
 
          Contents 

 

Preface v 

1.  REINFORCED CONCRETE STRUCTURES 1 

1.1   Introduction  1 
1.2   Plain and Reinforced Concrete  4 

1.2.1   Plain Concrete  4 
1.2.2   Reinforced Concrete  5 

1.3   Objectives of Structural Design  7 
1.4   Reinforced Concrete Construction  8 
1.5   Structural Systems  9 
1.6   Reinforced Concrete Buildings  9 

1.6.1   Floor Systems  11 
1.6.2   Vertical Framing System  17 
1.6.3   Lateral Load Resisting Systems  19 

1.7   Structural Analysis and Design  21 
1.8   Design Codes and Handbooks  22 

1.8.1   Purpose of Codes  22 
1.8.2   Basic Code for Design  22 
1.8.3   Loading Standards  23 
1.8.4   Design Handbooks  23 
1.8.5   Other Related Codes  23 

Review Questions  24 
References  24 

2.  BASIC MATERIAL PROPERTIES 25 

2.1   Introduction  25 
2.1.1   Concrete Technology  25 



VIII    CONTENTS 

2.2   Cement  26 
2.2.1   Portland Cements  26 
2.2.2   Other Cements  28 
2.2.3   Tests on Cements  29 

2.3   Aggregate  29 
2.3.1   Aggregate Properties and Tests  30 
2.3.2   Grading Requirements of Aggregate  31 

2.4   Water  32 
2.4.1   Water Content and Workability of Concrete  33 
2.4.2   Water-Cement Ratio and Strength  34 
2.4.3   Water for Curing  35 

2.5   Admixtures  36 
2.5.1    Types of Chemical Admixtures  37 
2.5.2    Types of Mineral Admixtures    37 

2.6   Grade of Concrete  38 
2.6.1   Characteristic Strength  39 

2.7   Concrete Mix Design  40 
2.7.1   Nominal Mix Concrete  40 
2.7.2   Design Mix Concrete  41 

2.8   Behaviour of Concrete under Uniaxial Compression  42 
2.8.1   Influence of Size of Test Specimen  43 
2.8.2   Stress-Strain Curves  45 
2.8.3   Modulus of Elasticity and Poisson’s Ratio  46 
2.8.4   Influence of Duration of Loading on Stress-Strain Curve  49 
2.8.5   Maximum Compressive Stress of Concrete in Design Practice  50 

2.9   Behaviour of Concrete under Tension  50 
2.9.1   Modulus of Rupture  51 
2.9.2   Splitting Tensile Strength  52 
2.9.3   Stress-Strain Curve of Concrete in Tension  52 
2.9.4   Shear Strength and Tensile Strength  53 

2.10   Behaviour of Concrete under Combined Stresses  53 
2.10.1   Biaxial State of Stress  53 
2.10.2   Influence of Shear Stress  53 
2.10.3   Behaviour under Triaxial Compression  55 

2.11   Creep of Concrete  55 
2.11.1   Time-Dependent Behaviour under Sustained Loading  55 
2.11.2   Effects of Creep  56 
2.11.3   Factors Influencing Creep  57 
2.11.4   Creep Coefficient for Design  57 

2.12   Shrinkage and Temperature Effects in Concrete  57 
2.12.1   Shrinkage  57 
2.12.2   Temperature Effects  59 

2.13   Durability of Concrete  59 
2.13.1   Environmental Exposure Conditions and Code Requirements  61 
2.13.2    Permeability of Concrete  63 



CONTENTS IX 

2.13.3   Chemical Attack on Concrete  63 
2.13.4   Corrosion of Reinforcing Steel  65 

2.14   Reinforcing Steel  65 
2.14.1   Types, Sizes and Grades  66 
2.14.2   Stress-Strain Curves  67 

2.15   List of Relevant Indian Standards  70 
Review Questions  72 
References  74 

3.  BASIC DESIGN CONCEPTS 77 

3.1   Introduction  77 
3.1.1   Design Considerations  77 
3.1.2   Design Philosophies  78 

3.2   Working Stress Method (WSM)  79 
3.3   Ultimate Load Method (ULM)  80 
3.4   Probabilistic Analysis and Design  80 

3.4.1   Uncertainties in Design  80 
3.4.2   Classical Reliability Models  82 
3.4.3   Reliability Analysis and Design  84 
3.4.4   Levels of Reliability Methods  84 

3.5   Limit States Method (LSM)  85 
3.5.1   Limit States  85 
3.5.2   Multiple Safety Factor Formats  85 
3.5.3   Load and Resistance Factor Design Format  86 
3.5.4   Partial Safety Factor Format  86 

3.6   Code Recommendations for Limit States Design  87 
3.6.1   Characteristic Strengths and Loads  87 
3.6.2   Partial Safety Factors for Materials  88 
3.6.3   Partial Safety Factors for Loads  88 
3.6.4   Design Stress-Strain Curve for Concrete  89 
3.6.5   Design Stress-Strain Curve for Reinforcing Steel 90 

Review Questions  93 
References  94 

4.  BEHAVIOUR IN FLEXURE 95 

4.1   Introduction  95 
4.1.1   Two Kinds of Problems: Analysis and Design  95 
4.1.2   Bending Moments in Beams from Structural Analysis 96 
4.1.3   From Bending Moment to Flexural Stresses  97 

4.2   Theory of Flexure for Homogeneous Materials  97 
4.2.1   Fundamental Assumption  97 
4.2.2   Distribution of Stresses  97 



X    CONTENTS 

4.2.3   Linear Elastic Material  99 
4.3   Linear Elastic Analysis of Composite Sections  99 

4.3.1   Distribution of Strains and Stresses  100 
4.3.2   Concept of ‘Transformed Section’  101 

4.4   Modular Ratio and Cracking Moment  101 
4.4.1   Modular Ratio in Reinforced Concrete  101 
4.4.2   Transformed Area of Reinforcing Steel  102 
4.4.3   Cracking Moment  103 

4.5   Flexural Behaviour of Reinforced Concrete  105 
4.5.1   Uncracked Phase  107 
4.5.2   Linear Elastic Cracked Phase  107 
4.5.3   Stages Leading to Limit State of Collapse  108 

4.6   Analysis at Service Loads (WSM)  112 
4.6.1   Stresses in Singly Reinforced Rectangular Sections  112 
4.6.2   Permissible Stresses  115 
4.6.3   Allowable Bending Moment  116 
4.6.4   Analysis of Singly Reinforced Flanged Sections  122 
4.6.5   Analysis of Doubly Reinforced Sections  128 

4.7   Analysis at Ultimate Limit State  134 
4.7.1   Assumptions in Analysis  134 
4.7.2   Limiting Depth of Neutral Axis  135 
4.7.3   Analysis of Singly Reinforced Rectangular Sections  137 
4.7.4   Analysis of Singly Reinforced Flanged Sections  147 
4.7.5   Analysis of Doubly Reinforced Sections  153 
4.7.6   Balanced Doubly Reinforced Sections  159 

4.8   Analysis of Slabs as Rectangular Beams  160 
         4.8.1  Transverse Moments in One Way Slabs  161 

Review Questions  163 
Problems  164 
References  167 

5. DESIGN OF BEAMS AND ONE-WAY SLABS FOR FLEXURE  169  

5.1   Introduction  169 
5.2   Requirements of Flexural Reinforcement  170 

5.2.1   Concrete Cover  170 
5.2.2   Spacing of Reinforcing Bars  172 
5.2.3   Minimum and Maximum Areas of Flexural Reinforcement  174 

5.3   Requirements for Deflection Control  176 
5.3.1   Deflection Control by Limiting Span/Depth Ratios  176 
5.3.2   Code Recommendations for Span/Effective Depth Ratios  177 

5.4   Guidelines for Selection of Member Sizes  179 
5.4.1   General Guidelines for Beam Sizes  179 
5.4.2   General Guidelines for Slab Thicknesses  180 



CONTENTS XI 

5.4.3   Deep Beams and Slender Beams  180 
5.5   Design of Singly Reinforced Rectangular Sections  181 

5.5.1   Fixing Dimensions of Rectangular Sections  182 
5.5.2   Determining Area of Tension Steel  183 
5.5.3   Design Check for Strength and Deflection Control  185 

5.6   Design of Continuous One-Way Slabs  189 
5.6.1   Simplified Structural Analysis — Use of Moment Coefficients  190 
5.6.2   Design Procedure  192 

5.7   Design of Doubly Reinforced Rectangular Sections  197 
5.7.1   Design Formulas  197 
5.7.2   Design Procedure for Given Mu  199 

5.8   Design of Flanged Beam Sections  203 
5.8.1   Transverse Reinforcement in Flange  203 
5.8.2   Design Procedure  204 

5.9   Curtailment of Flexural Tension Reinforcement  210 
5.9.1   Theoretical Bar Cut-off Points  210 
5.9.2   Restrictions on Theoretical Bar Cut-off Points  212 
5.9.3   Code Requirements  214 
5.9.4   Bending of Bars  219 

Review Questions  221 
Problems  222 
References  223 

6.  DESIGN FOR SHEAR 225 

6.1   Introduction  225 
6.2   Shear Stresses in Homogeneous Rectangular Beams  226 
6.3   Behaviour of Reinforced Concrete under Shear  228 

6.3.1   Modes of Cracking  228 
6.3.2   Shear Transfer Mechanisms  230 
6.3.3   Shear Failure Modes  232 

6.4   Nominal Shear Stress  234 
6.4.1   Members with Uniform Depth  234 
6.4.2   Members with Varying Depth  234 

6.5   Critical Sections for Shear Design  236 
6.6   Design Shear Strength without Shear Reinforcement  238 

6.6.1   Design Shear Strength of Concrete in Beams  238 
6.6.2   Design Shear Strength of Concrete in Slabs  240 
6.6.3   Influence of Axial Force on Design Shear Strength  241 

6.7   Design Shear Strength with Shear Reinforcement  242 
6.7.1   Types of Shear Reinforcement  242 
6.7.2   Factors Contributing to Ultimate Shear Resistance  243 
6.7.3   Limiting Ultimate Shear Resistance  244 



XII    CONTENTS 

6.7.4   Shear Resistance of Web Reinforcement  245 
6.7.5   Influence of shear on longitudinal reinforcement  247 
6.7.6   Minimum Stirrup Reinforcement  249 

6.8   Additional Comments on Shear Reinforcement Design  249 
6.9 Interface Shear and Shear Friction 251 
   6.9.1  Shear friction 251 

   6.9.2  Recommendation for Interface Shear Transfer  254 

6.10   Shear Connectors in Flexural Members  256 
  6.10.1  Shear along Horizontal Planes  256  

6.11 Shear Design Examples – Conventional Method  257 
Review Questions  263 
Problems  264 
References  266 

7.  DESIGN FOR TORSION 267 

7.1   Introduction  267 
7.2   Equilibrium Torsion and Compatibility Torsion  267 

7.2.1   Equilibrium Torsion  268 
7.2.2   Compatibility Torsion  268 
7.2.3   Estimation of Torsional Stiffness  270 

7.3   General Behaviour in Torsion  271 
7.3.1   Behaviour of Plain Concrete  271 
7.3.2   Behaviour of Concrete with Torsional Reinforcement  273 

7.4   Design Strength in Torsion  274 
7.4.1   Design Torsional Strength without Torsion Reinforcement  274 
7.4.2   Design Torsional Strength with Torsion Reinforcement  277 
7.4.3   Design Strength in Torsion Combined with Flexure  280 
7.4.4   Design Strength in Torsion Combined with Shear  282 

7.5   Analysis and Design Examples  284 
Review Questions  291 
Problems  292 
References  294 

8.  DESIGN FOR BOND 295 

8.1   Introduction  295 
8.1.1   Mechanisms of Bond Resistance  295 
8.1.2   Bond Stress  296 
8.1.3   Two Types of Bond  296 

8.2   Flexural Bond  297 



CONTENTS XIII 

8.2.1   Effect of Flexural Cracking on Flexural Bond Stress  298 
8.3    Anchorage (Development) Bond  299 

8.3.1   Development Length  300 
8.4   Bond Failure and Bond Strength  301 

8.4.1   Bond Failure Mechanisms  301 
8.4.2   Bond Tests  303 
8.4.3   Factors Influencing Bond Strength  305 

8.5   Review of Code Requirements for Bond  305 
8.5.1   Flexural Bond  305 
8.5.2   Development (Anchorage) Bond  306 
8.5.3   Bends, Hooks and Mechanical Anchorages  306 

8.6   Splicing of Reinforcement  308 
8.6.1   Lap Splices  308 
8.6.2   Welded Splices and Mechanical Connections  310 

8.7   Design Examples  311 
Review Questions  314 
Problems  315 
References  316 

9.  ANALYSIS FOR DESIGN MOMENTS IN CONTINUOUS 
SYSTEMS   317 

9.1   Introduction  317 
9.1.1   Approximations in Structural Analysis  317 
9.1.2   Factored Moments from Elastic Analysis and Moment Redistribution  320 

9.2   Gravity Load Patterns for Maximum Design Moments  321 
9.2.1   Design Moments in Beams  322 
9.2.2   Design Moments in Columns  323 

9.3   Simplified (Approximate) Methods of Analysis  324 
9.3.1   Moment Coefficients for Continuous Beams under Gravity Loads  324 
9.3.2   Substitute Frame Method of Frame Analysis for Gravity Loads  324 
9.3.3   Simplified Methods for Lateral Load Analysis  327 

9.4   Proportioning of Member Sizes for Preliminary Design  328 
9.5   Estimation of Stiffnesses of Frame Elements  330 
9.6   Adjustment of Design Moments at Beam-Column Junctions  331 
9.7   Inelastic Analysis and Moment Redistribution  334 

9.7.1   Limit Analysis  334 
9.7.2   Moment Redistribution  337 
9.7.3   Code Recommendations for Moment Redistribution  341 

9.8   Design Examples  345 
Review Questions  353 
Problems  353 



XIV    CONTENTS 

References  355 

10.  SERVICEABILITY LIMIT STATES: DEFLECTION AND 
CRACKING   357 

10.1   Introduction  357 
10.2   Serviceability Limit States: Deflection  358 

10.2.1   Deflection Limits  358 
10.2.2   Difficulties in Accurate Prediction of Deflections  359 

10.3   Short-Term Deflections  360 
10.3.1   Deflections by Elastic Theory  360 
10.3.2   Effective Flexural Rigidity  361 
10.3.3   Tension Stiffening Effect  362 
10.3.4   Effective Second Moment of Area  364 
10.3.5   Average leff  for Continuous Spans  366 
10.3.6    Effective Curvature Formulation  368 
10.3.7   Additional Short-Term Deflection due to Live Loads alone  373 

10.4   Long-Term Deflection  380 
10.4.1   Deflection Due to Differential Shrinkage  381 
10.4.2   Deflection Due to Creep  384 
10.4.3   Deflection Due to Temperature Effects  387 
10.4.4   Checks on Total Deflection  388 

10.5   Serviceability Limit State: Cracking  391 
10.5.1  Cracking in Reinforced Concrete Members  391 
10.5.2   Limits on Cracking  393 
10.5.3   Factors Influencing Crackwidths  393 
10.5.4   Estimation of Flexural Crackwidth  395 
10.5.5   Estimation of Crackwidth under Direct and Eccentric Tension  405 
10.5.6   Thermal and Shrinkage Cracking  409 

Review Questions  412 
Problems  413 
References  415 

11.  DESIGN OF TWO-WAY SLAB SYSTEMS 417 

11.1   Introduction  417 
11.1.1   One-Way and Two-Way Actions of Slabs  417 
11.1.2   Torsion in Two-Way Slabs  419 
11.1.3   Difference Between Wall-Supported Slabs and Beam/Column Supported 

Slabs  420 
11.2   Design of Wall-Supported Two-Way Slabs  422 

11.2.1   Slab Thickness Based on Deflection Control Criterion  422 
11.2.2   Methods of Analysis  422 
11.2.3   Uniformly Loaded and Simply Supported Rectangular Slabs  423 
11.2.4   Uniformly Loaded ‘Restrained’ Rectangular Slabs  427 
11.2.5   Shear Forces in Uniformly Loaded Two-Way Slabs  435 



CONTENTS XV 

11.2.6   Design of Circular, Triangular and other Slabs  448 
11.2.7   Two-Way Slabs Subjected to Concentrated Loads  454 

11.3   Design of Beam-Supported Two-Way Slabs  454 
11.3.1   Behaviour of Beam-Supported Slabs  454 
11.3.2   Use of Codal Moment Coefficients for Slabs Supported on Stiff  Beams 

  454 
11.3.3   Slabs Supported on Flexible Beams — Codal Limitations  456 
11.3.4   The ‘Equivalent Frame’ Concept  456 

11.4   Design of Column-Supported Slabs (with/without Beams) 
   under Gravity Loads  460 

11.4.1   Codal Procedures Based on the Equivalent Frame Concept  460 
11.4.2   Proportioning of Slab Thickness, Drop Panel and Column Head  463 
11.4.3   Transfer of Shear and Moments to Columns in Beamless Two-Way 

Slabs  467 
11.5   Direct Design Method  469 

11.5.1   Limitations  469 
11.5.2   Total Design Moments for a Span  470 
11.5.3   Longitudinal Distribution of Total Design Moment  470 
11.5.4   Apportioning of Moments to Middle Strips, Column Strips and Beams   

473 
11.5.5   Loads on the Edge Beam  476 
11.5.6   Torsion in the Edge Beam  476 
11.5.7   Moments in Columns and Pattern Loading  478 
11.5.8   Beam Shears in Two Way Slab Systems with Flexible Beams  480 
 

11.6   Equivalent Frame Method  481 
11.6.1   Equivalent Frame for Analysis  481 
11.6.2   Slab-Beam Member  483 
11.6.3   Loading Patterns  491 
11.6.4   Design Moments in Slab-Beam Members  492 
11.6.5   Design Moments in Columns and Torsion in Transverse Beam  494 

11.7   Reinforcement Details in Column-Supported Two-Way   
Slabs  494 

11.8   Shear in Column-Supported Two-Way Slabs  497 
11.8.1   One-Way Shear or Beam Shear  497 
11.8.2   Two-Way Shear or Punching Shear  499 

11.9   Design Examples of Column-Supported Two-Way Slabs  504 
Review Questions  528 
Problems  529 
References  531 

12.  DESIGN OF STAIRCASES 533 

12.1   Introduction  533 
12.2   Types of Staircases  535 



XVI    CONTENTS 

12.2.1   Geometrical Configurations  535 
12.2.2   Structural Classification  536 

12.3   Loads and Load Effects on Stair Slabs  540 
12.3.1   Dead Loads  541 
12.3.2   Live Loads  541 
12.3.3   Distribution of Gravity Loads in Special Cases  541 
12.3.4   Load Effects in Isolated Tread Slabs  542 
12.3.5   Load Effects in Waist Slabs  542 
12.3.6   Load Effects in Tread-Riser Stairs  544 

12.4   Design Examples of Stair Slabs Spanning Transversely  547 
12.5   Design Examples of Stair Slabs Spanning Longitudinally  552 
Review Questions  562 
Problems  562 
References  564 

13.  DESIGN OF COMPRESSION MEMBERS 565 

13.1   Introduction  565 
13.1.1   Classification of Columns Based on Type of Reinforcement  565 
13.1.2   Classification of Columns Based on Type of Loading  566 
13.1.3   Classification of Columns Based on Slenderness Ratios 568 

13.2   Estimation of Effective Length of a Column  569 
13.2.1   Definition of Effective Length  569 
13.2.2   Effective Length Ratios for Idealised Boundary Conditions  570 
13.2.3   Effective Length Ratios of Columns in Frames  573 

13.3   Code Requirements on Slenderness Limits, Minimum   
   Eccentricities and Reinforcement  581 

13.3.1   Slenderness Limits  581 
13.3.2   Minimum Eccentricities  582 
13.3.3   Code Requirements on Reinforcement and Detailing  582 

13.4   Design of Short Columns under Axial Compression  586 
13.4.1   Conditions of Axial Loading  586 
13.4.2   Behaviour under Service Loads  587 
13.4.3   Behaviour under Ultimate Loads  588 
13.4.4   Design Strength of Axially Loaded Short Columns  590 

13.5   Design of Short Columns under Compression with      
   Uniaxial Bending  594 

13.5.1   Distribution of Strains at Ultimate Limit State  594 
13.5.2   Modes of Failure in Eccentric Compression 596 
13.5.3   Design Strength: Axial Load-Moment Interaction 597 
13.5.4   Analysis for Design Strength  600 
13.5.5   Use of Interaction Diagram as an Analysis Aid  610 
13.5.6   Non-dimensional Interaction Diagrams as Design Aids  618 

13.6   Design of Short Columns under Axial Compression with 
   Biaxial Bending  625 



CONTENTS XVII 

13.6.1   Biaxial Eccentricities  625 
13.6.2   Interaction Surface for a Biaxially Loaded Column  627 
13.6.3   Code Procedure for Design of Biaxially Loaded Columns  629 

13.7   Design of Slender Columns  634 
13.7.1   Behaviour of Slender Columns  634 
13.7.2   Second-Order Structural Analysis of Slender Column Structures  639 
13.7.3   Code Procedures for Design of Slender Columns  639 

Review Questions  649 
Problems  650 
References  653 

14.  DESIGN OF FOOTINGS AND RETAINING WALLS 655 

14.1   Introduction  655 
14.2   Types of Footings  656 

14.2.1   Isolated Footings  658 
14.2.2   Combined Footings  658 
14.2.3   Wall Footings  659 

14.3   Soil Pressures under Isolated Footings  659 
14.3.1   Allowable Soil Pressure  659 
14.3.2   Distribution of Base Pressure  660 
14.3.3   Instability Problems: Overturning and Sliding  664 

14.4   General Design Considerations and Code Requirements  665 
14.4.1   Factored Soil Pressure at Ultimate Limit State  665 
14.4.2   General Design Considerations  667 
14.4.3   Thickness of Footing Base Slab  667 
14.4.4   Design for Shear  667 
14.4.5   Design for Flexure  669 
14.4.6   Transfer of Forces at Column Base  671 
14.4.7   Plain Concrete Footings  673 

14.5   Design Examples of Isolated and Wall Footings  674 
14.6   Design of Combined Footings  692 

14.6.1   General  692 
14.6.2   Distribution of Soil Pressure  693 
14.6.3   Geometry of Two-Column Combined Footings  693 
14.6.4   Design Considerations in Two-Column Footings  693 

14.7   Types of Retaining Walls and Their Behaviour  703 
14.8   Earth Pressures and Stability Requirements  706 

14.8.1   Lateral Earth Pressures  706 
14.8.2   Effect of Surcharge on a Level Backfill  708 
14.8.3   Effect of Water in the Backfill  709 
14.8.4   Stability Requirements  710 
14.8.5   Soil Bearing Pressure Requirements  711 

14.9   Proportioning and Design of Cantilever and Counterfort Walls  



XVIII    CONTENTS 

712 
14.9.1   Position of Stem on Base Slab for Economical Design  712 
14.9.2   Proportioning and Design of Elements of Cantilever Walls  714 
14.9.3   Proportioning and Design of Elements of a Counterfort Wall  715 

Review Questions  745 
Problems  746 
References  747 

15.  GOOD DETAILING AND CONSTRUCTION PRACTICES 749 

15.1   Introduction  749 
15.1.1   Serviceability Failures  750 
15.1.2   Reasons for Building Failures  751 
15.1.3   Structural Integrity  751 

15.2   Design and Detailing Practices  752 
15.2.1   Reinforcement Layout  753 
15.2.2   Design Drawings  754 
15.2.3   Construction Details at Connections and special situations  754 
15.2.4   Beam and Column Joints (Rigid Frame Joints)  761 
15.2.5   Construction Joints  763 
15.2.6   Bar Supports and Cover  764 
15.2.7   Deflection Control  765 

15.3   Materials and Construction Practices  765 
15.4   Summary  767 
Review Questions  768 
References  769 

16.  SPECIAL PROVISIONS FOR EARTHQUAKE-RESISTANT 
DESIGN 771 

16.1   Introduction  771 
16.2   Importance of Ductility in Seismic Design  773 

16.2.1   Measures of Ductility  773 
16.2.2   Energy Dissipation by Ductile Behaviour  775 
16.2.3   Flexural Yielding in Frames and Walls  777 

16.3   Major Design Considerations  778 
16.3.1   General Design Objectives  778 
16.3.2   Requirements of Stability and Stiffness  778 
16.3.3   Materials  779 
16.3.4   Foundations  780 
16.3.5   Flexural Members in Ductile Frames  780 
16.3.6   Columns and Frame Members Subject to Bending and Axial Load  785 
16.3.7   Joints in Ductile Frames  788 
16.3.8   Shear Walls (Flexural Walls)  788 



CONTENTS XIX 

16.3.9   Infill frames  790 
16.3.10  Soft storey  791 
16.3.11  Performance limit states  792 

16.4   Closure  792 
Review Questions  792 
References  793 

17.  Selected Special Topics 795 

17.1   Design for Shear by Compression Field Theory  795 
17.1.1   Introduction  795 
17.1.2   General Concepts  796 
17.1.3   Stress-Strain Relationship for Diagonally Cracked Concrete  798 
17.1.4   Analysis Based on Modified Compression Field Theory  799 
17.1.5   Simplified Design Procedure using Modified Compression  
        Field Theory  804 
17.1.6   CSA Code Provisions for Shear Design by the Compression  
        Field Theory  808 
17.1.7   Combined Shear and Torsion  810 

17.2   Design Using Strut-and-Tie Model  811 
17.3   Fire Resistance  822 

17.3.1   Introduction  822 
17.3.2   Factors which influence Fire Resistance Ratings of  
       RC Assemblies  823 
17.3.3   Code Requirements  825 

Problems  826 
Review Questions  826 
References  827 
 

APPENDIX  A:  ANALYSIS AND DESIGN AIDS 829 
Table A.1  ANALYSIS AIDS (WSM) for Singly Reinforced Rectangular Beam  
                 Sections  

   Values of Mall /bd 
2 (MPa) for given Values of pt  

(a)  M 20, M 25 Concrete Grades  830 
(b)  M 30, M 35 Concrete Grades  831 

Table A.2  ANALYSIS AIDS (LSM) for Singly Reinforced Rectangular Beam Sections  
      Values of MuR /bd 

2 (MPa) for given Values of pt

(a)  M 20, M 25 Concrete Grades  832 
(b)  M 30, M 35 Concrete Grades  835 



XX    CONTENTS 

Table A.3  DESIGN AIDS (LSM) for Singly Reinforced Rectangular Beam Sections  
      Values of pt for given Values of R ≡ Mu /bd 

2 (MPa) 
(a)  M 20, M 25 Concrete Grades  839 
(b)  M 30, M 35 Concrete Grades  843 

Table A.4  DESIGN AIDS (LSM) for Doubly Reinforced Rectangular Beam Sections 
      Values of pt and pc for given Values of R ≡ Mu/bd 

2 (MPa) for 
(a)  Fe 415 Steel, M 20 Concrete  849 
(b)  Fe 415 Steel, M 25 Concrete  855 

Table A.5  Areas (mm2) of Reinforcing Bar Groups  861 
Table A.6  Areas (mm2/m) of Uniformly Spaced Bars  862 

APPENDIX  B: GENERAL DATA FOR DEAD LOADS AND LIVE 
LOADS 863 

Table B.1  DEAD LOADS — Unit Weights of Some Materials/Components  864 
Table B.2  LIVE LOADS on Floors  865 
Table B.3  LIVE LOADS on Roofs  865 
Table B.4  HORIZONTAL LIVE LOADS on Parapets/Balustrades  865 

Index 867 



1 

       Reinforced Concrete 
       Structures 

 

1.1   INTRODUCTION 

Traditionally, the study of reinforced concrete design begins directly with a chapter 
on materials, followed by chapters dealing with design.  In this book, a departure is 
made from that convention.  It is desirable for the student to have first an overview of 
the world of reinforced concrete structures, before plunging into the finer details of 
the subject.  

Accordingly, this chapter gives a general introduction to reinforced concrete and 
its applications.  It also explains the role of structural design in reinforced concrete 
construction, and outlines the various structural systems that are commonly adopted 
in buildings.  

That concrete is a common structural material is, no doubt, well known.  But, how 
common it is, and how much a part of our daily lives it plays, is perhaps not well 
known — or rather, not often realised.  Structural concrete is used extensively in the 
construction of various kinds of buildings, stadia, auditoria, pavements, bridges, 
piers, breakwaters, berthing structures, dams, waterways, pipes, water tanks, 
swimming pools, cooling towers, bunkers and silos, chimneys, communication 
towers, tunnels, etc.  It is the most commonly used construction material, consumed 
at a rate of approximately one ton for every living human being.  “Man consumes no 
material except water in such tremendous quantities” (Ref. 1.1). 

Pictures of some typical examples of reinforced concrete structures are shown in 
Figs 1.1−1.5.  Perhaps, some day in the future, the reader may be called upon to 
design similar (if not, more exciting) structures!  The student will do well to bear this 
goal in mind.  
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Fig. 1.1  Ferrocement Boat — ”the first known example of reinforced concrete” 
is a boat, patented in 1848 by Joseph-Louis Lambot  [Ref. : Ferrocement, 
National Academy of Sciences, Washington D.C., Feb. 1973];  the boat shown 
here is a later version (1887) of the original design, presently preserved in the 
Brignoles Museum, France. 

 

Fig. 1.2  A modern reinforced concrete multi-storeyed building — one of the 
tallest in New Delhi (102 m) : Jawahar Vyapar Bhavan  [Architects : Raj Rewal 
and Kuldip Singh, Project Consultants : Engineers India Limited]. 
Structural concept : joist floor supported on Vierendeel girders (arranged in a 
‘plug on’ fashion), cantilevered from core walls. 
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Fig. 1.3  The Bahá’i House of Worship, New Delhi — a unique lotus-shaped 
reinforced concrete structure, with a complex shell geometry involving spheres, 
cylinders, torroids and cones  [Architect : Faríburz Sahbá,  Structural 
Consultants : Flint & Neill,  Contractor : Larsen & Toubro Ltd.] 

 

Fig. 1.4  C N Tower — a communications tower at Toronto, Canada, rising to a 
height of 550 m, making it the tallest reinforced concrete tower in the world.  
(The picture also shows an elevator car which travels vertically along the shaft 
of the tower). 
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Fig. 1.5  A reinforced concrete bow-string girder bridge spanning across 
the Bharathapuzha River at Kuttippuram, Kerala 

1.2   PLAIN AND REINFORCED CONCRETE 

1.2.1   Plain Concrete 

Concrete may be defined [Ref. 1.2] as any solid mass made by the use of a cementing 
medium; the ingredients generally comprise sand, gravel, cement and water.  That the 
mixing together of such disparate and discrete materials can result in a solid mass (of 
any desired shape), with well-defined properties, is a wonder in itself.  Concrete has 
been in use as a building material for more than a hundred and fifty years.  Its 
success and popularity may be largely attributed to (1) durability under hostile 
environments (including resistance to water), (2) ease with which it can be cast into a 
variety of shapes and sizes, and (3) its relative economy and easy availability.  The 
main strength of concrete lies in its compression-bearing ability, which surpasses that 
of traditional materials like brick and stone masonry.  Advances in concrete 
technology, during the past four decades in particular, have now made it possible to 
produce a wide range of concrete grades, varying in mass density (1200−2500 kg/m3) 
and compressive strength (10 −100 MPa).   

Concrete may be remarkably strong in compression, but it is equally remarkably 
weak in tension! [Fig. 1.6(a)].  Its tensile ‘strength’ is approximately one-tenth of its 
compressive ‘strength’.  Hence, the use of plain concrete as a structural material is 
limited to situations where significant tensile stresses and strains do not develop, as 
in hollow (or solid) block wall construction, small pedestals and ‘mass concrete’ 
applications (in dams, etc.).  
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1.2.2   Reinforced Concrete 

Concrete would not have gained its present status as a principal building material, but 
for the invention of reinforced concrete, which is concrete with steel bars embedded 
in it.  The idea of reinforcing concrete with steel has resulted in a new composite 
material, having the potential of resisting significant tensile stresses, which was 
hitherto impossible.  Thus, the construction of load-bearing flexural members, such 
as beams and slabs, became viable with this new material.  The steel bars (embedded 
in the tension zone of the concrete) compensate for the concrete’s incapacity for 
tensile resistance, effectively taking up all the tension, without separating from the 
concrete [Fig. 1.6(b)].  The bond between steel and the surrounding concrete ensures 
strain compatibility, i.e., the strain at any point in the steel is equal to that in the 
adjoining concrete.  Moreover, the reinforcing steel imparts ductility to a material 
that is otherwise brittle.  In practical terms, this implies that if a properly reinforced 
beam were to fail in tension, then such a failure would, fortunately, be preceded by 
large deflections caused by the yielding of steel, thereby giving ample warning of the 
impending collapse [Fig.1.6(c)].  

Tensile stresses occur either directly, as in direct tension or flexural tension, or 
indirectly, as in shear, which causes tension along diagonal planes (‘diagonal 
tension’).  Temperature and shrinkage effects may also induce tensile stresses.  In all 
such cases, reinforcing steel is essential, and should be appropriately located, in a 
direction that cuts across the principal tensile planes (i.e., across potential tensile 
cracks).  If insufficient steel is provided, cracks would develop and propagate, and 
could possibly lead to failure. 

Reinforcing steel can also supplement concrete in bearing compressive forces, as 
in columns provided with longitudinal bars.  These bars need to be confined by 
transverse steel ties [Fig. 1.6(d)], in order to maintain their positions and to prevent 
their lateral buckling.  The lateral ties also serve to confine the concrete, thereby 
enhancing its compression load-bearing capacity.  

As a result of extensive research on reinforced concrete over the past several 
decades in various countries, a stage has reached where it is now possible to predict 
the elastic and inelastic behaviour of this composite material with some confidence.  
No doubt, there exists some uncertainty in the prediction, but this is largely 
attributable to the variability in the strength of in-situ concrete (which, unlike steel, is 
not manufactured under closely controlled conditions).  There are several factors 
which lead to this variability, some of which pertain to material properties (primarily 
of the aggregates), while others pertain to the actual making of concrete at site 
(mixing, placing, compacting and curing).  This uncertainty can be taken care of, by 
providing an appropriate factor of safety in the design process.  [The topic of 
structural safety in design is discussed in detail in Chapter 3]. 

The development of reliable design and construction techniques has enabled the 
construction of a wide variety of reinforced concrete structures all over the world: 
building frames (columns and beams), floor and roof slabs, foundations, bridge decks 
and piers, retaining walls, grandstands, water tanks, pipes, chimneys, bunkers and 
silos, folded plates and shells, etc.  
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(a)  Plain concrete beam 
      cracks and fails in 
      flexural tension under a 
      small load 

(b)  Reinforced concrete 
       beam supports loads with 
      acceptably low 
      deformations 

(c)  Ductile mode of failure 
      under heavy loads 

steel bars undergo 
yielding 

steel bars 
embedded 

hairline crack 
(not perceptible)

(d)  Reinforced concrete 
      column 

transverse steel tie 
(under tension) 

longitudinal reinforcement 
(under compression) 

 
Fig. 1.6  Contribution of steel bars in reinforced concrete 
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It is worth noting that, although these reinforced concrete structures appear to be 
completely different from one another, the actual principles underlying their design 
are the same.  In the chapters to follow, the focus will be on these fundamental 
principles. 
Prestressed Concrete: An introduction to reinforced concrete will not be 
complete without a mention of prestressed concrete, which is another ingenious 
invention that developed side-by-side with reinforced concrete.  Prestressed concrete 
is high-strength concrete with high tensile steel wires embedded and tensioned, prior 
to the application of external loads.  By this, the concrete can be pre-compressed to 
such a degree that, after the structure is loaded, there is practically no resultant 
tension developed in the beam.  Prestressed concrete finds application in situations 
where long spans are encountered (as in bridges), or where cracks (even hairline) in 
concrete are not permitted (as in pressure vessels, pipes and water tanks), or where 
fatigue loading is encountered (as in railtrack sleepers), etc. 
Fibre-Reinforced Concrete and Ferrocement: Recent developments in 
concrete composites have resulted in several new products that aim to improve the 
tensile strength of concrete, and to impart ductility.  Among these, fibre-reinforced 
concrete and ferrocement constitute important developments.  In the former, steel or 
glass fibres are incorporated in concrete at the time of mixing; in the latter, thin 
sections are formed by embedding multiple layers of steel wire mesh in cement 
mortar.  Although ferrocement has gained popularity only in recent years, it 
represents one of the earliest applications of reinforced concrete to be experimented 
with [Fig. 1.1]. 

This book is concerned with reinforced concrete; hence, no further discussion on 
other concrete composites will be made. 

1.3   OBJECTIVES OF STRUCTURAL DESIGN 

The design of a structure must satisfy three basic requirements: 
1) Stability to prevent overturning, sliding or buckling of the structure, or parts of it, 

under the action of loads; 
2) Strength to resist safely the stresses induced by the loads in the various structural 

members; and 
3) Serviceability to ensure satisfactory performance under service load conditions 

— which implies providing adequate stiffness and reinforcements to contain 
deflections, crack-widths and vibrations within acceptable limits, and also 
providing impermeability and durability (including corrosion-resistance), etc. 
There are two other considerations that a sensible designer ought to bear in mind, 

viz., economy and aesthetics.  One can always design a massive structure, which has 
more-than-adequate stability, strength and serviceability, but the ensuing cost of the 
structure may be exorbitant, and the end product, far from aesthetic.  

