velocity at 15 GHz. Compare with
the value if dispersion is neglected.

(h) Guide wavelength at 15 GHz.
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CHAPTER 9
Circular Cross-Section Waveguides and Cavities

9.1 INTRODUCTION

Cylindrical transmission lines and cavities are very popular geometrical configurations. Cylindri-
cal structures are those that maintain a uniform cross section along their length. Typical cross
sections are rectangular, square, triangular, circular, elliptical, and others. Whereas the rectangu-
lar and square cross sections were analyzed in Chapter 8, the circular cross-section geometries
will be discussed in this chapter. This will include transmission lines and cavities (resonators) of
conducting walls and dielectric material.

9.2 CIRCULAR WAVEGUIDE

A popular waveguide configuration, in addition to the rectangular one discussed in Chapter 8,
is the circular waveguide shown in Figure 9-1. This waveguide is very attractive because of
its ease in manufacturing and low attenuation of the TE0n modes. An apparent drawback is its
fixed bandwidth between modes. Field configurations (modes) that can be supported inside such
a structure are TEz and TMz .

9.2.1 Transverse Electric (TEz) Modes

The transverse electric to z (TEz ) modes can be derived by letting the vector potentials A and F
be equal to

A = 0 (9-1a)

F = âz Fz (ρ, φ, z ) (9-1b)

The vector potential F must satisfy the vector wave equation 3-48, which reduces for the F of
(9-1b) to

∇2Fz (ρ, φ, z ) + β2Fz (ρ, φ, z ) = 0 (9-2)

When expanded in cylindrical coordinates, (9-2) reduces to

∂2Fz

∂ρ2
+ 1

ρ

∂Fz

∂ρ
+ 1

ρ2

∂2Fz

∂φ2
+ ∂2Fz

∂z 2
+ β2Fz = 0 (9-3)

whose solution for the geometry of Figure 9-1, according to (3-70), is of the form

Fz (ρ, φ, z ) = [A1Jm(βρρ) + B1Ym(βρρ)]

×[C2 cos(mφ) + D2 sin(mφ)]
[
A3e−jβz z + B3e+jβz z

]
(9-4)

483
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z

x
a

y

r

e, m f

Figure 9-1 Cylindrical waveguide of circular cross section.

where, according to (3-66d), the constraint (dispersion) equation is

β2
ρ + β2

z = β2 (9-4a)

The constants A1, B1, C2, D2, A3, B3, m , βρ , and βz can be found using the boundary conditions

Eφ(ρ = a , φ, z ) = 0 (9-5a)

The fields must be finite everywhere (9-5b)

The fields must repeat every 2π radians in φ (9-5c)

According to (9-5b), B1 = 0 since Ym(ρ = 0) = ∞. In addition, according to (9-5c),

m = 0, 1, 2, 3, . . . (9-6)

Consider waves that propagate only in the +z direction. Then (9-4) reduces to

F+
z (ρ, φ, z ) = AmnJm(βρρ)[C2 cos(mφ) + D2 sin(mφ)]e−jβz z (9-7)

Using (6-80) and (9-7), the electric field component of E+
φ can be written as

E+
φ = 1

ε

∂F+
z

∂ρ
= βρ

Amn

ε
J ′

m(βρρ)[C2 cos(mφ) + D2 sin(mφ)]e−jβz z (9-8)

where
′ ≡ ∂

∂(βρρ)
(9-8a)

Apply the boundary condition of (9-5a) in (9-8). Then we have that

E+
φ (ρ = a , φ, z ) = βρ

Amn

ε
J ′

m(βρa)[C2 cos(mφ) + D2 sin(mφ)]e−jβz z = 0 (9-9)

which is only satisfied provided that

J ′
m(βρa) = 0 ⇒ βρa = χ ′

mn ⇒ βρ = χ ′
mn

a
(9-10)

In (9-10) χ ′
mn represents the nth zero (n = 1, 2, 3, . . .) of the derivative of the Bessel function

Jm of the first kind and of order m (m = 0, 1, 2, 3, . . .). An abbreviated list of the zeroes χ ′
mn of
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TABLE 9-1 Zeroes χ ′
mn of derivative J ′

m(χ ′
mn) = 0 (n = 1, 2, 3, . . .) of the Bessel function Jm(x)

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11

n = 1 3.8318 1.8412 3.0542 4.2012 5.3175 6.4155 7.5013 8.5777 9.6474 10.7114 11.7708 12.8264
n = 2 7.0156 5.3315 6.7062 8.0153 9.2824 10.5199 11.7349 12.9324 14.1155 15.2867 16.4479 17.6003
n = 3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682 16.5294 17.7740 19.0046 20.2230 21.4309
n = 4 13.3237 11.7060 13.1704 14.5859 15.9641 17.3129 18.6375 19.9419 21.2291 22.5014 23.7607 25.0085
n = 5 16.4706 14.8636 16.3475 17.7888 19.1960 20.5755 21.9317 23.2681 24.5872 25.8913 27.1820 28.4609

the derivative J ′
m of the Bessel function Jm is found in Table 9-1. The smallest value of χ ′

mn is
1.8412 (m = 1, n = 1), followed by 3.0542 (m = 2, n = 1), 3.8318 (m = 0, n = 1), and so on.

By using (9-4a) and (9-10), βz of the mn mode can be written as

(βz )mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
β2 − β2

ρ =
√

β2 −
(

χ ′
mn

a

)2

when β > βρ = χ ′
mn

a

0 when β = βc = βρ = χ ′
mn

a

− j
√

β2
ρ − β2 = −j

√(
χ ′

mn

a

)2

− β2 when β < βρ = χ ′
mn

a

(9-11a)

(9-11b)

(9-11c)

Cutoff is defined when (βz )mn = 0. Thus, according to (9-11b),

βc = ωc
√

με = 2π fc
√

με = βρ = χ ′
mn

a
(9-12)

or

(fc)mn = χ ′
mn

2πa
√

με
(9-12a)

By using (9-12) and (9-12a), we can write (9-11a) through (9-11c) as

(βz )mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
β2 − β2

ρ = β

√
1 −

(
βρ

β

)2

= β

√
1 −

(
βc

β

)2

= β

√
1 −

(
χ ′

mn

βa

)2

= β

√
1 −

(
fc
f

)2

when f > fc = (fc)mn

0 when f = fc = (fc)mn

− j
√

β2
ρ − β2 = −jβ

√(
βρ

β

)2

− 1 = −jβ

√(
βc

β

)2

− 1

= −jβ

√(
χ ′

mn

βa

)2

− 1 = −jβ

√(
fc
f

)2

− 1

when f < fc = (fc)mn

(9-13a)

(9-13b)

(9-13c)

The guide wavelength λg is defined as

(λg)mn = 2π

(βz )mn
(9-14)
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which according to (9-13a) and (9-13b) can be written as

(λg)mn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2π

β

√
1 −

(
fc
f

)2
= λ√

1 −
(

fc
f

)2
when f > fc = (fc)mn

∞ when f = (fc)mn

(9-14a)

(9-14b)

In (9-14a), λ is the wavelength of the wave in an infinite medium of the kind that exists inside the
waveguide. There is no definition of the wavelength below cutoff since the wave is exponentially
decaying and there is no repetition of its waveform.

According to (9-12a) and the values of χ ′
mn in Table 9-1, the order (lower to higher cutoff

frequencies) in which the TEz
mn modes occur is TEz

11, TEz
21, TEz

01, etc. It should be noted that for a
circular waveguide the order in which the TEz

mn modes occur does not change, and the bandwidth
between modes is also fixed. For example, the bandwidth of the first single-mode TEz

11 operation
is 3.0542/1.8412 = 1.6588 : 1 which is less than 2 : 1. This bandwidth is fixed and cannot be
varied, as was the case for the rectangular waveguide where the bandwidth between modes was
a function of the a/b ratio. In fact, for a rectangular waveguide the maximum bandwidth of a
single dominant mode operation was 2 : 1 and it occurred when a/b ≥ 2; otherwise, for a/b < 2,
the bandwidth of a single dominant mode operation was less than 2 : 1. The reason is that in a
rectangular waveguide there are two dimensions a and b (2 degrees of freedom) whose relative
values can vary; in the circular waveguide there is only one dimension (the radius a) that can
vary. A change in the radius only varies, by the same amount, the absolute values of the cutoff
frequencies of all the modes, so it does not alter their order or relative bandwidth.

The electric and magnetic field components can be written, using (6-80) and (9-7), as

E+
ρ = − 1

ερ

∂F+
z

∂φ
= −Amn

m

ερ
Jm(βρρ)[−C2 sin(mφ) + D2 cos(mφ)]e−jβz z

(9-15a)

E+
φ = 1

ε

∂F+
z

∂ρ
= Amn

βρ

ε
J ′

m(βρρ)[C2 cos(mφ) + D2 sin(mφ)]e−jβz z (9-15b)

E+
z = 0 (9-15c)

H +
ρ = −j

1

ωμε

∂2F+
z

∂ρ ∂z
= −Amn

βρβz

ωμε
J ′

m(βρρ)[C2 cos(mφ) + D2 sin(mφ)]e−jβz z (9-15d)

H +
φ = −j

1

ωμε

1

ρ

∂2F+
z

∂φ ∂z
= −Amn

mβz

ωμε

1

ρ
Jm(βρρ)

×[−C2 sin(mφ) + D2 cos(mφ)]e−jβz z (9-15e)

H +
z = −j

1

ωμε

(
∂2

∂z 2
+ β2

)
F+

z = −jAmn
β2

ρ

ωμε
Jm(βρρ)

×[C2 cos(mφ) + D2 sin(mφ)]e−jβz z (9-15f)

where

′ ≡ ∂

∂(βρρ)
(9-15g)
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By using (9-15a) through (9-15f), the wave impedance (Z +z
w )TE

mn of the TEz
mn (H z

mn) modes in
the +z direction can be written as

(Z +z
w )TE

mn = E+
ρ

H +
φ

= − E+
φ

H +
ρ

= ωμ

(βz )mn
(9-16)

With the aid of (9-13a) through (9-13c), the wave impedance of (9-16) reduces to

(Z +z
w )TE

mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωμ

β

√
1 −

(
fc
f

)2
=

√
μ

ε√
1 −

(
fc
f

)2
= η√

1 −
(

fc
f

)2

when f > fc = (fc)mn

ωμ

0
= ∞ when f = fc = (fc)mn

ωμ

−jβ

√(
fc
f

)2

− 1

= +j

√
μ

ε√(
fc
f

)2

− 1

= +j
η√(

fc
f

)2

− 1

when f < fc = (fc)mn

(9-16a)

(9-16b)

(9-16c)

By examining (9-16a) through (9-16c), we can make the following statements about the
impedance.

1. Above cutoff it is real and greater than the intrinsic impedance of the medium inside the
waveguide.

2. At cutoff it is infinity.
3. Below cutoff it is imaginary and inductive. This indicates that the waveguide below cutoff

behaves as an inductor that is an energy storage element.

The form of Z +z
w , as given by (9-16a) through (9-16c), as a function of fc/f , and where fc is

the cutoff frequency of that mode, is the same as the Z +z
w for the TEz modes of a rectangular

waveguide, as given by (8-20a) through (8-20c). A plot of (9-16a) through (9-16c) for any one
TEz

mn mode as a function of fc/f , is shown in Figure 8-2.

Example 9-1

A circular waveguide of radius a = 3 cm that is filled with polystyrene (εr = 2.56) is used at a frequency
of 2 GHz. For the dominant TEz

mn mode, determine the following:

a. Cutoff frequency.
b. Guide wavelength (in cm). Compare it to the infinite medium wavelength λ.
c. Phase constant βz (in rad/cm).
d. Wave impedance.
e. Bandwidth over single-mode operation (assuming only TEz modes).
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Solution:

a. The dominant mode is the TE11 mode whose cutoff frequency is, according to (9-12a),

(fc)
TEz

11 = 1.8412

2πa
√

με
= 1.8412(30 × 109)

2π(3)
√

2.56
= 1.8315 GHz

b. Since the frequency of operation is 2 GHz, which is greater than the cutoff frequency of
1.8315 GHz, the guide wavelength of (9-14a) for the TE11 mode is

λg = λ√
1 −

(
fc
f

)2

where

λ = λ0√
εr

= 30 × 109

2 × 109
√

2.56
= 9.375 cm√

1 −
(

fc
f

)2

=
√

1 −
(

1.8315

2

)2

= 0.4017

Thus,

λg = 9.375

0.4017
= 23.34 cm where λ = 9.375 cm

c. The phase constant βz of the TE11 mode is found using (9-13a), or

βz = β

√
1 −

(
fc
f

)2

= 2π

λ

√
1 −

(
fc
f

)2

= 2π

9.375
(0.4017) = 0.2692 rad/cm

which can also be obtained using

βz = 2π

λg
= 2π

23.34
= 0.2692 rad/cm

d. According to (9-16a), the wave impedance of the TE11 mode is equal to

Z h
11 = η√

1 −
(

fc
f

)2
= 120π/

√
2.56

0.4017
= 586.56 ohms

e. Since the next higher-order TEmn mode is the TE21, the bandwidth of single TE11 mode operation
is

BW = 3.0542/1.8412 : 1 = 1.6588 : 1

9.2.2 Transverse Magnetic (TMz) Modes

The transverse magnetic to z (TMz ) modes can be derived in a similar manner as the TEz modes
of Section 9.2.1 by letting

A = âz Az (ρ, φ, z ) (9-17a)

F = 0 (9-17b)
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The vector potential A must satisfy the vector wave equation of (3-48), which reduces for the A
of (9-17a) to

∇2Az (ρ, φ, z ) + β2Az (ρ, φ, z ) = 0 (9-18)

The solution of (9-18) is obtained in a manner similar to that of (9-2), as given by (9-4), and it
can be written as

Az (ρ, φ, z ) = [A1Jm(βρρ) + B1Ym(βρρ)]

×[C2 cos(mφ) + D2 sin(mφ)]
[
A3e−jβz z + B3e+jβz z

]
(9-19)

with the constraint (dispersion) equation expressed as

β2
ρ + β2

z = β2 (9-19a)

The constants A1, B1, C2, D2, A3, B3, m , βρ , and βz can be found using the following boundary
conditions

Eφ(ρ = a , φ, z ) = 0 (9-20a)

or
Ez (ρ = a , φ, z ) = 0 (9-20b)

The fields must be finite everywhere (9-20c)

The fields must repeat every 2π radians in φ (9-20d)

According to (9-20c), B1 = 0 since Ym(ρ = 0) = ∞. In addition, according to (9-20d),

m = 0, 1, 2, 3, . . . (9-21)

Considering waves that propagate only in the +z direction, (9-19) reduces to

A+
z (ρ, φ, z ) = BmnJm(βρρ)[C2 cos(mφ) + D2 sin(mφ)]e−jβz z (9-22)

The eigenvalues of βρ can be obtained by applying either (9-20a) or (9-20b). Use of (6-70) and
(9-22) allows us to write the electric field component E+

z as

E+
z = −j

1

ωμε

(
∂2

∂z 2
+ β2

)
A+

z

= −jBmn
β2

ρ

ωμε
Jm(βρρ)[C2 cos(mφ) + D2 sin(mφ)]e−jβz z (9-23)

Application of the boundary condition (9-20b) and use of (9-23) gives

E+
z (ρ = a , φ, z ) = −jBmn

β2
ρ

ωμε
Jm(βρa)[C2 cos(mφ) + D2 sin(mφ)]e−jβz z = 0 (9-24)

which is only satisfied provided that

Jm(βρa) = 0 ⇒ βρa = χmn ⇒ βρ = χmn

a
(9-25)

In (9-25), χmn represents the nth zero (n = 1, 2, 3, . . .) of the Bessel function Jm of the first kind
and of order m (m = 0, 1, 2, 3, . . .). An abbreviated list of the zeroes χmn of the Bessel function
Jm is found in Table 9-2. The smallest value of χmn is 2.4049 (m = 0, n = 1), followed by 3.8318
(m = 1, n = 1), 5.1357 (m = 2, n = 1), etc.
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TABLE 9-2 Zeroes χmn of Jm(χmn) = 0 (n = 1, 2, 3, . . .) of Bessel function Jm(x)

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11

n = 1 2.4049 3.8318 5.1357 6.3802 7.5884 8.7715 9.9361 11.0864 12.2251 13.3543 14.4755 15.5898
n = 2 5.5201 7.0156 8.4173 9.7610 11.0647 12.3386 13.5893 14.8213 16.0378 17.2412 18.4335 19.6160
n = 3 8.6537 10.1735 11.6199 13.0152 14.3726 15.7002 17.0038 18.2876 19.5545 20.8071 22.0470 23.2759
n = 4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801 20.3208 21.6415 22.9452 24.2339 25.5095 26.7733
n = 5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178 23.5861 24.9349 26.2668 27.5838 28.8874 30.1791

By using (9-19a) and (9-25), βz can be written as

(βz )mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
β2 − β2

ρ =
√

β2 −
(χmn

a

)2
when β > βρ = χmn

a

0 when β = βc = βρ = χmn

a

− j
√

β2
ρ − β2 = −j

√(χmn

a

)2
− β2 when β < βρ = χmn

a

(9-26a)

(9-26b)

(9-26c)

By following the same procedure as for the TEz modes, we can write the expressions for the
cutoff frequencies (fc)mn , propagation constant (βz )mn , and guide wavelength (λg)mn as

(fc)mn = χmn

2πa
√

με
(9-27)

(βz )mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
β2 − β2

ρ = β

√
1 −

(
βρ

β

)2

= β

√
1 −

(
βc

β

)2

= β

√
1 −

(
χmn

βa

)2

= β

√
1 −

(
fc
f

)2

when f > fc = (fc)mn

0 when f = fc = (fc)mn

− j
√

β2
ρ − β2 = −jβ

√(
βρ

β

)2

− 1 = −jβ

√(
βc

β

)2

− 1

= −jβ

√(
χmn

βa

)2

− 1 = −jβ

√(
fc
f

)2

− 1

when f < fc = (fc)mn

(9-28a)

(9-28b)

(9-28c)

(λg)mn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2π

β

√
1 −

(
fc
f

)2
= λ√

1 −
(

fc
f

)2
when f > fc = (fc)mn

∞ when f = fc = (fc)mn

(9-29a)

(9-29b)
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According to (9-27) and the values of χmn of Table 9-2, the order (lower to higher cutoff
frequencies) in which the TMz modes occur is TM01, TM11, TM21, and so forth. The bandwidth
of the first single-mode TMz

01 operation is 3.8318/2.4049 = 1.5933 : 1, which is also less than
2 : 1. Comparing the cutoff frequencies of the TEz and TMz modes, as given by (9-12a) and
(9-27) along with the data of Tables 9-1 and 9-2, the order of the TEz

mn and TMz
mn modes is

that of TE11 (χ ′
11 = 1.8412), TM01 (χ01 = 2.4049), TE21 (χ ′

21 = 3.0542), TE01 (χ ′
01 = 3.8318) =

TM11 (χ11 = 3.8318), TE31 (χ ′
31 = 4.2012), and so forth. The dominant mode is TE11 and its

bandwidth of single-mode operation is 2.4049/1.8412 = 1.3062 : 1, which is much smaller than
2 : 1. Plots of the field configurations over a cross section of the waveguide, both E and H , for
the first 30 TEz

mn and/or TMz
mn modes are shown in Figure 9-2 [1].

It is apparent that the cutoff frequencies of the TE0n and TM1n modes are identical; therefore,
they are referred to here also as degenerate modes. This is because the zeroes of the derivative of
the Bessel function J0 are identical to the zeroes of the Bessel function J1. To demonstrate this,
let us examine the derivative of J0(βρρ) evaluated at ρ = a . Using (IV-19) we can write that

d

d
(
βρρ

)J0
(
βρρ

) ∣∣
ρ=a = J ′

0

(
βρa

) = −J1
(
βρρ

) ∣∣
ρ=a = −J1

(
βρa

)
(9-30)

which vanishes when

J ′
0

(
βρa

) = 0 ⇒ βρa = χ ′
0n , n = 1, 2, 3, . . . (9-30a)

or
J1

(
βρa

) = 0 ⇒ βρa = χ1n , n = 1, 2, 3, . . . (9-30b)

The electric and magnetic field components can be written, using (6-70) and (9-22), as

E+
ρ = −j

1

ωμε

∂2A+
z

∂ρ ∂z
= −Bmn

βρβz

ωμε
J ′

m

(
βρρ

)
[C2 cos(mφ) + D2 sin(mφ)] e−jβz z

(9-31a)

E+
φ = −j

1

ωμε

1

ρ

∂2A+
z

∂φ ∂z
= −Bmn

mβz

ωμερ
Jm

(
βρρ

)
[−C2 sin(mφ) + D2 cos(mφ)] e−jβz z

(9-31b)

E+
z = −j

1

ωμε

(
∂2

∂z 2
+ β2

)
A+

z

= −jBmn
β2

ρ

ωμε
Jm

(
βρρ

)
[C2 cos(mφ) + D2 sin(mφ)] e−jβz z (9-31c)

H +
ρ = 1

μ

1

ρ

∂A+
z

∂φ
= Bmn

m

μ

1

ρ
Jm

(
βρρ

)
[−C2 sin(mφ) + D2 cos(mφ)] e−jβz z (9-31d)

H +
φ = − 1

μ

∂A+
z

∂ρ
= −Bmn

βρ

μ
J ′

m

(
βρρ

)
[C2 cos(mφ) + D2 sin(mφ)] e−jβz z (9-31e)

H +
z = 0 (9-31f)

where
′ ≡ ∂

∂
(
βρρ

) (9-31g)
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TE11

TM11

TM21

TM02

TE22 TE02 TM12

TE51TM31

TE41 TE12

TE31TE01

TM01 TE21

E H

Figure 9-2 Field configurations of the first 30 TEz and/or TMz modes in a circular waveguide. (Source:
C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular
waveguides,” IEEE Trans. Microwave Theory Tech., © 1966, IEEE.).
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TE61

TM22

TM03

TE81

TE23 TM13 TE03

TM61TM32

TM51 TE42

TE17TE13

TM41 TE32

E H

Figure 9-2 (Continued ).
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By using (9-31a) through (9-31f), the wave impedance in the +z direction can be written as

(
Z +z

w

)TM
mn = E+

ρ

H +
φ

= − E+
φ

H +
ρ

= (βz )mn

ωε
(9-32)

With the aid of (9-28a) through (9-28c), the wave impedance of (9-32) reduces to

(
Z +z

w

)TM
mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β

√
1 −

(
fc
f

)2

ωε
=

√
μ

ε

√
1 −

(
fc
f

)2

= η

√
1 −

(
fc
f

)2

when f > fc = (fc)mn

0

ωε
= 0 when f = fc = (fc)mn

−jβ

√(
fc
f

)2

− 1

ωε
= −j

√
μ

ε

√(
fc
f

)2

− 1 = −jη

√(
fc
f

)2

− 1

when f < fc = (fc)mn

(9-32a)

(9-32b)

(9-32c)

Examining (9-32a) through (9-32c), we can make the following statements about the wave
impedance for the TMz modes.

1. Above cutoff it is real and smaller than the intrinsic impedance of the medium inside the
waveguide.

2. At cutoff it is zero.
3. Below cutoff it is imaginary and capacitive. This indicates that the waveguide below cutoff

behaves as a capacitor that is an energy storage element.

The form of (Z +z
w )TM

mn , as given by (9-32a) through (9-32c), and as a function of fc/f , where
fc is the cutoff frequency of that mode, is the same as the (Z +z

w )TM
mn for the TMz

mn modes of a
rectangular waveguide, as given by (8-29a) through (8-29c). A plot of (9-32a) through (9-32c)
for any one TMz

mn mode as a function of fc/f , is shown in Figure 8-2.

Example 9-2

Design a circular waveguide filled with a lossless dielectric medium of dielectric constant 4. The
waveguide must operate in a single dominant mode over a bandwidth of 1 GHz.

1. Find its radius (in cm).
2. Determine the lower, center, and upper frequencies of the bandwidth.

Solution:

a. The dominant mode is the TE11 mode whose cutoff frequency according to (9-12a) is

(fc)
TEz

11 = χ ′
11

2πa
√

με
= 1.8412(30 × 109)

2π(a)
√

4



CIRCULAR WAVEGUIDE 495

The next higher-order mode is the TM01 mode whose cutoff frequency according to (9-27) is

(fc)
TMz

01 = χ01

2πa
√

με
= 2.4049(30 × 109)

2π(a)
√

4

The difference between the two must be 1 GHz. To accomplish this, the radius of the waveguide
must be equal to

(2.4049 − 1.8412)30 × 109

2π(a)
√

4
= 1 × 109 ⇒ a = 1.3457 cm

b. The lower, upper, and center frequencies of the bandwidth are equal to

f� = (fc)
TEz

11 = 1.8412(30 × 109)

2π(1.3457)2
= 3.2664 × 109 = 3.2664 GHz

fu = (fc)
TMz

01 = 2.4049(30 × 109)

2π(1.3457)2
= 4.2664 × 109 = 4.2664 GHz

f0 = f� + 0.5 × 109 = fu − 0.5 × 109 = 3.7664 × 109 = 3.7664 GHz

Whenever a given mode is desired, it is necessary to design the proper feed to excite the
fields within the waveguide and detect the energy associated with such a mode. Maximization
of the energy exchange or transfer is accomplished by designing the feed, which is usually a
probe or antenna, so that its field pattern matches that of the field configuration of the desired
mode. Usually the probe is placed near the maximum of the field pattern of the desired mode;
however, that position may be varied somewhat in order to achieve some desired matching in
the excitation and detection systems. Shown in Figure 9-3 are suggested designs to excite and/or
detect the TE11 and TM01 modes in a circular waveguide, to transition between the TE10 of a
rectangular waveguide and the TE11 mode of a circular waveguide, and to couple between the
TE10 of a rectangular waveguide and TM01 mode of a circular waveguide.

9.2.3 Attenuation

The attenuation in a circular waveguide can be obtained by using techniques similar to those
for the rectangular waveguide, as outlined and applied in Section 8.2.5. The basic equation is
(8-64a), or

(αc)mn = Pc/�

2Pmn
= P�

2Pmn
(9-33)

which is based on the configuration of Figure 8-9.
It has been shown that the attenuation coefficients of the TE0n (n = 1, 2, . . .) modes in a circular

waveguide monotonically decrease as a function of frequency [2, 3]. This is a very desirable
characteristic, and because of this the excitation, propagation, and detection of TE0n modes in
a circular waveguide have received considerable attention. It can be shown that the attenuation
coefficients for the TEz

mn and TMz
mn modes inside a circular waveguide are given, respectively, by

TEz
mn

(αc)
TEz

mn = Rs

aη

√
1 −

(
fc
f

)2

[(
fc
f

)2

+ m2

(χ ′
mn)

2 − m2

]
Np/m (9-34a)
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(a)

(c) (d)

(b)

Figure 9-3 Excitation of TEmn and TMmn modes in a circular waveguide. (a) TE11 mode. (b) TM01 mode.
(c) TE10 (rectangular)-TE11 (circular). (d ) TE10 (rectangular)-TM01 (circular).

TMz
mn

(αc)
TMz

mn = Rs

aη

1√
1 −

(
fc
f

)2
Np/m (9-34b)

Plots of the attenuation coeficient versus the normalized frequency f /fc , where fc is the cutoff
frequency of the dominant TE11 mode, are shown for six modes in Figures 9-4a and 9-4b for
waveguide radii of 1.5 and 3 cm, respectively. Within the waveguide is free space and its walls
are made of copper (σ = 5.7 × 107 S/m).

Example 9-3

Derive the attenuation coefficient for the TE01 mode inside a circular waveguide of radius a .

Solution: According to (9-15a) through (9-15g), the electric and magnetic field components for the
TE01 (m = 0, n = 1) mode reduce to

E+
ρ = E+

z = H +
φ = 0

E+
φ = βρ

A01

ε
J ′

0

(
βρρ

)
e−jβz z

H +
ρ = −A01

βρβz

ωμε
J ′

0

(
βρρ

)
e−jβz z

H +
z = −jA01

β2
ρ

ωμε
J0

(
βρρ

)
e−jβz z
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where

βρ = χ ′
01

a
= 3.8318

a

Using these equations, the power through a cross section of the waveguide is equal to

P01 = 1

2

∫∫
A0

Re
[
(E × H∗) • ds

]
= 1

2

∫∫
A0

Re
[
âφEφ × (

âρHρ + âz Hz
)∗]

• âz ds

P01 = −1

2
Re

∫ 2π

0

∫ a

0

(
EφH ∗

ρ

)
ρ dρ dφ = |A01|2

πβz β
2
ρ

ωμε2

∫ a

0

[
J ′

0

(
χ ′

01

a
ρ

)]2

ρ dρ

Since
dJp (cx)

d (cx)
= −Jp+1 (cx) + p

cx
Jp (cx)

then

J ′
0

(
χ ′

01

a
ρ

)
= d

d(χ ′
01ρ/a)

J0

(
χ ′

01

a
ρ

)
= −J1

(
χ ′

01

a
ρ

)
Thus

P01 = |A01|2 πβz

ωμε2

(
χ ′

01

a

)2 ∫ a

0
J 2

1

(
χ ′

01

a
ρ

)
ρ dρ

Since ∫ c

b
xJ 2

p (cx) dx = x2

2

[
J 2

p (cx) − Jp−1 (cx) Jp+1 (cx)
]∣∣∣c

b

then ∫ a

0
ρJ 2

1

(
χ ′

01

a
ρ

)
dρ = a2

2

[
J 2

1

(
χ ′

01

) − J0
(
χ ′

01

)
J2

(
χ ′

01

)]
= −a2

2
J0

(
χ ′

01

)
J2

(
χ ′

01

) = a2

2
J 2

0

(
χ ′

01

)
because

J 2
1

(
χ ′

01

) = J 2
1 (3.8318) = 0

J2
(
χ ′

01

) = −J0
(
χ ′

01

)
Therefore, the power of the TE01 can be written as

P01 = |A01|2 πβz

2ωμε2

(
χ ′

01

)2
J 2

0

(
χ ′

01

)
The power dissipated on the walls of the waveguide is obtained using

Pc = Rs

2

∫∫
Sw

(Js • J∗
s )ρ=a ds = Rs

2

∫ �

0

∫ 2π

0
|Js |2ρ=a a dφ dz

where

Js |ρ=a = n̂ × H+|ρ=a = âφH +
z |ρ=a = −âφ j

β2
ρ

ωμε
A01J0

(
βρa

)
e−jβz z
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Thus,

Pc = |A01|2 Rs

2

(
β2

ρ

ωμε

)2

aJ 2
0

(
χ ′

01

) ∫ �

0

∫ 2π

0
dφ dz

or
Pc

�
= P� = |A01|2 πRs

a3

[(
χ ′

01

)2

ωμε

]2

J 2
0

(
χ ′

01

)
Therefore, the attenuation coefficient of (9-33) for the TE01 mode can now be written as

α01 (TEz ) = Rs

aη

(
fc
f

)2

√
1 −

(
fc
f

)2
Np/m

It is evident from the results of the preceding example that as fc/f becomes smaller, the
attenuation coefficient decreases monotonically (as shown in Figure 9-4), which is a desirable
characteristic. It should be noted that similar monotonically decreasing variations in the attenu-
ation coefficient are evident in all TE0n modes (n = 1, 2, 3, . . .). According to (9-15a) through
(9-15f), the only tangential magnetic field components to the conducting surface of the waveguide
for all these TE0n (m = 0) modes is the Hz component, while the electric field lines are circular.
Therefore, these modes are usually referred to as circular electric modes. For a constant power
in the wave, the Hz component decreases as the frequency increases and approaches zero at infi-
nite frequency. Simultaneously, the current density and conductor losses on the waveguide walls
also decrease and approach zero. Because of this attractive feature, these modes have received
considerable attention for long distance propagation of energy, especially at millimeter wave fre-
quencies. Typically, attenuations as low as 1.25 dB/km (2 dB/mi) have been attained [2]. This is
to be compared with attenuations of 120 dB/km for WR90 copper rectangular waveguides, and
3 dB/km at 0.85 μm, and less than 0.5 dB/km at 1.3 μm for fiber optics cables.

Although the TE0n modes are very attractive from the attenuation point of view, there are a
number of problems associated with their excitation and retention. One of the problems is that
the TE01 mode, which is the first of the TE0n modes, is not the dominant mode. Therefore, in
order for this mode to be above its cutoff frequency and propagate in the waveguide, a number
of other modes (such as the TE11, TM01, TE21, and TM11) with lower cutoff frequencies can
also exist. Additional modes can also be present if the operating frequency is chosen well above
the cutoff frequency of the TE01 mode in order to provide a margin of safety from being too
close to its cutoff frequency.

To support the TE01 mode, the waveguide must be oversized and it can support a number
of other modes. One of the problems faced with such a guide is how to excite the desired
TE01 mode with sufficient purity and suppress the others. Another problem is how to prevent
coupling between the TE01 mode and undesired modes that can exist since the guide is oversized.
The presence of the undesired modes causes not only higher losses but dispersion and attenuation
distortion to the signal since each exhibits different phase velocities and attenuation. Irregularities
in the inner geometry, surface, and direction (such as bends, nonuniform cross sections, etc.) of
the waveguide are the main contributors to the coupling to the undesired modes. However, for
the guide to be of any practical use, it must be able to sustain and propagate the desired TE01 and
other TE0n modes efficiently over bends of reasonable curvature. One technique that has been
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Figure 9-4 Attenuation for TEz
mn and TMz

mn modes in a circular waveguide. (a) a = 1.5 cm. (b) a = 3 cm.
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implemented to achieve this is to use mode conversion before entering the corner and another
conversion when exiting to convert back to the desired TE0n mode(s).

Another method that has been used to discriminate against undesired modes and avoid coupling
to them is to introduce filters inside the guide that cause negligible attenuation to the desired
TE0n mode(s). The basic principle of these filters is to introduce cuts that are perpendicular to the
current paths of the undesired modes and parallel to the current direction of the desired mode(s).
Since the current path of the undesired modes is along the axis (z direction) of the guide and the
path of the desired TE0n modes is along the circumference (φ direction), a helical wound wire
placed on the inside surface of the guide can serve as a filter that discourages any mode that
requires an axial component of current flow but propagates the desired TE0n modes [3, 4].

Another filter that can be used to suppress undesired modes is to introduce within the guide
very thin baffles of lossy material that will act as attenuating sheets. The surfaces of the baffles are
placed in the radial direction of the guide so that they are parallel to the Eρ and Ez components
of the undesired modes (which will be damped) and normal to the Eφ component of the TE0n

modes that will remain unaffected. Typically, two baffles are used and are placed in a crossed
pattern over the cross section of the guide.

A summary of the pertinent characteristics of the TEz
mn and TMz

mn modes of a circular waveg-
uide are found listed in Table 9-3.

9.3 CIRCULAR CAVITY

As in rectangular waveguides, a circular cavity is formed by closing the two ends of the waveguide
with plates, as shown in Figure 9-5. Coupling in and out of the cavity is done using either irises
(holes) or probes (antennas), some of which were illustrated in Figure 9-3. Since the boundary
conditions along the circumferential surface of the waveguide are the same as those of the
cavity, the analysis can begin by modifying only the traveling waves of the z variations of the
waveguide in order to obtain the standing waves of the cavity. The radial (ρ) and circumferential
(φ) variations in both cases will be the same. For the circular cavity, both TEz and TMz modes
can exist and will be examined here.

x

y

h

z

f

r

a

Figure 9-5 Geometry for circular cavity.
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9.3.1 Transverse Electric (TEz) Modes

We begin the analysis of the TEz modes by assuming the vector potential Fz is that of (9-7)
modified so that the z variations are standing waves instead of traveling waves. Thus, using
(9-7), we can write that

Fz (ρ, φ, z ) = AmnJm(βρρ)[C2 cos(mφ) + D2 sin(mφ)]

×[C3 cos(βz z ) + D3 sin(βz z )] (9-35)

where

βρ = χ ′
mn

a
(9-35a)

m = 0, 1, 2, 3, . . . (9-35b)

To determine the permissible values of βz , we must apply the additional boundary conditions
introduced by the presence of the end plates. These additional boundary conditions are

Eρ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = 0) = Eρ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = h) = 0 (9-36a)

Eφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = 0) = Eφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = h) = 0 (9-36b)

Since both boundary conditions are not independent, using either of the two leads to the same
results.

Using (6-80) and (9-35), we can write the Eφ component as

Eφ = 1

ε

∂Fz

∂ρ

= βρ

Amn

ε
J ′

m(βρρ)[C2 cos(mφ) + D2 sin(mφ)][C3 cos(βz z ) + D3 sin(βz z )] (9-37)

where
′ ≡ ∂

∂(βρρ)
(9-37a)

Applying (9-36b) leads to

Eφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = 0)

= βρ

Amn

ε
J ′

m(βρρ)[C2 cos(mφ) + D2 sin(mφ)][C3(1) + D3(0)] = 0

⇒ C3 = 0 (9-38a)

Eφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = h)

= βρ

Amn

ε
J ′

m(βρρ)[C2 cos(mφ) + D2 sin(mφ)]D3 sin(βz h) = 0

sin(βz h) = 0 ⇒ βz h = sin−1(0) = pπ

βz = pπ

h
, p = 1, 2, 3, . . . (9-38b)
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Thus, the resonant frequency is obtained using

β2
ρ + β2

z =
(

χ ′
mn

a

)2

+
(pπ

h

)2
= β2

r = ω2
r με (9-39)

or

(fr )
TEz

mnp = 1

2π
√

με

√(
χ ′

mn

a

)2

+
(pπ

h

)2 m = 0, 1, 2, 3, . . .
n = 1, 2, 3, . . .
p = 1, 2, 3, . . .

(9-39a)

The values of χ ′
mn are found listed in Table 9-1. The final form of Fz of (9-35) is

Fz (ρ, φ, z ) = AmnpJm(βρρ)[C2 cos(mφ) + D2 sin(mφ)] sin(βz z ) (9-40)

9.3.2 Transverse Magnetic (TMz) Modes

The analysis for the TMz modes in a circular cavity proceeds in the same manner as for the TEz

modes of the previous section. Using (9-22), we can write that

Az (ρ, φ, z ) = BmnJm(βρρ)[C2 cos(mφ) + D2 sin(mφ)] × [C3 cos(βz z ) + D3 sin(βz z )] (9-41)

where

βρ = χmn

a
(9-41a)

m = 0, 1, 2, . . . (9-41b)

Using (6-70) and (9-41), we can write the Eφ component as

Eφ(ρ, φ, z ) = −j
1

ωμε

1

ρ

∂2Az

∂φ ∂z

= −jBmn
mβz

ωμε

1

ρ
Jm(βρρ)[−C2 sin(mφ) + D2 cos(mφ)]

×[−C3 sin(βz z ) + D3 cos(βz z )] (9-42)

Applying the boundary conditions of (9-36b) leads to

Eφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = 0)

= −jBmn
mβz

ωμε

1

ρ
Jm(βρρ)[−C2 sin(mφ) + D2 cos(mφ)]

×[−C3(0) + D3(1)] = 0 ⇒ D3 = 0 (9-43a)

Eφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = h)

= jBmn
mβz

ωμε

1

ρ
Jm(βρρ)[−C2 sin(mφ) + D2 cos(mφ)][C3 sin(βz h)] = 0

sin(βz h) = 0 ⇒ βz h = sin−1(0) = pπ

βz = pπ

h
p = 0, 1, 2, 3, . . . (9-43b)
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Thus, the resonant frequency is obtained using

β2
ρ + β2

z =
(χmn

a

)2
+

(pπ

h

)2
= β2

r = ω2
r με (9-44)

or

(fr )
TMz

mnp = 1

2π
√

με

√(χmn

a

)2
+

(pπ

h

)2 m = 0, 1, 2, 3, . . .
n = 1, 2, 3, . . .
p = 0, 1, 2, 3, . . .

(9-45)

The values of χmn are found listed in Table 9-2. The final form of Az of (9-41) is

Az (ρ, φ, z ) = BmnpJm(βρρ)[C2 cos(mφ) + D2 sin(mφ)] cos(βz z ) (9-46)

The resonant frequencies of the TEz
mnp and TMz

mnp modes, as given respectively by (9-39a)
and (9-45), are functions of the h/a ratio and they are listed in Table 9-4.

The TEz
mnp mode with the smallest resonant frequency is the TE111, and its cutoff frequency

is given by

(fr )
TEz

111 = 1

2π
√

με

√(
1.8412

a

)2

+
(π

h

)2
(9-47a)

Similarly, the TMz
mnp mode with the smallest resonant frequency is the TM010, and its cutoff

frequency is given by

(fr )
TMz

010 = 1

2π
√

με

√(
2.4049

a

)2

(9-47b)

Equating (9-47a) to (9-47b) indicates that the two are identical (degenerate modes) when

h

a
= 2.03 � 2 (9-48)

When h/a < 2.03 the dominant mode is the TM010, whereas for h/a > 2.03 the dominant mode
is the TE111 mode.

9.3.3 Quality Factor Q

One of the most important parameters of a cavity is its quality factor, better known as the Q ,
which is defined by (8-84). The Q of the TM010 mode, which is the dominant mode when
h/a < 2.03, is of particular interest and it will be derived here.

For the TM010 mode, the potential function of (9-46) reduces to

Az = B010J0(βρρ) (9-49)

where

βρ = χ01

a
= 2.4049

a
(9-49a)
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TABLE 9-4 Resonant frequencies for the TEmnp and TMmnp modes of a circular cavity

Rmnp
dom = (fr )mnp

(fr )dom

h
a

Rmnp
dom

0
TM010

TM010

TM110

TM010

TM210

TM010

TM020

TM010

TM310

TM010

TM120

TM010

TM410

TM010

TM220

TM010

TM030

TM010

TM510

TM010

1.000 1.593 2.136 2.295 2.653 2.917 3.155 3.500 3.598 3.647

0.5
TM010

TM010

TM110

TM010

TM210

TM010

TM020

TM010

TM310

TM010

TE111

TM010

TM011

TM010

TE211

TM010

TM120

TM010

TE011

TM010

1.000 1.593 2.136 2.295 2.653 2.722 2.797 2.905 2.917 3.060

1.00
TM010

TM010

TE111

TM010

TM110

TM010

TM011

TM010

TE211

TM010

TM111

TM010

TE011

TM010

TM210

TM010

TE311

TM010

TM020

TM010

1.000 1.514 1.593 1.645 1.822 2.060 2.060 2.136 2.181 2.295

2.03
TM010

TM010,

TE111

TM010,

TM011

TM010,

TE211

TM010,

TE212

TM010,

TM110

TM010,

TM012

TM010,

TE011

TM010,

TM111

TM010,

TE212

TM010,
TE111 TE111 TE111 TE111 TE111 TE111 TE111 TE111 TE111 TE111

1.000 1.000 1.189 1.424 1.497 1.593 1.630 1.718 1.718 1.808

3.0
TE111

TE111

TM010

TE111

TM011

TE111

TE112

TE111

TM012

TE111

TE211

TE111

TE113

TE111

TE212

TE111

TM110

TE111

TM013

TE111

1.000 1.136 1.238 1.317 1.506 1.524 1.719 1.748 1.809 1.868

4.0
TE111

TE111

TM010

TE111

TE112

TE111

TM011

TE111

TM012

TE111

TE113

TE111

TE211

TE111

TM013

TE111

TE212

TE111

TE114

TE111

1.000 1.202 1.209 1.264 1.435 1.494 1.575 1.682 1.717 1.819

5.0
TE111

TE111

TE112

TE111

TM010

TE111

TM011

TE111

TE113

TE111

TM012

TE111

TM013

TE111

TE114

TE111

TE211

TE111

TE212

TE111

1.000 1.146 1.236 1.278 1.354 1.395 1.571 1.602 1.603 1.698

10.0
TE111

TE111

TE112

TE111

TE113

TE111

TE114

TE111

TM010

TE111

TE115

TE111

TM011

TE111

TM012

TE111

TM013

TE111

TE116

TE111

1.000 1.042 1.107 1.194 1.288 1.296 1.299 1.331 1.383 1.411

∞ TE11p

TE111

TM01p

TE111

TE21p

TE111

TE01p

TE111

TM11p

TE111

TE31p

TE111

TM21p

TE111

TE41p

TE111

TE12p

TE111

TM02p

TE111

1.000 1.306 1.659 2.081 2.081 2.282 2.790 2.888 2.896 2.998
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These corresponding electric and magnetic fields are obtained using (6-70), or

Eρ = −j
1

ωrμε

∂2Az

∂ρ ∂z
= 0

Eφ = −j
1

ωrμε

1

ρ

∂2Az

∂φ ∂z
= 0

Ez = −j
1

ωrμε

(
∂2

∂z 2
+ β2

r

)
Az = −j

β2
r

ωrμε
B010J0

(χ01

a
ρ
)

(9-50)

Hρ = 1

μ

1

ρ

∂Az

∂φ
= 0

Hφ = − 1

μ

∂Az

∂ρ
= −χ01

a

B010

μ
J ′

0

(χ01

a
ρ
)

Hz = 0

The total energy stored in the cavity is given by

W = 2We = ε

2

∫∫∫
V

|E|2dv = |B010|2 ε

2

(
β2

r

ωrμε

)2 ∫ h

0

∫ 2π

0

∫ a

0
J 2

0

(χ01

a
ρ
)

ρ dρ dφ dz

W = |B010|2πhε

(
β2

r

ωrμε

)2 ∫ a

0
J 2

0

(χ01

a
ρ
)

ρ dρ (9-51)

Since [5], ∫ a

0
ρJ 2

0

(χ01

a
ρ
)

dρ = a2

2
J 2

1 (χ01) (9-52)

then (9-51) reduces to

W = |B010|2 πhε

2

(
aβ2

r

ωrμε

)2

J 2
1 (χ01) (9-53)

Because the medium within the cavity is assumed to be lossless, the total power is dissipated
on the conducting walls of the cavity. Thus, we can write that

Pd = Rs

2 #A
|H|2ds = Rs

2

{∫ 2π

0

∫ h

0
|H|2ρ=aa dφ dz + 2

∫ 2π

0

∫ a

0
|H|2z=0ρ dρ dφ

}
= |B010|2 Rs

2μ2

(χ01

a

)2
{∫ 2π

0

∫ h

0
[J ′

0(χ01)]
2a dz dφ + 2

∫ 2π

0

∫ a

0

[
J ′

0

(χ01

a
ρ
)]2

ρ dρ dφ

}
Pd = |B010|2 πRs

μ2

(χ01

a

)2
{

ah[J ′
0(χ01)]

2 + 2
∫ a

0

[
J ′

0

(χ01

a
ρ
)]2

ρ dρ

}
(9-54)

Because

J ′
0

(χ01

a
ρ
)

= d

d(χ01ρ/a)

[
J0

(χ01

a
ρ
)]

= −J1

(χ01

a
ρ
)

(9-55a)

and at ρ = a

J ′
0(χ01) = −J1(χ01) (9-55b)
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(9-54) reduces to

Pd = |B010|2 πRs

μ2

(χ01

a

)2
{

ahJ 2
1 (χ01) + 2

∫ a

0
J 2

1

(χ01

a
ρ
)

ρ dρ

}
= |B010|2 πRs

μ2

(χ01

a

)2
{

ahJ 2
1 (χ01) + 2

[
a2

2
J 2

1 (χ01)

]}
Pd = |B010|2 πRs

μ2

(χ01

a

)2
a(h + a)J 2

1 (χ01) (9-56)

Using the Q definition of (8-84) along with (9-53) and (9-56), we can write that

Q = ωr W

Pd
= β4

r ha3

2ωrε(h + a)Rsχ
2
01

=
χ01

√
μ

ε

2
(

1 + a

h

)
Rs

= 1.2025η

Rs

(
1 + a

h

) (9-57)

since for the TM010 mode (m = 0, n = 1, and p = 0)

β2
ρ + β2

z =
(χ01

a

)2
= β2

r ⇒ χ01 = βr a (9-57a)

Example 9-4

Compare the Q values of a circular cavity operating in the TM010 mode to those of a square-based
rectangular cavity. The dimensions of each are such that the circular cavity is circumscribed by the
square-based rectangular cavity.

Solution: According to (9-57) the Q of a circular cavity of radius a (or diameter d ) and height h is
given by

Q = 1.2025η

Rs

(
1 + a

h

) = 1.2025η

Rs

(
1 + d/2

h

)
For a square-based rectangular cavity to circumscribe a circular cavity, one of the sides of its base must
be equal to the diameter and their heights must be equal. Therefore, with a base of a = c = d on each
of its sides and a height b = h , its Q is equal according to (8-88a) to

Q = 1.1107η

Rs

⎡⎢⎢⎣ 1(
1 + a/2

b

)
⎤⎥⎥⎦ = 1.1107η

Rs

⎡⎢⎢⎣ 1(
1 + d/2

h

)
⎤⎥⎥⎦

Compare these two expressions and it is evident that the Q of the circular cavity is greater than that of
the square-based cavity by (

1.2025 − 1.1107

1.1107

)
× 100 = 8.26%

This is expected since the circular cavity does not possess as many sharp corners and edges as the square-
based cavity whose volume and surface area are not as well utilized by the interior fields. It should be
remembered that the Q of a cavity is proportional to volume and inversely proportional to area.
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9.4 RADIAL WAVEGUIDES

For a circular waveguide the waves travel in the ±z directions and their z variations are repre-
sented by the factor e∓jβz z . Their constant phase planes (equiphases) are planes that are parallel
to each other and perpendicular to the z direction. If the waves were traveling in the ±φ direc-
tion, their variations in that direction would be represented by e∓jmφ . Such waves are usually
referred to as circulating waves, and their equiphase surfaces are constant φ planes. For waves
that travel in the ±ρ (radial) direction, their variations in that direction would be represented by
either H (2)

m (βρρ) or H (1)
m (βρρ). Such waves are usually referred to as radial waves , and their

equiphases are constant ρ (radius) planes. The structures that support radial waves are referred
to as radial waveguides, and they will be examined here. Examples are parallel plates, wedged
plates (representing horn antennas), and others.

9.4.1 Parallel Plates

When two infinite long parallel plates are excited by a line source placed between them at the
center, as shown in Figure 9-6, the excited waves travel in the radial direction and form radial
waves. We shall examine here both the TEz and TMz modes in the region between the plates.

A. Transverse Electric ( TEz) Modes For the TEz modes of Figure 9-6, the potential function
Fz can be written according to (3-67a) through (3-69b) as

Fz (ρ, φ, z ) = [C1H (1)
m (βρρ) + D1H (2)

m (βρρ)][C2 cos(mφ) + D2 sin(mφ)]

×[C3 cos(βz z ) + D3 sin(βz z )] (9-58)

where

β2
ρ + β2

z = β2 (9-58a)

Source

z

h

x

y
r

f

Figure 9-6 Geometry for radial waveguide.
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The boundary conditions are

Eρ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ 2π , z = 0) = Eρ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ 2π , z = h) = 0 (9-59a)

Eφ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ 2π , z = 0) = Eφ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ 2π , z = h) = 0 (9-59b)

Since both of the preceding boundary conditions are not independent, either of the two leads to
the same results.

Using (6-80) and (9-58), the Eφ component can be written as

Eφ(ρ, φ, z ) = 1

ε

∂Fz

∂ρ

= βρ

ε
[C1H (1)′

m (βρρ) + D1H (2)′
m (βρρ)][C2 cos(mφ) + D2 sin(mφ)]

×[C3 cos(βz z ) + D3 sin(βz z )] (9-60)

Applying (9-59b) leads to

Eφ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ 2π , z = 0) = βρ

ε
[C1H (1)′

m (βρρ) + D1H (2)′
m (βρρ)]

× [C2 cos(mφ) + D2 sin(mφ)][C3(1) + D3(0)] = 0

⇒ C3 = 0 (9-61a)

Eφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = h) = βρ

ε
[C1H (1)′

m (βρρ) + D1H (2)′
m (βρρ)]

× [C2 cos(mφ) + D2 sin(mφ)]D3 sin(βz h) = 0

⇒ sin(βz h) = 0 ⇒ βz h sin−1(0) = nπ

βz = nπ

h
, n = 1, 2, 3, . . . (9-61b)

Thus, Fz of (9-58) reduces to

Fz (ρ, φ, z ) = [C1H (1)
m (βρρ) + D1H (2)

m (βρρ)]

×[C2 cos(mφ) + D2 sin(mφ)]D3 sin(βz z ) (9-62)

where

β2
ρ + β2

z = β2 ⇒ βρ = ±
√

β2 − β2
z = ±

√
β2 −

(nπ

h

)2
(9-62a)

βz = nπ

h
, n = 1, 2, 3, . . . (9-62b)

m = 0, 1, 2, . . . (because of periodicity of the fields in φ) (9-62c)

Cutoff is defined when βρ = 0. Thus, using (9-62a)

βρ = ±
√

β2 −
(nπ

h

)2
∣∣∣∣∣ f =fc
β=βc

= 0 ⇒ βc = nπ

h
(9-63)

or

(fc)
TEz

n = n

2h
√

με
n = 1, 2, 3, . . . (9-63a)
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Therefore, using (9-63a), βρ of (9-62a) takes the following forms above, at, and below cutoff.

βρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
β2 −

(nπ

h

)2
= β

√
1 −

(
fc
f

)2

f > fc

0 f = fc

− j

√(nπ

h

)2
− β2 = −jβ

√(
fc
f

)2

− 1 = −jα f < fc

(9-64a)

(9-64b)

(9-64c)

Let us now examine the outward (+ρ) traveling waves represented by H (2)
m (βρρ) and those

represented simultaneously by the cos(mφ) variations of (9-62). In that case, (9-62) reduces to

F+
z (ρ, φ, z ) = AmnH (2)

m (βρρ) cos(mφ) sin
(nπ

h
z
)

(9-65)

The corresponding electric and magnetic fields can be written using (6-80) as

E+
ρ = − 1

ερ

∂F+
z

∂φ
= Amn

m

ερ
H (2)

m (βρρ) sin(mφ) sin
(nπ

h
z
)

(9-65a)

E+
φ = 1

ε

∂F+
z

∂ρ
= βρ

Amn

ε
H (2)′

m (βρρ) cos(mφ) sin
(nπ

h
z
)

(9-65b)

E+
z = 0 (9-65c)

H +
ρ = −j

1

ωμε

∂2F+
z

∂ρ∂z
= −jAmnβρ

nπ/h

ωμε
H (2)′

m (βρρ) cos(mφ) cos
(nπ

h
z
)

(9-65d)

H +
φ = −j

1

ωμε

1

ρ

∂2F+
z

∂φ∂z
= jAmn

mnπ/h

ωμερ
H (2)

m (βρρ) sin(mφ) cos
(nπ

h
z
)

(9-65e)

H +
z = −j

1

ωμε

(
∂2

∂z 2
+ β2

)
F+

z = −jAmn
β2

ρ

ωμε
H (2)

m (βρρ) cos(mφ) sin
(nπ

h
z
)

(9-65f)

′ ≡ ∂

∂(βρρ)
(9-65g)

The impedance of the wave in the +ρ direction is defined and given by

Z +ρ
w (TEz

n) = Eφ

Hz
= j

ωμ

βρ

H (2)′
m (βρρ)

H (2)
m (βρρ)

(9-66)

Since

H (2)′
m (βρρ) = ∂

∂(βρρ)

[
H (2)

m (βρρ)
]

(9-67)

(9-66) can be written as

Z +ρ
w (TEz

n) = j
ωμ

βρ

∂

∂(βρρ)

[
H (2)

m (βρρ)
]

H (2)
m (βρρ)

(9-68)
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Below cutoff (f < fc) βρ is imaginary, and it is given by (9-64c). Therefore, for f < fc

H (2)
m (βρρ) = H (2)

m (−jαρ) (9-69a)

d

d(βρρ)

[
H (2)

m (βρρ)
] = d

d(−jαρ)

[
H (2)

m (−jαρ)
] = j

d

d(αρ)

[
H (2)

m (−jαρ)
]

(9-69b)

For complex arguments, the Hankel function H (2)
m of the second kind is related to the modified

Bessel function Km of the second kind by

H (2)
m (−jαρ) = 2

π
j m+1Km(αρ) (9-70a)

d

d(αρ)

[
H (2)

m (−jαρ)
] = 2

π
j m+1 d

d(αρ)
[Km(αρ)] (9-70b)

Thus, below cutoff (f < fc), the wave impedance reduces to

Z +ρ
w (TEz

n)|f <fc = j
ωμ

−jα

j
d

d(αρ)
[Km(αρ)]

Km(αρ)

= −j
ωμ

α

d

d(αρ)
[Km(αρ)]

Km(αρ)
(9-71)

which is always inductive (for f < fc) since Km(αρ)> 0 and d/d(αρ)[Km(αρ)] < 0. Therefore,
below cutoff the modes are nonpropagating (evanescent) since the waveguide is behaving as an
inductive storage element.

B. Transverse Magnetic ( TMz) Modes The TMz modes of the radial waveguide structure of
Figure 9-6 with the source at the center are derived in a similar manner. Using such a procedure
leads to the following results:

Az (ρ, φ, z ) = [
C ′

1H (1)
m (βρρ) + D ′

1H (2)
m (βρρ)

]
× [

C ′
2 cos(mφ) + D ′

2 sin(mφ)
]

C ′
3 cos(βz z ) (9-72)

β2
ρ + β2

z = β2 ⇒ βρ = ±
√

β2 − β2
z = ±

√
β2 −

(nπ

h

)2
(9-72a)

βz = nπ

h
, n = 0, 1, 2, . . . (9-72b)

m = 0, 1, 2, . . . (because of periodicity of the fields in φ) (9-72c)

(fc)
TMz

n = n

2h
√

με
, n = 0, 1, 2, . . . (9-73)
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βρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
β2 −

(nπ

h

)2
= β

√
1 −

(
fc
f

)2

f > fc

0 f = fc

− j

√(nπ

h

)2
− β2 = −jβ

√(
fc
f

)2

− 1 = −jα f < fc

(9-74a)

(9-74b)

(9-74c)

For outward (+ρ) traveling waves and only cos(mφ) variations

A+
z (ρ, φ, z ) = BmnH (2)

m (βρρ) cos(mφ) cos
(nπ

h
z
)

(9-75)

E+
ρ = −j

1

ωμε

∂2A+
z

∂ρ ∂z
= jBmnβρ

nπ/h

ωμε
H (2)′

m (βρρ) cos(mφ) sin
(nπ

h
z
)

(9-75a)

E+
φ = −j

1

ωμε

1

ρ

∂2A+
z

∂φ ∂z
= −jBmn

mnπ/h

ωμερ
H (2)

m (βρρ) sin(mφ) sin
(nπ

h
z
)

(9-75b)

E+
z = −j

1

ωμε

(
∂2

∂z 2
+ β2

)
A+

z = −jBmn
β2

ρ

ωμε
H (2)

m (βρρ) cos(mφ) cos
(nπ

h
z
)

(9-75c)

H +
ρ = 1

μ

1

ρ

∂A+
z

∂φ
= −Bmn

m

μ

1

ρ
H (2)

m (βρρ) sin(mφ) cos
(nπ

h
z
)

(9-75d)

H +
φ = − 1

μ

∂A+
z

∂ρ
= −βρ

Bmn

μ
H (2)′

m (βρρ) cos(mφ) cos
(nπ

h
z
)

(9-75e)

Hz = 0 (9-75f)

′ ≡ ∂

∂(βρρ)
(9-75g)

Z +ρ
w (TMz

n) = E+
z

−H +
φ

= −j
βρ

ωε

H (2)
m (βρρ)

H (2)′
m (βρρ)

(9-76)

Z +ρ
w (TMz

n)|f <fc = j
α

ωε

Km(αρ)

d

d(αρ)
[Km(αρ)]

(9-76a)

which is always capacitive (for f < fc) since Km(αρ)> 0 and d/d(αρ)[Km(αρ)] < 0. There-
fore, below cutoff the modes are nonpropagating (evanescent) since the waveguide behaves as a
capacitive storage element.

9.4.2 Wedged Plates

Another radial type of waveguide structure is the wedged-plate geometry of Figure 9-7 with
plates along z = 0, h , and φ = 0, φ0. This type of a configuration resembles and can be used to
represent the structures of E - and H -plane sectoral horns [6]. In fact, the fields within the horns
are found using the procedure outlined here. In general, both TEz and TMz modes can exist in
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h

z

y

x
f0

f

r

Figure 9-7 Geometry of wedged plate radial waveguide.

the space between the plates. The independent sets of boundary conditions of this structure that
can be used to solve for the TEz

pn and TMz
pn modes are

Eρ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ φ0, z = 0) = Eρ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ φ0, z = h) = 0 (9-77a)

Eρ(0 ≤ ρ ≤ ∞, φ = 0, 0 ≤ z ≤ h) = Eρ(0 ≤ ρ ≤ ∞, φ = φ0, 0 ≤ z ≤ h) = 0 (9-77b)

or

Eφ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ φ0, z = 0) = Eφ(0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ φ0, z = h) = 0 (9-78a)

Ez (0 ≤ ρ ≤ ∞, φ = 0, 0 ≤ z ≤ h) = Ez (0 ≤ ρ ≤ ∞, φ = φ0, 0 ≤ z ≤ h) = 0 (9-78b)

or appropriate combinations of these. Whichever combination of independent boundary conditions
is used, leads to the same results.

A. Transverse Electric ( TEz) Modes Since the procedure used to derive this set of TEz

fields is the same as any other TEz procedure used previously, the results of this set of TEz
pn

modes will be summarized here; the details are left as an end-of-chapter exercise to the reader.
Only the outward radial (+ρ) parts will be included here.

F+
z (ρ, φ, z ) = ApnH (2)

m (βρρ) cos(mφ) sin(βz z ) (9-79)

β2
ρ + β2

z = β2

βz = nπ

h
n = 1, 2, 3, . . .

m = pπ

φ0
p = 0, 1, 2, . . .

(9-79a)

(9-79b)

(9-79c)
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E+
ρ = −1

ε

1

ρ

∂F+
z

∂φ
= Apn

pπ/φ0

ερ
H (2)

m (βρρ) sin

(
pπ

φ0
φ

)
sin

(nπ

h
z
)

(9-79d)

E+
φ = 1

ε

∂F+
z

∂ρ
= βρ

Apn

ε
H (2)′

m (βρρ) cos

(
pπ

φ0
φ

)
sin

(nπ

h
z
)

(9-79e)

E+
z = 0 (9-79f)

H +
ρ = −j

1

ωμε

∂2F+
z

∂ρ ∂z
= −jApn

βρβz

ωμε
H (2)′

m (βρρ) cos

(
pπ

φ0
φ

)
cos

(nπ

h
z
)

(9-79g)

H +
φ = −j

1

ωμε

1

ρ

∂2F+
z

∂φ ∂z
= jApn

βz pπ/φ0

ωμε

1

ρ
H (2)

m (βρρ) sin

(
pπ

φ0
φ

)
cos

(nπ

h
z
)

(9-79h)

H +
z = −j

1

ωμε

(
∂2

∂z 2
+ β2

)
F+

z = −jApn
β2

ρ

ωμε
H (2)

m (βρρ) cos

(
pπ

φ0
φ

)
sin

(nπ

h
z
)

(9-79i)

Z +ρ
w (TEz

pn) = E+
φ

H +
z

= j
ωμ

βρ

H (2)′
m (βρρ)

H (2)
m (βρρ)

; ′ ≡ ∂

∂(βρρ)
(9-79j)

B. Transverse Magnetic ( TMz) Modes As for the TEz
pn modes, the procedure for deriving

the TMz
pn for the wedged plate radial waveguide is the same as that used for TMz modes of other

waveguide configurations. Therefore, the results will be summarized here, and the details left as
an end-of-chapter exercise for the reader. Only the outward radial (+ρ) parts will be included
here.

A+
z (ρ, φ, z ) = BpnH (2)

m

(
βρρ

)
sin(mφ) cos (βz z ) (9-80)

β2
ρ + β2

z = β2

βz = nπ

h
, n = 0, 1, 2, . . .

m = pπ

φ0
, p = 1, 2, 3, . . .

(9-80a)

(9-80b)

(9-80c)

E+
ρ = −j

1

ωμε

∂2A+
z

∂ρ ∂z
= jBpn

βz βρ

ωμε
H (2)′

m

(
βρρ

)
sin

(
pπ

φ0
φ

)
sin

(nπ

h
z
)

(9-80d)

E+
φ = −j

1

ωμε

1

ρ

∂2A+
z

∂φ ∂z
= jBpn

βz pπ/φ0

ωμε

1

ρ
H (2)

m

(
βρρ

)
cos

(
pπ

φ0
φ

)
sin

(nπ

h
z
)

(9-80e)

E+
z = −j

1

ωμε

(
∂2

∂z 2
+ β2

)
A+

z = −jBpn
β2

ρ

ωμε
H (2)

m

(
βρρ

)
sin

(
pπ

φ0
φ

)
cos

(nπ

h
z
)

(9-80f)

H +
ρ = 1

μ

1

ρ

∂A+
z

∂φ
= Bpn

pπ/φ0

μρ
H (2)

m

(
βρρ

)
cos

(
pπ

φ0
φ

)
cos

(nπ

h
z
)

(9-80g)

H +
φ = − 1

μ

∂A+
z

∂ρ
= −βρ

Bpn

μ
H (2)′

m

(
βρρ

)
sin

(
pπ

φ0
φ

)
cos

(nπ

h
z
)

(9-80h)

H +
z = 0 (9-80i)
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Z +ρ
w

(
TMz

pn

)
= E+

z

−H +
φ

= −j
βρ

ωε

H (2)
m

(
βρρ

)
H (2)′

m
(
βρρ

) ; ′ ≡ ∂

∂
(
βρρ

) (9-80j)

9.5 DIELECTRIC WAVEGUIDES AND RESONATORS

Guided electromagnetic propagation by dielectric media has been studied since as early as the
1920s by well known people such as Rayleigh, Sommerfeld, and Debye. Dielectric slabs, strips,
and rods have been used as waveguides, resonators, and antennas. Since the 1960s a most well
known dielectric waveguide, the fiber optic cable [7–19], has received attention and has played
a key role in the general area of communication. Although the subject is very lengthy and
involved, we will consider here simplified theories that give the propagation characterisitcs of
the cylindrical dielectric rod waveguide, fiber optic cable, and the cylindrical dielectric resonator.
Extensive material on each of these topics and others can be found in the literature.

9.5.1 Circular Dielectric Waveguide

The cylindrical dielectric waveguide that will be examined here is that of circular cross section,
as shown in Figure 9-8. It usually consists of a high permittivity (εd ) central core dielectric of
radius a surrounded by a lower dielectric cladding (which is usually air). For simplicity, we
usually assume that both are perfect dielectrics with permeabilities equal to that of free space.
Such a structure can support an infinite number of modes. However, for a given set of permit-
tivities and radius a , only a finite number of unattenuated waveguide modes exist with their
fields localized in the central dielectric core. Generally, the fields within a dielectric waveguide
will be TE and/or TM, as was demonstrated in Section 8.7 for the dielectric slab waveguide.
However, for the cylindrical dielectric rod of Figure 9-8 pure TE(H ) or TM(E ) modes exist
only when the field configurations are symmetrical and independent of φ. Modes that exhibit
angular φ variations cannot be pure TE or TM modes. Instead field configurations that are
combinations of TE (or H ) and TM (or E ) modes can be nonsymmetrical and possess angular
φ variations. Such modes are usually referred to as hybrid modes , and are usually designated

y

z

x

e0, m0

a
r

f

ed, md 

Figure 9-8 Geometry of circular dielectric waveguide.



DIELECTRIC WAVEGUIDES AND RESONATORS 517

by IEEE (formerly IRE) Standards [20] as HEMmn . In general, mode nomenclature for circu-
lar dielectric waveguides and resonators is not well defined, and it is quite confusing. Another
designation of the hybrid modes is to denote them as HE [when the TE(H ) modes predom-
inate] or EH [when the TM(E ) modes predominate]. Pure TE or TM, or hybrid HEM (HE
or EH) modes exhibit cutoff frequencies, below which unattenuating modes cannot propagate.
The cutoff frequency is determined by the minimum electrical radius (a/λ) of the dielectric
rod; for small values of a/λ the modes cannot propagate unattenuated within the rod. There
is, however, one hybrid mode, namely the HEM11 (HE11), which does not have a cutoff fre-
quency. Because of its zero cutoff frequency, it is referred to as the dominant mode and is most
widely used in dielectric rod waveguides and end-fire antennas. This HE11 mode is also popularly
referred to as the dipole mode. An excellent reference on dielectric waveguides and resonators is
that of [21].

The TEz
mn and TMz

mn electric and magnetic field components in a cylindrical waveguide are
given, respectively, by (9-15a) through (9-15g) and (9-31a) through (9-31g). These expressions
include both the cos(mφ) and sin(mφ) angular variations which, in general, both exist. The HEM
modes that have only cos(mφ) symmetry are combinations of the TEz and TMz modes which also
exhibit cos(mφ) symmetry. Use of the expressions (9-15a) through (9-15g) and (9-31a) through
(9-31g) and selection of only the terms that possess simultaneously cos(mφ) variations in the Ez

component and sin(mφ) variations in the Hz component, allows us to write that

HEM Modes (ρ ≤ a)

E d
ρ = −j

1(
βd

ρ

)2

[
mωμd Am

1

ρ
Jm

(
βd

ρ ρ
) + βz β

d
ρ BmJ ′

m

(
βd

ρ ρ
)]

cos(mφ)e−jβz z (9-81a)

E d
φ = j

1(
βd

ρ

)2

[
ωμdβd

ρ AmJ ′
m

(
βd

ρ ρ
) + mβz Bm

1

ρ
Jm

(
βd

ρ ρ
)]

sin(mφ)e−jβz z (9-81b)

E d
z = BmJm

(
βd

ρ ρ
)

cos(mφ)e−jβz z (9-81c)

H d
ρ = −j

1(
βd

ρ

)2

[
βz β

d
ρ AmJ ′

m

(
βd

ρ ρ
) + mωεd Bm

1

ρ
Jm

(
βd

ρ ρ
)]

sin(mφ)e−jβz z (9-81d)

H d
φ = −j

1(
βd

ρ

)2

[
mβz Am

1

ρ
Jm

(
βd

ρ ρ
) + ωεdβd

ρ BmJ ′
m

(
βd

ρ ρ
)]

cos(mφ)e−jβz z (9-81e)

H d
z = AmJm

(
βd

ρ ρ
)

sin(mφ)e−jβz z (9-81f)

where (
βd

ρ

)2 + β2
z = β2

d = ω2μdεd = ω2μ0ε0εrμr (9-81g)

Am = −j

(
βd

ρ

)2

ωμdεd
AmnD2 (9-81h)

Bm = −j

(
βd

ρ

)2

ωμdεd
BmnC2 (9-81i)

′ ≡ ∂

∂
(
βd

ρ ρ
) (9-81j)

The coefficients Am and Bm are not independent of each other, and their relationship can be found
by applying the appropriate boundary conditions.
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For the dielectric rod to act as a waveguide, the fields outside the rod (ρ ≥ a) must be of the
evanescent type that exhibit a decay in the radial direction. The rate of attenuation is a function
of the diameter of the rod. As the diameter of the rod decreases, the following changes occur.

1. The attenuation lessens.
2. The distance to which the fields outside the rod can extend is greater.
3. The propagation constant βz is only slightly greater than β0.

As the diameter of the rod increases, the following changes occur.

1. The rate of attenuation also increases.
2. The fields are confined closer to the rod.
3. The propagation constant βz approaches βd .

Since in all cases βz is greater than β0, the phase velocity is smaller than the velocity of light
in free space. For small diameter rods, the surface waves are said to be loosely bound to the
dielectric surface, whereas for the larger diameters, it is said to be tightly bound to the dielectric
surface. Therefore, the cylindrical functions that are chosen to represent the radial variations of
the fields outside the rod must be cylindrical decaying functions. These functions can be either
Hankel functions of order m of the first kind (H (1)

m ) or second kind (H (2)
m ) and of imaginary

argument, or modified Bessel functions Km of the second kind of order m . We choose here to use
the modified Bessel functions Km of the second kind, which are related to the Hankel functions
of the first and second kind by

Km(α) =

⎧⎪⎨⎪⎩
j m+1 π

2
H (1)

m (jα)

− j m+1 π

2
H (2)

m (−jα)

(9-82a)

(9-82b)

With (9-81a) through (9-81j), and (9-82a) and (9-82b) as a guide, we can represent the corre-
sponding electric and magnetic field components for the HEM modes outside the dielectric rod
(ρ ≥ a) by

HEM Modes (ρ ≥ a)

E 0
ρ = j

1(
α0

ρ

)2

[
mωμ0Cm

1

ρ
Km

(
α0

ρρ
) + βz α

0
ρDmK ′

m

(
α0

ρρ
)]

cos(mφ)e−jβz z (9-83a)

E 0
φ = −j

1(
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ρ

)2
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ωμ0α

0
ρCmK ′
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(
α0

ρρ
) + mβz Dm

1

ρ
Km

(
α0

ρρ
)]

sin(mφ)e−jβz z (9-83b)

E 0
z = DmKm

(
α0

ρρ
)

cos(mφ)e−jβz z (9-83c)
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ρ = j
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)2
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ρρ
) + mωε0Dm

1

ρ
Km

(
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sin(mφ)e−jβz z (9-83d)

H 0
φ = j

1(
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ρ

)2

[
mβz Cm

1

ρ
Km

(
α0

ρρ
) + ωε0α

0
ρDmK ′
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(
α0

ρρ
)]

cos(mφ)e−jβz z (9-83e)

H 0
z = CmKm

(
α0

ρρ
)

sin(mφ)e−jβz z (9-83f)



DIELECTRIC WAVEGUIDES AND RESONATORS 519

where (
jα0

ρ

)2 + β2
z = − (

α0
ρ

)2 + β2
z = β2

0 = ω2μ0ε0 (9-83g)

′ ≡ ∂

∂
(
α0

ρρ
) (9-83h)

The coefficients Cm and Dm are not independent of each other or from Am and Bm , and their
relations can be found by applying the appropriate boundary conditions.

The relations between the constants Am , Bm , Cm , and Dm and equation 9-91, which is referred
to as the eigenvalue equation , can be used to determine the modes that can be supported by the
dielectric rod waveguide. These are obtained by applying the following boundary conditions

E d
φ (ρ = a , 0 ≤ φ ≤ 2π , z ) = E 0

φ(ρ = a , 0 ≤ φ ≤ 2π , z ) (9-84a)

E d
z (ρ = a , 0 ≤ φ ≤ 2π , z ) = E 0

z (ρ = a , 0 ≤ φ ≤ 2π , z ) (9-84b)

H d
φ (ρ = a , 0 ≤ φ ≤ 2π , z ) = H 0

φ (ρ = a , 0 ≤ φ ≤ 2π , z ) (9-84c)

H d
z (ρ = a , 0 ≤ φ ≤ 2π , z ) = H 0

z (ρ = a , 0 ≤ φ ≤ 2π , z ) (9-84d)

Doing this leads to

1(
βd

ρ

)2
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(
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(9-85a)

BmJm
(
βd

ρ a
) = DmKm

(
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(9-85b)

− 1(
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a
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(
βd
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) + ωεdβd

ρ BmJ ′
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(
βd
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mβz Cm

1
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Km

(
α0
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ρDmK ′
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(
α0

ρa
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(9-85c)

AmJm
(
βd

ρ a
) = CmKm

(
α0

ρa
)

(9-85d)

where according to (9-81g) and (9-83g)

(
βd

ρ

)2 + β2
z = β2

d ⇒ (
βd

ρ a
)2 + (βz a)2 = (βd a)2 ⇒ βz a =

√
(βd a)2 − (

βd
ρ a

)2
(9-85e)

− (
α0

ρ

)2 + β2
z = β2

0 ⇒ − (
α0

ρa
)2 + (βz a)2 = (β0a)2 (9-85f)

Subtracting (9-85f) from (9-85e) we get that

(
βd

ρ a
)2 + (

α0
ρa

)2 = (βd a)2 − (β0a)2 ⇒ α0
ρa =

√
(βd a)2 − (β0a)2 − (

βd
ρ a

)2

=
√

(β0a)2(εrμr − 1) − (
βd

ρ a
)2

(9-86)
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Using the abbreviated notation of

χ = βd
ρ a (9-87a)

ξ = α0
ρa (9-87b)

ζ = βz a (9-87c)

βd = β0
√

εrμr (9-87d)

we can rewrite (9-85e) and (9-86) as

ζ =
√

(β0a)2εrμr − χ2 (9-88a)

ξ =
√

(β0a)2(εrμr − 1) − χ2 (9-88b)

With the preceding abbreviated notation and with μd = μ0, (9-85a) through (9-85d) can be
written in matrix form as

Fg = 0 (9-89)

where F is a 4 × 4 matrix and g is a column matrix. Each is given by

F =

⎡⎢⎢⎢⎢⎢⎢⎣

ωμ0a

χ
J ′

m (χ)
mζ

χ2
Jm (χ)

ωμ0a

ξ
K ′

m (ξ)
mζ

ξ 2
Km (ξ)

0 Jm (χ) 0 −Km (ξ)

mζ

χ2
Jm (χ)

ωεd a

χ
J ′

m (χ)
mζ

ξ 2
Km (ξ)

ωε0a

ξ
K ′

m (ξ)

Jm (χ) 0 −Km (ξ) 0

⎤⎥⎥⎥⎥⎥⎥⎦ (9-89a)

g =

⎡⎢⎢⎣
Am

Bm

Cm

Dm

⎤⎥⎥⎦ (9-89b)

Equation 9-89 has a nontrivial solution provided that the determinant of F of (9-89a) is equal
to zero [i.e., det(F ) = 0]. Applying this to (9-89a), it can be shown that it leads to [21]

|F | = ω2μ0εd a2

χ2
[J ′

m(χ)]2[Km(ξ)]2 + ω2μ0ε0a2

χξ
Jm(χ)J ′

m(χ)Km(ξ)K ′
m(ξ)

− (mζ )2

χ4
[Jm(χ)]2[Km(ξ)]2 − (mζ )2

χ2ξ 2
[Jm(χ)]2[Km(ξ)]2

+ ω2μ0εd a2

χξ
Jm(χ)J ′

m(χ)Km(ξ)K ′
m(ξ) + ω2μ0ε0a2

ξ 2
[Jm(χ)]2[K ′

m(ξ)]2

− (mζ )2

χ2ξ 2
[Jm(χ)]2[Km(ξ)]2 − (mζ )2

ξ 4
[Jm(χ)]2[Km(ξ)]2 = 0 (9-90)

Dividing all the terms of (9-90) by ω2μ0εd a2[Km(ξ)]2 and regrouping, it can be shown that
(9-90) can be placed in the form of [21]

G1 (χ) G2 (χ) − G2
3 (χ) = 0 (9-91)
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where

G1 (χ) = J ′
m (χ)

χ
+ K ′

m (ξ) Jm (χ)

εrξKm (ξ)
(9-91a)

G2 (χ) = J ′
m (χ)

χ
+ K ′

m (ξ) Jm (χ)

ξKm (ξ)
(9-91b)

G3 (χ) = mζ

β0a
√

εr
Jm (χ)

(
1

χ2
+ 1

ξ 2

)
(9-91c)

ζ =
√

(β0a)2εr − χ2 (9-91d)

ξ =
√

(β0a)2(εr − 1) − χ2 (9-91e)

Equation 9-91 is referred to as the eigenvalue equation for the dielectric rod waveguide. The
values of χ that are solutions to (9-91) are referred to as the eigenvalues for the dielectric rod
waveguide.

In order for ξ = α0
pa to remain real and represent decaying fields outside the dielectric rod

waveguide, the values of χ = βd
ρ a should not exceed a certain maximum value. From (9-88b)

this maximum value χmax is equal to

χmax = (
βd

ρ a
)

max
= β0a

√
εr − 1 = ωa

√
μ0ε0(εr − 1) (9-92)

For values of βd
ρ a greater than χmax (see above), the values of ξ = α0

ρa become imaginary and
according to (9-82b), the modified Bessel function of the second kind is reduced to a Hankel
function of the second kind that represents unattenuated outwardly traveling waves. In this case,
the dielectric rod is acting as a cylindrical antenna because of energy loss from its side. Therefore,
for a given value of m , there is a finite number n of χmn ’s (eigenvalues) for which the dielectric
rod acts as a waveguide. Each combination of allowable values of m , n that determine a given
eigenvalue χmn represent the hybrid mode HEMmn . HEM modes with odd values of the second
subscript correspond to HE modes, whereas HEM modes with even values of the second subscript
correspond to EH modes. Thus, HEMm ,2n−1 (n = 1, 2, 3, . . .) correspond to HEmn modes and
HEMm ,2n (n = 1, 2, 3, . . .) correspond to EHmn modes. According to (9-88a), if the values of
χ exceed β0a

√
εr (i.e., χ > β0a

√
εr ), then ζ = βz a becomes imaginary and the waves in the

dielectric rod become decaying (evanescent) along the axis (z direction) of the rod.
The allowable modes in a dielectric rod waveguide are determined by finding the values of

χ , denoted by χmn , that are solutions to the transcendental equation 9-91. For each value of m
there are a finite number of values of n (n = 1, 2, 3, . . .). Examining (9-91), it is evident that for
m = 0, the left side of (9-91) vanishes when

TM0n

G1
(
χ0n

) = J ′
0

(
χ0n

)
χ0n

+ K ′
0

(
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)
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) = 0 (9-93a)

TE0n
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(
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) = J ′
0

(
χ0n

)
χ0n

+ K ′
0

(
ξ0n

)
J0

(
χ0n

)
ξ0nK0

(
ξ0n

) = −J1
(
χ0n

)
χ0n

− K1
(
ξ0n

)
J0

(
χ0n

)
ξ0nK0

(
ξ0n

) = 0 (9-93b)

since G3(χ0n) = 0, J ′
0(χ0n) = −J1(χ0n), and K ′

0(ξ0n) = −K1(ξ0n). Equation 9-93a is valid for
TM0n modes and (9-93b) is applicable for TE0n modes.
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The nonlinear equations 9-91 through 9-91e can be solved for the values of χmn iteratively
by assuming values of χmn examining the sign changes of (9-91). It should be noted that in the
allowed range of χmn ’s, G1, G2, and G3 are nonsingular. Computed values of χmn as a function
of β0a for different HEMmn modes are shown in Figure 9-9 for εr = 20 and in Figure 9-10 for
εr = 38 [21]. It should be noted that for a given mn mode the values of χmn are nonconstant
and vary as a function of the electrical radius of the rod. This is in constrast to the circular
waveguide with conducting walls, whose χmn or χ ′

mn values (in Tables 9-1 and 9-2) are constant
for a given mode.

Once the values of χmn for a given mode have been found, the corresponding values of
ζ = βz a can be computed using (9-91d). When this is done for a dielectric rod waveguide of
polystyrene (εr = 2.56), the values of βz /β0 for the HE11 mode as a function of the radius of the
rod are shown in Figure 9-11 [10]. It is apparent that the HE11 mode does not possess a cutoff.
In the same figure, the values of βz /β0 for the axially symmetric TE01 and TM01 surface wave
modes, which possess a finite cutoff, are also displayed. Although in principle the HE11 mode has
zero cutoff, the rate of attenuation exhibited by the fields outside the slab decreases as the radius
of the rod becomes smaller and the wavenumber βz approaches β0. Thus, for small radii, the
fields outside the rod extend to large distances and are said to be loosely bound to the surface.
Practically, then a minimum radius rod is usually utilized, which results in a small but finite
cutoff [22]. For the larger dielectric constant material, the fields outside the dielectric waveguide
are more tightly bound to the surface since larger values of βz translate to larger values of the
attenuation coefficient α0

ρ through (9-83g).
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Figure 9-9 The first 13 eigenvalues of the dielectric rod waveguide (εr = 20). (Source: D. Kajfez and P.
Guillon (Eds.), Dielectric Resonators , 1986, Artech House, Inc.).
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Figure 9-10 The first 13 eigenvalues of the dielectric rod waveguide (εr = 38). (Source: D. Kajfez and
P. Guillon (Eds.), Dielectric Resonators , 1986, Artech House, Inc.).
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Figure 9-11 Ratio of βz /β0, for first three surface-wave modes on a polystyrene rod (εr = 2.56). (Source:
R. E. Collin, Field Theory of Guided Waves , 1960, McGraw-Hill Book Co.).

Typical field patterns in the central core for the HE11, TE01, TM01, HE21, EH11, and HE31

modes, are shown in Figure 9-12 [23]. Both E - and H -field lines are displayed over the cross
section of the central core and over a cutaway a distance λg/2 along its length. For all the plots,
the ratio τ = χ2/(χ2 + ξ 2) = (βd

ρ )2/[(βd
ρ )2 + (α0

ρ)2] = 0.1.
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For all modes the sum of χ2 + ξ 2 should be a constant, which will be a function of the radius
of the dielectric rod and its dielectric constant. Thus, according to (9-88b),

χ2 + ξ 2 = (β0a)2 (εr − 1) = constant (9-94)

For all modes, excluding the dominant HE11, this constant should always be equal to or greater
than (2.4049)2 = 5.7835; that is, excluding the HE11 mode,

V 2 = χ2 + ξ 2 = (β0a)2(εr − 1) ≥ (2.4049)2 (9-94a)
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(a) (b)

z
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Figure 9-12 Field patterns in the central core of a dielectric rod waveguide (in all cases τ = 0.1; E:——,
H: ----). (Source: T. Okoshi, Optical Fibers , 1982, Academic Press.). (a) HEM11 (HE11) mode. (b) TE01

mode. (c) TM01 mode.
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Figure 9-12 (d) HEM21 (HE21) mode. (e) HEM12 (EH11) mode. (f ) HEM31 (HE31) mode. (Continued )

or
2a

λ0
≥ 1

π

2.4049√
εr − 1

(9-94b)

The value of 2.4049 is used because one of the next higher-order modes is the TM01 mode which,
according to Table 9-2, is χmn = χ01 = 2.4049. For values of 2a/λ0 smaller than that of (9-94b)
only the dominant HE11 dipole mode exists as shown in Figure 9-11.

For a dielectric rod waveguide, the first 12 modes (actually first 20 modes if the twofold
degeneracy for the HEmn or EHmn is counted), in order of ascending cutoff frequency, along with
the vanishing Bessel function and its argument at cutoff, are given:
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Total
number of

χmn propagating
Mode(s) Jm(χmn) = 0 at cutoff modes

HE11 (HEM11) J1(χ10) = 0 χ10 = 0 2
TE01, TM01, HE21 (HEM21) J0(χ01) = 0 χ01 = 2.4049 6
HE12 (HEM13), EH11 (HEM12), HE31 (HEM31) J1(χ11) = 0 χ11 = 3.8318 12
EH21 (HEM22), HE41 (HEM41) J2(χ21) = 0 χ21 = 5.1357 16
TE02, TM02, HE22 (HEM23) J0(χ02) = 0 χ02 = 5.5201 20

According to (9-94a), a single dominant HE11 mode can be maintained within the rod provided
the normalized central core radius V < 2.4049. This can be accomplished by making the radius
a of the central core small and/or choosing, between the central core and the cladding, a small
dielectric constant εr . However, the smaller the size of the central core, the smaller the rate
of attenuation and the less tightly the field outside it is attached to its surface. The normalized
diameter over which the e−1 = 0.3679 = 36.79% field point outside the central core extends is
shown plotted in Figure 9-13 [16]. Although the fundamental HE11 mode does not cutoff as the
core diameter shrinks, the fields spread out beyond the physical core and become loosely bound.

9.5.2 Circular Dielectric Resonator

Dielectric resonators are unmetalized dielectric objects (spheres, disks, parallelepipeds, etc.) of
high dielectric constant (usually ceramic) and high quality factor Q that can function as energy

Normalized core size [V2 = (b0a)2(εr − 1)]
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Figure 9-13 Normalized modal diameter as a function of normalized core size for dielectric rod waveguide.
(Source: T. G. Giallorenzi, “Optical communications research and technology: Fiber optics,” Proc. IEEE ,
© 1978, IEEE.).
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storage devices. Dielectric resonators were first introduced in 1939 by Richtmyer [24], but for
almost 25 years his theoretical work failed to generate a continuous and prolonged interest. The
introduction in the 1960s of material, such as rutile, of high dielectric constant (around 100)
renewed the interest in dielectric resonators [25–30]. However, the poor temperature stability of
rutile resulted in large resonant frequency changes and prevented the development of practical
microwave components. In the 1970s, low-loss and temperature-stable ceramics, such as barium
tetratitanate and (Zr-Sn)TiO4 were introduced and were used for the design of high performance
microwave components such as filters and oscillators. Because dielectric resonators are small,
lightweight, temperature stable, high Q , and low cost, they are ideal for design and fabrication
of monolithic microwave integrated circuits (MMICs) and general semiconductor devices. Such
technology usually requires high Q miniature elements to design and fabricate highly stable
frequency oscillators and high performance narrowband filters. Thus, dielectric resonators have
replaced traditional waveguide resonators, especially in MIC applications, and implementations
as high as 94 GHz have been reported. The development of higher dielectric constant material
(80 or higher) with stable temperature and low-loss characteristics will have a significant impact
on MIC design using dielectric resonators.

In order for the dielectric resonator to function as a resonant cavity, the dielectric constant of the
material must be large (usually 30 or greater). Under those conditions, the dielectric–air interface
acts almost as an open circuit which causes internal reflections and results in the confinement
of energy in the dielectric material, thus creating a resonant structure. The plane wave reflection
coefficient at the dielectric–air interface is equal to

� = η0 − η

η0 + η
=

√
μ0

ε0
−

√
μ0

ε√
μ0

ε0
+

√
μ0

ε

=

√
ε

ε0
− 1√

ε

ε0
+ 1

=
√

εr − 1√
εr + 1

εr →large� +1 (9-95)

and it approaches the value of +1 as the dielectric constant becomes very large. Under these
conditions, the dielectric–air interface can be approximated by a hypothetical perfect magnetic
conductor (PMC), which requires that the tangential components of the magnetic field (or normal
components of the electric field) vanish (in contrast to the perfect electric conductor, PEC, which
requires that the tangential electric field components, or normal components of the magnetic
field, vanish). This, of course, is a well known and widely used technique in solving boundary-
value electromagnetic problems. It is, however, a first-order approximation, although it usually
leads to reasonable results. The magnetic wall model can be used to analyze both the dielectric
waveguide and dielectric resonant cavity. Improvements to the magnetic wall approximation have
been introduced and resulted in improved data [31, 32].

Although the magnetic wall modeling may not lead to the most accurate data, it will be utilized
here because it is simple and instructive not only as a first-order approximation to this problem
but also to other problems including antennas (e.g., microstrip antenna). The geometry of the
dielectric resonator is that of Figure 9-14a , whose surface is modeled with the PMC walls of
Figure 9-14b, which are represented by the independent boundary conditions

Hφ (ρ = a , 0 ≤ φ ≤ 2π , 0 ≤ z ≤ h) = 0 (9-96a)

Hφ (0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = 0) = Hφ (0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = h) = 0 (9-96b)

or

Hz (ρ = a , 0 ≤ φ ≤ 2π , 0 ≤ z ≤ h) = 0 (9-97a)

Hρ (0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = 0) = Hρ (0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = h) = 0 (9-97b)
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Figure 9-14 Circular dielectric resonator and its PMC modeling. (a) Dielectric resonator. (b) PMC
modeling.

Either of the preceding sets leads to the same results. Since all the boundary conditions of the
first set involve only the Hφ component, they will be applied here.

A. TEz Modes The TEz modes can be constructed using the vector potential Fz component of
(9-35), or

Fz (ρ, φ, z ) = AmnJm
(
βd

ρ ρ
)

[C2 cos(mφ) + D2 sin(mφ)] [C3 cos (βz z ) + D3 sin (βz z )] (9-98)

where m = 0, 1, 2, . . . (9-98a)

The Hφ component is obtained using (6-80), or

Hφ = −j
1

ωrμdεd

1

ρ

∂2Fz

∂φ ∂z
= −jAmn

mβz

ωrμdεd

1

ρ
Jm

(
βd

ρ ρ
)

[−C2 sin(mφ) + D2 cos(mφ)]

× [−C3 sin(βz z ) + D3 cos(βz z )] (9-99)

Applying (9-96a) leads to

Hφ(ρ = a , 0 ≤ φ ≤ 2π , 0 ≤ z ≤ h)

= −jAmn
mβz

ωrμdεd

1

a
Jm

(
βd

ρ a
)

[−C2 sin(mφ) + D2 cos(mφ)]

× [−C3 sin(βz z ) + D3 cos(βz z )] = 0 ⇒ Jm(βd
ρ a) = 0 ⇒ βd

ρ a = χmn

βd
ρ =

(χmn

a

)
(9-100)
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where χmn represents the zeroes of the Bessel function of order m , many of which are found in
Table 9-2. In a similar manner, the first boundary condition of (9-96b) leads to

Hφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = 0)

= −jAmn
mβz

ωrμdεd

1

ρ
Jm(βd

ρ ρ) [−C2 sin(mφ) + D2 cos(mφ)]

× [−C3(0) + D3(1)] = 0 ⇒ D3 = 0 (9-100a)

while the second boundary condition of (9-96b) leads to

Hφ(0 ≤ ρ ≤ a , 0 ≤ φ ≤ 2π , z = h)

= −jAmn
mβz

ωrμdεd

1

ρ
Jm(βd

ρ ρ)

× [−C2 sin(mφ) + D2 cos(mφ)] [−C3 sin(βz h)] = 0

⇒ sin(βz h) = 0 ⇒ βz h = pπ

βz = pπ

h
, p = 0, 1, 2, . . . (9-100b)

Using (9-100) and (9-100b), the resonant frequency is obtained by applying (9-4a) at resonance,
that is,

βr = ωr
√

μdεd = 2π fr
√

μdεd =
√(χmn

a

)2
+

(pπ

h

)2
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(fr )
TEz

mnp = 1

2π
√

μdεd

√(χmn

a

)2
+

(pπ

h

)2 m = 0, 1, 2, . . .
n = 1, 2, 3, . . .
p = 0, 1, 2, . . .

(9-101)

The dominant TEz
mnp mode is the TEz

010 whose resonant frequency is equal to

(fr )
TEz

010 = χ01

2πa
√

μdεd
= 2.4049

2πa
√

μdεd
(9-101a)

B. TMz Modes The TMz modes are obtained using a similar procedure as for the TEz modes,
but starting with the vector potential of (9-41). Doing this leads to the resonant frequency of

(fr )
TMz

mnp = 1

2π
√

μdεd

√(
χ ′

mn

a

)2

+
(pπ

h

)2 m = 0, 1, 2, . . .
n = 1, 2, 3, . . .
p = 1, 2, 3, . . .

(9-102)
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where χ ′
mn are the zeroes of the derivative of the Bessel function of order m , a partial list of

which is found on Table 9-1. The dominant TMz
mnp mode is the TMz

111 mode whose resonant
frequency is equal to

(fr )
TMz

111 = 1

2π
√

μdεd

√(
χ ′

11

a

)2

+
(π

h

)2
= 1

2π
√

μdεd

√(
1.8412

a

)2

+
(π

h

)2
(9-102a)

A comparison of the resonant frequencies of (9-101) and (9-102) of the circular dielectric
resonator modeled by the PMC surface with those of (9-39a) and (9-45) for the circular waveguide
resonator with PEC surface, shows that the TEz

mnp of one are the TMz
mnp of the other, and vice

versa.

C. TE01δ Mode Although the dominant mode of the circular dielectric resonator as predicted
by the PMC modeling is the TE010 mode (provided h/a < 2.03), in practice the mode most often
used is the TE01δ where δ is a noninteger value less than 1. This mode can be modeled using
Figure 9-15. For resonators with PEC or PMC walls, the third subscript is always an integer
(including zero), and it represents the number of half-wavelength variations the field undergoes
in the z direction. Since δ is a noninteger less than unity, the dielectric resonator field of a
TE01δ mode undergoes less than one half-wavelength variation along its length h . More accurate
modelings of the dielectric resonator [31, 33, 34] indicate that βz h of (9-100b) is

βz h � ψ1

2
+ ψ2

2
+ qπ , q = 0, 1, 2, . . . (9-103)

where

ψ1

2
= tan−1

[
α1

βz
coth(α1h1)

]
(9-103a)

ψ2

2
= tan−1

[
α2

βz
coth(α2h2)

]
(9-103b)

α1 =
√(χ01

a

)2
− β2

0εr1 (9-103c)

α2 =
√(χ01

a

)2
− β2

0εr2 (9-103d)

When q = 0 in (9-103), the mode is the TE01δ where δ is a noninteger less than unity given by

δ = 1

π

(
ψ1

2
+ ψ2

2

)
(9-104)

and it signifies the variations of the field between the ends of the dielectric resonator at z = 0 and
z = h . The preceding equations have been derived by modeling the dielectric resonator as shown
in Figure 9-15 where PEC plates have been placed at z = −h2 and z = h + h1 [21]. The medium
in regions 1–5 is usually taken to be air. Thus, the dielectric resonator has been sandwiched
between two PEC plates, each placed at distances h1 and h2 from each of its ends. The distances
h1 and h2 can be chosen to be 0 ≤ h1, h2 ≤ ∞.
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Figure 9-15 Modeling of circular dielectric rod resonator. (Source: D. Kajfez and P. Guillon (Eds.),
Dielectric Resonators , 1986, Artech House, Inc.).

Example 9-5

Find the resonant TE01δ mode and its resonant frequency when the distances h1 and h2 of Figure 9-15
are both zero (h1 = h2 = 0); that is, the dielectric resonator has been sandwiched between two PEC
plates, each plate touching each of the ends of the dielectric resonator. Assume the resonator has radius
of 5.25 mm, height of 4.6 mm, and dielectric constant of εr = 38.

Solution: Since h1 = h2 = 0, then according to (9-103a) and (9-103b)

ψ1

2
= ψ2

2
= tan−1(∞) = π

2

Thus, δ of (9-104) is equal to

δ = 1

π

(π

2
+ π

2

)
= 1

and the resonant TE01δ mode is the TE011. For this mode βz h is, according to (9-103) with p = 0, equal
to

βz h = π ⇒ βz = π

h

Its resonant frequency is identical to (9-101) of the PMC modeling, which reduces to

(fr )
TEz

011 = 1

2π
√

μd εd

√(
2.4049

a

)2

+
(π

h

)2

= 3 × 1011

2π
√

38

√(
2.4049

5.25

)2

+
( π

4.6

)2 = 6.37 GHz

When compared to the exact value of 4.82 GHz for a dielectric resonator immersed in free space, the
preceding value has an error of +32%. A more accurate result of 4.60 GHz (error of −4.8%) can be
obtained using (9-103)–(9-104) by placing the two PECs at infinity (h1 = h2 = ∞); then the resonator
is isolated in free space.
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9.5.3 Optical Fiber Cable

Optical communications, which initially started as a speculative research activity, has evolved
into a very practical technique that has brought new dimensions to miniaturization, data handling
capabilities, and signal processing methods. This success has been primarily attributed to the
development of fiber optics cables, which in 1970 exhibited attenuations of 20 dB/km and in the
early 1980s reduced to less than 1 dB/km. The development of suitable solid state diode sources
and detectors has certainly eliminated any remaining insurmountable technological barriers and
paved the way for widespread implementation of optical communication techniques for com-
mercial and military applications. This technology has spread to the development of integrated
optics which provide even greater miniaturization of optical systems, rigid alignment of optical
components, and reduced space and weight.

A fiber optics cable is a dielectric waveguide, usually of circular cross section, that guides
the electromagnetic wave in discrete modes through internal reflections whose incidence angle
at the interface is equal to or greater than the critical angle. The confinement of the energy
within the dielectric structure is described analytically by Maxwell’s equations and the boundary
conditions at dielectric–dielectric boundaries, in contrast to the traditional metallic–dielectric
boundaries in metallic waveguides. Such analyses have already been discussed in Section 8.7 for
planar structures and Section 9.5.1 for circular geometries.

The most common geometries of fiber cables are those shown in Figure 9-16. They are
classified as step-index multimode, graded-index multimode, and single-mode step-index [14, 16].
Typical dimensions, index-of-refraction distributions, optical ray paths, and pulse spreading by
each type of cable are also illustrated in Figure 9-16. Therefore, fiber optics cables can be
classified into two cases: single-mode and multimode fibers.

Single-mode fibers permit wave propagation at a single resolvable angle, whereas multimode
cables transmit waves that travel at many resolvable angles all within the central core of the
fiber. Both single- and multimode fibers are fabricated with a central core with a high index of
refraction (dielectric constant) surrounded by a cladding with a lower index of refraction. The
wave is guided in the core by total internal reflection at the core-cladding interface. Single-mode
cables usually have a step-index where the diameter of the center core is very small (typically
2–16 μm) and not much larger than the wavelength of the wave it carries. Structurally, they
are the simplest and exhibit abrupt index-of-refraction discontinuities along the core-cladding
interface. Usually, the index of refraction of the central core is about 1.471 and that of the
cladding is 1.457.

Step-index multimode cables also exhibt a well defined central core with a constant index of
refraction surrounded by a cladding with a lower index of refraction. In contrast to the single-
mode step-index, the multimode step-index possesses a central core whose diameter is about
25–150 μm. When the wavelength of light is of the order of 10 μm (near infrared region) and
the central core diameter is 100 μm, such a cable can support as many as 25,000 modes (usually
there are about 200 modes). However, as the central core diameter approaches 10 μm (one
wavelength), the number of modes is reduced to one and the cable becomes a single-mode fiber.
Because of its multimode field structure, such a cable is very dispersive and provides severe
signal distortion to waveforms with broad spectral frequency content. Typically, the index of
refraction of the central core is about 1.527 and that of the cladding is about 1.517.

Graded-index multimode cables also possess a relatively large central core (typical diameters
of 20–150 μm) whose index of refraction continuously decreases from the core center toward the
core-cladding interface at which point the core and cladding indexes are identical. For this cable,
the waves are still contained within the central core and they are continuously refocused toward
the central axis of the core by its continuous lensing action. The number of modes supported by
such a cable is usually about 2,000, and such a multimode structure provides waveform distortion
especially to transient signals. All cables possess an outside cladding that adds mechanical strength
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Figure 9-16 Common types and geometries of fiber cables. (Source: T. G. Giallorenzi, “Optical communications research and
technology: Fiber optics,” Proc. IEEE ,  1978, IEEE.).
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to the fiber, reduces scattering loss that is due to dielectric discontinuities, and protects the guiding
central core from absorbing surface contaminants that the cable may come in contact with.

For the graded-index multimode fiber, the index of refraction n(ρ) = √
εr (ρ) of the central

core exhibits a nearly parabolic variation in the radial direction from the center of the core toward
the cladding. This variation can be represented by [16]

nc(ρ) = n

[
1 + 	

(
a − ρ

a

)α]
0 ≤ ρ ≤ a (9-105)

where nc(ρ) = index of refraction of the central core (usually � 1.562 on axis)
n = index of refraction of the cladding (usually � 1.540)
a = radius of the central core
	 = parameter usually much less than unity (usually 0.01 < 	 < 0.02)
α = parameter whose value is close to 2 for maximum fiber bandwidth

It has been shown by Example 5-6 that for the dielectric–dielectric interface of the fiber cable
to internally reflect the waves of all incidence angles, the ratio of the index of refraction of the
central core at the interface to that of the cladding must be equal to or greater than

√
2, that is,

nc(a)/n ≥ √
2. However, this is not necessary if the angles of incidence of the waves are not

small.
The modes that can be supported by the step-index cable (either single mode or multimode) can

be found using techniques outlined in Section 9.5.1 for the dielectric rod waveguide. These modes
are, in general, HEM (HE or EH) hybrid modes. The applicable equations are (9-81a) through
(9-94b), where εr should represent the square of the ratio of the index of refraction of the central
core to that of the cladding [i.e., εr = (nc/n)2]. The field configurations of the graded-index cable
can be analyzed in terms of Hermite-Gaussian functions [35]. Because of the complexity, the
analysis will not be presented here. The interested reader is referred to the literature [11, 16].

9.5.4 Dielectric-Covered Conducting Rod

Let us consider the field analysis of a dielectric-covered conducting circular rod, as shown in
Figure 9-17 [36–38]. The radius of the conducting rod is a while that of the dielectric cover
is b. The thickness of the dielectric sleeving is denoted by t (t = b − a). When the radius of
the conducting rod is small, the rod will be representative of a dielectric-covered wire. In this
section we will consider the TMz and TEz modes, which, in general, must co-exist to satisfy
the boundary conditions. We will conduct an extended discussion of the modes with azimuthal
symmetry—no φ variations—will be conducted.

A. TMz Modes The fields in the radial direction inside the dielectric sleeving must be repre-
sented by standing wave functions while those outside the dielectric cover must be decaying in
order for the rod to act as a waveguide. In general, for the TMz

mn modes, the potential function
Az can be written as

Ad
z = [

Ad
1 Jm

(
βd

ρ ρ
) + Bd

1 Ym
(
βd

ρ ρ
)] [

C d
2 cos(mφ) + Dd

2 sin(mφ)
]

× [
Ad

3 e−jβz z + Bd
3 e+jβz z

]
, for a ≤ ρ ≤ b (9-106a)

A0
z = A0

1Km
(
α0

ρρ
) [

C 0
2 cos(mφ) + D0

2 sin(mφ)
]

× [
A0

3e−jβz z + B0
3 e+jβz z

]
, for b ≤ ρ ≤ ∞ (9-106b)
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Figure 9-17 Geometry of dielectric covered conducting rod.

However, the geometry of Figure 9-17 can only support modes with azimuthal symmetry,
(m = 0). Therefore, for the positive traveling waves of the lowest-order mode (m = 0), the
vector potentials reduce to

Ad
z = [

Ad
0 J0

(
βd

ρ ρ
) + Bd

0 Y0
(
βd

ρ ρ
)]

e−jβz z , for a ≤ ρ ≤ b (9-107)

where (
βd

ρ

)2 + β2
z = β2

d = μrεrβ
2
0 (9-107a)

and

A0
z = A0

0K0
(
α0

ρρ
)

e−jβz z , for b ≤ ρ ≤ ∞ (9-108)

where

− (
α0

ρ

)2 + β2
z = β2

0 (9-108a)

The corresponding electric and magnetic fields can be written as

For a ≤ ρ ≤ b,

E d
ρ = −j

1

ωμdεd

∂2Ad
z

∂ρ ∂z
= − βz β

d
ρ

ωμdεd

[
Ad

0 J ′
0

(
βd

ρ ρ
) + Bd

0 Y ′
0

(
βd

ρ ρ
)]

e−jβz z (9-109a)

E d
φ = −j

1

ωμdεd

∂2Ad
z

∂φ ∂z
= 0 (9-109b)
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E d
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H d
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∂φ
= 0 (9-109d)

H d
φ = − 1

μd
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H d
z = 0 (9-109f)

′ ≡ ∂

∂
(
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And for b ≤ ρ ≤ ∞,

E 0
ρ = −j
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∂ρ ∂z
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ωμ0ε0
A0

0K ′
0

(
α0

ρρ
)

e−jβz z (9-110a)
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H 0
z = 0 (9-110f)

′ ≡ ∂

∂
(
α0

ρρ
) (9-110g)

The vanishing of the tangential electric fields at ρ = a and the continuity of the tangential
components of the electric and magnetic fields at ρ = b requires that

E d
z (ρ = a , 0 ≤ φ ≤ 2π , z ) = 0 (9-111a)

E d
z (ρ = b, 0 ≤ φ ≤ 2π , z ) = E 0

z (ρ = b, 0 ≤ φ ≤ 2π , z ) (9-111b)

H d
φ (ρ = b, 0 ≤ φ ≤ 2π , z ) = H 0

φ (ρ = b, 0 ≤ φ ≤ 2π , z ) (9-111c)

Applying (9-111a) leads to
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ρ a
) = 0 (9-112)
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) (9-112a)
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whereas (9-111b) leads to
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which by using (9-112a) can be written as
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The continuity of the tangential magnetic field at ρ = b, as stated by (9-111c), leads to
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which by using (9-112a) can be written as

A0
0K ′

0

(
α0

ρb
) = Ad

0
μ0

μd

βd
ρ

α0
ρ

[
J ′

0

(
βd

ρ b
) − J0

(
βd

ρ a
)

Y ′
0

(
βd

ρ b
)

Y0
(
βd

ρ a
) ]

(9-114a)

Dividing (9-114a) by (9-113a) leads to

K ′
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) − J0

(
βd

ρ a
)

Y0
(
βd

ρ b
)] (9-115a)

Subtracting (9-108a) from (9-107a) leads to

(
βd

ρ

)2 + (
α0

ρ

)2 = β2
0 (μrεr − 1) (9-115b)

which, along with the transcendental equation 9-115a, can be used to solve for βd
ρ and α0

ρ . This
can be accomplished using graphical or numerical techniques similar to the ones utilized in
Section 8.7 for planar structures.

The technique outlined and implemented in Section 8.7 to solve the wave numbers for planar
dielectric waveguides is straightforward but complicated when utilized to solve for the wave
numbers βd

ρ and α0
ρ of (9-115a) and (9-115b). An approximate solution can be used to solve

(9-115a) and (9-115b) simultaneously when the thickness of the dielectric cladding t = b − a is
small. Under these conditions the Bessel functions J0(β

d
ρ b) and Y0(β

d
ρ b) can be expanded in a
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Taylor series about the point βd
ρ a , that is

J0
(
βd

ρ b
) � J0

(
βd

ρ a
) + dJ0

(
βd

ρ b
)

d
(
βd

ρ b
) ∣∣∣∣∣

βd
ρ b=βd

ρ a

βd
ρ (b − a)

� J0
(
βd

ρ a
) − βd

ρ (b − a)J1
(
βd

ρ a
)

(9-116a)

Y0
(
βd

ρ b
) � Y0

(
βd

ρ a
) + dY0

(
βd

ρ b
)

d
(
βd

ρ b
) ∣∣∣∣∣

βd
ρ b=βd

ρ a

βd
ρ (b − a)

� Y0
(
βd

ρ a
) − βd

ρ (b − a)Y1
(
βd

ρ a
)

(9-116b)

J ′
0

(
βd

ρ b
) = dJ0

(
βd

ρ ρ
)

d
(
βd

ρ ρ
) ∣∣∣∣∣

ρ=b

= −J1
(
βd

ρ b
) � −

⎡⎣J1
(
βd

ρ a
) + dJ1

(
βd

ρ b
)

d
(
βd

ρ b
) ∣∣∣∣∣

βd
ρ b=βd

ρ a

βd
ρ (b − a)

⎤⎦
� −

{
J1

(
βd

ρ a
) + βd

ρ (b − a)

[
J0

(
βd

ρ a
) − 1

βd
ρ a

J1
(
βd

ρ a
)]}

J ′
0

(
βd

ρ b
) � −

[
J1

(
βd

ρ a
) (

1 − b − a

a

)
+ βd

ρ (b − a)J0
(
βd

ρ a
)]

(9-116c)

Y ′
0

(
βd

ρ b
) � −

[
Y1

(
βd

ρ a
) (

1 − b − a

a

)
+ βd

ρ (b − a)Y0
(
βd

ρ a
)]

(9-116d)

Therefore, the numerator and denominator of (9-115a) can be written, respectively, as

J ′
0

(
βd

ρ b
)

Y0
(
βd

ρ a
) − J0

(
βd

ρ a
)

Y ′
0

(
βd

ρ b
)

� −Y0
(
βd

ρ a
) [

J1
(
βd

ρ a
) (

1 − b − a

a

)
+ βd

ρ (b − a)J0
(
βd

ρ a
)]

+J0
(
βd

ρ a
) [

Y1
(
βd

ρ a
) (

1 − b − a

a

)
+ βd

ρ (b − a)Y0
(
βd

ρ a
)]

�
(

1 − b − a

a

) [
J0

(
βd

ρ a
)

Y1
(
βd

ρ a
) − Y0

(
βd

ρ a
)

J1
(
βd

ρ a
)]

(9-117a)

J0
(
βd

ρ b
)

Y0
(
βd

ρ a
) − J0

(
βd

ρ a
)

Y0
(
βd

ρ b
)

� Y0
(
βd

ρ a
) [

J0
(
βd

ρ a
) − βd

ρ (b − a)J1
(
βd

ρ a
)]

−J0
(
βd

ρ a
) [

Y0
(
βd

ρ a
) − βd

ρ (b − a)Y1
(
βd

ρ a
)]

� βd
ρ (b − a)

[
J0

(
βd

ρ a
)

Y1
(
βd

ρ a
) − Y0

(
βd

ρ a
)

J1
(
βd

ρ a
)]

(9-117b)

Substituting (9-117a) and (9-117b) into (9-115a) leads to

K ′
0

(
α0

ρb
)

K0
(
α0

ρb
) � −εd

ε0

(
α0

ρ

βd
ρ

) (
1 − b − a

a

)
βd

ρ (b − a)
= −εd

ε0

α0
ρ(

βd
ρ

)2

⎛⎜⎝1 − b − a

a
b − a

⎞⎟⎠ (9-118)
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For small values of a (i.e., a � λ0) the attenuation constant α0
ρ is of the same order of

magnitude as β0 and the wave is loosely bound to the surface so that α0
ρb is small for small

values of b − a . Under these conditions

K ′
0

(
α0

ρb
) = dK0

(
α0

ρρ
)

d
(
α0

ρρ
) ∣∣∣∣∣

ρ=b

= −K1
(
α0

ρb
) � − 1

α0
ρb

= − 1

bα0
ρ

(9-119a)

K0
(
α0

ρb
) � − ln

(
0.89α0

ρb
)

(9-119b)

so that (9-118) reduces for εd = εrε0 to

1

b ln
(
0.89α0

ρb
) � −εr

(
α0

ρ

βd
ρ

)2
⎛⎜⎝1 − b − a

a
b − a

⎞⎟⎠
(
βd

ρ

)2
(b − a) � −εr b

(
1 − b − a

a

) (
α0

ρ

)2
ln

(
0.89α0

ρb
)

(9-120)

Substituting (9-115b) into (9-120) for (βd
ρ )2 leads for t = b − a � a to[

β2
0 (εr − 1) − (

α0
ρ

)2
]
(b − a) � −εr b

(
1 − b − a

a

) (
α0

ρ

)2
ln

(
0.89α0

ρb
)

(9-121)

or

εr b
(
α0

ρ

)2
ln

(
0.89α0

ρb
) �

[
−β2

0 (εr − 1) + (
α0

ρ

)2
]
(b − a) (9-121a)

Example 9-6

A perfectly conducting wire of radius a = 0.09 cm is covered with a dielectric sleeving of polystyrene
(εr = 2.56) of radius b = 0.10 cm. At a frequency of 9.55 GHz, determine the attenuation constants α0

ρ ,
βz , and βd

ρ and the relative field strength at ρ = 2λ0 compared to that at the outside surface of the
dielectric sleeving (ρ = b).

Solution: At f = 9.55 GHz,

λ0 = 30 × 109

9.55 × 109
= 3.1414 cm ⇒ β0 = 2π

λ0
= 2 rad/cm

λd = λ0√
εr

= 3.1414√
2.56

= 1.9634 cm ⇒ βd = 2π

λ
= 2π

1.9634
= 3.2 rad/cm

Since the thickness t of the dielectric sleeving is much smaller than the wavelength,

t = b − a = 0.10 − 0.09 = 0.01 cm < λd = 1.9634 cm < λ0 = 3.1414 cm

then the approximate relation of (9-121a) is applicable. Using an iterative procedure, it can be shown
that

α0
ρ = 0.252 Np/cm

is a solution to (9-121a). Using (9-108a),

βz =
√

β2
0 + (

α0
ρ

)2 =
√

(2)2 + (0.252)2 =
√

4.0635 = 2.0158 rad/cm
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and βd
ρ is found using (9-107a) as

βd
ρ =

√
β2

d − β2
z =

√
(3.2)2 − (2.0158)2 =

√
6.1765 = 2.485 rad/cm

The field outside the sleeving is of decaying form represented by the modified Bessel function
K0(α

0
ρρ) of (9-108). Thus,

E (ρ = 2λ0)

E (ρ = b)
= E (ρ = 2π cm)

E (ρ = 0.10 cm)
= K0(ρ = 2π cm)

K0(ρ = 0.10 cm)

=

C0e−α0
ρρ√

α0
ρρ

∣∣∣∣∣∣∣
ρ=2π cm

C0e−α0
ρρ√

α0
ρρ

∣∣∣∣∣∣∣
ρ=0.10 cm

= 0.1631

6.1426
= 0.0266 = 2.66%

Therefore, at a distance of ρ = 2λ0 the relative field has been reduced to a very small value; at points
further away, the field intensity is even smaller.

For the dielectric-covered wire and the dielectric rod waveguide, we can define an effective
radius as the radial distance at which point and beyond the relative field intensity is of very low
value. If we use the 2.66% value of Example 9-6 as the field value with which we can define the
effective radius, then the effective radius for the wire of Example 9-6 is ae = 2λ0 = 2π cm.

The rate of attenuation α0
ρ can be increased and the wave can be made more tightly bound to

the surface by increasing the dielectric constant and/or thickness of the dielectric sleeving. This,
however, results in greater attenuation and larger losses of the wave along the direction of wave
travel (axis of the wire) because of the greater field concentration near the conducting boundary.

B. TEz Modes Following a procedure similar to that used for the TMz
mn modes, it can be

shown that for the dielectric-covered conducting rod of Figure 9-17, the TEz
mn positive traveling

waves of the lowest-order mode (m = 0) also possess azimuthal symmetry (no φ variations,
m = 0) and can exist individually. Therefore, for the m = 0 mode, the vector potentials can be
written as

F d
z = [

Ad
0 J0

(
βd

ρ ρ
) + Bd

0 Y0
(
βd

ρ ρ
)]

e−jβz z , for a ≤ ρ ≤ b (9-122)

where (
βd

ρ

)2 + β2
z = β2

d = μrεrβ
2
0 (9-122a)

F 0
z = A0

0K0
(
α0

ρρ
)

e−jβz z , for b ≤ ρ ≤ ∞ (9-123)

where

− (
α0

ρ

)2 + β2
z = β2

0 (9-123a)

Leaving the details for the reader as an end-of-chapter exercise, the equations for the TEz
0n

modes corresponding to (9-113a), (9-114a), (9-115a), (9-115b), and (9-121a) for the TMz
0n modes,
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are given by

A0
0K ′

0(α
0
ρb) = Ad

0
ε0

εd

βd
ρ

α0
ρ

[
J ′

0(β
d
ρ b) − J ′

0(β
d
ρ a)Y ′

0(β
d
ρ b)

Y ′
0(β

d
ρ a)

]
(9-124a)

A0K0(α
0
ρb) = −Ad

0
μ0

μd

ε0

εd

(
βd

ρ

α0
ρ

)2 [
J0(β

d
ρ b) − J ′

0(β
d
ρ a)Y0(β

d
ρ b)

Y ′
0(β

d
ρ a)

]
(9-124b)

K ′
0(α

0
ρb)

K0(α0
ρb)

= −μd

μ0

(
α0

ρ

βd
ρ

) [
J ′

0(β
d
ρ b)Y ′

0(β
d
ρ a) − J ′

0(β
d
ρ a)Y ′

0(β
d
ρ b)

][
J0(βd

ρ b)Y ′
0(β

d
ρ a) − J ′

0(β
d
ρ a)Y0(βd

ρ b)
] (9-124c)

(βd
ρ )2 + (α0

ρ)2 = β2
0 (μrεr − 1) (9-124d)

μr b(b − a)(α0
ρ)21n(0.89α0

ρb) � 1 (9-124e)

9.6 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, and presentation of the material of this chapter.

• MATLAB computer programs:
a. Cyl_Waveguide: Computes the propagation characteristics of a cylindrical waveguide.
b. Cyl_Resonator: Computes the resonant characteristics of a cylindrical resonator.
c. CircDielGuide: Computes the propagation characteristics of a circular dielectric waveg-

uide based on the solution of the eigenvalue equation 9-91.
• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

9.1. Design a circular waveguide filled with a
lossless dielectric medium whose relative
permeability is unity. The waveguide must
operate in a single dominant mode over
a bandwidth of 1.5 GHz. Assume that the
radius of the guide is 1.12 cm. Find the
(a) Dielectric constant of the medium that

must fill the cavity to meet the desired
design specifications.

(b) Lower and upper frequencies of opera-
tion.

9.2. A dielectric waveguide, with a dielectric
constant of 2.56, is inserted inside a section
of a circular waveguide of radius a and
length L. This section of the circular waveg-
uide is inserted and designed to be used as
a phase shifter. Assuming:

• Dominant mode propagation
• Radius a = 2 cm
• Length L = 5 cm
• Frequency = 6 GHz

determine the additional phase shift (in
degrees), from what it would have been if
the waveguide was filled with air, provided
by the presence of the dielectric material in
this section of the circular waveguide.

9.3. Design a circular waveguide, with radius of
2 cm and filled with a dielectric material
with dielectric constant of 2.25, to be used
as a delay line. What should the length (in
meters) of the waveguide be so that the total
delay it presents by its insertion at 3.5 GHz
is 2 microseconds?

9.4. Design a waveguide phase shifter using a
circular waveguide with a 2 cm radius, oper-
ating at 6 GHz in its dominant mode, and
completely filled with a dielectric material
with a dielectric constant of 2.25. Determine
the length (in cm) of the waveguide section

so that the total phase shift introduced by its
insertion is 180◦.

9.5. An air-filled circular waveguide of radius
a has a conducting baffle placed along its
length at φ = 0 extending from ρ = 0 to
ρ = a , as shown in Figure P9-5. For TEz

modes, derive simplified expressions for the
vector potential component, the electric and
magnetic fields, and the cutoff frequencies,
eigenvalues, phase constant along the axis
of the guide, guide wavelength, and wave
impedance.
Also determine the following.
(a) The cutoff frequencies of the three

lowest-order propagating modes in order
of ascending cutoff frequency when the
radius of the cylinder is 1 cm.

(b) The wave impedance and guide wave-
length (in cm) for the lowest-order mode
at f = 1.5fc where fc is the cutoff fre-
quency of the lowest-order mode.

Hint:

J ′
1/2(x) = 0 for x = 1.1655, 4.6042

J ′
3/2(x) = 0 for x = 2.4605, 6.0293

J ′
5/2(x) = 0 for x = 3.6328

z

y

a

f

r

x

Figure P9-5
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9.6. Repeat Problem 9.5 for TMz modes.
Hint:

J1/2(x) = 0 for x = 3.1416, 6.2832

J3/2(x) = 0 for x = 4.4934

J5/2(x) = 0 for x = 5.7635

9.7. The cross section of a cylindrical waveguide
is a half circle, as shown in Figure P9-7.
Derive simplified expressions for the vector
potential component, electric and magnetic
fields, eigenvalues, and cutoff frequencies
for TEz modes and TMz modes.

x

z

a

y

Figure P9-7

9.8. Repeat Problem 9.7 for the waveguide cross
section of Figure P9-8.

x

y

z

a

Figure P9-8

9.9. Repeat Problem 9.7 when the waveguide
cross section is an angular sector as shown
in Figure P9-9. Show that the zeroes of βρa
are obtained using

(a) TEz : J ′
m(βρa) = 0 βρ = χ ′

mn

a

m = p

(
π

φ0

)
, p = 0, 1, 2, . . .

(b) TMz : Jm(βρa)= 0 βρ = χmn

a

m = p

(
π

φ0

)
, p = 1, 2, 3, . . .

x

y

z

a

f

r

f0

Figure P9-9

9.10. The cross section of a cylindrical waveguide
is that of a coaxial line with inner radius a
and outer radius b, as shown in Figure P9-
10. Assume TEz modes within the waveg-
uide.
(a) Derive simplified expressions for the

vector potential component, and the
electric and magnetic fields.

(b) Show that the eigenvalues are obtained
as solutions to

J ′
m(βρa)Y ′

m(βρb)− Y ′
m(βρa)J ′

m(βρb)= 0

where m = 0, 1, 2, . . ..

x

y

a
b

z

e, m

Figure P9-10

9.11. Repeat Problem 9.10 for TMz and show that
the eigenvalues are obtained as solutions to

Jm(βρa)Ym(βρb) − Ym(βρa)Jm(βρb) = 0

where m = 0, 1, 2, . . ..

9.12. The cross section of a cylindrical waveg-
uide is an annular sector with inner and outer
radii of a and b, as shown in Figure P9-12.
Assume TEz modes within the waveguide.
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(a) Derive simplified expressions for the
vector potential component, and the
electric and magnetic fields.

(b) Show that the eigenvalues are deter-
mined by solving

J ′
m(βρb)Y ′

m(βρa)− J ′
m(βρa)Y ′

m(βρb) = 0

where m = p(π/φ0), p = 0, 1, 2, . . ..

x
b

a
z

y

f
r

f0

Figure P9-12

9.13. Repeat Problem 9.12 for TMz modes. The
eigenvalues are determined by solving

Jm(βρb)Ym(βρa) − Jm(βρa)Ym(βρb) = 0

where m = p(π/φ0), p = 1, 2, 3, . . ..

9.14. A circular waveguide with radius of 3 cm
is made of copper (σ = 5.76 × 107 S/m).
For the dominant TE11 and low-loss TE01

modes, determine their corresponding cut-
off frequencies and attenuation constants (in
Np/m and dB/m) at a frequency of 7 GHz.
Assume that the waveguide is filled with air.

9.15. Derive the attenuation coefficient αc for the
conduction losses of a circular waveguide of
radius a for the TMz

01. Show that αc can be
expressed as

αc(TM01) = Rs

ηa

√
1 −

(
fc
f

)2

where Rs is the surface resistance of the
waveguide metal and η is the intrinsic
impedance of the medium within the wave-
guide.

9.16. A circular cavity, as shown in Figure 9-5,
has a radius of 6 cm and a height of 10 cm.
It is filled with a lossless dielectric with
εr = 4. Find the

(a) First four TEz and/or TMz modes
according to their resonant frequency (in
order of ascending values).

(b) Q of the cavity (assuming dominant
mode operation). The walls of the cavity
are copper (σ = 5.76 × 107 S/m).

9.17. Design a circular cavity of radius a and
height h such that the resonant frequency
of the next higher-order mode is 1.5 times
greater than the resonant frequency of the
dominant mode. Assume that the radius is
4 cm. Find the
(a) Height of the cavity (in cm).
(b) Resonant frequency of the dominant

mode (assume free space within the cav-
ity).

(c) Dielectric constant of the dielectric that
must be inserted inside the cavity to
reduce the resonant frequency by a fac-
tor of 1.5.

9.18. A circular cavity of radius a and height h
is completely filled with a dielectric mate-
rial of dielectric constant εr . The height-to-
radius ratio is h/a = 1.9 where a = 2 cm.
(a) Identify the mode with the lowest reso-

nant frequency.
(b) Determine the dielectric constant of the

material so that the difference between
the resonant frequencies of the lowest to
the next lowest order modes is 50 MHz.

9.19. For the radial waveguide of Figure 9-6
determine the maximum spacing h (in m)
to insure operation of a single lowest-order
mode between the plates up to 300 MHz. Do
this individually for TEz

n modes and TMz
n

modes.

9.20. For the wedged-plate radial waveguide of
Figure 9-7, derive for the TEz modes the
expressions for the vector potential com-
ponent of (9-79), the electric and magnetic
fields of (9-79d) through (9-79i), the eigen-
values of (9-79a) through (9-79c), and the
wave impedance of (9-79j).

9.21. Given the wedged-plate geometry of
Figure 9-7, assume TMz modes and derive
the expressions for the vector potential of
(9-80), the electric and magnetic fields of
(9-80d) through (9-80i), the eigenvalues
of (9-80a) through (9-80c), and the wave
impedance of (9-80j).
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9.22. If the dielectric constant of the materials
that make up the circular dielectric wave-
guide of Figure 9-8 is very large (usually
30 or greater), the dielectric–air interface
along the surface acts almost as an open
circuit (see Section 9.5.2). Under these con-
ditions the surface of the dielectric can be
approximated by a perfect magnetic con-
ductor (PMC). Assume that the surface of
the dielectric rod can be modeled as a PMC
and derive, for the TEz modes, simplified
expressions for the vector potential compo-
nent, electric and magnetic fields, and cutoff
frequencies. Assume that the dielectric
material is rutile (εr � 130). Determine the
cutoff frequencies of the lowest two modes
when the radius of the rod is 3 cm. Verify
with MATLAB program CircDielGuide.

9.23. Repeat Problem 9.22 for the TMz modes.

9.24. Determine the cutoff frequencies of the first
four lowest-order modes (HE, EH, TE, or
TM) for a dielectric rod waveguide with
radius of 3 cm when the dielectric constant
of the material is εr = 20, 38, and 130. Ver-
ify with MATLAB program CircDielGuide.

9.25. Design a circular dielectric rod waveguide
(find its radius in cm) so that the cutoff fre-
quency of the TE01, TM01, and HE21 modes
is 3 GHz when the dielectric constant of the
material is εr = 2.56, 4, 9, and 16.

9.26. It is desired to operate a dielectric rod
waveguide in the dominant HE11 mode over
a frequency range of 5 GHz. Design the
dielectric rod (find its dielectric constant) to
accomplish this when the radius of the rod
is a = 1.315 and 1.838 cm.

9.27. A dielectric waveguide of circular cross
section, radius a, and dielectric constant
of 4, has at 3 GHz an effective dielectric
constant of εreff = 2.78. For the dominant
mode, determine at 3 GHz the:
(a) Phase constant along the z and ρ direc-

tions inside the waveguide (in rad/cm).
(b) Attenuation coefficient along the ρ

direction outside the waveguide (in
Nepers/cm).

9.28. Design a cylindrical dielectric waveguide of
circular cross section so that its dominant
single mode operation is 4 GHz. The dielec-
tric constant of the material is 4. Determine,
in cm, the radius of the waveguide to accom-
plish this. Use an exact solution.

9.29. Design a homogeneous dielectric cable to be
operated at a dominant, single mode with a
center frequency of 50 GHz. The radius of
the cable is 1 mm. Determine the:
(a) minimum value of the dielectric con-

stant of the cable.
(b) frequency range of the dominant, single

mode operation.

9.30. A lossless dielectric waveguide (no PEC
walls) of radius a , with εr � 1, μr = 1, has
a semicircular cross section, as shown in
Figure P9-30. For the TEz modes, deter-
mine:
(a) An expression for the cutoff frequency.

State the correct eigenvalues and spe-
cific allowable indices.

(b) Cutoff frequency (in GHz) for the low-
est order (dominant) mode assuming the
radius is a = 1.5 cm, εr = 81, μr = 1.

Show the steps, or explain, as to how you
arrive to the specific formulas and corre-
sponding allowable indices you are using.

y

z

ra

x

Figure P9-30

9.31. Repeat Problem 9.30 for TMz modes.

9.32. For the dielectric resonator of Figure 9-
14a modeled by PMC walls, as shown in
Figure 9-14b, derive simplified expressions
for the vector potential component, and the
electric and magnetic fields when the modes
are TEz and TMz .

9.33. Assume that the dielectric resonator of
Figure 9-14a is modeled by PMC walls as
shown in Figure 9-14b.
(a) Determine the lowest TEz or TMz

mode.
(b) Derive an expression for the Q of the

cavity for the lowest-order mode. The
only losses associated with the resonator
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are dielectric losses within the dielectric
itself.

(c) Find the resonant frequency.
(d) Compute the Q of the cavity.

The resonator material is rutile (εr �
130, tan δe � 4 × 10−4). The radius of
the disk is 0.1148 cm and its height is
0.01148 cm.

9.34. A cylindrical dielectric resonator used in
microwave integrated circuit (MIC) design
is comprised of a PEC ground plane cov-
ered with a section of length l of a dielec-
tric rod of semi-circular cross section of
radius a . Assuming the dielectric constant
of the material is much greater than unity
(εr � 1), for TEz modes:
(a) Derive an appropriate approximate sim-

plified expression of the appropriate
vector potential component.

(b) Determine the allowable nontrivial
eigenvalues (be very specific).

(c) Compute the resonant frequency of the
dominant mode when the radius of the
rod section is 2 cm, its length is 4 cm,
and the dielectric constant is 81.

x
PEC

z

a
r

f

e r >
>1

l

y

Figure P9-34

9.35. Repeat Problem 9.34 for TMz modes.

9.36. A dielectric resonator is made of an angu-
lar sector (pie) of radius a , height h , and
with a subtended angle of φ = φ0. Assum-
ing the dielectric constant of the material is
very large (εr � 1), for TEz modes:

a

h

z

x

y

f0

Figure P9-36

(a) Derive an approximate simplified ex-
pression for the appropriate vector
potential component.

(b) Determine all the allowable eigenvalues
for βρ , βz and m .

9.37. A hybrid dielectric resonator, with a general
geometry as shown in Figure 9-14, can be
constructed with PEC plates at z = 0 and
z = h and with open sides. If the dielectric
constant of the dielectric is very large, the
open dielectric surface can be modeled as a
PMC surface. Using such a model for the
resonator of Figure 9-14, derive expressions
for the resonant frequencies assuming TEz

modes and TMz modes. This model can also
be used as an approximate representation for
a circular patch (microstrip) antenna.

9.38. Repeat Problem 9.37 if the top and bottom
plates of the resonator are angular sectors
each with a subtended angle of φ0, as shown
in Figure P9-38. In addition to the reso-
nant frequency, show that the eigenvalues
are obtained as solutions to
(a) TEz : Jm(βρa) = 0, βρ = χmn

a

m = p

(
π

φ0

)
, p = 1, 2, 3, . . .

(b) TMz : J ′
m(βρa) = 0, βρ = χ ′

mn

a

m = p

(
π

φ0

)
, p = 0, 1, 2, . . .

This model can also be used as an approx-
imate representation for an angular patch
(microstrip) antenna.

a

f0

s = ∞

Figure P9-38

9.39. Repeat Problem 9.37 if the top and bottom
plates of an annular resonator are annu-
lar patches each with inner radius a and
outer radius b, as shown in Figure P9-39. In
addition to finding the resonant frequency,
show that the eigenvalues βρ are obtained
as solutions to
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(a) TEz :

Jm(βρa)Ym(βρb) − Ym(βρa)Jm(βρb) = 0

m = 0, 1, 2, . . .

(b) TMz :

J ′
m(βρa)Y ′

m(βρb) − Y ′
m(βρa)J ′

m(βρb) = 0

m = 0, 1, 2, . . .

This model can also be used as an
approximate representation for an annular
patch (microstrip) antenna.

a
b

s = ∞

Figure P9-39

9.40. Repeat Problem 9.37 if the top and bottom
plates of the resonator are annular sectors
each with inner radius a and outer radius
b, and subtended angle φ0, as shown in
Figure P9-40. In addition to finding the res-
onant frequency, show that the eigenvalues
βρ are obtained as solutions to

(a) TEz :

Jm(βρa)Ym(βρb) − Ym(βρa)Jm(βρb) = 0

m = p

(
π

φ0

)
, p = 1, 2, 3, . . .

(b) TMz :

J ′
m(βρa)Y ′

m(βρb) − Y ′
m(βρa)J ′

m(βρb) = 0

m = p

(
π

φ0

)
, p = 0, 1, 2, . . .

This model can also be used as an
approximate representation for an annular
patch (microstrip) antenna.

b

a

f0

s = ∞

Figure P9-40

9.41. A dielectric resonator of height h has a
geometry of an annular sector, with an inner
radius a and outer radius b. The material
of the resonator has a dielectric constant of
εr � 1. For TEz modes, derive the char-
acteristic equation that should be used to
determine the eigenvalues of the resonator.
State any other known eigenvalues.

b

h

y

x
f0

a

z

Figure P9-41

9.42. Repeat Problem 9.41 for TMz modes.

9.43. For the dielectric covered conducting rod
of Figure 9-17, assume TEz

mn modes. For
within and outside the dielectric sleeving
derive expressions for the vector poten-
tial components and the electric and mag-
netic fields. Also verify (9-124a) through
(9-124e).



CHAPTER 10
Spherical Transmission Lines and Cavities

10.1 INTRODUCTION

Problems involving spherical geometries constitute an important class of electromagnetic
boundary-value problems that are used to design transmission lines, cavities, antennas, and
scatterers. Some of these may be constructed of metallic walls and others may be of dielectric
material. In either case, the field configurations that can be supported by the structure can be
obtained by analyzing the structure as a boundary-value problem. We will concern ourselves
here with spherical transmission lines and cavities. Scattering by spherical structures will be
examined in Chapter 11.

10.2 CONSTRUCTION OF SOLUTIONS

In Chapter 3, Section 3.4.3, we examined the solution of the scalar wave equation in spherical
coordinates. It was found that the solution is that of (3-76) where the r , θ , and φ variations take
the following forms.

1. Radial (r) variations of f (r) can be represented by either:
a. spherical Bessel functions of the first [jn(βr)] and second [yn(βr)] kind, as given by

(3-87a) [these functions are used to represent standing waves and are related to the
regular Bessel functions by (3-90a) and (3-90b)],

b. or spherical Hankel functions of the first [h(1)
n (βr)] and second [h(2)

n (βr)] kind, as given
by (3-87b) [these are related to the regular Hankel functions by (3-91a) and (3-91b)].

2. θ variations of g(θ) can be represented by associated Legendre functions of the first
Pm

n (cos θ) or second Qm
n (cos θ) kind, as given by either (3-88a) or (3-88b).

3. φ variations of h(φ) can be represented by either complex exponentials or cosinusoids as
given, respectively, by (3-89a) and (3-89b).

It must be remembered, however, that the vector wave equation in spherical coordinates, as
given by (3-72), does not reduce to three uncoupled scalar Helmholtz wave equations as stated by
(3-73a) through (3-73c). Therefore, using the basic approach outlined in Chapter 6, Section 6.5,
we cannot construct field solutions that are TEr and/or TMr . Hence, we must look for other
approaches for finding field configurations that are supported by spherical structures.

549
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One approach that can be used to find field configurations that are TEz and/or TMz will be to
represent the potential functions by [1]

TEz

A = 0 (10-1a)

F = âz Fz = (âr cos θ − âθ sin θ)Fz (10-1b)

TMz

A = âz Az = (âr cos θ − âθ sin θ)Az (10-2a)

F = 0 (10-2b)

where Fz (r , θ , φ) and Az (r , θ , φ) are solutions to the scalar Helmholtz equation in the spherical
coordinate system. Other field configurations can be formed as superpositions of TEz and TMz

modes. Although this is a valid approach to the problem, it will not be pursued here; it is assigned
to the reader as an end-of-chapter exercise. Instead, an alternate procedure will be outlined for
construction of TEr and TMr modes.

The procedure outlined in Chapter 6, Sections 6.5.2 and 6.5.3, for the construction, respectively,
of TM and TE field configurations was based on the vector potentials A and F, as derived in
Sections 6.2 and 6.3, respectively, and summarized in Section 6.4. The final forms, which are
summarized in Section 6.4, were based on the selection of the Lorenz conditions of (6-15) and
(6-27), or

ψe = − 1

jωμε
∇ • A (10-3a)

ψm = − 1

jωμε
∇ • F (10-3b)

to represent, respectively, the scalar potential functions ψe and ψm . If that choice was not made,
then the relations of the E and H fields to the potentials A and F would take a slightly different
form. These forms will be outlined here.

