J. Michael Duncan Stephen G. Wright Thomas L. Brandon $\mathbb{Q} \vdash \mathbb{N}($ an $\mathsf{R}\mathsf{H}$ SECOND EDITION

Oroville Dam Factor of Safety = 2.2 Crest El. 922 ft

Base El. 150 ft

Soil Strength and Slope Stability

Soil Strength and Slope Stability

Second Edition

J. Michael Duncan Stephen G. Wright Thomas L. Brandon

WILEY

Cover image: Michael Duncan Cover design: Wiley

This book is printed on acid-free paper.

Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with the respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for damages arising herefrom.

For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Duncan, J. M. (James Michael) Soil strength and slope stability / J. Michael Duncan, Stephen G. Wright, Thomas L. Brandon. pages cm Includes bibliographical references and index. ISBN 978-1-118-65165-0 (cloth); ISBN 978-1-118-91795-4 (ebk); ISBN 978-1-118-91796-1 (ebk) 1. Slopes (Soil mechanics) I. Wright, Stephen G. (Stephen Gailord), 1943- II. Brandon, Thomas L. III. Title. TA710.D868 2014 624.1'51363—dc23

2014004730

Printed in the United States of America

10987654321

CONTENTS

	Foreword	ix
	Preface	xi
CHAPTER 1	INTRODUCTION	1
	Summary	3
CHAPTER 2	EXAMPLES AND CAUSES OF SLOPE FAILURES	5
	2.1 Introduction	5
	2.2 Examples of Slope Failure	5
	2.3 The Olmsted Landslide	11
	2.4 Panama Canal Landslides	12
	2.5 The Rio Mantaro Landslide	12
	2.6 Kettleman Hills Landfill Failure	13
	2.7 Causes of Slope Failure	13
	2.8 Summary	17
CHAPTER 3	SOIL MECHANICS PRINCIPLES	19
	3.1 Introduction	19
	3.2 Total and Effective Stresses	20
	3.3 Drained and Undrained Shear Strengths	21
	3.4 Basic Requirements for Slope Stability Analyses	26
CHAPTER 4	STABILITY CONDITIONS FOR ANALYSIS	31
	4.1 Introduction	31
	4.2 End-of-Construction Stability	31
	4.3 Long-Term Stability	32
	4.4 Rapid (Sudden) Drawdown	32
	4.5 Earthquake	33
	4.6 Partial Consolidation and Staged Construction	33
	4.7 Other Loading Conditions	34
	4.8 Analysis Cases for Earth and Rockfill Dams	34
		V

CHAPTER 5	SHEAR STRENGTH	37
	5.1 Introduction	37
	5.2 Behavior of Granular Materials—Sand, Gravel, and Rockfill	37
	5.3 Silts	52
	5.4 Clays	57
	5.5 Municipal Solid Waste	78
CHAPTER 6	MECHANICS OF LIMIT EQUILIBRIUM PROCEDURES	81
	6.1 Definition of the Factor of Safety	81
	6.2 Equilibrium Conditions	82
	6.3 Single Free-Body Procedures	82
	6.4 Procedures of Slices: General	87
	6.5 Procedures of Slices: Circular Slip Surfaces	87
	6.6 Procedures of Slices: Noncircular Slip Surfaces	94
	6.7 Procedures of Slices: Assumptions, Equilibrium Equations,	
	and Unknowns	105
	6.8 Procedures of Slices: Representation of Interslice Forces (Side Forces)	105
	6.9 Computations with Anisotropic Shear Strengths	112
	6.10 Computations with Curved Strength Envelopes	112
	6.11 Finite Element Analysis of Slopes	112
	6.12 Alternative Definitions of the Factor of Safety	113
	6.13 Pore Water Pressure Representation	116
CHAPTER 7	METHODS OF ANALYZING SLOPE STABILITY	125
	7.1 Simple Methods of Analysis	125
	7.2 Slope Stability Charts	126
	7.3 Spreadsheet Software	128
	7.4 Finite Element Analyses of Slope Stability	129
	7.5 Computer Programs for Limit Equilibrium Analyses	130
	7.6 Verification of Results of Analyses	132
	7.7 Examples for Verification of Stability Computations	134
CHAPTER 8	REINFORCED SLOPES AND EMBANKMENTS	159
	8.1 Limit Equilibrium Analyses with Reinforcing Forces	159
	8.2 Factors of Safety for Reinforcing Forces and Soil Strengths	159
	8.3 Types of Reinforcement	160
	8.4 Reinforcement Forces	161
	8.5 Allowable Reinforcement Forces and Factors of Safety	162
	8.6 Orientation of Reinforcement Forces	163
	8.7 Reinforced Slopes on Firm Foundations	164
	8.8 Embankments on Weak Foundations	164
CHAPTER 9	ANALYSES FOR RAPID DRAWDOWN	169
	9.1 Drawdown during and at the End of Construction	169
	9.2 Drawdown for Long-Term Conditions	169
	9.3 Partial Drainage	177
	9.4 Shear-Induced Pore Pressure Changes	177