In the words of Felix Candela [Ref. 1.3], the designer of a remarkably wide range 
of reinforced concrete shell structures, 

“... the architect has no weapons to fight against the scientific arguments of 
the engineer.  A dialogue is impossible between two people who speak 
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different languages.  The result of the struggle is generally the same: 
science prevails, and the final design has generally lost the eventual charm 
and fitness of detail dreamed by the architect.” 

It is indeed a challenge, and a responsibility, for the structural designer to design a 
structure that is not only appropriate for the architecture, but also strikes the right 
balance between safety and economy [Ref. 1.4]. 

1.4   REINFORCED CONCRETE CONSTRUCTION 

Reinforced concrete construction is not the outcome of structural design alone.  It is a 
collaborative venture involving the client, the architect, the structural engineer, the 
construction engineer/project manager and the contractor.  Other specialists may also 
have to be consulted, with regard to soil investigation, water supply, sanitation, fire 
protection, transportation, heating, ventilation, air-conditioning, acoustics, electrical 
services, etc.  Typically, a construction project involves three phases viz. planning, 
design (including analysis) and construction. 
1.  Planning Phase:  It is the job of the architect/planner to conceive and plan the 
architectural layout of the building, to suit the functional requirements of the client, 
with due regard to aesthetic, environmental and economic considerations.  Structural 
feasibility is also an important consideration, and for this the structural designer has 
to be consulted. 
2.  Design Phase:  Once the preliminary plans have been approved, the actual 
details of the project have to be worked out (on paper) by the various consultants.  In 
the case of the structural engineer/consultant, the tasks involved are  (i) selection of 
the most appropriate structural system and initial proportioning of members, 
(ii) estimation of loads on the structure,  (iii) structural analysis for the 
determination of the stress resultants (member forces) and displacements induced by 
various load combinations,  (iv) structural design of the actual proportions (member 
sizes, reinforcement details) and grades of materials required for safety and 
serviceability under the calculated member forces, and  (v) submission of working 
drawings that are detailed enough to be stamped ‘good for construction’. 
3.  Construction Phase:  The plans and designs conceived on paper get translated 
into concrete (!) reality.  A structure may be well-planned and well-designed, but it 
also has to be well-built, for, the proof of the pudding lies in the eating.  And for this, 
the responsibility lies not only with the contractor who is entrusted with the 
execution, but also with the construction engineers who undertake supervision on 
behalf of the consultants.  The work calls for proper management of various 
resources, viz. manpower, materials, machinery, money and time.  It also requires 
familiarity with various construction techniques and specifications.  In particular, 
expertise in concrete technology is essential, to ensure the proper mixing, handling, 
placing, compaction and curing of concrete.  Management of contracts and following 
proper procedures, systems and documentation are also important aspects of the 
construction phase, especially in public works, however these are beyond the scope 
of this book. 
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During the construction phase, some redesign may also be required — in the event 
of unforeseen contingencies, such as complications in foundations, non-availability 
of specified materials, etc. 

1.5   STRUCTURAL SYSTEMS 
Any structure is made up of structural elements (load-carrying, such as beams and 
columns) and non-structural elements (such as partitions, false ceilings, doors).  The 
structural elements, put together, constitute the ‘structural system’.  Its function is to 
resist effectively the action of gravitational and environmental loads, and to transmit 
the resulting forces to the supporting ground, without significantly disturbing the 
geometry, integrity and serviceability of the structure. 

Most of the structural elements may be considered, from the viewpoint of 
simplified analysis, as one-dimensional (skeletal) elements (such as beams, columns, 
arches, truss elements) or two-dimensional elements (such as slabs, plates and shells).  
A few structural elements (such as shell-edge beam junctions, perforated shear walls) 
may require more rigorous analysis.  

Consider, for example, a reinforced concrete overhead water tank structure 
[Fig. 1.7].  The structural system essentially comprises three subsystems, viz. the 
tank, the staging and the foundation, which are distinct from one another in the sense 
that they are generally designed, as well as constructed, in separate stages.  The tank, 
in this example, is made up of a dome-shaped shell roof, a cylindrical side-wall (with 
stiffening ring beams at top and bottom), a flat circular base slab, and a main ring 
beam, which is supported by the columns of the staging.  The staging comprises a 
three-dimensional framework of beams and columns, which are ‘fixed’ to the 
foundation.  The foundation is a ‘raft’, comprising a slab in the shape of an annular 
ring, stiffened by a ring beam on top, and resting on firm soil below.  The loads 
acting on the structure are due to dead loads (due to self-weight), live loads (due to 
water in the tank, maintenance on the roof), wind loads (acting on the exposed 
surface areas of the tank and staging), and seismic loads (due to earthquake induced 
ground excitation).  The effect of the loads acting on the tank are transmitted to the 
staging through the main ring beam; the effect of the loads on the staging are, in turn, 
transmitted to the foundation, and ultimately, to the ground below.  

1.6   REINFORCED CONCRETE BUILDINGS 
The most common reinforced concrete construction is the building (planned for 
residential, institutional or commercial use).  It is therefore instructive to look at its 
structural system and its load transmission mechanism in some detail.  As the height 
of the building increases, lateral loads (due to wind and earthquake) make their 
presence felt increasingly; in fact, in very tall buildings, the choice of a structural 
system is dictated primarily by its relative economy in effectively resisting lateral 
loads (rather than gravity loads).  

For convenience, we may separate the structural system into two load 
transmission mechanisms, viz. gravity load resisting and lateral load resisting, 
although, in effect, these two systems are complementary and interactive.  As an 
integrated system, the structure must resist and transmit all the effects of gravity 
loads and lateral loads acting on it to the foundation and the ground below. 
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Fig. 1.7  Structural system of an elevated water tank 
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Moreover, although the building is a three-dimensional structure, it is usually 
conceived, analysed and designed as an assemblage of two-dimensional (planar) sub-
systems lying primarily in the horizontal and vertical planes (e.g., floors, roof, walls, 
plane frames, etc.), as indicated in Fig. 1.8.  This division into a horizontal (floor) 
system and a vertical (framing) system is particularly convenient in studying the load 
resisting mechanisms in a building. 

1.6.1   Floor Systems 

The (horizontal) floor system resists the gravity loads (dead loads and live loads) 
acting on it and transmits these to the vertical framing system.  In this process, the 
floor system is subjected primarily to flexure and transverse shear, whereas the 
vertical frame elements are generally subjected to axial compression, often coupled 
with flexure and shear [Fig. 1.8a].  The floor also serves as a horizontal diaphragm 
connecting together and stiffening the various vertical frame elements.  Under the 
action of lateral loads, the floor diaphragm behaves rigidly (owing to its high in-
plane flexural stiffness), and effectively distributes the lateral load effects to the 
various vertical frame elements and shear walls [Fig. 1.8b].  In cast-in-situ reinforced 
concrete construction, the floor system usually consists of one of the following: 

Wall-Supported Slab System  

In this system, the floor slabs, generally 100-200 mm thick with spans ranging from 
3 m to 7.5 m, are supported on load-bearing walls (masonry).  This system is mainly 
adopted in low-rise buildings.  The slab panels are usually rectangular in shape, and 
can be supported in a number of ways. 

When the slab is supported only on two opposite sides [Fig. 1.9(a)], the slab bends 
in one direction only; hence, it is called a one-way slab.  When the slab is supported 
on all four sides, and the plan dimensions of length and breadth are comparable to 
each other [Fig. 1.9(c)], the slab bends in two directions (along the length and along 
the breadth); hence, it is called a two-way slab.  However, if the plan is a long 
rectangle (length greater than about twice the width), the bending along the 
longitudinal direction is negligible in comparison with that along the transverse 
(short-span) direction, and the resulting slab action is effectively one-way 
[Fig. 1.9(b)].  If the wall extends above the floor level [Fig. 1.9(d)], the slab is no 
more simply supported; the partial fixity at the support introduces hogging moments 
in the slab.  Furthermore, twisting moments are also introduced at the corners that are 
restrained (not free to lift up) — as established by the classical theory of plates.  
Generally, slabs are cast in panels that are continuous over several wall supports, and 
are called one-way continuous [Fig. 1.9(e)] or two-way continuous slabs, depending 
on whether the bending is predominantly along one direction or two directions.  
Hogging moments are induced in the slab in the region adjacent to the continuous 
support.  
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Fig. 1.8  Load transmission mechanisms 
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Fig. 1.9  Wall-supported slab systems 

Beam-Supported Slab System 

This system is similar to the wall-supported slab system, except that the floor slabs 
are supported on beams (instead of walls).  The beams are cast monolithically with 
the slabs in a grid pattern [Fig. 1.10(a)], with spans ranging from 3 m to 7.5 m.  This 
system is commonly adopted in high-rise building construction, and also in low-rise 
framed structures.  The gravity loads acting on the slabs are transmitted to the 
columns through the network of beams.  The beams which are directly connected to 
the columns (forming the vertical frames) are called primary beams (or girders); 
whereas, the beams which are supported, not by columns, but by other (primary) 
beams, are called secondary beams [Figs 1.10(b),(c)].  

If the beams are very stiff, the beam deflections are negligible, and the slab 
supports become relatively unyielding, similar to wall supports; the action may be 
either two-way or one-way [Fig. 1.10(b),(c)], depending on the panel dimensions.  
However, if the beams are relatively flexible, the beam deflections are no longer 
negligible and will influence the slab behaviour.  When a large number of two-way 
secondary beams are involved (typically in a ‘grid floor’ with a large column-free 
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space) [Fig. 1.10(d)], the slabs do not really ‘rest’ on the beams; the slab-beam 
system as a whole acts integrally in supporting the gravity loads.   

(d)  grid beam-supported slab

primary
beams

(b)  two-way system

column primary beam

secondary
beam

(c)  one-way system

(a)  beam-supported slab

 

Fig. 1.10  Beam-supported slab systems 
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Ribbed Slab System   

This is a special type of ‘grid floor’ slab-beam system, in which the ‘slab’, called 
topping, is very thin (50-100 mm) and the ‘beams’, called ribs, are very slender and 
closely spaced (less than 1.5 m apart).  The ribs have a thickness of not less than 
65 mm and a depth that is three-to-four times the thickness.  The ribs may be 
designed in one-way or two-way patterns [Fig. 1.11(a),(b)], and are generally cast-in-
situ, although precast construction is also possible. 

ribs
primary beam

column

ribs

A

A

PLAN
(view from below)

SECTION ‘AA’
 (enlarged)

 

Fig. 1.11(a)  One-way ribbed slab system 

Two-way ribbed slabs are sometimes called waffle slabs.  Along the outer edges, 
the ribbed slab system is generally supported on stiff edge beams or walls.  In wall-
supported systems, the thickness of the rib resting on the wall is usually increased to 
match the wall thickness for improved bearing.  Waffle slabs, used in large-span 
construction, may rest directly on columns; in this case, the slab is made solid in the 
neighbourhood of the column.  

Flat Plate System  

Here, the floor slab is supported directly on the columns, without the presence of 
stiffening beams, except at the periphery [Fig. 1.12].  It has a uniform thickness of 
about 125-250 mm for spans of 4.5-6 m.  Its load carrying capacity is restricted by 
the limited shear strength and hogging moment capacity at the column supports.  
Because it is relatively thin and has a flat under-surface, it is called a flat plate, and 
certainly has much architectural appeal.  It is used in the developed countries at 
locations (in apartments and hotels) where floor loads are low, spans are not large, 
and plane soffits serve as ceilings.  However, it is yet to gain popularity in India — 
perhaps, because it is too daring a concept? 
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Fig. 1.11(b)  Two-way ribbed (waffle) slab system 
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Fig. 1.12  Flat plate system 
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Flat Slab System  

This is a more acceptable concept to many designers [Fig. 1.13].  It is adopted in 
some office buildings.  The flat slabs are plates that are stiffened near the column 
supports by means of ‘drop panels’ and/or ‘column capitals’ (which are generally 
concealed under ‘drop ceilings’).  Compared to the flat plate system, the flat slab 
system is suitable for higher loads and larger spans, because of its enhanced capacity 
in resisting shear and hogging moments near the supports.  The slab thickness varies 
from 125 mm to 300 mm for spans of 4-9 m.  Among the various floor systems, the 
flat slab system is the one with the highest dead load per unit area. 

column column
capital

drop panel

slab

 

Fig. 1.13  Flat slab system 

1.6.2   Vertical Framing System 

As mentioned earlier, the vertical framing system resists the gravity loads and lateral 
loads from the floor system and transmits these effects to the foundation and ground 
below.  The framing system is made up of a three-dimensional framework of beams 
and columns.  For convenience, we may divide the framework into separate plane 
frames in the transverse and longitudinal directions of the building.   

In cast-in-situ reinforced concrete construction, the vertical framing system 
usually comprises the following: 

Columns  

These are skeletal structural elements, whose cross-sectional shapes may be 
rectangular, square, circular, L-shaped, etc. — often as specified by the architect.  
The size of the column section is dictated, from a structural viewpoint, by its height 
and the loads acting on it — which, in turn, depend on the type of floor system, 
spacing of columns, number of storeys, etc.  The column is generally designed to 
resist axial compression combined with (biaxial) bending moments that are induced 
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by ‘frame action’ under gravity and lateral loads.  These load effects are more 
pronounced in the lower storeys of tall buildings; hence, high strength concrete (up to 
50 MPa) with high reinforcement area (up to 6 percent of the concrete area) is 
frequently adopted in such cases, to minimise the column size.  In some situations, 
the column height between floor slabs may be excessive (more than one storey 
height); in such cases, it is structurally desirable to reduce the unsupported length of 
the column by providing appropriate tie beams; otherwise, the columns should be 
properly designed as slender columns. 

Walls  

These are vertical elements, made of masonry or reinforced concrete.  They are called 
bearing walls if their main structural function is to support gravity loads, and are 
referred to as shear walls if they are mainly required to resist lateral loads due to 
wind and earthquake.  The thickness of reinforced concrete bearing walls varies from 
125 mm to 200 mm; however, shear walls may be considerably thicker in the lower 
storeys of tall buildings.  The walls around the lift cores of a building often serve as 
shear walls.   

Transfer Girders   

In some buildings, the architectural planning is such that large column-free spaces 
are required in the lower floors — for banquet/convention halls (in hotels), lobbies, 
parking areas, etc. 

In such cases, the vertical load-bearing elements (columns, bearing walls) of the 
upper floors are not allowed to continue downwards, through the lower floors, to the 
foundations below.  This problem can be resolved by providing a very heavy beam, 
called transfer girder, whose depth may extend over one full storey [Fig. 1.14].  The 
upper-storey columns terminate above the transfer girder, and transmit their loads, 
through the beam action of the girder, to the main columns that support the girder 
from below.   

transfer 
girder 

 

Fig. 1.14  Use of transfer girder 
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Suspenders 

These are vertical elements used to suspend floor systems such as the cantilevered 
upper storeys of a multi-storeyed building from a central reinforced concrete core 
[Fig. 1.15].  Structural steel is often found to be better suited for use as suspenders 
(also called hangers), because the force to be resisted is direct tension; moreover, 
steel hangers take up very little of the floor space.  The loads from the suspenders 
may be transmitted to the reinforced concrete core by means of large cantilevered 
beams, cross-braced trusses or Vierendeel girders [also refer Fig. 1.2]. 

central core wall 

cantilevered floor 

suspenders

Vierendeel girder 

 

Fig. 1.15  Use of suspenders 

It may be noted that the vertical elements in the bow-string girder of Fig. 1.5 also 
act as suspenders, transmitting the loads of the bridge deck to the arches spanning 
between the piers. 

1.6.3   Lateral Load Resisting Systems 

As mentioned earlier, the horizontal and vertical sub-systems of a structural system 
interact and jointly resist both gravity loads and lateral loads.  Lateral load effects 
(due to wind and earthquake) predominate in tall buildings, and govern the selection 
of the structural system.   

Lateral load resisting systems of reinforced concrete buildings generally consist of 
one of the following: 

Frames  

These are generally composed of columns and beams [Fig. 1.8(b) and 1.16(a)].  Their 
ability to resist lateral loads is entirely due to the rigidities of the beam-column 
connections and the moment-resisting capacities of the individual members.  They 
are often (albeit mistakenly) called ‘rigid frames’, because the ends of the various 
members framing into a joint are ‘rigidly’ connected in such a way as to ensure that 
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they all undergo the same rotation under the action of loads.  In the case of the ‘flat 
plate’ or ‘flat slab’ system, a certain width of the slab, near the column and along the 
column line, takes the place of the beam in ‘frame action’.  Frames are used as the 
sole lateral load resisting system in buildings with up to 15 to 20 storeys 
[Fig. 1.16(e)]. 

 

(a)  rigid frame 
action 

(b)  shear wall 
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(e)  comparison of various systems  

Fig. 1.16  Lateral load resisting systems 
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Shear Walls   

These are solid walls, which usually extend over the full height of the building.  They 
are commonly located at the lift/staircase core regions.  Shear walls are also 
frequently placed along the transverse direction of a building, either as exterior 
(facade) walls or as interior walls.  The walls are very stiff, having considerable 
depth in the direction of lateral loads [Fig. 1.16(b)]; they resist loads by bending like 
vertical cantilevers, fixed at the base. 

The various walls and co-existing frames in a building are linked at the different 
floor levels by means of the floor system, which distributes the lateral loads to these 
different systems appropriately.  The interaction between the shear walls and the 
frames is structurally advantageous in that the walls restrain the frame deformations 
in the lower storeys, while the frames restrain the wall deformations in the upper 
storeys [Fig. 1.16(c)].  Frame-shear wall systems are generally considered in 
buildings up to about 40 storeys, as indicated in Fig. 1.16(e) [Ref. 1.5].   

Tubes  

These are systems in which closely-spaced columns are located along the periphery 
of a building.  Deep spandrel beams, located on the exterior surface of the building, 
interconnect these columns.  The entire system behaves like a perforated box or 
framed tube with a high flexural rigidity against lateral loads [Fig. 1.16(d)].  When 
the (outer) framed tube is combined with an ‘inner tube’ (or a central shear core), the 
system is called a tube-in-tube.  When the sectional plan of the building comprises 
several perforated tubular cells, the system is called a bundled tube or ‘multi-cell 
framed tube’.  Tubular systems are effective up to 80 storeys, as indicated in 
Fig. 1.16(e).  Widely adopted in the big cities of developed countries, these sky-
scraping systems are on the verge of making an appearance in the metros of India.  

1.7   STRUCTURAL ANALYSIS AND DESIGN 

It is convenient to separate the work of a structural designer into analysis and 
design, although a rigid separation is neither possible nor desirable.  When a student 
undergoes separate courses on structural analysis and structural design, it is 
essential that he realises the nature of their mutual relationship.   

The purpose of analysis is to determine the stress resultants and displacements in 
the various members of a structure under any loading (static or dynamic).  The 
purpose of design is to provide adequate member sizes, reinforcement and 
connection details, so as to enable the structure to withstand safely the calculated 
load effects.  In order to perform analysis, the proportions of the various structural 
elements should be known in advance; for this, a preliminary design is generally 
required.  Thus, in practice, analysis and design are interactive processes.   

This book is confined to reinforced concrete design.  It covers the basic principles of 
designing structural members for flexure, shear, torsion and axial compression — with 
applications to beams, slabs, staircases, columns, footings and retaining walls.  
Applications to special structures, such as bridges, chimneys, water tanks and silos 
are not covered here, although the basic principles of design remain the same. 
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Furthermore, the various methods of analysis of structures [Ref. 1.6-1.9] clearly 
lie outside the scope of this book.  However, some approximations in analysis, as 
permitted by design codes, are discussed in some of the chapters to follow.   

Exposure to Construction Practices 

In reinforced concrete structures, construction practices are as important as the 
design.  Indeed, for a correct understanding of design as well as the Code provisions, 
some exposure to concrete laboratory work and to actual reinforced concrete 
construction work in the field is required.   

Frequently, major concrete structures are constructed right in the 
college campus (or nearby).  Students (and teachers!) should take full 
advantage of these opportunities to visit the sites and supplement and 
reinforce the theory they learn in the class room.  Learning can emerge 
from both good practice and bad practice!  

1.8   DESIGN CODES AND HANDBOOKS 

1.8.1   Purpose of Codes 

National building codes have been formulated in different countries to lay down 
guidelines for the design and construction of structures.  The codes have evolved 
from the collective wisdom of expert structural engineers, gained over the years.  
These codes are periodically revised to bring them in line with current research, and 
often, current trends.    

The codes serve at least four distinct functions.  Firstly, they ensure adequate 
structural safety, by specifying certain essential minimum requirements for design.  
Secondly, they render the task of the designer relatively simple; often, the results of 
sophisticated analyses are made available in the form of a simple formula or chart.  
Thirdly, the codes ensure a measure of consistency among different designers.  
Finally, they have some legal validity, in that they protect the structural designer 
from any liability due to structural failures that are caused by inadequate supervision 
and/or faulty material and construction. 

The codes are not meant to serve as a substitute for basic understanding 
and engineering judgement.  The student is, therefore, forewarned that he 
will make a poor designer if he succumbs to the unfortunate (and all-too-
common) habit of blindly following the codes.  On the contrary, in order to 
improve his understanding, he must learn to question the code provisions  
— as, indeed, he must, nearly everything in life!  

1.8.2   Basic Code for Design 

The design procedures, described in this book, conform to the following Indian code 
for reinforced concrete design, published by the Bureau of Indian Standards, New 
Delhi: 

IS 456 : 2000  — Plain and reinforced concrete – Code of practice (fourth 
revision)  



REINFORCED  CONCRETE  STRUCTURES 23 

This code shall henceforth be referred to as ‘the Code’ in the chapters to follow.  
References have also been made to other national codes, such as ACI 318, BS 8110, 
CSA CAN3-A23.3 and Eurocode, wherever relevant.   

1.8.3   Loading Standards 

The loads to be considered for structural design are specified in the following loading 
standards:  

IS 875 (Parts 1-5) : 1987  — Code of practice for design loads (other than 
earthquake) for buildings and structures (second revision) 

Part 1 : Dead loads  
Part 2 : Imposed (live) loads  
Part 3 : Wind loads  
Part 4 : Snow loads  
Part 5 : Special loads and load combinations 

IS 1893 : 2002  — Criteria for earthquake resistant design of structures (fourth 
revision). 

1.8.4   Design Handbooks 

The Bureau of Indian Standards has also published the following handbooks, which 
serve as useful supplements to the 1978 version of the Code.  Although the 
handbooks need to be updated to bring them in line with the recently revised (2000 
version) of the Code, many of the provisions continue to be valid (especially with 
regard to structural design provisions). 

SP 16 : 1980  — Design Aids (for Reinforced Concrete) to IS 456 : 1978  
SP 24 : 1983  — Explanatory Handbook on IS 456 : 1978  
SP 34 : 1987  — Handbook on Concrete Reinforcement and Detailing  
SP 23 : 1982  — Design of Concrete Mixes  

 

1.8.5   Other Related Codes 

There are several other codes that the designer may need to refer to.  The codes 
dealing with material specifications and testing are listed at the end of Chapter 2. 
Chapter 16 of this book deals with special design provisions related to earthquake-
resistant design of reinforced concrete structures.  The code related to this topic is: 

IS 13920 : 1993  — Ductile detailing of reinforced concrete structures subjected 
to seismic forces. 

Other codes dealing with the design of special structures, such as liquid-retaining 
structures, bridges, folded plates and shells, chimneys, bunkers and silos, are not 
covered in this book, the scope of which is limited to basic reinforced concrete 
design.   



24    REINFORCED  CONCRETE  DESIGN 

REVIEW QUESTIONS 
1.1 What reasons do you ascribe to concrete gaining the status of the most widely 

used construction material? 
1.2 The occurrence of flexural tension in reinforced concrete is well known.  Cite 

practical examples where tension occurs in other forms in reinforced concrete. 
1.3 What is the role of transverse steel ties [Fig. 1.6(d)] in reinforced concrete 

columns? 
1.4 A reinforced concrete canopy slab, designed as a cantilever, is under 

construction.  Prior to the removal of the formwork, doubts are expressed about 
the safety of the structure.  It is proposed to prop up the free edge of the 
cantilever with a beam supported on pillars.  Comment on this proposal. 

1.5 What are the main objectives of structural design?   
1.6 List the steps involved in the process of structural design. 
1.7 Distinguish between structural design and structural analysis. 
1.8 Consider a typical reinforced concrete building in your institution.  Identify the 

various structural elements in the structural system of the building, and briefly 
explain how the loads are transmitted to the supporting ground. 

1.9 Consider a symmetrical portal frame ABCD with the columns (AB and CD) 4 
m high, fixed at the base points A and D.  The beam BC has a span of 6 m and 
supports a uniformly distributed load of 100 kN.  From structural analysis, it is 
found that at each fixed base support, the reactions developed are 50 kN 
(vertical), 30 kN (horizontal) and 40 kN m (moment).  With the help of 
freebody, bending moment, shear force and axial force diagrams, determine the 
stress resultants in the design of the beam BC and the column AB (or CD). 

1.10 Enumerate the various types of gravity load bearing systems and lateral load 
resisting systems used in reinforced concrete buildings. 
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   Basic Material Properties 
 

2.1   INTRODUCTION 

In order to learn to design reinforced concrete structures, it is desirable to begin with 
an understanding of the basic materials, viz. concrete (including its ingredients) and 
reinforcing steel.  Accordingly, this chapter describes briefly some of the important 
properties of these basic materials.   

Much of this chapter is devoted to concrete rather than steel, because the designer 
(as well as the builder) needs to know more about concrete, which, unlike steel, is not 
manufactured in factories under controlled conditions.  Concrete is generally 
prepared at the site itself, although precast concrete is also used in some cases. 

2.1.1   Concrete Technology 

The making of ‘good’ concrete is decidedly not an easy job.  This is clear from the 
all-too-common ‘bad’ concrete.  Both good and bad concrete can be prepared from 
exactly the same constituents: cement, aggregate, water (and, sometimes, 
admixtures).  It is the mix proportions, the ‘know-how’ and the ‘do-how’ that makes 
the difference. 

Good concrete is one that has the desired qualities of strength, impermeability, 
durability, etc., in the hardened state.  To achieve this, the concrete has to be 
‘satisfactory’ in the fresh state (which includes mixing, handling, placing, 
compacting and curing).  Broadly, this means that the mix must be of the right 
proportions, and must be cohesive enough to be transported and placed without 
segregation by the means available, and its consistency must be such that it is 
workable and can be compacted by the means that are actually available for the job. 

A competent concrete technologist will be able to get a fair idea of the nature and 
properties of hardened concrete by observation and a few simple tests on the fresh 
concrete.  If found unsatisfactory, suitable remedial measures can and should be 
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adopted without having to wait until the concrete hardens, by which time it is too late 
to effect corrections.   

‘Concrete technology’ is a complete subject in itself, and the reader is advised to 
consult standard textbooks on the subject [Ref. 2.1, 2.2, 2.3] for a detailed study.  In 
the following sections, some salient features of the making of concrete (covering 
both ingredients and process) are discussed, followed by a detailed description of the 
properties of hardened concrete and reinforcing steel. 

2.2   CEMENT 

Cement may be described as a material with adhesive and cohesive properties that 
make it capable of bonding mineral fragments (‘aggregates’) into a compact whole 
[Ref. 2.1].  In this process, it imparts strength and durability to the hardened mass 
called concrete.  The cements used in the making of concrete are called hydraulic 
cements — so named, because they have the property of reacting chemically with 
water in an exothermic (heat-generating) process called hydration that results in 
water-resistant products†.  The products of hydration form a viscous cement paste, 
which coats the aggregate surfaces and fills some of the void spaces between the 
aggregate pieces.  The cement paste loses consistency (‘stiffens’) on account of 
gradual loss of ‘free water’, adsorption and evaporation, and subsequently ‘sets’, 
transforming the mixture into a solid mass.  If the consistency of the cement paste is 
either excessively ‘harsh’ or excessively ‘wet’, there is a danger of segregation, i.e., 
the aggregate tends to separate out of the mix; this will adversely affect the quality of 
the hardened concrete and result in a ‘honeycomb’ appearance.  The freshly set 
cement paste gains strength with time (‘hardens’), on account of progressive filling 
of the void spaces in the paste with the reaction products, also resulting in a decrease 
in porosity and permeability.  

There is a common misconception regarding the role of cement in concrete.  Many 
people (including some civil engineers) assume that it is desirable to put in as much 
cement as possible in a concrete mix — provided, of course, cost is not a constraint.  
This is simply not true.  The use of excessive cement results in cracking of concrete 
(due to the heat of hydration generated and due to plastic shrinkage of the cement 
paste), and leads to increased long-term effects of creep and drying shrinkage of 
hardened concrete, resulting in undesirable large deflections and cracking.  

2.2.1   Portland Cements 

The most common type of hydraulic cement used in the manufacture of concrete is 
known as Portland cement, which is available in various forms. 

Portland cement was first patented in England in 1824, and was so named because 
its grey colour resembled a limestone (quarried in Dorset) called ‘Portland stone’.  
Portland cement is made by burning together, to about 1400°C, an intimate mixture 
(in the form of a slurry) of limestone (or chalk) with alumina-, silica- and iron oxide-
                                                           
† Cements derived from calcination of gypsum or limestone are ‘non-hydraulic’ because their 
products of hydration are not resistant to water; however, the addition of pozzolanic materials 
can render gypsum and lime cements ‘hydraulic’ [Ref. 2.2]. 
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bearing materials (such as clay or shale), and grinding the resulting ‘clinker’ into a 
fine powder, after cooling and adding a little gypsum.  The cement contains four 
major compounds, viz., tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium 
aluminate (C3A) and tetracalcium aluminoferrite (C4AF).  By altering the relative 
proportions of these major compounds, and including appropriate additives, different 
types of Portland cement, with different properties, can be made.  For instance, 
increased proportions of C3S and C3A contribute to high early strength; on the 
contrary, an increased proportion of C2S retards the early development of strength 
(and generates less heat of hydration), but enhances ultimate strength [Ref. 2.2].  
Adjusting the fineness of cement can also control these properties. 

The use of any one of the following types of Portland cement is permitted by the 
Code (IS 456 : 2000):  

Ordinary Portland Cement (OPC) — presently available in three different 
‘grades’ (denoting compressive strength), viz. C33, C43 and C53, conforming to 
IS 269 : 1989,  IS 8112 : 1989 and IS 12269 : 1987 respectively.  The numbers 33, 
43 and 53 correspond to the 28-day (characteristic=) compressive strengths of 
cement, as obtained from standard tests on cement-sand mortar specimens.  These are 
most commonly used in general concrete construction, where there is no special 
durability requirement (such as exposure to ‘sulphate attack’). 

Rapid Hardening Portland Cement (RHPC) — conforming to IS 8041 : 1990, 
is similar to OPC, except that it has more C3S and less C2S, and it is ground more 
finely.  It is used in situations where a rapid development of strength is desired (e.g., 
when formwork is to be removed early for reuse). 

Portland Slag Cement (PSC) — conforming to IS 455 : 1989, is made by inter-
grinding Portland cement clinker and granulated blast furnace slag (which is a waste 
product in the manufacture of pig iron).  It has fairly high sulphate resistance, 
rendering it suitable for use in environments exposed to sulphates (in the soil or in 
ground water).   

Portland Pozzolana Cements (PPC) — flyash based or calcined clay based, 
conforming respectively to Parts 1 and 2 of IS 1489 : 1991, involves the addition of 
‘pozzolana’ (flyash or calcined clay) — a mineral additive containing silica; the 
pozzolana is generally cheaper than the cement it replaces.  These cements hydrate 
and gain strength relatively slowly, and therefore require curing over a comparatively 
longer period.  They are suitable in situations (such as mass concreting) where a low 
rate of heat of hydration is desired. 

Hydrophobic Portland Cement (HPC) — conforming to IS 8043 : 1991, is 
obtained by inter-grinding Portland cement with 0.1–0.4 percent of oleic acid or 

                                                           
= The term ‘characteristic strength’ is defined in Section 2.6.1.  Higher grade OPC is now 
widely available in India, and is achieved in cement manufacture by increased proportion of 
lime (which enhances C3S) and increased fineness (up to 325 kg/m2).  The higher the grade of 
cement, the quicker will be the strength gain of the concrete mixture.  However, in the long 
run, the strength development curves more or less converge for the various grades of cement. 
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stearic acid.  The ‘hydrophobic’ (water-resistant) property is due to the formation of 
a water-repellent film around each particle of cement.  During the mixing of 
concrete, this film is broken, thereby making it possible for normal hydration to take 
place.  Although its early strength is low, this cement is suitable in situations where 
cement bags are required to be stored for a prolonged period under unfavourable 
conditions, because it deteriorates very little. 

Low Heat Portland Cement (LHPC) — conforming to IS 12600 : 1989, is 
Portland cement with relatively lower contents of the more rapidly hydrating 
compounds, C3S and C3A.  The process of hydration is slow (as with PPC), and the 
consequent rate of heat generation is also low.  This is desirable in mass concreting 
of gravity dams; as otherwise, the excessive heat of hydration can result in serious 
cracking.  However, because of the slower rate of strength gain, adequate precaution 
should be taken in their use such as with regard to removal of formwork, etc.  

Sulphate Resisting Portland Cement (SRPC) — conforming to 
IS 12330 : 1988, is Portland cement with a very low C3A content and ground finer 
than OPC.  This cement is ‘sulphate-resistant’ because the disintegration of concrete, 
caused by the reaction of C3A in hardened cement with a sulphate salt from outside is 
inhibited.  SRPC is therefore ideally suited for use in concrete structures located in 
soils where sulphates are present.  However, recent research indicates that the use of 
SRPC is not beneficial in environments where chlorides are present. 

Portland White Cement  (PWC) — conforming to IS 269 : 1989, is Portland 
cement made from raw materials of low iron content, the clinker for which is fired by 
a reducing flame.  Special precautions are required during the grinding of the clinker 
to avoid contamination.  The addition of pigments to a white cement concrete mix 
makes it possible to produce concrete with pastel colours.  White cement is far more 
expensive, compared to OPC, and is used mainly for architectural purposes — in 
floor and wall finishes, swimming pool surfaces, etc.  

The Code permits the use of combinations of Portland cements with mineral 
admixtures, provided they meet the desired performance standards.  The term 
‘blended cements’ is now gaining popularity; it refers to cements obtained by 
combination with various pozzolanic admixtures such as flyash (of proper quality) 
and ground granulated blast furnace slag.   

2.2.2   Other Cements 

The Code also permits the use of the following special cements ‘under special 
circumstances’ — mainly prevention of chemical attack.  However, the use of these 
cements should be done judiciously and with special care. 

High Alumina Cement (HAC) or aluminous cement — conforming to IS 
6452: 1989, is very different in its composition from Portland cements.  The raw 
materials used for its manufacture consist of ‘bauxite’ (which is a clay with high 
alumina content) and limestone (or chalk).  It has good resistance against attack by 
sulphates and some dilute acids, and is particularly recommended in marine 
environments; it also shows a very high rate of strength development.   
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Supersulphated Cement (SC) — conforming to IS 6909 : 1990, is made by 
intergrinding a mixture of 80–85 percent of granulated blast furnace slag with 10-15 
percent of dead-burnt gypsum and about 5 percent Portland cement clinker.  It is 
highly resistant to sea-water, and can withstand high concentrations of sulphates 
found in soil or ground water; it is also resistant to peaty acids and oils.  

2.2.3   Tests on Cements 

Testing of cement quality is very important in the production of quality concrete.  
The quality of cement is determined on the basis of its conformity to the performance 
characteristics given in the respective IS specification for the cement.  Any special 
features or such other performance characteristics claimed/indicated by 
manufacturers alongside the “Statutory Quality Marking” or otherwise have no 
relation with characteristics guaranteed by the Quality Marking as relevant to that 
cement.  Consumers should go by the characteristics given in the corresponding IS 
specification or seek expert advise (Cl. 5.1.3 of the Code). 

Tests are performed in accordance with IS 269 : 1976 and IS 4031 : 1988 to 
assess the following:  

• chemical composition — analysis to determine the composition of various oxides 
(of calcium, silica, aluminium, iron, magnesium and sulphur) present in the 
cement and to ensure that impurities are within the prescribed limits;  

• fineness — a measure of the size of the cement particles, in terms of specific 
surface (i.e., surface area per unit mass); increased fineness enhances the rate of 
hydration, and hence, also strength development†; 

• normal consistency — determination of the quantity of water to be mixed to 
produce ‘standard paste’;  

• initial and final setting times — measures of the rate of solidification of standard 
cement paste (using a ‘Vicat needle’); the ‘initial setting time’ indicates the time 
when the paste becomes unworkable (to be not less than 30-45 min usually for 
OPC), whereas the ‘final setting time’ refers to the time to reach a state of 
complete solidification (to be not greater than 375-600 min for OPC); 

• soundness — a quality which indicates that the cement paste, once it has set, does 
not undergo appreciable change in volume (causing concrete to crack); and 

• strength — measured in terms of the stress at failure of hardened cement-sand 
mortar specimens, subject to compression and tension tests. 

2.3   AGGREGATE 

Since aggregate occupies about three-quarters of the volume of concrete, it 
contributes significantly to the structural performance of concrete, especially 
strength, durability and volume stability.    

