




































































































































































































































































































































































































































































































































































































































































































328 Assignment 

earlier in the list. This is essentially because our models are more likely to estimate 
correctly aggregate than disaggregate values. 

The basic inputs required for assignment models are: 

• A trip matrix expressing estimated demand. This will normally be a peak-hour matrix 
in urban congested areas, and perhaps other matrices for other peak and off-peak 
periods. A 24-hour matrix is sometimes used for assignment of uncongested net
works. The conversion of 24-hour matrices into single hours is seldom satisfactory in 
terms of congestion, as these matrices are symmetric and single-hour trips seldom are. 
The matrices themselves may be available in terms of person trips; therefore, they 
should be converted into vehicle trips as capacity- and speed-flow relationships are 
described in these terms. 

• A network, namely links and their properties, including speed-flow curves. 
• Principles or route selection rules thought to be relevant to the problem in question. 

1 0.2.2 Route Choice 

The basic premise in assignment is the assumption of a rational traveller, i.e. one 
choosing the route which offers the least perceived (and anticipated) individual 
costs. A number of factors are thought to influence the choice of route when driving 
between two points; these include journey time, distance, monetary cost (fuel and 
others), congestion and queues, type of manoeuvres required, type of road (motor
way, trunk road, secondary road), scenery, signposting, road works, reliability of 
travel time and habit. The production of a generalised cost expression incorporating 
all these elements is a difficult task. Furthermore, it is not practical to try to model 
all of them in a traffic assignment model, and therefore approximations are inevit
able. 

The most common approximation is to consider only two factors in route choice: time 
and monetary cost; further, monetary cost is often deemed proportional to travel 
distance. The majority of traffic assignment programs allow the user to allocate weights 
to travel time and distance in order to represent drivers' perceptions of these two 
factors. The weighted sum of these two values then becomes a generalised cost used 
to estimate route choice. There is evidence to suggest that, at least for urban car traffic, 
time is the dominant factor in route choice. Outram and Thompson (1978) compared 
drivers' stated objective with their actual performance in route choice. They found 
that the proportion of drivers being successful in achieving their objectives was rela
tively low. They also found that the combination of time and distance gave the best. 
explanation of route choice. However, even if we allow the combination of time and 
distance in a generalised cost function, we can only explain something of the order of 60 
to 80% of the routes actually observed in practice. As the marginal contribution of other 
factors in untangling route choice is very small, the unexplained part must be attributed 
to factors like differences in perception, imperfect information on route costs or simply 
errors. 

The fact that different drivers often choose different routes when travelling between 
the same two points may be ascribed to two different types of reasons: 
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1. Differences in individual perceptions of what constitutes the 'best route'; different 
individuals may not only incorporate different features in their generalised cost 
function but perceive them in different ways. 

2. Congestion effects affecting shorter routes first and making their generalised costs 
comparable to initially less attractive routes. 

Example 10.1: Consider an idealised town with a low-capacity through route (1000 
vehicles per hour) and a high-capacity bypass, as in Figure 10.2. The bypass is a longer 
but faster route with a capacity of 3000 vph. Assume that during the morning peak 3500 
drivers approach the town and that everyone would like to use the shortest route, i.e. 
via the town centre. It is clear that it would not be possible for all of them to do so as the 
route would become too congested even before its ultimate capacity is reached. Many 
would opt then for second choice to avoid long queues and delays. Presumably drivers 
would experiment with the two routes until they find a more or less stable arrangement 
when none can improve their time by switching to the other route. This is a typical case 
of Wardrop's equilibrium, which is discussed in greater detail below. Diversion across 
routes in this case is due to capacity restraint. 

Bypass (capacity 3000 v/h) 

Town centre 
(1000 v/h) 

Figure 10.2 Town served by a bypass and a town centre route 

However, not all 3500 drivers will think alike; some would always prefer the bypass 
because of its uninterrupted flow conditions or its scenery, where as others would value 
other features of the town-centre route. These differences in objectives and perceptions 
would also lead to a spread of routes and such effect is customarily referred to as the 
stochastic element in route choice. 