1	79	

CHAPTER 10	SEISMIC SLOPE STABILITY	179
	10.1 Analysis Procedures	179
	10.2 Pseudostatic Screening Analyses	182
	10.3 Determining Peak Accelerations	184
	10.4 Shear Strength for Pseudostatic Analyses	184
	10.5 Postearthquake Stability Analyses	188
	Toto Tostemanquale Sulomy Thaijses	100
CHAPTER 11	ANALYSES OF EMBANKMENTS WITH PARTIAL CONSOLIDATION	102
	OF WEAK FOUNDATIONS	193
	11.1 Consolidation During Construction	193
	11.2 Analyses of Stability with Partial Consolidation	194
	11.3 Observed Behavior of an Embankment Constructed in Stages	195
	11.4 Discussion	197
CHAPTER 12	ANALYSES TO BACK-CALCULATE STRENGTHS	201
	12.1 Back-Calculating Average Shear Strength	201
	12.2 Back-Calculating Shear Strength Parameters Based on Slip Surface	202
	Geometry	203
	12.3 Examples of Back-Analyses of Failed Slopes	205
	12.4 Practical Problems and Limitation of Back-Analyses	213
	12.5 Other Uncertainties	214
CHAPTER 13	FACTORS OF SAFETY AND RELIABILITY	215
	13.1 Definitions of Factor of Safety	215
	13.2 Factor of Safety Criteria	216
	13.3 Reliability and Probability of Failure	217
	13.4 Standard Deviations and Coefficients of Variation	217
	13.5 Estimating Reliability and Probability of Failure	220
CHAPTER 14	IMPORTANT DETAILS OF STABILITY ANALYSES	227
	14.1 Location of Critical Slip Surfaces	227
	14.2 Examination of Noncritical Slip Surfaces	233
	14.3 Tension in the Active Zone	234
	14.4 Inappropriate Forces in the Passive Zone	238
	14.5 Other Details	230
	14.6 Verification of Calculations	245
	14.7 Three-Dimensional Effects	245
CHAPTER 15	PRESENTING RESULTS OF STABILITY EVALUATIONS	249
	15.1 Site Characterization and Penresentation	240
	15.2 Soil Property Evaluation	249
	15.2 Son Hoperty Evaluation 15.3 Date Water Dressures	249
	15.4 Special Eastures	230
	15.4 Special realities	250
	15.5 Calculation Procedure	250
	15.0 Analysis Summary Figure	250
	15.7 Parametric Studies	254
	15.8 Detailed Input Data	257
	15.9 Table Of Contents	257

CHAPTER 16	SLOPE STABILIZATION AND REPAIR	259
	16.1 Use of Back-Analysis	259
	16.2 Factors Governing Selection of Method of Stabilization	259
	16.3 Drainage	260
	16.4 Excavations and Buttress Fills	263
	16.5 Retaining Structures	264
	16.6 Reinforcing Piles and Drilled Shafts	267
	16.7 Injection Methods	269
	16.8 Vegetation	269
	16.9 Thermal Treatment	270
	16.10 Bridging	270
	16.11 Removal and Replacement of the Sliding Mass	271
APPENDIX A	SLOPE STABILITY CHARTS	273
APPENDIX B	CURVED SHEAR STRENGTH ENVELOPES FOR FULLY SOFTENED SHEAR STRENGTHS AND THEIR IMPACT ON SLOPE STABILITY ANALYSES	289
	REFERENCES	295
	INDEX	309

FOREWORD

Slope stability is arguably the most complex and challenging of all the subdisciplines of geotechnical engineering, and is often the least understood. In the first edition of this book, the authors captured the essence of this subject in an authoritative, comprehensive, and informative manner. Since publication in 2005, the first edition has come into widespread use in the profession and has virtually become a classic in the slope stability literature. The authors have certainly done no less in this second edition. Eleven of the 16 chapters have been significantly expanded and/or supplemented with new material. Moreover, the new materials are highly focused on the latest knowledge, experience, and practices that have been developed since the first edition. These new insights will render this second edition a highly relevant and useful volume for practitioners, academics, and students for years to come.