                                                           
† Modern cements are considerably finer than their predecessors, on account of improved 
grinding technology; accordingly, these cements also turn out to be stronger in the early 
stages.  However, the heat of hydration released is also higher. 
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Aggregate is formed from natural sources by the process of weathering and 
abrasion, or by artificially crushing a larger parent (rock) mass.  Other types of 
aggregates may be used for plain concrete members (Code Cl. 5.3.1), however, as far 
as possible, preference shall be given to natural aggregates.  Aggregate is generally 
categorised into fine aggregate (particle size between 0.075 mm and 4.75 mm) and 
coarse aggregate (particle size larger than 4.75 mm), as described in IS 383 : 1970.   

Sand, taken from river beds and pits, is normally used as fine aggregate, after it is 
cleaned and rendered free from silt, clay and other impurities; stone (quarry) dust is 
sometimes used as a partial replacement for sand.   

Gravel and crushed rock are normally used as coarse aggregate.  The maximum 
size of coarse aggregate to be used in reinforced concrete work depends on the 
thickness of the structural member and the space available around the reinforcing 
bars.  Generally, a maximum nominal‡ size of 20 mm is found to be satisfactory in 
RC structural elements.  However, in cases where the member happens to be very 
thin, the Code (Cl. 5.3.3) specifies that the size should be restricted to one-fourth of 
the minimum thickness of the member.  In the case of heavily reinforced members, it 
should be restricted to 5 mm less than the minimum clear spacing between bars or 
minimum cover to reinforcement, whichever is smaller.  In such situations, the 
maximum nominal size is frequently taken as 10 mm.  In situations where there is no 
restriction to the flow of concrete, as in most plain concrete work, there is no such 
restriction on the maximum aggregate size.  It is common to use aggregate up to 40 
mm nominal size in the base concrete underneath foundations.  The Code (Cl. 5.3.3) 
even permits the use of ‘plums’ above 160 mm in certain cases of mass concreting up 
to a maximum limit of 20 percent by volume of concrete.  Plums are large random-
shaped stones dropped into freshly-placed mass concrete to economise on the 
concrete; such mass concrete is sometimes called ‘Cyclopean concrete’ [Ref. 2.8].  

Mention may also be made of a special type of aggregate, known as lightweight 
aggregate, which (although not used for reinforced concrete work) is sometimes used 
to manufacture ‘lightweight concrete’ masonry blocks, which have low unit weight 
and good thermal insulation and fire resistance properties.  Lightweight aggregate 
may be obtained from natural sources (such as diatomite, pumice, etc.) or artificially, 
in the form of ‘sintered fly ash’ or ‘bloated clay’ (conforming to IS 9142 : 1979).   

2.3.1   Aggregate Properties and Tests 

A number of tests have been described in IS 2386 (Parts 1 - 8) to assess the quality of 
the aggregate, in terms of the following physical and mechanical properties: 

• particle size, shape and surface texture: ‘size’ and ‘shape’ influence strength; 
‘shape’ and ‘texture’ influence bond (between the aggregate and the cement 
paste) — for instance, it is found that angular and somewhat porous aggregates 
are conducive to good bond; 

• geological classification: based on the mineral type of the parent rock; 
                                                           
‡ The term ‘nominal’ (commonly used in reinforced concrete design practice) refers to the 
expected value of any parameter, such as dimension and material strength.  The actual value 
may be somewhat different, depending on admissible tolerances. 
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• specific gravity and bulk density: of aggregate particle and aggregate whole 
respectively; 

• moisture content, water absorption and bulking of sand : the moisture present in 
aggregate or the moisture that may be absorbed by the aggregate, as the case may 
be, must be accounted for in the water content of the concrete mix; moreover, the 
presence of  water films in between sand particles results in an increase in volume 
(bulking of sand) that must be accounted for in case volume batching is employed 
in mix preparation; 

• strength: resistance to compression, measured in terms of the aggregate crushing 
value; 

• toughness: resistance to impact, measured in terms of the aggregate impact 
value; 

• hardness: resistance to wear, measured in terms of the aggregate abrasion value; 
• soundness: which indicates whether or not the aggregate undergoes appreciable 

volume changes due to alternate thermal changes, wetting and drying, freezing 
and thawing; and 

• deleterious constituents: such as iron pyrites, coal, mica, clay, silt, salt and 
organic impurities, which can adversely affect the hydration of cement, the bond 
with cement paste, the strength and the durability of hardened concrete. 

2.3.2   Grading Requirements of Aggregate 

‘Grading’ is the particle size distribution of aggregate; it is measured by sieve 
analysis [IS 2386 (Part 1) : 1963], and is generally described by means of a grading 
curve, which depicts the ‘cumulative percentage passing’ against the standard IS 
sieve sizes.   

The grading (as well as the type and size) of aggregate is a major factor which 
influences the workability of fresh concrete, and its consequent degree of 
compaction.  This is of extreme importance with regard to the quality of hardened 
concrete, because incomplete compaction results in voids, thereby lowering the 
density of the concrete and preventing it from attaining its full compressive strength 
capability [Fig. 2.1]; furthermore, the impermeability and durability characteristics 
get adversely affected.  It is seen from Fig. 2.1 that as little as 5 percent of voids can 
lower the strength by as much as 32 percent.   

From an economic viewpoint, it may appear desirable to aim for maximum density 
by a proper grading of aggregate alone — with the smaller particles fitting, as much 
as possible, into the voids of the larger particles in the dry state, thereby limiting the 
use of the (more expensive) cement paste to filling in the voids in the fine aggregate.  
Unfortunately, such a concrete mix is prone to be ‘harsh’ and unworkable.  
Moreover, it is very likely to segregate, with the coarser particles separating out or 
settling more than the finer particles.   

Evidently, the cement paste must be in sufficient quantity to be able to coat 
properly all the aggregate surfaces, to achieve the required workability, and to ensure 
that the particle sizes are distributed as homogeneously as possible without 
segregation.  The presence of more ‘fines’ (sand and cement) in a mix is found to 
improve both workability and resistance to segregation, because the fines tend to 
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‘lubricate’ the larger particles, and also fill into their voids as mortar.  However, too 
much of fine aggregate in a mix is considered to be undesirable, because the 
durability and impermeability of the hardened concrete may be adversely affected.   
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Fig. 2.1  Relation between density ratio and strength ratio  [Ref. 2.1] 

On account of these and other interacting factors, it is difficult to arrive at a 
unique ‘ideal’ grading in mix design.  In practice, grading limits are recommended in 
codes and specifications, which are found to produce a strong and workable concrete 
[Ref. 2.3]. 

2.4   WATER 

Water has a significant role to play in the making of concrete — in mixing of fresh 
concrete and in curing of hardened concrete.  In order to ensure proper strength 
development and durability of concrete, it is necessary that the water used for mixing 
and curing is free from impurities such as oils, acids, alkalis, salts, sugar and organic 
materials.   

Water that is fit for human consumption (i.e., potable water) is generally 
considered to be suitable for concreting.  However, when the potability of the water 
is suspect, it is advisable to perform a chemical analysis of the water, in accordance 
with IS 3025 (Parts 17–32).  The pH value of the water should not be less than 6.  
The concentrations of solids in water should be within certain ‘permissible limits’ 
that are specified in the Code (Cl. 5.4).  In particular, the content of sulphates (as 
SO3) is limited to 400 mg/l, while that of chlorides is restricted to 500 mg/l in 
reinforced concrete (and 2000 mg/l in plain concrete)†.  Sea water is particularly 

                                                           
† Steel reinforcing bars embedded in concrete are highly prone to corrosion in the presence of 
chlorides (as explained in Section 2.13.3); hence, the Code imposes a stricter control on the 
chloride control in reinforced concrete, compared to plain concrete. 
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unsuitable for mixing or curing of concrete.  The Code also recommends testing for 
initial setting time of cement paste (as per IS 4031 (Part 5) : 1988) and compressive 
strength of concrete cubes (as per IS 516 : 1959), when there is doubt regarding the 
suitability of the water for proper strength development of concrete.   

2.4.1   Water Content and Workability of Concrete 

The water in a concrete mix is required not only for hydration with cement, but also 
for workability.  ‘Workability’ may be defined as ‘that property of the freshly mixed 
concrete (or mortar) which determines the ease and homogeneity with which it can 
be mixed, placed, compacted and finished’ [Ref. 2.8].  The main factor that 
influences workability is, in fact, the water content (in the absence of admixtures), as 
the ‘inter-particle lubrication’ is enhanced by the mere addition of water.  The 
amount of water required for lubrication depends on the aggregate type, texture and 
grading: finer particles require more water to wet their larger specific surface; 
angular aggregates require more water than rounded ones of the same size; 
aggregates with greater porosity consume more water from the mix.  

Water content in a mix is also related to the fineness of cement — the finer the 
cement, the greater the need for water — for hydration as well as for workability.   

It may be recalled that workability is required to facilitate full placement in the 
formwork (even in areas of restricted access) and full compaction, minimising the 
voids in concrete.  If a mix is too dry, bubbles of entrapped air create voids, and there 
is danger of segregation [refer section 2.3.2].  The addition of water provides for 
better cohesion of the mix and better compaction, and causes the air bubbles to get 
expelled.  However, there is a danger in adding too much water, because it would be 
water, rather than cement paste, that takes the place of the air bubbles.  This water 
evaporates subsequently, leaving behind voids.  Hence, even if the fresh concrete 
were to be ‘fully compacted’, voids may still be present in the hardened concrete, 
adversely affecting its strength, impermeability, etc.  Moreover, there is the danger of 
segregation of ‘grout’ (cement plus water) in a very wet mix.  The excess water tends 
to rise to the surface of such a mix, as the solid constituents settle downwards; this is 
called bleeding.   

The ‘optimum’ water content in a mix is that at which the sum of volumes of 
entrapped air and of entrapped water is a minimum, and for which the density 
achievable (by the method of compaction employed) is a maximum [Ref. 2.1].   

The Code recommends that the workability of concrete should be controlled by 
the direct measurement of water content in the mix.  For this, workability should be 
checked at frequent intervals, by one of the standard tests (slump, compacting factor, 
or vee-bee), described in IS 1199 : 1959.  The Code (Cl. 7.1) also recommends 
certain ranges of slump, compacting factor and vee-bee time that are considered 
desirable for various ‘degrees of workability’ (very low, low, medium, high) and 
placing conditions.   

For the purpose of mix design [refer section 2.7], the water content is usually 
taken in the range 180–200 lit/m3 (unless admixtures are used).  If the aggregate is 
wet, then this should be appropriately accounted for, by measuring the moisture 
content in the aggregate [refer Cl. 10.2 of the Code].   
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2.4.2   Water-Cement Ratio and Strength 

As mentioned earlier, the addition of water in a concrete mix improves workability.  
However, the water should not be much in excess of that required for hydration.  The 
water-cement ratio, defined as the ratio of the mass of ‘free water’ (i.e., excluding 
that absorbed by the aggregate) to that of cement in a mix, is the major factor that 
controls the strength and many other properties of concrete.  In practice, this ratio lies 
generally in the range of 0.35 to 0.65, although the purely chemical requirement (for 
the purpose of complete hydration of cement) is only about 0.25.   

It is seen that the compressive strength of hardened concrete is inversely 
proportional to the water-cement ratio, provided the mix is of workable consistency; 
this is the so-called Abrams’ law.  A reduction in the water-cement ratio generally 
results in an increased quality of concrete, in terms of density, strength, 
impermeability, reduced shrinkage and creep, etc.   

In mix design (refer Section 2.7.2), the water-cement ratio is selected on the basis 
of the desired 28-day compressive strength of concrete and the 28-day† compressive 
strength of the cement to be used.  For this purpose, appropriate design charts may be 
made use of [Ref. 2.4 and IS 10262 : 1982].  A simple chart (in which ‘strength’ is 
non-dimensionalised) developed for this purpose [Ref. 2.5] is shown in Fig. 2.2.  
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Fig. 2.2  Relation between water-cement ratio and compressive strength  [Ref. 2.5] 

                                                           
†The earlier practice of specifying 7-day strength is discarded, as it is found that some types of 
cement (such as RHPC) gain early high strength, but the strength at 28-days is no different 
from that of other cements (such as PPC) which gain strength relatively slowly.  Most cements 
and concretes attain a major part of their long-term strength in about 28 days. 
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It is found that water-cement ratios of 0.4, 0.5 and 0.6 are expected to produce 
respectively 28-day concrete strengths that are about 0.95, 0.72 and 0.55 times the 
28-day strength of the cement used.  

2.4.3   Water for Curing 

The water in a concrete mix takes one of the following three forms, as a consequence 
of hydration [Ref. 2.3]:  

1. combined water — which is chemically combined with the products of hydration; 
it is non-evaporable;  

2. gel water — which is held physically or adsorbed on the surface area of the 
‘cement gel’ (solid hydrates located in tiny, impermeable ‘gel pores’); and  

3. capillary water — which partially occupies the ‘capillary pores’ that constitute 
the space in the cement paste remaining after accounting for the volumes of 
cement gel and unhydrated cement; this water is easily evaporated.  

If the hardened cement paste is only partly hydrated (as is usually the case, soon 
after casting), the capillary pores tend to become interconnected; this results in low 
strength, increased permeability and increased vulnerability of the concrete to 
chemical attack.  All these problems can be overcome, to a large extent, if the degree 
of hydration is sufficiently high for the capillary pore system to become ‘segmented’ 
through partial blocking by the newly developed cement gel. 

Curing is the name given to procedures that are employed for actively promoting 
the hydration of cement in a suitable environment during the early stages of 
hardening of concrete.  The Code (Cl. 13.5) defines it as “the process of preventing 
the loss of moisture from the concrete while maintaining a satisfactory temperature 
regime”. Curing is essential for producing ‘good’ concrete that has the desired 
strength, impermeability and durability, and is of particular importance in situations 
where the water-cement ratio is low, or the cement has a high rate of strength 
development or if the pozzolanic content is high. 

Moist curing aims to keep the concrete as nearly saturated as possible at normal 
temperature — by continually spraying water, or by ‘ponding’, or by covering the 
concrete with a layer of any kind of ‘sacking’ which is kept wet.  The ingress of 
curing water into the capillary pores stimulates hydration.  This process, in fact, goes 
on, even after active curing has stopped, by absorption of the moisture in the 
atmosphere.  The period of curing should be as long as conveniently possible in 
practice.  The Code specifies the duration as “at least seven days from the date of 
placing of concrete in case of OPC’’ under normal weather conditions, and at least 
ten days when dry and hot weather conditions are encountered.  When mineral 
admixtures or blended cements are used, the recommended minimum period is 10 
days, which should preferably be extended to 14 days or more. 

Moist curing improves the concrete strength very rapidly in the first few days; 
subsequently, the gain in strength becomes less and less, as shown in Fig. 2.3.  The 
figure also shows the drastic loss in strength if moist curing is avoided altogether. 
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Fig. 2.3  Influence of moist curing on concrete strength [Ref. 2.6] 

Increase in temperature is found to enhance the rate of hydration and the 
consequent rate of gain of strength.  However, the early application of high 
temperature is found to reduce the long-term strength of concrete [Ref. 2.3].  Hence, 
it is desirable to take appropriate steps to reduce the temperature of fresh concrete 
when concreting is done in hot weather.   

In some cases, as in the manufacture of prefabricated components, a high early 
strength is desired, to facilitate handling and transfer of the concrete products soon 
after casting.  In such cases, methods of accelerated curing such as ‘steam curing’ or 
the more advanced ‘autoclave curing’ are resorted to.  In steam curing, steam at 
atmospheric pressure takes the place of water for curing.   

In special cases, membrane curing may be resorted to, in lieu of moist curing, by 
applying either special compounds (usually sprayed on the surface) or impermeable 
membranes (such as polyethylene sheeting) to all exposed concrete surfaces 
immediately after the setting of concrete, to prevent the evaporation of water. 

2.5   ADMIXTURES 

Admixtures are additives that are introduced in a concrete mix to modify the 
properties of concrete in its fresh and hardened states.  Some guidelines for 
admixtures are given in IS 9103 : 1999.  A large number of proprietary products are 
currently available; their desirable effects are advertised in the market.  These, as 
well as possible undesirable effects, need to be examined scientifically, before they 
are advocated [Ref. 2.7].  The Code (Cl. 5.5.3) recommends, “the workability, 
compressive strength and the slump loss of concrete with and without the use of 
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admixtures shall be established during the trial mixes before the use of admixtures”.  
Also, the use of admixtures should not impair durability and increase the risk of 
corrosion to reinforcement. 

Admixtures are either ‘chemical’ (liquid) or ‘mineral’ (fine granular) in form.  
They are now being increasingly used in concrete production, particularly when there 
is an emphasis on either ‘high strength’ or ‘high performance’ (durability).  The use 
of chemical admixtures is inevitable in the production of ready-mixed concrete, 
which involves transportation over large distances of fresh concrete that is 
manufactured under controlled conditions at a batching plant.   

2.5.1   Types of Chemical Admixtures 

Some of the more important chemical admixtures are briefly described here: 
Accelerators: chemicals (notably, calcium chloride) to accelerate the hardening or 
the development of early strength of concrete; these are generally used when urgent 
repairs are undertaken, or while concreting in cold weather; 
Retarders: chemicals (including sugar) to retard the setting of concrete, and thereby 
also to reduce the generation of heat; these are generally used in hot weather 
concreting and in ready-mixed concrete; 
Water-reducers (or plasticizers): chemicals to improve plasticity in the fresh 
concrete; these are mainly used for achieving higher strength by reducing the water-
cement ratio; or for improving workability (for a given water-cement ratio) to 
facilitate placement of concrete in locations that are not easily accessible; 
Superplasticizers (or high-range water-reducers): chemicals that have higher 
dosage levels and are supposedly superior to conventional water-reducers; they are 
used for the same purposes as water-reducers, viz.  to produce high-strength concrete 
or to produce ‘flowing’ concrete; 
Air-entraining agents: organic compounds (such as animal/vegetable fats and 
oils, wood resins) which introduce discrete and microscopic air bubble cavities that 
occupy up to 5 percent of the volume of concrete; these are mainly used for 
protecting concrete from damage due to alternate freezing and thawing; 
Bonding admixtures: polymer emulsions (latexes) to improve the adherence of 
fresh concrete to (old) hardened concrete; they are ideally suited for repair work. 

2.5.2   Types of Mineral Admixtures 

Mineral admixtures are used either as partial replacement of cement or in 
combination with cement, at the time of mixing, in order to modify the properties of 
concrete or achieve economy.  Some of the more important mineral admixtures are 
described briefly here. 

Pozzolanas are materials containing amorphous silica, which, in finely divided 
form and in the presence of water, chemically react with calcium hydroxide at 
ordinary temperatures to form compounds possessing cementitious properties; the 
Code (Cl. 5.2) permits their use, provided uniform blending with cement is ensured.  
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Many of the pozzolanas (especially fly ash) are industrial ‘waste products’ whose 
disposal raise environmental concerns; their use in concrete making, hence, is 
commendable.  These include:  

∗ fly ash: ash precipitated electrostatically or mechanically from exhaust gases 
in coal-fired power plants, conforming to Grade 1 of IS 3812;  

∗ ground granulated blast-furnace slag, conforming to IS 12089, has good 
pozzolanic properties, and produces concrete with improved resistance to 
chemical attack; 

∗ silica fume (or micro silica), obtained as a by-product of the silicon industry, 
is found to be not only pozzolanic in character but also capable of producing 
very dense concrete, and is finding increasing use in the production of high-
strength and high-performance concrete;  

∗ rice husk ash: produced by burning rice husk at controlled temperatures; 
∗ metakaoline: obtained by calcination of kaolinitic clay(a natural pozzolana), 

followed by grinding; 

Gas-forming admixtures: powdered zinc, powdered aluminium and hydrogen 
peroxide, which generate gas bubbles in a sand-cement matrix; they are used in the 
manufacture of lightweight aerated concrete — which, although not suitable for 
heavy load-bearing purposes, can be used for its high thermal insulation properties. 

2.6   GRADE OF CONCRETE 

The desired properties of concrete are its compressive strength, tensile strength, shear 
strength, bond strength, density, impermeability, durability, etc.  Among these, the 
property that can be easily tested, and is perhaps the most valuable (from the 
viewpoint of structural design) is the compressive strength.  This is measured by 
standard tests on concrete cube (or cylinder) specimens.  Many of the other important 
properties of concrete can be inferred from the compressive strength, using 
correlations that have been experimentally established.   

The quality or grade of concrete is designated in terms of a number, which 
denotes its characteristic compressive strength (of 150 mm cubes at 28-days), 
expressed in MPa (or, equivalently, N/mm2).  The number is usually preceded by the 
letter ‘M’, which refers to ‘mix’.  Thus, for example, M 20 grade concrete denotes a 
concrete whose mix is so designed as to generate a characteristic strength of 20 
MPa; the meaning of this term is explained in the next section.   

In the recent revision of the Code, the selection of the minimum grade of concrete 
is dictated by considerations of durability, and is related to the kind of environment 
that the structure is exposed to [refer Table 5 of the Code].  The minimum grade of 
concrete in reinforced concrete work has been upgraded from M 15 to M 20 in the 
recent code revision†.  However, this is applicable only under ‘mild’ exposure 

                                                           
† It may be noted that the traditional ‘nominal mix’ of 1:2:4 (cement : sand : coarse aggregate, 
by weight), which used to conform approximately to M 15 grade of concrete (using OPC of 
C 33 grade), is presently found to yield higher grades (M 20 and higher), with the modern use 
of C 43 and C 53 grades of cement, which are now commonly available in the market. 
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conditions.  An exposure condition is considered 'mild' when the concrete surface is 
protected against weather or aggressive conditions and is not situated in a coastal 
area.  Under more adverse environmental exposure‡ conditions, higher grades of 
concrete are called for.  For ‘moderate’, ‘severe’, ‘very severe’ and ‘extreme’ 
exposure conditions, the minimum grades prescribed are M 25, M 30, M 35 and 
M 40 respectively, for reinforced concrete work [Cl. 6.1.2 of the Code].  It should be 
noted that the higher grades specified here are dictated, not by the need for higher 
compressive strength, but by the need for improved durability [refer Section 2.13].  
The need is for ‘high performance’ concrete, and it is only incidental that this high 
performance (obtained, for example, by reducing the water-cement ratio and adding 
mineral admixtures such as silica fume) is correlated with high strength.  In practice, 
although M20 is the minimum grade specified for reinforced concrete, it is prudent to 
adopt a higher grade. 

However, there are specific applications that may call for the grade of concrete to 
be decided on the basis of considerations of strength, rather than durability.  For 
example, the use of high strength is desirable in the columns of very tall buildings, in 
order to reduce their cross-sectional dimensions; this is desirable even under ‘mild’ 
environmental exposure.  Similarly, high strength concrete is required in prestressed 
concrete construction [refer IS 1343 : 1980].  The definition of the term ‘high 
strength’ has been changing over the years, with technological advancements 
resulting in the development of higher strengths.  The present Code (in its recent 
revision) describes grades of concrete above M 60 as ‘high strength concrete’.  
Concrete grades in the range M 25 to M 55 are described as ‘standard strength 
concrete’, and grades in the range M 10 to M 20 are termed ‘ordinary concrete’ [refer 
Table 2 of the Code].   

2.6.1   Characteristic Strength 

Concrete is a material whose strength is subject to considerable variability.  Cube 
specimens that are taken from the same mix give different values of compressive 
strength in laboratory tests.  This may be attributed largely to the non-homogeneous 
nature of concrete.  The variability in the strength evidently depends on the degree of 
quality control [Fig. 2.4].  Statistically, it is measured in terms of either the ‘standard 
deviation’ (σ) or the coefficient of variation (cov), which is the ratio of the standard 
deviation to the mean strength (fcm). 

Experimental studies have revealed that the probability distribution of concrete 
strength (for a given mix, as determined by compression tests on a large number of 
specimens) is approximately ‘normal’ (Gaussian) [Ref. 2.9].  The coefficient of 
variation is generally in the range of 0.01 to 0.02; it is expected to reduce with 
increasing grade of concrete, in view of the need for increased quality control.  

In view of the significant variability in the compressive strength, it is necessary to 
ensure that the designer has a reasonable assurance of a certain minimum strength of 
concrete.  This is provided by the Code by defining a characteristic strength, which 
is applicable to any material (concrete or steel): 

                                                           
‡ The different types of exposure are described in detail in Section 2.13.1 
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Fig. 2.4  Influence of quality control on the frequency distribution of concrete strength 

 ‘‘Characteristic strength is defined as the strength of material below 
which not more than 5 percent of the test results are expected to fall’’  

Accordingly, the mean strength of the concrete fcm (as obtained from 28-day 
compression tests) has to be significantly greater than the 5 percentile characteristic 
strength fck that is specified by the designer [Fig. 2.5].  

2.7   CONCRETE MIX DESIGN 

The design of a concrete mix for a specified grade involves the economical selection 
of the relative proportions (and type) of cement, fine aggregate, coarse aggregate and 
water (and admixtures, if any).  Although compliance with respect to ‘characteristic 
strength’ is the main criterion for acceptance, it is implicit that the concrete must also 
have the desired workability in the fresh state, and impermeability and durability in 
the hardened state.    

2.7.1   Nominal Mix Concrete 

Concrete mix design is an involved process that calls for some expertise from the 
construction engineer/contractor.  This is not often available.  Traditionally, mixes 
were specified in terms of fixed ratios of cement : sand : coarse aggregate (by mass 
preferably, or by volume) such as 1 : 2 : 4, 1 : 1.5 : 3, etc. — which are rather crude and 
incorrect translations of concrete grades M 15, M 20, etc.   
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Fig. 2.5  Idealised normal distribution of concrete strength 

The Code (Table 9) attempts to provide more realistic ‘nominal mix’ proportions 
for M 5, M 7.5, M 10, M 15 and M 20 grades of concrete, in terms of the total mass 
of aggregate, proportion of fine aggregate to coarse aggregate and volume of water to 
be used per 50 kg mass of cement (i.e., one bag of cement).  Such nominal mix 
concrete is permitted in ‘ordinary concrete construction’, which does not call for 
concrete grades higher than M 20. 

However, the Code clearly highlights (Cl. 9.1.1) that design mix concrete, based 
on the principles of ‘mix design’, is definitely preferred to ‘nominal mix concrete’.  
In practice, it is found that design mix concrete not only yields concrete of the 
desired quality, but also often works out to be more economical than nominal mix 
concrete.   

2.7.2   Design Mix Concrete 

Several methods of mix design have been evolved over the years in different 
countries, and have become codified — such as the ACI practice [Ref. 2.10–2.12], 
the British practice [Ref. 2.13], etc.  In India, recommendations for mix design are 
given in IS 10262: 1982 and SP 23: 1982 [Ref. 2.4].  These are merely 
‘recommendations’; in practice, any proven method of design may be adopted.  All 
that matters finally is that the designed mix must meet the desired requirements in the 
fresh and hardened states.  The steps involved in the Indian Standard 
recommendations for mix design are summarised as follows:  
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1. Determine the mean target strength fcm from the desired ‘characteristic 
strength’ fck [Fig. 2.5]: 

f fcm ck= +165. σ                                                   (2.1) 

where the standard deviation σ depends on the quality control, which may be 
assumed for design in the first instance, are listed in Table 8 of the Code. As 
test results of samples are available, actual calculated value is to be used]. 

2. Determine the water-cement ratio, based on the 28-day strength of cement 
and the mean target strength of concrete, using appropriate charts (such as 
Fig. 2.2); this ratio should not exceed the limits specified in Table 5 of the 
Code (for durability considerations).   

3. Determine the water content Vw based on workability requirements, and 
select the ratio of fine aggregate to coarse aggregate (by mass), based on the 
type and grading of the aggregate; the former is generally in the range of 
180–200 lit/m3 (unless admixtures are employed), and the latter is generally 
1:2 or in the range of 1:1½ to 1:2½.  

4. Calculate the cement content Mc (in kg/m3) by dividing the water content by 
the water-cement ratio, and ensure that the cement content is not less than 
that specified in the Code [Tables 4 and 5] for durability considerations.  
[Note that the Code (Cl.8.2.4.2) cautions against the use of cement content 
(not including fly ash and ground granulated blast furnace slag) in excess of 
450 kg/m3 in order to control shrinkage and thermal cracks].  Also, calculate 
the masses of fine aggregate Mfa and coarse aggregate Mca based on the 
‘absolute volume principle’: 

M M M
V Vc

c

fa

fa

ca

ca
w vρ ρ ρ

+ + + + = 10.                                   (2.2) 

where ρ ρ ρc fa c, , a denote the mass densities of cement, fine aggregate and 

coarse aggregate respectively, and Vv denotes the volume of voids (approx. 2 
percent) per cubic metre of concrete.   

5. Determine the weight of ingredients per batch, based on the capacity of the 
concrete mixer.  

2.8   BEHAVIOUR OF CONCRETE UNDER UNIAXIAL COMPRESSION 

The strength of concrete under uniaxial compression is determined by loading 
‘standard test cubes’ (150 mm size) to failure in a compression testing machine, as 
per IS 516 : 1959.  The test specimens are generally tested 28 days after casting (and 
continuous curing).  The loading is strain-controlled and generally applied at a 
uniform strain rate of 0.001 mm/mm per minute in a standard test.  The maximum 
stress attained during the loading process is referred to as the cube strength of 
concrete.  As discussed in section 2.6.1, the cube strength is subject to variability; its 
characteristic (5-percentile) and mean values are denoted by  fck and fcm respectively. 



BASIC  MATERIAL  PROPERTIES 43 

In some countries (such as USA), ‘standard test cylinders’ (150 mm diameter and 
300 mm high) are used instead of cubes.  The cylinder strength is found to be 
invariably lower than the ‘cube strength’ for the same quality of concrete; its nominal 
value, termed as ‘specified cylinder strength’ by the ACI code [Ref. 2.21], is denoted 
by . ′fc

It should be noted that among the various properties of concrete, the one that is 
actually measured in practice most often is the compressive strength.  The measured 
value of compressive strength can be correlated to many other important properties 
such as tensile strength, shear strength, modulus of elasticity, etc. (as discussed in the 
sections to follow). 

2.8.1   Influence of Size of Test Specimen 

It has been observed that the height/width ratio and the cross-sectional dimensions of 
the test specimen have a pronounced effect on the compressive strength (maximum 
stress level) obtained from the uniaxial compression test.  These effects are illustrated 
in Fig. 2.6 for cylinder specimens. 

The standard test cylinder has a diameter of 150 mm and a height-diameter ratio 
equal to 2.0.  With reference to this ‘standard’, it is seen that, maintaining the same 
diameter of 150 mm, the strength increases by about 80 percent as the 
height/diameter ratio is reduced from 2.0 to 0.5 [Fig. 2.6(a)]; also, maintaining the 
same height/diameter ratio of 2.0, the strength drops by about 17 percent as the 
diameter is increased from 150 mm to 900 mm [Fig. 2.6(b)].  Although the real 
reasons for this behaviour are not known with certainty, some plausible explanations 
that have been proposed are discussed below. 

Firstly, a proper measure of uniaxial compressive stress can be obtained (in terms 
of load divided by cross-sectional area) only if the stress is uniformly distributed 
across the cross-section of the longitudinally loaded test specimen.  Such a state of 
stress can be expected only at some distance away from the top and bottom surfaces 
where the loading is applied (St. Venant’s principle) — which is possible only if the 
height/width ratio of the specimen is sufficiently large. 

Secondly, uniaxial compression implies that the specimen is not subject to lateral 
loading or lateral restraint.  However, in practice, lateral restraint, known as platen 
restraint, is bound to manifest owing to the friction between the end surfaces of the 
concrete specimen and the adjacent steel platens of the testing machine.  This 
introduces radial (inward) shear forces at the top and bottom surfaces, resulting in 
restraint against free lateral displacements.  

The effect of this lateral restraint is to enhance the compressive strength 
(maximum stress prior to failure) in the longitudinal direction; this effect dies down 
with increasing distance from the platen restraint.  Thus, the value of the compressive 
strength depends on the height/width ratio of the specimen; the greater this ratio, the 
less the strength, because the less is the beneficial influence of the lateral restraint at 
the (weakest) section, located near the mid-height of the specimen.   

The reduction in compressive strength with increasing size, while maintaining the 
same height/width ratio [Fig. 2.6(b)], is attributed to size effect — a phenomenon 
which requires a fracture mechanics background for understanding. 
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From the above, it also follows that the ‘standard test cube’ (which has a 
height/width ratio of 1.0) would register a compressive strength that is higher than 
that of the ‘standard test cylinder’ (with a height/diameter ratio of 2.0), made of the 
same concrete, and that the cylinder strength is closer to the true uniaxial 
compressive strength of concrete.  The cube strength is found to be approximately 
1.25 times the cylinder strength [Ref. 2.3], whereby ′ ≈f fc c0 8. m .  For design 
purposes, the cube strength that is relied upon by the Code is the ‘characteristic 
strength’ .   f ck
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Fig. 2.6  Influence of  (a) height/diameter ratio and  (b) diameter  on cylinder strength  
[Ref. 2.3, 2.14] 

Accordingly, the relation between the cube strength and the cylinder strength 
takes the following form: 

′ ≈f c 0 8. f ck                                                         (2.3) 

 

2.8.2   Stress-Strain Curves 

Typical stress-strain curves of concrete (of various grades), obtained from standard 
uniaxial compression tests, are shown in Fig. 2.7.  The curves are somewhat linear in 
the very initial phase of loading; the non-linearity begins to gain significance when 
the stress level exceeds about one-third to one-half of the maximum.  The maximum 
stress is reached at a strain approximately equal to 0.002; beyond this point, an 
increase in strain is accompanied by a decrease in stress.  For the usual range of 
concrete strengths, the strain at failure is in the range of 0.003 to 0.005.  

The higher the concrete grade, the steeper is the initial portion of the stress-strain 
curve, the sharper the peak of the curve, and the less the failure strain.  For low-
strength concrete, the curve has a relatively flat top, and a high failure strain. 

When the stress level reaches 70–90 percent of the maximum, internal cracks are 
initiated in the mortar throughout the concrete mass, roughly parallel to the direction 
of the applied loading [Ref. 2.15].  The concrete tends to expand laterally, and 
longitudinal cracks become visible when the lateral strain (due to the Poisson effect) 
exceeds the limiting tensile strain of concrete (0.0001—0.0002).  The cracks 
generally occur at the aggregate-mortar interface.  As a result of the associated larger 
lateral extensions, the apparent Poisson’s ratio increases sharply [Ref. 2.16].   
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Fig. 2.7  Typical stress-strain curves of concrete in compression 

The descending branch of the stress-strain curve can be fully traced only if the 
strain-controlled application of the load is properly achieved.  For this, the testing 
machine must be sufficiently rigid‡ (i.e., it must have a very high value of load per 
unit deformation); otherwise, the concrete is likely to fail abruptly (sometimes, 
explosively) almost immediately after the maximum stress is reached.  The fall in 
stress with increasing strain is a phenomenon which is not clearly understood; it is 
associated with extensive micro-cracking in the mortar, and is sometimes called 
softening of concrete [Ref. 2.17].   

Experimental studies [Ref. 2.17, 2.18] have also confirmed that the stress-strain 
relation for the compression zone of a reinforced concrete flexural member is nearly 
identical to that obtained for uniaxial compression.  For the purpose of design of 
reinforced concrete flexural members, various simplified stress-strain curves have 
been adopted by different codes. 

2.8.3   Modulus of Elasticity and Poisson’s Ratio 

Concrete is not really an elastic material, i.e., it does not fully recover its original 
dimensions upon unloading.  It is not only non-elastic; it is also non-linear (i.e., the 
stress-strain curve is nonlinear).  Hence, the conventional ‘elastic constants’ 
(modulus of elasticity and Poisson’s ratio) are not strictly applicable to a material 
like concrete.  Nevertheless, these find place in design practice, because, despite their 
obvious limitations when related to concrete, they are material properties that have to 

                                                           
‡ Alternatively, a screw-type loading mechanism may be used. 
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be necessarily considered in the conventional linear elastic analysis of reinforced 
concrete structures.   

Modulus of Elasticity  

The Young’s modulus of elasticity is a constant, defined as the ratio, within the linear 
elastic range, of axial stress to axial strain, under uniaxial loading.  In the case of 
concrete under uniaxial compression, it has some validity in the very initial portion of 
the stress-strain curve, which is practically linear [Fig 2.8]; that is, when the loading 
is of low intensity, and of very short duration.  If the loading is sustained for a 
relatively long duration, inelastic creep effects come into play, even at relatively low 
stress levels [refer Section 2.11].  Besides, non-linearities are also likely to be 
introduced on account of creep and shrinkage. 

The initial tangent modulus [Fig 2.8] is, therefore, sometimes considered to be a 
measure of the dynamic modulus of elasticity of concrete [Ref. 2.3]; it finds 
application in some cases of cyclic loading (wind- or earthquake-induced), where 
long-term effects are negligible.  However, even in such cases, the non-elastic 
behaviour of concrete manifests, particularly if high intensity cyclic loads are 
involved; in such cases, a pronounced hysterisis effect is observed, with each cycle of 
loading producing incremental permanent deformation [Ref. 2.18]. 