Particular types of models are more suited to representing one or more of the above 
influences. A possible classification of traffic assignment methods is given in Table 1 0.2. 
The details and characteristics of each method are discussed below. 

Table 10.2 Classification scheme for traffic assignment 

Stochastic effects included? 

No Yes 

Is No AU-or-nothing Pure stochastic 
capacity Dial's, Burrell's 

restraint Yes Wardrop's Stochastic user 
included? equilibrium equilibrium 
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Each assignment method has several steps which must be treated in turn. Their basic 
functions are: 

• To identify a set of routes which might be considered attractive to drivers; these 
routes are stored in a particular data structure called a tree and therefore this task is 
often called the tree-building stage. 

• To assign suitable proportions of the trip matrix to these routes or trees; this. results in 
flows on the links in the network. 

• To search for convergence; many techniques follow an iterative pattern of suc
cessive approximations to an ideal solution, e.g. Wardrop's equilibrium; conver
gence to this solution must be monitored to decide when to stop the iterative 
process. 

1 0.2.3 Tree Building 

Tree building is an important stage in any assignment method for two related reasons. 
First, it is performed many times in most algorithms, at least once per iteration. 
Second, a good tree-building algorithm can save a great deal of computer time and 
costs. By a good algorithm we mean an efficient one which is also well programmed 
in a suitable language. Van Vliet (1978) has produced a good discussion of the 
most widely used algorithms for tree building and this section is based on his 
paper. 

There are two basic algorithms in general use for fmding the shortest (cheapest) 
paths in road networks, one due to Moore (1957) and one due to Dijkstra (1959). 
The two will be discussed using a more convenient node-oriented notation: the 
length (cost) of a link between A and Bin the network is denoted by dA,B· The path 
or route is defined by a series of connected nodes, A-C-D-H, etc., whilst the length of 
the path is the arithmetic sum of the corresponding link lengths in the path. Let dA 
denote the minimum distance from the origin of the tree S to the node or centroid A; P A 

is the predecessor or backnode of A so that the link (P A, A) is part of the shortest path 
from S to A. 

The procedure for building a minimum path tree from S to all other nodes may be 
described as follows: 

Initialisation Set all dA = oo (a suitable large number depending on computer and 
compiler) except ds which is set equal to 0; set up a loose-end table L to contain nodes 
already reached by the algorithm but not fully explored as predecessors for further 
nodes. They are the tip of the tree as branches grow to reach all nodes. Initialise all 
entries L; in L to zero, and all P A to a suitable default value. 

Procedure Starting with the origin S as the 'current' node = A: 

1. examine each link (A, B) from the current node A in turn and, if dA + dA, B < dB then 
set dB= dA + dA,:B,PB =A and add B to L; 

2. remove A from L, if the loose-end table is empty, stop; otherwise, 
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3. select another node from the loose-end table and return to step 1 with it as the 
current node. 

Three comments should be made at this stage. First, in general routes are not allowed 
to use centroids, therefore in step 1, B would not be added to L .if it was a cen
troid. Second, the essential difference between Moore's and Dijkstra's algorithms 
lies in the procedure for selecting a node from L. Moore selects the top entry, that is 
the oldest entry in the table; Dijkstra selects the node nearest to the origin, i.e. the 
node L1 such that dL; is a minimum. This requires some additional calculations (in
cluding sorting of nodes) but ensures that each link is examined once and only once. It 
is well known that Dijkstra's algorithm is superior to Moore's, in particular for 
larger networks; it is however, more difficult to program. Finally, trees are often stored 
in the computer in one of two forms: as a set of ordered backnodes in which A is the 
backnode of B if link (A, B) forms part of the tree; or as a set of back links with a similar 
definition. 

Van Vliet (1977) also identified a lesser known algorithm which performs very 
well even in large networks: D'Esopo's algorithm, as described and tested by Pape 
(1974). D'Esopo's uses a 'two-ended' loose-end table so that node B is entered at 
one or other end depending on its 'status'. If B had not been previously reached by · 
the tree then it is entered at the bottom of L; if it is currently on the table no entry is 
made; but, if it has already been entered to L, examined and removed from the table 
then it is entered at the top. A simple array can be used to record the status with three 
potential values (+1, 0 or -1) representing each case for each node. As shown by Van 
Vliet (1977), D'Esopo's algorithm can reduce CPU times by 50% relative to Moore's. 
Furthermore, its performance is very close and often better compared with that of the 
best implementations ofDijkstra's; it has the added advantage of being much simpler to 
program. 