10.2.1 The Vector Potential F (J = 0, M �= 0)

According to (6-19), the electric field is related to the potential F by

EF = −1

ε
∇ × F (10-4)

Away from the source M, the electric and magnetic fields are related by Maxwell’s equation

∇ × EF = −jωμHF (10-5)

or

HF = − 1

jωμ
∇ × EF = 1

jωμε
∇ × ∇ × F (10-5a)

Therefore, if the potential F can be related to the source (M), then EF and HF can be found using
(10-4) and (10-5a). We will attempt to do this next.
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Taking the curl of both sides of (10-4) leads to

∇ × EF = −1

ε
∇ × ∇ × F (10-6)

Using Maxwell’s equation 6-24,

∇ × EF = −M − jωμHF (10-7)

and equating it to (10-6) leads to

∇ × ∇ × F = εM + jωμεHF (10-8)

The electric and magnetic fields are also related by Maxwell’s equation 6-20,

∇ × HF = jωεEF (10-9)

Substituting (10-4) into (10-9) and regrouping reduces to

∇ × HF = jωε

(
−1

ε
∇ × F

)
= −jω∇ × F (10-10)

or
∇ × (HF + jωF) = 0 (10-10a)

Using the vector identity
∇ × (−∇ψm) = 0 (10-11)

where ψm represents an arbitrary scalar potential, and equating it to (10-10a), we can write that

HF + jωF = −∇ψm (10-12)

or
HF = −jωF − ∇ψm (10-12a)

Substituting (10-12a) into (10-8) leads to

∇ × ∇ × F = εM + ω2μεF − jωμε∇ψm (10-13)

or

∇ × ∇ × F − ω2μεF = εM − jωμε∇ψm (10-13a)

This is the desired expression, which relates the vector potential F to the source M and the
associated scalar potential ψm . In a source-free (M = 0) region, (10-13a) reduces to

∇ × ∇ × F − ω2μεF = −jωμε∇ψm (10-14)

In a source-free region, the procedure is to solve (10-14) for F, and then use (10-4) and (10-5a)
to find, respectively, EF and HF.
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10.2.2 The Vector Potential A (J �= 0, M = 0)

Following a procedure similar to the one outlined in Section 10.2.1 for the vector potential F,
it can be shown, by referring also to Section 6.2, that the equations for the vector potential A
analogous to (10-4), (10-5a), and (10-13a), are

HA = 1

μ
∇ × A (10-15a)

EA = 1

jωε
∇ × HA = 1

jωμε
∇ × ∇ × A (10-15b)

∇ × ∇ × A − ω2μεA = μJ − jωμε∇ψe (10-15c)

In a source-free region, (10-15c) reduces to

∇ × ∇ × A − ω2μεA = −jωμε∇ψe (10-15d)

The details are left as end-of-chapter exercises for the reader.
In a source-free region, the procedure is to solve (10-15d) for A, and then use (10-15a) and

(10-15b) to find, respectively, HA and EA.

10.2.3 The Vector Potentials F and A

The total fields that are due to both potentials F and A are found as superpositions of the fields
of Sections 10.2.1 and 10.2.2. Doing this, we have that the total fields are obtained using

E = EF + EA = −1

ε
∇ × F + 1

jωε
∇ × HA = −1

ε
∇ × F + 1

jωμε
∇ × ∇ × A (10-16a)

H = HF + HA = − 1

jωμ
∇ × EF + 1

μ
∇ × A = 1

jωμε
∇ × ∇ × F + 1

μ
∇ × A (10-16b)

where F and A are, respectively, solutions to

∇ × ∇ × F − ω2μεF = εM − jωμε∇ψm (10-16c)

∇ × ∇ × A − ω2μεA = μJ − jωμε∇ψe (10-16d)

which for a source-free region (M = J = 0) reduce to

∇ × ∇ × F − ω2μεF = −jωμε∇ψm (10-16e)

∇ × ∇ × A − ω2μεA = −jωμε∇ψe (10-16f)

We will attempt now to form TEr and TMr mode field solutions using (10-16a) through (10-16f).
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10.2.4 Transverse Electric (TE) Modes: Source-Free Region

It was stated previously in Section 6.5.3 that TE modes to any direction in any coordinate system
can be obtained by selecting the vector potential F to have only a nonvanishing component in that
direction while simultaneously letting A = 0. The nonvanishing component of F was obtained as
a solution to the scalar wave equation 6-31. The same procedure will be used here except that
instead of the nonvanishing component of F being a solution to (6-31), which does not reduce in
spherical coordinates to three scalar noncoupled wave equations, it will be a solution to (10-16e).
The nonvanishing component of F will be the one that coincides with the direction along which
the TE modes are desired. Let us construct solutions that are TEr in a spherical coordinate system.

TEr field configurations are constructed by letting the vector potentials F and A be equal to

F = âr Fr (r , θ , φ) (10-17a)

A = 0 (10-17b)

Since Fr is not a solution to the scalar Hemlholtz equation

∇2F = ∇2(âr Fr ) �= âr∇2Fr (10-18)

we will resort, for a source-free region, to (10-16e).
Expanding (10-16e) using (10-17a) leads to

∇ × F = ∇ × (âr Fr ) = âθ

1

r sin θ

∂Fr

∂φ
− âφ

1

r

∂Fr

∂θ
(10-19a)

∇ × ∇ × F = âr

{
1

r sin θ

[
∂

∂θ

(
− sin θ

r

∂Fr

∂θ

)
− ∂

∂φ

(
1

r sin θ

∂Fr

∂φ

)]}
+ âθ

[
1

r

(
∂2Fr

∂r ∂θ

)]
+ âφ

(
1

r sin θ

∂2Fr

∂r ∂φ

)
(10-19b)

∇ψm = âr
∂ψm

∂r
+ âθ

1

r

∂ψm

∂θ
+ âφ

1

r sin θ

∂ψm

∂φ
(10-19c)

Thus for the r , θ , and φ components, (10-16e) reduces to

1

r sin θ

[
− ∂

∂θ

(
sin θ

r

∂Fr

∂θ

)
− ∂

∂φ

(
1

r sin θ

∂Fr

∂φ

)]
− β2Fr = −jωμε

∂ψm

∂r
(10-20a)

1

r

∂2Fr

∂r ∂θ
= −j

ωμε

r

∂ψm

∂θ
⇒ ∂2Fr

∂r ∂θ
= ∂

∂θ

(
∂Fr

∂r

)
= ∂

∂θ
(−jωμεψm) (10-20b)

1

r sin θ

∂2Fr

∂r ∂φ
= −j

ωμε

r sin θ

∂ψm

∂φ
⇒ ∂2Fr

∂r ∂φ
= ∂

∂φ

(
∂Fr

∂r

)
= ∂

∂φ
(−jωμεψm) (10-20c)

where β2 = ω2με. The last two equations, (10-20b) and (10-20c), are satisfied simultaneously
if

∂Fr

∂r
= −jωμεψm ⇒ ψm = − 1

jωμε

∂Fr

∂r
(10-21)
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With the preceding relation for the scalar potential ψm , we need to find an uncoupled differ-
ential equation for Fr . To do this, we substitute (10-21) into (10-20a), which leads to

− 1

r2 sin θ

∂

∂θ

(
sin θ

∂Fr

∂θ

)
− 1

r2 sin2 θ

∂2Fr

∂φ2
− β2Fr = ∂2Fr

∂r2
(10-22)

or
∂2Fr

∂r2
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂Fr

∂θ

)
+ 1

r2 sin2 θ

∂2Fr

∂φ2
+ β2Fr = 0 (10-22a)

which can also be written in succinct form as

(∇2 + β2)
Fr

r
= 0 (10-22b)

Therefore, using this procedure, the ratio Fr/r satisfies the scalar Helmholtz wave equation but
not Fr itself. A solution of Fr using (10-22b) allows us to find EF and HF using, respectively,
(10-4) and (10-5a).

The solution of (10-22b) will be pursued in Section 10.2.6. In the meantime, the electric and
magnetic field components can be written in terms of Fr by expanding (10-4) and (10-5a):

TEr (F = âr Fr , A = 0)

EF = −1

ε
∇ × F (10-23)

or

Er = 0 (10-23a)

Eθ = −1

ε

1

r sin θ

∂Fr

∂φ
(10-23b)

Eφ = 1

ε

1

r

∂Fr

∂θ
(10-23c)

HF = 1

jωμε
∇ × ∇ × F (10-24)

or

Hr = 1

jωμε

(
∂2

∂r2
+ β2

)
Fr (10-24a)

Hθ = 1

jωμε

1

r

∂2Fr

∂r ∂θ
(10-24b)

Hφ = 1

jωμε

1

r sin θ

∂2Fr

∂r ∂φ
(10-24c)

where Fr/r is a solution to (10-22b).



CONSTRUCTION OF SOLUTIONS 555

10.2.5 Transverse Magnetic (TM) Modes: Source-Free Region

Following a procedure similar to the one outlined in the previous section for the TEr modes, it
can be shown that the TMr fields in spherical coordinates can be constructed by letting the vector
potentials F and A be equal to

F = 0 (10-25a)

A = âr Ar (r , θ , φ) (10-25b)

where the ratio Ar/r , and not Ar , is a solution to the scalar Helmholtz wave equation

(∇2 + β2)
Ar

r
= 0 (10-26)

The solution of (10-26) will be pursued in Section 10.2.6. In the meantime, the electric and
magnetic field components can be written in terms of Ar , by expanding (10-15b) and (10-15a),
as

TMr (F = 0, A = âr Ar )

EA = 1

jωμε
∇ × ∇ × A (10-27)

or

Er = 1

jωμε

(
∂2

∂r2
+ β2

)
Ar (10-27a)

Eθ = 1

jωμε

1

r

∂2Ar

∂r ∂θ
(10-27b)

Eφ = 1

jωμε

1

r sin θ

∂2Ar

∂r ∂φ
(10-27c)

HA = 1

μ
∇ × A (10-28)

or

Hr = 0 (10-28a)

Hθ = 1

μ

1

r sin θ

∂Ar

∂φ
(10-28b)

Hφ = − 1

μ

1

r

∂Ar

∂θ
(10-28c)

where Ar/r is a solution to (10-26).
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10.2.6 Solution of the Scalar Helmholtz Wave Equation

To find the TEr and/or TMr field of Sections 10.2.4 and 10.2.5 as given, respectively, by
(10-23) through (10-24c) and (10-27) through (10-28c), solutions to the scalar Helmholtz wave
equations 10-22b and 10-26 must be obtained for Fr/r and Ar/r (and thus, Fr and Ar ). Both
solutions are of the same form

(∇2 + β2)ψ = 0 (10-29)

where

ψ =

⎧⎪⎪⎨⎪⎪⎩
Fr

r
for TEr modes

Ar

r
for TMr modes

(10-29a)

(10-29b)

Since the solution of ψ from (10-29) must be multiplied by r to obtain solutions for Fr or Ar ,
then appropriate solutions for Fr and Ar must be equal to the product of rψ . The solution for Fr

or Ar of (10-29) through (10-29b) must take the separable form of

Fr (r , θ , φ)

Ar (r , θ , φ)

}
= f (r)g(θ)h(φ) (10-30)

where f (r), g(θ), and h(φ) must be represented by appropriate wave functions that satisfy the
wave equation in spherical coordinates. According to (3-88a) or (3-88b), g(θ) can be represented
by associated Legendre functions of the first kind Pm

n (cos θ), or second kind Qm
n (cos θ), whereas

h(φ) can be represented by either complex exponentials or cosinusoids as given, respectively, by
(3-89a) and (3-89b).

Since the solution of ψ as given by (10-29) must be multiplied by r in order to obtain solutions
to Fr and Ar as given by (10-30), it is most convenient to represent f (r) not by spherical Bessel
[jn(βr), yn(βr)] or Hankel [h(1)

n (βr), h(2)
n (βr)] functions, but by another form of spherical Bessel

and Hankel functions denoted by B̂n(βr) [for either Ĵn(βr), Ŷn(βr), Ĥ (1)
n (βr) or Ĥ (2)

n (βr)]. These
are related to the regular spherical Bessel and Hankel functions denoted by bn(βr) [for either
jn(βr), yn(βr), h(1)

n (βr) or h(2)
n (βr)] by

B̂n(βr) = βr bn(βr) = βr
√

π

2βr
Bn+1/2(βr) =

√
πβr

2
Bn+1/2(βr) (10-31)

where Bn+1/2(βr) is used to represent the regular cylindrical Bessel or Hankel functions of
Jn+1/2(βr), Yn+1/2(βr), H (1)

n+1/2(βr) and H (2)
n+1/2(βr). These new spherical Bessel and Hankel

functions were introduced by Schelkunoff [2] and satisfy the differential equation[
d2

dr2
+ β2 − n(n + 1)

r2

]
B̂n = 0 (10-32)

which is obtained by substituting bn(βr) = B̂n(βr)/βr in

d

dr

(
r2 dbn

dr

)
+ [(βr)2 − n(n + 1)]bn = 0 (10-33)

Therefore, the solutions for f (r) of (10-30) are of the new form of spherical Bessel or Hankel
functions denoted by

f1(r) = A1Ĵn(βr) + B1Ŷn(βr) (10-34a)

or
f2(r) = C1Ĥ (1)

n (βr) + D1Ĥ (2)
n (βr) (10-34b)
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which are related to the regular Bessel and Hankel functions by

Ĵn(βr) =
√

πβr

2
Jn+1/2(βr) (10-35a)

Ŷn(βr) =
√

πβr

2
Yn+1/2(βr) (10-35b)

Ĥ (1)
n (βr) =

√
πβr

2
H (1)

n+1/2(βr) (10-35c)

Ĥ (2)
n (βr) =

√
πβr

2
H (2)

n+1/2(βr) (10-35d)

The total solution for Fr or Ar of (10-30) will be the product of the appropriate spherical wave
functions representing f (r), g(θ) and h(φ).

10.3 BICONICAL TRANSMISSION LINE

One form of a transmission line whose geometry conforms to the spherical orthogonal coordinate
system is the biconical structure of Figure 10-1. Typically, this configuration is also representative
of the biconical antenna [3–9] which exhibits very broad band frequency characteristics. Sets of
fields that can be supported by such a structure can be either TEr , TMr or TEMr . Solutions to
these will be examined here.

10.3.1 Transverse Electric (TEr) Modes

According to the procedure established in Section 10.2.4, transverse (to the radial direction)
electric modes (TEr ) can be constructed by choosing the potentials F and A according to

a1

a2

q

z

y

x

r

f

Figure 10-1 Geometry of biconical transmission line. (Source: C. A. Balanis, Antenna Theory: Analysis
and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc.).
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(10-17a) and (10-17b). The scalar component Fr of the vector potential must satisfy the vector
wave equation (10-22b), whose solution takes the form of (3-85), or

Fr (r , θ , φ) = f (r)g(θ)h(φ) (10-36)

where

f (r) = a solution to (10-32) as given by either (10-34a) or (10-34b) [the form (10-34b) is
chosen here]

g(θ) = a solution of (3-86b) as given by either (3-88a) or (3-88b) [the form (3-88a) is chosen
here]

h(φ) = is a solution to (3-86c) as given by (3-89a) or (3-89b) [the form (3-89b) is chosen
here to represent standing waves]

Therefore, Fr of (10-36) can be written, assuming the source is placed at the apex and is generating
outwardly traveling waves [C1 = 0 in (10-34b)], as

[Fr (r , θ , φ)]mn = D1Ĥ (2)
n (βr)[A2Pm

n (cos θ) + B2Pm
n (− cos θ)]

×[C3 cos(mφ) + D3 sin(mφ)] (10-37)

where m = nonnegative integer (m = 0, 1, 2, . . .).
The corresponding electric and magnetic fields can be found using (10-23) through (10-24c)

and the eigenvalues of n can be determined by applying the boundary conditions

Eφ(0 ≤ r ≤ ∞, θ = α1, 0 ≤ φ ≤ 2π) = Eφ(0 ≤ r ≤ ∞, θ = α2, 0 ≤ φ ≤ 2π) = 0 (10-38)

According to (10-23c),

Eφ = 1

ε

1

r

∂Fr

∂θ
= D1

ε

1

r
Ĥ (2)

n (βr)

[
A2

dPm
n (cos θ)

dθ
+ B2

dPm
n (− cos θ)

dθ

]
×[C3 cos(mφ) + D3 sin(mφ)] (10-39)

Applying the first boundary condition of (10-38) leads to

Eφ(0 ≤ r ≤ ∞, θ = α1, 0 ≤ φ ≤ 2π)

= D1

ε

1

r
Ĥ (2)

n (βr)

[
A2

dPm
n (cos θ)

dθ
+ B2

dPm
n (− cos θ)

dθ

]
θ=α1

×[C3 cos(mφ) + D3 sin(mφ)] = 0

Eφ(0 ≤ r ≤ ∞, θ = α1, 0 ≤ φ ≤ 2π)

= D1

ε

1

r
Ĥ (2)

n (βr)

[
A2

dPm
n (cos α1)

dα1
+ B2

dPm
n (− cos α1)

dα1

]
×[C3 cos(mφ) + D3 sin(mφ)] = 0 (10-40a)

and the second boundary condition of (10-38) leads to

Eφ(0 ≤ r ≤ ∞, θ = α2, 0 ≤ φ ≤ 2π)

= D1

ε

1

r
Ĥ (2)

n (βr)

[
A2

dPm
n (cos α2)

dα2
+ B2

dPm
n (− cos α2)

dα2

]
×[C3 cos(mφ) + D3 sin(mφ)] = 0 (10-40b)
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Equations 10-40a and 10-40b reduce to

A2
dPm

n (cos α1)

dα1
+ B2

dPm
n (− cos α1)

dα1
= 0 (10-41a)

A2
dPm

n (cos α2)

dα2
+ B2

dPm
n (− cos α2)

dα2
= 0 (10-41b)

which are satisfied provided the determinant of (10-41a) and (10-41b) vanishes, that is

dPm
n (cos α1)

dα1

dPm
n (− cos α2)

dα2
− dPm

n (− cos α1)

dα1

dPm
n (cos α2)

dα2
= 0 (10-42)

Therefore, the eigenvalues of n are found as solutions to (10-42), which usually is not necessarily
a very easy task.

10.3.2 Transverse Magnetic (TMr) Modes

Following a procedure similar to that of the previous section and using the formulations of
Section 10.2.5, it can be shown that for TMr modes the potential component Ar of (10-26)
reduces to

[Ar (r , θ , φ)]mn = D1Ĥ (2)
n (βr)[A2Pm

n (cos θ) + B2Pm
n (− cos θ)]

×[C3 cos(mφ) + D3 sin(mφ)] (10-43)

where m = integer (m = 0, 1, 2, . . .). The values of n are determined by applying the boundary
conditions.

The corresponding electric and magnetic fields are obtained using (10-27) through (10-28c).
By applying the boundary conditions

Er (0 ≤ r ≤ ∞, θ = α1, 0 ≤ φ ≤ 2π) = Er (0 ≤ r ≤ ∞, θ = α2, 0 ≤ φ ≤ 2π) = 0 (10-44a)

or

Eφ(0 ≤ r ≤ ∞, θ = α1, 0 ≤ φ ≤ 2π) = Eφ(0 ≤ r ≤ ∞, θ = α2, 0 ≤ φ ≤ 2π) = 0 (10-44b)

it can be shown that the eigenvalues of n are obtained as solutions to

Pm
n (cos α1)P

m
n (− cos α2) − Pm

n (− cos α1)P
m
n (cos α2) = 0 (10-45)

This usually is not necessarily a very easy task.

10.3.3 Transverse Electromagnetic (TEMr) Modes

The lowest-order (dominant) mode of the biconical transmission line is the one for which m = 0
and n = 0. For this mode both (10-42) and (10-45) are satisfied and the potential components
of (10-37) and (10-43) vanish. However, for m = n = 0, (10-43) could be redefined as the limit
as n → 0. Instead, it is usually more convenient to alternately represent the TEM mode by the
TM00 which is defined, using (3-88b) to represent g(θ), by [1]

(Ar )00 = B00Ĥ (2)
0 (βr)Q0(cos θ) (10-46)
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since P0
0 (cos θ) = P0(cos θ) = 1. The Legendre polynomial Q0(cos θ) can also be represented

by

Q0(cos θ) = ln

[
cot

(
θ

2

)]
(10-47a)

and the spherical Hankel function Ĥ (2)
0 (βr) can be replaced by its asymptotic form for large

arguments of

Ĥ (2)
0 (βr)

βr→large� je−jβr (10-47b)

Using (10-47a) and (10-47b) reduces (10-46), for large observational distances (βr → large), to

(Ar )00 � jB00 ln

[
cot

(
θ

2

)]
e−jβr (10-48)

The corresponding electric and magnetic field components are given, according to (10-27)
through (10-28c), by [3]

Er = 1

jωμε

(
∂2

∂r2
+ β2

)
Ar � 0 (10-49a)

Eθ = 1

jωμε

1

r

∂2Ar

∂r ∂θ
= jB00

β

ωμε

1

r

1

sin θ
e−jβr (10-49b)

Eφ = 1

jωμε

1

r sin θ

∂2Ar

∂r ∂φ
= 0 (10-49c)

Hr = 0 (10-49d)

Hθ = 1

μ

1

r sin θ

∂Ar

∂φ
= 0 (10-49e)

Hφ = − 1

μ

1

r

∂Ar

∂θ
= jB00

1

μr sin θ
e−jβr (10-49f)

Using these equations, we can write the wave impedance in the radial direction as

Z +r
w = Eθ

Hφ

= β

ωε
=

√
μ

ε
= η (10-50)

which is the same as the intrinsic impedance of the medium.
An impedance of greater interest is the characteristic impedance that is defined in terms of

voltages and currents. The voltage between two corresponding points on the cones, a distance r
from the origin, is found by

V (r) =
∫ α2

α1

E • d� =
∫ α2

α1

(âθEθ ) • (âθ r dθ)

=
∫ α2

α1

Eθ rdθ = jB00
βe−jβr

ωμε

∫ α2

α1

dθ

sin(θ)

V (r) = jB00
βe−jβr

ωμε
ln

⎡⎢⎣cot
(α1

2

)
cot

(α2

2

)
⎤⎥⎦ (10-51a)
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Figure 10-2 Input impedance of biconical transmission line. (Source: C. A. Balanis, Antenna Theory:
Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of
John Wiley & Sons, Inc.).

The current on the surface of the cones, a distance r from the origin, is found by using (10-49f)
as

I (r) =
∮

C
H • d� =

∫ 2π

0
(âφHφ) • (âφr sin θ dφ) =

∫ 2π

0
Hφr sin θ dφ = jB00

2πe−jβr

μ
(10-51b)

Taking the ratio of (10-51a) to (10-51b), we can define and write the characteristic impedance
as

Zc ≡ V (r)

I (r)
= β

2πωε
ln

⎡⎢⎣cot
(α1

2

)
cot

(α2

2

)
⎤⎥⎦ =

√
μ

ε

2π
ln

⎡⎢⎣cot
(α1

2

)
cot

(α2

2

)
⎤⎥⎦ ≡ Zin (10-52)

Since the characteristic impedance is not a function of the radial distance r , it also represents the
input impedance of the antenna at the feed terminals. For a symmetrical structure (α2 = π − α1),
(10-52) reduces to

Zc =

√
μ

ε

2π
ln

[
cot

(α1

2

)]2
=

√
μ

ε

π
ln

[
cot

(α1

2

)]
= η

π
ln

[
cot

(α1

2

)]
= Zin (10-52a)

It is apparent that the transmission line, or alternately the antenna of Figure 10-1, is a very broad
band structure since its characteristic or input impedance is only a function of the included angle
of the cone. A plot of (10-52a) as a function of α1 is shown in Figure 10-2.

There are numerous other transmission lines whose geometry can be represented by the spher-
ical orthogonal coordinate systems. They will not be discussed here but some will be assigned
to the reader as end-of-chapter exercises.

10.4 THE SPHERICAL CAVITY

The metallic spherical cavity of Figure 10-3 represents a popular and classic geometry to design
resonators. The field configurations that can be supported by such a structure can be TEr and/or
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Figure 10-3 Geometry of spherical cavity.

TMr ; both will be examined here. In addition to the field expressions, the resonant frequencies
and the quality factors will be the quantities of interest.

10.4.1 Transverse Electric (TEr) Modes

The TEr modes in the cavity can be formed by letting the vector potentials F and A be equal to
(10-17a) and (10-17b), respectively. The most appropriate form for the vector potential component
Fr is

Fr (r , θ , φ) = [A1Ĵn(βr) + B1Ŷn(βr)][C2Pm
n (cos θ) + D2Qm

n (cos θ)]

×[C3 cos(mφ) + D3 sin(mφ)] (10-53)

where m and n are integers. The fields must be finite at r = 0; thus, B1 = 0 since Ŷn(βr) possesses
a singularity at r = 0. Additionally, the fields must also be finite at θ = 0, π . Therefore, D2 = 0
since Qm

n (cos θ) possesses a singularity at θ = 0, π . Also, because the Legendre polynomial
P0(w) = 1, and Pm

0 (w) is related to P0(w) by [10–15]

Pm
0 (w) = (−1)m(1 − w 2)m/2 dmP0(w)

dw m
= 0, m = 1, 2, . . . (10-54)

then, for nontrivial (nonzero) solutions, n = 1, 2, 3, . . .. Therefore, (10-53) reduces to

(Fr )mnp = Amnp Ĵn(βr)Pm
n (cos θ)[C3 cos(mφ) + D3 sin(mφ)] (10-55)

It should also be stated that Pm
n (cos θ) = 0 if m > n .

The corresponding electric and magnetic fields are found using (10-23) through (10-24c). Thus,
we can write the electric field components of (10-23) through (10-23c), using (10-55), as

Er = 0 (10-56a)

Eθ = −1

ε

1

r sin θ

∂Fr

∂φ

= −Amnp
m

ε

1

r sin θ
Ĵn(βr)Pm

n (cos θ)[−C3 sin(mφ) + D3 cos(mφ)] (10-56b)

Eφ = 1

ε

1

r

∂Fr

∂θ
= Amnp

1

ε

1

r
Ĵn(βr)Pm ′

n (cos θ)[C3 cos(mφ) + D3 sin(mφ)] (10-56c)
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where
′ ≡ ∂

∂θ
(10-56d)

The boundary conditions that must be satisfied are

Eθ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = 0 (10-57a)

Eφ(r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = 0 (10-57b)

Either condition yields the same eigenfunction and corresponding eigenvalues.
Applying (10-57a) to (10-56b) leads to

Eθ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = −Amnp
m

ε

1

a sin θ
Ĵn(βa)Pm

n (cos θ)

×[−C3 sin(mφ) + D3 cos(mφ)] = 0 ⇒ Ĵn(βa)|β=βr = 0 ⇒ βr a = ζnp

βr = ζnp

a
n = 1, 2, 3, . . .
p = 1, 2, 3, . . .

(10-58)

where ζnp represents the p zeroes of the spherical Bessel function Ĵn of order n . A listing of a
limited, but for most applications sufficient, number of ζnp’s is found in Table 10-1.

The resonant frequencies are found using (10-58) and can be written as

βr = ωr
√

με = 2π fr
√

με = ζnp

a
(10-59)

or

(fr )
TEr

mnp = ζnp

2πa
√

με

m = 0, 1, 2, . . . ≤ n
n = 1, 2, 3, . . .
p = 1, 2, 3, . . .

(10-59a)

Since the resonant frequencies of (10-59a) obtained using the ζnp’s of Table 10-1 are inde-
pendent of the values of m , there are numerous degeneracies (same resonant frequencies) among
the modes; for a given n and p, there are many m’s that have the same resonant frequency. To
determine how many m modes exist for each set of n and p, remember that Pm

n = 0 if m > n .
Therefore, for Pm

n to be nonzero, m ≤ n . Thus, the order of degeneracy is equal to m = n .

TABLE 10-1 Zeroes ζnp of spherical Bessel function Ĵn(ζnp) = 0

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

p = 1 4.493 5.763 6.988 8.183 9.356 10.513 11.657 12.791

p = 2 7.725 9.095 10.417 11.705 12.967 14.207 15.431 16.641

p = 3 10.904 12.323 13.698 15.040 16.355 17.648 18.923 20.182

p = 4 14.066 15.515 16.924 18.301 19.653 20.983 22.295

p = 5 17.221 18.689 20.122 21.525 22.905

p = 6 20.371 21.854
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According to the values of Table 10-1, the lowest ζnp zeroes in ascending order, along with
the number of degenerate and total modes, are

n , p ζnp Degenerate modes Total number of modes

n = 1, p = 1 ζ11 = 4.493 m = 0, 1 (even, odd) 3
n = 2, p = 1 ζ21 = 5.763 m = 0, 1, 2 (even, odd) 8
n = 3, p = 1 ζ31 = 6.988 m = 0, 1, 2, 3 (even, odd) 15
n = 1, p = 2 ζ12 = 7.725 m = 0, 1 (even, odd) 18
n = 4, p = 1 ζ41 = 8.183 m = 0, 1, 2, 3, 4 (even, odd) 27

The even, odd is used to represent either the cos(mφ) or sin(mφ) variations of (10-55). For
example, for n = 1, p = 1, (10-55) has a three-fold degeneracy and can be written to represent
the following three modes:

(Fr )011 (even) = A011C3Ĵ1(βr r)P0
1 (cos θ) = A011C3Ĵ1

(
4.493

r

a

)
cos θ (10-60a)

(Fr )111 (even) = A111C3Ĵ1(βr r)P1
1 (cos θ) cos φ = −A111C3Ĵ1

(
4.493

r

a

)
sin θ cos φ

(10-60b)

(Fr )111 (odd) = A111D3Ĵ1(βr r)P1
1 (cos θ) sin φ = −A111D3Ĵ1

(
4.493

r

a

)
sin θ sin φ

(10-60c)

since

P0
1 (cos θ) = P1(cos θ) = cos θ (10-60d)

P1
1 (cos θ) = −(1 − cos2 θ)1/2 = − sin θ (10-60e)

The modes represented by (10-60b) and (10-60c) are the same except that they are rotated 90◦,
in the φ direction, from each other. The same is true between (10-60a) and (10-60b) or (10-60c)
except that the rotation is in the θ and φ directions.

10.4.2 Transverse Magnetic (TMr) Modes

Following a procedure and justification similar to that for the TEr modes, it can be shown that
the appropriate vector potential component Ar of (10-25b) takes the form

(Ar )mnp = Bmnp Ĵn(βr)Pm
n (cos θ)[C3 cos(mφ) + D3 sin(mφ)] (10-61)

The corresponding electric and magnetic fields are found using (10-27) through (10-28c). The
boundary conditions are the same as for the TEr , as given by (10-57a) and (10-57b).

Expanding (10-27b) using (10-61) we can write that

Eθ = 1

jωμε

1

r

∂2Ar

∂r ∂θ
= Bmnp

β

jωμεr
Ĵ ′

n(βr)Pm ′
n (cos θ)[C3 cos(mφ) + D3 sin(mφ)] (10-62)

Applying (10-57a) on (10-62) leads to

Eθ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = Bmnp
β

jωμεa
Ĵ ′

n(βr a)Pm ′
n (cos θ)

×[C3 cos(mφ) + D3 sin(mφ)] = 0 ⇒ Ĵ ′
n(βa)|β=βr = 0 ⇒ βr a = ζ ′

np

βr = ζ ′
np

a
n = 1, 2, 3, . . .
p = 1, 2, 3, . . .

(10-63)
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TABLE 10-2 Zeroes ζ ′
np of derivative of spherical Bessel function Ĵ ′

n(ζ ′
np) = 0

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

p = 1 2.744 3.870 4.973 6.062 7.140 8.211 9.275 10.335

p = 2 6.117 7.443 8.722 9.968 11.189 12.391 13.579 14.753

p = 3 9.317 10.713 12.064 13.380 14.670 15.939 17.190 18.425

p = 4 12.486 13.921 15.314 16.674 18.009 19.321 20.615 21.894

p = 5 15.644 17.103 18.524 19.915 21.281 22.626

p = 6 18.796 20.272 21.714 23.128

p = 7 21.946

where ζ ′
np represents the p zeroes of the derivative of the spherical Bessel function Ĵ ′

n of order n .
A listing of a limited, but for most applications sufficient, number of ζ ′

np’s is found in Table 10-2.
The resonant frequencies are found using (10-63) and can be written as

(fr )
TMr

mnp = ζ ′
np

2πa
√

με

m = 0, 1, 2, . . . ≤ n
n = 1, 2, 3, . . .
p = 1, 2, 3, . . .

(10-64)

As with the TEr modes, there are numerous degeneracies among the modes since the resonant
frequencies determined by (10-64) are independent of m . For a given n , the order of degeneracy
is m = n .

According to the values of Table 10-2, the lowest ζ ′
np zeroes in ascending order, along with

the number of degenerate and total modes, are

n , p ζ ′
np Degenerate modes Total number of modes

n = 1, p = 1 ζ ′
11 = 2.744 m = 0, 1 (even, odd) 3

n = 2, p = 1 ζ ′
21 = 3.870 m = 0, 1, 2 (even, odd) 8

n = 3, p = 1 ζ ′
31 = 4.973 m = 0, 1, 2, 3 (even, odd) 15

n = 4, p = 1 ζ ′
41 = 6.062 m = 0, 1, 2, 3, 4 (even, odd) 24

n = 1, p = 2 ζ ′
12 = 6.117 m = 0, 1 (even, odd) 27

The lowest-order mode is the one found using n = 1, p = 1, and it has a three-fold degeneracy
[m = 0 (even), m = 1 (even), and m = 1 (odd)]. For these, (10-61) reduces to

(Ar )011 (even) = B011C3Ĵ1(βr r)P0
1 (cos θ) = B011C3Ĵ1

(
2.744

r

a

)
cos θ (10-65a)

(Ar )111 (even) = B111C3Ĵ1(βr r)P1
1 (cos θ) cos φ = −B111C3Ĵ1

(
2.744

r

a

)
sin θ cos φ

(10-65b)

(Ar )111 (odd) = B111D3Ĵ1(βr r)P1
1 (cos θ) sin φ = −B111D3Ĵ1

(
2.744

r

a

)
sin θ sin φ

(10-65c)
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Example 10-1

For a spherical cavity of a 3-cm radius and filled with air, determine the resonant frequencies (in
ascending order) of the first 11 modes (including degenerate modes).

Solution: According to (10-59a) and (10-64), using the values of ζnp and ζ ′
np from Tables 10-1 and

10-2, and taking into account the degeneracy of the modes in m as well as the even and odd forms in
φ, we can write the resonant frequencies of the first 11 modes as

1, 2, 3:
(fr )

TM
011 (even) = (fr )

TM
111 (even) = (fr )

TM
111 (odd)

= 2.744(30 × 109)

2π(3)
= 4.367 × 109 Hz

4, 5, 6, 7, 8:
(fr )

TM
021 (even) = (fr )

TM
121 (even) = (fr )

TM
121 (odd) = (fr )

TM
221 (even)

= (fr )
TM
221 (odd) = 3.870(30 × 109)

2π(3)
= 6.1593 × 109 Hz

9, 10, 11:
(fr )

TE
011 (even) = (fr )

TE
111 (even) = (fr )

TE
111 (odd)

= 4.493(30 × 109)

2π(3)
= 7.1508 × 109 Hz

10.4.3 Quality Factor Q

As has already been pointed, the Q of the cavity is probably one of its most important parameters,
and it is defined by (8-84). To derive the equation for the Q of any mode of a spherical cavity is
a most difficult task. However, it is instructive to consider that of the lowest (dominant) mode,
which here is any one of the three-fold degenerate modes TM011 (even), TM111 (even) or TM111

(odd). Let us consider the TM011 (even) mode.
For the TM011 (even) mode the potential function of (10-61) reduces to that of (10-65a), which

can be written as
(Ar )011 = B ′

011Ĵ1

(
2.744

r

a

)
cos θ (10-66)

Since the Q of the cavity is defined by (8-84), it is most convenient to find the stored energy
and dissipated power by using the magnetic field, since it has only one nonzero component (the
electric field has two).

The magnetic field components of the TM011 mode can be written using (10-28a) through
(10-28c) and (10-66) as

Hr = 0 (10-67a)

Hθ = 1

μ

1

r sin θ

∂Ar

∂φ
= 0 (10-67b)

Hφ = − 1

μ

1

r

∂Ar

∂θ
= B ′

011
1

μ

1

r
Ĵ1

(
2.744

r

a

)
sin θ (10-67c)

Therefore, at resonance, the total stored energy can be found using

W = 2We = 2Wm = 2

[
μ

4

∫∫∫
V

|H|2 dv

]
= μ

2

∫ 2π

0

∫ π

0

∫ a

0
|Hφ|2r2 sin θ dr dθ dφ (10-68)
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which, by substituting (10-67c), reduces to

W = |B ′
011|2
2μ

∫ 2π

0

∫ π

0

∫ a

0
Ĵ 2

1

(
2.744

r

a

)
sin3 θ dr dθ dφ

= |B ′
011|2
2μ

(2π)
4

3

∫ a

0
Ĵ 2

1

(
2.744

r

a

)
dr (10-68a)

The integral can be evaluated using the formula∫ a

0
Ĵ 2

1

(
2.744

r

a

)
dr = a

2

[
Ĵ 2

1 (2.744) − Ĵ0(2.744) Ĵ2(2.744)
]

(10-69)

where according to (3-94) or (10-31)

Ĵ1(2.744) = 2.744j1(2.744) = 2.744(0.3878) = 1.0640 (10-69a)

Ĵ0(2.744) = 2.744j0(2.744) = 2.744(0.1428) = 0.3919 (10-69b)

Ĵ2(2.744) = 2.744j2(2.744) = 2.744(0.2820) = 0.7738 (10-69c)

Thus, (10-69) reduces, using that βr = 2.744/a , to∫ a

0
Ĵ 2

1

(
2.744

r

a

)
dr = a

2
[(1.0640)2 + 0.3919(0.7738)] = a

2
(0.8288)

= a

2.744

(2.744)(0.8288)

2
= 1.137

βr

and (10-68a) to

W = |B ′
011|2
2μ

(2π)
4

3

1.137

βr
(10-70)

The power dissipated on the walls of the cavity can be found using

Pd = Rs

2

∫∫
©

S
Js • J∗

s ds (10-71)

where

Js = n̂ × H|r=a = −âr × âφHφ|r=a = âθHφ(r = a) = âθB ′
011

1

μ

1

a
Ĵ1(2.744) sin θ (10-71a)

Thus, (10-71) can be written as

Pd = Rs

2

∫ 2π

0

∫ π

0
|Hφ(r = a)|2a2 sin θ dθ dφ

= Rs

2μ2
|B ′

011|2Ĵ 2
1 (2.744)

∫ 2π

0

∫ π

0
sin3 θ dθ dφ

= |B ′
011|2

Rs

2μ2
(2π)

(
4

3

)
Ĵ 2

1 (2.744) = |B ′
011|2

Rs

2μ2
(2π)

(
4

3

)
(1.0640)2

Pd = |B ′
011|2

2μ2
1.132(2π)

(
4

3

)
Rs (10-72)
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Using (10-70) and (10-72), the Q of the cavity for the TMr
011 mode reduces to

Q = ωr
W

Pd
= ωr

|B ′
011|2
2μ

(2π)
4

3

1.137

βr

|B ′
011|2

2μ2
(2π)

4

3
1.132 Rs

= 1.137ωrμ

1.132βr Rs
= 1.004

ωrμ

ωr
√

μεRs

Q = 1.004

√
μ

ε

Rs
= 1.004

η

Rs
(10-73)

Example 10-2

Compare the Q values of a spherical cavity operating in the dominant TM011 (even) mode with those
of a circular cylinder and cubical cavities. The dimensions of each are such that the cylindrical and
spherical cavities are circumscribed by the cubical cavity.

Solution: According to (10-73), the Q of a spherical cavity of radius a operating in the dominant
TM011 (even) mode is given by

Q = 1.004
η

Rs

while that of a circular cavity of diameter d and height h operating in the dominant TM010 mode (for
h = d ) is given by (9-57), which reduces to

Q = 1.2025
η

Rs

1(
1 + d/2

h

) = 0.8017
η

Rs

For a rectangular cavity operating in the dominant TE101 mode the Q is given by (8-88), which for a
cubical geometry (a = b = c) reduces, according to (8-88a), to

Q = 1.1107
η

Rs

1(
1 + a/2

b

) = 1.1107

1.5

η

Rs
= 0.7405

η

Rs

Comparing these three expressions, it is evident that the Q of the spherical cavity is greater than that
of the circular cavity with h = d by

1.004 − 0.8017

0.8017
× 100% = 25.23%

and greater than that of the cubical cavity by

1.004 − 0.7405

0.7405
× 100% = 35.58%

This is expected since the spherical cavity does not possess any sharp corners and edges, which are
evident in the circular cavity and even more in the cubical cavity. Thus, the volume and surface area
of the spherical cavity are better utilized by the interior fields. It should be remembered that the Q of
a cavity is proportional to its volume and inversely proportional to its area.



PROBLEMS 569

10.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, and presentation of the material of this chapter.

• MATLAB computer program Sphere_Resonator: Computes the resonant characteristics of
a spherical resonator.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

10.1. In Section 11.7.1 it is shown that the
magnetic vector potential for an infinites-
imal electric dipole of Figure 11-23a and
Example 6-3 is given by (11-209)

A(1)
z = −âz j

μβIe	�

4π
h(2)

0 (βr)

where h(2)
0 (βr) is the spherical Hankel func-

tion of order zero. Assuming that two such

dipoles of equal amplitude, but 180◦ out of
phase, are displaced along the x axis a dis-
tance s apart, as shown in Figure P10-1. The
total magnetic potential can be written fol-
lowing a procedure outlined in [1] as

At
z = A(1)

z

(
x − s

2
, y , z

)
−A(1)

z

(
x + s

2
, y , z

) s→0� −s
∂A(1)

z

∂x
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z

s/2

–Ie

Ie

s/2

y

x

q

f

#2

#1

Figure P10-1

Show that the total magnetic potential At
z

can be reduced to

At
z

s→0� j
μβ2sIe	�

4π
h(2)′

0 (βr) sin θ cos φ

� +j
μβ2sIe	�

4π
h(2)

1 (βr)P1
1 (cos θ) cos φ

where ′ ≡ ∂/∂(βr).

10.2. Following the procedure of Problem 10.1,
show that when the infinitesimal dipoles
are displaced along the y axis, as shown in
Figure P10-2, the total magnetic potential
can be written as

At
z

s→0� j
μβ2sIe	�

4π
h(2)

1 (βr)P1(cos θ) sin φ

q

z

y

x

f

s/2s/2

Figure P10-2

10.3. Following the procedure of Problem 10.1,
show that when the infinitesimal dipoles
are displaced along the z axis, as shown in
Figure P10-3, the total magnetic potential
can be written as

At
z

s→0� j
μβ2sIe	�

4π
h(2)

1 (βr)P1(cos θ)

z

y

x

s/2

s/2

Figure P10-3

10.4. Derive expressions for the electric and
magnetic field components, in terms of Fz

of (10-1b), that are TEz . Fz should rep-
resent a solution to the scalar Helmholtz
equation in spherical coordinates.

10.5. Derive expressions for the electric and
magnetic field components, in terms of Az

of (10-2a), that are TMz . Az should rep-
resent a solution to the scalar Helmholtz
equation in spherical coordinates.

10.6. For problems with sources of J �= 0 and
M = 0, show that the electric and magnetic
fields and the vector potential A should sat-
isfy (10-15a) through (10-15d).

10.7. Show that using (10-25a) and (10-25b)
for TMr modes in spherical coordinates
reduces (10-16f) to (10-26).

10.8. By applying the boundary conditions of
(10-44a) or (10-44b) on the electric field
components of (10-27a) or (10-27c), where
the vector potential Ar is given by (10-43),
show that the eigenvalues of n are obtained
as solutions to (10-45).

10.9. Use Maxwell’s equations

∇ × E = −jωμH

∇ × H = jωεE

and assume TEM modes for the biconical
antenna of Figure 10-1, these two equations
reduce to only Eθ and Hφ components,
each independent of φ. Then show that the
Hφ component must satisfy the partial dif-
ferential equation

∂2

∂r2
(rHφ) = −β2(rHφ)

whose solution must take the form

Hφ = H0

sin θ

e−jβr

r
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whereas that of Eθ must then be written
as

Eθ = ηHφ = η
H0

sin θ

e−jβr

r

10.10. Show that by using the electric and mag-
netic field components of Problem 10.9, the
power radiated by the biconical antenna of
Figure 10-1 reduces to

Prad =
∫∫
© Sav • ds = 2πη|H0|2 ln

[
cot

(α

2

)]
where Sav represents the average power
density and α = α1 = π − α2.

10.11. By using the magnetic field from Prob-
lem 10.9, show that the current on the
surface of the cone a distance r from the
origin is equal to

I (r) = 2πH0e−jβr

Evaluating the current at the origin I (r =
0), and using the definition for the radiation
resistance in terms of the radiated power
from Problem 10.10 and the current at the
origin, show that the radiation resistance
reduces to

Rr = 2Prad

|I (r = 0)|2 = η

π
ln

[
cot

(α

2

)]
where α = α1 = π − α2. This is the same
as the characteristic impedance of (10-52a)
for a symmetrical biconical transmission
line.

10.12. Calculate the included angle α = α1 =
π − α2 of a symmetrical biconical trans-
mission line so that its characteristic
impedance is:
(a) 300 ohms.
(b) 50 ohms.

10.13. For inside (0 ≤ α ≤ π/2, 0 ≤ θ ≤ α) or
outside (π/2 ≤ α ≤ π , 0 ≤ θ ≤ α) cones
shown, respectively, in Figures P10-13a
and b for TEr modes:
(a) Show that the electric vector potential

reduces to

(Fr )mnp = A2Pm
n (cos θ)

[
C1Ĥ (1)

n (βr)

+D1Ĥ (2)
n (βr)

] × [C3 cos(mφ)

+D3 sin(mφ)] , m = 0, 1, 2, . . .

(b) Show that the eigenvalues for n are
obtained as solutions to

dPm
n (cos θ)

dθ

∣∣∣∣
θ=α

= 0

a

a

q
qz

z

y

y

x

x

(a) inside (b) outside

rr

Figure P10-13

10.14. Repeat Problem 10.13 for TMr modes.
(a) Show that the magnetic vector poten-

tial reduces to

(Ar )mnp = A2Pm
n (cos θ)

[
C1Ĥ (1)

n (βr)

+D1Ĥ (2)
n (βr)

] × [C3 cos(mφ)

+D3 sin(mφ)] , m =0, 1, 2, . . .

(b) Show that the eigenvalues for n are
obtained as solutions to

Pm
n (cos θ)

∣∣
θ=α

= 0

10.15. For the inside (0 ≤ φ ≤ α) or outside
(α ≤ φ ≤ 2π) infinite-dimensions wedge
of Figure P10-15, derive the reduced vec-
tor potential and allowable eigenvalues for
TEr modes.

z

x

f

a

Figure P10-15

10.16. Repeat Problem 10.15 for TMr modes.

10.17. A lossless dielectric sphere of radius a
and dielectric constant εr is immersed into
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a free-space medium with an established
static electric field of

Ei = âz Eo

where Eo is a constant. Using the spherical
geometry and coordinates of Figures 10-3
and 11-28, show that the internal (in) and
external (ex ) electric field components to
the sphere are given, respectively, by

E in
x = E in

y = 0; E in
z = E0

(
3

εr + 2

)
E ex

x = E03

(
εr − 1

εr + 2

)
a3

r5
xz

E ex
y = E03

(
εr − 1

εr + 2

)
a3

r5
yz

E ex
z = E0 + E0

a3

r5

(
2z 2 − x2 − y2)

10.18. Repeat Problem 10.17 when a lossless
magnetic sphere of radius a and relative
permittivity μr is immersed into a free-
space medium with an established static
magnetic field of

Hi = âz Ho

where Ho is a constant. Derive the mag-
netic field components internal and exter-
nal to the sphere in a form similar to those
of the electric field of Problem 10.17.

10.19. Design a spherical cavity (find its radius in
cm) so that the resonant frequency of the
dominant mode is 1 GHz and that of the
next higher-order mode is approximately
1.41 GHz. The lossless medium within the
sphere has electric constitutive parameters
of εr = 2.56 and μr = 1.

10.20. Assume a spherical cavity with 2-cm radius
and filled with air.
(a) Determine the resonant frequency of

the dominant degenerate modes.
(b) Find the bandwidth over which the

dominant degenerate modes operate
before the next higher-order degener-
ate modes.

(c) Determine the dielectric constant that
must be used to fill the sphere to reduce
the resonant frequency of the dominant
degenerate modes by a factor of 2.

10.21. Design a spherical cavity totally filled with
a lossless dielectric material so that its Q

at 10 GHz, while operating in its dominant
mode, is 10,000. The surface of the cavity
is made of copper with a conductivity of
σ = 5.7 × 107 S/m. Determine the dielec-
tric constant of the medium that must be
used to fill the cavity.

10.22. A spherical cavity, because of its geomet-
rical symmetry, is used to measure the
dielectric properties of material samples,
which match its geometry. To accomplish
this, it is desired that the cavity is operating
in the dominant mode and has a very high
quality factor. The cavity is constructed of
copper, (σ = 5.76 × 107 S/m).

(a) Assuming initially the cavity is filled
with air and the desired quality factor
is 10,000, determine the:

• Resonant frequency (in GHz).
• Radius (in cm) of the cavity.

(b) While maintaining the same dimensions
as in part (a), it is desired to completely
fill the cavity with a lossless dielectric
material in order to reduce the quality
factor of the cavity of part (a) by a factor
of 3. Determine the:
• Dielectric constant of the material

that must be used to accomplish this.
• New resonant frequency (in GHz).

10.23. Derive an expression for the Q of a spher-
ical cavity when the fields within it are
those of the dominant TM111 (even) mode.
Compare the expression with (10-73).

10.24. Derive an expression for the Q of a spher-
ical cavity when the fields within it are
those of the dominant TM111 (odd) mode.
Compare the expression with (10-73).

10.25. Determine the Q of the dominant mode of
a spherical cavity of 2-cm radius when the
medium within the cavity is:
(a) air.
(b) polystyrene with a dielectric constant

of 2.56.
The cavity is made of copper whose con-
ductivity is 5.76 × 107 S/m. Verify with the
MATLAB program Sphere_Resonator.

10.26. It is desired to design a spherical cavity
whose Q at the resonant frequency of the
dominant mode is 10,000. Assume that the
cavity is filled with air and it is made
of copper (σ = 5.76 × 107 S/m). Then
determine the resonant frequency of the
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dominant mode and the radius (in cm) of
the cavity. Also find the dielectric con-
stant of the medium that must be used to
fill the cavity to reduce its Q by a factor
of 3. Verify with the MATLAB program
Sphere_Resonator.

10.27. A spherical cavity of radius a , as shown in
Figure 10-3, is filled with air. Its surface is
made of a very thin layer of Perfect Mag-
netic Conductor (PMC). Determine the:
(a) Dominant TEr modes. Identify them

properly by indicating the appropriate
indices (mnp). Must make a statement
to justify the answer(s).

(b) Resonant frequency of the dominant
TEr mode of the cavity.

10.28. Repeat Problem 10.27 for dominant TMr

modes.

10.29. A dielectric spherical cavity, of a geom-
etry shown in Figure 10-3, is made of a
dielectric material with εr � 1.
(a) Identify the approximate dominant

TEr
mnp .

(b) Compute the resonant frequency for
a = 3 cm and εr = 81.

10.30. Repeat Problem 10.29 for TMr
mnp .

10.31. Assume a hemi-spherical cavity of Figure
P10-31 with radius a .
(a) Determine the dominant mode and the

expression for its resonant frequency.
(b) Show that the Q of the dominant mode

is
Q = 0.574

η

Rs

(c) Compare the Q of part (b) with that
of the spherical cavity, and those of
cylindrical and square-based rectangu-
lar cavities with the same height-to-
diameter ratios.

a r

z

q

Figure P10-31

10.32. For a hemi-spherical PEC, air-filled cavity
of radius a , as shown in Figure P10-32,
determine the:
(a) Dominant TMr

mnp mode(s); identify
them properly.

(b) Reduced/simplified vector potential.
Justify it.

(c) Lowest resonant frequency (in GHz)
when a = 3 cm.

a
r

z

q

Figure P10-32

10.33. Repeat Problem 10.32 for TEr
mnp modes.

10.34. A hemi-spherical dielectric resonator, used
in microwave integrated circuit (MIC)
design, is comprised of a PEC ground
plane covered with a dielectric half sphere
of radius a , as shown in Figure P10-34.
Assuming the dielectric constant of the
material is much greater than unity (εr �
1):
(a) Identify all the approximate TEr

mnp
mode(s) with the lowest resonant fre-
quency.

(b) Compute the resonant frequencies (in
GHz) when a = 3 cm and εr = 81.

a r

z

er >>1

q

PEC

Figure P10-34

10.35. Repeat Problem 10.34 for TMr
mnp .
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10.36. A hemi-spherical PMC cavity, of radius a
shown in Figure P10-36, is filled with air.
Determine the:

PMCair

x

y

z

a

Figure P10-36

(a) Dominant TEr
mnp mode(s); identify

them properly by indicating the appro-
priate indices (mnp).

(b) Reduced/simplified vector potential for
the dominant mode(s). Justify it.

(c) Lowest resonant frequency (in GHz)
when a = 3 cm.

10.37. Repeat Problem 10.36 for TMr
mnp mode(s).



Balanis c11.tex V2 - 11/22/2011 3:50 P.M. Page 575

CHAPTER 11
Scattering

11.1 INTRODUCTION

Previously, we have considered wave propagation in unbounded media, semi-infinite media
forming planar interfaces, and conducting, dielectric, and surface waveguides. Although wave
propagation in unbounded media is somewhat idealistic, it serves as a basic model for examining
wave behavior while minimizing mathematical complexities. In general, however, wave propaga-
tion must be analyzed when it accounts for the presence of other structures (scatterers), especially
when they are in proximity to the wave source and/or receiver.

In this chapter we want to examine wave propagation in the presence of scatterers of various
geometries (planar, cylindrical, spherical). This is accomplished by introducing to the total field
an additional component, referred to here as the scattered field , due to the presence of scatterers.
The scattered field (Es , Hs) must be such that when it is added, through superposition, to the
incident (direct) field (Ei , Hi ), the sum represents the total (Et , Ht ) field, that is,

Et = Ei + Es (11-1a)

Ht = Hi + Hs (11-1b)

The incident (direct) field Ei , Hi will represent the total field produced by the sources in the
absence of any scatterers.

The direct, scattered, and total fields will be obtained using various techniques. In general,
geometrical optics (GO), physical optics (PO), modal techniques (MT), integral equations (IE),
and diffraction theory [such as the geometrical theory of diffraction (GTD) and physical theory of
diffraction (PTD)] can be used to analyze such problems. Typically, some of the problems are more
conveniently analyzed using particular method(s). The fundamentals of physical optics were intro-
duced in Chapter 7 and modal techniques were utilized in Chapters 8, 9, and 10 to analyze waveg-
uide wave propagation. Integral equations are very popular, and they are introduced in Chapter 12.
Geometrical optics and diffraction techniques are introduced and applied in Chapter 13.

In this chapter we want to examine scattering primarily by conducting objects. Each scattering
problem will be analyzed using image theory, physical optics, or modal techniques. The con-
veniences and limitations of the applied method to each problem, as well as those of the other
methods, will be stated.

11.2 INFINITE LINE-SOURCE CYLINDRICAL WAVE RADIATION

Before we examine the radiation and scattering of sources placed in the presence of scatterers, it
is instructive to obtain the fields radiated by an infinite line source (both electric and magnetic)
in an unbounded medium. The reason for doing this is that the infinite line source will serve as

575



Balanis c11.tex V2 - 11/22/2011 3:50 P.M. Page 576

576 SCATTERING

y y

x x

f f′ f

ρ′

R = ρ − ρ′

ρρ

Ie

Ie

z

(a) (b)

z

Figure 11-1 Geometry and coordinate system for an infinite electric line source. (a) At origin. (b) Offset.

one type of source for which we will examine radiation properties in the presence of scatterers;
its radiation in an unbounded medium will significantly aid in the solution of such problems.

11.2.1 Electric Line Source

The geometry of the line source is that of Figures 11-1a and 11-1b where it is assumed that its
length extends to infinity and the electric current is represented by

Ie(z
′) = âz Ie (11-2)

where Ie is a constant. Since the current is directed along the z axis, the fields radiated by the
line source are TMz and can be obtained by letting

F = 0

A = âz Az (ρ, φ, z )

= âz
[
C1H (1)

m (βρρ) + D1H (2)
m (βρρ)

]
×[C2 cos(mφ) + D2 sin(mφ)](A3e−jβz z + B3e+jβz z ) (11-3)

Since the line source is infinite in extent, the fields are two-dimensional (no z variations) so that

βz = 0 ⇒ β2
ρ + β2

z = β2 ⇒ βρ = β (11-4)

In addition, since the waves radiate only in the outward direction and we choose the lowest-order
mode, then

C1 = 0 (11-5a)

m = 0 (11-5b)

Thus, (11-3) reduces to
A = âz Az (ρ) = âz A0H (2)

0 (βρ) (11-6)
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whose corresponding electric and magnetic fields can be written using (6-70) as

Eρ = −j
1

ωμε

∂2Az

∂ρ∂z
= 0 (11-6a)

Eφ = −j
1

ωμε

1

ρ

∂2Az

∂φ∂z
= 0 (11-6b)

Ez = −j
1

ωμε

(
∂2

∂z 2
+ β2

)
Az = −jωA0H (2)

0 (βρ) (11-6c)

Hρ = 1

μ

1

ρ

∂Az

∂φ
= 0 (11-6d)

Hφ = − 1

μ

∂Az

∂ρ
= −A0

μ
H (2)′

0 (βρ) = A0
β

μ
H (2)

1 (βρ) (11-6e)

Hz = 0 (11-6f)

where ′ ≡ ∂/∂ρ.
The constant A0 can be obtained by using

Ie = lim
ρ→0

∮
C

H • dl = lim
ρ→0

∫ 2π

0
(âφHφ) • (âφρ dφ) = lim

ρ→0

∫ 2π

0
Hφρ dφ (11-7)

Since the integration of (11-7) must be performed in the limit as ρ → 0, it is convenient to
represent the Hankel function of (11-6e) by its asymptotic expansion for small arguments. Using
(IV-12), we can write that

H (2)
1 (βρ) = J1(βρ) − jY1(βρ)

βρ→0� βρ

2
+ j

2

π

(
1

βρ

)
βρ→0� j

2

π

(
1

βρ

)
(11-8)

Therefore, (11-7) reduces, using (11-6e) and (11-8), to

Ie = lim
ρ→0

∫ 2π

0

[
A0

β

μ
H (2)

1 (βρ)

]
ρ dφ � jA0

2

πμ

∫ 2π

0

1

ρ
ρ dφ = jA0

4

μ
(11-9)

or
A0 = −j

μ

4
Ie (11-9a)

Thus, the nonzero electric and magnetic fields of the electric line source reduce to

Ez = −Ie
ωμ

4
H (2)

0 (βρ) = −Ie
β2

4ωε
H (2)

0 (βρ) (11-10a)

Hφ = −jIe
β

4
H (2)

1 (βρ) (11-10b)

Each of the field components is proportional to a Hankel function of the second kind whose
argument is proportional to the distance from the source to the observation point. If the source is
removed from the origin and it is placed as shown in Figure 11-1b, (11-10a) and (11-10b) can
be written as

Ez = −Ie
β2

4ωε
H (2)

0 (βR) = −Ie
β2

4ωε
H (2)

0 (β|ρ − ρ′|) (11-11a)

Hψ = −j Ie
β

4
H (2)

1 (βR) = −j Ie
β

4
H (2)

1 (β|ρ − ρ′|) (11-11b)
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where

R = |ρ − ρ′| =
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos(φ − φ′) (11-11c)

ψ = circumferential angle around the source

For observations at far distances such that βρ → large, the Hankel functions in (11-10a) and (11-
10b) can be approximated by their asymptotic expansions for large argument,

H (2)
0 (βρ)

βρ→large�
√

2j

πβρ
e−jβρ (11-12a)

H (2)
1 (βρ)

βρ→large� j

√
2j

πβρ
e−jβρ (11-12b)

Thus, (11-10a) and (11-10b) can be simplified for large arguments to

Ez = −Ie
β2

4ωε
H (2)

0 (βρ)
βρ→large� −ηIe

√
jβ

8π

e−jβρ

√
ρ

(11-13a)

Hφ = −jIe
β

4
H (2)

1 (βρ)
βρ→large� Ie

√
jβ

8π

e−jβρ

√
ρ

(11-13b)

The ratio (11-13a) to (11-13b) is defined as the wave impedance, which reduces to

Z +ρ
w = Ez

−Hφ

= η (11-14)

Since the wave impedance is equal to the intrinsic impedance, the waves radiated by the line
source are TEMρ .

Example 11-1

For a displaced electric line source (at ρ ′, φ′), as shown in Figure 11-1b, of constant current Ie , derive
(in terms of the cylindrical coordinates ρ, ρ ′, φ, φ′), the:

a. Vector potential Az .

b. Electric field components (Eρ , Eφ , Ez ).
c. Magnetic field components (Hρ , Hφ , Hz ).

This is an alternate solution to the expressions of (11-11a) through (11-11c).

Solution: Equations (11-6) through (11-10b) are correct when the electric field line source is located
at the origin of the coordinate system, as shown in Figure 11-1a . However, when the electric line
source is offset at point (ρ ′, φ′, z ), as shown in Figure 11-1b, the potential of (11-6) can be written as

A = âz Az
(
β|ρ − ρ′|) = âz AoH (2)

o

(
β|ρ − ρ′|) = âz AoH (2)

o

(
β
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)
)

where Ao = −j
μ

4
Ie

The electric field of (6-17) or (6-70) can then be written as

Ez = −j
1

ωμε
β2Az = −jωAz = −jωAoH (2)

o

(
β

√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

)
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Ez = −Ie
ωμ

4
H (2)

o

(
β|ρ − ρ′|)

where |ρ − ρ′| = R =
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

The magnetic field can now be written based on (6-4a) and (6-70) as

H = 1

μ
∇ × A = âρ

1

μ

1

ρ

∂Az

∂φ
+ âφ

(
− 1

μ

∂Az

∂ρ

)

Hρ = 1

μ

1

ρ

∂Az

∂φ

Hφ = − 1

μ

∂Az

∂ρ

The individual magnetic field components of Hρ and Hφ can be written using

d

dx
H (2)

0 (αx) = −αH (2)
1 (αx)

and the following derivatives

∂Az

∂φ
= ∂R

∂φ

∂Az

∂R

∂R

∂φ
= ∂

∂φ

[√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

]
= ρρ ′ sin

(
φ − φ′)√

ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

∂Az

∂R
= ∂

∂R

[
AoH (2)

o

(
β

√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

)]
∂Az

∂R
= −βAoH (2)

1

(
β

√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

)
∂Az

∂ρ
= ∂R

∂ρ

∂Az

∂R

∂R

∂ρ
= ∂

∂ρ

[√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

]
= ρ − ρ ′ cos

(
φ − φ′)√

ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

∂Az

∂R
= ∂

∂R

[
AoH (2)

o

(
β

√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

)]
∂Az

∂R
= −βAoH (2)

1

(
β

√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

)

as

Hρ = 1

μ

1

ρ

∂Az

∂φ
= −Ao

βρ ′ sin
(
φ − φ′)

μ

H (2)
1

(
β
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)
)

√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)
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Hρ = jIe
βρ ′ sin

(
φ − φ′)

4

H (2)
1

(
β

∣∣ρ − ρ′∣∣)
|ρ − ρ′|

Hφ = − 1

μ

∂Az

∂ρ
= −Ao

β
[
ρ − ρ ′ cos

(
φ − φ′)]

μ

H (2)
1

(
β
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)
)

√
ρ2 + (ρ ′)2 − 2ρρ ′ cos (φ − φ′)

Hφ = − 1

μ

∂Az

∂ρ
= jIe

β
[
ρ − ρ ′ cos

(
φ − φ′)]

4

H (2)
1

(
β

∣∣ρ − ρ′∣∣)
|ρ − ρ′|

11.2.2 Magnetic Line Source

Although magnetic sources as presently known are not physically realizable, they are often used
to represent virtual sources in equivalent models. This was demonstrated in Chapter 7, Sections
7.7 and 7.8, where the volume and surface fields equivalence theorems were introduced. Magnetic
sources can be used to represent radiating apertures.

The fields generated by magnetic sources can be obtained by solutions to Maxwell’s equations
or the wave equation (subject to the appropriate boundary conditions), or by using the duality
theorem of Chapter 7, Section 7.2, once the solution to the same problem but with an electric
source excitation is known.

Then, using the duality theorem of Section 7.2, the field generated by an infinite magnetic
line source of constant current Im can be obtained using Tables 7-1 and 7-2, (11-10a) through
(11-10b), and (11-13a) through (11-13b). These can then be written as

Eφ = +jIm
β

4
H (2)

1 (βρ)
βρ→large� −Im

√
jβ

8π

e−jβρ

√
ρ

(11-15a)

Hz = −Im
β2

4ωμ
H (2)

0 (βρ)
βρ→large� −1

η
Im

√
jβ

8π

e−jβρ

√
ρ

(11-15b)

which, when the sources are displaced from the origin, can also be expressed according to (11-11a)
and (11-11b) as

EΨ = +j Im
β

4
H (2)

1 (β|ρ − ρ′|) (11-16a)

Hz = −Im
β2

4ωμ
H (2)

0 (β|ρ − ρ′|) (11-16b)

11.2.3 Electric Line Source Above Infinite Plane Electric Conductor

When an infinite electric line source is placed at a height h above an infinite flat electric conductor,
as shown in Figure 11-2a , the solution for the field components must include the presence of the
conducting plane. This can be accomplished by using Maxwell’s equations or the wave equation
subject to the radiation conditions at infinity and boundary condition along the air-conductor
interface. Instead of doing this, the same solution is obtained by introducing an equivalent model
which leads to the same fields in the region of interest. Since the fields below the interface (in the
electric conductor, y < 0) are known (they are zero), the equivalent model should be valid and
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Figure 11-2 Electric line source above a flat and infinite electric ground plane. (a) Line source.
(b) Equivalent (near field). (c) Equivalent (far field).
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leads to the same fields as the actual physical problem on or above the interface (y ≥ 0). In this
case, as long as the equivalent model satisfies the same boundary conditions as the actual physical
problem along a closed surface, according to the uniqueness theorem of Section 7.3, the solution
of the equivalent model will be unique and be the same as that of the physical problem. For
this problem, the closed surface that will be chosen is that of the air-conductor interface (y = 0),
which extends on the range −∞ ≤ x ≤ +∞.

The equivalent problem of Figure 11-2a is that of Figure 11-2b where the ground plane
has been replaced by an equivalent source (usually referred to as image or virtual source or
caustic). According to the theory of Section 7.4, the image source is introduced to account
for the reflections from the surface of the ground plane. The magnitude, phase, polarization,
and position of the image source must be such that the boundary conditions of the equivalent
problem of Figure 11-2b along −∞ ≤ x ≤ +∞ are the same as those of the physical problem of
Figure 11-2a . In this situation the image must have: the same magnitude as the actual source, its
phase must be 180◦ out of phase from the actual source, it must be placed below the interface
at a depth h(y = −h) along a line perpendicular to the interface and passing through the actual
source, and its length must also be parallel to the z axis. Such a system configuration, as shown in
Figure 11-2b, does lead to zero tangential electric field along −∞ ≤ x ≤ +∞, which is identical
to that of Figure 11-2a along the air-conductor interface.

Therefore, according to Figures 11-2a and 11-2b and (11-13a), the total electric field is equal
to

Et = Ei + Er =
⎧⎨⎩ − âz

β2Ie

4ωε

[
H (2)

0 (βρi ) − H (2)
0 (βρr )

]
, y ≥ 0

0, y < 0

(11-17a)

(11-17b)

which, for observations at large distances, as shown by Figure 11-2c, reduces using the asymptotic
expansion (11-12a) to

Et = Ei + Er =

⎧⎪⎨⎪⎩ − âz ηIe

(
e−jβρi

√
ρi

− e−jβρr

√
ρr

)√
jβ

8π
, y ≥ 0

0, y < 0

(11-18a)

(11-18b)

According to Figure 11-2c, for observations made at large distances (ρ � h)

ρi � ρ − h cos
(π

2
− φ

)
= ρ − h sin(φ)

ρr � ρ + h cos
(π

2
− φ

)
= ρ + h sin(φ)

⎫⎪⎬⎪⎭ for phase variations (11-19a)

ρi � ρr � ρ for amplitude variations (11-19b)

These approximations are usually referred to in antenna and scattering theory as the far-field
approximations [1]. Using (11-19a) and (11-19b), we can reduce (11-18a) and (11-18b) to

Et = Ei + Er =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− âz ηIe

√
jβ

8π

(
e+jβh sin φ − e−jβh sin φ

) e−jβρ

√
ρ

= −âz jηIe

√
jβ

2π
sin (βh sin φ)

e−jβρ

√
ρ

y ≥ 0

0 y < 0

(11-20a)

(11-20b)
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Figure 11-3 Radiation patterns of a line source above an infinite electric ground plane for h = 0.25λ0

and 0.5λ0.

Normalized amplitude patterns (in decibels) for a source placed at a height of h = 0.25λ and
0.5λ above the strip are shown in Figure 11-3.

11.3 PLANE WAVE SCATTERING BY PLANAR SURFACES

An important parameter in scattering is the electromagnetic scattering by a target that is usu-
ally represented by its echo area or radar cross section (RCS) (σ ). The echo area or RCS is
defined as “the area intercepting the amount of power that, when scattered isotropically, produces
at the receiver a density that is equal to the density scattered by the actual target” [1]. For a
two-dimensional target the scattering parameter is referred to as the scattering width (SW) or
alternatively as the radar cross section per unit length. In equation form the scattering width and
the radar cross section (σ ) of a target take the form of

Scattering Width: Two-Dimensional Target

σ2-D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
ρ→∞

[
2πρ

S s

S i

]
lim

ρ→∞

[
2πρ

|Es |2
|Ei |2

]
lim

ρ→∞

[
2πρ

|Hs |2
|Hi |2

]

(11-21a)

(11-21b)

(11-21c)
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Radar Cross Section: Three-Dimensional Target

σ3-D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
r→∞

[
4πr2 S s

S i

]
lim

r→∞

[
4πr2 |Es |2

|Ei |2
]

lim
r→∞

[
4πr2 |Hs |2

|Hi |2
]

(11-22a)

(11-22b)

(11-22c)

where ρ, r = distance from target to observation point
S s , S i = scattered, incident power densities
Es , Ei = scattered, incident electric fields
Hs , Hi = scattered, incident magnetic fields

For normal incidence, the two- and three-dimensional fields, and scattering width and radar cross
sections for a target of length � are related by [2-4]

E3-D �
(

E2-D
�ejπ/4

√
λρ

)
ρ=r

(11-22d)

σ3-D � σ2-D
2�2

λ
(11-22e)

The unit of the two-dimensional SW is length (meters in the MKS system), whereas that of the
three-dimensional RCS is area (meters squared in the MKS system). A most common reference
is one meter for the two-dimensional SW and one meter squared for the three-dimensional RCS.
Therefore, a most common designation is dB/m (or dBm) for the two-dimensional SW and
dB/(square meter) (or dBsm) for the three-dimensional RCS.

When the transmitter and receiver are at the same location, the RCS is usually referred to
as monostatic (or backscattered ), and it is referred to as bistatic when the two are at different
locations. Observations made toward directions that satisfy Snell’s law of reflection are usually
referred to as specular. Therefore, the RCS of a target is a very important parameter which
characterizes its scattering properties. A plot of the RCS as a function of the space coordinates
is usually referred to as the RCS pattern. The definitions (11-21a) through (11-22c) all indicate
that the SW and RCS of targets are defined under plane wave, that in practice can only be
approximated when the target is placed in the far field of the source (at least 2D2/λ) where D is
the largest dimension of the target [1].

In this section, physical optics (PO) techniques will be used to analyze the scattering from
conducting strips and plates of finite width, neglecting edge effects. The edge effects will be
considered in Chapters 12 to 14, where, respectively, moment method and geometrical theory of
diffraction techniques will be utilized. Physical optics techniques are most accurate at specular
directions [5].

11.3.1 TMz Plane Wave Scattering from a Strip

Let us assume that a TMz uniform plane wave is incident upon an electric conducting strip of
width w and infinite length, as shown in Figures 11-4a and 11-4b. The incident electric and
magnetic fields can be written as

Ei = âz E0ejβ(x cos φi +y sin φi ) (11-23a)

Hi = E0

η
(−âx sin φi + ây cos φi )e

jβ(x cos φi +y sin φi ) (11-23b)
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Figure 11-4 Uniform plane wave incident on a finite width strip. (a) Finite width strip. (b) TMz polar-
ization. (c) TEz polarization.

where E0 is a constant, and it represents the magnitude of the incident electric field. In
Figures 11-4a and 11-4b the angle φi , is shown to be greater than 90◦. The reflected fields can
be expressed as

Er = âz �⊥E0e−jβ(x cos φr +y sin φr ) (11-24a)

Hr = �⊥E0

η
(âx sin φr − ây cos φr )e

−jβ(x cos φr +y sin φr ) (11-24b)

where φr is the reflection angle as determined by enforcing the boundary conditions along the
interface, assuming an interface of infinite extent. For the finite-width strip the reflection angle
φr is not the same as the scattering angle φs(φr �= φs). The two coincide for an infinite-width
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strip when geometrical optics and physical optics reduce to each other. Thus, we use geometrical
optics to determine the reflection coefficient on the surface of the finite-width strip, and
then apply physical optics to find the scattered fields. According to (5-17a) and (5-15a), the
reflection coefficient for a perfectly conducting surface is equal to �⊥ = −1 and φr = π − φi .
Thus, (11-24a) and (11-24b) reduce to

Er = −âz E0ejβ(x cos φi −y sin φi ) (11-25a)

Hr = E0

η
(−âx sin φi − ây cos φi )e

jβ(x cos φi −y sin φi ) (11-25b)

Using physical optics techniques of (7-54), the current density induced on the surface of the
strip can be written as

Js = n̂ × Ht | y=0
x=x ′

= n̂ × (Hi + Hr ) | y=0
x=x ′

= 2n̂ × Hi | y=0
x=x ′

= ây
2E0

η
× (−âx sin φi + ây cos φi )e

jβx ′ cos φi

Js = âz
2E0

η
sin φi e

jβx ′ cos φi (11-26)

and the far-zone scattered field can be found using (6-96a), (6-101a), and (6-101b) or

A = μ

4π

∫ ∫
S

Js(x
′, y ′, z ′)

e−jβR

R
ds ′ (11-27a)

EA � −jωA (for θ and φ components only) (11-27b)

HA � 1

η
âr × EA = −j

ω

η
âr × A (for θ and φ components only) (11-27c)

where

R =
√

(x − x ′)2 − (y + y ′)2 + (z − z ′)2 =
√

(|ρ − ρ′|)2 + (z − z ′)2 (11-27d)

Substituting (11-26) into (11-27a) and using (11-27d), we can write that

A = âz
μE0

2πη
sin φi

∫ w

0

⎧⎨⎩
∫ +∞

−∞

exp
[
−jβ

√
(|ρ − ρ′|)2 + (z − z ′)2

]
√

(|ρ − ρ′|)2 + (z − z ′)2
dz ′

⎫⎬⎭ ejβx ′ cos φi dx ′

(11-28)

Since the integral with the infinite limits can be represented by a Hankel function of the second
kind of zero order ∫ +∞

−∞

e−jα
√

x2+t2

√
x 2 + t2

dt = −jπH (2)
0 (αx) (11-28a)

(11-28) can be reduced to

A = −âz j
μE0

2η
sin φi

∫ w

0
H (2)

0 (β|ρ − ρ′|)ejβx ′ cos φi dx ′ (11-28b)

For far-zone observations

|ρ − ρ′| =
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos(φs − φ′)
ρ � ρ ′

�
√

ρ2 − 2ρρ ′ cos(φs − φ′)
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|ρ − ρ′| ρ�ρ′
� ρ

√
1 − 2

(
ρ ′

ρ

)
cos(φs − φ′)

ρ�ρ′
� ρ

[
1 −

(
ρ ′

ρ

)
cos(φs − φ′)

]
|ρ − ρ′| ρ�ρ′

� ρ − ρ ′ cos(φs − φ′) (11-29)

Since the source (here the current density) exists only over the width of the strip that according
to Figure 11-4 lies along the x axis, then ρ ′ = x ′ and φ′ = 0. Thus, for far-field observations
(11-29) reduces to

|ρ − ρ′| �
{

ρ − ρ ′ cos(φs − φ′) = ρ − x ′ cos φs for phase terms

ρ for amplitude terms

(11-29a)

(11-29b)

In turn the Hankel function in the integrand of (11-28b) can be expressed, using (11-29a) and
(11-29b), as

H (2)
0 (β|ρ − ρ′|) ρ�ρ′

�
√

2j

πβρ
e−jβ(ρ−x ′ cos φs ) =

√
2j

πβ

e−jβρ

√
ρ

ejβx ′ cos φs (11-30)

Substituting (11-30) into (11-28b) reduces it to

A � − âz j
μE0

2η

√
2j

πβ

e−jβρ

√
ρ

sin φi

∫ w

0
ejβx ′(cos φs +cos φi )dx ′

A � − âz j
μwE0

η

√
j

2πβ
ej (βw/2)(cos φs +cos φi )

×

⎧⎪⎪⎨⎪⎪⎩sin φi

⎡⎢⎢⎣ sin

[
βw

2
(cos φs + cos φi )

]
βw

2
(cos φs + cos φi )

⎤⎥⎥⎦ e−jβρ

√
ρ

⎫⎪⎪⎬⎪⎪⎭ (11-31)

Therefore, the far-zone scattered spherical components of the electric and magnetic fields of
(11-27b) and (11-27c) can be written, using (11-31) and (II-12), as

E s
θ � jωAz sin θs = ωE0

√
jβ

2π
ej (βw/2)(cos φs +cos φi )

×

⎧⎪⎪⎨⎪⎪⎩sin θs sin φi

⎡⎢⎢⎣ sin

[
βw

2
(cos φs + cos φi )

]
βw

2
(cos φs + cos φi )

⎤⎥⎥⎦ e−jβρ

√
ρ

⎫⎪⎪⎬⎪⎪⎭
(11-32a)

H s
φ � E s

θ

η
= wE0

η

√
jβ

2π
ej (βw/2)(cos φs +cos φi )

×

⎧⎪⎪⎨⎪⎪⎩sin θs sin φi

⎡⎢⎢⎣ sin

[
βw

2
(cos φs + cos φi )

]
βw

2
(cos φs + cos φi )

⎤⎥⎥⎦ e−jβρ

√
ρ

⎫⎪⎪⎬⎪⎪⎭
(11-32b)
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The bistatic scattering width is obtained using any of (11-21a) through (11-21c), and it is
represented at θs = 90◦ by

σ2-D(bistatic) = lim
ρ→∞

[
2πρ

|Es |2
|Ei |2

]
= 2πw 2

λ

⎧⎪⎪⎨⎪⎪⎩sin φi

⎡⎢⎢⎣ sin

[
βw

2
(cos φs + cos φi )

]
βw

2
(cos φs + cos φi )

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

2

(11-33)
which for the monostatic system configuration (φs = φi ) reduces to

σ2-D(monostatic) = 2πw 2

λ

{
sin φi

[
sin(βw cos φi )

βw cos φi

]}2

(11-33a)

Computed patterns of the normalized bistatic SW of (11-33) (in dB), for 0◦ ≤ φs ≤ 180◦
when φi = 120◦ and w = 2λ and 10λ, are shown in Figure 11-5a . It is apparent that the max-
imum occurs when the sin(x)/x function reaches its maximum value of unity, that is when the
x = βw(cos φs + cos φi )/2 = 0. For these examples, this occurs when φs = 180◦ − φi = 180◦ −
120◦ = 60◦ which represents the direction of specular scattering (angle of scattering is equal to the
angle of incidence). Away from the direction of maximum radiation, the pattern variations are of
sin(x)/x form. The normalized monostatic SW of (11-33a) (in dB) for w = 2λ and 10λ are shown
plotted in Figure 11-5b for 0◦ ≤ φi ≤ 180◦, where the maximum occurs when φi = 90◦, which is
the direction of normal incidence (the strip is viewed perpendicularly to its flat surface). Again,
away from the maximum radiation, the pattern variations are approximately of sin(x)/x form.

Example 11-2

Derive the far-zone scattered fields and the associated scattering width when a TEz uniform plane wave
is incident upon a two-dimensional conducting strip of width w , as shown in Figures 11-4a and 11-4c.
Use physical optics methods.

Solution: According to Figure 11-4c, the incident electric and magnetic field components for a TEz

uniform plane wave can be written as

Ei = ηH0(âx sin φi − ây cos φi )e
jβ(x cos φi +y sin φi )

Hi = âz H0ejβ(x cos φi +y sin φi )

The current induced on the surface of the finite width strip can be approximated by the physical optics
current and is equal to

Js � 2n̂ × Hi
∣∣∣ y=0
x=x ′

= 2ây × âz H i
z

∣∣∣ y=0
x=x ′

= 2âx H i
z

∣∣∣ y=0
x=x ′

Js � âx 2H0ejβx ′ cos φi

Jy = Jz = 0, Jx = 2H0ejβx ′ cos φi

Using the steps outlined by (11-27a) through (11-31), it can be shown that

A = −âx j
μH0

2

∫ w

0
H (2)

0 (β|ρ − ρ′|)ejβx ′ cos φi dx ′

which for far-zone observations reduces to

A � −âx jμwH0

√
j

2πβ
ej (βw/2)(cos φs +cos φi )

⎧⎪⎪⎨⎪⎪⎩
sin

[
βw

2
(cos φs + cos φi )

]
βw

2
(cos φs + cos φi )

⎫⎪⎪⎬⎪⎪⎭
e−jβρ

√
ρ
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In spherical components this can be written, according to (II-12), as

Ar = Ax sin θs cos φs

Aθ = Ax cos θs cos φs

Aφ = −Ax sin φs

which for θs = 90◦ reduce to

Ar = Ax cos φs

Aθ = 0

Aφ = −Ax sin φs

Thus, the far-zone electric and magnetic field components in the θs = 90◦ plane can be written as

E s
r � E s

θ � H s
r � H s

φ � 0

E s
φ � −jωAφ = jωAx sin φs

E s
φ � −ηwH0

√
jβ

2π
ej (βw/2)(cos φs +cos φi )

×

⎧⎪⎪⎨⎪⎪⎩sin φs

⎡⎢⎢⎣ sin

[
βw

2
(cos φs + cos φi )

]
βw

2
(cos φs + cos φi )

⎤⎥⎥⎦ e−jβρ

√
ρ

⎫⎪⎪⎬⎪⎪⎭
H s

θ � −E s
φ

η
= wH0

√
jβ

2π
ej (βw/2)(cos φs +cos φi )

×

⎧⎪⎪⎨⎪⎪⎩sin φs

⎡⎢⎢⎣ sin

[
βw

2
(cos φs + cos φi )

]
βw

2
(cos φs + cos φi )

⎤⎥⎥⎦ e−jβρ

√
ρ

⎫⎪⎪⎬⎪⎪⎭
The bistatic and monostatic (backscattering) scattering widths are given by

σ2-D(bistatic) = lim
ρ→∞

[
2πρ

|H s |2
|Hi |2

]

= 2πw2

λ

⎧⎪⎪⎨⎪⎪⎩sin φs

⎡⎢⎢⎣ sin

[
βw

2
(cos φs + cos φi )

]
βw

2
(cos φs + cos φi )

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

2

σ2-D(monostatic) = 2πw2

λ

{
sin φi

[
sin(βw cos φi )

βw cos φi

]}2

The monostatic SW for the TEz polarization is identical to that of the TMz as given by (11-33a), and
it is shown plotted in Figure 11-5b for w = 2λ and 10λ. The bistatic SW, however, differs from that
of (11-33) in that the sin2 φi term is replaced by sin2 φs . Therefore, the computed normalized bistatic
patterns (in dB) for 0◦ ≤ φs ≤ 180◦ when φi = 120◦ and w = 2λ, 10λ are shown, respectively, in
Figure 11-6. It is evident that the larger the width of the strip, the larger the maximum value of the SW
and the larger the number of minor lobes in its pattern.
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Figure 11-5 Bistatic and monostatic scattering width (SW) for a finite width strip. (a) Bistatic (φi = 120◦):
TMz . (b) Monostatic: TMz and TEz .
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Figure 11-6 Bistatic TEz scattering width (SW) for a finite width strip (φi = 120◦).

To see that indeed the bistatic SW patterns of the TMz and TEz polarizations are different,
we have plotted in Figure 11-7a the two for w = 2λ when the incidence angle is φi = 120◦.
It is evident that the two are similar but not identical because the sin2 φi term is replaced by
sin2 φs , and vice versa. In addition, whereas the maximum for the TMz occurs at the specular
direction (φs = 60◦ for this example), that of the TEz occurs at an angle slightly larger than the
specular direction. However, as the size of the target becomes very large, the maximum of the
TEz SW moves closer toward the specular direction and matches that of the TMz , which always
occurs at the specular direction [6]. This is illustrated in Figure 11-7b where the bistatic RCS of
the two polarizations has been plotted for w = 10λ and φi = 120◦. When the size of the target
is very large electrically, the [sin(x)/x ]2 in the bistatic RCS expression of Example 11-1 varies
very rapidly as a function of φs so that the slowly varying sin2 φs is essentially a constant near
the maximum of the [sin(x)/x ]2 function. This is not true when the size of the target is small
electrically, as was demonstrated by the results of Figure 11-7a .

11.3.2 TEx Plane Wave Scattering from a Flat Rectangular Plate

Let us now consider scattering from a three-dimensional scatterer, specifically uniform plane-
wave scattering from a rectangular plate, as shown in Figure 11-8a . To simplify the details, let
us assume that the uniform plane wave is TEx , and that it lies on the yz plane, as shown in
Figure 11-8b. The electric and magnetic fields can now be written as

Ei = ηH0(ây cos θi + âz sin θi )e
−jβ(y sin θi −z sin θi ) (11-34a)

Hi = âx H0e−jβ(y sin θi −z cos θi ) (11-34b)

where H0 is a constant that represents the magnitude of the incident magnetic field.
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Figure 11-7 TEz and TMz bistatic scattering widths (SW) for a finite width strip (φi = 120◦). (a) w = 2λ.
(b) w = 10λ.
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Figure 11-8 Uniform plane wave incident on a rectangular conducting plate. (a) Rectangular plate. (b)
yz plane: TEx polarization. (c) yz plane: TMx polarization.
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The scattered field can be found, by neglecting edge effects, using physical optics techniques
of Section 7.10, where the current density induced at the surface of the plate is represented on
the plate by

Js � 2n̂ × H′| z=0
y=y ′

= 2âz × âx Hx | z=0
y=y ′

= ây 2H0e−jβy ′ sin θi (11-35)

Thus,
Jx = Jz = 0 and Jy = 2H0e−jβy ′ sin θi (11-35a)

For an infinite plate, the current density of (11-35) or (11-35a) yields exact field solutions.
However, for finite-size plates it is approximate, and the corresponding scattered fields obtained
using it are more accurate toward the specular direction, where Snell’s law of reflection is
satisfied. The solutions become less accurate as the observation points are removed further from
the specular directions.

The scattered fields are obtained using (6-122a) through (6-122f) and (6-125a) through
(6-125b), where the electric current density components are those given by (11-35a).
Using (6-125a), (6-127c), (6-128c), and (11-35a), we can write that

Nθ =
∫∫

S

[
Jx cos θs cos φs + Jy cos θs sin φs − Jz sin θs

]
Jx =Jz =0

×ejβ(x ′ sin θs cos φs +y ′ sin θs sin φs ) dx ′ dy ′

= 2H0 cos θs sin φs

∫ +b/2

−b/2
ejβy ′(sin θs sin φs −sin θi ) dy ′

∫ +a/2

−a/2
ejβx ′ sin θs cos φs dx ′

(11-36)

Since ∫ +c/2

−c/2
ejαz dz = c

⎡⎢⎣ sin
(α

2
c
)

α

2
c

⎤⎥⎦ (11-37)

(11-36) reduces to

Nθ = 2abH0

{
cos θs sin φs

[
sin(X )

X

] [
sin(Y )

Y

]}
(11-38)

where

X = βa

2
sin θs cos φs (11-38a)

Y = βb

2
(sin θs sin φs − sin θi ) (11-38b)

In the same manner, (6-125b) can be written as

Nφ =
∫∫

S

[−Jx sin φs + Jy cos φs
]

Jx =0 ejβ(x ′ sin θs cos φs +y ′ sin θs sin φs ) dx ′ dy ′

= 2abH0

{
cos φs

[
sin(X )

X

] [
sin(Y )

Y

]}
(11-39)



Balanis c11.tex V2 - 11/22/2011 3:50 P.M. Page 595

PLANE WAVE SCATTERING BY PLANAR SURFACES 595

Therefore, the scattered fields are obtained using (6-122a) through (6-122f) and (11-38)
through (11-39), and they can be expressed as

E s
r � 0 (11-40a)

E s
θ � − jβe−jβr

4πr

(
Lφ + ηNθ

)
Lφ=0 = C

e−jβr

r

{
cos θs sin φs

[
sin(X )

X

] [
sin(Y )

Y

]}
(11-40b)

E s
φ � + jβe−jβr

4πr

(
Lθ − ηNφ

)
Lθ=0 = C

e−jβr

r

{
cos φs

[
sin(X )

X

] [
sin(Y )

Y

]}
(11-40c)

H s
r � 0 (11-40d)

H s
θ � −E s

φ

η
(11-40e)

H s
φ � +E s

θ

η
(11-40f)

where

C = −jη
abβH0

2π
(11-40g)

In the principal E plane (φs = π/2) and H plane (θs = θi , φs = 0), the electric field compo-
nents reduce to

E Plane (φs = π/2)

E s
r � E s

φ � 0 (11-41a)

E s
θ � C

e−jβr

r

⎧⎪⎪⎨⎪⎪⎩cos θs

⎡⎢⎢⎣ sin

[
βb

2
(sin θs − sin θi )

]
βb

2
(sin θs − sin θi )

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (11-41b)

H Plane (φs = 0)

E s
r � E s

θ � 0 (11-42a)

E s
φ � C

e−jβr

r

⎧⎪⎪⎨⎪⎪⎩
sin

[
βb

2
(sin θi )

]
βb

2
(sin θi )

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

sin

[
βa

2
(sin θs)

]
βa

2
(sin θs)

⎫⎪⎪⎬⎪⎪⎭ (11-42b)

It can be shown that the maximum value of the total scattered field

E s =
√

(E s
r )2 + (E s

θ )2 + (E s
φ)2 �

√
(E s

θ )2 + (E s
φ)2 (11-43)

for any wave incidence always lies in a scattering plane that is parallel to the incident plane
[6]. For the fields of (11-40a) through (11-40f), the scattering plane that contains the maximum
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scattered field is that defined by φs = π/2, 3π/2 and 0 ≤ θs ≤ π/2, since the incident plane is
that defined by φi = 3π/2, 0 ≤ θi ≤ π/2. The electric field components in the plane that which
contains the maximum reduce to those of (11-41a) and (11-41b) whose maximum value, when
b � λ, occurs approximately when θs = θi (specular reflection). For large values of b(b � λ)

the sin(z )/z function in (11-41b) varies very rapidly compared to the cos θs such that the cos θs

function is essentially constant near the maximum of the sin(z )/z function. For small values of
b, the maximum value of (11-41b) can be found iteratively. Thus, for the TEx polarization, the
maximum of the scattered field from a flat plate does not occur exactly at the specular direction but
it approaches that value as the dimensions of the plate become large compared to the wavelength.
This is analogous to the TEz polarization of the strip of Example 11-1. It will be shown in the
example that follows that for the TMx polarization, the maximum of the scattered field from a
flat plate always occurs at the specular direction no matter what the size of the plate. This is
analogous to the TMz polarization of the strip of Section 11.3.1.

For the fields of (11-40a) through (11-40g), the radar cross section is obtained using (11-22b)
or (11-22c) and can be written as

σ3-D = lim
r→∞

[
4πr2 |Es |2

|Ei |2
]

= lim
r→∞

[
4πr2 |Hs |2

|Hi |2
]

= 4π

(
ab

λ

)2

(cos2 θs sin2 φs + cos2 φs)

[
sin(X )

X

]2 [
sin(Y )

Y

]2

(11-44)

which in the plane that contains the maximum (φs = π/2) reduces to

Principal Bistatic (φs = π/2)

σ3-D = 4π

(
ab

λ

)2

cos2 θs

⎡⎢⎢⎣ sin

[
βb

2
(sin θs ∓ sin θi )

]
βb

2
(sin θs ∓ sin θi

⎤⎥⎥⎦
2

−for φs = π

2
, 0 ≤ θs ≤ π/2

+for φs = 3π

2
, 0 ≤ θs ≤ π/2

(11-44a)

while in the backscattering direction (φs = φi = 3π/2, θs = θi ) it can be written as

Backscattered

σ3-D = 4π

(
ab

λ

)2

cos2 θi

[
sin(βb sin θi )

βb sin θi

]2

(11-44b)

Plots of (11-44a) for a = b = 5λ and θi = 30◦ (φs = 90◦, 270◦ with 0◦ ≤ θs ≤ 90◦) and of
(11-44b) for a = b = 5λ (0◦ ≤ θi , ≤ 90◦) are shown, respectively, in Figures 11-9a and 11-9b.
It is observed that for Figure 11-9a the maximum occurs when φs = 90◦ and near θs � θi = 30◦
while for Figure 11-9b the maximum occurs when θi = 0◦ (normal incidence).

The monostatic RCS of plates using physical optics techniques is insensitive to polarization,
i.e., it is the same for both polarizations [7-10], as has been demonstrated for the strip and the
rectangular plate. Measurements, however, have shown that the monostatic RCS is slightly dif-
ferent for the two polarizations. This is one of the drawbacks of physical optics methods. In
addition, the predicted RCSs using physical optics are most accurate at and near the specular
directions. However, they begin to become less valid away from the specular directions, espe-
cially toward grazing incidences. This will be demonstrated in Example 12-3, and Figures 12-13
and 12-14.
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Figure 11-9 Principal plane monostatic and bistatic radar cross sections of a rectangular plate. (a) Bistatic
(θi = 30◦, φi = 270◦, φs = 90◦, 270◦). (b) Monostatic (φs = 90◦, 270◦).
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Example 11-3

Using physical optics techniques, find the scattered fields and radar cross section when a TMx uniform
plane wave is incident upon a flat rectangular plate of dimensions a and b. Assume the incident field
lies on the yz plane, as shown in Figure 11-8c.

Solution: According to the geometry of Figure 11-8c, the electric and magnetic field components of
the incident uniform plane wave can be written as

Ei = âx E0e−jβ(y sin θi −z cos θi )

Hi = −E0

η

(
ây cos θ i + âz sin θ i

)
e−jβ(y sin θi −z cos θi )

Using physical optics techniques, the current density induced on the plate can be approximated by

Js � 2n̂ × Hi
∣∣∣ z=0
y=y ′

= 2âz × (
ây Hy + âz Hz

) ∣∣∣ z=0
y=y ′

= −2âx Hy

∣∣∣ z=0
y=y ′

= âx
2E0

η
cos θi e

−jβy ′ sin θi

or
Jy = Jz = 0 Jx = 2E0

η
cos θi e

−jβy ′ sin θi

Using (6-125a) and (6-125b), we can write that

Nθ =
∫∫

S
Jx cos θs cos φs ejβ(x ′ sin θs cos φs +y ′ sin θs sin φs ) dx ′ dy ′

= 2E0

η
ab

{
cos θi cos θs cos φs

[
sin(X )

X

] [
sin(Y )

Y

]}
Nφ = −

∫∫
S

Jx sin φs ejβ(x ′ sin θs cos φs +y ′ sin θs sin φs ) dx ′ dy ′

= −2E0

η
ab

{
cos θi sin θs

[
sin(X )

X

] [
sin(Y )

Y

]}
where

X = βa

2
sin θs cos φs

Y = βb

2
(sin θs sin φs − sin θi )

The scattered fields are obtained using (6-122a) through (6-122f) and can be written as

E s
r � H s

r � 0

E s
θ � C1

e−jβr

r

{
cos θi cos θs cos φs

[
sin(X )

X

] [
sin(Y )

Y

]}
E s

φ � C1
e−jβr

r

{
cos θi sin φs

[
sin(X )

X

] [
sin(Y )

Y

]}
H s

θ � −E s
φ

η
H s

φ � +E s
θ

η

C1 = abβE0

2π
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In the principal H plane (φs = π/2), on which the maximum also lies, the electric field components
reduce to

E s
r � E s

θ � 0

E s
φ � C1

e−jβr

r

⎧⎪⎪⎨⎪⎪⎩cos θi

⎡⎢⎢⎣ sin

[
βb

2
(sin θs − sin θi )

]
βb

2
(sin θs − sin θi )

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

whose maximum value always occurs when θs = θi (no matter what the size of the ground plane).
The bistatic and monostatic RCSs can be expressed, respectively, as

σ3-D(bistatic) = 4π

(
ab

λ

)2

[cos2 θi (cos2 θs cos2 φs + sin2 φs )]

×
[

sin(X )

X

]2 [
sin(Y )

Y

]2

σ3-D(monostatic) = 4π

(
ab

λ

)2

cos2 θi

[
sin(βb sin θi )

βb sin θi

]2

They are shown plotted, respectively, in Figures 11-9a and 11-9b for a square plate of a = b = 5λ.

11.4 CYLINDRICAL WAVE TRANSFORMATIONS AND THEOREMS

In scattering, it is often most convenient to express wave functions of one coordinate system
in terms of wave functions of another coordinate system. An example is a uniform plane wave
that can be written in a very simple form in terms of rectilinear wave functions. However, when
scattering of plane waves by cylindrical structures is considered, it is most desirable to transform
the rectilinear form of the uniform plane wave into terms of cylindrical wave functions. This is
desirable because the surface of the cylindrical structure is most conveniently defined using cylin-
drical coordinates. This and other such transformations are referred to as wave transformations
[11]. Along with these transformations, certain theorems concerning cylindrical wave functions
are very desirable in describing the scattering by cylindrical structures.

11.4.1 Plane Waves in Terms of Cylindrical Wave Functions

The scattering of plane waves by cylindrical structures is considered a fundamental problem in
scattering theory. To accomplish this, it is first necessary and convenient to express the plane
waves by cylindrical wave functions. To demonstrate that, let us assume that a normalized uniform
plane wave traveling in the +x direction, as shown in Figure 11-10, can be written as

E = âz E+
z = âz E0e−jβx = âz e−jβx (11-45)

The plane wave can be represented by an infinite sum of cylindrical wave functions of the form

E+
z = e−jβx = e−jβρ cos φ =

+∞∑
n=−∞

anJn(βρ)ejnφ (11-45a)

since it must be periodic in φ and finite at ρ = 0. The next step is to determine the amplitude
coefficients, an .
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xz

y

ρ

f

Figure 11-10 Uniform plane wave traveling in the +x direction.

Multiplying both sides of (11-45a) by e−jmφ , where m is an integer, and integrating from 0 to
2π , we have that∫ 2π

0
e−j (βρ cos φ+mφ) dφ =

∫ 2π

0

[ +∞∑
n=−∞

anJn(βρ)ej (n−m)φ

]
dφ (11-46)

Interchanging integration and summation, we have that∫ 2π

0
e−j (βρ cos φ+mφ) dφ =

+∞∑
n=−∞

anJn(βρ)

∫ 2π

0
ej (n−m)φ dφ (11-47)

Using the orthogonality condition∫ 2π

0
ej (n−m)φ dφ =

{
2π n = m

0 n �= m
(11-48)

the right side of (11-47) reduces to

+∞∑
n=−∞

anJn(βρ)

∫ 2π

0
ej (n−m)φ dφ n=m= 2πamJm(βρ) (11-49)

Using the integral ∫ 2π

0
e+j (z cos φ+nφ) dφ = 2π j nJn(z ) (11-50)

the left side of (11-47) can be written as∫ 2π

0
e−j (βρ cos φ+mφ) dφ = 2π j −mJ−m(−βρ) (11-51)

Since
J−m(x) = (−1)mJm(x) (11-52a)

and
Jm(−x) = (−1)mJm(x) (11-52b)
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(11-51) can be written as∫ 2π

0
e−j (βρ cos φ+mφ) dφ = 2π j −mJ−m(−βρ) = 2π j −m(−1)mJm(−βρ)

= 2π j −m(−1)m(−1)mJm(βρ) = 2π j −m(−1)2mJm(βρ)∫ 2π

0
e−j (βρ cos φ+mφ) dφ = 2π j −mJ−m(−βρ) = 2π j −mJm(βρ) (11-53)

Using (11-49) and (11-53), reduce (11-47) to
2π j −mJm(βρ) = 2πamJm(βρ) (11-54)

Thus,
am = j −m (11-54a)

Therefore, (11-45a) can be written as

E+
z = e−jβx = e−jβρ cos φ =

+∞∑
n=−∞

anJn(βρ)ejnφ =
+∞∑

n=−∞
j −nJn(βρ)ejnφ (11-55a)

In a similar manner it can be shown that

E−
z = e+jβx = e+jβρ cos φ =

+∞∑
n=−∞

j +nJn(βρ)ejnφ (11-55b)

11.4.2 Addition Theorem of Hankel Functions

A transformation that is often convenient and necessary in scattering problems is the addition
theorem of Hankel functions [11]. Basically, it expresses the fields of a cylindrical line source
located away from the origin at a radial distance ρ ′, which are represented by cylindrical wave
functions originating at the source, in terms of cylindrical wave functions originating at the origin
(ρ = 0) of the coordinate system.

To derive this, let us assume that a line source of electric current I0 is located at ρ = ρ ′ and φ =
φ′, as shown in Figure 11-11. According to (11-11a), the fields by the line source are given by

Ez (ρ, φ) = −β2I0

4ωε
H (2)

0 (β|ρ − ρ′|) (11-56)

y

z
x

Line source 0

R = ρ − ρ′

ρ′

f′ f

ρ

Figure 11-11 Geometry for displaced line source.
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where |ρ − ρ′| is the radial distance from the source to the observation point. Using Figure 11-11
and the law of cosines, (11-56) can also be written as

Ez (ρ, φ) = −β2I0

4ωε
H (2)

0 (β|ρ − ρ′|)

= −β2I0

4ωε
H (2)

0

[
β
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos(φ − φ′)
]

(11-56a)

Equations 11-56 and 11-56a express the electric field in terms of a Hankel function whose radial
distance originates at the source (|ρ − ρ′| = 0). For scattering problems, it is very convenient to
express the field in terms of cylindrical wave functions, such as Bessel and Hankel functions,
whose radial distance originates at the origin (ρ = 0). Based upon that and because of reciprocity,
the field must be symmetric in terms of the primed and unprimed coordinates. Therefore, the
permissible wave functions, whose radial distance originates at the origin of the coordinate system,
to represent the Hankel function of (11-56a) are of the form

ρ ≤ ρ ′

f (βρ ′)Jn(βρ)ejn(φ−φ′)

where n is an integer, because they must be finite at ρ = 0 and be periodic with period 2π .

ρ ≥ ρ ′

g(βρ ′)H (2)
n (βρ)ejn(φ−φ′)

where n is an integer, because they must represent outward traveling waves and they must be
periodic with period 2π .

Thus, the Hankel function of (11-56a) can be written as

H (2)
0 (β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

cn f (βρ ′)Jn(βρ)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

dng(βρ ′)H (2)
n (βρ)ejn(φ−φ′) for ρ ≥ ρ ′

(11-57a)

(11-57b)

Since at ρ = ρ ′ the fields of the two regions must be continuous, then from (11-57a) and
(11-57b)

cn f (βρ ′)Jn(βρ ′) = dng(βρ ′)H (2)
n (βρ ′) (11-58)

which can be satisfied provided

cn = dn = bn (11-59a)

f (βρ ′) = H (2)
n (βρ ′) (11-59b)

g(βρ ′) = Jn(βρ ′) (11-59c)

Using (11-59a) through (11-59c), we can write (11-57a) and (11-57b) as

H (2)
0 (β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

bnJn(βρ)H (2)
n (βρ ′)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

bnJn(βρ ′)H (2)
n (βρ)ejn(φ−φ′) for ρ ≥ ρ ′

(11-60a)

(11-60b)
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The only remaining part is to evaluate bn . This can be accomplished by returning to (11-56a),
according to which

H (2)
0 (β|ρ − ρ′|) = H (2)

0

[
β
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos(φ − φ′)
]

(11-61)

Moving the source toward infinity (ρ ′ → ∞) along φ′ = 0, the radial distance in (11-61), as
represented by the square root, can be approximated using the binomial expansion

√
ρ2 + (ρ ′)2 − 2ρρ ′ cos(φ − φ′)

φ′=0�
ρ′→∞

√
(ρ ′)2 − 2ρρ ′ cos φ = ρ ′

√
1 − 2

(
ρ

ρ ′

)
cos φ

� ρ ′
(

1 − ρ

ρ ′ cos φ

)
= ρ ′ − ρ cos φ (11-62)

Using (11-62) allows us to write (11-61) as

H (2)
0 (β|ρ − ρ′|) = H (2)

0

[
β
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos(φ − φ′)
]

φ′=0�
ρ′→∞

H (2)
0

[
β(ρ ′ − ρ cos φ)

]
(11-63)

With the aid of the asymptotic form of the Hankel function for large argument

H (2)
0 (αx)

αx→∞�
√

2j

παx
j ne−jαx (11-64)

(11-63) reduces to

H (2)
0 (β|ρ − ρ′|) φ′=0�

ρ′→∞
H (2)

0

[
β(ρ ′ − ρ cos φ)

] �
√

2j

πβ(ρ ′ − ρ cos φ)
e−jβ(ρ′−ρ cos φ)

�
√

2j

πβρ ′ e
−jβρ′

e+jβρ cos φ (11-65)

Using (11-55b) allows us to write (11-65) as

H (2)
0 (β|ρ − ρ′|) φ′=0�

ρ′→∞

√
2j

πβρ ′ e
−jβρ′

+∞∑
n=−∞

j nJn(βρ)ejnφ (11-66)

Applying (11-64) to (11-60a) for φ′ = 0 and ρ ′ → ∞, reduces it to

H (2)
0 (β|ρ − ρ′|) φ′=0=

+∞∑
n=−∞

bnJn(βρ)H (2)
n (βρ ′)ejnφ

φ′=0�
ρ′→∞

√
2j

πβρ ′ e
−jβρ′

+∞∑
n=−∞

bnj nJn(βρ)ejnφ (11-67)

Comparing (11-66) and (11-67) leads to

bn = 1 (11-68)
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Thus, the final form of (11-60a) and (11-60b) is

H (2)
0 (β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

Jn(βρ)H (2)
n (βρ ′)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

Jn(βρ ′)H (2)
n (βρ)ejn(φ−φ′) for ρ ≥ ρ ′

(11-69a)

(11-69b)

which can be used to write (11-56) as

Ez (ρ, φ) = −β2I0

4ωε
H (2)

0 (β|ρ − ρ′|)

= −β2I0

4ωε

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+∞∑
n=−∞

Jn(βρ)H (2)
n (βρ ′)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

Jn(βρ ′)H (2)
n (βρ)ejn(φ−φ′) for ρ ≥ ρ ′

(11-70a)

(11-70b)

The procedure can be repeated to expand H (1)
0 (β|ρ − ρ′|). However, it is obvious from the

results of (11-69a) and (11-69b) that

H (1)
0 (β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+∞∑
n=−∞

Jn(βρ)H (1)
n (βρ ′)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

Jn(βρ ′)H (1)
n (βρ)ejn(φ−φ′) for ρ ≥ ρ ′

(11-71a)

(11-71b)

11.4.3 Addition Theorem for Bessel Functions

Another theorem that is often useful represents Bessel functions originating at the source, which
is located away from the origin, in terms of cylindrical wave functions originating at the origin
of the coordinate system. This is usually referred to as the addition theorem for Bessel functions
[11].

We know that the Hankel functions of the first and second kinds can be written, in terms of
the Bessel functions, as

H (1)
0 (βρ) = J0(βρ) + jY0(βρ) (11-72a)

H (2)
0 (βρ) = J0(βρ) − jY0(βρ) (11-72b)

Adding the two, we can write that

J0(βρ) = 1
2 [H (1)

0 (βρ) + H (2)
0 (βρ)] (11-73)

Therefore,

J0(β|ρ − ρ′|) = 1
2 [H (1)

0 (β|ρ − ρ′|) + H (2)
0 (β|ρ − ρ′|)] (11-74)
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With the aid of (11-69a), (11-69b) and (11-71a), (11-71b) we can write (11-74) as

J0(β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

1
2 [H (1)

n (βρ ′) + H (2)
n (βρ ′)]Jn(βρ)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

1
2 [H (1)

n (βρ) + H (2)
n (βρ)]Jn(βρ ′)ejn(φ−φ′) for ρ ≥ ρ ′

(11-75a)

(11-75b)

Using the forms of (11-72a) and (11-72b) for nth order Bessel and Hankel functions, we can
write (11-75a) and (11-75b) as

J0(β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

Jn(βρ ′)Jn(βρ)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

Jn(βρ)Jn(βρ ′)ejn(φ−φ′) for ρ ≥ ρ ′

(11-76a)

(11-76b)

or that

J0(β|ρ − ρ′|) =
+∞∑

n=−∞
Jn(βρ)Jn(βρ ′)ejn(φ−φ′) for ρ � ρ ′ (11-77)

Subtracting (11-72b) from (11-72a), we can write that

H (1)
0 (βρ) − H (2)

0 (βρ) = 2jY0(βρ)

Y0(βρ) = 1

2j

[
H (1)

0 (βρ) − H (2)
0 (βρ)

]
(11-78a)

or

Y0(β|ρ − ρ′|) = 1

2j

[
H (1)

0 (β|ρ − ρ′|) − H (2)
0 (β|ρ − ρ′|)

]
(11-78b)

Using (11-69a), (11-69b), (11-71a), and (11-71b), we can write (11-78b) as

Y0(β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

1
2 [H (1)

n (βρ ′) − H (2)
n (βρ ′)]Jn(βρ)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

1
2 [H (1)

n (βρ) − H (2)
n (βρ)]Jn(βρ ′)ejn(φ−φ′) for ρ ≥ ρ ′

(11-79a)

(11-79b)
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Using the forms (11-72a) and (11-72b) for nth order Hankel functions, we can write (11-79a)
and (11-79b) as

Y0(β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

1

2j

[
Jn(βρ ′) + jYn(βρ ′) − Jn(βρ ′) + jYn(βρ ′)

]
Jn(βρ ′)ejn(φ−φ′)

=
+∞∑

n=−∞
Yn(βρ ′)Jn(βρ)ejn(φ−φ′) for ρ ≤ ρ ′

+∞∑
n=−∞

1

2j

[
Jn(βρ) + jYn(βρ) − Jn(βρ) + jYn(βρ)

]
Jn(βρ ′)ejn(φ−φ′)

=
+∞∑

n=−∞
Yn(βρ)Jn(βρ ′)ejn(φ−φ′) for ρ ≥ ρ ′

(11-80a)

(11-80b)

11.4.4 Summary of Cylindrical Wave Transformations and Theorems

The following are the most prominent cylindrical wave transformations and theorems that are
very convenient for scattering from cylindrical scatterers:

e−jβx = e−jβρ cos φ =
+∞∑

n=−∞
j −nJn(βρ)ejnφ

e+jβx = e+jβρ cos φ =
+∞∑

n=−∞
j +nJn(βρ)ejnφ

(11-81a)

(11-81b)

H (1, 2)
0 (β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

Jn(βρ)H (1, 2)
n (βρ ′)ejn(φ−φ′) ρ ≤ ρ ′

+∞∑
n=−∞

Jn(βρ ′)H (1, 2)
n (βρ)ejn(φ−φ′) ρ ≥ ρ ′

(11-82a)

(11-82b)

J0(β|ρ − ρ′|) =
+∞∑

n=−∞
Jn(βρ ′)Jn(βρ)ejn(φ−φ′) ρ�ρ′

(11-83)

Y0(β|ρ − ρ′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

Yn(βρ ′)Jn(βρ)ejn(φ−φ′) ρ ≤ ρ ′

+∞∑
n=−∞

Yn(βρ)Jn(βρ ′)ejn(φ−φ′) ρ ≥ ρ ′

(11-84a)

(11-84b)
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11.5 SCATTERING BY CIRCULAR CYLINDERS

Cylinders represent one of the most important classes of geometrical surfaces. The surface of
many practical scatterers, such as the fuselage of airplanes, missiles, and so on, can often be
represented by cylindrical structures. The circular cylinder, because of its simplicity and the
fact that its solution is represented in terms of well known and tabulated functions (such as
Bessel and Hankel functions), is probably one of the geometries most widely used to represent
practical scatterers [12]. Because of its importance, it will be examined here in some detail. We
will consider scattering of both plane and cylindrical waves by circular conducting cylinders of
infinite length at normal and oblique incidences. The solutions will be obtained using modal
techniques. Scattering from finite length cylinders is obtained by transforming the scattered fields
of infinite lengths using approximate relationships. Scattering by dielectric and dielectric covered
cylinders are assigned to the reader as end-of-chapter exercises.

11.5.1 Normal Incidence Plane Wave Scattering by Conducting Circular Cylinder:
TMz Polarization

Let us assume that a TMz uniform plane wave is normally incident upon a perfectly conducting
circular cylinder of radius a , as shown in Figure 11-12a , and the electric field can be written as

Ei = âz E i
z = âz E0e−jβx = âz E0e−jβρ cos φ (11-85)

which, according to the transformation (11-55a) or (11-81a), can also be expressed as

Ei = âz E i
z = âz E0

+∞∑
n=−∞

j −nJn(βρ)ejnφ = âz E0

∞∑
n=0

(−j )nεnJn(βρ) cos(nφ) (11-85a)

where

εn =
{

1 n = 0

2 n �= 0
(11-85b)

The corresponding magnetic field components can be obtained by using Maxwell’s Faraday
equation, which for this problem reduces to

Hi = − 1

jωμ
∇ × Ei = − 1

jωμ

(
âρ

1

ρ

∂E i
z

∂φ
− âφ

∂E i
z

∂ρ

)
(11-86)

y

x
a

z

(a)

Ei
 Hi

s = ∞

y

x
a

z

(b)

Ei

 Hi

s = ∞

Figure 11-12 Uniform plane wave incident on a conducting circular cylinder. (a) TMz . (b) TEz .
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or

H i
ρ = − 1

jωμ

1

ρ

∂E i
z

∂φ
= − E0

jωμ

1

ρ

+∞∑
n=−∞

nj −n+1Jn(βρ)ejnφ (11-86a)

H i
φ = 1

jωμ

∂E i
z

∂ρ
= − βE0

jωμ

+∞∑
n=−∞

j −nJ ′
n(βρ)ejnφ (11-86b)

′ ≡ ∂

∂(βρ)
(11-86c)

It should be noted here that throughout this chapter the prime indicates partial derivative with
respect to the entire argument of the Bessel or Hankel function.

In the presence of the conducting cylinder, the total field E t
z according to (11-1a) can be

written as

Et = Ei + Es (11-87)

where Es is the scattered field. Since the scattered fields travel in the outward direction, they
must be represented by cylindrical traveling wave functions. Thus, we choose to represent Es

by

Es = âz E s
z = âz E0

+∞∑
n=−∞

cnH (2)
n (βρ) (11-88)

where cn represents the yet unknown amplitude coefficients. Equation 11-88 is chosen to be of
similar form to (11-85a) since the two together will be used to represent the total field. This
becomes convenient when we attempt to solve for the amplitude coefficients cn .

The unknown amplitude coefficients cn can be found by applying the boundary condition

Et = âz E t
z (ρ = a , 0 ≤ φ ≤ 2π , z ) = 0 (11-89)

Using (11-85a), (11-88), and (11-89) we can write that

E t
z (ρ = a , 0 ≤ φ ≤ 2π , z ) = E0

∞∑
n=−∞

[
j −nJn(βa)ejnφ + cnH (2)

n (βa)
] = 0 (11-90)

or

cn = −j −n Jn(βa)

H (2)
n (βa)

ejnφ (11-90a)

Thus, the scattered field of (11-88) reduces to

E s
z = −E0

+∞∑
n=−∞

j −n Jn(βa)

H (2)
n (βa)

H (2)
n (βρ)ejnφ

= −E0

+∞∑
n=0

(−j )nεn
Jn(βa)

H (2)
n (βa)

H (2)
n (βρ) cos(nφ) (11-91)

where εn is defined by (11-85b).
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The corresponding scattered magnetic field components can be obtained by using Maxwell’s
equation 11-86, which leads to

H s
ρ = − 1

jωμ

1

ρ

∂E s
z

∂φ
= E0

jωμ

1

ρ

+∞∑
n=−∞

nj −n+1 Jn(βa)

H (2)
n (βa)

H (2)
n (βρ)ejnφ (11-92a)

H s
φ = 1

jωμ

∂E s
z

∂ρ
= − βE0

jωμ

+∞∑
n=−∞

j −n Jn(βa)

H (2)
n (βa)

H (2)′
n (βρ)ejnφ (11-92b)

Thus, the total electric and magnetic field components can be written as

E t
ρ = E t

φ = H t
z = 0

E t
z = E0

+∞∑
n=−∞

j −n

[
Jn(βρ) − Jn(βa)

H (2)
n (βa)

H (2)
n (βρ)

]
ejnφ

H t
ρ = − E0

jωμ

1

ρ

+∞∑
n=−∞

nj −n+1

[
Jn(βρ) − Jn(βa)

H (2)
n (βa)

H (2)
n (βρ)

]
ejnφ

H t
φ = βE0

jωμ

+∞∑
n=−∞

j −n

[
J ′

n(βρ) − Jn(βa)

H (2)
n (βa)

H (2)′
n (βρ)

]
ejnφ

(11-93a)

(11-93b)

(11-93c)

(11-93d)

On the surface of the cylinder (ρ = a), the total tangential magnetic field can be written as

H t
φ(ρ = a) = βE0

jωμ

+∞∑
n=−∞

j −n

[
J ′

n(βa) − Jn(βa)

H (2)
n (βa)

H (2)′
n (βa)

]
ejnφ

= βE0

ωμ

+∞∑
n=−∞

j −n

[
Jn(βa)Y ′

n(βa) − J ′
n(βa)Yn(βa)

H (2)
n (βa)

]
ejnφ (11-94)

Using the Wronskian of Bessel functions

Jn(αρ)Y ′
n(αρ) − Yn(αρ)J ′

n(αρ) = 2

παρ
(11-95)

reduces (11-94) to

H t
φ(ρ = a) = 2E0

πaωμ

+∞∑
n=−∞

j −n ejnφ

H (2)
n (βa)

(11-96)

Thus, the current induced on the surface of the cylinder can be written as

Js = n̂ × Ht |ρ=a = âρ × (
âρH t

ρ + âφH t
ρ

) |ρ=a = âz H t
φ(ρ = a)

= âz
2E0

πaωμ

+∞∑
n=−∞

j −n ejnφ

H (2)
n (βa)

(11-97)
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A. Small Radius Approximation As the radius of the cylinder increases, more terms in the
infinite series of (11-97) are needed to obtain convergence. However, for very small cylinders,
like a very thin wire (a � λ), the first term (n = 0) in (11-97) is dominant and is often sufficient
to represent the induced current. Thus, for a very thin wire (11-97) can be approximated by

Js
a�λ� âz

2E0

πaωμ

1

H (2)
0 (βa)

(11-98)

where

H (2)
0 (βa) = J0(βa) − jY0(βa)

a�λ� 1 − j
2

π
ln

(
γβa

2

)
= 1 − j

2

π
ln

(
1.781βa

2

)
a�λ� −j

2

π
ln

(
1.781βa

2

)
(11-98a)

Thus, for a very thin wire the current density (11-98) can be approximated by

Js
a�λ� âz j

E0

aωμ

1

ln

(
1.781βa

2

) (11-98b)

B. Far-Zone Scattered Field One of the most important parameters in scattering is the
scattering width, which is obtained by knowing the scattered field in the far zone. For this
problem, it can be accomplished by first reducing the scattered fields for far-zone observations
(βρ → large). Referring to (11-91), the Hankel function can be approximated for observations
made in the far field by

H (2)
n (βρ)

βρ→large�
√

2j

πβρ
j ne−jβρ (11-99)

which, when substituted in (11-91), reduces it to

E s
z

βρ→∞� −E0

√
2j

πβ

e−jβρ

√
ρ

+∞∑
n=−∞

Jn(βa)

H (2)
n (βa)

ejnφ (11-100)

The ratio of the far-zone scattered electric field to the incident field can then be written as

|E s
z |

|E i
z |

βρ→large�

∣∣∣ − E0

√
2j

πβ

e−jβρ

√
ρ

+∞∑
n=−∞

Jn(βa)

H (2)
n (βa)

ejnφ
∣∣∣

|E0e−jβx |

=
√

2

πβρ

∣∣∣ +∞∑
n=−∞

Jn(βa)

H (2)
n (βa)

ejnφ
∣∣∣ (11-101)

Thus, the scattering width of (11-21b) can be expressed as

σ2-D = lim
ρ→∞

[
2πρ

|E s
z |2

|E i
z |2

]
= 4

β

∣∣∣ +∞∑
n=−∞

Jn(βa)

H (2)
n (βa)

ejnφ
∣∣∣2

= 2λ

π

∣∣∣ +∞∑
n=−∞

εn
Jn(βa)

H (2)
n (βa)

cos(nφ)

∣∣∣2 (11-102)
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Figure 11-13 Two-dimensional TMz bistatic scattering width (SW) of a circular conducting cylinder.
(Courtesy of J. H. Richmond, Ohio State University.)

where

εn =
{

1 n = 0

2 n �= 0
(11-102a)

Plots of the bistatic σ2-D/λ computed using (11-102) are shown in Figure 11-13 for cylinder
radii of a = 0.05λ, 0.1λ, 0.2λ, 0.4λ, and 0.6λ [13]. The backscattered (φ = 180◦) patterns of
σ2-D/λ, as a function of the cylinder radius, are displayed in Figure 11-14 [13].
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Figure 11-14 Two-dimensional monostatic (backscattered) scattering width for a circular conducting cylin-
der as a function of its radius. (Courtesy of J. H. Richmond, Ohio State University.)
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For small radii (a � λ), the first term (n = 0) in (11-102) is the dominant term, and it is
sufficient to represent the scattered field. Thus, for small radii, the ratio of the Bessel to the
Hankel function for n = 0 can be approximated using (11-98a) by

J0(βa)

H (2)
0 (βa)

a�λ� 1

−j
2

π
ln(0.89βa)

= j
π

2

1

ln (0.89βa)
(11-103)

and (11-102) can then be reduced to

σ2-D
a�λ� 2λ

π

(
π2

4

) ∣∣∣∣ 1

ln(0.89βa)

∣∣∣∣2

= πλ

2

∣∣∣∣ 1

ln(0.89βa)

∣∣∣∣2

(11-103a)

This is independent of φ, which becomes evident in Figure 11-13 by the curves for the smaller
values of a.

For a cylinder of finite length � the three-dimensional radar cross section for normal incidence is
related to the two-dimensional scattering width by (11-22e). Thus, using (11-102) and (11-103a),
we can write the three-dimensional RCS (11-22e) as

σ3-D � 4�2

π

∣∣∣∣∣
+∞∑

n=−∞

Jn(βa)

H (2)
n (βa)

ejnφ

∣∣∣∣∣
2

(11-104a)

σ3-D
a�λ� π�2

∣∣∣∣ 1

ln(0.89βa)

∣∣∣∣2

(11-104b)

11.5.2 Normal Incidence Plane Wave Scattering by Conducting Circular Cylinder:
TEz Polarization

Now let us assume that a TEz uniform plane wave traveling in the +x direction is normally
incident upon a perfectly conducting circular cylinder of radius a , as shown in Figure 11-12b.
The incident magnetic field can be written as

Hi = âz H0e−jβx = âz H0e−jβρ cos φ = âz H0

+∞∑
n=−∞

j −nJn(βρ)ejnφ

= âz H0

∞∑
n=0

(−j )nεnJn(βρ) cos(nφ) (11-105)

where εn is defined by (11-85b). The corresponding incident electric field can be obtained by
using Maxwell’s Ampere equation, which for this problem reduces to

Ei = 1

jωε
∇ × Hi = + 1

jωε

[
âρ

1

ρ

∂H i
z

∂φ
− âφ

∂H i
z

∂ρ

]
(11-106)

and by using (11-105) leads to

E i
ρ = 1

jωε

1

ρ

∂H i
z

∂φ
= H0

jωε

1

ρ

+∞∑
n=−∞

nj −n+1Jn(βρ)ejnφ (11-106a)
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E i
φ = − 1

jωε

∂H i
z

∂ρ
= −βH0

jωε

+∞∑
n=−∞

j −nJ ′
n(βρ)ejnφ (11-106b)

The scattered magnetic field takes a form very similar to that of the scattered electric field
of (11-88) for the TMz polarization, and it can be written as

Hs = âz H s
z = âz H0

+∞∑
n=−∞

dnH (2)
n (βρ) (11-107)

where dn represents the yet unknown amplitude coefficients that will be found by applying the
appropriate boundary conditions.

Before the boundary conditions on the vanishing of the total tangential electric field on the
surface of the cylinder can be applied, it is necessary to first find the corresponding electric fields.
This can be accomplished by using Maxwell’s equation 11-106, that for the scattered magnetic
field of (11-107), leads to

E s
ρ = 1

jωε

1

ρ

∂H s
z

∂φ
= H0

jωε

1

ρ

+∞∑
n=−∞

H (2)
n (βρ)

∂dn

∂φ
(11-108a)

E s
φ = − 1

jωε

∂H s
z

∂ρ
= −βH0

jωε

+∞∑
n=−∞

dnH (2)′
n (βρ) (11-108b)

where ′ indicates a partial derivate with respect to the entire argument of the Hankel function.
Since the cylinder is perfectly electric conducting, the tangential components of the total

electric field must vanish on its surface (ρ = a). Thus, using (11-106b) and (11-108b), we can
write that

E t
φ(ρ = a , 0 ≤ φ ≤ 2π , z ) = −βH0

jωε

+∞∑
n=−∞

[
j −nJ ′

n(βa)ejnφ + dnH (2)′
n (βa)

] = 0 (11-109)

which is satisfied provided

dn = −j −n J ′
n(βa)

H (2)′
n (βa)

ejnφ (11-109a)

Thus, the scattered electric and magnetic fields can be written, using (11-107) and (11-109a),
as

E s
z = H s

ρ = H s
φ = 0 (11-110a)

E s
ρ = − H0

jωε

1

ρ

+∞∑
n=−∞

nj −n+1 J ′
n(βa)

H (2)′
n (βa)

H (2)
n (βρ)ejnφ (11-110b)

E s
φ = βH0

jωε

+∞∑
n=−∞

j −n J ′
n(βa)

H (2)′
n (βa)

H (2)′
n (βρ)ejnφ (11-110c)

H s
z = −H0

+∞∑
n=−∞

j −n J ′
n(βa)

H (2)′
n (βa)

H (2)
n (βρ)ejnφ (11-110d)
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The total electric and magnetic fields can now be expressed [using (11-105), (11-106a), (11-
106b), and (11-110a) through (11-110d)] as

E t
z = H t

ρ = H t
φ = 0

E t
ρ = H0

jωε

1

ρ

+∞∑
n=−∞

nj −n+1

[
Jn(βρ) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βρ)

]
ejnφ

E t
φ = −βH0

jωε

+∞∑
n=−∞

j −n

[
J ′

n(βρ) − J ′
n(βa)

H (2)′
n (βa)

H (2)′
n (βρ)

]
ejnφ

H t
z = H0

+∞∑
n=−∞

j −n

[
Jn(βρ) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βρ)

]
ejnφ

(11-111a)

(11-111b)

(11-111c)

(11-111d)

On the surface of the cylinder (ρ = a), the total tangential magnetic field can be written as

H t
z (ρ = a) = H0

+∞∑
n=−∞

j −n

[
Jn(βa) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βa)

]
ejnφ

= −H0

+∞∑
n=−∞

j −n+1

[
Jn(βa)Y ′

n(βa) − J ′
n(βa)Yn(βa)

H (2)′
n (βρ)

]
ejnφ (11-112)

which reduces, using the Wronskian of (11-95), to

H t
z (ρ = a) = −jH0

2

πβa

+∞∑
n=−∞

j −n ejnφ

H (2)′
n (βa)

(11-112a)

Thus, the current induced on the surface of the cylinder can be written as

Js = n̂ × Ht |ρ=a = âρ × âz H t
z |ρ=a = −âφH t

z (ρ − a)

= âφ j
2H0

πβa

+∞∑
n=−∞

j −n ejnφ

H (2)′
n (βa)

(11-113)

A. Small Radius Approximation As the radius of the cylinder increases, more terms in the
infinite series of (11-113) are needed to obtain convergence. However, for very small cylinders,
like very thin wires where a � λ, the first three terms (n = 0, n = ±1) in (11-113) are dominant
and are sufficient to represent the induced current. Thus, for a very thin wire, (11-113) can be
approximated by

Js
a�λ� âφ j

2H0

πβa

[
1

H (2)′
0 (βa)

+ j −1 ejφ

H (2)′
1 (βa)

+ j +1 e−jφ

H (2)′
−1 (βa)

]
(11-114)

where

H (2)′
0 (βa) = −H (2)

1 (βa) = − [
J1(βa) − jY1(βa)

]
a�λ� −

[
βa

2
+ j

1

π

(
2

βa

)]
= −j

2

πβa
(11-114a)
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H (2)′
1 (βa) = −H (2)

2 (βa) + 1

βa
H (2)

1 (βa)

= − [
J2(βa) − jY2(βa)

] + 1

βa

[
J1(βa) − jY1(βa)

]
a�λ� −

[
1

2

(
βa

2

)2

+ j
1

π

(
2

βa

)2
]

+ 1

βa

[
βa

2
+ j

1

π

(
2

βa

)]
a�λ� −

[
j

1

π

(
2

βa

)2
]

+ 1

βa

[
j

1

π

(
2

βa

)]
= −j

2

π

1

(βa)2
(11-114b)

H (2)′
−1 (βa) = −H (2)′

1 (βa)
a�λ� +j

2

π

1

(βa)2
(11-114c)

Therefore, (11-114) reduces to

Js
a�λ� âφJ

2H0

πβa

[
−πβa

j 2
+ j

π

j 2
(βa)2ejφ + j

π

j 2
(βa)2e−jφ

]
a�λ� âφH0

[−1 + jβa(ejφ + e−jφ)
] = âφH0

[−1 + j 2(βa) cos(φ)
]

(11-114d)

B. Far-Zone Scattered Field Since the scattered field, as given by (11-110a), through
(11-110d), has two non-vanishing electric field components and only one magnetic field compo-
nent, it is most convenient to use the magnetic field to find the far-zone scattered field pattern
and the radar cross section. However, the same answer can be obtained using the electric field
components.

For far-field observations, the scattered magnetic field (11-110d) can be approximated, using
the Hankel function approximation (11-99), by

H s
z

βρ→∞� −H0

√
2j

πβ

e−jβρ

√
ρ

+∞∑
n=−∞

J ′
n(βa)

H (2)′
n (βa)

ejnφ (11-115)

The ratio of the far-zone scattered magnetic field to the incident field can then be written as

|H s
z |

|H i
z |

βρ→∞�

∣∣∣∣∣−H0

√
2j

πβ

e−jβρ

√
ρ

+∞∑
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J ′
n(βa)

H (2)′
n (βa)

ejnφ

∣∣∣∣∣
|H0e−jβx |

=
√

2

πβρ

∣∣∣∣∣
+∞∑

n=−∞

J ′
n(βa)

H (2)′
n (βa)

ejnφ

∣∣∣∣∣ (11-116)

Thus, the scattering width of (11-21c) can be expressed as

σ2-D = lim
ρ→∞

[
2πρ

|H s
z |2

|H i
z |2

]
= 4

β

∣∣∣∣∣
+∞∑

n=−∞

J ′
n(βa)

H (2)′
n (βa)

ejnφ

∣∣∣∣∣
2

= 2λ

π

∣∣∣∣∣
+∞∑
n=0

εn
J ′

n(βa)

H (2)′
n (βa)

cos(nφ)

∣∣∣∣∣
2

(11-117)
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Figure 11-15 Two-dimensional TEz bistatic scattering width (SW) of a circular conducting cylinder.
(Courtesy of J. H. Richmond, Ohio State University.)

where

εn =
{

1 n = 0

2 n �= 0
(11-117a)

Plots of bistatic σ2-D/λ computed using (11-117) are shown in Figure 11-15 for cylinder radii
of a = 0.1λ, 0.2λ, and 0.4λ while the backscattered patterns as a function of the cylinder radius
are displayed in Figure 11-14 [13].

For small radii (a � λ), the first three terms (n = 0, n = ±1) in (11-117) are the dominant
terms, and they are sufficient to represent the scattered field. Thus, for small radii, (11-117) can
be approximated by

σ2-D
a�λ� 2λ

π

∣∣∣∣∣ J ′
0(βa)

H (2)′
0 (βa)

+ J ′
1(βa)

H (2)′
1 (βa)

ejφ + J ′
−1(βa)

H (2)′
−1 (βa)

e−jφ

∣∣∣∣∣
2

(11-118)

where

J ′
0(βa)

H (2)′
0 (βa)

= −J1(βa)

−H (2)
1 (βa)
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2
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(
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4
(βa)2

(11-118a)

J ′
1(βa)

H (2)′
1 (βa)

=
−J2(βa) + 1

βa
J1(βa)

−H (2)
2 (βa) + 1

βa
H (2)

1 (βa)
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J ′
−1(βa)

H (2)
−1 ′(βa)

= J ′
1(βa)

H (2)′
1 (βa)

� j
π

4
(βa)2 (11-118c)

Thus, (11-118) reduces to

σ2-D
a�λ� 2λ

π

∣∣∣−j
π

4
(βa)2 + j

π

4
(βa)2ejφ + j

π

4
(βa)2e−jφ

∣∣∣2

= πλ

8
(βa)4 [1 − 2 cos(φ)]2 (11-118d)

Even for small radii (a � λ), σ is a function of φ, as is evident in Figure 11-15 by the curves
for small values of a.

For a cylinder of finite length �, the three-dimensional radar cross section for normal incidence
is related to the two-dimensional scattering width by (11-22e). Thus, using (11-117) and (11-
118d), we can write the three-dimensional RCS (11-22e) as

σ3-D � 4�2

π

∣∣∣∣∣
+∞∑

n=−∞

J ′
n(βa)

H (2)′
n (βa)
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+∞∑
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J ′

n(βa)

H (2)′
n (βa)

cos(nφ)
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2

(11-119a)

σ3-D
a�λ� π�2

4
(βa)4[1 − 2 cos(φ)]2 (11-119b)

11.5.3 Oblique Incidence Plane Wave Scattering by Conducting Circular Cylinder:
TMz Polarization

In the previous two sections we analyzed scattering by a conducting cylinder at normal incidence.
Scattering at oblique incidence will be considered here. Let us assume that a TMz plane wave
traveling parallel to the xz plane is incident upon a circular cylinder of radius a , as shown in
Figure 11-16. The incident electric field can be written as

Ei = E0(âx cos θi + âz sin θi )e
−jβx sin θi e+jβz cos θi (11-120)

Using the transformation (11-81a), the z component of (11-120) can be expressed as

E i
z = E0 sin θi e

+jβz cos θi

+∞∑
n=−∞

j −nJn(βρ sin θi )e
jnφ (11-120a)
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Figure 11-16 Uniform plane wave obliquely incident on a circular cylinder. (a) Side view. (b) Top view.

The tangential component of the total field is composed of two parts: incident and scattered field
components. The z component of the scattered field takes a form similar to (11-120a). By referring
to (11-88) and Figure 11-16, where θs is shown to be greater than 90◦, it can be written as

E s
z = E0 sin θs e−jβz cos θs

+∞∑
n=−∞

cnH (2)
n (βρ sin θs) (11-121)

The Hankel function was chosen to indicate that the scattered field is a wave traveling in
the outward radial direction. It should be stated at this time that smooth perfectly conducting
infinite cylinders do not depolarize the oblique incident wave (i.e., do not introduce additional
components in the scattered field as compared to the incident field). This, however, is not the
case for homogeneous dielectric or dielectric coated cylinders that introduce cross polarization
under oblique wave incidences.

When the incident electric field is decomposed into its cylindrical components, the E i
x com-

ponent of (11-120) will result in E i
ρ and E i

φ . Similarly scattered E s
ρ and E s

φ components will also
exist. Therefore, the boundary conditions on the surface of the cylinder are,

E t
z (ρ = a , 0 ≤ θi , θs ≤ π , 0 ≤ φ ≤ 2π) = 0

= E i
z (ρ = a , 0 ≤ θi ≤ π , 0 ≤ φ ≤ 2π) + E s

z (ρ = a , 0 ≤ θs ≤ π , 0 ≤ φ ≤ 2π)

(11-122a)

E t
φ(ρ = a , 0 ≤ θi , θs ≤ π , 0 ≤ φ ≤ 2π) = 0

= E i
φ(ρ = a , 0 ≤ θi ≤ π , 0 ≤ φ ≤ 2π) + E s

φ(ρ = a , 0 ≤ θs ≤ π , 0 ≤ φ ≤ 2π)

(11-122b)
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Since each is not independent of the other, either one can be used to find the unknown coefficients.
Applying (11-122a) leads to

E0

[
sin θi e

+jβz cos θi

+∞∑
n=−∞

j −nJn(βa sin θi )e
jnφ

+ sin θs e−jβz cos θs

+∞∑
n=−∞

cnH (2)
n (βa sin θs)

]
= 0 (11-123a)

which is satisfied provided

θs = π − θi (11-123b)

cn = −j −n Jn(βa sin θi )

H (2)
n (βa sin θi )

ejnφ = j −nanejnφ (11-123c)

an = − Jn(βa sin θi )

H (2)
n (βa sin θi )

(11-123d)

Thus, the scattered component E s
z of (11-121) reduces to

E s
z = E0 sin θi e

+jβz cos θi

+∞∑
n=−∞

j −nanH (2)
n (βρ sin θi )e

jnφ (11-124)

It is apparent that the scattered field exists for all values of angle φ (measured from the x axis)
along a cone in the forward direction whose half-angle from the z axis is equal to θs = π − θi .