In the usual problems of structural analysis, based on linear static analysis, it is 
the static modulus of elasticity that needs to be considered.  It may be noted that 
when the loads on a structure (such as dead loads) are of long duration, the long-term 
effects of creep reduce the effective modulus of elasticity significantly.  Although it 
is difficult to separate the long-term strains induced by creep (and shrinkage) from 
the short-term ‘elastic’ strains, this is usually done at a conceptual level, for 
convenience.  Accordingly, while estimating the deflection of a reinforced concrete 
beam, the total deflection is assumed to be a sum of an ‘instantaneous’ elastic 
deflection (caused by the loads) and the ‘long-term’ deflections induced by creep and 
shrinkage [refer Chapter 10].  The short-term static modulus of elasticity (Ec) is used 
in computing the ‘instantaneous’ elastic deflection. 
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Fig. 2.8  Various descriptions of modulus of elasticity of concrete: 

( I T initial tangent,  T≡ ≡ tangent,  S ≡ secant ) 

Various descriptions of Ec are possible, such as initial tangent modulus, tangent 
modulus (at a specified stress level), secant modulus (at a specified stress level), etc. 
— as shown in Fig. 2.8.  Among these, the secant modulus at a stress of about one-
third the cube strength of concrete is generally found acceptable in representing an 
average value of Ec under service load conditions (static loading) [Ref. 2.3]. 

The Code (Cl. 6.2.3.1) gives the following empirical expression for the static 
modulus Ec (in MPa units) in terms of the characteristic cube strength  (in MPa 
units):  

f ck

ckc fE 5000=                                                   (2.4) 

It may be noted that the earlier version of IS 456 had recommended Ec = 5700 
√fck, which is found to over-estimate the elastic modulus.   

The ACI code [Ref. 2.21] gives an alternative formula† for Ec in terms of the 
specified cylinder strength ′fc  and the mass density of concrete ρ c  (in kg/m3):  

E fc c= ′0 0427 3. ρ c                                          (2.4a) 

Considering ρ c = 2400 kg/m3 for normal-weight concrete and applying Eq. 2.3, 
the above expression reduces to Ec ≈ 4500 f ck

                                                          

, which gives values of Ec that are 
about 10 percent less than those given by the present IS Code formula [Eq. 2.4].   

 
† The original formula in the ACI code, expressed in FPS units, is converted to SI units. 
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From a design viewpoint, the use of a lower value of Ec will result in a more 
conservative (larger) estimate of the short-term elastic deflection of a flexural 
member. 

Poisson’s Ratio  

This is another elastic constant, defined as the ratio of the lateral strain to the 
longitudinal strain, under uniform axial stress.  When a concrete prism is subjected 
to a uniaxial compression test, the longitudinal compressive strains are accompanied 
by lateral tensile strains.  The prism as a whole also undergoes a volume change, 
which can be measured in terms of volumetric strain. 

Typical observed variations of longitudinal, lateral and volumetric strains are 
depicted in Fig. 2.9 [Ref. 2.16].  It is seen that at a stress equal to about 80 percent of 
the compressive strength, there is a point of inflection on the volumetric strain curve.  
As the stress is increased beyond this point, the rate of volume reduction decreases; 
soon thereafter, the volume stops decreasing, and in fact, starts increasing.  It is 
believed that this inflection point coincides with the initiation of major micro-
cracking in the concrete, leading to large lateral extensions.  Poisson’s ratio appears 
to be essentially constant for stresses below the inflection point.  At higher stresses, 
the apparent Poisson’s ratio begins to increase sharply. 

Widely varying values of Poisson’s ratio have been obtained — in the range of 
0.10 to 0.30.  A value of about 0.2 is usually considered for design. 
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Fig. 2.9  Strains in a concrete prism under uniaxial compression [Ref. 2.16] 
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2.8.4   Influence of Duration of Loading on Stress-Strain Curve 

The standard compression test is usually completed in less than 10 minutes, the 
loading being gradually applied at a uniform strain rate of 0.001 mm/mm per minute.  
When the load is applied at a faster strain rate (which occurs, for instance, when an 
impact load is suddenly applied), it is found that both the modulus of elasticity and 
the strength of concrete increase, although the failure strain decreases [Ref. 2.19, 
2.20]. 

On the other hand, when the load is applied at a slow strain rate, such that the 
duration of loading is increased from 10 minutes to as much as one year or more, 
there is a slight reduction in compressive strength, accompanied by a decrease in the 
modulus of elasticity and a significant increase in the failure strain, as depicted in 
Fig. 2.10; the stress-strain curve also becomes relatively flat after the maximum 
stress is reached. 
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Fig. 2.10  Influence of duration of loading (strain-controlled) on the stress-strain curve 

of concrete  [Ref. 2.20] 

It has also been reported [Ref. 2.20] that long-term sustained loading at a constant 
stress level results not only in creep strains [refer Section 2.11], but also in a reduced 
compressive strength of concrete. 
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2.8.5   Maximum Compressive Stress of Concrete in Design Practice 

The compressive strength of concrete in an actual concrete structure cannot be 
expected to be exactly the same as that obtained from a standard uniaxial 
compression test for the same quality of concrete.  There are many factors 
responsible for this difference in strength, mainly, the effects of duration of loading, 
size of the member (size effect) and the strain gradient.   

The value of the maximum compressive stress (strength) of concrete is generally 
taken as 0.85 times the ‘specified cylinder strength’ ( ′fc ), for the design of 
reinforced concrete structural members (compression members as well as flexural 
members) [Ref. 2.17, 2.20].  This works out approximately [Eq. 2.3] to 0.67 times 
the ‘characteristic cube strength’ ( ) — as adopted by the Code.  The Code also 
limits the failure strain of concrete to 0.002 under direct compression and 0.0035 
under flexure. 

f ck

When the predominant loading that governs the design of a structure is short-term 
rather than sustained (as in tall reinforced concrete chimneys subject to wind 
loading), it may be too conservative to limit the compressive strength to 0.85  (or 
0.67 ); in such cases, it appears reasonable to adopt a suitably higher compressive 
strength [Ref. 2.22, 2.9].   

′fc

f ck

When the occurrence of permanent sustained loads on a structure is delayed, then, 
instead of a reduction in compressive strength, some increase in strength (and in the 
quality of concrete, in general) can be expected due to the tendency of freshly 
hardened concrete to gain in strength with age, beyond 28 days.  .  This occurs due to 
the process of continued hydration of cement in hardened concrete, by absorption of 
moisture from the atmosphere; this is particularly effective in a humid environment. 

The earlier version of the Code allowed an increase in the estimation of the 
characteristic strength of concrete when a member (such as a foundation or lower-
storey column of a tall building) receives its full design load more than a month after 
casting.  A maximum of 20 percent increase in was allowed if the operation of 
the full load is delayed by one year or more.  However, it is now recognised that such 
a significant increase in strength may not be realised in many cases, particularly 
involving the use of high-grade cement (with increased fineness), which has high 
early strength development.  Consequently, the values of age factors have been 
deleted in the present version of the Code (Cl. 6.2.1), which stipulates, “the design 
should be based on the 28 days characteristic strength of concrete unless there is 
evidence to justify a higher strength”. 

f ck

 The use of age factors (based on actual investigations) can assist in assessing the 
actual behaviour of a distressed structure, but should generally not be taken 
advantage of in design.   

2.9   BEHAVIOUR OF CONCRETE UNDER TENSION 

Concrete is not normally designed to resist direct tension.  However, tensile stresses 
do develop in concrete members as a result of flexure, shrinkage and temperature 
changes.  Principal tensile stresses may also result from multi-axial states of stress.  
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Often cracking in concrete is a result of the tensile strength (or limiting tensile strain) 
being exceeded.  As pure shear causes tension on diagonal planes, knowledge of the 
direct tensile strength of concrete is useful for estimating the shear strength of beams 
with unreinforced webs, etc.  Also, a knowledge of the flexural tensile strength of 
concrete is necessary for estimation of the ‘moment at first crack’†, required for the 
computation of deflections and crackwidths in flexural members. 

As pointed out earlier, concrete is very weak in tension, the direct tensile strength 
being only about 7 to 15 percent of the compressive strength [Ref. 2.6].  It is difficult 
to perform a direct tension test on a concrete specimen, as it requires a purely axial 
tensile force to be applied, free of any misalignment and secondary stress in the 
specimen at the grips of the testing machine.  Hence, indirect tension tests are 
resorted to, usually the flexure test or the cylinder splitting test. 

2.9.1   Modulus of Rupture 

In the flexure test most commonly employed [refer IS 516 : 1959], a ‘standard’ plain 
concrete beam of a square or rectangular cross-section is simply supported and 
subjected to third-points loading until failure.  Assuming a linear stress distribution 
across the cross-section, the theoretical maximum tensile stress reached in the 
extreme fibre is termed the modulus of rupture ( ).  It is obtained by applying the 
flexure formula: 

f cr

f M
Zcr =                                                           (2.5) 

where M is the bending moment causing failure, and Z is the section modulus. 
However, the actual stress distribution is not really linear, and the modulus of 

rupture so computed is found to be greater than the direct tensile strength by as much 
as 60–100 percent [Ref. 2.6].  Nevertheless,  is the appropriate tensile strength to 
be considered in the evaluation of the cracking moment (M

f cr

cr) of a beam by the 
flexure formula, as the same assumptions are involved in its calculation. 

The Code (Cl. 6.2.2) suggests the following empirical formula for estimating : f cr

fcr ck= 0 7. f                                                      (2.6) 

where  and  are in MPa units.   f cr f ck

The corresponding formula suggested by the ACI Code [Ref. 2.21] is: 

fcr c= ′0 623. f

                                                          

                                                (2.6a) 

From a design viewpoint, the use of a lower value of  results in a more 
conservative (lower) estimate of the ‘cracking moment’. 

f cr

2.9.2   Splitting Tensile Strength 
 

† Refer Chapter 4  for computation of cracking moment Mcr
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The cylinder splitting test is the easiest to perform and gives more uniform results 
compared to other tension tests.  In this test [refer IS 5816 : 1999], a ‘standard’ plain 
concrete cylinder (of the same type as used for the compression test) is loaded in 
compression on its side along a diametral plane.  Failure occurs by the splitting of the 
cylinder along the loaded plane [Fig. 2.11].  In an elastic homogeneous cylinder, this 
loading produces a nearly uniform tensile stress across the loaded plane as shown in 
Fig. 2.11(c).  

From theory of elasticity concepts, the following formula for the evaluation of the 
splitting tensile strength  is obtained:  fct

f P
d L

ct =
2

π  
                                                         (2.7) 

where P is the maximum applied load, d is the diameter and L the length of the 
cylinder. 

 

P 
tension compression
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dLπ

Fig. 2.11  Cylinder splitting test for tensile strength 

It has been found that for normal density concrete the splitting strength is about 
two-thirds of the modulus of rupture [Ref. 2.23].  (The Code does not provide an 
empirical formula for estimating  as it does for ). fct f cr

2.9.3   Stress-Strain Curve of Concrete in Tension 

Concrete has a low failure strain in uniaxial tension.  It is found to be in the range of 
0.0001 to 0.0002.  The stress-strain curve in tension is generally approximated as a 
straight line from the origin to the failure point.  The modulus of elasticity in tension 
is taken to be the same as that in compression.  As the tensile strength of concrete is 
very low, and often ignored in design, the tensile stress-strain relation is of little 
practical value. 
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2.9.4   Shear Strength and Tensile Strength 

Concrete is rarely subjected to conditions of pure shear; hence, the strength of 
concrete in pure shear is of little practical relevance in design.  Moreover, a state of 
pure shear is accompanied by principal tensile stresses of equal magnitude on a 
diagonal plane, and since the tensile strength of concrete is less than its shear 
strength, failure invariably occurs in tension.  This, incidentally, makes it difficult to 
experimentally determine the resistance of concrete to pure shearing stresses.  A 
reliable assessment of the shear strength can be obtained only from tests under 
combined stresses.  On the basis of such studies, the strength of concrete in pure 
shear has been reported to be in the range of 10–20 percent of its compressive 
strength [Ref. 2.14].  In normal design practice, the shear strength of concrete is 
governed by its tensile strength, because of the associated principal tensile (diagonal 
tension) stresses and the need to control cracking of concrete. 

2.10   BEHAVIOUR OF CONCRETE UNDER COMBINED STRESSES 

Structural members are usually subjected to various combinations of axial forces, 
bending moments, transverse shear forces and twisting moments.  The resulting 
three-dimensional state of stress acting at any point on an element may be 
transformed into an equivalent set of three normal stresses (principal stresses) acting 
in three orthogonal directions.  When one of these three principal stresses is zero, the 
state of stress is termed biaxial.  The failure strength of materials under combined 
stresses is normally defined by appropriate failure criteria.  However, as yet, there is 
no universally accepted criterion for describing the failure of concrete. 

2.10.1   Biaxial State of Stress 

Concrete subjected to a biaxial state of stress has been studied extensively due to its 
relative simplicity in comparison with the triaxial case, and because of its common 
occurrence in flexural members, plates and thin shells.  Figure 2.13 shows the 
general shape of the biaxial strength envelopes for concrete, obtained experimentally 
[Ref. 2.16, 2.24], along with proposed approximations. 

It is found that the strength of concrete in biaxial compression is greater than in 
uniaxial compression by up to 27 percent.  The biaxial tensile strength is nearly 
equal to its uniaxial tensile strength.  However, in the region of combined 
compression and tension, the compressive strength decreases nearly linearly with an 
increase in the accompanying tensile stress.  Observed failure modes suggest that 
tensile strains are of vital importance in the failure criteria and failure mechanism of 
concrete for both uniaxial and biaxial states of stress [Ref. 2.24].   

2.10.2   Influence of Shear Stress 

Normal stresses are accompanied by shear stresses on planes other than the principal 
planes.  For a prediction of the strength of concrete in a general biaxial state of stress, 
Mohr’s theory of failure is sometimes used.  A more accurate (experiment based) 
failure envelope for the case of direct stress (compression or tension) in one 
direction, combined with shear stress, is shown in Fig. 2.13 [Ref. 2.25]. 
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Fig. 2.12  Failure stress envelope — biaxial stress [Ref. 2.16, 2.24] 

It is seen that the compressive strength (as well as the tensile strength) of concrete 
is reduced by the presence of shear stress.  Also, the shear strength of concrete is 
enhanced by the application of direct compression (except in the extreme case of 
very high compression), whereas it is (expectedly) reduced by the application of 
direct tension. 

 

shear 
stressτ

0 2. ′fc  uniaxial 
compressive 
strength 

uniaxial 
tensile 

strength τ
f

direct stress f ′fc

Fig. 2.13  Failure stress envelope — direct stress combined with shear stress 
[Ref. 2.25] 
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2.10.3   Behaviour Under Triaxial Compression 

When concrete is subject to compression in three orthogonal directions, its strength 
and ductility are greatly enhanced [Ref. 2.26, 2.27].  This effect is attributed to the 
all-round confinement of concrete, which reduces significantly the tendency for 
internal cracking and volume increase just prior to failure.   

Effect of confinement 

The benefit derived from confinement of concrete is advantageously made use of in 
reinforced concrete columns, by providing transverse reinforcement in the form of 
steel hoops and spirals [Fig. 1.6(c)].  It is found that continuous circular spirals are 
particularly effective in substantially increasing the ductility, and to some extent, the 
compressive strength of concrete; square or rectangular ties are less effective 
[Ref. 2.28].  The yielding of the confining steel contributes to increased ductility 
(ability to undergo large deformations prior to failure).  Provision of ductility is of 
particular importance in the design and detailing of reinforced concrete structures 
subject to seismic loads (especially at the beam-column junctions), since it enables 
the material to enter into a plastic phase, imparting additional strength to the structure 
by means of redistribution of stresses [for details, refer Chapter 16]. 

2.11   CREEP OF CONCRETE 

2.11.1   Time-Dependent Behaviour under Sustained Loading 

As mentioned earlier, when concrete is subject to sustained compressive loading, its 
deformation keeps increasing with time, even though the stress level is not altered.  
The time-dependent component† of the total strain is termed creep.  The time-
dependent behaviour of the total strain in concrete (considering both ‘instantaneous’ 
strain and creep strain) is depicted in Fig. 2.14. 

The instantaneous strain is that which is assumed to occur ‘instantaneously’ on 
application of the loading.  This may have both ‘elastic’ and ‘inelastic’ components, 
depending on the stress level [Fig. 2.6].  In practice, as the stress level under service 
loads is relatively low, the inelastic component is negligible.  If the stress is 
maintained at a constant level, the strain will continue to increase with time (as 
indicated by the solid line in the curve in Fig. 2.14), although at a progressively 
decreasing rate.  The increase in strain at any time is termed the creep strain.  This is 
sometimes expressed in terms of the creep coefficient (Ct ), defined as the ratio of the 
creep strain at time t to the instantaneous strain (‘initial elastic strain’).  The 
maximum value of Ct is called the ultimate creep coefficient (designated as θ  by the 
Code);  its value is found to vary widely in the range 1.3 to 4.2 [Ref. 2.29]. 

If the sustained load is removed at any time, the strain follows the curve shown by 
the dashed line in Fig. 2.14.  There is an instantaneous recovery of strain by an 
amount equal to the elastic strain (to the extent permitted by the prevailing modulus 
of elasticity) due to the load removed at this age.  This is followed by a gradual 
decrease in strain, which is termed as creep recovery.   
                                                           
† excluding strains introduced by shrinkage and temperature variations. 
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2.11.2   Effects of Creep 

The exact mechanism of creep in concrete is still not fully understood.  It is generally 
attributed to internal movement of adsorbed water, viscous flow or sliding between 
the gel particles, moisture loss and the growth in micro-cracks. 

 

Fig. 2.14  Typical strain-time curve for concrete in uniaxial compression 

Creep of concrete results in the following detrimental results in reinforced 
concrete structures:  

⇒ increased deflection of beams and slabs; 
⇒ increased deflection of slender columns (possibly leading to buckling); 
⇒ gradual transfer of load from concrete to reinforcing steel in compression 

members; 
⇒ loss of prestress in prestressed concrete; 

However, some effects of creep may even be beneficial — such as reduction of 
stresses induced by non-uniform or restrained shrinkage, resulting in a reduction of 
cracking [Ref. 2.3].  Also, in cases of stresses induced by imposed deformations (as 
with settlement of supports), creep effects tend to reduce the stresses. 
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2.11.3   Factors Influencing Creep 

There are a number of independent and interacting factors related to the material 
properties and composition, curing and environmental conditions, and loading 
conditions that influence the magnitude of creep [Ref. 2.29].  In general, creep 
increases when: 

∗ cement content is high; 
∗ water-cement ratio is high; 
∗ aggregate content is low; 
∗ air entrainment is high; 
∗ relative humidity is low; 
∗ temperature (causing moisture loss) is high; 
∗ size / thickness of the member is small; 
∗ loading occurs at an early age; and 
∗ loading is sustained over a long period. 

2.11.4   Creep Coefficient for Design  

Several empirical methods, such as the ACI method [Ref. 2.29] and the CEB-FIP 
method [Ref. 2.30], have been developed to arrive at a reasonable estimate of the 
creep coefficient for design purposes.  In the absence of data related to the factors 
influencing creep, the Code (Cl. 6.2.5.1) recommends the use of the ultimate creep 
coefficient (θ ) — with values equal to 2.2, 1.6 and 1.1, for ages of loading equal to 7 
days, 28 days and one year respectively. 

Within the range of service loads, creep may be assumed to be proportional to the 
applied stress.  This assumption facilitates the estimation of total deflection (initial 
plus creep deflection) of flexural members by the usual linear elastic analysis with a 
reduced elastic modulus.  The Code (Cl. C 4.1) terms this reduced modulus as 
effective modulus of elasticity (Ece), which can be expressed† in terms of the short-
term elastic modulus (Ec) and the ultimate creep coefficient (θ ) as follows: 

E E
ce

c=
+1 θ

                                                        (2.8) 

Details of computation of long-term deflections of reinforced concrete beams due 
to creep are covered in Chapter 10. 

2.12   SHRINKAGE AND TEMPERATURE EFFECTS IN CONCRETE 

2.12.1   Shrinkage 

Concrete shrinks in the hardened state due to loss of moisture by evaporation; the 
consequent reduction in volume is termed drying shrinkage (often, simply 
shrinkage).  Like creep, shrinkage introduces time-dependent strains in concrete 
[Fig. 2.15].  
                                                           
† For a more detailed explanation, refer Chapter 10 (Fig. 10.12). 
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Shrinkage and creep are not independent phenomena.  However, for convenience, 
it is normal practice to treat their effects as separate, independent and additive.  All 
the factors related to constituent material properties, composition of mix, curing and 
environmental conditions, member size and age that affect creep also affect 
shrinkage. 

However, unlike creep, shrinkage strains are independent of the stress conditions 
in the concrete.  Also, shrinkage is reversible to a great extent, i.e., alternating dry 
and wet conditions will cause alternating volume changes in concrete. 
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Fig. 2.15  Typical variation of shrinkage with time  

When shrinkage is restrained, as it often is in concrete structures, tensile stresses 
develop, and, if excessive, may lead to cracking.  Similarly, a differential shrinkage, 
due to a moisture or thermal gradient, or due to a differential restraint to shrinkage 
(caused, for example, by unsymmetrically placed reinforcement in a beam) will result 
in internal stresses, curvature and deflections.  Shrinkage, like creep, also leads to a 
loss of prestress in prestressed concrete structures. 

Since the primary cause of shrinkage is moisture loss from the cement paste phase 
of the concrete, it can be minimised by keeping the unit water content in the mix as low 
as possible and the total aggregate content as high as possible. 

Shrinkage Strain for Design 

Shrinkage is usually expressed as a linear strain (mm/mm).  Empirical methods 
[Ref. 2.29, 2.30] are available for the estimation of the shrinkage strains for the 
purpose of design.  Wide variations in the value of the ultimate shrinkage strain 
(ε cs ) — up to 0.001 mm/mm — have been reported.  In the absence of reliable data, 
the Code (Cl. 6.2.4.1) recommends the use of an ultimate shrinkage strain value of  
0.0003 mm/mm; this appears to be rather low, in comparison with ACI 
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recommendation [Ref. 2.29] of an average value of 0.0008 mm/mm for moist-cured 
concrete. 

Details of computation of long-term deflections of reinforced concrete beams due 
to shrinkage are covered in Chapter 10. 

2.12.2   Temperature Effects 

Concrete expands with a temperature rise and contracts as the temperature drops; 
thermal contraction, in fact, produces effects similar to shrinkage. 

As a consequence of seasonal variations in temperature, internal stresses are 
induced in structures (which are statically indeterminate), owing to restrictions in free 
movements.  In order to limit the development of temperature stresses in reinforced 
concrete buildings with large plan dimensions, it is desirable to provide suitable 
expansion joints at appropriate locations — particularly where there are marked 
changes in plan dimensions [refer Cl. 27 of the Code]. 

Temperature stresses also develop on account of differential temperature (thermal 
gradient), as in roof slabs (particularly of air-conditioned rooms) exposed to the sun, 
or in chimneys which release hot gases.  In the design of many structures (such as 
reinforced concrete chimneys and cooling towers), ‘temperature loads’ need to be 
specially considered in the design.  

In general, it is good design practice to provide some nominal reinforcement 
(close to the surface) in concrete at locations where cracks can potentially develop, 
due to the effects of temperature and shrinkage.  This is particularly desirable in the 
case of large exposed surfaces of concrete (such as web faces of large-size beams) 
which are otherwise unreinforced. 

Coefficient of Thermal Expansion   

For the purpose of design, the coefficient of thermal expansion of concrete is 
required.  This is found to depend on various factors, such as the types of cement and 
aggregate, relative humidity, member size, etc.  The Code (Cl. 6.2.6) recommends 
values ranging from 6×10-6  mm/mm per ºC (for concrete with calcareous aggregate) 
to 12×10-6  mm/mm per ºC (for concrete with siliceous aggregate).  However, for the 
design of special structures such as water tanks, chimneys, bins and silos, a value of 
11×10-6 mm/mm per ºC is recommended [Ref. 2.33].  This is very close to the 
coefficient of thermal expansion of steel (which is about 12×10-6 mm/mm per ºC), so 
that there is little likelihood of any differential thermal expansion and associated 
relative movements between the steel and surrounding concrete. 

2.13   DURABILITY OF CONCRETE 

If concrete is to serve the purpose for which it is designed during its intended 
lifetime, it has to be durable.  Unfortunately, many reinforced concrete structures 
built in the past (particularly, the not-too-distant past) in adverse environments have 
shown signs of increased structural distress, mainly† due to chemical attack, causing 
                                                           
† Other factors include ‘abrasive’ actions on concrete surfaces (caused, for example, by 
machinery and metal tyres) and ‘freezing and thawing’ actions. 
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deterioration of concrete and corrosion of reinforcing steel.  Loss of durability results 
in a reduced life of the structure.  In an attempt to give increased importance to 
durability considerations, the recent revision of the Code has strengthened the 
provisions pertaining to durability, by shifting the guidelines from the Appendix (of 
the earlier Code) to the main body of the Code (Cl. 8), and by enhancing their scope 
and impact.  These changes are in line with other national codes, such as BS 8100 
and ACI 318.  

Loss of durability in concrete structures is essentially attributable to two classes of 
factors, viz., external factors and internal factors.  The external factors pertain to the 
type of environment to which the concrete is exposed, whereas the internal factors 
pertain to characteristics inherent to the built concrete.  Primary among the internal 
factors is the relative permeability of the concrete, as chemical attack can occur only 
if harmful chemicals can ingress into the concrete.  Chemical attack is caused by the 
ingress of water, oxygen, carbon dioxide, chlorides, sulphates, and other harmful 
chemicals (borne by surrounding ground or sea water, soil or humid atmosphere).  It 
can also occur due to the presence of deleterious constituents (such as chlorides, 
sulphates and alkali-reactive aggregate) in the original concrete mix.  Concrete 
members that are relatively thin or have inadequate cover to reinforcement are 
particularly vulnerable.  Lack of good drainage of water to avoid standing pools and 
rundown of water along exposed surfaces, and cracks in concrete also lead to ingress 
of water and deterioration of concrete.  Impermeability is governed by the 
constituents and workmanship used in making concrete. Despite the remarkable 
advances in concrete technology, regrettably, workmanship remains very poor in 
many construction sites in India, especially of smaller size projects. 

Durability in concrete can be realised if the various internal factors are suitably 
accounted for (or modified), during the design and construction stages, to ensure that 
the concrete has the desired resistance to the anticipated external factors.  Otherwise, 
the task of repairing and rehabilitating concrete that has been damaged (for want of 
proper design and quality of construction) can prove to be difficult and expensive.   

The most effective ways of providing for increased durability of concrete against 
chemical attack in a known adverse environment are by: 

• reducing permeability by 
    -  providing high grade of concrete 
    -  using adequate cement content 
    -  using well-graded, dense aggregate 
    -  using low water-cement ratio 
    -  using appropriate admixtures (including silica fume) 
    -  achieving maximum compaction 
    -  achieving effective curing 
    -  using appropriate surface coatings and impermeable membranes 
   -  avoiding sharp corners and locations where compaction is difficult 
   -  taking care while designing to minimise possible cracks 
• providing direct protection to embedded steel against corrosion by 
    -  providing adequate clear cover 
    -  using appropriate corrosion-resistant or coated steel 
    -  using sophisticated techniques such as cathodic protection 
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• providing appropriate type of cement having the desired chemical resistance to 
sulphates and/or chlorides 

• controlling the chloride and sulphate contents in the concrete mix constituents 
(within the limits specified in Cl. 8.2.5 of the Code) 

• avoiding the use of alkali-reactive aggregate 
• providing air-entraining admixtures when resistance against freezing and 

thawing is required 
• providing adequate thickness of members 
• providing adequate reinforcement designed to contain crack-widths within 

acceptable limits 
• providing adequate drainage on concrete surfaces to avoid water retention 

(e.g., ‘ponding’ in roof slabs) 

2.13.1   Environmental Exposure Conditions and Code Requirements 

The Code (Cl. 8.2.2.1) identifies five categories of ‘environmental exposure 
conditions’, viz., ‘mild’, ‘moderate’, ‘severe’, ‘very severe’ and ‘extreme’, in 
increasing degree of severity.  The purpose of this categorisation is mainly to provide 
a basis for enforcing certain minimum requirements aimed at providing the desired 
performance related to the severity of exposure.  These requirements, having 
implications in both design and construction of reinforced concrete work, pertain to: 

• minimum grade of concrete (varying from M 20 to M 40) 
• minimum clear cover to reinforcement (20 mm to 75 mm) 
• minimum cement content (300 to 360 kg/m3 for 20mm size aggregates) 
• maximum water-cement ratio (0.55 to 0.40) 
• acceptable limits of surface width of cracks (0.1 mm to 0.3 mm) 

The descriptions of the five categories of environmental exposure, as well as the 
corresponding specifications for the minimum grade of concrete, ‘nominal cover’† 
(minimum clear cover to reinforcement), minimum cement content and maximum 
free water-cement ratio, for reinforced concrete work, are summarised in Table 2.1‡.  
These specifications incorporated in the revised Code constitute perhaps the most 
significant changes in the Code, having tremendous practical (and economic) 
implications.  These recommendations have been long overdue, and are in line with 
international practice. 

It may be noted that in the same structure, different members may be subject to 
different categories of exposure.  For example, a reinforced concrete building located 
in a port city (such as Chennai or Mumbai) would be exposed to a coastal 
environment, which qualifies to be categorised as ‘severe’ (or ‘very severe’, in case it 
is very near the beach, exposed to sea water spray).  However, for concrete members 
located well inside the building (excepting foundations), sheltered from direct rain 
and aggressive atmospheric environment, the exposure category may be lowered by 
one level of severity; i.e., from ‘severe’ to ‘moderate’ (or ‘very severe’ to ‘severe’). 

                                                           
† Additional cover requirements pertaining to fire resistance are given in Table 16A of the 
Code. 
‡ The requirements for plain concrete (given in Table 5 of the Code) are not shown here. 
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Table 2.1  Exposure conditions and requirements for RC work with normal 
aggregate (20 mm nominal size) 

Exposur
e 

Category 

Description 
Min. 
grade 

Min. 
Cover 
(mm) 

Min. 
Cement 
(kg/m3) 

Max. 
free 
w/c 

ratio 

Mild 
Protected against weather or 
aggressive conditions, except if 
located in coastal area 

M 20 20* 300 0.55 

Moderate 

Sheltered from severe rain or 
freezing whilst wet, or 
Exposed to condensation and 
rain, or 
Continuously under water, or 
In contact with or buried under 
non-aggressive soil or ground 
water, or 
Sheltered from saturated ‘salt 
air’ in coastal area 

M 25 30 300 0.50 

Severe 

Exposed to severe rain, 
alternate wetting and drying or 
occasional freezing whilst wet 
or severe condensation, or 
Completely immersed in sea 
water, or 
Exposed to coastal 
environment 

M 30 45** 320 0.45 

Very 
Severe 

Exposed to sea water spray, 
corrosive fumes or severe 
freezing whilst wet, or 
In contact with or buried under 
aggressive sub-soil or ground 
water 

M 35 50 340 0.45 

Extreme 

Members in tidal zone, or 
Members in direct contact with 
liquid/solid aggressive 
chemicals 

M 40 75 360 0.40 

* can be reduced to 15 mm, if the bar diameter is less than 12 mm. 
** can be reduced by 5mm, if M 35 or higher grade is used. 
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Accordingly, corresponding to the ‘severe’ category, the roof↕ slab must be (at 
least) of M 30 grade concrete and its reinforcement should have a minimum clear 
cover of 45 mm.  These values may be compared to M 15 grade and 15 mm cover 
hitherto adopted in design practice, as per IS 456 (1978).  The increase in capital 
investment on account of the substantial increase in slab thickness and enhanced 
grade of concrete may appear to be drastic, but should be weighed against the 
significant gain in terms of prolonged maintenance-free life of the structure. 

2.13.2   Permeability of Concrete 

As mentioned earlier, reducing the permeability of concrete is perhaps the most 
effective way of enhancing durability.  Impermeability is also a major serviceability 
requirement — particularly in water tanks, sewage tanks, gas purifiers, pipes and 
pressure vessels.  In ordinary construction, roof slabs need to be impermeable against 
the ingress of rain water.   

Permeability of concrete is directly related to the porosity of the cement paste, the 
distribution of capillary pores and the presence of micro-cracks (induced by 
shrinkage effects, tensile stresses, etc.).  The main factors influencing capillary 
porosity are the water-cement ratio and the degree of hydration.  The use of a low 
water-cement ratio, adequate cement and effective curing contribute significantly 
to reduced permeability.  The steps to be taken to reduce permeability were listed in 
the previous Section.  In addition, it is essential for the concrete to be dense; this 
requires the use of well-graded, dense aggregate and good compaction.  For given 
aggregates, the cement content should be sufficient to provide adequate workability 
with a low water-cement ratio so that concrete can be completely compacted with the 
means available.  The use of appropriate chemical admixtures (such as 
superplasticisers) can facilitate working with a reduced water-cement ratio, and the 
use of mineral admixtures such as silica fume can contribute to making a dense 
concrete with reduced porosity. 

Provision of appropriate tested surface coatings and impermeable membranes also 
provide additional protection in extreme situations. 

2.13.3   Chemical Attack on Concrete 

The main sources of chemical attack, causing deterioration of concrete are sulphates, 
sea water (containing chlorides, sulphates, etc.), acids and alkali-aggregate reaction. 

Sulphate Attack 

Sulphates present in the soil or in ground (or sea) water attack hardened concrete that 
is relatively permeable.  Sulphates of sodium and potassium, and magnesium in 
particular, react with calcium hydroxide and C3A to form calcium sulphate 
(‘gypsum’) and calcium sulphoaluminate (‘ettringite’) — which occupy a greater 
volume than the compounds they replace [Ref. 2.3].  This leads to expansion and 
disruption (cracking or disintegration) of hardened concrete.  Sulphate-attacked 
                                                           
↕ In the case of intermediate floor slabs, the grade of concrete can be reduced to M 25 and the 
clear cover to 30 mm, corresponding to ‘moderate’ exposure. 
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concrete has a characteristic whitish appearance (‘efflorescence’ — due to leaching 
of calcium hydroxide), and is prone to cracking and spalling of concrete.   

Resistance to sulphate attack can be improved by the use of special cements such 
as PSC, SRPC, HAC and SC [refer Section 2.2.1], and by reducing the permeability 
of concrete.  Recommendations regarding the choice of type of cement, minimum 
cement content and maximum water-cement ratio, for exposure to different 
concentrations of sulphates (expressed as SO3) in soil and ground water are given in 
Table 4 of the Code.  The Code recommends the use of Portland slag cement (PSC) 
with slag content more than 50 percent, and in cases of extreme sulphate 
concentration, recommends the use of supersulphated cement (SC)† and sulphate 
resistant cement (SRC).  The specified minimum cement content is in the range 280 
to 400 kg/m3 and the maximum free water-cement ratio is in the range 0.55 to 0.40 
respectively for increasing concentrations of sulphates. 

Sea Water Attack  

Sea water contains chlorides in addition to sulphates — the combination of which 
results in a gradual increase in porosity and a consequent decrease in strength.  The 
same measures used to prevent sulphate attack are applicable here.  However, the use 
of sulphate resistant cement (SRC) is not recommended.  The Code recommends the 
use of OPC with C3A content in the range 5–8 percent and the use of blast furnace 
slag cement (PSC).  In particular, low permeability is highly desirable.  The inclusion 
of silica fume admixture can contribute to the making of the densest possible 
concrete.  The use of soft or porous aggregate should be avoided.  Concrete shall be 
at least M30 Grade in case of reinforced concrete.  The use of a higher cement 
content (of at least 350 kg/m3) above the low-tide water level, along with a lower 
water-cement ratio (of about 0.40) is recommended, owing to the extreme severity of 
exposure in this region, where construction joints should also be avoided [Ref. 2.30].  
Adequate cover to reinforcement and other measures to prevent corrosion are of 
special importance to prevent chloride attack on reinforcement. 

Alkali-Aggregate Reaction  

Some aggregates containing reactive silica are prone to reaction with alkalis (Na2O 
and K2O) in the cement paste.  The reaction, however, is possible only in the 
presence of a high moisture content within the concrete.  The reaction eventually 
leads to expansion, cracking and disruption of concrete, although the occurrence of 
damage may be delayed, sometimes by five years or so [Ref. 2.3].  Care must be 
taken to avoid the use of such aggregates for concreting.  Also, the use of low alkali 
OPC and inclusion of pozzolana are recommended by the Code (Cl. 8.2.5.4).  The 
Code also recommends measures to reduce the degree of saturation of concrete 
during service by the use of impermeable membranes in situations where the 
possibility of alkali-aggregate reaction is suspected. 

                                                           
† However, use of supersulphated cement in situations where the ambient temperature exceeds 
40 °C is discouraged.  
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2.13.4   Corrosion of Reinforcing Steel 

The mechanism of corrosion of reinforcing steel, embedded in concrete, is attributed 
to electrochemical action.  Differences in the electrochemical potential on the steel 
surface results in the formation of anodic and cathodic regions, which are connected 
by some salt solution acting as an electrolyte. 

Steel in freshly cast concrete is generally free from corrosion because of the 
formation of a thin protective film of iron oxide due to the strongly alkaline 
environment produced by the hydration of cement.  This passive protection is broken 
when the pH value of the regions adjoining the steel falls below about 9.  This can 
occur either by carbonation (reaction of carbon dioxide in the atmosphere with the 
alkalis in the cement paste) or by the ingress of soluble chlorides.  The extent of 
carbonation penetration or chloride penetration depends, to a great extent, on the 
permeability of concrete in the cover region.  The increased cover stipulated in the 
recent code revision will contribute to increased protection against corrosion, 
provided, of course, the cover concrete is of good quality (low permeability).  
However, it may be noted that increased cover also contributes to increased flexural 
crack-widths [Ref. 2.31], and it is necessary to contain the cracking by suitable 
reinforcement design and detailing [refer Chapter 10]. 