Trees have two important additional uses in transport planning. They are often 
employed to extract cost information in a network. For example, the total travel time 
between two zones can be obtained by following the sequence of links in the tree 
connecting them and accumulating their travel times. This operation is often referred 
to as 'skimming' a tree. Trees built for, say, travel time can be skimmed for other 
attributes, for example generalised cost, distance, number of nodes, etc. Trees can also 
be used to produce information on which 0-D pairs are likely to use a particular link. 
This facility, often called a 'selected link analysis', per:rnits the identification of who is 
likely to be affected by a network change. Moreover, it can also be used to cordon a trip 
matrix for a smaller study area; in this case the selected links are used to identify entry 
and exit points to the small study area and the trees to combine the original zones into 
single external ones for the new sub-area .. 

10.3 ALL-OR-NOTHING ASSIGNMENT 

The simplest route choice and assignment method is 'aU-or-nothing' assignment. This 
method assumes that there are no congestion effects, that all drivers consider the same 
attributes for route choice and that they perceive and weigh them irt the same way. The 
absence of congestion effects means that link costs are fixed; the assumption that all 
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drivers perceive the same costs means that every driver from ito j must choose the same 
route. Therefore, all drivers are assigned to one route between i and j and no driver is 
assigned to other, less attractive, routes. These assumptions are probably reasonable in 
sparse and uncongested networks where there are few alternative routes and they are 
very different in cost. 

The assignment algorithm itself is the procedure that loads the matrix T to the 
shortest path trees and produces the flows VA, B on links (between nodes A and B). 
All load algorithms start with an initialisation stage, in this case making all VA,B = 0 
and then apply one of two basic variations: pair-by-pair methods and once-through 
approaches. 

Pair-by-pair This is probably the simplest but not necessarily the most efficient 
method. In this case we start from an origin and take each destination in turn. First, 
we initialise all VA,B = 0. Then for each pair (i,j): 

1. set B to the destinationj; 
2. if (A, B) is the backlink of B then increment VA,B by Tif, i.e. make VA,B = 

VA,B + Tij; 
3. set B to A; 
4. if A = i terminate (i.e. process the next (i, j) pair), otherwise return to step 2. 

Once-through This is sometimes called a 'cascade' method as it loads accumulated 
flow from nodes to links following the minimum cost trees from an origin i. Let VA be 
the cumulative flow at node A: 

1. set all VA= 0 except for the destinationsj for which Vj = Tif; 
2. set B equal to the most distant node from i; 
3. increment VA by VB where A is the backnode of B, i.e. make VA= VA+ VB; 
4. increment VA,B by VB, i.e. make VA,B = VA,B +VB; 
5. set B equal to the next most distant node; if B = i then the origin has been reached, 

begin processing the next origin, otherwise proceed with step 3. 

In this form VB represents the total number of trips from i passing through node B en 
route to destinations further away from i. By selecting nodes in reverse order of 
distance, each node is processed once only. This· algorithm requires the trees to be 
stored in terms of backnodes ordered by distance from the origin. 

Example 10.2: Consider the simple network in Figure 10.3 and its associated trip 
matrix: A-C = 400, A-D= 200, B-C = 300 and B-D = 100. Section (a) shows the travel 
costs (times) on each link; section (b) the corresponding trees based on these costs 
together with the contributions to the total flow after assignment; these are shown in 
section (c). 