To find the remaining Es and Hs scattered field components, we expand Maxwell’s curl
equations as

∇ × Es = −jωμHs ⇒ Hs = − 1

jωμ
∇ × Es (11-125)

or

H s
ρ = − 1

jωμ

(
1

ρ

∂E s
z

∂φ
− ∂E s

φ

∂z

)
(11-125a)

H s
φ = − 1

jωμ

(
∂E s

ρ

∂z
− ∂E s

z

∂ρ

)
(11-125b)

H s
z = − 1

jωμρ

(
∂

∂ρ
(ρE s

φ) − ∂E s
ρ

∂φ

)
(11-125c)

and

∇ × Hs = jωεEs ⇒ Es = 1

jωε
∇ × Hs (11-126)

or

E s
ρ = 1

jωε

(
1

ρ

∂H s
z

∂φ
− ∂H s

φ

∂z

)
(11-126a)

E s
φ = 1

jωε

(
∂H s

ρ

∂z
− ∂H s

z

∂ρ

)
(11-126b)

E s
z = 1

jωερ

(
∂

∂ρ
(ρH s

φ ) − ∂H s
ρ

∂φ

)
(11-126c)
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Since for the TMz solution H s
z = 0, (11-126a) reduces to

E s
ρ = − 1

jωε

∂H s
φ

∂z
(11-127)

When substituted into (11-125b), we can write that

H s
φ = − 1

jωμ

[
∂

∂z

(
− 1

jωε

∂H s
φ

∂z

)
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]
= − 1

ω2με

∂2H s
φ

∂z 2
+ 1

jωμ

∂E s
z

∂ρ
(11-128)

The z variations of all field components are of the same form as in (11-124) (i.e., e+jβz cos θi ).
Thus, (11-128) reduces to

H s
φ = − (jβ cos θi )

2

ω2με
H s

φ + 1

jωμ

∂E s
z

∂ρ
= cos2 θi H
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∂E s
z

∂ρ
(11-129)

or

H s
φ (1 − cos2 θi ) = sin2 θi H

s
φ = 1

jωμ

∂E s
z

∂ρ
(11-129a)
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1
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1
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√
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n (βρ sin θi )e
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where

′ ≡ ∂

∂(βρ sin θi )
(11-129c)

In a similar manner we can solve for H s
ρ by first reducing (11-126b) to

E s
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z
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(11-130)

and then substituting it into (11-125a). Thus

H s
ρ = − 1

jωμ

[
1

ρ

∂E s
z

∂φ
− ∂

∂z

(
1

jωε

∂H s
ρ

∂z

)]
= − 1

jωμ

1

ρ

∂E s
z

∂φ
− 1

ω2με

∂2H s
ρ

∂z 2

= − 1

jωμ

1

ρ

∂E s
z

∂φ
− (jβ cos θi )

2

ω2με
H s

ρ = − 1

jωμ

1

ρ

∂E s
z

∂φ
+ cos2 θi H

s
ρ (11-131)

or

(1 − cos2 θi )H s
ρ = sin2 θi H s

ρ = − 1

jωμ

1

ρ

∂E s
z

∂φ
(11-131a)

H s
ρ = − 1

jωμρ sin2 θi

∂E s
z

∂φ
= j

E0e+jβz cos θi

ωμρ sin θi

+∞∑
n=−∞

nj −n+1anH (2)
n (βρ sin θi )e

jnφ

(11-131b)
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Expressions for E s
ρ and E s

φ can be written using (11-126a), (11-126b), (11-129b), and (11-
131b). Thus

E s
ρ = − 1

jωε

∂H s
φ

∂z
= jE0 cos θi e

+jβz cos θi

+∞∑
n=−∞

j −nanH (2)′
n (βρ sin θi )e

jnφ (11-132)
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cot θi

βρ
e+jβz cos θi

+∞∑
n=−∞

nj −n+1anH (2)
n (βρ sin θi )e

jnφ

(11-133)

In summary, the scattered fields can be written as

TMz

E s
ρ = jE0 cos θi e

+jβz cos θi

+∞∑
n=−∞

j −nanH (2)′
n (βρ sin θi )e

jnφ

E s
φ = jE0

cot θi

βρ
e+jβz cos θi

+∞∑
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nj −n+1anH (2)
n (βρ sin θi )e
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E s
z = E0 sin θi e

+jβz cos θi

+∞∑
n=−∞

j −nanH (2)
n (βρ sin θi )e

jnφ

(11-134a)

(11-134b)

(11-134c)

H s
ρ = jE0

e+jβz cos θi

ωμρ sin θi

+∞∑
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nj −n+1anH (2)
n (βρ sin θi )e

jnφ
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φ = −jE0

√
ε

μ
e+jβz cos θi
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jnφ

H s
z = 0

an = − Jn(βa sin θi )

H (2)
n (βa sin θi )

′ = ∂

∂(βρ sin θi )

(11-134d)

(11-134e)

(11-134f)

(11-134g)

(11-134h)

A. Far-Zone Scattered Field Often it is desired to know the scattered fields at large distances.
This can be accomplished by approximating in (11-134a) through (11-134f) the Hankel function
and its derivative by their corresponding asymptotic expressions for large distances, as given by

H (2)
n (αx)

αx→∞�
√

2j

παx
j ne−jαx (11-135a)

H (2)′
n (αx) = dH (2)

n (αx)

d(αx)

αx→∞� −
√

2j

παx
j n+1e−jαx (11-135b)
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Thus, we can reduce the scattered magnetic field expressions of (11-134d) and (11-134e) by

H s
ρ

ρ→∞� jE0
1

ωμ

1

ρ sin θi

√
2j

πβρ sin θi
e+jβ(z cos θi −ρ sin θi )
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√
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nεnan cos(nφ) (11-136a)
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√
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√
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where εn is defined in (11-102a). A comparison of (11-136a) and (11-136b) indicates that at large
distances H s

ρ is small compared to H s
φ since H s

ρ varies inversely proportional to ρ3/2 while H s
φ

is inversely proportional to ρ1/2.
The scattering width of (11-21c) can now be expressed as

σ2-D = lim
ρ→∞
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2πρ

|H s
φ |2

|Hi |2
)
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εnan cos(nφ)

∣∣∣∣∣
2

(11-137)

where

an = − Jn(βa sin θi )

H (2)
n (βa sin θi )

εn =
{

1 n = 0
2 n �= 0

(11-137a)

(11-137b)

which is similar to (11-102) except that β in (11-102) is replaced by β sin θi .
From the results of the normal incidence case of Section 11.5.1B we can write, by referring

to (11-103a), that for small radii the scattering width of (11-137) reduces to

σ2-D
a�λ� πλ

2 sin θi

∣∣∣∣ 1

ln(0.89βa sin θi )

∣∣∣∣2

(11-138)

which is independent of φ.
For a cylinder of finite length �, the scattered fields of oblique incidence propagate in all

directions, in contrast to the infinitely long cylinder where all the energy is along a conical
surface formed in the forward direction whose half-angle is equal to θi . However, as the length
of the cylinder becomes much larger than its radius (� � a), then the scattered fields along
θs = π − θi will be much greater than those in other directions. When the length of the cylinder
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is a multiple of half a wavelength, resonance phenomena are exhibited in the scattered fields
[12]. However, as the length increases beyond several wavelengths, the resonance phenomena
disappear. For both TMz and TEz polarizations, the three-dimensional radar cross section for
oblique wave incidence is related approximately to the two-dimensional scattering width, by
referring to the geometry of Figure 11-16, by [12, 14]

σ3-D = σ2-D

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2�2

λ
sin2 θs ,i
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2
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]
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2
(cos θi + cos θs)

⎤⎥⎥⎦
2
⎫⎪⎪⎪⎬⎪⎪⎪⎭ � � a (11-139)

where sin2 θs , is used for TMz and sin2 θi , is used for TEz . This is analogous to the rectangular
plate scattering of Section 11.3.2 and Example 11-2. This indicates that the maximum RCS occurs
along the specular direction (θs = π − θi ) and away from it follows the variations exhibited from a
flat plate, as given by (11-44a). Equation 11-139 yields reasonable good results even for cylinders
with lengths near one wavelength (� � λ). Thus, using (11-139) converts (11-137) and (11-138)
for three-dimensional scatterers to

σ3-D � 4�2

π
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(11-140a)
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(11-140b)

11.5.4 Oblique Incidence Plane Wave Scattering by Conducting Circular Cylinder:
TEz Polarization

TEz scattering by a cylinder at oblique incidence can be analyzed following a procedure similar to
that of TMz scattering as discussed in the previous section. Using the geometry of Figure 11-16,
we can write the incident magnetic field, for a plane wave traveling parallel to the xz plane, as

Hi = H0(âx cos θi + âz sin θi )e
−jβx sin θi e+jβz cos θi (11-141)

Using the transformation (11-81a), it can also be expressed as

Hi = H0(âx cos θi + âz sin θi )e
+jβz cos θi

+∞∑
n=−∞

j −nJn(βρ sin θi )e
jnφ (11-141a)

Using the transformation from rectangular to cylindrical components (II-6), or

Hρ = Hx cos φ + Hy sin φ = Hx cos φ (11-142a)

Hφ = −Hx sin φ + Hy cos φ = −Hx sin φ (11-142b)

Hz = Hz (11-142c)
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reduces (11-141a) to

H i
ρ = H0 cos θi cos φe+jβz cos θi

+∞∑
n=−∞

j −nJn(βρ sin θi )e
jnφ (11-143a)

H i
φ = −H0 cos θi sin φe+jβz cos θi

+∞∑
n=−∞

j −nJn(βρ sin θi )e
jnφ (11-143b)

H i
z = H0 sin θi e

+jβz cos θi

+∞∑
n=−∞

j −nJn(βρ sin θi )e
jnφ (11-143c)

In the source-free region, the corresponding electric field components can be obtained using
Maxwell’s curl equation

∇ × Hi = jωεEi ⇒ Ei = 1

jωε
∇ × Hi (11-144)

or

E i
ρ = 1

jωε

(
1

ρ

∂H i
z

∂φ
− ∂H i

φ

∂z

)
(11-144a)

E i
φ = 1

jωε

(
∂H i

ρ

∂z
− ∂H i

z

∂ρ

)
(11-144b)

E i
z = 1

jωε

1

ρ

[
∂(ρH i

φ)

∂ρ
− ∂H i

ρ

∂φ

]
(11-144c)

To aid in doing this, we also utilize Maxwell’s curl equation

∇ × Ei = −jωμHi ⇒ Hi = − 1

jωμ
∇ × Ei (11-145)

which when expanded takes the form, for a TEz polarization (E i
z = 0), of

H i
ρ = − 1

jωμ

(
1

ρ

∂E i
z

∂φ
− ∂E i

φ

∂z

)
E i

z =0

= 1

jωμ

∂E i
φ

∂z
(11-145a)

H i
φ = − 1

jωμ

(
∂E i

ρ

∂z
− ∂E i

z

∂ρ

)
E i

z =0

= − 1

jωμ

∂E i
ρ

∂z
(11-145b)

H i
z = − 1

jωμ

1

ρ

[
∂(ρE i

φ)

∂ρ
− ∂E i

ρ

∂φ

]
(11-145c)

Substituting (11-145a) into (11-144b), we can write that

E i
φ = 1

jωε

[
1

jωμ

∂2E i
φ

∂z 2
− ∂H i

z

∂ρ

]
= − 1

ω2με

∂2E i
φ

∂z 2
− 1

jωε

∂H i
z

∂ρ
(11-146)

Since the z variations of all the field components are of the same form (i.e., e+jβz cos θi ), as given
by (11-141), then (11-146) reduces to

E i
φ = β2

ω2με
cos2 θi E

i
φ − 1

jωε

∂H i
z

∂ρ
= cos2 θi E

i
φ − 1

jωε

∂H i
z

∂ρ
(11-147)
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or

(1 − cos2 θi )E
i
φ = sin2 θi E

i
φ = − 1

jωε

∂H i
z

∂ρ

E i
φ = − 1

jωε

1

sin2 θi

∂H i
z

∂ρ
= − β

jωε

1

sin θi

∂H i
z

∂(βρ sin θi )

= j

√
μ

ε
H0e+jβz cos θi

+∞∑
n=−∞

j −nJ ′
n(βρ sin θi )e

jnφ (11-147a)

In a similar manner, we can solve for E i
ρ by substituting (11-145b) into (11-144a). Thus,

E i
ρ = 1

jωε

[
1

ρ

∂H i
z

∂φ
−

(
− 1

jωμ

∂2E i
ρ

∂z 2

)]
= 1

jωε

1

ρ

∂H i
z

∂φ
− 1

ω2με

∂2E i
ρ

∂z 2

= 1

jωε

1

ρ

∂H i
z

∂φ
− (jβ cos θi )

2

ω2με
E i

ρ = 1

jωε

1

ρ

∂H i
z

∂φ
+ cos2 θi E

i
ρ (11-148)

or

(1 − cos2 θi )E i
ρ = sin2 θi E i

ρ = 1

jωε

1

ρ

∂H i
z

∂φ

E i
ρ = 1

jωερ

1

sin2 θi

∂H i
z

∂φ
= −j

H0e+jβz cos θi

ωερ sin θi

+∞∑
n=−∞

nj −n+1Jn(βρ sin θi )e
jnφ (11-148a)

Since the z component of the incident H field is given by (11-143c), its scattered field can be
written in a form similar to (11-121) or

H s
z = H0 sin θs e−jβz cos θs

+∞∑
n=−∞

dnH (2)
n (βρ sin θs) (11-149)

where dn represents unknown coefficients to be determined by boundary conditions. According
to (11-147a), the φ component of the scattered field can be written using (11-149) as

E s
φ = − 1

jωε

1

sin2 θs

∂H s
z

∂ρ
= − β

jωε

1

sin θs

∂H s
z

∂(βρ sin θs)

= jH0

√
μ

ε
e−jβz cos θs

+∞∑
n=−∞

dnH (2)′
n (βρ sin θs) (11-150)

Applying the boundary condition

E t
φ(ρ = a , 0 ≤ θi , θs ≤ π , 0 ≤ φ ≤ 2π) = 0

= E i
φ(ρ = a , 0 ≤ θi ≤ π , 0 ≤ φ ≤ 2π) + E s

φ(ρ = a , 0 ≤ θs ≤ π , 0 ≤ φ ≤ 2π)

(11-151)

leads to

jH0

√
μ

ε

[
e+jβz cos θi

+∞∑
n=−∞

j −nJ ′
n(βa sin θi )e

jnφ

+e−jβz cos θs

+∞∑
n=−∞

dnH (2)′
n (βa sin θs)

]
= 0 (11-151a)
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which is satisfied provided

θs = π − θi (11-151b)

dn = −j −n J ′
n(βa sin θi )

H (2)′
n (βa sin θi )

ejnφ = j −nbnejnφ (11-151c)

bn = − J ′
n(βa sin θi )

H (2)′
n (βa sin θi )

(11-151d)

Thus, the scattered H s
z component of (11-149) reduces to

H s
z = H0 sin θi e

+jβz cos θi

+∞∑
n=−∞

j −nbnH (2)
n (βρ sin θi )e

jnφ (11-152)

Knowing H s
z , the remaining electric and magnetic field components can be found using

(11-148a), (11-147a), and (11-145a) through (11-145c).
In summary, the scattered fields can be written as

TEz

E s
ρ = 1

jωερ

1

sin2 θi

∂H s
z

∂φ
= −j

H0

ωερ

e+jβz cos θi

sin θi

×
+∞∑

n=−∞
nj −n+1bnH (2)

n (βρ sin θi )e
jnφ

E s
φ = − 1

jωε

1

sin2 θi

∂H s
z

∂ρ
= j H0

√
μ

ε
e+jβz cos θi

×
+∞∑

n=−∞
j −nbnH (2)′

n (βρ sin θi )e
jnφ

E s
z = 0

H s
ρ = 1

jωμ

∂E s
φ

∂z
= jH0 cos θi e

+jβz cos θi

×
+∞∑

n=−∞
j −nbnH (2)′

n (βρ sin θi )e
jnφ

H s
φ = − 1

jωμ

∂E s
ρ

∂z
= jH0

cot θi

βρ
e+jβz cos θi

×
+∞∑

n=−∞
nj −n+1bnH (2)

n (βρ sin θi )e
jnφ

H s
z = H0 sin θi e

+jβz cos θi

+∞∑
n=−∞

j −nbnH (2)
n (βρ sin θi )e

jnφ

bn = − J ′
n(βa sin θi )

H (2)′
n (βa sin θi )

′ ≡ ∂

∂(βρ sin θi )

(11-153a)

(11-153b)

(11-153c)

(11-153d)

(11-153e)

(11-153f)

(11-153g)

(11-153h)
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A. Far-Zone Scattered Field The scattered electric fields of (11-153a) through (11-153c)
can be approximated in the far zone by replacing the Hankel function and its derivative by their
asymptotic forms, as given by (11-135a) and (11-135b). Thus,

E s
ρ � H0

1

ωε

1

ρ sin θi

√
2j

πβρ sin θi
e+jβ(z cos θi −ρ sin θi )

+∞∑
n=−∞

nbnejnφ

� H0
1

ωε

1

ρ sin θi

√
2j

πβρ sin θi
e+jβ(z cos θi −ρ sin θi )

+∞∑
n=0

nεnbn cos(nφ) (11-154a)

E s
φ � H0

√
μ

ε

√
2j

πβρ sin θi
e+jβ(z cos θi −ρ sin θi )

+∞∑
n=−∞

bnejnφ

� H0

√
μ

ε

√
2j

πβρ sin θi
e+jβ(z cos θi −ρ sin θi )

+∞∑
n=−∞

εnbn cos(nφ) (11-154b)

where εn is defined in (11-102a). A comparison of (11-154a) and (11-154b) indicates that at large
distances E s

ρ is small compared to E s
φ since E s

ρ is inversely proportional to ρ3/2, whereas E s
φ is

inversely proportional to ρ1/2.
The scattering width of (11-21b) can now be expressed using (11-154b) and the incident

electric field corresponding to (11-141) as

σ2-D = lim
ρ→∞

[
2πρ

|E s
φ |2

|Ei |2
]

= lim
ρ→∞

⎡⎢⎢⎣2πρ

|H0|2 μ

ε

(
2

πβρ sin θi

)
|H0|2 μ

ε

∣∣∣∣∣
+∞∑

n=−∞
bnejnφ

∣∣∣∣∣
2

⎤⎥⎥⎦

σ2-D = 4

β

1

sin θi

∣∣∣∣∣
+∞∑

n=−∞
bnejnφ

∣∣∣∣∣
2

= 2λ

π

1

sin θi

∣∣∣∣∣
+∞∑
n=0

εnbn cos(nφ)

∣∣∣∣∣
2

(11-155)

where

bn = − J ′
n(βa sin θi )

H (2)′
n (βa sin θi )

εn =
{

1 n = 0
2 n �= 0

(11-155a)

(11-155b)

which is similar to (11-117) except that β in (11-117) has been replaced by β sin θi .
From the results of the normal incidence case of Section 11.5.2B we can write by referring

to (11-118d) that for small radii the scattering width of (11-155) reduces to

σ2-D
a�λ� πλ

8

(βa sin θi )
4

sin θi
[1 − 2 cos(φ)]2 (11-156)

which is dependent on φ, even for small radii cylinders.
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Using (11-139), the radar cross section at oblique incidence for a finite length � cylinder can
be written using (11-155) and (11-156), and referring to the geometry of Figure 11-16, as

σ3-D � 4�2

π
sin θi

∣∣∣∣∣
∞∑

n=0

εnbn cos(nφ)

∣∣∣∣∣
2

⎧⎪⎪⎨⎪⎪⎩
sin

[
β�

2
(cos θi + cos θs)

]
β�

2
(cos θi + cos θs)

⎫⎪⎪⎬⎪⎪⎭
2

(11-157a)

σ3-D
a�λ� π�2

4

[
(βa sin θi )

4 sin θi
]

[1 − 2 cos(φ)]2

⎧⎪⎪⎨⎪⎪⎩
sin

[
β�

2
(cos θi + cos θs)

]
β�

2
(cos θi + cos θs)

⎫⎪⎪⎬⎪⎪⎭
2

(11-157b)

11.5.5 Line-Source Scattering by a Conducting Circular Cylinder

While in the previous sections we examined plane wave scattering by a conducting circular
cylinder, both at normal and oblique wave incidences, a more general problem is that of line-
source (both electric and magnetic) scattering. The geometry is that shown in Figure 11-17 where
an infinite line of constant current (Ie for electric and Im for magnetic) is placed in the vicinity
of a circular conducting cylinder of infinite length. We will examine here the scattering by the
cylinder assuming the source is either electric or magnetic.

A. Electric Line Source ( TMz Polarization) If the line source of Figure 11-17 is of constant
electric current Ie , the field generated everywhere by the source in the absence of the cylinder is

f

f

f′f′

y

0

0

Is

x

a

a

z

z

y

x

ρ
ρ

R = ρ − ρ′

ρ − ρ′

ρ′
ρ′

S

(a) (b)

Figure 11-17 Electric line source near a circular cylinder. (a) Side view. (b) Top view.
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given, according to (11-11a), by

E i
z = −β2Ie

4ωε
H (2)

0 (β|ρ − ρ′|) (11-158)

which is referred to here as the incident field. By the addition theorem for Hankel functions
(11-69a) and (11-69b), we can write (11-158) as

E i
z = −β2Ie

4ωε

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

Jn(βρ)H (2)
n (βρ ′)ejn(φ−φ′), ρ ≤ ρ ′

+∞∑
n=−∞

Jn(βρ ′)H (2)
n (βρ)ejn(φ−φ′), ρ ≤ ρ ′

(11-158a)

(11-158b)

Bessel functions Jn(βρ) were selected to represent the fields for ρ < ρ ′ because the field must
be finite everywhere (including ρ = 0) and Hankel functions were chosen for ρ ≥ ρ ′ to represent
the traveling nature of the wave.

In the presence of the cylinder, the total field is composed of two parts: incident and scattered
fields. The scattered field is produced by the current induced on the surface of the cylinder that
acts as a secondary radiator. The scattered field also has only an Ez component (no cross polarized
components are produced), and it can be expressed as

E s
z = −β2Ie

4ωε

+∞∑
n=−∞

cnH (2)
n (βρ), a ≤ ρ ≤ ρ ′, ρ ≥ ρ ′ (11-159)

The same expression is valid for ρ ≤ ρ ′ and ρ ≥ ρ ′ because the scattered field exists only when
the cylinder is present, and it is nonzero only when ρ ≥ a . Since the scattered field emanates
from the surface of the cylinder, the Hankel function of the second kind in (11-159) is chosen to
represent the traveling wave nature of the radiation.

The coefficients represented by cn in (11-159) can be found by applying the boundary
condition

E t
z (ρ = a , 0 ≤ φ, φ′ ≤ 2π , z )

= E i
z (ρ = a , 0 ≤ φ, φ′ ≤ 2π , z ) + E s

z (ρ = a , 0 ≤ φ, φ′ ≤ 2π , z ) = 0 (11-160)

which, by using (11-158a) and (11-159), leads to

−β2Ie

4ωε

+∞∑
n=−∞

[
H (2)

n (βρ ′)Jn(βa)ejn(φ−φ′) + cnH (2)
n (βa)

]
= 0 (11-161)

which is satisfied provided

cn = −H (2)
n (βρ ′)

Jn(βa)

H (2)
n (βa)

ejn(φ−φ′) (11-161a)

Thus, (11-159) can be expressed as

E s
z = +β2Ie

4ωε

+∞∑
n=−∞

H (2)
n (βρ ′)

Jn(βa)

H (2)
n (βa)

H (2)
n (βρ)ejn(φ−φ′), a ≤ ρ ≤ ρ ′, ρ ≥ ρ ′

(11-162)
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The total electric field can then be written as

E t
ρ = E t

φ = 0 (11-163)

E t
z = −β2Ie

4ωε

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

H (2)
n (βρ ′)

[
Jn(βρ) − Jn(βa)

H (2)
n (βa)

H (2)
n (βρ)

]
×ejn(φ−φ′) a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

H (2)
n (βρ)

[
Jn(βρ ′) − Jn(βa)

H (2)
n (βa)

H (2)
n (βρ ′)

]
×ejn(φ−φ′) ρ ≥ ρ ′

(11-164a)

(11-164b)

where the first terms within the summations and brackets represent the incident fields and the
second terms represent the scattered fields. The corresponding magnetic components can be found
using Maxwell’s equations 11-86 through 11-86c, which can be written as

H t
ρ = − 1

jωμ

1

ρ

∂E t
z

∂φ

= −j
Ie

4ρ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

jnH (2)
n (βρ ′)

[
Jn(βρ) − Jn(βa)

H (2)
n (βa)

H (2)
n (βρ)

]
×ejn(φ−φ′) a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

jnH (2)
n (βρ)

[
Jn(βρ ′) − Jn(βa)

H (2)
n (βa)

H (2)
n (βρ ′)

]
×ejn(φ−φ′) ρ ≥ ρ ′

(11-165a)

(11-165b)

H t
φ = 1

jωμ

∂E t
z

∂ρ

= j
βIe

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

H (2)
n (βρ ′)

[
J ′

n(βρ) − Jn(βa)

H (2)
n (βa)

H (2)′
n (βρ)

]
×ejn(φ−φ′) a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

H (2)′
n (βρ)

[
Jn(βρ ′) − Jn(βa)

H (2)
n (βa)

H (2)
n (βρ ′)

]
×ejn(φ−φ′) ρ ≥ ρ ′

(11-166a)

(11-166b)

H t
z = 0

On the surface of the cylinder, the current density can be found to be

Js = n̂ × Ht
∣∣
ρ=a = âρ × (âρH t

ρ + âφH t
φ)

∣∣
ρ=a

= âz H t
φ

∣∣
ρ=a

= âz j
βIe

4

+∞∑
n=−∞

H (2)
n (βρ ′)

[
J ′

n(βa) − Jn(βa)

H (2)
n (βa)

H (2)′
n (βa)

]
ejn(φ−φ′) (11-167)
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Js = −âz
βIe

4

+∞∑
n=−∞

H (2)
n (βρ ′)

[
Jn(βa)Y ′

n(βa) − J ′
n(βa)Yn(βa)

H (2)
n (βa)

]
ejn(φ−φ′) (11-168)

which, by using the Wronskian of (11-95), reduces to

Js = −âz
Ie

2πa

+∞∑
n=−∞

H (2)
n (βρ ′)

H (2)
n (βa)

ejn(φ−φ′) (11-168a)

For far-field observations (βρ � 1), the total electric field of (11-164b) can be reduced by
replacing the Hankel function H (2)

n (βρ) by its asymptotic expression (11-135a). Doing this
reduces (11-164b) to

E t
z

βρ�1� −β2Ie

4ωε

√
2j

πβ

e−jβρ

√
ρ

+∞∑
n=−∞

j n

[
Jn(βρ ′) − Jn(βa)

H (2)
n (βa)

H (2)
n (βρ ′)

]
ejn(φ−φ′) (11-169)

which can be used to compute more conveniently far-field patterns of an electric line source near
a circular conducting cylinder. Plots of the normalized pattern for a = 5λ, φ′ = 0 with ρ ′ = 5.25λ

and 5.5λ are shown, respectively, in Figures 11-18a and 11-18b where they are compared with
that of a planar reflector (a = ∞) of Figure 11-3. Because of the finite radius of the cylinder,
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Figure 11-18 Normalized far-field pattern of an electric line source near a circular conducting cylinder.
(a) ρ ′ = 5.25λ, φ′ = 0◦. (b) ρ ′ = 5.5λ, φ′ = 0◦.
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Figure 11-18 (Continued )

radiation is allowed to “leak” around the cylinder in terms of “creeping” waves [15–17]; this is
not the case for the planar reflector.

B. Magnetic Line Source ( TEz Polarization) Magnetic sources, although not physically
realizable, are often used as equivalent sources to analyze aperture antennas [1, 18]. If the line
source of Figure 11-17 is magnetic and it is allowed to recede to the surface of the cylinder
(ρ ′ = a), the total field of the line source in the presence of the cylinder would be representative
of a very thin infinite axial slot on the cylinder. Finite-width slots can be represented by a number
of line sources with some amplitude and phase distribution across the width. Therefore, knowing
the radiation and scattering by a magnetic line source near a cylinder allows us to solve other
physical problems by using it as an equivalent.

If the line of Figure 11-17 is magnetic with a current of Im , the fields that it radiates in the
absence of the cylinder can be obtained from those of an electric line source by the use of duality
(Section 7.2). Doing this, we can write the incident magnetic field, by referring to (11-158)
through (11-158b), as

H i
z = −β2Im

4ωμ
H (2)

0 (β|ρ − ρ′|) (11-170)
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which can also be expressed as

H i
z = −β2Im

4ωμ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
n=−∞

Jn(βρ)H (2)
n (βρ ′)ejn(φ−φ), ρ ≤ ρ ′

+∞∑
n=−∞

Jn(βρ ′)H (2)
n (βρ)ejn(φ−φ′), ρ ≥ ρ ′

(11-170a)

(11-170b)

The scattered magnetic field takes a form similar to that of (11-159) and can be written as

H s
z = −β2Im

4ωμ

+∞∑
n=−∞

dnH (2)
n (βρ), a ≤ ρ ≤ ρ ′, ρ ≥ ρ ′ (11-171)

where dn is used to represent the coefficients of the scattered field. Thus, the total magnetic field
can be expressed, by combining (11-170a) through (11-171), as

H t
z = −β2Im

4ωμ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

[
H (2)

n (βρ ′)Jn(βρ)ejn(φ−φ′) + dnH (2)
n (βρ)

]
a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

[
Jn(βρ ′)ejn(φ−φ′) + dn

]
H (2)

n (βρ)

ρ ≥ ρ ′

(11-172a)

(11-172b)

The corresponding electric field components can be found using Maxwell’s equations 11-106
or 11-106a and 11-106b. Doing this, and utilizing (11-172a) and (11-172b), we can write that

E t
ρ = 1

jωε

1

ρ

∂H t
z

∂φ

= j
Im

4ρ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

[
jnH (2)

n (βρ ′)Jn(βρ)ejn(φ−φ′) + H (2)
n (βρ)

∂dn

∂φ

]
a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

[
jnJn(βρ ′)ejn(φ−φ′) + ∂dn

∂φ

]
H (2)

n (βρ)

ρ ≥ ρ ′

(11-173a)

(11-173b)

E t
φ = − 1

jωε

∂H t
z

∂ρ

= −j
βIm

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

[
H (2)

n (βρ ′)J ′
n(βρ)ejn(φ−φ′) + dnH (2)′

n (βρ)
]

a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

[
Jn(βρ ′)ejn(φ−φ′) + dn

]
H (2)′

n (βρ)

ρ ≥ ρ ′

(11-174a)

(11-174b)
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Applying the boundary condition

E t
φ(ρ = a , 0 ≤ φ, φ′ ≤ 2π , z )

= E t
φ(ρ = a , 0 ≤ φ, φ′ ≤ 2π , z ) + E s

φ(ρ = a , 0 ≤ φ, φ′ ≤ 2π , z ) = 0 (11-175)

on (11-174a) leads to

dn = −H (2)
n (βρ ′)

J ′
n(βa)

H (2)′
n (βa)

ejn(φ−φ′) (11-175a)

Thus, the total electric and magnetic field components can be written as

TEz

E t
z = H t

ρ = H t
φ = 0

E t
ρ = − Im

4ρ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

nH (2)
n (βρ ′)

[
Jn(βρ) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βρ)

]
×ejn(φ−φ′) a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

nH (2)
n (βρ)

[
Jn(βρ ′) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βρ ′)

]
×ejn(φ−φ′) ρ ≥ ρ ′

(11-176a)

(11-176b)

(11-176c)

E t
φ = −j

βIm

4
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

H (2)
n (βρ ′)

[
J ′

n(βρ) − J ′
n(βa)

H (2)′
n (βa)

H (2)′
n (βρ)

]

× ejn(φ−φ′) a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

H (2)′
n (βρ)

[
Jn(βρ ′) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βρ ′)

]

× ejn(φ−φ′) ρ ≥ ρ ′

(11-176d)

(11-176e)

H t
z = −β2Im

4ωμ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
n=−∞

H (2)
n (βρ ′)

[
Jn(βρ) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βρ)

]

× ejn(φ−φ′) a ≤ ρ ≤ ρ ′

+∞∑
n=−∞

H (2)
n (βρ)

[
Jn(βρ ′) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βρ ′)

]

× ejn(φ−φ′) ρ ≥ ρ ′

(11-176f)

(11-176g)

where the first terms within the summation and brackets represent the incident fields and the
second terms represent the scattered fields.
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On the surface of the cylinder, the current density can be found to be

Js = n̂ × Ht
∣∣
ρ=a = âρ × âz H t

z

∣∣
ρ=a = −âφH t

z

∣∣
ρ=a

= âφ

β2Im

4ωμ

+∞∑
n=−∞

H (2)
n (βρ ′)

[
Jn(βa) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βa)

]
ejn(φ−φ′)

Js = −j âφ

β2Im

4ωμ

+∞∑
n=−∞

H (2)
n (βρ ′)

[
Jn(βa)Y ′

n(βa) − J ′
n(βa)Yn(βa)

H (2)′
n (βa)

]
ejn(φ−φ′)

(11-177)

which, by using the Wronskian (11-95), reduces to

Js = −j âφ

Im

2ηπa

+∞∑
n=−∞

H (2)
n (βρ ′)

H (2)′
n (βa)

ejn(φ−φ′) (11-177a)

For far-field observations (βρ � 1), the total magnetic field (11-176g) can be reduced in form
by replacing the Hankel function H (2)

n (βρ) by its asymptotic expression (11-135a). Doing this
reduces (11-176g) to

H t
z

βρ�1� −β2Im

4ωμ

√
2j

πβ

e−jβρ

√
ρ

+∞∑
n=−∞

j n

[
Jn(βρ ′) − J ′

n(βa)

H (2)′
n (βa)

H (2)
n (βρ ′)

]
ejn(φ−φ′)

(11-178)

which can be used to compute, more conveniently, far-field patterns of a magnetic line source
near a circular electric conducting cylinder. When the line source is moved to the surface of the
cylinder (ρ ′ = a), (11-178) reduces, with the aid of the Wronskian (11-95), to

H t
z

βρ�1� j
β2Im

4ωμ

√
2j

πβ

e−jβρ

√
ρ

+∞∑
n=−∞

j n

[
Jn(βa)Y ′

n(βa) − J ′
n(βa)Yn(βa)

H (2)′
n (βa)

]
ejn(φ−φ′)

H t
z

βρ�1� j
Im

π

1

a

√
ε

μ

√
j

2πβ

e−jβρ

√
ρ

+∞∑
n=−∞

j n ejn(φ−φ′)

H (2)′
n (βa)

(11-178a)

The pattern of (11-178a) is representative of a very thin (ideally zero width) infinite-length axial
slot on a circular conducting cylinder, and its normalized form is shown plotted in Figure 11-19
for a = 2λ and 5λ. Because of the larger radius of curvature for the a = 5λ radius, which results
in larger attenuation, less energy is allowed to “creep” around the cylinder compared to that of
a = 2λ.

Scattering by cylinders of other cross sections, and by dielectric and dielectric-covered cylin-
ders, can be found in the literature [12, 19–31].
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Figure 11-19 Normalized far-field amplitude pattern of a very thin axial slot on a circular conducting
cylinder (φ′ = 0◦).

Example 11-4

A more practical problem is one when an aperture of finite dimensions is mounted on a circular cylinder.
This type of configuration is applicable to apertures mounted on the surface of missiles, fuselages of
airplanes, and other similar structures and airframes. Practically, a rectangular aperture can be mounted
on the cylinder primarily in two orientations, as shown in Figures 11-20a and 11-20b. The one in
Figure 11-20a is usually referred to as a circumferential aperture while that in Figure 11-20b is referred
to as an axial aperture. The choice of orientation is dictated by the desired polarization. One such
decision was made in the 1970s in the development of the Microwave Landing System (MLS) [32].
The requirement for the MLS was to select antenna elements that radiate either vertical or horizontal
polarization, especially near the forward direction of the aircraft. In using apertures, the choice was
either of these two apertures, depending how they were mounted on the fuselage of the aircraft.

a. Assume the electric field expressions on each of the two apertures is given, respectively, by

Circumferential aperture: Ez = Vo

h
cos

(
π

2φo
φ′

){ −φo ≤ φ′ ≤ +φo

−h

2
≤ z ′ ≤ +h

2

Axial aperture: Eφ = Vo

2aφo
cos

(π

w
z ′
){ −φo ≤ φ′ ≤ +φo

−w

2
≤ z ′ ≤ +w

2
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Figure 11-20 Aperture on the surface of a circular cylinder. (a) Circumferential. (b) Axial.

Write expressions for the electric field spherical components of the far-zone fields radiated by
these two apertures.

b. Assuming f = 10 GHz, w = 2.286 cm, h = 1.016 cm (X-band waveguide), compute and plot the:
• H-plane normalized amplitude patterns for the circumferential aperture of Figure 11-20a when

it is on a circular cylinder with radii a = 2λ and 5λ. Compare them when the same aperture is
mounted on an infinite PEC flat ground plane. Compare the results and assess the effect of the
cylinder curvature on the H-plane radiation patterns.

• Repeat the previous computations and plots for the E-plane of the axial aperture of
Figure 11-20b.

Solution: The fields radiated by the two apertures can be determined by replacing the apertures with
equivalent currents densities Js and Ms and then using integration over the aperture and surface of
the cylinder. Since Js is not known outside the aperture, an approximate equivalent will be to either
assume Js is small outside the aperture; however, this is not an exact equivalent. Another equivalent is
to assume Ms only over the aperture, as is done for apertures mounted on ground planes [1]. However,
for the cylinder, this also is not exact because the surface to which the aperture is mounted is not flat.

Another procedure is to use transform techniques, as it was done in [11, 33–34] where the fields
external to the cylinder are expressed as the sum of TEz and TMz modes. This is accomplished by
writing the corresponding vector potentials Fz and Az in the transform domain and then the fields are
obtained using (6-34) and (6-35). Using such a procedure, it is shown that the far-zone fields radiated
by the respective apertures are:

Circumferential Aperture (circular cylinder)

Eθ = −j
Vo

π2

e−jβr

r

⎧⎪⎪⎨⎪⎪⎩
βa

sin θ

n=+∞∑
n=0

cos

(
nπ

2βa

)
[
(βa)2 − n2

] εn j n cos(nφ)

H (2)
n (βa sin θ)

⎫⎪⎪⎬⎪⎪⎭
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Eφ = −j
Vo

π2

e−jβr

r

⎧⎪⎪⎨⎪⎪⎩
cot θ

sin θ

n=+∞∑
n=1

cos

(
nπ

2βa

)
[
(βa)2 − n2

] 2nj n sin(nφ)

H (2)′
n (βa sin θ)

⎫⎪⎪⎬⎪⎪⎭
εn =

{
1 n = 0
2 n > 0

; H (2)′
n (βρ) = ∂

∂ρ
H (2)

n (βρ)

When

{
θ=π /2: Eφ = 0
φ=0: Eφ = 0

as it is should be.

Axial Aperture (circular cylinder)

Eφ = Voλ

2aπ3

e−jβr

r

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

cos

(
βw

2
cos θ

)
1 −

(
βw

π
cos θ

)2

⎤⎥⎥⎥⎦
n=+∞∑

n=0

εn j n cos(nφ)

H (2)′
n (βa sin θ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
H (2)′

n (βρ) = ∂

∂ρ
H (2)

n (βρ)

Eθ = 0 in all planes, as it should be.

Using the surface equivalence theorem outlined in Section 7.8 (Chapter 7), we can derive the fields
when the respective apertures are mounted on infinite ground planes. The same procedure is outlined in
Section 12.1 of [1]. Some of these apertures, when mounted on flat ground planes, have been assigned
as end-of-the-chapter problems in Chapters 6 and 7. Following such a procedure, it is shown that the
fields in the principle H- and E- planes, radiated by these two apertures when mounted on infinite flat
PEC ground planes are:

Circumferential Aperture (flat PEC ground plane)

H-Plane (θ = 90◦)
Eφ = 0

Eθ = +π

2
C

⎡⎢⎢⎢⎣cos φ

cos

(
βa

2
sin φ

)
(

βa

2
sin φ

)2

−
(π

2

)2

⎤⎥⎥⎥⎦
Axial Aperture (flat PEC ground plane)

E-Plane (θ = 90◦)
Eθ = 0

Eφ = + 2

π
C

⎡⎢⎢⎣ sin

(
βb

2
sin φ

)
βb

2
sin φ

⎤⎥⎥⎦
where C = jabβVoe−jβr/2πr . The expressions for the fields radiated in all space are found in the
end-of-chapter exercises of Chapters 6 and 7.

To compute the pattern in the H-plane of the circumferential aperture and E-plane of the axial
slot, for both the circular cylinder and flat infinite ground plane, a MATLAB computer program,
referred to as PEC_Cyl_Plate_Rect, was written and it is included in the multimedia folder
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associated with this book. The respective patterns are shown in Figure 11-21a for the H-plane
of the circumferential aperture and in Figure 11-21b for the E-plane of the axial aperture, where
they are compared with those of the flat ground plane. It is apparent, as expected, that the:

• Cylinder allows radiation on the rear region, whereas the PEC flat ground plane does not.
• Larger radius cylinder diminishes more the radiation in the rear region because the creeping

waves that travel around the surface of the cylinder attenuate faster.
• Number of lobes in the rear region is greater for the larger cylinder because the two creeping

waves that travel in opposite directions around the surface of the cylinder, and radiate
tangentially [15–17], have a greater space separation, which allows the formation of a greater
number of constructive and destructive interferences, leading to greater number of lobes.

Although the E-plane patterns of the circumferential aperture and the H-plane of the axial aperture
are not computed or shown here, those of the cylinder are basically identical to those of the flat
ground plane, if both are assumed to be of infinite extent.

11.6 SCATTERING BY A CONDUCTING WEDGE

Scattering of electromagnetic waves by a two-dimensional conducting wedge has received consid-
erable attention since about the middle 1950s. Because the wedge is a canonical problem that can
be used to represent locally (near the edge) the scattering of more complex structures, asymptotic
forms of its solution have been utilized to solve numerous practical problems. The asymptotic
forms of its solution are obtained by taking the infinite series modal solution and first transform-
ing it into an integral by the so-called Watson transformation [19, 35, 36]. The integral is then
evaluated by the method of steepest descent (saddle point method ) (see Appendix VI) [37]. The
resulting terms of the integral evaluation can be recognized to represent the geometrical optics
fields, both incident and reflected geometrical optics fields, and the diffracted fields, both incident
and reflected diffracted fields [38, 39]. These forms of the solution have received considerable
attention in the geometrical theory of diffraction (GTD), which has become a generic name in
the area of antennas and scattering [40–42].

First, we will present the modal solution of the scattering by the wedge. In Chapter 13 we
will briefly outline its asymptotic solution, whose form represents the geometrical optics and
diffracted fields, and apply it to antenna and scattering problems.

11.6.1 Electric Line-Source Scattering by a Conducting Wedge: TMz Polarization

Let us assume that an infinite electric line source of electric current Ie is placed near a conducting
wedge whose total inner wedge angle is WA = 2α, as shown in Figure 11-22a . The incident field
produced everywhere by the source, in the absence of the wedge, can be written according to
(11-158a) and (11-158b) as

E i
z = −β2Ie

4ωε
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞∑
m=−∞

Jm(βρ)H (2)
m (βρ ′)ejm(φ−φ′), ρ ≤ ρ ′

+∞∑
m=−∞

Jm(βρ ′)H (2)
m (βρ)ejm(φ−φ′), ρ ≥ ρ ′

(11-179a)

(11-179b)
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Figure 11-21 Normalized H-plane (for the circumferential aperture) and E-plane (for the axial aperture)
amplitude pattern when mounted on a cylinder and flat ground plane. (a) H-plane (circumferential). (b)
E-plane (axial).
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Figure 11-22 Electric line source near a two-dimensional conducting wedge. (a) Reference at bisector.
(b) Reference at face.

The corresponding z component of the total scattered field must be chosen so that the sum
of the two (incident plus scattered) along the faces of the wedge (φ = α and φ = 2π − α) must
vanish and simultaneously satisfy reciprocity (interchanging source and observation points). The
φ variations must be represented by standing wave functions, since in the φ direction the waves
bounce back and forth between the plates forming the wedge. It can be shown that expressions
for the electric field that satisfy these conditions take the form

E t
z = E i

z + E s
z

=

⎧⎪⎨⎪⎩
∑

v

cvf (ρ ′)Jv(βρ) sin[v(φ′ − α)] sin[v(φ − α)], ρ ≤ ρ ′∑
v

dvg(ρ ′)H (2)
v (βρ) sin[v(φ′ − α)] sin[v(φ − α)], ρ ≥ ρ ′

(11-180a)

(11-180b)

When ρ = ρ ′, the two must be identical. Thus,∑
v

cvf (ρ ′)Jv(βρ ′) sin[v(φ′ − α)] sin[v(φ − α)]

=
∑

v

dvg(ρ ′)H (2)
v (βρ ′) sin[v(φ′ − α)] sin[v(φ − α)] (11-181)

which is satisfied if

cvf (ρ ′)Jv(βρ ′) = dvg(ρ ′)H (2)
v (βρ ′) (11-181a)

or

av = cv = dv (11-181b)

f (ρ ′) = H (2)
v (βρ ′) (11-181c)

g(ρ ′) = Jv(βρ ′) (11-181d)
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Therefore, the total electric field (11-180a) and (11-180b) can be written as

E t
z = E i

z + E s
z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
v

avJv(βρ)H (2)
v (βρ ′) sin[v(φ′ − α)]

× sin[v(φ − α)] ρ ≤ ρ ′

∑
v

avJv(βρ ′)H (2)
v (βρ) sin[v(φ′ − α)]

× sin[v(φ − α)] ρ ≥ ρ ′

(11-182a)

(11-182b)

It is evident from (11-182a) and (11-182b) that, when φ = α, the total tangential electric field
vanishes. However, when φ = 2π − α, the electric field (11-182a) and (11-182b) vanishes when

sin[v(φ − α)]φ=2π−α = sin[v(2π − 2α)] = sin[2v(π − α)] = 0 (11-183)

or

2v(π − α) = sin−1(0) = mπ

v = mπ

2(π − α)
, m = 1, 2, 3 . . . (11-183a)

Thus, in (11-182a) and (11-182b), the allowable values of v are those of (11-183a). The values
of av depend on the type of source.

The magnetic field components can be obtained by using Maxwell’s equations 11-86 through
11-86b, so that we can write that

H t
ρ = − 1

jωμ

1

ρ

∂E t
z

∂φ

= − 1

jωμ

1

ρ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
v

vavJv(βρ)H (2)
v (βρ ′)

× sin[v(φ′ − α)] cos[v(φ − α)] ρ ≤ ρ ′∑
v

vavJv(βρ ′)H (2)
v (βρ)

× sin[v(φ′ − α)] cos[v(φ − α)] ρ ≥ ρ ′

(11-184a)

(11-184b)

H t
φ = 1

jωμ

∂E t
z

∂ρ

= β

jωμ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
v

avJ ′
v(βρ)H (2)

v (βρ ′)

× sin[v(φ′ − α)] sin[v(φ − α)] ρ ≤ ρ ′∑
v

avJv(βρ ′)H (2)′
v (βρ)

× sin[v(φ′ − α)] sin[v(φ − α)] ρ ≥ ρ ′

(11-185a)

(11-185b)

where
′ ≡ ∂

∂(βρ)
(11-185c)
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At the source, the current density is obtained using

Js = n̂ × Ht = âρ × (âρH t
ρ + âφH t

φ)ρ=ρ′+,ρ′−

= âz H t
φ|ρ=ρ′+,ρ′− = âz

[
H t

φ(ρ ′
+) − H t

φ(ρ ′
−)

]
= âz

β

jωμ

∑
v

av[Jv(βρ ′)H (2)′
v (βρ ′) − H (2)

v (βρ ′)J ′
v(βρ ′)]

× sin[v(φ′ − α)] sin[v(φ − α)]

Js = âz
β

jωμ

∑
v

av(−j )[Jv(βρ ′)Y ′
v(βρ ′) − J ′

v(βρ ′)Yv(βρ ′)]

× sin[v(φ′ − α)] sin[v(φ − α)] (11-186)

which, by using the Wronskian (11-95), reduces to

Js = −âz
2

πωμρ ′
∑

v

av sin[v(φ′ − α)] sin[v(φ − α)] (11-186a)

Since the Fourier series for a current impulse of amplitude Ie located at ρ = ρ ′ and φ = φ′ is
[11]

Jz = Ie

(π − α)ρ ′
∑

v

sin[v(φ′ − α)] sin[v(φ − α)] (11-187)

then comparing (11-186a) and (11-187) leads to

− 2

πωμ
av = Ie

π − α
⇒ av = − πωμIe

2(π − α)
(11-188)

A. Far-Zone Field When the observations are made in the far zone (βρ � 1, ρ > ρ ′) the
total electric field (11-182b) can be written, by replacing the Hankel function H (2)

v (βρ) by its
asymptotic expression (11-135a), as

E t
z

βρ→∞�
√

2j

πβρ
e−jβρ

∑
v

avj vJv(βρ ′) sin[v(φ′ − α)] sin[v(φ − α)]

βρ→∞� −Ie

√
π j

2β

ωμ

π − α

e−jβρ

√
ρ

∑
v

j vJv(βρ ′) sin[v(φ′ − α)] sin[v(φ − α)]

E t
z

βρ→∞� fe(ρ)
∑

v

j vJv(βρ ′) sin[v(φ′ − α)] sin[v(φ − α)] (11-189)

where

fe(ρ) = −Ie

√
π j

2β

ωμ

π − α

e−jβρ

√
ρ

(11-189a)

Therefore, (11-189) represents the total electric field created in the far-zone region by an
electric source of strength Ie located at ρ ′, φ′.
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B. Plane Wave Scattering When the source is placed at far distances (βρ ′ � 1 and ρ ′ > ρ)
and the observations are made at any point, the total electric field of (11-182a) can be written,
by replacing the Hankel function H (2)

v (βρ ′) by its asymptotic form (11-135a), as

E t
z

βρ′→∞� −Ie

√
π j

2β

ωμ

π − α

e−jβρ′

√
ρ ′

∑
v

j vJv(βρ) sin[v(φ′ − α)] sin[v(φ − α)]

βρ′→∞� ge(ρ
′)
∑

v

j vJv(βρ) sin[v(φ′ − α)] sin[v(φ − α)]

E t
z

βρ′→∞� E0

∑
v

j vJv(βρ) sin[v(φ′ − α)] sin[v(φ − α)] (11-190)

where

E0 = ge(ρ
′) = −Ie

√
π j

2β

ωμ

π − α

e−jβρ′

√
ρ ′ (11-190a)

It is evident that (11-190) can also be obtained from (11-189) by reciprocity, that is, interchanging
source and observation point. This is accomplished by interchanging ρ with ρ ′, and φ with φ′,
or for this problem simply by interchanging ρ and ρ ′ only.

Equation 11-190 also represents the total electric field of a TMz uniform plane wave of strength
E0 incident at an angle φ′ on a conducting wedge of interior angle 2α. When the wedge is a
half-plane (α = 0), (11-190) reduces to

E t
z

βρ′→∞�
α=0

E0

∑
v

j vJv(βρ) sin(vφ′) sin(vφ) (11-191)

which by using (11-183a) can also be expressed as

E t
z

βρ′→∞�
α=0

E0

∞∑
m=1

j m/2Jm/2(βρ) sin
(m

2
φ′

)
sin

(m

2
φ
)

(11-191a)

The normalized scattering patterns at a distance λ (ρ = λ) from the edge of the wedge formed
when a plane wave is incident upon a wedge of 2α = 0◦ (n = 2; half-plane) and 90◦ (n = 1.5)

are shown in Figure 11-23.

11.6.2 Magnetic Line-Source Scattering by a Conducting Wedge: TEz Polarization

When the line source of Figure 11-22a is magnetic of current Im , the total magnetic field has
only a z component, and it can be written, by referring to the forms (11-182a) and (11-182b), as

H t
z = H i

z + H s
z

=

⎧⎪⎨⎪⎩
∑

s

bsJs(βρ)H (2)
s (βρ ′) cos[s(φ′ − α)] cos[s(φ − α)], ρ ≤ ρ ′∑

s

bsJs(βρ ′)H (2)
s (βρ) cos[s(φ′ − α)] cos[s(φ − α)], ρ ≥ ρ ′

(11-192a)

(11-192b)



Balanis c11.tex V2 - 11/22/2011 3:50 P.M. Page 645

SCATTERING BY A CONDUCTING WEDGE 645

270°

300°

330°

0°

30°

90°

R
el

at
iv

e 
po

w
er

 (
dB

 d
ow

n) 60°120°

150°

180°

210°

240°

n = 2

n = 1.5

y

r = λ

y′ = 30°

30

20

10

Figure 11-23 Normalized amplitude pattern of a TMz (soft polarization) plane wave incident on a two-
dimensional conducting wedge.

The allowable values of s are obtained by applying the boundary conditions, and the coefficients
bs are determined by the type of source.

To apply the boundary conditions, we first need to find the corresponding electric field compo-
nents (especially the tangential components). This is accomplished by using Maxwell’s equations
11-106 through 11-106b. Thus, the total radial component of the electric field can be written as

E t
ρ = 1

jωε

1

ρ

∂H t
z

∂φ

= − 1

jωε

1

ρ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
s

sbs Js(βρ)H (2)
s (βρ ′)

× cos[s(φ′ − α)] sin[s(φ − α)], ρ ≤ ρ ′∑
s

sbs Js(βρ ′)H (2)
s (βρ)

× cos[s(φ′ − α)] sin[s(φ − α)], ρ ≥ ρ ′

(11-193a)

(11-193b)

The boundary conditions that must be satisfied are

E t
ρ(0 ≤ ρ, ρ ′ ≤ ∞, φ = α, 0 ≤ φ′ ≤ 2π)

= E t
ρ(0 ≤ ρ, ρ ′ ≤ ∞, φ = 2π − α, 0 ≤ φ′ ≤ 2π) = 0 (11-194)
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The first boundary condition of (11-194) is always satisfied regardless of the values of s . Applying
the second boundary condition leads to

E t
ρ(0 ≤ ρ, ρ ′ ≤ ∞, φ = 2π − α, 0 ≤ φ′ ≤ 2π) = 0

= − 1

jωερ

∑
s

sbs Js(βρ)H (2)
s (βρ ′) cos[s(φ′ − α)] sin[2s(π − α)]

= − 1

jωερ

∑
s

sbs Js(βρ ′)H (2)
s (βρ) cos[s(φ′ − α)] sin[2s(π − α)] (11-195)

which is satisfied provided

sin[2s(π − α)] = 0 ⇒ 2s(π − α) = sin−1(0) = mπ

s = mπ

2(π − α)
, m = 0, 1, 2, . . . (11-195a)

Since the source is magnetic, the coefficients bs take the form of

bs = εs

[
πωεIm

4(π − α)

]
(11-196)

where

εs =
{

1 s = 0
2 s �= 0

(11-196a)

In the far zone (βρ � 1), the total field of (11-192b) reduces, by replacing the Hankel function
H (2)

s (βρ) with its asymptotic form (11-135a), to

H t
z

βρ→∞� Im

√
π j

8β

ωε

π − α

e−jβρ

√
ρ

∑
s

εs j s Js(βρ ′) cos[s(φ′ − α)] cos[s(φ − α)]

H t
z

βρ→∞� fh(ρ)
∑

s

εs j s Js(βρ ′) cos[s(φ′ − α)] cos[s(φ − α)] (11-197)

where

fh(ρ) = Im

√
π j

8β

ωε

π − α

e−jβρ

√
ρ

(11-197a)

When the source is removed at far distances (βρ ′ � 1 and ρ ′ > ρ), (11-192a) reduces to

H t
z

βρ′→∞� gh(ρ
′)
∑

s

εs j s Js(βρ) cos[s(φ′ − α)] cos[s(φ − α)]

H t
z

βρ′→∞� H0

∑
s

εs j s Js(βρ) cos[s(φ′ − α)] cos[s(φ − α)] (11-198)
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where

H0 = gh(ρ
′) = Im

√
π j

8β

ωε

π − α

e−jβρ′

√
ρ ′ (11-198a)

Equation 11-198 also represents the total magnetic field of a TEz uniform plane wave of
strength H0 incident at an angle φ′ on a conducting wedge of interior angle 2α. For a wedge
with zero included angle (half-plane α = 0), (11-198) reduces to

H t
z

βρ′→∞�
α=0

H0

∑
s

εs j s Js(βρ) cos(sφ′) cos(sφ) (11-199)

which, by using (11-195a), can also be expressed as

H t
z

βρ′→∞�
α=0

H0

∞∑
m=0

εm/2j m/2Jm/2(βρ) cos
(m

2
φ′

)
cos

(m

2
φ
)

(11-199a)

The normalized scattering patterns at a distance λ (ρ = λ) from the edge of the wedge formed
when a plane wave is incident upon a wedge of 2α = 0◦ (n = 2; half-plane) and 90◦ (n = 1.5)

are shown in Figure 11-24.
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Figure 11-24 Normalized amplitude pattern of a TEz (hard polarization) plane wave incident on a two-
dimensional conducting wedge.
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11.6.3 Electric and Magnetic Line-Source Scattering by a Conducting Wedge

The total electric field of an electric line source near a conducting wedge, as given by (11-182a)
and (11-182b), and the total magnetic field of a magnetic line source near a conducting wedge, as
given by (11-192a) and (11-192b), can both be represented by the same expression by adopting
the coordinate system (x ′, y ′, z ′) of Figure 11-22b, instead of the (x , y , z ), which is referenced to
the side of the wedge that is illuminated by the source. This is usually more convenient because
similar forms of the expression can represent either polarization. Also the interior angle of the
wedge will be represented by

2α = (2 − n)π ⇒ n = 2 − 2α

π
(11-200)

Thus, a given value of n represents a wedge with a specific included angle: values of n > 1
represent wedges with included angles less than 180◦ (referred to as exterior wedges) and values
of n < 1 represent wedges with included angles greater than 180◦ (referred to as interior wedges).
Thus the allowable values of v, as given by (11-183a), and those of s , as given by (11-195a),
can now be represented by

v = mπ

2(π − α)

∣∣∣∣
α=(1−n/2)π

= m

n
, m = 1, 2, 3, . . . (11-201a)

s = mπ

2(π − α)

∣∣∣∣
α=(1−n/2)π

= m

n
, m = 0, 1, 2, . . . (11-201b)

In addition, the amplitude coefficients av , as given by (11-188), and bs , as given by (11-196),
can now be expressed as

av = − πωμIe

2(π − α)

∣∣∣∣
α=(1−n/2)π

= −ωμIe

2

(
2

n

)
(11-202a)

bs = εs

[
πωεIm

4(π − α)

]
α=(1−n/2)π

= ωεIm

2

(εs

n

)
(11-202b)

Using the new coordinate system (x ′, y ′, z ′) of Figure 11-22b, we can write that

φ′ = ψ ′ + α (11-203a)

φ = ψ + α (11-203b)

Therefore, the sine functions of (11-182a) and (11-182b) and the cosine functions of (11-192a)
and (11-192b) can be written as

sin[v(φ′ − α)] sin[v(φ − α)] = sin
[m

n
(ψ ′ + α − α)

]
sin

[m

n
(ψ + α − α)

]
= sin

(m

n
ψ ′

)
sin

(m

n
ψ

)
= 1

2

{
cos

[m

n
(ψ − ψ ′)

]
− cos

[m

n
(ψ + ψ ′)

]}
(11-204a)
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cos[s(φ′ − α)] cos[s(φ − α)] = cos
[m

n
(ψ ′ + α − α)

]
cos

[m

n
(ψ + α − α)

]
= cos

(m

n
ψ ′

)
cos

(m

n
ψ

)
= 1

2

{
cos

[m

n
(ψ − ψ ′)

]
− cos

[m

n
(ψ + ψ ′)

]}
(11-204b)

Using all these new notations, we can write for the TMz polarization the total electric field of
(11-182a) and (11-182b) and for the TEz polarization the total magnetic field of (11-192a) and
(11-192b) as

TMz

E t
z = −ωμIe

4

1

n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
m=0,1,...

2Jm/n(βρ)H (2)
m/n(βρ ′)

×
{

cos
[m

n
(ψ − ψ ′)

]
− cos

[m

n
(ψ + ψ ′)

]}
, ρ ≤ ρ ′

∞∑
m=0,1,...

2Jm/n(βρ ′)H (2)
m/n(βρ)

×
{

cos
[m

n
(ψ − ψ ′)

]
− cos

[m

n
(ψ + ψ ′)

]}
, ρ ≥ ρ ′

(11-205a)

(11-205b)

TEz

H t
z = ωεIm

4

1

n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
m=0,1,...

εmJm/n(βρ)H (2)
m/n(βρ ′)

×
{

cos
[m

n
(ψ − ψ ′)

]
+ cos

[m

n
(ψ + ψ ′)

]}
, ρ ≤ ρ ′

∞∑
m=0,1,...

εmJm/n(βρ ′)H (2)
m/n(βρ)

×
{

cos
[m

n
(ψ − ψ ′)

]
+ cos

[m

n
(ψ + ψ ′)

]}
, ρ ≥ ρ ′

(11-206a)

(11-206b)

To make the summations in (11-205a) through (11-206b) uniform, the summations of (11-
205a) and (11-205b) are noted to begin with m = 0, even though the allowable values of m as
given by (11-201a) begin with m = 1. However, it should be noted that m = 0 in (11-205a) and
(11-205b) does not contribute, and the expressions are correct as stated.

It is apparent, by comparing (11-205a) and (11-205b) with (11-206a) and (11-206b), that they
are of similar forms. Therefore, we can write both as

E t
z = −ωμIe

4
G(ρ, ρ ′, ψ , ψ ′, n) for TMz (11-207a)

H t
z = +ωεIm

4
G(ρ, ρ ′, ψ , ψ ′, n) for TEz (11-207b)
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where

G(ρ, ρ ′, ψ , ψ ′, n)

= 1

n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
m=0,1,...

εmJm/n(βρ)H (2)
m/n(βρ ′){

cos
[m

n
(ψ − ψ ′)

]
± cos

[m

n
(ψ + ψ ′)

]}
, ρ ≤ ρ ′

∞∑
m=0,1,...

εmJm/n(βρ ′)H (2)
m/n(βρ){

cos
[m

n
(ψ − ψ ′)

]
± cos

[m

n
(ψ + ψ ′)

]}
, ρ ≥ ρ ′

εm =
{

1 m = 0
2 m �= 0

(11-208a)

(11-208b)

(11-208c)

The plus (+) sign between the cosine terms is used for the TEz polarization and the minus (−)

sign is used for the TMz polarization. Again, note that the m = 0 terms do not contribute anything
for the TMz polarization.

The forms of (11-207a) through (11-208b) are those usually utilized in the geometrical theory of
diffraction (GTD) [40–44] where G(ρ, ρ ′, ψ , ψ ′, n) is usually referred to as the Green’s function.
Since the summations in (11-208a) and (11-208b) are poorly convergent when the arguments of the
Bessel and/or Hankel functions are large, asymptotic forms of them will be derived in Chapter 13,
which are much more computationally efficient. The various terms of the asymptotic forms will be
associated with incident and reflected geometrical optics and diffracted fields. It is also convenient
in diffraction theory to refer to the TMz polarization as the soft polarization; the TEz is referred
to as the hard polarization. This is a convenient designation adopted from acoustics.

11.7 SPHERICAL WAVE ORTHOGONALITIES, TRANSFORMATIONS, AND
THEOREMS

When dealing with scattering from structures whose geometry best conforms to spherical coor-
dinates, it is often most convenient to transform wave functions (such as plane waves) from one
coordinate system to another. This was done in Section 11.4 where uniform plane wave functions
in rectilinear form were transformed and represented by cylindrical wave functions. This allowed
convenient examination of the scattering of plane waves by cylindrical structures of circular and
wedge cross sections. In addition, certain theorems concerning cylindrical wave functions were
introduced, which were helpful in analyzing the scattering by cylindrical structures of circular
cross sections of waves emanating from line sources.

In this section we want to introduce some orthogonality relationships, wave transformations,
and theorems that are very convenient for examining scattering of plane waves from spherical
structures and waves emanating from finite sources placed in the vicinity of spherical scatterers.
First of all, let us examine radiation from a finite source radiating in an unbounded medium.

11.7.1 Vertical Dipole Spherical Wave Radiation

There are many sources of spherical wave radiation. In fact, almost all sources used in practice
are considered to excite spherical waves. One of the most prominent is that of a finite length wire
whose total radiation can be obtained as a superposition of radiation from a very small linear
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current element of length 	� and constant electric current Ie = âz Ie . This is usually referred
to as an infinitesimal dipole [1]. The radiation of other sources can be obtained by knowing
the radiation from an infinitesimal dipole. Therefore, it is important that we briefly examine the
radiation from such a source.

It is usually most convenient to place the linear element at the origin of the coordinate system
and have its length and current flow along the z axis, as shown in Figure 11-25a . To find the
fields radiated by this source, we resort to the techniques of Chapter 6, Sections 6.4 and 6.6,
where we first specify the currents Ie and Im of the source. Then we find the potentials A and F
[using (6-97a) and (6-97b)], and determine the radiated E and H [using (6-34) and (6-35)].

Following such a procedure, the electric and magnetic fields radiated by the infinitesimal dipole
of Figure 11-25 were derived in Example 6-3. In terms of spherical wave functions, the vector
potential A can also be written as

A = âz
μIe	�

4π

e−jβr

r
= −âz j

μβIe	�

4π
h(2)

0 (βr) (11-209)

where h(2)
0 (βr) is the spherical Hankel function of order zero, given by

h(2)
0 (βr) = e−jβr

−jβr
(11-209a)

For the dual problem of the linear magnetic current element of current Im , the vector potential
function F takes the form of

F = âz
εIm	�

4π

e−jβr

r
= −âz j

εβIm	�

4π
h(2)

0 (βr) (11-210)

If the source is removed from the origin, as shown in Figure 11-25b, then the potentials A and
F of (11-209) and (11-210) take the form of

A = −âz j
μβIe	�

4π
h(2)

0 (β|r − r′|) (11-211a)

y

(a) (b)

R

r

0 0

x

z

f

q

y

R = r − r′

r′

r

x

z

f

f′

q
q′

Figure 11-25 Geometry and coordinate system for vertical dipole radiation. (a) At origin. (b) Offset.
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F = −âz j
εβIm	�

4π
h(2)

0 (β|r − r′|) (11-211b)

where

h(2)
0 (β|r − r′|) = e−jβ|r−r′|

−jβ|r − r′| (11-211c)

11.7.2 Orthogonality Relationships

When solving electromagnetic wave problems dealing with spherical structures (either waveg-
uides, cavities, or scatterers), the θ variations are represented, as illustrated in Chapters 3 (Section
3.4.3) and 10, by Legendre polynomials Pn(cos θ) and associated Legendre functions Pm

n (cos θ)

(see Appendix V).
The Legendre polynomials Pn(cos θ) are often called zonal harmonics [45, 46], and they form

a complete orthogonal set in the interval 0 ≤ θ ≤ π . Therefore, in this interval any arbitrary wave
function can be represented by a series of Legendre polynomials. This is similar to the representa-
tion of any periodic function by a series of sines and cosines (Fourier series), since Legendre poly-
nomials are very similar in form to cosinusoidal functions. In addition, the products of associated
Legendre functions Pm

n (cos θ) with sines and cosines [Pm
n (cos θ) cos(mφ) and Pm

n (cos θ) sin(mφ)]
are often referred to as tesseral harmonics [45, 46], and they form a complete orthogonal set
on the surface of a sphere. Therefore, any wave function that is defined over a sphere can be
expressed by a series of tesseral harmonics.

Some of the most important and necessary orthogonality relationships that are necessary to
solve wave scattering by spheres will be stated here. The interested reader is referred to [11,
45–48] for more details and derivations.

In the interval 0 ≤ θ ≤ π , the integral of the product of Legendre polynomials is equal to∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

⎧⎨⎩ 0, n �= m
2

2n + 1
, n = m

(11-212a)

(11-212b)

Any function f (θ) defined in the interval of 0 ≤ θ ≤ π can be represented by a series of
Legendre polynomials

f (θ) =
∞∑

n=0

anPn(cos θ), 0 ≤ θ ≤ π (11-213)

where

an = 2n + 1

2

∫ π

0
f (θ)Pn(cos θ) sin θ dθ (11-213a)

which is known as the Fourier–Legendre series.
Defining the tesseral harmonics by

T e
mn(θ , φ) = Pm

n (cos θ) cos(mφ) (11-214a)

T o
mn(θ , φ) = Pm

n (cos θ) sin(mφ) (11-214b)

and because ∫ 2π

0
sin(pφ) sin(qφ)dφ =

∫ 2π

0
cos(pφ) cos(qφ)dφ

=
{

0, p �= q
π , p = q �= 0

(11-215a)

(11-215b)
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it can be shown that∫ 2π

0

[∫ π

0
T e

mn(θ , φ)T o
pq(θ , φ) sin θdθ

]
dφ = 0 (11-216a)∫ 2π

0

[∫ π

0
T i

mn(θ , φ)T i
pq(θ , φ) sin θdθ

]
dφ = 0

mn �= pq
i = e or o

(11-216b)∫ 2π

0

[∫ π

0

[
T i

mn(θ , φ)
]2

sin θ dθ

]
dφ

=

⎧⎪⎪⎨⎪⎪⎩
4π

2n + 1
, m = 0 i = e

2π

2n + 1

(n + m)!

(n − m)!
, m �= 0 i = e or o

(11-216c)

(11-216d)

11.7.3 Wave Transformations and Theorems

As was done for cylindrical wave functions in Section 11.4, in scattering it is often most conve-
nient to express wave functions in one coordinate system in terms of wave functions of another
coordinate system. The same applies to wave scattering by spherical structures. Therefore, it is
convenient for plane wave scattering by spherical geometries to express the plane waves, which
are most conveniently written in rectilinear form, in terms of spherical wave functions.

To demonstrate that, let us assume that a uniform plane wave is traveling along the +z
direction, as shown in Figure 11-26, and it can be written as

E+ = âx E+
x = âx E0e−jβz = âx e−jβz (11-217)

E+

H+

r

(r, q, f)

z

y

x

f

q

Figure 11-26 Uniform plane wave traveling in the +z direction.
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The plane wave can be represented by an infinite sum of spherical wave functions of the form

E+
x = e−jβz = e−jβr cos θ =

∞∑
n=0

anjn(βr)Pn(cos θ) (11-217a)

since it must be independent of φ and be finite at the origin (r = 0). The next step is to determine
the amplitude coefficients an . This can be accomplished as follows.

Multiplying both sides of (11-217a) by Pm(cos θ) sin θ and integrating in θ from 0 to π , we
have that∫ π

0
e−jβr cos θPm(cos θ) sin θdθ =

∫ π

0

[ ∞∑
n=0

anjn(βr)Pn(cos θ)Pm(cos θ) sin θ

]
dθ

(11-218)
Interchanging integration and summation, we have that∫ π

0
e−jβr cos θPm(cos θ) sin θdθ =

∞∑
n=0

anjn(βr)

∫ π

0
Pn(cos θ)Pm(cos θ) sin θdθ

(11-218a)

Using the orthogonality (11-212b) reduces (11-218a) to∫ π

0
e−jβr cos θPm(cos θ) sin θdθ = 2am

2m + 1
jm(βr) (11-219)

Since the integral of the left side of (11-219) is equal to∫ π

0
e−jβr cos θPm(cos θ) sin θdθ = 2j −mjm(βr) (11-219a)

equating (11-219) and (11-219a) leads to

2am

2m + 1
jm(βr) = 2j −mjm(βr) ⇒ am = j −m(2m + 1) (11-220)

Thus, (11-217a) reduces to

E+
x = e−jβz = e−jβr cos θ =

∞∑
n=0

anjn(βr)Pn(cos θ) (11-221)

where

an = j −n(2n + 1) (11-221a)

In a similar manner, it can be shown that

E−
x = e+jβz = e+jβr cos θ =

∞∑
n=0

bnjn(βr)Pn(cos θ) (11-222)

where
bn = j n(2n + 1) (11-222a)
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When dealing with spherical wave scattering of waves generated by linear dipole radiators, it is
convenient to express their radiation, determined using (11-211a) through (11-211c), in terms of
spherical wave functions. This can be accomplished using the addition theorem [11] of spherical
wave functions, which states that (11-211c) can be expressed by referring to the geometry of
Figure 11-25b as

h(2)
0 (β|r − r′|) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
n=0

(2n + 1) h(2)
n (βr ′)jn(βr)Pn(cos ξ), r < r ′

∞∑
n=0

(2n + 1) h(2)
n (βr)jn(βr ′)Pn(cos ξ), r > r ′

where

cos ξ = cos θ cos θ ′ + sin θ sin θ ′ cos
(
φ − φ′)

(11-223a)

(11-223b)

(11-223c)

Similarly,

h(1)
0 (β|r − r′|) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∑
n=0

(2n + 1) h(1)
n (βr ′)jn(βr)Pn(cos ξ), r < r ′

∞∑
n=0

(2n + 1) h(1)
n (βr)jn(βr ′)Pn(cos ξ), r > r ′

(11-224a)

(11-224b)

11.8 SCATTERING BY A SPHERE

Plane wave scattering by a sphere is a classic problem in scattering and has been addressed by
many authors [11, 14, 20, 45, 46, 49–54]. Here we will outline one that parallels that of [11].
Scattering by other sources of excitation such as dipoles, both radial and tangential to the surface
of the sphere, has also been addressed. Because of its symmetry, a PEC sphere is often used as a
reference scatterer to calibrate and measure the scattering properties (such as RCS) of other radar
targets (missiles, airplanes, helicopters, etc.). A set of five aluminum RCS calibration spheres is
shown in Figure 11-27. Apart from its symmetry, the RCS of a sphere can be calculated, which
allows the user to set on the display, during measurements, a baseline to compare the RCS of
other targets to that of the sphere. It is therefore very important that we know and understand the
scattering characteristics of a sphere. We will consider both PEC and lossy dielectric spheres.

11.8.1 Perfect Electric Conducting (PEC) Sphere

Let us assume that the electric field of a uniform plane wave is polarized in the x direction, and
it is traveling along the z axis, as shown in Figure 11-28. The electric field of the incident wave
upon a PEC sphere can then be expressed as

Ei = âx E i
x = âx E0e−jβz = âx E0e−jβr cos θ (11-225)

Using the transformation (II-12), the x component of (11-225) can be transformed in spherical
components to

Ei = âr E i
r + âθE i

θ + âφE i
φ (11-226)
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Figure 11-27 A set of five aluminum RCS calibration spheres.

a

z

y

x

E+

H+
f

q

Figure 11-28 Uniform plane wave incident on a conducting sphere.

where

E i
r = E i

x sin θ cos φ = E0 sin θ cos φe−jβr cos θ = E0
cos φ

jβr

∂

∂θ
(e−jβr cos θ ) (11-226a)

E i
θ = E i

x cos θ cos φ = E0 cos θ cos φe−jβr cos θ (11-226b)

E i
φ = −E i

x sin φ = −E0 sin φe−jβr cos θ (11-226c)

Each of the spherical components of the preceding incident electric field can be expressed
using the transformation (11-221) and (11-221a) as

E i
r = E0

cos φ

jβr

∞∑
n=0

j −n (2n + 1) jn(βr)
∂

∂θ
[Pn(cos θ)] (11-227a)
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E i
θ = E0 cos θ cos φ

∞∑
n=0

j −n (2n + 1) jn(βr)Pn(cos θ) (11-227b)

E i
φ = −E0 sin φ

∞∑
n=0

j −n (2n + 1) jn(βr)Pn(cos θ) (11-227c)

Since according to (10-31),

jn(βr) = 1

βr
Ĵn(βr) (11-228a)

and

∂Pn

∂θ
= P1

n (cos θ) (11-228b)

P1
0 = 0 (11-228c)

we can rewrite (11-227a) through (11-227c) as

E i
r = −jE0

cos φ

(βr)2

∞∑
n=1

j −n (2n + 1) Ĵn(βr)P1
n (cos θ) (11-229a)

E i
θ = E0

cos θ cos φ

βr

∞∑
n=0

j −n (2n + 1) Ĵn(βr)P0
n (cos θ) (11-229b)

E i
φ = −E0

sin φ

βr

∞∑
n=0

j −n (2n + 1) Ĵn(βr)P0
n (cos θ) (11-229c)

The incident and scattered fields by the sphere can be expressed as a superposition of TEr and
TMr as outlined, respectively, in Sections 10.2.4 and 10.2.5. The TEr fields are constructed by
letting the vector potentials A and F be equal to A = 0 and F = âr Fr (r , θ , φ). The TMr fields
are constructed when A = âr Ar (r , θ , φ) and F = 0. For example, the incident radial electric field
component E i

r can be obtained by expressing it in terms of TMr modes or Ai
r . Thus, using Ai

r ,
we can write, according to (10-27a), the incident electric field as

E i
r = 1

jωμε

(
∂2

∂r2
+ β2

)
Ai

r (11-230)

Equating (11-230) to (11-229a), it can be shown that Ai
r takes the form

Ai
r = E0

cos φ

ω

∞∑
n=1

an Ĵn(βr)P1
n (cos θ) (11-231)

where

an = j −n (2n + 1)

n(n + 1)
(11-231a)

This potential component Ai
r will give the correct value of E i

r , and it will lead to H i
r = 0.

The correct expression for the radial component of the incident magnetic field can be obtained
by following a similar procedure but using TEr modes or F i

r of Section 10.2.4. This allows us
to show that
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F i
r = E0

sin φ

ωη

∞∑
n=1

an Ĵn(βr)P1
n (cos θ) (11-232)

where an is given by (11-231a). This expression leads to the correct H i
r and to E i

r = 0. Therefore,
the sum of (11-231) and (11-232) will give the correct E i

r , H i
r and the remaining electric and

magnetic components.
Since the incident electric and magnetic field components of a uniform plane wave can be

represented by TMr and TEr modes, that can be constructed using the potentials Ai
r and F i

r of
(11-231) and (11-232), the scattered fields can also be represented by TMr and TEr modes and
be constructed using potentials As

r and F s
r . The forms of As

r and F s
r are similar to those of Ai

r
and F i

r of (11-231) and (11-232), and we can represent them by

As
r = E0

cos φ

ω

∞∑
n=1

bnĤ (2)
n (βr)P1

n (cos θ) (11-233a)

F s
r = E0

sin φ

ωη

∞∑
n=1

cnĤ (2)
n (βr)P1

n (cos θ) (11-233b)

where the coefficients bn and cn will be found using the appropriate boundary conditions. In
(11-233a) and (11-233b), the spherical Hankel function of the second kind Ĥ (2)

n (βr) has replaced
the spherical Bessel function Ĵn(βr) in (11-231) and (11-232) in order to represent outward
traveling waves. Thus, all the components of the total field, incident plus scattered, can be found
using the sum of (10-23) through (10-24c) and (10-27) through (10-28c), or

E t
r = 1

jωμε

(
∂2

∂r2
+ β2

)
At

r

E t
θ = 1

jωμε

1

r

∂2At
r

∂r∂θ
− 1

ε

1

r sin θ

∂F t
r

∂φ

E t
φ = 1

jωμε

1

r sin θ

∂2At
r

∂r∂φ
+ 1

ε

1

r

∂F t
r

∂θ

H t
r = 1

jωμε

(
∂2

∂r2
+ β2

)
F t

r

H t
θ = 1

μ

1

r sin θ

∂At
r

∂φ
+ 1

jωμε

1

r

∂2F t
r

∂r∂θ

H t
φ = − 1

μ

1

r

∂At
r

∂θ
+ 1

jωμε

1

r sin θ

∂2F t
r

∂r∂φ

(11-234a)

(11-234b)

(11-234c)

(11-234d)

(11-234e)

(11-234f)
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where At
r and F t

r are each equal to the sum of (11-231), (11-232), (11-233a), and (11-233b), or

At
r = Ai

r + As
r = E0

cos φ

ω

∞∑
n=1

[
an Ĵn(βr) + bnĤ (2)

n (βr)
]

P1
n (cos θ)

F t
r = F i

r + F s
r = E0

sin φ

ωη

∞∑
n−1

[
an Ĵn(βr) + cnĤ (2)

n (βr)
]

P1
n (cos θ)

an = j −n 2n + 1

n(n + 1)

(11-235a)

(11-235b)

(11-235c)

To determine the coefficients bn and cn , the boundary conditions

E t
θ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = 0 (11-236a)

E t
φ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = 0 (11-236b)

must be applied. Using (11-235a) and (11-235b), we can write (11-234b) as

E t
θ = +j

E0

ωμεr sin θ

{
β

ω
cos φ

∞∑
n=1

[
an Ĵ ′

n(βr) + bnĤ (2)′
n (βr)

]
P ′1

n (cos θ)

}

− E0

εr sin θ

{
1

ωη
cos φ

∞∑
n=1

[
an Ĵn(βr) + cnĤ (2)

n (βr)
]

P1
n (cos θ)

}
(11-237)

where in (11-237)

′ ≡ ∂

∂(βr)
for the spherical Bessel or Hankel function (11-237a)

′ ≡ ∂

∂(cos θ)
= − 1

sin θ

∂

∂θ
for the associated Legendre functions (11-237b)

Using (11-237), the boundary condition of (11-236a) is satisfied provided that

an Ĵ ′
n(βa) + bnĤ (2)′

n (βa) = 0 ⇒ bn = −an
Ĵ ′

n(βa)

Ĥ (2)′
n (βa)

(11-238a)

an Ĵn(βa) + cnĤ (2)
n (βa) = 0 ⇒ cn = −an

Ĵn(βa)

Ĥ (2)
n (βa)

(11-238b)

The scattered electric field components can be written, using (11-233a) and (11-233b), as

E s
r = −jE0 cos φ

∞∑
n=1

bn

[
Ĥ (2)′′

n (βr) + Ĥ (2)
n (βr)

]
P1

n (cos θ) (11-239a)

E s
θ = E0

βr
cos φ

∞∑
n=1

[
jbnĤ (2)′

n (βr) sin θP ′1
n (cos θ) − cnĤ (2)

n (βr)
P1

n (cos θ)

sin θ

]
(11-239b)

E s
φ = E0

βr
sin φ

∞∑
n=1

[
jbnĤ (2)′

n (βr)
P1

n (cos θ)

sin θ
− cnĤ (2)

n (βr) sin θP ′1
n (cos θ)

]
(11-239c)
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where in (11-239a) through (11-239c)

′ ≡ ∂

∂(βr)
for the spherical Hankel functions (11-239d)

′′ ≡ ∂2

∂(βr)2
for the spherical Hankel functions (11-239e)

′ ≡ ∂

∂(cos θ)
= − 1

sin θ

∂

∂θ
for the associated Legendre functions (11-239f)

The spherical Hankel function is related to the regular Hankel function by (10-31) or

Ĥ (2)
n (βr) =

√
πβr

2
H (2)

n+1/2(βr) (11-240)

Since for large values of βr the regular Hankel function can be represented by

H (2)
n+1/2(βr)

βr→∞�
√

2j

πβr
j n+1/2e−jβr = j

√
2

πβr
j ne−jβr (11-241)

then the spherical Hankel function of (11-240) and its partial derivatives can be approximated
by

Ĥ (2)
n (βr)

βr→∞� j n+1e−jβr (11-241a)

Ĥ (2)′
n (βr) = ∂Ĥ (2)

n (βr)

∂(βr)

βr→∞� −j 2j ne−jβr = j ne−jβr (11-241b)

Ĥ (2)′′
n (βr) = ∂2H (2)

n (βr)

∂(βr)2

βr→∞� −j n+1e−jβr (11-241c)

For far-field observations (βr → large), the electric field components of (11-239a) through
(11-239c) can be simplified using the approximations (11-241a) through (11-241c). Since the
radial component E s

r of (11-239a) reduces with the approximations of (11-241a) through (11-
241c) to zero, then in the far zone (11-239a) through (11-239c) can be approximated by

Far-Field Observations (βr → large)

E s
r � 0 (11-242a)

E s
θ � jE0

e−jβr

βr
cos φ

∞∑
n=1

j n

[
bn sin θP ′1

n (cos θ) − cn
P1

n (cos θ)

sin θ

]
(11-242b)

E s
φ � jE0

e−jβr

βr
sin φ

∞∑
n=1

j n

[
bn

P1
n (cos θ)

sin θ
− cn sin θP ′1

n (cos θ)

]
(11-242c)

where bn and cn are given by (11-238a) and (11-238b), respectively.
The bistatic radar cross section is obtained using (11-22b), and it can be written, using (11-225)

and (11-242a) through (11-242c), as

σ (bistatic) = lim
r→∞

[
4πr2 |Es |2

|Ei |2
]

= λ2

π

[
cos2 φ|Aθ |2 + sin2 φ|Aφ|2] (11-243)
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where

|Aθ |2 =
∣∣∣∣∣

∞∑
n=1

j n

[
bn sin θP ′1

n (cos θ) − cn
P1

n (cos θ)

sin θ

]∣∣∣∣∣
2

(11-243a)

|Aφ|2 =
∣∣∣∣∣

∞∑
n=1

j n

[
bn

P1
n (cos θ)

sin θ
− cn sin θP ′1

n (cos θ)

]∣∣∣∣∣
2

(11-243b)

The monostatic radar cross section can be found by first reducing the field expressions for
observations toward θ = π . In that direction the scattered electric field of interest is the copolar
component, E s

x , and it can be found using (11-242a) through (11-242c) and the transformation
(11-13b), by evaluating either

E s
x = E s

θ cos θ cos φ
∣∣
θ=π
φ=π

= E s
θ

∣∣
θ=π
φ=π

(11-244a)

or
E s

x = −E s
φ sin φ

∣∣
θ=π
φ=3π/2

= E s
φ

∣∣
θ=π
φ=3π/2

(11-244b)

To accomplish either (11-244a) or (11-244b), we need to first evaluate the associated Legendre
function and its derivative when θ = π . It can be shown that [11, 45]

P1
n (cos θ)

sin θ

∣∣∣∣
θ=π

= (−1)n n(n + 1)

2
(11-245a)

sin θP ′1
n (cos θ)

∣∣
θ=π

= sin θ
dP1

n

d(cos θ)
= −dP1

n (cos θ)

dθ
= (−1)n n(n + 1)

2
(11-245b)

Thus, (11-242b) can be expressed using (11-235c), (11-238a), (11-238b), (11-245a), and
(11-245b), as

E s
θ

∣∣
θ=π
φ=π

= jE0
e−jβr

βr

∞∑
n=1

j n(−1)n n(n + 1)

2
[bn − cn ]

= −jE0
e−jβr

βr

∞∑
n=1

j n(−1)n n(n + 1)

2
an

[
Ĵ ′

n(βa)

Ĥ (2)′
n (βa)

− Ĵn(βa)

Ĥ (2)
n (βa)

]

E s
θ

∣∣
θ=π
φ=π

= −jE0
e−jβr

βr

∞∑
n=1

(−1)n (2n + 1)

2

[
Ĵ ′

n(βa)Ĥ (2)
n (βa) − Ĵn(βa)Ĥ (2)′

n (βa)

Ĥ (2)′
n (βa)Ĥ (2)

n (βa)

]
(11-246)

which reduces, using the Wronskian for spherical Bessel functions

Ĵ ′
n(βa)Ĥ (2)

n (βa) − Ĵn(βa)Ĥ (2)′
n (βa) = j [Ĵn(βa)Ŷ ′

n(βa) − Ĵ ′
n(βa)Ŷn(βa)] = j (11-246a)

to

E s
θ

∣∣
θ=π
φ=π

= E0
e−jβr

2βr
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n=1

(−1)n(2n + 1)

Ĥ (2)′
n (βa)Ĥ (2)

n (βa)
(11-246b)

Thus, the monostatic radar cross section of (11-22b) can be expressed, using (11-246b), by

σ3-D(monostatic) = lim
r→∞

[
4πr2 |Es |2

|Ei |2
]

= λ2

4π

∣∣∣∣∣
∞∑

n=1

(−1)n(2n + 1)

Ĥ (2)′
n (βa)Ĥ (2)

n (βa)

∣∣∣∣∣
2

(11-247)
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Figure 11-29 Normalized monostatic radar cross section for a conducting sphere as a function of its radius.
(Source: G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook,
Vol. 1, 1970, Plenum Publishing Co.)

A plot of (11-247) as a function of the sphere radius is shown in Figure 11-29 [49]. This is
a classic signature that can be found in any literature dealing with electromagnetic scattering.
The total curve can be subdivided into three regions; the Rayleigh, the Mie (or resonance), and
the optical regions. The Rayleigh region represents the part of the curve for small values of the
radius (a < 0.1λ) and the optical region represents the RCS of the sphere for large values of the
radius (typically a > 2λ). The region between those two extremes is the Mie or resonance region.
It is apparent that for small values of the radius the RCS is linear, for intermediate values it is
oscillatory about πa2, and for large values it approaches πa2, which is the physical area of the
cross section of the sphere.

For very small values of the radius a , the first term of (11-247) is sufficient to accurately
represent the RCS. Doing this, we can approximate (11-247) by

σ3-D (monostatic)
a→0� λ2

4π

∣∣∣∣∣ 3

Ĥ (2)′
1 (βa)Ĥ (2)

1 (βa)

∣∣∣∣∣
2

(11-248)

Since

Ĥ (2)
1 (βa)

a→0� −j Ŷ1(βa) = −j

√
πβa

2
Y3/2(βa) � −j

√
πβa

2

[
−

1
2 !

π

(
2

βa

)3/2
]

= j
1

βa

(11-248a)

Ĥ (2)
1 (βa)

a→0� −j Ŷ ′
1(βa) � −j

1

(βa)2
(11-248b)

1

2
! = 1

2

√
π (11-248c)
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(11-248) reduces to

σ3-D(monostatic)
a→0� 9λ2

4π
(βa)6 (11-248d)

which is representative of the Rayleigh region scattering.
For very large values of the radius a , we can approximate the spherical Hankel function and

its derivative in (11-247) by their asymptotic forms (11-241a) and (11-241b), or

Ĥ (2)
n (βa)

βa→∞� e−j [βa(sin α−α cos α)−π/4]

√
sin α

(11-249a)

Ĥ (2)′
n (βa)

βa→∞�
√

sin αe−j [βa(sin α−α cos α)+π/4] (11-249b)

cos α = (n + 1/2)/βa (11-249c)

Thus, (11-247) reduces for very large values of the radius a to

σ3-D(monostatic) = λ2

4π

∣∣∣∣∣
∞∑

n=1

(−1)n(2n + 1)

Ĥ (2)′
n (βa)Ĥ (2)

n (βa)

∣∣∣∣∣
2

a→∞� πa2 (11-250)

which is representative of the optical region scattering, and is also equal to the physical area of
the cross section of the sphere.

11.8.2 Lossy Dielectric Sphere

The development of the scattering by a lossy dielectric sphere follows that of a PEC sphere, which
was outlined in the previous section. The major difference is that now electric and magnetic fields
penetrate the sphere, and we need to write expressions to properly represent them. The expressions
for the fields outside the sphere will be of similar forms as those of the PEC sphere. To relate
the fields outside and inside the sphere, the appropriate boundary conditions must be applied on
the surface of the sphere; continuity of the tangential electric and magnetic fields, in contrast to
the vanishing of the tangential electric fields on the surface of the sphere for the PEC case.

To start the development, we will use the geometry of Figure 11-28 and assume that the
medium outside the sphere is free space (wave number βo) and inside is a lossy dielectric
(wave number β̇d ) represented by a relative complex permittivity ε̇r (ε̇r = ε′

r − jε′′
r ) and rela-

tive complex permeability μ̇r (μ̇r = μ′
r − jμ′′

r ). The total, incident, and scattered fields outside
the sphere can be represented by the vector potentials, (11-235a) through (11-235c) and the cor-
responding electric and magnetic fields by (11-234a) through (11-234f). Inside the sphere the
vector potentials should be similar to those outside the sphere, but chosen to represent standing
waves in the radial direction, instead of traveling waves. This is accomplished by choosing the
vector potentials for the total fields inside the sphere to be similar to the first terms of (11-235a)
and (11-235b), and written as

At−
r = Eo

cos φ

ω

∞∑
n=1

dn Ĵn
(
β̇d r

)
P (1)

n (cos θ) (11-251a)

F t−
r = Eo

sin φ

ωη̇

∞∑
n=1

en Ĵn
(
β̇d r

)
P (1)

n (cos θ) (11-251b)
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The modal coefficients, bn and cn (for the fields outside the sphere) and dn and en (for the fields
inside the sphere), can be determined by application of the boundary conditions. The superscript
minus (−) is used to identify the vector potentials and associated fields on and within the sphere
(r ≤ a), while the plus (+) is used to identify those on and outside the sphere (r ≥ a).

Based on the fields of (11-234a) through (11-234f), there exist two tangential electric (Eθ , Eφ)
and two tangential magnetic (Hθ , Hφ) field components. For the PEC sphere of the previous
section, the boundary conditions were (11-236a) and (11-236b). However, the appropriate bound-
ary conditions for the lossy dielectric sphere require the continuity of the tangential electric and
magnetic fields on the surface of the sphere, which can be written as

E t−
θ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = E t+

θ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) (11-252a)

E t−
φ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = E t+

φ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) (11-252b)

H t−
θ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = H t+

θ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) (11-252c)

H t−
φ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = H t+

φ (r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) (11-252d)

The modal coefficients, bn and cn (for the fields outside the sphere), and dn and en (for the fields
inside the sphere), can be determined by enforcing this set of boundary conditions. To accomplish
this, the two tangential electric (Eθ , Eφ) and two tangential magnetic (Hθ , Hφ) field components,
both inside and outside the sphere, must first be written using (11-234b)–(11-234c) and (11-
234e)–(11-234f) with the vector potentials of (11-235a)–(11-235b) for outside the sphere and
(11-251a)–(11-251b) for inside the sphere.

The enforcement of the boundary conditions (11-252a) through (11-252d) is straight forward
but cumbersome. Because of space limitations, and as a practice to the reader, the procedure will
not be detailed here but left as an end-of-chapter exercise. Following the procedure outlined here,
it can be shown that bn , cn , dn and en can be written and related to an by

bn = −√
ε̇r Ĵ ′

n(βoa) Ĵn(β̇d a) + √
μ̇r Ĵn(βoa) Ĵ ′

n(β̇d a)√
ε̇r H (2)′

n (βoa) Ĵn(β̇d a) − √
μ̇r H (2)

n (βoa) Ĵ ′
n(β̇d a)

an (11-253a)

cn = −√
ε̇r Ĵn(βoa) Ĵ ′

n(β̇d a) + √
μ̇r Ĵ ′

n(βoa) Ĵn(β̇d a)√
ε̇r H (2)

n (βoa) Ĵ ′
n(β̇d a) − √

μ̇r H (2)′
n (βoa) Ĵn(β̇d a)

an (11-253b)

dn = −j
μ̇r

√
ε̇r√

ε̇r H (2)′
n (βoa) Ĵn(β̇d a) − √

μ̇r H (2)
n (βoa) Ĵ ′

n(β̇d a)
an (11-253c)

en = +j
μ̇r

√
ε̇r√

ε̇r H (2)
n (βoa) Ĵ ′

n(β̇d a) − √
μ̇r H (2)′

n (βoa) Ĵn(β̇d a)
an (11-253d)

where an is given by (11-231a). For a dielectric sphere of small radius, the first term (n = 1) may
be sufficient to represent the fields. It can be shown that for n = 1, (11-253a) through (11-253d)
reduce to

b1

βo a→0︷︸︸︷≈ − (βoa)3 ε̇r − 1

ε̇r + 2
(11-254a)

c1

βo a→0︷︸︸︷≈ − (βoa)3 μ̇r − 1

μ̇r + 2
(11-254b)

d1

βo a→0︷︸︸︷≈ 9

j 2(ε̇r + 2)
(11-254c)
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e1

βo a→0︷︸︸︷≈ 9
√

μ̇r

j 2
√

ε̇r (μ̇r + 2)
(11-254d)

Two MATLAB computer programs, PEC_DIEL_Sphere_Fields and Sphere_RCS, have been
written. The first one, PEC_DIEL_Sphere_Fields, allows the visualization of the total fields,
within and outside the sphere, for both PEC and lossy dielectric spheres. For static fields, a PEC
sphere can be represented solely by letting ε̇r → very large (ideally infinity). However, at rf , the
PEC sphere must be represented as a special case of the lossy dielectric sphere by allowing both
ε̇r → very large (ideally infinity) and μ̇r → very small (ideally zero) so that βd remains finite.
The second computer program, Sphere_RCS, is based on the formulation of Section 11.8.2.
It computes and plots the normalized amplitude scattering pattern, and bistatic and monostatic
RCSs of a plane wave scattered by PEC and lossy dielectric spheres based on the geometry of
Figure 11-28.

11.9 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, visualization, and presentation of the material of this chapter.

• MATLAB computer programs:
a. PEC_Strip_SW: Computes, using PO, the TMz and TEz 2D scattering width (SW),

monostatic and bistatic, of a PEC strip of Figure 11-4.
b. PEC_Rect_Plate_RCS: Computes, using PO, the TEx and TMx 3D radar cross section

(RCS), monostatic and bistatic, of a PEC rectangular plate of Figure 11-8.
c. PEC_Circ_Plate_RCS: Computes, using PO, the TEx and TMx 3D radar cross section

(RCS), monostatic and bistatic, of a PEC circular plate of Figure P11-7.
d. PEC_Cyl_Normal_Fields: Visualizes the TMz and TEz scattered fields of a uniform

plane wave incident, at normal incidence angles, upon the PEC cylinder of circular cross
section of Figure 11-12.

e. PEC_Cyl_Normal_SW: Computes the 2D scattering width (SW) of a uniform plane
TMz and TEz wave incident, at normal incidence angles, upon the PEC cylinder of
circular cross section of Figure 11-12.

f. PEC_Cyl_Oblique_Fields: Visualizes the TMz and TEz scattered fields of a uniform
plane wave incident, at oblique incidence angles, upon the PEC cylinder of circular cross
section of Figure 11-16.

g. PEC_Cyl_Oblique_SW: Computes the 2D scattering width (SW) of a uniform plane
TMz and TEz wave incident, at oblique incidence angles, upon the PEC cylinder of
circular cross section of Figure 11-16.

h. PEC_Cyl_Oblique_RCS: Computes and plots the 2D and 3D RCS of a uniform plane
TMz and TEz wave incident, at oblique incidence angles, upon the PEC cylinder of
circular cross section and finite length of Figure 11-16.

i. Cylinder_RCS: It computes and plots the normalized amplitude scattering pattern, and
bistatic and monostatic RCSs of a TMz and TEz plane wave scattered by a:
• PEC 2-D cylinder, based on geometry of Figures 11-22a and 11-22b and formulations

of Sections 11.5.1 and 11.5.2, respectively.
• Lossy 2-D dielectric cylinder based on the end-of-chapter problems 11.58 and 11.60

and associated Figures P11-58 and P11-62, respectively.
j. PEC_DIEL_Sphere_Fields: Visualizes the scattered fields of a uniform plane wave by

a lossy dielectric sphere of Figure 11-25.
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k. Sphere_RCS: It computes and plots the normalized amplitude scattering pattern, and
bistatic and monostatic RCSs of a uniform plane wave scattered by a:
• PEC sphere, based on the geometry of Figure 11-28 and formulations of Section 11.8.1.
• Lossy dielectric sphere based on the geometry of Figure 11-28 and formulations of

Section 11.82.
l. Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

11.1. Repeat Example 11-1 for a displaced
magnetic line source of constant current Im

at ρ ′, φ′.

11.2. A magnetic line source of infinite length
and constant magnetic current Im is placed
parallel to the z axis at a height h above
a PEC ground plane of infinite extent, as
shown in Figure 11-2 except that we now
have a magnetic line source.
(a) Determine the total magnetic field at

ρ, φ for 0 ≤ φ ≤ 180◦.
(b) Simplify the expressions when the

observations are made at very large
distances (far field).

(c) Determine the smallest height h (in λ)
that will introduce a null in the far field
amplitude pattern at:
• φ = 30◦

• φ = 90◦

11.3. Repeat Problem 11.2 for the electric field
of an electric line source of infinite length
and constant electric current Ie placed par-
allel to the z axis at a height h above
a perfect magnetic conducting (PMC)
ground plane of infinite extent, as shown
in Figure 11-2, except that we now have a
PMC ground plane.

11.4. Repeat Problem 11.3 for the magnetic field
of a magnetic line source of constant cur-
rent Im above a PMC.

11.5. For the problem of Figure 11-2, where the
electric line source is placed at a height
h � λ, and observations are made at any
point (including near field):
(a) Show that the corresponding magnetic

vector potential of the line source at
z = h in the absence of the ground
plane is given by

A(1)
z = A(0)

z (x , y − h)

where A(0)
z is the magnetic vector

potential of an isolated line source at
z = 0.

(b) Write a simplified closed-form expres-
sion for the total magnetic vector
potential of the line source above the
ground plane valid for 0 ≤ φ ≤ 180◦.

(c) Determine the angles φ(0 ≤ φ

≤ 180◦) where the total far-zone elec-
tric field, at a constant observation
distance ρ, vanishes.

11.6. Repeat Problem 11.5 for a magnetic line
source, and corresponding electric vector
potential Fz and electric field, above a
PMC ground plane.
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11.7. Two constant current, infinite length elec-
tric line sources, are displaced along the
x axis a distance s apart, as shown
in Figure P11-7. Use superposition and
neglect mutual coupling between the lines.

y

x

z +I−I

r

f

#2 #1s
2

s
2

Figure P11-7

(a) Show that the magnetic vector poten-
tial for the two lines can be written as

At
z = A(1)

z

(
x − s

2
, y
)

− A(2)
z

(
x + s

2
, y
)

(b) Show that for small spacings (in the
limit as s → 0), the vector potential of
part (a) reduces to

At
z

s→0� μβIs

4j
H (2)

1 (βρ) cos φ

(c) Determine the electric and magnetic
field components associated with the
two line sources when s → 0.

11.8. Repeat Problem 11.7 for the electric vec-
tor potential, and the electric and magnetic
fields, when the two sources are magnetic
line sources displaced symmetrically along
the x axis a distance s apart, as shown in
Figure P11-7.

11.9. Two electric line sources, of infinite length
and constant current Ie , are displaced along
the y axis a distance s apart, as shown in
Figure P11-9.
(a) Show that the total magnetic vector

potential At
z for the two line sources

can be written as

At
z = A(1)

z

(
y − s

2
, x

)
− A(2)

z

(
y + s

2
, x

)
(b) Show that, for s → 0, the total mag-

netic vector potential can be written in
simplified form as the product of one
Hankel function and cosine/sine func-
tions.

(c) Determine the total electric and mag-
netic field components for the two
sources for s → 0.

#1

#2

y

xz

r

fs
2

s
2

Figure P11-9

11.10. Repeat Problem 11.9 for the electric vec-
tor potential F t

z , and electric and magnetic
fields for two magnetic line sources dis-
placed along the y axis a distance s apart.

11.11. Four constant current, infinite length elec-
tric line sources, of phase as indicated, are
displaced along the x axis, as shown in
Figure P11-11. Assume that the spacings
s1 and s2 are very small.
(a) Find an approximate closed-form ex-

pression for the magnetic vector poten-
tial for the entire array by using the
procedure of Problem 11.7. First con-
sider the pairs on each side as individ-
ual arrays and then combine the results
to form a new array.

y

x

z +I+I −I−I

r

f

s1s1

s2

Figure P11-11

(b) Determine in terms of ρ and φ the
electric and magnetic field components
associated with the four line sources
when ρ � s1 and ρ � s2.

11.12. Four constant current, infinite length elec-
tric line sources, of phase as indicated,
are displaced along the x and y axes, as
shown in Figure P11-12. Assume that the
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spacings s and h are very small and neglect
any mutual coupling between the lines.
(a) Show, by using the procedure of Prob-

lem 11.7, that the magnetic vector
potential for the entire array can be
written as

Az
s→0�
h→0

− μβshI

4j

∂

∂y
[H (2)

1 (βρ) cos φ]

= μβ2shI

8j
H (2)

2 (βρ) sin(2φ)

(b) Determine in terms of ρ and φ the
electric and magnetic field components
associated with the four line sources
when ρ � s and ρ � h .

y

h/2

h/2

s
2

x

z

+I−I

−I+I

r

f

s
2

Figure P11-12

11.13. Two constant current, infinite length elec-
tric line sources are placed above an infi-
nite electric ground plane, as shown in
Figure P11-13. Assume that the spacings
s1 and s2 are very small and neglect any
mutual coupling between the lines.
(a) Show, by using the procedure of Prob-

lem 11.17, that the magnetic vector
potential for the entire array can be
written as

Az
s→0�
h→0

− μβshI

4j

∂

∂y
[H (2)

1 (βρ) cos φ]

= μβ2shI

8j
H (2)

2 (βρ) sin(2φ)

(b) Determine in terms of ρ and φ the
electric and magnetic field compo-
nents associated with the two line

sources and ground plane when ρ � s
and ρ � h .

y

h/2

s/2 s/2

x

z

+I−I

r

f

s = ∞

Figure P11-13

11.14. An infinite length and constant current
electric line source is placed parallel to the
plates of a 90◦ conducting corner reflec-
tor, as shown in Figure P11-14. Assume
that the plates of the wedge are infinite in
extent and the distance s from the apex to
the source is very small (s � λ).
(a) Show that the magnetic vector poten-

tial for the line source and corner
reflector can be written, using the pro-
cedure of Problem 11.7, as

Az = μβ2s2I

4j
H (2)

2 (βρ) sin (2φ)

y

x

s
90°

45°

+I

r

s = ∞

Figure P11-14

(b) Determine the electric and magnetic
field components.

(c) Find the angles φ of observation (for a
constant value of ρ) where the electric
field vanishes.

11.15. Two parallel slots, identical, very thin
(w → 0), of infinite length and uniform
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electric field, but directed in opposite direc-
tions, are positioned on an infinite PEC
ground plane and symmetrically displaced
a distance s apart, as shown in the figure.
(a) Show that the total vector potential for

the two line sources can be written
as the sum/difference of two magnetic
vector potentials. Indicate which vector
potential, electric or magnetic, should
be used.

(b) Show that for s → 0, the appropriate
total vector potential can be written
in simplified form as the product of
one Hankel function and cosine/sine
functions.

(c) Determine the total electric and mag-
netic field components for the two
sources for s → 0.

z

w w
x

y

EE

s = ∞
s = ∞

s = ∞

s = ∞

s/2 s/2

w

Figure P11-15

11.16. An infinite-length electric line source of
constant current Ie is placed a height h
above a flat and infinite in extent PEC
ground plane, as shown in Figure 11-2. For
far-field observations and constant radius
ρ = ρ0, it is desired to place a null in
the amplitude pattern at an angle φ = 60◦.
Determine the smallest height h > 0 (in λ)
that will accomplish this. Assume geomet-
rical optics.

11.17. For the Problem 11.16 determine the
first two smallest heights (in λ) so
that the far-field amplitude pattern at
φ = 600 is −3 dB from the maximum.

11.18. Using the geometry shown in Figure P11-
18 of a TEz of a uniform plane wave

incident upon a 2-D PMC strip of infinite
width,

(a) Write a complete vector expression for
the incident magnetic field in terms of
the angle φi . The magnitude of the
incident magnetic field is H0.

(b) Write a complete vector expression for
the reflected magnetic field in terms of
the magnitude H0 of the incident mag-
netic field, a reflection coefficient �,
and the angle φr .

(c) Based on Snell’s law, determine the
value of the reflection coefficient (mag-
nitude and phase).

y
Ei

x
z

fr

fi

Figure P11-18

11.19. A uniform plane wave is incident upon a
flat PEC rectangular plate whose dimen-
sions are very large compared to the wave-
length, as shown in Figure 11-8. It is
desired to reduce the maximum value of
the bistatic RCS of the plate by 10 dB,
compared to normal incidence, by illumi-
nating it at an oblique angle. Determine the
angle of incidence (in degrees), measured
from the normal to the plate, to accom-
plish this. You can assume that the plate is
sufficiently large such that physical optics
(PO) is a good approximation. Do this for
a polarization:

(a) TEx (b) TMx

11.20. For a strip of width w = 2λ, plot the
RCS/λ2

o (in dB) when the length of the
strip is l = 5λ, 10λ and 20λ (plot all three
graphs on the same figure). Use the approx-
imate relation between the 2D SW and the
3D RCS. Assume normal incidence.

11.21. Repeat Problem 11.20 by treating the strip
of finite length as a rectangular plate. Com-
pare the results of the previous two prob-
lems. Are they different? Please comment.
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11.22. Design a flat PEC flat plate radar target so
that the maximum normalized monostatic
RCS (σ/λ2) at an angle of 300 from the
normal of the plate is +20 dB. Assuming
physical optics (PO):
(a) Determine the area (in λ2) of the plate.
(b) At 10 GHz, what is the:

• Area of the plate (in cm2)?
• RCS in dB/sm (in decibels/square

meter)?

11.23. Show that for normal incidence, the two-
dimensional scattering width and three-
dimensional RCS are related by (11-22e).

11.24. A uniform plane wave on the yz plane
is obliquely incident at an angle θi from
the vertical z axis upon a perfectly electric
conducting circular ground plane of radius
a , as shown in Figure P11-24. Assume TEx

polarization for the incident field.
(a) Determine the physical optics current

density induced on the plate.
(b) Determine the far-zone bistatic scat-

tered electric and magnetic fields based
on the physical optics current density
of part (a).

(c) Determine the bistatic and monostatic
RCSs of the plate. Plot the normalized
monostatic RCS (σ3-D/λ2) in decibels
for plates with radii of a = λ and 5λ.

z

r

x

a

fi

fs

qi qs

y

Figure P11-24

11.25. Repeat Problem 11.24 for TMx plane wave
incidence.

11.26. Show that for normal incidence the mono-
static RCS of a flat plate of area A and any
cross section, based on physical optics, is
equal to a σ3-D = 4π(A/λ)2.

11.27. A uniform plane wave traveling in the −z
direction is incident upon a perfectly elec-
tric conducting curved surface, as shown in
Figure P11-27, with radii of curvature suf-
ficiently large, usually greater than about

one wavelength, so that at each point the
surface can be considered locally flat. For
such a surface, the induced currents and the
fields radiated from each infinitesimal area
can be represented if the same area were
part of an infinite plane that was tangent to
the surface at the same location.

z

Surface
f (x, y, z)

x

yr

f

Figure P11-27

(a) Show that the monostatic RCS can be
written as

σ3-D = 4π

λ2

∣∣∣∣∫∫
A

e+j 2βz dA

∣∣∣∣2

where z is any point on the surface of
the scatterer and the integration on dA
is performed in the xy plane.

(b) If in part (a) the differential area in
the xy plane is expressed in terms of
the polar coordinates ρ, φ, then show
that the monostatic RCS can be expre-
ssed as

σ3-D = π

λ2

∣∣∣∣∫ 2π

0

∫ z (φ)

0

× dρ2

dz
e+j 2βz dz dφ

∣∣∣∣2

11.28. If the scattering conducting curved sur-
face of Problem 11.27, Figure P11-27,
is a quadric surface, the integration to
find the RCS can be performed in closed
form. Assume that the scattering surface is
an elliptic paraboloid opening downward
along the positive z axis, and that it is rep-
resented by( x

a

)2 +
( y

b

)2 = − z

c

where a , b, and c are constants. Show the
following.
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(a) The radii of curvature a1 and a2 in the
xz and yz planes are given by

a1 = a2

2c
a2 = b2

2c

(b) The equation of the elliptic paraboloid
surface transformed to polar coordi-
nates can be expressed as

z = − ρ2

2a1

[
1 −

(
1 − a1

a2

)
sin2 φ

]
(c) The RCS of Problem 11.27 reduces to

a3-D = πa1a2|e−j 2βh − 1|
= 4πa1a2 sin2(βh)

(d) The RCS of part (c) reduces to σ3-D =
πa1a2 if the height of the paraboloid
is cut very irregular so that the con-
tributions from the last zone(s) would
tend to cancel. To account for this, the
exponential term in part (c) disappears.

11.29. If the scattering conducting curved sur-
face of Problem 11.27, Figure P11-27, is
a closed surface, such as an ellipsoid rep-
resented by( x

a

)2 +
( y

b

)2 +
( z

c

)2 = 1

demonstrate the following.
(a) The distance z at any point on the sur-

face can be represented by

z 2 = c2 − ρ2 c

a1

[
1 −

(
1 − a1

a2

)
sin2 φ

]
where a1 = a2/c and a2 = b2/c.

(b) The RCS of Problem 11.27 from the
upper part of the ellipsoid from z = h
to z = c reduces, neglecting (2βc)−1

terms, to

σ3-D = πa1a2

{
1 +

(
h

c

)2

− 2
h

c
cos[2β(c − h)]

}
where h(h < c) is the distance along
the z axis from the origin to the point
of integration. If h = 0 or if h is
very irregular around the periphery of
the ellipsoid, the preceding equation
reduces to σ3-D = πa1a2. If a1 = a2 =
a , like for a sphere, then σ3-D = πa2.

11.30. Show that H (2)
−n (x) = (−1)n+1H (2)

n (x).
This identity is often used for the computa-
tion of fields scattered by circular cylinders
based on modal solutions.

11.31. Verify (11-55a).

11.32. Verify (11-71a) and (11-71b).

11.33. Verify that the infinite summation from
minus to plus infinity for the incident elec-
tric field of (11-85a) can also be written
as an infinite summation from n = 0 to
n = ∞.

11.34. Write the current density expression of
(11-97) as an infinite summation from n =
0 to n = ∞.

11.35. Refer to Figure 11-12a for the TMz uni-
form plane wave scattering by a circular
conducting cylinder.
(a) Determine the normalized induced cur-

rent density based on the physical
optics approximation of Section 7.10.

(b) Plot and compare for 0 ≤ φ ≤ 180◦

the normalized induced current density
based on the physical optics approx-
imation and on the modal solution of
(11-97). Do this for cylinders with radii
of a = λ and 5λ.

11.36. For the TMz uniform plane wave scatter-
ing by a circular conducting cylinder of
Figure 11-12a , plot and compare the nor-
malized induced current density based on
the exact modal solution of (11-97) and its
small argument approximation of (11-98b)
for radii of a = 0.01λ, 0.01λ, and λ.

11.37. Verify that the infinite summation from
minus to plus infinity for the scattering
width of (11-102) can also be written as an
infinite summation from zero to infinity.

11.38. Using the definition (11-21c), instead of
(11-21b), show that the TMz polarization
radar cross section reduces to (11-102).

11.39. Write the current density expression of (11-
113) as an infinite summation from n = 0
to n = ∞.

11.40. Refer to Figure 11-12b for the TEz uni-
form plane wave scattering by a circular
conducting cylinder.
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(a) Determine the normalized induced cur-
rent density based on the physical
optics approximation of Section 7.10.

(b) Plot and compare for 0◦ ≤ φ ≤ 180◦
the normalized induced current density
based on the physical optics approxi-
mation and on the modal solution of
(11-113). Do this for cylinders with
radii of a = λ and 5λ.

11.41. For the TEz uniform plane wave scattering
by a circular conducting cylinder of Figure
11-12b, plot and compare the normalized
induced current density based on the exact
modal solution of (11-113) and its small
argument approximation of (11-114d) for
radii of a = 0.01λ, 0.1λ, and λ.

11.42. Verify that the infinite summation from
minus to plus infinity for the scattering
width of (11-117) can also be written as an
infinite summation from zero to infinity.

11.43. Using the definition (11-21b), instead of
(11-21c), show that the TEz polarization
radar cross section reduces to (11-117).

11.44. A right-hand circularly polarized uniform
plane wave with an electric field equal to

E = (
ây + j âz

)
e−jβx

is incident, at normal incidence, upon a
PEC cylinder of circular cross section and
radius a , as shown in Figure 11-12. Assum-
ing far-field observations, determine the:
(a) Cylindrical components of the total

scattered electric field.
(b) Polarization of the total scattered elec-

tric field toward:
• φ = 0◦.
• φ = 180◦.

11.45. Repeat Problem 11.44 when the circular
cylinder is PMC.

11.46. Repeat the plots of Figure 11-13 (both
dimensionless and in dB).

11.47. For the same cases of Figure 11-13, plot the
magnitude of the induced electric current
density (in A/m). Assume f = 10 GHz and
an incident electric field of 1 × 10−3 V/m.

11.48. Repeat the plots of Fig. 11-15 (both dimen-
sionless and in dB).

11.49. For the same cases of Figure 11-15, plot the
magnitude of the induced electric current

density (in A/m). Assume f = 10 GHz and
an incident electric field of 1 × 10−3 V/m.

11.50. A TMz uniform plane wave is normally
incident, upon a very thin PEC wire of
radius a(a � λ), as shown in Figure 11-
12a . Determine the values of φ (in degrees)
where the bistatic scattering width of the
wire is:
(a) Maximum.
(b) Zero.

11.51. Repeat Problem 11.50 when the incident
uniform plane wave has TEz polarization,
as shown in Figure 11-12b.

11.52. A PEC wire of circular cross section, and
of radius a � λ, is used as a radar target. It
is desired to maintain the normalized max-
imum bistatic SW (σ/λ) at any angle φ

at a level not greater than −20 dB. When
the incident uniform plane wave is TMz

polarized:
(a) What should the maximum radius (in

λ) of the wire be to meet the desired
specifications?

(b) At what observation angle φ would this
maximum occur? Identify the angle φ

(in degrees) graphically.

11.53. Repeat Problem 11.52 for a TEz polarized
incident uniform plane wave.

11.54. A very long (ideally infinite in length) thin
(radius a � λ) PEC wire is attached to an
airplane and is used as a trailing antenna. In
order for the wire not to be very visible to
the radar, it is desired for the wire to have
a normalized scattering width (σ/λ) not
to exceed −10 dB. Determine the largest
radius of the wire (in λ) when the incident
uniform plane wave is TMz polarized, as
shown in Figure 11-12a .

11.55. Repeat the Problem 11.54 when the inci-
dent uniform plane wave is TEz polarized,
as shown in Figure 11-12b.

11.56. A TMz uniform plane wave traveling
along the +x direction, is normally inci-
dent upon a PMC cylinder, as shown in
Figure 11.12a .
(a) Derive the two-dimensional RCS (SW)

expressed as SW/λ.
(b) Derive an expression for electric cur-

rent density Js and numerically eval-
uate Js on the surface of the cylinder
(ρ = a). Justify the numerical value;
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i. e., is it what you were expecting?
Should it be that value?

11.57. Repeat Problem 11.56 for TEz polariza-
tion, as shown in Figure 11.12b.

11.58. A TMz uniform plane wave traveling in
the +x direction in free space is incident
normally on a lossless dielectric circular
cylinder of radius a , as shown in Figure
P11-58. Assume that the incident, scat-
tered, and transmitted (into the cylinder)
electric fields can be written as

Ei = âz E0

+∞∑
n=−∞

j −n Jn(β0ρ)ejnφ

Es = âz E0

+∞∑
n=−∞

an H (2)
n (β0ρ)ejnφ

Ed = âz E0

+∞∑
n=−∞

[bn Jn(β1ρ) + cn Yn(β1ρ)]ejnφ

(a) Derive expressions for the incident,
scattered, and transmitted magnetic
field components.

(b) Show that the wave amplitude coeffi-
cients are equal to

cn = 0

an = j −n

J ′
n(β0a)Jn(β1a)

−√
εr/μr Jn(β0a)J ′

n(β1a)
√

εr/μr J ′
n(β1a)H (2)

n (β0a)

−Jn(β1a)H (2)′
n (β0a)

bn = j −n

Jn(β0a)H (2)
n (β0a)

− J ′
n(β0a)H (2)

n (β0a)

Jn(β1a)H (2)′
n (β0a)− √

εr/μr

× J ′
n(β1a)H (2)′

n (β0a)

z

a
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Figure P11-58

11.59. For Problem 11.58,

(a) Derive an expression for the scattering
width (SW).

(b) Plot SW/λ (in dB) for a = 2λ,
dielectric constants of εr = 4 and
9 (0 ≤ φ ≤ 180◦).

11.60. A TMz uniform plane wave traveling along
the +x direction, is normally incident upon
a dielectric cylinder with εr � 1 and μr =
1, as shown in Figure P11-58. Write an
expression for the:
(a) Two-dimensional RCS (SW) express-

ed in SW/λ.
(b) Electric current density Js and evalu-

ate Js on the surface of the cylinder
(ρ = a). Is it what you were expect-
ing?

For parts a and b, you do not have to derive
the equations, but must justify the answers.

11.61. Repeat Problem 11.60 when the plane
wave is normally incident upon a dielec-
tric cylinder with μr � 1 and εr = 1, as
shown in Figure P11-58.

11.62. A TEz uniform plane wave traveling in
the +x direction in free space is incident
normally upon a lossless dielectric circular
cylinder of radius a , as shown in Figure
P11-62. Assume that the incident, scat-
tered, and transmitted (into the cylinder)
magnetic fields can be written as

Hi = âz H0

+∞∑
n=−∞

j −n Jn(β0ρ)ejnφ

Hs = âz H0

+∞∑
n=−∞

an H (2)
n (β0ρ)ejnφ

Hd = âz H0

+∞∑
n=−∞

[bn Jn(β1ρ) + cn Yn(β1ρ)]ejnφ

z
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Figure P11-62
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(a) Derive expressions for the incident,
scattered, and transmitted electric field
components.

(b) Show that the wave amplitude coeffi-
cients are equal to

cn = 0

an = j −n

J ′
n(β0a)Jn(β1a)

−√
μr/εr Jn(β0a)J ′

n(β1a)
√

μr/εr J ′
n(β1a)H (2)

n (β0a)

−Jn(β1a)H (2)′
n (β0a)

bn = j −n

Jn(β0a)H (2)′
n (β0a)

−J ′
n(β0a)H (2)

n (β0a)

Jn(β1a)H (2)′
n (β0a)

−√
μr/εr J ′

n(β1a)H (2)
n (β0a)

11.63. A TEz uniform plane wave traveling along
the +x direction, is normally incident
upon a dielectric cylinder with εr � 1 and
μr = 1, as shown in Figure P11-62. Write
an expression for the:
(a) Two-dimensional RCS (SW) express-

ed in SW/λ.
(b) Electric current density Js and evalu-

ate Js on the surface of the cylinder
(ρ = a). Is it what you were expect-
ing?

For parts a and b, you do not have to derive
the equations, but must justify the answers.

11.64. Repeat Problem 11.63 when the plane
wave is normally incident upon a dielectric
cylinder with μ � 1 and εr = 1, as shown
in Figure P11-62.

11.65. A TMz uniform plane wave traveling in the
+x direction in free space is incident nor-
mally upon a dielectric-coated conducting
circular cylinder of radius a as shown in
Figure P11-65. The thickness of the loss-
less dielectric coating is b − a . Assume
that the incident, reflected, and transmit-
ted (into the coating) electric fields can be
written as shown in Problem 11.58.
(a) Write expressions for the incident,

scattered, and transmitted magnetic
field components.

(b) Determine the wave amplitude coef-
ficients an , bn , and cn . Write them in
theier simplest forms.

z a
b

Ei

Hi
er, mr

e0, m0

x

r

f

y

s = ∞

Figure P11-65

11.66. Repeat Problem 11.65 for a TEz uniform
plane wave incidence. Assume that the
incident, scattered, and transmitted (into
the coating) magnetic fields can be written
as shown in Problem 11.62.

11.67. Using the definition of (11-21b), instead
of (11-21c), show that the TMz polariza-
tion scattering width reduces to (11-137)
through (11-137b).

11.68. Using the definition of (11-21c), instead
of (11-21b), show that the TEz polariza-
tion scattering width reduces to (11-155)
through (11-155b).

11.69. An electric line source of constant current
is placed above a circular PEC cylinder of
infinite length, as shown in Figure 11-17
where φ′ = 90◦. The radius of the cylin-
der is a = 50λ. Determine the approximate
smallest height (in number of λ) of the line
source above the cylinder that will allow
the normalized total amplitude pattern to
be at φ = 90◦:
(a) Maximum.
(b) Minimum.
(c) −3 dB.
Indicate how you arrive at your answers.

11.70. Two infinite length line sources of constant
current I and of the same phase are placed
near a conducting cylinder along the x axis
(one on each side) a distance s from the
center of the cylinder, as shown in Figure
P11-70.
(a) Neglecting coupling between the

sources, write an expression for the
total electric field for both sources
(assume ρ > s).

(b) Assuming the observations are made
at large distances from the cylinder
(ρ � s) and the radius of the cylinder
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as well as the distance s are very small
(a � λ and s � λ), find the distance
s that the sources must be placed so
that the electric field at any observation
point will vanish. Explain.

s

+I+I

z
x

r

f

y

s

s = ∞

Figure P11-70

11.71. Three infinite length line sources carrying
constant magnetic currents of Im , 2Im , and
Im , respectively, are positioned a distance
b near a perfect electric conducting cylin-
der, as shown in Figure P11-71. Neglecting
mutual coupling between the sources, find
the following.
(a) The total scattered magnetic field when

ρ > b.

Im

Im
b

a

z 2Im x

r

f

s = ∞

f0

f0

y

Figure P11-71

(b) The magnitude of the ratio of the scat-
tered to the incident magnetic field for
ρ > b.

(c) The normalized total magnetic field
pattern when βρ → large.

11.72. A TMz uniform plane wave is incident at
an angle φ′ upon a half plane, as shown in
Figure P11-72. Show that the current den-
sity on the upper side of the half plane is

Jz = E0

j 2ωμρ

∞∑
m=1

mj m/2Jm/2(βρ)

× sin

(
mφ′

2

)
for any ρ

Jz � E0

2η

√
2

jπβρ
sin

(
φ′

2

)
for βρ → 0

where E0 is the amplitude of the incident
electric field.

z
x

r

f

f′

y

Ei

Figure P11-72

11.73. Derive (11-198) from (11-192a).

11.74. Repeat Problem 11.72 for TEz uniform
plane wave incidence. Show that the cur-
rent density on the upper side of the half
plane is

Jρ = H0

∞∑
m=0

εm j m/2Jm/2(βρ)

× cos

(
mφ′

2

)
for any ρ

Jρ = H0 for βρ → 0

where H0 is the amplitude of the incident
field and εm is defined by (11-196a).

11.75. Verify (11-222) and (11-222a).

11.76. A uniform plane wave is incident upon a
conducting sphere of radius a . Assume that
the diameter of the sphere is 1.128 m and
the frequency is 8.5 GHz.
(a) Determine the monostatic radar cross

section of the sphere in decibels per
square meter.

(b) Find the area (in square meters) of
a flat plate whose normal-incidence
monostatic RCS is the same as that of
the sphere in part a.

11.77. A uniform plane wave is normally incident,
on a circular PEC ground plane of radius
ap . The same wave is also incident upon a
PEC sphere of radius as .
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(a) Determine the radius of the sphere as ,
in terms of the radius ap of the circular
plate, so that the RCS of the plate and
sphere are identical.

(b) If the radius of the plate is 3λ, deter-
mine the radius of the sphere so that
the plate and sphere will have equal
RCS.
Assume that the radii of the plate and
sphere are sufficiently large, compared
to the wavelength, so that both geo-
metrical and physical optics are good
approximations.

11.78. A uniform plane wave is incident, at nor-
mal incidence, upon a flat PEC plate of
area 25λ2. Determine:
(a) The 3-D monostatic RCS (in dBsm) of

the plate at f = 10 GHz based on phys-
ical optics.

(b) The radius (in λ) of a sphere so that
it has equal backscattered RCS as the
plate. Assume the radius of the sphere
is large compared to the wavelength.
Assume the radius of the sphere is
large compared to the wavelength.

11.79. Repeat the calculations of Figure 11-29 by
plotting the normalized RCS [σ/(πa2)]:
(a) Dimensionless.
(b) In dB.

11.80. For the scattering of a plane wave by a PEC
sphere of radius a , with the incident elec-
tric field with only one component (E i

x ), as
outlined in Section 11.8:
(a) Derive an expression, in simplified

form, for the cross-polarized compo-
nent (Ey ) of the far-zone scattered elec-
tric field in the monostatic direction
only.

(b) Derive an expression, in simplified
form, of the 3D monostatic RCS for
the cross-polarized field.

(c) Plot the normalized RCS [σ/(πa2)] of
the cross-polarized component Ey for
0 ≤ a ≤ 2λ (λ is the free-space wave-
length); similar to Figure 11-29:
• Dimensionless.
• In dB.

If you have any comments to make con-
cerning the monostatic cross-polarized field
and associated RCS, please do so.

11.81. Applying the boundary conditions (11-
252a) through (11-252d) on the internal
and external fields of a dielectric sphere,
show that the modal coefficients of the
vector potential and fields are those of
(11-253a) through (11-253d).

11.82. Show that for n = 1, (11-253a) through
(11-253d) reduce to (11-254a) through
(11-254d).
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CHAPTER 12
Integral Equations and the Moment Method

12.1 INTRODUCTION

In Chapter 11 we discussed scattering from conducting objects, such as plates, circular cylinders,
and spheres, using geometrical optics, physical optics, and modal solutions. For the plates and
cylinders, we assumed that their dimensions were of infinite extent. In practice, however, the
dimensions of the objects are always finite, although some of them may be very large. Expressions
for the radar cross section of finite size scatterers were introduced in the previous chapter. These,
however, represent approximate forms, and more accurate expressions are sometimes desired.

The physical optics method of Chapter 7, Section 7.10, was used in the previous chapter
to approximate the current induced on the surface of a finite size target, such as the strip and
rectangular plate. Radiation integrals were then used to find the field scattered by the target. To
derive a more accurate representation of the current induced on the surface of the finite size
target, and thus, of the scattered fields, two methods will be examined in this book.

One method, referred to here as the integral equation (IE) technique, casts the solution for the
induced current in the form of an integral equation (hence its name) where the unknown induced
current density is part of the integrand. Numerical techniques, such as the moment method (MM)
[1–6], can then be used to solve for the current density. Once this is accomplished, the fields
scattered by the target can be found using the traditional radiation integrals. The total induced
current density will be the sum of the physical optics current density and a fringe wave current
density [7–13], which can be thought of as a perturbation current density introduced by the edge
diffractions of the finite size structure. This method will be introduced and applied in this chapter.

The other method, referred to here as the geometrical theory of diffraction (GTD) [14–17], is
an extension of geometrical optics and accounts for the contributions from the edges of the finite
structure using diffraction theory. This method will be introduced and applied in Chapters 13 and
14. More extensive discussions of each can be found in the open literature.

12.2 INTEGRAL EQUATION METHOD

The objective of the integral equation (IE) method for scattering is to cast the solution for
the unknown current density, which is induced on the surface of the scatterer, in the form of an
integral equation where the unknown induced current density is part of the integrand. The integral
equation is then solved for the unknown induced current density using numerical techniques such
as the moment method (MM). To demonstrate the technique, we will initially consider some
specific problems. We will start with an electrostatics problem and follow it with time-harmonic
problems.

679
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12.2.1 Electrostatic Charge Distribution

In electrostatics, the problem of finding the potential, that is due to a given charge distribution,
is often considered. In physical situations, however, it is seldom possible to specify a charge
distribution. Whereas we may connect a conducting body to a voltage source, and thus, specify
the potential throughout the body, the distribution of charge is obvious only for a few rotationally
symmetric canonical geometries. In this section we will consider an integral equation approach
to solve for the electric charge distribution, once the electric potential is specified. Some of the
material here and in other sections is drawn from [18, 19].

From statics, we know that a linear electric charge distribution ρ(r′) will create an electric
potential, V (r), according to [20]

V (r) = 1

4πε0

∫
source
(charge)

ρ(r′)
R

d�′ (12-1)

where r′(x ′, y ′, z ′) denotes the source coordinates, r(x , y , z ) denotes the observation coordinates,
d�′ is the path of integration, and R is the distance from any point on the source to the observation
point, which is generally represented by

R(r, r′) = |r − r′| =
√

(x − x ′)2 + (y − y ′)2 + (z − z ′)2 (12-1a)

We see that (12-1) may be used to calculate the potentials that are due to any known line
charge density. However, the charge distribution on most configurations of practical interest, i.e.,
complex geometries, is not usually known, even when the potential on the source is given. It is
the nontrivial problem of determining the charge distribution, for a specified potential, that is to
be solved here using an integral equation approach.

A. Finite Straight Wire Consider a straight wire of length � and radius a , placed along the y
axis, as shown in Figure 12-1a . The wire is maintained at a normalized constant electric potential
of 1 V.

Note that (12-1) is valid everywhere, including on the wire itself (Vwire = 1 V). Thus, choosing
the observation along the wire axis (x = z = 0) and representing the charge density on the surface
of the wire by ρ(y ′), (12-1) can be expressed as

1 = 1

4πε0

∫ �

0

ρ(y ′)
R(y , y ′)

dy ′ 0 ≤ y ≤ � (12-2)

where

R(y , y ′) = R(r, r′)|x=z=0 =
√

(y − y ′)2 + [(x ′)2 + (z ′)2] =
√

(y − y ′)2 + a2 (12-2a)

The observation point is chosen along the wire axis and the charge density is represented along the
surface of the wire to avoid R(y , y ′) = 0, which would introduce a singularity in the integrand of
(12-2). If the radius of the wire is zero (a = 0), then the source (current density) and observation
points will be along the same line (y axis). In that case, to avoid singularities on the distance
R(y , y ′) [R(y , y ′) = 0], the source (y ′) and observation point (y) should be chosen not to coincide.

It is necessary to solve (12-2) for the unknown ρ(y ′) (an inverse problem). Equation 12-2 is
an integral equation that can be used to find the charge density ρ(y ′) based on the 1-V potential.
The solution may be reached numerically by reducing (12-2) to a series of linear algebraic
equations that may be solved by conventional matrix-equation techniques. To facilitate this, let
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Figure 12-1 (a) Straight wire of constant potential. (b) Its segmentation.

us approximate the unknown charge distribution ρ(y ′) by an expansion of N known terms with
constant, but unknown, coefficients; that is

ρ(y ′) =
N∑

n=1

angn(y
′) (12-3)

Thus, (12-2) may be written, using (12-3), as

4πε0 =
∫ �

0

1

R(y , y ′)

[
N∑

n=1

angn(y
′)

]
dy ′ (12-4)

Because (12-4) is a nonsingular integral, its integration and summation can be interchanged and
it can be written as

4πε0 =
N∑

n=1

an

∫ �

0

gn(y ′)√
(y − y ′)2 + a2

dy ′ (12-4a)

The wire is now divided into N uniform segments, each of length 	 = �/N , as illustrated
in Figure 12-1b. The gn(y ′) functions in the expansion (12-3) are chosen for their ability to
accurately model the unknown quantity, while minimizing computation. They are often referred
to as basis (or expansion) functions, and they will be discussed further in Section 12.2.5. To
avoid complexity in this solution, subdomain piecewise constant (or “pulse”) functions will be
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used. These functions, shown in Figure 12-6, are defined to be of a constant value over one
segment and zero elsewhere, or

gn(y
′) =

⎧⎪⎨⎪⎩
0 y ′ < (n − 1)	

1 (n − 1)	 ≤ y ′ ≤ n	

0 n	 < y ′
(12-5)

Many other basis functions are possible, some of which will be introduced later in Section 12.2.5.
Replacing y in (12-4) by a fixed point on the surface of the wire, such as ym , results in an

integrand that is solely a function of y ′, so the integral may be evaluated. Obviously, (12-4) leads
to one equation with N unknowns an written as

4πε0 = a1

∫ 	

0

g1(y ′)
R(ym , y ′)

dy ′ + a2

∫ 2	

	

g2(y ′)
R(ym , y ′)

dy ′ + · · ·

+an

∫ n	

(n−1)	

gn(y ′)
R(ym , y ′)

dy ′ + · · · + aN

∫ �

(N −1)	

gN (y ′)
R(ym , y ′)

dy ′ (12-6)

In order to obtain a solution for these N amplitude coefficients, N linearly independent equations
are necessary. These equations may be produced by choosing an observation point ym on the
surface of the wire and at the center of each 	 length element as shown in Figure 12-1b. This
will result in one equation of the form of (12-6) corresponding to each observation point. For N
such observation points, we can reduce (12-6) to

4πε0 = a1

∫ 	

0

g1(y ′)
R(y1, y ′)

dy ′ + · · · + aN

∫ �

(N −1)	

gN (y ′)
R(y1, y ′)

dy ′

...

4πε0 = a1

∫ 	

0

g1(y ′)
R(yN , y ′)

dy ′ + · · · + aN

∫ �

(N −1)	

gN (y ′)
R(yN , y ′)

dy ′ (12-6a)

We may write (12-6a) more concisely using matrix notation as

[Vm ] = [Zmn ][In ] (12-7)

where each Zmn term is equal to

Zmn =
∫ �

0

gn(y ′)√
(ym − y ′)2 + a2

dy ′ =
∫ n	

(n−1)	

1√
(ym − y ′)2 + a2

dy ′ (12-7a)

and

[In ] = [an ] (12-7b)

[Vm ] = [4πε0] (12-7c)

The Vm column matrix has all terms equal to 4πε0, and the In = an values are the unknown
charge distribution coefficients. Solving (12-7) for [In ] gives

[In ] = [an ] = [Zmn ]−1[Vm ] (12-8)

Either (12-7) or (12-8) may readily be solved on a digital computer by using any of a number
of matrix-inversion or equation-solving routines. Whereas the integrals involved here may be
evaluated in closed form by making appropriate approximations, this is not usually possible with
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more complicated problems. Efficient numerical integration computer subroutines are commonly
available in easy-to-use forms.

One closed form evaluation of (12-7a) is to reduce the integral and represent it by

Zmn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ln

⎛⎜⎜⎜⎜⎝
	

2
+

√
a2 +

(
	

2

)2

a

⎞⎟⎟⎟⎟⎠ m = n

ln

{
d+

mn + [(d+
mn)

2 + a2]1/2

d−
mn + [(d−

mn)2 + a2]1/2

}
m �= n but |m − n| ≤ 2

ln

(
d+

mn

d−
mn

)
|m − n| > 2

(12-9a)

(12-9b)

(12-9c)

where
d+

mn = �m + 	

2
(12-9d)

d−
mn = �m − 	

2
(12-9e)

�m is the distance between the mth matching point and the center of the nth source point.
In summary, the solution of (12-2) for the charge distribution on a wire has been accomplished

by approximating the unknown with some basis functions, dividing the wire into segments, and
then sequentially enforcing (12-2) at the center of each segment to form a set of linear equations.

Even for the relatively simple straight wire geometry we have discussed, the exact form of
the charge distribution is not intuitively apparent. To illustrate the principles of the numerical
solution, an example is now presented.

Example 12-1

A 1-m long straight wire of radius a = 0.001 m is maintained at a constant potential of 1 V. Determine
the linear charge distribution on the wire by dividing the length into 5 and 20 uniform segments. Assume
subdomain pulse basis functions.

Solution:

1. N = 5. When the 1-m long wire is divided into five uniform segments each of length 	 = 0.2 m,
(12-7) reduces to⎡⎢⎢⎢⎢⎣

10.60 1.10 0.51 0.34 0.25
1.10 10.60 1.10 0.51 0.34
0.51 1.10 10.60 1.10 0.51
0.34 0.51 1.10 10.60 1.10
0.25 0.34 0.51 1.10 10.60

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1.11 × 10−10

1.11 × 10−10

...

1.11 × 10−10

⎤⎥⎥⎥⎦
Inverting this matrix leads to the amplitude coefficients and subsequent charge distribution of

a1 = 8.81 pC/m

a2 = 8.09 pC/m

a3 = 7.97 pC/m
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a4 = 8.09 pC/m

a5 = 8.81 pC/m

The charge distribution is shown plotted in Figure 12-2a .
2. N = 20. Increasing the number of segments to 20 results in a much smoother distribution, as

shown plotted in Figure 12-2b. As more segments are used, a better approximation of the actual
charge distribution is attained, which has smaller discontinuities over the length of the wire.
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Figure 12-2 Charge distribution on a 1-m straight wire at 1 V. (a) N = 5. (b) N = 20.

B. Bent Wire In order to illustrate the solution for a more complex structure, let us analyze a
body composed of two noncollinear straight wires, that is, a bent wire. If a straight wire is bent,
the charge distribution will be altered, although the solution to find it will differ only slightly
from the straight wire case. We will assume a bend of angle α, which remains in the yz plane,
as shown in Figure 12-3.
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Figure 12-3 Geometry for bent wire.

For the first segment �1 of the wire, the distance R can be represented by (12-2a). However,
for the second segment �2, we can express the distance as

R =
√

(y − y ′)2 + (z − z ′)2 (12-10)

Also because of the bend, the integral in (12-7a) must be separated into two parts of

Zmn =
∫ �1

0

ρn(�
′
1)

R
d�′

1 +
∫ �2

0

ρn(�
′
2)

R
d�′

2 (12-11)

where �1 and �2 are measured along the corresponding straight sections from their left ends.

Example 12-2

Repeat Example 12-1 assuming that the wire has been bent 90◦ at its midpoint. Subdivide the entire
wire into 20 uniform segments.

Solution: The charge distribution for this case, calculated using (12-10) and (12-11), is plotted in
Figure 12-4 for N = 20 segments. Note that the charge is relatively more concentrated near the ends of
this structure than was the case for a straight wire of Figure 12-2b. Further, the overall charge density,
and thus capacitance, on the structure has decreased.
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Figure 12-4 Charge distribution on a 1-m bent wire (α = 90◦, N = 20).
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Figure 12-5 Geometry of a line source above a two-dimensional finite width strip. (a) Boundary conditions
and integration on the same surface. (b) Boundary conditions and integration not on the same surface.

Arbitrary wire configurations, including numerous bends and even curved sections, may be
analyzed by the methods already outlined here. As with the simple bent wire, the only alterations
generally necessary are those required to describe the geometry analytically.

12.2.2 Integral Equation

Now that we have demonstrated the numerical solution of a well-known electrostatics inte-
gral equation, we will derive and solve a time-harmonic integral equation for an infinite line
source above a two-dimensional conducting strip, as shown in Figure 12-5a . Once this is accom-
plished, we will generalize the integral equation formulation for three-dimensional problems in
Section 12.3.