The electrochemical process of corrosion takes place in the presence of the 
electrolytic solution and water and oxygen.  The consequent formation and 
accumulation of rust can result in a significant increase in the volume of steel and a 
loss of strength; the swelling pressures cause cracking and spalling of concrete, 
thereby allowing further ingress of carbonation or chloride penetration.  Unless 
remedial measures are quickly adopted, corrosion is likely to propagate and lead 
eventually to structural failure.  Cathodic protection is the most effective (although 
expensive) way of arresting corrosion [Ref. 2.32]. 

Prevention is easier (and less costly) than cure.  If it is known in advance that the 
structure is to be located in an adverse environment, the designer should aim for 
structural durability at the design stage itself, by adopting suitable measures such as:  

⇒ control crack widths in reinforced concrete by suitable design [refer 
Chapter 10], or by resorting to partial or full prestressing; 

⇒ provide increased cover to reinforcement [refer Cl. 26.4.2 of the Code]; 
⇒ ensure low permeability by specifying optimum cement content, minimum 

water-cement ratio, proper compaction and curing; 
⇒ specify the use of special corrosion-resistant steel or fusion bonded epoxy 

steel; 
⇒ use of special cements; 
⇒ use of cathodic protection. 

2.14   REINFORCING STEEL   

As explained earlier (Section 1.2), concrete is reinforced with steel primarily to make 
up for concrete’s incapacity for tensile resistance.  Steel embedded in concrete, called 
reinforcing steel, can effectively take up the tension that is induced due to flexural 
tension, direct tension, ‘diagonal tension’ or environmental effects.  Reinforcing steel 
also imparts ductility to a material that is otherwise brittle.  Furthermore, steel is 



BASIC  MATERIAL  PROPERTIES 67 

stronger than concrete in compression also; hence, concrete can be advantageously 
reinforced with steel for bearing compressive stresses as well, as is commonly done 
in columns. 

2.14.1   Types, Sizes and Grades  

Reinforcing steel is generally provided in the form of bars, wires or welded wire 
fabric.   

Reinforcing bars (referred to as rebars) are available in nominal diameters† 
ranging from 5 mm to 50 mm, and may be plain or deformed.  In the case of the 
latter, ‘deformations’, in the form of lugs or protrusions, are provided on the surface 
to enhance the bond between steel and concrete, and to mechanically inhibit the 
longitudinal movement of the bar relative to the concrete around it.  The bars that are 
most commonly used are high strength deformed bars (generally cold-twisted), 
conforming to IS 1786 : 1985, and having a ‘specified yield strength’ of 415 MPa.  
Deformed bars of a higher specified strength of 500 MPa are also used in special 
cases.  Plain mild steel bars are less commonly used in reinforced concrete, because 
they possess less strength (250 MPa yield strength) and cost approximately the same 
as high-strength deformed bars; however, they are used in practice in situations 
where nominal reinforcement is called for.  Low strength steel is also preferred in 
special situations where deflections and crackwidths need to be controlled [refer 
Chapter 10], or where high ductility is required, as in earthquake-resistant design 
[refer Chapter 16].  The Code also permits the use of medium tensile steel (which has 
a higher strength than mild steel); but this is rarely used in practice.  The 
requirements of both mild steel and medium tensile steel are covered in IS 432 
(Part 1) : 1982. 

For the purpose of reinforced concrete design, the Code grades reinforcing steel in 
terms of the ‘specified yield strength’. Three grades have been specified, viz. Fe 250, 
Fe 415, and Fe 500, conforming to specified yield strengths of 250 MPa, 415 MPa 
and 500 MPa respectively.  The specified yield strength normally refers to a 
guaranteed minimum.  The actual yield strength of the steel is usually somewhat 
higher than the specified value.  The Code (Cl. 36.1) specifies that the ‘specified 
yield strength’ may be treated as the characteristic strength of reinforcing steel. In 
some cases (e.g., in ductile, earthquake resistant design – see Ch. 16) it is 
undesirable to have a yield strength much higher than that considered in design. 

Hard-drawn steel wire fabrics, conforming to IS 1566 : 1982, are sometimes 
used in thin slabs and in some precast products (such as pipes).  Their sizes are 
specified in terms of mesh size and wire diameter. 

Rolled steel sections, conforming to Grade A of IS 2062 : 1999, are also 
permitted by the Code in composite construction; however, this is strictly not in the 
purview of reinforced concrete design, and hence is not discussed in this book. 

                                                           
† The bar sizes (nominal diameters in mm) presently available in India are — 5, 6, 8, 10, 12, 
16, 18, 20, 22, 25, 28, 32, 36, 40, 45 and 50. 
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Rust on reinforcement  

Rust on reinforcing steel (prior to concreting) is not an uncommon sight at 
construction sites.  Loose mill scale, loose rust, oil, mud, etc. are considered harmful 
for the bond with concrete, and should be removed before fixing of reinforcement 
[Cl. 5.6.1 of the Code].  However, research has shown that a normal amount of rust 
on deformed bars and wire fabric is perhaps not undesirable, because it increases the 
bond with concrete [Ref. 2.33]; however, the rust should not be excessive as to 
violate the specified tolerances on the size of the reinforcement. 

2.14.2   Stress-Strain Curves 

The stress-strain curve of reinforcing steel is obtained by performing a standard 
tension test [refer IS 1608 : 1995].  Typical stress-strain curves for the three grades of 
steel are depicted in Fig. 2.16.  
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Fig. 2.16  Typical stress-strain curves for reinforcing steels†

For all grades, there is an initial linear elastic portion with constant slope, which 
gives a modulus of elasticity (Es) that is practically the same for all grades.  The Code 
(Cl. 5.6.3) specifies that the value of Es to be considered in design is 2×105 MPa 
(N/mm2). 

The stress-strain curve of mild steel (hot rolled) is characterised by an initial 
linearly elastic part that is followed by an yield plateau (where the strain increases at 
almost constant stress), followed in turn by a strain hardening range in which the 
                                                           
† For comparison, the stress-strain curve for M25 concrete is also plotted to the same scale.  
Note the enormous difference in ultimate strength and strain and elastic modulus between 
concrete and steel.  For steel, the stress-strain curve in compression is identical to the one in 
tension (provided buckling is restrained).  In contrast, for concrete, the tensile strength and 
strain are only a small fraction of the corresponding values in compression. 
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stress once again increases with increasing strain (although at a decreasing rate) until 
the peak stress (tensile strength) is reached.  Finally, there is a descending branch 
wherein the nominal stress (load divided by original area) decreases until fracture 
occurs.  (The actual stress, in terms of load divided by the current reduced area, will, 
however, show an increasing trend).  For Fe 250 grade steel, the ultimate tensile 
strength is specified as 412 MPa, and the minimum percentage elongation (on a 
specified gauge length) is 20–22 percent. [refer IS 432 (Part 1) : 1982]. 

The process of cold-working involves stretching and twisting of mild steel, 
beyond the yield plateau, and subsequently releasing the load, as indicated by the line 
BCD in Fig. 2.17.  This steel on reloading will follow the path DEF.  It can be seen 
that by unloading after the yield stress has been exceeded and reloading, a hysteresis 
loop is formed.  The unloading and reloading curves BCD and DEF are initially very 
nearly parallel to the original elastic loading line OA.  The hysteresis loop shown in 
Fig. 2.17 is greatly exaggerated and, except under continuous reversed cyclic 
loading, the unloading and reloading paths in this region may be assumed to be 
overlapping, elastic and parallel to line OA.  Thus, upon reloading, the steel follows a 
linear elastic path (with the same modulus of elasticity Es as the original mild steel) 
up to the point where the unloading started — the new raised ‘yield point’.  (The 
point of yielding is not likely to be well-defined if the point of unloading lies 
beyond the yield plateau.)  Thereafter, the material enters into the strain hardening 
range, following the path indicated by the curve FGH, which is virtually a 
continuation of the curve OAB [Fig. 2.17].  It can also be seen that cold-working 
results in a residual strain in the steel, represented by OD in Fig. 2.17. 
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Fig. 2.17  Effect of cold-working on mild steel bars [Ref. 2.34] 
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It should be noted that although the process of cold-working effectively increases 
the ‘yield strength’ of the steel, it also reduces the ductility in the material.  Higher 
yield strengths can be achieved by suitably selecting the point of unloading in the 
strain hardening range, and by using higher grades of mild steel.  It also follows that 
increasing yield strength through cold-working results in a decreased margin between 
yield strength and ultimate strength.  

For Fe 415 grade steel, the ultimate tensile strength is expected to be 15 percent 
more than the yield strength, with a percentage elongation of 14.5 percent, whereas 
for Fe 500 grade steel, the ultimate tensile strength is expected to be only 10 percent 
more than the yield strength, with a percentage elongation of 12 percent [refer 
IS 1786 : 1985].  For design purposes, the increase in strength beyond the ‘yield 
point’ (due to strain-hardening) is generally ignored.  Most design codes recommend 
the use of an ideal elasto-plastic stress-strain curve (with an initial linearly elastic 
line up to yield, followed by a line at constant stress, denoting the post-yielding 
behaviour).   

fy fy 

0.002 0.004

a) 0.2 percent proof stress b) stress at  specified (yield) strain 

Es 

Es 
0.004 for Fe 415 
0.0045 for Fe 500 

 

Fig. 2.18  Definition of yield strength – high strength steel 

In the absence of a definite yield point, the 0.2 percent ‘proof stress’† is generally 
taken as the yield strength [Fig. 2.18(a)].  It is also admissible to take the yield 
strength as the stress corresponding to a specified strain (0.004 and 0.0045 for Fe 415 
and Fe 500 grades respectively; see Cl. 8.2 of IS 1786: 1985) as shown in Fig. 
2.18(b)‡.  A note of caution will be appropriate here.  For mild steel such as grade 
Fe 250 [see Fig. 2.16], there is a sharp and pronounced yielding.  In a tension test on 
such steel conducted on a relatively ‘stiff’ testing machine, because of the sudden 
relaxation at yielding, the pointer of the load dial of the machine ‘hesitates’ or ‘drops 
back’.  Hence, the load corresponding to the ‘drop of pointer’ can be taken as the 

                                                           
† the stress at which a non-proportional elongation equal to 0.2 percent of the original gauge 
length takes place [IS 1786 : 1985 & 1608 : 1995];  stress level, which on unloading, results in 
a residual strain of 0.002. 
‡ these strains are indeed the sum of 0.002 and fy/Es for the respective grades [see Fig. 2.18(b)].  
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yield load with reasonable accuracy.  However, in cold-worked and high strength 
steels whose yielding is more gradual and the ‘yield point’ is not well-defined, the 
‘drop-of-pointer’ method should not be used to determine the yield load and yield 
strength.  In such cases, yield strength should be determined from the measured 
stress-strain diagram as the 0.2 percent ‘proof stress’†.  

The stress-strain behaviour of steel in compression is identical to that in tension.  
However, if the steel is stressed into the inelastic range in uniform tension, unloaded, 
and then subjected to uniform compression in the opposite direction, it is found that 
the stress-strain curve becomes nonlinear at a stress much lower than the initial yield 
strength [Fig. 2.19].  This is referred to as the ‘Bauschinger effect’ [Ref. 2.28].  In 
this case, the hysteresis loop is also more pronounced.  In inelastic deformation 
processes involving continual reversal of stress (such as metal working, high 
intensity reversed seismic loading, etc), the Bauschinger effect is very important and 
cannot be ignored.  In other cases, where there is in general no more than one stress 
reversal, the Bauschinger effect can safely be neglected.    
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Fig. 2.19  Bauschinger effect and hysteresis 

The stress-strain curve for steel under compression is generally taken to be the 
same as under tension. 

2.15   LIST OF RELEVANT INDIAN STANDARDS 

All the codes on material specifications that have been referred to in this chapter are 
listed as follows: 

                                                           
† It has come to the notice of the authors that some educational institutions conducting 
commercial tests have been adopting the ‘drop-of-pointer’ method even for high strength 
reinforcing steel specimens.  As a result, yield strengths far greater than the real values have 
been erroneously reported.  Hence, this note of caution. 
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Standards on Cement 

IS 269 : 1989 — Specification for 33 Grade ordinary Portland cement (fourth 
 revision); 

IS 8112 : 1989 — Specification for 43 Grade ordinary Portland cement (first    
   revision);  

IS 12269 : 1987 — Specification for 53 Grade ordinary Portland cement;  
IS 8041 : 1990 — Specification for rapid hardening Portland cement (second   

   revision);  
IS 455 : 1989 — Specification for Portland slag cement (fourth revision);  
IS 1489 : 1991 — Specification for Portland pozzolana cement 

 Part I : Flyash based (third revision);  
 Part II : Calcined clay based (third revision);  

IS 8043 : 1991 — Specification for hydrophobic Portland cement (second revision);  
IS 12600 : 1989 — Specification for low heat Portland cement;  
IS 12330 : 1988 — Specification for sulphate resisting Portland cement;  
IS 8042 : 1978 — Specification for Portland white cement (first revision);  
IS 8043 : 1991 — Specification for hydrophobic Portland white cement (second 

    revision);  
IS 6452 : 1989 — Specification for high alumina cement for structural use (first 

    revision);  
IS 6909 : 1990 — Specification for supersulphated cement (first revision);  
IS 4031 : 1988 — Methods of physical tests for hydraulic cement;  

Standards on Aggregate, Water and Admixtures  

IS 383 : 1970 — Specification for coarse and fine aggregates from natural sources 
for  concrete (second revision);  

IS 9142 : 1979 — Specification for artificial lightweight aggregates for concrete 
   masonry units;  

IS 2386 (Parts 1–8) — Methods of tests for aggregate for concrete;  
IS 3025 (Parts 17–32) — Methods of sampling and test (physical and chemical) for 

  water and waste water;  
IS 9103 : 1999 — Specification for admixtures for concrete (first revision);  
IS 3812 : 1981 — Specification for flyash for use as pozzolana and admixture (first 

   revision);  
IS 1344 : 1981 — Specification for calcined clay pozzolana  (second revision);  

Standards on Concrete  

IS 10262 : 1982 — Recommended guidelines for concrete mix design;  
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IS 7861 (Part 1) : 1975 — Code of Practice for extreme weather concreting: Part 1 
            — Recommended practice for hot weather concreting;  

IS 4926 : 1976 — Ready-mixed concrete (first revision);  
IS 1199 : 1959 — Methods of sampling and analysis of concrete;  
IS 516 : 1959 — Methods of tests for strength of concrete;  
IS 5816 : 1999 — Method of test for splitting tensile strength of concrete cylinders 

   (first revision);  
IS 3370 (Part 1) : 1965 — Code of Practice for the storage of liquids: Part 1 —  

    General 
IS 1343 : 1980 — Code of Practice for Prestressed Concrete (first revision); 

Standards on Reinforcing Steel  

IS 432 (Part 1) : 1982 — Specification for mild steel and medium tensile steel bars 
               for concrete reinforcement (third revision);  

IS 1786 : 1985 — Specification for high strength deformed steel bars for concrete 
   reinforcement (third revision);  

IS 1566 : 1982 — Specification for hard-drawn steel wire fabric for concrete   
   reinforcement (second revision);  

IS 2062 : 1999 — Steel for general structural purposes- Specification (Fifth   
   revision); 

IS 1608 : 1995 — Mechanical testing of Metals – Tensile testing (second revision). 

REVIEW QUESTIONS 

2.1 What are the types of cement that are suitable for  (a) mass concreting, 
(b) resistance to sulphate attack? 

2.2 How can the development of strength and heat of hydration be controlled in 
cement manufacture? 

2.3 Can the use of excessive cement in concrete be harmful?  
2.4 What do the terms stiffening, setting and hardening mean, with reference to 

cement paste?  
2.5 What is the basis for deciding the maximum size of coarse aggregate in 

concrete work?  
2.6 What is meant by segregation of concrete?  Under what circumstances does it 

take place?  
2.7 What is meant by workability of concrete, and how is it measured?  
2.8 Discuss the role of water in producing ‘good’ concrete.  
2.9 Mention the different types of ‘admixtures’ and their applications. 
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2.10 (a) Define characteristic strength.  (b) Determine the ‘mean target strength’ 
required for the mix design of M25 concrete, assuming moderate quality 
control.  

2.11 Enumerate the steps involved in the Indian Standard method of mix design.  
2.12 Why is the cube strength different from the cylinder strength for the same 

grade of concrete?  
2.13 Can concrete be assumed to be a linear elastic material?  Discuss.  
2.14 Distinguish between static modulus and dynamic modulus of elasticity of 

concrete.  
2.15 Discuss the variations of longitudinal, lateral and volumetric strains that are 

observable in a typical uniaxial compression test on a concrete prism.  
2.16 Why does the Code limit the compressive strength of concrete in structural 

design to 0.67 , and not ? f ck f ck

2.17 Is the modulus of rupture of concrete equal to its direct tensile strength?  
Discuss.  

2.18 The standard flexure test makes use of a ‘third-point loading’.  Is this 
necessary?  Can a single point load at midspan be used as an alternative?  

2.19 Why is it not possible to determine the shear strength of concrete by subjecting 
it to a state of pure shear?  

2.20 What is the advantage of confinement of concrete?  Give suitable examples to 
illustrate your point.  

2.21 What does ‘creep of concrete’ mean?  Is creep harmful or beneficial?  
2.22 How is it that the deflection of a simply supported reinforced concrete beam 

increases due to shrinkage of concrete?  
2.23 Consider a simple portal frame (with fixed base) made of reinforced concrete.  

Sketch the approximate shape of the deflection curve caused by  (a) a uniform 
shrinkage strain,  (b) a uniform temperature rise.  

2.24 Consider the temperature gradient across the shell thickness of a reinforced 
concrete chimney (with tubular cross-section).  Where would you provide 
reinforcing steel to resist tensile stresses due to the effect of temperature alone 
(caused by the emission of hot gases): close to the outer circumference or close 
to the inner circumference?  Justify your answer.  

2.25 How would you define ‘durable concrete’?  Discuss the ways of ensuring 
durability. 

2.26 Cite two examples each for the five categories of ‘environmental exposure’ 
described in the Code.  

2.27 Describe the main factors that affect the permeability of concrete.  
2.28 Discuss briefly the factors that lead to corrosion of reinforcing steel. 
2.29 What steps can a designer adopt at the design stage to ensure the durability of a 

reinforced concrete offshore structure?  
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2.30 What is meant by strain hardening of steel?  How is it related to the grade of 
reinforcing steel?  

2.31 What is meant by cold-working of mild steel?  How does it affect the structural 
properties of the steel?  

2.32 What is Bauschinger effect? Where is it relevant? 
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          3 
       Basic Design Concepts 

 

3.1   INTRODUCTION 

Having gained a general overview of reinforced concrete structures (Chapter 1) and 
an understanding of the basic material properties (Chapter 2), it is time to get into the 
actual details of the design process.  This chapter introduces the basic concepts 
relating to performance criteria in reinforced concrete design. 

3.1.1   Design Considerations 

The aim of structural design is to design a structure so that it fulfils its intended 
purpose during its intended lifetime with adequate safety (in terms of strength, 
stability and structural integrity), adequate serviceability (in terms of stiffness, 
durability, etc.) and economy. 

Safety implies that the likelihood of (partial or total) collapse of the structure is 
acceptably low not only under the normal expected loads (service loads), but also 
under abnormal but probable overloads (such as due to earthquake or extreme wind).  
Collapse may occur due to various possibilities such as exceeding the load−bearing 
capacity, overturning, sliding, buckling, fatigue fracture, etc.  Another related aspect 
of safety is structural integrity (see Section 15.1.3).  The objective here is to 
minimise the likelihood of progressive collapse. 

Serviceability implies satisfactory performance of the structure under service 
loads, without discomfort to the user due to excessive deflection, cracking, vibration, 
etc.  Other considerations that come under the purview of serviceability are 
durability, impermeability, acoustic and thermal insulation, etc.  A design that 
adequately satisfies the ‘safety’ requirement need not necessarily satisfy the 
‘serviceability’ requirement.  For example, a thin reinforced concrete slab can be 
made safe against collapse (by suitable reinforcement); but if it is too thin, it is likely 
to result in excessive deflections, crack-widths and permeability (leakage), and the 
exposed steel becomes vulnerable to corrosion (thereby affecting durability). 
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Increasing the design margins of safety can enhance safety and serviceability; but 
this increases the cost of the structure.  In considering overall economy, the increased 
cost associated with increased safety margins should be weighed against the potential 
losses that could result from any damage. 

3.1.2   Design Philosophies 

Over the years, various design philosophies have evolved in different parts of the 
world, with regard to reinforced concrete design. A ‘design philosophy’ is built up on 
a few fundamental premises (assumptions), and is reflective of a way of thinking. 

The earliest codified design philosophy is the working stress method of design 
(WSM).  Close to a hundred years old, this traditional method of design, based on 
linear elastic theory, is still surviving in some countries (including India), although it 
is now sidelined by the modern limit states design philosophy.  In the recent (2000) 
revision of the Code (IS 456), the provisions relating to the WSM design procedure 
have been relegated from the main text of the Code to an Annexure (Annex B) “so as 
to give greater emphasis to limit state design” (as stated in the ‘Foreword’).  

Historically, the design procedure to follow the WSM was the ultimate load 
method of design (ULM), which was developed in the 1950s.  Based on the 
(ultimate) strength of reinforced concrete at ultimate loads, it evolved and gradually 
gained acceptance.  This method was introduced as an alternative to WSM in the ACI 
code in 1956 and the British Code in 1957, and subsequently in the Indian Code 
(IS 456) in 1964. 

Probabilistic concepts of design developed over the years† and received a major 
impetus from the mid-1960s onwards.  The philosophy was based on the theory that 
the various uncertainties in design could be handled more rationally in the 
mathematical framework of probability theory.  The risk involved in the design was 
quantified in terms of a probability of failure.  Such probabilistic methods came to be 
known as reliability-based methods.  However, there was little acceptance for this 
theory in professional practice, mainly because the theory appeared to be complicated 
and intractable (mathematically and numerically). 

In order to gain code acceptance, the probabilistic ‘reliability-based’ approach had 
to be simplified and reduced to a deterministic format involving multiple (partial) 
safety factors (rather than probability of failure).  The European Committee for 
Concrete (CEB) and the International Federation for Prestressing (FIP) were among 
the earliest to introduce the philosophy of limit states method (LSM) of design, 
which is reliability-based in concept [Ref. 3.2].  Based on the CEB-FIP 
recommendations, LSM was introduced in the British Code CP 110 (1973) [now BS 
8110 (1997)], and the Indian Code IS 456 (1978).  In the United States, LSM was 
introduced in a slightly different format (strength design and serviceability design) in 
the ACI 318−71 (now ACI 318-95). 

Thus, the past several decades have witnessed an evolution in design philosophy 
— from the traditional ‘working stress method’, through the ‘ultimate load method’, 
to the modern ‘limit states method’ of design. 

                                                           
† For a detailed history, consult Ref. 3.1. 
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3.2   WORKING STRESS METHOD  (WSM) 

This was the traditional method of design not only for reinforced concrete, but also 
for structural steel and timber design.  The conceptual basis of WSM is simple.  The 
method basically assumes that the structural material behaves in a linear elastic 
manner, and that adequate safety can be ensured by suitably restricting the stresses in 
the material induced by the expected ‘working loads’ (service loads) on the structure.  
As the specified permissible (‘allowable’) stresses are kept well below the material 
strength (i.e., in the initial phase of the stress-strain curve), the assumption of linear 
elastic behaviour is considered justifiable.  The ratio of the strength of the material to 
the permissible stress is often referred to as the factor of safety. 

The stresses under the applied loads are analysed by applying the methods of 
‘strength of materials’ such as the simple bending theory.  In order to apply such 
methods to a composite material like reinforced concrete, strain compatibility (due to 
bond) is assumed, whereby the strain in the reinforcing steel is assumed to be equal 
to that in the adjoining concrete to which it is bonded.  Furthermore, as the stresses in 
concrete and steel are assumed to be linearly related to their respective strains, it 
follows that the stress in steel is linearly related to that in the adjoining concrete by a 
constant factor (called the modular ratio), defined as the ratio of the modulus of 
elasticity of steel to that of concrete. 

However, the main assumption of linear elastic behaviour and the tacit assumption 
that the stresses under working loads can be kept within the ‘permissible stresses’ are 
not found to be realistic.  Many factors are responsible for this — such as the long-
term effects of creep and shrinkage, the effects of stress concentrations, and other 
secondary effects.  All such effects result in significant local increases in and 
redistribution of the calculated stresses†.  Moreover, WSM does not provide a 
realistic measure of the actual factor of safety underlying a design.  WSM also fails 
to discriminate between different types of loads that act simultaneously, but have 
different degrees of uncertainty.  This can, at times, result in very unconservative 
designs, particularly when two different loads (say, dead loads and wind loads) have 
counteracting effects [Ref. 3.4]. 

Nevertheless, in defence against these and other shortcomings levelled against 
WSM, it may be stated that most structures designed in accordance with WSM have 
been generally performing satisfactorily for many years.  The design usually results 
in relatively large sections of structural members (compared to ULM and LSM), 
thereby resulting in better serviceability performance (less deflections, crack-widths, 
etc.) under the usual working loads.  The method is also notable for its essential 
simplicity — in concept, as well as application. 

It may also be noted that although WSM has been superseded by the limit states 
method (LSM) in the design code for general RC structures (IS 456), it continues to 

                                                           
† For example, in the case of reinforced concrete columns subjected to sustained service loads, 
it is found that redistribution of stresses takes place with time to such an extent that the 
‘permissible’ stress in reinforcing steel will not only be exceeded, but the stress is even likely 
to reach yield stress — thereby upsetting the assumptions and calculations of WSM based on a 
constant modular ratio [Ref. 3.3]. 
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be the accepted method of design in India for certain special structures such as RC 
bridges (IRC 21), water tanks (IS 3370) and chimneys (IS 4998). 

3.3   ULTIMATE LOAD METHOD  (ULM) 

With the growing realisation of the shortcomings of WSM in reinforced concrete 
design, and with increased understanding of the behaviour of reinforced concrete at 
ultimate loads, the ultimate load method of design (ULM) evolved in the 1950s and 
became an alternative to WSM.  This method is sometimes also referred to as the 
load factor method or the ultimate strength method.  

In this method, the stress condition at the state of impending collapse of the 
structure is analysed, and the non-linear stress−strain curves of concrete and steel are 
made use of.  The concept of ‘modular ratio’ and its associated problems are avoided 
entirely in this method.  The safety measure in the design is introduced by an 
appropriate choice of the load factor, defined as the ratio of the ultimate load (design 
load) to the working load.  The ultimate load method makes it possible for different 
types of loads to be assigned different load factors under combined loading 
conditions, thereby overcoming the related shortcoming of WSM.  

This method generally results in more slender sections, and often more 
economical designs of beams and columns (compared to WSM), particularly when 
high strength reinforcing steel and concrete are used. 

However, the satisfactory ‘strength’ performance at ultimate loads does not 
guarantee satisfactory ‘serviceability’ performance at the normal service loads.  The 
designs sometimes result in excessive deflections and crack-widths under service 
loads, owing to the slender sections resulting from the use of high strength 
reinforcing steel and concrete. 

Moreover, the use of the non-linear stress-strain behaviour for the design of 
sections becomes truly meaningful only if appropriate non-linear limit analysis is 
performed on the structure.  Unfortunately, such a structural analysis is generally not 
performed on reinforced concrete structures (except in the yield line theory for slabs), 
owing to the difficulties in predicting the behaviour of ‘plastic hinges’ in reinforced 
concrete.  Commonly, the distribution of stress resultants at ultimate load is taken as 
the distribution at service loads, magnified by the load factor(s); in other words, 
analysis is still based on linear elastic theory.  This is clearly in error, because 
significant inelastic behaviour and redistribution of stress resultants takes place, as 
the loading is increased from service loads to ultimate loads. 

3.4   PROBABILISTIC ANALYSIS AND DESIGN 

3.4.1   Uncertainties in Design 

Safety margins are provided in design to safeguard against the risk of failure 
(collapse or unserviceability).  In the traditional methods of design, these safety 
margins were assigned (in terms of ‘permissible stresses’ in WSM and ‘load factors’ 
in ULM) primarily on the basis of engineering judgement.  Structures designed 
according to these traditional methods were found, in general, to be free from failure. 
However, the scientific basis underlying the provision of safety margins in design has 
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been questioned time and again.  As a result of persistent efforts over the past several 
decades in various fields of engineering, the science of reliability-based design 
evolved with the objective of providing a rational solution to the problem of 
‘adequate safety’. 

The main variables in design calculations that are subject to varying degrees of 
uncertainty and randomness are the loads [Fig. 3.1, for example], material properties 
[Fig. 3.2, for example] and dimensions.  Further, there are idealisations and 
simplifying assumptions used in the theories of structural analysis and design.  There 
are also several other variable and often unforeseen factors that influence the 
prediction of strength and serviceability ⎯ such as construction methods, 
workmanship and quality control, intended service life of the structure, possible 
future change of use, frequency of loading, etc.  
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Fig. 3.1  Typical example of frequency distribution of wind loads on a structure 
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Fig. 3.2  Typical example of frequency distribution of concrete strength 
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Thus, the problem facing the designer is to design economically on the basis of:  

“…prediction through imperfect mathematical theories of the performance 
of structural systems constructed by fallible humans from material with 
variable properties, when these systems are subjected to an unpredictable 
natural environment”  [Ref. 3.5] 

It should be evident that any realistic, rational and quantitative representation of 
safety must be based on statistical and probabilistic analysis.  [Recent attempts 
include the application of fuzzy logic also.] 

3.4.2   Classical Reliability Models 

In this section, a simple introduction to reliability−based design is given.  Two 
simple ‘classical’ models are considered here ⎯ one for ‘strength design’ and the 
other for ‘serviceability design’. 

Strength Design Model  

The (lifetime maximum) load effect S on a structure and the ultimate resistance R of 
the structure (both expressed in terms of a stress resultant such as bending moment at 
a critical section) are treated as random variables whose respective probability 
density functions (S) and (R) are known [Fig. 3.3].  It is also assumed that S 
and R are statistically independent, which is approximately true for cases of normal 
static loading. 

f S f R

 

f S (S) 

f R (R)

Rn φ RnSn 

γ Sn
probability 

density 

Load and Resistance variables

0 

 

Fig. 3.3  Classical reliability model for strength design 

If  S < R, the structure is expected to be safe, and if  S > R , the structure is 
expected to fail.  It is evident from Fig. 3.3 that there is always a probability, 
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however small, that failure may occur due to the exceeding of the load-bearing 
capacity of the structure (or structural element under consideration). 

The probability of  failure  may be calculated as follows :  Pf

Pf =  Prob { } { }[ ]R S S< ∩ < < ∞0  

⇒    Pf  =                             (3.1) f S f R dR dSS R

S
( ) ( )

0 0

∞

∫ ∫⎡⎣⎢
⎤
⎦⎥

The desired margin(s) of safety (expressed in terms of one or more factors of safety) 
can thus be related to the desired (‘target’) probability of failure . Pf

Serviceability Design Model 

Here, the variable to be considered is a serviceability parameter Δ  (representing 
deflection, crack-width, etc.).  Failure is considered to occur when the specified limit 
(maximum allowable limit of serviceability) Δall  is exceeded [Fig. 3.4].  It may be 
noted that unlike the previous model, here the limit defining failure is deterministic, 
and not probabilistic. 

fΔ Δ( )

Δall

Pf

Δserviceability  variable
(deflection, crackwidth)

probability
density

 

Fig. 3.4  Classical reliability model for serviceability design 

Accordingly, in this case, the probability of failure may be obtained as 

follows : 
Pf

P f df
all

=
∞

∫ ΔΔ
Δ Δ( )                                           (3.2) 
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where  denotes the probability density function of fΔ Δ .  Here also, the probability 
of failure can be restricted to a ‘target’ value, by suitably selecting the safety margin 
in the design. 

3.4.3   Reliability Analysis and Design 

From the discussions in the preceding section, it follows that a rational and 
quantitative solution to the problem of ‘adequate safety’ can be obtained by 
quantifying the acceptable risk in terms of target probability of failure or target 
reliability.  [‘Reliability’ is expressed as the complement of the probability of failure, 
i.e., equal to (1 ).] − Pf

Evaluating the probability of failure  (or the reliability) underlying a given 

structure is termed reliability analysis, whereas designing a structure to meet the 
target reliability is termed reliability design [Ref. 3.6]. 

Pf

However, in practice, there are considerable difficulties involved in reliability 
analysis and design.  Firstly, the problem becomes complicated when a large number 
of load and resistance ‘basic variables’ are involved, as is usually the case.  The 
integral [Eq. 3.1] becomes multi−dimensional and quite formidable to solve (even 
with sophisticated techniques such as simulation with ‘variance reduction’).  
Secondly, it is difficult to obtain statistical data regarding the joint probability 
distribution of the multiple variables.  Thirdly, ‘target reliabilities’ are hard to define, 
since losses associated with failures are influenced by economic, social and moral 
considerations, which are difficult to quantify.  Fourthly, it is now recognized that 
‘human error’ is a major factor causing failure, and this is difficult to express 
probabilistically [Ref. 3.1]. 

3.4.4   Levels of Reliability Methods 

There exist a number of levels of reliability analysis.  These are differentiated by the 
extent of probabilistic information that is used [Ref. 3.1]. 

A full-scale probabilistic analysis (of the type discussed in Section 3.4.3) is 
generally described as a Level III reliability method.  It is highly advanced, 
mathematically difficult, and generally used at a research level.  It is clearly 
unsuitable for general use in practice. 

The problem can be simplified by limiting the probability information of the basic 
variables to their ‘second moment statistics’ (i.e., mean and variance).  Such a 
method is called a Level II reliability method.  It evaluates the risk underlying a 
structural design in terms of a reliability index β  (in lieu of the ‘probability of 
failure’  used in Level III method).  However, even such a ‘simplified method’ is 

unsuitable for day-to-day use in a design office, as it requires the application of 
optimisation techniques for the determination of

Pf

β . 
For code use, the method must be as simple as possible ⎯ using deterministic 

rather than probabilistic data.  Such a method is called a Level I reliability method.  
The ‘multiple safety factor’ format of limit states design comes under this category.  
Even the traditional methods of design (WSM, ULM) belong to this category as they 
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make use of deterministic measures of safety such as ‘permissible stresses’ and ‘load 
factors’. 

3.5   LIMIT STATES METHOD  (LSM) 

The philosophy of the limit states method of design (LSM) represents a definite 
advancement over the traditional design philosophies.  Unlike WSM, which based 
calculations on service load conditions alone, and unlike ULM, which based 
calculations on ultimate load conditions alone, LSM aims for a comprehensive and 
rational solution to the design problem, by considering safety at ultimate loads and 
serviceability at working loads. 

The LSM philosophy uses a multiple safety factor format which attempts to 
provide adequate safety at ultimate loads as well as adequate serviceability at service 
loads, by considering all possible ‘limit states’ (defined in the next section).  The 
selection of the various multiple safety factors is supposed to have a sound 
probabilistic basis, involving the separate consideration of different kinds of failure, 
types of materials and types of loads.  In this sense, LSM is more than a mere 
extension of WSM and ULM.  It represents a new ‘paradigm’ — a modern 
philosophy. 

3.5.1   Limit States 

A limit state is a state of impending failure, beyond which a structure ceases to 
perform its intended function satisfactorily, in terms of either safety or serviceability; 
i.e., it either collapses or becomes unserviceable. 

There are two types of limit states : 

1. Ultimate limit states (or ‘limit states of collapse’), which deal with strength, 
overturning, sliding, buckling, fatigue fracture, etc. 

2. Serviceability limit states, which deal with discomfort to occupancy and/or 
malfunction, caused by excessive deflection, crack-width, vibration, leakage, etc., 
and also loss of durability, etc. 

3.5.2   Multiple Safety Factor Formats 

The objective of limit states design is to ensure that the probability of any limit state 
being reached is acceptably low.  This is made possible by specifying appropriate 
multiple safety factors for each limit state (Level I reliability).  Of course, in order to 
be meaningful, the specified values of the safety factors should result (more-or-less) 
in a ‘target reliability’.  Evidently, this requires a proper reliability study to be done 
by the code−making authorities. 

Most national codes introduced multiple safety factors in limit states design in the 
1970s — primarily based on experience, tradition and engineering judgement 
[Ref. 3.7].  Subsequently, codes have been engaged in the process of code 
calibration — to determine the range of the reliability index β  (or its equivalent 
probability of failure ) underlying the specified safety factors for different 

practical situations [Ref. 3.1, 3.6, 3.8].  With every code revision, conscious attempts 
Pf
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are made to specify more rational reliability−based safety factors, in order to achieve 
practical designs that are satisfactory and consistent in terms of the degree of safety, 
reliability and economy. 

3.5.3   Load and Resistance Factor Design Format 

Of the many multiple safety factor formats in vogue, perhaps the simplest to 
understand is the Load and Resistance Factor Design (LRFD) format, which is 
adopted by the ACI Code [Ref. 3.5, 3.8, 3.9].  Applying the LRFD concept to the 
classical reliability model [Fig. 3.5], adequate safety requires the following condition 
to be satisfied :  

Design Resistance  ( )φ Rn       Design Load effect  ≥ ( )γ Sn               (3.3) 

where Rn  and Sn  denote the nominal or characteristic values of resistance R and 
load effect S respectively; φ  and γ denote the resistance factor and load factor 
respectively.  The resistance factor φ  accounts for ‘under-strength’, i.e., possible 
shortfall in the computed ‘nominal’ resistance, owing to uncertainties related to 
material strengths, dimensions, theoretical assumptions, etc., and accordingly, it is 
less than unity.  On the contrary, the load factor γ , which accounts for ‘overloading’ 
and the uncertainties associated with Sn, is generally greater than unity. 