While all the valuable new additions to the book are too voluminous to address in detail here, there are several items in the writer's opinion that are particularly relevant. In Chapter 2, case histories have been added of the New Orleans "I-Wall" failures during Hurricane Katrina, from which much valuable information was obtained. Chapter 3 includes a new discussion of the effective stress envelope for unsaturated soils. Chapter 5 on shear strength has been significantly expanded with new concepts on curvature of strength envelopes and recent correlations of shear strength with various field tests and index properties. In the nine years since publication of the first edition, our understanding of soil strength and its application to slope stability analysis has made significant strides, especially related to fully softened strengths of highly plastic clays. Chapter 5 also includes a detailed discussion of this topic including laboratory testing methods, representation of curved strength envelopes with piecewise linear and power-curve techniques, and application of fully softened strength in slope stability analyses. Chapter 6 includes a presentation on the finite element strength reduction method for calculating the factor of safety of slopes and an update on determination of pore pressures by finite element methods. Chapter 7 includes new finite element solutions to the verification problems and a new verification problem using a curved strength envelope. Chapter 8 on reinforced slopes has been updated to include current FHWA (2009) methods for MSE walls. Chapters 9 and 10 contain updated material on rapid drawdown and seismic slope stability analyses. While this is but a brief discussion of a few of the many new portions of the book, it illustrates the breadth of new valuable material in the second edition.

In keeping with the first edition, the authors have maintained a format beginning with elemental principles that university students can quickly comprehend and moving in a smooth and logical manner to the highly advanced material for even the most experienced user. It is the writer's opinion that the pristine covers of the new second edition publication will soon become ragged and worn in tribute to the widespread relevance and usefulness of this book.

> Dr. Garry H. Gregory, Ph.D., P. E., D.GE Board of Governors of the Geo-Institute Chair of the Embankments, Dams, and Slopes Committee of the Geo-Institute

PREFACE

In the nine years since the appearance of the first edition of Soil Strength and Slope Stability there have been significant developments in measurement of soil strength in the laboratory and the field, advances in methods of stability analysis, and development of new techniques for slope stabilization. In situ testing, particularly cone penetration testing, has improved the efficiency of soil exploration and evaluation of soil strength through the use of correlations. Chapter 5, on shear strength of soil and municipal solid waste, is greatly expanded in this edition, providing discussions of the behavior of rockfill, gravel, sand, silt, and clay, as well as compilations of data and typical values of their strengths. This edition also draws together more lessons that have been learned from recent slope failures, such as the failures of I-walls in New Orleans during Hurricane Katrina, and delayed failures that resulted from gradual softening of clays over long periods of time. The purpose of this book is to describe the current state of knowledge on soil strength and slope stability in a form that makes it easily accessible to geotechnical graduate students and professionals.

Development of this book would not have been possible without the assistance of many colleagues, whose contributions to our understanding we gratefully acknowledge. Foremost among these is Professor Harry Seed, who taught all of us and was the inspiration for our lifelong interest in soil strength and slope stability. We are also grateful for the opportunity to work with Nilmar Janbu, who during his sabbatical at Berkeley in 1969 taught us many valuable lessons regarding analysis of slope stability and the shear strength of soils. Our university colleagues Jim Mitchell, Roy Olson, Clarence Chan, Ken Lee, Peter Dunlop, Guy LeFebvre, Fred Kulhawy, Suphon Chirapuntu, Tarciso Celestino, Dean Marachi, Ed Becker, Kai Wong, Norman Jones, Poul Lade, Pat Lucia, Tim D'Orazio, Jey Jeyapalan, Sam Bryant, Ed Kavazanjian, Erik Loehr, Loraine Fleming, Bak Kong Low, Bob Gilbert, Garry Gregory, Vern Schaefer, Tim Stark, Binod Tiwari, Mohamad Kayyal, Marius DeWet, Clark Morrison, Ellen Rathje, George Filz, Mike Pockoski, Jaco Esterhuizen, Matthew Sleep, and Daniel VandenBerge have also contributed greatly to our understanding of soil strength and stability. Our experiences working with professional colleagues Al Buchignani, Laurits Bjerrum, Jim Sherard, Tom Leps, Norbert Morgenstern, George Sowers, Robert Schuster, Ed Luttrell, Larry Franks, Steve Collins, Dave Hammer, Larry Cooley, John Wolosick, Noah Vroman, Luis Alfaro, Max DePuy and his group at the Panama Canal Authority, and Fernando Bolinaga have helped us to see the useful relationships among teaching, research, and professional practice. Special thanks go to Alex Reeb, Chris Meehan, Bernardo Castellanos, Daniel VandenBerge, and Beena Ajmera for their invaluable assistance with figures, references, proofing, and indexing. Finally, we express our deepest appreciation and love to our wives-Ann, Ouida, and Aida-for their support, understanding, and constant encouragement throughout our careers and during the countless hours we have spent working on this book.

Soil Strength and Slope Stability