Referring to Figure 12-5a , the field radiated by a line source of constant current Iz in the
absence of the strip (referred to as E d

z ) is given by (11-10a) or

E d
z (ρ) = −β2Iz

4ωε
H (2)

0 (βρ) (12-12)

where H (2)
0 (βρ) is the Hankel function of the second kind of order zero. Part of the field given

by (12-12) is directed toward the strip, and it induces on it a linear current density Jz (in amperes
per meter) such that

Jz (x
′)	x ′ = 	Iz (x

′) (12-13)
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Figure 12-5 (Continued ).

which, as 	x ′ → 0, can be written as

Jz (x
′)dx ′ = dIz (x

′) (12-13a)

The induced current of (12-13a) reradiates and produces an electric field component that will
be referred to as reflected (or scattered ) and designated as E r

z (ρ) [or E s
z (ρ)]. If the strip is

subdivided into N segments, each of width 	x ′
n as shown in Figure 12-5b, the scattered field

can be written, according to (12-12), as

E s
z (ρ) = − β2

4ωε

N∑
n=1

H (2)
0 (βRn)	Iz (x

′
n) = − β2

4ωε

N∑
n=1

H (2)
0 (βRn)Jz (x

′
n)	x ′

n (12-14)

where x ′
n is the position of the nth segment. In the limit, as each segment becomes very small

(	xn → 0), (12-14) can be written as

E s
z (ρ) = − β2

4ωε

∫
strip

H (2)
0 (βR)dIz = − β2

4ωε

∫ w/2

−w/2
Jz (x

′)H (2)
0 (β|ρ − ρ′|)dx ′ (12-15)

since

R = |ρ − ρ′| =
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos(φ − φ′) (12-15a)



Balanis c12.tex V2 - 11/22/2011 3:54 P.M. Page 688

688 INTEGRAL EQUATIONS AND THE MOMENT METHOD

The total field at any observation point, including the strip itself, will be the sum of the direct
component E d

z of (12-12) and the scattered component E s
z of (12-15). However, to determine the

scattered component, we need to know the induced current density Jz (x ′). The objective here then
will be to find an equation, which in this case will be in terms of an integral and will be referred
to as an integral equation , that can be used to determine Jz (x ′). This can be accomplished by
choosing the observation point on the strip itself. Doing this, we have that for any observation
point ρ = ρm on the strip, the total tangential electric field vanishes and it is given by

E t
z (|ρ = ρm |)|strip = [E d

z (|ρ = ρm |) + E s
z (|ρ = ρm |)]strip = 0 (12-16)

or
E d

z (|ρ = ρm |)|strip = −E s
z (|ρ = ρm |)|strip (12-16a)

Using (12-12) and (12-15), we can write (12-16a) as

−β2Iz

4ωε
H (2)

0 (β|ρm |) = + β2

4ωε

∫ w/2

−w/2
Jz (x

′)H (2)
0 (β|ρm − ρ′|)dx ′ (12-17)

which for a unit current Iz (i.e., Iz = 1) reduces to

H (2)
0 (β|ρm |) = −

∫ w/2

−w/2
Jz (x

′)H (2)
0 (β|ρm − ρ′|)dx ′ (12-17a)

Equation 12-17a is the electric field integral equation (EFIE) for the line source above the
strip, and it can be used to find the current density Jz (x ′) based upon a unit current Iz . If Iz is of
any other constant value, then all the values of Jz (x ′) must be multiplied by that same constant
value. Electric field integral equations (EFIE) and magnetic field integral equations (MFIE) are
discussed in more general forms in Section 12.3.

12.2.3 Radiation Pattern

Once Jz is found, we can then determine the total field radiated of the entire system for any
observation point. The total field is composed of two parts: the field radiated from the line source
itself (E d

z ) and that which is scattered (reradiated) from the strip (E s
z ). Thus, using (12-12) and

(12-15), we can write the total field as

E t
z (ρ) = E d

z (ρ) + E s
z (ρ)

= −β2Iz

4ωε
H (2)

0 (βρ) − β2

4ωε

∫ w/2

−w/2
Jz (x

′)H (2)
0 (β|ρ − ρ′|)dx ′ (12-18)

which for a unit amplitude current Iz (Iz = 1) reduces to

E t
z (ρ) = − β2

4ωε

[
H (2)

0 (βρ) +
∫ w/2

−w/2
Jz (x

′)H (2)
0 (β|ρ − ρ′|)dx ′

]
(12-18a)

Equation 12-18a can be used to find the total field at any observation point, near or far field.
The current density Jz (x ′) can be found using (12-17a). However, for far-field observations,
(12-18a) can be approximated and written in a more simplified form. In general, the distance R
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is given by (12-15a). However, for far-field observations (ρ � ρ ′), (12-15a) reduces, using the
binomial expansion, to

R �
{

ρ − ρ ′ cos(φ − φ′) for phase terms

ρ for amplitude terms

(12-19a)

(12-19b)

For large arguments, the Hankel functions in (12-18a) can be replaced by their asymptotic
form

H (2)
n (βz )

βz→∞�
√

2j

πβz
j ne−jβz (12-20)

For n = 0, (12-20) reduces to

H (2)
0 (βz ) �

√
2j

πβz
e−jβz (12-20a)

Using (12-19a) through (12-20a), we can write the Hankel functions in (12-18a) as

H (2)
0 (βρ) �

√
2j

πβρ
e−jβρ (12-21a)

H (2)
0 (β|ρ − ρ′|) �

√
2j

πβρ
e−jβ[ρ−ρ′ cos(φ−φ′)]

�
√

2j

πβρ
e−jβρ+jβρ′ cos(φ−φ′) (12-21b)

When (12-21a) and (12-21b) are substituted into (12-18a), they reduce it to

E t
z (ρ) � − β2

4ωε

√
2j

πβρ
e−jβρ

[
1 +

∫ +w/2

−w/2
Jz (x

′)ejβρ′ cos(φ−φ′)dx ′
]

(12-22)

which in normalized form can be written as

E t
z (normalized) � 1 +

∫ w/2

−w/2
Jz (x

′)ejβρ′ cos(φ−φ′)dx ′ (12-22a)

Equation 12-22a represents the normalized pattern of the line above the strip. It is based on the
linear current density Jz (x ′) that is induced by the source on the strip. The current density can be
found using approximate methods or, more accurately, using the electric field integral equation
12-17a.

12.2.4 Point-Matching (Collocation) Method

The next step will be to use a numerical technique to solve the electric field integral equation 12-
17a for the unknown current density Jz (x ′). We first expand Jz (x ′) into a finite series of the
form

Jz (x
′) �

N∑
n=1

angn(x
′) (12-23)
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where gn(x ′) represents basis (expansion) functions [1,2]. When (12-23) is substituted into (12-
17a), we can write it as

H (2)
0 (β|ρm |) = −

∫ w/2

−w/2

N∑
n=1

angn(x
′)H (2)

0 (β|ρm − ρ′
n |)dx ′

H (2)
0 (β|ρm |) = −

N∑
n=1

an

∫ w/2

−w/2
gn(x

′)H (2)
0 (β|ρm − ρ′

n |)dx ′ (12-24)

which takes the general form

h =
N∑

n=1

anF (gn) (12-25)

where

h = H (2)
0 (β|ρm |) (12-25a)

F (gn) = −
∫ w/2

−w/2
gn(x

′)H (2)
0 (β|ρm − ρ′

n |)dx ′ (12-25b)

In (12-25), F is referred to as a linear integral operator , gn represents the response function, and
h is the known excitation function.

Equation 12-17a is an electric field integral equation derived by enforcing the boundary condi-
tions of vanishing total tangential electric field on the surface of the conducting strip. A numerical
solution of (12-17a) is (12-24) or (12-25) through (12-25b), which, for a given observation point
ρ = ρm , leads to one equation with N unknowns. This can be repeated N times by choosing
N observation points. Such a procedure leads to a system of N linear equations each with N
unknowns of the form

H (2)
0 (β|ρm |) =

N∑
n=1

an

[
−

∫ w/2

−w/2
gn(x

′)H (2)
0 (β|ρm − ρ′

n |)dx ′
]

m = 1, 2, . . . , N (12-26)

which can also be written as

Vm =
N∑

n=1

InZmn (12-27)

where

Vm = H (2)
0 (β|ρm |) (12-27a)

In = an (12-27b)

Zmn = −
∫ w/2

−w/2
gn(x

′)H (2)
0 (β|ρm − ρ′

n |)dx ′ (12-27c)
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In matrix form, (12-27) can be expressed as

[Vm ] = [Zmn ][In ] (12-28)

where the unknown is [In ] and can be found by solving (12-28), or

[In ] = [Zmn ]−1[Vm ] (12-28a)

Since the system of N linear equations with N unknowns—as given by (12-26), (12-27), or
(12-28)—was derived by applying the boundary conditions at N discrete points, the technique
is referred to as the point-matching (or collocation) method [1, 2].

Thus, by finding the elements of the [V ] and [Z ], and then the inverse [Z ]−1, we can determine
the elements an of the [I ] matrix. This in turn allows us to approximate Jz (x ′) using (12-23),
which can then be used in (12-18a) to find the total field everywhere. However, for far-field
observations, the total field can be found more easily using (12-22) or, in normalized form,
(12-22a).

12.2.5 Basis Functions

One very important step in any numerical solution is the choice of basis functions. In general,
one chooses as basis functions the set that has the ability to accurately represent and resemble
the anticipated unknown function, while minimizing the computational effort required to employ
it [21–23]. Do not choose basis functions with smoother properties than the unknown being
represented.

Theoretically, there are many possible basis sets. However, only a limited number are discussed
here. These sets may be divided into two general classes. The first class consists of subdomain
functions, which are nonzero only over a part of the domain of the function g(x ′); its domain is
the surface of the structure. The second class contains entire domain functions that exist over the
entire domain of the unknown function. The entire domain basis function expansion is analogous
to the well-known Fourier series expansion method.

A. Subdomain Functions Of the two types of basis functions, subdomain functions are the
most common. Unlike entire domain bases, they may be used without prior knowledge of the
nature of the function that they must represent.

The subdomain approach involves subdivision of the structure into N nonoverlapping seg-
ments, as illustrated on the axis in Figure 12-6a . For clarity, the segments are shown here to be
collinear and of equal length, although neither condition is necessary. The basis functions are
defined in conjunction with the limits of one or more of the segments.

Perhaps the most common of these basis functions is the conceptually basic piecewise constant,
or “pulse” function, shown in Figure 12-6a . It is defined by

Piecewise Constant

gn(x
′) =

{
1 x ′

n−1 ≤ x ′ ≤ x ′
n

0 elsewhere
(12-29)

Once the associated coefficients are determined, this function will produce a staircase represen-
tation of the unknown function, similar to that in Figures 12-6b and 12-6c.
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x′0 x′1

1

x′2 x′3

g2(x′)

x′N x′

(a)

x′0 x′1 x′2 x′3

a2 g2(x′)
a1 g1(x′)

a3 g3(x′)

x′N x′

(b)

x′0 x′1 x′2 x′3

Σan gn(x′)
n

a2 g2(x′)a1 g1(x′)
a3 g3(x′)

x′N x′

(c)

Figure 12-6 Piecewise constant subdomain functions. (a) Single. (b) Multiple. (c) Function representation.

Another common basis set is the piecewise linear, or “triangle,” functions seen in Figure 12-7a .
These are defined by

Piecewise Linear

gn(x
′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x ′ − x ′
n−1

x ′
n − x ′

n−1

x ′
n−1 ≤ x ′ ≤ x ′

n

x ′
n+1 − x ′

x ′
n+1 − x ′

n

x ′
n ≤ x ′ ≤ x ′

n+1

0 elsewhere

(12-30)

and are seen to cover two segments, and overlap adjacent functions (Figure 12-7b). The resulting
representation (Figures 12-7b and 12-7c) is smoother than that for “pulses,” but at the cost of
somewhat increased computational complexity.

Increasing the sophistication of subdomain basis functions beyond the level of the “triangle”
may not be warranted by the possible improvement in accuracy. However, there are cases where
more specialized functions are useful for other reasons. For example, some integral operators may
be evaluated without numerical integration when their integrands are multiplied by a sin(kx ′)
or cos(kx ′) function, where x ′ is the variable of integration. In such examples, considerable
advantages in computation time and resistance to errors can be gained by using basis functions



Balanis c12.tex V2 - 11/22/2011 3:54 P.M. Page 693

INTEGRAL EQUATION METHOD 693

x′0 x′1
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x′2 x′3

g2(x′)

x′N x′

(a)

a2 g2(x′)
a1 g1(x′)

a3 g3(x′)

(b)

Σan gn(x′)
n

(c)

x′0 x′1 x′2 x′3 x′N x′

x′0 x′1 x′2 x′3 x′N x′

Figure 12-7 Piecewise linear subdomain functions. (a) Single. (b) Multiple. (c) Function representation.

like the piecewise sinusoid of Figure 12-8 or truncated cosine of Figure 12-9. These functions
are defined by

Piecewise Sinusoid

gn(x
′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin[β(x ′ − x ′
n−1)]

sin[β(x ′
n − x ′

n−1)]
x ′

n−1 ≤ x ′ ≤ x ′
n

sin[β(x ′
n+1 − x ′)]

sin[β(x ′
n+1 − x ′

n)]
x ′

n ≤ x ′ ≤ x ′
n+1

0 elsewhere

(12-31)

Truncated Cosine

gn(x
′) =

⎧⎨⎩cos

[
β

(
x ′ − x ′

n − x ′
n−1

2

)]
x ′

n−1 ≤ x ′ ≤ x ′
n

0 elsewhere
(12-32)

B. Entire-Domain Functions Entire domain basis functions, as their name implies, are
defined and are nonzero over the entire length of the structure being considered. Thus, no seg-
mentation is involved in their use.
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Figure 12-8 Piecewise sinusoids subdomain functions. (a) Single. (b) Multiple. (c) Function repre-
sentation.

A common entire domain basis set is that of sinusoidal functions, where

Entire Domain

gn(x
′) = cos

[
(2n − 1)πx ′

�

]
− �

2
≤ x ′ ≤ �

2
(12-33)

Note that this basis set would be particularly useful for modeling the current distribution on a
wire dipole, which is known to have primarily sinusoidal distribution. The main advantage of
entire domain basis functions lies in problems where the unknown function is known a priori to
follow a certain pattern. Such entire-domain functions may render an acceptable representation
of the unknown while using far fewer terms in the expansion of (12-23) than would be necessary
for subdomain bases. Representation of a function by entire domain cosine and/or sine functions
is similar to the Fourier series expansion of arbitrary functions.

Because we are constrained to use a finite number of functions (or modes , as they are sometimes
called), entire domain basis functions usually have difficulty in modeling arbitrary or complicated
unknown functions.

Entire domain basis functions, sets like (12-33), can be generated using Tschebyscheff, Maclau-
rin, Legendre, and Hermite polynomials, or other convenient functions.
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Figure 12-9 Truncated cosines subdomain functions. (a) Single. (b) Multiple. (c) Function representation.

12.2.6 Application of Point Matching

If each of the expansion functions gn(x ′) in (12-23) is of the subdomain type, where each exists
only over one segment of the structure, then Zmn of (12-27c) reduces to

Zmn = −
∫ xn+1

xn

gn(x
′)H (2)

0 (β|ρm − ρ′
n |)dx ′ (12-34)

where xn and xn+1 represent, respectively, the lower and upper limits of the segment over which
each of the subdomain expansion functions gn(x ′) exists. If, in addition, the gn are subdomain
pulse expansion functions of the form

gn(x
′) =

{
1 xn ≤ x ′ ≤ xn+1

0 elsewhere
(12-35)

then (12-34) reduces to

Zmn = −
∫ xn+1

xn

H (2)
0 (β|ρm − ρ′

n |)dx ′ (12-36)

The preceding integral cannot be evaluated exactly in closed form. However, there exist various
approximations for its evaluation.

In solving (12-17a) using (12-24) or (12-26), there are few problems that must be addressed.
Before we do that, let us first state in words what (12-24) and (12-26) represent. Each equation
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is a solution to (12-17a), which was derived by enforcing the boundary conditions. These con-
ditions required the total tangential electric field to vanish on the surface of the conductor. For
each observation point, the total field consists of the sum of the direct (E d

z ) and scattered (E s
z )

components. Thus, to find the total scattered field at each observation point , we must add the con-
tributions of the scattered field components from all the segments of the strip, which also includes
those coming from the segment where the observations are made (referred to as self-terms).
When the contributions from the segment over which the observation point lies are consid-
ered, the distance Rmn = Rmm = |ρm − ρ′

m | used for evaluating the self-term Zmm in (12-27c) will
become zero. This introduces a singularity in the integrand of (12-36) because the Hankel function
defined as

H (2)
0 (βρ) = J0(βρ) − jY0(βρ) (12-37)

is infinite since Y0(0) = ∞.
For finite thickness strips, the easiest way to get around the problem of evaluating the Hankel

function for the self-terms will be to choose observation points away from the surface of the strip
over which the integration in (12-36) is performed. For example, the observation points can be
selected at the center of each segment along a line that divides the thickness of the strip, while
the integration is performed along the upper surface of the strip. These points are designated in
Figure 12-5b by the distance |ρm − ρ′|.

Even if the aforementioned procedure is implemented for the evaluation of all the terms
of Zmn , including the self-terms, the distance Rmn = |ρm − ρ′

n | for the self-terms (and some
from the neighboring elements) will sometimes be sufficiently small that standard algorithms for
computing Bessel functions, and thus, Hankel functions, may not be very accurate. For these
cases the Hankel functions can be evaluated using asymptotic expressions for small arguments.
That is, for cases where the argument of the Hankel functions in (12-36) is small, which may
include the self-terms and some of the neighboring elements, the Hankel function can be computed
using [24]

H (2)
0 (βρ) = J0(βρ) − jY0(βρ)

βρ→0� 1 − j
2

π
ln

(
1.781βρ

2

)
(12-38)

The integral of (12-36) can be evaluated approximately in closed form, even if the observation
and source points are chosen to be along the same line. This can be done not only for diagonal
(self, i.e., m = n) terms but also for the nondiagonal (m �= n) terms. For the diagonal terms
(m = n), the Hankel function of (12-36) has an integrable singularity, and the integral can be
evaluated analytically in closed form using the small argument approximation of (12-38) for the
Hankel function. When (12-38) is used, it can be shown that (12-36) reduces to [2]

Diagonal Terms Approximation

Znn � −	xn

[
1 − j

2

π
ln

(
1.781β	xn

4e

)]
(12-39)

where

	xn = xn+1 − xn (12-39a)

e ≈ 2.718 (12-39b)

For evaluation of the nondiagonal terms of (12-36), the crudest approximation would be to
consider the Hankel function over each segment to be essentially constant [2]. To minimize the
error using such an approximation, it is recommended that the argument of the Hankel function
in (12-36) be represented by its average value over each segment. For straight line segments
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that average value will be representative of the distance from the center of the segment to the
observation point. Thus, for the nondiagonal terms, (12-36) can be approximated by

Nondiagonal Terms Approximation

Zmn � −	xnH (2)
0 (β|Rmn |av) = −	xnH (2)

0 (β|ρm − ρ′
n |av) m �= n (12-40)

The average-value approximation for the distance Rmn in the Hankel function evaluation of (12-
36) can also be used for curved surface scattering by approximating each curved segment by a
straight line segment. Crude as it may seem, the average-value approximation for the distance
yields good results.

12.2.7 Weighting (Testing) Functions

Application of (12-24) for one observation point leads to one equation with N unknowns. It alone
is not sufficient to determine the N unknown an (n = 1, 2, . . . , N ) constants. To resolve the N
constants, it is necessary to have N linearly independent equations. This can be accomplished by
evaluating (12-24) (i.e., applying boundary conditions) at N different points, as represented by
(12-26). To improve the point-matching solution, an inner product 〈w , g〉 can be defined, which
is a scalar operation satisfying the laws of

〈w , g〉 = 〈g , w〉
〈bf + cg , w〉 = b〈f , w〉 + c〈g , w〉
〈g∗, g〉 > 0 if g �= 0

〈g∗, g〉 = 0 if g = 0

(12-41a)

(12-41b)

(12-41c)

(12-41d)

where b and c are scalars and the asterisk (∗) indicates complex conjugation. Note that the
functions w and g can be vectors. A typical, but not unique, inner product is

〈w, g〉 =
∫∫

S
w∗ • g ds (12-42)

where the w ’s are the weighting (testing) functions and S is the surface of the structure being
analyzed. This technique is known better as the moment method or method of moments (MM,
MoM) [1, 2].

12.2.8 Moment Method

The collocation (point-matching) method is a numerical technique whose solutions satisfy
the electromagnetic boundary conditions (e.g., vanishing tangential electric fields on the
surface of an electric conductor) only at discrete points. Between these points the boundary
conditions may not be satisfied, and we define the deviation as a residual [e.g., residual
= 	E |tan = E (scattered)|tan + E (incident)|tan �= 0 on the surface of an electric conductor]. For

a half-wavelength dipole, a typical residual is shown in Figure 12-10a for pulse-basis functions
and point matching and Figure 12-10b exhibits the residual for piecewise sinusoidal Galerkin’s
method [25]. As expected, the pulse-basis point matching exhibits the most ill-behaved residual
and the piecewise sinusoidal Galerkin’s method indicates an improved residual. To minimize
the residual in such a way that its overall average over the entire structure approaches zero, the
method of weighted residuals is utilized in conjunction with the inner product of (12-42). This
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Figure 12-10 Tangential electric field on the conducting surface of the λ/2 dipole. (Source: E. K. Miller
and F. J. Deadrick, “Some computational aspects of thin-wire modeling” in Numerical and Asymptotic
Techniques in Electromagnetics , 1975, Springer-Verlag.) (a) Pulse basis-point matching. (b) Piecewise
sinusoidal-Galerkin’s method.
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technique, referred as moment method (MM), does not lead to a vanishing residual at every
point on the surface of a conductor, but it forces the boundary conditions to be satisfied in an
average sense over the entire surface.

To accomplish this, we define a set of N weighting (or testing) functions {wm}(m =
1, 2, . . . , N ) in the domain of the operator F. Forming the inner product between each of these
functions and the excitation function h , (12-25) reduces to

〈wm , h〉 =
N∑

n=1

an〈wm , F (gn)〉 m = 1, 2, . . . , N (12-43)

This set of N equations may be written in matrix form as

[hm ] = [Fmn ][an ] (12-44)

where

[Fmn ] =

⎡⎢⎣ 〈w1, F (g1)〉 〈w1, F (g2)〉 · · ·
〈w2, F (g1)〉 〈w2, F (g2)〉

...
...

⎤⎥⎦

[an ] =

⎡⎢⎢⎢⎣
a1

a2
...

aN

⎤⎥⎥⎥⎦ hm =

⎡⎢⎢⎢⎣
〈w1, h〉
〈w2, h〉

...

〈wN , h〉

⎤⎥⎥⎥⎦

(12-44a)

(12-44b)

The matrix of (12-44) may be solved for the an by inversion, and it can be written as

[an ] = [Fmn ]−1[hm ] (12-45)

The choice of weighting functions is important in that the elements of {wn} must be linearly
independent, so that the N equations in (12-43) will be linearly independent [1–3, 22, 23]. Further,
it will generally be advantageous to choose weighting functions that minimize the computations
required to evaluate the inner products.

The condition of linear independence between elements and the advantage of computational
simplicity are also important characteristics of basis functions. Because of this, similar types of
functions are often used for both weighting and expansion. A particular choice of functions may
be to let the weighting and basis function be the same, that is, wn = gn . This technique is known
as Galerkin’s method [26].

It should be noted that there are N 2 terms to be evaluated in (12-44a). Each term usually
requires two or more integrations; at least one to evaluate each F (gn), and one to perform the
inner product of (12-42). When these integrations are to be done numerically, as is often the case,
vast amounts of computation time may be necessary.

There is, however, a unique set of weighting functions that reduce the number of required
integrations. This is the set of Dirac delta weighting functions

{wm} = {δ(p − pm)} = {δ(p − p1), δ(p − p2), . . . , δ(p − pN )} (12-46)
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where p specifies a position with respect to some reference (origin), and pm represents a point at
which the boundary condition is enforced. Using (12-42) and (12-46) reduces (12-43) to

〈δ(p − pm), h〉 =
∑

n

an〈δ(p − pm), F (gn)〉, m = 1, 2, . . . , N∫∫
S

δ(p − pm)h ds =
∑

n

an

∫∫
S

δ(p − pm)F (gn) ds , m = 1, 2, . . . , N

h|p=pm =
∑

n

anF (gn)|p=pm , m = 1, 2, . . . , N (12-47)

Hence, the only remaining integrations are those specified by F (gn). This simplification may make
it possible to obtain some solutions that would be unattainable if other weighting functions were
used. Physically, the use of Dirac delta weighting functions is seen as a relaxation of boundary
conditions so that they are enforced only at discrete points on the surface of the structure, hence
the name point matching .

An important consideration when using point matching is the positioning of the N points (pm).
While equally spaced points often yield good results, much depends on the basis functions used.
When using subsectional basis functions in conjunction with point matching, one match point
should be placed on each segment to maintain linear independence. Placing the points at the
center of the segments usually produces the best results. It is important that a match point does
not coincide with the “peak” of a triangle or any other point, where the basis function is not
differentiable. Ignoring this would cause errors in some situations.

Because it provides acceptable accuracy along with obvious computational advantages, point
matching is the most popular testing technique for moment-method solutions to electromagnetics
problems. The analysis presented here, along with most problems considered in the literature,
proceed via point matching.

For the strip problem, a convenient inner product of the form (12-42) is

〈wm , gn〉 =
∫ w/2

−w/2
w∗

m(x)gn(x)dx (12-48)

Taking the inner product (12-48) with w∗
m(x) on both sides of (12-26), we can write it as

V ′
m =

N∑
n=1

InZ ′
mn , m = 1, 2, . . . , N (12-49)

where

V ′
m =

∫ w/2

−w/2
w∗

m(x)H (2)
0 (βρm) dx (12-49a)

Z ′
mn = −

∫ w/2

−w/2
w∗

m(x)

[∫ w/2

−w/2
gn(x

′)H (2)
0 (β|ρm − ρ′

n |)dx ′
]

dx (12-49b)

or in matrix form as
[V ′

m ] = [Z ′
mn ][In ] (12-50)

If the wm weighting functions are Dirac delta functions [i.e., wm(y) = δ(y − ym)], then (12-49)
reduces to (12-27) or

V ′
m = Vm (12-51a)
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and

Z ′
mn = Zmn (12-51b)

The method of weighted residuals (moment method) was introduced to minimize the average
deviation from the actual values of the boundary conditions over the entire structure. However,
it is evident that it has complicated the formulation by requiring an integration in the evaluation
of the elements of the V ′ matrix [as given by (12-49a)] and an additional integration in the
evaluation of the elements of the Z ′

mn matrix [as given by (12-49b)]. Therein lies the penalty that
is paid to improve the solution.

If both the expansion gn and the weighting wm functions are of the subdomain type, each of
which exists only over one of the strip segments, then (12-49b) can be written as

Z ′
mn = −

∫ xm+1

xm

w∗
m(x)

[∫ x ′
n+1

x ′
n

gn(x
′)H (2)

0 (β|ρm − ρ′|)dx ′
]

dx (12-52)

where (xm , xm+1) and (x ′
n , x ′

n+1) represent, respectively, the lower and upper limits of the strip
segments over which the weighting wm and expansion gn functions exist. To evaluate the mnth
element of Z ′

mn from (12-49b) or (12-52), we first choose the weighting function wm , and the
region of the segment over which it exists, and weigh the contributions from the gn expan-
sion function over the region in which it exists. To find the next element Z ′

m(n+1), we maintain
the same weighting function wm , and the region over which it exists, and weigh the contribu-
tions from the gn+1 expansion function. We repeat this until the individual contributions from
all the N expansion functions (gn) are weighted by the wm weighting function. Then we choose
the wm+1 weighting function, and the region over which it exists, and we weigh individually the
contributions from each of the N expansion functions (gn). We repeat this until all the N weight-
ing functions (wm), and the regions of the strip over which they exist, are individually weighted
by the N expansion functions (gn). This procedure allows us to form N linear equations, each
with N unknowns, that can be solved using matrix inversion methods.

Example 12-3

For the electric line source of Figure 12-5 with w = 2λ, t = 0.001λ, and h = 0.5λ perform the following:

1. Compute the equivalent current density induced on the open surface of the strip. This equivalent
current density is representative of the vector sum of the current densities that flow on the opposite
sides of the strip. Use subdomain pulse expansion functions and point matching. Subdivide the
strip into 150 segments.

2. Compare the current density of part 1 with the physical optics current density.
3. Compute the normalized far-field amplitude pattern of (12-22a) using the current densities of parts

1 and 2. Compare these patterns with those obtained using a combination of geometrical optics
(GO) and geometrical theory of diffraction (GTD) techniques of Chapter 13 and physical optics
(PO) and physical theory of diffraction (PTD) techniques of [13].

Solution:

1. Utilizing (12-27) through (12-27b) and (12-36), the current density of (12-23) is computed using
(12-28a). It is plotted in Figure 12-11. It is observed that the current density exhibits singularities
toward the edges of the strip.
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Figure 12-11 Current density on a finite width strip that is due to the electric line source above the
strip.

2. The physical optics current density is found using

JPO
s � 2n̂ × Hi

which reduces using (11-10b) to

JPO
s � 2ây × âφH i

φ

∣∣
strip

= 2ây × (−âx sin φ + ây cos φ
)

H i
φ

∣∣
strip

= âz 2 sin φH i
φ

∣∣
strip

� −j âz Iz
β

z
sin φm H (2)

1 (βρm)

JPO
s = −j âz Iz

β

2

(
ym

ρm

)
H (2)

1 (βρm)

The normalized value of this has also been plotted in Figure 12-11 so that it can be compared
with the more accurate one obtained in part 1 using the integral equation.

3. The far-field amplitude patterns, based on the current densities of parts 1 and 2, are plotted in
Figure 12-12. In addition to the normalized radiation patterns obtained using the current densities
of parts 1 and 2, the pattern obtained using geometrical optics (GO) plus first-order diffractions
by the geometrical theory of diffraction (GTD), to be discussed in Chapter 13, is also displayed
in Figure 12-12. There is an excellent agreement between the IE and the GO plus GTD patterns.
The pattern obtained using physical optics, supplemented by first-order diffractions of the physical
theory of diffraction (PTD) [13], is also displayed in Figure 12-12 for comparison purposes. It



Balanis c12.tex V2 - 11/22/2011 3:54 P.M. Page 703

ELECTRIC AND MAGNETIC FIELD INTEGRAL EQUATIONS 703

also compares extremely well with the others. As expected, the only one that does not compare
well with the others is that of PO. Its largest differences are in the back lobes.
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180°
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120°

Figure 12-12 Normalized amplitude pattern of the line source above the finite width strip (w = 2λ,
h = 0.5λ).

12.3 ELECTRIC AND MAGNETIC FIELD INTEGRAL EQUATIONS

The key to the solution of any antenna or scattering problem is a knowledge of the physical
or equivalent current density distributions on the volume or surface of the antenna or scatterer.
Once these are known, the radiated or scattered fields can be found using the standard radiation
integrals of Chapter 6. A main objective then of any solution method is to be able to predict
accurately the current densities over the antenna or scatterer. This can be accomplished by the
integral-equation (IE) method. One form of IE, for a two-dimensional structure, was discussed
in Section 12.2.2 and represented by the integral equation 12-17a.

In general, there are many forms of integral equations. Two of the most popular forms for time-
harmonic electromagnetics are the electric field integral equation (EFIE) and the magnetic field
integral equation (MFIE). The EFIE enforces the boundary condition on the tangential electric
field while the MFIE enforces the boundary condition on the tangential components of the mag-
netic field. Both of these will be discussed here as they apply to perfectly conducting structures.
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12.3.1 Electric Field Integral Equation

The electric field integral equation (EFIE) is based on the boundary condition that the total
tangential electric field on a perfectly electric conducting (PEC) surface of an antenna or scatterer
is zero. This can be expressed as

Et
t (r = rs) = Ei

t (r = rs) + Es
t (r = rs) = 0 on S (12-53)

or
Es

t (r = rs) = −Ei
t (r = rs) on S (12-53a)

where S is the conducting surface of the antenna or scatterer and r = rs is the distance from the
origin to any point on the surface of the antenna or scatterer. The subscript t indicates tangential
components.

The incident field that impinges on the surface S of the antenna or scatterer induces on it an
electric current density Js which in turn radiates the scattered field. If Js is known, the scattered
field everywhere, that is due to Js , can be found using (6-32b), or

Es(r) = −jωA − j
1

ωμε
∇(∇ • A) = −j

1

ωμε

[
ω2μεA + ∇(∇ • A)

]
(12-54)

where, according to (6-96a),

A(r) = μ

4π

∫∫
S

Js(r
′)

e−jβR

R
ds ′ = μ

∫∫
S

Js(r
′)

e−jβR

4πR
ds ′ (12-54a)

Equations 12-54 and 12-54a can also be expressed, by referring to Figure 6-2b, as

Es(r) = −j
η

β

[
β2

∫∫
S

Js(r
′)G(r, r′)ds ′ + ∇

∫∫
S

∇′ • Js(r
′)G(r, r′)ds ′

]
(12-55)

where

G(r, r′) = e−jβR

4πR
= e−jβ|r−r′|

4π |r − r′| (12-55a)

R = |r − r′| (12-55b)

In (12-55) ∇ and ∇′ are, respectively, the gradients with respect to the observation (unprimed)
and source (primed) coordinates and G(r, r′) is referred to as the Green’s function for a three-
dimensional radiator or scatterer.

If the observations are restricted on the surface of the antenna or scatterer (r = rs), then
(12-55) and (12-55b) can be expressed, using (12-53a), as

j
η

β

[
β2

∫∫
S

Js(r
′)G(rs , r′)ds ′ + ∇

∫∫
S

∇′ • Js(r
′)G(rs , r′)ds ′

]
t

= Ei
t (r = rs) (12-56)

Because the right side of (12-56) is expressed in terms of the known incident electric field, it is
referred to as the electric field integral equation (EFIE). It can be used to find the current density
Js(r ′) at any point r = r ′ on the antenna or scatterer. It should be noted that (12-56) is actually
an integro-differential equation, but usually it is referred to as an integral equation.

Equation 12-56 can be used for closed or open surfaces. Once Js is determined, the scattered
field is found using (6-32b) and (6-96a) or (12-54) and (12-54a), which assume that Js radiates
in one medium. Because of this, Js in (12-56) represents the physical equivalent electric current
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density of (7-53a) in Section 7.10. For open surfaces, Js is also the physical equivalent current
density that represents the vector sum of the equivalent current densities on the opposite sides
of the surface. Whenever this equivalent current density represents open surfaces, a boundary
condition supplemental to (12-56) must be enforced to yield a unique solution for the normal
component of the current density to vanish on S .

Equation 12-56 is a general surface EFIE for three-dimensional problems, and its form can be
simplified for two-dimensional geometries. To demonstrate this, let us derive the two-dimensional
EFIEs for both TMz and TEz polarizations.

A. Two-Dimensional EFIE: TMz Polarization The best way to demonstrate the derivation
of the two-dimensional EFIE for TMz polarization is to consider a specific example. Its form can
then be generalized to more complex geometries. The example to be examined here is that of a
TMz uniform plane wave incident on a finite width strip, as shown in Figure 12-13a .

By referring to Figure 12-13a , the incident electric field can be expressed as

Ei = âz E0e−jβi • r = âz E0ejβ(x cos φi +y sin φi ) (12-57)

which at the surface of the strip (y = 0, 0 ≤ x ≤ w ) reduces to

Ei (y = 0, 0 ≤ x ≤ w) = âz E0ejβx cos φi (12-57a)

y

Ei

Hi

z

w

x

fi

fs

(a)

y

Ei

Hi

z

w

x

fi

fs

(b)

Figure 12-13 Uniform plane wave incident on a conducting strip of finite width. (a) TMz polarization.
(b) TEz polarization.
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Since the incident electric field has only a z component, the scattered and total fields each also
has only a z component that is independent of z variations (two dimensional). Therefore the
scattered field can be found by expanding (12-54), assuming A has only a z component that is
independent of z variations. Doing this reduces (12-54) to

Es = −âz jωAz (12-58)

The vector potential component Az is obtained using (12-54a), which in conjunction with
(11-27d), (11-28a) and (12-55b) reduces to

Az = μ

4π

∫∫
S

Jz (x
′)

e−jβR

R
ds ′ = μ

4π

∫ w

0
Jz (x

′)

[∫ +∞

−∞

e−jβ
√

|ρ−ρ′|2+(z−z ′)2√
|ρ − ρ′|2 + (z − z ′)2

dz ′
]

dx ′

= −j
μ

4

∫ w

0
Jz (x

′)H (2)
0 (β|ρ − ρ′|)dx ′ (12-59)

where Jz is a linear current density (measured in amperes per meter). Thus, we can write the
scattered electric field at any observation point, using the geometry of Figure 12-14, as

Es = −âz jωAz = −âz
ωμ

4

∫ w

0
Jz (x

′)H (2)
0 (β|ρ − ρ′|)dx ′

= −âz
βη

4

∫ w

0
Jz (x

′)H (2)
0 (β|ρ − x′|)dx ′ (12-60)

For far-field observations we can reduce (12-60), using the Hankel function approximation
(12-21b) for φ′ = 0, to

Es � −âz η

√
jβ

8π

e−jβρ

√
ρ

∫ w

0
Jz (x

′)ejβx ′ cos φdx ′ (12-60a)

To evaluate the integral in (12-60a) in order to find the scattered field, we must know the
induced current density Jz (x ′) over the extent of the strip (0 ≤ x ′ ≤ w ). This can be accomplished
by observing the field on the surface of the strip (ρ = xm ). Under those conditions, the total field
over the strip must vanish. Thus,

E t
z (0 ≤ xm ≤ w , y = 0) = E i

z (0 ≤ xm ≤ w , y = 0) + E s
z (0 ≤ xm ≤ w , y = 0) = 0 (12-61)

or
E s

z (0 ≤ xm ≤ w , y = 0) = −E i
z (0 ≤ xm ≤ w , y = 0)

(x, y)
y

z

w

x

R
ρ

f″f

ρ′ = x′
f′ = 0

Figure 12-14 Geometry of the finite width strip for scattering.
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Since over the strip ρ = xm , we can write the scattered field over the strip as

E s
z (0 ≤ xm ≤ w , y = 0) = −E i

z (0 ≤ xm ≤ w , y = 0)

= −βη

4

∫ w

0
Jz (x

′)H (2)
0 (β|xm − x′|)dx ′ (12-62)

or

βη

4

∫ w

0
Jz (x

′)H (2)
0 (β|xm − x′|)dx ′

= E i
z (0 ≤ xm ≤ w , y = 0) = E0ejβxm cos φi (12-62a)

For a normalized field of unity amplitude (E0 = 1), (12-62a) this reduces to

βη

4

∫ w

0
Jz (x

′)H (2)
0 (β|xm − x′|)dx ′ = ejβxm cos φi (12-63)

This is the desired two-dimensional electric field integral equation (EFIE) for the TMz polar-
ization of the conducting strip, and it is equivalent to (12-56) for the general three-dimensional
case. This EFIE can be solved for Jz (x ′) using techniques similar to those used to solve the EFIE
of (12-17a). It must be used to solve for the induced current density Jz (x ′) over the surface of
the strip. Since the surface of the strip is open, the aforementioned Jz (x ′) represents the equiv-
alent vector current density that flows on the opposite sides of the surface. For a more general
geometry, the EFIE of (12-63) can be written as

βη

4

∫
C

Jz (ρ
′)H (2)

0 (β|ρm − ρ′|)dc′ = E i
z (ρm) (12-64)

where ρm = any observation point on the scatterer
ρ′ = any source point on the scatterer
C = perimeter of the scatterer

The solution of the preceding integral equations for the equivalent linear current density can
be accomplished by using either the point-matching (collocation) method of Section 12.2.4 or the
weighted residual of the moment method of Section 12.2.8. However, using either method for
the solution of the integral equation 12-63 for the strip of Figure 12-13a , we encounter the same
problems as for the evaluation of the integral equation 12-17a for the finite strip of Figure 12-5,
which are outlined in Section 12.2.6. However, these problems are overcome here using the same
techniques that were outlined in Section 12.2.6, namely, choosing the observation points along
the bisector of the width of the strip, or using the approximations (12-39) and (12-40).

Example 12-4

For the TMz plane wave incidence on the conducting strip of Figure 12-13a perform the following:

1. Plot the induced equivalent current density for normal incidence (φi = 90◦) obtained using the
EFIE of (12-63). Assume the strip has a width of w = 2λ and 0.001λ thickness. Use subdomain
pulse expansion functions and point matching. Subdivide the strip into 250 segments.

2. Compare the current density of part 1 with the physical optics current density.
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3. Compute the monostatic scattering width pattern for 0 ≤ φi ≤ 180◦ using current density obtained
using the EFIE of (12-63). Compare this pattern with those obtained with physical optics (PO),
geometrical theory of diffraction (GTD) of Chapter 13, and physical optics (PO) plus physical
theory of diffraction (PTD) techniques [13].

Solution:

1. Using the EFIE of (12-63) and applying point-matching methods with subdomain pulse expansion
functions, the current density of Figure 12-15 for φi = 90◦ is obtained for a strip of w = 2λ. It is
observed that the current density exhibits singularities toward the edges of the strip.

2. The physical optics current density is represented by

JPO
s � 2n̂ × Hi |strip = 2ây ×

(
âx H i

x + ây H i
y

)
|strip

= −âz 2H i
x |strip = âz 2

E0

η
sin φi e

jβx cos φi

which is shown plotted in Figure 12-15 for φi = 90◦. It is apparent that the PO current density
does not compare well with that obtained using the IE, especially toward the edges of the strip.
Therefore, it does not provide a good representation of the equivalent current density induced on
the strip. In Figure 12-15 we also display the equivalent current density for TEz polarization which
will be discussed in the next section and in Example 12-5.

3. The monostatic scattering width patterns for 0◦ ≤ φi ≤ 180◦ obtained using the methods of IE,
PO, GTD, and PO plus PTD are all shown in Figure 12-16. As expected, the only one that differs
from the others is that due to the PO; the other three are indistinguishable from each other and
are represented by the solid curve. The pattern for the TEz polarization for the IE method is also
displayed in Figure 12-16. This will be discussed in the next section and in Example 12-5.
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Figure 12-15 Current density induced on a finite width strip by a plane wave at normal incidence.



Balanis c12.tex V2 - 11/22/2011 3:54 P.M. Page 709

ELECTRIC AND MAGNETIC FIELD INTEGRAL EQUATIONS 709

TMz MM

TEz MM

TEz UTD (1-3rd order diffractions)

GTD, PTD (1st order diffractions)

PO

0
−30

−15

0

15

30

45 90

Backscattering angle fi (degrees)

S
W

 (
s

2-
D
/λ

) 
dB

135 180

Figure 12-16 Monostatic scattering width of a finite width strip (w = 2λ).

B. Two-Dimensional EFIE: TEz Polarization As in the previous section, the derivation of
the EFIE for TEz polarization is best demonstrated by considering a uniform plane wave incident
on the strip, as shown in Figure 12-13b. Its form can then be generalized to more complex
geometries.

By referring to Figure 12-13b, the incident electric field can be expressed as

Ei = E0(âx sin φi − ây cos φi )e
−jβ i • r = E0(âx sin φi − ây cos φi )e

jβ(x cos φi +y sin φi ) (12-65)

which on the surface of the strip (y = 0, 0 ≤ x ≤ w) reduces to

Ei = E0(âx sin φi − ây cos φi )e
jβx cos φi (12-65a)

On the surface of the strip (0 ≤ x ≤ w , y = 0) the tangential components of the total field,
incident plus scattered, must vanish. This can be written as

n̂ × Et |strip = n̂ × (Ei + Es)|strip

= ây ×
[(

âx E i
x + ây E i

y

)
+

(
âx E s

x + ây E s
y

)]
strip

= 0 (12-66)
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which leads to

−âz (E
i
x + E s

x )|strip = 0 ⇒ E s
x (0 ≤ x ≤ w , y = 0) = −E i

x (0 ≤ x ≤ w , y = 0) (12-66a)

or
E s

x (0 ≤ x ≤ w , y = 0) = −E i
x (0 ≤ x ≤ w , y = 0) = −E0 sin φi e

jβx cos φi (12-66b)

The x and y components of the scattered electric field, which are independent of z variations,
are obtained using (12-54), which when expanded reduce to

E s
x = −jωAx − j

1

ωμε

∂2Ax

∂x 2
= −j

1

ωμε

[
β2Ax + ∂2Ax

∂x 2

]
= −j

1

ωμε

(
β2 + ∂2

∂x 2

)
Ax (12-67a)

E s
y = −j

1

ωμε

∂2Ax

∂x∂y
(12-67b)

The vector potential Ax is obtained using (12-54a), which, in conjunction with (11-27d) and
(11-28a), reduces to

Ax = −j
μ

4

∫ w

0
Jx (x

′)H (2)
0 (β|ρ − ρ′|)dx ′ (12-68)

Thus, we can write that the x and y components of the scattered field can be expressed as

E s
x = −j

1

ωμε

(
−j

μ

4

)(
β2 + ∂2

∂x 2

)∫ w

0
Jx (x

′)H (2)
0 (β|ρ − ρ′|)dx ′

= − η

4β

(
β2 + ∂2

∂x 2

)∫ w

0
Jx (x

′)H (2)
0 (β|ρ − ρ′|)dx ′ (12-69a)

E s
y = − η

4β

∂2

∂x∂y

∫ w

0
Jx (x

′)H (2)
0 (β|ρ − ρ′|)dx ′ (12-69b)

Interchanging integration and differentiation and letting ρ ′ = x ′, we can rewrite the x and y
components as

E s
x = − η

4β

∫ w

0
Jx (x

′)
[(

∂2

∂x 2
+ β2

)
H (2)

0 (βR)

]
dx ′ (12-70a)

E s
y = − η

4β

∫ w

0
Jx (x

′)
[

∂2

∂x∂y
H (2)

0 (βR)

]
dx ′ (12-70b)

where
R = |ρ − x′| (12-70c)

It can be shown, using the geometry of Figure 12-14, that[
∂2

∂x 2
+ β2

]
H (2)

0 (βR) = β2

2

[
H (2)

0 (βR) + H (2)
2 (βR) cos(2φ′′)

]
(12-71a)

∂2

∂x∂y
H (2)

0 (βR) = β2

2
H (2)

2 (βR) sin(2φ′′) (12-71b)
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Thus, the x and y components of the electric field reduce to

E s
x = −βη

8

∫ w

0
Jx (x

′)
[
H (2)

0 (βR) + H (2)
2 (βR) cos(2φ′′)

]
dx ′ (12-72a)

E s
y = −βη

8

∫ w

0
Jx (x

′)H (2)
2 (βR) sin(2φ′′)dx ′ (12-72b)

The next objective is to solve for the induced current density, that can then be used to find
the scattered field. This can be accomplished by applying the boundary conditions on the x
component of the electric field. When the observations are restricted to the surface of the strip
(ρ = xm ), the x component of the scattered field over the strip can be written as

E s
x (0 ≤ xm ≤ w , y = 0)

= −E i
x (0 ≤ xm ≤ w , y = 0) = −E0 sin φi e

jβxm cos φi

= −βη

8

∫ w

0
Jx (x

′)
[
H (2)

0 (βRm) + H (2)
2 (βRm) cos(2φ′′

m)
]

dx ′ (12-73)

or

βη

8

∫ w

0
Jx (x

′)
[
H (2)

0 (βRm) + H (2)
2 (βRm) cos(2φ′′

m)
]

dx ′ = E0 sin φi e
jβxm cos φi (12-73a)

For a normalized field of unity amplitude (E0 = 1), (12-73a) reduces to

βη

8

∫ w

0
Jx (x

′)
[
H (2)

0 (βRm) + H (2)
2 (βRm) cos(2φ′′

m)
]

dx ′ = sin φi e
jβxm cos φi (12-74)

where
Rm = |ρm − x′| (12-74a)

This is the desired two-dimensional electric field integral equation (EFIE) for the TEz polar-
ization of the conducting strip, and it is equivalent to (12-56) for the general three-dimensional
case. This EFIE must be used to solve for the induced current density Jx (x ′) over the surface of
the strip using techniques similar to those used to solve the EFIE of (12-17a). For a more general
geometry, the EFIE can be written as

η

4β

{
β2

∫
C

Jc(ρ
′)
[
ĉm • ĉ′H (2)

0 (β|ρm − ρ′|)
]

dc′

+ d

dc

[
∇ •

∫
C

Jc(ρ
′)
[
ĉ′H (2)

0 (β|ρm − ρ′|)
]

dc′
]}

= −E i
c (ρm)

(12-75)

where ρm = any observation point on the scatterer
ρ′ = any source point on the scatterer
C = perimeter of the scatterer

ĉm , ĉ′ = unit vector tangent to scatterer perimeter at observation, source points

The linear current density Jx is obtained by solving the integral equation 12-74 using either the
point-matching (collocation) method of Section 12.2.4 or the weighted residual moment method
of Section 12.2.8. Using either method, the solution of the preceding integral equation for Jx

is more difficult than that of the TMz polarization of the previous example. There exist various
approaches (either exact or approximate) that can be used to accomplish this.
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To demonstrate this, we will discuss one method that can be used to solve the integral
equation 12-74. Let us assume that the current density Jx (x ′) is expanded into a finite series
similar to (12-23). Then the integral equation can be written as

sin φi e
jβxm cos φi = βη

8

N∑
n=1

an

∫ w

0
gn(x

′)
[
H (2)

0 (βRm) + H (2)
2 (βRm) cos(2φ′′

m)
]

dx ′ (12-76)

If, in addition, the basis functions are subdomain pulse functions, as defined by (12-35), then
(12-76) using point matching reduces for each observation point to

sin φi e
jβxm cos φi = βη

8

N∑
n=1

an

∫ xn+1

xn

[
H (2)

0 (βRmn) + H (2)
2 (βRmn) cos(2φ′′

mn)
]

dx ′ (12-77)

If N observations are selected, then we can write (12-77) as

[sin φi e
jβxm cos φi ] =

N∑
n=1

an

{
βη

8

∫ xn+1

xn

[
H (2)

0 (βRmn) + H (2)
2 (βRmn) cos(2φ′′

mn)
]

dx ′
}

m = 1, 2, . . . , N (12-78)

or, in matrix form,
[Vm ] = [Zmn ][In ] (12-78a)

where

Vm = sin φi e
jβxm cos φi (12-78b)

In = an (12-78c)

Zmn = βη

8

∫ xn+1

xn

[
H (2)

0 (βRmn) + H (2)
2 (βRmn) cos(2φ′′

mn)
]

dx ′ (12-78d)

One of the tasks here will be the evaluation of the integral for Zmn . We will examine one tech-
nique that requires Zmn to be evaluated using three different expressions depending upon the posi-
tion of the segment relative to the observation point. We propose here that Zmn is evaluated using

Zmn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βη	xn

8

{
1 − j

1

π

[
3 + 2 ln

(
1.781β	xn

4e

)
+ 16

(β	xn)2

]}
e ≈ 2.718 m = n

βη	xn

8

⎧⎪⎪⎨⎪⎪⎩1 + j
4

πβ2

1

|xm − xn |2 − (	xn)
2

4

⎫⎪⎪⎬⎪⎪⎭
|m − n| ≤ 2, m �= n

βη

4

∫ 	xn/2

−	xn/2

H (2)
1

[
β(|xm − xn | + x ′)

]
β(|xm − xn | + x ′)

dx ′

|m − n| > 2

(12-79a)

(12-79b)

(12-79c)

where xm and xn are measured from the center of their respective segments.
The current density Jx obtained from the preceding integral equation also represents the total

current density Js induced on the strip. This is evident from the induced current density equation

Js = n̂ × Ht = ây × âz H t
z = âx H t

z = âx (H
i
z + H s

z ) (12-80)
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Example 12-5

For the TEz plane wave incident on the conducting strip of Figure 12-13b, perform the following
tasks.

1. Plot the induced equivalent current density for normal incidence (φi = 90◦) obtained using the
EFIE of (12-74) or (12-78) through (12-78d). Assume a width of w = 2λ and thickness equal to
0.001λ. Use subdomain pulse expansion functions and point matching. Subdivide the strip into
250 segments.

2. Compare the current density of part 1 with the physical optics current density.
3. Compute the monostatic scattering width pattern for 0◦ ≤ φi ≤ 180◦ using the current density

obtained using the EFIE of (12-78) through (12-78d). Compare this pattern with those obtained
with physical optics (PO), geometrical theory of diffraction (GTD) of Chapter 13, and physical
optics (PO) plus physical theory of diffraction (PTD) techniques [13].

Solution:

1. Using the EFIE of (12-78) through (12-78d), the current density of Figure 12-15 for φi = 90◦ is
obtained for a strip of w = 2λ. It is observed that the current density vanishes toward the edges
of the strip.

2. The physical optics current density is represented by

JPO
s � 2n̂ × Hi |strip = 2ây × âz H i

z |strip = âx 2H i
z |strip = âx 2

E0

η
ejβx cos φi

which for normal incidence (φi = 90◦) is identical to that for the TMz polarization, and it is shown
plotted in Figure 12-15. As for the TMz polarization, the PO TEz polarization current density does
not compare well with that obtained using the IE method. Therefore, it does not provide a good
representation of the equivalent current density induced on the strip. In Figure 12-15 the TEz

polarization current density is compared with that of the TMz polarization using the different
methods.

3. The monostatic scattering width pattern for 0◦ ≤ φi ≤ 180◦ obtained using the IE method is shown
plotted in Figure 12-16 where it is compared to those obtained by PO, PO plus PTD (first-order
diffractions), and GTD (first-order diffractions) techniques. It is observed that the patterns of
PO, PO plus PTD, and GTD (using first-order diffractions only) are insensitive to polarization
whereas those of the integral equation with moment method solution vary with polarization. The
SW patterns should vary with polarization. Therefore, those obtained using the integral-equation
method are more accurate. It can be shown that if higher-order diffractions are included, the
patterns of the PO plus PTD, and GTD will also vary with polarization. Higher-order diffractions
are greater contributors to the overall scattering pattern for the TEz polarization than for the
TMz . This is demonstrated by including in Figure 12-16 the monostatic SW for TEz polarization
obtained using higher-order GTD (UTD) diffractions [27]. It is apparent that this pattern agrees
quite well with that of the IE method.

12.3.2 Magnetic Field Integral Equation

The magnetic field integral equation (MFIE) is expressed in terms of the known incident magnetic
field. It is based on the boundary condition that expresses the total electric current density induced
at any point r = r ′ on a conducting surface S

Js(r
′) = Js(r = r ′) = n̂ × Ht (r = r ′) = n̂ × [Hi (r = r ′) + Hs(r = r ′)] (12-81)



Balanis c12.tex V2 - 11/22/2011 3:54 P.M. Page 714

714 INTEGRAL EQUATIONS AND THE MOMENT METHOD

Once the current density is known or determined, the scattered magnetic field can be obtained
using (6-32a) and (6-96a), or

Hs(r) = 1

μ
∇ × A = ∇ ×

∫∫
S

Js(r
′)

e−jβR

4πR
ds ′ = ∇ ×

∫∫
S

Js(r
′)G(r, r′)ds ′ (12-82)

where G(r, r′) is the Green’s function of (12-55a). Interchanging differentiation with integration
and using the vector identity

∇ × (Js G) = G∇ × Js − Js × ∇G (12-83)

where ∇ × Js(r
′) = 0 (12-83a)

∇G = −∇′G (12-83b)

(12-82) reduces to

Hs(r) =
∫∫

S
Js(r

′) × [∇′G(r, r′)]ds ′ (12-84)

On the surface S of the conductor, the tangential magnetic field is discontinuous by the amount
of the current density induced on the surface of the conductor. Therefore, the current density is
determined by (12-81) but with Hs found using (12-84). Thus, we can write that

Js(r
′) = n̂ × Hi (r = r ′) + lim

r→S
[n̂ × Hs(r = r ′)]

= n̂ × Hi (r = r ′) + lim
r→S

{
n̂ ×

∫∫
S

Js(r
′) × [∇′G(r, r′)]ds ′

}
(12-85)

or

Js(r
′) − lim

r→S

{
n̂ ×

∫∫
S

Js(r
′) × [∇′G(r, r′)]ds ′

}
= n̂ × Hi (r = r ′) (12-85a)

Since in (12-85a)

lim
r→S

{
n̂ ×

∫∫
S

Js(r
′) × [∇′G(r, r′)]ds ′

}
= Js(r ′)

2
+ n̂ ×

∫∫
S

Js(r
′) × [∇′G(r, r′)]ds ′ (12-85b)

then (12-85a) can be written, in a more useful form, as

Js(r
′) = 2n̂ × Hi (r = r ′) + 2n̂ ×

∫∫
S

Js(r
′) × [∇′G(r, r′)]ds ′ (12-85c)

where r → S indicates that S is approached by r from the outside.
Equation 12-85a is referred to as the magnetic field integral equation (MFIE) because its right

side is in terms of the incident magnetic field, and it is valid only for closed surfaces. Once the
current density distribution can be found using (12-85a)–(12-85c), then the scattered fields can be
found using standard radiation integrals. It should be noted that the integral of (12-85a) or (12-85b)
must be carefully evaluated. The MFIE is the most popular for TEz polarizations, although it can
be used for both TEz and TMz cases. Since (12-85a)–(12-85c) are only valid for closed surfaces,
the current density obtained using (12-85a)–(12-85b) is the actual current density induced on the
surface of the conducting obstacle. Usually, the MFIE is well posed while the EFIE is ill posed.

At this point, before proceeding any further, it may be appropriate to comment as to why the
EFIE is valid for open and closed surfaces while the MFIE is valid only for closed surfaces [28].
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S−

S+

J−

J+

t

n+

n−

Figure 12-17 Thin closed structure with corresponding current densities, surfaces, and unit vectors [28].

This can be accomplished by referring to Figure 12-17, which represents a thin closed surface
of thickness τ with the two sides of the surface and unit vectors represented, respectively, by
S +, n̂+ and S −, n̂−. In the limit, as τ → 0, S + → S − and n̂+ → −n̂−, the surface reduces to an
open structure, and then the MFIE cannot be used because of what follows.

In applying the EFIE of (12-56) and MFIE of (12-85a) to open thin surfaces, one finds that
each equation reduces to the same form on opposite sides of the conducting surface. Hence,
neither equation can be used to solve for the two opposite-side surface current densities (J+, J−).
In the case of the EFIE, however, the unknown surface conduction current density appears only
in the integrand as a sum of the opposite-side surface currents (it does not appear outside the
integral), and it is this sum, or total, surface current density that can be solved for. The total
equivalent current density is then sufficient to find all fields radiated by the conducting structure.
This is different from the MFIE case, in which the sum of the opposite-side surface current
densities also appears inside the integral, but their difference appears outside the integral. Thus,
the MFIE reduces to an identity relating the surface current densities on opposite sides of the
surface, but does not contain sufficient information to completely determine them and, hence,
cannot be used to find the surface current densities on open conducting surfaces. The missing
information could be provided, for example, by combining the EFIE with the MFIE and solving
the two equations as coupled equations for the opposite-side current densities—something that
cannot be done using the EFIE alone. There is no problem in applying the MFIE for closed
surfaces as long as care is exercised in evaluating the integral in (12-85a) or (12-85b).

An alternate MFIE can be derived using the null field approach [28], which utilizes the surface
equivalence theorem of Chapter 7, Section 7.8, which requires that the tangential magnetic field
vanishes just inside the conductor. Therefore, the alternate MFIE, based on the null field approach ,
is derived using n̂ × (

Hinc + Hscat
) = 0, where the surface S is approached from the interior

instead of the exterior; when using n̂ × (
Hinc + Hscat

) = J, the surface is approached from the
exterior ; hence, the problem for open surfaces.

Whereas (12-85a) is a general MFIE for three-dimensional problems, its form can be simplified
for two-dimensional MFIEs for both TMz and TEz polarizations.

A. Two-Dimensional MFIE: TMz Polarization The best way to demonstrate the derivation
of the two-dimensional MFIE for TMz polarization is to consider a TMz uniform plane wave
incident upon a two-dimensional smooth curved surface, as shown in Figure 12-18.

Since the incident field has only a z component of the electric field, and x and y components
of the magnetic field, the electric current density induced on the surface of the scatterer will only
have a z component. That is

Js(ρ) = âz Jz (ρ)|C (12-86)

On the surface of the scatterer, the current density is related to the incident and scattered
magnetic fields by (12-81), which, for the geometry of Figure 12-18, can be written as

Js(ρ)|C = âz Jz (ρ)|C = n̂ × (Hi + Hs)|C = n̂ × Hi + lim
ρ→C

(n̂ × Hs) (12-87)
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s = ∞

f′
f

fi

R

Hi

Ei

y

ρρ′

x

Raz

z

y
n

c

Figure 12-18 Geometry for two-dimensional MFIE TMz polarization scattering.

where ρ → C indicates that the boundary C is approached by ρ from the exterior. Since the
left side of (12-87) has only a z component, the right side of (12-87) must also have only a
z component. Therefore, the only component of Hi that contributes to (12-87) is that which is
tangent to C and coincides with the surface of the scatterer. Thus, we can rewrite (12-87) as

Jz (ρ)|C = H i
c (ρ)|C + lim

ρ→C
[âz • (n̂ × Hs)] (12-88)

The scattered magnetic field Hs can be expressed according to (12-82) as

Hs = 1

μ
∇ × A = 1

μ
∇ ×

[
μ

4π

∫
C

∫ +∞

−∞
Js(ρ

′)
e−jβR

R
dz ′dc′

]
= 1

4π
∇ ×

{∫
C

Js(ρ
′)
[∫ +∞

−∞

e−jβR

R
dz ′

]
dc′

}
= −j

1

4
∇ ×

∫
C

Js(ρ
′)H (2)

0 (βR) dc′

Hs = −j
1

4

∫
C

∇ × [Js(ρ
′)H (2)

0 (βR)] dc′ (12-89)

Using (12-83) and (12-83a) reduces (12-89) to

Hs = j
1

4

∫
C

Js(ρ
′)∇H (2)

0 (βR) dc′ (12-90)

Since Js(ρ
′) has only a z component, the second term within the brackets on the right side of

(12-88) can be written using (12-90) as

âz • (n̂ × Hs) = âz •

{
j

1

4
n̂ ×

∫
C

[â′
z Jz (ρ

′)] × [∇H (2)
0 (βR)] dc′

}
= j

1

4

∫
c

Jz (ρ
′)
{

âz •

[
n̂ × âz × ∇H (2)

0 (βR)
]}

dc′ (12-91)

since â′
z = âz . Using the vector identity

A × (B × C) = (A • C)B − (A • B)C (12-92)
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we can write that

n̂ ×
[
âz × ∇H (2)

0 (βR)
]

= âz

[
n̂ • ∇H (2)

0 (βR)
]

− (n̂ • âz )∇H (2)
0 (βR)

= âz

[
n̂ • ∇H (2)

0 (βR)
]

(12-93)

since n̂ · âz = 0. Substituting (12-93) into (12-91) reduces it to

âz • (n̂ × Hs) = j
1

4

∫
C

Jz (ρ
′)
[
n̂ • ∇H (2)

0 (βR)
]

dc′

= j
1

4

∫
C

Jz (ρ
′)
[
−β cos ψH (2)

1 (βR)
]

dc′

âz • (n̂ × Hs) = −j
β

4

∫
C

Jz (ρ
′) cos ψH (2)

1 (βR) dc′ (12-94)

where the angle ψ is defined in Figure 12-18. Thus, we can write (12-88), using (12-94), as

Jz (ρ)
∣∣
C = H i

c (ρ)
∣∣
C + lim

ρ→C

[
−j

β

4

∫
C

Jz (ρ
′) cos ψH (2)

1 (βR)dc′
]

(12-95)

or

Jz (ρ)
∣∣
C + j

β

4
lim
ρ→C

[∫
C

Jz (ρ
′) cos ψH (2)

1 (βR)dc′
]

= H i
c (ρ)

∣∣
C (12-95a)

B. Two-Dimensional MFIE: TEz Polarization To derive the MFIE for the TEz polarization,
let us consider a TEz uniform plane wave incident upon a two-dimensional curved surface, as
shown in Figure 12-19. Since the incident field has only a z component of the magnetic field,
the current induced on the surface of the scatterer will have only a component that is tangent to
C and it will coincide with the surface of the scatterer. That is

Js = ĉJc(ρ) (12-96)

s = ∞

R

Hi

Ei

y′

ρρ′

x

R

n′

c′

z

y

az

Figure 12-19 Geometry for two-dimensional MFIE TEz polarization scattering.
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On the surface of the scatterer the current density is related to the incident and scattered
magnetic fields by (12-81), which for the geometry of Figure 12-19 can be written as

Js

∣∣
C = ĉ Jc(ρ)

∣∣
C = n̂ × (Hi + Hs)

∣∣
C = n̂ × Hi + lim

ρ→C
(n̂ × Hs)

= n̂ × âz H i
∣∣
C + lim

ρ→C
(n̂ × Hs)

Js

∣∣
C = ĉ Jc(ρ)

∣∣
C = −ĉ H i

z

∣∣
C + lim

ρ→C
(n̂ × Hs) (12-97)

where ρ → C indicates that the boundary C is approached by ρ from the outside. Since the left
side and the first term of the right side of (12-97) have only C components, then the second term
of the right side of (12-97) must also have only a C component. Thus, we can write (12-97) as

Jc(ρ)
∣∣
C = −H i

z (ρ)
∣∣
C + lim

ρ→C
[ĉ • (n̂ × Hs)] (12-98)

Using the scattered magnetic field of (12-90), we can write the second term within the brackets
of (12-98) as

ĉ • (n̂ × Hs) = ĉ •

{
j

1

4
n̂ ×

∫
C

[
ĉ′Jc(ρ

′) × ∇H (2)
0 (βR)

]}
dc′

= j
1

4

∫
C

Jc(ρ
′)
{

ĉ • n̂ ×
[
ĉ′ × ∇H (2)

0 (βR)
]}

dc′ (12-99)

Since from Figure 12-19
ĉ′ = −n̂′ × â′

z = −n̂′ × âz (12-100)

with the aid of (12-92)

ĉ′ × ∇H (2)
0 (βR) = (−n̂′ × âz ) × ∇H (2)

0 (βR) = ∇H (2)
0 (βR) × (n̂′ × âz )

= −âz

[
n̂′ • ∇H (2)

0 (βR)
]

+ n̂′
[
âz • ∇H (2)

0 (βR)
]

= −âz

[
n̂ • ∇H (2)

0 (βR)
]

(12-100a)

since âz · ∇H (2)
0 (βR) = 0. Thus, the terms within the brackets in (12-99) can be written as

ĉ • n̂ ×
[
ĉ′ × ∇H (2)

0 (βR)
]

= −ĉ • (n̂ × âz )
[
n̂′ • ∇H (2)

0 (βR)
]

= (ĉ • ĉ)
[
n̂′ • ∇H (2)

0 (βR)
]

= n̂′ • ∇H (2)
0 (βR) (12-101)

since −ĉ = n̂ × âz . Substituting (12-101) into (12-99) reduces it to

ĉ • n̂ × Hs = j
1

4

∫
C

Jc(ρ
′)
[
n̂′ • ∇H (2)

0 (βR)
]

dc′ = j
1

4

∫
C

Jc(ρ
′)
[
−β cos ψ ′H (2)

1 (βR)
]

dc′

ĉ • n̂ × Hs = −j
β

4

∫
C

Jc(ρ
′) cos ψ ′H (2)

1 (βR) dc′ (12-102)

where the angle ψ ′ is defined in Figure 12-19. Thus, we can write (12-98), using (12-102), as

Jc(ρ)
∣∣
C = −H i

z (ρ)
∣∣
C + lim

ρ→C

[
−j

β

4

∫
C

Jc(ρ
′) cos ψ ′H (2)

1 (βR)dc′
]

(12-103)
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or

Jc(ρ)
∣∣
C + j

β

4
lim
ρ→C

[∫
C

Jc(ρ
′) cos ψ ′H (2)

1 (βR)dc′
]

= −H i
z

∣∣
C (12-103a)

C. Solution of the Two-Dimensional MFIE TEz Polarization The two-dimensional MFIEs
of (12-95a) for TMz polarization and (12-103a) for TEz polarization are of identical form and
their solutions are then similar. Since TMz polarizations are very conveniently solved using the
EFIE, usually the MFIEs are mostly applied to TEz polarization problems where the magnetic
field has only a z component. Therefore, we will demonstrate here the solution of the TEz MFIE
of (12-103a).

In the evaluation of the scattered magnetic field at ρ = ρm from all points on C (including the
point ρ = ρm where the observation is made), the integral of (12-103a) can be split into two parts;
one part coming from 	C and the other part outside 	C (C − 	C ), as shown in Figure 12-20.
Thus, we can write the integral of (12-103a) as

j
β

4
lim
ρ→C

∫
C

Jc(ρ
′) cos ψ ′H (2)

1 (βR)dc′

= j
β

4
lim
ρ→C

{∫
	C

Jc(ρ
′) cos ψ ′H (2)

1 (βR)dc′ +
∫

C−	C
Jc(ρ

′) cos ψ ′H (2)
1 (βR)dc′

}
(12-104)

In a solution of (12-103a), where C is subdivided into segments, 	C would typically represent
one segment (the selfterm) and C − 	C would represent the other segments (the nonself-terms).
Let us now examine the evaluation of each of the integrals in (12-104).

At any point, the total magnetic field is equal to the sum of the incident and scattered parts.
Within the scattered conducting obstacle, the total magnetic field is zero, whereas above the
conducting surface the field is nonzero. The discontinuity of the two along C is used to represent
the current density along C . Within the thin rectangular box with dimensions of h and 	C (as

n

C

h/2

h/2

ρm

ΔC

2

1

H2 = Hi + H2 = Hi + H2m + H2n
t s s s

H1 = Hi + H1 = Hi + H1m + H1n
t s s s

= Hi − H1m + H1n = 0
ss

Figure 12-20 Geometry and fields along the scattering surface for a two-dimensional MFIE.
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h → 0), the total magnetic field, (Ht
1) above and (Ht

2) below the interface, can be written as

Ht
1 = Hi + Hs

1 = Hi + (Hs
1m + Hs

1n) (12-105a)

Ht
2 = Hi + Hs

2 = Hi + (Hs
2m + Hs

2n) = Hi + (−Hs
1m + Hs

1n) = 0 (12-105b)

or Hs
1n = Hs

1m − Hi (12-105c)

where Hs
1m (Hs

2m ) = scattered field in region 1 (2) within the box that is due to 	C (selfterm),
which is discontinuous across the boundary along 	C

Hs
1n (Hs

2n ) = scattered field in region 1 (2) within the box that is due to C − 	C
(nonself-terms), which is continuous across the boundary along 	C

It is assumed here that 	C along C becomes a straight line as the segment becomes small. The
current density along 	C can then be represented using (12-105a) and (12-105b) by

Jc(ρ)
∣∣
	C = n̂ × (Ht

1 − Ht
2)
∣∣
	C = n̂ × (Hs

1m + Hs
1m) = 2n̂ × Hs

1m = −2ĉH s
1m (12-106)

or

Jc(ρm) = −2H s
1m(ρm) ⇒ H s

1m(ρm) = −Jc(ρm)

2
(12-106a)

Therefore, the integral along 	C in (12-104), which can be used to represent the scattered
magnetic field at ρ = ρm that is due to the 	C , can be replaced by (12-106a). The nonself-terms
can be found using the integral along C − 	C in (12-104). Thus, using (12-104) and (12-106a),
we can reduce (12-103a) for ρ = ρm to

Jc(ρm) − Jc(ρm)

2
+ j

β

4

∫
C−	C

Jc(ρ
′) cos ψ ′

mH (2)
1 (βRm)dc′ = −H i

z (ρm) (12-107)

or

Jc(ρm)

2
+ j

β

4

∫
C−	C

Jc(ρ
′) cos ψ ′

mH (2)
1 (βRm)dc′ = −H i

z (ρm) (12-107a)

An analogous procedure can be used to reduce (12-95a) to a form similar to that of (12-107a).
Let us now represent the current density Jc(ρ) of (12-107a) by the finite series of (12-23)

Jc(ρ) �
N∑

n=1

angn(ρ) (12-108)

where gn(ρ) represents the basis (expansion) functions. Substituting (12-108) into (12-107a) and
interchanging integration and summation, we can write that, at any point ρ = ρm on C , (12-107a)
can be written as

−H i
z (ρm) = 1

2

N∑
n=1

angn(ρm) + j
β

4

N∑
n=1

an

∫
C−	C

gn(ρ
′) cos ψ ′

mH (2)
1 (βRm)dc′ (12-109)

If the gn ’s are subdomain piecewise constant pulse functions with each basis function existing
only over its own segment, then (12-109) reduces to

−H i
z (ρm) = δmn

2
an + j

β

4

N∑
n=1
n �=m

an

∫ ρn+1

ρn

cos ψ ′
mnH (2)

1 (βRmn)dc′ (12-110)
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or

−H i
z (ρm) =

N∑
n=1

an

[
δmn

2
+ j

β

4

∫ ρn+1

ρn
n �=m

cos ψ ′
mnH (2)

1 (βRmn)dc′
]

(12-110a)

where δmn is the Kronecker delta function, defined by

δmn =
{

1 m = n
0 m �= n

(12-110b)

The Kronecker delta function is used to indicate that for a given observation point m only the
segment itself (n = m) contributes to the first term on the right side of (12-110a).

If (12-110a) is applied to m points on C , it can be written as

[−H i
z (ρm)

] =
N∑

n=1

an

[
δmn

2
+ j

β

4

∫ ρn+1

ρn
n �=m

cos ψ ′
mnH (2)

1 (βRmn)dc′
]

m = 1, 2, . . . , N

(12-111)

In general matrix notation, (12-111) can be expressed as

[Vm ] = [Zmn ][In ] (12-112)

where

Vm = −H i
z (ρm) (12-112a)

Zmn =
[
δmn

2
+ j

β

4

∫ ρn+1

ρn

cos ψ ′
mnH (2)

1 (βRmn)dc′
]

(12-112b)

In = an (12-112c)

To demonstrate the applicability of (12-111), let us consider an example.

Example 12-6

A TEz uniform plane wave is normally incident upon a circular conducting cylinder of radius a , as
shown in Figure 12-21.

1. Using the MFIE of (12-107a), determine and plot the current density induced on the surface of the
cylinder when a = 2λ. Assume the incident magnetic field is of unity amplitude. Use subdomain
piecewise constant pulse functions. Subdivide the circumference into 540 segments. Compare the
current density obtained using the IE with the exact modal solution of (11-113).

2. Based on the electric current density, derive and then plot the normalized (σ2−D/λ) bistatic scatter-
ing width (in decibels) for 0◦ ≤ φ ≤ 360◦ when a = 2λ. Compare these values with those obtained
using the exact modal solution of (11-117).

Solution:

1. Since for subdomain piecewise constant pulse functions (12-103a) or (12-107a) reduces to
(12-111) or (12-112) through (12-112c), then a solution of (12-112) for In leads to the current
density shown in Figure 12-22. In the same figure we have plotted the current density of (11-113)
based on the modal solution, and we can see an excellent agreement between the two. We also have
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Figure 12-21 TEz uniform plane wave incident on a circular conducting cylinder.
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Figure 12-22 Current density induced on the surface of a circular conducting cylinder by TEz plane
wave incidence (a = 2λ).

plotted the current densities based on the EFIE for TEz polarization of Section 12.3.1B and on
the physical optics of (7-54) over the illuminated portion of the cylinder surface. The results of
the EFIE do not agree with the modal solution as accurately as those of the MFIE. However, they
still are very good. As expected, the physical optics current density is not representative of the
true current density.
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Figure 12-23 TEz bistatic scattering width of a circular conducting cylinder (a = 2λ).

2. Based on the current densities obtained in part 1, the far-zone scattered field was derived and the
corresponding bistatic scattering width was formulated. The computed SW results are shown in
Figure 12-23. Besides the results based on the physical optics approximation, the other three (MFIE,
EFIE, and modal solution) give almost indistinguishable data and are indicated in Figure 12-23
by basically one curve.

12.4 FINITE DIAMETER WIRES

In this section we want to derive and apply two classic three-dimensional integral equations,
referred to as Pocklington’s integro-differential equation and Hallen’s integral equation [29–37],
that can be used most conveniently to find the current distribution on conducting wires. Hallén’s
equation is usually restricted to the use of a delta-gap voltage source model at the feed of a
wire antenna. Pocklington’s equation, however, is more general and it is adaptable to many types
of feed sources (through alteration of its excitation function or excitation matrix), including a
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magnetic frill [38]. In addition, Hallén’s equation requires the inversion of an N + 1 order matrix
(where N is the number of divisions of the wire) while Pocklington’s equation requires the
inversion of an N order matrix.

For very thin wires, the current distribution is usually assumed to be of sinusoidal form [24].
For finite diameter wires (usually diameters d > 0.05λ), the sinusoidal current distribution is
representative but not accurate. To find a more accurate current distribution on a cylindrical wire,
an integral equation is usually derived and solved. Previously, solutions to the integral equation
were obtained using iterative methods [31]; presently, it is most convenient to use moment method
techniques [1–3].

If we know the voltage at the feed terminals of a wire antenna and find the current distribution,
we can obtain the input impedance and radiation pattern. Similarly if a wave impinges upon the
surface of a wire scatterer, it induces a current density that in turn is used to find the scattered
field. Whereas the linear wire is simple, most of the information presented here can be readily
extended to more complicated structures.

12.4.1 Pocklington’s Integral Equation

In deriving Pocklington’s integral equation, we will use the integral equation approach of
Section 12.3.1. However, each step, as applied to the wire scatterer, will be repeated here to
show the simplicity of the method.

Refer to Figure 12-24a . Let us assume that an incident wave impinges on the surface of a
conducting wire. The total tangential electric field (Ez ) at the surface of the wire is given by
(12-53) or (12-53a), that is

E t
z (r = rs) = E i

z (r = rs) + E s
z (r = rs) = 0 (12-113)

or
E s

z (r = rs) = −E i
z (r = rs) (12-113a)
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Figure 12-24 (a) Uniform plane wave obliquely incident on a conducting wire. (b) Equivalent current.
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At any observation point, the field scattered by the induced current density on the surface of
the wire is given by (12-54). However, for observations at the wire surface, only the z component
of (12-54) is needed, and we can write it as

E s
z (r) = −j

1

ωμε

(
β2Az + ∂2Az

∂z 2

)
(12-114)

According to (12-54a) and neglecting edge effects

Az = μ

4π

∫∫
S

Jz
e−jβR

R
ds ′ = μ

4π

∫ +�/2

−�/2

∫ 2π

0
Jz

e−jβR

R
a dφ′ dz ′ (12-115)

If the wire is very thin, the current density Jz is not a function of the azimuthal angle φ, and
we can write it as

2πaJz = Iz (z
′) ⇒ Jz = 1

2πa
Iz (z

′) (12-116)

where Iz (z ′) is assumed to be an equivalent filament line-source current located a radial distance
ρ = a from the z axis, as shown in Figure 12-24b. Thus, (12-115) reduces to

Az = μ

4π

∫ +�/2

−�/2

[
1

2πa

∫ 2π

0
Iz (z

′)
e−jβR

R
a dφ′

]
dz ′ (12-117)

R =
√

(x − x ′)2 + (y − y ′)2 + (z − z ′)2

=
√

ρ2 + a2 − 2ρa cos(φ − φ′) + (z − z ′)2 (12-117a)

where ρ is the radial distance to the observation point and a is the radius.
Because of the symmetry of the scatterer, the observations are not a function of φ. For

simplicity, let us then choose φ = 0. For observations at the surface (ρ = a) of the scatterer,
(12-117) and (12-117a) reduce to

Az (ρ = a) = μ

∫ +�/2

−�/2
Iz (z

′)
(

1

2π

∫ 2π

0

e−jβR

4πR
dφ′

)
dz ′ = μ

∫ +�/2

−�/2
Iz (z

′)G(z , z ′) dz ′ (12-118)

G(z , z ′) = 1

2π

∫ 2π

0

e−jβR

4πR
dφ′ (12-118a)

R(ρ = a) =
√

4a2 sin2

(
φ′

2

)
+ (z − z ′)2 (12-118b)

Thus, for observations at the surface (ρ = a) of the scatterer, the z component of the scattered
electric field can be expressed as

E s
z (ρ = a) = −j

1

ωε

(
β2 + d2

dz 2

)∫ +�/2

−�/2
Iz (z

′)G(z , z ′) dz ′ (12-119)

which by using (12-113a) reduces to

−j
1

ωε

(
d2

dz 2
+ β2

)∫ +�/2

−�/2
Iz (z

′)G(z , z ′)dz ′ = −E i
z (ρ = a) (12-120)
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or (
d2

dz 2
+ β2

)∫ +�/2

−�/2
Iz (z

′)G(z , z ′)dz ′ = −jωεE i
z (ρ = a) (12-120a)

Interchanging integration with differentiation, we can rewrite (12-120a) as∫ +�/2

−�/2
Iz (z

′)
[(

∂2

∂z 2
+ β2

)
G(z , z ′)

]
dz ′ = −jωεE i

z (ρ = a) (12-121)

where G(z , z ′) is given by (12-118a).
Equation 12-121 is referred to as Pocklington’s integro-differential equation [29], and it can

be used to determine the equivalent filamentary line-source current of the wire, and thus current
density on the wire, by knowing the incident field on the surface of the wire. It is a simplified
form of (12-56) as applied to a wire scatterer, and it could have been derived directly from
(12-56).

If we assume that the wire is very thin (a � λ), such that (12-118a) reduces to

G(z , z ′) = G(R) = e−jβR

4πR
(12-122)

(12-121) can also be expressed in a more convenient form as [33]∫ +�/2

−�/2
Iz (z

′)
e−jβR

4πR5

[
(1 + jβR)(2R2 − 3a2) + (βaR)2] dz ′ = −jωεE i

z (ρ = a) (12-123)

where, for observations along the center of the wire (ρ = 0),

R =
√

a2 + (z − z ′)2 (12-123a)

In (12-121) or (12-123) I (z ′) represents the equivalent filamentary line-source current located
on the surface of the wire, as shown in Figure 12-24b, and it is obtained by knowing the
incident electric field at the surface of the wire. By point-matching techniques, this is solved
by matching the boundary conditions at discrete points on the surface of the wire. Often it is
easier to choose the matching points to be at the interior of the wire, especially along the axis,
as shown in Figure 12-25a , where Iz (z ′) is located on the surface of the wire. By reciprocity,
the configuration of Figure 12-25a is analogous to that of Figure 12-25b, where the equivalent
filamentary line-source current is assumed to be located along the center axis of the wire and the
matching points are selected on the surface of the wire. Either of the two configurations can be
used to determine the equivalent filamentary line-source current Iz (z ′); the choice is left to the
individual.

Pocklington’s integral equation of (12-121) is derived methodically based on (12-114). Eventu-
ally (12-121), using (12-122), reduces to (12-123). While the derivation of (12-121) and (12-123)
is straightforward, their numerical evaluation may be more difficult because it involves double
differentiation of the kernel, which leads to a non-integrable singularity, especially of the 1/R5

order. However, choosing the observation point along the axis of the wire while the current is
on its surface or vice versa, as illustrated in Figure 12-25, mitigates the problem to some extent.
Another way to derive such an integral equation, although it may not be as straightforward,
will be to represent the electric field as a combination of both the vector A and scalar φ poten-
tials, as given by (6-9a) (E = −jωA − ∇φ), instead of (12-114), and use the continuity equation
∇ · J = −jωq to relate the charge q within φ as the divergence of J [28]. Using such a procedure,
the resulting singularity in the kernel for both the vector A and scalar φ potentials is no more
singular than 1/R, which can be evaluated numerically more accurately.
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Figure 12-25 Dipole segmentation and its equivalent current. (a) On the surface. (b) Along its center.

12.4.2 Hallén’s Integral Equation

Referring again to Figure 12-24a , let us assume that the length of the cylinder is much larger
than its radius (� � a) and its radius is much smaller than the wavelength (a � λ), so that the
effects of the end faces of the cylinder can be neglected. Therefore, the boundary conditions for
a wire with infinite conductivity are those of vanishing total tangential E fields on the surface of
the cylinder and vanishing current at the ends of the cylinder [Iz (z ′ = ±�/2) = 0].

Since only an electric current density flows on the cylinder and it is directed along the z axis
(J = âz Jz ), according to (6-30) and (6-96a), A = âz Az (z ′), which for small radii is assumed to
be only a function of z ′. Thus, (6-34) reduces for F = 0 to

E t
z = −jωAz − j

1

ωμε

∂2Az

∂z 2
= −j

1

ωμε

[
d2Az

dz 2
+ ω2μεAz

]
(12-124)

Since the total tangential electric field E t
z vanishes on the surface of the cylinder, (12-124)

reduces to
d2Az

dz 2
+ β2Az = 0 (12-124a)

Because the current density on the cylinder is symmetrical [Jz (z ′) = Jz (−z ′)], the potential
Az is also symmetrical [i.e., Az (z ′) = Az (−z ′)]. Thus, the solution of (12-124a) is given by

Az (z ) = −j
√

με[B1 cos(βz ) + C1 sin(β|z |)] (12-125)
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where B1 and C1 are constants. For a current-carrying wire, its potential is also given by (6-97a).
Equating (12-125) to (6-97a) leads to

∫ +�/2

−�/2
Iz (z

′)
e−jβR

4πR
dz ′ = −j

√
ε

μ
[B1 cos(βz ) + C1 sin(β|z |)] (12-126)

If a voltage Vi is applied at the input terminals of the wire, it can be shown that the constant
C1 = Vi /2. The constant B1 is determined from the boundary condition that requires the current
to vanish at the end points of the wire.

Equation 12-126 is referred to as Hallén’s integral equation for a perfectly conducting wire.
It was derived by solving the differential equation 6-34 or 12-124a with the enforcement of the
appropriate boundary conditions.

x

z

dz′

z′

y

q

f

r

Δ

l /2

l /2

r

R

Mi

2a

(a)

x

b

Magnetic
frill

z

y

l /2

l /2

2a

(b)

Figure 12-26 Cylindrical dipole, its segmentation, and gap modeling. (Source: C. A. Balanis, Antenna The-
ory: Analysis and Design , 3rd edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission
of John Wiley & Sons, Inc.) (a) Cylindrical dipole. (b) Segmented dipole.
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12.4.3 Source Modeling

Let us assume that the wire of Figure 12-24 is symmetrically fed by a voltage source, as shown
in Figure 12-26a , and the element is acting as a dipole antenna. To use, for example, Pockling-
ton’s integro-differential equation 12-121 or 12-123, we need to know how to express E i

z (ρ =
a). Traditionally, there have been two methods used to model the excitation to represent E i

z
(ρ = a , 0 ≤ φ ≤ 2π , −�/2 ≤ z ≤ +�/2) at all points on the surface of the dipole: one is referred
to as the delta-gap excitation and the other as the equivalent magnetic ring current (better known
as magnetic frill generator) [38].

A. Delta Gap The delta-gap source modeling is the simplest and most widely used of the
two, but it is also the least accurate, especially for impedances. Usually it is most accurate for
smaller width gaps. Using the delta gap, it is assumed that the excitation voltage at the feed
terminals is of a constant Vi value, and zero elsewhere. Therefore, the incident electric field
E i

z (ρ = a , 0 ≤ φ ≤ 2π , −�/2 ≤ z ≤ +�/2) is also a constant (Vi /	 where 	 is the gap width)
over the feed gap and zero elsewhere, hence the name delta gap. For the delta-gap model, the feed
gap 	 of Figure 12-26a is replaced by a narrow band of strips of equivalent magnetic current
density of

Mi = −n̂ × Ei = −âρ × âz
Vi

	
= âφ

Vi

	
, −	

2
≤ z ′ ≤ 	

2
(12-127)

The magnetic current density Mi is sketched in Figure 12-26a .

B. Magnetic Frill Generator The magnetic frill generator was introduced to calculate the
near- as well as the far-zone fields from coaxial apertures [38]. To use this model, the feed gap
is replaced with a circumferentially directed magnetic current density that exists over an annular
aperture with inner radius a , which is usually chosen to be the radius of the inner wire, and an
outer radius b, as shown in Figure 12-26b. Since the dipole is usually fed by transmission lines,
the outer radius b of the equivalent annular aperture of the magnetic frill generator is found using
the expression for the characteristic impedance of the transmission line.

Over the annular aperture of the magnetic frill generator, the electric field is represented by
the TEM mode field distribution of a coaxial transmission line given by

Ef = âρ

Vi

2ρ ′ ln(b/a)
(12-128)

Therefore, the corresponding equivalent magnetic current density Mf for the magnetic frill gen-
erator, used to represent the aperture, is equal to

Mf = −2n̂ × Ef = −2âz × âρEρ = −âφ

Vi

ρ ′ ln(b/a)
(12-129)

The fields generated by the magnetic frill generator of (12-129) on the surface of the wire are
found using [38]

E i
z

(
ρ = a , 0 ≤ φ ≤ 2π , −�

2
≤ z ≤ �

2

)
� −Vi

(
β(b2 − a2)e−jβR0

8 ln(b/a)r2
0

{
2

[
1

βR0
+ j

(
1 − b2 − a2

2R2
0

)]
+a2

R0

[(
1

βR0
+ j

(
1− (b2 + a2)

2R2
0

))(
−jβ− 2

R0

)
+

(
− 1

βR2
0

+ j
b2 + a2

R3
0

)]})
(12-130)
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where
R0 =

√
z 2 + a2 (12-130a)

The fields generated on the surface of the wire computed using (12-130) can be approximated
by those found along the axis (ρ = 0). Doing this leads to a simpler expression of the form [38]

E i
z

(
ρ = 0, −�

2
≤ z ≤ �

2

)
= − Vi

2 ln(b/a)

[
e−jβR1

R1
− e−jβR2

R2

]
(12-131)

where

R1 =
√

z 2 + a2 (12-131a)

R2 =
√

z 2 + b2 (12-131b)

The following example compares the results obtained using the two source modelings (delta
gap and magnetic frill generator).

Example 12-7

Assume a center-fed linear dipole of � = 0.47λ and a = 0.005λ.

1. Determine the voltage and normalized current distribution over the length of the dipole using
N = 21 segments to subdivide the length. Plot the current distribution.

2. Determine the input impedance using segments of N = 7, 11, 21, 29, 41, 51, 61, 71, and 79.

Use Pocklington’s integro-differential equation 12-123 with piecewise constant subdomain basis func-
tions and point matching to solve the problem, model the gap with one segment, and use both the delta
gap and magnetic frill generator to model the excitation. Use (12-131) for the magnetic frill generator.
Because the current at the ends of the wire vanishes, the piecewise constant subdomain basis functions
are not the most judicious choices. However, because of their simplicity, they are chosen here to illus-
trate the principles, even though the results are not the most accurate. Assume that the characteristic
impedance of the annular aperture is 50 ohms and the excitation voltage Vi is 1 V.

Solution:

1. Since the characteristic impedance of the annular aperture (coaxial line) is 50 ohms, then

Zc =
√

μ0

ε0

ln(b/a)

2π
= 50 ⇒ b

a
= 2.3

Subdividing the total length (� = 0.47λ) of the dipole into 21 segments makes the gap and each
segment equal to

	 = 0.47λ

21
= 0.0224λ

Using (12-131) to compute E i
z , the corresponding induced voltages, obtained by multiplying

the value of –E t
z at each segment by the length of the segment, are found listed in Table 12-1,

where they are compared with those of the delta gap. N = 1 represents the outermost segment
and N = 11 represents the center segment. Because of the symmetry, only values for the center
segment and half of the other segments are shown. Although the two distributions are not identical,
the magnetic frill distribution voltages decay quite rapidly away from the center segment, and they
very quickly reach almost vanishing values.



Balanis c12.tex V2 - 11/22/2011 3:54 P.M. Page 731

FINITE DIAMETER WIRES 731

TABLE 12-1 Unnormalized and normalized dipole induced voltagea differences for delta gap
and magnetic frill generator (� = 0.47λ, a = 0.005λ, N = 21)

Delta gap voltage Magnetic frill generator voltage

Segment number n Unnormalized Normalized Unnormalized Normalized

1 0 0 1.11 × 10−4
/−26.03◦ 7.30 × 10−5

/−26.03◦

2 0 0 1.42 × 10−4
/−20.87◦ 9.34 × 10−5

/−20.87◦

3 0 0 1.89 × 10−4
/−16.13◦ 1.24 × 10−4

/−16.13◦

4 0 0 2.62 × 10−4
/−11.90◦ 1.72 × 10−4

/−11.90◦

5 0 0 3.88 × 10−4
/−8.23◦ 2.55 × 10−4

/−8.23◦

6 0 0 6.23 × 10−4
/−5.22◦ 4.10 × 10−4

/−5.22◦

7 0 0 1.14 × 10−3
/−2.91◦ 7.5 × 10−4

/−2.91◦

8 0 0 2.52 × 10−3
/−1.33◦ 1.66 × 10−3

/−1.33◦

9 0 0 7.89 × 10−3
/−0.43◦ 5.19 × 10−3

/−0.43◦

10 0 0 5.25 × 10−2
/−0.06◦ 3.46 × 10−2

/−0.06◦

11 1 1 1.52
/

0◦ 1.0
/

0◦

aVoltage differences as defined here represent the product of the incident electric field at the center of each segment
and the corresponding segment length.

The corresponding unnormalized and normalized currents, obtained using (12-123) with piece-
wise constant pulse functions and the point-matching technique for both the delta gap and magnetic
frill generator, are listed on Table 12-1. The normalized magnitudes of these currents are shown
plotted in Figure 12-27. It is apparent that the two distributions are almost identical in shape, and
they resemble that of the ideal sinusoidal current distribution which is more valid for very thin
wires and very small gaps. The distributions obtained using Pocklington’s integral equation do
not vanish at the ends because of the use of piecewise constant subdomain basis functions, which
make the dipole look longer by either a half or full subdomain length depending whether the ref-
erence of each subdomain function is taken at its middle or end point. A more accurate modeling
will be to use higher-order subdomain basic functions, such as the piecewise linear function of
Figure 12-7 or piecewise sinusoids of Figure 12-8.

l/2 l/2

0.25

1 2 3 4 5 6 7 8 9 10 11 10 9 8 7 6 5 4 3 2 1

0.50

0.75

1.0

In

l = 0.47λ
N = 21
a = 0.005λHallén (delta gap)

Sinusoid

Pocklington (magnetic frill)

Pocklington (delta gap)

Figure 12-27 Current distribution along a dipole antenna.
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2. The input impedances, computed using both the delta gap and the magnetic frill generator, are
shown listed in Table 12-2. It is evident that the values begin to stabilize and compare favorably
to each other once 61 or more segments are used.

TABLE 12-2 Dipole input impedance for delta gap and magnetic frill
generator using Pocklington’s integral equation (� = 0.47λ, a = 0.005λ)

N Delta gap Magnetic frill

7 122.8 + j 113.9 26.8 + j 24.9
11 94.2 + j 49.0 32.0 + j 16.7
21 77.7 − j 0.8 47.1 − j 0.2
29 75.4 − j 6.6 57.4 − j 4.5
41 75.9 − j 2.4 68.0 − j 1.0
51 77.2 + j 2.4 73.1 + j 4.0
61 78.6 + j 6.1 76.2 + j 8.5
71 79.9 + j 7.9 77.9 + j 11.2
79 80.4 + j 8.8 78.8 + j 12.9

12.5 COMPUTER CODES

With the advent of the computer there has been a proliferation of computer program develop-
ment. Many of these programs are based on algorithms that are suitable for efficient computer
programming for the analysis and synthesis of electromagnetic boundary-value problems. Some
of these computer programs are very sophisticated and can be used to solve complex radiation
and scattering problems. Others are much simpler and have limited applications. Many programs
are public domain; others are restricted.

Five computer programs based on integral equation formulations and moment method solutions
will be described here. The first computes the radiation or scattering by a two-dimensional perfectly
electric conducting (PEC) body. It is referred to here as TDRS (two-dimensional radiation and
scattering), and it is based on the two-dimensional formulations of the electric field integral equation
(EFIE) of Section 12.3.1. It can be used for both electric and magnetic line-source excitation or
TMz and TEz plane wave incidence. The second program, referred to here as PWRS (Pocklington’s
wire radiation and scattering) is based on Pocklington’s integral equation of Section 12.4.1, and it
is used for both radiation and scattering by a perfect electric conducting (PEC) wire.

The remaining three programs are more general, public domain moment method programs. A
very brief description of these programs is given here. Information as to where these programs
can be obtained is also included. It should be stated, however, that there are numerous other
codes, public domain and restricted, that utilize moment method and other techniques, such
as geometrical optics, geometrical theory of diffraction, physical optics, and physical theory of
diffraction, which are too numerous to mention here.

Both the TDRS and PWRS codes are part of the Multimedia for this chapter. These two codes
were initially developed in Fortran and have been translated to MATLAB for this edition. Both
versions of each are included in this edition.

12.5.1 Two-Dimensional Radiation and Scattering

The two-dimensional radiation and scattering (TDRS) program is used to analyze four different
two-dimensional perfectly electric conducting problems: the strip, and the circular, elliptical,
and rectangular cylinders. The algorithm is based on the electric field integral equation of
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Section 12.3.1, and it is used for both electric and magnetic line-source excitation, or plane wave
incidence of arbitrary polarization. For simplicity, piecewise constant pulse expansion functions
and point-matching techniques have been adopted.

A. Strip For the strip problem, the program can analyze either of the following:

1. A line source (electric or magnetic). It computes the electric current density over the width
of the strip and the normalized radiation amplitude pattern (in decibels) for 0◦ ≤ φ ≤ 360◦.
The user must specify the width of the strip (in wavelengths), the type of line source (either
electric or magnetic), and the location xs , ys of the source (in wavelengths).

2. Plane wave incidence of arbitrary polarization. The program can analyze either monostatic
or bistatic scattering.

For monostatic scattering, the program computes the two-dimensional normalized (with respect
to λ) monostatic SW σ2-D/λ (in decibels) for all angles of incidence (0◦ ≤ φ ≤ 360◦). The
program starts at φ = 0◦ and then completes the entire 360◦ monostatic scattering pattern. The
user must specify the width w of the strip (in wavelengths) and the polarization angle θp (in
degrees) of the incident plane wave. The polarization of the incident wave is specified by the
direction θp of the incident electric field relative to the z axis (θp = 0◦ implies TMz ; θp = 90◦
implies TEz ; other values of θp represent an arbitrary polarization). The polarization angle θp

needs to be specified only when the polarization is neither TMz nor TEz .
For bistatic scattering, the program computes for the specified incidence angle the current

density over the width of the strip and the two-dimensional normalized (with respect to λ)
bistatic SW σ2-D/λ (in decibels) for all angles of observation (0◦ ≤ φs ≤ 360◦). The user must
specify the width w of the strip (in wavelengths), the angle of incidence φi (in degrees), and
the polarization angle θp (in degrees) of the incident plane wave. The polarization angle of the
incident wave is specified in the same manner as for the monostatic case.

B. Circular, Elliptical, or Rectangular Cylinder For the cylinder program, the program can
analyze either a line source (electric or magnetic) or plane wave scattering of arbitrary polarization
by a two-dimensional circular, elliptical or rectangular cylinder.

1. For the line source excitation, the program computes the current distribution over the entire
surface of the cylinder and the normalized radiation amplitude pattern (in decibels). The
user must specify, for each cylinder, the type of line source (electric or magnetic), the
location xs , ys of the line source, and the size of the cylinder. For the circular cylinder,
the size is specified by its radius a (in wavelengths) and for the elliptical and rectangular
cylinders by the principal semiaxes lengths a and b (in wavelengths), with a measured
along the x axis and b along the y axis.

2. For the plane wave incidence, the program computes monostatic or bistatic scattering of
arbitrary polarization by a circular, elliptical, or rectangular cylinder.

For monostatic scattering, the program computes the two-dimensional normalized (with respect
to λ) monostatic SW σ2-D/λ (in decibels) for all angles of incidence (0◦ ≤ φ ≤ 360◦). The program
starts at φ = 0◦ and then computes the entire 360◦ monostatic scattering pattern. The user must
specify the size of the cylinder, as was done for the line-source excitation, and the polarization
angle θp (in degrees) of the incident plane wave. The polarization of the incident wave is specified
by the direction θp of the incident electric field relative to the z axis (θp = 0◦ implies TMz ;
θp = 90◦ implies TEz ; other values of θp represent an arbitrary polarization). The polarization
angle θp needs to be specified only when the polarization is neither TMz nor TEz .
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For bistatic scattering, the program computes for the specified incidence angle the current
density over the entire surface of the cylinder and the two-dimensional normalized (with respect
to λ) bistatic SW σ2−D/λ (in decibels) for all angles of observation (0◦ ≤ φs ≤ 360◦). The user
must specify the size of the cylinder, as was done for the line-source excitation, the incidence
angle φi (in degrees), and the polarization angle θp (in degrees) of the incident plane wave. The
polarization angle of the incident wave is specified in the same manner as for the monostatic case.

12.5.2 Pocklington’s Wire Radiation and Scattering

Pocklington’s wire radiation and scattering (PWRS) program computes the radiation charac-
teristics of a center-fed wire antenna and the scattering characteristics of a perfectly electric
conducting (PEC) wire, each of radius a and length �. Both are based on Pocklington’s integral
equation 12-123.

A. Radiation For the wire antenna of Figure 12-26, the excitation is modeled by either a
delta gap or a magnetic frill feed modeling, and it computes the current distribution, normalized
amplitude radiation pattern, and the input impedance. The user must specify the length of the
wire, its radius (both in wavelengths), and the type of feed modeling (delta gap or magnetic frill).
A computer program based on Hallén’s integral equation can be found in [24].

B. Scattering The geometry for the plane wave scattering by the wire is shown in Figure 12-
24(a). The program computes the monostatic or bistatic scattering of arbitrary polarization.

For monostatic scattering the program computes the normalized (with respect to m2) RCS
σ3−D/m2 (in dBsm) for all angles of incidence (0◦ ≤ θi ≤ 180◦). The program starts at θi = 0◦

and then computes the entire 180◦ monostatic scattering pattern. The user must specify the length
and radius of the wire (both in wavelengths) and the polarization angle θp (in degrees) of the
incident plane wave. The polarization of the incident wave is specified by the direction θp of
the incident electric field relative to the plane of incidence, where the plane of incidence is
defined as the plane that contains the vector of the incident wave and the wire scatterer (θ = 0◦

implies that the electric field is on the plane of incidence; θ = 90◦ implies that the electric field
is perpendicular to the plane of incidence and to the wire; thus no scattering occurs for this case).

For bistatic scattering, the program computes for the specified incidence angle the current
distribution over the length of the wire and the normalized (with respect to m2) bistatic RCS
σ3−D/m2 (in dBsm) for all angle of observation (0◦ ≤ θs ≤ 180◦). The user must specify the
length and radius of the wire (both in wavelengths), the angle of incidence θi (in degrees), and
the polarization angle θp of the incident plane wave. The polarization angle is specified in the
same manner as for the monostatic case.

12.5.3 Numerical Electromagnetics Code

Over the years there have been a number of computational electromagnetic codes developed,
both personal and commercial, based on the Integral Equation/Method of Moments method. An
attempt is made here to indicate the genesis of EM code development. The process started with
the development of the Numerical Electromagnetic Code (NEC) [39] and the Mini-Numerical
Electromagnetic Code (MININEC) [40, 41]. The NEC code analyzes the interaction of electro-
magnetic waves with arbitrary structures consisting of conducting wires and surfaces. It uses
the EFIE for thin wires and the MFIE for surfaces. The initial MININEC was a user-oriented
compact version of the NEC, and it was coded in BASIC. Since the initial introduction of these
two codes, there have been various versions of them.
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After the NEC code, the Electromagnetic Surface Patch (ESP) code [42] was introduced. The
ESP is a method of moments surface patch code based on the piecewise sinusoidal reaction for-
mulation, which is basically equivalent to the EFIE. It can be used for the analysis of the radiation
and scattering from 3D geometries consisting of an interconnection of thin wires, perfectly con-
ducting (or thin dielectric) polygonal plates, thin wires, wire/plate and plate/plate junctions, and
polygonal dielectric material volumes. Numerous other codes, including [43], based on IE/MoM
have been developed since the NEC and ESP. Even as of the writing of this edition of the book,
there are efforts underway for the development of other personal and commercial codes. They are
too numerous to mention all of them here. The reader is directed to the internet for the search of
such, and other, electromagnetic codes. Some basic student-oriented MATLAB codes have been
developed to complement the material of this chapter. They are listed under the 12.6 Multimedia
section, and they are available to the reader on the website that accompanies this book.

12.6 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• MATLAB computer programs:
a. Wire_Charge: Computes the charge distribution on a straight or bent PEC wire, of

Figures 12-1 and 12-3, based on the Integral Equation (IE) of section 12.2.
b. PEC_Strip_Line_MoM: Computes the far-zone amplitude radiation pattern and current

density of a line source above a PEC strip, of finite width, based on the Integral Equation
(IE) of Sections 12.2.2 through 12.2.8 and Physical Optics (PO) of Section 11.2.3, and
Figures 12-5 and 11-2.

c. PEC_Strip_SW_MoM: Computes the TMz and TEz 2D scattering width (SW), monos-
tatic and bistatic, and current density of a uniform plane wave incident upon a PEC strip,
of finite width, based on the Integral Equations (IE) of Sections 12.3.1 and 12.3.2, and
Physical Optics of Section 11.3.1, and Figures 12-13 and 11-4.

d. TDRS: Computes the radiation and scattering of a plane wave incident of a two-
dimensional scatterer (strip, cylinder) based on the Integral Equation (IE) as outlined
in Section 12.4.1.

e. PWRS: Computes the radiation characteristics of a symmetrical dipole of Figure 12-25
or scatterer of Figure 12-23, based on Pocklington’s Integral Equation (IE) of (12-13) in
Section 12.4.1.

• Power Point (PPT) viewgraphs, in multicolor.
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23. T. K. Sarkar, A. R. Djordjević, and E. Arvas, “On the choice of expansion and weighting functions
in the numerical solution of operator equations,” IEEE Trans. Antennas Propagat ., vol. AP-33, no. 9,
pp. 988–996, September 1985.

24. C. A. Balanis, Antenna Theory: Analysis and Design (3rd edition), John Wiley & Sons, New York,
2005.

25. E. K. Miller and F. J. Deadrick, “Some computational aspects of thin-wire modeling,” in Numerical
and Asymptotic Techniques in Electromagnetics , R. Mittra (Ed.), Springer-Verlag, New York, 1975,
Chapter 4, pp. 89–127.

26. L. Kantorovich and G. Akilov, Functional Analysis in Normed Spaces , Pergamon, Oxford, pp. 586–587,
1964.

27. D. P. Marsland, C. A. Balanis, and S. Brumley, “Higher order diffractions from a circular disk,” IEEE
Trans. Antennas Propagat ., vol. AP-35, no. 12, pp. 1436–1444, December 1987.

28. D. R. Witton, private communication and personal class notes.

29. H. C. Pocklington, “Electrical oscillations in wire,” Cambridge Philos. Soc. Proc, vol. 9, pp. 324–332,
1897.

30. E. Hallén, “Theoretical investigations into the transmitting and receiving qualities of antennae,” Nova
Acta Regiae Soc. Sci. Upsaliensis , Ser. IV, no. 4, pp. 1–44, 1938.



Balanis c12.tex V2 - 11/22/2011 3:54 P.M. Page 737

PROBLEMS 737

31. R. King and C. W. Harrison, Jr., “The distribution of current along a symmetrical center-driven antenna,”
Proc. IRE , vol. 31, pp. 548–567, October 1943.

32. J. H. Richmond, “A wire-grid model for scattering by conducting bodies,” IEEE Trans. Antennas
Propagat ., vol. AP-14, no. 6, pp. 782–786, November 1966.

33. G. A. Thiele, “Wire antennas,” in Computer Techniques for Electromagnetics , R. Mittra (Ed.), Pergamon,
New York, Chapter 2, pp. 7–70, 1973.

34. C. M. Butler and D. R. Wilton, “Evaluation of potential integral at singularity of exact kernel in
thin-wire calculations,” IEEE Trans. Antennas Propagat ., vol. AP-23, no. 2, pp. 293–295, March 1975.

35. L. W. Pearson and C. M. Butler, “Inadequacies of collocation solutions to Pocklington-type models of
thin-wire structures,” IEEE Trans. Antennas Propagat ., vol. AP-23, no. 2, pp. 293–298, March 1975.

36. C. M. Butler and D. R. Wilton, “Analysis of various numerical techniques applied to thin-wire scatter-
ers,” IEEE Trans. Antennas Propagat ., vol. AP-23, no. 4, pp. 534–540, July 1975.

37. D. R. Wilton and C. M. Butler, “Efficient numerical techniques for solving Pocklington’s equation and
their relationships to other methods,” IEEE Trans. Antennas Propagat ., vol. AP-24, no. 1, pp. 83–86,
January 1976.

38. L. L. Tsai, “A numerical solution for the near and far fields of an annular ring of magnetic current,”
IEEE Trans. Antennas Propagat ., vol. AP-20, no. 5, pp. 569–576, September 1972.

39. G. J. Burke and A. J. Poggio, “Numerical electromagnetics code (NEC)-method of moments,” Technical
Document 116, Naval Ocean Systems Center, San Diego, CA, January 1981.

40. A. J. Julian, J. M. Logan, and J. W. Rockway, “MININEC: A mini-numerical electro magnetics code,”
Technical Document 516, Naval Ocean Systems Center, San Diego, CA, September 6, 1982.

41. J. Rockway, J. Logan, D. Tarn, and S. Li, The MININEC SYSTEM: Microcomputer Analysis of Wire
Antennas , Artech House, Inc., 1988.

42. E. H. Newman and D. L. Dilsavor, “A user’s manual for the electromagnetic surface patch code: ESP
version III,” Technical Report No. 716148–19, ElectroScience Laboratory, The Ohio State University,
May 1987.

43. http://www.wipl-d.com.

PROBLEMS

12.1. A circular loop of radius a = 0.2 m is
constructed out of a wire of radius b =
10−3 m, as shown in Figure P12-1. The
entire loop is maintained at a constant
potential of 1 V. Using integral equation
techniques, determine and plot for 0◦ ≤
φ ≤ 360◦ the surface charge density on the
wire. Assume that at any given angle the
charge is uniformly distributed along the
circumference of the wire.

y

x

rq

f

z

a
2b

Figure P12-1

12.2. Repeat Problem 12.1 when the loop is split
into two parts; one part (from 0 to 180◦)
is maintained at a constant potential of 1 V
and the other part (from 180 to 360◦) is
maintained at a constant potential of 2 V.

12.3. A linear charge ρc is distributed along a
very thin wire circular loop of radius a
which is discontinuous (open) for 355◦ ≤
φ ≤ 360◦ and 0◦ ≤ φ ≤ 5◦. The static
potential Vz produced by this charge distri-
bution on a very thin line along the z axis,
passing through the origin of the circular
loop is given by

Vz = 10a√
a2 + z 2

, 0 ≤ z ≤ 7 meters

(a) Subdivide the line for 0 ≤ z ≤ 7
meters in 70 segments and compute the
potential Vz at the center of each of
the 70 segments when the radius of the
loop is a = 1 meter.
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(b) Plot the potential Vz of part (a) on a
linear plot for 0 ≤ z ≤ 7 meters.

(c) Write an integral equation based on
Poisson’s differential equation to solve
this problem.

(d) For a loop of radius a = 1 meter,
determine the linear charge ρc that pro-
duces the stated potential along 0 ≤
z ≤ 7 meters that is computed in part
(a) and plotted in part (b).

(e) Plot the linear charge distribution of
part (d) on a linear plot of 5◦ ≤ φ ≤
355◦.

a

f

x

y

z

7 meters

Figure P12-3

Use pulse expansion functions and N = 70
segments along the circumference of the
loop.

12.4. Repeat Example 12-3 for a strip with w =
2λ, h = 0.25λ, and t = 0.01λ.

12.5. A magnetic line source of constant current
Im is placed a height h above a Perfect
Magnetic Conducting (PMC) strip of width
w . The geometry is the same as that of
Figure 12-5. Write a normalized Integral
Equation (IE) that can be used to solve for
the linear magnetic current density Mz on
the strip. You do not have to derive it as
long as you justify it.

12.6. A TEz uniform plane wave of the form
shown in Figure 12-13b, with a normal-
ized z component of the incident magnetic
field of magnitude Ho is incident upon a
Perfect Magnetic Conducting (PMC) strip
of finite width w . Write a normalized Inte-
gral Equation (IE) which can be used to
solve for the magnetic current Mz which
is induced on the PMC strip. You do not
have to derive it as long as you justify it.

12.7. Derive (12-71a) and (12-71b).

12.8. Instead of using the electric field compo-
nents of (12-72a) and (12-72b) to formulate
the two-dimensional SW of a PEC strip for
TEz polarization, derive an integral expres-
sion for H s

z in terms of Jx and then use the
definition for SW of (11-21c). This requires
only one component of the scattered H-
field while using the definition of (11-21b)
requires two scattered electric field compo-
nents as given by (12-71a) and (12-71b).

12.9. An infinite electric line source of constant
current Ie is placed next to a circular con-
ducting cylinder of radius a , as shown in
Figure P12-9. The line source is positioned
a distance b (b > a) from the center of
the cylinder. Use the EFIE, piecewise con-
stant subdomain basis functions, and point-
matching techniques.
(a) Formulate the current density induced

on the surface of the cylinder.
(b) Compute the induced current density

when a = 5λ and b = 5.25λ. Assume
a unity line-source current. Compare
with the modal solution current density
of (11-168a).

(c) For part (b), compute the normalized
far-zone amplitude pattern (in deci-
bels). Normalize so that the maximum
is 0 dB.

y

z

a

b
x

Ie

r

f

s = ∞

Figure P12-9

12.10. Repeat Problem 12.9 for a = 5λ and
b = 5.5λ.

12.11. An infinite electric line source of constant
current Ie is placed next to a rectangular
cylinder of dimensions a and b, as shown
in the Figure P12-11. The line source is
positioned a distance c (c > a) from the
center of the cylinder along the x axis. Use
the EFIE and piecewise subdomain basis
functions and point-matching techniques,
and do the following.
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(a) Compute the induced current on the
surface of the cylinder when a = 5λ,
b = 2.5, and c = 5.25λ. Assume a
unity line-source current.

(b) Compute for part (a) the normalized
far-zone amplitude pattern (in deci-
bels). Normalize so that the maximum
is 0 dB.

y

z

2a

2b
c

x

Ie

r

f

Figure P12-11

12.12. Repeat Problem 12.11 for an electric line
source near an elliptic cylinder with a =
5λ, b = 2.5λ, and c = 5.25λ.

y

z

b

a

c

x

Ie

r

f

Figure P12-12

12.13. A TMz uniform plane wave traveling in the
+x direction is normally incident upon a
conducting circular cylinder of radius a , as
shown in Figure P12-13. Using the EFIE,
piecewise constant subdomain basis func-
tions, and point-matching techniques, write
your own program, and do the following.
(a) Plot the current density induced on the

surface of the cylinder when a = 2λ.
Assume the incident field is of unity
amplitude. Compare with the modal
solution current density of (11-97).

(b) Plot the normalized σ2-D/λ bistatic
scattering width (in decibels) for 0◦ ≤
φ ≤ 360◦ when a = 2λ. Compare with
the modal solution of (11-102).
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z

a
Ei

Hi

x

r

f

s = ∞

Figure P12-13

12.14. A TMz uniform plane wave traveling in the
+x direction is normally incident upon a
conducting rectangular cylinder of dimen-
sions a and b, as shown in Figure P12-14.
Using the EFIE, piecewise constant sub-
domain basis functions and point-matching
techniques, write your own program, and
do the following.
(a) Compute the induced current density

on the surface of the cylinder when
a = 5λ and b = 2.5λ. Assume a unity
line-source current.

(b) For part (a), compute and plot the
two-dimensional normalized σ2-D/λ

bistatic scattering width (in decibels)
for 0◦ ≤ φ ≤ 360◦.
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Figure P12-14

12.15. Repeat Problem 12.14 for a TMz uni-
form plane wave impinging upon an ellip-
tic conducting cylinder with a = 5λ and
b = 2.5λ.
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a x

r

f

Figure P12-15
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12.16. Using the geometry of Figure 12-14, ver-
ify (12-71a) and (12-71b), and that (12-
70a) reduces to (12-72a) and (12-70b) to
(12-72b).

12.17. Show that the integral of (12-78d) can be
evaluated using (12-79a) through (12-79c).

12.18. Repeat Problem 12.9 for a magnetic line
source of constant current Im = 1 when
a = b = 5λ. This problem is representa-
tive of a very thin axial slot on the surface
of the cylinder. Compare the current den-
sity on the surface of the cylinder from part
(b) with that of the modal solution of (11-
177a).

12.19. Repeat Problem 12.11 for a magnetic line
source of constant current Im = 1 when
a = 5λ, b = 2.5λ, and c = 5λ. This prob-
lem is representative of a very thin axial
slot on the surface of the cylinder.

12.20. Repeat Problem 12.12 for a magnetic line
source of constant current Im = 1 when
a = 5λ, b = 2.5λ, and c = 5λ. This prob-
lem is representative of a very thin axial
slot on the surface of the cylinder.

12.21. Repeat Problem 12.13 for a TEz uniform
plane wave of unity amplitude. Compare
the current density with the modal solu-
tion of (11-113) and the normalized σ2-D/λ

bistatic scattering width with the modal
solution of (11-117).

12.22. Repeat Problem 12.14 for a TEz uniform
plane wave at unity amplitude.

12.23. Repeat Problem 12.15 for a TEz uniform
plane wave of unity amplitude.

12.24. Using the geometry of Figure 12-17, show
that

n̂ • ∇H (2)
0 (βR) = −β cos ψH (2)

1 (βR)

12.25. Repeat Problem 12.9 using the MFIE.

12.26. Repeat Problem 12.13 using the MFIE.
You must write your own computer pro-
gram to solve this problem.

12.27. Using the geometry of Figure 12-18, show
that

n̂′ • ∇H (2)
0 (βR) = −β cos ψ ′H (2)

1 (βR)

12.28. Repeat Problem 12.18 using the MFIE.

12.29. Derive Pocklington’s integral equation
12-123 using (12-121) and (12-122).

12.30. Derive the solution of (12-125) to the
differential equation (12-124a). Show that
Hallén’s integral equation can be written
as (12-126).

12.31. Show that the incident tangential electric
field (E i

z ) generated on the surface of a
wire of radius a by a magnetic field gen-
erator of (12-129) is given by (12-130).

12.32. Reduce (12-130) to (12-131) valid only
along the z axis (ρ = 0).

12.33. For the center-fed dipole of Example
12-7, write the [Z ] matrix for N = 21
using for the gap the delta-gap generator
and the magnetic frill generator.

12.34. For an infinitesimal center fed dipole of
� = λ/50 and radius a = 0.005λ, derive
the input impedance using Pocklington’s
integral equation with piecewise con-
stant subdomain basis functions and point
matching. Use N = 21 and model the gap
as a delta-gap generator and as a magnetic-
frill generator. Use the PWRS computer
program at the end of the chapter.

12.35. A conducting wire of length � = 0.47λ and
radius a = 0.005λ is placed symmetrically
along the z axis. Assuming a TMz uniform
plane wave is incident on the wire at an
angle θi = 30◦ from the z axis, do the fol-
lowing.
(a) Compute and plot the current induced

on the surface of the wire.
(b) Compute and plot the bistatic RCS for

0◦ ≤ θs ≤ 180◦.
(c) Compute and plot the monostatic RCS

for 0◦ ≤ θi = θs ≤ 180◦.
The amplitude of the incident electric field
is 10−3 V/m. Use Pocklington’s integral
equation and the PWRS computer program.
Determine the number of segments that
leads to a stable solution.

12.36. Repeat Problem 12.35 for a TEz uniform
plane wave incidence.
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CHAPTER 13
Geometrical Theory of Diffraction

13.1 INTRODUCTION

The treatment of the radiation and scattering characteristics from radiating and scattering sys-
tems using modal solutions is limited to objects whose surfaces can be described by orthogonal
curvilinear coordinates. Moreover, most of the solutions are in the form of infinite series, which
are poorly convergent when the dimensions of the object are greater than about a wavelength.
These limitations, therefore, exclude rigorous analyses of many practical radiating and scattering
systems.

A method that describes the solution in the form of an integral equation has received consider-
able attention. Whereas arbitrary shapes can be handled by this method, it mostly requires the use
of a digital computer for numerical computations and therefore, is most convenient for objects
that are not too many wavelengths in size because of the capacity limitations of computers. This
method is usually referred to as the integral equation (IE) method, and its solution is generally
accomplished by the moment method (MM) [1–4]. These were discussed in Chapter 12.

When the dimensions of the radiating or scattering object are many wavelengths, high-
frequency asymptotic techniques can be used to analyze many problems that are otherwise
mathematically intractable. Two such techniques, which have received considerable attention
in the past few years, are the geometrical theory of diffraction (GTD) and the physical theory
of diffraction (PTD). The GTD, originated by Keller [5, 6] and extended by Kouyoumjian and
Pathak [7–10], is an extension of the classical geometrical optics (GO) (direct, reflected and
refracted rays), and it overcomes some of the limitations of geometrical optics by introducing
a diffraction mechanism [11]. The PTD, introduced by Ufimtsev [12–14], supplements physical
optics (PO) to provide corrections that are due to diffractions at edges of conducting surfaces.
Ufimtsev suggested the existence of nonuniform (“fringe”) edge currents in addition to the uni-
form physical optics surface currents [15–18]. The PTD bears some resemblance to GTD in its
method of application.

At high frequencies, diffraction—like reflection and refraction—is a local phenomenon and
it depends on two things:

1. The geometry of the object at the point of diffraction (edge, vertex, curved surface).
2. The amplitude, phase, and polarization of the incident field at the point of diffraction.

A field is associated with each diffracted ray, and the total field at a point is the sum of all
the rays at that point. Some of the diffracted rays enter the shadow regions and account for the
field intensity there. The diffracted field, which is determined by a generalization of Fermat’s

741
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principle [6, 7], is initiated at points on the surface of the object that create a discontinuity in
the incident GO field (incident and reflected shadow boundaries).

The phase of the field on a ray is assumed to be equal to the product of the optical length
of the ray from some reference point and the wave number of the medium. Appropriate phase
jumps must be added as rays pass through caustics (defined in Section 13.2.1). The amplitude is
assumed to vary in accordance with the principle of conservation of energy in a narrow tube of
rays.

The initial value of the field on a diffracted ray is determined from the incident field with the
aid of an appropriate diffraction coefficient that is a dyadic for electromagnetic fields. This is anal-
ogous to the manner reflected fields are determined using the reflection coefficient. The rays also
follow paths that make the optical distance from the source to the observation point an extremum
(usually a minimum). This leads to straight-line propagation within homogeneous media and along
geodesics (surface extrema) on smooth surfaces. The field intensity also attenuates exponentially
as it travels along surface geodesics.

The diffraction and attenuation coefficients are usually determined from the asymptotic solu-
tions of the simplest boundary-value problems, which have the same local geometry at the points
of diffraction as the object at the points of interest. Geometries of this type are referred to as
canonical problems. One of the simplest geometries that will be discussed in this chapter is a
conducting wedge. The primary objective in using the GTD is to resolve each problem to smaller
components [19–25], each representing a canonical geometry with a known solution. The ultimate
solution is a superposition of the contributions from each canonical problem.

Some of the advantages of GTD are given in the following list.

1. It is simple to apply.
2. It can be used to solve complicated problems that do not have exact solutions.
3. It provides physical insight into the radiation and scattering mechanisms from the various

parts of the structure.
4. It yields accurate results that compare quite well with experiments and other methods.
5. It can be combined with other techniques such as the moment method [26–28].

One of the main interests of diffraction by wedges is that engineers and scientists have inves-
tigated how the shape and material properties of complex structures affect their backscattering
characteristics. The attraction in this area is primarily aimed toward designs of low-profile (stealth)
technology by using appropriate shaping along with lossy or coated materials to reduce the radar
visibility, as represented by radar cross section (RCS), of complex radar targets, such as aircraft,
spacecraft, and missiles. A good example is the F-117 shown in Figure 13-1, whose surface is pri-
marily structured by a number of faceted flat plates and wedges because, as will become evident
from the developments, formulations, examples and problems of this chapter (see also Problem
13.50), the backscatter from exterior wedges is lower than that of convex curved surfaces. In
addition, the plates are oriented judiciously so that the maximum scattered field is toward the
specular direction and away from the source of detection. While in this chapter we will focus on
the diffraction by PEC wedges, the diffraction by wedges with impedance surfaces, to represent
lossy and composite wedge surfaces, is the subject of Chapter 14.

13.2 GEOMETRICAL OPTICS

Geometrical optics (GO) is an approximate high-frequency method for determining wave propa-
gation for incident, reflected, and refracted fields. Because it uses ray concepts, it is often referred
to as ray optics. Originally, geometrical optics was developed to analyze the propagation of light
at sufficiently high frequencies where it was not necessary to consider the wave nature of light.
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Figure 13-1 F-117 Nighthawk. (Printed with permission of Lockheed Martin Corporation © 2010).

Instead, the transport of energy from one point to another in an isotropic lossless medium is
accomplished using the conservation of energy flux in a tube of rays. For reflection problems,
geometrical optics approximates the scattered fields only toward specular directions as deter-
mined by Snell’s law of reflection: the angle of reflection is equal to the angle of incidence. For
sufficiently high frequencies, geometrical optics fields may dominate the scattering phenomena
and may not require any corrections. This is more evident for backscattering from smooth curved
surfaces whose curvature is large compared to the wavelength.

According to classical geometrical optics, the rays between any two points P1 and P2 follow a
path that makes the optical distance between them an extremum (usually a minimum). In equation
form, this is expressed as

δ

∫ P2

P1

n(s) ds = 0 (13-1)

where δ represents what is referred to in the calculus of variations as the variational differential
and n(s) is the index of refraction of the medium, β(s)/β0 = n(s). If the medium is homogeneous,
n(s) = n = constant, the paths are straight lines. Equation 13-1 is a mathematical representation
of Fermat’s principle. In addition, the light intensity, power per unit solid angle, between any
two points is also governed by the conservation of energy flux in a tube of rays.

To demonstrate the principles of geometrical optics, let us consider a primary wave front
surface ψ0, as shown in Figure 13-2, formed at t = t0 by the motion of light propagating in an
isotropic lossless medium. The objectives here are:

1. To determine the secondary wave front surfaces ψn formed at t = tn+1 > tn , n = 0,
1, 2, 3 . . . .

2. To relate the power density and field intensity on the secondary wave fronts to those of the
primary or previous wave fronts.

The secondary wave fronts can be determined by first selecting a number of discrete points on
the primary wave front. If the medium of wave propagation is also assumed to be homogeneous,
ray paths from the primary to the secondary wave front are drawn as straight lines that at each
point are normal to the surface of the primary wave front.

Since the wave travels in the medium with the speed of light given by v = c/n , where c is
the speed of light in free space and n is the index of refraction, then at 	t = t1 − t0 (t1 > t0)
the wave would have traveled a distance 	� = v	t . Along each of the normal rays a distance
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Figure 13-2 Primary and secondary wave front (eikonal surfaces) of a radiated wave.

	� is marked, and a surface perpendicular to each ray is drawn. The surfaces normal to each of
the rays are then connected to form the secondary wave front ψ1, as shown in Figure 13-2. The
same procedure can be repeated to determine the subsegment wave front surfaces ψ2, ψ3, . . . .

The family of wave front surfaces ψn(x , y , z ), n = 0, 1, 2, 3, . . . , that are normal to each of the
radial rays is referred to as the eikonal surfaces, and they can be determined using the eikonal
equation [7]

‖∇ψn(x , y , z )‖2 =
{

∂ψn

∂x

}2

+
{

∂ψn

∂y

}2

+
{

∂ψn

∂z

}2

= n2(s) (13-2)

Since the rays normal to the wave fronts and the eikonal surfaces are uniquely related, it is only
necessary to know one or the other when dealing with geometrical optics.

Extending this procedure to approximate the wave motion of electromagnetic waves of lower
frequencies, it is evident that:

1. The eikonal surfaces for plane waves are planar surfaces perpendicular to the direction of
wave travel.

2. The eikonal surfaces for cylindrical waves are cylindrical surfaces perpendicular to the
cylindrical radial vectors.

3. The eikonal surfaces for spherical waves are spherical surfaces perpendicular to the spherical
radial vectors.

Each of these is demonstrated, respectively, in Figures 13-3a , 13-3b and 13-3c.



Balanis c13.tex V2 - 11/24/2011 12:45 A.M. Page 745

GEOMETRICAL OPTICS 745

Eikonal surfaces yn(r, f, z)

Eikonal surfaces yn(x, y, z)

(a)

(b)

Figure 13-3 Eikonal surfaces. (a) Plane waves. (b) Cylindrical waves. (c) Spherical waves.

13.2.1 Amplitude Relation

In geometrical optics, the light intensity (power per unit solid angle) between two points is also
governed by the conservation of energy flux in a tube of rays. To demonstrate that, let us assume
that a point source, as shown in Figure 13-4, emanates isotropically spherical waves. Within a tube
of rays, the cross-sectional areas at some reference point s = 0 and at s are given, respectively,
by dA0 and dA. The radiation density S0 at s = 0 is related to the radiation density S at s by

S0 dA0 = S dA (13-3)

or
S (s)

S0(0)
= dA0

dA
(13-3a)
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Eikonal surfaces yn(r, q, f)

(c)

Figure 13-3 (Continued ).

R1 = R0 + s = r0 + s

R0 = r0

0

s

dA0

dA

Figure 13-4 Tube of rays for a spherical radiated wave.

It has been assumed that S0 and S are constant, respectively, throughout the cross-sectional areas
dA0 and dA, and that no power flows across the sides of the conical tube.

For electromagnetic waves, the far-zone electric field E(r , θ , φ) is related to the radiation
density S (r , θ , φ) by [7]

S (r , θ , φ) = 1

2η
|E(r , θ , φ)|2 = 1

2

√
ε

μ
|E(r , θ , φ)|2 (13-4)
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Therefore, (13-3a) can also be written, using (13-4), as

|E|2
|E0|2 = dA0

dA
(13-5)

or
|E|
|E0| =

√
dA0

dA
(13-5a)

Since in the tube of rays in Figure 13-4, the differential surface areas dA0 and dA are patches
of spherical surfaces with radii of R0 = ρ0 and R1 = R0 + s = ρ0 + s , respectively, then (13-5a)
can be written in terms of the radii of curvature of the wave fronts at s = 0 and s . Thus, (13-5a)
reduces to

|E|
|E0| =

√
dA0

dA
=

√
4πR2

0/C0

4πR2
1/C0

= R0

R1
= ρ0

ρ0 + s
(13-6)

and it indicates that the electric field varies, as expected, inversely proportional to the distance
of travel; C0 is a proportionality constant.

If the eikonal surfaces of the radiated fields are cylindrical surfaces, representing the wave
fronts of cylindrical waves, then the field relation (13-5a) takes the form

|E|
|E0| =

√
dA0

dA
=

√
2πR0/C1

2πR1/C1
=

√
R0

R1
=

√
ρ0

ρ0 + s
(13-7)

where C1 is a proportionality constant. Relation (13-7) indicates that the electric field for cylin-
drical waves varies, as expected, inversely to the square root of the distance of travel. For planar
eikonal surfaces, representing plane waves, (13-5a) simplifies to

|E|
|E0| = 1 (13-8)

For the previous three cases, the eikonal surfaces were, respectively, spherical, cylindrical, and
planar. Let us now consider a more general configuration in which the eikonal surfaces (wave
fronts) are not necessarily spherical. This is illustrated in Figure 13-5a where the wave front is
represented by a radius of curvature R1 in the xz and R2 in the yz planes, which are not equal
(R1 �= R2). To determine the focusing characteristics of such a surface, let us trace the focusing
diagram of rays 1, 2, 3, and 4 from the four corners of the wave front. It is apparent that the rays
focus (cross) at different points. For this example, rays 1 and 2 focus at P , rays 3 and 4 focus
at P ′, rays 2 and 3 focus at Q ′, and rays 1 and 4 focus at Q . This system of a tube of rays is
referred to as astigmatic (not meeting at a single point) and the lines PP ′ and QQ ′ are called
caustics.1

Referring to the geometry of Figure 13-5b, it can be shown that for a wave whose eikonal
surface (wave front) forms an astigmatic tube of rays the electric field intensity from one surface
relative to that of another, as related by (13-5a), takes the form

|E|
|E0| =

√
dA0

dA
=

√
ρ1ρ2

(ρ1 + s)(ρ2 + s)
(13-9)

1 A caustic is a point, a line, or a surface through which all the rays of a wave pass. Examples of it are the focal point of a
paraboloid (parabola of revolution) and the focal line of a parabolic cylinder. The field at a caustic is infinite, in principle,
because an infinite number of rays pass through it.
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Figure 13-5 Astigmatic tube of rays. (a) Eikonal surface. (b) Caustic lines.

It is apparent that (13-9) reduces to the following equations,

1. (13-6) if the wave front is spherical (ρ1 = ρ2 = ρ0).
2. (13-7) if the wave front is cylindrical (ρ1 = ∞, ρ2 = ρ0 or ρ2 = ∞, ρ1 = ρ0).
3. (13-8) if the wave front is planar (ρ1 = ρ2 = ∞).

Expressions (13-6) through (13-9) correctly relate the magnitudes of the high-frequency electric
field at one wave front surface to that of another. These were derived using geometrical optics
based on the principle of conservation of energy flux through a tube of rays. Although these
may be valid high-frequency approximations for light waves, they are not accurate relations for
electromagnetic waves of lower frequencies. Two apparent missing properties in these relations
are those of phase and polarization.
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13.2.2 Phase and Polarization Relations

Phase and polarization information can be introduced to the relations (13-6) through (13-9)
by examining the approach introduced by Luneberg [29] and Kline [30, 31] to develop high-
frequency solutions of electromagnetic problems. The works of Luneberg and Kline, referred to
as the Luneberg–Kline high-frequency expansion, best bridge the gap between geometrical (ray)
optics and wave propagation phenomena.

The Luneberg–Kline series expansion solution begins by assuming that the electric field for
large ω can be written as a series

E(R, ω) = e−jβ0ψ(R)

∞∑
m=0

Em(R)

(jω)m
(13-10)

where R = position vector
β0 = phase constant for free-space

Substituting (13-10) into the wave equation

∇2E + β2E = 0 (13-11)

subject to Maxwell’s equation
∇ • E = 0 (13-12)

it can be shown, by equating like powers of ω, that one obtains the following.

1. The eikonal equation 13-2 or
‖∇ψ‖2 = n2 (13-13a)

where ψ = eikonal (wave front) surface
n = index of refraction

2. The transport equations

∂E0

∂s
+ 1

2

{∇2ψ

n

}
E0 = 0 for first-order terms (13-13b)

∂Em

∂s
+ 1

2

{∇2ψ

n

}
Em = vp

2
∇2Em−1 for higher-order terms (13-13c)

where m = 1,2,3 . . .

vp = speed of light in medium

3. The conditional equations

ŝ • E0 = 0 for first-order terms (13-13d)

ŝ • Em = vp∇ • Em−1 for higher-order terms (13-13e)

m = 1, 2, 3 . . .

where

ŝ = ∇ψ

n
= unit vector in the direction path (normal to the wave front ψ) (13-13f)

s = distance along the ray path
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At the present time we are interested mainly in first-order solutions for the electric field
of (13-10) that can be approximated and take the form of

E(s) � e−jβ0ψ(s)E0(s = 0) (13-14)

Integrating the first-order transport equation 13-13b along s and referring to the geometry of
Figure 13-5a , it can be shown that (13-14) can be written as [30, 31]

E(s) � E0(0)e−jβ0ψ(0)

√
ρ1ρ2

(ρ1 + s)(ρ2 + s)
e−jβs (13-15)

where s = 0 is taken as a reference point. Since E0(0) is complex, the phase term e−jβ0ψ(0) can
be combined with E0(0) and (13-15) rewritten as

E(s) = E′
0(0)ejφ0(0)︸ ︷︷ ︸

√
ρ1ρ2

(ρ1 + s)(ρ2 + s)︸ ︷︷ ︸ e−jβs︸ ︷︷ ︸
Field at reference Spatial attenuation Phase

point (s = 0) (divergence, spreading) factor
factor

(13-15a)

where E′
0(0) = field amplitude at reference point (s = 0)

φ0(0) = field phase at reference point (s = 0)

Comparing (13-15a) to (13-9), it is evident that the leading term of the Luneberg–Kline series
expansion solution for large ω predicts the spatial attenuation relation between the electric fields
of two points as obtained by classical geometrical optics, as given by (13-9), which ignores both
the polarization and the wave motion (phase) of electromagnetic fields. It also predicts their phase
and polarization relations, as given by (13-15a). Obviously, (13-15a) could have been obtained
from (13-9) by artificially converting the magnitudes of the fields to vectors (to account for
polarization) and by introducing a complex exponential to account for the phase delay of the
field from s = 0 to s . This was not necessary since (13-15a) was derived here rigorously using
the leading term of the Luneberg–Kline expansion series for large ω subject to the wave and
Maxwell’s equations. It should be pointed out, however, that (13-15a) is only a high-frequency
approximation and it becomes more accurate as the frequency approaches infinity. However, for
many practical engineering problems, it does predict quite accurate results that compare well with
measurements.

In principle, more accurate expressions to the geometrical optics approximation can be obtained
by retaining higher-order terms E1(R1), E2(R2), . . . in the Luneberg–Kline series expansion
(13-10), and in the transport (13-13c) and conditional (13-13e) equations. However, such a proce-
dure is very difficult. In addition, the resulting terms do not remove the discontinuities introduced
by geometrical optics fields along the incident and reflection boundaries, and the method does
not lend itself to other improvements in the geometrical optics, such as those of diffraction.
Therefore, no such procedure will be pursued here.

It should be noted that when the observation point is chosen so that s = −ρ1 or s = −ρ2,
(13-15a) possesses singularities representing the congruence of the rays at the caustic lines PP ′
and QQ ′. Therefore, (13-15a) is not valid along the caustics and not very accurate near them,
and it should not be used in those regions. Other methods should be utilized to find the fields
at and near caustics [32–36]. In addition, it is observed that when −ρ2 < s < −ρ1 the sign in
the (ρ1 + s) term of the denominator of (13-15a) changes. Similar changes of sign occur in the
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(ρ1 + s) and (ρ2 + s) terms when s < −ρ2 < −ρ1. Therefore, (13-15a) correctly predicts +90◦
phase jumps each time a caustic is crossed in the direction of propagation.