All-or-nothing assignment is generally of limited interest to the planner; it may be 
used to represent some sort of 'desire line', i.e. what drivers would like to do in the 
absence of congestion. However, its most important practical feature is as a basic 
building block for other types of assignment techniques, e.g. equilibrium and stochastic 
methods. 
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Figure 10.3 A simple network, its trees and flows from loading a trip matrix 

10.4 STOCHASTIC METHODS 

Stochastic methods of traffic assignment emphasise the variability in drivers' percep
tions of costs and the composite measure they seek to minimise (distance, travel 
time, generalised costs). Stochastic methods need to consider second-best routes ~1n 
terms of engineering or modelled costs); this generates additio~al problems as the 
number of alternative second-best routes between each 0-D pair may be extremely 
large. Several methods have been proposed to incorporate these aspects but only 
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two have relatively widespread acceptance: simulation-based and proportion-based 
methods. The first use ideas from stochastic (Monte Carlo) simulation to introduce 
variability in perceived costs. The proportion-based methods, on the other hand, 
allocate flows to alternative routes from proportions calculated using logit-like ex
pressions. 

1 0.4.1 Simulation-Based Methods 

A number of techniques use Monte Carlo simulation to represent the variability in 
drivers' perceptions of link costs; in particular, the technique developed by Burrell 
(1968) has been widely used for many years. These methods usually rely on the follow
ing assumptions: 

• For each link in a network one should distinguish objective or engineering costs as 
measured/estimated by an observer (modeller) and subjective costs as perceived by 
each driver. It is further assumed that there is a distribution of perceived costs for 
each link with the engineering costs as the mean, as shown in Figure 10.4. 

Proportion 
of drivers 

Mean link cost Cost 

Figure 10.4 Distribution of perceived costs on a link 

The various implementations of these ideas differ in their assumptions about 
the shape of these distributions: while Burrell's assumes a uniform distribution, 
other models hypothesise a normal distribution. In either case one also needs to 
assume or calibrate a standard deviation or range for the distribution of perceived 
costs. 

• The distributions of perceived costs are assumed to be independent; 
•, Drivers are assumed to choose the route that minimises their perceived route costs, 

which are obtained as the sum of the individual link costs. 

A general description of these algorithms would be as follows. Select a distribution 
(and spread parameter o') for the perceived costs on each link. Split the population 
travelling along each 0-D pair into N segments, each assumed to perceive the same 
costs. 

1. Make n = 0. 
2. Make n = n + 1. 
3. For each i- j pair: 
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• Compute perceived costs for each link by sampling from the corresponding distribu
tions of costs by means of random numbers; 

• Build the minimum perceived cost path from i to j and assign Tij j N trips to it 
accumulating the resulting flows on the network. 

4. If n = N stop, otherwise go to step 2. 

In practice many short-cuts are taken to reduce computation times, for example: 

• generate new sets of random costs per origin and not per 0-D pair; 
• use N equal to just 3 or 5 and generate one set of random costs for each matrix and 

not for each 0-D pair or origin; 
• use small values for N, even 1 in some circumstances·. 

I 

This type of approach uses simulation in order to reduce the number of second-best 
routes to be considered. If a wider range of routes is thought necessary, one can increase 
the value of N and/or the spread parameter in the· distribution of link costs. Burrell's 
approach has the advantage of generating cheap routes more often than more expensive 
ones: if a route is expensive it is much less likely to appear as the cheapest as a result of the 
stochastic variations in link costs. Although the uniform distribution is efficient in 
computer time, it is not very realistic. A better function, but more expensive in terms of 
CPU time, is the normal distribution with variance proportional to the mean engineering 
costs. 

As in all Monte Carlo methods, the final results are dependent on the series of 
random numbers used in the simulation. Increasing the value of N reduces this problem. 
There are, however, more serious difficulties with this approach: 

• The link perceived costs are not independent, as drivers usually have preferences, for 
example, for motorway links or to avoid priority junctions or minor roads. The 
assumption of independence in perceived costs may lead to unrealistic switching 
between parallel routes connected by minor roads. · 

• No explicit allowance is made for congestion effects. 

In compensation, these methods often produce a reasonable spread of trips, are 
relatively simple to program and do not require the choice or estimation of speed
flow relationships (which may turn out to be a problem in some cases). 

1 0.4.2 Proportional Stochastic Methods 

Virtually all these methods are based on a loading algorithm which splits trips arriving 
at a node between all possible exit nodes, as opposed to the ali-or-nothing method 
which assigns all trips to a single exit node. Very often the implementation of these 
methods reverses the problem so that the division of trips at a node is actually based 
upon where the trips are corning from rather than where they are going to. Consider 
node B in Figure 10.5; there are a number of possible entry points denoted by 
A1,A2,A3,A. and As for trips from I to J. 