Eq. 3.3 may be rearranged as 

S
R

n
n<

γ φ
                                               (3.3 a) 

which is representative of the safety concept underlying WSM, γ φ  here denoting 
the ‘factor of safety’ applied to the material strength, in order to arrive at the 
permissible stress for design. 

Alternatively, Eq. 3.3 may be rearranged as 

( )Rn ≥ γ φ Sn                                        (3.3 b) 

which is representative of the safety concept underlying ULM, γ φ  here denoting 
the so-called ‘load factor’ (ULM terminology) applied to the load in order to arrive at 
the ultimate load for design. 

3.5.4   Partial Safety Factor Format 

The multiple safety factor format recommended by CEB−FIP [Ref. 3.2], and adopted 
by the Code, is the so-called partial safety factor format, which may be expressed as 
follows: 

Rd ≥ Sd                                                    (3.4) 

where Rd  is the design resistance computed using the reduced material strengths 
0 67. fck cγ  and f y sγ , involving two separate partial (material) safety factors 
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γ c  (for concrete) and γ s  (for steel), in lieu of a single overall resistance factor φ  , 
and Sd is the design load effect computed for the enhanced loads 

 involving separate partial load factors (γ γ γD L QDL LL QL. , . , . ,...  ) γ D  (for dead 

load), γ L   (for live load), γ Q  (for wind or† earthquake load).  The other terms 

involved are the nominal compressive strength of concrete 0.67  (refer Section 
2.8.5) and the nominal yield strength of steel  on the side of the resistance, and 

the nominal load effects DL, LL and QL representing dead loads, live loads and 
wind/earthquake loads respectively.   

fck
f y

It may be noted that, whereas the multiplication factor φ  is generally less than 
unity, the dividing factorsγ c andγ s are greater than unity — giving the same effect.  
All the load factors are generally greater than unity, because over-estimation usually 
results in improved safety.  However, one notable exception to this rule is the dead 
load factor γ D  which is taken as 0.8 or 0.9 while considering stability against 
overturning or sliding, or while considering reversal of stresses when dead loads are 
combined with wind/earthquake loads; in such cases, under-estimating the 
counteracting effects of dead load results in greater safety. 

One other effect to be considered in the selection of load factors is the reduced 
probability of different types of loads (DL, LL, QL) acting simultaneously at their 
peak values.  Thus, it is usual to reduce the load factors when three or more types of 
loads are considered acting concurrently; this is referred to sometimes as the ‘load 
combination effect’. 

3.6   CODE RECOMMENDATIONS FOR LIMIT STATES DESIGN 

The salient features of LSM, as prescribed by the Code, are covered here.  Details of 
the design procedure for various limit states of collapse and serviceability are 
covered in subsequent chapters. 

3.6.1   Characteristic Strengths and Loads 

The general definition of the characteristic strength of a material (concrete or steel) 
was given in Section 2.6.1.  It corresponds to the 5 percentile strength value. In the 
case of reinforcing steel, it refers to the ‘specified yield stress’ as mentioned in 
Section 2.14.1. 

The characteristic load is defined as the load that “has a 95 percent probability 
of not being exceeded during the life of the structure” (Cl. 36.2 of the Code).  
However, in the absence of statistical data regarding loads, the nominal values 
specified for dead, live and wind loads are to be taken from IS 875 (Parts 1–3) : 1987 
and the values for ‘seismic loads’ (earthquake loads) from IS 1893 : 2002. 

                                                           
† Either wind or earthquake loads is considered at a time.  The probability of the joint 
occurrence of an earthquake as well as an extreme wind is considered to be negligible. 



88    REINFORCED  CONCRETE  DESIGN 

3.6.2   Partial Safety Factors for Materials 

The design strength of concrete or reinforcing steel is obtained by dividing the 
characteristic strength by the appropriate partial safety factor.  In the case of 
concrete, while fck is the characteristic cube strength, the characteristic strength of 
concrete in the actual structure is taken as  [refer Section 2.8.5], and hence 
the design strength of concrete is 

0 67. fck

0 67. f ck cγ . 
For ultimate limit states, the Code specifiesγ c = 1.5  and γ s  = 1.15.  A higher 

partial safety factor has been assigned to concrete, compared to reinforcing steel, 
evidently because of the higher variability associated with it. 

For serviceability limit states, γ c =γ s = 1.0.  A safety factor of unity is 
appropriate here, because the interest is in estimating the actual deflections and 
crack-widths under the service loads, and not ‘safe’ (conservative) values. 

3.6.3   Partial Safety Factors for Loads 

Three different load combinations have been specified (Cl. 36.4.1 of Code) involving 
the combined effects of dead loads (DL), ‘imposed’ or live loads (LL) and 
wind/earthquake loads (QL). 

The code recommends the following weighted combinations for estimating the 
ultimate load effect (UL) and the serviceability load effect (SL):  

Ultimate limit states : 

• UL = 1.5 (DL + LL) 
• UL = 1.5 (DL + QL) or (0.9DL + 1.5 QL) 
• UL = 1.2 (DL + LL + QL) 

The reduced load factor of 1.2 in the third combination above recognises the 
reduced probability of all the three loads acting together at their possible peak values. 

For the purpose of structural design, the design resistance (using the material 
partial safety factors) should be greater than or equal to the maximum load effect that 
arises from the above load combinations [Eq. 3.4]. 

The Code makes a departure from the usual convention (adopted by other codes) 
of assigning a lower load factor for DL in comparison with the more variable LL ⎯ 
apparently on the grounds that it is more convenient in practice to deal with all 
gravity loads (dead plus live) together [Ref. 3.10].  Besides, applying an average load 
factor of 1.5 to the combined gravity loads is, in general, likely to have about the 
same effect as, say, (1.4 DL + 1.6 LL) — which is adopted by BS 8110. 

Serviceability limit states : 

• SL = 1.0 (DL + LL) 
• SL = 1.0 (DL + QL) 
• SL = (1.0 DL) + (0.8 LL) + (0.8 QL) 

The use of a partial load factor of unity, in general, is appropriate, because it 
implies service load conditions ⎯ which is required for ‘serviceability design’.  
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However, when live loads and wind loads are combined, it is improbable that both 
will reach their characteristic values simultaneously; hence a lower load factor is 
assigned to LL and QL in the third combination, to account for the reduced 
probability of joint occurrence. 

Other Load Combinations  

Other loads to be considered, but not listed in the Code (Table 18) include the effects 
of creep, shrinkage, temperature variation and support settlement.  Although a load 
factor of unity may be appropriate while considering these load effects (in addition to 
gravity loads) for ‘serviceability limit states’, the following combinations are 
recommended [Ref. 3.10] for ‘ultimate limit states’ :  

• UL = 0.75 (1.4 DL + 1.4 TL + 1.7 LL) 
• UL = 1.4 (DL + TL) 

where TL represents the structural effects due to temperature variation, creep, 
shrinkage or support settlement. 

3.6.4   Design Stress-Strain Curve for Concrete 

The characteristic and design stress−strain curves specified by the Code for concrete 
in flexural compression are depicted in Fig. 3.5.  The maximum stress in the 
‘characteristic’ curve is restricted to 0.67  for reasons explained in Section 2.8.5.  
The curve consists of a parabola in the initial region up to a strain of 0.002 (where 
the slope becomes zero), and a straight line thereafter, at a constant stress level of  
0.67  up to an ultimate strain of 0.0035.  

f ck

f ck

For the purpose of limit states design, the appropriate partial safety factor γ c  has 
to be applied, and γ c  is equal to 1.5 for the consideration of ultimate limit states 
[refer Section 3.6.2].  Thus, the ‘design curve’ is obtained by simply scaling down 
the ordinates of the characteristic curve — dividing by γ c  [Fig. 3.5].  Accordingly, 
the maximum design stress becomes equal to  0.447 , and the formula for the 
design compressive stress  corresponding to any strain 

f ck

f c ε  ≤  0.0035 is given by :  
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Fig. 3.5  Characteristic and design stress-strain curves for concrete in flexural 

compression 

When concrete is subjected to uniform compression, as in the case of a 
concentrically loaded short column, the ultimate strain is limited to 0.002, and the 
corresponding maximum design stress is 0.447 .  The stress−strain curve has no 
relevance in the limit state of collapse by (pure) compression of concrete, and hence 
is not given by the Code. 

f ck

When concrete is subject to axial compression combined with flexure, the 
ultimate strain is limited to a value between 0.002 and 0.0035, depending on the 
location of the neutral axis [refer Chapter 13].  The maximum design stress level 
remains unchanged at 0.447 . f ck

3.6.5   Design Stress-Strain Curve for Reinforcing Steel 

The characteristic and design stress−strain curves specified by the Code for 
various grades of reinforcing steel (in tension or compression) are shown in Figs. 3.6 
and 3.7.  The design yield strength is obtained by dividing the specified yield 

strength  by the partial safety factor 

f yd

f y γ s  = 1.15 (for ultimate limit states); 

accordingly, = 0.870 .  In the case of mild steel (Fe 250), which has a 

well−defined yield point, the behaviour is assumed to be perfectly linear-elastic up to 
a design stress level of 0.87  and a corresponding design yield strain  ε

f yd f y

f y y = 

0.87 / ; for larger strains, the design stress level remains constant at 0.87  

[Fig. 3.6]. 
f y Es f y
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Fig. 3.6  Characteristic and design stress-strain curves for  Fe 250 grade mild steel 

In the case of cold-worked bars (Fe 415 and Fe 500), which have no specific yield 
point, the transition from linear elastic behaviour to nonlinear behaviour is assumed 
to occur at a stress level equal to 0.8 times in the characteristic curve and 0.8 

times  in the design curve.  The full design yield strength 0.87  is assumed to 

correspond to a ‘proof strain’ of 0.002; i.e, the design yield strain  ε

f y

f yd f y

y is to be taken as 
0.87 / + 0.002, as shown in Fig. 3.7.  The non-linear region is approximated as 

piecewise linear segments.  The coordinates of the salient points of the design stress-
strain curve for Fe 415 and Fe 500 are listed in Tables 3.1 and 3.2.  The design stress, 
corresponding to any given strain, can be obtained by linear interpolation from 
Table 3.2. 

f y Es

It may be noted that whereas in the case of concrete [Fig. 3.5], the partial safety 
factor γ c  is applicable at all stress levels, in the case of reinforcing steel, the partial 
safety factor γ s  is applicable only for the inelastic region [Figs 3.6, 3.7].  This may 
be ascribed to the fact that in the case of concrete, the stress-strain curve (including 
the short−term modulus of elasticity) is directly affected by changes in the 
compressive strength of concrete [refer Fig. 2.7]; however, this is not the case for 
steel whose modulus of elasticity is independent of the variations in the yield 
strength. 
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Fig. 3.7  Characteristic and design stress-strain curves for  Fe 415 grade  

cold-worked steel†  

Table 3.1  Salient points on the stress-strain curve for cold-worked steels 

Design 
Stress 

.80  f yd .85  f yd .90  f yd .95  f yd .975  f yd 1.0  f yd

Inelastic 
Strain 0.0000 0.0001 0.0003 0.0007 0.0010 0.0020 

Table 3.2  Design stresses at specified strains for (a) Fe 415 and (b) Fe 500 

Fe 415  Fe 500 

Strain Stress (MPa)  Strain Stress (MPa) 
0.000 00 0.0  0.000 00 0.0 

                                                           
† The characteristic and design stress-strain curves for Fe 500 grade cold-worked steel is 
similar; in this case,  fy shall be taken as 500 MPa (instead of 415 MPa).  
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0.001 44 288.7  0.001 74 347.8 
0.001 63 306.7  0.001 95 369.6 
0.001 92 324.8  0.002 26 391.3 
0.002 41 342.8  0.002 77 413.0 
0.002 76 351.8  0.003 12 423.9 
≥ 0.003 80 360.9  ≥ 0.004 17 434.8 

REVIEW QUESTIONS 

3.1 Discuss the merits and demerits of the traditional methods of design (working 
stress method, ultimate load method). 

3.2 How does creep of concrete affect the modular ratio? 
3.3 What is the difference between deterministic design and probabilistic design? 
3.4 Show that an alternative expression for the probability of failure for the 

classical reliability problem of safety [refer Eq. 3.1] can be obtained as:  

P f R f S df R S

S
= − ⎡

⎣⎢
⎤
⎦⎥∫∫

∞
1

00
( ) ( ) S dR  

3.5 Why is it difficult to undertake a fully probabilistic design of a structure in 
practice? 

3.6 What is meant by limit state?  Discuss the different ‘limit states’ to be 
considered in reinforced concrete design. 

3.7 The maximum moments at a section in a reinforced concrete beam (end 
section) are obtained (for different independent service load conditions)  from 
structural analysis, as  −50 kNm, −80 kNm, ± 120 kNm and ± 180 kNm under 
dead loads, live loads, wind loads and earthquake loads respectively.  
Determine the ultimate design moments (‘negative’ as well as ‘positive’) to be 
considered (as per the Code) for the limit state of collapse (flexure). 

3.8 Explain the basis for the selection of partial load and safety factors by the Code 
for ‘serviceability limit states’. 

3.9 Why is the partial safety factor for concrete (γ c ) greater than that for 
reinforcing steel (γ s ) in the consideration of ultimate limit states? 

3.10 Why is it that γ c  is applicable at all stress levels whereas γ s  is applicable 
only near the ‘yield stress’ level? 

3.11 Is the use of a single (overall) resistance factor φ  more suitable than two 
separate partial safety factors γ c  and γ s ?  Give your views. 

3.12 What is meant by calibration of codes?  Why is it necessary? 
3.13 Determine the design stress levels (at ultimate limit states) in (a) Fe 250, 

(b) Fe 415 and (c) Fe 500 grades of steel, corresponding to tensile strains of 
(i) 0.001, (ii) 0.002, (iii) 0.003 and (iv) 0.004. 
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       Behaviour in Flexure 
 

4.1   INTRODUCTION 

Flexure or bending is commonly encountered in structural elements such as beams 
and slabs (as well as plates and shells) which are transversely loaded.  Flexure also 
occurs in columns and walls that are subjected to eccentric loading, lateral pressures 
and/or lateral displacements. 

‘Flexure’ usually occurs in combination with transverse shear, and sometimes in 
combination with other structural actions, such as axial compression (or tension) and 
torsion.  For convenience, the behaviour of reinforced concrete in flexure alone is 
considered in this chapter.  The effects of shear, torsion and axial force are 
considered separately in subsequent chapters, as also their combined effects. 

Furthermore, the actual design of reinforced concrete elements (in flexure) is 
deferred to the next chapter (Chapter 5).  The scope of this chapter is limited to 
discussing the overall behaviour of reinforced concrete in flexure, and includes the 
analysis of beam sections. 

4.1.1   Two Kinds of Problems :  Analysis and Design 

There are two kinds of problems commonly encountered in structural design practice.  
In the first kind, termed analysis (or ‘review’) problems, the complete cross-sectional 
dimensions (including details of reinforcing steel), as well as the material properties 
of the member are known.  It is desired to compute (1) the stresses in the materials 
(or deflections, crack-widths, etc.) under given loads or (2) the allowable or ultimate 
bending moments (loads) that the member can resist.  The ‘analysis’ referred to here 
(with regard to stresses in a given beam section) should not be confused with 
‘structural analysis’, which refers to the determination of stress resultants (i.e., 
bending moments, shear forces, etc.) in an entire structure (such as a frame) or a 
structural element (such as a beam). 
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The second type of problem involves design.  In this case, the load effects (stress 
resultants) are known from structural analysis, and it is required to select appropriate 
grades of materials and to arrive at the required member dimensions and 
reinforcement details.  It is evident that there are many possible solutions to a design 
problem, whereas the solution to an analysis problem is unique.  As mentioned 
earlier, the topic of ‘design for flexure’ is dealt with in the next chapter. 

4.1.2   Bending Moments in Beams from Structural Analysis 

The beam is a very commonly used structural element.  It may exist independently, or 
may form a component of a structural framework (as in ‘grids’ and ‘rigid frames’).  
In all such cases, the beam is treated as a one-dimensional (line) element (with 
known material and geometric properties) for the purpose of structural analysis. 

Commonly, at any point in the beam line element, the stress resultants to be 
determined from structural analysis are the bending moment (M) and the transverse 
shear force (V).  A twisting moment (T) may also exist in some situations (e.g., when 
the loading is eccentric to the ‘shear centre’ axis).  Frequently, an axial force (N) — 
tensile or compressive — exists in combination with M and V, as shown in Fig. 4.1.  
The effect of the axial force may be neglected if the normal stresses induced by it are 
relatively low (as is often the case in beams, unlike columns).  Occasionally, a beam 
may be subject to biaxial bending, involving bending moments and transverse shear 
forces in two orthogonal planes (as when a beam is laterally loaded, both vertically 
and horizontally). 

 

Fig. 4.1  Structural analysis to determine bending moments in a beam 

In the present context, it is assumed that the distribution of bending moments 
along the length of the beam is known from structural analysis [Fig. 4.1 (c)].  The 
effect of uniaxial bending moment (M) alone at a given beam section is investigated 
in this chapter. 
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4.1.3   From Bending Moment to Flexural Stresses 

Although in structural analysis, it suffices to treat the beam as a one-dimensional 
element, the fact is that the beam is actually three-dimensional.  Each point on the 
one-dimensional beam element is representative of a cross-section (usually 
rectangular) on the actual three-dimensional beam, and the so−called ‘bending 
moment’ (stress-resultant) at any section of the beam manifests in the form of normal 
stresses (compressive and tensile) in concrete and reinforcing steel. 

In the sections to follow in this chapter, the relationship between the bending 
moment (M) and the flexural (normal) stresses in concrete and steel (at various stages 
of loading) is described. 

4.2   THEORY OF FLEXURE FOR HOMOGENEOUS MATERIALS 
Reinforced concrete is a composite material.  Before developing a theory of flexure 
for such a material, it is instructive to review the conventional ‘theory of flexure’ 
which was originally developed for a homogeneous material (such as structural 
steel). [It is presumed that the reader is familiar with the simple theory of 
bending/flexure and only a brief recapitulation is presented here]. 

4.2.1   Fundamental Assumption 
The fundamental assumption in flexural theory is that plane cross-sections (taken 
normal to the longitudinal axis of the beam) remain plane even after the beam bends.  
This assumption is generally found to be valid for beams of usual proportions† 
[Ref. 4.1, 4.2]. 

For initially straight members, the assumption implies that the distribution of 
normal strains across the beam cross-section is linear [Fig. 4.2 (a), (b)].  That is, the 
normal strain at any points in the beam section is proportional to its distance from the 
neutral axis.  For the case of a ‘sagging’ (designated ‘positive’ in this book) moment, 
as indicated in Fig. 4.2, the top ‘fibres’ (above the neutral axis) are subjected to 
compression and the bottom ‘fibres’ (below the neutral axis) to tension, with the 
maximum strains occurring at the most extreme (top/bottom) surfaces.  Of course, if 
the moment is ‘hogging’ (‘negative’), as in the case of a cantilever, the top fibres will 
be in tension and the bottom fibres in compression. 

4.2.2   Distribution of Stresses 
The normal stress induced by flexure (flexural stress) at any point such as a in 
Fig. 4.2(b) depends on the normal strain ε a  at that level.  This stress fa  
corresponding to strain  is determined from the stress-strain relation for the 
material [Fig. 4.2(d)].  Thus, corresponding to each strain level (such as 

ε a

ε ε ε1 2 3, , , ... ) in Fig. 4.2(b), the corresponding stress level ( ), indicated 
in Fig. 4.2(c) is obtainable from the stress-strain curve [Fig. 4.2(d)].  As the 
distribution of strains is linear (with strains increasing in the y-direction from a zero 

f f f1 2 3, ,

                                                           
† In ‘deep beams’ (i.e., beams whose depths are comparable to their spans), this assumption is 
not valid as significant warping of the cross-section occurs, on account of shear deformations. 
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value at the neutral axis) and as the stress-strain curve is plotted on a linear scale 
(with strains increasing along the x-axis), it follows that the distribution of stresses in 
the beam section will be identical to that in the stress-strain curve, but turned through 
90 degrees. 

The location of the neutral axis (NA) and the magnitude of the flexural stresses 
are obtained by solving two simple equations of static equilibrium:  

C T=                                                       (4.1) 

M C z=                                                  (4.2a) 

or         M T z=                                                   (4.2b) 

where C and T denote the resultant compression and tension respectively [refer 
‘stress block’ in Fig. 4.2(e)], and z is the lever arm of the ‘couple’.  In Fig. 4.2(f), z is 
shown as the distance G1G2, where G1 and G2 denote the points of intersection of the 
lines of action of C and T with the cross-sectional surface. 

It may be noted that Eq. 4.1 and 4.2 are valid whether or not the stress-strain 
behaviour of the material is linear and/or elastic; the material could just as well be 
nonlinear and inelastic in its behaviour. 
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Fig. 4.2  Homogeneous section under flexure 
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4.2.3   Linear Elastic Material  

If the homogeneous material of the beam follows Hooke’s law (that is, it is linearly 
elastic), the stress-strain distribution will be linear, the constant of proportionality 
E f= ε  being the Young’s modulus of elasticity. 

For such a material, evidently, the distribution of stresses across the cross-section 
of the beam will be linear [Fig. 4.3].  Incidentally, this ‘straight-line distribution’ of 
stresses is also valid for a linear inelastic material.  However, traditionally, a linear 
stress-strain relation has been associated with elastic behaviour, and frequently the 
latter is implied to mean the former as well. 

M

 

centroid 

ymax

f  

E neutral axis

y 1
1 ε  

E ε

fmax
f My I=εmax

(e)  stress-strain 
relation 

(d)  stresses(c)  strains(a)  beam (b)  section

Fig. 4.3  Linear elastic stress distribution in flexure 

Assuming that E has the same value in both tension and compression, it can be 
easily shown by applying the methods of ‘strength of materials’ [Ref. 4.3] that the 
neutral axis passes through the centroid of the section [Fig. 4.3], and 

f My I=                                                   (4.3) 

M f I y= max max                                          (4.4) 
where 

    f  flexural stress at any point at a distance  y  from the neutral axis, ≡
fmax ≡  flexural stress in the extreme fibre (y = ymax), 
    I  second moment of area about the neutral axis, and ≡
  M ≡  bending moment at the section. 

4.3   LINEAR ELASTIC ANALYSIS OF COMPOSITE SECTIONS 

The analysis described in Section 4.2.3 [including Eq. 4.3, 4.4] is not directly 
applicable to nonhomogeneous materials like reinforced concrete.  For ‘composite’ 
materials, made of two (or more) different (linear elastic) materials [Fig. 4.4(a)], the 
theory has to be suitably modified. 
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4.3.1   Distribution of Strains and Stresses 

The fundamental assumption in flexural theory (refer Section 4.2.1) that initially 
plane cross-sections remain plane, while subject to bending, is valid — provided the 
two materials are bonded together to act as an integral unit, without any ‘slip’ at their 
interface. 
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Fig. 4.4  Concept of ‘transformed section’ 

Accordingly, the strain variation in the section will be linear [Fig. 4.4(b)].  When 
two different (but bonded) materials are located at the same distance y from the 
‘neutral axis’, both materials will have exactly the same strain ε y .  The 

corresponding stresses will be  f1y = E1εy in the case of ‘material 1’ and f2y = E2εy  
in the case of ‘material 2’, where E1 and E2  represent the elastic moduli of 
materials 1 and 2 respectively [Fig. 4.4(c)]. 

The stress f2y in the ‘material 2’ can be expressed in terms of the corresponding 
stress f1y in the ‘material 1’ (at points located at the same distance y from the neutral 
axis) as follows: 

f mfy2 y1=                                                   (4.5) 

m E E= 2 1                                               (4.6) 
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The ratio of the two moduli of elasticity, m, is called the modular ratio. 

4.3.2   Concept of ‘Transformed Section’ 

The concept of ‘modular ratio’ makes it possible, for the purpose of analysis, to 
transform the composite section into an equivalent homogeneous section made up 
entirely of one material (say, ‘material 1’).  Evidently, this transformation must not 
alter the magnitude, direction and line of action of the resultant forces in the 
‘material 2’ due to the flexural stresses f2y. 

Considering the resultant force dF2 in an infinitesimal element of ‘material 2’ 
having thickness dy (and corresponding breadth b2), located at a distance y from the 
neutral axis [Fig. 4.4 (a),(c)], 

dF f b dyy2 2 2= ( )  

Substituting Eq. 4.5, dF2 can be expressed in terms of f1y as follows: 

dF mf b dy f mb dyy y2 1 2 1 2= =( ) ( )                                  (4.7) 

Eq. 4.7 indicates that ‘material 2’ may be transformed into an equivalent ‘material 1’ 
simply by multiplying the original breadth b2 (dimension parallel to the neutral axis 
at the depth y) with the modular ratio m. 

In the transformed section [Fig. 4.4 (d)], as the material is homogeneous (all of 
‘material 1’) and ‘linear elastic’, the analysis can proceed exactly in the manner 
described in Section 4.2.3. 

The use of the ‘transformed section’ concept may be limited to determining the 
neutral axis as the ‘centroidal axis’ of the transformed section.  The stresses induced 
in the two materials due to a given moment can then be determined by applying the 
basic equations of static equilibrium [Eq. 4.1, 4.2]. 

Alternatively, the stresses can be computed with the ‘transformed section’ itself, 
by applying the flexure formula [Eq.  4.3]; in this case the second moment of area Ig 
of the ‘transformed section’ has to be considered.  The stresses thus computed with 
reference to ‘material 1’ can be converted to the equivalent stresses in ‘material 2’ by 
involving the ‘modular ratio’ concept [Eq.  4.5]. 

4.4   MODULAR RATIO AND CRACKING MOMENT 

4.4.1   Modular Ratio in Reinforced Concrete 

In the case of the working stress analysis of reinforced concrete sections, it is usual to 
transform the composite section into an equivalent concrete section.  Accordingly, 
for reinforced concrete, the ‘modular ratio’ m [Eq. 4.6] is defined as the ratio of the 
elastic modulus of steel to that of concrete. 

As discussed earlier (Section 2.8.3, 2.11.1), the modulus of elasticity of concrete 
is not a constant (unlike that of steel).  The ‘short-term static modulus’ Ec, given by 
Eq. 2.4, is not considered appropriate for determining the modular ratio m because it 
ignores the long-term effects of creep under sustained loading.  Partly taking this into 
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account, the Code [(Cl. B-1.3(d)] suggests the following approximate formula for 
determining the modular ratio: 

m
cbc

= 280
3σ                                                (4.8) 

implying that m is a constantσ cbc
† [Ref. 4.9]: 

m cbcσ = 280
3                                                      (4.9) 

where σ cbc  is the permissible compressive stress of concrete in bending (refer 
Table 21 of the Code).  Values of σ cbc  (in MPa units) and m for different grades of 
concrete are listed in Table 4.1. 

Table 4.1  Values of σcbc and m for different concrete grades 

Concrete 
Grade 

σcbc (MPa) Modular 
ratio ‘m’ 

M 15   5.0 18.67 

M 20   7.0 13.33 

M 25   8.5 10.98 

M 30 10.0 9.33 

M 35 11.5 8.11 

M 40 13.0 7.18 

M 45 14.5 6.44 

M 50 16.0 5.83 

4.4.2   Transformed Area of Reinforcing Steel 

Tension Steel  

Applying the concept of ‘transformed section’, the area of tension reinforcement steel 
Ast is transformed into equivalent concrete area as mAst.  This transformation is valid 
in reinforced concrete not only for flexural members but also for members subjected 
to direct tension [refer Cl. B-2.1.1 of the Code]. 

The stress in the tension steel, fst , is obtained from the corresponding stress fcs in 
the equivalent ‘transformed’ concrete (at the level of the steel) as fst  = mfcs. 

                                                           
† This concept is used subsequently in some derivations.  Hence, for consistency in 
calculations, the value of m (given by Eq. 4.8) should not be rounded off to an integer (as done 
in the traditional WSM). 
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Compression Steel 

When reinforcing steel is provided in compression in reinforced concrete beams or 
columns, the modular ratio to be considered for transformation is generally greater 
than that used for tension steel [Eq. 4.9].  This is because the long-term effects of 
creep and shrinkage of concrete, as well as the nonlinearity at higher stresses, result 
in much larger compressive strains in the compression steel than those indicated by 
the linear elastic theory using the normally specified value of m.  Accordingly, the 
Code recommends that the transformed area of compression steel Asc be taken as 
1.5mAsc, rather than mAsc. 

The stress in the compression steel, fsc , is obtained from the corresponding stress 
fcsc in the equivalent ‘transformed’ concrete (at the level of the compression steel) as 
fsc = 1.5mfcsc  

It may be noted that, while considering the area of concrete (under compression) 
in the transformed section, the net area Ac, i.e., gross area Ag minus Asc (making 
allowance for the concrete area displaced by the steel area) should be considered. 

4.4.3   Cracking Moment 

Concrete in the extreme tension fibre of a beam section is expected to crack (for the 
first time) when the stress reaches the value of the modulus of rupture fcr [refer 
Section 2.9.1].  At this stage, the maximum strains in compression and tension are of 
a low order.  Hence, assuming a linear stress-strain relation for concrete in both 
tension and compression, with same elastic modulus, the following formula is 
obtained [applying Eq. 4.4] for the ‘moment at first crack’ or cracking moment Mcr: 

M f I
ycr cr
T

t
=                                               (4.10) 

where yt is the distance between the neutral axis and the extreme tension fibre, and IT 
is the second moment of area of the transformed reinforced concrete section with 
reference to the NA. 

If the contribution of the transformed area of reinforcing steel is not significant, an 
approximate value Mcr is obtainable by considering the ‘gross (concrete) section’, 
i.e., treating the beam section as a plain concrete section. 

If the beam is very lightly loaded (or designed to be crack-free), the maximum 
applied bending moment may be less than Mcr.  In such a case of ‘uncracked section’, 
the concrete and steel both participate in resisting tension.  The computation of 
stresses for such a situation is described in Example 4.1. 

EXAMPLE  4.1 

A reinforced concrete beam of rectangular section has the cross-sectional dimensions 
shown in Fig. 4.5(a).  Assuming M 20 grade concrete and Fe 415 grade steel, 
compute (i) the cracking moment and (ii) the stresses due to an applied moment of 
50 kNm. 
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Fig. 4.5  Example 4.1 — ‘Uncracked section’ 

SOLUTION 

Material Properties: For M 20 concrete, 
• modular ratio m = 13.33 [Eq. 4.8 or Table 4.1] 
• modulus of rupture fcr = =0 7 20 313. .  MPa [Eq. 2.6] 

Approximate Cracking Moment (assuming gross section): 

• Section modulus  Z bD
= =

×
= ×

2 2
6 3

6
300 600

6
18 10 mm  

⇒  Cracking moment 
M f Zcr cr≈ = × × = ×313 18 10 56 34 106 6. .N mm mm Nmm2 3 †

  = 56.3 kNm. 

Transformed Section Properties: 

• Area of tension steel Ast = × =4 25 4 19632 2π( ) mm  
The transformed area AT comprises the concrete area A Ag st−  plus the 
transformed steel area mA .  It is convenient to take this as the sum of the gross 
concrete area  and the additional contribution due to steel as  
[Fig. 4.5(b)]: 

st

Ag ( )m Ast−1

A bD m AT s= + −( )1 t  

• Depth of neutral axis y : 
Equating moments of areas of the transformed section about the top edge, 

( ) ( ) ( ) (A y bD D m A dT s= + −2 1 )t

                                                          

 

 
† It is reasonable and adequate to include only three significant figures for final results in 
calculations.  This practice is followed in this book. 
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          ( )( ) ( )( )
( ) ( )

y =
× + −

× + ×
=

300 600 300 13 33 1 1963 550
300 600 12 33 1963

329 6
( . )

.
.  mm  

 ⇒ distance from NA to extreme compression fibre yc = 329 6.  mm , 
      distance from NA to extreme tension fibre         yt = − =600 329 6 270. .4 mm  
distance from NA to reinforcing steel                 ys = − =550 329 6 220. .4 mm  

• Transformed second moment of area: 

( ) ( )I by by m A yT c t st= + + −3 3 23 3 1 s  

       ( )( )= × + + × = ×300 329 6 270 3 12 33 1963 220 6 733 103 3 2 9 4( . .4 ) . .4 . mm  

(i)  Cracking Moment M fcr cr= I
y
T

t
= ×

×313 6 733 10
270

9
. .

.4
 

                                    = 77.9 kNm. 77 94 106. × Nmm =

[Note that the error in the estimate of Mcr by the use of the gross section 
(56.3 kNm) is 28% (underestimated).] 

(ii)  Stresses due to applied moment M= 50 kNm: 
(As M < Mcr ,the assumption of ‘uncracked section’ is valid.) 

• Maximum Compressive Stress in Concrete: 

f
My
Ic

c

T
=

( )
=

× ×

×

50 10 329 6

6 733 10

6

9

.

.
 = 2.45 MPa. 

• Maximum Tensile Stress in Concrete: 
~
f

My
I

f
y
yct

t

T
c

t

c
= =

⎛

⎝
⎜

⎞

⎠
⎟ ⇒ = × ⎛⎝⎜

⎞
⎠⎟

~
.45 .4

.
fct 2 270

329 6
 = 2.01 MPa ( )< =fcr 313.  MPa  

• Tensile Stress in Steel: 
From the stress distribution diagram [Fig. 4.5(c)], 
f m fs t c s=  

where f f
y
y

f
y
ycs c

s

c
ct

s

t
=

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟

~
 

⇒ = × × ⎛
⎝⎜

⎞
⎠⎟

fst 13 33 2 220
329 6

. .45 .4
.

 = 26.6 MPa. 

4.5   FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE 

The general behaviour of reinforced concrete beam sections under flexure is 
discussed in detail here.  The behaviour of the section at various stages of loading is 
described — from the initial uncracked phase to the final (ultimate) condition at 
collapse (due to the flexural resistance capacity of the section being exceeded).  For 
convenience, it is assumed that the beam section is rectangular and that only tension 
reinforcing steel is provided [Fig. 4.6]. 
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Fig. 4.6  Behaviour of reinforced concrete beam under increasing moment 
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4.5.1   Uncracked Phase 

Consider a simply supported beam subjected to gradually increasing load 
[Fig. 4.6(a)].  In the early stages of loading, the applied moment (at any section) is 
less than the cracking moment Mcr  and the maximum tensile stress 

~
fct  in the 

concrete is less than its flexural tensile strength fcr.  This phase is the uncracked 
phase, wherein the entire section is effective in resisting the moment and is under 
stress.  The distribution of strains and stresses are as indicated in Fig. 4.6(c).  The 
calculation of stresses for a given moment is as shown in Example 4.1; similarly, the 
‘allowable moment’ for given ‘permissible stresses’ can be computed. 

The uncracked phase reaches its limit when the applied moment M becomes equal 
to the cracking moment Mcr.  In the concrete stress-strain curve shown in Fig. 4.6(b), 
the uncracked phase falls within the initial linear portion OA. 

4.5.2   Linear Elastic Cracked Phase 

As the applied moment exceeds Mcr, the maximum tensile stress in concrete exceeds 
the flexural tensile strength of concrete and the section begins to crack on the tension 
side.  The cracks are initiated in the bottom (tensile) fibres of the beam, and with 
increasing loading, widen and propagate gradually towards the neutral axis 
[Fig. 4.6(d)].  As the cracked portion of the concrete is now rendered ineffective in 
resisting tensile stresses, the effective concrete section is reduced.  The tension 
resisted by the concrete just prior to cracking is transferred to the reinforcing steel at 
the cracked section of the beam.  For any further increase in the applied moment, the 
tension component has to be contributed solely by the reinforcing steel.  With the 
sudden increase in tension in the steel, there is the associated increase in tensile strain 
in the steel bars at the cracked section.  This relatively large increase in tensile strain 
at the level of the steel results in an upward shift of the neutral axis and an increase in 
curvature at the cracked section. 

Because of the tensile cracking of concrete at very low stresses, it is generally 
assumed in flexural computations that concrete has no tensile resistance, and that: 

“…all tensile stresses are taken up by reinforcement and none by 
concrete, except as otherwise specifically permitted” [Cl. B-1.3(b) of 
the Code]. 

On this basis, the effective cracked section is shown in Fig. 4.6(d).  The flexural 
strength of concrete in the tension zone below the neutral axis is neglected altogether.  
It is true that, during the first-time loading, a small part of the concrete below and 
close to the neutral axis (where the tensile strains are less than that corresponding to 
fcr) will remain uncracked and effective.  However, the magnitude of the resulting 
tensile force and the internal moment due to it are negligibly small.  Moreover, if the 
loading is done on a previously loaded beam, it is possible that prior overloading may 
have caused the tensile cracks to penetrate high enough to effectively eliminate this 
little contribution from the tensile strength of concrete.  Hence, the assumption that 
concrete resists no flexural tensile stress is satisfactory and realistic. 
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It is obvious that, in order to maximise the effectiveness of the reinforcing bars in 
resisting flexure, they should be positioned as distant as possible from the neutral 
axis — provided the requirements of minimum cover and spacing of bars are 
satisfied [refer Section 5.2]. 

It may be noted that the concrete on the tension side is not quite useless.  It serves 
the important functions of holding the reinforcing bars in place, of resisting shear and 
torsion, of enhancing the flexural stiffness of the beam and thereby reducing 
deflections and of providing protection to the steel against corrosion and fire. 