13.2.3 Reflection from Surfaces

Geometrical optics can be used to compute high-frequency approximations to the fields reflected
from surfaces, the directions of which are determined by Snell’s law of reflection. To demonstrate
the procedure, let us assume that a field impinges on a smooth conducting surface S , where it
undergoes a reflection at point QR . This is illustrated in Figure 13-6a where ŝi is the unit vector
in the direction of incidence, ŝr is the unit vector in the direction of reflection, êi

||, êr
|| are unit

vectors, for incident and reflected electric fields, parallel to the planes of incidence and reflection,
and êi

⊥, êr
⊥ are unit vectors, for incident and reflected electric fields, perpendicular to the planes

of incidence and reflection. The plane of incidence is formed by the unit vector n̂ normal to the
surface at the point of reflection QR and the unit vector ŝi , and the plane of reflection is formed
by the unit vectors n̂ and ŝr . The angle of incidence θi is measured between n̂ and ŝi whereas θr

is measured between n̂ and ŝr , and they are equal (θi = θr ).
The polarization unit vectors are chosen so that

êi
⊥ × ŝi = êi

|| (13-16a)

êr
⊥ × ŝr = êr

|| (13-16b)

and the incident and reflected electric fields can be expressed as

Ei
0 = êi

||E
i
0|| + êi

⊥ E i
0⊥ (13-17a)

Er
0 = êr

||E
r
0|| + êr

⊥ E r
0 ⊥ (13-17b)

The incident and reflected fields at the point of reflection can be related by applying the boundary
conditions of vanishing tangential components of the electric field at the point of reflection (QR).
Doing this, we can write that

Er
0(s = 0) = Ei

0(QR) • R = Ei
0(QR) • [êi

||ê
r
|| − êi

⊥êr
⊥] (13-18)

where Er
0(s = 0) = reflected field at the point of reflection (the reference point for the reflected

ray is taken on the reflecting surface so that s = 0)
Ei

0(QR) = incident field at the point of reflection QR

R = dyadic reflection coefficient

In matrix notation, the reflection coefficient can be written as

R =
[

1 0
0 −1

]
(13-19)

which is identical to the Fresnel reflection coefficients of electromagnetic plane waves reflected
from plane, perfectly conducting surfaces. This is quite acceptable in practice since at high
frequencies, reflection, as well as diffraction, is a local phenomenon, and it depends largely on
the geometry of the surface in the immediate neighborhood of the reflection point. Therefore,
near the reflection point QR , the following approximations can be made:

1. The reflecting surface can be approximated by a plane tangent at QR .
2. The wave front of the incident field can be assumed to be planar.
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Figure 13-6 Reflection from a curved surface. (a) Reflection point. (b) Astigmatic tube of rays.

With the aid of (13-15a) and (13-18), it follows that the reflected field Er (s) at a distance s
from the point of reflection QR can be written as

Er(s) = Ei (QR)︸ ︷︷ ︸ • R︸ ︷︷ ︸
√

ρr
1ρ

r
2

(ρr
1 + s)(ρr

2 + s)︸ ︷︷ ︸ e−jβs︸︷︷︸
Field at Reflection Spatial attenuation Phase

reference coefficient (divergence, spreading) factor
point (Qr ) factor

(13-20)

where ρr
1 , ρr

2 = principal radii of curvature of the reflected wave front at the point of reflection
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The astigmatic tube of rays for the reflected fields are shown in Figure 13-6b where the reference
surface is taken at the reflecting surface.

The principal radii of curvature of the reflected wave front, ρr
1 and ρr

2 , are related to the
principal radii of curvature of the incident wave front, ρ i

1 and ρ i
2, the aspect of wave incidence,

and the curvature of the reflecting surface at QR . It can be shown that ρr
1 and ρr

2 can be expressed
as [10]

1

ρr
1

= 1

2

{
1

ρ i
1

+ 1

ρ i
2

}
+ 1

f1
(13-21a)

1

ρr
2

= 1

2

{
1

ρ i
1

+ 1

ρ i
2

}
+ 1

f2
(13-21b)

where ρ i
1, ρ i

2 = principal radii of curvature of incident wave front (ρ i
1 = ρ i

2 = s ′ for spherical
incident wave front; ρ i

1 = ρ ′, ρ i
2 = ∞ or ρ i

1 = ∞, ρ i
2 = ρ ′ for cylindrical

incident wave front, and ρ i
1 = ρ ′

2 = ∞ for planar incident wave front)

Equations 13-21a and 13-21b are similar in form to the simple lens and mirror formulas of
elementary physics. In fact, when the incident ray is spherical (ρ i

1 = ρ i
2 = s ′), f1 and f2 represent

focal distances that are independent of the source range that is creating the spherical wave.
When the incident field has a spherical wave front, ρ i

1 = ρ i
2 = s ′, then f1 and f2 simplify to

1

f1
= 1

cos θi

{
sin2 θ2

R1
+ sin2 θ1

R2

}
+

√√√√ 1

cos2 θi

{
sin2 θ2

R1
+ sin2 θ1

R2

}2

− 4

R1R2
(13-22a)

1

f2
= 1

cos θi

{
sin2 θ2

R1
+ sin2 θ1

R2

}
−

√√√√ 1

cos2 θi

{
sin2 θ2

R1
+ sin2 θ1

R2

}2

− 4

R1R2
(13-22b)

where R1, R2 = radii of curvature of the reflecting surface
θ1 = angle between the direction of the incident ray ŝi and û1

θ2 = angle between the direction of the incident ray ŝi and û2

û1 = unit vector in the principal direction of S at QR with principal radius of
curvature R1

û2 = unit vector in the principal direction of S at QR with principal radius of
curvature R2

The geometrical arrangement of these is exhibited in Figure 13-7.
If the incident wave form is a plane wave, then ρ i

1 = ρ i
2 = ∞ and according to (13-21a)

and (13-21b)
1

ρr
1ρ

r
2

= 1

f1f2
= 4

R1R2
(13-23)

or

ρr
1ρ

r
2 = R1R2

4
(13-23a)

The relation of (13-23a) is very useful to calculate the far-zone reflected fields. Now if either R1

and/or R2 becomes infinite, as is the case for flat plates or cylindrical scatterers, the geometrical
optics field fails to predict the scattered field when the incident field is a plane wave.
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To give some physical insight into the principal radii of curvature R1 and R2 of a reflecting
surface, let us assume that the reflecting surface is well behaved (continuous and smooth). At
each point on the surface there exists a unit normal vector. If through that point a plane intersects
the reflecting surface, it generates on the reflecting surface a curve as shown in Figure 13-7b.
If in addition the intersecting plane contains the unit normal to the surface at that point, the
curve generated on the reflecting surface by the intersecting plane is known as the normal section
curve, as shown in Figure 13-7b. If the intersecting plane is rotated about the surface normal
at that point, a number of unique normal sections are generated, one on each orientation of the
intersecting plane. Associated with each normal section curve, there is a radius of curvature. It
can be shown that for each point on an arbitrary well behaved curved reflecting surface, there is
one intersecting plane that maximizes the radius of curvature of its corresponding normal section
curve while there is another intersecting plane at the same point that minimizes the radius of
curvature of its corresponding normal section curve. For each point on the reflecting surface there
are two normal section radii of curvature, denoted here as R1 and R2 and referred to as principal
radii of curvature, and the two corresponding planes are known as the principal planes. For an
arbitrary surface, the two principal planes are perpendicular to each other. Also for each principal
plane we can define unit vectors û1 and û2 that are tangent to each normal section curve generated

Normal
section
curve

Normal
section
curve

(a)

(b)

qi qr

S

S

q1

q2
QR

R1

R2

Principal
plane

Principal
plane

sr

si

u1

u2

n

n

u1

u2

Figure 13-7 Geometry for reflection from a three-dimensional curved surface. (a) Principal radii of cur-
vature. (b) Normal section curves and principal planes.
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by each intersecting principal plane. Also the unit vectors û1 and û2, which lie in the principal
plane, point along the principal directions whose normal section curves have radii of curvature
R1 and R2, respectively. Expressions for determining the principal unit vectors û1, û2 and the
principal radii of curvature R1, R2 of arbitrary surfaces of revolution are given in Problem 13.2
at the end of the chapter.

In general, however, f1 and f2 can be obtained using [10]

1

f1(2)

= cos θi

|θ |2
(

θ2
22 + θ2

12

R1
+ θ2

21 + θ2
11

R2

)

±1

2

{(
1

ρ i
1

− 1

ρ i
2

)2

+
(

1

ρ i
1

− 1

ρ i
2

)
4 cos θi

|θ |2
(

θ2
22 − θ2

12

R1
+ θ2

21 − θ2
11

R2

)

+4 cos2 θi

|θ |4
[(

θ2
22 + θ2

12

R1
+ θ2

21 + θ2
11

R2

)2

− 4|θ |2
R1R2

]}1/2

(13-24)

where the plus sign is used for f1 and the minus for f2. In (13-24), |θ | is the determinant of

[θ] =
[

X̂i
1

• û1 X̂i
1

• û2

X̂i
2

• û1 X̂i
2

• û2

]
(13-24a)

or

|θ | = (X̂i
1

• û1)(X̂i
2

• û2) − (X̂i
2

• û1)(X̂i
1

• û2) (13-24b)

and

θjk = X̂i
j

• ûk (13-24c)

The vectors X̂i
1 and X̂i

2 represent the principal directions of the incident wave front at the reflection
point QR with principal radii of curvature ρ i

1 and ρ i
2.

Equations 13-24 through 13-24c can be used to find single, first-order reflections by a reflecting
surface. The process, using basically the same set of equations, must be repeated if second- and
higher-order reflections are required. However, to accomplish this the principal plane directions
X̂r

1 and X̂r
2 of the reflected fields from the previous reflection must be known. For example,

second-order reflections can be found provided the principal plane directions X̂r
1 and X̂r

2 of the
first-order reflected field are found. To do this, we first introduce

Q r =
[

Qr
11 Qr

12
Qr

12 Qr
22

]
(13-25)

where Q r is defined as the curvature matrix for the reflected wave front whose entries are

Qr
11 = 1

ρ i
1

+ 2 cos θi

|θ |2
(

θ2
22

R1
+ θ2

21

R2

)
(13-26a)

Qr
12 = −2 cos θi

|θ |2
(

θ22θ12

R1
+ θ11θ21

R2

)
(13-26b)

Qr
22 = 1

ρ i
2

+ 2 cos θi

|θ |2
(

θ2
12

R1
+ θ2

11

R2

)
(13-26c)



Balanis c13.tex V2 - 11/24/2011 12:45 A.M. Page 756

756 GEOMETRICAL THEORY OF DIFFRACTION

Then the principal directions X̂r
1 and X̂r

2 of the reflected wave front, with respect to the x r
1 and

x r
2 coordinates, can be written as

X̂r
1 =

(
Qr

22 − 1

ρr
1

)
x̂r

1 − Qr
12x̂r

2√(
Qr

22 − 1

ρr
1

)2

+ (Qr
12)

2

(13-27a)

X̂r
2 = −ŝr × X̂r

1 (13-27b)

where x̂r
1 and x̂r

2 are unit vectors perpendicular to the reflected ray, and they are determined
using

x̂r
1 = X̂i

1 − 2(n̂ • X̂i
1)n̂ (13-28a)

x̂r
2 = X̂i

2 − 2(n̂ • X̂i
2)n̂ (13-28b)

with n̂ being a unit vector normal to the surface at the reflection point.
To demonstrate the application of these formulations, let us consider a problem that is classified

as a classic example in scattering.

Example 13-1

A linearly polarized uniform plane wave of amplitude E0 is incident on a conducting sphere of radius
a , as shown in Figures 11-26 and 11-28. Using geometrical optics methods, determine the:

1. Far-zone (s � ρr
1 and ρr

2) fields that are reflected from the surface of the sphere.
2. Backscatter radar cross section.

Solution: For a linearly polarized uniform plane wave incident upon a conducting sphere, (13-20)
reduces in the far zone to

E r (s) = E0(−1)

√
ρr

1ρr
2

(ρr
1 + s)(ρr

2 + s)
e−jβs

s�ρr
1 ,ρr

2� − E0

√
ρr

1ρr
2

s
e−jβs

According to (13-23a)

ρr
1ρr

2 = a2

4

Thus,

E r (s) = −E0
a

2s
e−jβs = −E0

2

(a

s

)
e−jβs

In turn, the backscatter radar cross section, according to (11-22b), can be written as

σ = lim
s→∞

[
4πs2 |E r (s)|2

|E i (QR)|2
]

� 4πs2

∣∣∣∣−E0

2

(a

s

)
e−jβs

∣∣∣∣2
|E0|2 = πa2

It is recognized that the geometrical optics radar cross section of a sphere is equal to its physical cross-
sectional area [see Figure 11.29 and (11-250)]. This is a well known relation, and it is valid when the
radius of the sphere is large compared to the wavelength.
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The variation of the normalized radar cross section of a sphere as a function of its radius is
displayed in Figure 11-29, and it is obtained by solving the wave equation in exact form. The
Rayleigh, Mie (resonance), and geometrical optics regions represent three regimes in the figure.

For a cylindrical reflected field with radii of curvature ρr
1 = ρr and ρr

2 = ∞, the reflected field
of (13-20) reduces to

Er (s) = Ei (QR) • R

√
ρr

ρr + s
e−jβs (13-29)

where ρr is the radius of curvature of the reflected field wave front.
An expression for ρr can be derived [37] by assuming a cylindrical wave, radiated by a line

source at ρ0, incident upon a two-dimensional curved surface S with positive radius of curvature
ρa , as shown in Figure 13-8a . The rays that are reflected from the surface S diverge for positive
values of ρa , as shown in Figure 13-8b, and appear to be emanating from a caustic a distance
ρr from the reflecting surface S . It can be shown that the wave front curvature of the reflected
field can be determined using

1

ρr
= 1

ρ0
+ 2

ρa cos θi
(13-30)

This is left as an end-of-chapter exercise for the reader.
The expression for ρr has been developed for a cylindrical wave incident on a two-dimensional

convex scattering surface corresponding to positive values of ρa . For this arrangement, the
caustic resides within the reflecting surface, and the rays seem to emanate from a virtual source
(image) located at the caustic. This is equivalent to the Cassegrain reflector arrangement where
the virtual feed focal point for the main reflector is behind the convex subreflector as shown in
Figures 15-30 and 15-31 of [38]. If the curved scattering surface is concave, corresponding to
negative values of ρa , the value of ρr is obtained by making ρa negative. In this case the caustic
resides outside the reflecting surface, and the rays seem to emanate from that location. This is
analogous to the Gregorian reflector arrangement where the effective focal point of the main
reflector is between the concave subreflector and main reflector, as shown in Figure 15-31 of

(a) (b)
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ra
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Figure 13-8 Line source near a two-dimensional curved surface. (a) Reflection point. (b) Caustic.
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[38]. Although ρr of (13-30) was derived for cylindrical wave incidence on a two-dimensional
convex curved surface, it can also be used when the plane of incidence coincides with any of
the principal planes of curvature of the reflecting surface.

The application of (13-29) and (13-30) can best be demonstrated by an example.

Example 13-2

An electric line source of infinite length and constant current I0 is placed symmetrically a distance h
above an electric conducting strip of width w and infinite length, as shown in Figure 13-9a . The length
of the line is placed parallel to the z axis. Assuming a free-space medium and far-field observations (ρ �
w , ρ � h), derive expressions for the incident and reflected electric field components. Then compute
and plot the normalized amplitude distribution (in decibels) of the incident, reflected, and incident plus
reflected geometrical optics fields for h = 0.5λ when w = infinite and w = 2λ. Normalize the fields
with respect to the maximum of the total geometrical optics field.

Solution: The analysis begins by first determining the incident (direct) field radiated by the source
in the absence of the strip, which is given by (11-10a), or

E i
z = −β2I0

4ωε
H (2)

0 (βρi )

where H (2)
0 (βρi ) is the Hankel function of the second kind and of order zero, and ρi is the distance

from the source to the observation point.
For far-zone observations (βρi → large) the Hankel function can be replaced by its asymptotic

expansion

H (2)
0 (βρi )

βρi →large�
√

2j

πβρi
e−jβρi

This allows us to write the incident field as

E i
z = E0

e−jβρi

√
ρi

where

E0 =
{

−β2I0

4ωε

√
2j

πβ

}
Using (13-29) and referring to Figure 13-9b, the reflected field can be written as

E r
z = E i

z (ρi = s ′)(−1)

√
ρr

ρr + s
e−jβs = −E0

e−jβs ′

√
s ′

√
ρr

ρr + s
e−jβs

The wave front radius of curvature of the reflected field can be found using (13-30), that is,

1

ρr
= 1

s ′ + 2

∞ cos θi
= 1

s ′ ⇒ ρr = s ′

Therefore, the reflected field can now be written as

E r
z = −E0

e−jβs ′

√
s ′

√
s ′

s ′ + s
e−jβs = −E0

e−jβ(s+s ′)
√

s + s ′ = −E0
e−jβρr

√
ρr

It is apparent from Figure 13-9b that the reflected rays seem to emanate from a virtual (image) source
which is also a caustic for the reflected fields. The wave front radius of curvature ρr = s ′ of the reflected
field also represents the distance of the caustic (image) from the point of reflection. The reflected field
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Figure 13-9 Line source above a finite width strip. (a) Coordinate system. (b) Reflection geometry.

could also have been obtained very simply by using image theory. However, we chose to use the
equations of geometrical optics to demonstrate the principles and applications of geometrical optics.

For far-field observations (ρi � w , ρi � h)

ρi = ρ − h cos
(π

2
− φ

)
= ρ − h sin φ

ρr = ρ + h cos
(π

2
− φ

)
= ρ + h sin φ

⎫⎪⎬⎪⎭ for phase variations

ρi � ρr � ρ for amplitude variations

Therefore, the incident (direct) and reflected fields can be reduced to

E i
z = E0e+jβh sin φ e−jβρ

√
ρ

, 0 ≤ φ ≤ π + α, 2π − α ≤ φ ≤ 2π

E r
z = −E0e−jβh sin φ e−jβρ

√
ρ

, α ≤ φ ≤ π − α
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and the total field can be written as

E t
z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ φ ≤ α,

E i
z = E0e+jβh sin φ

e−jβρ

√
ρ

π − α ≤ φ ≤ π + α,

2π − α ≤ φ ≤ 2π

E i
z + E r

z = 2jE0 sin(βh sin φ)
e−jβρ

√
ρ

α ≤ φ ≤ π − α

0 π + α ≤ φ ≤ 2π − α

Normalized amplitude patterns for w = 2λ and h = 0.5λ computed using the preceding geometrical
optics fields in their respective regions, are plotted (in decibels) in Figure 13-10 where discontinuities
created along the incident and reflected shadow boundaries by the geometrical optics fields are apparent.
The total amplitude pattern assuming an infinite ground plane is also displayed in Figure 13-10.
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Figure 13-10 Amplitude radiation pattern of an electric line source above a finite width strip.

In summary, geometrical optics methods approximate the fields by the leading term of the
Luneberg–Kline expansion for large ω, but they fail along caustics. Improvements can be incorpo-
rated into the solutions by finding higher-order terms E1(R1), E(R2), . . . in the Luneberg–Kline
series expansion. Higher-order Luneberg–Kline expansions have been derived for fields
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scattered from spheres, cylinders, and other curved surfaces with simple geometries [30, 31].
These solutions exhibit the following tendencies.

1. They improve the high-frequency field approximations if the observation specular point is
not near edges, shadow boundaries, or other surface discontinuities.

2. They become singular as the observation specular point approaches a shadow boundary on
the surface.

3. They do not correct for geometrical optics discontinuities along incident and reflection
shadow boundaries.

4. They do not describe the diffracted fields in the shadow region.

Because of some of these deficiencies, in addition to being quite complex, higher-order
Luneberg–Kline expansion methods cannot be used to treat diffraction. Therefore other
approaches, usually somewhat heuristic in nature, must be used to introduce diffraction in order
to improve geometrical optics approximations. It should be noted, however, that for sufficiently
large ω, geometrical optics fields may dominate the scattering phenomena and may alone provide
results that often agree quite well with measurements. This is more evident for backscattering
from smooth curved surfaces with large radii of curvature. In those instances, corrections to
the fields predicted by geometrical optics methods may not be necessary. However, for other
situations where such solutions are inaccurate, corrections are usually provided by including
diffraction. Therefore, a combination of geometrical optics and diffraction techniques often
leads to solutions of many practical engineering problems whose results agree extremely well
with measurements. This has been demonstrated in many applications [19–25, 39]. Because of
their extreme importance and ease of application, diffraction techniques will be next introduced,
discussed, and applied.

13.3 GEOMETRICAL THEORY OF DIFFRACTION: EDGE DIFFRACTION

Examining high-frequency diffraction problems has revealed that their solutions contain terms of
fractional power that are not always included in the geometrical optics expression (13-15a) or
in the Luneberg–Kline series solution. For example, geometrical optics fails to account for the
energy diffracted into the shadow region when the incident rays are tangent to the surface of a
curved object and for the diffracted energy when the surface contains an edge, vertex, or corner.
In addition, caustics of the diffracted fields are located at the boundary surface. Therefore, some
semi-heuristic approaches must be used to provide correction factors that improve the geometrical
optics approximation.

13.3.1 Amplitude, Phase, and Polarization Relations

To introduce diffraction, let us assume that the smooth surface S of Figure 13-6a has a curved
edge as shown in Figure 13-11a . When an electromagnetic wave impinges on this curved edge,
diffracted rays emanate from the edge whose leading term of the high-frequency solution for the
electric field takes the form

Ed (R) � e−jβψd (R)

√
β

A(R) (13-31)

where ψd = eikonal surface for the diffracted rays
A(R) = field factor for the diffracted rays
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Figure 13-11 Geometry for diffraction by a curved edge. (a) Diffraction point. (b) Astigmatic tube
of rays.



Balanis c13.tex V2 - 11/24/2011 12:45 A.M. Page 763

GEOMETRICAL THEORY OF DIFFRACTION: EDGE DIFFRACTION 763

Substituting (13-31) into (13-11) and (13-12), and referring to the geometry of Figure 13-11a ,
it can be shown that the diffracted field can be written as

Ed (s) =
[

A(0′)√
β

e−jβψd (0′)
]√

ρ ′
cρc

(ρ ′
c + s)(ρc + s)

e−jβs

Ed (s) = [Ed (0′)]

√
ρ ′

cρc

(ρ ′
c + s)(ρc + s)

e−jβs (13-32)

where Ed (0′) = diffracted field at the reference point 0′
s = distance along the diffracted ray from the reference point 0′

ρ ′
c = distance from diffraction point QD (first caustic of diffracted field) to reference

point 0′
ρc = distance between the second caustic of diffracted field and reference point 0′

It would have been more convenient to choose the reference point 0′ to coincide with the
diffraction point QD , located on the diffracting edge. However, like the geometrical optics rays,
the diffracted rays form an astigmatic tube of the form shown in Figure 13-11b where the
caustic line PP ′ coincides with the diffracting edge. Because the diffraction point is a caustic
of the diffracted field, it is initially more straightforward to choose the reference point away from
the edge diffraction caustic QD . However, the diffracted field of (13-32) should be independent of
the location of the reference point 0′, including ρ ′

c = 0. Therefore, the diffracted field of (13-32)
must be such that

lim
ρ′

c→0
Ed (0′)

√
ρ ′

c = finite (13-33)

and must be equal to

lim
ρ′

c→0
Ed (0′)

√
ρ ′

c = Ei (QD ) • D (13-33a)

where Ei (QD )= incident field at the point of diffraction
D = dyadic diffraction coefficient (analogous to dyadic reflection coefficient)

Using (13-33a), the diffracted field of (13-32) reduces to

Ed (s) = lim
ρ′

c→0

{
[Ed (0′)

√
ρ ′

c]
√

ρc

(ρ ′
c + s)(ρc + s)

e−jβs

}
Ed (s) = Ei (QD ) • D

√
ρc

s(ρc + s)
e−jβs (13-34)

which has the form

Ed(s) = Ei (QD )︸ ︷︷ ︸ • D︸ ︷︷ ︸ A(ρc , s)︸ ︷︷ ︸ e−jβs︸ ︷︷ ︸
Field at Diffraction Spatial Phase

reference coefficient attenuation factor
point (usually a (spreading,

dyadic) divergence)
factor

(13-34a)
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and compares with that of (13-20) for reflection. In (13-34) and (13-34a)

A(ρc , s) =
√

ρc

s(ρc + s)

= spatial attenuation (spreading, divergence) factor for a curved surface

(13-34b)

ρc = distance between the reference point QD (s = 0) at the edge (also first caustic of
the diffracted rays) and the second caustic of the diffracted rays.

In general, ρc is a function of the following.

1. Wave front curvature of the incident field.
2. Angles of incidence and diffraction, relative to unit vector normal to edge at the point QD

of diffraction.
3. Radius of curvature of diffracting edge at point QD of diffraction.

An expression for ρc is given by (13-100a) in Section 13.3.4.
The diffracted field, which is determined by a generalization of Fermat’s principle [7, 9], is

initiated at a point on the surface of the object where discontinuities are formed along the incident
and reflected shadow boundaries. As represented in (13-34) and (13-34a), the initial value of the
field of a diffracted ray is determined from the incident field with the aid of an appropriate
diffraction coefficient D, which in general is a dyadic for electromagnetic fields. The amplitude
is assumed to vary in accordance with the principle of conservation of energy flux along a tube
of rays. Appropriate phase jumps of +90◦ are added each time a ray passes through a caustic at
s = 0 and s = −ρc , as properly accounted for in (13-34) and (13-34a). The phase of the field
on a diffracted ray is assumed to be equal to the product of the optical lengths of the ray, from
some reference point QD , and the phase constant β of the medium.

When the edge is straight, the source is located a distance s ′ from the point of diffraction, and
the observations are made at a distance s from it—as shown in Figure 13-12—the diffracted
field can be written as

Ed (s) = Ei (QD ) • DA(s ′, s)e−jβs (13-35)

Observation
point

Source

Straight
diffracting

edge
s

s

s′

s′

b0

b′0

QD
n

Figure 13-12 Diffraction by a wedge with a straight edge.
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where

A(s ′, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
s

for plane and conical wave incidences

1√
ρ

, ρ = s sin β0 for cylindrical wave incidence√
s ′

s(s + s ′)
s�s ′
�

√
s ′

s
for spherical wave incidence

(13-35a)

(13-35b)

(13-35c)

The A(s ′, s) formulas of (13-35a) through (13-35c) are obtained by letting ρc in (13-34) tend to
infinity (ρc = ∞) for plane, cylindrical, and conical wave incidence and ρc = s ′ for spherical
wave incidence.

The diffraction coefficients are usually determined from the asymptotic solutions of canonical
problems that have the same local geometry at the points of diffraction as the object(s) of
investigation. One of the simplest geometries, which will be discussed in this chapter, is a
conducting wedge [40–42]. Another is that of a conducting, smooth, and convex surface [43–46].
The main objectives in the remaining part of this chapter are to introduce and apply the diffraction
coefficients for the canonical problem of the conducting wedge. Curved surface diffraction is
derived in [43–46].

13.3.2 Straight Edge Diffraction: Normal Incidence

In order to examine the manner in which fields are diffracted by edges, it is necessary to have
a diffraction coefficient available. To derive a diffraction coefficient for an edge, we need to
consider a canonical problem that has the same local geometry near the edge, like that shown in
Figure 13-13a .

Let us begin by assuming that a source is placed near the two-dimensional electric conduct-
ing wedge of included angle WA = (2 − n)π radians. If observations are made on a circle of
constant radius ρ from the edge of the wedge, it is quite clear that, in addition to the direct ray
(OP ), there are rays that are reflected from the side of the wedge (OQRP), which contribute
to the intensity at point P . These rays obey Fermat’s principle, that is, they minimize the path
between points O and P by including points on the side of the wedge, and deduce Snell’s law
of reflection. It would then seem appropriate to extend the class of such points to include in
the trajectory rays that pass through the edge of the wedge (OQD P), leading to the generalized
Fermat’s principle [7]. This class of rays is designated as diffracted rays and they lead to the
law of diffraction.

By considering rays that obey only geometrical optics radiation mechanisms (direct and
reflected), we can separate the space surrounding the wedge into three different field regions.
Using the geometrical coordinates of Figure 13-13b, the following geometrical optics fields will
contribute to the corresponding regions:

Region I Region II Region III

0 < φ < π − φ′ π − φ′ < φ < π < φ′ π + φ′ < φ < nπ

Direct Direct · · ·
Reflected
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Figure 13-13 Line source near a two-dimensional conducting wedge. (a) Region separation. (b) Coordinate
system. Region I: 0 ≤ φ < π − φ′. Region II: π − φ′ < φ < π + φ′. Region III: π + φ′ < φ < nπ .

With these fields, it is evident that the following will occur:

1. Discontinuities in the field will be formed along the RSB boundary separating regions I
and II (reflected shadow boundary, φ = π − φ′), and along the ISB boundary separating
regions II and III (incident shadow boundary, φ = π + φ′).

2. No field will be present in region III (shadow region).

Since neither of the preceding results should be present in a physically realizable field, modifi-
cations and/or additions need to be made.

To remove the discontinuities along the boundaries and to modify the fields in all three regions,
diffracted fields must be included. To obtain expressions for the diffracted field distribution, we
assume that the source in Figure 13-13 is an infinite line source (either electric or magnetic).
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The fields of an electric line source satisfy the homogeneous Dirichlet boundary conditions
Ez = 0 on both faces of the wedge and the fields of the magnetic line source satisfy the homoge-
neous Neumann boundary condition ∂Ez /∂φ = 0 or Hz = 0 on both faces of the wedge. The faces
of the wedge are formed by two semi-infinite intersecting planes. The infinitely long line source
is parallel to the edge of the wedge, and its position is described by the coordinate (ρ ′, φ′). The
typical field point is denoted by (ρ, φ), as shown in Figure 13-13b. The line source is assumed
to have constant current.

Initially, we will consider only normal incidence diffraction by a straight edge, as shown in
Figure 13-14. For this situation, the plane of diffraction is perpendicular to the edge of the wedge.
Oblique incidence diffraction (Figure 13-31) and curved-edge diffraction (Figure 13-35) will be
discussed, respectively, in Sections 13.3.3 and 13.3.4.

The diffraction coefficient for the geometries of Figures 13-13 and 13-14 is obtained by [42]:

1. Finding the Green’s function solution in the form of an infinite series using modal techniques
and then approximating it for large values of βρ (far-field observations).

2. Converting the infinite series Green’s function solution into an integral.
3. Performing, on the integral Green’s function, a high-frequency asymptotic expansion (in

inverse powers of βρ) using standard techniques, such as the method of steepest descent.

An abbreviated derivation of this procedure will now be presented.

A. Modal Solution Using modal techniques, the total radiation electric field for an electric
line source of current Ie was found in Chapter 11, Section 11.6.3, to be that of (11-207a), or

E e
z = −ωμIe

4
G ⇒ He = − 1

jωμ
∇ × E (13-36)

and the total magnetic field for a magnetic line source of current Im to be that of (11-207b), or

H m
z = ωεIm

4
G ⇒ Em = + 1

jωε
∇ × H (13-37)

Incident
ray

Plane of
diffracted

rays

Edge

Wedge

s′

QD

WA = (2 − n)π

Figure 13-14 Wedge plane of diffraction for normal incidence.
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where G is referred to as the Green’s function, and it is given by (11-208a) as

G = 1

n

∞∑
m=0

εmJm/n(βρ)H (2)
m/n(βρ ′)

[
cos

m

n
(φ − φ′) ± cos

m

n
(φ + φ′)

]
for ρ ≤ ρ ′ (13-38)

εm =
{

1 m = 0

2 m �= 0
(13-38a)

For the case ρ ≥ ρ ′, ρ and ρ ′ are interchanged. The plus sign between the two cosine terms
is used if the boundary condition is of the homogeneous Neumann type, ∂G/∂φ = 0, on both
faces of the wedge. For the homogeneous Dirichlet boundary condition, G = 0, on both faces
of the wedge, the minus sign is used. In acoustic terminology, the Neumann boundary condition
is referred to as hard polarization and the Dirichlet boundary condition is referred to as the soft
polarization. This series is an exact solution to the time-harmonic, inhomogeneous wave equation
of a radiating line source and wedge embedded in a linear, isotropic, homogeneous, lossless
medium.

B. High-Frequency Asymptotic Solution Many times it is necessary to determine the total
radiation field when the line source is far removed from the vertex of the wedge. In such cases,
(13-38) can be simplified by replacing the Hankel function by the first term of its asymptotic
expansion, that is, by

H (2)
m/n(βρ ′)

βρ′→∞�
√

2

πβρ ′ e
−j [βρ′−π/4−(m/n)(π/2)] (13-39)

This substitution reduces G to

G =
√

2

πβρ ′ e
−j (βρ′−π/4) 1

n

∞∑
m=0

εmJm/n(βρ)e+j (m/n)(π/2)

×
[
cos

m

n
(φ − φ′) ± cos

m

n
(φ + φ′)

]
G =

√
2

πβρ ′ e
−j (βρ′−π/4)F (βρ) (13-40)

where

F (βρ) = 1

n

∞∑
m=0

εmJm/n(βρ)e+j (m/n)(π/2)
[
cos

m

n
(φ − φ′) ± cos

m

n
(φ + φ′)

]
(13-40a)

F (βρ) is used to represent either the normalized total E e
z , when the source is an electric line (soft

polarization), or H m
z , when the source is a magnetic line (hard polarization).

The infinite series of (13-40a) converges rapidly for small values of βρ. For example, if
βρ is less than 1, less than 15 terms are required to achieve a five-significant-figure accuracy.
However, at least 40 terms should be included when βρ is 10 to achieve the five-significant-figure
accuracy. To demonstrate the variations of (13-40a), the patterns of a unit amplitude plane wave
of hard polarization incident upon a half plane (n = 2) and 90◦ wedge (n = 3/2), computed
using (13-40a), are shown in Figure 13-15. Computed patterns for the soft polarization are shown
in Figure 13-16.

Whereas (13-40a) represents the normalized total field, in the space around a wedge of included
angle WA = (2 − n)π , of a unity amplitude plane wave incident upon the wedge, the field of a
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Figure 13-15 Normalized amplitude pattern of a hard polarization plane wave incident normally on a
two-dimensional conducting wedge.
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Figure 13-17 Principle of reciprocity in diffraction. (a) Plane wave incidence. (b) Cylindrical wave
incidence.

unit amplitude cylindrical wave incident upon the same wedge and observations made at very
large distances can be obtained by the reciprocity principle. Graphically, this is illustrated in
Figures 13-17a and 13-17b. Analytically, the cylindrical wave incidence fields of Figure 13-17b
can be obtained from (13-40a) and Figure 13-17a by substituting in (13-40a) ρ = ρ ′, φ = φ′,
and φ′ = φ.

A high-frequency asymptotic expansion for F (βρ) in inverse powers of βρ is very useful for
computational purposes, because of the slow convergence of (13-40a) for large values of βρ.
In order to derive an asymptotic expression for F (βρ) by the conventional method of steepest
descent for isolated poles and saddle points (see Appendix VI), it must first be transformed into
an integral or integrals of the form

P(βρ) =
∫

C
H (z )eβρh(z )dz (13-41)

and then evaluated for large βρ by means of the method of steepest descent [8, 47].
To accomplish this, first the cosine terms are expressed in complex form by

cos
(m

n
ξ∓

)
= 1

2
[ej (m/n)ξ∓ + e−j (m/n)ξ∓

] (13-42)

where
ξ∓ = φ ∓ φ′ (13-42a)

and the Bessel functions are replaced by contour integrals in the complex z plane, of the form

Jm/n(βρ) = 1

2π

∫
C

ej [βρ cos z+m/n(z−π/2)]dz (13-43a)

or

Jm/n(βρ) = 1

2π

∫
C ′

ej [βρ cos z−m/n(z+π/2)]dz (13-43b)

where the paths C and C ′ are shown in Figure 13-18a . Doing this and interchanging the order
of integration and summation, it can be shown that (13-40a) can be written as

F (βρ) = I (βρ, φ − φ′, n) ± I (βρ, φ + φ′, n) (13-44)
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Figure 13-18 Line contours, steepest descent paths, saddle points, and poles in complex z plane for
asymptotic evaluation of wedge diffraction formulas. (a) Contours for Bessel function. (b) Steepest descent
paths, saddle points, and poles.
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where

I (βρ, ξ∓, n) = 1

2πn

∫
C

ejβρ cos z
∞∑

m=1

e+j (m/n)(ξ∓+z )dz

+ 1

2πn

∫
C ′

ejβρ cos z
∞∑

m=0

e−j (m/n)(ξ∓+z )dz (13-44a)

with ξ∓ = φ ∓ φ′.
Using the series expansions of

− 1

1 − x−1
= x(1 + x + x 2 + x 3 + · · · ) =

∞∑
m=1

x m (13-45a)

1

1 − x−1
= 1 + x−1 + x−2 + x−3 + · · · =

∞∑
m=0

x−m (13-45b)

and that

1

1 − e−j (ξ∓+z )/n
= ej (ξ∓+z )/2n

ej (ξ∓+z )/2n − e−j (ξ∓+z )/2n
= 1

2
+ 1

2j
cot

(
ξ∓ + z

2n

)
(13-46)

we can ultimately write (13-44) or (13-40a) as

F (βρ) = 1

4π jn

∫
(C ′−C )

cot

(
φ − φ′ + z

2n

)
ejβρ cos z dz

± 1

4π jn

∫
(C ′−C )

cot

(
φ + φ′ + z

2n

)
ejβρ cos z dz (13-47)

where the negative sign before C indicates that this integration path is to be traversed in the
direction opposite to that shown in Figure 13-18a . It is now clear that F (βρ) has been written in
an integral of the form of (13-41), which can be evaluated asymptotically by contour integration
and by the method of steepest descent.

C. Method of Steepest Descent Equation 13-47 can also be written as

F (βρ) = F1(βρ) ± F2(βρ) (13-48)

F1(βρ) = 1

4π jn

∫
(C ′−C )

H1(z )eβρh1(z )dz (13-48a)

F2(βρ) = 1

4π jn

∫
(C ′−C )

H2(z )eβρh2(z )dz (13-48b)

H1(z ) = cot

[
(φ − φ′) + z

2n

]
= cot

(
ξ− + z

2n

)
(13-48c)

H2(z ) = cot

[
(φ + φ′) + z

2n

]
= cot

(
ξ+ + z

2n

)
(13-48d)

h1(z ) = h2(z ) = j cos(z ) (13-48e)

The evaluation of (13-48) can be accomplished by evaluating separately (13-48a) and (13-48b)
and summing the results. Let us examine first the evaluation of (13-48a) in detail. A similar
procedure can be used for (13-48b).
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Using the complex z -plane closed contour CT , we can write by referring to Figure 13-18b
that

1

4π jn

∮
CT

H1(z )eβρh1(z )dz = 1

4π jn

∫
(C ′−C )

H1(z )eβρh1(z )dz

+ 1

4π jn

∫
SDP+π

H1(z )eβρh1(z )dz

+ 1

4π jn

∫
SDP−π

H1(z )eβρh1(z )dz (13-49)

The closed contour CT is equal to the sum of

CT = C ′ + SDP+π − C + SDP−π (13-49a)

where SDP±π is used to represent the steepest descent paths passing through the saddle points
±π . We can rewrite (13-49) as

F1(βρ) = 1

4π jn

∫
(C ′−C )

H1(z )eβρh1(z )dz = 1

4π jn

∮
CT

H1(z )eβρh1(z )dz

− 1

4π jn

∫
SDP+π

H1(z )eβρh1(z )dz − 1

4π jn

∫
SDP−π

H1(z )eβρh1(z )dz (13-50)

which is the same as (13-48a). Therefore, (13-48a) can be integrated by evaluating the three terms
on the right side of (13-50). The closed contour of the first term on the right side of (13-50)
is evaluated using residue calculus and the other two terms are evaluated using the method of
steepest descent. When evaluated, it will be shown that the first term on the right side of (13-50)
will represent the incident geometrical optics and the other two terms will represent what will be
referred to as the incident diffracted field. A similar interpretation will be given when (13-48b)
is evaluated; it represents the reflected geometrical optics and reflected diffracted fields.

Using residue calculus, we can write the first term on the right side of (13-50) as [48]

1

4π jn

∮
CT

H1(z )eβρh1(z )dz = 2π j
∑

p

Res(z = zp)

= 2π j
∑

p

(residues of the poles enclosed by CT ) (13-51)

To evaluate (13-51), we first rewrite it as

1

4π jn

∮
CT

H1(z )eβρh1(z )dz

= 1

4π jn

∮
CT

cot

[
(φ − φ′) + z

2n

]
ejβρ cos(z )dz

=
∮

CT

1

4π jn
cot

[
(φ − φ′) + z

2n

]
ejβρ cos(z )dz =

∮
CT

N (z )

D(z )
dz (13-52)
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where

N (z )

D(z )
=

cos
[

(φ−φ′)+z
2n

]
ejβρ cos(z )

4π jn sin
[

(φ−φ′)+z
2n

] (13-52a)

N (z ) = cos

[
(φ − φ′) + z

2n

]
ejβρ cos(z ) (13-52b)

D(z ) = 4π jn sin

[
(φ − φ′) + z

2n

]
(13-52c)

Equation 13-52 has simple poles that occur when[
(φ − φ′) + z

2n

]
z=zp

= πN N = 0, ±1, ±2, . . . (13-53)

or
zp = −(φ − φ′) + 2πnN (13-53a)

provided that
−π ≤ zp = −(φ − φ′) + 2πnN ≤ +π (13-53b)

Using residue calculus, the residues of (13-51) or (13-52) for simple poles (no branch points,
etc.) can be found using [48]

Res(z = zp) = N (z )

dD(z )
dz

z=zp

= N (z )

D ′(z )

∣∣∣∣
z=zp

(13-54)

where

N (z )|z=zp = cos

[
(φ − φ′) + z

2n

]
ejβρ cos(z )

∣∣∣∣
z=−(φ−φ′)+2πnN

= cos(πN )ejβρ cos[−(φ−φ′)+2πnN ] (13-54a)

D ′(z )|z=zp = 2π j cos

[
(φ − φ′) + z

2n

]∣∣∣∣
z=−(φ−φ′)+2πnN

= 2π j cos(πN ) (13-54b)

Thus, (13-54) and (13-51) can be written, respectively, as

Res(z = zp) = 1

2π j
ejβρ cos[−(φ−φ′)+2πnN ] (13-55a)

1

4π jn

∮
CT

H1(z )eβρh1(z )dz = ejβρ cos[−(φ−φ′)+2πnN ]U [π − | − (φ − φ′) + 2πnN |] (13-55b)

The U (t − t0) function in (13-55b) is a unit step function defined as

U (t − t0) =

⎧⎪⎨⎪⎩
1 t > t0
1
2 t = t0
0 t < t0

(13-56)

The unit step function is introduced in (13-55b) so that (13-53b) is satisfied. When z = ±π ,
(13-53b) is expressed as

2πnN + − (φ − φ′) = +π (13-57a)
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for zp = +π and

2πnN − − (φ − φ′) = −π (13-57b)

for zp = −π . For the principal value of N (N ± = 0), (13-55b) reduces to

F1(βρ)|CT = 1

4π jn

∮
CT

H1(z )eβρh1(z )dz = ejβρ cos(φ−φ′)U [π − | − (φ − φ′|] (13-58)

This is referred to as the incident geometrical optics field, and it exists provided |φ − φ′| < π .
This completes the evaluation of (13-51). Let us now evaluate the other two terms on the right
side of (13-50).

In evaluating the last two terms on the right side of (13-50), the contributions from all the
saddle points along the steepest descent paths must be accounted for. In this situation, however,
only saddle points at z = zs = ±π occur. These are found by taking the derivative of (13-48e)
and setting it equal to zero. Doing this leads to

h ′
1(z )|z=zs = −j sin(z )|z=zs = 0 ⇒ zs = ±π (13-59)

The form used to evaluate the last two terms on the right side of (13-50) depends on whether the
poles of (13-53a), which contribute to the geometrical optics field, are near or far removed from
the saddle points at z = zs = ±π . Let us first evaluate each of the last two terms on the right
side of (13-50) when the poles of (13-53a) are far removed from the saddle point of (13-59).

When the poles of (13-53a) are far removed from the saddle points of (13-59), then the last two
terms on the right side of (13-50) are evaluated using the conventional steepest descent method
for isolated poles and saddle points. Doing this, we can write the last two terms on the right side
of (13-50), using the saddle points of (13-59), as [8, 47]

1

4π jn

∫
SDP+π

H1(z )eβρh1(z )dz
βρ→large� 1

4π jn

∣∣∣∣∣
√

2π

−βρh ′′
1 (zs = +π)

∣∣∣∣∣ ejπ/4

× H1(zs = +π)eβρh1(zs =π) = e−jπ/4

2n
√

2πβ
cot

[
π + (φ − φ′)

2n

]
e−jβρ

√
ρ

(13-60a)

1

4π jn

∫
SDP−π

H1(z )eβρh1(z )dz
βρ→large� 1

4π jn

∣∣∣∣∣
√

2π

−βρh ′′
1 (zs = −π)

∣∣∣∣∣ e−j 3π/4

× H1(zs = −π)eβρh1(zs =−π) = e−jπ/4

2n
√

2πβ
cot

[
π − (φ − φ′)

2n

]
e−jβρ

√
ρ

(13-60b)

Combining (13-60a) and (13-60b), it can be shown that the sum of the two can be written as

F1(βρ)|SDP±π
= − 1

4π jn

∫
SDP+π

H1(z )eβρh1(z )dz − 1

4π jn

∫
SDP−π

H1(z )eβρh1(z )dz

� e−jπ/4

√
2πβ

1

n
sin

(π

n

)
cos

(π

n

)
− cos

(
φ − φ′

n

) e−jβρ

√
p

(13-61)
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This is referred to as the incident diffracted field, and its form, as given by (13-61), is valid
provided that the poles of (13-53a) are not near the saddle points of (13-59). Another way to say
this is that (13-61) is valid provided that the observations are not made at or near the incident
shadow boundary of Figure 13-13. When the observations are made at the incident shadow
boundary φ − φ′ = π , (13-61) becomes infinite. Therefore, another form must be used for such
situations.

Following a similar procedure for the evaluation of (13-48b), it can be shown that its contribu-
tions along CT and the saddle points can be written in forms corresponding to (13-58) and (13-61)
for the evaluation of (13-48a). Thus, we can write that

F2(βρ)|CT = 1

4π jn

∮
CT

H2(z )eβρh2(z )dz

= ejβρ cos(φ+φ′)U [π − (φ + φ′)]

(13-62a)

F2(βρ)|SDP±π = − 1

4π jn

∫
SDP+π

H2(z )eβρh2(z )dz − 1

4π jn

∫
SDP−π

H2(z )eβρh2(z )dz

� e−jπ/4

√
2πβ

1

n
sin

(π

n

)
cos

(π

n

)
− cos

(
φ + φ′

n

) e−jβρ

√
ρ

(13-62b)

Equation 13-62b is valid provided the observations are not made at or near the reflection shadow
boundary of Figure 13-13. When the observations are made at the reflection shadow boundary
φ + φ′ = π , (13-62b) becomes infinite. Another form must be used for such cases.

If the poles of (13-53a) are near the saddle points of (13-59), then the conventional steepest
descent method of (13-60a) and (13-60b) cannot be used for the evaluation of the last two terms
of (13-50) for F1(βρ), and similarly for F2(βρ) of (13-48b). One method that can be used for
such cases is the so-called Pauli-Clemmow modified method of steepest descent [8, 47]. The
main difference between the two methods is that the solution provided by the Pauli-Clemmow
modified method of steepest descent has an additional discontinuous function that compensates
for the singularity along the corresponding shadow boundaries introduced by the conventional
steepest-descent method for isolated poles and saddle points. This factor is usually referred to as
the transition function, and it is proportional to a Fresnel integral. Away from the corresponding
shadow boundaries these transition functions are nearly unity, and the Pauli-Clemmow modified
method of steepest descent reduces to the conventional method of steepest descent.

It can be shown that by using the Pauli-Clemmow modified method of steepest descent,
(13-60a) and (13-60b) are evaluated using

1

4π jn

∫
SDP+π

H1(z )eβρh1(z )dz
βρ→large� 1

4π jn

∣∣∣∣∣
√

2π

−βρh ′′
1 (zs = +π)

∣∣∣∣∣
× ejπ/4H1(zs = +π)eβρh1(zs =π)F [βρg+(ξ−)]

= e−jπ/4

2n
√

2πβ
cot

[
π + (φ − φ′)

2n

]
× F [βρg+(φ − φ′)]

e−jβρ

√
ρ

(13-63a)
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1

4π jn

∫
SDP−π

H1(z )eβρh1(z )dz
βρ→large� 1

4π jn

∣∣∣∣∣
√

2π

−βρh ′′
1 (zs = −π)

∣∣∣∣∣
× e−j 3π/4H1(zs = −π)eβρh1(zs =−π)F [βρg−(ξ−)]

= e−jπ/4

2n
√

2πβ
cot

[
π − (φ − φ′)

2n

]
× F [βρg−(φ − φ′)]

e−jβρ

√
ρ

(13-63b)

where

F [βρg±(φ − φ′)] ≡ j [h1(zs) − h1(zp)]

≡ measure of separation between saddle points and poles

= 2j
∣∣∣√βρg±(φ − φ′)

∣∣∣e+jβρg±
∫ ∞
√

βρg±(φ−φ′)
e−jτ2

dτ (13-63c)

g±(φ − φ′) = 1 + cos[(φ − φ′) − 2πnN ±] (13-63d)

2πnN + − (φ − φ′) = +π (13-63e)

2πnN − − (φ − φ′) = −π (13-63f)

Similar forms are used for the evaluation of F2(βρ) along the steepest descent path using the
Pauli–Clemmow modified method of steepest descent. In (13-63e) and (13-63f), N ± represents
integer values that most closely satisfy the equalities. Such a procedure accounts for the poles
that are nearest to the saddle point at x = ±π , either from outside or within −π ≤ x ≤ +π , of
Figure 13-18b. In general, there are two such poles associated with F1(βρ) and two with F2(βρ).
More details about the transition function will follow.

D. Geometrical Optics and Diffracted Fields After the contour integration and the method
of steepest descent have been applied in the evaluation of (13-47), as discussed in the previous
section, it can be shown that for large values of βρ, (13-47) is separated into

F (βρ) = FG(βρ) + FD (βρ) (13-64)

where FG(βρ) and FD (βρ) represent, respectively, the total geometrical optics and total diffracted
fields created by the incidence of a unit amplitude plane wave upon a two-dimensional wedge,
as shown in Figure 13-13.

In summary, then, the geometrical optics fields (FG) and the diffracted fields (FD ) are repre-
sented, respectively, by

Geometrical Optics Fields

Incident GO Reflected GO Region

FG(βρ) =
⎧⎨⎩ ejβρ cos(φ−φ′) ± ejβρ cos(φ+φ′) 0 < φ < π − φ′

ejβρ cos(φ−φ′) π − φ′ < φ < π + φ′
0 π + φ′ < φ < nπ

(13-65)
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Diffracted Fields

Total diffracted field = Incident diffracted ± Reflected diffracted︷ ︸︸ ︷
FD (βρ) = FD (ρ, φ, φ′, n) = VB (ρ, φ, φ′, n) =

︷ ︸︸ ︷
V i

B (ρ, φ − φ′, n) ±
︷ ︸︸ ︷
V r

B (ρ, φ + φ′, n)

(13-66)

where

V i ,r
B (ρ, φ ∓ φ′, n) = I−π(ρ, φ ∓ φ′, n) + I+π(ρ, φ ∓ φ′, n) (13-66a)

I±π(ρ, φ ∓ φ′, n) � e−j (βρ+π/4)

jn
√

2π

√
g± cot

[
π ± (φ ∓ φ′)

2n

]
× e+jβρg±

∫ ∞
√

βρg±
e−jτ2

dτ + (higher-order terms) (13-66b)

g+ = 1 + cos[(φ ∓ φ′) − 2nπN +] (13-66c)

g− = 1 + cos[(φ ∓ φ′) − 2nπN −] (13-66d)

with N + or N − being a positive or negative integer or zero that most closely satisfies the equation

2nπN + − (φ ∓ φ′) = +π for g+ (13-66e)

2nπN − − (φ ∓ φ′) = −π for g− (13-66f)

Each of the diffracted fields (incident and reflected) exists in all space surrounding the wedge.
Equation 13-66b contains the leading term of the diffracted field plus higher-order terms that are
negligible for large values of βρ. The integral in (13-66b) is a Fresnel integral (see Appendix III).
In (13-65) and (13-66), the plus (+) sign is used for the hard polarization and the minus sign is
used for the soft polarization.

If observations are made away from each of the shadow boundaries so that βρg± � 1, (13-66a)
and (13-66b) reduce, according to (13-61) and (13-62b), to

V h ,s
B (ρ, φ ∓ φ′, n) = V i

B (ρ, φ − φ′, n) ± V r
B (ρ, φ + φ′, n)

= e−jπ/4

√
2πβ

1

n
sin

(π

n

)⎡⎢⎢⎣ 1

cos
(π

n

)
− cos

(
φ − φ′

n

) ± 1

cos
(π

n

)
− cos

(
φ + φ′

n

)
⎤⎥⎥⎦ e−jβρ

√
ρ

(13-67)

which is an expression of much simpler form, even for computational purposes. It is quite evident
that when the observations are made at the incident shadow boundary (ISB, where φ = π + φ′),
V i

B (ρ, φ − φ′, n) of (13-67) becomes infinite because φ − φ′ is equal to π and the two cosine terms
in the denominator of (13-67) are identical. Similarly, V r

B (ρ, φ + φ′, n) of (13-67) becomes infinite
when observations are made at the reflected shadow boundary (RSB, where φ = π − φ′). The
incident and reflected diffraction functions of the form in equation 13-67 are referred to as Keller’s
diffraction functions and possess singularities along the incident and reflection shadow boundaries.
The diffraction functions of (13-66a) through (13-66f) are representatives of the uniform theory
of diffraction (UTD). The regions in the neighborhood of the incident and reflection shadow
boundaries are referred to as the transition regions, and in these regions the fields undergo their
most rapid changes.
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The functions g+ and g− of (13-66c) and (13-66d) are representative of the angular separation
between the observation point and the incident or reflection shadow boundary. In fact, when
observations are made along the shadow boundaries, the g± functions are equal to zero. For
exterior wedges (1 ≤ n ≤ 2), the values of N + and N − in (13-66e) and (13-66f) are equal to
N + = 0 or 1 and N − = −1, 0, or 1. The values of n are plotted, as a function of ξ , where
−2π ≤ ξ± = φ ± φ′ ≤ 4π ; in Figure 13-19a for N − = −1, 0, 1 and in Figure 13-19b for N + =
0, 1. These integral values of N ± are particularly important along the shadow boundaries which
are represented by the dotted lines. The variations of N ± as a function of φ near the shadow
boundaries are not abrupt, and this is a desirable property. The permissible values of ξ± = φ ± φ′
for 0 ≤ φ, φ′ ≤ nπ when 1 ≤ n ≤ 2 are those bounded by the trapezoids formed by the solid
straight lines in Figures 13-19a and 13-19b.

In order for (13-67) to be valid, βρg± � 1. This can be achieved by having one of the
following conditions:

1. βρ and g± large. This is satisfied if the distance ρ to the observation point is large and the
observation angle φ is far away from either of the two shadow boundaries.

2. βρ large and g± small. This is satisfied if the distance ρ to the observation point is large
and the observation angle φ is near either one or both of the shadow boundaries.

3. βρ small and g± large. This is satisfied if the distance ρ to the observation point is small
and the observation angle φ is far away from either of the two shadow boundaries.

(a)

(b)

−2p 0

1

1.5

2

ISB: f = p + f′ 
RSB: f = p − f′

2p

n

N− = 0

3p 4p

ξ

−p p

N− = −1 N− = 1

1

1.5

2

ISB: f = f′ − p

RSB:f = (2n − 1) p − f′

n

N+ = 1

ξ

−2p 0 2p 3p 4p−p p

N+ = 0

Figure 13-19 Graphical representation of (a) N − and (b) N + as a function of ξ and n . (Source: R. G.
Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly
conducting surface,” Proc. IEEE, © 1974, IEEE.)
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30°

r

f

Figure 13-20 Plane wave incident on half-plane.

To demonstrate, we consider the problem of a plane wave, of incidence angle φ′ = 30◦,
impinging on a half-plane (n = 2), shown in Figure 13-20. In Figures 13-21a and 13-21b we
have plotted as a function of φ, respectively, the magnitude of the incident V i

B and the reflected
V r

B diffracted fields, as given by (13-66a) through (13-66f) for ρ = 1λ, and 100λ when φ′ = 30◦
and n = 2. In the same figures, these results are compared with those obtained using (13-67).
It is apparent that as the observation distance ρ increases, the angular sector near the incident
and reflected shadow boundaries over which (13-67) becomes invalid decreases; in the limit as
ρ → ∞, both give the same results.

The expression of (13-66) represents the diffraction of the unity strength incident plane wave
with observations made at P(ρ, φ), as shown in Figure 13-13. Diffraction solutions of cylindrical
waves, with observations at large distances, can be obtained by the use of the reciprocity principle
along with the solution of the diffraction of an incident plane wave by a wedge as given by
(13-66) through (13-66f). Using the geometry of Figure 13-17b, it is evident that cylindrical
wave incidence diffraction can be obtained by substituting in (13-66) through (13-66f) ρ = ρ ′,
φ = φ′, and φ′ = φ.

E. Diffraction Coefficients The incident diffraction function V i
B of (13-66) can also be writ-

ten, using (13-66a) through (13-66f), as

V i
B (ρ, φ − φ′, n) = V i

B (ρ, ξ−, n) = e−jβρ

√
ρ

Di (ρ, ξ−, n) (13-68)

where

ξ− = φ − φ′ (13-68a)

Di (ρ, ξ−, n) = − e−jπ/4

2n
√

2πβ
{C +(ξ−, n)F [βρg+(ξ−)] + C −(ξ−, n)F [βρg−(ξ−)]} (13-68b)

C +(ξ−, n) = cot

(
π + ξ−

2n

)
(13-68c)

C −(ξ−, n) = cot

(
π − ξ−

2n

)
(13-68d)

F [βρg+(ξ−)] = 2j
√

βρg+(ξ−)e+jβρg+(ξ−)

∫ ∞
√

βρg+(ξ−)

e−jτ2
dτ (13-68e)

F [βρg−(ξ−)] = 2j
√

βρg−(ξ−)e+jβρg−(ξ−)

∫ ∞
√

βρg−(ξ−)

e−jτ2
dτ (13-68f)
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Figure 13-21 Plane wave diffraction by a half-plane. (a) Incident diffracted field. (b) Reflected diffracted
field.
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The functions g+(ξ−) and g−(ξ−) are given by (13-66c) through (13-66f). In (13-68),
Di (ρ, ξ−, n) is defined as the diffraction coefficient for the incident diffracted field, and it will
be referred to as the incident diffraction coefficient for a unit amplitude incident plane wave.

In a similar manner, the reflected diffraction function V r
B of (13-66) can also be written, using

(13-66a) through (13-66f), as

V r
B (ρ, φ + φ′, n) = V r

B (ρ, ξ+, n) = e−jβρ

√
ρ

Dr (ρ, ξ+, n) (13-69)

where

ξ+ = φ + φ′ (13-69a)

Dr (ρ, ξ+, n) = − e−jπ/4

2n
√

2πβ
{C +(ξ+, n)F [βρg+(ξ+)] + C −(ξ+, n)F [βρg−(ξ+)]} (13-69b)

C +(ξ+, n) = cot

(
π + ξ+

2n

)
(13-69c)

C −(ξ+, n) = cot

(
π − ξ+

2n

)
(13-69d)

F [βρg+(ξ+)] = 2j
√

βρg+(ξ+)e+jβρg+(ξ+)

∫ ∞
√

βρg+(ξ+)

e−jτ2
dτ (13-69e)

F [βρg−(ξ+)] = 2j
√

βρg−(ξ+)e+jβρg−(ξ+)

∫ ∞
√

βρg−(ξ+)

e−jτ2
dτ (13-69f)

Dr (ρ, ξ+, n) will be referred to as the reflection diffraction coefficient for a unit amplitude incident
plane wave.

With the aid of (13-68) and (13-69), the total diffraction function VB (ρ, φ ∓ φ′, n) =
V i

B (ρ, φ − φ′, n) ∓ V r
B (ρ, φ + φ′, n) of (13-66) can now be written as

VB (ρ, φ, φ′, n) = V i
B (ρ, φ − φ′, n) ∓ V r

B (ρ, φ + φ′, n)

= e−jβρ

√
ρ

[Di (ρ, φ − φ′, n) ∓ Dr (ρ, φ + φ′, n)] (13-70)

or

VBs(ρ, φ, φ′, n) = V i
B (ρ, φ − φ′, n) − V r

B (ρ, φ + φ′, n)

= e−jβρ

√
ρ

[Di (ρ, φ − φ′, n) − Dr (ρ, φ + φ′, n)]

= e−jβρ

√
ρ

Ds(ρ, φ, φ′, n)

(13-70a)
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VBh(ρ, φ, φ′, n) = V i
B (ρ, φ − φ′, n) + V r

B (ρ, φ + φ′, n)

= e−jβρ

√
ρ

[Di (ρ, φ − φ′, n) + Dr (ρ, φ + φ′, n)]

= e−jβρ

√
ρ

Dh(ρ, φ, φ′, n)

(13-70b)

Ds(ρ, φ, φ′, n) = Di (ρ, φ − φ′, n) − Dr (ρ, φ + φ′, n) (13-70c)

Dh(ρ, φ, φ′, n) = Di (ρ, φ − φ′, n) + Dr (ρ, φ + φ′, n) (13-70d)

where VBs = V i
B − V r

B = soft (polarization) diffraction function
VBh = V i

B + V r
B = hard (polarization) diffraction function

V i
B = incident diffraction function

V r
B = reflection diffraction function

Ds = Di − Dr = soft (polarization) diffraction coefficient
Dh = Di + Dr = hard (polarization) diffraction coefficient
Di = incident diffraction coefficient
Dr = reflection diffraction coefficient

Using (13-68b) and (13-69b) in expanded form, the soft (Ds ) and hard (Dh ) diffraction coef-
ficients can ultimately be written, respectively, as

Ds(ρ, φ, φ′, n) = − e−jπ/4

2n
√

2πβ

×
({

cot

[
π + (φ − φ′)

2n

]
F [βρg+(φ − φ′)] + cot

[
π − (φ − φ′)

2n

]
F [βρg−(φ − φ′)]

}
−

{
cot

[
π + (φ + φ′)

2n

]
F [βρg+(φ + φ′)] + cot

[
π − (φ + φ′)

2n

]
F [βρg−(φ + φ′)]

})
(13-71a)

Dh(ρ, φ, φ′, n) = − e−jπ/4

2n
√

2πβ

×
({

cot

[
π + (φ − φ′)

2n

]
F [βρg+(φ − φ′)] + cot

[
π − (φ − φ′)

2n

]
F [βρg−(φ − φ′)]

}
+

{
cot

[
π + (φ + φ′)

2n

]
F [βρg+(φ + φ′)] + cot

[
π − (φ + φ′)

2n

]
F [βρg−(φ + φ′)]

})
(13-71b)

where

φ − φ′ = ξ− (13-71c)

φ + φ′ = ξ+ (13-71d)
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The formulations of (13-68) through (13-71d) are part of the often referred to uniform theory
of diffraction (UTD) [10], which are extended to include oblique incidence and curved edge
diffraction. These will be discussed in Sections 13.3.3 and 13.3.4, respectively.

A Fortran and MATLAB computer program designated WDC, Wedge Diffraction Coefficients,
computes the soft and hard polarization diffraction coefficients of (13-71a) and (13-71b) (actually
the diffraction coefficients normalized by

√
λ). The Fortran program was initially developed and

reported in [53]. The program also accounts for oblique wave incidence, and it is based on the
more general formulation of (13-89a) through (13-90b). The main difference in the two sets of
equations is the sin β ′

0 function found in the denominator of (13-90a) and (13-90b); it has been
introduced to account for the oblique wave incidence. In (13-90a) and (13-90b), L is used as the
distance parameter and ρ is used in (13-71a) and (13-71b).

Therefore, to use the subroutine WDC to compute (13-71a) and (13-71b) let the oblique
incidence angle β ′

0, referred to as BTD, be 90◦. The distance parameter R should represent ρ

(in wavelengths). This program uses the complex function FTF (Fresnel transition function) to
complete its computations. The FTF program computes (13-68e), (13-68f), (13-69e), and (13-
69f) based on the asymptotic expressions of (13-74a), (13-74b), and a linear interpolation for
intermediate arguments. Computations of the Fresnel integral can also be made on an algorithm
reported in [49] as well as on approximate expressions of [50].

To use the WDC subroutine, the user must specify R = ρ (in wavelengths), PHID = φ

(in degrees), PHIPD = φ′ (in degrees), BTD = β ′
0 (in degrees), and FN = n (dimensionless).

The program subroutine computes the normalized (with respect to
√

λ) diffraction coefficients
CDCS = Ds and CDCH = Dh . The angles represented by φ and φ′ should be referenced from the
face of the wedge, as shown in Figure 13-13b. For normal incidence, β ′

0 = 90◦. This computer
subroutine has been used successfully in a multitude of problems; it is very efficient, and the user
is encouraged to utilize it effectively.

Following a similar procedure, the incident and reflected diffraction functions and the incident,
reflected, soft, and hard diffraction coefficients using Keller’s diffraction functions of (13-67) can
be written, respectively, as

V i
B (ρ, φ − φ′, n) = V i

B (ρ, ξ−, n) = e−jβρ

√
ρ

Di (ρ, φ − φ′, n) = e−jβρ

√
ρ

Di (ρ, ξ−, n) (13-72a)

V r
B (ρ, φ + φ′, n) = V r

B (ρ, ξ+, n) = e−jβρ

√
ρ

Dr (ρ, φ + φ′, n) = e−jβρ

√
ρ

Dr (ρ, ξ+, n) (13-72b)

Di (ρ, φ − φ′, n) = e−jπ/4

√
2πβ

1

n
sin

(π

n

)
cos

(π

n

)
− cos

(
φ − φ′

n

) (13-72c)

Dr (ρ, φ + φ′, n) = e−jπ/4

√
2πβ

1

n
sin

(π

n

)
cos

(π

n

)
− cos

(
φ + φ′

n

) (13-72d)
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Ds(ρ, φ, φ′, n) = Di (ρ, φ − φ′, n) − Dr (ρ, φ + φ′, n)

=
e−jπ/4 1

n
sin

(π

n

)
√

2πβ

⎡⎢⎢⎣ 1

cos
(π

n

)
− cos

(
φ − φ′

n

) − 1

cos
(π

n

)
− cos

(
φ + φ′

n

)
⎤⎥⎥⎦
(13-72e)

Dh(ρ, φ, φ′, n) = Di (ρ, φ − φ′, n) + Dr (ρ, φ + φ′, n)

=
e−jπ/4 1

n
sin

(π

n

)
√

2πβ

⎡⎢⎢⎣ 1

cos
(π

n

)
− cos

(
φ − φ′

n

) + 1

cos
(π

n

)
− cos

(
φ + φ′

n

)
⎤⎥⎥⎦
(13-72f)

The diffraction coefficients of (13-72c) through (13-72f) are referred to as Keller’s diffraction
coefficients , and they possess singularities along the incident and reflection shadow boundaries.

The wedge diffraction coefficients described previously assume that the orientational direction
for the incident and diffracted electric and magnetic field components of the soft and hard polar-
ized fields are those shown, respectively, in Figures 13-22a and 13-22b. A negative value in the
diffraction coefficients will reverse the directions of the appropriate fields.

The function F (X ) of (13-63c), (13-68e), (13-68f), (13-69e), and (13-69f) is known as a Fresnel
transition function and it involves a Fresnel integral. Its magnitude and phase for 0.001 ≤ X ≤ 10
are shown plotted in Figure 13-23. It is evident that

|F (X )| ≤ 1
0 ≤ Phase of F (X ) ≤ π/4

}
, for 0.001 ≤ X ≤ 10 (13-73a)

and
F (X ) � 1, for X > 10 (13-73b)

Thus, if the argument X of the transition function exceeds 10, it can be replaced by unity. Then the
expressions for the diffraction coefficients of (13-68b), (13-69b), (13-71a), and (13-71b) reduce,
respectively, to those of (13-72c) through (13-72f). Asymptotic expressions for the transition
function F (X ) are [53]:

For small X (X < 0.3)

F (X ) �
[√

πX − 2Xejπ/4 − 2

3
X 2e−jπ/4

]
ej (π/4 + X ) (13-74a)

For large X (X > 5.5)

F (X ) �
[

1 + j
1

2X
− 3

4

1

X 2
− j

15

8

1

X 3
+ 75

16

1

X 4

]
(13-74b)

To facilitate the reader in the computations, a Fortran and Matlab computer function pro-
gram designated as FTF, for Fresnel transition function, computes the wedge transition function
F (X ) of (13-68e), (13-68f), (13-69e), or (13-69f). The algorithm is based on the approximations
of (13-74a) for small arguments (X < 0.3) and on (13-74b) for large arguments (X > 5.5). For
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Figure 13-22 Polarization of incident and diffracted fields. (a) Soft polarization. (b) Hard polarization.
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intermediate values (0.3 ≤ X ≤ 5.5), a linear interpolation scheme is used. The program was
developed and reported in [53].

To have a better understanding of the UTD diffraction coefficients Di (ρ, φ − φ′, n) and
Dr (ρ, φ + φ′, n) of (13-68b) and (13-69b), let us examine their behavior around the incident
and reflection shadow boundaries. This will be accomplished by considering only exterior wedges
(n ≥ 1) and examining separately the geometry where the incident wave illuminates the φ = 0 side
of the wedge [φ′ ≤ (n − 1)π], as shown in Figure 13-24a , and the geometry where the incident
wave illuminates the φ = nπ side of the wedge [φ′ ≥ (n − 1)π], as shown in Figure 13-24b.

Case A [φ′ ≤ (n − 1)π], Figure 13-24a

For this case the incident shadow boundary (ISB) occurs when φ = π + φ′ (or φ − φ′ = π) and
the reflection shadow boundary (RSB) occurs when φ = π − φ′ (or φ + φ′ = π).

(b)

(a)

RSB (f + f′ = p)

IS
B (f

 − f
′ =

 p
)

(n − 1)p
f = p − f′

f = 0

f = np

f = p + f′
f′

R
SB

 [
f

 +
 f

′ =
 (

2n
 −

 1
)p

]

ISB (f − f′ = −p)

(n − 1)p

f = f′ − p
f = 0

f = np

f = (2n − 1)p − f′

f′

WA = (2 − n)π

WA = (2 − n)π

Figure 13-24 Incident and reflection shadow boundaries for wedge diffraction. (a) Case A: φ′ ≤ (n − 1)π .
(b) Case B: φ′ ≥ (n − 1)π .
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1. Along the ISB (φ = π + φ′ or φ − φ′ = π), the second cotangent function of (13-68b)
becomes singular and the first cotangent function in (13-68b), and both of them in (13-69b),
remain bounded. That is, from (13-68b),

C −(ξ−, n)|φ−φ′ = π = cot

(
π − ξ−

2n

)∣∣∣∣
φ−φ′ =π

= cot

[
π − (φ − φ′)

2n

]∣∣∣∣
φ−φ′ = π

= ∞
(13-75a)

In addition, the value of N − from (13-66f) is equal to 0. That is,

2nπN − − (φ − φ′)|φ − φ′=π = 2nπN − − π = −π ⇒ N − = 0 (13-75b)

2. Along the RSB (φ = π − φ′ or φ + φ′ = π), the second cotangent function of (13-69b)
becomes singular and the first cotangent function in (13-69b) and both of them in (13-68b)
remain bounded. That is, from (13-69b),

C −(ξ+, n)|φ + φ′ =π = cot

(
π − ξ+

2n

)∣∣∣∣
φ + φ′ = π

= cot

[
π − (φ + φ′)

2n

]∣∣∣∣
φ+φ′=π

= ∞
(13-76a)

In addition, the value of N − from (13-66f) is equal to 0. That is,

2nπN − − (φ + φ′)|φ+φ′=π = 2nπN − − π = −π ⇒ N − = 0 (13-76b)

Case B [φ′ ≥ (n − 1)π], Figure 13-24b

For this case, the incident shadow boundary (ISB) occurs when φ = φ′ − π (or φ − φ′ = −π) and
the reflection shadow boundary (RSB) occurs when φ = (2n − 1)π − φ′ [or φ + φ′ = (2n − 1)π].

1. Along the ISB (φ = φ′ − π or φ − φ′ = −π), the first cotangent function in (13-68b)
becomes singular and the second cotangent function of (13-68b), and both of them in (13-
69b), remain bounded. That is, from (13-68b),

C +(ξ−, n)|φ−φ′=−π = cot

(
π + ξ−

2n

)∣∣∣∣
φ−φ′=−π

= cot

[
π + (φ − φ′)

2n

]∣∣∣∣
φ−φ′=−π

= ∞ (13-77a)

In addition, the value of N + from (13-66e) is equal to 0. That is,

2nπN + − (φ − φ′)|φ − φ′=−π = 2nπN + + π = +π ⇒ N + = 0 (13-77b)

2. Along the RSB [φ = (2n − 1)π − φ′ or φ + φ′ = (2n − 1)π], the first cotangent function
of (13-69b) becomes singular and the second cotangent function of (13-69b), and both of
them in (13-68b), remain bounded. That is, from (13-69b),

C +(ξ+, n)|φ+φ′ = (2n−1)π = cot

(
π + ξ+

2n

)∣∣∣∣
φ+φ′ = (2n−1)π

= cot

[
π + (φ + φ′)

2n

]∣∣∣∣
φ + φ′=(2n−1)π

= ∞ (13-78a)

In addition, the value of N + from (13-66e) is equal to 1. That is,

2nπN + − (φ + φ′)|φ+φ′=(2n−1)π = 2nπN + − (2n − 1)π = +π ⇒ N + = 1 (13-78b)

The results for Cases A and B are summarized in Table 13-1.
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TABLE 13-1 Cotangent function behavior and values of N ± along the shadow boundaries

The cotangent function Value of N ± at the
becomes singular when shadow boundary

cot

[
π − (φ − φ′)

2n

]
φ = π + φ′ or φ − φ′ = π

ISB of Case A Figure 13-24a
N − = 0

cot

[
π − (φ + φ′)

2n

]
φ = π − φ′ or φ + φ′ = π

RSB of Case A Figure 13-24a
N − = 0

cot

[
π + (φ − φ′)

2n

]
φ = φ′ − π or φ − φ′ = −π

ISB of Case B Figure 13-24b
N + = 0

cot

[
π + (φ + φ′)

2n

]
φ = (2n − 1)π − φ′ or φ + φ′ = (2n − 1)π

RSB of Case B Figure 13-24b
N + = 1

Whereas in the diffraction coefficients of UTD one of the cotangent functions becomes singular
along the incident or reflection shadow boundary, while the other three cotangent functions are
bounded, the product of the cotangent function along with its corresponding Fresnel transition
function along that shadow boundary is discontinuous but bounded. It is this finite discontinuity
created by the singular cotangent term and its corresponding Fresnel transition function that
removes the bounded geometrical optics discontinuity along that boundary.

To demonstrate, let us consider one of the four shadow boundaries created in Figure 13-24.
We choose the ISB (φ = π + φ′ or φ − φ′ = π) of Figure 13-24a where φ′ ≤ (n − 1)π . Similar
results are found for the other three choices. At the ISB of Figure 13-24a

ξ− = φ − φ′ = π (13-79)

and in the neighborhood of it
ξ− = φ − φ′ = π − ε (13-79a)

where ε is positive on the illuminated side of the incident shadow boundary. Using (13-79a), we
can write (13-66f) as

2nπN − − (φ − φ′) = 2nπN − − (π − ε) = (2nN − − 1)π + ε = −π (13-80)

For this situation, the cotangent function that becomes singular is that shown in the first row of
Table 13-1 whose N − value is 0. Therefore, that cotangent function near the ISB of Figure 13-24a
can be written using (13-80) with N − = 0 (or φ − φ′ = π − ε) as

C −(φ − φ′, n) = cot

[
π − (φ − φ′)

2n

]
= cot

[
π − π + ε

2n

]
= cot

( ε

2n

)
� 2n

ε
= 2n

|ε|sgn(ε)
(13-80a)

where sgn is the sign function. According to (13-66d),

g−(ξ−) = g−(φ − φ′) = 1 + cos[(φ − φ′) − 2πnN −] = 1 + cos(φ − φ′)

g−(φ − φ′) = 1 + cos(π − ε) = 1 − cos(ε)
ε→0� 1 −

(
1 − ε2

2

)
= ε2

2
(13-80b)
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The transition function of (13-68f) can also be written using (13-80b) as

F [βρg−(ξ−)] = F [βρg−(φ − φ′)] = F

[
βρ

(
ε2

2

)]
(13-80c)

which for small values of its argument can be approximated by the first term of its small-argument
asymptotic form (13-74a). That is,

F

(
βρε2

2

)
�

√
πβρε2

2
ejπ/4 = |ε|

√
πβρ

2
ejπ/4 (13-81)

Thus, the product of C −(φ − φ′, n)F [βρg−(φ − φ′)], as each is given by (13-80a) and (13-81),
can be approximated by

cot

[
π − (φ − φ′)

2n

]
F [βρg−(φ − φ′)] = n

√
2πβρ sgn(ε)ejπ/4 (13-82)

It is apparent that (13-82) exhibits a finite discontinuity that is positive along the illuminated
side of the incident shadow boundary and negative on the other side.

The corresponding incident diffracted field (13-68) along the incident shadow boundary can
be approximated, using (13-82) and only the second term within the brackets in (13-68b), as

V i
B (ρ, φ − φ′ = π − ε, n) � e−jβρ

√
ρ

[
− e−jπ/4

2n
√

2πβ
n
√

2πβρ sgn(ε)ejπ/4

]
= −e−jβρ

2
sgn(ε)

(13-83)

Apart from the phase factor, this function is equal to −0.5, on the illuminated side of the incident
shadow boundary and +0.5 on the other side. Clearly, such a bounded discontinuity possesses
the proper magnitude and polarity to compensate for the discontinuity created by the geometrical
optics field. A similar procedure can be used to demonstrate the discontinuous nature of the
diffracted field along the other shadow boundaries of Figure 13-24.

To illustrate the principles of geometrical optics (GO) and geometrical theory of diffraction
(GTD), an example will be considered next.

Example 13-3

A plane wave of unity amplitude is incident upon a half-plane (n = 2) at an incidence angle of φ′ = 30◦,
as shown in the Figure 13-20. At a distance of one wavelength (ρ = λ) from the edge of the wedge,
compute and plot the amplitude and phase of the following:

1. Total (incident plus reflected) geometrical optics field.
2. Incident diffracted field.
3. Reflected diffracted field.
4. Total field (geometrical optics plus diffracted).

Do these for both soft and hard polarizations.

Solution: The geometrical optics field components are computed using (13-65); incident and reflected
diffracted fields are computed using (13-68) through (13-69f). These are plotted in Figure 13-25a and
13-25b for soft and hard polarizations, respectively.
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Figure 13-25 Field distribution of various components of a plane wave incident normally on a con-
ducting half-plane. (a) Soft polarization. (b) Hard polarization. (Source: C. A. Balanis, Antenna Theory:
Analysis and Design , copyright © 1982, John Wiley & Sons, Inc. Reprinted by permission of John Wiley
& Sons, Inc.).
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In Figure 13-25a the amplitude patterns of the geometrical optics and diffracted fields for the soft
polarization are displayed as follows. The

1. Dashed curve (----) represents the total geometrical optics field (incident and reflected) computed
using (13-65).

2. Dash-dot curve (−·−·−) represents the amplitude of the incident diffracted (ID) field V i
B computed

using (13-68) through (13-68f).
3. Dotted curve (· · · · ) represents the amplitude of the reflected diffracted (RD) field V r

B computed
using (13-69) through (13-69f).

4. Solid curve (—) represents the total amplitude pattern for soft polarization computed using results
from parts 1 through 3.

Observing the data of Figure 13-25a it is evident that the

1. GO field is discontinuous at the reflection shadow boundary (RSB) (φ = 180◦ − φ′ = 180◦ −
30◦ = 150◦) and at the incident shadow boundary (ISB) (φ = 180◦ + φ′ = 180◦ + 30◦ = 210◦).

2. GO field in the shadow region (210◦ < φ < 360◦) is zero.
3. Reflected diffracted (RD) field, although it exists everywhere, predominates around the reflection

shadow boundary (φ = 150◦) with values of −0.5 for φ = (150◦)− and +0.5 for φ = (150)+.
The total discontinuity at φ = 150◦ occurs because the phase undergoes a phase jump of 180◦.

4. Incident diffracted (ID) field also exists everywhere but it predominates around the incident shadow
boundary (φ = 210◦) with values of −0.5 for φ = (210◦)− and +0.5 for φ = (210◦)+. The total
discontinuity at φ = 210◦ occurs because the phase undergoes a phase jump of 180◦.

5. Total amplitude field pattern is continuous everywhere with the discontinuities of the GO field
compensated with the inclusion of the diffracted fields. It should be emphasized that the GO
discontinuity at the RSB was removed by the inclusion of the reflected diffracted (RD) field and
that at the ISB was compensated by the incident diffracted (ID) field. The GO field was also
modified in all space with the addition of the diffracted fields, and radiation intensity is present in
the shadow region (210◦ < φ < 360◦).

Computations for the same geometry were also carried out for the hard polarization and the amplitude
is shown in Figure 13-25b. The same phenomena observed for soft polarization are also evident for the
hard polarization.

The geometrical optics fields of Example 13-2 and Figure 13-9, displayed in Figure 13-10,
exhibit discontinuities. To remove the discontinuities, diffracted fields must be included. This can
be accomplished using the formulations for diffracted fields that have been developed up to this
point.

Example 13-4

For the geometry of Figure 13-9, repeat the formulations of Example 13-2, including the fields diffracted
from the edges of the strip.

Solution: According to the solution of Example 13-2, the normalized incident (direct) and reflected
fields of the line source above an infinite width strip are given, respectively, by

E i
z = E0

e−jβρi

√
ρi



Balanis c13.tex V2 - 11/24/2011 12:45 A.M. Page 793

GEOMETRICAL THEORY OF DIFFRACTION: EDGE DIFFRACTION 793

and

E r
z = −E0

e−jβρr

√
ρr

where ρi and ρr are, respectively, the distances from the source and image (caustic) to the observation
point, as shown in Figure 13-26a .

To take into account the finite width of the strip, we assume that the far-zone geometrical optics field
components (direct and reflected) are the same as for the infinite width strip and the field intensity at
the edges of the strip is the same as for the infinite width strip.

These assumptions, which become more valid for larger width strips, allow us to determine the
diffraction contributions from each of the edges. Because of the geometrical symmetry, we can separate
the space surrounding the strip only into four regions, as shown in Figure 13-26a . The angular bounds
and the components that contribute to each are as follows:

Region Angular space Components

I α ≤ φ ≤ π − α Direct, reflected, diffracted (1 & 2)
II 2π − α ≤ φ ≤ 2π , 0 ≤ φ ≤ α Direct, diffracted (1 & 2)
III π + α ≤ φ ≤ 2π − α Diffracted (1 & 2)
IV π − α ≤ φ ≤ π + α Direct, diffracted (1 & 2)

Because of symmetry, we need only consider half of the total space for computations.
To determine the first-order diffractions from each of the edges, we also assume that each forms a

wedge (in this case a half space) that initially is isolated from the other. This allows us to use for each
the diffraction properties of the canonical problem (wedge) discussed in the previous section. Thus, the
field diffracted from wedge 1 is equal to the product of:

1. The direct (incident) field Ez evaluated at the point of diffraction.
2. The diffraction coefficient as given by (13-70c).
3. The spatial attenuation factor as given by (13-35b).
4. The phase factor as given by (13-34a).

In equation form, it is similar to (13-34a), and it is written as

E d
z1(ρ1, φ) = E i

z (ρd = s ′)Ds (s
′, ψ1, α, 2)A1(ρ1)e

−jβρ1

where

E i
z (ρd , s ′) = E0

e−jβs ′

√
s ′

Ds (s
′, ψ1, α, 2) = Di (s ′, ψ1 − α, 2) − Dr (s ′, ψ1 + α, 2)

A1(ρ1) = 1√
ρ1

Using the preceding equations, we can write that

E d
z1(ρ1, φ) = E0

{
e−jβs ′

√
s ′ [Di (s ′, ψ1 − α, 2) − Dr (s ′, ψ1 + α, 2)]

}
e−jβρ1

√
ρ1

E d
z1(ρ1, φ) = E0[V i

B (s ′, ψ1 − α, 2) − V r
B (s ′, ψ1 + α, 2)]

e−jβρ1

√
ρ1
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Figure 13-26 Line source above a finite width strip. (a) Region separation. (b) Diffraction by edges
1 and 2. (c) Diffraction by edge 1 in region III.
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where V i
B and V r

B are the diffraction functions of (13-68) and (13-69). According to the geometry of
Figures 13-26b and 13-26c

ψ1 =
{

π − φ 0 ≤ φ ≤ π (Figure 13-26b)

3π − φ π ≤ φ ≤ 2π (Figure 13-26c)

In a similar manner, it can be shown that the field diffracted by wedge 2 is given by

E d
z2 = E0[V i

B (s ′, ψ2 − α, 2) − V r
B (s ′, ψ2 + α, 2)]

e−jβρ2

√
ρ2

ψ2 = φ for 0 < φ < 2π (Figure 13-26b)

For far-field observations

ρi � ρ − h sin φ

ρr � ρ + h sin φ

ρ1 � ρ − w

2
cos φ

ρ2 � ρ + w

2
cos φ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
for phase variations

ρi � ρr � ρ1 � ρ2 � ρ for amplitude variations

which allow the fields to be written as

E i
z = E0e+jβh sin φ 0 < φ < π + α, 2π − α < φ < 2π (direct)

E r
z = −E0e−jβh sin φ α < φ < π − α (reflected)

E d
z1 = E0[V i

B (s ′, ψ1 − α, 2) − V r
B (s ′, ψ1 + α, 2)]e+j (βw/2) cos φ (diffracted from wedge # 1)

ψ1 =
{

π − φ 0 < φ < π

3π − φ π < φ < 2π

E d
z2 = E0[V i

B (s ′, ψ2 − α, 2) − V r
B (s ′, ψ2 + α, 2)]e−j (βw/2) cos φ (diffracted from wedge #2)

ψ2 = φ 0 < φ < 2π

where the e−jβρ/
√

ρ factor has been suppressed.
It should be stated that the preceding equations represent only first-order diffractions, which usually

provide sufficient accuracy for many high-frequency applications. Multiple diffractions between the
edges occur and should be included when the strip is electrically small and when more accurate results
are required.

For a strip of width w = 2λ and with the source at a height of h = 0.5λ, the normalized
pattern computed using these equations is shown in Figure 13-27, where it is compared with
GO patterns for infinite and finite width strips. It is evident that there is a significant dif-
ference between the three, especially in the lower hemisphere, where for the most part the
GO pattern exhibits no radiation, and in the regions where there are discontinuities in the GO
pattern.

In addition to antenna pattern prediction, diffraction techniques are extremely well suited for
scattering problems. To demonstrate the applicability and versatility of diffraction techniques to
scattering, let us consider such an example.
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Figure 13-27 Radiation amplitude pattern of electric line source above a finite width strip.

Example 13-5

A soft polarized uniform plane wave, whose electric field amplitude is E0, is incident upon a two-
dimensional electrically conducting strip of width w , as shown in Figure 13-28a .

1. Determine the backscattered (φ = φ′) electric field and its backscattered scattering width (SW).
2. Compute and plot the normalized SW (σ2−D/λ) in dB when w = 2λ and the SW (σ2−D) in dB/m

(dBm) when w = 2λ and f = 10 GHz.

Solution: For a soft polarized field, the incident electric field can be written, according to the geometry
of Figure 13-28a , as

Ei = âz E0e−jβi .r = âz E0ejβ(x cos φ′+y sin φ′)

The backscattered field diffracted from wedge 1 can be written, by referring to the geometry of Figure
13-28b, as

Ed
1 = Ei (Q1) • D

s
1A1(ρ1)e

−jβρ1

where

Ei (Q1) = Ei

x = w/2
y = 0
φ = φ′

= âz E0ej (βw/2) cos φ
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Figure 13-28 Wave diffraction by a finite width strip. (a) Plane wave incidence. (b) Plane wave
diffraction.

D
s
1 = âz âz

e−jπ/4 sin
(

π
n

)
n
√

2πβ

⎡⎢⎢⎣ 1

cos
(π

n

)
− cos

(
ψ1 − ψ ′

1

n

)

− 1

cos
(π

n

)
− cos

(
ψ1 + ψ ′

1

n

)
⎤⎥⎥⎦

n = 2
ψ1 = ψ ′

1 = π − φ

= −âz âz
e−jπ/4

2
√

2πβ

(
1 + 1

cos φ

)

A1(ρ1) = 1√
ρ1

Keller’s diffraction form has been used because, at very large distances (ideally infinity), the UTD
formulations reduce to those of Keller. Thus, the backscattered field diffracted from wedge 1 reduces to

Ed
1 = −âz E0

e−jπ/4ej (βw/2) cos φ

2
√

2πβ

(
1 + 1

cos φ

)
e−jβρ1

√
ρ1
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In a similar manner, the fields diffracted from wedge 2 can be written, by referring to the geometry
of Figure 13-28b, as

Ed
2 = −âz E0

e−jπ/4e−j (βw/2) cos φ

2
√

2πβ

(
1 − 1

cos φ

)
e−jβρ2

√
ρ2

When both of the diffracted fields are referred to the center of the coordinate system, they can be
written using

ρ1 � ρ + w

2
cos(π − φ) = ρ − w

2
cos(φ)

ρ2 � ρ − w

2
cos(π − φ) = ρ + w

2
cos(φ)

⎫⎪⎬⎪⎭ for phase terms

ρ1 � ρ2 � ρ for amplitude terms

as

Ed
1 = −âz E0

e−jπ/4

2
√

2πβ

(
1 + 1

cos φ

)
ejβw cos φ e−jβρ

√
ρ

Ed
2 = −âz E0

e−jπ/4

2
√

2πβ

(
1 − 1

cos φ

)
e−jβw cos φ e−jβρ

√
ρ

When the two diffracted fields are combined, the sum can be expressed as

Ed = Ed
1 + Ed

2 = −âz E0
e−jπ/4

2
√

2πβ
[(ejβw cos φ + e−jβw cos φ)

+ 1

cos φ
(ejβw cos φ − e−jβw cos φ)]

e−jβρ

√
ρ

Ed = −âz E0
e−jπ/4

√
2πβ

[
cos(βw cos φ) + jβw

sin(βw cos φ)

(βw cos φ)

]
e−jβρ

√
ρ

Since there are no geometrical optics fields in the backscattered direction (Snell’s law is not satisfied)
when φ = φ′ �= π/2, the total diffracted field also represents the total field. In the limit as φ = φ′ =
π/2, each diffracted field exhibits a singularity; however, the total diffracted field is finite because the
singularity of one diffracted field compensates for the singularity of the other. This is always evident
at normal incidence as long as the edges of the two diffracted wedges are parallel to each other, even
though the included angles of the two wedges are not necessarily the same [39]. In addition, the limiting
value of the total diffracted field at normal incidence reduces and represents also the geometrical optics
scattered (reflected) field.

The two-dimensional backscattered scattering width σ2−D of (11-21b) can now be written as

σ2−D = lim
ρ→∞

[
2πρ

|Es |2
|Ei |2

]
= λ

2π

∣∣∣∣cos(βw cos φ) + jβw
sin(βw cos φ)

βw cos φ

∣∣∣∣2

The limiting value, as φ → π/2, reduces to

σ2−D
∣∣
φ=π/2 = λ

2π

∣∣1 + jβw
∣∣2 = λ

2π

[
1 + (βw)2] βw�1� βw2

which agrees with the physical optics expression. Computed results for σ2−D/λ (in decibels) and σ2−D

(in decibels per meter or dBm) at f = 10 GHz when w = 2λ are shown in Figure 13-29.
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Figure 13-29 Two-dimensional monostatic scattering width for soft polarization of a finite width strip
of w = 2λ at f = 10 GHz.

Before proceeding to discuss other topics in diffraction, such as oblique incidence, curved
edge diffraction, equivalent currents, slope diffraction, and multiple diffraction, let us complete
our two-dimensional diffraction by addressing some modifications and extensions to the concepts
covered in this section.

For a plane wave incidence, ρ in (13-68) through (13-68f) and in (13-69) through (13-69f)
represents the distance from the edge of the wedge to the observation point. According to the
principle of reciprocity illustrated in Figure 13-17, ρ in (13-68) through (13-69f) must be replaced
by ρ ′ to represent the diffraction of a cylindrical wave whose source is located a distance ρ ′
from the edge of the wedge and the observations made in the far zone (ideally at infinity). If
both the source and observation point are located at finite distances from the edge of the wedge,
represented, respectively, by ρ ′ and ρ, then a better estimate of the distance would be to introduce
a so-called distance parameter L, which in this case takes the form of

L = ρρ ′

ρ + ρ ′

{
ρ′→∞� ρ
ρ→∞� ρ ′

(13-84)

Thus, the incident and reflected diffracted fields and coefficients of (13-68) and (13-69) can be
written as

V i
B (L, φ − φ′, n) = V i

B (L, ξ−, n) = e−jβρ

√
ρ

Di (L, ξ−, n) (13-84a)

V r
B (L, φ + φ′, n) = V r

B (L, ξ+, n) = e−jβρ

√
ρ

Dr (L, ξ+, n) (13-84b)

It is observed in (13-68) and (13-69) that for grazing angle incidence, φ′ = 0 or φ′ = nπ

of Figure 13-24 (where n represents the wedge angle), then ξ− = ξ+ = φ − φ′ = φ + φ′ and
V i

B = V r
B , Di = Dr . Therefore, here Ds of (13-70c) or (13-72e) is equal to zero (Ds = 0) and Dh

of (13-70d) or (13-72f) is equal to twice Di or twice Dr (Dh = 2Di = 2Dr ). Since grazing is a
limiting situation, the incident and reflected fields combine to make the total geometrical optics
field effectively incident at the observation point. Therefore, one-half of the total field propagating
along the face of the wedge toward the edge is the incident field and the other one-half represents
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the reflected field. The diffracted fields for this case can properly be accounted for by doing either
of the following:

1. Let the total GO field represent the incident GO field but multiply the diffraction coefficients
by a factor of 1

2 .
2. Multiply the total GO field by a factor of 1

2 and let the product represent the incident field.
The diffraction coefficients should not be modified.

Either procedure produces the same results, and the choice is left to the reader.
For grazing incidence, the diffraction coefficient of (13-70c) or (13-72e) are equal to zero.

These diffraction coefficients, as well as those of (13-70d) and (13-72f), account for the diffracted
fields based on the value of the field at the point of diffraction. This is formulated using (13-34a).
There are other higher-order diffraction coefficients that account for the diffracted fields based on
the rate of change (slope) of the field at the point of diffraction. These diffraction coefficients are
referred to as the slope diffraction coefficients [52], and they yield nonzero (even though small)
fields for soft polarization at grazing incidence. The slope diffraction coefficients exist also for
hard polarization, but they are not as dominant as they are for soft polarization.

Up to now, we have restricted our attention to exterior wedge (1 < n ≤ 2) diffraction. How-
ever, the theory of diffraction can be applied also to interior wedge diffraction (0 ≤ n ≤ 1). When
n = 1, the wedge reduces to an infinite flat plate and the diffraction coefficients reduce to zero [as
seen better by examining (13-72e) and (13-72f)] since sin(π/n) = 0. The incident and reflected
fields for n = 1 (half plane), n = 1

2 (90◦ interior wedge), and n = 1/M , M = 3, 4, . . . (acute inte-
rior wedges) can be found exactly by image theory. In each of these, the number of finite images
is determined by the included angle of the interior wedge [38]. As n → 0 the geometrical optics
(incident and reflected) fields become more dominant compared to the nonvanishing diffracted
fields.

13.3.3 Straight Edge Diffraction: Oblique Incidence

The normal incidence and diffraction formulations of the previous section are convenient to
analyze radiation characteristics of antennas and structures primarily in principal planes. However,
a complete analysis of an antenna or scatterer requires examination not only in principal planes
but also in nonprincipal planes, as shown in Figure 13-30 for an aperture and a horn antenna
each mounted on a finite size ground plane.

Whereas the diffraction of a normally incident wave discussed in the previous section led to
scalar diffraction coefficients, the diffraction of an obliquely incident wave by a two-dimensional
wedge can be derived using the geometry of Figure 13-31. To accomplish this, it is most con-
venient to define ray-fixed coordinate systems (s ′, β ′

0, φ′) for the source and (s , β0, φ) for the
observation point [8, 10], in contrast to the edge-fixed coordinate system (ρ ′, φ′, z ′; ρ, φ, z ). By
doing this, it can be shown that the diffracted field, in a general form, can be written as

Ed (s) = Ei (QD ) • D(L; φ, φ′; n;β ′
0)

√
s ′

s(s ′ + s)
e−jβs (13-85)

where D(L;φ, φ′; n; β ′
0) is the dyadic edge diffraction coefficient for illumination of the wedge

by plane, cylindrical, conical, or spherical waves.
Introducing an edge-fixed plane of incidence with the unit vectors β̂′

0 and φ̂′ parallel and
perpendicular to it, and a plane of diffraction with the unit vectors β̂0 and φ̂ parallel and
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Figure 13-30 E - and H -plane diffraction by rectangular waveguide and pyramidal horn. Waveguide:
(a) E -plane diffraction. (b) H -plane diffraction. Horn: (c) E -plane diffraction. (d) H -plane diffraction.

perpendicular to it, we can write the radial unit vectors of incidence and diffraction, respec-
tively, as

ŝ′ = φ̂′ × β̂′
0 (13-86a)

ŝ = φ̂ × β̂0 (13-86b)

where ŝ′ points toward the point of diffraction. With the adoption of the ray-fixed coordinate
systems, the dyadic diffraction coefficient can be represented by

D(L; φ, φ′; n; β ′
0) = −β̂′

0β̂0Ds(L;φ, φ′; n;β ′
0) − φ̂′φ̂Dh(L;φ, φ′; n;β ′

0) (13-87)

where Ds and Dh are, respectively, the scalar diffraction coefficients for soft and hard polar-
izations. If an edge-fixed coordinate system were adopted, the dyadic coefficient would be the
sum of seven dyads that in matrix notation would be represented by a 3 × 3 matrix with seven
nonvanishing elements instead of the 2 × 2 matrix with two nonvanishing elements.
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Figure 13-31 Oblique incidence wedge diffraction. (a) Oblique incidence. (b) Top view.

For the diffraction shown in Figure 13-31, we can write in matrix form the diffracted E -field
components that are parallel (E d

β0
) and perpendicular (E d

φ ) to the plane of diffraction as

[
E d

β0
(s)

E d
φ (s)

]
= −

[
Ds 0
0 Dh

][
E i

β ′
0
(QD )

E i
φ′(QD )

]
A(s ′, s)e−jβs (13-88)

where

E i
β ′

0
(QD ) = β̂′

0
• Ei

= component of the incident E field parallel to the (13-88a)
plane of incidence at the point of diffraction QD

E i
φ′(QD ) = φ̂′ • Ei

= component of the incident E field perpendicular to the (13-88b)
plane of incidence at the point of diffraction QD

Ds and Dh are the scalar diffraction coefficients that take the form

Ds(L;φ, φ′; n;β ′
0) = Di (L, φ − φ′, n , β ′

0) − Dr (L, φ + φ′, n , β ′
0) (13-89a)

Dh(L;φ, φ′; n;β ′
0) = Di (L, φ − φ′, n , β ′

0) + Dr (L, φ + φ′, n , β ′
0) (13-89b)
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where

Di (L, φ − φ′, n , β ′
0)

= − e−jπ/4

2n
√

2πβ sin β ′
0

{
cot

[
π + (φ − φ′)

2n

]
F [βLg+(φ − φ′)]

+ cot

[
π + (φ − φ′)

2n

]
F [βLg−(φ − φ′)]

} (13-90a)

Dr (L, φ + φ′, n , β ′
0)

= − e−jπ/4

2n
√

2πβ sin β ′
0

{
cot

[
π + (φ + φ′)

2n

]
F [βLg+(φ + φ′)]

+ cot

[
π − (φ + φ′)

2n

]
F [βLg−(φ + φ′)]

} (13-90b)

To facilitate the reader in the computations a Fortran and MATLAB computer subroutine
designated WDC, Wedge Diffraction Coefficient, computes the normalized (with respect to

√
λ)

wedge diffraction coefficients based on (13-89a) through (13-90b). The subroutine utilizes the
Fresnel transition function program FTF. Both programs were developed and reported in [53].

In general, L is a distance parameter that can be found by satisfying the condition that the total
field (the sum of the geometrical optics and the diffracted fields) must be continuous along the
incident and reflection shadow boundaries. Doing this, it can be shown that a general form of L is

L = s(ρ i
e + s)ρ i

1ρ
i
2 sin2 β ′

0

ρ i
e(ρ

i
1 + s)(ρ i

2 + s)
(13-91)

where ρ i
1, ρ i

2 = radii of curvature of the incident wave front at QD

ρ i
e = radius of curvature of the incident wave front in the edge-fixed plane of

incidence

For oblique incidence upon a wedge, as shown in Figure 13-31, the distance parameter can be
expressed in the ray-fixed coordinate system as

L =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s sin2 β ′

0 plane wave incidence
ρρ ′

ρ + ρ ′
cylindrical wave incidence
(ρ = s sin β0, ρ ′ = s ′ sin β ′

0)

ss ′ sin2 β ′
0

s + s ′ conical and spherical wave incidences

(13-92)

The spatial attenuation factor A(s ′, s) which describes how the field intensity varies along the
diffracted ray, is given by

A(s ′, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
s

plane and conical wave incidences

1√
ρ

ρ = s sin β0; cylindrical wave incidence√
s ′

s(s ′ + s)
spherical wave incidence

(13-93)
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If the observations are made in the far field (s � s ′ or ρ � ρ ′), the distance parameter L and
spatial attenuation factor A(s ′, s) reduce, respectively, to

L =
⎧⎨⎩ s sin2 β ′

0 plane wave incidence
ρ ′ cylindrical wave incidence
s ′ sin2 β ′

0 conical and spherical wave incidences
(13-94)

A(s ′, s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
s

plane and conical wave incidences

1√
ρ

ρ = s sin β0; cylindrical wave incidence
√

s ′

s
spherical wave incidence

(13-95)

For normal incidence, β0 = β ′
0 = π/2.

To demonstrate the principles of this section, an example will be considered.

Example 13-6

To determine the far-zone elevation plane pattern, in the principal planes, of a λ/4 monopole mounted
on a finite size square ground plane of width w on each of its sides, refer to Figure 13-32a . Examine
the contributions from all four edges.

Solution: In addition to the direct and reflected field contributions (referred to as geometrical optics,
GO), there are diffracted fields from the edges of the ground plane. The radiation mechanisms from
the two edges that are perpendicular to the principal plane of observation are illustrated graphically in
Figure 13-32b. It is apparent that from these two edges only two points contribute to the radiation in
the principal plane. These two points occur at the intersection of the principal plane with the edges.

The incident and reflected fields are obtained by assuming the ground plane is infinite in extent. Using
the coordinate system of Figure 13-32a , and the image theory of Section 7.4, the total geometrical optics
field of the λ/4 monopole above the ground plane can be written as [38]

EθG (r , θ) = E0

⎡⎢⎣cos
(π

2
cos θ

)
sin θ

⎤⎥⎦ e−jβr

r
0 ≤ θ ≤ π/2

The field diffracted from wedge 1 can be obtained using the formulation of (13-88) through (13-95).
Referring to the geometry of Figure 13-32b, the direct field is incident normally (β ′

0 = π/2) on the edge
of the ground plane along the principal planes, and the diffracted field from wedge 1 can be written as

E d
θ1(θ) = +E i (Q1)Dh(L, ξ±

i , β ′
0 = π/2, n = 2)A1(w , r1)e

−jβr1

The total field can be assumed to all emanate from the base of the monopole. This is a good
approximation whose modeling has agreed well with measurements. Thus,

E i (Q1) = 1

2
EθG

(
r = w

2
, θ = π

2

)
= E0

2

e−jβw/2

w/2

Dh
(
L, ξ1

±, β ′
0 = π

2
, n = 2

)
= Di (L, ξ−

1 , n = 2) + Dr (L, ξ+
1 , n = 2)

Since the incident wave is of spherical waveform and observations are made in the far field, the
distance parameter L and spatial attenuation factor A1(w , r1) can be expressed, according to (13-94)
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and (13-95) for β ′
0 = π/2, as

L = s ′ sin2 β ′
0

s ′ = w/2
β ′

0 = π/2

= w

2

A1(w , r1) =
√

s ′

s

∣∣∣∣s ′=w/2
s=r1

=
√

w/2

r1

w

q
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Figure 13-32 Vertical monopole on a square ground plane, and reflection and diffraction mechanisms.
(a) Monopole on ground plane. (b) Reflection and diffraction mechanisms.
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Since the angle of incidence ψ0 from the main source toward the point of diffraction Q1 is zero degrees
(ψ0 = 0), then

ξ−
1 = ψ1 − ψ0 = ψ1 = θ + π

2
= ξ1

ξ+
1 = ψ1 + ψ0 = ψ1 = θ + π

2
= ξ1

Therefore,

Dh
(
L, ξ±

1 , β ′
0 = π

2
, n = 2

)
= 2Di

(w

2
, θ + π

2
, n = 2

)
= 2Dr

(w

2
, θ + π

2
, n = 2

)
The total diffracted field can now be written as

E d
θ1(θ) = E0

2

e−jβw/2

w/2
2Di ,r

(w

2
, θ + π

2
, n = 2

) √
w/2

r1
e−jβr1

= E0

[
e−jβw/2

√
w/2

Di ,r
(w

2
, θ + π

2
, n = 2

)] e−jβr1

r1

E d
θ1(θ) = E0V i ,r

B

(w

2
, θ + π

2
, n = 2

) e−jβr1

r1

Using a similar procedure, the field diffracted from wedge 2 can be written, by referring to the geometry
of Figure 13-32b, as

E d
θ2(θ) = −E0

[
e−jβw/2

√
w/2

Di ,r
(w

2
, ξ2, n = 2

)] e−jβr2

r2

E d
θ2(θ) = −E0V i ,r

B

(w

2
, ξ2, n = 2

) e−jβr2

r2

where

ξ2 = ψ2 =

⎧⎪⎨⎪⎩
π

2
− θ , 0 ≤ θ ≤ π

2
5π

2
− θ ,

π

2
< θ < π

For far-field observations

r1 � r − w

2
cos

(π

2
− θ

)
= r − w

2
sin θ

r2 � r + w

2
cos

(π

2
− θ

)
= r + w

2
sin θ

⎫⎪⎬⎪⎭ for phase terms

r1 � r2 � r for amplitude terms

Therefore, the diffracted fields from wedges 1 and 2 reduce to

E d
θ1(θ) = + E0V i ,r

B

(w

2
, θ + π

2
, n = 2

)
ej (βw/2) sin θ e−jβr

r

E d
θ2(θ) = −E0V i ,r

B

(w

2
, ξ2, n = 2

)
e−j (βw/2) sin θ e−jβr

r

It should be noted that there are oblique incidence diffractions from the other two edges of the ground
plane that are parallel to the principal plane of observation. However, the diffracted field from these
edges is primarily cross-polarized (Eφ component) to the incident Eθ field and to the Eθ field produced
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in the principal plane. The cross-polarized Eφ components produced by diffractions from these two sides
cancel each other out so that in the principal plane there is primarily an Eθ component.

Using the total geometrical optics field and the field diffracted from wedges 1 and 2, a normalized
amplitude pattern was computed for a λ/4 monopole mounted on a square ground plane of width
w = 4 ft = 1.22 m at a frequency of f = 1 GHz. This pattern is shown in Figure 13-33 where it is
compared with the computed GO (assuming an infinite ground plane) and measured patterns. A very
good agreement is seen between the GO + GTD and measured patterns, which are quite different from
that of the GO pattern.

f = 1.0 GHz

w = 4 feet = 1.22 m

w

wTheory (GO and GTD)

Experiment
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Figure 13-33 Measured and computed principal elevation plane amplitude patterns of a λ/4 monopole
above infinite and finite square ground planes. (Source: C. A. Balanis, Antenna Theory: Analysis and
Design, 3rd edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John Wiley
& Sons, Inc.)
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13.3.4 Curved Edge Diffraction: Oblique Incidence

The edges of many practical antenna or scattering structures are not straight, as demonstrated in
Figure 13-34 by the edges of a circular ground plane, a paraboloidal reflector, and a conical horn.
In order to account for the diffraction phenomenon from the edges of these structures, even in
their principal planes, curved edge diffraction must be utilized.

Curved edge diffraction can be derived by assuming an oblique wave incidence (at an angle
β ′

0) on a curved edge, as shown in Figure 13-35, where the surfaces (sides) forming the curved
edge in general may be convex, concave, or plane. Since diffraction is a local phenomenon, the
curved edge geometry can be approximated at the point of diffraction QD by a wedge whose
straight edge is tangent to the curved edge at that point and whose plane surfaces are tangent to
the curved surfaces forming the curved edge. This allows wedge diffraction theory to be applied
directly to curved edge diffraction by simply representing the curved edge by an equivalent
wedge. Analytically, this is accomplished simply by generalizing the expressions for the distance
parameter L that appear in the arguments of the transition functions.

The general form of oblique incidence curved edge diffraction can be expressed in matrix form
as in (13-88). However, the diffraction coefficients, distance parameters, and spatial spreading
factor must be modified to account for the curvature of the edge and its curved surfaces (sides).

The diffraction coefficients Ds and Dh are those of (13-89a) and (13-89b), where Di and Dr

can be found by imposing the continuity conditions on the total field across the incident and
reflection shadow boundaries. Doing this, we can show that Di and Dr of (13-90a) and (13-90b)
take the form of [10]

Di (Li , φ − φ′, n)

= − e−jπ/4

2n
√

2πβ sin β ′
0

{
cot

[
π + (φ − φ′)

2n

]
F [βLi g+(φ − φ′)]

+ cot

[
π − (φ − φ′)

2n

]
F [βLi g−(φ − φ′)]

} (13-96a)

Dr (Lr , φ + φ′, n)

= − e−jπ/4

2n
√

2πβ sin β ′
0

{
cot

[
π + (φ + φ′)

2n

]
F [βLrng+(φ + φ′)]

+ cot

[
π − (φ + φ′)

2n

]
F [βLrog+(φ + φ′)]

} (13-96b)

where

Li = s(ρ i
e + s)ρ i

1ρ
i
2 sin2 β ′

0

ρ i
e(ρ

i
1 + s)(ρ i

2 + s)
(13-97a)

Lro,rn = s(ρr
e + s)ρr

1ρ
r
2 sin2 β ′

0

ρr
e (ρ

r
1 + s)(ρr

2 + s)
(13-97b)

ρ i
1, ρ i

2 = radii of curvature of the incident wave front at QD

ρ i
e = radius of curvature of the incident wave front in the edge fixed plane of

incidence
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a

Figure 13-34 Diffraction by curved-edge structures. (a) Circular ground plane. (b) Paraboloidal reflector.
(c) Conical horn.
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Figure 13-35 Oblique incidence diffraction by a curved edge. (a) Oblique incidence. (b) Top view.

ρr
1 , ρr

2 = principal radii of curvature of the reflected wave front at QD [found
using (13-21a) and (13-21b)]

ρr
e = radius of curvature of the reflected wave front in the plane containing the

diffracted ray and edge

The superscripts ro, rn in (13-96b) and (13-97a) denote that the radii of curvature ρr
1 , ρr

2
and ρr

e must be calculated for ro at the reflection boundary π − φ′ of Figure 13-24a and for
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rn at the reflection boundary (2n − 1)π − φ′ of Figure 13-24b. For far-field observation, where
s � ρ i

e , ρ i
1, ρ i

2, ρr
e , ρr

1 , ρr
2 (13-97a), (13-97b) simplify to

Li = ρ i
1ρ

i
2

ρ i
e

sin2 β ′
0 (13-98a)

Lro,rn = ρr
1ρ

r
2

ρr
e

sin2 β ′
0 (13-98b)

If the intersecting curved surfaces forming the curved edge in Figure 13-35 are plane surfaces
that form an ordinary wedge, then the distance parameters in (13-97a) and (13-97b) or (13-98a)
and (13-98b) are equal, that is,

Lro = Lrn = Li (13-99)

Using the geometries of Figure 13-36, it can be shown that the spatial spreading factor A(ρc , s)
of (13-35) for the curved edge diffraction takes the form

A(ρc , s) =
√

ρc

s(ρc + s)

s�ρc� 1

s

√
ρc (13-100)

1

ρc
= 1

ρe
− n̂e • (ŝ′ − ŝ)

ρg sin2 β ′
0

(13-100a)

where ρc = distance between caustic at edge and second caustic of diffracted ray

ρe = radius of curvature of incidence wave front in the edge-fixed plane of incidence
which contains unit vectors ŝ′ and ê (infinity for plane, cylindrical, and conical
waves; ρe = s ′ for spherical waves)

ρg = radius of curvature of the edge at the diffraction point

n̂e = unit vector normal to the edge at QD and directed away from the center of curvature

ŝ′ = unit vector in the direction of incidence

ŝ = unit vector in the direction of diffraction

β ′
0 = angle between ŝ′ and tangent to the edge at the point of diffraction

ê = unit vector tangent to the edge at the point of diffraction

For normal incidence, β ′
0 = π/2.

The spatial attenuation factor (13-100) creates additional caustics, other than the ones that
occur at the points of diffraction. Each caustic occurs at a distance ρc from the one at the
diffraction point. Diffracted fields in the regions of the caustics must be corrected to remove the
discontinuities and inaccuracies from them.

To demonstrate the principles of curved edge diffraction, let us consider Example 13-7.
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Figure 13-36 Caustic distance and center of curvature for curved-edge diffraction. (Source: C. A. Balanis,
Antenna Theory: Analysis and Design, copyright © 1982, John Wiley & Sons, Inc. Reprinted by permission
of John Wiley & Sons, Inc.) (a) Caustic distance. (b) Center of curvature.

Example 13-7

Determine the far-zone elevation plane pattern of a λ/4 monopole mounted on a circular electrically
conducting ground plane of radius a , as shown in Figure 13-37a .

Solution: Because of the symmetry of the structure, the diffraction mechanism in any of the
elevation planes is the same. Therefore, the principal yz plane is chosen here. For observations made
away from the symmetry axis of the ground plane (θ �= 0◦ and 180◦), it can be shown [33] that most
of the diffraction radiation from the rim of the ground plane comes from the two diametrically opposite
points of the rim that coincide with the observation plane. Therefore, for points removed from the
symmetry axis (θ �= 0◦ and 180◦) the overall formulation of this problem, and that of Example 13-6,



Balanis c13.tex V2 - 11/24/2011 12:45 A.M. Page 813

GEOMETRICAL THEORY OF DIFFRACTION: EDGE DIFFRACTION 813

is identical other than the amplitude spreading factor, which now must be computed using (13-100)
and (13-100a) instead of (13-95).

q q

l/4

#2 #1

z

r

(a)

(b)

x

r2

r1

z

y

r
s2

1

n , s′2 2

y

q

fa

q

y2 y1

b′0 = 90° b′0 = 90°

s

n , s′1 1

Figure 13-37 Quarter-wavelength monopole on a circular ground plane and diffraction mechanism.
(a) λ/4 monopole. (b) Diffraction mechanism.

Referring to the geometry of Figure 13-37b, and using (13-100) and (13-100a), the amplitude
spreading factor for wedge 1 can be written as

A1(r1, a) = 1

r1

√
ρc1

where

1

ρc1
= 1

a
− n̂1 • (ŝ′

1 − ŝ1)

a
= 1 − [

1 − cos
(

π
2 − θ

)]
a

= sin θ

a
⇒ ρc1 = a

sin θ
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Therefore,

A1(r1, a) = 1

r1

√
a

sin θ
� 1

r

√
a

sin θ

In a similar manner, the amplitude spreading factor for wedge 2 can be expressed as

A2(r2, a) = 1

r2

√
ρc2

where

1

ρc2
= 1

a
− n̂2 • (ŝ′

2 − ŝ2)

a
=

1 −
[
1 − cos

(π

2
+ θ

)]
a

= − sin θ

a
⇒ ρc2 = − a

sin θ

This reduces the amplitude spreading factor to

A2(r2, a) = 1

r2

√
− a

sin θ
� 1

r

√
− a

sin θ

Using the results from Example 13-6, the fields for this problem can be written as

EθG(r , θ) = E0

⎡⎢⎣cos
(π

2
cos θ

)
sin θ

⎤⎥⎦ e−jβr

r
, 0 ≤ θ ≤ π/2

E d
θ1(r , θ) = E0V i ,r

B

(
a , θ + π

2
, n = 2

) ejβa sin θ

√
sin θ

e−jβr

r
, θ0 ≤ θ ≤ π − θ0

E d
θ2(r , θ) = −E0V i ,r

B (a , ξ2, n = 2)
e−jβa sin θ

√− sin θ

e−jβr

r
, θ0 ≤ θ ≤ π − θ0

where

ξ2 = ψ2 =

⎧⎪⎨⎪⎩
π

2
− θ , θ0 ≤ θ ≤ π

2
5π

2
− θ ,

π

2
< θ ≤ π − θ0

It is noted that at θ = 0◦ or 180◦, the diffracted fields become singular because along these
directions there are caustics for the diffracted fields. The rim of the ground plane acts as a ring
radiator , which is illustrated graphically in Figure 13-38. The ring radiator can be formulated
analytically (see Problem 13.49) as a continuous symmetrical and constant source of diffraction
around the rim of the circular ground plane. This can be cast as an integral with uniform excitation

z

x

y#2 #1

Figure 13-38 Uniform ring radiator representing diffractions around the rim of the circular ground plane.
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around the rim of the circular ground plane, and it can be treated similarly as a circular loop of
uniform current [38]. Toward and near θ = 0◦ and 180◦, the integral reduces to a Bessel function
of the first kind of order one. However, it can be shown, using the method of steepest descent
(saddle point method), that the integral representing the continuous ring radiator radiator reduces
to a two-point diffraction for angles away from θ = 0◦ and 180◦ [33]. Due to the ring radiator
characteristics, the radiation of the monopole toward and near θ = 0◦ and 180◦ is much more
intense for this geometry compared to when the monopole is mounted on a rectangular/square
ground plane, as shown in Figure 13-33. Similarly, the scattering from circular ground planes and
apertures is much more intense toward and near θ = 0◦ and 180◦ than that from rectangular/square
ground planes and apertures. Therefore, to reduce the radar signature/visibility of the engine
inlets (apertures) of the F-117, they may have been chosen to be rectangular/square, as shown
in Figure 13-1. Toward θ = 0◦ and 180◦ the infinite number of diffracted rays from the rim are
identical in amplitude and phase and lead to the caustics. Therefore, the diffracted fields from the
aforementioned two points of the rim are invalid within a cone of half included angle θ0, which is
primarily a function of the radius of curvature of the rim. For most moderate size ground planes,
θ0 is in the range of 10◦ < θ0 < 30◦.

To make corrections for the diffracted field singularity and inaccuracy at and near the symmetry
axis (θ = 0◦ and 180◦), due to axial caustics, the rim of the ground plane must be modeled as
a ring radiator [32, 33]. This can be accomplished by using “equivalent” current concepts in
diffraction, that will be discussed in the next section.

A pattern based on the formulations of the preceding two-point diffraction was computed for a
ground plane of 4.064λ diameter. This pattern is shown in Figure 13-39 where it is compared with
measurements. It should be noted that this pattern was computed using the two-point diffraction
for 10◦ � θ � 170◦ (θ0 � 10◦); the remaining parts were computed using equivalent current
concepts that will be discussed next.

13.3.5 Equivalent Currents in Diffraction

In contrast to diffraction by straight edges, diffraction by curved edges creates caustics. If obser-
vations are not made at or near caustics, ordinary diffraction techniques can be applied; otherwise,
corrections must be made.

One technique that can be used to correct for caustic discontinuities and inaccuracies is the
concept of the equivalent currents [32–36, 54–61]. To apply this principle, the two-dimensional
wedge of Figure 13-13 is replaced by one of the following two forms:

1. An equivalent two-dimensional electric line source of equivalent electric current I e , for soft
polarization diffraction.

2. An equivalent two-dimensional magnetic line source of equivalent magnetic current I m , for
hard polarization diffraction.

This is illustrated in Figure 13-40. The equivalent currents I e and I m are adjusted so that the
field radiated by each of the line sources is equal to the diffracted field of the corresponding
polarization.

The electric field radiated by a two-dimensional electric line source placed along the z axis
with a constant current I e

z is given by (11-10a), or

Ez = −β2I e
z

4ωε
H (2)

0 (βρ)
βρ→∞� −I e

z
ηβ

2

√
j

2πβ

e−jβρ

√
ρ

(13-101a)

where H (2)
0 (βρ) is the Hankel function of the second kind of order zero. The approximate form

of (13-101a) is valid for large distances of observation (far field), and it is obtained by replacing
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Figure 13-39 Measured and computed principal elevation plane amplitude patterns of a λ/4 monopole
(blade) above a circular ground plane. (Source: C. A. Balanis, Antenna Theory: Analysis and Design, 3rd
edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

the Hankel function by its asymptotic formula for large argument (see Appendix IV, Equation
IV-17).

The magnetic field radiated by a two-dimensional magnetic line source placed along the z axis
with a constant current I m

z can be obtained using the duality theorem (Section 7.2, Table 7-2)
and (13-101a). Thus,

Hz = −β2I m
z

4ωμ
H (2)

0 (βρ)
βρ→∞� −I m

z
β

2η

√
j

2πβ

e−jβρ

√
ρ

(13-101b)

To determine the equivalent electric current I e
z , (13-101a) is equated to the field diffracted

by a wedge when the incident field is of soft polarization. A similar procedure is used for the
equivalent magnetic I m

z of (13-101b). Using (13-34), (13-34a), (13-95), (13-101a), and (13-101b),
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Figure 13-40 Wedge diffraction at normal incidence and its equivalent. (a) Actual wedge. (b) Equivalent.

and assuming normal incidence, we can write that

E i
z (Qd )Ds(ξ

−, ξ+, n)
e−jβρ

√
ρ

= −I e
z

ηβ

2

√
j

2πβ

e−jβρ

√
ρ

(13-102a)

H i
z (Qd )Dh(ξ

−, ξ+, n)
e−jβρ

√
ρ

= −I m
z

β

2η

√
j

2πβ

e−jβρ

√
ρ

(13-102b)

where E i
z (Q) = incident electric field at the diffraction point Qd

H i
z (Q) = incident magnetic field at the diffraction point Qd

Ds = diffraction coefficient for soft polarization [(13-71a) or (13-72e)]
Dh = diffraction coefficient for hard polarization [(13-71b) or (13-72f)]

Solving (13-102a) and (13-102b) for I e
z and I m

z respectively, leads to

I e
z = −

√
8πβ

ηβ
e−jπ/4E i

z (Q)Ds(ξ
−, ξ+, n)

I m
z = −η

√
8πβ

β
e−jπ/4H i

z (Q)Dh(ξ
−, ξ+, n)

(13-103a)

(13-103b)

If the wedge of Figure 13-40 is of finite length �, its equivalent current will also be of finite
length. The far-zone field radiated by each can be obtained by using techniques similar to those
of Chapter 4 of [38]. Assuming the edge is along the z axis, the far-zone electric field radiated
by an electric line source of length � can be written using (4-58a) of [38] as

E e
θ = jη

βe−jβr

4πr
sin θ

∫ �/2

−�/2
I e
z (z ′)ejβz ′ cos θ dz ′ (13-104a)
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Using duality, the magnetic field of a magnetic line source can be written as

H m
θ = j

βe−jβr

4πηr
sin θ

∫ �/2

−�/2
I m
z (z ′)ejβz ′ cos θ dz ′ (13-104b)

For a constant equivalent current, the integrals in (13-104a) and (13-104b) reduce to a sin(ζ )/ζ

form.
If the equivalent current is distributed along a circular loop of radius a and it is parallel to

the xy plane, the field radiated by each of the equivalent currents can be obtained using the
techniques of Chapter 5, Section 5.3, of [38]. Thus,

E e
φ = −jωμae−jβr

4πr

∫ 2π

0
I e
φ (φ′) cos(φ − φ′)ejβa sin θ cos(φ−φ′)dφ′

H m
φ = −jωεae−jβr

4πr

∫ 2π

0
I m
φ (φ′) cos(φ − φ′)ejβa sin θ cos(φ−φ′)dφ′

(13-105a)

(13-105b)

If the equivalent currents are constant, the field is not a function of the azimuthal observation
angle φ, and (13-105a) and (13-105b) reduce to

E e
φ = aωμe−jβr

2r
I e
φ J1(βa sin θ) (13-106a)

H m
φ = aωεe−jβr

2r
I m
φ J1(βa sin θ) (13-106b)

where J1(x) is the Bessel function of the first kind of order 1.
For diffraction by an edge of finite length, the equivalent current concept for diffraction

assumes that each incremental segment of the edge radiates as would a corresponding segment
of a two-dimensional edge of infinite length. Similar assumptions are used for diffraction from
finite length curved edges. The concepts, although approximate, have been shown to yield very
good results.

For oblique plane wave incidence diffraction by a wedge of finite length �, as shown in
Figure 13-41, the equivalent currents of (13-103a) and (13-103b) take the form

I e
z = −

√
8πβ

ηβ
e−jπ/4E i

z (QD )Ds(ξ
−, ξ+, n; β ′

0)

s ′�z ′
� −

√
8πβ

ηβ
e−jπ/4E i

z (0)Ds(ξ
−, ξ+, n; β ′

0)e
−jβz ′ cos β ′

0

(13-107a)

I m
z = −η

√
8πβ

β
e−jπ/4H i

z (QD )Dh(ξ
−, ξ+, n;β ′

0)

s ′�z ′
� −η

√
8πβ

β
e−jπ/4H i

z (0)Dh(ξ
−, ξ+, n; β ′

0)e
−jβz ′ cos β ′

0

(13-107b)

where −�/2 ≤ z ′ ≤ �/2 (� = length of wedge) and Ds and Dh are formed by (13-96a) and
(13-96b). The far-zone fields associated with the equivalent currents of (13-107a) and (13-107b)
can be found using, respectively, (13-104a) and (13-104b).
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Figure 13-41 Oblique incidence diffraction by a finite length wedge.

To demonstrate the technique of curved edge diffraction and the equivalent current concept,
the radiation of a λ/4 monopole (blade) mounted on a circular ground plane was modeled. The
analytical formulation is assigned as a problem at the end of the chapter. The computed pattern
is shown in Figure 13-39 where it is compared with measurements.

To make corrections for the diffracted field discontinuity and inaccuracy at and near the
symmetry axis (θ = 0◦ and 180◦), due to axial caustics, the rim of the ground plane was modeled
as a ring radiator [32, 33]. Equivalent currents were used to compute the pattern in the region
given by 0◦ ≤ θ ≤ θ0 and 180◦ − θ0 ≤ θ ≤ 180◦. In the other space, a two-point diffraction was
used. The two points were taken diametrically opposite to each other, and they were contained
in the plane of observation. The value of θ0 depends upon the curvature of the ground plane. For
most ground planes of moderate size, θ0 is in the range 10◦ < θ0 < 30◦.

A very good agreement between theory and experiment is exhibited in Figure 13-39. For
a ground plane of this size, the blending of the two-point diffraction pattern and the pattern
from the ring source radiator was performed at θ0 � 10◦. It should be noted that the minor lobes
near the symmetry axis (θ � 0◦ and θ � 180◦) for the circular ground plane are more intense
than the corresponding ones for the square plane of Figure 13-33. In addition, the back lobe
nearest θ = 180◦ is of greater magnitude than the one next to it. These effects are due to the ring
source radiation by the rim [33] of the circular ground plane toward the symmetry axis.

13.3.6 Slope Diffraction

Until now the field diffracted by an edge has been found based on (13-34a), (13-85), or (13-88)
where Ei (QD ) represents the incident field at the point of diffraction. This type of formulation
indicates that if the incident field Ei (QD ) at the point of diffraction QD is zero, then the diffracted
field will be zero. In addition to this type of diffraction, there is an additional diffraction term
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that is based not on the magnitude of the incident field at the point of diffraction but rather on
the slope (rate of change, or directional derivative) of the incident field at the point of diffraction.
This is a higher-order diffraction, and it becomes more significant when the incident field at the
point of diffraction vanishes. It is referred to as slope diffraction, and it creates currents on the
wedge surface that result in a diffracted field [52].

By referring to the geometry of Figure 13-42, the slope diffracted field can be computed using

Soft Polarization

E d = 1

jβ

[
∂E i (QD )

∂n

](
∂Ds

∂φ′

)√
ρc

s(ρc + s)
e−jβs

∂E i (QD )

∂n
= 1

s ′
∂E i

∂φ′

∣∣∣∣
QD

= slope of the incident field

∂Ds

∂φ′ = slope diffraction coefficient

(13-108)

(13-108a)

(13-108b)

Hard Polarization

H d = 1

jβ

[
∂H i (QD )

∂n

](
∂Dh

∂φ′

)√
ρc

s(ρc + s)
e−jβs

∂H i (QD )

∂n
= 1

s ′
∂H i

∂φ′

∣∣∣∣
QD

= slope of the incident field

∂Dh

∂φ′ = slope diffraction coefficient

(13-109)

(13-109a)

(13-109b)

Therefore, in general, the total diffracted field can be found using

U d =
[

U i (QD )Ds , h + 1

jβ

∂U i (QD )

∂n

∂Ds , h

∂φ′

]√
ρc

s(ρc + s)
e−jβs (13-110)
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Figure 13-42 Wedge geometry for slope diffraction.
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where the first term represents the contribution to the total diffracted field due to the magnitude
of the incident field and the second accounts for the contribution due to the slope (rate of change)
of the incident field. In (13-110), U represents the electric field for soft polarization and the
magnetic field for hard polarization. Similarly Ds , h is used to represent Ds for soft polarization
and Dh for hard polarization.

The slope diffraction coefficients for soft and hard polarizations can be written, respectively,
as [52]

∂Ds(φ, φ′, n; β ′
0)

∂φ′

= − e−jπ/4

4n2
√

2πβ sin β ′
0

({
csc2

[
π + (φ − φ′)

2n

]
Fs [βLg+(φ − φ′)]

− csc2

[
π − (φ − φ′)

2n

]
Fs [βLg−(φ − φ′)]

}
+

{
csc2

[
π + (φ + φ′)

2n

]
Fs [βLg+(φ + φ′)]

− csc2

[
π − (φ + φ′)

2n

]
Fs [βLg−(φ + φ′)]

})
(13-111a)

∂Dh(φ, φ′, n; β ′
0)

∂φ′

= − e−jπ/4

4n2
√

2πβ sin β ′
0

({
csc2

[
π + (φ − φ′)

2n

]
Fs [βLg+(φ − φ′)]

− csc2

[
π − (φ − φ′)

2n

]
Fs [βLg−(φ − φ′)]

}
−

{
csc2

[
π + (φ + φ′)

2n

]
Fs [βLg+(φ + φ′)]

− csc2

[
π − (φ + φ′)

2n

]
Fs [βLg−(φ + φ′)]

})
(13-111b)

where

Fs(X ) = 2jX

[
1 − j 2

√
X ejX

∫ ∞
√

X
e−jτ2

dτ

]
= 2jX [1 − F (X )] (13-111c)

A Fortran and MATLAB computer subroutine designated as SWDC, for Slope Wedge Diffraction
Coefficients, computes the normalized (with respect to

√
λ) slope diffraction coefficients based

on (13-111a) through (13-111c). It was developed and reported in [53]. This program uses the
complex function FTF (Fresnel transition function) to complete its computations.

To use the subroutine, the user must specify R = L (in wavelengths), PHID = φ (in degrees),
PHIPD = φ′ (in degrees), BTD = β ′

0 (in degrees), and FN = n (dimensionless) and the subroutine
computes the normalized (with respect to

√
λ) slope diffraction coefficients CSDCS = ∂Ds/∂φ′

and CSDCH = ∂Dh/∂φ′.

13.3.7 Multiple Diffractions

Until now we have considered single-order diffractions from each of the edges of a structure. If
the structure is composed of multiple edges (as is the case for infinitely thin strips, rectangular
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and circular ground planes, etc.), then coupling between the edges will take place. For finite
thickness ground planes coupling is evident not only between diametrically opposite edges but
also between edges on the same side of the ground plane. Coupling plays a bigger role when the
separation between the edges is small, and it should then be taken into account.

A. Higher-Order Diffractions For structures with multiple edges, coupling is introduced in
the form of higher-order diffractions. To illustrate this point, let us refer to Figure 13-43a , where
a plane wave of hard polarization, represented by a magnetic field parallel to the edge of the
wedges, is incident upon a two-dimensional PEC structure composed of three wedges.

The diffraction mechanism of this system can be outlined as follows: The plane wave incident
on wedge 1, represented by wedge angle WA1, will be diffracted as shown in the Figure 13-43a .
This is referred to as first-order diffraction . The field diffracted by wedge 1 in the direction of
wedge 2 (WA2) will be diffracted again, as shown in Figures 13-43a and 13-43b. This is referred
to as second-order diffraction , because it is the result of diffraction from diffraction. In turn, the
field diffracted from wedge 2 toward wedges 1 and 3 will be diffracted again. The same procedure
can be followed for second-order diffractions from wedge 3 due to first-order diffractions from
wedge 1. Second- and higher-order diffractions are all referred to as higher-order diffractions , and
they account for coupling between the edges and are more important for bistatic than monostatic
scattering.

Following the procedures that have been outlined for diffractions from two-dimensional PEC
wedges, the first-order diffractions from wedge 1, first-order diffractions from wedge 1 toward

(a)

(b)
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Figure 13-43 Higher-order diffractions from a two-dimensional wedged geometry. (a) Plane wave inci-
dence and diffraction by wedges. (b) Second-order diffraction by wedge 2 due to diffractions from wedge 1.
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wedge 2, and second-order diffractions from wedge 2 due to first-order diffractions from wedge
1, can be written, using the geometries of Figures 13-43a and 13-43b, as:

First-order diffractions from Wedge 1

Hd1
y1 = Hi

1(Q1) •
[
ây ây Dh

1 (r1, ψ1, ψ ′
1, n1)

] 1√
r1

e−jβr1

Hd1
y1 = ây H i

1 (Q1) •

[
ây ây

{
Di

1(r1, ψ1 − ψ ′
1, n1)

+Dr
1 (r1, ψ1 + ψ ′

1, n1)

}]
1√
r1

e−jβr1

Hd1
y1 = +ây H i

1 (Q1)

{
Di

1(r1, ψ1 − ψ ′
1, n1)

+Dr
1 (r1, ψ1 + ψ ′

1, n1)

}
e−jβr1

√
r1

(13-112a)

First-order diffractions from Wedge 1 toward Wedge 2

Hd1
y1(r1 = s1, ψ1 = 0, n1)

∣∣∣
r1=s1,ψ1=0

= + ây H i
1 (Q1)

{
Di

1(s1, −ψ ′
1, n1)

+Dr
1 (s1, ψ ′

1, n1)

}
e−jβs1

√
s1

Hd1
y1(r1 = s1, ψ1 = 0, n1)

∣∣∣
r1=s1,ψ1=0

= +ây H i
1 (Q1)

{
V i

1 (s1, −ψ ′
1, n1)

+V r
1 (s1, ψ ′

1, n1)

}
(13-112b)

Equation 13-112b represents the total diffracted field; half of it is the incident diffracted field and
the other half is the reflected diffracted field.

Second-order diffractions from Wedge 2 due to first-order diffractions from Wedge 1

Hd2
y2 = Hi

21(Q2) • ây ây Dh
2 (s2, ψ2, ψ ′

2, n2)
1√
r2

e−jβr2

∣∣∣∣
ψ ′

2=0, ψ2= π
2 +θ

Hd2
y2 = Hd1

y1(r1 = s1, ψ1 = 0, n1)

2
•
[
ây ây Dh

2 (s2, ψ2, ψ ′
2, n2)

] e−jβr2

√
r2

Hd2
y2 = +ây

H i
1 (Q1)

2

{
V i

B1(s1, −ψ ′
1, n1) + V r

B (s1, ψ ′
1, n1)

}
• ây ây

[
Di

2(s2, ψ2, n2) + Dr
2 (s2, ψ2, n2)

] e−jβr2

√
r2

Hd2
y2 = +ây

H i
1 (Q1)

2
[V i

B1(s1, −ψ ′
1, n1) + V r

B (s1, ψ ′
1, n1)]

• [Di
2(s2, ψ2, n2) + Dr

2 (s2, ψ2, n2)]
e−jβr2

√
r2

Hd2
y2 = +ây

1

2
H i

1 (Q1)[V
i

B1(s1, −ψ ′
1, n1) + V r

B (s1, ψ ′
1, n1)]

•
[
2Di

2(s2, ψ2, n2)
] e−jβr2

√
r2

Hd2
y2 = +ây H i

1 (Q1)
[
V i

B (s1, −ψ ′
1, n1) + V r

B (s1, ψ ′
1, n1)

]
• Di

2(s2, ψ2, n2)
e−jβr2

√
r2

(13-112c)
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The 1/2 factor in the development of (13-112c) is used to represent the incident diffracted field
of (13-112b) from wedge 1 toward wedge 2.

The procedure needs to the repeated for first- and second-order diffractions due to direct wave
incidence to wedge 2. The method was developed for hard polarization as there are no higher-
order diffractions for soft polarization, based on regular diffraction, since the diffracted field
from any of the wedges toward the others will be zero due to the vanishing of the tangential
electric field along the PEC surface of the structure.

B. Self-Consistent Method It becomes apparent that the procedure for accounting for higher-
order diffractions, especially for third and higher orders, can be very tedious, although straight-
forward. It is recommened that when third- and even higher-order diffractions are of interest, a
procedure be adopted that accounts for all (infinite) orders of diffraction. This procedure is known
as the self-consistent method [62], which is used in scattering theory [63]. It can be shown that
the interactions between the edges can also be expressed in terms of a geometrical progression,
which in scattering theory is known as the successive scattering procedure [63].