'The 'splitting factors' fi are defined by: 

fi = 0 if dA, 2: dB 

0 <fi ::S: 1 if dA; <dB; 
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I---- -...A,----ti;e-:8=-------- J 
Origin , Destination 

Figure 10.5 A node (B) and links feeding trips into it 

where dA, represents the minimum cost of travel from the origin i to node A;. The 
first condition requir~s that fi should be zero if an entry node A; is further from 
the origin than B, therefore ensuring that trips are allocated to routes which take 
them efficiently away from the origin. The trips TB that pass through B are divided 
according to the equation: 

Tpji 
F(A;, B) = Lfi (10.11) 

The assignment procedure is now equivalent to the cascade method for ali-or-nothing 
assignment. Implementations of these ideas differ mainly in the way in which they define 
the splitting functionfi. The single-path method due to Dial (1971) requires that: 

fi = exp( -!Md;) (10.12) 

where f>d; is the extra cost incurred in travelling from the origin to node B via node A; 
rather than via the minimum cost route. In this way, if A; is in the minimum-cost route, 
f>d; is equal to zero andfi = 1. Nodes that lie on more expensive routes have f>d; > 0 and 
their fi values are less than 1. In this way shorter routes are favoured over more 
expensive ones. 

Dial originally described a double-pass algorithm which effectively uses a logit-type 
formulation to split trips from i to j among alternative routes r: 

T· _ Tij exp( -f'LCijr) 
vr - 'L exp( -f'LCijr) 

The parameter fl can be used to control the spread of trips among routes. 
The algorithm involves a forward and a backward pass: 

(10.13) 

1. The forward pass: take each node A in ascending order of dA and define a weight for 
each exit link (A, B) such that: 

w(A,B) = WA exp( -flf>d(A,B)) if dA <dB or zero otherwise; WA is the accumulated 
weight at A defined as: 

WA = L w(A',A) and WI= l [A' is a predecessor of A] 
A' 
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2. The backward pass: identical to the single-pass algorithm with the exception that 
the weights W(A, B) are used to work out the split of trips rather than the splitting 
factors F1• 

Example 10.3: A practical problem with Dial's assignment is that it.is biased against 
trunk routes as opposed to secondary links. Consider the problem of a town served by a 
bypass and a town-centre route with three small variations as illustrated in Figure 10.6. 
Assume also that there are 4000 trips from A to B and that all routes have approxi
mately the same cost. 

Bypass 

Figure 10.6 Town served by a bypass and three city- centre routes 

In this case Dial's algorithm would split the 4000 trips as follows: 1000 via the 
bypass and 1000 via each of the town-centre routes. However, most users would 
regard this problem as one with only two alternatives: bypass or town centre. Recall 
the discussion about the independence of irrelevant alternatives property of the logit 
model in Chapter 5. Dial's runs into trouble when it considers every possible route 
even if some permutations or combinations of links may differ just in a few percent
age points of their total cost. In behavioural terms Dial ignores the correlation between 
similar routes. In practice, Dial tends to allocate more traffic to dense sections of 
the network with short links, compared with sparser parts of the networkwith relatively 
lqnger links. In fact, coding strategies for networks can affect the allocation of 
flows. 

10.5 CONGESTED ASSIGNMENT 

1 0.5.1 Wardrop's equilibrium 

If one ignores stochastic effects and concentrates on capacity restraint as a generator 
of a spread of trips on a network, one should consider a different set of models. For 
a start, capacity restraint models have to make use of functions relating flow to the 
cost (time) of travel on a link. These models usually attempt, with different degrees 
of success, to approximate to the equilibrium conditions as formally enunciated by 
Wardrop 1952): 

Under equilibrium conditions traffic arranges itself in congested networks in sucfl a 
way that no individual trip maker can reduce his path costs by switching routes./ 

If all trip makers perceive costs in the same way (no stochastic effects): 
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Under equilibrium conditions traffic arranges itself in congested networks such that 
all used routes between an 0-D pair have equal and minimum costs while all unused 
routes have greater or equal costs. 