It may also be noted that cracks cannot be eliminated altogether in reinforced 
concrete flexural members under the normal range of applied loads.  However, by 
proper design for serviceability limit state [Chapter 10], cracks can be controlled so 
that there will be several well-distributed fine hairline cracks rather than a few wide 
cracks.  Hairline cracks (which are barely perceptible) neither affect the external 
appearance of the beam nor affect the corrosion protection of the reinforcing steel, 
and hence are acceptable in normal situations. 

Finally, it may be noted that the stresses under service loads are usually in the 
‘cracked section’ phase and within the linear elastic range.  Hence, such an analysis 
(refer Section 4.3), involving the use of the ‘modular ratio’ concept, is called for in 
investigating the limit states of serviceability (calculation of deflections and crack-
widths) as well as in the traditional working stress method of design (refer 
Section 3.2).  The assumption of linear elastic behaviour is acceptable for beams with 
tension reinforcement, as long as the calculated maximum stress in concrete (under 
flexural compression) is less than about one-third of the cube strength [see the nearly 
linear part OAB of the stress-strain curve in Fig. 4.6(b)] and the steel stress is within 
the elastic limit (which is usually the case).  However, when compression 
reinforcement is introduced, the modular ratio for the compression steel has to be 
suitably modified, as explained in Section 4.4.2. 

Expressions for the stresses and the moment of resistance (based on ‘permissible 
stresses’) of reinforced concrete sections, using the linear elastic stress distribution 
and the concept of cracked-transformed sections, are derived in Section 4.6. 

4.5.3   Stages Leading to Limit State of Collapse 

As the applied moment on the beam section is increased beyond the ‘linear elastic 
cracked phase’, the concrete strains and stresses enter the nonlinear range BCD in 
Fig. 4.6(b).  For example, if the strain in the extreme compression fibre reaches a 
value of ε 3  (equal to 0.002, according to the Code), corresponding to the maximum 
stress level 0.67 fck , the compressive stress distribution in the cracked section (above 
the neutral axis) will take the shape of the curve OBC in Fig. 4.6(b), as shown in 
Fig. 4.6(e).  This occurs because the ‘fundamental assumption’ of a linear strain 
distribution holds good at all stages of loading, as validated experimentally 
[Ref. 4.2, 4.4]. 

The behaviour of the beam in the nonlinear phase depends on the amount of 
reinforcing steel provided. 

The reinforcing steel can sustain very high tensile strains, due to the ductile 
behaviour of steel, following ‘yielding’; the ultimate strain can be in the range of 
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0.12 to 0.20.  However, the concrete can accommodate compressive strains which are 
much lower in comparison; the ‘ultimate compressive strain’ cuε  is in the range of 
0.003 to 0.0045.  As will be seen later, the final collapse of a normal beam at the 
ultimate limit state is caused inevitably by the crushing of concrete in compression, 
regardless of whether the tension steel has yielded or not.  If the tension steel yields 
at the ultimate limit state, the beam is said to be under-reinforced; otherwise, if the 
steel does not yield, the beam is said to be over-reinforced.   The terms ‘under-’ and   
‘over-’ are used with reference to a benchmark condition called the ‘balanced’ 
section.  If the area of tension steel provided at a beam section is less than that 
required for the balanced section condition, the beam is under-reinforced; otherwise, 
if the steel area is in excess, the beam is over-reinforced. 

Balanced Section  

A ‘balanced section’ is one in which the area of tension steel is such that at the 
ultimate limit state, the two limiting conditions are reached simultaneously; viz., the 
compressive strain in the extreme fibre of the concrete reaches the ultimate strain 
ε cu , and the tensile strain at the level of the centroid of the steel reaches the ‘yield 
strain’ ε y .  The failure of such a section, termed ‘balanced failure’, is expected to 

occur by the simultaneous initiation of crushing of concrete and yielding of steel. 

Under-Reinforced Section  

An ‘under-reinforced section’ is one in which the area of tension steel is such that as 
the ultimate limit state is approached, the yield strain ε y  is reached in the steel 

before the ultimate compressive strain is reached in the extreme fibre of the concrete.  
When the reinforcement strain reaches ε y  (and the stress reaches the yield strength 

fy ), the corresponding maximum concrete strain is less than ε cu  — as depicted in 
‘stage 1’ of Fig. 4.7.  The equilibrium conditions are given by C T A fst y= =  and 

. M Tz= 1

A slight increase in the load (moment) at this stage causes the steel to yield and 
elongate significantly, without any significant increase in stress.  The marked 
increase in tensile strain causes the neutral axis to shift upwards, thus tending to 
reduce the area of the concrete under compression.  As the total tension T remains 
essentially constant at Ast fy , the compressive stresses  (and hence, the strains) have 
to increase in order to maintain equilibrium (C = T ).  This situation is represented by 
‘stage 2’ in Fig. 4.7.  The corresponding moment of resistance is given by , 
and represents a marginal increase over the moment at ‘stage 1’ owing to the slight 
increase in the lever arm — from  to z . [Conversely, one can also see that any 
increase in load (and moment) beyond the first yield of steel requires (with T 
constant) an increase in lever arm and hence a rise in the neutral axis level]. 

M Tz= 2

z1 2

This process is accompanied by wider and deeper tensile cracks and increased 
beam curvatures and deflections, due to the relatively rapid increase in the tensile 
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strain.  The process continues until the maximum strain in concrete reaches the 
ultimate compressive strain of concrete cuε  (‘stage 3’), resulting in the crushing of 
concrete in the limited compression zone. 

 

z3 z2z1

3 
  2 
    1 

fy fy fy

0.67fck

Cu 

Tu = Ast fy 

M 

Ast 
εy

1 2 3

stage 1 stage 2 stage 3 
CRACKED 

BEAM STRAINS STRESSES

εcu

εst

 

Fig. 4.7  Behaviour of under-reinforced section (tension failure) 

It is to be noted that the increase in the moment of resistance between ‘stage 1’ 
and ‘stage 3’ is marginal, being attributable solely to the slight increase in the lever 
arm .  However, there is a substantial increase in curvature, deflection, and width 
as well as spread of cracking during this process.  

z

As indicated in Fig. 4.8, the curvature ϕ  (rotation per unit length) can be 
conveniently measured from the linear strain distribution as: 

ϕ ε ε
=

+c s

d
t                                               (4.11) 

where ε c  is the compressive strain in the extreme concrete fibre, ε st is the strain at 
the centroid of the tension steel, and d is the effective depth of the beam section. 

Effective depth of a beam is defined as ‘the distance between the centroid of the 
area of tension reinforcement and the maximum compression fibre’ (Cl. 23.0 of the 
Code).  Reinforcing bars are usually provided in multiple numbers, and sometimes in 
multiple layers, due to size and spacing constraints.  In flexural computations, it is 
generally assumed that the entire steel area resisting tension is located at the centroid 
of the bar group, and that all the bars carry the same stress — corresponding to the 
centroid level (i.e., at the effective depth). 

The failure of an under-reinforced beam is termed as tension failure — so called 
because the primary cause of failure is the yielding in tension of the steel.  The onset 
of failure is gradual, giving ample prior warning of the impending collapse by way of 
increased curvatures, deflections and cracking.  Hence, such a mode of failure is 
highly preferred in design practice.  The actual collapse, although triggered by the 
yielding of steel, occurs by means of the eventual crushing of concrete in 
compression (‘secondary compression failure’).  A sketch of the moment-curvature 
relation for an under-reinforced beam is shown in Fig. 4.8(a).  The large increase in 
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curvature (rotation per unit length), prior to collapse, is indicative of a typical ductile 
mode of failure. 

 moment M

MuR 

SECONDARY 
COMPRESSION FAILURE 

YIELDING OF  
TENSION STEEL 

FIRST CRACK 
Mcr 

curvature ϕ 

(a)  under-reinforced beam

ϕ
ε ε

=
+c st
d

 
MuR

Mcr

COMPRESSION 
FAILURE 

curvature ϕ

d

εc

εst 

(b)  over-reinforced beam 

moment M

CURVATURE 

 
Fig. 4.8  Moment-curvature relations  

Over-Reinforced Section   

An ‘over-reinforced’ section is one in which the area of tension steel is such that at 
the ultimate limit state, the ultimate compressive strain in concrete is reached, 
however the tensile strain in the reinforcing steel is less than the yield strain ε y  

[Fig. 4.9]. 

z

fst < fy

0.67fck

Cu

Tu = Ast fst

M 

CRACKED BEAM STRAINS STRESSES

neutral
axis

εcu

εst < εy

 

Fig. 4.9  Behaviour of over-reinforced section  (compression failure) 

The concrete fails in compression before the steel reaches its yield point.  Hence, 
this type of failure is termed compression failure.  The failure occurs (often, 
explosively) without warning. 

In this case, the tension steel remains in the elastic range up to collapse.  As the 
limit state of collapse is approached, the tensile stress in steel increases 
proportionately with the tensile strain, whereas the compressive stress in concrete 
does not increase proportionately with the compressive strain, because it is in the 
nonlinear range.  Hence, in order to maintain equilibrium (C=T ), the area of concrete 
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under compression has to increase; this is enabled by a lowering of the neutral axis.  
The strains across the section remain relatively low.  Consequently, the curvatures 
[Fig. 4.8(b)], deflections and crack-widths – all the ‘distress’ signals – also remain 
relatively low in sharp contrast with the behaviour of the under-reinforced section at 
failure.  Because the failure is sudden (without any signs of warning) and the 
deflections and curvatures remain low right up to failure, this type of failure is 
termed a brittle failure.  For this reason, over-reinforced flexural members are not 
permitted by the Code. 
 

It should be noted that one other type of failure is possible, although extremely rare 
in practice.  This is failure by fracture of the reinforcing steel, which can happen with 
extremely low amounts of reinforcements and under dynamic loading. 

4.6   ANALYSIS AT SERVICE LOADS (WSM) 

tored loads) must be checked for 

e after bending, i.e., in an 

b) crete 

c) o strains — for both concrete and steel. 

e linear 
ela

 rectangular cross-section with tension reinforcement alone (‘singly 
rei

4.6.1   Stresses in Singly Reinforced Rectangular Sections 

, subjected to a 

Sections designed for ultimate limit states (under fac
serviceability (deflection, crack-width, etc.) under the expected ‘service loads’, as 
mentioned earlier [refer Section 3.5].  The details of the calculations of deflections 
and crack-widths are covered in Chapter 10.  These calculations require the 
computation of stresses under service loads.  Moreover, these calculations form part 
of the working stress method of design (WSM). The basic assumptions involved in 
the analysis at the service load stage (Cl. B-1.3 of the Code) are summarised here.  
(These assumptions have already been explained earlier.) 

a) Plane sections normal to the beam axis remain plan
initially straight beam, strain varies linearly over the depth of the section. 
 All tensile stresses are resisted by the reinforcement, and none by con
(except in the uncracked phase). 

 Stresses are linearly proportional t
d) The modular ratio,  m = Es /Ec , has the value,  280/(3σcbc)   [Eq. 4.8]. 
The expressions for stresses under service loads are derived here, using th
stic theory and the cracked-transformed section concept [refer Section 4.3].  

Further, the expressions for ‘allowable moment of resistance’, based on WSM, are 
also derived. 

The simple
nforced section’) is studied first.  Subsequently, ‘flanged beams’ and beams with 

compression reinforcement (‘doubly reinforced’) are dealt with. 

Fig. 4.10(a) shows a ‘singly reinforced’ rectangular section of a beam
specified (load) moment M (assumed sagging).  For this beam section, the 
corresponding ‘cracked-transformed section’ is shown in Fig. 4.10(c).  The concrete 
on the tension side of the neutral axis is neglected.  The neutral axis (NA) is located 
by the line passing through the ‘centroid’ of transformed section, and perpendicular 
to the plane of bending. 
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Expressing the depth of the neutral axis (from the extreme compression fibres) as 
a fraction k of the effective depth d, and equating the moments of the compression 
and tension areas about the NA, 

jd = d – kd/3

C = 0.5 bkd fc

T = Ast fst

M

(a)
CRACKED

BEAM

(b)
EFFECTIVE
SECTION

(c)
TRANSFORMED

SECTION

(d)
STRESSES

d

b

kd

d – kd

b

Ast

mAst

fc

fst / m

Fig. 4.10  Concept of ‘cracked-transformed section’ 

b kd mA d kdst
( ) (

2

2
= − )                                         (4.12) 

This quadratic equation can be easily solved to determine kd.  Of the two roots, only 
one is acceptable, namely 0 < k < 1.  The resulting expression for k can be obtained 
as  

k m m= + −2 2ρ ρ ρ( ) m                                (4.13) 

where ρ is termed the reinforcement ratio, given by: 

ρ ≡
A
bd

st                                                         (4.14) 

The second moment of area of the cracked−transformed section, Icr , is given by: 

( ) ( )I
b kd

mA d kdcr st= + −
3

2

3
                            (4.15) 

Knowing the neutral axis location and the second moment of area, the stresses in 
the concrete (and steel) in the composite section [Fig. 4.10(d)] due to the applied 
moment M may be computed from the flexure formula  f = My /I, as explained in 
Section 4.3 (and Example 4.1).  The same results could be obtained more simply and 
directly, by considering the static equilibrium of resultant forces and moments 
[Eq. 4.1 and 4.2]. Referring to Fig. 4.10, 

C bkd fc=
2

                                                 (4.16) 

T A fst st=                                                (4.17) 

( )j = −1 3k                                             (4.18) 
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          M C jd T jd= =  

from which                           
))((5.0 jdkdb

Mf c =                                   (4.19) 

and                                       
jdA

Mf
st

st =                                                (4.20) 

It is to be noted that if two points in the stress distribution diagram are known 
(such as k and  fc), then the stress at any level can be computed using similar 
triangles.  Thus,  fst may be alternatively obtained as: 

fst  = mf d kd
kdc
−  = mf k

kc
1 −⎛

⎝⎜
⎞
⎠⎟

                            (4.21) 

EXAMPLE  4.2 

Consider the same beam section [Fig. 4.11] of Example 4.1.  Assuming M 20 grade 
concrete and Fe 415 grade steel, compute the stresses in concrete and steel under a 
service load moment of 140 kNm. 

jd = d – kd/3

C = 0.5 bkd fc

T = Ast fst

d = 550

M = 140 kNm

b = 300 b = 300

kd

d – kd

4 – 25 φ m Ast

fc

fst /m

Fig. 4.11  Example 4.2 — ‘cracked section’ 

TRANSFORMED STRESSES CRACKED 
BEAM 

EFFECTIVE 
SECTION SECTION 

SOLUTION 

From Example 4.1, it is seen that Mcr = 77.9 kNm.  For the present problem 
M = 140 kNm > Mcr.  Hence, the section would have ‘cracked’.  The 
cracked−transformed section is shown in Fig. 4.11. 

Transformed Section Properties: 

• modular ratio m = 13.33 (for M 20 concrete) 
• Transformed steel area = mAst 

                                 = 13.33×1963 = 26167 mm2

• Equating moments of areas about the neutral (centroidal) axis, 
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( ) ( )
300 2

2
26167 550

kd
kd= −  

Solving,                                          kd = 234.6 mm. 
⇒  neutral axis depth factor            k = 234.6/550 = 0.4265. 
⇒  lever arm                                  jd = d – kd / 3 = 471.8 mm. 

Stresses: 
• Maximum Concrete Stress:  
Taking moments about the tension steel centroid, 

M f b kd jc= 0 5. ( )( d)  

⇒ fc =
×

× × ×
140 10

0 5 300 234 6 4718

6

. . .
 = 8.43 MPa. 

• Tensile Stress in Steel:  
Taking moments about the line of action of C, 

M f A jdst st= ( )  

⇒ fst =
×
×

140 10
1963 4718

6

.
  = 151 MPa. 

Alternatively, considering the linear stress distribution [Fig. 4.10]: 

fst = × ×
−13 33 8 1 0
0

. .43 .4265
.4265

 = 151 MPa. 

[Note: The maximum concrete stress fc exceeds the permissible stress 
σ cbc  = 7.0 MPa for M 20 concrete [refer Section 4.6.2]; hence the beam is not 
‘safe’ according to WSM provision of the Code although the steel stress is within 
allowable limit.] 

• Note that the same results can be obtained by the ‘flexure formula’ f = My /Icr, 
where   

( ) ( )Icr =
×

+ − = ×
300 234 6

3
26167 550 234 6 3 894 10

3
2 9 4. . . mm  

       Accordingly,    
( )

f
My
Ic

c

cr
= =

× ×

×

140 10 234 6

3 894 10

6

9

.

.
 = 8.43 MPa  

( ) ( ) ( )
f m M d kd

Ist
cr

=
−

=
× × × −

×

13 33 140 10 550 234 6

3 894 10

6

9

. .

.
 = 151 MPa (as before). 

4.6.2   Permissible Stresses 

In the traditional working stress method, analysis requires the designer to verify that 
the calculated stresses [Eq. 4.19 and 4.20] under service loads are within ‘permissible 
limits’.  The ‘permissible stress’ in concrete under flexural compression (denoted as 
σcbc by the Code) is as given in Table 4.1. 

The ‘permissible stress’ in tension steel σst (specified in Table 22 of the Code) 
takes values of 140 MPa, 230 MPa and 275 MPa for Fe 250, Fe 415 and Fe 500 
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grades respectively.  However, for Fe 250 grade, the permissible stress is reduced to 
130 MPa if the bar diameter exceeds 20mm.  

In the case of reinforcing steel under compression in flexural members, the 
permissible stress σ sc  is limited to the calculated compressive stress in the 
surrounding concrete multiplied by 1.5 times the modular ratio or ~σ sc  (maximum 
permissible compressive stress in steel given in Table 22 of the Code), whichever is 
lower†.  The specified values of ~σ sc  are 130 MPa, 190 MPa and 190 MPa for 
Fe 250, Fe 415 and Fe 500 grades respectively. 

4.6.3   Allowable Bending Moment 

When it is desired to compute the ‘allowable bending moment’ capacity of a beam of 
known cross-section, in accordance with WSM, the procedure to be adopted is very 
similar to that given in Section 4.6.1 and Example 4.2.  Here, the stresses in concrete 
and steel (fc and fst) are taken as their respective ‘permissible stresses’ (σcbc and σst) 
as specified in Section 4.6.2. 

Considering the moment with reference to the tension steel [Fig. 4.10], 

M Aall st st jd= σ                                       (4.22a) 

Considering the moment with reference to the compression in concrete [Fig. 4.10], 

M b kall cbc= 0 5.  σ ( )( )d jd

                                                          

                       (4.22b) 

In a given beam section, the permissible stresses in both steel and concrete may 
not be reached simultaneously.  Hence, the lower of the two moments computed by 
Eq. 4.22a and 4.22b will give the correct permissible moment, and the corresponding 
stress (either fst or fc ) will be the one to reach the permissible limit. 

Alternatively, with the knowledge of certain constants (discussed in the subsection 
to follow), it is possible to predict whether it is the steel or the concrete that controls 
Mall. 

‘Balanced (WSM)’ section constants 

In the working stress method, the ‘balanced’ section is one in which both tensile steel 
stress fst and maximum compressive stress fc  simultaneously reach their allowable 
limits σst and σcbc respectively [Fig. 4.12] under service loads.  The corresponding 
area of steel Ast is denoted as Ast,b; the percentage reinforcement pt ≡ 100Ast,b/ bd  is 
denoted as pt,b; the neutral axis depth factor is denoted as kb; the lever arm depth 
factor is denoted as  jb; and the allowable moment of the section is denoted as Mwb. 

For such a case, from the linear distribution of stresses [Fig. 4.12(c)] in the 
transformed-cracked section [Eq. 4.21], it follows that: 

 
† Generally, the value of 1.5m times the calculated compressive stress is lower than ~σ sc , and 
hence controls. 
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σ σst cbc
b

b
m

k
k

= ×
−1

 

The product mσcbc is a constant, equal to 280/ 3, according to the Code [Eq. 4.9], 
whereby the above equation can be solved to give: 

kb
st

=
+

280
280 3σ

                                                  (4.23) 

where σst  is in MPa units.   

Thus, it is seen that the neutral axis depth factor (kb) of a ‘balanced (WSM)’ section 
depends only on the permissible tensile stress in steel. 

jbd = d – kbd/3 

C = 0.5 σcbc bkbd 

T = Ast,b σst

σcbcb
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Fig. 4.12  ‘Balanced (WSM)’ section 

Further, considering the equilibrium of forces C=T, it follows that 

0.5σ σcbc b st b stb k d A( ) ,=  

⇒ ≡ = ×
100

50
A

bd
p kst b

t b b
cbc

st

,
,

σ
σ

                             (4.24) 

Finally, considering moment equilibrium, 

( ) ( )M C j d b k d
k

dwb b cbc b
b= = −⎛

⎝⎜
⎞
⎠⎟

0 5 1
3

. σ  
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⇒ ≡ = −⎛
⎝⎜

⎞
⎠⎟

M
bd

Q k
kwb

cbc
b b

b

σ 2 0 5 1
3

.                                 (4.25) 

It may be noted that Eq. 4.23 to 4.25 are expressed in nondimensional form.  The 
quantities on the right-hand sides of the equations reduce to constants (for given 
material grades).  Some typical values of the constants kb, pt,b and Qb are listed in 
Table 4.2. 

Table 4.2  Constants for the balanced ‘WSM’ section 

Steel Grade Fe 250  Fe 415 Fe 500 
 (φ > 20 mm) (φ ≤ 20 mm)   

kb 0.4179 0.4000 0.2887 0.2534 

 M 20 1.1251 1.0000 0.4394 0.3225 

 M 25 1.3662 1.2143 0.5334 0.3916 

 M 30 1.6073 1.4286 0.6276 0.4607 

pt,b M 35 1.8484 1.6429 0.7218 0.5298 

 M 40 2.0895 1.8571 0.8159 0.5989 

 M 45 2.3306 2.0714 0.9100 0.6681 

 M 50 2.5717 2.2857 1.0042 0.7372 

Q M
bdb

wb

cbc
≡ σ 2

 0.1798 0.1733 0.1304 0.1160 

‘Under-Reinforced (WSM)’ Sections 

According to the traditional WSM terminology, a given section is said to be ‘under-
reinforced (WSM)’ if its area of tension steel is less than that corresponding to 
balanced conditions (i.e., A st,b); so that the tensile stress in steel reaches the allowable 
limit before the maximum compressive stress in concrete reaches its allowable limit, 
and the allowable moment capacity is limited by the stress in steel, and not by the 
stress in concrete [i.e., fst = σ st  and fc < σ cbc]. 

With the help of the ‘balanced (WSM)’ section constants, it is evidently possible 
to predict whether a given section is ‘under-reinforced (WSM)’ or not.  If the section 
is ‘under-reinforced (WSM)’, k < kb [Fig. 4.12(d)] and pt < pt,b ; both conditions are 
equivalent, and either one may be checked. 

Accordingly, the allowable moment is given by: 

( ) ( )M A d kd
all st st= × −σ 3           for  k < kb        (4.26) 

The corresponding maximum compressive stress in concrete is obtained by 
applying the condition of force equilibrium (C=T), (or from the stress distribution 
diagram knowing σ st  and  k). 
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0.5 f bkd Ac st st= σ  

⇒ = =f
A
bkd

p
kc

st st t st2
50

σ σ
                              (4.27) 

‘Over-Reinforced (WSM)’ Sections 

According to the traditional WSM terminology, a given section is said to be ‘over-
reinforced (WSM)’ if its area of tension steel is more than Ast,b, so that allowable 
limiting stress is reached in the concrete before the steel stress reaches the limiting 
value, and the allowable moment capacity is limited by the stress in concrete, and not 
by the stress in steel [i.e., fc = σ cbc  and fst < σ st ] 

Evidently, for such a section, k > kb [Fig. 4.12(d)] and pt > pt,b .  The allowable 
moment is given by 

( )( )M bkd d kd
all cbc= 0.5 3σ −              for k > kb        (4.28) 

The corresponding stress in the tension steel is obtained (by applying the 
condition T=C ) as: 

f
bkd

A
k

pst
cbc

st

cbc

t
= =

0.5 50σ σ
                            (4.29) 

These definitions of ‘balanced (WSM)’, ‘under-reinforced (WSM)’ and ‘over-
reinforced (WSM)’, with reference to service load conditions, should not be 
confused with the definitions for balanced / under-reinforced / over-reinforced given 
earlier (in Section 4.5.3) with reference to the ultimate limit state.  In order to 
distinguish the WSM descriptions, the term ‘WSM’ should be preferably attached 
(in parenthesis) ⎯ as done consistently in this chapter. 

Variation of  Mall  with  pt 

On the basis of Eq. 4.13, Eq. 4.26 and Eq. 4.28, the values of Mall / (bd2), in MPa 
units, corresponding to increasing values of pt have been computed and plotted in 
Fig. 4.13 ⎯ for two commonly used concrete grades (M 20, M 25), each combined 
with two steel grades (Fe 250†, Fe 415). 

Each curve in Fig. 4.13 is characterised by two distinctive portions: the initial 
segment (thick line), which is practically linear, conforms to under-reinforced (WSM) 
sections; this is followed by a non-linear segment (thin line), which conforms to 
over-reinforced (WSM) sections.  The kink in each curve, marking the transition from 
‘under-reinforced (WSM)’ to ‘over-reinforced (WSM)’, evidently corresponds to the 
balanced (WSM) section. 

From the trends depicted in Fig. 4.13, it follows that (expectedly), the allowable 
moment capacity increases with increase in tensile reinforcement area.  In fact, for 
‘under-reinforced (WSM)’ sections, Mall increases rapidly and nearly proportionately 

                                                           
† Assuming bar diameter φ ≤ 20 mm. 
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with pt for .  Further, although the rate of gain in  Mp pt t< ,b all increases with the 
use of higher strength steel, the ‘balanced’ section limit is reached at a lower 
percentage of steel. 
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Fig. 4.13  Variation of Mall /bd2 with pt  for different grades of concrete and 

steel 

Improving the grade of concrete has practically no effect on Mall (for a given pt ) for 
under-reinforced (WSM) sections, except that the ‘balanced section’ limit is raised. 

For pt > pt,b (i.e., for ‘over-reinforced (WSM)’ sections), the rate of gain in 
allowable moment capacity with increase in tensile reinforcement area drops off 
rapidly.  This is so, because the allowable limit of stress is reached in concrete in 
compression, and, unless the compression capacity is suitably enhanced†, there is not 
much to gain in boosting the flexural tensile capacity of the beam section ⎯ either by 
adding more tension steel area or by improving the grade of steel.   

For this reason, ‘over-reinforced (WSM)’ beams are considered to be highly 
uneconomical in the traditional WSM method of design.  

                                                           
† by improving the grade of concrete and/or providing compression reinforcement (‘doubly 
reinforced’ section). 
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Finally, it may be noted that ‘over-reinforced (WSM)’ sections often may turn out 
to be under-reinforced with reference to the ultimate limit state (leading to ductile 
failure), except when the percentage of tension steel is very high.  For example, when 
M 20 concrete and Fe 415 steel are used in a beam section, if the tension steel area 
exceeds 0.439 percent, by the working stress method the section is ‘over-reinforced 
(WSM)’, — but it is under-reinforced in the ultimate limit sense (up to tension steel 
area of 0.961 percent) [refer Section 4.7]. 

Analysis Aids 

The variation of Mall /bd2 with pt for different grades of concrete and steel (depicted 
in Fig. 4.13) is expressed in tabular form and presented in Tables A.1(a) and (b) in 
Appendix A of this book.  These Tables serve as useful analysis aids, enabling the 
rapid determination of Mall for any given singly reinforced rectangular beam section.  
The use of these Tables is demonstrated in Example 4.3. 

EXAMPLE  4.3 

Consider the same beam section [Fig. 4.11 of Examples 4.1 and 4.2].  Assuming 
M 20 grade concrete and Fe 415 grade steel, determine the allowable bending 
moment, and the stresses in concrete and steel corresponding to this moment. 

SOLUTION 

• Given: σ cbc = 7.0 MPa, σ st = 230 MPa, m = 13.33, Ast = 1963 mm2, 
b = 300 mm, d = 550 mm. 

• The transformed section properties [Fig. 4.11(b)] have already been worked out 
in Example 4.2.  Accordingly, kd = 234.6 mm  k = 0.4265. ⇒
The neutral axis depth factor kb is a constant [Eq. 4.23].  

For Fe 415 steel (σst = 230 MPa), 2887.0
)230(3280

280
=

+
=bk  

Stresses: 

As k > kb, the section is ‘over-reinforced (WSM)’. [Alternatively, 

550300
1963100
×
×

=tp  = 1.190.  = 0.440 for M 20 concrete with Fe 415 steel.  As 

 the section is ‘over-reinforced (WSM)’].  Accordingly, the concrete 
stress controls, and 

pt b,

p pt t> , ,b

cf c cb= σ = 7.0 MPa (for M 20 concrete). 

• Applying T = C, 

 
( )

st

cbc
st A

kdb
f

σ5.0
=

1963
6.2343000.75.0 ×××

=  = 125 MPa       

      ( )MPa230=< stσ . 
Alternatively, considering the linear stress distribution, 
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f st = =
−
k

kmfc
)1( =⎟

⎠
⎞

⎜
⎝
⎛ −

×
0.4265

0.426517.013.33 125 MPa (as before). 

Allowable bending moment: 

• Taking moments of forces about the tension steel centroid, 

( )( )35.0 kddbkdM cbcall −= σ  ( )( )36.2345506.2343000.75.0 −×××=  

          =   116 kNm. Nmm102.116 6×=
• [Alternatively, using the analysis aids given in Table A.1(a), for pt = 1.190 and 

M 20 concrete with Fe 415 steel, 28.1
2
=

bd
M all  MPa 

⇒ M all  = 1.28 × 300 × 5502 = 116.2 × 106 Nmm = 116 kNm (as before)] 

4.6.4   Analysis of Singly Reinforced Flanged Sections 

In the previous discussions, beams of rectangular section (which are most common) 
and with tensile steel alone (‘singly reinforced’) were considered, for the sake of 
simplicity.  The procedure of analysis is similar for other cross-sectional shapes. 

Frequently, rectangular sections of beams are coupled with flanges ⎯ on top or 
bottom.  If the flanges are located in the compression zone, they become effective 
(partly or wholly) in adding significantly to the area of the concrete in compression.  
However, if the flanges are located in the tension zone, the concrete in the flanges 
becomes ineffective in cracked section analysis. 

T−beams and L−beams 

Beams having effectively T-sections and L-sections (called T-beams and L-beams) 
are commonly encountered in beam-supported slab floor systems [refer Figs. 1.10, 
4.14].  In such situations, a portion of the slab acts integrally with the beam and 
bends in the longitudinal direction of the beam.  This slab portion is called the flange 
of the T- or L-beam.  The beam portion below the flange is often termed the web, 
although, technically, the web is the full rectangular portion of the beam other than 
the overhanging parts of the flange.  Indeed, in shear calculations, the web is 
interpreted in this manner. 

When the flange is relatively wide, the flexural compressive stress is not uniform 
over its width.  The stress varies from a maximum in the web region to progressively 
lower values at points farther away from the web†.  In order to operate within the 
framework of the theory of flexure, which assumes a uniform stress distribution 
across the width of the section, it is necessary to define a reduced effective flange. 

                                                           
† The term ‘shear lag’ is sometimes used to explain this behaviour.  The longitudinal stresses at 
the junction of the web and flange are transmitted through in-plane shear to the flange regions.  
The resulting shear deformations in the flange are maximum at the junction and reduce 
progressively at regions farther away from the web.  Such ‘shear lag’ behaviour can be easily 
visualised in the case of a rectangular piece of sponge that is compressed in the middle. 
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The ‘effective width of flange’ may be defined as the width of a hypothetical 
flange that resists in-plane compressive stresses of uniform magnitude equal to the 
peak stress in the original wide flange, such that the value of the resultant 
longitudinal compressive force is the same (Fig. 4.14).   

effective f lange 
width bf 

BEAM-SUPPORTED FLOOR SLAB SYSTEM

s1 s2

bf s1/2 + bw /2 

f lange
web

bw 

Df 

L-BEAM T-BEAM

bw

(s1 + s2)/2bf

d

bf 

Equivalent f lange 
width

Actual distribution of 
compressive stress 

(total force = C) 
Assumed uniform 

distribution 
(total force = C) 

 
Fig. 4.14  T-beams and L-beams in beam-supported floor slab systems 

The effective flange width is found to increase with increased span, increased web 
width and increased flange thickness.  It also depends on the type of loading 
†(concentrated, distributed, etc.) and the support conditions (simply supported, 
continuous, etc.).  Approximate formulae for estimating the ‘effective width of 
flange’ bf  (Cl. 23.1.2 of Code) are given as follows:  

                                                           
† For example, it is seen that the equivalent flange width is less when a concentrated load is 
applied at the midspan of a simply supported beam, compared to the case when the same load 
is applied as a uniformly distributed load.  
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beams-Lfor     312
beams-Tfor      66

0

0

⎩
⎨
⎧

++
++

=
fw

fw
f Dbl

Dbl
b                        (4.30a) 

where bw is the breadth of the web, Df is the thickness of the flange [Fig  4.14], and 
 is the “distance between points of zero moments in the beam” (which may be 

assumed as 0.7 times the effective span in continuous beams and frames).  
Obviously, b

l0

f  cannot extend beyond the slab portion tributary to a beam, i.e., the 
actual width of slab available.  Hence, the calculated bf should be restricted to a value 
that does not exceed (s1+s2)/2 in the case of T−beams, and s1/2 + bw/2 in the case of 
L−beams, where the spans s1 and s2 of the slab are as marked in Fig. 4.14. 

In some situations, isolated T−beams and L−beams are encountered, i.e., the slab 
is discontinuous at the sides, as in a footbridge or a ‘stringer beam’ of a staircase.  In 
such cases, the Code [Cl. 23.1.2(c)] recommends the use of the following formula to 
estimate the ‘effective width of flange’ bf: 

b

l
l b

b

l
l b

b
f

w

w

= +
+

+
+

⎧

⎨
⎪⎪

⎩
⎪
⎪

0

0

0

0

4
0 5

4

     for isolated T - beams

     for isolated L - beams
.                       (4.30b) 

where b denotes the actual width of flange; evidently, the calculated value of bf 
should not exceed b. 

Analysis of T−beams and L−beams 

The neutral axis may lie either within the flange [Fig. 4.15(b)] or in the web of the 
flanged beam [Fig. 4.15(c)].  In the former case (kd ≤ Df), as all the concrete on the 
tension side of the neutral axis is assumed ineffective in flexural computations, the 
flanged beam may just as well be treated as a rectangular beam having a width bf and 
an effective depth d.  The analytical procedures described in Sections 4.6.1 and 4.6.3, 
therefore, are identically applicable here, the only difference being that bf  is to be 
used in lieu of b. 

In the case kd > Df , the area of concrete in compression spreads into the web 
region of the beam [Fig. 4.15(c)].  The exact location of the neutral axis (i.e., kd) is 
determined by equating moments of areas of the cracked-transformed section in 
tension and compression [Eq. 4.31] and solving for kd: 
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Fig. 4.15  Example 4.4 — Cracked section analysis (WSM) of a T-beam  

( ) ( ) ( ) ( )b b D kd D b kd mA d kdf w f f w st− − + = −2 22               (4.31) 

This is valid only if the resulting kd exceeds Df . 
With reference to the stress distribution shown in Fig. 4.15(d), the area of the 

concrete in compression can be conveniently obtained by considering the difference 
between the two rectangles b kdf ×  and ( ) ( )b b kd Df w f− × − .  Accordingly, 

considering equilibrium of forces (C = T), 

( ) ( )( ) ststfwfcfc fADkdbbfkdbf =−−− 12
1

2
1                         (4.32) 

where                                           ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

kd
Dkd

ff f
cc1                                     (4.33) 

Also, taking moments of forces about the centroid of tension steel, 

( )( ) ( )( ) ( ){ }3
2
13

2
1

1 fffwfcfc DkdDdDkdbbfkddkdbfM −−−−−−−=        (4.34) 

If the problem is one of determining the stresses fc and fst for a given moment M, 
then fc may be determined first by solving Eq. 4.34 (after substituting Eq. 4.33) and 
fst can then be determined either by solving Eq. 4.32, or by considering similar 
triangles in the stress distribution diagram (Eq. 4.21).  On the other hand, if the 
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problem is one of determining the allowable moment capacity (Mall) of the section, 
then it should first be verified whether the section is ‘under−reinforced (WSM)’ or 
‘over−reinforced (WSM)’ ⎯ by comparing the neutral axis depth factor k with kb 
(given by Eq. 4.23).  If k < kb, the section is ‘under−reinforced (WSM),’ whereby fst 
= σst.  The corresponding value of fc can be calculated using the stress distribution 
diagram.  On the other hand, if k > kb, the section is ‘over-reinforced (WSM)’, 
whereby f c c= bcσ .  Using the appropriate value of fc in Eq. 4.34,  Mall can be 
determined. 

EXAMPLE  4.4 

An isolated T-beam, having a span of 6 m and cross sectional dimensions shown in 
Fig. 4.15(a), is subjected to a service load moment of 200 kNm.  Compute the 
maximum stresses in concrete and steel, assuming M 20 concrete and Fe 250 steel. 

SOLUTION 

• It must be verified first whether the actual flange width b = 1000 mm is fully 
effective or not.  Applying Eq. 4.30(b) for isolated T-beams with l0 = 6000 mm 

250
46

6000
40

0 +
+

=+
+

= wf b
bl
l

b  = 850 mm < (b = 1000 mm). 