Let us now illustrate the self-consistent method as applied to the diffractions of Figure
13-43a . According to Figures 13-43a and 13-43b diffractions by wedge 1 that are due to radiation
from the source and that are due to all orders of diffraction from wedge 2 can be written as

U s ,h
1 (r1, φ) = U s ,h

0 (Q1)D
s ,h
10

(
L10, ψ10 = π

2
+ φ, ψ ′

10 = δ, n1

)
A10(r1)e

−jβr1

+ 1

2
[U s ,h

2 (r2 = d , φ = 0)]Ds ,h
12 (L12, ψ12 = π − φ, ψ ′

12 = 0, n1)

× A12(r1)e
−jβr1 (13-113a)

where U s , h is used to represent here the electric field for soft polarization and the magnetic
field for hard polarization. In (13-113a),

U s , h
1 (r1, φ)= total diffracted field by wedge 1

U s , h
0 (Q1)= field from source at wedge 1

U s , h
2 (r2 = d , φ = 0) = total diffracted field (including all orders of diffraction) by wedge 2

toward wedge 1

Ds , h
10 = diffraction coefficient (for soft or hard polarization) of wedge 1 that is

due to radiation from the source

Ds , h
12 = diffraction coefficient (for soft or hard polarization) of wedge 1 that is

due to radiation from wedge 2

A10 = amplitude spreading factor of wedge 1 that is due to radiation from the
source

A12 = amplitude spreading factor of wedge 1 that is due to radiation from
wedge 2

The unknown part in (13-113a) is U s , h
2 (r2 = d , φ = 0), and the self-consistent method will be

used to determine it.
Using a similar procedure and referring to Figure 13-44c, the total diffracted field by wedge

2 that is due to all orders of diffraction from wedge 1 can be written as

U s , h
2 (r2, φ) = 1

2
[U s , h

1 (r1 = d , φ = π)]

× Ds , h
21 (L21, ψ21 = φ, ψ ′

21 = 0, n2)A21(r2)e
−jβr2 (13-113b)
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Figure 13-44 Finite thickness edge for multiple diffractions. (a) Source incidence. (b) Diffraction by edge
1. (c) Diffraction by edge 2.

where U s , h
2 (r2, φ)= total diffracted field by wedge 2

U s , h
1 (r1 = d , φ = π) = total diffracted field (including all orders of diffraction) by wedge 1

toward wedge 2

Ds , h
21 = diffraction coefficient (for soft or hard polarization) of wedge 2 due to

radiation from wedge 1

A21 = amplitude spreading factor of wedge 2 due to radiation from wedge 1

In (13-113b), the unknown part is U s , h
1 (r1 = d , φ = π), and it will be determined using the

self-consistent method.
Equations 13-113a and 13-113b form a consistent pair where there are two unknowns, that is

U s , h
2 (r2 = d , φ = 0) in (13-113a) and U s , h

1 (r1 = d , φ = π) in (13-113b). If these two unknowns
can be found, then (13-113a) and (13-113b) can be used to predict the diffracted fields from each
of the wedges taking into account all (infinite) orders of diffraction. These two unknowns can
be found by doing the following. At the position of wedge 2 (r1 = d , φ = π) the total diffracted
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field by wedge 1, as given by (13-113a), can be reduced to

[U s , h
1 (r1 = d , φ = π)]

= U s , h
0 (Q1)

{
Ds , h

10

(
L10, ψ10 = 3π

2
, ψ ′

10 = δ, n1

)
A10(r1 = d)e−jβd

}
+ [U s , h

2 (r2 = d , φ = 0)]

{
1

2
Ds , h

12 (L12, ψ12 = 0, ψ ′
12 = 0, n1)A12(r1 = d)e−jβd

}
(13-114a)

In a similar manner, at the position of wedge 1 (r2 = d , φ = 0) the total diffracted field by wedge
2, as given by (13-113b), can be reduced to

[U s , h
2 (r2 = d , φ = 0)] = U s , h

1 (r1 = d , φ = π)

×
{

1
2 Ds , h

21 (L21, ψ21 = 0, ψ ′
21 = 0, n2)A21(r2 = d)e−βd

}
(13-114b)

Equations 13-114a and 13-114b can be rewritten, respectively, in simplified form as

[U s , h
1 (r1 = d , φ = π)] = U s , h

0 (Q1)T
s , h
10 + [U s , h

2 (r2 = d , φ = 0)]Rs , h
12 (13-115a)

[U s , h
2 (r2 = d , φ = 0)] = [U s , h

1 (r1 = d , φ = π)]Rs , h
12 (13-115b)

where

T s , h
10 = Ds , h

10

(
L10, ψ10 = 3π

2
, ψ ′

10 = δ, n1

)
A10(r1 = d)e−jβd

= transmission coefficient from wedge 1 toward
wedge 2 due to radiation from main source

(13-115c)

Rs , h
12 = 1

2 Ds , h
12 (L12, ψ12 = 0, ψ ′

12 = 0, n1)A12(r1 = d)e−jβd

= reflection coefficient from wedge 1 toward
wedge 2 due to diffractions from wedge 2

(13-115d)

Rs , h
21 = 1

2 Ds , h
21 (L21, ψ21 = 0, ψ ′

21 = 0, n2)A21(r2 = d)e−jβd

= reflection coefficient from wedge 2 toward
wedge 1 due to diffractions from wedge 1

(13-115e)

The self-consistent pair of (13-115a) and (13-115b) contains the two unknowns that are needed
to predict the total diffracted field as given by (13-113a) and (13-113b). Solving (13-115a)
and (13-115b) for U s , h

1 (r1 = d , φ = π) and U s , h
2 (r2 = d , φ = 0), we can show that

U s , h
1 (r1 = d , φ = π) = U s , h

0 (Q1)
T s , h

10

1 − Rs , h
21 Rs , h

12

(13-116a)

U s , h
2 (r2 = d , φ = 0) = U s , h

0 (Q1)
T s , h

10 Rs , h
21

1 − Rs , h
21 Rs , h

12

(13-116b)
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When expanded, it can be shown that (13-116a) and (13-116b) can be written as a geometric
series of the form

U s , h
1 (r1 = d , φ = π) = U s , h

0 (Q1)T
s , h
10 [1 + x0 + x 2

0 + · · · ] (13-117a)

U s , h
2 (r2 = d , φ = 0) = U s , h

0 (Q1)T
s , h
10 Rs , h

21 [1 + x0 + x 2
0 + · · · ] (13-117b)

where
x0 = Rs , h

21 Rs , h
12 (13-117c)

Each term of the geometric series can be related to an order of diffraction by the corresponding
wedge.

In matrix form, the self-consistent set of equations as given by (13-115a) and (13-115b) can
be written as [

1 −Rs , h
12

−Rs , h
21 1

] [
U s , h

1

U s , h
2

]
=

[
U s , h

0 T s , h
10

0

]
(13-118)

which can be solved using standard matrix inversion methods.
The outlined self-consistent method can be extended and applied to the interactions between

a larger number of edges. However, the order of the system of equations to be solved will also
increase and will be equal to the number of interactions between the various edge combinations.

C. Overlap Transition Diffraction Region The UTD diffraction coefficients fail to predict
accurately the field diffracted near grazing angles. This is best illustrated in Figure 13-45, where
a uniform plane wave is incident on a two-dimensional PEC strip.

The field diffracted by wedge 1 towards wedge 2 creates a Transition Region (TR), shown
cross-hatched, over which the diffracted field is non-ray optical and the second-order and succes-
sive diffractions are not accurately predicted using the traditional GTD/UTD procedure outlined
previously. The same is true for diffractions from other wedges with similar angles of incidence.
However, as the angle of incidence moves away from grazing, the GTD/UTD diffractions become
more valid. This is illustrated with some examples that follow.

To overcome the issue of the non-ray optical nature of the first-order diffractions, and the inac-
curate predictions by standard GTD/UTD of the higher-order successive diffractions by wedges,
the following two methods can be used.

1. Extended Spectral Theory of Diffraction (ESTD) [64]
2. Extended Physical Theory of Diffraction (EPTD) [65]

While the GTD and UTD are considered to be somewhat heuristic, they are more general and
less cumbersome in their application to multiple diffractions. The ESTD and EPTD are more

Ei (grazing)

Ei (near grazing)

Transition Region
x

y

z

w

r

f

#2#1

Figure 13-45 Diffraction by strip at and near grazing.
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rigorous and more accurate but less general and more complex. The ESTD is an extension of
the STD method [66]. Using the ESTD, the current density induced on the scatter of interest
is transformed in the spectral domain. The radiation integral is then asymptotically evaluated
in the spectral domain, after the induced current density is multiplied by a spectral diffraction
coefficient. The original STD was limited to a half-plane and aperture scattering for plane wave
incidence. The ESTD extends the STD to general double-wedge configuration, and it can be used
for plane, cylindrical, and spherical wave incidence for both normal and oblique incidences.

The EPTD is an alternative transition-region method based upon a different evaluation of the
surface radiation integral. The induced current density is approximated using the PTD fringe
currents [67], whereas the ESTD uses the UTD diffraction coefficients. The resulting radiation
integral is evaluated asymptotically to obtain the second-order field diffracted by the double
wedge structure. The EPTD formulation is limited to plane-wave incidence, far-field observation
in the plane of the structure. As with the ESTD, the EPTD doubly-diffracted field expression can
be greatly simplified for certain geometries, such as the strip.

To demonstrate the concepts of near grazing-angle-incidence diffraction, a numbers of
examples are considered for monostatic and bistatic scattering for both soft (TMz) and
hard (TEz) polarizations [68, 69]. For monostatic scattering, the patterns are illustrated in
Figures 13-46a and 13-46b for a strip of width w = 2λ. A width of 2λ is chosen for all cases
so that the GTD/UTD diffraction coefficients are valid. For the soft polarization, only first-order
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Figure 13-46 Monostatic RCS by a two-dimensional strip of width w = 2λ [68, 69]. (a) Soft (TMz )
polarization. (b) Hard (TEz ) polarization.
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Figure 13-47 Bistatic RCS by a two-dimensional strip of width w = 2λ at φi = 170◦ [68, 69]. (a) Soft
(TMz ) polarization. (b) Hard (TEz ) polarization.

UTD diffractions are considered since higher-orders are not applicable; however, for the hard
polarization, up to fourth-order UTD diffractions are included. It is clear that the results of all
three methods (MM, EPTD, UTD) for both monostatic cases are in very good agreement.

The bistatic scattering results for incidence angles of near grazing (φi = 170◦) and away from
grazing (φi = 135◦) are shown in Figures 13-47a , 13-47b, 13-48a and 13-48b, respectively. As
expected, because of the UTD diffracted fields near grazing angle (φi = 170◦) are non-ray optical,
the patterns of the UTD results are not in very good agreement with those of the MM and EPTD
as indicated in Figures 13-47a and 13-47b for both polarizations. However, the comparison of
not near-grazing incidence (φi = 135◦) of all three methods is very good for both polarizations,
as indicated in Figures 13-48a and 13-48b.

13.4 COMPUTER CODES

Using geometrical optics and wedge diffraction techniques, a number of computer codes have
been developed over the years to compute the radiation and scattering characteristics of simple
and complex antenna and scattering systems. Some are in the form of subroutines that are used
primarily to compute wedge diffraction coefficients and associated functions. Others are very
sophisticated codes that can be used to analyze very complex radiation and scattering problems.
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Figure 13-48 Bistatic RCS by a two-dimensional strip of width w = 2λ at φi = 135◦ [68, 69]. (a) Soft
(TMz ) polarization. (b) Hard (TEz ) polarization.

We will describe here two wedge diffraction subroutines and a subfunction, which the readers
can utilize to either develop their own codes or to solve problems of interest. These subroutines
were initially written in Fortran but were translated to MATLAB for this edition.

13.4.1 Wedge Diffraction Coefficients

The Wedge Diffraction Coefficients (WDC) subroutine computes the soft and hard polarization
wedge diffraction coefficients based on (13-89a) through (13-90b). To complete the computations,
the program uses the complex function FTF (Fresnel transition function). This program was devel-
oped at the ElectroScience Laboratory at the Ohio State University, and it was reported in [53].

To use this subroutine, the user must specify

R = L (in wavelengths) = distance parameter

PHID = φ (in degrees) = observation angle

PHIPD = φ′ (in degrees) = incident angle

BTD = β ′
0 (in degrees) = oblique angle



Balanis c13.tex V2 - 11/24/2011 12:45 A.M. Page 831

MULTIMEDIA 831

FN = n (dimensionless) = wedge angle factor

and the program computes the complex diffraction coefficients

CDCS = Ds = complex diffraction coefficient (soft polarization)

CDCH = Dh = complex diffraction coefficient (hard polarization)

13.4.2 Fresnel Transition Function

The Fresnel transition function (FTF) computes the Fresnel transition functions F (X ) of (13-68e),
(13-68f), and (13-69e), (13-69f). The program is based on the asymptotic expression of (13-74a)
for small arguments (X < 0.3) and on (13-74b) for large arguments (X > 5.5). For interme-
diate values (0.3 ≤ X ≤ 5.5), linear interpolation is used. The program was developed at the
ElectroScience Laboratory of the Ohio State University, and it was reported in [53].

13.4.3 Slope Wedge Diffraction Coefficients

The Slope Wedge Diffraction Coefficients (SWDC) subroutine computes the soft and hard polar-
ization wedge diffraction coefficients based on (13-111a) through (13-111c). To complete the
computations, the program uses the complex function FTF (Fresnel transition function) of Section
13.4.2. This program was developed at the ElectroScience Laboratory at the Ohio State University,
and it was reported in [53].

To use this subroutine, the user must specify

R = L (in wavelengths) = distance parameter

PHID = φ (in degrees) = observation angle

PHIPD = φ′ (in degrees) = incident angle

BTD = β ′
0 (in degrees) = oblique angle

FN = n (dimensionless) = wedge angle factor

and the program computes the complex slope diffraction coefficients

CSDCS = ∂Ds

∂φ′ = complex slope diffraction coefficient (soft polarization)

CSDCH = ∂Dh

∂φ′ = complex slope diffraction coefficient (hard polarization)

13.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, and presentation of the material of this chapter.

• MATLAB computer programs (the first two also in Fortran):
a. WDC: (Both Matlab and Fortran). Computes the first-order wedge diffraction coefficient

based on (13-89a) through (13-90b). The initial Fortran algorithm was developed and
reported in [53].
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b. SWDC: (Both MATLAB and Fortran). Computes the first slope wedge diffraction coeffi-
cient based on (13-111a) through (13-111c). The initial Fortran algorithm was developed
and reported in [53].

c. PEC_Wedge: Computes, based on the exact solution of (13-40a), the normalized ampli-
tude pattern of a uniform plane wave incident upon a two-dimensional PEC wedge, as
shown in Figure 13-12.

d. PEC_Strip_Line_UTD: Computes, using UTD, the normalized amplitude radiation pat-
tern of a line source based on the UTD of Example 13-4. It is compared with that based
of the Integral Equation (IE) of Sections 12.2.2 through 12.2.8 and Physical Optics (PO)
of Section 11.2.3.

e. PEC_Strip_SW_UTD: Computes, using UTD, the TMz and TEz 2D-scattering width
(SW), monostatic and bistatic, of a PEC strip of finite width, based on the UTD of
Example 13-5. It is compared with that of the Integral Equation (IE) of Section 12.3.1
and Physical Optics of Section 11.3.1, and Figures 12-13 and 11-4.

f. Monopole_GP_UTD: Computes, using UTD, the normalized amplitude radiation pat-
tern of a λ/4 monopole on a rectangular or circular ground plane based on UTD and
Figures 13-31 and 13-36.

g. Aperture_GP_UTD: Computes, using UTD, the normalized amplitude radiation pattern
of a rectangular or circular aperture, with either a uniform or dominant mode aperture
field distribution, on a rectangular ground plane based on UTD and Figure 13-31, where
the monopole is replaced by an aperture, as shown in Figure P13-29.

h. PEC_Rect_RCS_UTD: Computes, using UTD, the TEx and TMx bistatic and monostatic
RCS of a PEC rectangular plate using UTD. It is compared with the Physical Optics (PO)
of Section 11.2.3.

i. PEC_Circ_RCS_UTD: Computes the TEx and TMx monostatic RCS of a PEC circu-
lar plate using UTD. It is compared with the Physical Optics (PO) of Chapter 11 and
Problem 11.7.

j. PEC_Square_Circ_RCS_UTD. Computes, using UTD, the TEx and TMx monostatic
RCS of PEC square and circular plates, which have the same area and equal maximum
monostatic RCS at normal incidence. The UTD patterns of the two plates, square and
circular, are compared with the Physical Optics (PO) of Chapter 11.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

13.1. Using the geometry of Figure 13-5,
derive (13-9).

13.2. An arbitrary surface of revolution can be
represented by

z = g(u) where u = x2 + y2

2
Define

K 2 = 1 + 2u

[
dg(u)

du

]2

Then the unit vectors û1 and û2 of
Figure 13-7 in the directions of the prin-
cipal radii of curvature R1 and R2, respec-
tively, can be determined using

û1 = âx y − ây x√
x2 + y2

û2 =
âx x + ây y + âz

[
(x2 + y2)

dg(u)

du

]
K

√
x2 + y2

and the R1 and R2 can be found using

1

R1
= 1

K

dg(u)

du

1

R2
= 1

K 3

[
dg(u)

du
+ 2u

d2g(u)

du2

]

For a paraboloidal reflector (parabola of
revolution), widely used as a microwave
reflector antenna, whose surface can be
represented by

z = f − x2 + y2

4f

where f is the focal distance, show that the
principal radii of curvature are given by

1

R1
= − 1

2f

1[
1 + x2 + y2

4f 2

]1/2
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1

R2
= − 1

2f

1[
1 + x2 + y2

4f 2

]3/2

13.3. The intensity radiated by an electromag-
netic source is contained within a cone
of total included angle α = 60◦. Assum-
ing that the radiation density at a radial
distance of 5 meters from the vertex of
the cone is uniformly distributed over
the spherical cap of the cone and it is
10 milliwatts/cm2, determine, using classi-
cal geometrical optics and conservation of
energy within a tube of rays, the:
(a) Total power radiated by the source
(b) Radiation density (in milliwatts/cm2)

over the spherical cap of the cone at
a radial distance of 50 meters from the
vertex of the cone.

50 m

a = 60°

5 m

Figure P13-3

13.4. Derive (13-30) using the geometry of
Figure 13-8.

13.5. An electric line source is placed in front
of a 30◦ convex segment of an infinite
length conducting circular arc, as shown
in Figure P13-5. Assume the line source
is placed symmetrically about the arc, its
position coincides with the origin of the
coordinate system, and it is parallel to the
length of the arc. Using geometrical optics
determine the following:

r

f

x
a

y

30°
Apex

5l

Figure P13-5

(a) The location of the caustic for fields
reflected by the surface of the cap.

(b) The far-zone backscattered electric
field at a distance of 50λ from the cen-
ter of the apex of the arc.
Assume that the radius of the arc is
5λ and the incident electric field at the
apex of the arc is

Ei (ρ = 5λ, φ = 0◦) = âz 10−3 V/m

13.6. Repeat Problem 13.5 for a 30◦ concave
segment of an infinite length conducting
circular arc, as shown in Figure P13-6.

r

f

x

y

30°

Apexa = 5l

Figure P13-6

13.7. A uniform plane wave traveling in free
space with an incident electric field given
by

Ei = âx e−jβz

is incident upon a smooth curved conduct-
ing surface as shown in Figure P13-7.

Ei

Ei

Hi Hi

y

x

z

Figure P13-7

Assuming the radii of curvature in the two
principal planes are: xz -plane = 10λ and
yz -plane = 19.6λ, utilize the simplest and
sufficiently accurate method to:
(a) Write an expression, in vector form, of

the backscattered electric field.
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(b) Compute the normalized monostatic
RCS (σ/λ2) in dB.

(c) Repeat parts (a) and (b) when the inci-
dent electric field is given by

Ei = ây e−jβz

13.8. An infinite length electric line source
is placed a distance s ′ from a two-
dimensional flat PEC strip of finite width
in the x -direction and infinite length in the
z-direction, as shown in Figure P13-8. To
reduce the backscattered field, the flat strip
is replaced with a two-dimensional semi-
circular PEC arc of radius a , as shown
dashed in the figure. Determine, using GO,
the radius (in wavelengths) of the PEC arc
so that the backscattered electric field from
the arc is 20 dB down (or −20 dB) relative
to the electric field backscattered from the
flat PEC strip. Assume that s ′ = 10λ and
that s � s ′ � a .

Observation Source

y

s′

s

Strip

arc

a
z

x

Figure P13-8

13.9. Repeat the calculations of Example 13-2
for h = 0.25 and w = 2λ.

13.10. Show that by combining (13-60a) and (13-
60b) you get (13-61).

13.11. Show that evaluation of (13-48b) along CT

leads to (13-62a) and along SDP±π leads
to (13-62b).

13.12. When the line source is in the vicinity of
the edge of the wedge and the observa-
tions are made at large distances (ρ � ρ ′)
in Figure 13-13, show the following:

(a) Green’s function of (13-38) can be
approximated by

G �
√

2

πβρ
e−j (βρ−π/4)F (βρ ′)

where

F (βρ ′) = 1

n

∞∑
m=0

εm Jm/n(βρ ′)e+j (m/n)(π/2)

×
[
cos

m

n
(φ − φ′) ± cos

m

n
(φ + φ′)

]
(b) Geometrical optics fields of (13-65)

can be written as

FG (βρ ′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ejβρ′ cos(φ−φ′) ± ejβρ′ cos(φ+φ′)

for 0 < φ < π − φ′

ejβρ′ cos(φ−φ′)

for π − φ′ < φ < π + φ′
0 for π + φ′ < φ < nπ

(c) Diffracted fields of (13-67) can be writ-
ten as

V i ,r
D (ρ ′, φ ∓ φ′, n) = V i

D (ρ ′, φ − φ′, n)

± V r
D (ρ ′, φ + φ′, n)

V i ,r
D (ρ ′, φ ∓ φ′, n) = e−jπ/4

√
2πβ

1

n
sin

(π

n

)

×
⎡⎣ 1

cos
(

π
n

) − cos
(

φ−φ′
n

) ± 1

cos
(

π
n

) − cos
(

φ+φ′
n

)
⎤⎦

× e−jβρ′

√
ρ ′

13.13. A unity amplitude uniform plane wave of
soft polarization is incident normally on a
half-plane at an angle of 45◦, as shown in
Figure P13-13. At an observation point P
of coordinates ρ = 5λ, φ = 180◦ from the
edge of the half-plane, determine the fol-
lowing:
(a) Incident geometrical optics field.
(b) Reflected geometrical optics field.
(c) Total geometrical optics field.
(d) Incident diffracted field.

5l

f = 180°
45°P

Figure P13-13
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(e) Reflected diffracted field.
(f) Total diffracted field.
(g) Total field (geometrical optics plus

diffracted).

13.14. Repeat Problem 13.13 for a hard polariza-
tion uniform plane wave.

13.15. An electric line source, whose normal-
ized electric field at the origin is unity, is
placed at a distance of ρ ′ = 5λ, φ′ = 180◦
from the edge of a half-plane, as shown
in Figure P13-15. Using the reciprocity
principle of Figure 13-17 and the results
of Problem 13.12, determine at large dis-
tances the following:
(a) Incident geometrical optics electric

field.
(b) Reflected geometrical optics electric

field.
(c) Total geometrical optics electric field.
(d) Incident diffracted electric field.
(e) Reflected diffracted electric field.
(f) Total diffracted electric field.
(g) Total electric field (geometrical optics

plus diffracted).

5l

f′ = 180°

f = 45°

Figure P13-15

13.16. Repeat Problem 13.15 for a magnetic line
source whose normalized magnetic field at
the origin is unity. At each observation
determine the magnetic field.

13.17. A uniform plane wave of soft polarization(
E = âz E i

)
, whose electric field normal-

ized amplitude at the diffraction edge is 2,
is incident upon a half plane at an incidence
angle of 60◦. When ρ = 5.5λ, determine
(in vector form) approximate values for
the:
(a) Incident GO electric field at φ = 120◦−

and φ = 120◦+.
(b) Reflected GO electric field at φ =

120◦− and φ = 120◦+.
(c) Incident diffracted electric field at φ =

120◦− and φ = 120◦+.
(d) Reflected diffracted electric field at

φ = 120◦− and φ = 120◦+.

(e) Total electric field at φ = 120◦− and
φ = 120◦+.

x
60°

y

z

120°

Figure P13-17

13.18. A uniform plane wave, of unity amplitude,
is incident upon a PEC 90◦ wedge at an
angle of φ′ = 60◦. At an observation dis-
tance of ρ = 81λ from the edge of the
wedge and observation angle of 180◦, com-
pute the:
(a) Incident diffracted field using GTD.
(b) Approximate incident diffracted field

using UTD.
(c) Reflected diffracted field using GTD.
(d) Approximate reflected diffracted field

using UTD.

180°

r

60°

Figure P13-18

If you make any approximations, state as to
why you think they are valid. Compare the
corresponding answers of parts (a) through
(d). Should they be approximately the same
or different, and why?

13.19. A hard-polarized uniform plane wave, with
the magnetic field directed in the +z direc-
tion and traveling in the +x direction, is
incident upon a half-plane (knife edge),
as shown in Figure P13-19. Assume an
observation distance s from the edge of the
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wedge. Also assume that the magnitude of
the incident magnetic field is unity.
Using exclusively the coordinate system
shown in the figure, write vector expres-
sions for the following fields:
(a) Incident magnetic field.
(b) Incident electric field.
(c) Backscattered diffracted magnetic

field.
(d) Backscattered diffracted electric field.
(e) Magnitude (in dB) of the ratio of

the backscattered magnetic field to the
incident magnetic field at a distance of
s = 100λ.

f

x
z

s

y

Hi

Hr

Figure P13-19

13.20. An electric line source, whose normalized
electric field at the origin (leading edge of
half plane) is unity, is placed a distance 5λ

from the edge of the half-plane, as shown
in Figure P13-20. Determine, in the far
field, the following:
(a) Incident GO electric field.
(b) Reflected GO electric field.
(c) Total GO electric field.
(d) Incident diffracted electric field.
(e) Reflected diffracted electric field.
(f) Total diffracted electric field.
(g) Total electric field (GO plus

diffracted).

180°

5l
Source

45°

Figure P13-20

13.21. A uniform plane wave, with the elec-
tric/magnetic field directed in the +z direc-
tion and traveling in the +x direction, is
incident upon a half-plane (knife edge), as
shown in Figure 13-21. Assume an obser-
vation distance s from the edge of the

wedge, and that the magnitude of the inci-
dent electric/magnetic field is unity at the
leading edge.
Using exclusively the coordinate system
shown in the figure, write vector expres-
sions for the following fields. Assume φ =
90◦, s = 9λ.
(a) Soft Polarization: UTD diffracted elec-

tric field.
(b) Hard Polarization: GTD diffracted

magnetic field.

f

x
z

y

s

Ei, Hi

Ed, Hd

Figure P13-21

13.22. A unity amplitude uniform plane wave
is incident normally on a 30◦ conducting
wedge. Assume that the incident electric
field is polarized in the z direction and the
incident angle is 45◦. Then determine at
ρ = 5.5λ the following:
(a) Incident GO electric field at φ =

225◦−.
(b) Incident GO electric field at φ =

225◦+.
(c) Approximate incident diffracted field

at φ = 225◦−.
(d) Approximate incident diffracted field

at φ = 225◦+.
(e) Approximate total electric field at φ =

225◦−.
(f) Approximate total electric field at φ =

225◦+.
Plus and minus refer to angles slightly
greater or smaller than the designated
values.

xz

y Ei

45°

30°

r
f

s = ∞

Figure P13-22
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13.23. Repeat Problem 13.22 when the incident
magnetic field of the unity amplitude uni-
form plane wave is polarized in the z direc-
tion. At each point determine the corre-
sponding GO, diffracted, or total magnetic
field.

13.24. A unity amplitude uniform plane wave of
soft polarization is incident upon a half-
plane, as shown in Figure P13-24. At a
plane parallel and behind the half-plane
perform the following tasks.
(a) Formulate expressions for the incident

and reflected geometrical optics fields,
incident and reflected diffracted fields,
and total field.

(b) Plot along the observation plane
the total field (geometrical optics
plus diffracted fields) when y0 = 5λ,
−5λ ≤ x0 ≤ 5λ.

(c) Determine the total field at y0 = 5λ and
x0 = 0. Explain the result.

x

y0

x0

∞

f

r

Figure P13-24

13.25. Repeat Problem 13.24 for a hard polarized
uniform plane wave.

13.26. A unity amplitude uniform plane
wave is incident normally on a two-
dimensional conducting wedge, as shown
in Figure P13-26.
(a) Formulate expressions that can be used

to determine the incident, reflected, and
total diffracted fields away from the
incident and reflected shadow bound-
aries.

(b) Plot the soft and hard polariza-
tion normalized diffraction coefficients
(Ds , h/

√
λ) as a function of φ for n =

1.5 and n = 2.

(c) Simplify the expressions of part (a)
when n = 2 (half-plane).

(d) Formulate expressions for the two-
dimensional scattering width of the
half-plane (n = 2) for soft and hard
polarizations.

(e) Simplify the expressions of part (d) for
backscattering observations (φ = φ′).
How can the results of this part be used
to design low-observable radar targets?

f′

r

f

(2 − n)p

Figure P13-26

13.27. For the geometry of Problem 13.26 plot
at φ = φ′ the normalized diffraction coeffi-
cient (Ds , h/

√
λ) as a function of the wedge

angle (1 ≤ n ≤ 2) when the polarization of
the wave is (a) soft and (b) hard.

13.28. Repeat Problem 13.27 when the observa-
tions are made along the surface of the
wedge (φ = 0◦).

13.29. By approximating the integrand of the
Fresnel integral of (13-63c) with a trun-
cated Taylor series

e−jτ2 �
M∑

n=0

(−jτ 2)n

n!

derive the small argument approximation
of (13-74a) for the transition function.

13.30. By repeatedly integrating by parts the
Fresnel integral of (13-63c), derive the
large argument approximation of (13-74b)
for the transition function.

13.31. Show that there is a finite discontinuity
of unity amplitude with the proper polar-
ity, similar to (13-83), along the following
boundaries.
(a) RSB of Figure 13-24a .
(b) ISB of Figure 13-24b.
(c) RSB of Figure 13-24b.
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13.32. Using the Uniform Theory of Diffraction
(UTD), the diffraction coefficient, assum-
ing the incident wave illuminates the upper
face of the PEC wedge, as shown in Figure
P13-32, is given by (13-71a) and (13-71b).
Identify which of the above cotangent
functions and corresponding Fresnel transi-
tion functions F are used to eliminate the
discontinuity introduced by the GO field
along the:
(a) Incident Shadow Boundary (ISB).
(b) Reflection Shadow Boundary (RSB).

f

f′

Figure P13-32

Identify the ISB and RSB in terms of
angles, and indicate what happens individ-
ually, and as a product, to those two func-
tions along the corresponding boundaries.

13.33. Repeat Problem 13.32 when the incident
wave illuminates the lower face of the PEC
wedge, as shown in Figure P13-33. The
equations for the diffraction coefficients are
the same, (13-71a) and (13-71b), as those
given in Problem 13.32.

f
f′

Figure P13-33

13.34. Compute the corresponding phases for the
fields, GO and diffracted, for Figures 13-
25a and 13-25b.

13.35. Repeat the calculations of Example 13-4
for a strip of width w = 2λ and with the
line source at a height of h = 0.25λ.

13.36. Repeat Example 13-5 for a hard polarized
uniform plane wave.

13.37. A uniform plane wave is incident upon
a two-dimensional PEC strip, as shown
in Figure 13-28. Formulate the problem,
using GTD, for:
(a) Hard polarization (assume incident

magnetic field of H0 amplitude):
• Backscattered/monostatic (φ = φ′)

magnetic field and its backscatter-
ing/monostatic scattering width SW.

• Bistatic scattered magnetic field and
its bistatic scattering width SW.

(b) Soft Polarization (assume incident
electric field of E0 amplitude).
• Bistatic scattered electric field and

its bistatic scattering width SW.
(c) Plot the bistatic and backscattering/

monostatic patterns for w = 2λ, f =
10 GHz, and φ′ = 120◦ for both soft
and hard polarized uniform plane
waves. For each polarization (soft and
hard), the backscattering/monostatic
patterns should be in two separate
figures; one figure for the soft and
the other for the hard. Similarly, the
bistatic cases should be in two sep-
arate figures; one figure for the soft
and the other for the hard. In each
of the four figures, plot and compare,
for the respective polarizations, the pat-
terns based on EFIE/MoM SW/λ (dB)
and SW(dBm).

13.38. A z -polarized electric-field uniform plane
wave of unity amplitude is traveling in
the negative y direction, as shown in
Figure P13-38. In order to introduce a
blockage to the wave, a half-plane (knife-
edge) is placed, as shown in the figure.
Assuming an observation point of φ =
330◦ and s = 9λ, determine, at that point,
the:
(a) Vector electric field in the presence of

the knife-edge.
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(b) Blockage (in dB) introduced to the
wave by the knife-edge.

f

s

z

y
90°

x

Figure P13-38

13.39. A unity amplitude uniform plane wave is
incident normally on a two-dimensional
strip of width w as shown in Figure P13-
39.
(a) Formulate expressions for the fields

when the observations are made below
the strip along its axis of symmetry.

(b) Compute the field when w = 3λ and
d = 5λ for soft and hard polarizations.

z

x

y

d

w
2

w
2

#2 #1f

r

Figure P13-39

13.40. A transmitter and a receiver are placed on
either side of a mountain that can be mod-
eled as a perfectly conducting half-plane,
as shown in Figure P13-40. Assume that
the transmitting source is isotropic.
(a) Derive an expression for the field at the

receiver that is diffracted from the top
of the mountain. Assume the field is
soft or hard polarized.

(b) Compute the power loss (in deci-
bels) at the receiver that is due to
the presence of the mountain when
h = 5λ and d = 5λ. Do this when the

transmitter and receiver are both, for
each case, either soft or hard polarized.

ReceiverTransmitter

dd

h

Figure P13-40

13.41. A rectangular waveguide of dimensions a
and b, operating in the dominant TE10

mode, is mounted on a square ground plane
with dimensions w on each of its sides, as
shown in Figure P13-41. Using the geom-
etry of Example 13-6 and assuming that
the total geometrical optics field above the
ground plane in the principal yz plane is
given by

EθG (θ) = E0

⎡⎢⎢⎣ sin

(
βb

2
sin θ

)
βb

2
sin θ

⎤⎥⎥⎦ e−jβr

r

0 ≤ θ ≤ π

2

(a) Show that the fields diffracted from
edges 1 and 2 in the principal yz plane
are given by

E d
θ1(θ) = E0

sin

(
βb

2

)
βb

2

× V i
B

(w

2
, ψ1, n1 = 2

)
e

+j (βw/2) sin θ
e−jβr

r

ψ1 = π

2
+ θ , 0 ≤ θ ≤ π

E d
θ2(θ) = E0

sin

(
βb

2

)
βb

2

× V i
B

(w

2
, ψ2, n2 = 2

)
e

−j (βw/2) sin θ
e−jβr

r

ψ2 =

⎧⎪⎨⎪⎩
π

2
− θ 0 ≤ θ ≤ π

2
5π

2
− θ

π

2
≤ θ ≤ π
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Figure P13-41

(b) Plot the normalized amplitude pattern
(in decibels) for 0◦ ≤ θ ≤ 180◦ when
w/2 = 14.825λ and b = 0.42λ.

13.42. A uniform plane wave is incident upon a
square ground plane, of dimensions a and
b in the x - and y-directions, respectively.
The plane of incidence is the yz -plane and
the plane of observation is also the yz -
plane.
For a hard-polarized (TEx ) shown in
Figure 11-8b and the Figure P13-42:
• Model/formulate the first-order diffrac-

tions from edges #1 and #2 for general
bistatic scattering, and eventually 3-D
RCS.

• Model/formulate the second-order bista-
tic diffractions from edges #1 and #2 due
to 1st-order diffractions from edges #2
and #1, respectively, and eventually 3-D
RCS.

• Plot, one figure and 3 patterns, the
3-D RCS scattering bistatic patterns
(σ3-D/λ2) (in dB) one due to first-order
diffractions, and one due to first- plus
second-order diffractions (σ3-D/λ2) (in
dB) for an incidence angle of and θi =
30◦ and a = b = 5λ. On the same figure
plot the 3-D RCS pattern based on Phys-
ical Optics (σ3-D/λ2) (in dB) shown in
Figure 11-9a .

• Plot, one figure and 3 patterns, the 3-
D RCS scattering monostatic patterns
(σ3-D/λ2) (in dB), in the upper 180◦
region, one due to first-order diffrac-
tions, and one due to first- plus second-
order diffractions (σ3-D/λ2) (in dB) for
a = b = 5λ. On the same figure, plot

the 3-D RCS pattern based on Physi-
cal Optics (σ3-D/λ2) (in dB) shown in
Figure 11-9b.

Use (11-22e) to convert the 2-D RCS to
3-D RCS.

x

y

z

i

Diffraction
Point #1 

i

Diffraction
Point #2 

y′

#2 #1 

Ei Ei

E2
d

E1
d

Ed
21 Ed

12

qi 
qs qi 

qs 

y y′
y

Figure P13-42

13.43. For Problem 13.42 and a soft-polarized
(TMx ) shown in Figure 11-8(c), including
the figures in Problem 13.42:
• Model/formulate the first-order diffrac-

tions from edges #1 and #2 for general
bistatic scattering, and eventually 3-D
RCS. There are no second- or higher-
order regular diffractions for this polar-
ization.

• Plot, in one figure and two patterns,
the 3-D RCS scattering bistatic pat-
terns (σ3-D/λ2) (in dB) due to 1st -order
diffractions for an incidence angle of
θi = 30◦ and a = b = 5λ. On the same
figure plot the 3-D RCS based on PO
(σ3-D/λ2) (in dB) shown in Fig. 11-9a .

• Plot, in one figure and two patterns, the
3-D RCS scattering monostatic patterns
(σ3-D/λ2) (in dB), in the upper 180◦
region, due to first-order diffractions for
a = b = 5λ. On the same figure plot
the 3-D RCS pattern based on Physi-
cal Optics (σ3-D/λ2) (in dB) shown in
Fig. 11-9b.

Use (11-22e) to convert the 2-D RCS to
3-D RCS.
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13.44. A soft-polarized spherical wave is inci-
dent, at a normal incidence angle, upon a
half plane with a straight edge. The wave
emanates from a source a distance s ′ from
the edge of the half plane. In order to
reduce the diffracted field, the straight edge
is replaced with a curved edge of radius a .
(a) Derive a simplified expression for the

ratio of amplitude spreading factor
reduction for the backscattered field,
by a curved edge relative to that by
the straight edge, at a large distance s
from the edge of the half plane.

(b) Determine, in dB, the relative ampli-
tude reduction of the backscattered
diffracted field by a curved edge of
radius a = 25λ and a source distance
of s ′ = 100λ.

s′ a

diffracted
field

Straight
edge

Curved
edge

Figure P13-44

13.45. A uniform plane wave with an electric field
given by

Ei = âz e−jβx

is incident upon a flat conducting square
plate, as shown in Figure P13-45. To
reduce the backscattered diffractions from
the leading edge, the square plate is
replaced by a circular plate. Determine the
radius of curvature a of the square plate so

x

y

a

z
HiEi

Figure P13-45

that the backscattered diffractions at a dis-
tance of 50λ from the leading edge diffrac-
tion point of the curved edge are −20 dB
than those of the leading straight edge.

13.46. A unity amplitude uniform plane wave is
incident at a grazing angle on a circular
ground plane of radius a , as shown in
Figure P13-46.
(a) Formulate expressions for the field

diffracted from the leading edge (# 2)
of the ground plane along the principal
yz plane for both soft and hard polar-
izations.

(b) Locate the position of the caustic for
the leading edge.

(c) Assuming the incident electric field
amplitude at the leading edge of the
plate is 10−3 V/m and its phase is
zero, compute for each polarization at
r = 50λ when a = 2λ the backscat-
tered electric field that is due to the
leading edge of the plate.

x

y

a

z

r

#2 #1

Ei(soft)

Ei(hard)

f

q

Figure P13-46

13.47. Show that the fields radiated by a circu-
lar loop with nonuniform equivalent elec-
tric and magnetic current I e

φ and I m
φ are

given, respectively, by (13-105a) and (13-
105b). If the equivalent currents I e

φ and I m
φ

are uniform, show that (13-105a) and (13-
105b) reduce, respectively, to (13-106a)
and (13-106b).

13.48. An infinitesimal dipole is placed on the tip
of a finite cone, as shown in Figure P13-
48. The total geometrical optics magnetic
field radiated by the source in the presence
of the cone, referred to the center of the
base of the cone, is given by

HφG = R(θ)ejβs cos θ cos(α/2)
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where R(θ) is the field distribution when
the cone is infinite in length (s = ∞).
For the finite length cone there is also a
diffracted field forming a ring source at the
base of the cone.
(a) Using (13-105b), show that the di-

ffracted magnetic field is given by

H d
φ = b R

(
θ = π − α

2

)
V i

B (s , ψ , n)

×
∫ 2π

0
cos φej (βb) sin θ cos φdφ, ψ = α

2
+ θ

where V i
B (s , ψ , n) is the incident

diffraction function and φ is the
azimuthal observation angle.

#2 #1

q

a

s

b

Figure P13-48

(b) Assuming that the base of the cone
is large (b � λ) and the observations
are made away from the symmetry
axis so that sin θ > 0, show that by
using the method of steepest descent
of Appendix VI the integral formed by
the ring source diffracted field from
the rim of the cone reduces to the
field diffracted from two diametrically
opposite points on the rim (i.e., points
#1 and #2 of Figure P13-48).

13.49. For the λ/4 monopole on the circular
ground plane of Example 13-7, model the
rim of the ground plane as a ring source
radiator using equivalent current concepts
of Section 13.3.5 to correct for the caus-
tic formed when the observations are made
near the axis (θ � 0◦ and 180◦) of the
ground plane.
(a) Derive expressions for the diffracted

field from the rim using the ring radi-
ator of Figure 13-38.

(b) Show, using the method of steepest
descent (saddle point method), that the
ring radiator radiation of part a reduces
to a two-point diffraction away from
the symmetry axis.

(c) Compute and plot the pattern near the
axis (θ � 0◦ and 180◦) of the ground
plane when the diameter of the ground
plane is d = 4.064λ. Use this part of
the pattern to complement that com-
puted using the two-point diffraction of
Example 13-7.

13.50. We all have seen the general geometrical
shapes of the stealth bomber and fighter
(see Figure 13-1); most of the fuselage
consists of wedge-type shapes. There must
be a reason for that. To answer some of
the questions, formulate the problem and
show why a wedge-type of geometry is
desired, assume that a uniform plane wave,
of either soft or hard polarization, impinges
either upon a 2-D PEC wedge of included
angle WA or a 2-D PEC cylinder of circu-
lar cross section and radius a , as shown in
Figure P13-50:

WA

y

x

a
f

Figure P13-50

(a) In one figure with two curves, plot the
normalized 2-D monostatic scattering
width SW[σ2-D/λ(dB)] of the wedge
vs. wedge angle WA (in degrees) [0 ≤
WA ≤ 60◦] for both hard and soft
polarization.

(b) In one figure with 2 curves, plot the
normalized 2-D monostatic scattering
width SW[σ2-D/λ(dB)] of the cylin-
der vs. cylinder radius a wavelengths)
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[0 ≤ a ≤ 10λ] for both hard and soft
polarization.

(c) In one figure with two curves, plot the
normalized 2-D monostatic scattering
width SW [σ2-D/λ(dB)] of the wedge
WA (in degrees) [0 ≤ WA ≤ 60◦] and
that of cylinder with radius a [0 ≤ a ≤
10λ] for hard polarization.

(d) In one figure with 2 curves, plot the
normalized 2-D monostatic scattering

z

b

b

2nd order
1st order
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Figure P13-51

width SW [σ2-D/λ(dB)] of the wedge
WA (in degrees) [0 ≤ WA ≤ 60◦] and
that of cylinder with radius a [0 ≤ a ≤
10λ] for soft polarization.

13.51. A uniform plane wave is incident upon a
circular ground plane of radius a , as shown
in the figure that follows. The plane of
incidence is the yz -plane and the plane of
observation is also the yz -plane. Referring
to [36] and Figure P13-51.
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(a) For a hard-polarized (TEx):
• Model the first-order 3-D diffrac-

tions from edges #1 and #2 for
monostatic scattering. Use the mid-
dle of the plate as the reference
point.

• Model the second-order monostatic
3-D diffractions from edges #1 and
#2 due to first-order diffractions
from edges #2 and #1, respectively.

• Model the second-order 3-D diffrac-
tions from the migrating points #3
and #4.

• Model the ‘ring-radiator’ contribu-
tions. In [36] they are referred to as
Axial Caustic Correction formulated
using Equivalent Currents .

• Plot, in one figure and two pat-
terns, the 3-D RCS scattering mono-
static patterns (σ3-D/λ2) (in dB), in
the upper 180◦ region, due to first-
order (#1 and #2) diffractions plus
‘ring-radiator’ for a = 3.516λ. On
the same figure, plot the 3-D RCS
pattern based on Physical Optics
(σ3-D/λ2) (in dB).

• Plot, in one figure and three pat-
terns, the 3-D RCS scattering mono-
static patterns (σ3-D/λ2) (in dB), in
the upper 180◦ region, one due to
first-order (#1 and #2) diffractions,
and one due to first- (#1 and #2)
plus all second-order (#1, #2, #3 and
#4 points) diffractions plus ‘ring-
radiator’ (σ3-D/λ2) (in dB) for a =
3.516λ. On the same figure, plot the
3-D RCS pattern based on Physical
Optics (σ3-D/λ2) (in dB).

13.52. For Problem 13.51 and a soft-polarized
(TMx ) wave, along with the figures of
Problem 13.51:
• Model/formulate the first-order 3-D

diffractions from edges #1 and #2 for
monostatic scattering. For this polariza-
tion, there are no second-order regular
diffractions from edges #1 and #2. Use
the middle of the plate as the reference
point.

• Model/formulate the second-order 3-D
diffractions from the migrating points #3
and #4.

• Model/formulate the ‘ring-radiator’ con-
tributions. In [36] they are referred to

as Axial Caustic Correction formulated
using Equivalent Currents .

• Plot, in one figure and two patterns,
the 3-D RCS scattering monostatic pat-
terns (σ3-D/λ2) (in dB), in the upper
180◦ region, due to first-order diffrac-
tions (#1 and #2) plus the ‘ring-radiator’
for a = 3.516λ. On the same figure, plot
the 3-D RCS pattern based on Physical
Optics (σ3-D/λ2) (in dB).

• Plot, in one figure and three patterns, the
3-D RCS scattering monostatic patterns
(σ3-D/λ2) (in dB), in the upper 180◦
region, one due to first-order diffractions
(#1 and #2), and one due to first- (#1
and #2) plus second-order (#3 and #4)
diffractions plus the ‘ring-radiator’ for
a = 3.516λ. On the same figure, plot
the 3-D RCS pattern based on Physical
Optics (σ3-D/λ2) (in dB).

13.53. According to PO, the maximum monos-
tatic scattering RCS of flat plates, irrespec-
tive of polarization and plate configuration
(rectangular, square, circular, elliptical, or
any other shape), occurs at normal inci-
dence and it is proportional to the square of
the plate. Assuming a square ground plane
and specifying the total length of one of
its sides, w (in λ), you can determine the
radius a (in λ) of the circular ground plane
so that both have the same area, as shown
in the figure that follows. For the circular
ground plane the blending angle between
the two-point diffraction and the ‘ring radi-
ator’ is referred to as thetao (typically 10-
30 degrees). The MATLAB program Rec-
t_Circ_Scat, for both TEx and TMx polar-
izations, performs this task. Using the Mat-
lab Rect_Circ_Scat.
(a) Compute and plot the monostatic 3-D

RCS (σ3-D/λ2) (in dB), in the upper
180◦ region, for hard polarization and
w = 5λ that will include four curves
on the same figure.
• One curve of square ground plane

using diffraction modeling that
includes both 1st and 2nd order
diffractions from points #1 and #2.

• One curve of square ground plane
using PO.

• One curve of circular ground plane
using diffraction modeling that
includes both 1st and 2nd order
diffractions from points #1 and #2,
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2nd order diffractions from points #3
and #4, and ‘ring-radiator.’

• One curve of a circular ground plane
using PO.

(b) Compute and plot the monostatic 3-D
RCS (σ3-D/λ2) (in dB), in the upper
180◦ region, for soft polarization and
w = 5λ that will include four curves
on the same figure.
• One curve of square ground plane

using diffraction modeling that
includes 1st order diffractions from
points #1 and #2.

• One curve of square ground plane
using PO.

• One curve of circular ground plane
using diffraction modeling that
includes 1st order diffractions from
points #1 and #2, 2nd order diffrac-
tions from points #3 and #4, and
‘ring-radiator.’

• One curve of a circular ground plane
using PO.

x

y

z
Incident Scattered

a

w

w

Figure P13-53

13.54. The normalized total geometrical optics
field radiated in the principal xz plane (H
plane; φ = 0◦, 180◦) by the rectangular
waveguide of Problem 13.41 (Figure P13-
41) is given by

EφG = E0 cos θ
cos

(
βa
2 sin θ

)
(

βa
2 sin θ

)2 − (
π
2

)2

e−jβr

r

0◦ ≤ θ ≤ 90◦

Use slope diffraction concepts of
Section 13.3.6.
(a) Formulate the field diffracted along the

xz plane using two-point diffraction
(points #3 and #4 of Figure P13-41).

(b) Plot (in decibels) the normalized
amplitude pattern when a = λ/2,
w = 4λ.

13.55. An infinite magnetic line source is placed
on a two-dimensional square conducting
cylinder at the center of its top side.
Use successive single-order diffractions on
each of the edges of the cylinder.
(a) Formulate expressions for the magnetic

field that would be observed at the cen-
ter of the bottom side of the cylinder.

(b) Compute the power loss (in decibels)
at the observation point that is due
to the presence of the cylinder when
w = 5λ. Assume far-field observation
approximations.

#4

#3 #1

Receiver

Transmitter

#2

w
2

w
2

ws = ∞

Figure P13-55
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CHAPTER 14
Diffraction by Wedge with Impedance Surfaces

14.1 INTRODUCTION

In Chapter 11 we introduced the exact solution of wave scattering by a perfectly conducting
wedge while in Chapter 13 we examined its asymptotic high-frequency solution and reduced
it to geometrical optics (GO) fields, incident and reflected, and diffracted fields (GTD and
UTD) (incident and reflected diffracted fields). The solution of electromagnetic scattering
from a penetrable or lossy wedge has not been solved using exact boundary conditions based
on Maxwell’s equations. It has always been necessary to use some approximate boundary
conditions from which the exact solution can be obtained. Hence, it is important to recognize
that when an exact solution is discussed, it is for a boundary condition that in reality can only
be approximated by physical materials or structures.

In recent years great interest has been generated, because of the design of low-profile (stealth)
radar targets and the modeling of wave propagation for wireless communication in the presence
of penetrable structures (such as buildings, ridges, hills, and various other structures), to extend
the theories of perfectly conducting materials to include materials with penetrable characteristics.
Many aircraft are now built with composite materials which, with appropriate shaping and
integration of materials, can reduce the radar echo, RCS, and thus minimize the probability
of detection. See Figure 13-1 of the F-117 Nighthawk whose surface is composed primarily
of faceted flat plates and wedges judiously oriented so that the maximum scattered field is
toward specular direction and away from source of detection. In wireless communication, the
wave propagation, direct and indirect (multipath), plays a pivotal role in the performance of the
wireless mobile communication system using, for example, the Bit Error Ratio (BER) as a metric.

The most common of these boundary conditions is the impedance boundary condition, which
relates the tangential components of the electric and magnetic fields by a surface impedance. The
impedance surface boundary condition was first used in electromagnetic scattering by a number
of Russian authors in the early 1940s [1], and it is generally attributed to Leontovich [2, 3], and
commonly referred to as the Leontovich boundary condition . It was initially used to describe
wave propagation over the earth’s surface by specifying an impedance boundary for the ground
surface. It was later used for other electromagnetics problems and was an effort to simplify very
complex electromagnetics boundary-value problems, which were difficult to solve exactly. It is
especially useful for surfaces that support surface waves.

The solution of a half-plane with impedance boundary conditions has been examined and
reported in [4–8]. The more general problem of plane wave incidence on a wedge of arbitrary
interior angle was solved by Maliuzhinets [9, 10]. The wedge was permitted to have different
impedances on each face but only normal incidence was considered. No solution for oblique
incidence on a general wedge has been obtained, except for a very few special cases. Maliuzhinets’
exact solution of the wedge was accompanied by a steepest-descent analysis, very similar to
Keller’s theory for the PEC wedge, which decomposed the exact solution into incident, reflected,

849
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Figure 14-1 Exterior and interior wedges with impedance surfaces [28]. (a) Exterior wedge. (b) Interior
wedge.

diffracted, and surface wave components. These Keller-type diffraction terms are not valid near
the shadow boundaries and do not eliminate the discontinuities in the GO and surface wave
terms; they had to be extended to include UTD type of formulations. There have been numerous
publications [11–61] addressing various special cases of the diffraction by an impedance wedge,
including that of the half plane. This chapter follows the presentation of [28, 30].

The impedance wedge, shown in Figure 14-1, is a canonical geometry whose faces can be
represented by surface impedances. The exact solution for this geometry for the fields both interior
and exterior to the wedge, similar to that of the PEC wedge of Chapter 11, does not exist because
appropriate eigenfunctions and eigenvalues that satisfy Maxwell’s equations and the boundary
conditions cannot be found. However, an exact solution for the fields exterior to the wedge, for
normal plane wave incidence and assuming uniform, but not identical surface impedances to the
faces of the wedge, does exist and it was first presented by Maliuzhinets [9, 10]. The wedge,
with wedge angle WA = (2 − n)π and 0 < n ≤ 2, has two faces located at φ = 0 and φ = nπ

with normalized uniform surface impedances of η0 and ηn , respectively. An exterior wedge
(Figure 14-1a) has values of n in the range of 1 ≤ n ≤ 2 while for an interior wedge (Figure 14-
1b) 0 < n < 1. Maliuzhinets’ solution can be used to extract geometrical optics, diffracted fields,
and surface waves, as was done for the PEC wedge in Chapter 13.

14.2 IMPEDANCE SURFACE BOUNDARY CONDITIONS

The impedance surface boundary condition is simply a statement that the tangential electric and
magnetic field vectors are related by a constant impedance that is related only to the properties
and configurations of the material and is independent of the source illumination. Mathematically,
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it is essentially a boundary condition of the third kind, as it relates a function and its derivative
at the surface through some constant. As such, it is only an approximation to the actual boundary
conditions, developed through Maxwell’s equations, which exist on complex structures. The
accuracy of the approximation depends on the composition, geometry, and illumination of the
actual surface of interest. The impedance boundary condition has been applied in the past to
homogeneous and inhomogeneous materials, layered structures, lossy materials, and randomly
rough surfaces.

Physically, it is easy to understand where a concept, like the impedance boundary condition,
originates. For plane, cylindrical, and spherical waves in inhomogeneous media and sufficiently
far from the source, the electric and magnetic field vectors are mutually orthogonal and are
related to each other by the intrinsic impedance of the homogeneous media through which they
propagate. For free space, this impedance is Zo = 377 ohms. In vector form, this statement is
expressed as

E = −Zo âr × H (14-1)

where E and H are the electric and magnetic field vectors, Zo is the intrinsic impedance of free
space (377 ohms), and âr is a unit vector in the direction of wave propagation.

The impedance boundary condition simply extends this wave property to surface interfaces with
which the wave interacts. The boundary condition requires that the tangential electric and magnetic
field vectors at the interface be mutually orthogonal and can be related by the impedance Z of the
surface. The normalized impedance η, relative to the free-space value Zo , is commonly specified,
and is given by η = Z /Zo . This notation can cause confusion because many electromagnetics
texts, as this one in previous chapters, use both η and Z as the total intrinsic impedance of the
medium. Nonetheless, this notation has been utilized for surface impedances as early as 1959 [6]
and has been used consistently since. Hence, in this chapter, η refers to a normalized impedance
and Z refers to the total impedance, Z = ηZo . For passive materials, the real part of η must be
nonnegative.

In a vector equation form, the impedance surface boundary condition, referred to also as the
Leontovich Boundary Condition , can be written as [1, 6]

E − (n̂ • E)n̂ = Z n̂ × H = ηZo(n̂ × H) (14-2)

where
E = the electric field vector
H = the magnetic field vector
n̂ = the outward unit normal to the surface

It is noted that (n̂ · E)n̂ is simply the normal component of E; hence, the left side of (14-2)
represents the tangential electric field. The term n̂ × H is a vector whose magnitude equals the
tangential magnetic field; however, its direction is perpendicular to both the tangential magnetic
field and the unit normal. Hence, n̂ × H is also tangential to the surface. The tangential electric
and magnetic fields are then related by the constant of proportionality Z , the surface impedance
Z = ηZo . In words, the tangential electric and magnetic fields are related by the surface impedance
of the material.

14.3 IMPEDANCE SURFACE REFLECTION COEFFICIENTS

To determine the reflection coefficients appropriate for an impedance surface, the reflection of a
plane wave at a planar interface is examined. At high frequencies, these reflection coefficients
are also appropriate for curved boundaries for which the radius of curvature is relatively large
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Figure 14-2 Oblique incident and reflected fields from a planar interface with impedance boundary for
soft and hard polarizations and direction of their components. (a) Soft (perpendicular) polarization. (b) Hard
(parallel) polarization.

compared to the wavelength. In Figure 14-2, a plane wave in free space and incident on an
impedance boundary is illustrated. For soft (perpendicular) polarization, Figure 14-2a , E is per-
pendicular to the plane of incidence, and for hard (parallel) polarization E is parallel to it.

For soft polarization , Figure 14-2a , the impedance boundary condition of (14-2) (using the
incident electric and magnetic fields as reference and φr = φi ), reduces to

E i + E r = ηZo(H
i − H r )sinφi (14-3a)

while for the hard polarization , Figure 14-2b, the impedance boundary condition of (14-2) (using
φr = φi ), simplifies to

(E i + E r )sinφi = ηZo(H
i − H r ) (14-3b)

where η = Z1/Z0 = η1/Z0 (Z1 = η1) is the normalized surface impedance of the medium. The
reader should pay attention to the directions of the incident and reflected fields, as indicated in
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Figures 14-2a and 14-2b. Using E i = ZoH i and E r = ZoH r in (14-3a) and (14-3b), the reflection
coefficients for soft and hard polarization become, respectively

�s = E r

E i
= η sin φi − 1

η sin φi + 1
=

sin φi − 1

η

sin φi + 1

η

(14-4a)

�h = E r

E i
= η − sin φi

η + sin φi
=

1 − sin φi

η

1 + sin φi

η

(14-4b)

For a perfect electric conductor (PEC), η = 0, the reflection coefficients of (14-4a) and (14-
4b) reduce, respectively, to �s = −1 and �h = −1. This implies, as it should, that the tangential
electric field components vanish on the PEC surface. Similarly, for a nonphysical perfect magnetic
conductor (PMC), η = ∞, the reflection coefficients of (14-4a) and (14-4b) reduce, respectively,
to �s = +1 and �h = +1. This implies, as it should, that the tangential magnetic field components
vanish on the PMC surface. At grazing incidence, sin φi = 0, �s = −1 and �h = +1 for the
lossy impedance surface. These are based on the directions of the incident and reflected fields of
Figures 14-2a and 14-2b.

The reflection coefficients of (14-4a) and (14-4b) are, respectively, the same as those of (5-17a)
and (5-24c), which are derived based on Snell’s laws, provided that sin φt = sin(π/2 − θt ) = 1.
This occurs when the constitutive parameters of the two media forming the interface are such
that sin φt =

√
1 − μ0ε0

μ1ε1
cos2 φi ≈ 1, which is satisfied provided μ1ε1 � μ0ε0. Therefore, (14-4a)

and (14-4b) are valid provided this relationship is satisfied.
For both polarizations, (14-4a) and (14-4b) show that there may be a particular Brewster angle

φB [see definition in (5-33a), (5-33b)] for which the reflected field is zero. For the soft polarization,
the Brewster angle φB = sin−1(1/η), while for the hard polarization φB = sin−1(η). If φB is
complex, no physical Brewster angle exists. If η is complex, φB will be complex (and nonphysical)
for both polarizations. If η is real and 0 ≤ η ≤ 1, φB is real for the hard polarization and complex
for the soft polarization. If η is real and η ≥ 1, then φB is real for the soft polarization and
complex for the hard polarization. Hence, a real Brewster angle cannot exist for both polarizations
except when η = 1, and for this normalized impedance (η = 1) φB = π/2 for both polarizations.
Obviously, this is just the case of normal incidence on a matched surface for which there is no
reflection for either polarization. Since the real part of η must be nonnegative, and since the
inverse sine function maps the right half-plane into the strip 0 ≤ Re[sin−1 η] < π/2, then it must
always be true that 0 ≤ Re [φB] < π/2.

In practice, these reflection coefficients are quite accurate for many scattering geometries.
However, for one special case, some intrinsic difficulties may arise; this special case is the hard
polarization near grazing incidence for an imperfect electric conductor. Similar problems arise
for the imperfect magnetic conductor. It is noted that for perfect conductors, η = 0 and �h = −1.
However, at grazing incidence sin φi = 0 and �h = +1. For imperfect conductors (η complex)
near grazing incidence (sin φi � 0), the hard reflection coefficient may change very rapidly from
+1 to −1 for very small changes in the grazing angle or the conductivity. In general, it is
difficult to develop methods for the imperfectly conducting case that revert uniformly to the
perfectly conducting case as the surface impedance approaches zero for the hard polarization at
grazing incidence.

In passing, it is worth mentioning that the grazing incidence case is especially important
to the radar community and hence deserves attention. It is well known that the lossy earth or
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sea surface near grazing incidence (sin φi � 0) has reflection coefficients of �s = −1 [i.e., the
incident and reflected electric fields are in opposite directions using the direction designation of
Figure 14-2a and definition of (14-4a)], and �h = +1 [i.e., the incident and reflected electric
fields are also in opposite directions using the direction designation of Figure 14-2b and definition
of (14-4b)]. This implies that radar targets flying very near the ground or sea surface (sin φi � 0)
are especially difficult to detect because, at grazing incidence, the incident reflected electric fields
are nearly equal in magnitude and opposite in phase. Hence, these two components effectively
cancel each other, giving no radar echo/return, which makes low-flying radar targets difficult to
track [62]. This physical phenomenon is exploited in many sea skimming missiles that fly within
a few meters of the ocean surface.

14.4 THE MALIUZHINETS IMPEDANCE WEDGE SOLUTION

An exact solution for the fields exterior to the wedge, for normal plane wave incidence and
assuming uniform, but not identical, surface impedances on the faces of the wedge, does exist
and it was first presented by Maliuzhinets [9, 10]. The wedge has two faces located at φ =
0 and φ = nπ , with normalized uniform surface impedances of ηo and ηn , respectively. An
interior wedge has values of n in the range of 0 < n < 1 while for an exterior wedge 1 ≤ n ≤ 2.
Maliuzhinets’ solution can be used to extract geometrical optics, diffracted fields, as was done
for the PEC wedge, and surface waves.

Let us assume that a plane wave is incident from φ′ and the observation point P is at a distance
ρ from the edge of the wedge at an angle φ, where φ′ and φ are both measured from the 0 face,
as shown in Figure 14-3. Assuming a field of amplitude Uo , the exact solution for the total field
Ut , including the incident and reflected fields is [9]

Ut (ρ, φ) = jUo
1

2nπ

∫
γ

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz (14-5)

where γ is the contour shown in Figure 14-4. It should be remembered that this is an exact
solution for an approximate boundary condition (i.e., the impedance boundary condition), and it
is not an exact solution for the exact boundary conditions derived from Maxwell’s equations. Also
in order to match the notation of Chapter 13 for the PEC wedge, the complex plane is represented
by z , instead of α used in the corresponding published literature.

r

f = np

f = 0

n face

hn

h0

P

0 face

f
f'

Figure 14-3 Interior wedge with impedance surfaces.
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SDP(p)

SDP(−p)

Re z−p p

Figure 14-4 Integration contours for exact Maliuzhinets solution of wedge with impedance surfaces [28,
30]. (Source: T. Griesser and C. A. Balanis, “Reflections, diffractions, and surface waves for an interior
impedance wedge of arbitrary angle,” IEEE Trans. Antennas Propagat., © 1989, IEEE).

In (14-5), �(z ) is the auxiliary Maliuzhinets function [9], and it depends explicitly on the
integration variable z and implicitly on the parameters n , θ0 and θn . Perhaps it would be more
evident by writing �(z ) as �(z ; n , θ0, θn); however, in the existing literature, it is exclusively
represented by �(z ). The function �(z ) and its properties are discussed in [28]. Both the Ey

(soft) and Hy (hard) are included in this representation [58] by simply using the normalized
surface impedance, or its inverse, in determining the Brewster angles θ0 and θn . The Brewster
angles for each polarization are determined as follows.

For the soft (TMy , Ey ) polarization , set (14-4a) equal to zero and solve for φi ; it leads to:

Ut (ρ, φ) = Ey(ρ, φ) (14-6)

θ0 = φi0 = sin−1

(
1

η0

)
(14-6a)

θn = φin = sin−1

(
1

ηn

)
(14-6b)

while for the hard (TEy , Hy ) polarization , set (14-4b) equal to zero and solve for φi ; it leads
to:

Ut (ρ, φ) = Hy(ρ, φ) (14-7)

θ0 = φi0 = sin−1(η0) (14-7a)

θn = φin = sin−1(ηn) (14-7b)

Since η0 and ηn must be nonnegative real for passive materials, θ0 and θn will always lie in
the strip (0 < Re [θ0] < π/2) and (0 < Re [θn ] < π/2) due to the principal branch cuts of the
inverse sine. For the soft polarization, θ will be real if η is real and η ≥ 1. Similarly, for hard
polarization, θ will be real if η is real and 0 ≤ η ≤ 1. Otherwise the inverse sine will be complex
and the corresponding Brewster angle θB will also be complex.

To calculate the inverse sine of a complex number or a real number with magnitude greater
than unity, the following identities can be used since many computer software programs do not
provide a complex inverse sine function.

sin−1(z ) = π

2
− cos−1(z ) (14-8)

cos−1(z ) = Arg [G(z )] − j ln |G(z )| (14-8a)
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G(z ) =
⎧⎨⎩z − √

z 2 − 1 (Re [z ])(Im [z ]) < 0

z + √
z 2 − 1 (Re [z ])(Im [z ]) ≥ 0

(14-8b)

(14-8c)

−π < Arg G(z ) ≤ π (14-8d)

−π

2
< Arg

[√
z 2 − 1

]
≤ π

2
(14-8e)

The exact wedge solution in its integral form of (14-5) cannot be easily evaluated. The integrand
contains a ratio of auxiliary Maliuzhinets functions , each of which can be written as a product of
four Maliuzhinets functions . Each Maliuzhinets function can only be written in a complex integral
form or as an infinite product, and hence the Maliuzhinets function is not easily evaluated for
arbitrary argument and wedge angle. Finally, the very complicated integrand must be integrated
along the complex contour γ of Figure 14-4. Overall, the integral of (14-5) is difficult to evaluate
efficiently.

To construct a more useful high-frequency asymptotic expansion of the integral, the Method
of Steepest Descent (also known as the Saddle Point Method ) of Chapter 13 will be used in this
chapter. The steepest descent paths must first be located, and then the exact solution must be
transformed to an integral along the steepest descent paths, as was done in Chapter 13 for the
PEC wedge. Once the steepest descent paths are identified, the contour can then be closed to
evaluate the exact solution. The sum of the integrals along the exact solution contour γ , plus
along the steepest descent paths, must equal the sum of the residues enclosed. That is∫

γ

(integrand) dz +
∫

SDPs
(integrand) dz =

∫
closed path

(integrand) dz =
N∑

p=1

Residues (14-9a)

where SDPs = SDP(+π) + SDP(−π). Alternatively, the integral along the exact solution con-
tour γ of (14-9a) can be written as the sum of the residues minus the contributions along the
steepest descent paths, or∫

γ

(integrand) dz =
N∑

p=1

Residues −
∫

SDPs
(integrand) dz (14-9b)

Therefore, the exact solution of (14-5) can now be written as

Ut (ρ, φ) = jUo
1

2nπ

∫
γ

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz

= Uo

n

N∑
p=1

Res

⎡⎢⎢⎣�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos a , zp

⎤⎥⎥⎦ (14-10)

− jUo
1

2nπ

∫
SDPs

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz

where zp are the poles of the integrand enclosed by the steepest descents paths while the notation
Res [f (z ), zp] represents the residue of f (z ) at the pole zp .
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14.5 GEOMETRICAL OPTICS

Using the canonical geometry of Figure 14-5, the solution of (14-10) can be decomposed into
geometrical optics (incident and reflected), diffracted (incident and reflected), as was done in
Chapter 13 for the PEC wedge, and surface wave fields. Because the wedge has impedance
surfaces, surface waves must also be included. The region of interest is outside the wedge (0 ≤
φ ≤ nπ), which has been subdivided into three regions (I, II, III), as was done in Figure 13-13a
of Chapter 13.

Maliuzhinets gives the geometrical optics terms as ratios of auxiliary Maliuzhinets functions.
However, a more efficient and accurate method is to use a reflection coefficient at each reflection.
In this section, based on the work of Griesser, et al. [28, 30], it is shown that the pole residue
of the exact solution gives identically the same geometrical optics field as the simple ray tracing
model for any number of interior reflections. Both methods give identical results in magnitude,
phase, and also in angular range over which a particular reflection mechanism exists. Previously
this was only performed for the two singly-reflected fields of the half plane [23, 24] and the
general wedge [26].

For a geometrical analysis of the multiple reflected fields, the incident field is multiplied by
the appropriate reflection coefficients. The surface impedance reflection coefficients for infinite
planar boundaries and plane wave incidence are

�0(φ) = sin φ − sin θ0

sin φ + sin θ0
(14-11a)

�n(φ) = sin φ − sin θn

sin φ + sin θn
(14-11b)

where φ is the angle measured from the planar surface to the incident ray, as indicated in
Figure 14-3.

Let us now consider a typical reflection mechanism. In particular, consider the third-order
reflection, which is initially incident on face 0, as shown in Figure 14-6 for an interior wedge.
The plane wave is incident and reflects at an angle φ′ from the 0 face. Next it reflects at an angle

x

WA = (2 – n)p

f = np

Observation

P Direct (incident)Reflected

Diffracted
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QD QR
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Region III
Diffracted
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Direct

Diffracted
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Direct

Diffracted

Incid
ent s

hadow
 boundary

(IS
B)

Reflection shadow boundary

(RSB) Source

Region 1
Direct

Reflected
Diffracted

Figure 14-5 Wedge geometry and region separation for geometrical optics and diffracted fields.
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Figure 14-6 Typical third-order reflection from an interior wedge with impedance surfaces [28].

π − nπ − φ′ from the n face, and lastly at an angle π − 2nπ − φ′ from the 0 face. Hence, the
reflected field includes the product �� of these three reflection coefficients

�� = �0(φ
′)�n [π − (nπ + φ′)]�0[π − (2nπ + φ′)] (14-12a)

or equivalently
�� = �0(φ

′)�n(nπ + φ′)�0(2nπ + φ′) (14-12b)

The distance the third-order reflected ray has traveled can be determined by tracing the image
ray through the 0 face. Taking the phase reference at the vertex of the wedge, the extra distance
traveled is found by generating a perpendicular line to the image ray from the vertex, as shown
in Figure 14-6, and it is equal to ρ cos(π − 2nπ − φ′ − φ).

Therefore, an additional phase factor of

e−jβρ cos(π−2nπ−φ′−φ) = e−jβρ cos[π−(2nπ+φ′+φ)] = ejβρ cos(φ+φ′+2nπ) (14-13)

must be included for the GO field. Finally, the total field for this third-order reflected component
can be written as

UGO = Uo�0(φ
′)�n(nπ + φ′)�0(2nπ + φ′)ejβρ cos(φ+φ′+2nπ) (14-14)

This third-order component has reflection shadow boundaries and does not exist for all φ. In
fact, from the geometry of Figure 14-6, it exists only if φ < π − 2nπ − φ′, or equivalently, if
φ + φ′ < π − 2nπ .

In general, all the reflected components can be analyzed using the same procedure: ray tracing.
The geometrical-optics reflected field for any multiple-reflected component C can be written as

U C
GO = Uo��(φ′, θ0, θn)e

+jβρ cos(zp ) (14-15)

where ��(φ′, θ0, θn) is a product of reflection coefficients and ρ cos(zp) is a distance factor that
yields the appropriate phase delay. Later, the component C will be shown to correspond to an
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TABLE 14-1 Geometrical optics reflection coefficients and associated pole residues [28, 30]

Comp Pole �π(φ′, θ0, θn ) zp Existence

0n0n β−, m = −2 �0(φ
′)�n (nπ + φ′)�0(2nπ + φ′)�n (3nπ + φ′) φ − φ′ − 4nπ φ − φ′ > 4nπ − π

n0n β+, m = −2 �n (nπ − φ′)�0(2nπ − φ′)�n (3nπ − φ′) φ + φ′ − 4nπ φ + φ′ > 4nπ − π

0n β−, m = −1 �0(φ
′)�n (nπ + φ′) φ − φ′ − 2nπ φ − φ′ > 2nπ − π

n β+, m = −1 �n (nπ − φ′) φ + φ′ − 2nπ φ + φ′ > 2nπ − π

Inc β−, m = 0 1 φ − φ′ −π < φ − φ′ < π

0 β+, m = 0 �0(φ
′) φ + φ′ φ + φ′ < π

n0 β−, m = 1 �n (nπ − φ′)�0(2nπ + φ′) φ − φ′ + 2nπ φ − φ′ < π − 2nπ

0n0 β+, m = 1 �0(φ
′)�n (nπ + φ′)�0(2nπ + φ′) φ + φ′ + 2nπ φ + φ′ < π − 2nπ

n0n0 β−, m = 2 �n (nπ − φ′)�0(2nπ − φ′)�n (3nπ − φ′)�0(4nπ − φ′) φ − φ′ + 4nπ φ − φ′ < π − 4nπ

(Source: T. Griesser and C. A. Balanis, “Reflections, diffractions, and surface waves for an interior impedance wedge
of arbitrary angle,” IEEE Trans. Antennas Propagat., © 1989, IEEE).

angle ξ± and an integer m , and will be written as U m ,ξ
GO . The multiple-reflected field is identified

by a sequence of 0’s and n’s indicating the order of reflection. As an example, component 0n0n
is a quadruple-reflected field incident on face 0 which, in sequence, reflects from face 0 to n to
0 to n .

In Table 14-1, the term ��(φ′, θ0, θn) and zp are listed for all reflection mechanisms up to
fourth-order. In addition, the range over which these terms exist is listed, with the implied
conditions that 0 ≤ φ ≤ nπ and 0 ≤ φ′ ≤ nπ . The number of terms presented is sufficient to
identify the pattern by which the table can be expanded. The ordering of this table has been
selected to correspond to the positions of the poles of the exact solution.

When considering the exact solution of (14-5) for the impedance wedge, the geometrical optics
poles must be identified. The GO poles of (14-5) are those for which

cos

(
zp − φ

n

)
= cos

(
φ′

n

)
(14-16)

This equation can be inverted to solve for zp by considering every value of the multi-valued
inverse cosine. The GO poles are represented by

zp = φ ± φ′ + 2mnπ = ξ± + 2mnπ , ξ± = φ ± φ′ (14-17)

where m is an integer, and n is real and depends on the wedge angle. The notation ξ± = φ ± φ′
is also conveniently used in the PEC wedge of Chapter 13. The choice of the notation zp in this
equation and in the GO phase factor will become evident when the pole residues are evaluated.

The geometrical optics poles of (14-17) appear in two sets of equally spaced poles correspond-
ing to the upper and lower sign. For each set, the spacing between poles is 2nπ , or twice the
exterior wedge angle nπ . If φ′ is considered to be fixed and φ varies from 0 to nπ , then the
GO poles move from ±φ′ + 2mnπ to ±φ′ + 2mnπ + nπ . These pole loci are located along the
real axis of the complex z plane and are plotted in Figure 14-7 for φ′ = 30◦ and an 85◦ interior
wedge. The movement of the poles with increasing φ is indicated by the arrows, and it is noted
that a given pole can only move half the distance to the next pole of the same set. In addition,
the surface wave poles for η0 = ηn = 0.2 + j 0.8, although they have not yet been discussed, are
indicated in Figure 14-7.

A particular pole contributes to the exact integral solution of (14-10) only if it lies between
the steepest descent paths. Hence, it is possible to identify each pole with a specific reflection
mechanism by the angular ranges of existence listed in Table 14-1. The example of the 0n0 term
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Figure 14-7 Geometrical optics and surface wave poles in complex plane [28, 30]. (Source: T. Griesser
and C. A. Balanis, “Reflections, diffractions, and surface waves for an interior impedance wedge of arbitrary
angle,” IEEE Trans. Antennas Propagat., © 1989, IEEE).

considered previously will be examined here again. This third-order term exists for φ + φ′ <

π − 2nπ . Consider the pole for which ξ = ξ+ = φ + φ′ and m = 1. This pole contributes to the
exact solution if it lies between the steepest descent paths that cross the real axis at z = ±π .
Since the steepest descent paths cross the real axis at zs = ±π , the pole contributes if

−π < z = φ + φ′ + 2nπ < π (14-18)

or equivalently if

−π − 2nπ < φ + φ′ < π − 2nπ (14-19)

Since 0 ≤ φ ≤ nπ and 0 ≤ φ′ ≤ nπ , then it is always true that 0 ≤ φ + φ′ ≤ 2nπ . Therefore,
the lower limit of (14-19) adds no new information. Hence, the pole contributes for φ + φ′ <

π − 2nπ , which is exactly the GO result determined after (14-14). The reflection component
corresponding to each pole is labeled in Figure 14-7. For each GO reflection, the appropriate
values of ξ and m are listed in Table 14-1.

From the exact solution, the contribution of the GO pole is −j 2π times the residue of the pole,
where the minus (−) sign is attributed to the clockwise contour encircling the pole in Figure 14-4.
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For the pole zp = φ ± φ′ + 2mnπ , the residue is

U C
GO = Uo

n
Res

⎡⎢⎢⎣�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin
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n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z , zp

⎤⎥⎥⎦ (14-20)

Assuming that no poles of the Maliuzhinets function coincide with the GO poles, and since the
exponential has no finite poles, the residue can be determined by

U C
GO = Uo

n
lim

z→zp
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2
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⎤⎥⎥⎦(14-21)

From (14-16) and (14-17)

lim
z→zp

Res

⎡⎢⎢⎣ (z − zp)

cos

(
z − φ

n

)
− cos

(
φ′

n

)
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z→ξ±+2mnπ
Res

⎡⎢⎢⎣ [z − (ξ± + 2mnπ)]
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(
z − φ

n

)
− cos

(
φ′

n

)
⎤⎥⎥⎦
(14-22)

This is an indeterminate form that can the evaluated by L′ Hopital’s Rule. Then

lim
z→zp

⎡⎢⎢⎣ (z − zp)

cos

(
z − φ

n

)
− cos

(
φ′

n

)
⎤⎥⎥⎦ = lim

z→ξ±+2mnπ

⎡⎢⎢⎣ 1

− 1

n
sin

(
z − φ

n

)
⎤⎥⎥⎦

= −n

sin

(±φ′

n

) = ∓n

sin

(
φ′

n

) (14-23)

where the upper sign represents ξ+ poles and the lower sign represents ξ− poles.
Finally (14-21) becomes

U C
GO = ∓Uo

�
(

zp + nπ

2
− φ

)
�

(nπ

2
− φ′

) ejβρ cos z

= ∓Uo

�
(
±φ′ + 2mnπ + nπ

2

)
�

(nπ

2
− φ′

) ejβρ cos(φ±φ′+2mnπ) (14-24)

corresponding to the poles zp = (φ ± φ′) + 2mnπ . By comparison with Table 14-1, it is clear
that the phase factor matches the geometrical-optics phase term. However, it remains to be shown
that the ratio of auxiliary Maliuzhinets functions in (14-24) is a product of reflection coefficients,
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as in the geometrical analysis of (14-15). For the incident GO field, which corresponds to
ξ = ξ− = φ − φ′ and m = 0, the ratio is

�
(
±φ′ + 2mnπ + nπ

2

)
�

(nπ

2
− φ′

) =
�

(
−φ′ + nπ

2

)
�

(nπ

2
− φ′

) = 1 (14-25)

So the incident field from the exact solution matches the GO incident field as expected, and no
further consideration is necessary for m = 0.

To consider the many possible multiple reflections, the ratio of auxiliary Maliuzhinets functions
(and leading sign) of (14-24) is denoted by ��(φ′, θ0, θn), since it is shown next that the ratio
indeed reduces to the products of reflection coefficients of Table 14-1

��(φ′, θ0, θn) = ∓
�

(
zp + nπ

2
− φ

)
�

(nπ

2
− φ′

) (14-26)

where zp = (φ ± φ′) + 2mnπ . The numerator and denominator are expanded using [9, 26]

�(z ) = �n

(
z + nπ

2
+ π

2
− θ0

)
�n

(
z + nπ

2
− π

2
+ θ0

)
• �n

(
z − nπ

2
+ π

2
− θn

)
�n

(
z − nπ

2
− π

2
+ θn

)
(14-27)

and (14-26) takes two forms depending on whether φ + φ′ or φ − φ′ is selected.

For ξ = ξ− = φ − φ′ :

��(φ′, θ0, θn) =
�n

(
−φ′ + nπ + π

2
− θ0 + 2mnπ

)
�n

(
−φ′ + nπ + π

2
− θ0

) �n

(
−φ′ + nπ − π

2
+ θ0 + 2mnπ

)
�n

(
−φ′ + nπ − π

2
+ θ0

)
•

�n

(
−φ′ + π

2
− θn + 2mnπ

)
�n

(
−φ′ − π

2
− θn

) �n

(
−φ′ − π

2
+ θn + 2mnπ

)
�n

(
−φ′ − π

2
+ θn

) (14-28a)

For ξ = ξ+ = φ + φ′ :

��(φ′, θ0, θn) = −
�n

(
−φ′ + nπ + π

2
− θ0 + 2mnπ

)
�n

(
φ′ − nπ + π

2
− θ0

) �n

(
φ′ + nπ − π

2
+ θ0 + 2mnπ

)
�n

(
φ′ − nπ − π

2
+ θ0

)
•

�n

(
φ′ + π

2
− θn + 2mnπ

)
�n

(
φ′ + π

2
− θn

) �n

(
φ′ − π

2
+ θn + 2mnπ

)
�n

(
φ′ − π

2
+ θn

) (14-28b)

The fact that �n(z ) is an even function of z has also been utilized here. Next, (14-28a) and
(14-28b) are shown to reduce to products of reflection coefficients for multiple reflected rays.
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The two single reflections are considered first, since both are exceptional cases. Each can be
reduced to a single reflection coefficient using the trigonometric identity

tan

[
1

2
(x − y)

]
cot

[
1

2
(x + y)

]
= sin x − sin y

sin x + sin y
(14-29)

and the Maliuzhinets identity [15]

�n(z + nπ)

�n(z − nπ)
= cot

[
1

2

(
z + π

2

)]
(14-30)

For the reflection from face 0 (ξ = ξ+, m = 0), the last two terms in (14-28b) reduce to unity
since m = 0. Then, using (14-30) in (14-28b), the ratio of Maliuzhinets functions can be reduced
to the single reflection coefficient ��(φ′, θ0, θn) = �0(φ

′) from the 0 face by applying (14-29) and
(14-11a), in that order. Similarly, for the single-reflected field from face n(ξ = ξ+, m = −1), the
first two terms in (14-28b) reduce to unity since m = −1. Again, using (14-30) in (14-28b), the
ratio of Maliuzhinets functions can be reduced to the single reflection coefficient ��(φ′, θ0, θn) =
�n(nπ − φ′) from the n face by applying (14-29) and (14-11b), in that order.

By comparing with Table 14-1, it is evident that the ratio of auxiliary Maliuzhinets functions
reduces to the two single reflection coefficients for the (ξ = ξ+, m = 0) and (ξ = ξ+, m = −1)

poles. This equality of the ratios of Maliuzhinets functions with the single reflection coefficients
has been demonstrated in [23, 24, 26], but it is more difficult and less accurate for calculation
purposes. The higher-order reflection coefficients were not considered elsewhere, and it was
demonstrated in [28, 30] that they can be reduced to products of reflection coefficients for any
order of reflections. The products appear in four forms, depending on whether the number of
reflections is even or odd and whether the 0 and n face is initially illuminated for the multiple-
reflected fields.

To obtain the appropriate products of reflection coefficients in (14-28a) and (14-28b) for the
higher-order reflections, the following identities are utilized:

�n(x + 2mnπ)

�n(x)
= m

�
p=1

�n [x + (2p − 1)nπ + nπ ]

�n [x + (2p − 1)nπ − nπ ]
, m > 0 (14-31a)

�n(x + 2mnπ)

�n(x)
= |m|

�
p=1

�n [x + (1 − 2p)nπ − nπ ]

�n [x + (1 − 2p)nπ + nπ ]
, m < 0 (14-31b)

These are algebraic identities, valid for any function, which can be verified by expanding the
product. Their value lies in the fact that they correctly separate the Maliuzhinets function into
appropriate forms so that the recursion relations can be applied to reduce the Maliuzhinets ratios
to products of reflection coefficients.

Using (14-29) through (14-31b) in (14-28a) and (14-28b), the GO residues are reduced to
products of reflection coefficients. Four different forms are possible, depending on the choices
of ξ and m . Consider first ξ = ξ− = φ − φ′ and m > 0. Then (14-28a) can be written, using
(14-31a), as

��(φ′, θ0, θn) = m
�

p=1

�n

[
−φ′ + nπ + π

2
− θ0 + (2p − 1)nπ + nπ

]
�n

[
−φ′ + nπ + π

2
− θ0 + (2p − 1)nπ − nπ

]
•

m
�

p=1

�n

[
−φ′ + nπ − π

2
+ θ0 + (2p − 1)nπ + nπ

]
�n

[
−φ′ + nπ − π

2
+ θ0 + (2p − 1)nπ − nπ

]
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•
m
�

p=1

�n

[
−φ′ + π

2
− θn + (2p − 1)nπ + nπ

]
�n

[
−φ′ + π

2
− θn + (2p − 1)nπ − nπ

]
•

m
�

p=1

�n

[
−φ′ − π

2
+ θn + (2p − 1)nπ + nπ

]
�n

[
−φ′ − π

2
+ θn + (2p − 1)nπ − nπ

] (14-32)

Now using (14-30), (14-32) can be expressed as

��(φ′, θ0, θn) = m
�

p=1
cot

{
1

2
[−φ′ + nπ + π − θ0 + (2p − 1)nπ ]

}
•

m
�

p=1
cot

{
1

2
[−φ′ + nπ + θ0 + (2p − 1)nπ ]

}
•

m
�

p=1
cot

{
1

2
[−φ′ + π − θn + (2p − 1)nπ ]

}
•

m
�

p=1
cot

{
1

2
[−φ′ + θn + (2p − 1)nπ ]

}
(14-33)

Next, some of the cotangents are changed to tangents by trigonometric identities, and (14-33)
can be written as

��(φ′, θ0, θn) = m
�

p=1
− tan

{
1

2
[−φ′ + nπ − θ0 + (2p − 1)nπ ]

}
•

m
�

p=1
cot

{
1

2
[−φ′ + nπ + θ0 + (2p − 1)nπ ]

}
•

m
�

p=1
− tan

{
1

2
[−φ′ − θn + (2p − 1)nπ ]

}
•

m
�

p=1
cot

{
1

2
[−φ′ + θn + (2p − 1)nπ ]

}
(14-34)

Using (14-29), all the terms in (14-34) can be combined, and (14-34) can then be expressed as

��(φ′, θ0, θn) = (−1)2m m
�

p=1

sin(2pnπ − φ′) − sin θ0

sin(2pnπ − φ′) + sin θ0

m
�

p=1

sin[(2p − 1)nπ − φ′] − sin θn

sin[(2p − 1)nπ − φ′] + sin θn

(14-35)

Finally, using (14-11a) and (14-11b), the two ratios of (14-35) reduce to products of reflection
coefficients for the 0 and n faces, or

��(φ′, θ0, θn) = m
�

p=1
�0(2pnπ − φ′)

m
�

p=1
�n [(2p − 1)nπ − φ′] (14-36)

Again, (14-36) is only valid for ξ = ξ− = φ − φ′ and m > 0. There are still three more cases to
consider. However, all three cases reduce to similar products of reflection coefficients, and the
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final forms obtained from the GO pole residues can be written as:

For ξ = ξ− = φ − φ′ and m > 0 :

��(φ′, θ0, θn) = m
�

p=1
�0(2pnπ − φ′)

m
�

p=1
�n [(2p − 1)nπ − φ′] (14-37)

For ξ = ξ− = φ − φ′ and m<0 :

��(φ′, θ0, θn) = |m|
�

p=1
�0[φ′ + 2(p − 1)nπ ]

|m|
�

p=1
�n [φ′ + (2p − 1)nπ ] (14-38)

For ξ = ξ+ = φ + φ′ and m > 0 :

��(φ′, θ0, θn) = |m|
�

p=1
�0[φ′ + 2(p − 1)nπ ]

m
�

p=1
�n [φ′ + (2p − 1)nπ ] (14-39)

For ξ = ξ+ = φ + φ′ and m < −1 :

��(φ′, θ0, θn) = |m+1|
�

p=1
�0(2pnπ − φ′)

|m|
�

p=1
�n [2(p − 1)nπ − φ′] (14-40)

The cases (ξ−, m = 0), (ξ+, m = 0), and (ξ+, m = −1) are the incident and single reflected
terms, which have already been considered. By comparison with Table 14-1, it is evident that
(14-37) through (14-40) are identical to the geometrical ray-tracing analysis.

14.6 SURFACE WAVE TERMS

The surface wave is a wave that propagates along one face of the wedge and typically decays
exponentially in a vertical direction away from the face. It is confined to a particular angular
range from the wedge face, whenever it exists. Since the wave may decay slowly along the face,
its contribution may be more dominant than other scattering mechanisms near the wedge surface.
Hence, it is often important to include this contribution for reactive surfaces.

The surface wave is determined by considering the contributions of the residues of enclosed
complex poles of the Maliuzhinets function between the steepest descent paths. The surface wave
poles were identified by Maliuzhinets, and they are located at [9, 27]

z0 = φ + π + θ0 (14-41a)

zn = φ − nπ − π − θn (14-41b)

for the 0 and n faces, respectively. If φ is allowed to vary from 0 to nπ , the z0 pole moves
from π + θ0 to nπ + π + θ0 and the zn pole moves from −nπ − π − θn to −π − θn . The loci
are shown in Figure 14-7 for φ′ = 30◦ for a wedge with an 85◦ interior angle and normalized
surface impedances of ηo = ηn = 0.2 + j 0.8. The z0 pole can only lie within the steepest descent
paths for φ less than some maximum value. Similarly, the zn pole can only lie within the steepest
descent paths for φ greater than some minimum value. Hence, the surface wave term is bounded
to a finite angular range near the corresponding face.
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In general, the surface wave component corresponding to the pole z exists if it lies within the
steepest descent paths of (14-18). Then

−π < zr − cos−1

(
1

cosh zi

)
sgn(zi ) < π (14-42)

where z = zr + jzi . To determine the pole residue, the following Maliuzhinets function identity
is utilized [15, 18]

�n

[
z ±

(
nπ + 3π

2

)]
= ± sin

(
π ± z

2n

)
csc

( z

2n

)
�n

(
nπ − π

2
± z

)
(14-43)

This expression isolates the singular part of the pole in the cosecant function, and hence the

residue is readily calculated. The cosecant is singular at z = 0 and therefore �

[
±

(
nπ + 3π

2

)]
is also singular. The example of the z0 pole is presented next, and the calculations for the zn pole
are similar.

Example 14-1

Evaluate the surface wave residue of U 0
SW.

Solution: The surface wave residue for the z0 pole is given by

U 0
SW = Uo

n
Res

⎡⎢⎢⎣�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z , z0

⎤⎥⎥⎦
Assuming that no GO poles coincide with the surface wave pole, and since the exponential has no finite
poles, the residue can be determined as

U 0
SW = Uo

n
lim

z→z0

⎡⎢⎢⎣(z − z0)

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z

⎤⎥⎥⎦
In the limit, (z − z0) has a zero and �

(
z + nπ

2
− φ

)
contains the complex pole. All the other terms

can be brought outside the limit. Thus,

U 0
SW = Uo

n

⎡⎢⎢⎣ejβρ cos(φ+π+θ0)

�
(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
π + θ0

n

)
− cos

(
φ′

n

)
⎤⎥⎥⎦ lim

z→z0

[
(z − z0)�

(
z + nπ

2
− φ

)]

Next, the auxiliary Maliuzhinets function within the limit is decomposed into four Maliuzhinets
functions using (14-27). That is

�
(

z + nπ

2
− φ

)
= �n

(
z + nπ − φ + π

2
− θ0

)
�n

(
z + nπ − φ − π

2
+ θ0

)
• �n

(
z − φ + π

2
− θn

)
�n

(
z − φ − π

2
+ θn

)
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As z → z0 = φ + π + θ0, it is evident that the first Maliuzhinets function becomes �n

(
nπ + 3π

2

)
,

which was shown to be singular in (14-43). Since only the first Maliuzhinets function contains the
complex pole, the other three can be moved outside the limit. Thus

U 0
SW = Uo

n

⎡⎢⎢⎣ e−jβρ cos(φ+θ0)

�
(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
π + θ0

n

)
− cos

(
φ′

n

)
⎤⎥⎥⎦�n

(
nπ + π

2
+ 2θ0

)
• �n

(
3π

2
+ θ0 − θn

)

• �n

(π

2
+ θ0 + θn

)
lim

z→z0

[
(z − z0)�n

(
z + nπ − φ + π

2
− θ0

)]
The limit of the above equation can be determined using (14-43). Thus, replacing Z − Z0 = α

lim
z→z0

[
(z − z0)�n

(
z + nπ − φ + π

2
− θ0

)]
= lim

z→z0

[
(z − z0)�n

(
z − z0 + nπ + 3π

2

)]

= lim
α→0

[
α�n

(
α + nπ + 3π

2

)]
= sin

( π

2n

)
�n

(
nπ − π

2

)
lim
α→0

[
α csc

( α

2n

)]
= 2n sin

( π

2n

)
�n

(
nπ − π

2

)
which, when substituted into the previous equation, leads to the surface wave contribution.

The final form of the surface waves from face 0 is

U 0
SW = Uo

⎡⎢⎢⎣ 2 sin
( π

2n

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
e−jβρ cos(φ+θ0)

cos

(
π + θ0

n

)
− cos

(
φ′

n

)
⎤⎥⎥⎦�n

(
nπ − π

2

)
�n

(
nπ + π

2
+ 2θ0

)

• �n

(
3π

2
+ θ0 − θn

)
�n

(π

2
+ θ0 + θn

)

In a similar manner, based on the procedure used in Example 14-1, the surface wave contri-
bution U n

SW from face n can be written as

U n
SW = Uo

⎡⎢⎢⎣ −2 sin
( π

2n

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
e−jβρ cos(φ−nπ−θn )

cos

(
nπ + π + θn

n

)
− cos

(
φ′

n

)
⎤⎥⎥⎦�n

(
nπ − π

2

)
�n

(π

2
+ nπ + 2θn

)

• �n

(
3π

2
+ θn − θ0

)
�n

(π

2
+ θn + θ0

)
(14-44)

By the symmetry of the wedge geometry, it is noted that (14-44) can be obtained from the U 0
SW

of Example 14-1 by replacing φ by nπ − φ, φ′ by nπ − φ′, θ0 by θn , and θn by θ0. The angular
ranges over which U 0

SW and U n
SW exist are given by (14-41a) through (14-42).
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The GO component of (14-21) and the surface wave U 0
SW of Example 14-1 were obtained

assuming the GO poles and surface wave poles did not coincide. This is a valid assumption
because the GO poles are always real, and if a surface wave pole coincides with a GO pole, it
must necessarily be real. However, from (14-41a) and (14-41b), it is evident that real surface
wave poles always lie outside the steepest descent paths since 0 < φ < nπ . Therefore, if a surface
wave pole and a GO pole coincide, they must lie outside the steepest descent paths, and their
residues do not contribute to the exact solution.

14.7 DIFFRACTED FIELDS

In the previous sections, Maliuzhinets’ exact solution was examined for both interior and exterior
impedance wedges. It was shown that the exact solution can be written as a sum of residues from
the GO and surface wave poles plus contribution along the steepest descent paths. In this section,
the steepest descent paths contribution is examined thoroughly using high-frequency asymptotic
expansions. The high-frequency asymptotic expansion gives the diffracted field and the surface
wave transition field. The diffracted field is similar in form to the diffraction coefficients for the
PEC theory, with a suitable multiplying factor which include ratios of auxiliary Maliuzhinets
functions.

14.7.1 Diffraction Terms

Maliuzhinets’ exact integral solution of (14-5) has been manipulated in (14-10) to follow the
steepest descent paths through the saddle points at z = ±π . The exact solution from (14-10) can
be written as

Ut (ρ, φ) = jUo
1

2nπ

∫
γ

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz

= Uo

n

N∑
p=1

Res

⎡⎢⎢⎣�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z , zp

⎤⎥⎥⎦

− jUo
1

2nπ

∫
SDPs

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz (14-45)

Ut (ρ, φ) =
∑[

U m ,ξ
GO + U 0

SW + U n
SW

]

− jUo
1

2nπ

∫
SDPs

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz (14-45a)

Ut (ρ, φ) =
∑[

U m ,ξ
GO + U 0

SW + U n
SW + USDP

]
=

∑[
U m ,ξ

GO + U 0
SW + U n

SW + UD + U 0
SWTR + U n

SWTR

]
(14-45b)
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where
U m ,ξ

GO = GO incident or reflected field corresponding to integer m and ξ = ξ+
or ξ = ξ− as given by (14-15) and in Table 14-1

U 0
SW, U n

SW = surface wave contributions, as given by Example 14-1 and (14-44)
UD = diffracted field, examined asymptotically in Section 14.7.2

U 0
SWTR, U n

SWTR = surface wave transition field terms

The canonical wedge geometry of Figures 14-1a and 14-5 illustrate the shadow boundaries of the
GO field for the exterior wedge. Similar shadow boundaries exist for multiple reflected fields for
the interior wedge of Figures 14-1b and 14-6. All the GO shadow boundaries are compensated
by the diffracted field. Similarly, the surface wave transition field compensates for discontinuities
at the surface wave boundary.

14.7.2 Asymptotic Expansions

To determine an asymptotic expansion of a steepest descent integral, such as that of (14-45a),
or

USDP(ρ, φ) = −jUo
1

2nπ

∫
SDPs

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz

= −jUo
1

2nπ

sin

(
φ′

n

)
�

(nπ

2
− φ′

) ∫
SDPs

�
(

z + nπ

2
− φ

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz (14-46)

requires careful consideration of poles which may lie close to the steepest descent paths. The
contribution of the steepest descent integral should be discontinuous as a pole crosses the path
to compensate for the addition or loss of the pole residue that corresponds to a GO or surface
wave component. In this way, the total solution, which is the sum of the residues plus the integral
contribution, is always continuous.

Two asymptotic expansions are used: the Modified Pauli-Clemmow method [63–67] for the GO
poles and the Felsen-Marcuvitz method [68, 69] for the surface wave poles. The Modified Pauli-
Clemmow method yields a diffracted field which is analogous to the PEC case for the real GO poles.
A diffraction coefficient is formulated, which is similar to the UTD diffraction coefficient with
multiplying factors that include suitable ratios of auxiliary Maliuzhinets functions. The method of
Felsen-Marcuvitz is used for the complex surface wave poles to construct a surface wave transition
field that yields the proper continuity. The method of Felsen-Marcuvitz [68] or that of [70] could be
used for all the poles. However, there would be two disadvantages. First, the method would not be
analogous to the PEC UTD, which is a powerful tool in modern diffraction. Second, the formulation
would require that the contributions of all the poles for all the multiple reflections be added together.
This is the approach used in [27], and the equations become very complicated after adding only the
poles of the incident field, the two single-reflected fields, and the two surface waves. For an interior
wedge with many multiple reflections, the Felsen-Marcuvitz method is more cumbersome than the
Modified-Clemmow method for the GO poles.

The two methods of asymptotic approximation have been shown to be the same [70, 71],
provided that the asymptotic expansions are complete; that is, they contain an infinite number of
higher-order terms. In practice, this is usually not the case because only the first and second terms
are retained and all others are omitted. Consequently, one or the other may be more appropriate for
a given problem. However, either will give the correct discontinuity as the pole crosses the saddle
point, and both reduce to the same expression when no pole is near the steepest descent path.
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The Modified Pauli-Clemmow method of steepest descent was introduced in Chapter 13 to
evaluate an integral of the (13-41) form, or

P(βρ) =
∫

C
H (z )eβρh(z ) dz

βρ→large︷︸︸︷≈ eβρh(zs )H (zs)e
jφs

√
−2π

βρh ′′(zs)
F [βρg(ξ)] (14-47)

F [βρg(ξ)] ≡ j [h(zs) − h(zp)] = 2j
√

βρg(ξ)

∫ ∞
√

βρg(ξ)

e−jτ2
dτ

≡ a measure of separation between saddle points and poles (14-47a)

and to reduce (13-60a)–(13-60b) to (13-63a)–(13-63b), and eventually to the UTD diffraction
coefficients.

The Felsen-Marcuvitz method is used to evaluate an integral of the (13-41) or (14-47) form,
and it is expressed as

P(βρ) =
∫

C
H (z )eβρh(z ) dz

βρ→large︷︸︸︷≈ eβρh(zs )H (zs)e
jφs

√
−2π

βρh ′′(zs)

+ h1
√

πeβρh(zs )√
βρ[h(zs) − h(zp)]

{F [βρg(ξ)] − 1} (14-48)

where h1 is the residue of H (z ) at z = zp ; all other quantities are the same as for the Modified
Pauli-Clemmow method.

14.7.3 Diffracted Field

Using a procedure similar to that of Section 13.3.2, it can be shown, through some trigonometric
identities, that the integral of (14-46) can be written in a more convenient form as

USDP(ρ, φ) = −jUo
1

2nπ

∫
SDPs

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

)ejβρ cos z dz

= −jUo
1

4nπ

∫
SDPs

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) {
cot

[
(φ + φ′) − z

2n

]
− cot

[
(φ − φ′) − z

2n

]}
ejβρ cos z dz

(14-49)
where the following substitution, through trigonometric identities, has been used.

sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

) = 1

2

{
cot

[
(φ + φ′) − z

2n

]
− cot

[
(φ − φ′) − z

2n

]}
(14-50)

By the convention of the PEC wedge formulation, ξ+ = (φ + φ′) and ξ− = (φ − φ′). The poles
of the first cotangent occur at

z = (φ + φ′) − 2πNn = ξ+ − 2πNn (14-51a)

and correspond to the GO components that include an odd number of reflections (i.e., single
reflections, triple reflections, etc.). The poles of the second cotangent occur at

z = (φ − φ′) − 2πNn = ξ− − 2πNn (14-51b)



Balanis c14.tex V2 - 11/22/2011 4:00 P.M. Page 871

DIFFRACTED FIELDS 871

and correspond to the GO terms that include an even number of reflections (i.e., incident, double
reflected, etc.). In (14-51a) and (14-51b), N can be any integer, and hence there are an infinite
number of poles of the integrand for both ξ+ and ξ−.

The PEC UTD diffraction considers only the four dominant poles of the integrand of (14-49).
These four are the poles corresponding to ξ+ that are the closest to the saddle points at ±π , and
the poles corresponding to ξ− that are closest to the same saddle points. Hence, four values of
N are chosen, where the N ’s are the integers that most closely satisfy

2πnN +
− − ξ− = +π (14-52a)

2πnN −
− − ξ− = −π (14-52b)

2πnN +
+ − ξ+ = +π (14-52c)

2πnN −
+ − ξ+ = −π (14-52d)

where the subscript in N indicates the choice of ξ . The superscript of N corresponds to the
sign of ±π on the right side of (14-52). Therefore, based on (14-52a)–(14-52b), (14-49) can be
decomposed into four integrals corresponding to the four selected poles; that is

USDP(ρ, φ) = +jUo
1

4nπ

∫
SDP(−π)

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) {
cot

(
ξ− − z

2n

)}
ejβρ cos z dz

+ jUo
1

4nπ

∫
SDP(+π)

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) {
cot

[
ξ− − z

2n

]}
ejβρ cos z dz

− jUo
1

4nπ

∫
SDP(−π)

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) {
cot

[
ξ+ − z

2n

]}
ejβρ cos z dz

− jUo
1

4nπ

∫
SDP(+π)

�
(

z + nπ

2
− φ

)
�

(nπ

2
− φ′

) {
cot

[
ξ+ − z

2n

]}
ejβρ cos z dz (14-53)

where the order of the terms of (14-53) corresponds to the order of the N ’s in (14-52). Each term
is individually evaluated asymptotically using (14-47).

Example 14-2

To demonstrate the asymptotic procedure, evaluate the first term of (14-53).

Solution:

H1(α) =
�

(
z + nπ

2
− φ

)
�

(nπ

2
− φ′

) cot

(
ξ− − z

2n

)
h1(z ) = j cos z

zs = −π

zp = ξ− − 2πN +
− n

a = j [−jρ − jρ cos(ξ− − 2πN +
− n)] = ρ[1 + ρ cos(ξ− − 2πN +

− n)]
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h ′′(z ) = −jρ cos z√ −2π

βh ′′(zs )
=

√
−2π

jβρ
=

√
2π

βρ
e+jπ/4

where the correct branch of the radical is determined by the angle of the integration path in the direction
of integration. The asymptotic expansion for the first term of (14-53) can now be constructed using
(14-47)–(14-47a) and can written, using the above, as

U 1
SDP

(ρ, φ) = + jUo
1

4nπ
e−jβρ

�
(
−π + nπ

2
− φ

)
�

(nπ

2
− φ′

) cot

(
ξ− + π

2n

)√
2π

βρ
ej

π
4

• F {βρ[1 + ρ cos(ξ− − 2πN +
− n)]}

The other three terms of (14-53) are evaluated in the same manner, remembering that for the steep-
est descent path through +π , the exponential ejφs is written as ejφs = e−j 3π/4 because of the direc-
tion of the integration contour of Figure 14-4. The final total diffracted field can now be written as

U s ,h
SDP

(ρ, φ) = Uo
e−jβρ

√
ρ

[
− e−j

π
4

2n
√

2πβ

]

•

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�
(
−π + nπ

2
− φ

)
�

(nπ

2
− φ′

) cot

(
π + ξ−

2n

)
F {βρ[1 + cos(ξ− − 2πN +

− n)]}

+
�

(
π + nπ

2
− φ

)
�

(nπ

2
− φ′

) cot

(
π − ξ−

2n

)
F {βρ[1 + cos(ξ− − 2πN −

− n)]}

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

∓

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�
(
−π + nπ

2
− φ

)
�

(nπ

2
− φ′

) cot

(
π + ξ+

2n

)
F {βρ[1 + cos(ξ+ − 2πN +

+ n)]}

+
�

(
π + nπ

2
− φ

)
�

(nπ

2
− φ′

) cot

(
π − ξ+

2n

)
F {βρ[1 + cos(ξ+ − 2πN −

+ n)]}

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(14-54)

where F (z ) is the Fresnel transition function. By comparing (14-54) with the PEC case of
Chapter 13, it is evident that (14-54) is the same but with the introduction of suitable ratios of
auxiliary Maliuzhinets functions as multiplying factors.

At the reflection and incident shadow boundaries, φ = +π ± φ′ + 2nπN or φ = −π ± φ′ +
2nπN , the ratios of the auxiliary Maliuzhinets become

�
(
±π + nπ

2
− φ

)
�

(nπ

2
− φ′

)
∣∣∣∣∣∣∣
φ=±π±φ′+2πNn

=
�

(
∓φ′ − 2πNn + nπ

2

)
�

(nπ

2
− φ′

) (14-55)

In Section 14.5 it was verified that the ratio (14-55) is simply a product of reflection coefficients.
The interesting conclusion drawn is that the diffraction coefficient is modified by the appropriate
ratios that reduce the diffraction discontinuities to account for reflection discontinuities for the
lossy wedge.
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The diffracted field of (14-54) is a valid asymptotic expansion, but is not the best possible
asymptotic expansion because it does not reduce to the PEC diffraction for the hard polarization.
It has been verified, by numerical integration [28], that these expressions work well for the soft
polarization or the imperfectly conducting hard polarization. However, for the hard polarization,
the expressions fail as the conductivity increases since they do not revert to the PEC case.

To evaluate the auxiliary Maliuzhinets function ratio in (14-54), the following identity is
utilized for the hard polarized PEC case θ0 = θn = 0. That is

�
(
±π + nπ

2
− φ

)
�

(nπ

2
− φ′

) =
cos

(±π + nπ − φ

2n

)
cos

(±π − φ

2n

)
cos

(
nπ − φ′

2n

)
cos

(
φ′

2n

) =
cos

(±π − φ

n
+ π

2

)
cos

(
φ′

n
− π

2

)

=
− sin

(±π − φ

n

)
sin

(
φ′

n

) (14-56)

Hence, as θ0 = θn → 0, this formulation differs from the PEC UTD by

− sin

(±π − φ

n

)
sin

(
φ′

n

) (14-57)

For the soft polarization, there is no problem because the ratio of the left side of (14-56) reduces,
for θ0 = θn → ∞, to

lim
θ0=θn→∞

�
(
±π + nπ

2
− φ

)
�

(nπ

2
− φ′

) = 1 (14-58)

Example 14-3

Since (14-54) does not reduce to the PEC diffraction for the hard polarization, reformulate the asymptotic
expansion in a different manner so that when (14-54) is written in a slightly different form, it reduces
to the PEC case for both soft and hard polarizations.

Solution: To achieve diffraction coefficients that reduce to the PEC case for both polarizations, soft
and hard, all that is needed is a different subdivision of the singular portions of the integrand of (14-49).
Instead of substituting (14-50)

sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

) = 1

2

{
cot

[
(φ + φ′) − z

2n

]
− cot

[
(φ − φ′) − z

2n

]}

into (14-46), it was recommended in [26] that the following trigonometric identity be used. That is

sin

(
φ′

n

)
cos

(
z − φ

n

)
− cos

(
φ′

n

) = 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin

(
φ′

n

)
+ sin

(
θ0

n

)
sin

(
φ − z

n

)
+ sin

(
θ0

n

) cot

[
z − (φ − φ′)

2n

]

+
sin

(
φ′

n

)
− sin

(
θ0

n

)
sin

(
φ − z

n

)
+ sin

(
θ0

n

) cot

[
z − (φ + φ′)

2n

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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where the saddle points are at zs = ±π . Also for θ0 = θn = 0, the sine ratios become

sin

(
φ′

n

)
± sin

(
θ0

n

)
sin

(
φ − z

n

)
+ sin

(
θ0

n

)
∣∣∣∣∣∣∣∣z = ±π

θ0 = 0

=
sin

(
φ′

n

)
− sin

(±π − φ

n

)

which is exactly the proper term to remove the problematic multiplying factor (14-57). Hence, the
resultant expression for the diffracted field will reduce to the PEC forms for the hard polarization as
θ0 = θn → 0. For the soft polarization, where θ0 = θn → ∞ with 0 < Re [θ0] < π/2 and 0 < Re [θn ]
< π/2, the sine ratios on the left side of the above equation reduce to ±1 and hence, are identical
to the second equation in this example. Therefore, the correct expressions, which have already been
established for the soft polarization, are retained.

It is interesting that the asymptotic expansion is not unique but depends upon the subdivision
of the poles into individual terms. While the diffracted field from the subdivision of (14-50) does
not reduce to the PEC case for one polarization (the hard one), the diffracted field based on the
second equation in Example 14-3 reduces to the PEC forms for both principal polarizations, and
it is the proper identity to subdivide the singular parts of the Maliuzhinets function.

Substituting the correct expression (the second equation of Example 14-3) into (14-49), it is
evident that the final expression for the diffracted field to replace (14-54) is

U s ,h
SDP

(ρ, φ) = Uo
e−jβρ

√
ρ

[
− e−j

π
4

2n
√

2πβ

]

•

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(
−π + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
+ sin

(
θ0

n

)
sin

(
φ + π

n

)
+ sin

(
θ0

n

) cot

(
π + ξ−

2n

)
• F

{
βρ[1 + cos(ξ− − 2πN +

− n)]
}

+
�

(
π + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
+ sin

(
θ0

n

)
sin

(
φ − π

n

)
+ sin

(
θ0

n

) cot

(
π − ξ−

2n

)
• F

{
βρ[1 + cos(ξ− − 2πN −

− n)]
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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−π + nπ

2
− φ
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�

(nπ

2
− φ′

) sin

(
φ′

n

)
− sin

(
θ0

n

)
sin

(
φ + π

n

)
+ sin

(
θ0

n

) cot

(
π + ξ+

2n

)
• F {βρ[1 + cos(ξ+ − 2πN +

+ n)]}

+
�

(
π + nπ

2
− φ

)
�

(nπ

2
− φ′

) sin

(
φ′

n

)
− sin

(
θ0

n

)
sin

(
φ − π

n

)
+ sin

(
θ0

n

) cot

(
π − ξ+

2n

)
• F

{
βρ[1 + cos(ξ+ − 2πN −

+ n)]
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14-59)
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Equation (14-59), although cast in a different form, is identical to those in [26]. However,
in [26], a great deal of effort was focused on manipulating these expressions to a form that was
symmetric with respect to θ0 and θn , and to reduce the number of times the Maliuzhinets function
needed to be calculated. The formulation of (14-59) does not appear explicitly symmetric with
respect to θ0 and θn , but it is symmetric because the �(z ) auxiliary Maliuzhinets function includes
θ0 and θn implicitly. There are twelve Maliuzhinets functions that need to be calculated. Four are
necessary for each auxiliary Maliuzhinets function, and there are three auxiliary functions:

�
(nπ

2
− φ′

)
, �

(
π + nπ

2
− φ′

)
and �

(
−π + nπ

2
− φ′

)
In [26], it was shown that the Maliuzhinets functions reduce to a double-nested integra-

tion; however, this double-nested integral is exceedingly difficult to evaluate, even numerically.
Hence, [26] only demonstrated results for three special wedge angles, corresponding to the half-
plane (WA = 0◦), the exterior right angle (WA = 90◦) and the planar interface discontinuity
(WA = 180◦). It is shown in [28] that this double-nested integral can be written as eight Mali-
uzhinets functions, all of which are readily available for an arbitrary wedge angle by methods in
Appendix B of [28].

For the integral of [26], which is denoted Mn(φ, φ′; θ0, θn), the simpler expression is

Mn(φ, φ′; θ0, θn) =
�n

(
nπ − φ′ + π

2
+ θn

)
�n

(
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2
+ θn

)
�n

(
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2
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)
�n

(
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2
− θn

)
•

�n

(
nπ − φ − π

2
− θ0

)
�n

(
φ − π

2
− θn

)
�n

(
nπ − φ − π

2
+ θ0

)
�n

(
φ′ − π

2
+ θn

) (14-60)

In this manner, the necessary evaluations of Maliuzhinets functions are reduced from twelve to
eight, and the results are obtainable for arbitrary interior and exterior wedge angles rather than
for only the three specific wedge angles [half plane (WA = 0◦), exterior right angle (WA = 90◦),
and planar interface discontinuity (WA = 180◦)]. This allows for the modeling of more general
structures.

The Keller-type diffraction coefficients, which are the nonuniform versions, are obtained from
(14-59) by setting every Fresnel transition function to unity.

14.8 SURFACE WAVE TRANSITION FIELD

The surface waves of the exact impedance wedge solution exist only for a limited angular range
near the associated wedge face. It was shown in Section 14.6 that this angular range was deter-
mined by the position of the surface wave pole relative to the steepest descent path. As the pole
moves outside the region between the steepest descent paths, the surface wave term vanishes.
This is completely analogous to the GO shadow boundaries that arise when a pole crosses a
steepest descent path. The major difference is that the surface wave poles are generally complex,
whereas the GO poles are always real.

The surface wave transition field provides continuity across the surface wave boundary by
uniformly accounting for the complex pole in the vicinity of the steepest descent path. It performs
the same function as the diffracted field in providing continuity for the GO field. This component
of the exact solution has also been referred to as surface ray field [27].

To determine the contribution of the complex surface wave pole in the steepest descent inte-
gral, the method of Felsen-Marcuvitz [68] is utilized. In (14-48), the integral was shown to be
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asymptotically approximated by the sum of two terms; the first corresponding to a first-order
saddle point evaluation with no pole, and the second corresponding to the pole contribution. In
(14-47), the modified Pauli-Clemmow method was shown to reduce precisely to the first term of
(14-48) when the GO pole was not near the steepest descent path. Hence, a method to include
the surface wave transition field is to use the second term of (14-48) added to the diffraction
contribution of Section 14.7. This is valid provided the poles approach the steepest descent path
individually.

The contribution of the surface wave transition field is then given by [28]

U 0
SWTR

(ρ, φ) = Uo
e−jβρ

√
ρ

⎡⎢⎢⎣−
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π
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( π

2n

)
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2
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n

)
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n

)
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(
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n
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2
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2
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)
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(π

2
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(14-61a)
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(14-61b)

The pole residue has been determined as in (14-43) and Example 14-1. By the symmetry of the
wedge geometry, it is noted that (14-61b) can be determined from (14-61a) by replacing φ by
nπ − φ, φ′ by nπ − φ′, θ0 by θn , and θn by θ0. This Fresnel transition function is as defined in [66]
but extended for complex arguments. The

√
z in the definition of F (z ) should have a branch

cut along the positive imaginary axis so that −3π/4 < [Arg
√

z ] < π/4. It is the discontinuity in
F (z ) at the branch cut that provides the discontinuity in the integral contribution. When the pole
is far from the steepest descent path, the Fresnel transition function is approximately unity, and
hence, the surface wave transition field contribution is zero.

A troublesome case occurs when the surface wave pole coincides with a GO pole. Since
the GO poles are always real, this can only occur for real surface impedances. Real surface
impedances, however, cannot support surface waves, as the surface wave pole will never lie
within the steepest descent paths. However, if the surface wave transition field is calculated by
blindly applying (14-61a) and (14-61b), erroneous results will occur whenever the surface wave
pole is far from the steepest descent path, yet near a GO pole. Indeed, the surface wave transition
field should be zero when the surface wave pole is far from the steepest descent paths. Hence,
(14-61a) and (14-61b) should only be used when the surface wave pole is closer to a steepest
descent path than to a GO pole. When the surface wave pole is near both a GO pole and the
steepest descent path, then (16) of [26] should be used. When the surface wave pole is far from
the steepest descent path, the surface wave transition field is taken as zero.

A complete asymptotic expansion, which uniformly accounts for coalescing GO and surface
wave poles, can be found in [70]. However, this type of formulation would not retain the form
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of the PEC UTD diffraction coefficient [26, 66], in which the four dominant poles are accounted
for in four cotangent-Fresnel products. Retaining only the four dominant poles is sufficient for
all shadow boundaries of all the multiple reflected fields.

14.9 COMPUTATIONS

Based on the analytical formulations developed in the previous sections, a number of computations
were performed and a sample of them are presented here. Some of the others will be assigned
as end-of-chapter problems.

The amplitude radiation patterns of an infinitesimal dipole placed at a height of 6λ above a
square ground plane (10.6λ on each side) with impedance surface are shown in Figure 14-8. We
see that the pattern variations are not severely affected by the changes in the normalized surface
impedance, ranging from 0.001 − 0.5 (unnormalized impedances of 0.377 − 188.5 ohms). Most
of the variations occur above the ground plane within θ = ±60◦, where the field intensity is
weaker. The amplitude radiation patterns, predicted [28] and measured [49], of a λ/4 monopole
above a square graphite ground plane [normalized surface impedance of 0.001668(1 + j )] are
exhibited in Figure 14-9. It is evident that there is a very good agreement between simulations
and measurements.
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Figure 14-8 Amplitude radiation patterns of infinitesimal vertical dipole above square ground plane with
normalized impedance surface [28].
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Figure 14-9 Amplitude radiation patterns of λ/4 vertical monopole above square graphite ground
plane [28, 49]. (Source: C. A. Balanis and D. DeCarlo, “Monopole antenna patterns on finite size composite
ground planes,” IEEE Trans. Antennas Propagat ., © 1982, IEEE).

A dihedral corner reflector is often used as a reference for RCS measurements. The geometry
of a dihedral corner reflector, and its dimensions, are shown in Figure 14-10. A very thorough
examination of PEC dihedral corner reflector can be found in [72–74]. To reduce the RCS, the
interior faces of the dihedral corner reflector can be coated with Radio Absorbing Material (RAM)

2a

Plate 1
Plate 2

A1

B

y

f

A2

x

z

Figure 14-10 Geometry of dihedral corner reflector.
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Figure 14-11 RCS of PEC and coated 90◦ corner reflector [28, 29]. (Source: T. Griesser, C. A. Balanis,
and K. Liu, “RCS analysis and reduction for lossy dihedral corner reflectors,” Proceedings of the IEEE, ©
1989, IEEE).

with complex permittivity and permeability. This is a procedure used in practice to reduce the RCS
of radar targets and make them more stealthy. The RCS patterns of a 90◦ corner reflector, PEC
and coated, are shown in Figure 14-11 and are based on computations using the Uniform Theory
of Diffraction (UTD) and Method of Moments (MoM). A 90◦ dihedral corner reflector possesses
a very high RCS near its axis primarily because of the second reflection, which is directed toward
the incident direction when the interior angle of the dihedral corner reflector is 90◦. This is not
the case for interior angles other than 90◦. This can be verified by simply using Snell’s law of
reflection. It is also apparent from the patterns in Figure 14-11 that there is a very good agreement
between the two methods, and both predict reductions of nearly 10 dB at the flare spots (directions
where the RCS is the most intense; along the axis of the 90◦ corner reflector and in directions
perpendicular to its faces; both interior and exterior). The RCS of 77◦ and 98◦ dihedral corner
reflectors were also performed, and they are left as end-of-chapter exercises. We should expect
that for these two dihedral corner reflectors (77◦ and 98◦) the RCS at and near the axis is not
very intense because the second reflection is not directed toward the direction of incidence.

14.10 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, and presentation of the material of this chapter.

• MATLAB computer programs:
a. Monopole: Computes the normalized amplitude pattern of a monopole on a rectan-

gular ground plane with an impedance surface. The geometry is the same as that of
Figure 13-32, where the PEC ground plane is replaced by one with an equivalent surface
impedance. The pattern is computed using the UTD formulation of Chapter 14.

b. Dipole_Vertical: Computes the normalized amplitude pattern of a vertical dipole placed
at a height h above a rectangular ground plane with an equivalent surface impedance.
The pattern is computed using the UTD formulation of Chapter 14.
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c. Dipole_Horizontal_H_Plane: Computes the normalized H-plane amplitude pattern of a
horizontal dipole placed at a height h above a rectangular ground plane with an equivalent
surface impedance. The pattern is computed using the UTD formulation of Chapter 14.

• Power Point (PPT) viewgraphs, in multicolor.
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14. E. Lüneburg and R. A. Hurd, “On the diffraction problem of a half plane with different face impedances,”
Canadian J. Physics , vol. 62, pp. 853–860, 1984.

15. J. Shmoys, “Diffraction by a half-plane with a special impedance variation,” IRE Trans. Antennas
Propagat., pp. S88–S90, Dec. 1959.

16. T. R. Faulkner, “Diffraction of an electromagnetic plane-wave by a metallic strip,” J. Inst. Maths.
Applics., vol. 1, no. 2, pp. 149–163, June 1965.

17. T. B. A. Senior, “Skew incidence on a right-angled impedance wedge,” Radio Science, vol. 13, no. 4,
pp. 639–647, July-Aug. 1978.

18. T. B. A. Senior, “Solution of a class of imperfect wedge problems for skew incidence,” Radio Science,
vol. 21, no. 2, pp. 185–191, Mar.-Apr. 1986.

19. T. B. A Senior and J. L. Volakis, “Scattering by an imperfect right-angled wedge,” IEEE Trans. Antennas
Propagat., vol. AP-34, no. 5, pp. 681–689, May 1986.

20. R. G. Rojas, “Wiener-Hopf analysis of the EM diffraction by an impedance discontinuity in a planar
surface and by an impedance half plane,” IEEE Trans. Antennas Propagat., vol. AP-36, no. 1, pp. 71–83,
Jan. 1988.

21. R. G. Rojas, “Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with
impedance faces,” IEEE Trans. Antenna Propagat., vol. 36, pp. 956–970, July 1988.

22. V. G. Vaccaro, “The generalized reflection method in electromagnetism,” Arch. Elektron and Ueber-
taragungstech (Germany), vol. 34, no. 12, pp. 493–500, 1980.



Balanis c14.tex V2 - 11/22/2011 4:00 P.M. Page 881

MULTIMEDIA 881

23. J. J. Bowman, “High-frequency backscattering from an absorbing infinite strip with arbitrary face
impedances,” Canadian J. Physics , vol. 45, pp. 2409–2430, 1967.

24. O. M. Bucci and G. Franceschetti, “Electromagnetic scattering by a half plane with two face
impedances,” Radio Science, vol. 11, no. 1, pp. 49–59, Jan. 1976.

25. S. Sanyal and A. K. Bhattacharyya, “Diffraction by a half-plane with two face impedances, uniform
asymptotic expansion for plane wave and arbitrary line source incidence,” IEEE Trans. Antennas Prop-
agat., vol. AP-34, no. 5, pp. 718–723, May 1986. Corrections vol. AP-35, no. 12, p. 1499, Dec.
1987.

26. R. Tiberio, G. Pelosi and G. Manara, “A uniform GTD formulation for the diffraction by a wedge with
impedance faces,” IEEE Trans. Antennas Propagat., vol. AP-33, no. 8, pp. 867–873, Aug. 1985.

27. M. I. Herman and J. L. Volakis, “High frequency scattering from canonical impedance structures,”
University of Michigan Radiation Lab Technical Report 389271-T, Ann Arbor, MI, May 1987.

28. Timothy Griesser, “High-frequency electromagnetic scattering from imperfectly conducting surfaces,”
PhD dissertation, Arizona State University, August 1988.

29. T. Griesser, C. A. Balanis, and K. Liu, “RCS analysis and reduction for lossy dihedral corner reflectors,”
Proceedings of the IEEE, Vol. 77, No. 5, pp. 806–814, May 1989.

30. T. Griesser and C. A. Balanis, “Reflections, diffractions, and surface waves for an interior impedance
wedge of arbitrary angle,” IEEE Trans. Antennas Propagat., vol. 37, no. 7, pp. 927–935, July 1989.

31. J. L. Volakis, “A uniform geometrical theory of diffraction for an imperfectly conducting half-plane,”
IEEE Trans. Antennas Propagat., vol. AP-34, no. 2, pp. 172–180, Feb. 1986. Corrections vol. AP-35,
no. 6, pp. 742–744, June 1987.

32. T. B. A. Senior, “Half plane edge diffraction,” Radio Science, vol. 10, no. 6, pp. 645–650, June 1975.

33. T. B. A. Senior, “Diffraction tensors for imperfectly conducting edges,” Radio Science, vol. 10, no. 10,
pp. 911–919, Oct. 1975.

34. T. B. A. Senior, “Some problems involving imperfect half planes,” in Electromagnetic Scattering , edited
by P. L. E. Uslenghi, New York: Academic, pp. 185–219, 1978.

35. T. B. A. Senior, “The current induced in a resistive half plane,” Radio Science, vol. 16, no. 6,
pp. 1249–1254, Nov.-Dec. 1981.

36. T. B. A. Senior, “Combined resistive and conducting sheets,” IEEE Trans. Antennas Propagat.,
vol. AP-33, no. 5, pp. 57;7–579, May 1985.

37. J. L. Volakis and T. B. A. Senior, “Diffraction by a thin dielectric half-plane,” IEEE Trans. Antennas
Propagat., vol. AP-35, no. 12, pp. 1483–1487, Dec. 1987.

38. R. Tiberio and R. G. Kouyoumjian, “A uniform GTD solution for the diffraction by strips illuminated
at grazing incidence,” Radio Science, vol. 14, no. 6, pp. 933–941, Nov. 1979.

39. R. Tiberio, F. Bessi, G. Manara and G. Pelosi, “Scattering by a strip with two face impedances at
edge-on incidence,” Radio Science, vol. 17, no. 5, pp. 1199–1210, Sept.-Oct. 1982.

40. R. Tiberio, “A spectral extended ray method for edge diffraction,” in Hybrid Formulation of Wave
Propagation and Scattering , L. B. Felsen, Ed., NATO ASI Series, Aug. 1983, pp. 109–130.

41. R. Tiberio and G. Pelosi, “High-frequency scattering from the edges of impedance discontinuities on a
flat plane,” IEEE Trans. Antennas Propagat., vol. AP-31, no. 4, pp. 590–596, July 1983.

42. M. I. Herman and J. L. Volakis, “High frequency scattering by a double impedance wedge,” IEEE
Trans. Antennas Propagat., vol. 36, no. 5, pp. 664–678, May 1988.

43. M. I. Herman and J. L. Volakis, “High frequency scattering from polygonal impedance cylinders and
strips,” IEEE Trans. Antennas Propagat., vol. AP-36, no. 5, pp. 679–689, May 1988.

44. T. B. A. Senior, “Scattering by resistive strips,” Radio Science, vol. 14, no. 5, pp. 911–924, Sept.-Oct.
1979.

45. T. B. A. Senior, “Backscattering from resistive strips,” IEEE Trans. Antennas Propagat., vol. AP-27,
no. 6, pp. 808–813, Nov. 1979.

46. M. I. Herman and J. L. Volakis, “High-frequency scattering by a resistive strip and extensions to
conductive and impedance strips,” Radio Science, vol. 22, no. 3, pp. 335–349, May-June 1987.



Balanis c14.tex V2 - 11/22/2011 4:00 P.M. Page 882

882 DIFFRACTION BY WEDGE WITH IMPEDANCE SURFACES

47. T. B. A. Senior and V. V. Liepa, “Backscattering from tapered resistive strips,” IEEE Trans. Antennas
Propagat., vol. AP-32, no. 7, pp. 747–751, July 1984.

48. A. K. Bhattacharyya and S. K. Tandon, “Radar cross section of a finite planar structure coated with a
lossy dielectric,” IEEE Trans. Antennas Propagat., vol. AP-32, no. 9, pp. 1003–1007, Sept. 1984.

49. C. A. Balanis and D. DeCarlo, “Monopole antenna patterns on finite size composite ground planes,”
IEEE Trans. Antennas Propagat., vol. AP-30, no. 4, pp. 764–768, July 1982.

50. J. L. Volakis, “Simple expressions for a function occurring in diffraction theory,” IEEE Trans. Antennas
Propagat., vol. AP-33, no. 6, pp. 678–680, June 1985.

51. P. Corona, G. Ferrara and C. Gennarelli, “Backscattering by loaded and unloaded dihedral corners,”
IEEE Trans. Antennas Propagat., vol. AP-35, no. 10, pp. 1148–1153, Oct. 1987.

52. V. Y. Zavadskii and M. P. Sakharora, “Application of the special function ��(z ) in problems of wave
diffraction in wedge shaped regions,” Soviet Physics-Acoustics , vol. 13, no. 1, pp. 48–54, July-Sept.
1967.

53. O. M. Bucci, “On a function occurring in the theory of scattering from an impedance half-plane,” Rep.
75-1, Instituto Universitario Navale, via Acton 38, Napole, Italy, 1974.

54. J. L. Volakis and T. B. A. Senior, “Simple expressions for a function occurring in diffraction theory,”
IEEE Trans. Antennas Propagat., vol. AP-33, no. 6, pp. 678–680, June 1985.

55. K. Hongo and E. Najajima, “Polynomial approximation of Maliuzhinets’ function,” IEEE Trans. Anten-
nas Propagat., AP-34, no. 7, pp. 942–947, July 1986.

56. M. I. Herman, J. L. Volakis and T. B. A. Senior, “Analytic expressions for a function occurring in
diffraction theory,” IEEE Trans. Antennas Propagat., vol. AP35, no. 9, pp. 1083–1086, Sept. 1987.

57. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics , IEE Press:
New York and London, 1995.

58. T. B. A. Senior, “A note on impedance boundary conditions,” Canadian J. Physics , vol. 40, no. 5,
pp. 663–665, May 1962.

59. N. G. Alexopoulos and G. A. Tadler, “Accuracy of the Lentovich boundary condition for continuous
and discontinuous surface impedances,” Journal of Applied Physics , vol. 46, no. 8, pp. 3326–3332,
Aug. 1975.

60. D. S. Wang, “Limits and validity of the impedance boundary condition on penetrable surfaces,” IEEE
Trans. Antennas Propagat., vol. AP-35, no. 4, pp. 453–457, April 1987.

61. S. W. Lee and W. Gee, “How good is the impedance boundary condition?,” IEEE Trans. Antennas
Propagat., vol. AP-35, no. 11, pp. 1313–1315, Nov. 1987.

62. T. Griesser and C. A. Balanis, “Oceanic low-angle monopulse radar tracking errors,” IEEE Journal of
Oceanic Engineering , Vol. OE-12, pp. 289–295, January 1987.

63. W. Pauli, “On asymptotic series for functions in the theory of diffraction of light,” Physical Review ,
vol. 54, pp. 924–931, Dec. 1938.

64. P. C. Clemmow, “Some extensions to the method of integration by steepest descents,” Quart. J. Mech.
Appl. Math., vol. 3, pp. 241–256, 1950.

65. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields , Oxford: Pergamon
Press, 1966, pp. 43–58.

66. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a
perfectly conducting surface,” Proc. IEEE , vol. 62, no. 11, pp. 1448–1461, Nov. 1974.

67. R. G. Kouyoumjian, “Asymptotic high-frequency methods,” Proc. IEEE , vol. 53, no. 8, pp. 864–876,
Aug. 1965.

68. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves , New Jersey: Prentice-Hall, 1973,
p. 399.

69. L. B. Felsen, “Asymptotic methods in high-frequency propagation and scattering,” in Electromagnetic
Scattering , P. L. E. Uslenghi, Ed., New York: Academic Press, 1978, pp. 29–65.

70. R. G. Rojas, “Comparison between two asymptotic methods,” IEEE Trans. Antennas Propagat., vol. AP-
35, no. 12, pp. 1489–1492, Dec. 1987.



Balanis c14.tex V2 - 11/22/2011 4:00 P.M. Page 883

PROBLEMS 883

71. E. L. Yip and R. J. Chiavetta, “Comparison of uniform asymptotic expansions of diffraction integrals,”
IEEE Trans. Antennas Propagat., vol. AP-35, no. 10, pp. 1179–1180, July 1986.

72. T. Griesser and C. A. Balanis, “Backscatter analysis of dihedral corner reflectors using physical
optics and the physical theory of diffraction,” IEEE Trans. Antennas Propagat., vol. AP-35, no. 10,
pp. 1137–1147, Oct. 1987.

73. T. Griesser and C. A. Balanis, “Dihedral corner reflector backscatter using higher order reflections and
diffractions,” IEEE Trans. Antennas Propagat., vol. AP-35, no. 11, pp. 1235–1247, Nov. 1987.

74. Timothy Griesser, “Backscatter cross sections of a dihedral corner reflector using GTD and PTD,” MS
Thesis, Arizona State University, December 1985.

PROBLEMS

14.1. Using duality, derive the dual of (14-2) for
the other polarization. Show that that the
impedance boundary condition has the same
duality as Maxwell’s equations.

14.2. The impedance boundary condition can be
written in a different form than the vec-
tor form of (14-2) to conveniently solve
the wedge scattering problem. For a wedge,
in which the wedge vertex is along the
zaxis in a cylindrical coordinate system,
the wedge faces are located at φ = 0 and
φ = nπ . This wedge geometry is illustrated
in Figure 14-1, for both the exterior and inte-
rior wedges. For the soft polarization (TMz ),
the impedance boundary conditions are

Ez = −ηoZoHρ for φ = 0

Ez = +ηn ZoHρ for φ = nπ

on the faces 0 and n , respectively.
Rewrite/reduce each of these equations in
terms of the Ez and its partial derivative on
the respective faces.

14.3. Repeat problem 14.2 for the hard polar-
ization polarization (TEz ) for which, using
Figure 14-1, the impedance boundary con-
ditions are

Eρ = +ηoZoHz for φ = 0

Eρ = −ηn ZoHz for φ = nπ

on the faces 0 and n , respectively. Rewrite/
reduce each of these equations in terms
of the Hz and its partial derivative on the
respective faces, usually referred to as a
boundary condition of the third kind.

14.4. For the soft (perpendicular) polarization of
Figure 14-2a , derive an expression for the
reflection coefficient for oblique incidence
assuming the reflecting planar surface is a

PEC ground plane covered with a lossless
dielectric slab of thickness t and constitu-
tive parameters ε1 and μ1. Use transmission
line theory to represent the normalized
equivalent surface impedance at the lead-
ing interface formed by free space and the
dielectric slab.

14.5. Repeat Problem 14.4 for the hard (parallel)
polarization of Figure 14-2b.

14.6. For the method of steepest descent (saddle
point method), the saddle point zs (assum-
ing only one saddle point) is the point in
the complex plane at which |eβρh(zs )| is a
maximum of |eβρh(z )| along one direction
and a minimum of |eβρh(z )| along a perpen-
dicular direction in the complex plane. In
three-dimensions, a plot of |eβρh(zs )| would
look like a saddle with zs at the center
of the saddle. Assuming H (z ) in (14-47)
is smoothly varying near the saddle point,
the integrand achieves its maximum at the
saddle point, and it is basically negligible
elsewhere. The steepest descent and ascent
paths can be found using that the relation-
ship Im [h(z )] = Im [h(zs )] is a constant.
Derive equations for the steepest descent
and ascent paths in the complex z -plane.

14.7. In contrast to the steepest descent and
ascent paths of Problem 14-6, the stationary
phase paths are those for which Re[h(z )] =
Re[h(zs )] is a constant. Derive equations for
the stationary paths in the complex z plane.

14.8. A uniform plane wave of unity amplitude
is incident upon a 90◦ dielectric wedge at
an angle of φ′ = 60◦. At an observation
distance of ρ = 81λ from the edge of the
wedge and an observation angle of 180◦,
compute for hard polarization the approx-
imate:
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(a) incident diffracted field.
(b) reflected diffracted field.

r

60°

180°

Figure P14-8

The electrical properties of the dielectric
are: εr = 4, μr = 1. Assume that the sur-
face impedance of the faces of the wedge

are each equal to the intrinsic impedance of
the dielectric material. Clearly indicate what
equations you are using. If you make any
approximations, state as to why you think
they are valid.

14.9. Repeat Problem 14.8 for soft polarization.

14.10. Derive (14-44) for U n
SW using a similar pro-

cedure as in Example 14-1 for U 0
SW.

14.11. Using the procedure of Example 14-2,
derive the second term of (14-54) from the
second term of (14-53).

14.12. Using the procedure of Example 14-2,
derive the third term of (14-54) from the
third term of (14-53).

14.13. Using the procedure of Example 14-2,
derive the fourth term of (14-54) from the
fourth term of (14-53).
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CHAPTER 15
Green’s Functions

15.1 INTRODUCTION

In the area of electromagnetics, solutions to many problems are obtained using a second-order,
uncoupled partial differential equation, derived from Maxwell’s equations, and the appropriate
boundary conditions. The form of most solutions of this type is an infinite series, provided the par-
tial differential equation and the boundary conditions representing the problems are separable in
the chosen coordinate system. The difficulty in using these types of solutions to obtain an insight
into the behavior of the function is that they are usually slowly convergent, especially at regions
where rapid changes occur. It would then seem appropriate, at least for some problems and associ-
ated regions, that closed-form solutions would be desirable. Even solutions in the form of integrals
would be acceptable. The technique known as the Green’s function accomplishes this goal.

Before proceeding with the presentation of the Green’s function solution, let us briefly
describe what the Green’s functions represent and how they are used to obtain the overall
solution to the problem.

With the Green’s function technique, a solution to the partial differential equation is obtained
using a unit source (impulse, Dirac delta) as the driving function. This is known as the Green’s
function . The solution to the actual driving function is written as a superposition of the impulse
response solutions (Green’s function) with the Dirac delta source at different locations, which in
the limit reduces to an integral. The contributions to the overall solution from the general source
may be greater or smaller than that of the impulse response depending on the strength of the source
at that given location. In engineering terminology, then, the Green’s function is nothing more but
the impulse response of a system; in system theory, this is better known as the transfer function.

For a given problem, the Green’s function can take various forms. One form of its solution can
be expressed in terms of finite explicit functions, and it is obtained based on a procedure that will
be outlined later. This procedure for developing the Green’s function can be used only if the solu-
tion to the homogeneous differential equation is known. Another form of the Green’s function is
to construct its solution by an infinite series of suitably chosen orthonormal functions. The bound-
ary conditions determine the eigenvalues of the eigenfunctions, and the strength of the sources
influences the coefficients of these eigenfunctions. Integral forms can also be used to represent the
Green’s function, especially when the eigenvalue spectrum is continuous. All solutions, although
different in form, give the same results. The form of the Green’s function that is most appropriate
will depend on the problem in question. The representation of the actual source plays a significant
role as to which form of the Green’s function may be most convenient for a given problem.

Usually, there is as much work involved in finding the Green’s function as there is in obtaining
the infinite-series solution. However, the major advantages of the Green’s function technique
become evident when the same problem is to be solved for a variety of driving sources and when
the sources are in the presence of boundaries [1–8].

885
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In this chapter we shall initially study the one-dimensional differential equation

[L + λr(x)]y(x) = f (x) (15-1)

where L is the Sturm-Liouville operator and λ is a constant. It is hoped that an understanding of
the Green’s function method for this equation will lead to a better understanding of the equations
that occur in electromagnetic field theory applied to homogeneous media such as

∇2φ(R) + β2φ(R) = p(R) (scalar wave equation) (15-2a)

∇ × ∇ × ψ(R) + β2ψ(R) = F(R) (vector wave equation) (15-2b)

particularly since (15-2a) and (15-2b) can often be reduced to several equations similar to (15-1)
by the separation of variables technique. Before proceeding to the actual solution of (15-1) by the
Green’s function method, we shall first consider several examples of Green’s functions in other
areas of electrical and general engineering. These will be followed by some topics associated
with the Sturm-Liouville operator L before we embark on the solution of (15-2a).