This is usually referred to as Wardrop's first principle, or simply Wardrop's equilib
rium. It is easy to see that if these conditions did not hold, at least some drivers would be 
able to reduce their costs by switching to other routes. 

Example 10.4: Consider again the case of a bypass and a single town-centre route as 
discussed in section 10.2.2 (Figure 10.2). Assume now that the absolute capacity 
restriction for each route is replaced with two corresponding time-flow relationships 
as illustrated in Figure 10.7. 

Time Time 

30 30 

25 25 

20 20 

15 15 

10 10 

5 5 

0 0 
0 200 400 600 800 1000 0 200 400 600 800 1000 

Flow V Flow V 
Town centre route Bypass 

Figure 10.7 Time-flow relationships for Figure 10.2 

The flows on the two routes will satisfy Wardrop's equilibrium when the correspond
ing 'costs' are identical. In this case it is relatively simple to write two equations for 
travel time versus flow and equate them to find the equilibrium solution, for 
example: 

tb = 15 + 0.005Vb 

tt = 10 + 0.02V1 

(10.14a) 

(10.14b) 

where tb and t1 are travel 'costs' (time in minutes) via the bypass and the town-centre 
routes respectively, and Vb and V1 are their corresponding flows. 

By equating tb to t1 it is possible to find, in this simple case, the direct solution to 
Wardrop's equilibrium as a function of the total flow Vb + V1 = V: 

15 + 0.005Vb = 10 + 0.02(V- Vb) 

that is: 

vb = o.sv- 200 (10.15) 
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Expression (10.15) has meaning only for non-negative flows, i.e. for V greater than or 
equal to 200/0.8 = 250. For V < 250, Ct < Cb, Vb = 0 and Vt = V, i.e. all traffic 
chooses the town-centre route. For situations where V > 250 the two routes will be 
used; for example, the reader can verify that for V = 2000 the equilibrium flows are 
Vb = 1400 and vt = 600 and the 'costs' by each route are 22 minutes·. 

The same idea would apply to flows on networks where the costs of travel by each 
of the routes used between two points will be the same under Wardrop's equilibrium. 
The problem is, of course, that in anything but the simplest cases it is not possible 
to solve the equilibrium flows algebraically; rather an algorithmic solution method is 
required. 

Several techniques have been proposed as reasonable approximations to Wardrop's 
equilibrium: some of them are simple heuristic approaches and the most interest
ing ones follow a more rigorous mathematical programming framework. In order 
to compare these algorithms against each other the following properties are of 
interest: 

• Is the solution stable? 
• Does it converge to the correct solution (Wardrop's equilibrium)? 
• Is it efficient in terms of computational requirements? 

The indicator 8, defined in the following equation, is often used to measure how close 
a solution is to Wardrop's equilibrium: 

L Tijr(Cijr- Cij) 
8 = ....:.iJ_·r --==-----

LTijC( 
00 u 

(10.16) 

lJ 

where CiJr - Cij is the excess cost of travel over a particular route relative to the 
minimum cost of travel for that (i, j) pair. These costs are calculated after the last 
iteration has been performed and total flows obtained for each link. Therefore 6 is a 
measure of the total cost of excess travel via less than optimal routes, with denom
inator introduced so that the measure is recorded in relative rather than absolute 
terms. 

Wardrop (1952) proposed an alternative way of assigning traffic onto a network and 
this is usually referred to as his second principle: 

Under social equilibrium conditions traffic should be arranged in congested networks 
in such a way that the average (or total) travel cost is minimised. 

This is a design principle, in contrast with his first principle which endeavours to 
model the behaviour of individual drivers trying to minimise their own trip costs. The 
second principle is oriented towards transport planners and engineers trying to manage 
traffic to minimise travel costs and therefore achieve an optimum social equilibrium. lin 
general the flows resulting from the two principles are not the same but one can ohly 
expect, in practice, traffic to arrange itself following an approximation to Wardrop's 
first principle, i.e. selfish or users' equilibrium. 
































































































































































































































































































