15.2 GREEN’S FUNCTIONS IN ENGINEERING

The Green’s function approach to solution of differential equations has been used in many areas of
engineering, physics, and elsewhere [9–18]. Before we embark on constructing Green’s function
solutions to electromagnetic boundary-value problems, let us consider two other problems, one
dealing with electric circuit theory and the other with mechanics. This will give the reader a
better appreciation of the Green’s function concept.

15.2.1 Circuit Theory

Analysis of lumped electric element circuits is a fundamental method of electrical engineering.
Therefore, we will relate the Green’s function to the solution of a very simple lumped-element
circuit problem.

Let us assume that a voltage source v(t) is connected to a resistor R and inductor L, as shown
in Figure 15-1a . The equation that governs the solution to that circuit can be written as

L
di

dt
+ Ri = v(t) (15-3)

where v(t) is the excitation voltage source that is turned on at t = t ′. Initially, (t < t ′) the circuit
is at rest and at t = t ′ the voltage is suddenly turned on by an impulse V0 of a very short duration
	t ′. For t > t ′ + 	t ′, when v(t) = 0, the circuit performance is governed by the homogeneous
equation

L
di

dt
+ Ri (t) = 0 for t > t ′ + 	t ′ (15-4)

whose solution for i (t) can be written as

i (t) = I0e−(R/L)t for t > t ′ + 	t ′ (15-4a)

where I0 is a constant and L/R is referred to as the time constant τ of the circuit.
Since the voltage excitation v(t) during 	t ′ was an impulse V0, then∫ t ′+	t ′

t ′
v(t)dt = V0 (15-5)
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R

(a)

Lv(t) i(t)

+

−

(b)

t ′ t ′ + Δt ′

i(t)

V0

L

0 t

(c)

i(t)

V0

L

V0

L

t ′ tτ = L/R0

0.368

Figure 15-1 (a) RL series circuit. (b) Current response. (c) Time constant.

where V0 is the voltage for duration 	t ′ (volts · 	t = volts-sec). Therefore, between t ′ ≤ t ≤
t ′ + 	t ′, (15-3) can be written using (15-5) as

L
∫ t ′+	t ′

t ′
di + R

∫ t ′+	t ′

t ′
i (t) dt =

∫ t ′+	t ′

t ′
v(t) dt

L[i (t ′ + 	t ′) − i (t ′)] + R
∫ t ′+	t ′

t ′
i (t) dt = V0 (15-6)
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Because 	t ′ is very small, we assume that i (t) during the excitation 	t ′ of the voltage source is
not exceedingly large, and it behaves as shown in Figure 15-1b. Therefore, during 	t ′

lim
	t ′→0

R
∫ t ′+	t ′

t ′
i (t) dt � 0 (15-7)

so that the terms on the left side of (15-6) reduce using (15-4a) to

i (t ′) = 0 (15-8a)

i (t ′ + 	t ′) = I0e−(R/L)(t ′+	t ′) 	t ′→0� I0e−(R/L)t ′ (15-8b)

Using (15-7) through (15-8b), we can express (15-6) as

LI0e−(R/L)t ′ = V0 (15-9)

or
I0 = V0

L
e+(R/L)t ′ (15-9a)

Therefore, (15-4a) can be written, using (15-9a), as

i (t) =

⎧⎪⎪⎨⎪⎪⎩
0 t < t ′

V0

L
e−(R/L)(t−t ′) t ≥ t ′

(15-10a)

(15-10b)

which is shown plotted in Figure 15-1c.
If the circuit is subjected to N voltage impulses each of duration 	t and amplitude Vi occurring

at t = t ′
i , (i = 0, . . . , N ), then the current response can be written as

i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t < t ′
0

V0

L
e−(R/L)(t−t ′0) t ′

0 < t < t ′
1

V0

L
e−(R/L)(t−t ′0) + V1

L
e−(R/L)(t−t ′1) t ′

1 < t < t ′
2

...
...

N∑
i=0

Vi

L
e−(R/L)(t−t ′i ) t ′

N < t < t ′
N +1

(15-11)

If the circuit is subjected to a continuous voltage source v(t) starting at t ′
0 such that at an

instant of time t = t ′ and short interval 	t ′ would produce an impulse of

dV = v(t ′) dt ′ (15-12)

then the response of the system for t ≥ t ′ can be expressed, provided that i (t) = v(t) = 0 for
t < t ′, as

i (t) =
∫ t

t ′

[
v(t ′) dt ′

L
e−(R/L)(t−t ′)

]
=

∫ t

t ′
v(t ′)

e−(R/L)(t−t ′)

L
dt ′

i (t) =
∫ t

t ′
v(t ′)G(t , t ′)dt ′ (15-13)
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where

G(t , t ′) = e−(R/L)(t−t ′)

L
for t > t ′ (15-13a)

In (15-13), G(t , t ′) of (15-13a), is referred to as the Green’s function, and it represents the
response of the system for t > t ′ when an excitation voltage v(t) at t = t ′ is an impulse (Dirac
delta) function. Knowing the response of the system to an impulse function, represented by the
Green’s function of (15-13a), the response i (t) to any voltage source v(t) can then be obtained
by convolving the voltage source excitation with the Green’s function according to (15-13).

15.2.2 Mechanics

Another problem that the reader may be familiar with is that of a string of length � that is
connected at the two ends and is subjected to external force per unit length (load) of F (x). The
objective is to find the displacement u(x) of the string. If the load F (x) is assumed to be acting
down (negative direction), the displacement u(x) of the string is governed by the differential
equation

T
d2u

dx 2
= F (x) (15-14)

or
d2u

dx 2
= 1

T
F (x) = f (x) (15-14a)

where T is the uniform tensile force of the string. If the string is stationary at the two ends, then
the displacement function u(x) satisfies the boundary conditions

u(x = 0) = u(x = �) = 0 (15-15)

Initially, instead of solving the displacement u(x) of the string subject to the load F (x), let
us assume that the load to which the string is subjected is a concentrated load (impulse) of
F (x = x ′) = δ(x − x ′) at a point x = x ′, as shown in Figure 15-2. For the impulse load, the
differential equation 15-14a can be written as

d2G(x , x ′)
dx 2

= 1

T
δ(x − x ′) (15-16)

G (x, x′)

F (x′)

x′ x

l

Figure 15-2 Attached string subjected by a load force.
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subject to the boundary conditions

G(x = 0, x ′) = G(0, x ′) = 0 (15-16a)

G(x = �, x ′) = G(�, x ′) = 0 (15-16b)

In (15-16), G(x , x ′) represents the displacement of the string when it is subject to an impulse load
of 1/T at x = x ′, and it is referred to as the Green’s function for the string. Once this is found,
the displacement u(x) of the string subjected to the load F (x) can be determined by convolving
the load F (x) with the Green’s function G(x , x ′), as was done for the circuit problem by (15-13).

The solution to (15-16) is accomplished by following the procedure outlined here. Away from
the load at x = x ′, the differential equation 15-16 reduces to the homogeneous form

d2G(x , x ′)
dx 2

= 0 (15-17)

which has solutions of the form

G(x , x ′) =
{

A1x + B1 0 ≤ x ≤ x ′

A2x + B2 x ′ ≤ x ≤ �

(15-17a)

(15-17b)

Applying the boundary conditions (15-16a) and (15-16b) leads to

G(x = 0, x ′) = A1(0) + B1 = 0 ⇒ B1 = 0 (15-18a)

G(x = �, x ′) = A2� + B2 = 0 ⇒ B2 = −A2� (15-18b)

Thus, (15-17a) and (15-17b) reduce to

G(x , x ′) =
{

A1x 0 ≤ x ≤ x ′

A2(x − �) x ′ ≤ x ≤ �

(15-19a)

(15-19b)

where A1 and A2 have not been determined yet.
At x = x ′ the displacement u(x) of the string must be continuous. Therefore, the Green’s

function of (15-19a) and (15-19b) must also be continuous at x = x ′. Thus,

A1x ′ = A2(x
′ − �) ⇒ A2 = A1

x ′

x ′ − �
(15-20)

According to (15-16), the second derivative of G(x , x ′) is equal to an impulse function. There-
fore, the first derivative of G(x , x ′), obtained by integrating (15-16), must be discontinuous by
an amount equal to 1/T . Thus,

lim
ε→0

[
dG(x ′ + ε, x ′)

dx
− dG(x ′ − ε, x ′)

dx

]
= 1

T
(15-21)

or
dG(x ′

+, x ′)
dx

− dG(x ′
−, x ′)

dx
= 1

T
(15-21a)

Using (15-19a), (15-19b), and (15-20), we can write that

dG(x ′
−, x ′)

dx
= A1 (15-22a)

dG(x ′
+, x ′)

dx
= A2 = A1

x ′

x ′ − �
(15-22b)
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Thus, using (15-22a) and (15-22b), (15-21a) leads to

A1
x ′

x ′ − �
− A1 = 1

T
⇒ A1

�

x ′ − �
= 1

T
⇒ A1 = 1

T

x ′ − �

�
(15-23)

Therefore, the Green’s function of (15-19a) and (15-19b) can be written, using (15-20) and
(15-23), as

G(x , x ′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

T

(
x ′ − �

�

)
x 0 ≤ x ≤ x ′

1

T

(
x − �

�

)
x ′ x ′ ≤ x ≤ �

(15-24a)

(15-24b)

The displacement u(x) subject to the load F (x), governed by (15-14a), can now be written
as

u(x) =
∫ �

0
F (x ′) G(x , x ′) dx ′

= 1

T

∫ x

0
F (x ′)

(
x − �

�

)
x ′ dx ′

+ 1

T

∫ �

x
F (x ′)

(
x ′ − �

�

)
x dx ′

(15-25)

15.3 STURM-LIOUVILLE PROBLEMS

Now that we illustrated the Green’s function development for two specific problems, one for
an RL electrical circuit and the other for a stretched string, let us consider the construction of
Green’s functions for more general differential equations subject to appropriate boundary condi-
tions. Specifically in this section we want to consider Green’s functions for the one-dimensional
differential equation of the Sturm-Liouville form [1, 7, 13].

A one-dimensional differential equation of the form

d

dx

[
p(x)

dy

dx

]
− q(x)y = f (x) (15-26)

subject to homogeneous boundary conditions, is a Sturm-Liouville problem. This equation can
also be written as

Ly = f (x) (15-27)

where L is the Sturm-Liouville operator

L ≡
{

d

dx

[
p(x)

d

dx

]
− q(x)

}
(15-27a)

Every general one-dimensional, source-excited, second-order differential equation of the form

A(x)
d2y

dx 2
+ B(x)

dy

dx
+ C (x)y = S (x) (15-28)
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or
Dy = S (x) (15-28a)

where

D ≡
[

A(x)
d2

dx 2
+ B(x)

d

dx
+ C (x)

]
(15-28b)

can be converted to a Sturm-Liouville form. This can be accomplished by following the procedure
outlined here.

First, expand (15-26) and write it as

p(x)
d2y

dx 2
+ dp

dx

dy

dx
− q(x)y = f (x) (15-29)

Dividing (15-28) by A(x) and (15-29) by p(x), we have that

d2y

dx 2
+ B(x)

A(x)

dy

dx
+ C (x)

A(x)
y = S (x)

A(x)
(15-30a)

d2y

dx 2
+ 1

p(x)

dp

dx

dy

dx
− q(x)

p(x)
y = f (x)

p(x)
(15-30b)

Comparing (15-30a) and (15-30b), we see that

B(x)

A(x)
= 1

p(x)

dp(x)

dx
(15-31a)

C (x)

A(x)
= −q(x)

p(x)
(15-31b)

S (x)

A(x)
= f (x)

p(x)
(15-31c)

From (15-31a) we have that
dp(x)

dx
= p(x)

B(x)

A(x)
(15-32)

which is a linear first-order differential equation, a particular solution of which is

p(x) = exp

[∫ x B(t)

A(t)
dt

]
(15-32a)

From (15-31b)

q(x) = −p(x)
C (x)

A(x)
= −C (x)

A(x)
exp

[∫ x B(x)

A(t)
dt

]
(15-32b)

and from (15-31c)

f (x) = p(x)
S (x)

A(x)
= S (x)

A(x)
exp

[∫ x B(t)

A(t)
dt

]
(15-32c)

In summary then, a one-dimensional, source-excited, second-order differential equation of the
form (15-28) is converted to a Sturm-Liouville form (15-26) by letting p(x) be that of (15-32a),
q(x) that of (15-32b), and f (x) that of (15-32c).

To demonstrate, let us consider an example.
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Example 15-1

Convert the Bessel differential equation

x2 d2y

dx 2
+ x

dy

dx
+ (x2 − λ2)y = 0

to a Sturm-Liouville form.

Solution: Since

A(x) = x2

B(x) = x

C (x) = x2 − λ2

S (x) = 0

and according to (15-32a), (15-32b), and (15-32c)

p(x) = exp

[∫ x B(t)

A(t)
dt

]
= exp

[∫ x t

t2
dt

]
= exp

[∫ x dt

t

]
= eln(x) = x

q(x) = −p(x)
C (x)

A(x)
= −x

(x2 − λ2)

x2
= −

(
x 2 − λ2

x

)
f (x) = p(x)

S (x)

A(x)
= 0

Thus, using (15-26), Bessel’s differential equation takes the Sturm-Liouville form

d

dx

(
x

dy

dx

)
+

(
x 2 − λ2

x

)
y = 0

As a check, when the preceding equation is expanded and is multiplied by x , it reduces to the usual
form of Bessel’s differential equation.

15.3.1 Green’s Function in Closed Form

Now that we have shown that each general second-order, source-excited differential equation
can be converted to a Sturm-Liouville form, let us develop a procedure to construct the Green’s
function of a Sturm-Liouville differential equation represented by (15-26) or more generally by{

d

dx

[
p(x)

dy

dx

]
− q(x)y

}
+ λr(x)y = f (x) (15-33)

which can be written as [{
d

dx

[
p(x)

d

dx

]
− q(x)

}
+ λr(x)

]
y = f (x) (15-33a)

or simply

[L + λr(x)] y = f (x) (15-33b)

where L is the Sturm-Liouville operator of (15-27a). In (15-33), r(x) and f (x) are assumed to be
piecewise continuous in the region of interest (a ≤ x ≤ b) and λ is a parameter to be determined
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by the nature and boundary of the region of interest. It should be noted that throughout this chapter
λ is used to represent eigenvalues, and it should not be confused with wavelength. The use of λ

to represent eigenvalues is a very common practice in Green’s function theory. The differential
equations 15-33 through 15-33b possess a Green’s function for all values of λ except those that
are eigenvalues of the homogeneous equation

[L + λr(x)]y = 0 (15-34)

For values of λ for which (15-34) has nontrivial solutions, a Green’s function will not exist. This
is analogous to a system of linear equations represented by

Dy = f (15-35)

which has a solution of

y = D−1f (15-35a)

provided D−1 exists (i.e., D nonsingular). If D is singular (so D−1 does not exist), then (15-35)
does not possess a solution. This occurs when Dy = 0, which has a nontrivial solution when the
determinant of D is zero [so D is written det(D) = 0].

According to (15-25), the solution of (15-33b) can be written as

y(x) =
∫ b

a
f (x)G(x , x ′) dx ′ (15-36)

where G(x , x ′) is the Green’s function of (15-33) or (15-33b). Since (15-35a) is a solution to
(15-35), and it exists only if D is nonsingular, then (15-36) is a solution to (15-33b) if the inverse
of the operator [L + λr(x)] exists. Then (15-33b) can be written as

y(x) = [L + λr(x)]−1f (15-36a)

By comparing (15-36) to (15-36a), then G(x , x ′) is analogous to the inverse of the operator
[L + λr(x)].

Whenever λ is equal to an eigenvalue of the operator [L + λr(x)], obtained by setting the
determinant of (15-34) equal to zero, i.e.,

det [L + λr(x)] = 0 (15-37)

then the inverse of [L + λr(x)] does not exist, and (15-36) and (15-36a) are not valid. Thus, for
values of λ equal to the eigenvalues of the operator [L + λr(x)], the Green’s function does not
exist.

For a unit impulse driving function, the Sturm-Liouville equation 15-33 can be written as

d

dx

[
p(x)

dG

dx

]
− q(x)G + λr(x)G = δ(x − x ′) (15-38)

where G is the Green’s function. At points removed from the impulse driving function, (15-38)
reduces to {

d

dx

[
p(x)

dG

dx

]
− q(x)G

}
+ λr(x)G = 0 (15-38a)



Balanis c15.tex V2 - 11/22/2011 4:04 P.M. Page 895

STURM-LIOUVILLE PROBLEMS 895

As can be verified by the Green’s function (15-24a) and (15-24b) of the mechanics problems
in Section 15.2.2, the Green’s functions of (15-38a), in general, exhibit the following properties:

Properties of Green’s Functions

1. G(x , x ′) satisfies the homogeneous differential equation except at x = x ′.
2. G(x , x ′) is symmetrical with respect to x and x ′.
3. G(x , x ′) satisfies certain homogeneous boundary conditions.
4. G(x , x ′) is continuous at x = x ′.
5. [dG(x , x ′)]/dx has a discontinuity of 1/[p(x ′)] at x = x ′.

The discontinuity of the derivative of G(x , x ′) at x = x ′([dG(x ′, x ′)]/dx = 1/[p(x ′)]) can be
derived by first integrating the differential equation 15-38 between x = x ′ − ε and x = x ′ + ε.
Doing this leads to

lim
ε→0

{∫ x ′+ε

x ′−ε

d

dx

[
p(x)

dG(x , x ′)
dx

]
dx +

∫ x ′+ε

x ′−ε

[−q(x) + λr(x)
]

G(x , x ′)dx

}

=
∫ x ′+ε

x ′−ε

δ(x − x ′)dx

lim
ε→0

{
p(x)

dG(x , x ′)
dx

∣∣∣∣x ′+ε

x ′−ε

+
∫ x ′+ε

x ′−ε

[−q(x) + λr(x)
]

G(x , x ′)dx

}
= 1 (15-39)

Since q(x), r(x), and G(x , x ′) are continuous at x = x ′, then

lim
ε→0

∫ x ′+ε

x ′−ε

[−q(x) + λr(x)]G(x , x ′)dx = 0 (15-40)

Using (15-40) reduces (15-39) to

lim
ε→0

{
p(x)

[
dG(x ′ + ε, x ′)

dx
− dG(x ′ − ε, x ′)

dx

]}
= 1

p(x)

[
dG(x ′

+, x ′)
dx

− dG(x ′
−, x ′)

dx

]
= 1 (15-41)

or
dG(x ′

+, x ′)
dx

− dG(x ′
−, x ′)

dx
= 1

p(x)
(15-41a)

which proves the discontinuity of the derivative of G(x , x ′) at x = x ′.
The Green’s function must satisfy the differential equation 15-38a, the five general properties

listed previously, and the appropriate boundary conditions. We propose to construct the Green’s
function solution in two parts: one that is valid for a ≤ x ≤ x ′ and the other for x ′ ≤ x ≤ b where
a and b are the limits of the region of interest. For the homogeneous equation 15-33, valid at all
points except x = x ′:

1. Let y1(x) represent a nontrivial solution of the homogeneous differential equation 15-33 in
the interval a ≤ x < x ′ satisfying the boundary conditions at x = a . Since both y1(x) and
G(x , x ′) satisfy the same differential equation in the interval a ≤ x < x ′, they are related
to each other by a constant, that is,

G(x , x ′) = A1y1(x), a ≤ x < x ′ (15-42a)
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2. Let y2(x) represent a nontrivial solution of the homogeneous differential equation of 15-33
in the interval x ′ < x ≤ b satisfying the boundary conditions at x = b. Since both y2(x) and
G(x , x ′) satisfy the same differential equation in the interval x ′ < x ≤ b, they are related
to each other by a constant, that is

G(x , x ′) = A2y2(x), x ′ < x ≤ b (15-42b)

Since one of the general properties of the Green’s function is that it must be continuous at
x = x ′, then using (15-42a) and (15-42b)

A1y1(x
′) = A2y2(x

′) ⇒ −A1y1(x
′) + A2y2(x

′) = 0 (15-43a)

Also one of the properties of the derivative of the Green’s function is that it must be discontinuous
at x = x ′ by an amount of 1/p(x ′). Thus applying (15-42a) and (15-42b) into (15-41a) leads to

−A1y ′
1(x

′) + A2y ′
2(x

′) = 1

p(x ′)
(15-43b)

Solving (15-43a) and (15-43b) simultaneously leads to

A1 = y2(x ′)
p(x ′)W (x ′)

(15-44a)

A2 = y1(x ′)
p(x ′)W (x ′)

(15-44b)

where W (x ′) is the Wronskian of y1 and y2 at x = x ′, defined as

W (x ′) ≡ y1(x
′)y ′

2(x
′) − y2(x

′)y ′
1(x

′) (15-44c)

Using (15-44a) through (15-44c), the closed form Green’s function of (15-42a) and (15-42b)
for the differential equation 15-33 or (15-38) can be written as

G(x , x ′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y2(x ′)

p(x ′)W (x ′)
y1(x), a ≤ x ≤ x ′

y1(x ′)
p(x ′)W (x ′)

y2(x), x ′ ≤ x ≤ b

(15-45a)

(15-45b)

where y1(x) and y2(x) are two independent solutions of the homogeneous form of the differential
equation 15-33 each satisfying, respectively, the boundary conditions at x = a and x = b.

The preceding recipe can be used to construct in closed form the Green’s function of a
differential equation of the form (15-33). It is convenient to use this procedure when the following
conditions are satisfied.

1. The solution to the homogeneous differential equation is known.
2. The Green’s function is desired in closed form, instead of an infinite series of orthonormal

functions, which will be shown in the next section.

If this procedure is used for the mechanics problem of (15-14a), Section 15.2.2, the same
answer [as given by (15-24a) and (15-24b)] will be obtained. In the next section we want to
present an alternate procedure for constructing the Green’s function. By this other method, the
Green’s function will be represented by an infinite series of orthonormal functions. Whether
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one form of the Green’s function is more suitable than the other will depend on the problem
in question. Remember, however, that the closed-form procedure just derived can only be used
provided the solution to the homogeneous differential equation is known.

Before we proceed, let us illustrate that the Sturm-Liouville operator L exhibits Hermitian (or
symmetrical ) properties [1]. These are very important, and they establish the relationships that
are used in the construction of the Green’s function.

Example 15-2

Show that the Sturm-Liouville operator L of (15-27a) or (15-33) through (15-33b) exhibits Hermitian
(symmetrical) properties. Assume that in the interval a ≤ x ≤ b any solution yi (x) to (15-33b) satisfies
the boundary conditions (where i = 1, 2, . . . , n)

α1yi (x = a) + α2
dyi (x = a)

dx
= α1yi (a) + α2y ′

i (a) = 0

β1yi (x = b) + β2
dyi (x = b)

dx
= β1yi (b) + β2y ′

i (b) = 0

Solution: Let us assume that y1(x) and y2(x) are two solutions to (15-33) through (15-33b) each
satisfying the boundary conditions. Then, according to (15-27a)

Ly1(x) = d

dx

[
p(x)

dy1(x)

dx

]
− q(x)y1(x)

Ly2(x) = d

dx

[
p(x)

dy2(x)

dx

]
− q(x)y2(x)

Multiplying the first by y2(x) and the second by y1(x), we can write each using a shorthand notation
as

y2Ly1 = y2(py ′
1)

′ − y2qy1

y1Ly2 = y1(py ′
2)

′ − y1qy2

where ′ indicates d/dx . Subtracting the two and integrating between a and b leads to∫ b

a
(y2Ly1 − y1Ly2) dx =

∫ b

a
[y2(py ′

1)
′ − y1(py ′

2)
′] dx

Since

(y2py ′
1)

′ = y2(py ′
1)

′ + y ′
2py ′

1

and

(y1py ′
2)

′ = y1(py ′
2)

′ + y ′
1py ′

2

then by subtracting the two,

(y2py ′
1)

′ − (y1py ′
2)

′ = y2(py ′
1)

′ − y1(py ′
2)

′

Thus, the integral reduces to∫ b

a
(y2Ly1 − y1Ly2) dx =

∫ b

a

[
(y2py ′

1)
′ − (y1py ′

2)
′] dx = [

p(y2y ′
1 − y1y ′

2)
]b

a

Each of the solutions, y1(x) and y2(x), satisfy the same boundary conditions that can be written as

α1y1(a) + α2y ′
1(a) = 0 ⇒ α1y1(α) = −α2y ′

1(a)
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β1y1(b) + β2y ′
1(b) = 0 ⇒ β1y1(b) = −β2y ′

1(b)

α1y2(a) + α2y ′
2(a) = 0 ⇒ α1y2(a) = −α2y ′

2(a)

β1y2(b) + β2y ′
2(b) = 0 ⇒ β1y2(b) = −β2y ′

2(b)

Dividing the first by the third and the second by the fourth, we can write that

y1(a)

y2(a)
= y ′

1(a)

y ′
2(a)

⇒ y1(a)y ′
2(a) = y2(a)y ′

1(a)

y1(b)

y2(b)
= y ′

1(b)

y ′
2(b)

⇒ y1(b)y ′
2(b) = y2(b)y ′

1(b)

Using these relations, it is apparent that the right side of the previous integral equation vanishes, so we
can write it as ∫ b

a
(y2Ly1 − y1Ly2) dx = [

p(y2y ′
1 − y1y ′

2)
]b

a = 0

or ∫ b

a
(y2Ly1) dx =

∫ b

a
(y1Ly2) dx

This illustrates that the operator L exhibits Hermitian (symmetrical) properties with respect to the
solutions y1(x) and y2(x).

15.3.2 Green’s Function in Series

The procedure outlined in the previous section can only be used to derive in closed form the
Green’s function for differential equations whose homogeneous form solution is known. Other-
wise, other techniques must be used. Even for equations whose homogeneous form solution is
known, the closed-form representation of the Green’s function may not be the most convenient
one. Therefore, an alternate representation may be attractive even for those cases.

An alternate form of the Green’s function is to represent it as a series of orthonormal functions.
The most appropriate orthonormal functions would be those that satisfy the boundary conditions.
To demonstrate the procedure, let us initially rederive the Green’s function of the mechanics
problem of Section 15.2.2 but this time represented as a series of orthonormal functions. We will
then generalize the method to (15-33) through (15-33b).

A. Vibrating String For the differential equation 15-14a, subject to the boundary conditions
(15-15), its Green’s function must satisfy (15-16) subject to the boundary conditions (15-16a)
and (15-16b). Since the Green’s function G(x , x ′) must vanish at x = 0 and �, it is most convenient
to represent G(x , x ′) as an infinite series of sin(nπx/�) orthonormal functions, that is

G(x , x ′) =
∞∑

n=1

an(x
′) sin

(nπ

�
x
)

(15-46)

where an(x ′) represent the amplitude expansion coefficients that will be a function of the position
x ′ of the excitation source.

Substituting (15-46) into (15-16), multiplying both sides by sin(mπx/�), and then integrating
in x from 0 to � leads to

−
∑(nπ

�

)2
an(x

′)
∫ �

0
sin

(nπ

�
x
)

sin
(mπ

�
x
)

dx = 1

T

∫ �

0
δ(x − x ′) sin

(mπ

�
x
)

dx (15-47)



Balanis c15.tex V2 - 11/22/2011 4:04 P.M. Page 899

STURM-LIOUVILLE PROBLEMS 899

Because the orthogonality conditions of sine functions state that

∫ �

0
sin

(
nπ

�
x

)
sin

(
mπ

�
x

)
dx =

⎧⎪⎨⎪⎩
�

2
m = n

0 m �= n

(15-48a)

(15-48b)

then (15-47) reduces to

−
(nπ

�

)2 �

2
an(x

′) = 1

T
sin

(nπ

�
x ′

)
(15-49)

i.e.,

an(x
′) = − 2�

π2T

1

n2
sin

(nπ

�
x ′

)
(15-49a)

Thus, the Green’s function (15-46) can be expressed, using (15-49a), as

G(x , x ′) = − 2�

π2T

∞∑
n=1

1

n2
sin

(nπ

�
x ′

)
sin

(nπ

�
x
)

(15-50)

This is an alternate form to (15-24a) and (15-24b), but one that leads to the same results, even
though its form looks quite different. The displacement u(x) subject to the load F (x), governed
by (15-14a), can now be written as

u(x) =
∫ �

0
F (x ′) G(x , x ′) dx ′ = − 2�

π2T

∞∑
n=1

1

n2
sin

(nπ

�
x
) ∫ �

0
F (x ′) sin

(nπ

�
x ′

)
dx ′

(15-51)

B. Sturm-Liouville Operator Let us now generalize the Green’s function series expansion
method of the vibrating string, as given by (15-50) and (15-51), to (15-33b) where L is a Sturm-
Liouville operator and λ is an arbitrary parameter to be determined by the nature and boundary
of the region of interest. We seek a solution to solve the differential equation 15-33b

[L + λr(x)]y(x) = f (x) (15-52)

in the interval a ≤ x ≤ b subject to the general boundary conditions

α1y(x)|x=a + α2
dy(x)

dx

∣∣∣∣
x=a

= α1y(a) + α2
dy(a)

dx
= 0 (15-52a)

β1y(x)|x=b + β2
dy(x)

dx

∣∣∣∣
x=b

= β1y(b) + β2
dy(b)

dx
= 0 (15-52b)

which are usually referred to as the mixed boundary conditions. In (15-52a) at least one of the
constants α1 or α2, if not both of them, are nonzero. The same is true for (15-52b). The Green’s
function G(x , x ′), if it exists, will satisfy the differential equation

[L + λr(x)]G(x , x ′) = δ(x − x ′) (15-53)
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subject to the boundary conditions

α1G(a , x ′) + α2
dG(a , x ′)

dx
= 0 (15-53a)

β1G(b, x ′) + β2
dG(b, x ′)

dx
= 0 (15-53b)

If {ψn(x)} represents a complete set of orthonormal eigenfunctions for the Sturm-Liouville
operator L, then it must satisfy the differential equation

[L + λnr(x)] ψn(x) = 0 (15-54)

subject to the same boundary conditions of (15-52a) or (15-52b) for the Green’s function (15-53),
i.e.,

α1ψn(a) + α2
dψn(a)

dx
= 0 (15-54a)

β1ψn(b) + β2
dψn(b)

dx
= 0 (15-54b)

The boundary conditions (15-54a) and (15-54b) of ψn(x) are also used to determine the eigenval-
ues λn . In the finite interval a ≤ x ≤ b the complete set of orthonormal eigenfunctions {ψn(x)},
and their amplitude coefficients, must satisfy the orthogonality condition of

∫ b

a
ψm(x)ψn(x)r(x) dx = δmn =

{
1 m = n

0 m �= n
(15-55)

where δmn is the Kronecker delta function.
If the Green’s function exists, it can be represented in series form in terms of the orthonormal

eigenfunctions {ψn(x)} as

G(x , x ′) =
∑

n

an(x
′)ψn(x) (15-56)

where an(x ′) are the amplitude coefficients. These can be obtained by multiplying both sides
of (15-56) by ψm(x)r(x), integrating from a to b, and then using (15-55). It can be shown that

an(x
′) =

∫ b

a
G(x , x ′)ψn(x)r(x) dx (15-56a)

Since G(x , x ′) satisfies (15-53) and ψn(x) satisfies (15-54), then we can rewrite each as

LG(x , x ′) = −λr(x)G(x , x ′) + δ(x − x ′) (15-57a)

Lψn(x) = −λnr(x)ψn(x , x ′) (15-57b)

Multiplying (15-57a) by ψn(x), (15-57b) by G(x , x ′), and then subtracting the two equations
leads to

ψn(x)LG(x , x ′) − G(x , x ′)Lψn(x) = −(λ − λn)G(x , x ′)ψn(x)r(x) + δ(x − x ′)ψn(x) (15-58)
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Integrating (15-58) between a and b, we can write that∫ b

a
[ψn(x)LG(x , x ′) − G(x , x ′)Lψn(x)] dx

= −(λ − λn)

∫ b

a
G(x , x ′)ψn(x)r(x) dx +

∫ b

a
δ(x − x ′)ψn(x) dx (15-59)

which by using (15-56a) reduces to∫ b

a
[ψn(x)LG(x , x ′) − G(x , x ′)Lψn(x)] dx = −(λ − λn)an(x

′) + ψn(x
′) (15-59a)

By the symmetrical (Hermitian) property of the operator L, as derived in Example 15-2, with
respect to the functions y1 = G(x , x ′) and y2 = ψn(x), the left side of (15-59) or (15-59a) van-
ishes. Therefore, (15-59) and (15-59a) reduce to

−(λ − λn)an(x
′) + ψn(x

′) = 0 (15-60)

and therefore,

an(x
′) = ψn(x ′)

λ − λn
, where λ �= λn (15-60a)

Thus, the series form of the Green’s function (15-56) can ultimately be expressed as

G(x , x ′) =
∑

n

ψn(x ′)ψn(x)

(λ − λn)
(15-61)

where {ψn(z )} represents a complete set of orthonormal eigenfunctions for the Sturm-Liouville
operator L, which satisfies the differential equation 15-54 subject to the boundary conditions
(15-54a) and (15-54b). This is also referred to as the bilinear formula, and it represents, aside
from (15-45a) and (15-45b) , the second form that can be used to derive the Green’s function for
the differential equation 15-33 or 15-33b as a series solution in the finite interval a ≤ x ≤ b. It
should be noted that at λ = λn the Green’s function of (15-61) possesses singularities. Usually,
these singularities are simple poles although in some cases the λn ’s are branch points whose
branch cuts represent a continuous spectrum of eigenvalues. In those cases the Green’s function
may involve a summation, for the discrete spectrum of eigenvalues, and an integral, for the
continuous spectrum of eigenvalues.

Example 15-3

A very common differential equation in solutions of transmission-line and antenna problems (such as
metallic waveguides, microstrip antennas, etc.) that exhibit rectangular configurations is

d2ϕ(x)

dx 2
+ β2ϕ(x) = f (x)

subject to the boundary conditions
ϕ(0) = ϕ(�) = 0

where β2 = ω2με. Derive in closed and series forms the Green’s functions for the given equation.
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Solution: For the given equation, the Green’s function must satisfy the differential equation

d2G(x , x ′)
dx 2

+ β2G(x , x ′) = δ(x − x ′)

subject to the boundary conditions

G(0) = G(�) = 0

The differential equation is of the Sturm-Liouville form (15-33) with

p(x) = 1

q(x) = 0

r(x) = 1

λ = β2

y(x) = ϕ(x)

L = d2

dx 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇒ d2ϕ

dx 2
+ β2ϕ = f (x)

A. Closed-Form Solution: This form of the solution will be obtained using the recipe of (15-45a)
and (15-45b) along with (15-44c). The homogeneous differential equation for ϕ(x) reduces to

d2ϕ

dx 2
+ β2ϕ = 0

Two independent solutions, one φ1(x) valid in the interval 0 ≤ x ≤ x ′ and that vanishes at x = 0, and
the other φ2(x) valid in the interval x ′ ≤ x ≤ � and that vanishes at x = �, take the form

φ1(x) = sin(βx)

φ2(x) = sin[β(� − x)]

According to (15-44c), the Wronskian can be written as

W (x ′) = −β{sin(βx ′) cos[β(� − x ′)] + sin[β(� − x ′)] cos(βx ′)}

W (x ′) = −β sin(βx ′ + β� − βx ′) = −β sin(β�)

Thus, the Green’s function in closed form can be expressed, using (15-45a) and (15-45b), as

G(x , x ′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− sin[β(� − x ′)]

β sin(β�)
sin(βx), 0 ≤ x ≤ x ′

− sin(βx ′)
β sin(β�)

sin[β(� − x)], x ′ ≤ x ≤ �

This form of the Green’s function indicates that it possesses singularities (poles) when

β� = βr� = nπ ⇒ βr = ωr
√

με = 2π fr
√

με = nπ

�

i.e.,

fr = n

2�
√

με
n = 1, 2, 3, . . .
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B. Series-Form Solution: This form of the solution will be obtained using (15-61). The complete set of
eigenfunctions {ψn(x)} must satisfy the differential equation 15-54, or

d2ψn(x)

dx 2
+ β2

nψn(x) = 0

subject to the boundary conditions
ψn(0) = ψn(�) = 0

The most appropriate solution of ψn(x) is to represent it in terms of standing wave eigenfunctions
which in a rectangular coordinate system are sine and cosine functions, as discussed in Chapters 3 and
8, Sections 3.4.1 and 8.2.1.

Thus, according to (3-28b) and (8-4a), we can write that

ψn(x) = A cos(βn x) + B sin(βn x)

The allowable eigenvalues of βn are found by applying the boundary conditions. Since ψn(0) = 0, then

ψn(0) = A + B(0) = 0 ⇒ A = 0

Also since ψn(�) = 0, then

ψn(�) = B sin(βn�) = 0 ⇒ βn� = sin−1(0) = nπ

i.e.,
βn = nπ

�
, n = 1, 2, 3, . . . (for nontrivial solutions)

Thus,
ψn(x) = B sin(βn x) = B sin

(nπ

�
x
)

The amplitude constant B is such that (15-55) is satisfied. Therefore,

B2
∫ �

0
sin2

(nπ

�
x
)

dx = 1

B2

2

∫ �

0

[
1 − cos

(
2nπ

�
x

)]
dx = B2

(
�

2

)
= 1 ⇒ B =

√
2

�

Thus, the complete set of the orthonormal eigenfunctions of {ψn(x)} is represented by

ψn(x) =
√

2

�
sin

(nπ

�
x
)

, n = 1, 2, 3, . . .

with

λ = β2 = ω2με

λn = β2
n =

(nπ

�

)2
, n = 1, 2, 3, . . .

In series-form, the Green’s function (15-61) can then be written as

G(x , x ′) = 2

�

∞∑
n=1

sin
(nπ

�
x ′

)
sin

(nπ

�
x
)

β2 −
(nπ

�

)2



Balanis c15.tex V2 - 11/22/2011 4:04 P.M. Page 904

904 GREEN’S FUNCTIONS

which yields the same results as the closed-form solution of part A even though it looks quite different
analytically. It is apparent that the Green’s function is symmetrical. Also it possesses a singularity, and
it fails to exist when

β = βr = ωr
√

με = 2π fr
√

με = nπ

�

i.e.,

fr = nπ/�

2π
√

με
= n

2�
√

με

which is identical to the condition obtained by the closed-form solution in part A.
This is in accordance with (15-34), which states that the Green’s function (15-33b) exists for all values

of λ, in this case λ = β2 = ω2με, except those that are eigenvalues of the homogeneous equation 15-34.
For our case, (15-34) reduces to

d2ϕ(x)

dx 2
+ β2ϕ(x) = 0

whose nontrivial solution takes the form

ϕ(x) = C sin
(nπ

�
x
)

with eigenvalues β = nπ/�, n = 1, 2, 3, . . ..
It should be noted that when

β = βr = ωr
√

με = 2π fr
√

με = nπ

�
= fr = n

2�
√

με

the Green’s function singularity consists of simple poles. At those frequencies the external frequencies of
the source match the natural (characteristic) frequencies of the system, in this instance the transmission
line. This is referred to as resonance. When this occurs, the field of the mode whose natural frequency
matches the source excitation frequency (resonance condition) will continuously increase without any
bounds, in the limit reaching values of infinity. For those situations, no steady-state solutions can exist.
One way to contain the field amplitude is to introduce damping.

15.3.3 Green’s Function in Integral Form

In the previous two sections we outlined procedures that can be used to derive the Green’s
function in closed and series forms. The bilinear formula (15-61) of Section 15.3.2 is used to
derive the Green’s function (15-33) through (15-33b) when the eigenvalue spectrum, represented
by the λn ’s in (15-61), is discrete. However, often the eigenvalue spectrum is continuous, and it
can be represented in (15-61) by an integral. In the limit, the infinite summation of the bilinear
formula reduces to an integral. This form is usually desirable when at least one of the boundary
conditions is at infinity. This would be true when a source placed at the origin is radiating in an
unbounded medium.

To demonstrate the derivation, let us construct the Green’s function of the one-dimensional
scalar Helmholtz equation

d2ϕ

dx 2
+ β2

0ϕ = f (x) (15-62)

subject to the boundary (radiation) conditions of

ϕ(+∞) = ϕ(−∞) = 0 (15-62a)

The Sommerfield radiation condition [19] could also be used instead of (15-62a).
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The Green’s function G(x , x ′) will satisfy the differential equation

d2G(x , x ′)
dx 2

+ β2
0 G(x , x ′) = δ(x − x ′) (15-63)

subject to the boundary conditions

G(+∞) = G(−∞) = 0 (15-63a)

The complete set of orthonormal eigenfunctions, represented here by {ψ(x)}, must satisfy the
differential equation

d2ψ

dx 2
= −λψ = −β2ψ (15-64)

where λ = +β2, subject to the boundary conditions of

ψ(+∞) = ψ(−∞) = 0 (15-64a)

Since the source is radiating in an unbounded medium, represented here by the boundary (radi-
ation) conditions, the most appropriate eigenfunctions are those representing traveling waves,
instead of standing waves. Thus, a solution for (15-64), subject to (15-64a), is

ψ(x , x ′) = C (x ′)e∓jβx
−for x > x ′

+for x < x ′ (15-65)

where for an ejωt time convention the upper sign (minus) represents waves traveling in the
+x direction, satisfying the boundary condition at x = +∞, and the lower sign (plus) represents
waves traveling in the −x direction, satisfying the boundary condition at x = −∞. Let us assume
that the waves of interest here are those traveling in the + x direction, represented in (15-65) by
the upper sign, i.e.,

ψ(x , x ′) = C (x ′)e−jβx (15-65a)

which represents a plane wave of amplitude C (x ′).
The Green’s function can be represented by a continuous spectrum of plane waves or by a

Fourier integral

G(x , x ′) = 1√
2π

∫ +∞

−∞
g(β, x ′)e−jβx dβ (15-66)

whose Fourier transform pair is

g(β, x ′) = 1√
2π

∫ +∞

−∞
G(x , x ′)e+jβx dx (15-66a)

In (15-66) G(x , x ′) is represented by a continuous spectrum of plane waves each of the form
of (15-65a) and each with an amplitude coefficient of g(β, x ′). Using (15-66a), we can write the
transform δ̃(β, x ′) of the Dirac delta function δ(x − x ′) as

δ̃(β, x ′) = 1√
2π

∫ +∞

−∞
δ(x , x ′)e+jβx dx = 1√

2π
e+jβx ′

(15-67)
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Thus, according to (15-66), δ(x , x ′) can then be written using (15-67) as

δ(x , x ′) = 1√
2π

∫ +∞

−∞
δ̃(β, x ′)e−jβx dβ = 1√

2π

∫ +∞

−∞

(
1√
2π

e+jβx ′
)

e−jβx dβ (15-67a)

The amplitude coefficients g(x , x ′) in (15-66) can be determined by substituting (15-66)
and (15-67a) into (15-63). Then it can be shown that

1√
2π

∫ +∞

−∞

(−β2 + β2
0

)
g(β, x ′)e−jβx dβ = 1√

2π

∫ +∞

−∞

[
1√
2π

e+jβx ′
]

e−jβx dβ

1√
2π

∫ +∞

−∞

{(
β2

0 − β2) g(β, x ′) − 1√
2π

e+jβx ′
}

e−jβx dβ = 0 (15-68)

which is satisfied provided

g(β, x ′) = 1√
2π

ejβx ′

β2
0 − β2

(15-68a)

Thus, the Green’s function of (15-66) reduces to

G(x , x ′) = 1

2π

∫ +∞

−∞

e−jβ(x−x ′)

β2
0 − β2

dβ (15-69)

which is a generalization of the bilinear formula (15-61).
The integrand in (15-69) has poles at β = ±β0 and can be evaluated using residue calculus

[5]. In the evaluation of (15-69), the contour along a circular arc CR of radius R → ∞ with
center at the origin should close in the lower half plane for x > x ′, as shown in Figure 15-3a , and
should close in the upper half plane for x < x ′, as shown in Figure 15-3b. This is necessary so
that the contribution of the integral along the circular arc CR of radius R → ∞ is equal to zero.
In general then, by residue calculus, the integral of (15-69) can be evaluated using the geometry
of Figure 15-3, and it can be written as

G(x , x ′) = 1

2π

∫ +∞

−∞

e−jβ(x−x ′)

(β2
0 − β2)

dβ

= ∓2π j [residue (β = ±β0)] − 1

2π

∫
CR

e−jβ(x−x ′)

β2
0 − β2

dβ

G(x , x ′) = ∓2π j [residue (β = ±β0)]
upper signs for x > x ′
lower signs for x < x ′ (15-70)

since the contribution along CR is zero.
It is apparent that the Green’s function of (15-69) possesses pole singularities at β = +β0 and

β = −β0. If these were allowed to contribute, then the exponentials in the integral of (15-69) for
an ejωt time convention would be represented by either

e−jβ0(x−x ′)ejωt = e+jβ0x ′
ej (−β0x+ωt) for β = +β0 (15-70a)

or

e+jβ0(x−x ′)ejωt = e−jβ0x ′
ej (β0x+ωt) for β = −β0 (15-70b)
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Thus, (15-70a) represents waves traveling in the +x direction and (15-70b) represents waves
traveling in the −x direction. In the contour evaluation of (15-69), the contour should do the
following:

1. For x > x ′, pass the pole at β = −β0 from below, the one at β = +β0 from above, and
then close down so that only the latter contributes, as shown in Figure 15-3a .

2. For x < x ′, pass the pole β = −β0 from below, the one at β = +β0 from above, and then
close up so that only the former contributes, as shown in Figure 15-3b.

Sometimes an integral Green’s function can be used to represent both discrete and continuous
spectra whereby part of the integral would represent the discrete spectrum and the remainder
would represent the continuous spectrum. Typically, the discrete spectrum would represent a
finite number of propagating modes and an infinite number of evanescent modes in the closed
regions, and the continuous spectrum would represent radiation in open regions.

Im

Im

Re

Re

××

××

R

R

(a)

(b)

CR

CR

+b0

+b0

−b0

−b0

Figure 15-3 Residue calculus for contour integration (a) x > x ′. (b) x < x ′.



Balanis c15.tex V2 - 11/22/2011 4:04 P.M. Page 908

908 GREEN’S FUNCTIONS

15.4 TWO-DIMENSIONAL GREEN’S FUNCTION IN RECTANGULAR COORDINATES

Until now we have considered the construction of Green’s functions for problems involving a
single space variable. Let us now consider problems involving two space variables, both for static
and time-varying fields.

15.4.1 Static Fields

A two-dimensional partial differential equation often encountered in static electromagnetics is
Poisson’s equation

∂2V

∂x 2
+ ∂2V

∂y2
= f (x , y) = − 1

ε0
q(x , y) (15-71)

subject to the boundary conditions

V (x = 0, 0 ≤ y ≤ b) = V (x = a , 0 ≤ y ≤ b) = 0 (15-71a)

V (0 ≤ x ≤ a , y = 0) = V (0 ≤ x ≤ a , y = b) = 0 (15-71b)

In (15-71), V can represent the electric potential distribution on a rectangular structure of dimen-
sions a along the x direction and b along the y direction and f (x , y) = q(x , y) can represent
the electric charge distribution along the structure. The objective here is to obtain the Green’s
function and ultimately the potential distribution. The Green’s function G(x , y; x ′, y ′) will satisfy
the partial differential equation

∂2G

∂x 2
+ ∂2G

∂y2
= δ(x − x ′)δ(y − y ′) (15-72)

subject to the boundary conditions

G(x = 0, 0 ≤ y ≤ b) = G(x = a , 0 ≤ y ≤ b) = 0 (15-72a)

G(0 ≤ x ≤ a , y = 0) = G(0 ≤ x ≤ a , y = b) = 0 (15-72b)

and the potential distribution V (x , y) will be represented by

V (x , y) = − 1

ε0

∫ b

0

∫ a

0
q(x ′, y ′)G(x , y; x ′, y ′) dx ′dy ′ (15-73)

We will derive the Green’s function here in two forms.

1. Closed form , similar to that of Section 15.3.1 but utilizing (15-44c) and (15-45a)
through (15-45b) for a two space variable problem.

2. Series form , similar to that of Section 15.3.2 but using basically two-dimensional expres-
sions for (15-54), (15-55), and (15-61).

A. Closed Form The Green’s function of (15-72) for the closed-form solution can be for-
mulated by choosing functions that initially satisfy the boundary conditions either along the x
direction, at x = 0 and x = a , or along the y direction, at y = 0 and y = b. Let us begin here



Balanis c15.tex V2 - 11/22/2011 4:04 P.M. Page 909

TWO-DIMENSIONAL GREEN’S FUNCTION IN RECTANGULAR COORDINATES 909

the development of the Green’s function of (15-72) by choosing functions that initially satisfy
the boundary conditions along the x direction. This is accomplished by initially representing the
Green’s function by a normalized single function Fourier series of sine functions that satisfy the
boundary conditions at x = 0 and x = a , that is

G(x , y; x ′, y ′) =
∞∑

m=1

gm(y; x ′, y ′) sin
(mπ

a
x
)

(15-74)

The coefficients gm(y; x ′, y ′) of the Fourier series will be determined by first substitut-
ing (15-74) into (15-72). This leads to

∞∑
m=1,2,...

[
−

(mπ

a

)2
gm(y; x ′, y ′) sin

(mπ

a
x
)

+ sin
(mπ

a
x
) d2gm(y; x ′, y ′)

dy2

]
= δ(x − x ′)δ(y − y ′) (15-75)

Multiplying both sides of (15-75) by sin(nπx/a), integrating with respect to x from 0 to a , and
using (15-48a) and (15-48b), we can write that

d2gm(y; x ′, y ′)
dy2

−
(mπ

a

)2
gm(y; x ′, y ′) = 2

a
sin

(mπ

a
x ′

)
δ(y − y ′) (15-76)

Equation 15-76 is recognized as a one-dimensional differential equation for gm(y; x ′, y ′), which
can be solved using the recipe of Section 15.3.1 as provided by (15-44c) and (15-45a) through
(15-45b).

For the homogeneous form of (15-76), or

d2gm(y; x ′, y ′)
dy2

−
(mπ

a

)2
gm(y; x ′, y ′) = 0 (15-77)

two solutions that satisfy, respectively, the boundary conditions at y = 0 and y = b are

g (1)
m (y; x ′, y ′) = Am(x ′, y ′) sinh

(mπ

a
y
)

for y ≤ y ′ (15-78a)

g (2)
m (y; x ′, y ′) = Bm(x ′, y ′) sinh

[mπ

a
(b − y)

]
for y ≥ y ′ (15-78b)

The hyperbolic functions were chosen as solutions to (15-77), instead of real exponentials, so
that (15-78a) satisfies the boundary condition of (15-71b) at y = 0 and (15-78b) satisfies the
boundary condition of (15-71b) at y = b.

Using (15-44c) where y1 = g (1)
m and y2 = g (2)

m , we can write the Wronskian as

W (y; x ′, y ′) = −
(mπ

a

)
AmBm

{
sinh

(mπ

a
y ′
)

cosh
[mπ

a
(b − y ′)

]
+ cosh

(mπ

a
y ′
)

sinh
[mπ

a
(b − y ′)

]}
W (y; x ′, y ′) = −

(mπ

a

)
AmBm sinh

(
mπb

a

)
(15-79)
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By comparing (15-76) with the form of (15-33), it is apparent that

p(y) = 1

q(y) = 0

r(y) = 1

λ = −
(mπ

a

)2
(15-80)

Using (15-78a) through (15-80), the solution for gm(y; x ′, y ′) of (15-76) can be written, by
referring to (15-45a) and (15-45b), as

gm(y; x ′, y ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2

mπ
sin

(mπ

a
x ′

) sinh
[mπ

a
(b − y ′)

]
sinh

(
mπb

a

) sinh
(mπ

a
y
)

,

0 ≤ y ≤ y ′

− 2

mπ
sin

(mπ

a
x ′

) sinh
(mπ

a
y ′
)

sinh

(
mπb

a

) sinh
[mπ

a
(b − y)

]
,

y ′ ≤ y ≤ b

(15-81a)

(15-81b)

Thus, the Green’s function of (15-74) can be written as

G(x , y; x ′, y ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2

π

∞∑
m=1

sin
(mπ

a
x ′

)
sinh

[mπ

a
(b − y ′)

]
m sinh

(
mπb

a

)
× sin

(mπ

a
x
)

sinh
(mπ

a
y
)

for 0 ≤ x ≤ a , 0 ≤ y ≤ y ′

− 2

π

∞∑
m=1

sin
(mπ

a
x ′

)
sinh

(mπ

a
y ′
)

m sinh

(
mπb

a

)
× sin

(mπ

a
x
)

sinh
[mπ

a
(b − y)

]
for 0 ≤ x ≤ a , y ′ ≤ y ≤ b

(15-82a)

(15-82b)

which is a series of sine functions in x ′ and x , and hyperbolic sine functions in y ′ and y .

If the Green’s function solution were developed by selecting and writing initially (15-74) by
functions that satisfy the boundary conditions at y = 0 and y = b, then it can be shown that the
Green’s function can be written as a series of hyperbolic sine functions in x ′ and x , and ordinary
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sine functions in y ′ and y , or

G(x , y; x ′, y ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2

π

∞∑
n=1,2,...

sinh
[nπ

b
(a − x ′)

]
sin

(nπ

b
y ′
)

n sinh
(nπa

b

)
× sinh

(nπ

b
x
)

sin
(nπ

b
y
)

for 0 ≤ x ≤ x ′, 0 ≤ y ≤ b

− 2

π

∞∑
n=1,2,...

sinh
(nπ

b
x ′

)
sin

(nπ

b
y ′
)

n sinh
(nπa

b

)
× sinh

[nπ

b
(a − x)

]
sin

(nπ

b
y
)

for x ′ ≤ x ≤ a , 0 ≤ y ≤ b

(15-83a)

(15-83b)

The derivation of this is left to the reader as an end-of-chapter exercise.

Example 15-4

Electric charge is uniformly distributed along an infinitely long conducting wire positioned at ρ =
ρ ′, φ = φ′ and circumscribed by a grounded (V = 0) electric conducting circular cylinder of radius a
and infinite length, as shown in Figure 15-4. Find series-form expressions for the Green’s function and
potential distribution. Assume free space within the cylinder.

a

a

z

z r
r′

f′

f

y y

xx

(a) (b)

Figure 15-4 Long wire within a grounded circular conducting cylinder. (a) Wire and grounded cylin-
der. (b) Top view.
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Solution: The potential distribution V (p, φ, z ) must satisfy Poisson’s equation

∇2V (ρ, φ, z ) = − 1

ε0
q(ρ, φ, z )

subject to the boundary condition

V (ρ = a , 0 ≤ φ ≤ 2π , z ) = 0

Since the wire is infinitely long, the solutions for the potential will not be functions of z . Thus, an
expanded form of Poisson’s equation reduces to

1

ρ

∂

∂ρ

(
ρ

∂V

∂ρ

)
+ 1

ρ2

∂2V

∂φ2
= − 1

ε0
q(ρ, φ)

The Green’s function G(ρ, φ; ρ ′, φ′) must satisfy the partial differential equation

∇2G(ρ, φ; ρ ′, φ′) = δ(ρ − ρ ′)

which in expanded form reduces for this problem to

1

ρ

∂

∂ρ

(
ρ

∂G

∂ρ

)
+ 1

ρ2

∂2G

∂φ2
= δ(ρ − ρ ′)

For the series solution of the Green’s function, the complete set of orthonormal eigenfunctions
{ψmn(ρ, φ)} can be obtained by considering the homogeneous form of Poisson’s equation, or

1

ρ

∂

∂ρ

(
ρ

∂ψmn

∂ρ

)
+ 1

ρ2

∂2ψmn

∂φ2
= −λmnψmn

subject to the boundary condition

ψmn(ρ = a , 0 ≤ φ ≤ 2π , z ) = 0

Using the separation-of-variables method of Section 3.4.2, we can express ψmn(ρ, φ) by

ψmn(ρ, φ) = f (ρ)g(φ)

Following the method outlined in Section 3.4.2, the functions f (ρ) and g(φ) satisfy, respectively, the
differential equations (3-66a) and (3-66b), i.e.,

ρ2 d2f

dρ2
+ p

df

dρ
+ (λmnρ2 − m2)f = 0 and

d2g

dφ2
= −m2g

whose appropriate solutions for this problem, according to (3-67a) and (3-68b), are, respectively,

f = AJm

(√
λmnρ

)
+ BYm

(√
λmnρ

)
g = C cos(mφ) + D sin(mφ)

Since ψmn must be periodic in φ, then m must take integer values, m = 0, 1, 2, . . . , and both the
cos(mφ) and sin(mφ) variations (modes) exist simultaneously; see Chapter 9. Also since ψmn must be
finite everywhere, including ρ = 0, then B = 0. Thus, the eigenfunctions are reduced to either of two
forms, that is,

ψ(1)
mn = Amn Jm

(√
λmnρ

)
cos(mφ)
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or
ψ(2)

mn = Amn Jm

(√
λmnρ

)
sin(mφ)

The eigenvalues λmn are found by applying the boundary condition at ρ = a , that is

ψmn(ρ = a , 0 ≤ φ ≤ 2π) = Amn Jm

(√
λmn a

)
= 0

or √
λmn a = χmn ⇒ λmn =

(χmn

a

)2

where χmn represents the n zeroes of the Bessel function Jm of the first kind of order m . These are
listed in Table 9-2.

The complete set of orthonormal eigenfunctions must be normalized so that∫ 2π

0

∫ a

0
ψ(1)

mn (ρ, φ)ψ(1)
mp (ρ, φ)ρ dρ dφ =

∫ 2π

0

∫ a

0
ψ(2)

mn (ρ, φ)ψ(2)
mp (ρ, φ)ρ dρ dφ = 1

Thus,

A2
mn

∫ 2π

0

∫ a

0
ρJm

(√
λmnρ

)
Jm

(√
λmpρ

)
cos2(mφ) dρ dφ = 1

or

A2
mn

∫ 2π

0

∫ a

0
ρJm

(√
λmnρ

)
Jm

(√
λmpρ

)
sin2(mφ) dρ dφ = 1

Since ∫ 2π

0
cos2(mφ) dφ =

{
2π m = 0

π m �= 0∫ 2π

0
sin2(mφ) dφ =

{
0 m = 0

π m �= 0

and ∫ a

0
ρJm

(√
λmnρ

)
Jm

(√
λmpρ

)
dρ =

⎧⎨⎩
a2

2

[
J ′

m

(√
λmn a

)]2
p = n

0 p �= n

then

A2
mnεm

πa2

2

[
J ′

m

(√
λmpa

)]2 = 1

hence,

Amn =
√

2

εmπ

1

aJ ′
m

(√
λmn a

)
where

εm =
{

2 m = 0

1 m �= 0

Thus, the complete set of orthonormal eigenfunctions can be written as

ψ(1)
mn =

√
2εm

π

1

aJ ′
m

(√
λmn a

)Jm

(√
λmpρ

)
cos(mφ)
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or

ψ(2)
mn =

√
2εm

π

1

aJ ′
m

(√
λmn a

)Jm

(√
λmpρ

)
sin(mφ)

The Green’s function can now be written using the bilinear formula (15-94) with λ = 0 as

G(ρ, φ; ρ ′, φ′) = − 2

π
εm

1

a2
[
J ′

m

(√
λmn a

)]2

∞∑
m=0

∞∑
n=1

Jm
(√

λmnρ ′) Jm
(√

λmnρ
)

λmn

× [
cos(mφ) cos(mφ′) + sin(mφ) sin(mφ′)

]
G(ρ, φ; ρ ′, φ′) = − 2

π
εm

1

a2
[
J ′

m

(√
λmn a

)]2

∞∑
m=0

∞∑
n=1

Jm
(√

λmnρ ′) Jm
(√

λmnρ
)

λmn

× cos
[
m(φ − φ′)

]
where

λmn =
(χmn

a

)2

Both the cos(mφ) and sin(mφ) field variations were included in the final expression for the Green’s
function.

Finally, the potential distribution V (ρ, z ) can be written as

V (ρ, φ) = − 1

ε0

∫ 2π

0

∫ a

0
q(ρ ′, φ′)G(ρ, φ; ρ ′, φ′)ρ ′dρ ′dφ′

where G(ρ, φ; ρ ′, φ′) is the Green’s function and q(ρ ′, φ′) is the linear charge distribution.

The Green’s function of Example 15-4 can also be developed in closed form. This is done
in Section 15.6.2 for a time-harmonic electric line source inside a circular cylinder. The statics
solution is obtained by letting β0 = 0.

B. Series Form For the series solution of the Green’s function of (15-72), the complete set of
orthonormal eigenfunctions {ψmn(x , y)} can be obtained by considering the homogeneous form
of (15-71), i.e.,

∂2ψmn

∂x 2
+ ∂2ψmn

∂y2
= −λmnψmn (15-84)

subject to the boundary conditions

ψmn(x = 0, 0 ≤ y ≤ b) = ψmn(x = a , 0 ≤ y ≤ b) = 0 (15-84a)

ψmn(0 ≤ x ≤ a , y = 0) = ψmn(0 ≤ x ≤ a , y = b) = 0 (15-84b)

Using the method of separation of variables of Section 3.4.1, we can represent ψmn(x , y) by

ψmn(x , y) = f (x)g(y) (15-85)

Substituting (15-85) into (15-84) reduces to
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1

f

d2f

dx 2
= − p2 ⇒ d2f

dx 2
= −p2f ⇒ f (x) = A cos(px) + B sin(px) (15-85a)

1

g

d2g

dy2
= − q2 ⇒ d2g

dy2
= −q2g ⇒ g(y) = C cos(qy) + D sin(qy) (15-85b)

where the system eigenvalues are those of

λmn = p2 + q2 (15-85c)

Thus, (15-85) can be represented by

ψmn(x , y) = [
A cos(px) + B sin(px)

] [
C cos(qy) + D sin(qy)

]
(15-86)

Applying the boundary conditions of (15-84a) on (15-86) leads to

ψmn(x = 0, 0 ≤ y ≤ b) = [A(1)+B(0)]
[
C cos(qy) + D sin(qy)

] = 0 ⇒ A = 0 (15-87a)

ψmn(x = a , 0 ≤ y ≤ b) = B sin(pa)
[
C cos(qy) + D sin(qy)

] = 0 ⇒ sin(pa) = 0

pa = sin−1(0) = mπ ⇒

p = mπ

a
, m = 1, 2, 3, . . . (15-87b)

Similarly, applying the boundary conditions of (15-84b) into (15-86), using (15-87a) and (15-87b),
leads to

ψmn(0 ≤ x ≤ a , y = 0) = B sin
(

mπ
a x

)
[C (1) + D(0)] = 0 ⇒ C = 0 (15-88a)

ψmn(0 ≤ x ≤ a , y = b) = BD sin
(

mπ
a x

)
sin(qb)

] = 0 ⇒ sin(qb) = 0

qb = sin−1(0) = nπ ⇒

q = nπ

b
, n = 1, 2, 3, . . . (15-88b)

Thus, the eigenfunctions of (15-85) reduce to

ψmn(x , y) = BD sin
(mπ

a
x
)

sin
(nπ

b
y
)

= Bmn sin
(mπ

a
x
)

sin
(nπ

b
y
)

(15-89)

where the eigenvalues of (15-85c) are equal to

λmn = (p2 + q2) =
(mπ

a

)2
+

(nπ

b

)2
,

m = 1, 2, 3, . . .

n = 1, 2, 3, . . .
(15-89a)
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To form the Green’s function, the eigenfunctions of (15-89) must be normalized so that

∫ b

0

∫ a

0
ψmn(x , y)ψrs(x , y) dx dy =

{
1 m = r n = s

0 m �= r n �= s
(15-90)

Equation 15-90 is similar, and is an expanded form in two space variables, of (15-55). Substitut-
ing (15-89) into (15-90), we can write that

B2
mn

∫ b

0

∫ a

0
sin

(mπ

a
x
)

sin
(nπ

b
y
)

sin
( rπ

a
x
)

sin
( sπ

b
y
)

dx dy = 1 (15-91)

Using (15-48a) and (15-48b) reduces (15-91) to

B2
mn

(
ab

4

)
= 1 (15-92)

hence,

Bmn = 2√
ab

(15-92a)

Thus, (15-89) can be written as

ψmn(x , y) = 2√
ab

sin
(mπ

a
x
)

sin
(nπ

b
y
)

(15-93)

The Green’s function can be expressed as a double summation of two-dimensional eigenfunc-
tions,

G(x , y; x ′, y ′) =
∑

m

∑
n

ψmn(x ′, y ′)ψmn(x , y)

λ − λmn
(15-94)

Equation 15-94 is an expanded version in two space variables of the bilinear equation of (15-61).
Thus, we can write the Green’s function of (15-94), using (15-89a), (15-93), and λ = 0, as

G(x , y; x ′, y ′) = − 4

ab

∞∑
m=1

∞∑
n=1

sin
(

mπ
a x ′) sin

(
nπ
b y ′)(

mπ
a

)2 + (
nπ
b

)2 sin
(mπ

a
x
)

sin
(nπ

b
y
)

(15-95)

The electric potential of (15-73), due to the static electric charge density of q(x ′, y ′) can be
expressed as

V (x , y) = − 1

ε0

4

ab

∞∑
m=1

∞∑
n=1

sin
(

mπ
a x

)
sin

(
nπ
b y

)(
mπ
a

)2 + (
nπ
b

)2

×
∫ b

0

∫ a

0
q(x ′, y ′) sin

(mπ

a
x ′

)
sin

(nπ

b
y ′
)

dx ′ dy ′
(15-96)
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15.4.2 Time-Harmonic Fields

For time-harmonic fields, a popular partial differential equation is

∂2Ez

∂x 2
+ ∂2Ez

∂y2
+ β2Ez = f (x , y) = jωμJz (x , y) (15-97)

subject to the boundary conditions

Ez (x = 0, 0 ≤ y ≤ b) = Ez (x = a , 0 ≤ y ≤ b) = 0 (15-97a)

Ez (0 ≤ x ≤ a , y = 0) = Ez (0 ≤ x ≤ a , y = b) = 0 (15-97b)

In (15-97), Ez can represent the electric field component of a TMz field configuration (mode) with
no z variations inside a rectangular metallic cavity of dimensions a , b, c in the x , y , z directions,
respectively, as shown in Figure 15-5. The function f (x , y) = jωμJz can represent the normalized
electric current density component of the feed probe that is used to excite the fields within the
metallic cavity. The objective here is to obtain the Green’s function of the problem and ultimately
the electric field component represented in (15-97) by Ez (x , y).

The Green’s function G(x , y; x ′, y ′) will satisfy the partial differential equation

∂2G

∂x 2
+ ∂2G

∂y2
+ β2G = δ(x − x ′)δ(y − y ′) (15-98)

subject to the boundary conditions

G(x = 0, 0 ≤ y ≤ b) = G(x = a , 0 ≤ y ≤ b) = 0 (15-98a)

G(0 ≤ x ≤ a , y = 0) = G(0 ≤ x ≤ a , y = b) = 0 (15-98b)

and the electric field distribution Ez (x , y) will be represented by

Ez (x , y) = jωμ

∫ b

0

∫ a

0
Jz (x

′, y ′)G(x , y; x ′, y ′) dx ′dy ′ (15-99)

The Green’s function of (15-98) can be derived either in closed form, as was done in Section
15.4.1A for the statics problem, or in series form, as was done in Section 15.4.1B for the statics

y

x

c

a

b

z

Figure 15-5 Rectangular waveguide cavity geometry.
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problem. We will derive the Green’s function here by a series form. The closed form is left as
an end-of-chapter exercise for the reader.

For the solution of the Green’s function, the complete set of eigenfunctions {ψmn(x , y)} can
be obtained by considering the homogeneous form of (15-97),

∂2ψmn

∂x 2
+ ∂2ψmn

∂y2
+ β2

mnψmn = 0 (15-100)

subject to the boundary conditions

ψmn(x = 0, 0 ≤ y ≤ b) = ψmn(x = a , 0 ≤ y ≤ b) = 0 (15-100a)

ψmn(0 ≤ x ≤ a , y = 0) = ψmn(0 ≤ x ≤ a , y = b) = 0 (15-100b)

Using the separation of variables of Section 3.4.1, we can represent ψmn(x , y) by

ψmn(x , y) = f (x)g(y) (15-101)

Substituting (15-101) into (15-100) and applying the boundary conditions of (15-100a) and (15-
100b), it can be shown that ψmn(x , y) reduces to

ψmn(x , y) = Bmn sin(βx x) sin(βy y) = Bmn sin
(mπ

a
x
)

sin
(nπ

b
y
)

(15-102)

where

βx = mπ

a
, m = 1, 2, 3, . . . (15-102a)

βy = nπ

b
, n = 1, 2, 3, . . . (15-102b)

The eigenvalues of the system are equal to

λmn = β2
mn = (βx )

2 + (βy)
2 =

(mπ

a

)2
+

(nπ

b

)2
(15-103a)

and

λ = β2 (15-103b)

The eigenfunctions of (15-102) must satisfy an equation similar to (15-90) but over a volume
integral. That is∫ c

0

∫ b

0

∫ a

0
ψmn(x , y , z ) ψrs(x , y , z ) dx dy dz =

{
1, m = r n = s

0, m �= r n �= s
(15-104)

which leads to

Bmn = 2√
abc

(15-104a)

Thus,

ψmn(x , y) = 2√
abc

sin
(mπ

a
x
)

sin
(nπ

b
y
)

(15-105)
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The Green’s function is obtained using (15-94), (15-103a), (15-103b), and (15-105). Doing
this, we can write that

G(x , y; x ′, y ′) = 4

abc

∞∑
m=1

∞∑
n=1

sin
(mπ

a
x ′

)
sin

(nπ

b
y ′
)

β2 −
[(mπ

a

)2
+

(nπ

b

)2
]

× sin
(mπ

a
x
)

sin
(nπ

b
y
) (15-106)

and the electric field component of (15-99), due to the normalized electric current density repre-
sented by Jn(x ′, y ′), can be written as

Ez (x , y) = 4

abc

∞∑
m=1

∞∑
n=1

sin
(mπ

a
x
)

sin
(nπ

b
y
)

β2 −
[(mπ

a

)2
+

(nπ

b

)2
]

×
∫ b

0

∫ a

0
Jz (x

′, y ′) sin
(mπ

a
x ′

)
sin

(nπ

b
y ′
)

dx ′ dy ′

(15-107)

It is apparent that the Green’s function possesses a singularity, and it fails when

β = βr = ωr
√

με = 2π fr
√

με =
√(mπ

a

)2
+

(nπ

b

)2
(15-108)

i.e., when

fr = 1

2π
√

με

√(mπ

a

)2
+

(nπ

b

)2
(15-108a)

This is in accordance with (15-34), which states that the Green’s function of (15-33b) exists for
all values of λ (here λ = β2 = ω2με) except those that are eigenvalues λmn of the homogeneous
equation 15-34 [here λmn given by (15-103a)]. At those eigenvalues for which (15-106) and
(15-107) possess singularities (simple poles here), the frequencies of the excitation source match
the natural (characteristic) frequencies of the system. As explained in Section 1.3.2, this is referred
to as resonance, and the field will continuously increase without any bounds (in the limit reaching
infinity). For these cases, no steady-state solutions exist. One way to contain the field is to
introduce damping. In practice, for metallic cavities, damping is introduced by the losses due to
nonperfectly conducting walls.

15.5 GREEN’S IDENTITIES AND METHODS

Now that we have derived Green’s functions, both for single and two space variables in rectangular
coordinates for the general Sturm-Liouville self-adjoint operator L, let us generalize the procedure
for the development of the Green’s function for the three-dimensional scalar Helmholtz partial
differential equation

∇2ϕ(r) + β2ϕ(r) = f (r) (15-109)
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subject to the generalized homogeneous boundary conditions

α1ϕ(rs) + α2
∂ϕ(rs)

∂ns
= 0, s = 1, 2, . . . , N (15-109a)

where rs is on S and n̂ is an outward directed unit vector. In electromagnetics these are referred
to not only as the mixed boundary conditions [7] but also as the impedance boundary conditions.
The Green’s function G(r, r′) of (15-109) must satisfy the partial differential equation

∇2G(r, r′) + β2G(r, r′) = δ(r − r′) (15-110)

subject to the generalized homogeneous boundary conditions

α1G(rs , r′) + α2
∂G(rs , r′)

∂ns
= 0, s = 1, 2, . . . , N (15-110a)

To accomplish this, we will need two identities from vector calculus that are usually referred
to as Green’s first and second identities. We will state them first before proceeding with the
development of the generalized Green’s function.

15.5.1 Green’s First and Second Identities

Within a volume V , conducting bodies with surfaces S1, S2, S3, . . . , Sn are contained, as shown
in Figure 15-6. By introducing appropriate cuts, the volume V is bounded by a regular surface
S that consists of surfaces S1 − Sn , the surfaces along the cuts, and the surface Sa of an infinite
radius sphere that encloses all the conducting bodies. A unit vector n̂ normal to S is directed
inward to the volume V , as shown in Figure 15-6.

Let us introduce within V two scalar functions φ and ψ , which, along with their first and
second derivatives, are continuous within V and on the surface S . To the vector φ∇ψ , we apply

S1

S2

S3

Sa

n

nn

Figure 15-6 Conducting surfaces and appropriate cuts for application of Green’s theorem.
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the divergence theorem (1-8),

#S
(φ∇ψ) • ds =#S

(φ∇ψ) • n̂ da =
∫∫∫

V
∇ • (φ∇ψ) dv (15-111)

When expanded, the integrand of the volume integral can be written as

∇ • (φ∇ψ) = φ∇ • (∇ψ) + ∇φ • ∇ψ = φ∇2ψ + ∇φ • ∇ψ (15-112)

Thus (15-111) can be expressed as

#S
(φ∇ψ • ds) =

∫∫∫
V
(φ∇2ψ) dv +

∫∫∫
V
(∇φ • ∇ψ) dv (15-113)

which is referred to as Green’s first identity . Since

(∇ψ) • n̂ = ∂ψ

∂n
(15-114)

where the derivative ∂ψ/∂n is taken in the direction of positive normal, (15-113) can also be
written as

#S

(
φ

∂ψ

∂n

)
ds =

∫∫∫
V
(φ∇2ψ) dv +

∫∫∫
V
(∇φ • ∇ψ) dv (15-115)

which is an alternate form of Green’s first identity.
If we repeat the procedure but apply the divergence theorem (15-111) to the vector ψ∇φ, then

we can write, respectively, Green’s first identity (15-113) and its alternate form (15-115) as

#S
(ψ∇φ • ds) =

∫∫∫
V
(ψ∇2φ) dv +

∫∫∫
V
(∇ψ • ∇φ) dv (15-116)

and

#S

(
ψ

∂φ

∂n

)
ds =

∫∫∫
V
(ψ∇2φ) dv +

∫∫∫
V
(∇ψ • ∇φ) dv (15-117)

Subtracting (15-116) from (15-113), we can write that

#S
(φ∇ψ − ψ∇φ) • ds =

∫∫∫
V
(φ∇2ψ − ψ∇2φ) dv (15-118)
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which is referred to as Green’s second identity . Its alternate form

#S

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
ds =

∫∫∫
V
(φ∇2ψ − ψ∇2φ) dv (15-119)

is obtained by subtracting (15-117) from (15-115).
Green’s first and second identities expressed, respectively, either as (15-113) and (15-118)

or (15-115) and (15-119), will be used to develop the formulation for the more general Green’s
function.

15.5.2 Generalized Green’s Function Method

With the introduction of Green’s first and second identities in the previous section, we are now
ready to develop the formulation of the generalized Green’s function method of ϕ for the partial
differential equation 15-109 whose Green’s function G(r, r′) satisfies (15-110).

Let us multiply (15-109) by G(r, r′) and (15-110) by ϕ(r). Doing this leads to

G∇2ϕ + β2ϕG = f G (15-120a)

ϕ∇2G + β2ϕG = ϕδ(r − r′) (15-120b)

Subtracting (15-120a) from (15-120b) and integrating over the volume V, we can write that∫∫∫
V

ϕδ(r − r′)dv −
∫∫∫

V
fGdv =

∫∫∫
V
(ϕ∇2G − G∇2ϕ)dv (15-121)

or

ϕ(r = r′) = ϕ(r′) =
∫∫∫

V
f (r)G(r, r′)dv

+
∫∫∫

V
[ϕ(r)∇2G(r, r′) − G(r, r′)∇2ϕ(r)] dv (15-121a)

Applying Green’s second identity (15-118) reduces (15-121a) to

ϕ(r′) =
∫∫∫

V
f (r)G(r, r′)dv +#S

[ϕ(r)∇G(r, r′) − G(r, r′)∇ϕ(r)] • ds (15-122)

Since r′ is an arbitrary point within V and r is a dummy variable, we can also write (15-122)
as

ϕ(r) =
∫∫∫

V
f (r′)G(r, r′)dv′ +#S

[ϕ(r′)∇′G(r, r′) − G(r, r′)∇′ϕ(r′)] • ds′ (15-123)

where ∇′ indicates differentiation with respect to the prime coordinates.
Equation 15-123 is a generalized formula for the development of the Green’s function for

a three-dimensional scalar Helmholtz equation. It can be simplified depending on the boundary
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conditions of ϕ and G , and their derivatives on S . The objective then will be to judiciously
choose the boundary conditions on the development of G , once the boundary conditions on ϕ

are stated, so as to simplify, if not completely eliminate, the surface integral contribution in
(15-123). We will demonstrate here some combinations of boundary conditions on ϕ and G , and
the simplifications of (15-123), based on those boundary conditions.

A. Nonhomogeneous Partial Differential Equation with Homogeneous Dirichlet
Boundary Conditions If the nonhomogeneous form of the partial differential equation
of 15-109 satisfies the homogeneous Dirichlet boundary condition

ϕ(rs) = 0, where rs is on S (15-124a)

then it is reasonable to construct a Green’s function with the same boundary condition

G(rs , r′) = 0, where rs is on S (15-124b)

so as to simplify the surface integral contributions in (15-123).
For these boundary conditions on ϕ and G , both terms in the surface integral of (15-123)

vanish, so that (15-123) reduces to

ϕ(r) =
∫∫∫

V
f (r′)G(r, r′)dv′ (15-125)

The Green’s function G(r, r′) needed in (15-125) can be obtained using any of the previous
methods developed in Sections 15.3.1 through 15.3.2. In many cases, the bilinear form (15-61)
or (15-94) or its equivalent, in the desired coordinate system and number of space variables, is
appropriate for forming the Green’s function. Its existence will depend upon the eigenvalues of
the homogeneous partial differential equation, as discussed in Section 15.3.1.

B. Nonhomogeneous Partial Differential Equation with Nonhomogeneous Dirichlet
Boundary Conditions If the nonhomogeneous partial differential equation 15-109 satisfies
the nonhomogeneous Dirichlet boundary condition

ϕ(rs) = g(rs), where rs is on S (15-126a)

then we can still construct a Green’s function that satisfies the boundary condition

G(rs , r′) = 0, where rs is on S (15-126b)

For these boundary conditions on ϕ and G , the second term in the surface integral of (15-123)
vanishes, so that (15-123) reduces to

ϕ(r) =
∫∫∫

V
f (r′) G(r, r′)dv′ +#S

ϕ(r′)∇′G(rs , r′) • ds′ (15-127)

The Green’s function G(r, r′) needed in (15-127) can be determined using any of the previous
methods developed in Sections 15.3.1 through 15.3.2.
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C. Nonhomogeneous Partial Differential Equation with Homogeneous Neumann
Boundary Conditions When Neumann boundary conditions are involved, the solutions
become more complicated primarily because the normal gradients of ϕ(r) are not independent
of the partial differential equation. If the nonhomogeneous form of the partial differential
equation 15-109 satisfies the homogeneous Neumann boundary condition[∇′ϕ(rs)

]
• n̂ = ∂ϕ(rs)

∂n
= 0 where rs is on S (15-128)

then we cannot , in general, construct a Green’s function with a boundary condition [∇′G(rs , r′)] ·
n̂ = [∂G(rs , r′)/∂n] = 0. This is evident from what follows.

If we apply the divergence theorem (1-8) to the vector ∇G(r, r′), we can write that

#S
∇G(r, r′) • ds =

∫∫∫
V

∇ • ∇G(r, r′)dv =
∫∫∫

V
∇2G(r, r′)dv (15-129)

Taking the volume integral of (15-110), we can express it as∫∫∫
V

∇2G(r, r′)dv + β2
∫∫∫

V
G(r, r′)dv =

∫∫∫
V

δ(r − r′)dv (15-130)

Using (15-129) reduces (15-130) to

#S
∇G(r, r′) • ds + β2

∫∫∫
V

G(r, r′)dv = 1 (15-131)

If we choose [∇G(r, r′)|r=rs

]
• n̂ = [∇G(rs , r′)

]
• n̂ = ∂G(rs , r′)

∂n
= 0 (15-132)

as a boundary condition for G(r, r′), then (15-131) reduces to

β2
∫∫∫

V
G(r, r′)dv = 1 (15-133)

which cannot be satisfied if β = 0. When β = 0, (15-131) reduces to

#S
∇G(r, r′) • ds = 1 (15-134)

or
|∇G(rs , r′)|S0 = 1 (15-134a)

where S0 is the area of the surface. This implies that a consistent boundary condition for the
normal gradient of G(r, r′) on S to satisfy (15-134) or (15-134a) would be

∇′G(r, r′)|r=rs = 1

S0
= ∇′G(rs, r′) (15-135)

Substituting (15-128) and (15-135) into (15-123) leads to

ϕ(r) =
∫∫∫

V
f (r′)G(r, r′)dv′ + 1

S0 #S
ϕ(r′)ds ′ (15-136)
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The second term on the right side of (15-136) is a constant, and it can be dropped since ϕ(r) is
undetermined by the boundary conditions up to an additive constant.

D. Nonhomogeneous Partial Differential Equation with Mixed Boundary Conditions
When the boundary conditions on ϕ(r) are such that ϕ(rs) is specified in part of the surface
S and [∇′φ(rs)] · n̂ = ∂φ(rs)/∂n is specified over the remaining part of S , it is referred to as
having mixed boundary conditions. Then it is desirable to construct a Green’s function so that it
vanishes on that part of S over which ϕ(rs) is specified, and its normal derivative [∂G(rs , r′)/∂n]
vanishes over the remaining part of S over which ∂ψ(rs)/∂n is specified. Although this is a more
complex procedure, it does provide a method to derive the Green’s function even under those
mixed boundary conditions.

15.6 GREEN’S FUNCTIONS OF THE SCALAR HELMHOLTZ EQUATION

Now that we have derived the development of the generalized Green’s function, let us apply
the formulation to the scalar Helmholtz equation in three-dimensional problems of rectangular,
cylindrical, and spherical coordinates.

15.6.1 Rectangular Coordinates

The development of Green’s functions in rectangular coordinates has already been applied for
one and two space variables in almost all of the previous sections. In this section we want to
derive it for a three-dimensional problem. Specifically, let us derive the Green’s function for the
electric field component Ey that satisfies the partial differential equation

∇2Ey + β2
0 Ey =

(
∂2

∂x 2
+ ∂2

∂y2
+ ∂2

∂z 2

)
Ey + β2

0 Ey = jωμJy(x , y , z ) (15-137)

subject to the boundary conditions

Ey(x = 0, 0 ≤ y ≤ b, −∞ ≤ z ≤ +∞) = Ey(x = a , 0 ≤ y ≤ b, −∞ ≤ z ≤ +∞) = 0
(15-137a)

In (15-137), Ey represents the electric field component of a TMz field configuration (subject to
∇ · J = 0) inside a metallic waveguide of dimensions a , b in the x , y directions, respectively, as
shown in Figure 15-7. Also Jy(x , y , z ) represents the electric current density of the feed probe
that is used to excite the fields within the metallic waveguide. It is assumed that the wave is
traveling in the z direction. The time-harmonic variations are of e+jωt , and they are suppressed.

The Green’s function must satisfy the partial differential equation

∇2G(x , y , z ; x ′, y ′, z ′) + β2
0 G(x , y , z ; x ′, y ′, z ′) = δ(x − x ′)δ(y − y ′)δ(z − z ′) (15-138)

subject to the boundary conditions

G(x = 0, 0 ≤ y ≤ b, −∞ ≤ z ≤ +∞)

= G(x = a , 0 ≤ y ≤ b, −∞ ≤ z ≤ +∞) = 0 (15-138a)

Since the electric field and Green’s function satisfy, respectively, the Dirichlet boundary con-
ditions (15-124a) and (15-124b), then, according to (15-123) or (15-125), the electric field is
obtained using

Ey(x , y , z ) = jωμ

∫∫∫
V

Jy(x
′, y ′, z ′) G(x , y , z ; x ′, y ′, z ′)dx ′dy ′dz ′ (15-139)
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y

b

z

a x

Figure 15-7 Rectangular waveguide excited by linear electric probe.

The Green’s function can be derived either in closed, series, or integral form. We will choose
here the series form. We begin the development of the Green’s function by assuming its solution
can be represented by a two-function Fourier series of sine function in x and cosine func-
tion in y which satisfy, respectively, the boundary conditions at x =0, a . Thus we can express
G(x , y , z ; x ′, y ′, z ′) as

G(x , y , z ; x ′, y ′, z ′) =
∞∑

m=1

∞∑
n=1

gmn(z ; x ′, y ′, z ′) sin
(mπ

a
x
)

cos
(nπ

b
y
)

(15-140)

Substituting (15-140) into (15-138) leads to

∞∑
m=1

∞∑
n=1

[
−

(mπ

a

)2
−

(nπ

b

)2
+ β2

0 + ∂2

∂z 2

]
× gmn(z ; x ′, y ′, z ′) sin

(mπ

a
x
)

cos
(nπ

b
y
)

= δ(x − x ′)δ(y − y ′)δ(z − z ′) (15-141)

Multiplying both sides of (15-141) by sin(pπx/a) cos(qπy/b), integrating from 0 to a in x and
0 to b in y , and using (8-56a), (8-56b), (15-48a), and (15-48b), we can reduce (15-141) to

ab

4

(
∂2

∂z 2
+ β2

z

)
gmn(z ; x ′, y ′, z ′) = sin

(mπ

a
x ′

)
cos

(nπ

b
y ′
)

δ(z − z ′) (15-142)

or (
d2

dz 2
+ β2

z

)
gmn(z ; x ′, y ′, z ′) = 4

ab
sin

(mπ

a
x ′

)
cos

(nπ

b
y ′
)

δ(z − z ′) (15-142a)
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where

β2
z = β2

0 −
[(mπ

a

)2
+

(nπ

b

)2
]

= β2
0 − (β2

x + β2
y ) (15-142b)

βx = mπ

a
m = 1, 2, 3, . . . (15-142c)

βy = nπ

b
n = 1, 2, 3, . . . (15-142d)

The function gmn(z ; x ′, y ′, z ′) satisfies the single variable differential equation 15-142a, and
it can be found by using the recipe of Section 15.3.1 as represented by (15-44c), (15-45a),
and (15-45b). Two solutions of the homogeneous differential equation(

d2

dz 2
+ β2

z

)
gmn(z ; x ′, y ′, z ′) = 0 (15-143)

of (15-142a) are

g (1)
mn = Amne+jβz z for z < z ′ (15-143a)

g (2)
mn = Bmne−jβz z for z > z ′ (15-143b)

Using (15-44c) where y1 = g (1)
mn and y2 = g (2)

mn , we can write the Wronskian as

W (z ′) = AmnBmn(−jβz )e
jβz z ′

e−jβz z ′ − AmnBmn(jβz )e
−jβz z ′

e+jβz z ′

W (z ′) = −j 2βz AmnBmn (15-144)

By comparing (15-142a) to (15-33), it is apparent that

p(z ) = 1

q(z ) = 0 (15-145)

r(z ) = 1

λ = β2
z

Using (15-143a) through (15-145), the solution for gmn(z ; x ′, y ′, z ′) of (15-142a) can be written,
by referring to (15-45a) and (15-45b), as

gmn(z ; x ′, y ′, z ′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
j

2

ab

sin
(mπ

a
x ′

)
cos

(nπ

b
y ′
)

βz
e−jβz (z ′−z ) for z < z ′

j
2

ab

sin
(mπ

a
x ′

)
cos

(nπ

b
y ′
)

βz
e−jβz (z−z ′) for z > z ′

(15-146a)

(15-146b)

or

gmn(z ; x ′, y ′, z ′) = j
2

ab

sin
(mπ

a
x ′

)
cos

(nπ

b
y ′
)

βz
e−jβz |z−z ′| for z < z ′, z > z ′ (15-146c)
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Thus, the Green’s function of (15-140) can now be expressed as

G(x , y , z ; x ′, y ′, z ′) = j
2

ab

∞∑
m=1,2,...

∞∑
n=1,2,...

sin
(mπ

a
x ′

)
cos

(nπ

b
y ′
)

βz

× sin
(mπ

a
x
)

cos
(nπ

b
y
)

e−jβz |z−z ′| for z < z ′, z > z ′ (15-147)

where

βz =

⎧⎪⎨⎪⎩
√

β2
0 − (β2

x + β2
y ) for β2

0 >(β2
x + β2

y )

−j
√

(β2
x + β2

y ) − β2
0 for β2

0 < (β2
x + β2

y )

(15-147a)

(15-147b)

It is evident from (15-147) through (15-147b) that when β2
0 >(β2

x + β2
y ) the modes are propagating

and when β2
0 < (β2

x + β2
y ) the modes are not propagating (evanescent). The nonpropagating modes

converge very rapidly when |z − z ′| is very large.
Once the Green’s function is formulated as in (15-147), the electric field can be found using

(15-139).

15.6.2 Cylindrical Coordinates

Until now we have concentrated on developing primarily Green’s functions of problems dealing
with rectangular coordinates. This was done to maintain simplicity in the mathematics so that the
analytical formulations would not obscure the fundamental concepts. Now we are ready to deal
with problems expressed by other coordinate systems, such as cylindrical and spherical.

Let us assume that an infinite electric line source of constant current Iz is placed at ρ = ρ ′, φ =
φ′ inside a circular waveguide of radius a , as shown in Figure 15-8. The electric field component
Ez satisfies the partial differential equation

∇2Ez + β2
0 Ez = f (ρ, φ) = jωμIz (15-148)

subject to the boundary condition

Ez (ρ = a , 0 ≤ φ ≤ 2π , z ) = 0 (15-148a)

The Green’s function of this problem will satisfy the partial differential equation

∇2G + β2
0 G = δ(ρ − ρ′) (15-149)

The boundary condition for the Green’s function can be chosen so that

G(ρ = a , 0 ≤ φ ≤ 2π , z ) = 0 (15-149a)

Since the boundary conditions (15-148a) and (15-149a) on Ez and G , respectively, are of the
Dirichlet type, then according to (15-123) or (15-125)

Ez (ρ, φ) =
∫∫

S
f (ρ ′, φ′)G(ρ, φ; ρ ′, φ′) ds ′ = jωμ

∫∫
S

Iz (ρ
′, φ′)G(ρ, φ; ρ ′, φ′) ds ′ (15-150)
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Figure 15-8 Electric line source within circular conducting cylinder. (a) Line source and conducting
cylinder. (b) Top view.

Since both the current source and the circular waveguide are of infinite length, the problem
reduces to a two-dimensional one. Thus, we can express initially the Green’s function by an
infinite Fourier series whose eigenvalues in φ satisfy the periodicity requirements. That is

G(ρ, φ; ρ ′, φ′) =
+∞∑

m=−∞
gm(ρ; ρ ′, φ′)ejmφ (15-151)

In cylindrical coordinates, the delta function δ(ρ − ρ′) in (15-149) can be expressed, in general,
as [10, 13]

δ(ρ − ρ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρ
δ(ρ − ρ ′)δ(φ − φ′)δ(z − z ′)

1

2πρ
δ(ρ − ρ ′)δ(z − z ′) for no φ dependence

1

2πρ
δ(ρ − ρ ′) for neither φ nor z dependence

1

ρ
δ(ρ − ρ ′)δ(φ − φ′) for no z dependence

(15-152a)

(15-152b)

(15-152c)

(15-152d)

In expanded form, the Green’s function of (15-149) can now be written, using (15-152d) and
assuming no z variations, as

∂2G

∂ρ2
+ 1

ρ

∂G

∂ρ
+ 1

ρ2

∂2G

∂φ2
+ β2

0 G = 1

ρ
δ(ρ − ρ ′)δ(φ − φ′) (15-153)
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Substituting (15-151) into (15-153) leads to

+∞∑
m=−∞

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

ρ2
+ β2

0

]
gm(ρ; ρ ′, φ′)ejmφ = 1

ρ
δ(ρ − ρ ′)δ(φ − φ′) (15-154)

Multiplying both sides of (15-154) by e−jnφ , integrating both sides from 0 to 2π in φ, and using
the orthogonality condition ∫ 2π

0
ej (m−n)φdφ =

{
2π m = n

0 m �= n
(15-155a)

(15-155b)

reduces (15-154) to

2π

[
∂2gm

∂ρ2
+ 1

ρ

∂gm

∂ρ
+

(
β2

0 − m2

ρ2

)
gm

]
= 1

ρ
e−jmφ′

δ(ρ − ρ ′)

or

ρ
d2gm

dρ2
+ dgm

dρ
+

(
ρβ2

0 − m2

ρ

)
gm = e−jmφ′

2π
δ(ρ − ρ ′) (15-156)

where the partial derivatives have been replaced by ordinary derivatives.
The function gm(ρ; ρ ′, φ′) satisfies the differential equation 15-156, and its solution can be

obtained using the closed-form recipe of Section 15.3.1 represented by (15-44c) and (15-45a)
through (15-45b). The homogeneous equation 15-156 can be written, by multiplying through by
ρ, as

ρ2 d2gm

dρ2
+ ρ

dgm

dρ
+ (

β2
0ρ2 − m2) gm = 0 (15-157)

or

ρ
d2gm

dρ2
+ dgm

dρ
+

(
β2

0ρ − m2

ρ

)
gm = 0 (15-157a)

which is of the one-dimensional Sturm-Liouville form of (15-26) or (15-33) (see Example 15-1)
where

p(ρ) = ρ

q(ρ) = m2

ρ

r(ρ) = ρ

λ = β2
0

(15-158)

Equation 15-157 is recognized as being Bessel’s differential equation 3-64 whose two solutions
can be written according to (3-67a) as

g (1)
m = AmJm(β0ρ) + BmYm(β0ρ) for ρ < ρ ′ (15-159a)

g (2)
m = CmJm(β0ρ) + DmYm(β0ρ) for ρ > ρ ′ (15-159b)

These two solutions were chosen because the fields within the waveguide form standing waves
instead of traveling waves.

Since the Green’s function of (15-151) must represent, according to (15-150), the field every-
where, including the origin, then Bm = 0 in (15-159a) since Ym(β0ρ) possesses a singularity at
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ρ = 0. Also since the Green’s function must satisfy the boundary condition (15-149a), then the
solution of g (2)

m of (15-159b) must also satisfy (15-149a). Thus,

g (2)
m (ρ = a) = CmJm(β0a) + DmYm(β0a) = 0

hence,

Dm = −Cm
Jm(β0a)

Ym(β0a)
(15-160)

Thus, (15-159a) and (15-159b) can be reduced to

g (1)
m = AmJm(β0ρ) for ρ < ρ ′ (15-161a)

g (2)
m = Cm

[
Jm(β0ρ) − Jm(β0a)

Ym(β0a)
Ym(β0ρ)

]
for ρ > ρ ′ (15-161b)

Using (15-44c) where y1 = g (1)
m and y2 = g (2)

m , we can write the Wronskian as

W (ρ ′) = β0AmCm
Jm(β0a)

Ym(β0a)

[
J ′

m(β0ρ
′)Ym(β0ρ

′) − Jm(β0ρ
′)Y ′

m(β0ρ
′)
]

(15-162)

where the prime indicates partial with respect to the entire argument [′≡ ∂/∂(β0ρ
′)]. Using the

Wronskian for Bessel functions of (11-95), we can reduce (15-162) to

W (ρ ′) = − 2

π
AmCm

Jm(β0a)

Ym(β0a)

1

ρ ′ (15-162a)

Finally, gm(ρ; ρ ′, φ′) of (15-156) can be written using (15-158), (15-161a) through (15-161b),
and (15-162a), by referring to (15-45a) and (15-45b), as

gm(ρ; ρ ′, φ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

4

[
Jm(β0ρ

′)Ym(β0a) − Jm(β0a)Ym(β0ρ
′)
]Jm(β0ρ)

Jm(β0a)
e−jmφ′

for ρ < ρ ′

−1

4

[
Jm(β0ρ)Ym(β0a) − Jm(β0a)Ym(β0ρ)

]Jm(β0ρ
′)

Jm(β0a)
e−jmφ′

for ρ > ρ ′

(15-163a)

(15-163b)

Thus, the Green’s function (15-151) can then be written as

G(ρ, φ; ρ ′, φ′) = −1

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
m=−∞

[Jm(β0ρ
′)Ym(β0a) − Jm(β0a)Ym(β0ρ

′)]

×Jm(β0ρ)

Jm(β0a)
ejm(φ−φ′) for ρ < ρ ′

+∞∑
m=−∞

[Jm(β0ρ)Ym(β0a) − Jm(β0a)Ym(β0ρ)]

×Jm(β0ρ
′)

Jm(β0a)
ejm(φ−φ′) for ρ > ρ ′

(15-164a)

(15-164b)
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or in terms of cosine terms as

G(ρ, φ; ρ ′, φ′) = −1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∑
m=−∞

[Jm(β0ρ
′)Ym(β0a) − Jm(β0a)Ym(β0ρ

′)]
εm

×Jm(β0ρ)

Jm(β0a)
cos[m(φ − φ′)] for ρ < ρ ′

+∞∑
m=−∞

[Jm(β0ρ)Ym(β0a) − Jm(β0a)Ym(β0ρ)]

εm

×Jm(β0ρ
′)

Jm(β0a)
cos[m(φ − φ′)] for ρ > ρ ′

(15-165a)

(15-165b)

where

εm =
{

2 m = 0

1 m �= 0

(15-165c)

(15-165d)

The Green’s function for this problem can also be derived using the two space variable series
expansion method whereby it is represented by orthonormal expansion functions. This is left to
the reader as an end-of-chapter exercise.

Example 15-5

An infinite electric line source of constant current Iz is located at ρ = ρ ′, φ = φ′, as shown in
Figure 15-9, and it is radiating in an unbounded free-space medium. Derive its Green’s function in
closed form.

z

z

yy

x
x

(a) (b)

f′

r′

f′
r′

r

f

Iz

Iz

Figure 15-9 Electric line source displaced from the origin. (a) Perspective view. (b) Top view.

Solution: Since the line source is removed from the origin, its Green’s function will be a function of φ

and φ′. Thus, it takes the form of (15-151), and it satisfies the differential equations 15-153 through 15-
157. However, since the Green’s function must satisfy the radiation conditions at infinity (G →
0 as ρ → ∞), the two solutions to the homogeneous differential equation 15-157 can be written as

g (1)
m = Am Jm(β0ρ) + Bm Ym(β0ρ) for ρ < ρ ′

g (2)
m = Cm H (1)

m (β0ρ) + Dm H (2)
m (β0ρ) for ρ >ρ ′
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Because the fields must be finite everywhere, including ρ = 0, g (1)
m reduces to

g (1)
m = Am Jm(β0ρ) for ρ < ρ ′

In addition, for ρ > ρ ′ the wave functions must represent outwardly traveling waves. Thus, for ejωt time
variations, g (2)

m reduces to
g (2)

m = Dm H (2)
m (β0ρ) for ρ >ρ ′

Using (15-44c) where y1 = g (1)
m and y2 = g (2)

m , we can write the Wronskian as

W (ρ ′) = β0Am Dm
[
Jm(β0ρ

′)H (2)′
m (β0ρ

′) − H (2)
m (β0ρ

′)J ′
m(β0ρ

′)
]

= −jβ0Am Dm
[
Jm(β0ρ

′)Y ′
m(β0ρ

′) − J ′
m(β0ρ

′)Ym(β0ρ
′)
]

which by using the Wronskian of (11-95) for Bessel functions can be expressed as

W (ρ ′) = −j
2

πρ ′ Am Dm

Thus, gm(ρ; ρ ′, φ′) of (15-156) can be written, using (15-45a) through (15-45b) and (15-158) along with
the preceding expressions for g (1)

m , g (2)
m , and W (ρ ′), as

gm(ρ; ρ ′, φ′) =
{

Jm(β0ρ)H (2)
m (β0ρ

′)e−jmφ′
for ρ < ρ ′

Jm(β0ρ
′)H (2)

m (β0ρ)e−jmφ′
for ρ > ρ ′

Thus, the Green’s function of (15-151) can be written as

G(ρ, φ; ρ ′, φ′) = − 1

4j

⎧⎪⎪⎨⎪⎪⎩
+∞∑

m=−∞
Jm(β0ρ)H (2)

m (β0ρ
′)ejm(φ−φ′) for ρ < ρ ′

+∞∑
m=−∞

Jm(β0ρ
′)H (2)

m (β0ρ)ejm(φ−φ′) for ρ > ρ ′

which, by the addition theorem for Hankel functions of (11-69a) through (11-69b) or (11-82a) through
(11-82b), can be expressed in succinct form as

G(ρ, φ; ρ ′, φ′) = − 1

4j
H (2)

0 (β0|ρ − ρ′|)

This is the well known two-dimensional Green’s function for cylindrical waves.

15.6.3 Spherical Coordinates

The development of the Green’s function for problems represented by spherical coordinates is
more complex, and it must be expressed, in general, in terms of spherical Bessel and Hankel
functions, Legendre functions, and complex exponentials or cosinusoids (see Chapter 10). In
order to minimize the mathematical complexities here, we will develop the Green’s function of
a source positioned at r ′, θ ′, φ′, inside a sphere of radius a and with free-space, as shown in
Figure 15-10.

The Green’s function must satisfy the partial differential equation

∇2G + β2
0 G = δ(r − r′) (15-166)
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Figure 15-10 Spherical coordinate system.

subject to the boundary condition

G(r = a , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) = 0 (15-166a)

In spherical coordinates the delta function δ(r − r′) in (15-166) can be expressed, in general, as
[10, 13]

δ(r − r′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

r2 sin θ
δ(r − r ′)δ(θ − θ ′)δ(φ − φ′)

1

2r2
δ(r − r ′)δ(φ − φ′) for no θ dependence

1

2πr2 sin θ
δ(r − r ′)δ(θ − θ ′) for no φ dependence

1

4πr2
δ(r − r ′) for neither θ nor φ dependence

(15-167a)

(15-167b)

(15-167c)

(15-167d)

In expanded form, the Green’s function of (15-166) can now be written using (15-167a) as

1

r2

∂

∂r

(
r2 ∂G

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂G

∂θ

)
+ 1

r2 sin2 θ

∂2G

∂φ2
+ β2

0 G

= 1

r2 sin θ
δ(r − r ′)δ(θ − θ ′)δ(φ − φ′) (15-168)

Since the spherical harmonics form a complete set for functions of the angles θ and φ, the Green’s
function can be represented by a double summation of an infinite series

G(r , θ , φ; r ′, θ ′, φ′) =
∞∑

n=0

n∑
m=−n

gmn(r; r ′, θ ′, φ′)Pm
n (cos θ)ejmφ

=
∞∑

n=0

n∑
m=−n

gmn(r; r ′, θ ′, φ′)Tmn(θ , φ)

(15-169)
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where Tmn(θ , φ) represents the tesseral harmonics of (11-214a) and (11-214b), or

Tmn(θ , φ) = CmnPm
n (cos θ)ejmφ (15-169a)

where

Cmn =
√

(2n + 1)(n − m)!

4π(n + m)!
(15-169b)

Multiplying (15-168) by r2 and then substituting (15-169) into (15-168), we can write that

∞∑
n=0

∞∑
m=−n

[
Tmn

∂

∂r

(
r2 ∂gmn

∂r

)
+ gmn

sin θ

∂

∂θ

(
sin θ

∂Tmn

∂θ

)
− m2

sin2 θ
gmnTmn + (β0r)2gmnTmn

]

= 1

sin θ
δ(r − r ′)δ(θ − θ ′)δ(φ − φ′) (15-170)

Dividing both sides of (15-170) by gmnTmn , we can write that

∞∑
n=0

∞∑
m=−n

[
1

gmn

∂

∂r

(
r2 ∂gmn

∂r

)
+ 1

Tmn sin θ

∂

∂θ

(
sin θ

∂Tmn

∂θ

)
− m2

sin2 θ
+ (β0r)2

]

= 1

gmnTmn sin θ
δ(r − r ′)δ(θ − θ ′)δ(φ − φ′) (15-170a)

Using (3-86b), we can write that

1

Tmn sin θ

∂

∂θ

(
sin θ

∂Tmn

∂θ

)
− m2

sin2 θ
= −n(n + 1) (15-171)

hence,

1

sin θ

∂

∂θ

(
sin θ

∂Tmn

∂θ

)
+

[
n(n + 1) −

( m

sin θ

)2
]

Tmn = 0 (15-171a)

Thus, (15-170a) reduces, by substituting (15-171) into it and then multiplying through by gmnTmn ,
to

∞∑
n=0

n∑
m=−n

{
∂

∂r

(
r2 ∂gmn

∂r

)
+ [

(β0r)2 + n(n + 1)
]

gmn

}
Tmn

= 1

sin θ
δ(r − r ′)δ(θ − θ ′)δ(φ − φ′) (15-172)

From (11-214a) through (11-216d) and the definitions of the tesseral harmonics and Legendre
functions, it can be shown that the orthogonality conditions of the tesseral harmonics are [20]∫ 2π

0

∫ π

0
Tmn(θ , φ)T ∗

pq(θ , φ) sin θdθdφ = δmpδnq (15-173)
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where

T ∗
pq(θ , φ) = (−1)pT(−p)q(θ , φ) (15-173a)

δrs =
{

1 r = s
0 r �= s

(15-173b)

Let

gmn(r; r ′, θ ′, φ′) = hmn(r , r ′)T∗(θ ′, φ′) (15-173c)

Multiplying both sides of (15-172) by T ∗
pq(θ , φ) sin θ , integrating from 0 to π in θ and 0 to 2π

in φ, and using the orthogonality condition of (15-173), it can be shown that (15-172) reduces
to

d

dr

(
r2 dhmn

dr

)
+ [

(β0r)2 − n(n + 1)
]

hmn = δ(r − r ′) (15-174)

where the partial derivative ∂/∂r has been replaced by ordinary derivatives.
The function hmn(r , r ′) satisfies the differential equation 15-174, and its solution can be

obtained using the closed-form recipe of Section 15.3.1 represented by (15-44c) and (15-45a)
through (15-45b). The homogeneous equation 15-174 can be written as

d

dr

(
r2 dhmn

dr

)
+ [

(β0r)2 − n(n + 1)
]

hmn = 0 (15-175)

which is of the one-dimensional Sturm-Liouville form of (15-26) or (15-33) where

p(r) = r2

q(r) = −n(n + 1)

r(x) = r2

λ = β2

(15-176)

Equation 15-175 is recognized as being (3-83) or (3-86a) whose solution can be represented
by either (3-87a) or (3-87b). We choose here the form of (3-87a) since we need to represent
the Green’s function within the sphere by standing wave functions. Thus, the two solutions of
(15-175) can be written as

h(1)
mn = Amjn(β0r) + Bmyn(β0r) for r < r ′ (15-177a)

h(2)
mn = Cmjn(β0r) + Dmyn(β0r) for r > r ′ (15-177b)

where jn(β0r) and yn(β0r) are, respectively, spherical Bessel functions of the first and second
kind.

Since the Green’s function of (15-169) must be finite everywhere, including the origin, then
Bm = 0 since yn(β0r) possesses a singularity at r = 0. Also the Green’s function must satisfy
the boundary condition (15-166a). Therefore, h(2)

mn of (15-177b) at r = a reduces to

h(2)
mn (r = a) = Cmjn(β0a) + Dmyn(β0a) = 0 (15-178)
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hence,

Dm = −Cm
jn(β0a)

yn(β0a)
(15-178a)

Thus, (15-177a) and (15-177b) are reduced to

h(1)
mn = Amjn(β0r) for r < r ′ (15-179a)

h(2)
mn = Cm

[
jn(β0r) − jn(β0a)

yn(β0a)
yn(β0r)

]
for r > r ′ (15-179b)

Using (15-44c) where y1 = h(1)
mn and y2 = h(2)

mn , we can write the Wronskian as

W (r ′) = β0AmCm
jn(β0a)

yn(β0a)
[j ′

n(β0r ′)yn(β0r ′) − jn(β0r ′)y ′
n(β0r ′)] (15-180)

Using the Wronskian for spherical Bessel functions of

jn(β0r ′)y ′
n(β0r ′) − j ′

n(β0r ′)yn(β0r ′) = 1

(β0r ′)2
(15-180a)

reduces (15-180) to

W (r ′) = − 1

β0
AmCm

jn(β0a)

yn(β0a)

1

(r ′)2
(15-180b)

Finally, hmn(r , r ′) of (15-174) can be written using (15-176), (15-179a) through (15-179b),
and (15-180b), by referring to (15-45a) and (15-45b), as

hmn(r , r ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− β0C 2
mn [jn(β0r ′)yn(β0a) − jn(β0a)yn(β0r ′)]

jn(β0r)

jn(β0a)

for r < r ′

− β0C 2
mn [jn(β0r)yn(β0a) − jn(β0a)yn(β0r)]

jn(β0r ′)
jn(β0a)

for r > r ′

(15-181a)

(15-181b)

Thus, the Green’s function of (15-169) can be written as

G(r , θ , φ; r ′, θ ′, φ′) = −β0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=0

n∑
m=−n

(−1)m C 2
mn [jn(β0r ′)yn(β0a) − jn(β0a)yn(β0r ′)]

× jn(β0r)

jn(β0a)
Pm

n (cos θ)P−m
n (cos θ ′)ejm(φ−φ′)

for r < r ′

∞∑
n=0

n∑
m=−n

(−1)m C 2
mn [jn(β0r)yn(β0a) − jn(β0a)yn(β0r)]

× jn(β0r ′)
jn(β0a)

Pm
n (cos θ)P−m

n (cos θ ′)ejm(φ−φ′)

for r > r ′

(15-182a)

(15-182b)



Balanis c15.tex V2 - 11/22/2011 4:04 P.M. Page 938

938 GREEN’S FUNCTIONS

15.7 DYADIC GREEN’S FUNCTIONS

The Green’s function development of the previous sections can be used for the solution of
electromagnetic problems that satisfy the scalar wave equation. The most general Green’s func-
tion development and electromagnetic field solution, for problems that satisfy the vector wave
equation, will be to use vectors and dyadics [14–18]. Before we briefly discuss such a procedure,
let us first introduce and define dyadics.

15.7.1 Dyadics

Vectors and dyadics are used, in general, to describe linear transformations within a given orthog-
onal coordinate system, and they simplify the manipulations of mathematical relations, compared
to using tensors. For electromagnetic problems, where linear transformations between sources
and fields within a given orthogonal coordinate system are often necessary, vectors and dyadics
are very convenient to use.

A dyad is defined by the juxtaposition AB of the vectors A and B, with no dot or cross product
between them. In general, a dyad has nine terms and in matrix form can be represented by

(AB) =
⎛⎝ A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

⎞⎠ (15-183)

A dyadic D can be defined by the sum of N dyads. That is

D =
N∑

n=1

AnBn (15-184)

In general, no more than three dyads are required to represent a dyadic, that is Nmax = 3.
Let us now define the vectors A, C, D1, D2, and D3 in a general coordinate system with unit

vectors â1, â2, and â3. That is,

A = â1A1 + â2A2 + â3A3 (15-185a)

C = â1C1 + â2C2 + â3C3 (15-185b)

D1 = â1D11 + â2D12 + â3D13 (15-185c)

D2 = â1D21 + â2D22 + â3D23 (15-185d)

D3 = â1D31 + â2D32 + â3D33 (15-185e)

Let us now write that

C = (A • â1)D1 + (A • â2)D2 + (A • â3)D3

= A • (â1D1) + A • (â2D2) + A • (â3D3)

C = A • (â1D1 + â2D2 + â3D3) (15-186)

or

C = A • D (15-186a)

where

D = â1D1 + â2D2 + â3D3 (15-186b)
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In (15-186) through (15-186b) D is a dyadic, and it is defined by the sum of the three dyads
ânDn , n = 1, 2, 3. In matrix form, (15-186) or (15-186a) can be written as

(C1 C2 C3) = (A1 A2 A3)

⎛⎝ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞⎠ (15-187)

where the dyadic D has nine elements.
Just like vectors, dyadics satisfy a number of identities involving dot and cross products,

differentiations, and integrations. The uninformed reader should refer to the literature [10–13]
for such relations.

15.7.2 Green’s Functions

In electromagnetics it is often desirable to solve, using the Green’s functions approach, the linear
vector problem of

�h = f (15-188)

where � is a differential operator. Equation 15-188 is a more general and vector representa-
tion of (15-27). It should be noted here that the solution of (15-188) cannot, in general, be
represented by

h(r) �=
∫∫∫

V
f(r′)G(r, r′)dv′ (15-189)

where G(r, r′) is a single scalar Green’s function. The relation (15-189) would imply that a
component of the source f parallel to a given axis produces a response (field) h parallel to the
same axis. This, in general, is not true.

A more appropriate representation of the solution of (15-188), in a rectangular coordinate
system, will be

hx (r) =
∫∫∫

V
[fx (r′)Gxx (r, r′) + fy(r′)Gxy(r, r′) + fz (r′)Gxz (r, r′)]dv′ (15-190a)

hy(r) =
∫∫∫

V
[fx (r′)Gyx (r, r′) + fy(r′)Gyy(r, r′) + fz (r′)Gyz (r, r′)]dv′ (15-190b)

hz (r) =
∫∫∫

V
[fx (r′)Gzx (r, r′) + fy(r′)Gzy(r, r′) + fz (r′)Gzz (r, r′)]dv′ (15-190c)

which, in a more compact form, can be written as

h(r) =
∫∫∫

V
[fx (r′)Gx (r, r′) + fy(r′)Gy(r, r′) + fz (r′)Gz (r, r′)]dv′ (15-191)
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where, as in (15-185c) through (15-185e)

Gx (r, r′) = âx Gxx (r, r′) + ây Gyx (r, r′) + âz Gzx (r, r′) (15-191a)

Gy(r, r′) = âx Gxy (r, r′) + ây Gyy(r, r′) + âz Gzy(r, r′) (15-191b)

Gz (r, r′) = âx Gxz (r, r′) + ây Gyz (r, r′) + âz Gzz (r, r′) (15-191c)

In (15-190a) through (15-191c), the Gij (r, r′)’s are the elements of the dyadic G(r, r′), which is
referred to here as the dyadic Green’s function . In (15-191) through (15-191c), the Gi (r, r′)’s are
the column vectors of the dyadic Green’s function G(r, r′).

Using the notation of (15-186) through (15-186b), the solution of (15-191) can also be written
as

h(r) =
∫∫∫

V

{[
f(r′) • âx

]
Gx (r, r′) + [

f(r′) • ây
]

Gy(r, r′) + [
f(r′) • âz

]
Gz (r, r′)

}
dv′

=
∫∫∫

V
f(r′) •

[
âx Gx (r, r′) + ây Gy(r, r′) + âz Gz (r, r′)

]
dv′

h(r) =
∫∫∫

V
f(r) • G(r, r′)dv′ (15-192)

where G(r, r′) is the dyadic Green’s function

G(r, r′) = âx Gx (r, r′) + ây Gy(r, r′) + âz Gz (r, r′) (15-192a)

The dyadic Green’s function G(r, r′) can be found by first finding the vectors Gx (r, r′),
Gy(r, r′), and Gz (r, r′) each satisfying the homogeneous form of the partial differential equation
15-188, i.e.,

�Gx (r, r′) = âxδ(r − r′) (15-193a)

�Gy(r, r′) = âyδ(r − r′) (15-193b)

�Gz (r, r′) = âz δ(r − r′) (15-193c)

and the appropriate boundary conditions, and then using (15-192a) to form the dyadic Green’s
function. Any of the methods of the previous sections can be used to find the Green’s function
of (15-193a) through (15-193c).

An example for the potential use of the dyadic Green’s function is the solution for the electric
and magnetic fields due to a source represented by the electric current density J. According
to (6-32a) and (6-32b), the electric and magnetic fields can be written as

H(r) = 1

μ
∇ × A (15-194a)

E(r) = −jωA − j
1

ωμε
∇(∇ • A) (15-194b)
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where the vector potential A satisfies the partial differential equation 6-30 or

∇2A + β2A = −μJ (15-195)

Using the dyadic Green’s function approach, the vector potential A can be found using

A = −μ

∫∫∫
V

J(r′) • G(r, r′)dv′ (15-196)

where the dyadic Green’s function must satisfy the partial differential equation

∇2G + β2G = δ̄(r − r′) (15-197)

and the appropriate boundary conditions.
Because of the complexity for the development of the dyadic Green’s function, it will not

be pursued any further here. The interested reader is referred to the literature [10–18] for more
details.

15.8 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

15.1. Using the procedure of Section 15.3.1,
as represented by (15-44c) and (15-45a)
through (15-45b), derive the Green’s func-
tion of the mechanics problem of Section
15.2.2 as given by (15-24a) and (15-24b).

15.2. The displacement u(x) of a string of length
� subjected to a cosinusoidal force

f (x , t) = f (x)e+jωt

is determined by

u(x , t) = u(x)e+jωt

where u(x) satisfies the differential
equation

d2u(x)

dx 2
+ β2u(x) = f (x), β2 = ω/c

Assuming the ends of the string are fixed

u(x = 0) = u(x = �) = 0

determine in closed form the Green’s func-
tion of the system.

15.3. Two PEC semi-infinite plates, which both
are grounded (V = 0), are separated by a
distance w in the x direction, as shown
in the figure below. A d. c. infinite line
source of constant charge density q(x ′) is
positioned at x ′ between the two plates
and extends to infinity in the y direction.
Assume the plates are infinite in the y
direction and free space exists between the
two plates. For this problem:
(a) Specify the appropriate boundary con-

ditions for the potential and the asso-
ciated Green’s function.

(b) Derive the Green’s function in the
x -y plane in series form, including an
expression for the eigenvalues with the
appropriate indices.

(c) Based on this Green’s function and
stated charge distribution, write an
expression for the potential V(x)

between the plates. Show all the steps.

x

y

V = 0 V = 0

q(x′)

x′

w

Figure P15-3

15.4. Derive in series form the Green’s function
of Problem 15.3.

15.5. Two infinite radial plates with an interior
angle of α, as shown in Figure P15-5, are

x

z

y

fa

Figure P15-5
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both maintained at a potential of V = 0.
Determine in closed form the Green’s func-
tion for the electric potential distribution
between the plates.

15.6. Repeat Problem 15.5 when the two plates
are isolated from each other with the plate
of φ = 0 grounded while that at φ = α is
maintained at a constant potential V0.

15.7. The top side of a rectangular cross section,
infinite length pipe is insulated from the
other three, and it is maintained at a con-
stant potential V0. The other three are held
at a grounded potential of zero as shown in
Figure P15-7. Determine in closed from the
Green’s function for the electric potential
distribution within the pipe.

x
z

y

a

V
 =

 0 V
 =

 0

V = 0

b

V = V0

Figure P15-7

15.8. The three sides of an infinite length and
infinite height trough are maintained at
a grounded potential of zero as shown in
Figure P15-8. The width of the trough is a .

x

y

∞ ∞

z a

V = 0

V = 0
V = 0

Figure P15-8

Determine in closed form the Green’s func-
tion for the electric field distribution within
the trough.

15.9. Derive the Green’s function of (15-83a)
through (15-83b) by initially choosing
a solution for (15-74) that satisfies the
boundary condition at y = 0 and y = b.

15.10. An infinitely long conducting wire posi-
tioned at ρ = ρ ′, φ = φ′ is circumscribed
by a grounded (V = 0) electric conduct-
ing circular cylinder of radius a and infinite
length, as shown in Figure 15-4. Derive in
closed-form the Green’s function for the
potential distribution within the cylinder.
Assume free space within the cylinder.

15.11. Derive in closed form the Green’s function
of the time-harmonic problem represented
by (15-97) subject to the boundary condi-
tions of (15-97a) nd (15-97b). This would
be an alternate representation of (15-106).

15.12. For Figure 15-7, derive the Green’s func-
tion in closed form subject to the appropri-
ate boundary conditions.

15.13. Repeat Example 15-5 for an infinite mag-
netic line source of constant current Im

located at ρ = ρ ′, φ = φ′, as shown in
Figure 15-9.

15.14. An annular microstrip antenna fed by a
coaxial line is composed of an annular con-
ducting circular strip, with inner and outer
radii of a and b, placed on the top sur-
face of a lossless substrate of height h
and electrical parameters εs , μs as shown
in Figure P15-14. The substrate is sup-
ported by a ground plane. Assuming the
microstrip antenna can be modeled as a
cavity with ideal open circuits of vanish-
ing tangential magnetic fields at the inner
(ρ = a) and outer (ρ = b) edges

Hφ(ρ = a , 0 ≤ φ ≤ 2π , 0 ≤ z ≤ h)

= Hφ(ρ = b, 0 ≤ φ ≤ 2π , 0 ≤ z ≤ h)= 0

and vanishing tangential electric fields on
its top and bottom sides, determine the
Green’s function for the TMz modes (sub-
ject to ∇ · J = 0) with independent z varia-
tions within the cavity. For such modes the
electric field must have only a z component
of

E = âz Ez (ρ, φ)
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which must satisfy the partial differential
equation

∇2Ez +β2Ez = jωμJz (ρf , φf ) β2 =ω2με

y

z

z
b

a a

y

h

b

b Feed

Side view

Top view

s = ∞
a

x

x

r

rs

rs

f

es, ms

Figure P15-14

15.15. Repeat Problem 15.14 for an annular sec-
tor microstrip antenna whose geometry is
shown in Figure P15-15.

y

z

z

b

a

y

h

b

Feed

Side view

Top view

s = ∞

a
x

x

ffrf

f0

es, ms

Figure P15-15

15.16. Repeat Problem 15.14 for a circular sec-
tor microstrip antenna whose geometry is
shown in Figure P15-16.

y

z

z

a

h

Feed

Side view

Top view

s = ∞

a
x

x

ff
rf

es, ms

f0

y

Figure P15-16

15.17. Derive the Green’s function represented
by (15-165a) and (15-165b) in terms of
the two space variable series expansion
method using orthonormal expansion func-
tions.

15.18. An infinite length electric line source of
constant current Ie is placed near a con-
ducting circular cylinder of infinite length,
as shown in Figure P15-18. Derive, in
closed form, the Green’s function for the
fields in the space surrounding the cylinder.

z
x

r

f

f′

r′

y

Source

s = ∞

Figure P15-18

15.19. Repeat Problem 15.18 for a magnetic line
source of constant current Im .
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15.20. An infinite length electric line source of
constant electric current Ie is placed near a
two-dimensional conducting wedge of inte-
rior angle 2α as shown in Figure P15-20.
Derive, in closed form, the Green’s func-
tion for the fields in the space surrounding
the wedge. Compare with the expressions
of (11-182a) and (11-182b).

y

z
x

r

r′
f

s = ∞

s = ∞
a

a
f′

Figure P15-20

15.21. Repeat Problem 15.20 for an infinite length
magnetic line source of constant mag-
netic current Im . Compare the answers with
the expressions of (11-192a) through (11-
192b) or (11-193a) through (11-193b).

15.22. A point source placed at x ′, y ′, z ′ is
radiating in free space as shown in
Figure P15-22.

y

z R
Point source

r
(x′, y′, z′)

(x, y, z)

r′

x
f

f′

q′ q

Figure P15-22

(a) Derive its Green’s function of

G = − 1

4π

e−jβR

R

where R is the radial distance from the
point source to the observation point.

(b) By using the integral of (11-28a) or∫ +∞

−∞

e−jβR

R
dz = −jπH (2)

0 (βR)

show that the three-dimensional
Green’s function of the point source
reduces to the two-dimensional
Green’s function of the line source
derived in Example 15-5.
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APPENDIX I
Identities

I.1 TRIGONOMETRIC

1. Sum or difference:
a. sin(x + y) = sin x cos y + cos x sin y
b. sin(x − y) = sin x cos y − cos x sin y
c. cos(x + y) = cos x cos y − sin x sin y
d. cos(x − y) = cos x cos y + sin x sin y

e. tan(x + y) = tan x + tan y

1 − tan x tan y

f. tan(x − y) = tan x − tan y

1 + tan x tan y

g. sin2 x + cos2 x = 1
h. tan2 x − sec2 x = −1
i. cot2 x − csc2 x = −1

2. Sum or difference into products:

a. sin x + sin y = 2 sin 1
2 (x + y) cos 1

2 (x − y)

b. sin x − sin y = 2 cos 1
2 (x + y) sin 1

2 (x − y)

c. cos x + cos y = 2 cos 1
2 (x + y) cos 1

2 (x − y)

d. cos x − cos y = −2 sin 1
2 (x + y) sin 1

2 (x − y)

3. Products into sum or difference:
a. 2 sin x cos y = sin(x + y) + sin(x − y)

b. 2 cos x sin y = sin(x + y) − sin(x − y)

c. 2 cos x cos y = cos(x + y) + cos(x − y)

d. 2 sin x sin y = − cos(x + y) + cos(x − y)

4. Double and half-angles:
a. sin 2x = 2 sin x cos x
b. cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x

c. tan 2x = 2 tan x

1 − tan2 x

d. sin
1

2
x = ±

√
1 − cos x

2
or 2 sin2 θ = 1 − cos 2θ

947
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e. cos
1

2
x = ±

√
1 + cos x

2
or 2 cos2 θ = 1 + cos 2θ

f. tan
1

2
x = ±

√
1 − cos x

1 + cos x
= sin x

1 + cos x
= 1 − cos x

sin x
5. Series:

a. sin x = ejx − e−jx

2j
= x − x 3

3!
+ x 5

5!
− x 7

7!
+ . . .

b. cos x = ejx + e−jx

2
= 1 − x 2

2!
+ x 4

4!
− x 6

6!
+ . . .

c. tan x = ejx − e−jx

j (ejx + e−jx )
= x + x 3

3
+ 2x 5

15
+ 17x 7

315
+ . . .

I.2 HYPERBOLIC

1. Definitions:
a. Hyperbolic sine: sinh x = 1

2 (ex − e−x )

b. Hyperbolic cosine: cosh x = 1
2 (ex + e−x )

c. Hyperbolic tangent: tanh x = sinh x

cosh x

d. Hyperbolic cotangent: coth x = 1

tanh x
= cosh x

sinh x

e. Hyperbolic secant: sech x = 1

cosh x

f. Hyperbolic cosecant: csch x = 1

sinh x
2. Sum or difference:

a. cosh (x + y) = cosh x cosh y + sinh x sinh y
b. sinh (x − y) = sinh x cosh y − cosh x sinh y
c. cosh (x − y) = cosh x cosh y − sinh x sinh y

d. tanh (x + y) = tanh x + tanh y

1 + tanh x tanh y

e. tanh (x − y) = tanh x − tanh y

1 − tanh x tanh y

f. cosh2x − sinh2x = 1

g. tanh2x + sech2x = 1

h. coth2x − csch2x = 1

i. cosh (x ± jy) = cosh x cos y ± j sinh x sin y

j. sinh (x ± jy) = sinh x cos y ± j cosh x sin y

3. Series:

a. sinh x = ex − e−x

2
= x + x 3

3!
+ x 5

5!
+ x 7

7!
+ . . .

b. cosh x = ex + e−x

2
= 1 + x 2

2!
+ x 4

4!
+ x 6

6!
+ . . .

c. ex = 1 + x + x 2

2!
+ x 3

3!
+ x 4

4!
+ . . .
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I.3 LOGARITHMIC

1. logb(MN ) = logb M + logb N
2. logb(M /N ) = logb M − logb N
3. logb(1/N ) = − logb N
4. logb(M

n) = n logb M

5. logb(M
1/n) = 1

n
logb M

6. loga N = logb N · loga b = logb N / logb a

7. loge N = log10 N · loge 10 = 2.302585 log10 N

8. log10 N = loge N · log10 e = 0.434294 loge N
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APPENDIX II
Vector Analysis

II.1 VECTOR TRANSFORMATIONS

In this appendix we will indicate the vector transformations from rectangular to cylindrical (and
vice versa), from cylindrical to spherical (and vice versa), and from rectangular to spherical (and
vice versa). The three coordinate systems are shown in Figure II-1.

II.1.1 Rectangular to Cylindrical (and Vice Versa)

The coordinate transformation from rectangular (x , y , z ) to cylindrical (ρ, φ, z ) is given, referring
to Figure II-1(b), by:

x = ρ cos φ

y = ρ sin φ

z = z (II-1)

In the rectangular coordinate system, we express a vector A as

A = âx Ax + ây Ay + âz Az (II-2)

where âx , ây , âz are the unit vectors and Ax , Ay , Az are the components of the vector A in the
rectangular coordinate system. We wish to write A as

A = âρAρ + âφAφ + âz Az (II-3)

where âρ , âφ , âz are the unit vectors and Aρ , Aφ , Az are the vector components in the cylindrical
coordinate system. The z axis is common to both of them.

Referring to Figure II-2, we can write

âx = âρ cos φ − âφ sin φ

ây = âρ sin φ + âφ cos φ

âz = âz (II-4)

951
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r

q
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Figure II-1 Coordinate Systems. (a) Rectangular. (b) Cylindrical. (c) Spherical. (Source: C. A. Balanis,
Antenna Theory: Analysis and Design; Third Edition, copyright © 2005, John Wiley & Sons, Inc.; reprinted
by permission of John Wiley & Sons, Inc.).

Using (II-4) reduces (II-2) to

A = (âρ cos φ − âφ sin φ)Ax + (âρ sin φ + âφ cos φ)Ay + âz Az

A = âρ(Ax cos φ + Ay sin φ) + âφ(−Ax sin φ + Ay cos φ) + âz Az (II-5)

which when compared with (II-3) leads to

Aρ = Ax cos φ + Ay sin φ

Aφ = −Ax sin φ + Ay cos φ

Az = Az (II-6)
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(a)

(b)

x
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z

z
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az

ay

az

ax

ar

ar

af

−af sin f
ar cos f

af cos f

ar sin f

af

f

f

f

f

Figure II-2 Geometrical representation of transformation between unit vectors of rectangular and cylin-
drical coordinate systems. (Source: C. A. Balanis, Antenna Theory: Analysis and Design; Third Edition,
copyright © 2005, John Wiley & Sons, Inc.; reprinted by permission of John Wiley & Sons, Inc.)
(a) Geometry for unit vector âx . (b) Geometry for unit vector ây .

In matrix form, (II-6) can be written as⎛⎝Aρ

Aφ

Az

⎞⎠ =
⎛⎝ cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎞⎠⎛⎝Ax

Ay

Az

⎞⎠ (II-6a)

where

[A]rc =
⎡⎣ cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎤⎦ (II-6b)

is the transformation matrix for rectangular-to-cylindrical components.
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Since [A]rc is an orthonormal matrix (its inverse is equal to its transpose), we can write the
transformation matrix for cylindrical-to-rectangular components as

[A]cr = [A]−1
rc = [A]t

rc =
⎡⎣cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎤⎦ (II-7)

or ⎛⎝Ax

Ay

Az

⎞⎠ =
⎛⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞⎠ =
⎛⎝Aρ

Aφ

Az

⎞⎠ (II-7a)

or

Ax = Aρ cos φ − Aφ sin φ

Ay = Aρ sin φ + Aφ cos φ

Az = Az (II-7b)

II.1.2 Cylindrical to Spherical (and Vice Versa)

Referring to Figure II-1c, we can write that the cylindrical and spherical coordinates are related
by

ρ = r sin θ

z = r cos θ (II-8)

In a geometrical approach, similar to the one employed in the previous section, we can show that
the cylindrical-to-spherical transformation of vector components is given by

Ar = Aρ sin θ + Az cos θ

Aθ = Aρ cos θ − Az sin θ

Aφ = Aφ (II-9)

or in matrix form by ⎛⎝Ar

Aθ

Aφ

⎞⎠ =
⎛⎝sin θ 0 cos θ

cos θ 0 − sin θ

0 1 0

⎞⎠⎛⎝Aρ

Aφ

Az

⎞⎠ (II-9a)

Thus, the cylindrical-to-spherical transformation matrix can be written as

[A]cs =
⎡⎣sin θ 0 cos θ

cos θ 0 − sin θ

0 1 0

⎤⎦ (II-9b)

The [A]cs matrix is also orthonormal so that its inverse is given by

[A]sc = [A]−1
cs = [A]t

cs =
⎡⎣sin θ cos θ 0

0 0 1
cos θ − sin θ 0

⎤⎦ (II-10)
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and the spherical-to-cylindrical transformation is accomplished by⎛⎝Aρ

Aφ

Az

⎞⎠ =
⎛⎝sin θ cos θ 0

0 0 1
cos θ − sin θ 0

⎞⎠⎛⎝Ar

Aθ

Aφ

⎞⎠ (II-10a)

or

Aρ = Ar sin θ + Aθ cos θ

Aφ = Aφ

Az = Ar cos θ − Aθ sin θ (II-10b)

This time the component Aφ and coordinate φ are the same in both systems.

II.1.3 Rectangular to Spherical (and Vice Versa)

Many times it may be required that a transformation be performed directly from rectangular to
spherical components. By referring to Figure II-1c, we can write that the rectangular and spherical
coordinates are related by

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ (II-11)

and the rectangular and spherical components by

Ar = Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ

Aθ = Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ

Aφ = −Ax sin φ + Ay cos φ (II-12)

which can also be obtained by substituting (II-6) into (II-9). In matrix form, (II-12) can be written
as ⎛⎝Ar

Aθ

Aφ

⎞⎠ =
⎛⎝sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎞⎠⎛⎝Ax

Ay

Az

⎞⎠ (II-12a)

with the rectangular-to-spherical transformation matrix being

[A]rs =
⎡⎣sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎤⎦ (II-12b)

The transformation matrix of (II-12b) is also orthonormal so that its inverse can be written
as

[A]sr = [A]−1
rs = [A]t

rs =
⎡⎣sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎤⎦ (II-13)

and the spherical to rectangular transformation is accomplished by⎛⎝Ax

Ay

Az

⎞⎠ =
⎛⎝sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎞⎠⎛⎝Ar

Aθ

Aφ

⎞⎠ (II-13a)
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or

Ax = Ar sin θ cos φ + Aθ cos θ cos φ − Aφ sin φ

Ay = Ar sin θ sin φ + Aθ cos θ sin φ + Aφ cos φ

Az = Ar cos θ − Aθ sin θ (II-13b)

II.2 VECTOR DIFFERENTIAL OPERATORS

The differential operators of gradient of a scalar (∇ψ), divergence of a vector (∇ · A), curl of
a vector (∇ × A), Laplacian of a scalar (∇2ψ), and Laplacian of a vector (∇2A), frequently
encountered in electromagnetic field analysis, will be listed in the rectangular, cylindrical, and
spherical coordinate systems.

II.2.1 Rectangular Coordinates

∇ψ = âx
∂ψ

∂x
+ ây

∂ψ

∂y
+ âz

∂ψ

∂z
(II-14)

∇ • A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
(II-15)

∇ × A = âx

(
∂Az

∂y
− ∂Ay

∂z

)
+ ây

(
∂Ax

∂z
− ∂Az

∂x

)
+ âz

(
∂Ay

∂x
− ∂Ax

∂y

)
(II-16)

∇ • ∇ψ = ∇2ψ = ∂2ψ

∂x 2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z 2
(II-17)

∇2A = âx∇2Ax + ây∇2Ay + âz ∇2Az (II-18)

II.2.2 Cylindrical Coordinates

∇ψ = âρ

∂ψ

∂ρ
+ âφ

1

ρ

∂ψ

∂φ
+ âz

∂ψ

∂z
(II-19)

∇ • A = 1

ρ

∂

∂ρ
(ρAρ) + 1

ρ

∂Aφ

∂φ
+ ∂Az

∂z
(II-20)

∇ × A = âρ

(
1

ρ

∂Az

∂φ
− ∂Aφ

∂z

)
+ âφ

(
∂Aρ

∂z
− ∂Az

∂ρ

)

+ âz

(
1

ρ

∂(ρAφ)

∂ρ
− 1

ρ

∂Aρ

∂φ

)
(II-21)

∇2ψ = 1

ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2
(II-22)

∇2A = ∇(∇ • A) − ∇ × ∇ × A (II-23)
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or in an expanded form

∇2A = âρ

(
∂2Aρ

∂ρ2
+ 1

ρ

∂Aρ

∂ρ
− Aρ

ρ2
+ 1

ρ2

∂2Aρ

∂φ2
− 2

ρ2

∂Aφ

∂φ
+ ∂2Aρ

∂z 2

)
+ âφ

(
∂2Aφ

∂ρ2
+ 1

ρ

∂Aφ

∂ρ
− Aφ

ρ2
+ 1

ρ2

∂2Aφ

∂φ2
+ 2

ρ2

∂Aρ

∂φ
+ ∂2Aφ

∂z 2

)
+ âz

(
∂2Az

∂ρ2
+ 1

ρ

∂Az

∂ρ
+ 1

ρ2

∂2Az

∂φ2
+ ∂2Az

∂z 2

)
(II-23a)

In the cylindrical coordinate system ∇2A �= âρ∇2Aρ + âφ∇2Aφ + âz ∇2Az because the orientation
of the unit vectors âρ and âφ varies with the ρ and φ coordinates.

II.2.3 Spherical Coordinates

∇ψ = âr
∂ψ

∂r
+ âθ

1

r

∂ψ

∂θ
+ âφ

1

r sin θ

∂ψ

∂φ
(II-24)

∇ • A = 1

r2

∂

∂r
(r2Ar ) + 1

r sin θ

∂

∂θ
(sin θAθ ) + 1

r sin θ

∂Aφ

∂φ
(II-25)

∇ × A = âr

r sin θ

[
∂

∂θ
(Aφ sin θ) − ∂Aθ

∂φ

]
+ âθ

r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

]
+ âφ

r

[
∂

∂r
(rAθ ) − ∂Ar

∂θ

]
(II-26)

∇2ψ = 1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2
(II-27)

∇2A = ∇(∇ • A) − ∇ × ∇ × A (II-28)

or in an expanded form

∇2A = âr

(
∂2Ar

∂r2
+ 2

r

∂Ar

∂r
− 2

r2
Ar + 1

r2

∂2Ar

∂θ2
+ cot θ

r2

∂Ar

∂θ
+ 1

r2 sin2 θ

∂2Ar

∂φ2

− 2

r2

∂Aθ

∂θ
− 2 cot θ

r2
Aθ − 2

r2 sin θ

∂Aφ

∂φ

)
+ âθ

(
∂2Aθ

∂r2
+ 2

r

∂Aθ

∂r
− Aθ

r2 sin2 θ
+ 1

r2

∂2Aθ

∂θ2
+ cot θ

r2

∂Aθ

∂θ

+ 1

r2 sin2 θ

∂2Aθ

∂φ2
+ 2

r2

∂Ar

∂θ
− 2 cot θ

r2 sin θ

∂Aφ

∂φ

)
+ âφ

(
∂2Aφ

∂r2
+ 2

r

∂Aφ

∂r
− 1

r2 sin2 θ
Aφ + 1

r2

∂2Aφ

∂θ2

+ cot θ

r2

∂Aφ

∂θ
+ 1

r2 sin2 θ

∂2Aφ

∂φ2
+ 2

r2 sin θ

∂Ar

∂φ
+ 2 cot θ

r2 sin θ

∂Aθ

∂φ

)
(II-28a)

Again note that ∇2A �= âr∇2Ar + âθ∇2Aθ + âφ∇2Aφ since the orientation of the unit vectors
âr , âθ , and âφ varies with the r , θ , and φ coordinates.
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II.3 VECTOR IDENTITIES

II.3.1 Addition and Multiplication

A • A = |A|2 (II-29)

A • A∗ = |A|2 (II-30)

A + B = B + A (II-31)

A • B = B • A (II-32)

A × B = −B × A (II-33)

(A + B) • C = A • C + B • C (II-34)

(A + B) × C = A × C + B × C (II-35)

A • B × C = B • C × A = C • A × B (II-36)

A × (B × C) = (A • C)B − (A • B)C (II-37)

(A × B) • (C × D) = A • B × (C × D)

= A • (B • DC − B • CD)

= (A • C)(B • D) − (A • D)(B • C) (II-38)

(A × B) × (C × D) = (A × B • D)C − (A × B • C)D (II-39)

II.3.2 Differentiation

∇ • (∇ × A) = 0 (II-40)

∇ × ∇ψ = 0 (II-41)

∇(φ + ψ) = ∇φ + ∇ψ (II-42)

∇(φψ) = φ∇ψ + ψ∇φ (II-43)

∇ • (A + B) = ∇ • A + ∇ • B (II-44)

∇ × (A + B) = ∇ × A + ∇ × B (II-45)

∇ • (ψA) = A • ∇ψ + ψ∇ • A (II-46)

∇ × (ψA) = ∇ψ × A + ψ∇ × A (II-47)

∇(A • B) = (A • ∇)B + (B • ∇)A + A × (∇ × B) + B × (∇ × A) (II-48)

∇ • (A × B) = B • ∇ × A − A • ∇ × B (II-49)

∇ × (A × B) = A∇ • B − B∇ • A + (B • ∇)A − (A • ∇)B (II-50)

∇ × ∇ × A = ∇(∇ • A) − ∇2A (II-51)
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II.3.3 Integration ∮
C

A • d l =
∫∫

S
(∇ × A) • ds Stokes’ theorem (II-52)

#S
A • ds =

∫∫∫
V
(∇ • A) dv divergence theorem (II-53)

#S
(n̂ × A) ds =

∫∫∫
V
(∇ × A) dv (II-54)

#S
ψ ds =

∫∫∫
V

∇ψ dv (II-55)∮
C

ψ dl =
∫∫

S
n̂ × ∇ψ ds (II-56)
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APPENDIX III
Fresnel Integrals

C0(x) =
∫ x

0

cos(τ )√
2πτ

dτ (III-1)

S0(x) =
∫ x

0

sin(τ )√
2πτ

dτ (III-2)

C (x) =
∫ x

0
cos

(π

2
τ 2

)
dτ (III-3)

S (x) =
∫ x

0
sin

(π

2
τ 2

)
dτ (III-4)

C1(x) =
∫ ∞

x
cos(τ 2) dτ (III-5)

S1(x) =
∫ ∞

x
sin(τ 2) dτ (III-6)

C (x) − jS (x) =
∫ x

0
e−j (π/2)τ2

dτ =
∫ (π/2)x2

0

e−jτ

√
2πτ

dτ

C (x) − jS (x) = C0

(π

2
x 2

)
− jS0

(π

2
x 2

)
(III-7)

C1(x) − jS1(x) =
∫ ∞

x
e−jτ2

dτ =
√

π

2

∫ ∞

x2

e−jτ

√
2πτ

dτ

C1(x) − jS1(x) =
√

π

2

{∫ ∞

0

e−jτ

√
2πτ

dτ −
∫ x2

0

e−jτ

√
2πτ

dτ

}

C1(x) − jS1(x) =
√

π

2

{[
1

2
− j

1

2

]
− [C0(x

2) − jS0(x
2)]

}

C1(x) − jS1(x) =
√

π

2

{[
1

2
− C0(x

2)

]
− j

[
1

2
− S0(x

2)

]}
(III-8)

961
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x C1(x) S1(x) C (x) S (x)

0.0 0.62666 0.62666 0.0 0.0
0.1 0.52666 0.62632 0.10000 0.00052
0.2 0.42669 0.62399 0.19992 0.00419
0.3 0.32690 0.61766 0.29940 0.01412
0.4 0.22768 0.60536 0.39748 0.03336
0.5 0.12977 0.58518 0.49234 0.06473
0.6 0.03439 0.55532 0.58110 0.11054
0.7 −0.05672 0.51427 0.65965 0.17214
0.8 −0.14119 0.46092 0.72284 0.24934
0.9 −0.21606 0.39481 0.76482 0.33978
1.0 −0.27787 0.31639 0.77989 0.43826
1.1 −0.32285 0.22728 0.76381 0.53650
1.2 −0.34729 0.13054 0.71544 0.62340
1.3 −0.34803 0.03081 0.63855 0.68633
1.4 −0.32312 −0.06573 0.54310 0.71353
1.5 −0.27253 −0.15158 0.44526 0.69751
1.6 −0.19886 −0.21861 0.36546 0.63889
1.7 −0.10790 −0.25905 0.32383 0.54920
1.8 −0.00871 −0.26682 0.33363 0.45094
1.9 0.08680 −0.23918 0.39447 0.37335
2.0 0.16520 −0.17812 0.48825 0.34342
2.1 0.21359 −0.09141 0.58156 0.37427
2.2 0.22242 0.00743 0.63629 0.45570
2.3 0.18833 0.10054 0.62656 0.55315
2.4 0.11650 0.16879 0.55496 0.61969
2.5 0.02135 0.19614 0.45742 0.61918
2.6 −0.07518 0.17454 0.38894 0.54999
2.7 −0.14816 0.10789 0.39249 0.45292
2.8 −0.17646 0.01329 0.46749 0.39153
2.9 −0.15021 −0.08181 0.56237 0.41014
3.0 −0.07621 −0.14690 0.60572 0.49631
3.1 0.02152 −0.15883 0.56160 0.58181
3.2 0.10791 −0.11181 0.46632 0.59335
3.3 0.14907 −0.02260 0.40570 0.51929
3.4 0.12691 0.07301 0.43849 0.42965
3.5 0.04965 0.13335 0.53257 0.41525
3.6 −0.04819 0.12973 0.58795 0.49231
3.7 −0.11929 0.06258 0.54195 0.57498
3.8 −0.12649 −0.03483 0.44810 0.56562
3.9 −0.06469 −0.11030 0.42233 0.47521
4.0 0.03219 −0.12048 0.49842 0.42052
4.1 0.10690 −0.05815 0.57369 0.47580
4.2 0.11228 0.03885 0.54172 0.56320
4.3 0.04374 0.10751 0.44944 0.55400
4.4 −0.05287 0.10038 0.43833 0.46227
4.5 −0.10884 0.02149 0.52602 0.43427
4.6 −0.08188 −0.07126 0.56724 0.51619
4.7 0.00810 −0.10594 0.49143 0.56715
4.8 0.08905 −0.05381 0.43380 0.49675
4.9 0.09277 0.04224 0.50016 0.43507
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x C1(x) S1(x) C (x) S (x)

5.0 0.01519 0.09874 0.56363 0.49919
5.1 −0.07411 0.06405 0.49979 0.56239
5.2 −0.09125 −0.03004 0.43889 0.49688
5.3 −0.01892 −0.09235 0.50778 0.44047
5.4 0.07063 −0.05976 0.55723 0.51403
5.5 0.08408 0.03440 0.47843 0.55369
5.6 0.00641 0.08900 0.45171 0.47004
5.7 −0.07642 0.04296 0.53846 0.45953
5.8 −0.06919 −0.05135 0.52984 0.54604
5.9 0.01998 −0.08231 0.44859 0.51633
6.0 0.08245 −0.01181 0.49953 0.44696
6.1 0.03946 0.07180 0.54950 0.51647
6.2 −0.05363 0.06018 0.46761 0.53982
6.3 −0.07284 −0.03144 0.47600 0.45555
6.4 0.00835 −0.07765 0.54960 0.49649
6.5 0.07574 −0.01326 0.48161 0.54538
6.6 0.03183 0.06872 0.46899 0.46307
6.7 −0.05828 0.04658 0.54674 0.49150
6.8 −0.05734 −0.04600 0.48307 0.54364
6.9 0.03317 −0.06440 0.47322 0.46244
7.0 0.06832 0.02077 0.54547 0.49970
7.1 −0.00944 0.06977 0.47332 0.53602
7.2 −0.06943 0.00041 0.48874 0.45725
7.3 −0.00864 −0.06793 0.53927 0.51894
7.4 0.06582 −0.01521 0.46010 0.51607
7.5 0.02018 0.06353 0.51601 0.46070
7.6 −0.06137 0.02367 0.51564 0.53885
7.7 −0.02580 −0.05958 0.46278 0.48202
7.8 0.05828 −0.02668 0.53947 0.48964
7.9 0.02638 0.05752 0.47598 0.53235
8.0 −0.05730 0.02494 0.49980 0.46021
8.1 −0.02238 −0.05752 0.52275 0.53204
8.2 0.05803 −0.01870 0.46384 0.48589
8.3 0.01387 0.05861 0.53775 0.49323
8.4 −0.05899 0.00789 0.47092 0.52429
8.5 −0.00080 −0.05881 0.51417 0.46534
8.6 0.05767 0.00729 0.50249 0.53693
8.7 −0.01616 0.05515 0.48274 0.46774
8.8 −0.05079 −0.02545 0.52797 0.52294
8.9 0.03461 −0.04425 0.46612 0.48856
9.0 0.03526 0.04293 0.53537 0.49985
9.1 −0.04951 0.02381 0.46661 0.51042
9.2 −0.01021 −0.05338 0.52914 0.48135
9.3 0.05354 0.00485 0.47628 0.52467
9.4 −0.02020 0.04920 0.51803 0.47134
9.5 −0.03995 −0.03426 0.48729 0.53100
9.6 0.04513 −0.02599 0.50813 0.46786
9.7 0.00837 0.05086 0.49549 0.53250
9.8 −0.04983 −0.01094 0.50192 0.46758
9.9 0.02916 −0.04124 0.49961 0.53215
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x C1(x) S1(x) C (x) S (x)

10.0 0.02554 0.04298 0.49989 0.46817
10.1 −0.04927 0.00478 0.49961 0.53151
10.2 0.01738 −0.04583 0.50186 0.46885
10.3 0.03233 0.03621 0.49575 0.53061
10.4 −0.04681 0.01094 0.50751 0.47033
10.5 0.01360 −0.04563 0.48849 0.52804
10.6 0.03187 0.03477 0.51601 0.47460
10.7 −0.04595 0.00848 0.47936 0.52143
10.8 0.01789 −0.04270 0.52484 0.48413
10.9 0.02494 0.03850 0.47211 0.50867
11.0 −0.04541 −0.00202 0.52894 0.49991
11.1 0.02845 −0.03492 0.47284 0.49079
11.2 0.01008 0.04349 0.52195 0.51805
11.3 −0.03981 −0.01930 0.48675 0.47514
11.4 0.04005 −0.01789 0.50183 0.52786
11.5 −0.01282 0.04155 0.51052 0.47440
11.6 −0.02188 −0.03714 0.47890 0.51755
11.7 0.04164 0.00962 0.52679 0.49525
11.8 −0.03580 0.02267 0.47489 0.49013
11.9 0.00977 −0.04086 0.51544 0.52184
12.0 0.02059 0.03622 0.49993 0.47347
12.1 −0.03919 −0.01309 0.48426 0.52108
12.2 0.03792 −0.01555 0.52525 0.49345
12.3 −0.01914 0.03586 0.47673 0.48867
12.4 −0.00728 −0.03966 0.50951 0.52384
12.5 0.02960 0.02691 0.50969 0.47645
12.6 −0.03946 −0.00421 0.47653 0.50936
12.7 0.03445 −0.01906 0.52253 0.51097
12.8 −0.01783 0.03475 0.49376 0.47593
12.9 −0.00377 −0.03857 0.48523 0.51977
13.0 0.02325 0.03064 0.52449 0.49994
13.1 −0.03530 −0.01452 0.48598 0.48015
13.2 0.03760 −0.00459 0.49117 0.52244
13.3 −0.03075 0.02163 0.52357 0.49583
13.4 0.01744 −0.03299 0.48482 0.48173
13.5 −0.00129 0.03701 0.49103 0.52180
13.6 −0.01421 −0.03391 0.52336 0.49848
13.7 0.02639 0.02521 0.48908 0.47949
13.8 −0.03377 −0.01313 0.48534 0.51781
13.9 0.03597 −0.00002 0.52168 0.50737
14.0 −0.03352 0.01232 0.49996 0.47726
14.1 0.02749 −0.02240 0.47844 0.50668
14.2 −0.01916 0.02954 0.51205 0.51890
14.3 0.00979 −0.03357 0.51546 0.48398
14.4 −0.00043 0.03472 0.48131 0.48819
14.5 −0.00817 −0.03350 0.49164 0.52030
14.6 0.01553 0.03052 0.52113 0.50538
14.7 −0.02145 −0.02640 0.50301 0.47856
14.8 0.02591 0.02168 0.47853 0.49869
14.9 −0.02903 −0.01683 0.49971 0.52136
15.0 0.03103 0.01217 0.52122 0.49926
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Figure III-1 Plots of C (x ) and S (x ) Fresnel integrals. (Source: C. A. Balanis, Antenna Theory: Analysis
and Design , Third Edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc.).
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Figure III-2 Plots of C1(x) and S1(x) Fresnel integrals. (Source: C. A. Balanis, Antenna Theory: Analysis
and Design , Third Edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc.).
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APPENDIX IV
Bessel Functions

IV.1 BESSEL AND HANKEL FUNCTIONS

Bessel’s equation can be written as

x 2 d2y

dx 2
+ x

dy

dx
+ (x 2 − p2)y = 0 (IV-1)

Using the method of Frobenius, we can write its solutions as

y(x) = A1Jp(x) + B1J−p(x) p not an integer (IV-2)

or
y(x) = A2Jn(x) + B2Yn(x) n an integer (IV-3)

where

Jp(x) =
∞∑

m=0

(−1)m(x/2)2m+p

m!(m + p)!
(IV-4)

J−p(x) =
∞∑

m=0

(−1)m(x/2)2m−p

m!(m − p)!
(IV-5)

Yp(x) = Jp(x) cos(pπ) − J−p(x)

sin(pπ)
(IV-6)

m! = �(m + 1) (IV-7)

Jp(x) is referred to as the Bessel function of the first kind of order p, Yp(x) as the Bessel function
of the second kind of order p, and �(x) as the gamma function.

When p = n = integer, using (IV-5) and (IV-7), it can be shown that

J−n(x) = (−1)nJn(x) (IV-8)

967
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and no longer are the two Bessel functions independent of each other. Therefore, a second solution
is required, and it is given by (IV-3). It can also be shown that

Yn(x) = lim
p→n

Yp(x) = lim
p→n

Jp(x) cos(pπ) − J−p(x)

sin(pπ)
(IV-9)

When the argument of the Bessel function is negative and p = n , using (IV-4) leads to

Jn(−x) = (−1)nJn(x) (IV-10)

In many applications, Bessel functions of small and large arguments are required. Using
asymptotic methods, it can be shown that

J0(x) � 1

Y0(x) � 2

π
ln

(γ x

2

)
γ = 1.781

⎫⎪⎪⎪⎬⎪⎪⎪⎭ x → 0 (IV-11)

Jp(x) � 1

p!

(x

2

)p

Yp(x) � − (p − 1)!

π

(
2

x

)p

⎫⎪⎪⎪⎬⎪⎪⎪⎭
x → 0
p > 0

(IV-12)

and

Jp(x) �
√

2

πx
cos

(
x − π

4
− pπ

2

)
Yp(x) �

√
2

πx
sin

(
x − π

4
− pπ

2

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ x → ∞ (IV-13)

For wave propagation, it is often convenient to introduce Hankel functions defined as

H (1)
p (x) = Jp(x) + jYp(x) (IV-14)

H (2)
p (x) = Jp(x) − jYp(x) (IV-15)

where H (1)
p (x) is the Hankel function of the first kind of order p and H (2)

p (x) is the Hankel function
of the second kind of order p. For large arguments

H (1)
p (x) �

√
2

πx
ej [x−p(π/2)−π/4] x → ∞ (IV-16)

H (2)
p (x) �

√
2

πx
e−j [x−p(π/2)−π/4] x → ∞ (IV-17)
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A derivative can be taken using either

d

dx
[Zp(αx)] = αZp−1(αx) − p

x
Zp(αx) (IV-18)

or
d

dx
[Zp(αx)] = −αZp+1(αx) + p

x
Zp(αx) (IV-19)

where Zp can be a Bessel function (Jp , Yp) or a Hankel function (H (1)
p or H (2)

p ).
A useful identity, relating Bessel functions and their derivatives, is given by

Jp(x)Y ′
p(x) − Yp(x)J ′

p(x) = 2

πx
(IV-20)

and it is referred to as the Wronskian. The prime (′) indicates a derivative. Also

Jp(x)J ′
−p(x) − J−p(x)J ′

p(x) = − 2

πx
sin(pπ) (IV-21)

Some useful integrals of Bessel functions are

∫
x p+1Jp(αx) dx = 1

α
x p+1Jp+1(αx) + C (IV-22)∫

x 1−pJp(αx) dx = − 1

α
x 1−pJp−1(αx) + C (IV-23)∫

x 3J0(x) dx = x 3J1(x) − 2x 2J2(x) + C (IV-24)∫
x 6J1(x) dx = x 6J2(x) − 4x 5J3(x) + 8x 4J4(x) + C (IV-25)∫

J3(x) dx = −J2(x) − 2

x
J1(x) + C (IV-26)∫

xJ1(x) dx = −xJ0(x) +
∫

J0(x) dx + C (IV-27)∫
x−1J1(x) dx = −J1(x) +

∫
J0(x) dx + C (IV-28)∫

J2(x) dx = −2J1(x) +
∫

J0(x) dx + C (IV-29)∫
x mJn(x) dx = x mJn+1(x) − (m − n − 1)

∫
x m−1Jn+1(x) dx (IV-30)∫

x mJn(x) dx = −x mJn−1(x) + (m + n − 1)

∫
x m−1Jn−1(x) dx (IV-31)
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J1(x) = 2

π

∫ π/2

0
sin(x sin θ) sin θ dθ (IV-32)

1

x
J1(x) = 2

π

∫ π/2

0
cos(x sin θ) cos2 θ dθ (IV-33)

J2(x) = 2

π

∫ π/2

0
cos(x sin θ) cos 2θ dθ (IV-34)

Jn(x) = j −n

2π

∫ 2π

0
ejx cos φejnφ dφ (IV-35)

Jn(x) = j −n

π

∫ π

0
cos(nφ)ejx cos φ dφ (IV-36)

Jn(x) = 1

π

∫ π

0
cos(x sin φ − nφ) dφ (IV-37)

J2n(x) = 2

π

∫ π/2

0
cos(x sin φ) cos(2nφ) dφ (IV-38)

J2n(x) = (−1)n 2

π

∫ π/2

0
cos(x cos φ) cos(2nφ) dφ (IV-39)

The integrals ∫ x

0
J0(τ ) dτ and

∫ x

0
Y0(τ ) dτ (IV-40)

often appear in solutions of problems but cannot be integrated in closed form. Graphs and tables
for each, obtained using numerical techniques, are included.

IV.2 MODIFIED BESSEL FUNCTIONS

In addition to the regular cylindrical Bessel functions of the first and second kind, there exists
another set of cylindrical Bessel functions that are referred to as the modified Bessel functions
of the first and second kind, denoted respectively by Ip(x) and Kp(x). These modified cylindrical
Bessel functions exhibit ascending and descending variations for increasing argument as shown,
respectively, in Figures IV-5 and IV-6. For real values of the argument, the modified Bessel
functions exhibit real values.

The modified Bessel functions are related to the regular Bessel and Hankel functions by

Ip(x) = j −pJp(jx) = j pJ−p(jx) = j pJp(−jx) (IV-41)

Kp(x) = π

2
j p+1H (1)

p (jx) = π

2
(−j )p+1H (2)

p (−jx) (IV-42)

Some of the identities involving modified Bessel functions are

I−p(x) = j pJ−p(jx) (IV-43)

I−n(x) = In(x) n = 0, 1, 2, 3, . . . (IV-44)

K−n(x) = Kn(x) n = 0, 1, 2, 3, . . . (IV-45)
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For large arguments, the modified Bessel functions can be computed using the asymptotic
formulas

Ip(x) � ex

√
2πx

Kp(x) �
√

π

2x
e−x

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
x → ∞

(IV-46a)

(IV-46b)

Derivatives of both modified Bessel functions can be found using the same expressions, (IV-18)
and (IV-19), as for the regular Bessel functions.

IV.3 SPHERICAL BESSEL AND HANKEL FUNCTIONS

There is another set of Bessel and Hankel functions, that are usually referred to as the spherical
Bessel and Hankel functions. These spherical Bessel and Hankel functions of order n are related,
respectively, to the regular cylindrical Bessel and Hankel of order n + 1/2 by

jn(x) =
√

π

2x
Jn+1/2(x) (IV-47a)

yn(x) =
√

π

2x
Yn+1/2(x) (IV-47b)

h(1)
n (x) =

√
π

2x
H (1)

n+1/2(x) (IV-47c)

h(2)
n (x) =

√
π

2x
H (2)

n+1/2(x) (IV-47d)

where jn , yn , h(1)
n , and h(2)

n are the spherical Bessel and Hankel functions. These spherical Bessel
and Hankel functions are used as solutions to electromagnetic problems solved using spherical
coordinates.

For small arguments

jn(x) � x n

1 • 3 • 5 · · · (2n + 1)

yn(x) � −1 • 3 • 5 · · · (2n − 1)x−(n+1)

⎫⎪⎬⎪⎭
n = 0, 1, 2, . . .

x → 0

(IV-48a)

(IV-48b)

Another set of spherical Bessel and Hankel functions, that appear in solutions of electromag-
netic problems, is that denoted by B̂n(x) where B̂n can be used to represent Ĵn , Ŷn , Ĥ (1)

n , or Ĥ (2)
n .

These are related to the preceding spherical Bessel and Hankel functions [denoted by bn to rep-
resent jn , yn , h(1)

n , or h(2)
n ] and to the regular cylindrical Bessel and Hankel functions [denoted by

Bn+1/2 to represent Jn+1/2, Yn+1/2, H (1)
n+1/2, or H (2)

n+1/2] by

B̂n(x) = xbn(x) =
√

πx

2
Bn+1/2(x) (IV-49)
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x J0(x) J1(x) Y0(x) Y1(x)

0.0 1.00000 0.00000 −∞ −∞
0.1 0.99750 0.04994 −1.53424 −6.45895
0.2 0.99003 0.09950 −1.08110 −3.32382
0.3 0.97763 0.14832 −0.80727 −2.29310
0.4 0.96040 0.19603 −0.60602 −1.78087
0.5 0.93847 0.24227 −0.44452 −1.47147
0.6 0.91201 0.28670 −0.30851 −1.26039
0.7 0.88120 0.32900 −0.19066 −1.10325
0.8 0.84629 0.36884 −0.08680 −0.97814
0.9 0.80752 0.40595 0.00563 −0.87313
1.0 0.76520 0.44005 0.08826 −0.78121
1.1 0.71962 0.47090 0.16216 −0.69812
1.2 0.67113 0.49829 0.22808 −0.62114
1.3 0.62009 0.52202 0.28654 −0.54852
1.4 0.56686 0.54195 0.33789 −0.47915
1.5 0.51183 0.55794 0.38245 −0.41231
1.6 0.45540 0.56990 0.42043 −0.34758
1.7 0.39799 0.57777 0.45203 −0.28473
1.8 0.33999 0.58152 0.47743 −0.22366
1.9 0.28182 0.58116 0.49682 −0.16441
2.0 0.22389 0.57673 0.51038 −0.10703
2.1 0.16661 0.56829 0.51829 −0.05168
2.2 0.11036 0.55596 0.52078 0.00149
2.3 0.05554 0.53987 0.51807 0.05228
2.4 0.00251 0.52019 0.51041 0.10049
2.5 −0.04838 0.49710 0.49807 0.14592
2.6 −0.09681 0.47082 0.48133 0.18836
2.7 −0.14245 0.44161 0.46050 0.22763
2.8 −0.18504 0.40972 0.43592 0.26354
2.9 −0.22432 0.37544 0.40791 0.29594
3.0 −0.26005 0.33906 0.37686 0.32467
3.1 −0.29206 0.30092 0.34310 0.34963
3.2 −0.32019 0.26134 0.30705 0.37071
3.3 −0.34430 0.22066 0.26909 0.38785
3.4 −0.36430 0.17923 0.22962 0.40101
3.5 −0.38013 0.13738 0.18902 0.41019
3.6 −0.39177 0.09547 0.14771 0.41539
3.7 −0.39923 0.05383 0.10607 0.41667
3.8 −0.40256 0.01282 0.06450 0.41411
3.9 −0.40183 −0.02724 0.02338 0.40782
4.0 −0.39715 −0.06604 −0.01694 0.39793
4.1 −0.38868 −0.10328 −0.05609 0.38459
4.2 −0.37657 −0.13865 −0.09375 0.36801
4.3 −0.36102 −0.17190 −0.12960 0.34839
4.4 −0.34226 −0.20278 −0.16334 0.32597
4.5 −0.32054 −0.23106 −0.19471 0.30100
4.6 −0.29614 −0.25655 −0.22346 0.27375
4.7 −0.26933 −0.27908 −0.24939 0.24450
4.8 −0.24043 −0.29850 −0.27230 0.21356
4.9 −0.20974 −0.31470 −0.29205 0.18125
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x J0(x) J1(x) Y0(x) Y1(x)

5.0 −0.17760 −0.32758 −0.30852 0.14786
5.1 −0.14434 −0.33710 −0.32160 0.11374
5.2 −0.11029 −0.34322 −0.33125 0.07919
5.3 −0.07580 −0.34596 −0.33744 0.04455
5.4 −0.04121 −0.34534 −0.34017 0.01013
5.5 −0.00684 −0.34144 −0.33948 −0.02376
5.6 0.02697 −0.33433 −0.33544 −0.05681
5.7 0.05992 −0.32415 −0.32816 −0.08872
5.8 0.09170 −0.31103 −0.31775 −0.11923
5.9 0.12203 −0.29514 −0.30437 −0.14808
6.0 0.15065 −0.27668 −0.28819 −0.17501
6.1 0.17729 −0.25587 −0.26943 −0.19981
6.2 0.20175 −0.23292 −0.24831 −0.22228
6.3 0.22381 −0.20809 −0.22506 −0.24225
6.4 0.24331 −0.18164 −0.19995 −0.25956
6.5 0.26009 −0.15384 −0.17324 −0.27409
6.6 0.27404 −0.12498 −0.14523 −0.28575
6.7 0.28506 −0.09534 −0.11619 −0.29446
6.8 0.29310 −0.06522 −0.08643 −0.30019
6.9 0.29810 −0.03490 −0.05625 −0.30292
7.0 0.30008 −0.00468 −0.02595 −0.30267
7.1 0.29905 0.02515 0.00418 −0.29948
7.2 0.29507 0.05433 0.03385 −0.29342
7.3 0.28822 0.08257 0.06277 −0.28459
7.4 0.27860 0.10962 0.09068 −0.27311
7.5 0.26634 0.13525 0.11731 −0.25913
7.6 0.25160 0.15921 0.14243 −0.24280
7.7 0.23456 0.18131 0.16580 −0.22432
7.8 0.21541 0.20136 0.18723 −0.20388
7.9 0.19436 0.21918 0.20652 −0.18172
8.0 0.17165 0.23464 0.22352 −0.15806
8.1 0.14752 0.24761 0.23809 −0.13315
8.2 0.12222 0.25800 0.25012 −0.10724
8.3 0.09601 0.26574 0.25951 −0.08060
8.4 0.06916 0.27079 0.26622 −0.05348
8.5 0.04194 0.27312 0.27021 −0.02617
8.6 0.01462 0.27276 0.27146 0.00108
8.7 −0.01252 0.26972 0.27000 0.02801
8.8 −0.03923 0.26407 0.26587 0.05436
8.9 −0.06525 0.25590 0.25916 0.07987
9.0 −0.09033 0.24531 0.24994 0.10431
9.1 −0.11424 0.23243 0.23834 0.12747
9.2 −0.13675 0.21741 0.22449 0.14911
9.3 −0.15765 0.20041 0.20857 0.16906
9.4 −0.17677 0.18163 0.19074 0.18714
9.5 −0.19393 0.16126 0.17121 0.20318
9.6 −0.20898 0.13952 0.15018 0.21706
9.7 −0.22180 0.11664 0.12787 0.22866
9.8 −0.23228 0.09284 0.10453 0.23789
9.9 −0.24034 0.06837 0.08038 0.24469
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x J0(x) J1(x) Y0(x) Y1(x)

10.0 −0.24594 0.04347 0.05567 0.24902
10.1 −0.24903 0.01840 0.03066 0.25084
10.2 −0.24962 −0.00662 0.00558 0.25019
10.3 −0.24772 −0.03132 −0.01930 0.24707
10.4 −0.24337 −0.05547 −0.04375 0.24155
10.5 −0.23665 −0.07885 −0.06753 0.23370
10.6 −0.22764 −0.10123 −0.09042 0.22363
10.7 −0.21644 −0.12240 −0.11219 0.21144
10.8 −0.20320 −0.14217 −0.13264 0.19729
10.9 −0.18806 −0.16035 −0.15158 0.18132
11.0 −0.17119 −0.17679 −0.16885 0.16371
11.1 −0.15277 −0.19133 −0.18428 0.14464
11.2 −0.13299 −0.20385 −0.19773 0.12431
11.3 −0.11207 −0.21426 −0.20910 0.10294
11.4 −0.09021 −0.22245 −0.21829 0.08074
11.5 −0.06765 −0.22838 −0.22523 0.05794
11.6 −0.04462 −0.23200 −0.22987 0.03477
11.7 −0.02133 −0.23330 −0.23218 0.01145
11.8 0.00197 −0.23229 −0.23216 −0.01179
11.9 0.02505 −0.22898 −0.22983 −0.03471
12.0 0.04769 −0.22345 −0.22524 −0.05710
12.1 0.06967 −0.21575 −0.21844 −0.07874
12.2 0.09077 −0.20598 −0.20952 −0.09942
12.3 0.11080 −0.19426 −0.19859 −0.11895
12.4 0.12956 −0.18071 −0.18578 −0.13714
12.5 0.14689 −0.16549 −0.17121 −0.15384
12.6 0.16261 −0.14874 −0.15506 −0.16888
12.7 0.17659 −0.13066 −0.13750 −0.18213
12.8 0.18870 −0.11143 −0.11870 −0.19347
12.9 0.19885 −0.09125 −0.09887 −0.20282
13.0 0.20693 −0.07032 −0.07821 −0.21008
13.1 0.21289 −0.04885 −0.05692 −0.21521
13.2 0.21669 −0.02707 −0.03524 −0.21817
13.3 0.21830 −0.00518 −0.01336 −0.21895
13.4 0.21773 0.01660 0.00848 −0.21756
13.5 0.21499 0.03805 0.03008 −0.21402
13.6 0.21013 0.05896 0.05122 −0.20839
13.7 0.20322 0.07914 0.07169 −0.20074
13.8 0.19434 0.09839 0.09130 −0.19116
13.9 0.18358 0.11653 0.10986 −0.17975
14.0 0.17108 0.13338 0.12719 −0.16664
14.1 0.15695 0.14879 0.14314 −0.15198
14.2 0.14137 0.16261 0.15754 −0.13592
14.3 0.12449 0.17473 0.17028 −0.11862
14.4 0.10649 0.18503 0.18123 −0.10026
14.5 0.08755 0.19343 0.19030 −0.08104
14.6 0.06787 0.19986 0.19742 −0.06115
14.7 0.04764 0.20426 0.20252 −0.04079
14.8 0.02708 0.20660 0.20557 −0.02016
14.9 0.00639 0.20688 0.20655 0.00053
15.0 −0.01422 0.20511 0.20546 0.02107
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Figure IV-1 Bessel functions of the first kind [J0(x), J1(x), J2(x), and J3(x)]. (Source: C. A. Balanis,
Antenna Theory: Analysis and Design , Third Edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted
by permission of John Wiley & Sons, Inc.).
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Figure IV-2 Bessel functions of the second kind [Y0(x), Y1(x), Y2(x), and Y3(x)]. (Source: C. A. Balanis,
Antenna Theory: Analysis and Design , Third Edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted
by permission of John Wiley & Sons, Inc.).
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J1(x)/x function

x J1(x)/x x J1(x)/x x J1(x)/x

0.0 0.50000 5.0 −0.06552 10.0 0.00435
0.1 0.49938 5.1 −0.06610 10.1 0.00182
0.2 0.49750 5.2 −0.06600 10.2 −0.00065
0.3 0.49440 5.3 −0.06528 10.3 −0.00304
0.4 0.49007 5.4 −0.06395 10.4 −0.00533
0.5 0.48454 5.5 −0.06208 10.5 −0.00751
0.6 0.47783 5.6 −0.05970 10.6 −0.00955
0.7 0.46999 5.7 −0.05687 10.7 −0.01144
0.8 0.46105 5.8 −0.05363 10.8 −0.01316
0.9 0.45105 5.9 −0.05002 10.9 −0.01471
1.0 0.44005 6.0 −0.04611 11.0 −0.01607
1.1 0.42809 6.1 −0.04194 11.1 −0.01724
1.2 0.41524 6.2 −0.03757 11.2 −0.01820
1.3 0.40156 6.3 −0.03303 11.3 −0.01896
1.4 0.38710 6.4 −0.02838 11.4 −0.01951
1.5 0.37196 6.5 −0.02367 11.5 −0.01986
1.6 0.35618 6.6 −0.01894 11.6 −0.02000
1.7 0.33986 6.7 −0.01423 11.7 −0.01994
1.8 0.32306 6.8 −0.00959 11.8 −0.01969
1.9 0.30587 6.9 −0.00506 11.9 −0.01924
2.0 0.28836 7.0 −0.00067 12.0 −0.01862
2.1 0.27061 7.1 0.00354 12.1 −0.01783
2.2 0.25271 7.2 0.00755 12.2 −0.01688
2.3 0.23473 7.3 0.01131 12.3 −0.01579
2.4 0.21674 7.4 0.01481 12.4 −0.01457
2.5 0.19884 7.5 0.01803 12.5 −0.01324
2.6 0.18108 7.6 0.02095 12.6 −0.01180
2.7 0.16356 7.7 0.02355 12.7 −0.01029
2.8 0.14633 7.8 0.02582 12.8 −0.00871
2.9 0.12946 7.9 0.02774 12.9 −0.00707
3.0 0.11302 8.0 0.02933 13.0 −0.00541
3.1 0.09707 8.1 0.03057 13.1 −0.00373
3.2 0.08167 8.2 0.03146 13.2 −0.00205
3.3 0.06687 8.3 0.03202 13.3 −0.00039
3.4 0.05271 8.4 0.03224 13.4 0.00124
3.5 0.03925 8.5 0.03213 13.5 0.00282
3.6 0.02652 8.6 0.03172 13.6 0.00434
3.7 0.01455 8.7 0.03100 13.7 0.00578
3.8 0.00337 8.8 0.03001 13.8 0.00713
3.9 −0.00699 8.9 0.02875 13.9 0.00838
4.0 −0.01651 9.0 0.02726 14.0 0.00953
4.1 −0.02519 9.1 0.02554 14.1 0.01055
4.2 −0.03301 9.2 0.02363 14.2 0.01145
4.3 −0.03998 9.3 0.02155 14.3 0.01222
4.4 −0.04609 9.4 0.01932 14.4 0.01285
4.5 −0.05135 9.5 0.01697 14.5 0.01334
4.6 −0.05578 9.6 0.01453 14.6 0.01369
4.7 −0.05938 9.7 0.01202 14.7 0.01389
4.8 −0.06219 9.8 0.00947 14.8 0.01396
4.9 −0.06423 9.9 0.00691 14.9 0.01388

15.0 0.01367
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∫ x
0 J0(τ)dτ and

∫ x
0 Y0(τ)dτ functions

x
∫ x

0 J0(τ)dτ
∫ x

0 Y0(τ)dτ x
∫ x

0 J0(τ)dτ
∫ x

0 Y0(τ)dτ

0.0 0.00000 0.00000 5.0 0.71531 0.19971
0.1 0.09991 −0.21743 5.1 0.69920 0.16818
0.2 0.19933 −0.34570 5.2 0.68647 0.13551
0.3 0.29775 −0.43928 5.3 0.67716 0.10205
0.4 0.39469 −0.50952 5.4 0.67131 0.06814
0.5 0.48968 −0.56179 5.5 0.66891 0.03413
0.6 0.58224 −0.59927 5.6 0.66992 0.00035
0.7 0.67193 −0.62409 5.7 0.67427 −0.03284
0.8 0.75834 −0.63786 5.8 0.68187 −0.06517
0.9 0.84106 −0.64184 5.9 0.69257 −0.09630
1.0 0.91973 −0.63706 6.0 0.70622 −0.12595
1.1 0.99399 −0.62447 6.1 0.72263 −0.15385
1.2 1.06355 −0.60490 6.2 0.74160 −0.17975
1.3 1.12813 −0.57911 6.3 0.76290 −0.20344
1.4 1.18750 −0.54783 6.4 0.78628 −0.22470
1.5 1.24144 −0.51175 6.5 0.81147 −0.24338
1.6 1.28982 −0.47156 6.6 0.83820 −0.25931
1.7 1.33249 −0.42788 6.7 0.86618 −0.27239
1.8 1.36939 −0.38136 6.8 0.89512 −0.28252
1.9 1.40048 −0.33260 6.9 0.92470 −0.28966
2.0 1.42577 −0.28219 7.0 0.95464 −0.29377
2.1 1.44528 −0.23071 7.1 0.98462 −0.29486
2.2 1.45912 −0.17871 7.2 1.01435 −0.29295
2.3 1.46740 −0.12672 7.3 1.04354 −0.28811
2.4 1.47029 −0.07526 7.4 1.07190 −0.28043
2.5 1.46798 −0.02480 7.5 1.09917 −0.27002
2.6 1.46069 0.02420 7.6 1.12508 −0.25702
2.7 1.44871 0.07132 7.7 1.14941 −0.24159
2.8 1.43231 0.11617 7.8 1.17192 −0.22392
2.9 1.41181 0.15839 7.9 1.19243 −0.20421
3.0 1.38756 0.19765 8.0 1.21074 −0.18269
3.1 1.35992 0.23367 8.1 1.22671 −0.15959
3.2 1.32928 0.26620 8.2 1.24021 −0.13516
3.3 1.29602 0.29502 8.3 1.25112 −0.10966
3.4 1.26056 0.31996 8.4 1.25939 −0.08335
3.5 1.22330 0.34090 8.5 1.26494 −0.05650
3.6 1.18467 0.35775 8.6 1.26777 −0.02940
3.7 1.14509 0.37044 8.7 1.26787 −0.00230
3.8 1.10496 0.37896 8.8 1.26528 0.02451
3.9 1.06471 0.38335 8.9 1.26005 0.05078
4.0 1.02473 0.38366 9.0 1.25226 0.07625
4.1 0.98541 0.38000 9.1 1.24202 0.10069
4.2 0.94712 0.37250 9.2 1.22946 0.12385
4.3 0.91021 0.36131 9.3 1.21473 0.14552
4.4 0.87502 0.34665 9.4 1.19799 0.16550
4.5 0.84186 0.32872 9.5 1.17944 0.18361
4.6 0.81100 0.30779 9.6 1.15927 0.19969
4.7 0.78271 0.28413 9.7 1.13772 0.21360
4.8 0.75721 0.25802 9.8 1.11499 0.22523
4.9 0.73468 0.22977 9.9 1.09134 0.23448

10.0 1.06701 0.24129
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Figure IV-3 Plot of J1(x)/x function. (Source: C. A. Balanis, Antenna Theory: Analysis and Design ,
Third Edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons,
Inc.).
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x
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−0.5
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Upper limit x
6 7 8 9 10

Figure IV-4 Plots of
∫ x

0 J0(τ )dτ and
∫ x

0 Y0(τ )dτ functions. (Source: C. A. Balanis, Antenna Theory:
Analysis and Design , Third Edition, copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission
of John Wiley & Sons, Inc.).
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Figure IV-5 Modified Bessel functions of the first kind [I0(x) and I1(x)].
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Figure IV-6 Modified Bessel functions of the second kind [K0(x) and K1(x)].
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APPENDIX V
Legendre Polynomials and Functions

V.1 LEGENDRE POLYNOMIALS AND FUNCTIONS

The ordinary Legendre differential equation can be written as

(1 − x 2)
d2y

dx 2
− 2x

dy

dx
+ p(p + 1)y = 0 (V-1)

Its solution can be written as

y(x) = A1Pp(x) + B1Pp(−x) p not an integer (V-2)

where Pp(x) is referred to as the Legendre function of the first kind . If p is an integer (p = n),
then Pn(x) and Pn(−x) are not two independent solutions because

Pn(−x) = (−1)nPn(x) (V-3)

Therefore, two independent solutions to (V-1) for p = n , an integer, are

y(x) = A2Pn(x) + B2Qn(x) (V-4)

where Qn(x) is referred to as the Legendre function of the second kind .
When p = n , an integer, Pn(x) are also referred to as the Legendre polynomials of order n ,

and are defined by

Pn(x) =
M∑

m=0

(−1)m(2n − 2m)!(x)n−2m

2nm!(n − m)!(n − 2m)!
(V-5)

where M = n/2 or (n − 1)/2, whichever is an integer.

981
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The Legendre functions Qn(x) of the second kind are defined by

Qn(x) = lim
p→n

Qp(x) = lim
p→n

π

2

Pp(x) cos(pπ) − Pp(−x)

sin(pπ)
(V-6)

The Legendre polynomials (or Legendre functions of the first kind) Pn(x) can also be obtained
more conveniently using Rodrigues’ formula

Pn(x) = 1

2nn!

dn

dx n
(x 2 − 1)n (V-7)

which when expanded leads (for n = 0, 1, 2, . . . , 7) to

P0(x) = 1

P1(x) = x

P2(x) = 1
2 (3x 2 − 1)

P3(x) = 1
2 (5x 3 − 3x)

P4(x) = 1
8 (35x 4 − 30x 2 + 3) (V-8)

P5(x) = 1
8 (63x 5 − 70x 3 + 15x)

P6(x) = 1
16 (231x 6 − 315x 4 + 105x 2 − 5)

P7(x) = 1
16 (429x 7 − 693x 5 + 315x 3 − 35x)

If x = cos θ , the Legendre polynomials (or Legendre functions of the first kind) of (V-8) can be
written as

P0(cos θ) = 1

P1(cos θ) = cos θ

P2(cos θ) = 1
4 (3 cos 2θ + 1)

P3(cos θ) = 1
8 (5 cos 3θ + 3 cos θ)

P4(cos θ) = 1
64 (35 cos 4θ + 20 cos 2θ + 9) (V-9)

P5(cos θ) = 1
128 (63 cos 5θ + 35 cos 3θ + 30 cos θ)

P6(cos θ) = 1
512 (231 cos 6θ + 126 cos 4θ + 105 cos 2θ + 50)

P7(cos θ) = 1
1024 (429 cos 7θ + 231 cos 5θ + 189 cos 3θ + 175 cos θ)

The Legendre functions Qn(x) of the second kind exhibit singularities at x = ±1 or θ = 0, π
and can be obtained from the Legendre functions Pn(x) of the first kind using the formula of

Qn(x) = Pn(x)

{
1

2
ln

(
1 + x

1 − x

)
− ψ(n)

}
+

n∑
m=1

(−1)m(n + m)!

(m!)2(n − m)!
ψ(m)

(
1 − x

2

)m

(V-10)

where

ψ(n) = 1 + 1

2
+ 1

3
+ · · · + 1

n
(V-10a)
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When (V-10) is expanded, it leads (for n = 0, 1, 2, 3) to

Q0(x) = 1

2
ln

(
1 + x

1 − x

)
Q1(x) = x

2
ln

(
1 + x

1 − x

)
− 1

Q2(x) = 3x 2 − 1

4
ln

(
1 + x

1 − x

)
− 3x

2
(V-11)

Q3(x) = 5x 3 − 3x

4
ln

(
1 + x

1 − x

)
− 5x 2

2
+ 2

3

or for x = cos θ to

Q0(cos θ) = ln

(
cot

θ

2

)
Q1(cos θ) = cos θ ln

(
cot

θ

2

)
− 1

Q2(cos θ) = 1

4
(1 + 3 cos 2θ)ln

(
cot

θ

2

)
− 3

2
cos θ (V-12)

Q3(cos θ) = 1

8
(3 cos θ + 5 cos 3θ)ln

(
cot

θ

2

)
− 5

4
cos 2θ − 7

12

The Legendre functions of the first Pn(x) and second Qn(x) kind obey the following recurrence
relations:

(n + 1)Rn+1(x) − (2n + 1)xRn(x) + nRn−1(x) = 0 (V-13a)

dRn+1(x)

dx
− x

dRn(x)

dx
= (n + 1)Rn(x) (V-13b)

x
dRn(x)

dx
− dRn−1(x)

dx
= nRn(x) (V-13c)

dRn+1(x)

dx
− dRn−1(x)

dx
= (2n + 1)Rn(x) (V-13d)

(x 2 − 1)
dRn(x)

dx
= nxRn(x) − nRn−1(x) = −(n + 1)(xRn − Rn+1) (V-13e)

where Rn(x) can be either Pn(x) or Qn(x).
Some other useful formulas involving Legendre polynomials Pn(x) and Qn(x) are∫ 1

−1
Pm(x)Pn(x) dx = 0 m �= n (V-14a)∫ 1

−1
[Pn(x)]2 dx = 2

2n + 1
(V-14b)∫ 1

0
[Qn(x)]2 dx = 1

2n + 1

[
π2

4
− 1

(n + 1)2
− 1

(n + 2)2
− · · ·

]
(V-14c)
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which indicate that the Legendre polynomials are orthogonal in the range −1 ≤ x ≤ 1. Also

Pn(−x) = (−1)nPn(x) (V-15a)

Pn(x) = P−n−1(x) (V-15b)

Qn(−x) = (−1)n+1Qn(x) (V-15c)

Pn(0) =
{

0 n = odd

(−1)n/2 1 • 3 • 5 · · · (n − 1)

2 • 4 • 6 · · · n
n = even

(V-15d)

Pn(1) = 1 (V-15e)

Pn(−1) =
{

1 n = even
−1 n = odd

(V-15f)

Qn(1) = +∞ (V-15g)

Qn(−1) =
{−∞ n = even
+∞ n = odd

(V-15h)

Pn(x) = 1

π

∫ π

0
(x +

√
x 2 − 1 cos ψ)n dψ (V-15i)∫

Pn(x) dx = Pn+1(x) − Pn−1(x)

(2n + 1)
(V-15j)

Plots of Pn(x) and Qn(x) for n = 0, 1, 2, 3 in the range −1 ≤ x ≤ 1 are shown in Figures
V-1 and V-2.

P0(x)

P2(x)

P3(x)
P1(x)

−1.0

−0.5 0.5

0.5

1.0

−0.5

−1.0

1.00.0

Figure V-1 Legendre functions of the first kind [P0(x), P1(x), P2(x), and P3(x)].
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Q0(x)

Q3(x)

Q2(x)Q1(x)

−1.0

−0.5 0.5

0.5

1.0

−0.5

−1.0

1.0
0.0

Figure V-2 Legendre functions of the second kind [Q0(x), Q1(x), Q2(x), and Q3(x)].

V.2 ASSOCIATED LEGENDRE FUNCTIONS

In addition to the ordinary Legendre differential equation V-1, there also exists the associated
Legendre differential equation

(1 − x 2)
d2y

dx 2
− 2x

dy

dx
+

[
n(n + 1) − m2

1 − x 2

]
y = 0 (V-16)

whose solution, for nonnegative integer values of n and m , takes the form

y(x) = A1Pm
n (x) + B1Qm

n (x) (V-17)

where Pm
n (x) and Qm

n (x) are referred to, respectively, as the associated Legendre functions of the
first and second kind .

The associated Legendre functions Pm
n (x) and Qm

n (x) of the first and second kind are related,
respectively, to the Legendre functions Pn(x) and Qn(x) of the first and second kind by

Pm
n (x) = (−1)m(1 − x 2)m/2 dmPn(x)

dx m

= (−1)m (1 − x 2)m/2

2nn!

dm+n(x 2 − 1)n

dx m+n
(V-18a)

Qm
n (x) = (−1)m(1 − x 2)m/2 dmQn(x)

dx m
(V-18b)

The associated Legendre functions Qm
n (x) of the second kind are singular at x = ±1, as are the

Legendre functions Qn(x).
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When (V-18a) and (V-18b) are expanded, we can write, using (V-8) and (V-11), the first few
orders of Pm

n (x) and Qm
n (x) as

P0
0 (x) = P0(x) = 1 P2

0 (x) = 0

P0
1 (x) = P1(x) = x P2

1 (x) = 0

P0
2 (x) = P2(x) = 1

2 (3x 2 − 1) P2
2 (x) = 3(1 − x 2)

P0
3 (x) = P3(x) = 1

2 (5x 3 − 3x) P2
3 (x) = 15x(1 − x 2)

...
...

P1
0 (x) = 0 P3

0 (x) = 0 (V-19a)

P1
1 (x) = −(1 − x 2)1/2 P3

1 (x) = 0

P1
2 (x) = −3x(1 − x 2)1/2 P3

2 (x) = 0

P1
3 (x) = − 3

2 (5x 2 − 1)(1 − x 2)1/2 P3
3 (x) = −15(1 − x 2)3/2

...
...

Q0
0 (x) = Q0(x) = 1

2
ln

(
1 + x

1 − x

)
Q0

1 (x) = Q1(x) = x

2
ln

(
1 + x

1 − x

)
− 1

Q0
2 (x) = Q2(x) = 3x 2 − 1

4
ln

(
1 + x

1 − x

)
− 3x

2

...

Q1
0 (x) = 0

Q1
1 (x) = −(1 − x 2)1/2

[
1

2
ln

(
1 + x

1 − x

)
+ x

1 − x 2

]
(V-19b)

Q1
2 (x) = −(1 − x 2)1/2

[
3x

2
ln

(
1 + x

1 − x

)
+ 3x 2 − 2

1 − x 2

]
...

Q2
0 (x) = 0

Q2
1 (x) = 0

Q2
2 (x) = (1 − x 2)1/2

[
3

2
ln

(
1 + x

1 − x

)
+ 5x − 3x 2

(1 − x 2)2

]
...

It should be noted that

P0
n (x) = Pn(x) (V-20a)

Q0
n (x) = Qn(x) (V-20b)
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Pm
n (x) = 0 m > n (V-20c)

Qm
n (x) = 0 m > n (V-20d)

Pm
n (−x) = (−1)n−mPm

n (x) (V-20e)

Pm
n (x) = Pm

−n−1(x) (V-20f)

Qm
n (−x) = (−1)n+m+1Qn(x) (V-20g)

Pm
n (1) =

{
1 m = 0

0 m > 0
(V-20h)

Pm
n (0) =

⎧⎨⎩ (−1)(n+m)/2 1 • 3 • 5 · · · (n + m − 1)

2 • 4 • 6 · · · (n − m)
n + m = even

0 n + m = odd
(V-20i)

Qm
n (0) =

⎧⎨⎩ 0 n + m = even

(−1)(n+m+1)/2 2 • 4 • 6 · · · (n + m − 1)

1 • 3 • 5 · · · (n − m)
n + m = odd

(V-20j)

dq Pm
n (x)

dx q

∣∣∣∣
x=0

= (−1)q Pm+q
n (0) (V-20k)

dq Qm
n (x)

dx q

∣∣∣∣
x=0

= (−1)q Qm+q
n (0) (V-20l)

Orthogonality relations of Pm
n (x) in the range of −1 ≤ x ≤ 1 are∫ 1

−1
Pm

n (x)Pm
l (x) dx = 0 n �= l (V-21a)

∫ 1

−1
[Pm

n (x)]2 dx = 2

2n + 1

(n + m)!

(n − m)!
(V-21b)

∫ 1

−1

[
dPn(x)

dx

]2

dx = n(n + 1) (V-21c)

and useful recurrence formulas are

(n + 1 − m)Rm
n+1(x) − (2n + 1)xRm

n (x) + (n + m)Rm
n−1(x) = 0 (V-22a)

Rm+2
n (x) + 2(m + 1)x

(1 − x 2)1/2
Rm+1

n (x) + (n − m)(n + m + 1)Rm
n (x) = 0 (V-22b)

where Rm
n (x) can be either Pm

n (x) or Qm
n (x).

When m is not an integer in the associated Legendre differential equation V-16, the solutions
become more complex and can be expressed in terms of hypergeometric functions . These solutions
are beyond this book, and the reader is referred to the literature.
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x P0(x) P1(x) P2(x) P3(x)

−1.00 1.00000 −1.00000 1.00000 −1.00000
−0.99 1.00000 −0.99000 0.97015 −0.94075
−0.98 1.00000 −0.98000 0.94060 −0.88298
−0.97 1.00000 −0.97000 0.91135 −0.82668
−0.96 1.00000 −0.96000 0.88240 −0.77184
−0.95 1.00000 −0.95000 0.85375 −0.71844
−0.94 1.00000 −0.94000 0.82540 −0.66646
−0.93 1.00000 −0.93000 0.79735 −0.61589
−0.92 1.00000 −0.92000 0.76960 −0.56672
−0.91 1.00000 −0.91000 0.74215 −0.51893
−0.90 1.00000 −0.90000 0.71500 −0.47250
−0.89 1.00000 −0.89000 0.68815 −0.42742
−0.88 1.00000 −0.88000 0.66160 −0.38368
−0.87 1.00000 −0.87000 0.63535 −0.34126
−0.86 1.00000 −0.86000 0.60940 −0.30014
−0.85 1.00000 −0.85000 0.58375 −0.26031
−0.84 1.00000 −0.84000 0.55840 −0.22176
−0.83 1.00000 −0.83000 0.53335 −0.18447
−0.82 1.00000 −0.82000 0.50860 −0.14842
−0.81 1.00000 −0.81000 0.48415 −0.11360
−0.80 1.00000 −0.80000 0.46000 −0.08000
−0.79 1.00000 −0.79000 0.43615 −0.04760
−0.78 1.00000 −0.78000 0.41260 −0.01638
−0.77 1.00000 −0.77000 0.38935 0.01367
−0.76 1.00000 −0.76000 0.36640 0.04256
−0.75 1.00000 −0.75000 0.34375 0.07031
−0.74 1.00000 −0.74000 0.32140 0.09694
−0.73 1.00000 −0.73000 0.29935 0.12246
−0.72 1.00000 −0.72000 0.27760 0.14688
−0.71 1.00000 −0.71000 0.25615 0.17022
−0.70 1.00000 −0.70000 0.23500 0.19250
−0.69 1.00000 −0.69000 0.21415 0.21373
−0.68 1.00000 −0.68000 0.19360 0.23392
−0.67 1.00000 −0.67000 0.17335 0.25309
−0.66 1.00000 −0.66000 0.15340 0.27126
−0.65 1.00000 −0.65000 0.13375 0.28844
−0.64 1.00000 −0.64000 0.11440 0.30464
−0.63 1.00000 −0.63000 0.09535 0.31988
−0.62 1.00000 −0.62000 0.07660 0.33418
−0.61 1.00000 −0.61000 0.05815 0.34755
−0.60 1.00000 −0.60000 0.04000 0.36000
−0.59 1.00000 −0.59000 0.02215 0.37155
−0.58 1.00000 −0.58000 0.00460 0.38222
−0.57 1.00000 −0.57000 −0.01265 0.39202
−0.56 1.00000 −0.56000 −0.02960 0.40096
−0.55 1.00000 −0.55000 −0.04625 0.40906
−0.54 1.00000 −0.54000 −0.06260 0.41634
−0.53 1.00000 −0.53000 −0.07865 0.42281
−0.52 1.00000 −0.52000 −0.09440 0.42848
−0.51 1.00000 −0.51000 −0.10985 0.43337
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x P0(x) P1(x) P2(x) P3(x)

−0.50 1.00000 −0.50000 −0.12500 0.43750
−0.49 1.00000 −0.49000 −0.13985 0.44088
−0.48 1.00000 −0.48000 −0.15440 0.44352
−0.47 1.00000 −0.47000 −0.16865 0.44544
−0.46 1.00000 −0.46000 −0.18260 0.44666
−0.45 1.00000 −0.45000 −0.19625 0.44719
−0.44 1.00000 −0.44000 −0.20960 0.44704
−0.43 1.00000 −0.43000 −0.22265 0.44623
−0.42 1.00000 −0.42000 −0.23540 0.44478
−0.41 1.00000 −0.41000 −0.24785 0.44270
−0.40 1.00000 −0.40000 −0.26000 0.44000
−0.39 1.00000 −0.39000 −0.27185 0.43670
−0.38 1.00000 −0.38000 −0.28340 0.43282
−0.37 1.00000 −0.37000 −0.29465 0.42837
−0.36 1.00000 −0.36000 −0.30560 0.42336
−0.35 1.00000 −0.35000 −0.31625 0.41781
−0.34 1.00000 −0.34000 −0.32660 0.41174
−0.33 1.00000 −0.33000 −0.33665 0.40516
−0.32 1.00000 −0.32000 −0.34640 0.39808
−0.31 1.00000 −0.31000 −0.35585 0.39052
−0.30 1.00000 −0.30000 −0.36500 0.38250
−0.29 1.00000 −0.29000 −0.37385 0.37403
−0.28 1.00000 −0.28000 −0.38240 0.36512
−0.27 1.00000 −0.27000 −0.39065 0.35579
−0.26 1.00000 −0.26000 −0.39860 0.34606
−0.25 1.00000 −0.25000 −0.40625 0.33594
−0.24 1.00000 −0.24000 −0.41360 0.32544
−0.23 1.00000 −0.23000 −0.42065 0.31458
−0.22 1.00000 −0.22000 −0.42740 0.30338
−0.21 1.00000 −0.21000 −0.43385 0.29185
−0.20 1.00000 −0.20000 −0.44000 0.28000
−0.19 1.00000 −0.19000 −0.44585 0.26785
−0.18 1.00000 −0.18000 −0.45140 0.25542
−0.17 1.00000 −0.17000 −0.45665 0.24272
−0.16 1.00000 −0.16000 −0.46160 0.22976
−0.15 1.00000 −0.15000 −0.46625 0.21656
−0.14 1.00000 −0.14000 −0.47060 0.20314
−0.13 1.00000 −0.13000 −0.47465 0.18951
−0.12 1.00000 −0.12000 −0.47840 0.17568
−0.11 1.00000 −0.11000 −0.48185 0.16167
−0.10 1.00000 −0.10000 −0.48500 0.14750
−0.09 1.00000 −0.09000 −0.48785 0.13318
−0.08 1.00000 −0.08000 −0.49040 0.11872
−0.07 1.00000 −0.07000 −0.49265 0.10414
−0.06 1.00000 −0.06000 −0.49460 0.08946
−0.05 1.00000 −0.05000 −0.49625 0.07469
−0.04 1.00000 −0.04000 −0.49760 0.05984
−0.03 1.00000 −0.03000 −0.49865 0.04493
−0.02 1.00000 −0.02000 −0.49940 0.02998
−0.01 1.00000 −0.01000 −0.49985 0.01500
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x P0(x) P1(x) P2(x) P3(x)

0.00 1.00000 0.00000 −0.50000 0.00000
0.01 1.00000 0.01000 −0.49985 −0.01500
0.02 1.00000 0.02000 −0.49940 −0.02998
0.03 1.00000 0.03000 −0.49865 −0.04493
0.04 1.00000 0.04000 −0.49760 −0.05984
0.05 1.00000 0.05000 −0.49625 −0.07469
0.06 1.00000 0.06000 −0.49460 −0.08946
0.07 1.00000 0.07000 −0.49265 −0.10414
0.08 1.00000 0.08000 −0.49040 −0.11872
0.09 1.00000 0.09000 −0.48785 −0.13318
0.10 1.00000 0.10000 −0.48500 −0.14750
0.11 1.00000 0.11000 −0.48185 −0.16167
0.12 1.00000 0.12000 −0.47840 −0.17568
0.13 1.00000 0.13000 −0.47465 −0.18951
0.14 1.00000 0.14000 −0.47060 −0.20314
0.15 1.00000 0.15000 −0.46625 −0.21656
0.16 1.00000 0.16000 −0.46160 −0.22976
0.17 1.00000 0.17000 −0.45665 −0.24272
0.18 1.00000 0.18000 −0.45140 −0.25542
0.19 1.00000 0.19000 −0.44585 −0.26785
0.20 1.00000 0.20000 −0.44000 −0.28000
0.21 1.00000 0.21000 −0.43385 −0.29185
0.22 1.00000 0.22000 −0.42740 −0.30338
0.23 1.00000 0.23000 −0.42065 −0.31458
0.24 1.00000 0.24000 −0.41360 −0.32544
0.25 1.00000 0.25000 −0.40625 −0.33594
0.26 1.00000 0.26000 −0.39860 −0.34606
0.27 1.00000 0.27000 −0.39065 −0.35579
0.28 1.00000 0.28000 −0.38240 −0.36512
0.29 1.00000 0.29000 −0.37385 −0.37403
0.30 1.00000 0.30000 −0.36500 −0.38250
0.31 1.00000 0.31000 −0.35585 −0.39052
0.32 1.00000 0.32000 −0.34640 −0.39808
0.33 1.00000 0.33000 −0.33665 −0.40516
0.34 1.00000 0.34000 −0.32660 −0.41174
0.35 1.00000 0.35000 −0.31625 −0.41781
0.36 1.00000 0.36000 −0.30560 −0.42336
0.37 1.00000 0.37000 −0.29465 −0.42837
0.38 1.00000 0.38000 −0.28340 −0.43282
0.39 1.00000 0.39000 −0.27185 −0.43670
0.40 1.00000 0.40000 −0.26000 −0.44000
0.41 1.00000 0.41000 −0.24785 −0.44270
0.42 1.00000 0.42000 −0.23540 −0.44478
0.43 1.00000 0.43000 −0.22265 −0.44623
0.44 1.00000 0.44000 −0.20960 −0.44704
0.45 1.00000 0.45000 −0.19625 −0.44719
0.46 1.00000 0.46000 −0.18260 −0.44666
0.47 1.00000 0.47000 −0.16865 −0.44544
0.48 1.00000 0.48000 −0.15440 −0.44352
0.49 1.00000 0.49000 −0.13985 −0.44088
0.50 1.00000 0.50000 −0.12500 −0.43750
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x P0(x) P1(x) P2(x) P3(x)

0.51 1.00000 0.51000 −0.10985 −0.43337
0.52 1.00000 0.52000 −0.09440 −0.42848
0.53 1.00000 0.53000 −0.07865 −0.42281
0.54 1.00000 0.54000 −0.06260 −0.41634
0.55 1.00000 0.55000 −0.04625 −0.40906
0.56 1.00000 0.56000 −0.02960 −0.40096
0.57 1.00000 0.57000 −0.01265 −0.39202
0.58 1.00000 0.58000 0.00460 −0.38222
0.59 1.00000 0.59000 0.02215 −0.37155
0.60 1.00000 0.60000 0.04000 −0.36000
0.61 1.00000 0.61000 0.05815 −0.34755
0.62 1.00000 0.62000 0.07660 −0.33418
0.63 1.00000 0.63000 0.09535 −0.31988
0.64 1.00000 0.64000 0.11440 −0.30464
0.65 1.00000 0.65000 0.13375 −0.28844
0.66 1.00000 0.66000 0.15340 −0.27126
0.67 1.00000 0.67000 0.17335 −0.25309
0.68 1.00000 0.68000 0.19360 −0.23392
0.69 1.00000 0.69000 0.21415 −0.21373
0.70 1.00000 0.70000 0.23500 −0.19250
0.71 1.00000 0.71000 0.25615 −0.17022
0.72 1.00000 0.72000 0.27760 −0.14688
0.73 1.00000 0.73000 0.29935 −0.12246
0.74 1.00000 0.74000 0.32140 −0.09694
0.75 1.00000 0.75000 0.34375 −0.07031
0.76 1.00000 0.76000 0.36640 −0.04256
0.77 1.00000 0.77000 0.38935 −0.01367
0.78 1.00000 0.78000 0.41260 0.01638
0.79 1.00000 0.79000 0.43615 0.04760
0.80 1.00000 0.80000 0.46000 0.08000
0.81 1.00000 0.81000 0.48415 0.11360
0.82 1.00000 0.82000 0.50860 0.14842
0.83 1.00000 0.83000 0.53335 0.18447
0.84 1.00000 0.84000 0.55840 0.22176
0.85 1.00000 0.85000 0.58375 0.26031
0.86 1.00000 0.86000 0.60940 0.30014
0.87 1.00000 0.87000 0.63535 0.34126
0.88 1.00000 0.88000 0.66160 0.38368
0.89 1.00000 0.89000 0.68815 0.42742
0.90 1.00000 0.90000 0.71500 0.47250
0.91 1.00000 0.91000 0.74215 0.51893
0.92 1.00000 0.92000 0.76960 0.56672
0.93 1.00000 0.93000 0.79735 0.61589
0.94 1.00000 0.94000 0.82540 0.66646
0.95 1.00000 0.95000 0.85375 0.71844
0.96 1.00000 0.96000 0.88240 0.77184
0.97 1.00000 0.97000 0.91135 0.82668
0.98 1.00000 0.98000 0.94060 0.88298
0.99 1.00000 0.99000 0.97015 0.94075
1.00 1.00000 1.00000 1.00000 1.00000
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x Q0(x) Q1(x) Q2(x) Q3(x)

−1.00 −∞ +∞ −∞ +∞
−0.99 −2.64665 1.62019 −1.08265 0.70625
−0.98 −2.29756 1.25161 −0.69109 0.29437
−0.97 −2.09230 1.02953 −0.45181 0.04408
−0.96 −1.94591 0.86807 −0.27707 −0.13540
−0.95 −1.83178 0.74019 −0.13888 −0.27356
−0.94 −1.73805 0.63377 −0.02459 −0.38399
−0.93 −1.65839 0.54230 0.07268 −0.47419
−0.92 −1.58903 0.46190 0.15708 −0.54880
−0.91 −1.52752 0.39005 0.23135 −0.61091
−0.90 −1.47222 0.32500 0.29736 −0.66271
−0.89 −1.42193 0.26551 0.35650 −0.70582
−0.88 −1.37577 0.21068 0.40979 −0.74148
−0.87 −1.33308 0.15978 0.45803 −0.77066
−0.86 −1.29334 0.11228 0.50184 −0.79415
−0.85 −1.25615 0.06773 0.54172 −0.81259
−0.84 −1.22117 0.02579 0.57810 −0.82653
−0.83 −1.18814 −0.01385 0.61131 −0.83641
−0.82 −1.15682 −0.05141 0.64164 −0.84264
−0.81 −1.12703 −0.08711 0.66935 −0.84555
−0.80 −1.09861 −0.12111 0.69464 −0.84544
−0.79 −1.07143 −0.15357 0.71770 −0.84259
−0.78 −1.04537 −0.18461 0.73868 −0.83721
−0.77 −1.02033 −0.21435 0.75774 −0.82953
−0.76 −0.99622 −0.24288 0.77499 −0.81973
−0.75 −0.97296 −0.27028 0.79055 −0.80799
−0.74 −0.95048 −0.29665 0.80452 −0.79447
−0.73 −0.92873 −0.32203 0.81699 −0.77931
−0.72 −0.90764 −0.34650 0.82804 −0.76265
−0.71 −0.88718 −0.37010 0.83775 −0.74460
−0.70 −0.86730 −0.39289 0.84618 −0.72529
−0.69 −0.84796 −0.41491 0.85341 −0.70481
−0.68 −0.82911 −0.43620 0.85948 −0.68328
−0.67 −0.81074 −0.45680 0.86446 −0.66078
−0.66 −0.79281 −0.47674 0.86838 −0.63739
−0.65 −0.77530 −0.49606 0.87130 −0.61321
−0.64 −0.75817 −0.51477 0.87326 −0.58830
−0.63 −0.74142 −0.53291 0.87431 −0.56275
−0.62 −0.72500 −0.55050 0.87446 −0.53662
−0.61 −0.70892 −0.56756 0.87378 −0.50997
−0.60 −0.69315 −0.58411 0.87227 −0.48287
−0.59 −0.67767 −0.60018 0.86999 −0.45537
−0.58 −0.66246 −0.61577 0.86695 −0.42754
−0.57 −0.64752 −0.63091 0.86319 −0.39942
−0.56 −0.63283 −0.64561 0.85873 −0.37107
−0.55 −0.61838 −0.65989 0.85360 −0.34254
−0.54 −0.60416 −0.67376 0.84782 −0.31387
−0.53 −0.59015 −0.68722 0.84141 −0.28510
−0.52 −0.57634 −0.70030 0.83441 −0.25628
−0.51 −0.56273 −0.71301 0.82682 −0.22745
−0.50 −0.54931 −0.72535 0.81866 −0.19865
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x Q0(x) Q1(x) Q2(x) Q3(x)

−0.49 −0.53606 −0.73733 0.80997 −0.16992
−0.48 −0.52298 −0.74897 0.80075 −0.14129
−0.47 −0.51007 −0.76027 0.79102 −0.11279
−0.46 −0.49731 −0.77124 0.78081 −0.08446
−0.45 −0.48470 −0.78188 0.77012 −0.05634
−0.44 −0.47223 −0.79222 0.75898 −0.02844
−0.43 −0.45990 −0.80224 0.74740 −0.00080
−0.42 −0.44769 −0.81197 0.73539 0.02654
−0.41 −0.43561 −0.82140 0.72297 0.05357
−0.40 −0.42365 −0.83054 0.71015 0.08026
−0.39 −0.41180 −0.83940 0.69695 0.10658
−0.38 −0.40006 −0.84798 0.68338 0.13251
−0.37 −0.38842 −0.85628 0.66945 0.15803
−0.36 −0.37689 −0.86432 0.65518 0.18311
−0.35 −0.36544 −0.87209 0.64057 0.20773
−0.34 −0.35409 −0.87961 0.62565 0.23187
−0.33 −0.34283 −0.88687 0.61041 0.25552
−0.32 −0.33165 −0.89387 0.59488 0.27864
−0.31 −0.32055 −0.90063 0.57907 0.30124
−0.30 −0.30952 −0.90714 0.56297 0.32328
−0.29 −0.29857 −0.91342 0.54662 0.34474
−0.28 −0.28768 −0.91945 0.53001 0.36563
−0.27 −0.27686 −0.92525 0.51316 0.38591
−0.26 −0.26611 −0.93081 0.49607 0.40558
−0.25 −0.25541 −0.93615 0.47876 0.42461
−0.24 −0.24477 −0.94125 0.46124 0.44301
−0.23 −0.23419 −0.94614 0.44351 0.46074
−0.22 −0.22366 −0.95080 0.42559 0.47781
−0.21 −0.21317 −0.95523 0.40748 0.49420
−0.20 −0.20273 −0.95945 0.38920 0.50990
−0.19 −0.19234 −0.96346 0.37075 0.52490
−0.18 −0.18198 −0.96724 0.35215 0.53918
−0.17 −0.17167 −0.97082 0.33339 0.55275
−0.16 −0.16139 −0.97418 0.31450 0.56559
−0.15 −0.15114 −0.97733 0.29547 0.57769
−0.14 −0.14093 −0.98027 0.27632 0.58904
−0.13 −0.13074 −0.98300 0.25706 0.59964
−0.12 −0.12058 −0.98553 0.23769 0.60948
−0.11 −0.11045 −0.98785 0.21822 0.61856
−0.10 −0.10034 −0.98997 0.19866 0.62687
−0.09 −0.09024 −0.99188 0.17903 0.63440
−0.08 −0.08017 −0.99359 0.15932 0.64115
−0.07 −0.07011 −0.99509 0.13954 0.64711
−0.06 −0.06007 −0.99640 0.11971 0.65229
−0.05 −0.05004 −0.99750 0.09983 0.65668
−0.04 −0.04002 −0.99840 0.07991 0.66027
−0.03 −0.03001 −0.99910 0.05996 0.66307
−0.02 −0.02000 −0.99960 0.03999 0.66507
−0.01 −0.01000 −0.99990 0.02000 0.66627

0.00 0.00000 −1.00000 0.00000 0.66667
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x Q0(x) Q1(x) Q2(x) Q3(x)

0.01 0.01000 −0.99990 −0.02000 0.66627
0.02 0.02000 −0.99960 −0.03999 0.66507
0.03 0.03001 −0.99910 −0.05996 0.66307
0.04 0.04002 −0.99840 −0.07991 0.66027
0.05 0.05004 −0.99750 −0.09983 0.65668
0.06 0.06007 −0.99640 −0.11971 0.65229
0.07 0.07011 −0.99509 −0.13954 0.64711
0.08 0.08017 −0.99359 −0.15932 0.64115
0.09 0.09024 −0.99188 −0.17903 0.63440
0.10 0.10033 −0.98997 −0.19866 0.62687
0.11 0.11045 −0.98785 −0.21822 0.61856
0.12 0.12058 −0.98553 −0.23769 0.60948
0.13 0.13074 −0.98300 −0.25706 0.59964
0.14 0.14092 −0.98027 −0.27632 0.58904
0.15 0.15114 −0.97733 −0.29547 0.57769
0.16 0.16139 −0.97418 −0.31450 0.56559
0.17 0.17167 −0.97082 −0.33339 0.55275
0.18 0.18198 −0.96724 −0.35215 0.53919
0.19 0.19234 −0.96346 −0.37075 0.52490
0.20 0.20273 −0.95945 −0.38920 0.50990
0.21 0.21317 −0.95523 −0.40748 0.49420
0.22 0.22366 −0.95080 −0.42559 0.47782
0.23 0.23419 −0.94614 −0.44351 0.46075
0.24 0.24477 −0.94125 −0.46124 0.44301
0.25 0.25541 −0.93615 −0.47876 0.42461
0.26 0.26611 −0.93081 −0.49607 0.40558
0.27 0.27686 −0.92525 −0.51316 0.38591
0.28 0.28768 −0.91945 −0.53001 0.36563
0.29 0.29857 −0.91342 −0.54662 0.34474
0.30 0.30952 −0.90714 −0.56297 0.32328
0.31 0.32054 −0.90063 −0.57907 0.30124
0.32 0.33165 −0.89387 −0.59488 0.27865
0.33 0.34283 −0.88687 −0.61041 0.25552
0.34 0.35409 −0.87961 −0.62565 0.23187
0.35 0.36544 −0.87210 −0.64057 0.20773
0.36 0.37689 −0.86432 −0.65518 0.18311
0.37 0.38842 −0.85628 −0.66945 0.15803
0.38 0.40006 −0.84798 −0.68338 0.13251
0.39 0.41180 −0.83940 −0.69695 0.10658
0.40 0.42365 −0.83054 −0.71015 0.08026
0.41 0.43561 −0.82140 −0.72297 0.05357
0.42 0.44769 −0.81197 −0.73539 0.02654
0.43 0.45990 −0.80225 −0.74740 −0.00080
0.44 0.47223 −0.79222 −0.75898 −0.02844
0.45 0.48470 −0.78189 −0.77012 −0.05633
0.46 0.49731 −0.77124 −0.78081 −0.08446
0.47 0.51007 −0.76027 −0.79102 −0.11279
0.48 0.52298 −0.74897 −0.80075 −0.14129
0.49 0.53606 −0.73733 −0.80997 −0.16992
0.50 0.54931 −0.72535 −0.81866 −0.19865
0.51 0.56273 −0.71301 −0.82682 −0.22746



Balanis b05.tex V2 - 11/22/2011 4:33 P.M. Page 995

APPENDIX V 995

x Q0(x) Q1(x) Q2(x) Q3(x)

0.52 0.57634 −0.70030 −0.83441 −0.25628
0.53 0.59014 −0.68722 −0.84141 −0.28510
0.54 0.60416 −0.67376 −0.84782 −0.31387
0.55 0.61838 −0.65989 −0.85360 −0.34254
0.56 0.63283 −0.64561 −0.85873 −0.37107
0.57 0.64752 −0.63091 −0.86319 −0.39942
0.58 0.66246 −0.61577 −0.86695 −0.42754
0.59 0.67767 −0.60018 −0.86999 −0.45537
0.60 0.69315 −0.58411 −0.87227 −0.48286
0.61 0.70892 −0.56756 −0.87378 −0.50997
0.62 0.72500 −0.55050 −0.87446 −0.53662
0.63 0.74142 −0.53291 −0.87431 −0.56275
0.64 0.75817 −0.51477 −0.87327 −0.58830
0.65 0.77530 −0.49606 −0.87130 −0.61321
0.66 0.79281 −0.47674 −0.86838 −0.63739
0.67 0.81074 −0.45680 −0.86446 −0.66078
0.68 0.82911 −0.43620 −0.85948 −0.68328
0.69 0.84795 −0.41491 −0.85341 −0.70481
0.70 0.86730 −0.39289 −0.84618 −0.72529
0.71 0.88718 −0.37010 −0.83775 −0.74460
0.72 0.90765 −0.34649 −0.82804 −0.76265
0.73 0.92873 −0.32203 −0.81699 −0.77931
0.74 0.95048 −0.29665 −0.80452 −0.79447
0.75 0.97296 −0.27028 −0.79055 −0.80799
0.76 0.99622 −0.24288 −0.77499 −0.81973
0.77 1.02033 −0.21435 −0.75774 −0.82953
0.78 1.04537 −0.18461 −0.73868 −0.83721
0.79 1.07143 −0.15357 −0.71770 −0.84259
0.80 1.09861 −0.12111 −0.69464 −0.84544
0.81 1.12703 −0.08711 −0.66935 −0.84555
0.82 1.15682 −0.05141 −0.64164 −0.84264
0.83 1.18814 −0.01385 −0.61131 −0.83641
0.84 1.22117 0.02579 −0.57810 −0.82653
0.85 1.25615 0.06773 −0.54172 −0.81259
0.86 1.29334 0.11227 −0.50184 −0.79415
0.87 1.33308 0.15978 −0.45803 −0.77066
0.88 1.37577 0.21068 −0.40979 −0.74148
0.89 1.42192 0.26551 −0.35651 −0.70582
0.90 1.47222 0.32500 −0.29737 −0.66271
0.91 1.52752 0.39005 −0.23135 −0.61091
0.92 1.58903 0.46191 −0.15708 −0.54880
0.93 1.65839 0.54231 −0.07268 −0.47419
0.94 1.73805 0.63376 0.02458 −0.38400
0.95 1.83178 0.74019 0.13888 −0.27357
0.96 1.94591 0.86807 0.27707 −0.13540
0.97 2.09230 1.02953 0.45182 0.04409
0.98 2.29755 1.25160 0.69107 0.29435
0.99 2.64664 1.62017 1.08264 0.70624
1.00 +∞ +∞ +∞ +∞
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APPENDIX VI
The Method of Steepest Descent

(Saddle-Point Method)

The method of steepest descent (saddle-point method) is used to evaluate for large values of β,
in an approximate sense, integrals of the form

I (β) =
∫

C
F (z )eβf (z ) dz (VI-1)

where f (z ) is an analytic function and C is the path of integration in the complex z plane, as
shown in Figure VI-1. The philosophy of the method is that, within certain limits, the path of
integration can be altered continuously without affecting the value of the integral provided that,
during the deformation, the path does not pass through singularities of the integrand. The new
path can also be chosen in such a way that most of the contributions to the integral are attributed
only to small segments of the new path. The integrand can then be approximated by simpler
functions over the important parts of the path and its behavior can be neglected over all other
segments. If during the deformation from the old to the new paths, singularities for the function
F (z ) are encountered, we must add (a) the residue when crossing a pole and (b) the integral,
when encountering a branch point, over the edges of an appropriate cut where the function is
single-valued.

In general, we can write (VI-1) as

I (β) =
∫

C
F (z )eβf (z ) dz = ISI + ISDP (VI-2)

where ISI takes into account the contributions from the singularities and ISDP from the steepest-
descent path. In this Appendix our concern will be the ISDP contribution of (VI-2) or

ISDP =
∫

SDP
F (z )eβf (z ) dz (VI-3)

where now F (z ) is assumed to be a well behaved function and f (z ) to be analytic in the complex
z plane (z = x + jy).

Assuming that β is real and positive, we can write

f (z ) = U (z ) + jV (z ) = U (x , y) + jV (x , y) (VI-4)

where U and V are real functions, so that the integrand of (VI-3) can be written as

F (z )eβf (z ) = F (x , y)eβU (x ,y)ejβV (x ,y) (VI-5)

997
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SDP

SDP

SDP

jy

x

C

C

C

Figure VI-1 C and SDP paths.

If f (z ) is an analytic function, the Cauchy-Riemann conditions state that

df

dz
= ∂U

∂x
+ j

∂V

∂x
= −j

∂U

∂y
+ ∂V

∂y
(VI-6)

or

∂U

∂x
= ∂V

∂y
(VI-6a)

∂U

∂y
= −∂V

∂x
(VI-6b)

If there exists a point zs = xs + jys where

df

dz

∣∣∣∣
z=zs

≡ f ′(z = zs) = f ′(zs) = 0 (VI-7)

then
∂U

∂x
= ∂V

∂y
= ∂U

∂y
= ∂V

∂x
= 0 at x = xs , y = ys (VI-8)

The surfaces U (x , y) = constant and V (x , y) = constant satisfy (VI-8) but do not have an
absolute maximum or minimum at (xs , ys). The Cauchy-Riemann conditions (VI-6a) and (VI-6b)
also tell us that, for a first-order saddle point [f ′′(zs) �= 0]

∂2U

∂x 2
= ∂2V

∂x∂y
= ∂

∂y

(
∂V

∂x

)
= ∂

∂y

(
−∂U

∂y

)
= −∂2U

∂y2

∂2U

∂x 2
= −∂2U

∂y2
(VI-9a)

∂2V

∂y2
= ∂2U

∂y∂x
= ∂

∂x

(
∂U

∂y

)
= ∂

∂x

(
−∂V

∂x

)
= −∂2V

∂x 2

∂2V

∂y2
= −∂2V

∂x 2
(VI-9b)

Because of (VI-8), (VI-9a), and (VI-9b) neither U (x , y) nor V (x , y) has a maximum or a
minimum at such a point zs , but a minimax or saddle point. If U (x , y) has an extremum at zs ,
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then 	U is positive for some changes in x and y and negative for others (a positive slope in
one direction and negative at right angles to it), whereas 	V remains constant. The same holds
if V (x , y) has an extremum. Thus, the lines of most rapid increase or decrease of one part of the
complex function f (z ) = U (x , y) + jV (x , y) are constant lines of the other.

The magnitude of the exponential factor eβU (x ,y) of (VI-5) may increase, decrease, or remain
constant depending on the choice of the path through the saddle point zs . To avoid U (x , y)
contributing in the exponential of (VI-5) over a large part of the path, we must pass the saddle
point in the fastest possible manner. This is accomplished by taking the path of integration through
the saddle point and leaving it along the line of the most rapid decrease (steepest descent) of the
function U (x , y).

Referring to Figure VI-2, let us choose a path P through the saddle point zs with differential
length ds . Then

dU

ds
= ∂U

∂x

∂x

∂s
+ ∂U

∂y

∂y

∂s
= ∂U

∂x
cos γ + ∂U

∂y
sin γ (VI-10)

where γ is the angle between ds and the x axis. The function dU /ds is a maximum for values
of γ defined by

∂

∂γ

(
∂U

∂s

)
= ∂2U

∂s2
= ∂

∂γ

[
∂U

∂x
cos γ + ∂U

∂γ
sin γ

]
= 0 (VI-11)

or
∂

∂γ

(
∂U

∂s

)
= − sin γ

(
∂U

∂x

)
+ cos γ

(
∂U

∂y

)
= 0 (VI-11a)

Using the Cauchy-Riemann conditions (VI-6a) and (VI-6b), we can write (VI-11a) as

∂

∂γ

(
∂U

∂s

)
= − sin γ

(
∂V

∂y

)
+ cos γ

(
−∂V

∂x

)
= −

[
∂V

∂y
sin γ + ∂V

∂x
cos γ

]
= 0

∂

∂γ

(
∂U

∂s

)
= −

(
∂V

∂y

∂y

∂s
+ ∂V

∂x

∂x

∂s

)
= −

(
dV

ds

)
= 0 (VI-12)

jy

dy

dx

x

ds

P

g

zs

Figure VI-2 Steepest descent path in complex z plane.
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Thus V = constant for paths along which U (x , y) changes most rapidly (and vice versa), so the
steepest amplitude path is a constant phase path . These are known as steepest ascent or descent
paths. We choose the steepest descent path, thus the name method of steepest descent . Since β

is real and positive, the exponential exp[βU (x , y)] of (VI-5) will decrease rapidly with distance
from the saddle point and only a small portion of the integration path, including the saddle point,
will make any significant contributions to the value of the entire integral.

To find the path of steepest descent, we form a function

f (z ) = f (zs) − s2 (VI-13)

where zs is the saddle point and s is real (−∞ ≤ s ≤ +∞). The saddle point corresponds to
s = 0. Using (VI-4), we can write (VI-13) as

U (z ) = U (zs) − s2 (VI-13a)

V (z ) = V (zs) steepest descent path (VI-13b)

Since the imaginary part remains constant, while the real part attains maximum at s = 0 and
decreases for other values, the path of steepest descent is described by (VI-13b).

To evaluate the integral of (VI-3), we first find the saddle point zs by (VI-7). Next, we express
f (z ), around the saddle point zs , by a truncated Taylor series

f (z ) � f (zs) + 1
2 (z − zs)

2f ′′(zs) (VI-14)

since f ′(zs) = 0. The double prime indicates a second derivative with respect to z . Substitution
of (VI-14) into (VI-3) leads to

I (β) =
∫

SDP
F (z )eβf (z ) dz � eβf (zs )

∫
SDP

F (z )e(β/2)(z−zs )
2f ′′(zs ) dz (VI-15)

Letting

− β(z − zs)
2f ′′(zs) = ξ 2 (VI-15a)

dz = dξ√−βf ′′(zs)
(VI-15b)

we can write (VI-15), by extending the limits to infinity, as

I (β) � eβf (zs )√−βf ′′(zs)

∫ +∞

−∞
F (z )e−ξ2/2 dξ (VI-16)

Assuming that F (z ) is a slow varying function in the neighborhood of the saddle point, we can
write (VI-16), by replacing F (z ) by F (zs), as

I (β) � eβf (zs )√−βf ′′(zs)
2F (zs)

∫ ∞

0
e−ξ2/2 dξ

I (β) � eβf (zs )√−βf ′′(zs)
F (zs)2

√
π

2
=

√
2π

−βf ′′(zs)
F (zs)e

βf (zs ) (VI-17)

If more than one saddle point exists, then (VI-16) can be written as

I (β) �
√

2π

β

N∑
s=1

F (zs)√−f ′′(zs)
eβf (zs ) (VI-18)
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where N is equal to the number of saddle points. The summation assumes, through the principle
of superposition, that the contribution of each saddle point is not affected by the presence of the
others.

Equation VI-18 accounts for the contribution to the integral (VI-3) from first-order saddle
points [f ′(zs) = 0 but f ′′(zs) �= 0]. For second-order saddle points [f ′(zs) = 0 and f ′′(zs) = 0],
the expression is different. For general forms of f (z ), the determination of all the steepest descent
paths may be too complicated.

If a constant level path is chosen such that | exp[βU (x , y)]| remains constant everywhere and
exp[jβV (x , y)] varies most rapidly away from the saddle points, the evaluation of the integral
can be carried out from contributions near the saddle points. Since the phase factor exp(jβV )

is stationary at and near the saddle points, and oscillates very rapidly in the remaining parts of
the path, it makes the net contributions from the other parts, excluding the saddle points, very
negligible. This is known as the method of stationary phase, and it may not yield the same result
as the method of steepest descent because their corresponding paths are different. The two will
lead to identical results if the constant level path can be continuously deformed to the steepest
descent path. This is accomplished if the two paths have identical terminations and there are no
singularities of f (z ) in the region between the two paths. The Method of Stationary Phase is
described in detail in Appendix VIII of Antenna Theory: Analysis and Design by C.A. Balanis,
Third Edition, copyright © 2005, John Wiley & Sons, Inc.
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A
Acceptors, 59
A.C. variations in materials, 68–69

complex permittivity, 68–79
Addition theorem, 655

Bessel functions, 604–606
Hankel functions, 601–604

Air-substrate modes, 423
Aluminum

atom, 40
charge density, 62
conductivity, 58
mobility, 59

Ampere’s law, 3, 5, 142
Amplitude relation, 745–748
Angular frequency, 70, 153

natural, 72
resonant, 72

Anisotropic dielectrics, 67
Anomalous (abnormal) dispersion,

78
Antenna applications, 444–448

aperture, 444–445, 447
microstrip, 445–448
monopole, 444

Antiferromagnetic material, 54
Aperture antenna analysis, coordinate system

for, 287
Aperture_GP_UTD program, 832
Array factor, 320, 322
Array multiplication rule, 177
Artificial impedance surfaces (AIS), 436–455

antenna applications, 444–448
corrugations, 439–441
mushroom engineering texture surface, 442
surface wave dispersion characteristics,

451–454
uses, 437

Artificial magnetic conductors (AMC),
441–444

mushroom AMC design, 448–451
Associated Legendre functions, 119
Astigmatic rays, 747–748, 752–753, 762–763
Asymptotic expansions, 869–870
Atom, 39–40

aluminium, 40
Bohr model of, 40
germanium, 40
hydrogen, 40
silicon, 40

Atomic models
equivalent circular electric loop, 48
equivalent square electric loop, 48
orbiting electrons, 48

Atomic number, 39
Attenuation, 374–382

circular waveguides, 495–500
rectangular waveguide

Auxiliary vector potentials, 259–305
inhomogeneous vector potential wave

equation, solution of, 279–282
vector potential A, 260–262
vector potential F, 262–263
vector potentials A and F, 263–265

Axial ratio (AR), 160

B
Backscattering, 339, 341, 584, 596, 743
Band-gap structure, 437
Basis functions, 338, 682, 691–695

entire domain, 693–695
subdomain, 691–693

Beam translator, 242
Bednorz, J. G., 65
Bent wire, 684–686
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Bessel functions, 112–114, 518, 537,
604–606, 967–979

asymptotic forms, 968
derivative, 969
differential equation, 112, 934
first kind, 967–968
graphs, 942, 945
integrals, 969–970
modified, 518, 970–971, 978–979
second kind, 113, 118, 975
spherical, 118, 549, 561, 971
zeroes, 491

Biconical transmission line, 557–561
characteristic impedance, 560–561
TEMr mode, 559–561
TEr mode, 557–559
TMr mode, 559

Bilinear formula, 901
Binomial (maximally flat) design,

215–217
Binomial impedance transformer, 213
Bistatic/Bistatic scattering width,

584, 587
circular cylinder, 607–639
rectangular plate, 591–599
sphere, 652–665
strip, 584–597

Bit Error Ratio (BER), 849
Bloch mode, 453
Bound electrons, 59
Boundary conditions, 2, 12–18

finite conductivity media, 12–14
geometry for, 13
infinite conductivity media, 15–17
sources along boundaries, 17–18
time-harmonic electromagnetic field,

22–25
Brewster angle, 173, 184–188

total transmission, 184–188
Brillouin zone, 453

C
Canonical problem, 742
Capacitor, 8–11, 28
Cauchy–Riemann conditions, 998–999
Caustic, 316–317, 582, 747
Cavities, 483–548, 549–574 (see also

Circular cavity; Rectangular resonant
cavities; Spherical cavity)

Charge density
electric, 2, 11, 15, 280
magnetic, 2–3, 28, 82–85

Charge distribution, 680–677
bent wire, 684–686
electrostatic, 680–686
straight wire, 680–684

Chebyshev (see Tschebyscheff (equal-ripple)
design)

Chu, P. C. W., 65–66
CircDielGuide program, 541
Circuit equations, 7
Circuit-field relations, 7–11

element laws, 10–11
Kirchhoff node current law, 9
Kirchhoff’s current Law, 8–10
Kirchhoff’s voltage Law, 7–8

Circuit theory
field theory and, relations between, 11
Green’s functions in, 886–889

Circular cavity, 500–508
coupling, 500
dissipated power, 507
dominant mode, 505
modes, 500–505
quality factor, 505–508
resonant frequency, 504–505
stored energy, 507

Circular cylinders, scattering by, 607–639
normal incidence plane wave scattering,

607–617
oblique incidence plane wave scattering,

617–626
Circular dielectric resonator, 526–531

optical fiber cable, 532–534
TE01δ mode, 530–531
TEz modes, 528–529

Circular dielectric waveguide, 516–526
Circular polarization, 147, 150–155

left-hand (counterclockwise) circular
polarization, 153–155

necessary and sufficient conditions
for, 155

right-hand (clockwise) polarization, 147,
150–153

Circular waveguide, 483–500
attenuation, 495–500
TEz mode, 483–488
TMz mode, 488–495

Clausius–Mosotti equation, 79
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Closed form, Green’s function in, 893–898
Coercive electric field, 43
Complex angles, 192, 220
Complex permeability, 79–80
Computer codes, 732–735, 829

electromagnetic surface patch (ESP), 735
geometrical theory of diffraction (GTD),

829–832
mini–numerical electromagnetics code

(MININEC), 734
Numerical Electromagnetic Code (NEC),

734–736
Pocklington’s wire radiation and scattering

(PWRS), 732, 734
two-dimensional radiation and scattering

(TDRS), 732–734
Conducting circular cylinder

line-source scattering by, 626–639
Conducting wedge, scattering by, 639–650

electric line-source scattering, 648–650
magnetic line-source scattering, 648–650

Conduction band, 60–61
Conduction (ohmic) losses, 374
Conductivity, 57–59

finite conductivity media, 12–14
infinite conductivity media, 15–17

Conductors, 56–57, 140
conductivity conditions for, 62
energy levels for, 61
good conductors, 75, 140, 143

Conservation of energy, 19
Conservation of power law, 21
Conservation-of-energy equation, 26
Constitutive parameters, 6
Constitutive relations, 5–6
Constraint (dispersion) equation, 104, 108,

112
Construction of solutions, 265–278, 549–557

scalar Helmholtz wave equation, solution
of, 556–557

TE mode, source-free region, 276–278,
553–554

TEM modes, source-free region, 265–272
TM mode, source-free region, 265,

272–276, 555
vector potential A(J �= 0, M = 0), 552
vector potential F(J = 0, M �= 0), 550–551
vector potentials F and A, 552

Continuity equation, 3
differential form, 6, 22–23

integral form, 6, 22–25
Continuous derivatives, 2
Convection current density, 56
Conventional method of steepest descent,

770, 775
Copper

charge density, 62
mobility, 62

Corrugations, 439–441
Coupled equation, 111
Coupling, 381–382

coaxial transmission line to rectangular
waveguide coupling, 382

electric field, 381
magnetic field, 381

Critical angle, 173, 180, 189
parallel (vertical) polarization, 198
total reflection, 188–198
wave propagation along an interface, 198

Critical temperature (Tc), 64–66
Critically damped solution, 71
Curie temperature, 43
Curie–Weiss law, 43
Current density, 4, 56

conduction electric, 2, 73
conduction magnetic, 80
convection, 56
displacement electric, 2, 72–73
displacement magnetic, 2–3, 80
impressed electric, 2–3, 73–74
impressed magnetic, 2–5, 12, 80

Curved edge diffraction, 808–815
oblique incidence, 808–815

Cutoff, 485
Cutoff frequency, 415
Cutoff wave number, 356
Cyl_Resonator program, 541
Cyl_Waveguide program, 541
Cylinder_RCS program, 665
Cylindrical coordinate system, 110–115

infinities of wave functions, 115
wave functions, 115
zeroes of wave functions, 115

Cylindrical coordinate system, 269–272,
275–276, 278, 299–305, 928–933

Cylindrical wave
addition theorem of
plane waves in terms of, 599–601
transformations and theorems,

599–606
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D
Damped

critically, 71
over, 71, 78
under, 71, 78

Debye equation, 79
Delta–gap source, 723, 729
Diagonalization, 68
Diamagnetic materials, 53–54
Dielectric circular waveguide,

516–526
eigenvalue equation, 519, 521

Dielectric constant, 46–47, 75
Dielectric-covered conducting rod,

534–541
geometry of, 535
TEz modes, 540–541
TMz modes, 534–540

Dielectric covered ground plane, 433–436
Dielectric hysteresis, 73
Dielectric losses, 378–381
Dielectric resonator, circular (see Circular

dielectric resonator)
Dielectrics, 41–48, 59, 140

anisotropic, 67
conductivity conditions for, 62
dielectric slab subjected to applied electric

field
good dielectrics, 74, 140, 142–143
isotropic, 229

Dielectric waveguides, 408–436, 516–541
(see also Ray-tracing method)

circular dielectric waveguide, 516–526
dielectric-covered ground plane,

433–436
geometry for, 409
transverse electric (TEz ) modes, 419–423
transverse magnetic (TMz ) modes,

410–419
Differential equation

coupled, 99–111, 116
uncoupled, 100–111, 554

Differential form of Maxwell’s equations, 2–3
Diffracted field, 778, 868–875

asymptotic expansions, 869–870
diffraction terms, 868–869
incident, 776, 781, 790
reflected, 773, 781

Diffraction, 741–832 (see also Geometrical
theory of diffraction (GTD) techniques)

Diffraction by wedge with impedance
surfaces, 849–879

computations, 877–879
diffracted fields, 868–875
geometrical optics, 857–865
impedance surface boundary conditions,

850–851
impedance surface reflection coefficients,

851–854
Maliuzhinets impedance wedge solution,

854–856
surface wave terms, 865–868
surface wave transition field, 875–877

Diffraction coefficients, 780–800
hard polarization, 783–784
incident, 776
Keller’s, 785
reflection, 782–783
soft polarization, 783–784

Diffraction plane, 801
Dipole

electric, 41–42, 44, 55, 68, 70
magnetic, 48–50, 55, 80–83
moment, 41–43
torque, 81–82

Dipole_Horizontal_H_Plane program,
880

Dipole_Vertical program, 879
Dirac delta weighting functions, 699–700
Dispersion equation, 72, 104
Dispersive materials, 7
Distance parameter (L), 799, 803–804, 808,

830
Divergence theorem, 3–5, 921, 924
Domains, 54
Dominant mode, 360–363, 435, 517,

559, 566
Donors, 59
Doping, 59
Double Negative (DNG) materials, 39,

228–243
propagation characteristics of, 231–233
propagation through, 233–241
refraction through, 233–241

Double positive (DPS) material, 228–243
Duality theorem, 311–312, 580
Dyadic Green’s functions, 938–941

dyadics, 938–939
Dyadic reflection coefficient, 751, 763
Dynamic model, 454–455
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E
Echo area, 583
Edge diffraction, 761–829 (see also Curved

edge diffraction; Multiple diffractions;
Straight edge diffraction)

amplitude, phase and polarization
relations, 761–765

equivalent currents in diffraction, 815–819
slope diffraction, 819–821

Effective dielectric constant, 459–466
microstrip transmission line, 462–463

Effective radius, 540
Eigenfunction, 355, 850, 900–905, 914–918
Eigenvalue equation, 519, 521
Eigenvalues, 355, 521–523, 558–563, 894
Eikonal equation, 744
Eikonal surface, 744–749, 761

cylindrical, 745
plane, 745
spherical, 745

Electrets, 43
Electric current density, 3–4
Electric field coupling, 381
Electric field integral equations (EFIE), 338,

688, 703–713
perfectly electric conducting (PEC)

surface, 704
two-dimensional EFIE, 706–713

Electric line source, 576–580
above infinite plane electric conductor,

580–583
scattering by conducting wedge, 648–650

Electric polarization vector P, 42
Electric potential, 680, 908, 916
Electric susceptibility, 46
Electrical properties of matter, 39–89
Electromagnetic band-gap (EBG), 441–444
Electromagnetic Surface Patch (ESP) code,

735
Electromagnetic theorems and principles,

311–344
duality theorem, 311–312
image theory, 315–323
induction equivalent approximations,

339–344
induction theorem (induction equivalent),

333–336
physical equivalent method, 337–344
physical optics equivalent method,

337–339

reaction theorem, 325–326
reciprocity theorem, 323–325
surface equivalence theorem, 328–333
uniqueness theorem, 313–315
volume equivalence theorem, 326–328

Electron mobility, 59
Electronic polarization, 43
Electrons

bound, 59–60
free, 56, 59–60

Electrostatic charge distribution,
680–686

Element laws, 10–11
Elliptical polarization, 147, 155–166

electromagnetic waves, polarization states
of, 162

left-hand elliptically polarized wave, 156
right-hand elliptically polarized wave, 156

Energy, 18–21, 25–29
conservation of, 3, 19, 21, 25–27, 29,

742–745, 748, 764
density
electric, 21, 129
inductor, 11
magnetic, 21, 129
velocity, 129, 136–137, 144–146

Engineered electromagnetic surfaces (see
Artificial impedance surfaces)

Entire-domain functions, 693–695
Epsilon negative (ENG) material, 228–229
Equal amplitudes, 153, 155, 158
Equiphase plane, 123
Equiphase point, 107
Equivalence principle models, 330 (see also

Surface equivalence theorem)
Equivalent currents

in diffraction, 815–819
Equivalents, 3, 332, 335–339
Expansion functions, 681, 690, 695, 701, 720
Extended Physical Theory of Diffraction

(EPTD), 827–830
Extended Spectral Theory of Diffraction

(ESTD), 827–828
Exterior wedges, 648, 779, 850

F
Faraday’s law, 5
Far-field approximations, 582
Far-field radiation, 283–284
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Far-zone field, 610–612, 615–617, 621–623,
643

Felsen-Marcuvitz method, 869–870, 875
Fermat’s principle, 742–743
Ferrites, 54, 80–89
Ferroelectric Curie temperature, 43
Ferromagnetic material, 54
Fiber optics cable, 409, 498, 532–534

attenuation, 532
discrete modes, 532
graded–index, 532–534
multimode, 532–534
normalized diameter, 526
single–mode, 532
step–index, 532, 534

Field equations, 7
Field intensity

electric, 2, 6, 14, 17–18, 24, 45–46,
259

magnetic, 2, 6, 14, 17, 25, 28, 259
Field relations (see Circuit-field relations)
Field theory, circuit theory and, relations

between, 11
Finite conductivity media, 12–14
Finite diameter wires, 723–732
Finite straight wire, 680–684
Floquet Theorem, 228
Forbidden band, 60–61
Fourier–Legendre series, 652
Free electrons, 56, 59
Fresnel integrals, 776, 778, 784–785,

961–965
graphs, 965
tables, 962–964

Fresnel reflection coefficient, 180, 183
Fresnel transmission coefficient, 180, 183
Fresnel transition function (FTF), 784–785,

789, 803, 821, 830–831
large argument, 831
small argument, 831

Fringe wave, 679

G
Galerkin’s method, 697–699
Gallium arsenide, 63

charge density, 62
conductivity, 62
mobility, 62–63

Gauss’s law, 5

Generalized Green’s function method,
922–925

nonhomogeneous partial differential
equation

Geometrical optics (GO), 701, 742–761, 777,
857–865

amplitude relation, 745–748
astigmatic rays, 747, 748, 752, 762
caustic, 747, 748, 757
conservation of energy flux, 743, 764
divergence factor, 763, 764
dyadic reflection coefficient, 751
eikonal surface, 744–748
Luneberg–Kline series, 749–750, 760–761
normal section, 754–755
phase, 761–765
primary wave front, 743–744
principal radii of curvature, 752–755
ray optics, 742
reflection from surfaces, 751–761
region, 765–778
secondary wave front, 743–744
spatial attenuation, 750, 752
spreading factor, 750, 752
variational differential, 743

Geometrical theory of diffraction (GTD)
techniques, 639, 650, 679, 701,
741–832 (see also Edge diffraction;
Geometrical optics (GO))

Germanium, 59, 63
Good conductors, 24, 75–79, 140, 143
Good dielectrics, 74–75, 140, 142–143
Graded index, 409

multimode cables, 532–534
Green’s functions, 650, 885–945 (see also

Dyadic Green’s functions; Generalized
Green’s function method)

Green’s identities and methods, 919–925
in closed form, 893–898
in engineering, 886–907
in integral form, 904–907
of scalar Helmholtz equation, 925–937
in series, 898–904
two-dimensional, in rectangular

coordinates, 908–919
Group velocity, 124, 128–129, 136–137, 370,

454
Guide wavelength (λg), 359, 370, 485
Gunn Diode oscillator, 351
Gyromagnetic ratio, 82
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H
Hallén’s integral equation, 723, 727–729

source modeling, 729
Hankel functions, 113–115, 118–120, 512,

518, 556–557, 577–578, 601, 607–615,
643, 686, 689, 696, 768, 933, 966–970

addition theorem of, 601–604
derivative, 608, 971
spherical, 118, 120, 549, 560, 651, 658,

660, 971–979
Hard polarization, 440, 650, 768–769,

820–825, 852–855
Helmholtz equation, 102, 549–550, 554–557,

904 (see also Scalar Helmholtz
equation)

cylindrical, 928–933
rectangular, 925–928
spherical, 933–937

Hermite-Gaussian functions, 534
Hermitian properties, 68, 897
High-frequency asymptotic solution,

768–772
High temperature superconductivity (HTS),

66
Holes, 60
Homogeneous materials, 7, 67–68
Horizontal electric dipole, 321–323
Horizontal polarization (see Perpendicular

(horizontal) polarization)
Huygens’s principle, 328–333
Hybrid modes, 390–393, 516–517 (see also

Longitudinal section electric (LSE)
modes; Longitudinal section magnetic
(LSM) modes)

dielectric circular waveguide, 516–526
Hydrogen atom, 40
Hyperbolic identity, 948–949
Hysteresis loop, 43, 54

I
Identities, 947–949

hyperbolic, 948–949
logarithmic, 949
trigonometric, 947–948

Image theory, 315–323
IMPATT diode, 351
Impedance

boundary condition, 849
directional, 135, 144

intrinsic, 127, 133, 135, 140, 143–144,
214–216, 283, 289, 438

surface boundary conditions, 850–851
surface reflection coefficients, 851–854
wave, 123, 126–128, 135, 142, 358, 371,

578
Incident diffracted field, 776, 780
Incident diffraction coefficient, 782–783
Incident geometrical optics, 775
Index of refraction, 46, 73, 229–230,

232–234, 237, 409, 532–534, 743
Induction theorem (induction equivalent),

333–336
approximations, 339–344
field geometry for, 334

Inductor, 8–11, 28, 487, 886
Infinite conductivity media, 15–17
Infinite line-source cylindrical wave radiation,

575–583
electric line source, 576–580
magnetic line source, 580

Infinitesimal dipole, 282, 651
Inhomogeneous vector potential wave

equation solution, 279–282
Input-match frequency band, 437–438
Insulators

conductivity conditions for, 62
energy levels for, 61

Integral equation (IE) technique, 679–703
(see also Electric field integral
equations (EFIE); Magnetic field
integral equation (MFIE))

application of point matching, 695–697
basis functions, 691–695 (see also

individual entry)
electrostatic charge distribution, 680–686
integral equation, 686–688
moment method, 697–703 (see also

individual entry)
point-matching (collocation) method,

689–691
radiation pattern, 688–689
weighting (testing) functions, 697

Integral form
Green’s function in, 904–907
of Maxwell’s equations, 3–5

Interior wedges, 648, 850, 854–855
Intrinsic (pure) semiconductor, 59
Intrinsic impedance, 127, 198–99, 206,

214–216, 283, 851
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Intrinsic reflection coefficients,
208–209

Ionic or molecular polarization, 43
Irreducible Brillouin zone, 453
Isolated poles, 770, 775–776
Isotropic materials, 7, 67–68

K
Keller’s diffraction coefficients/functions,

778, 785
Kirchhoff’s current Law, 8–10
Kirchhoff’s voltage Law, 7–8
Kramers–Kronig relations, 79
Kronecker delta function, 721, 900

L
Larmor precession frequency, 81–82
Law of diffraction, 765
Left-hand polarization, 147, 153–155
Legendre differential equation, 117
Legendre polynomials, 652, 933, 935,

981–996
associated functions, 119, 549, 556, 652,

659–660, 985–997
differential equation, 117, 981
functions, 652, 981–985
Legendre function of first kind, 556,

981–982
Legendre function of second kind, 981
ordinary Legendre differential equation,

981
Leontovich boundary condition, 849, 851
Line source (see also Infinite line-source

cylindrical wave radiation)
electric, 576–583, 628–632, 639–643
magnetic, 580, 632–639, 644–647
strip, 733

Linear integral operator, 690
Linear materials, 7, 67–68
Linear polarization, 148–150, 161–162
Linked boundary conditions (LBC), 453
Logarithmic identity, 949
Longitudinal section electric (LSE) modes,

390–399, 407
filled rectangular waveguide, 398
partially filled waveguide, 393–399

Longitudinal section magnetic (LSM) modes,
390, 393, 400–405, 408, 410–416

filled rectangular waveguide, 397
partially filled waveguide, 400–405

Lorentz reciprocity theorem, 324–325
Lorenz conditions, 262, 550
Loss tangent

electric, 74–75
magnetic, 80

Lossless media, 102–107, 110–111, 173–197
Lossy dielectric sphere, 663–665
Lossy media, 107–109, 198–205

normal incidence, conductor–conductor
interface, 198–201

oblique incidence, 201–205
TEM in, 138–146

Love’s equivalence principle, 329–330
Lowest-order modes, 265, 535, 540, 565, 576
Lumped-circuit theory, 375
Luneberg–Kline high-frequency expansion,

749–750, 760–761
conditional equation, 749
eikonal equation, 749
transport equation, 749

M
Macroscopic scale models of materials, 44

nonpolar, 44
polar, 44

Magnetic current density, 3–5, 7, 11, 328,
330, 336–337, 729

Magnetic field coupling, 381
Magnetic field integral equation (MFIE), 338,

713–723 (see also Finite diameter
wires)

two-dimensional MFIE
Magnetic flux density, 6, 14, 28, 50
Magnetic frill generator, 729–732
Magnetic line source, 580, 632–639

scattering by conducting wedge, 648–650
Magnetic materials, 81

atomic model, 81
phenomenological model, 81

Magnetic susceptibility, 51, 54
Magnetics, 3–28, 48–68

anisotropic, 7, 67
antiferromagnetic, 53–54
diamagnetic, 51, 53–54
dispersive, 7, 67
ferrimagnetic, 53–55, 79–81
ferromagnetic, 43, 51, 53–54, 67, 79–80
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homogeneous, 7, 10, 67–68
inhomogeneous, 7, 67
isotropic, 7, 67–68
linear, 7, 15, 43, 48, 67–68
nondispersive, 7–8, 71
nonhomogeneous, 7, 67
nonisotropic, 7, 67
nonlinear, 7, 67–68
paramagnetic, 51, 53–54, 79
torque, 50, 81–83

Magnetization, 7, 48–55
current, 48–50
current density, 49–50, 52–53
magnetization vector, 50

Maliuzhinets impedance wedge solution,
854–856

Master surface, 453
Maxwell’s equations, 1–5

time-harmonic electromagnetic field, 22
time-varying electromagnetic field

Maxwell–Ampere equation, 52
Meissner effect, 64
Metamaterials, 39, 66–67, 227–245, 436

classification of, 228–229
double negative (DNG) material, 229–230
double positive (DPS) material, 228
ENG (epsilon negative) material, 228
historical perspective, 230–231
mu negative (MNG) material, 229

Method of steepest descent, 639, 767,
770–777, 856, 997–1001

Cauchy–Riemann conditions, 998–999
constant phase path, 1000
conventional, 770, 775–776
Pauli–Clemmow, 776–777, 869–870
steepest amplitude path, 1000
steepest descent path, 771, 773, 775, 777,

999–1001
Method of weighted residuals, 697, 701
Microstrip transmission line, 455, 459–464

boundary-value problem, 465–466
effective dielectric constant of, 462–463
evolution of, 456
geometry, 455
shielded configuration of, 465

Microwave cooking, 73
Mie region, 662, 757
Mini-Numerical Electromagnetic Code

(MININEC), 734
Mobility

electron, 59
hole, 59–61

Modal solution, 767–768
Modes, 123

plane waves, 123 (see also Uniform plane
waves)

transverse electric (TE), 133 (see also
Transverse electric (TE) mode)

transverse electromagnetic (TEM), 123
(see also Transverse electromagnetic
(TEM) modes)

transverse magnetic (TM), 133 (see also
Transverse magnetic (TM) mode)

Modified Pauli-Clemmow method, 869–870
Molecule, 39
Moment method (MM), 697–735, 741

basis functions, 682, 691–695 (see also
Basis functions)

collocation, 683, 689–691, 695–697, 707,
711, 733

delta–gap, 723, 729
diagonal terms, 696
expansion functions, 681, 695, 701, 733
Galerkin’s method, 697
linear integral operator, 690
magnetic frill generator, 724, 729–732
nondiagonal terms, 697
point–matching (see collocation above)
self terms, 696
testing functions, 697
weighted residual, 697, 701
weighting functions, 697

Monolithic microwave integrated circuits
(MMICs), 527

Monopole program, 879
Monopole_GP_UTD program, 832
Monostatic scattering width, 590, 733

circular cylinder, 733–734
rectangular cylinder, 733–734
strip, 733

Mu negative (MNG) material, 229
Mueller, K. A., 65
Multimode fibers, 532
Multiple diffractions, 821–829

first-order diffraction, 822
higher-order diffractions, 822
overlap transition diffraction region,

827–829
second-order diffraction, 822
self-consistent method, 824–827
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Multiple interfaces, 205–220
binomial (maximally flat) design, 215–217
oblique-wave incidence, 219–220
quarter-wavelength transformer, 214–215
reflection coefficient
reflection of, 205–220
transmission of, 205–220

Multiple layers, reflection coefficient of,
213–220

Mushroom AMC design, 448–451

N
Negative-Refractive-Index-Transmission

Lines (NRI-TL), 241–245
Neutrons, 39
Nondispersive media, 67–68
Nonhomogeneous materials, 7, 67
Nonisotropic materials, 7, 67
Nonlinear materials, 7, 67
Nonpolar materials, 43–44
Normal dispersion, 78
Normal incidence, lossless media, 173–177

reflection in, 174
transmission in, 174

Normal section, 754–755
N-type semiconductors, 59
Nuclear spin, 52
Null field approach, 715
Numerical Electromagnetic Code (NEC),

734–736

O
Oblique-wave incidence, 219–220

lossless media, 177–198
Ohm’s law, 10–11, 28
Onnes, H. K., 64
Optical fiber cable (see Fiber optics cable)
Orientational polarization, 41–43
Orthogonality relationships, 650, 652–653
Orthonormal eigenfunctions, 900–901, 903,

905, 912–914
Overdamped solution, 71
Overlap transition diffraction region, 827–829

P
Parallel (vertical) polarization, 177, 182–184,

187
Parallel plates, 509–513 (see also under

Radial waveguides)

Paramagnetic material, 51–54
Partially filled waveguide, 393–405

longitudinal section electric
(LSEy)/transverse electric (TEy),
393–399

longitudinal section magnetic
(LSMy)/transverse magnetic (TMy),
400–405

Pattern multiplication rule, 320
Pauli-Clemmow modified method of steepest

descent, 776
PEC_Circ_Plate_RCS program, 665
PEC_Circ_RCS_UTD program, 832
PEC_Cyl_Normal_Fields program, 665
PEC_Cyl_Normal_SW program, 665
PEC_Cyl_Oblique_Fields program, 665
PEC_Cyl_Oblique_RCS program, 665
PEC_Cyl_Oblique_SW program, 665
PEC_DIEL_Sphere_Fields program, 665
PEC_Rect_Plate_RCS program, 665
PEC_Rect_RCS_UTD program, 832
PEC_Square_Circ_RCS_UTD program, 832
PEC_Strip_Line_MoM program, 735
PEC_Strip_SW program, 665
PEC_Strip_SW_MoM program, 735
PEC_Strip_SW_UTD program, 832
PEC_Wedge program, 832
Penetration depth, 64
Perfect electric conductor (PEC), 329, 335,

655–663
Perfect magnetic conductor (PMC), 15, 18,

330–332, 437–453, 527, 853
Permeability, 48–55

complex, 79–80
effective, 86
relative, 51–54
static, 51, 68
tensor, 88

Permittivity, 41–48
complex, 68–79
principal, 68
relative, 46–47, 77–80
static, 46
tensor, 67–68

Perpendicular (horizontal) polarization, 177,
178–182, 186

Phase constant, 101–102, 108, 128, 133,
139–143, 199, 205, 231, 234, 380

Phase velocity, 107, 128, 136–137, 192–195,
203, 245, 370
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Photonic band-gap (PBG) surfaces, 227, 230,
436, 441–444

dipole phased array on, 447
Physical equivalent approximations, 339–344

for scattering from PEC, 340
Physical optics (PO) technique, 337–339,

584, 594, 596, 701, 741
Physical theory of diffraction (PTD), 575, 741
Plane of incidence, 177–178, 734, 751
Plane waves, 123, 599–601, 745 (see also

Uniform plane waves)
Plane wave scattering, 644

by planar surfaces, 583–606
Plasma, 61–62, 229–230
Pocklington’s integro-differential equation,

723, 724–732
Pocklington’s wire radiation and scattering

(PWRS), 734–735
radiation, 734
scattering, 734

Poincaré sphere, 160–166, 221–224
Point matching method, 689–691, 695–697
Polarization, 41–48, 146–166

characteristics, 220–227 (see also under
Reflection)

circular, 147, 150–155
dipole or orientational polarization, 42
electric polarization vector P, 42
electronic polarization, 43
elliptical, 147, 155–166
ionic or molecular polarization, 43
left-hand polarization, 147
linear, 147–150
orientational polarization, 41
right-hand polarization, 147, 150–153

Polarization_Propag program, 162, 166
Polarization_Refl_Trans program, 245
Polar materials, 42–44
Power, 18–21, 25–29, 372–374

conservation of, 21
density, 20–21, 372–374
dissipated, 20–21, 27, 375–376
exiting, 21, 27
supplied, 21

Poynting vector, 20, 25–26, 129, 230–231,
234, 238, 240–242

Precession frequency, 81–82
Primary wave front surface ψ0, 743
Principal coordinates, 68
Principal permittivities, 68

Principal planes, 754–755, 758, 800, 804–807
Principal radii of curvature, 752–755, 810

incident wave front, 753, 755, 803, 808
reflected wave front, 752–753, 755–756,

810
Propagation, 123–166

constant, 101, 108, 142–144, 398, 405
lossless media, 124–138, 177–198
lossy media, 138–146, 198–205
oblique axis, 138–145, 177–198
principal axis, 124–138, 138–146

Protons, 39–40
P-type semiconductors, 59
PWRS program, 735

Q

Quality factor (Q), 352, 382, 387, 505–508,
566–568

circular cavity, 508, 568
rectangular cavity, 508
spherical cavity, 566–568

Quanta, 40–41
Quarter-wavelength transformer, 214–215
QuarterWave_Match program, 245

R
Radar cross section (RCS), 441, 583–584,

591, 596–599, 665, 662, 742, 828–831,
878

conversion to two–dimensional
Radial waveguides, 509–516

parallel plates, 509–513
wedged plates, 513–516

Radiation equation, 284–305
far field, 286–305
near field, 284–286

Radiation pattern, 583, 688–689
Radio Absorbing Material (RAM), 878
Rate of change (slope), 800
Rayleigh region scattering, 662–663
Ray optics (see Geometrical optics (GO))
Ray-tracing method, 423–433

reflecting plane wave representation, 427
TEz mode (perpendicular polarization),

428, 431–433
TMz mode (parallel polarization), 428–431
wave beam properties, 423

Reaction theorem, 325–326
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Reciprocity theorem, 323–325
Lorentz reciprocity theorem, 324–325

Rectangular coordinate system, 102–109,
265–269, 273–275, 276–278, 290–299,
925

infinities of, 105
source-free and lossy media, 107–109
source-free media and lossless media,

102–107
two-dimensional Green’s function in,

908–919
wave functions of, 105
zeroes of, 105

Rectangular plate scattering, 591–599
backscattered, 596
bistatic, 592, 596–599
monostatic, 597–599

Rectangular resonant cavities, 382–390
geometry for, 385
transverse electric (TEz ) modes,

385–388
transverse magnetic (TMz ) modes,

389–390
Rectangular waveguide, 352–382 (see also

Attenuation)
coupling, 381–382
cutoff frequency, 356, 359–364
cutoff wave number, 356
degenerate modes, 356
dielectric loaded rectangular waveguide,

geometry of, 391
dominant TE10 mode, 365–372 (see also

TE10 mode)
eigenfunction, 355
eigenvalue, 355
evanescent waves, 357
guide wavelength, 359, 362
hybrid modes, 390–393
losses
normalized wavelength for, 359
phase constant, 380
power density, 372–374
reference table, 383–384
transverse electric (TEz ), 353–361
transverse magnetic (TMz ), 361–365
wave impedance for, 358

Reduced Hermitian eigen problem, 453
Reflection, 173–257

coefficient, 174–188, 193, 198

diffraction coefficient, 782
lossless media, 173–198
lossy media, 198–205
multiple interfaces, 205–220
parallel (vertical ) polarization, 177,

182–184, 187–188
perpendicular (horizontal) polarization,

186, 188–197
polarization characteristics on, 220–227
total reflection, 188–198 (see also Critical

angle)
Refl_Trans_Multilayer, 245
Relative permittivity, 46–47, 51, 53, 77
Relaxation time constant, 56, 79
Remnant polarization, 43
Residue calculus, 773–774, 906–907
Resistivity, 59
Resistor, 3, 10–11, 28
Resonance, 88, 566, 623, 662, 757, 904, 919

(see also Transverse resonance method
(TRM))

Resonators, 516–541 (see also Cavities)
circular dielectric resonator, 526–531

Ridged waveguide, 466–470
bandwidth for, 469
cross sections of, 467
geometry for, 467
normalized attenuation for, 469

Right-hand polarization, 147, 150–153
Ring radiator, 814–815, 819
Rodrigues’ formula, 982

S
Saddle points, 770, 772–773, 775–777,

868–871, 998–999 (see also Method of
steepest descent)

Scalar Helmholtz equation, 102, 549
Green’s functions of, 925–937
solution of, 556–557

Scattering, 575–678 (see also Conducting
wedge, scattering by)

backscattering, 339, 341, 584, 596, 743
bistatic, 584, 588, 591, 596, 733–734
circular cylinder, 609–639 (see also

Circular cylinders, scattering by)
equation, 284–305
field, 333, 575, 608, 687, 696,

704–707
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infinite line-source cylindrical wave
radiation, 575–583 (see also individual
entry)

monostatic (backscattering), 339, 341, 584,
596, 733, 743, 828–829

plane wave scattering by planar surfaces,
583–606 (see also individual entry)

radar cross section (RCS), 583–584
rectangular plate, 591–599 (see also

Rectangular plate scattering)
scattering width (SW), 583–584
specular, 584
by a sphere, 655–665 (see also Sphere,

scattering by)
strip, 583–591 (see also Strip scattering)
wedge, 639–650 (see also Wedge

scattering)
Schelkunoff, S. A., 120, 328, 556
Secondary wave front surfaces ψn , 743
Self-consistent method, 824–827
Semiconductors, 59–64

acceptors, 59
bound electrons, 59
conductivity conditions for, 62
donors, 59
doping, 59
energy levels for, 61
forbidden band, 60
free electrons, 59
germanium, 59
holes, 60
intrinsic (pure), 59
n-type semiconductors, 59
p-type semiconductors, 59
silicon, 59

Separation of variables method, 102–123,
273, 275, 353

cylindrical coordinate system, 110–115
rectangular coordinate system, 102–109
spherical coordinate system, 115–120

Series, Green’s function in, 898–904
Shadow boundary

incident, 766, 776, 778, 787–790
reflected, 766, 778

Silicon, 40, 59
atom, 40
charge density, 62
conductivity, 60–62
mobility, 61

Silver
charge density, 62
conductivity, 58
mobility, 61

Single-mode step-index, 532
Single_Slab program, 245
Single slab layer, reflection coefficient of,

206–213
Skin depth, 64, 140–143, 201, 436
Slave surface, 453
Slope diffraction, 799, 819–821

coefficients, 800, 820–821
hard, 820
soft, 820

Slope wedge diffraction coefficient (SWDC),
821, 831, 832

Small radius approximation, 610, 614–615
Snell’s law of reflection, 179, 183
Snell’s law of refraction, 179, 183, 429, 432
Soft polarization, 852, 855
Solid-state microwave sources, 351
Sphere, scattering by, 655–665

lossy dielectric sphere, 663–665
Mie region, 662
monostatic, 661–665
perfect electric conducting (PEC) sphere,

655–663
plane wave incidence, 656
radar cross section, 660–662
Rayleigh region, 662–663
resonance region, 662

Sphere_RCS program, 666
Spherical Bessel functions, 118, 549, 563,

565, 936–937
Spherical cavity, 561–568

degenerate modes, 563–566
dissipated power, 566
dominant mode, 566
quality factor (Q), 566–568
resonant frequency, 562–566
stored energy, 566
transverse electric (TEr ) modes,

562–564
transverse magnetic (TMr ) modes,

564–566
Spherical coordinate system, 115–120,

933–937
Spherical Hankel functions, 118, 651, 658,

660, 663
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Spherical transmission lines, 549–574 (see
also under Construction of solutions)

Spherical wave orthogonalities,
transformations, and theorems, 650–655

orthogonality relationships, 652–653
vertical dipole spherical wave radiation,

650–652
wave transformations and theorems,

653–655
Standing waves, 104–105, 114–115, 118–119,

129–131, 177, 549
standing wave ratio (SWR), 130

Static fields, 56, 64, 83, 86, 908–916
closed form, 908–914
series form, 914–918

Static (d.c.) conductivity, 59
Static permeability, 51
Static permittivity, 46
Stationary phase, 1001
Steepest descent path, 771, 773, 856–860,

868–872, 875–876, 999–1001
Step index, 409

multimode, 532
single-mode, 532–533

Stokes’ theorem, 3–4
Straight edge diffraction, 765–780

normal incidence, 765–800
oblique incidence, 800–808

Stray capacitance, 9
Stray inductance, 8
Stripline transmission line, 455–466

capacitance model for, 457
evolution of, 456
geometry, 455

Strip scattering, 733
TMz plane wave scattering from, 584–591

Sturm-Liouville problems/operator, 891–907
equation, 866, 891–893
Hermitian properties, 897
symmetrical properties, 897, 898

Subdomain functions, 691–695
Substrate modes, 423, 425
Successive scattering procedure, 824
Superconductors, 64–66
Surface equivalence theorem, 328–331

electric current density, 329
equivalence principle models, 330
Love’s equivalence principle, 329
magnetic current density, 328, 330

Surface ray field, 875

Surface wave, 190–192, 413, 419, 435–438,
443, 445, 849

dispersion characteristics, 451–454
frequency bandgap, 438
modes, 408
terms, 865–868
tightly bound slow surface wave, 192, 195
transition field, 875–877

Susceptibility
electric, 46, 76
electronic, 76
ionic, 76
magnetic, 51
tensor, 88

SWDC program, 832

T
TDRS program, 735
TE10 mode, 365–372

electric current density patterns for, 369
electric field patterns for, 368
group (energy) velocity for, 371
magnetic field patterns for, 369
phase velocity for, 371
uniform plane wave representation of, 370

Tesseral harmonics, 652, 935
Testing functions, 697
Time constant τ , 886–887
Time-harmonic electromagnetic field, 21–29,

101–102, 917–919
boundary conditions, 22–25
energy, 25–29
Maxwell’s equations, 22
power, 25–29

Time-varying electromagnetic field, 1–29,
99–101

constitutive parameters and relations, 5–7
circuit-field relations, 7–11
boundary conditions, 12–18 (see also

individual entry)
Transfer function, 885
Transition function, 776–777 (see also

Fresnel transition function (FTF))
Transition region (TR), 778, 827–829
Transmission, 173–257

coefficient, 173–176, 180–185, 198, 207,
213, 219, 220, 223, 239

lossless media, 173–198
lossy media, 198–205
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multiple interfaces, 205–220
parallel (vertical) polarization, 182–184,

187–188, 198
perpendicular (horizontal) polarization,

178–182, 186, 188–198
quarter–wavelength transformer, 211–215
total transmission, 184–188 (see also

Brewster angle)
Tschebyscheff impedance transformer,

217–219
Transverse direction wave number, 406
Transverse electric (TE) mode, 133 (see also

under Construction of solutions)
TEr mode
TEx mode
TEy mode, 390–392
TEz mode

Transverse electromagnetic (TEM) modes,
123–138, 265–272, 559–561 (see also
under Construction of solutions)

equiphase plane, 123
in lossy media, 138–146 (see also Lossy

media: TEM in)
modes, 123
plane waves, 123
standing waves, 129–131 (see also

individual entry)
TEMr mode, 559–561
uniform plane wave, 123–129 (see also

individual entry)
Transverse magnetic (TM) mode, 265,

272–276 (see also under Construction
of solutions)

TMr mode, 559
TMy mode, 393, 400–405
TMz mode

Transverse resonance method (TRM),
405–408

equation, 406
modes, 407–408
wave number, 405–406

Transverse wave equation, 406
Traveling waves, 104, 115, 119, 126, 177

attenuating, 105, 109, 115
cylindrical coordinate system, 110–115
rectangular coordinate system, 102–109
spherical coordinate system, 115–120

Trigonometric identity, 863–864, 870,
947–948

Tschebyscheff (equal-ripple) design, 217–219

Two-dimensional EFIE
TEz polarization, 706–713
TMz polarization, 706–709

Two-dimensional MFIE
TEz polarization, 717–719
TMz polarization, 715–717

Two-dimensional radiation and scattering
(TDRS), 732–734

circular, elliptical, or rectangular cylinder,
733–734

strip, 733

U
Uncoupled equation, 100, 111, 554
Underdamped solution, 71–72, 78
Uniform plane waves, 123–146

complex field, 125
instantaneous fields, 125
in unbounded lossless medium oblique

angle, 131–138
in unbounded lossless medium principal

axis, 124–131
Uniform theory of diffraction (UTD), 778,

784, 879 (see also Geometrical theory
of diffraction)

Uniqueness theorem, 313–315
Unknown current density, 339, 689

V
Valence

band, 40
electrons, 40, 60–61
shell, 40

Variational differential, 743
Vector analysis, 951–959

vector transformations, 951–956
Vector differential operators, 956–959

cylindrical coordinates, 956–957
rectangular coordinates, 956
spherical coordinates, 957
vector identities, 958–959

Vector identities, 958–959
addition, 958
differentiation, 958
integration, 959
multiplication, 958

Vector potential A, 260–262, 552
Vector potential F, 262–263, 550–551
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Vector potentials A and F, 263–265
Vector wave equations, 100
Vertical dipole spherical wave radiation,

650–652
Vertical electric dipole, 317–321
Vertical polarization (see Parallel (vertical)

polarization)
Veselago planar lens, 232
Vibrating string, 898–899
Virtual source, 315–317, 580, 582
Voltage, 7–8, 11
Voltage standing wave ratio (VSWR),

130
Volume equivalence theorem, 326–328

W
Watson transformation, 639
Wave equation

lossless media, 102, 110
lossy media, 107–109
solution
time–harmonic fields, 101–102
time–varying fields, 99–101
transverse wave equation, 406
vector wave equations, 100

Wave impedance, 126–128, 135, 358
Wave propagation and polarization, 123–171

(see also Propagation)
Wave transformations, 599–600, 653–655

cylindrical, 599–606

Waveguides (see also Circular waveguides;
Radial waveguides)

modes, 423
rectangular cross-section, 351–481 (see

also Dielectric waveguides; Partially
filled waveguide; Rectangular
waveguide; Ridged waveguide)

WDC program, 831
Wedge

conducting wedge, scattering by, 639–650
(see also individual entry)

diffraction, 741–831 (see also Diffraction
by wedge with impedance surfaces;
Geometrical theory of diffraction)

exterior, 648, 742
interior, 648
slope wedge diffraction coefficients

(SWDC), 831
wedged plates, 513–516

Weighting (testing) functions, 697
Wire_Charge program, 735
Wronskian of Bessel functions, 609

X
X-band microwave sources

Gunn diode wafer, 352
X-13 klystron, 352

Z
Zonal harmonics, 652
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Glossary of Symbols, Units and Names (continued at back)

Symbol Unit Name

A Wb/m Magnetic vector potential
A(s , s ′) —— Amplitude spreading factor

AR —— Axial ratio
(

major axis of ellipse
minor axis of ellipse ; +for CCW, - for CW

)
B Siemens Susceptance
�, B Wb/m2 Magnetic flux density
bn(βr) —— Spherical Bessel [jn(βr)] and Hankel [h(1,2)

n (βr)] functions
B̂n(βr) —— Schelkunoff spherical Bessel [Ĵn(βr)] and Hankel [Ĥ (1,2)

n (βr)] functions
C F Capacitance
Co(x), So(x)

C (x), S (x)

C1(x), S1(x)

—— Fresnel integrals

cm centimeter Distance
CP —— Circular polarization
CW —— Clockwise
CCW —— Counterclockwise
�, D C/m2 Electric flux density
D, D̃ —— Dyadic diffraction coefficient (tensor)
�, E V/m Electric field intensity

, F Q/m Electric vector potential
F (X ) —— Fresnel transition function
f Hz Frequency
fc Hz Cutoff frequency
fr Hz Resonant frequency
G Siemens Conductance
G(x , x ′) —— Green’s function
�, H A/m Magnetic field intensity
H (1)

n (x) —— Hankel function of first kind of order n
H (2)

n (x) —— Hankel function of second kind of order n
Ie A Electric current
Im V Magnetic current
In(x) —— Modified Bessel function of first kind of order n
�, J A/m2 Volume electric current density
�c , Jc A/m2 Conduction electric current density
�d , Jd A/m2 Displacement electric current density
�s , Js A/m Surface electric current density
Jn (x) —— Bessel function of first kind of order n
Kn(x) —— Modified Bessel function of second kind of order n
L H Inductance
LH —— Left hand
LSE —— Longitudinal Section Electric
LSM —— Longitudinal Section Magnetic
� A/m Magnetic polarization vector
�, M V/m2 Volume magnetic current density
�i , Mi V/m2 Impressed magnetic current density
�d , Md V/m2 Displacement magnetic current density
m meters Distance
m A-m2 Magnetic vector dipole moment
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Ne Electrons/m3 Free electron density
Nh Holes/m3 Bound hole density
p C-m Electric vector dipole moment
�, P C/m2 Electric polarization vector
Pm

n (cos θ) —— Associated Legendre function of first kind
Pn(cos θ) —— Legendre polynomial/function of first kind
p

d
, pd W/m3 Dissipated power density (σ�2, 1

2 σ |E|2)
�d , Pd W Dissipated power (

∫∫∫
V σ�2dv, 1

2

∫∫∫
V σ |E|2dv)

�e , Pe W Exiting power
p

s
, ps W/m3 Supplied power density[−(� · �i + � · �i ), − 1

2 (H∗ · Mi + E · Ji )]
�s , Ps W Supplied power[−(

∫∫∫
V (� · �i + � · �i )dv), −( 1

2

∫∫∫
V (H∗ · Mi + E · Ji )dv)]

�, Q C Electric charge

Q —— Quality factor
(
ω

stored energy
dissipated power

)
Qm

n (cos θ) —— Associated Legendre function of second kind
Qn(cos θ) —— Legendre polynomial/function of second kind
q

ev
, qev C/m3 Electric volume charge density

q
es

, qes C/m2 Electric surface charge density
q

mv
, qmv W/m3 Magnetic volume charge density

q
ms

, qms W/m2 Magnetic surface charge density
R ohms Resistance
RH —— Right hand
sec seconds Time
	 W/m2 Poynting vector (	 = � × �)

S, Save W/m2 Time-average Poynting vector [Sav = S = 1
2 Re(E × H∗)]

SW m Scattering width (two-dimensional RCS)
Tc K Critical temperature
Tn(z ) —— Tschebyscheff polynomial of order n
tr sec Relaxation time

tanδ —— Total electric loss tangent

(
σe

ωε′ = σs + σa

ωε′ = σs

ωε′ + σa

ωε′

)
tanδa —— Alternating electric loss tangent

( σa

ωε′
)

tanδs —— Static electric loss tangent
( σs

ωε′
)

T —— Transmission coefficient
TE —— Transverse Electric
TM —— Transverse Magnetic
TEM —— Transverse ElectroMagnetic
TRM —— Transverse Resonance Method

SWR —— Standing Wave Ratio

( |E |max

|E |min
= 1 + |�|

1 − |�|
)

v, v m/sec Speed/velocity of wave
we , we Joules/m3 Electric energy density

( 1
2 ε|�2|, 1

4 ε|E|2)
wm , wm Joules/m3 Magnetic energy density

( 1
2 μ|�2|, 1

4 μ|H|2)
	e , W e Joules Electric energy

[∫∫∫
V

1
2 ε|�2|dv; ∫∫∫V

1
4 ε|E|2dv

]
	m , W m Joules Magnetic Energy

[∫∫∫
V

1
2 μ|�2|dv; ∫∫∫V

1
4 μ|H|2dv;

]
X ohms Inductance
Y Siemens Admittance
Yn(x) —— Bessel function of second kind of order n
Z ohms Impedance
Zc , Zo ohms Characteristic impedance
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Glossary of Symbols, Units and Names (continued from front)

Symbol Unit Name

α Np/m Attenuation constant
β Rad/m Phase constant(β = ω

√
με = 2π/λ)

γ —— Propagation constant(γ = α + jβ)

γ —— Gyromagnetic ratio

(
m

P
= magnetic dipole moment

angular momentum

)
� —— Reflection coefficient

(
Zin − Zc

Zin + Zc
; η2 − η1

η2 + η1

)
δ m Skin depth
ε F/m Permittivity
ε̇ F/m Complex permittivity (ε̇ = ε′ − jε′′)
εr —— Relative permittivity (dielectric constant) (ε/εo)

η ohms Intrinsic impedance

[
η =

√
jωμ

σ + jωε

σ=0︷︸︸︷=
√

μ

ε

]
θc rads Critical angle
θB rads Brewster angle
θi rads Angle of incidence
θr rads Angle of reflection
θt rads Angle of refraction/transmission
λ m Wavelength
μ H/m Permeability
μ̇ H/m Complex permeability (μ̇ = μ′ − jμ′′)
μe m2/(V-s) Mobility of electron
μh m2/(V-s) Mobility of hole
μr —— Relative permeability (μ/μo)

σ S/m Electric conductivity
σ m2 Radar cross section (RCS)
χe —— Electric susceptibility
χm —— Magnetic susceptibility
ω rad/s Angular (radian) frequency
ωc rad/s Angular (radian) cutoff frequency
ωr rad/s Angular (radian) resonant frequency
(x , y , z ) m Rectangular coordinates
(ρ, θ , z ) m Cylindrical coordinates
(r , θ , φ) m Spherical coordinates
âx , ây , âz —— Rectangular unit vectors
âρ , âφ , âz —— Cylindrical unit vectors
âr , âθ , âφ —— Spherical unit vectors
Ax , Ay , Az —— Rectangular vector components
Aρ , Aφ , Az —— Cylindrical vector components
Ar , Aθ , Aφ —— Spherical vector components
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Constants

Symbol Unit Name (value)

εo F/m Permittivity of free space (≈ 8.854 × 10−12)

ηo , Zo ohms Intrinsic impedance of free space (≈377)

μo H/m Permeability of free space (4π × 10−7)

π —— pi (3.1415927)
e C Electron charge (1.60217646 × 10−19)

G 109 Giga
k 103 Kilo
M 106 Mega
me kg Mass of electron at rest (9.10938188×10−31)

p 10−12 Pico
rad degrees Radian (180/π◦ = 57.296◦)
sr (degrees)2 Square radian [(180/π)2 = (57.296)2 = 3, 282.806]
vo , c m/sec Velocity of light in free space (2.9979 × 108 ≈ 3 × 108)
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