• modular ratio (for M 20 concrete) m =13.33. 
• Ast = ( )6 282×π 4  = 3695 mm2, d = 520 mm, bw = 250 mm, Df  = 100 mm. 

Neutral axis depth: 

• First assuming  [Fig. 4.15(b)], and equating moments of compression and 
(transformed) tension areas about the neutral axis, 

kd D f≤

( )b kd mA d kdf st× = −( )2 2  ⇒  ( )kdkd −××=× 520369533.132)(850 2  

Solving, kd = 194.2 mm. 
As this is greater than Df = 100 mm, the assumption kd Df≤  is incorrect. 

• For , the neutral axis is located in the web [Fig. 4.15(c)], kd D f>

( )( )( ) ( )kdkdkd −××=+−− 520369533.132)(25050100250850 2  
      Solving, kd = 210.9 mm. 

Stresses: 
• Relating the compressive stress  fc1 at the flange bottom to fc,  

ccc fff 526.0
9.210
1009.210

1 =⎟
⎠
⎞

⎜
⎝
⎛ −

=  

• Compressive force C = 0.5 fc bf (kd) – 0.5 fc1(bf – bw)(kd – Df ) 
            = 0.5fc[(850 × 210.9) – 0.526 × (850 – 250)(210.9 – 100)] 
            = 0.5fc[(179324) – (35022)] N. 
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• Taking moments of forces about the tension steel centroid, 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−−−−=×
3

1009.210100520)35022()39.210520)(179324(5.010200 6
cf  

Solving,       fc = 5.95 MPa. 
(which, incidentally, is less than the permissible stress σcbc = 7.0 MPa for M 20 
concrete). 

• Now applying C = T, 

]35022179324[95.55.0 −××  = 369  5 fst

⇒  fst = 116 MPa.  
• Alternatively, from the stress distribution diagram [Fig. 4.15(d)] 

f mf d kd
kdst c=
−⎛

⎝⎜
⎞
⎠⎟  ⇒  fst = 

( )
9.210

9.21052095.533.13 −×
 = 116 MPa (as before) 

(which, incidentally, is less than the permissible stress σ st  = 130 MPa ) 

EXAMPLE  4.5 

For the T-beam problem in Example 4.4, determine the allowable moment capacity. 

SOLUTION 

• From the previous Example, the neutral axis depth factor  
k =210.9/520 = 0.4057. 

• For a ‘balanced section’, as per Eq. 4.23, 

( )
k b =

+ ×
280

280 3 130
 = 0.4179. 

• As k < kb , the section is ‘under-reinforced (WSM)’. 
Accordingly, ststf σ=  = 130 MPa (for Fe 250 steel, φ >20mm); 

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
=

33.13
130

9.210520
9.210 

m
f

kdd
kdf st

c
 = 6.66 MPa 

cc ff 526.01 =  = 3.5 MPa 
 substituting in Eq. 4.34, 

• ( )39.2105209.21085066.6
2
1

−××××=allM  

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−−×−×−××−
3

1009.2101005201009.2102508505.3
2
1  

= 223.9 × 10 6 Nmm = 223.9 kNm. 
• Note:  

The answer could have been easily obtained using the result of Example 4.4, 
and making use of the linear elastic assumption underlying WSM.  A 
compressive stress fc = 5.95 MPa results from a moment M = 200 kNm.  
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Hence, the allowable stress fc = 6.66 MPa corresponds to a moment 

⎟
⎠
⎞

⎜
⎝
⎛×=

95.5
66.6200allM  = 223.9 kNm (as before). 

4.6.5   Analysis of Doubly Reinforced Sections 

When compression reinforcement is provided in addition to tension reinforcement in 
beams, such beams are termed doubly reinforced beams.  Hanger bars of nominal 
diameter, used for the purpose of holding stirrups, do not normally qualify as 
compression reinforcement — unless the area of such bars is significant (greater than 
0.2 percent). 

In the discussions related to Fig. 4.13, it was shown that merely providing tension 
steel in excess of that required for the ‘balanced section’ (pt,b) is not an effective way 
of improving the allowable moment capacity of the section, because the increase in 
the beam’s capacity to carry flexural tension (with fst = σst) is not matched by a 
corresponding increase in its capacity to carry flexural compression.  One of the 
ways of solving this problem is by providing compression steel. 

It may further be recalled (refer Section 4.6.2) that the permissible stress in 
compression steel (σsc) is generally restricted to 1.5 m times the stress in the 
adjoining concrete (fcsc).  Accordingly, the ‘transformed section’ takes the 
configuration shown in Fig. 4.16(b) for rectangular sections.  For convenience, the 
concrete area under compression (i.e., above the NA) is treated as the ‘gross’ concrete 
area, i.e., disregarding the area displaced by the steel embedded therein.  The 
concrete area displaced by the embedded compression bars (area Asc) is accounted 
for by taking the ‘effective’ transformed area of steel as (1.5m–1)Asc.  The 
compression steel is generally kept as close to the face of the extreme compression 
concrete fibre as permitted by considerations of minimum cover, in order to 
maximise its effectiveness.  The distance between the centroid of the compression 
steel and the extreme compression fibre in concrete  is usually denoted by d’. 
Rectangular Sections 

Referring to the transformed section shown in Fig. 4.16(b), the neutral axis is 
determined by solving the following equation (considering moments of areas about 
the NA), 

( ) ( ) ( ) ( )b kd
m A kd d mA d kdsc st

2

2
15 1+ − − ′ = −.                     (4.35) 

The force equilibrium equation is given by: 

Cc + Cs =  T                                 (4.36) 

where  and  denote the net compressive forces in concrete and steel 
respectively: 

Cc Cs
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Fig. 4.16  Cracked section analysis of a doubly-reinforced beam  

( )kdbfC cc 0.5=                                                  (4.37a) 

  scscs AfAmfC csccsc )1.5( −=  

⇒ ( ) csc11.5 fAmC scs −=                                       (4.37b) 

where                                   ⎟
⎠
⎞

⎜
⎝
⎛ ′−

=
kd

dkdff ccsc                                                (4.38) 

and                                                    (as before) stst fAT =

Further, taking moments of forces about the centroid of the tension steel, 
( ) ( )ddCkddCM sc ′−+−= 3                                (4.39) 

Flanged Sections 

If the neutral axis falls inside the flange ( kd D f≤ ), then the section can be 
effectively treated as a rectangular section, b df × , as discussed earlier. 

However, if kd > Df , the equation to determine the neutral axis (in lieu of 
Eq. 4.35) is as follows: 

)()15.1(2)()2()( 2 dkdAmkdbDkdDbb scwffwf ′−−++−−  = ( )kddmAst −  
(4.40) 

In the force equilibrium equation [Eq. 4.36], the net compressive force in concrete 
is determined (as before) by considering the difference between the rectangular 

 and (  — whereby, b kdf × ) ( )b b kd Df w f− × −

( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−−=

kd
Dkd

bbkdbfC f
wffcc

2

5.0                     (4.41) 

Finally, the moment equilibrium equation [Eq. 4.39] takes the following form: 
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( )( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

−
−−−=

3
35.0

2
f

f
f

wffc
Dkd

Dd
kd

Dkd
bbkddkdbfM  

( ) ( ) ( dd
kd

dkdfAm csc ′− )′−
−+ 15.1     (4.42) 

It may be noted that although Eq. 4.42 appears rather lengthy, it can be derived 
easily from first principles. 

EXAMPLE  4.6 

The cross−sectional dimensions of a doubly reinforced beam are shown in 
Fig. 4.16(a).  Determine the stresses in concrete and steel corresponding to a service 
load moment of 175 kNm.  Further, determine the allowable moment on the beam 
section.  Assume M 20 concrete and Fe 250 steel 

SOLUTION 

• Given: b = 300 mm, d = 550 mm, ′d 50 mm, = σ cb 7.0 MPa, c  = σ st  30 MPa 
(φ > 20 mm) 

= 1

Transformed section properties [Fig. 4.16(b)]: 

• modular ratio m = 13.33 (for M 20 concrete) 
( )Ast = ×

×3 36
4

2π  = 3054 mm2; ( )Asc = ×
×2 25

4

2π  = 982 mm2 

• Transformed tension steel area = mAst = 40709 mm2 
• Transformed compression steel area = (1.5m – 1)Asc = 18653 mm2 

Neutral axis depth: 

• Considering moments of areas about the neutral axis, 
( ) ( ) ( kdkdkd

−=−+ 5504070950 18653
2

300 2

)  

Solving, kd = 243.3 mm. 
Stresses due to M = 175 kNm: 
• Considering the linear stress distribution [Fig. 4.16(c)],  

.7945.0
3.243
503.243

csc cc fff =⎟
⎠
⎞

⎜
⎝
⎛ −

=  

ccc ffC 364953.2433005.0 =×××=  
Cs = 18653 × 0.7945 × fc = 14819 fc

• Taking moments about the tension steel centroid,  
M C d kd C d dc s= − + − ′( ) (3 )  

⇒ ( ) ( )[ ]505501481933.2435503649510175 6 −×+−×=× cf  
⇒  fc = 7.136 MPa. 
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(which, incidentally, exceeds σ cbc  = 7.0 MPa) 
• Compressive stress in steel: 

( )136.77945.033.135.15.1 csc ×××== mff sc  = 113 MPa. 

• Tensile stress in steel: 

⎟
⎠
⎞

⎜
⎝
⎛ −

××=⎟
⎠
⎞

⎜
⎝
⎛ −

=
3.243

3.243550136.733.13
kd

kddmff cst  = 120 MPa  

[Alternatively, Cc + Cs = T ⇒  
3054

)1481936495(136.7 +
=stf  

    = 120 MPa (as before). 
Allowable bending moment: 

• For a ‘balanced (WSM) section’, 
( )

kb =
+
280

280 3 130
 = 0.4179. 

For the given section, 4179.04424.05503.243 =>== bkk . 
Hence the section is ‘over-reinforced (WSM)’,  
whereby                 f c c= bcσ  = 7.0 MPa. 

   ( ) ( )[ ]5001481933.243550364950.7 ×+−×=allM  

               =   = 171 kNm. Nmm 10171 6×

[Alternatively, ⎟
⎠
⎞

⎜
⎝
⎛×=

136.7
0.7175allM  = 171 kNm] 

EXAMPLE  4.7 

In the previous Example, it is seen that the service load moment of 175 kNm exceeds 
the allowable moment (equal to 171 MPa).  If the problem were a design problem 
(instead of an analysis problem), how is it possible to arrive at the appropriate values 
of Ast and Asc (without changing the size of the section and the grades of concrete 
and steel) so that the allowable moment is raised to 175 kNm ? 

SOLUTION 

• As explained earlier (with reference to Fig. 4.13), ‘over−reinforced (WSM)’ 
sections are uneconomical.  This is true not only for ‘singly reinforced’ sections, 
but also ‘doubly reinforced’ sections.  The neutral axis depth  kd should be 
ideally restricted to that corresponding to the balanced section 
(kbd = 0.4179 × 550 = 229.8 mm).  Accordingly, applying Eq. 4.35, 

( ) ( ) ( )508.229133.135.128.229300 2 −−×+× scA  = ( )8.22955033.13 −stA  

⇒ 2 )18568.0( mmAA scst +=  
Asc is to be determined from Eq. 4.39 for M = 175 kNm and f c cbc= σ = 
7.0 MPa, 
175 × 106 = (0.5 × 7.0 × 300 × 229.8) × (550 – 229.8/3) 

+ (1.5 × 13.33 – 1)Asc × ( ) ( )
8.229

50550508.2290.7 −×−
×  



132    REINFORCED  CONCRETE  DESIGN 

        ⇒  Asc = 1168mm2

whereby Ast = 0.8 × 1168 + 1856 = 2791mm2 

• Alternative Solution: 

Let 
A A Ast st st= +1 2                                                  (4.43) 

where, corresponds to the area required for a singly reinforced ‘balanced 
(WSM)’ section

Ast1
†, and  corresponds to the additional tension steel (with 

f
Ast2

st = σst) required to resist the moment M – Mwb, in combination with the 
compression steel  whose stress is given by 1.5m times  fAsc csc , where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
−=

dk
df
b

cbc 1 csc σ                                               (4.44) 

[In doubly reinforced sections, the stress 1.5mfcsc is generally less than the 
maximum limit ~σ sc  given in Section 4.6.2.] 
Accordingly, 

( )311
bst

wb
st kd

MA
−

=
σ

                                                  (4.45) 

( )dd
MM

A
st

wb
st ′−

−
=

σ2                                                     (4.46) 

( )ddfm
MMA wb

sc ′−−
−

=
csc )15.1(

                                 (4.47) 

The formula for Mwb is obtainable by Eq. 4.25.  For the present problem, applying 
the various formulae with kb = 0.418, b = 300 mm, d = 550 mm, 
m = 13.33,σ st  = 130 MPa, σ cbc  = 7.0 MPa, and , M = ×175 106 Nmm

( ) ( )55034179.015504179.03000.75.0 −×××××=wbM            [Eq. 4.25] 

= . Nmm 1027.114 6×

( )34179.01550130
1027.114 6

1 −×
×

=stA  = 1857 mm2                          [Eq. 4.45] 

( )
( )50550130

1027.1140.175 6

2 −
×−

=stA  = 935 mm2                           [Eq. 4.46] 

∴ 9351857 +=stA  = 2792mm2                                           [Eq. 4.43] 

⎟
⎠
⎞

⎜
⎝
⎛

×
−×=

5504179.0
5010.7cscf  = 5.477 MPa                       [Eq. 4.44] 

⇒ ( )
)50550)(477.5)(133.135.1(

1027.1140.175 6

−−×
×−

=scA  = 1168mm2               [Eq. 4.47] 

                                                           
† Note that allowance has to be made for the area Asc displaced by the concrete; this is done in 
the calculation for the required area of the compression steel [Eq. 4.47]. 
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EXAMPLE  4.8 

Consider the T-beam section of Example 4.4 with additional compression 
reinforcement of 3–28φ bars of Fe 250 grade and ′ =d 50 mm . Determine the 
allowable moment capacity. 

SOLUTION 

• Given: bf = 850 mm, Df = 100 mm, bw = 250 mm, d = 520 mm, Ast = 3695 mm2, 
m = 13.33 (for M 20 concrete), ′ =d 50 mm , 

( )Asc =
× ×3 28

4

2π  = 1847 mm2

Transformed tension steel area          = mAst = 49254 mm2

Transformed compression steel area = (1.5 m –1)Asc = 35084 mm2

• Assuming first , and kd Df≤ kd d> ′ , and solving Eq. 4.35 with b ,  bf=

kd  = 173.2 mm. 
As , the assumption kd Df> kd Df≤ , is incorrect. 

• Now solving Eq. 4.40 for , = 181.8 mm ⇒  k = 181.8/ 520 = 0.3496 kd Df≥ kd
For a ‘balanced (WSM)’ section with σ st  = 130 MPa [Eq. 4.23], kb =04179.  

• As =0.3496< , the section is ‘under-reinforced (WSM)’ whereby 

= 

k bk
f st σ st  = 130 MPa.  Considering the linear stress distribution [Eq. 4.32(b)], 

8.181520
8.181

33.13
130

−
×=cf  = 5.24 MPa ( )MPacbc 0.7=<σ  

• Substituting in Eq. 4.42, 

 Mall = 226 kNm 

Two points may be noted with regard to working stress design of doubly-reinforced 
sections: 
1) There is no advantage in using high strength steel as compression reinforcement 

as the permissible stress† is relatively low and unrelated to the grade of steel. 
2) In order to resist a very high moment, a large area of compression steel is called 

for; the Asc required may even exceed Ast 
These are serious shortcomings of WSM, which result in uneconomical designs. 
Owing to these and other reasons explained in Chapter 3, WSM is no longer employed 
in practical designs — being replaced by the more rational limit states design. 

4.7   ANALYSIS AT ULTIMATE LIMIT STATE 

Whereas the previous section (Section 4.6) dealt with the ‘analysis at service loads’, 
the present section deals with the ‘analysis at ultimate loads’.  The former is based on 

                                                           
† refer Section 4.6.2 
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the working stress method (WSM) and is also applicable to the analysis of 
‘serviceability limit states’, whereas the latter is based on the ‘ultimate limit state’ of 
the limit states method (LSM). 

Having studied analysis at ‘service loads’ in some detail (including the solution to 
a number of Example problems), it is likely that the student may get somewhat 
confused while undertaking the task of analysing the same problems at ‘ultimate 
loads’.  The important question that is likely to disturb the student is ⎯ why go 
through this process of analysing at service loads as well as ultimate loads?  The 
answer to this question was given in Chapter 3, where it was explained that a 
structure has to be both safe (at various ultimate limit states) and serviceable (at 
various serviceability limit states).  At ultimate limit states, the loads are those 
corresponding to impending failure of structure, whereas at serviceability limit states, 
the loads and stresses are those applicable in the day-to-day service of the structure.  
This section investigates the ‘safety’ of flexural members (of given design) at the 
ultimate limit state in flexure.  The previous section discussed the calculation of 
flexural stresses under service loads required for serviceability analysis (described in 
Chapter 10), and also the calculation of ‘allowable bending moment’ based on the 
WSM concept of permissible stresses.  The latter was included to enable the student 
to gain a first-hand understanding of the traditional (and, earlier much-used) working 
stress method ⎯ which retains a place in the Code, albeit as an Appendix, and is 
sometimes used in the design of special structures such as water tanks and road 
bridges.  

Therefore, the student will do well to keep in perspective the background of the 
present section, dealing with the analysis at the ‘ultimate limit state in flexure’.  The 
expressions derived here will find use again in the next chapter (Chapter 5), which 
deals with the design of reinforced concrete beams at the ultimate limit state in 
flexure. 

In this section, the Code procedure for analysis is discussed.  The calculations are 
based on the idealised stress-strain curves for concrete and steel, as specified by the 
Code.  Moreover, the design stress-strain curves (involving partial safety factors 
γ c , γ s ) are used, as explained in Section 3.6. 

4.7.1   Assumptions in Analysis 

The behaviour of reinforced concrete beam sections at ultimate loads has been 
explained in detail in Section 4.5.3.  The basic assumptions involved in the analysis 
at the ultimate limit state of flexure (Cl. 38.1 of the Code) are listed here [see also 
Fig. 4.17].  (Most of these assumptions have already been explained earlier.) 

a) Plane sections normal to the beam axis remain plane after bending, i.e., in an 
initially straight beam, strain varies linearly over the depth of the section. 

b) The maximum compressive strain in concrete (at the outermost fibre) ε cu  shall 
be taken as 0.0035 [Fig. 4.17(b)].  This is so, because regardless of whether the 
beam is under−reinforced or over-reinforced, collapse invariably occurs by the 
crushing of concrete (as explained in Section 4.5.3).  
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c) The design stress−strain curve of concrete in flexural compression 
(recommended by the Code) is as depicted in Fig. 3.5.  [The Code also permits 
the use of any other shape of the stress−strain curve which results in 
substantial agreement with the results of tests.]  The partial safety factor γ c = 
1.5 is to be considered.  

d) The tensile strength of the concrete is ignored.  
e) The design stress−strain curves for mild steel and cold-worked bars are as 

depicted in Fig. 3.6 and Fig. 3.7 respectively.  The partial safety factor 
γ s = 1.15 is to be considered.  

f) The strain ε st  in the tension reinforcement (at its centroid) at the ultimate limit 

state shall not be less than ε st
*  [Fig. 4.17], defined as:  

0.002)0.87(* +≡ syst Efε                                   (4.48) 

This is equivalent to defining the yield stress fy of steel as the stress corresponding 
to 0.002 strain offset (0.2% proof stress) — regardless of whether the steel has a 
well-defined yield point or not.  The yield strain corresponding to  fy is then given by 
0.002 + f Ey s .  Introducing the partial safety factor γ s = 1.15 to allow for the 

variability in the steel strength, the design† yield strength, f fyd y= 115.  = 0.87fy  
and using this in lieu of fy , the yield strain  [refer Fig. 3.7] is given by: ε y

ε y  = 0.002 + (0.87 fy /Es)  ≡  εst
*

In the case of mild steel, which has a well-defined yield point (εy = 0.87 fy / Es, as 
shown in Fig. 3.6),  the requirement (f) cited above may appear to be conservative.  
However, the Code specifies a uniform criterion [Eq. 4.48] for all grades of steel.  
The intention here is to ensure that ‘yielding’ of the tension steel takes place at the 
ultimate limit state, so that the consequent failure is ductile in nature, providing 
ample warning of the impending collapse.  

4.7.2   Limiting Depth of Neutral Axis 

Based on the assumption given above, an expression for the depth of the neutral axis 
at the ultimate limit state, , can be easily obtained from the strain diagram in 
Fig. 4.17(b).  Considering similar triangles, 

xu

st

u

d
x

ε+
=

0035.0
0035.0                                              (4.49) 

                                                           
† It is interesting to note that the use of the design yield stress fyd = 0.87 fy, instead of the 
characteristic yield stress fy, results in a slightly lesser (and hence, less conservative!) value of 
the yield strain εy [refer Figs 3.6, 3.7]. 
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d

Ast

b

(a)  beam section

d – xu

εcu = 0.0035 0.447fck

Cu

0.87fy

Tu = 0.87fyAst

neutral
axis z

(b)  strains (c)  stresses

x xu u≤ ,max

ε εst st≥ *

Fig. 4.17  Behaviour of singly reinforced rectangular section at ultimate limit 
state in flexure 

According to the Code [requirement (f) in Section 4.7.1], ε st  ≥ , implying that 
there is a limiting (maximum) value of the neutral axis depth  corresponding to 

ε st
*

xu,max

ε st  = .  This is obtained by substituting the expression for  [Eq. 4.48] in 
Eq. 4.49: 

ε st
* ε st

*

sy

u

Efd
x

87.00055.0
0035.0max,

+
=                                   (4.50) 

The values of xu,max d  for different grades of steel, obtained by applying 
Eq. 4.50, are listed in Table 4.3.  It may be noted that the constants given in Table 4.3 
are applicable to all cross−sectional shapes, and remain valid for doubly reinforced 
sections as well. 

Table 4.3  Limiting depth of neutral axis for different grades of steel 

Steel Grade Fe 250 Fe 415 Fe 500 

x du,max  0.5313 0.4791 0.4560 

The limiting depth of neutral axis xu,max corresponds to the so-called balanced 
section, i.e., a section that is expected to result in a ‘balanced’ failure at the ultimate 
limit state in flexure [refer Section 4.5.3].  If the neutral axis depth xu is less than 
xu,max, then the section is under-reinforced (resulting in a ‘tension’ failure); whereas 
if xu exceeds xu,max, it is over-reinforced (resulting in a ‘compression’ failure). 
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4.7.3   Analysis of Singly Reinforced Rectangular Sections 

Analysis of a given reinforced concrete section at the ultimate limit state of flexure 
implies the determination of the ultimate moment of resistance  of the section.  
This is easily obtained from the couple resulting from the flexural stresses 
[Fig. 4.17(c)]: 

MuR

zTzCM uuuR ⋅=⋅=                                         (4.51) 

where  and T  are the resultant (ultimate) forces in compression and tension 
respectively, and  z  is the lever arm. 

Cu u

ststu AfT =                                                 (4.52) 
where  

fst yf= 0 87.                for  x xu u≤ ,max             

and the line of action of T  corresponds to the level of the centroid of the tension 
steel. 

u

Concrete Stress Block in Compression 

In order to determine the magnitude of  and its line of action, it is necessary to 
analyse the concrete stress block in compression.  As ultimate failure of a reinforced 
concrete beam in flexure occurs by the crushing of concrete, for both under- and 
over-reinforced beams, the shape of the compressive stress distribution (‘stress 
block’) at failure will be, in both cases, as shown in Fig. 4.18.  [also refer 
assumptions (b) and (c) in Section 4.7.1].  The value of  can be computed 
knowing that the compressive stress in concrete is uniform at 0.447 f

Cu

Cu

ck for a depth of 
3xu / 7, and below this it varies parabolically over a depth of 4xu / 7 to zero at the 
neutral axis [Fig. 4.18]. 

 

BEAM SECTION 
(truncated) 

b 

xu 

0.0035 

0.002 

STRAINS

0.447 fck 

C1 

C2

0.447fck 

Cu = C1 + C2 

Cu = 0.362 fck b xu 

STRESSES 

(3/ 7)xu 

(4/ 7)xu 
(5/8)×(4/ 7)xu 

(3/14)xu 

x = 0.416 xu 

Fig. 4.18  Concrete stress-block parameters in compression 

For a rectangular section of width b, 
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C f b
x x

u ck
u u= + ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥0 447

3
7

2
3

4
7

. ×   

⇒Cu = 0.362 fck b xu                                               (4.53) 

Also, the line of action of  is determined by the centroid of the stress block, 
located at a distance 

Cu

x  from the concrete fibres subjected to the maximum 
compressive strain.  Accordingly, considering moments of compressive forces Cu, C1 
and C2 [Fig. 4.18] about the maximum compressive strain location, 

( )0 362. f bx xck u × = ( )0.447 f bxck u
3
7

15
7

2
3

4
7

5
8

4
7

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟
+ ×⎛
⎝⎜

⎞
⎠⎟ − ×⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
. x

x
xu

u
u  

Solving, 
x u= 0 416.  x                                                     (4.54) 

Depth of Neutral Axis 

For any given section, the depth of the neutral axis should be such that  = T , 
satisfying equilibrium of forces.  Equating  = , with expressions for  and 

, given by Eq. 4.53 and Eq. 4.52 respectively: 

Cu u

Cu Tu Cu

Tu

x
f A
f bu
y st

ck
=

0 87
0 362

.

.
,        valid only if resulting x xu u≤ ,max     (4.55) 

For the condition  ,  [Fig. 4.17], implying that, at the ultimate 
limit state, the steel would not have ‘yielded’ (as per the proof stress definition

x xu u> ,max ε εst st< *

† for 
fy) and the steel stress cannot be taken as fy sγ  = 0.87fy.  Hence Eq. 4.52 and 
therefore Eq. 4.55 are not applicable.  When the steel has not yielded, the true 
location of the neutral axis is obtained by a trial-and-error method, called strain 
compatibility method, involving the following steps: 

1) Assume a suitable initial (trial) value of  xu

2) Determine ε st  by considering strain compatibility [Eq. 4.49]: 

stε  = 0.0035 ( 1−uxd )                                    (4.56) 

3) Determine the design stress fst corresponding to ε st  using the design 
stress-strain curve [Fig. 3.7, Table 3.2]. 

4) Derive the value of  corresponding to fxu st by considering Tu = fst Ast 
and applying the force equilibrium condition Cu = Tu, whereby  

                                                           
† In the case of low grade mild steel (Fe 250), which has a sharply defined yield point, the steel 
would have yielded and reached fy even at a strain slightly lower than .  In such cases, one 
may find that f

ε st
*

st = 0.87fy even for values of xu slightly in excess of xu,max. 
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x f A
f bu

st st

ck
=

0 362.
                                                   (4.57) 

5) Compare this value of  with the value used in step (1).  If the 
difference between the two values is acceptably small, accept the value 
given by step (4); otherwise, repeat steps (2) to (5) with an improved 
(say, average) value of , until convergence. 

xu

xu

Ultimate Moment of Resistance 

The ultimate moment of resistance MuR of a given beam section is obtainable from 
Eq. 4.51.  The lever arm  z, for the case of the singly reinforced rectangular section 
[Fig. 4.17(d), Fig. 4.18] is given by  

z d xu= − 0.416                                                       (4.58) 

Accordingly, in terms of the concrete compressive strength,  

M f bx duR ck u ux= −0 362 0 416. .( )         for all xu          (4.59) 

Alternatively, in terms of the steel tensile stress, 

( )M f A d xuR st st u= − 0 416.              for all xu               (4.60) 

with  fst = 0.87 fy   for     x xu u≤ ,max

Limiting Moment of Resistance 

The limiting moment of resistance  of a given (singly reinforced, rectangular) 
section, according to the Code (Cl. G−1.1), corresponds to the condition , 
defined by Eq. 4.50.  From Eq. 4.59, it follows that: 

Mu,lim

x xu u= ,max

( )M f bx d xu ck u,lim ,max ,max. .4= −0 362 0 u16                         (4.61) 

⇒ M
f bd

K
x

d
x

d
u

ck

u,lim ,max ,max. .4162 0 362 1 0≡ = ⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

u                  (4.61a) 

The values of the non-dimensional parameter K for different grades of steel [refer 
Table  4.3] are obtained as 0.1498, 0.1389 and 0.1338 for Fe 250, Fe 415 and Fe 500 
respectively. 

Limiting Percentage Tensile Steel  

Corresponding to the limiting moment of resistance , there is a limiting 
percentage tensile steel  = 100×

Mu,lim

pt,lim A bst,lim d .  An expression for  is obtainable 
from Eq. 4.55 with : 

pt,lim

x xu u= ,max
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x
d

f
f

pu y

ck

t,max ,lim.
.

= ×
0 87

0 362 100
 

⇒  p
f
f

x
dt

ck

y

u
,lim

,max.=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛

⎝
⎜

⎞

⎠
⎟4161                                 (4.62) 

The values of  and pt,lim M bdu,lim
2  (in MPa units) for, different combinations of 

steel and concrete grades are listed in Table 4.4.  These values correspond to the so-
called ‘balanced’ section [refer Section 4.5.3] for a singly reinforced rectangular 
section. 

Table 4.4  Limiting values of  and pt,lim M bdu,lim
2  for singly reinforced rectangular 

beam sections for various grades of steel and concrete. 

(a)  pt,lim values 

 M 20 M 25 M 30 M 35 M 40 M 45 M 50 

Fe 250 1.769 2.211 2.653 3.095 3.537 3.979 4.421 

Fe 415 0.961 1.201 1.441 1.681 1.921 2.162 2.402 

Fe 500 0.759 0.949 1.138 1.328 1.518 1.708 1.897 

(b)  Mu,lim/bd2 values (MPa) 

 M 20 M 25 M 30 M 35 M 40 M 45 M 50 

Fe 250 2.996 3.746 4.495 5.244 5.993 6.742 7.491 

Fe 415 2.777 3.472 4.166 4.860 5.555 6.249 6.943 

Fe 500 2.675 3.444 4.013 4.682 5.350 6.019 6.688 

Safety at Ultimate Limit State in Flexure 

The bending moment expected at a beam section at the ultimate limit state due to the 
factored loads is called the factored moment Mu.  For the consideration of various 
combinations of loads (dead loads, live loads, wind loads, etc.), appropriate load 
factors should be applied to the specified ‘characteristic’ loads (as explained in 
Chapter 3), and the factored moment Mu is determined by structural analysis. 

The beam section will be considered to be ‘safe’, according to the Code, if its 
ultimate moment of resistance MuR is greater than or equal to the factored moment 
Mu.  In other words, for such a design, the probability of  failure is acceptably low.  
It is also the intention of the Code to ensure that at ultimate failure in flexure, the 
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type of failure should be a tension (ductile) failure ⎯ as explained earlier.  For this 
reason, the Code requires the designer to ensure that x xu u≤ ,max [Table 4.3], whereby 
it follows that, for a singly reinforced rectangular section, the tensile reinforcement 
percentage pt should not exceed  and the ultimate moment of resistance Mpt ,lim uR 
should not exceed  [Table 4.4].  The Code (Cl. G−1.1d) clearly states: Mu,lim

“If xu /d is greater than the limiting value, the section shall be redesigned.” 

The topic of design is covered in detail in Chapter 5.  The present chapter deals 
with analysis ⎯ and, in analysis, it is not unlikely to encounter beam sections 
(already constructed) in which , whereby  and .  
Evidently, in such ‘over-reinforced’ sections, the strength requirement may be 
satisfied, but not the ductility

p pt t> ,lim x xu u> ,max lim,uuR MM >

† requirement.  The question arises: are such sections 
acceptable ?  The answer, in general, would be in the negative, except in certain 
special situations where the section itself is not ‘critical’ in terms of ductility, and 
will not lead to a brittle failure of the structure under the given  factored loads.  In 
such exceptional cases, where MuR > Mu, and inelastic flexural response‡ is never 
expected to occur under the given factored loads, over-reinforced sections cannot be 
strictly objected to. 

It may be noted that the exact determination of MuR of an over-reinforced section 
generally involves considerable computational effort, as explained in the next 
section.  An approximate (but conservative) estimate of the ultimate moment capacity 
of such a section is given by the limiting moment of resistance, Mu,lim, which can be 
easily computed. 

Variation of M uR with pt  (for singly reinforced rectangular sections) 

pt ≤ pt,lim  

For . it is possible to arrive at a simple closed−form expression for the 

ultimate moment of resistance of a given section with a specified 
x xu u≤ ,max

p pt t≤ ,lim .  First, 

expressing Ast in terms of : pt

A
p bd

st
t=

100
                                                 (4.63) 

and then substituting in Eq. 4.55, 

x
f
f

p d
u

y

ck

t=
0 87

0 362 100
.

.
                                       (4.64) 

Further substituting Eq. 4.63 and Eq. 4.64 in Eq. 4.60, 

                                                           
† The ductility requirement may be partly satisfied in the case of mild steel (Fe 250), even if  
xu  slightly exceeds xu,max; this is explained later with reference to Fig. 4.19.  [See also 
footnote on p 136.] 
‡ for details on ‘plastic hinge’ formation at the ultimate limit state, refer Chapter 9. 
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Fig. 4.19  Variation of (a) MuR /bd2 and (b) fst  with pt  



BEHAVIOUR  IN  FLEXURE 143 

M f
p

bd
f
f

p
uR y

t y

ck

t= −
×⎛

⎝
⎜

⎞

⎠
⎟0 87

100
1 0 0 87

0 362 100
2. .416 .

.
 

⇒ M
bd

f
p f

f
puR

y
t y

ck

t
2 0 87

100
1 1 000

100
= −

⎛

⎝
⎜

⎞

⎠
⎟. .             for p pt t≤ ,lim      (4.65) 

pt > pt,lim  
For †p pt t> ,lim , , whereby the design stress in the tension steel takes a 
value f  which in general is not a constant, and depends on the value of  
[Eq. 4.56]. 

x xu > u,max

st xu

To determine fst, the (trial-and-error) strain compatibility method (described earlier) 
has to be employed.  The final expression, comparable to Eq. 4.65, takes the 
following form: 

M
bd

f
p f

f
puR

st
t st

ck

t
2 100

1 0
0 362 100

= −
⎛

⎝
⎜

⎞

⎠
⎟

.416

.
                          (4.66) 

where fst yf≤ 0 87.  has to satisfy the force equilibrium condition [Eq. 4.57], and the 

strain ε st  corresponding to  [Fig. 3.6, 3.7] must satisfy the strain compatibility 
condition [Eq. 4.56].  For convenience, Eq. 4.57 is re-arranged as follows: 

f st

x
d

f
f

pu st

ck

t=
0 362 100.

                                              (4.67) 

The steps involved in the ‘strain-compatibility method for determining M bduR
2  

for a given , are as follows: pt
1) Assume an initial (trial) value of x du :  say, x du,max ; 

2) Determine ε st  using Eq. 4.56; 
3) Determine fst from ε st  using the design stress-strain curves [Fig. 3.6, 3.7]; 
4) Calculate the new value of x du  using Eq. 4.67; 
5) Compare the new value of x du  with the old value.  If the difference is 

within acceptable tolerance, proceed to step (6); otherwise repeat steps (2) to 
(5) until convergence is attained. 

6) Apply Eq. 4.66 and determine M bduR
2 . 

A quick solution can be obtained by means of a computer program.  The 
relationship between M bduR

2  (expressed in MPa units) and pt is plotted in 
Fig. 4.19(a) for two typical grades of steel (Fe 250 and Fe 415) combined with the 
commonly used grades of concrete (M 20 and M 25).  The corresponding 
relationship between stress  (at the ultimate limit state) and pf st t  is depicted in 

                                                           
† This condition   is not permitted in design.  Its only relevance is in analysis. p pt t> ,lim
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Fig. 4.19(b).  The relatively thick lines represent the under-reinforced condition pt ≤ 
pt,lim (i.e., MuR ≤ MuR,lim), whereas the thin lines denote the over-reinforced condition 
pt > pt,lim (i.e., MuR > MuR,lim), and the transition points are marked by thin vertical 
lines. 

It can be seen that these curves in Fig. 4.19(a) (for the ultimate limit state) bear 
resemblance with the corresponding curves in Fig. 4.13 (for the service load state).  

The gain in MuR  with increase in pt follows a nearly linear relationship almost up to the 
‘balanced’ point.  Also the gain in MuR with higher grades of concrete is marginal for 
low values of pt and becomes pronounced only when pt exceeds pt,lim. 

It may be noted from Fig. 4.19(b) that with the steel percentage limited to pt,lim, as 
ultimate moment of resistance MuR is reached, the steel would have already ‘yielded’ 
(fst = 0.87fy) and gone into the domain of large inelastic strains, thus ensuring a 
ductile response.  For pt > pt,lim, the tension steel would not have ‘yielded’ at the 
ultimate limit state, with the definition of steel strain at balanced condition as 
ε st y sf E* . ( . )= +0 002 0 87  [refer Section 4.7.1].  However, in the case of Fe 250 
steel [Fig. 3.6], it can be seen that ‘yielding’ will actually take place even with a steel 
strain less than .   ε st

*

Hence, in the case of Fe 250 steel, the actual ‘under-reinforced’ (ductile failure) 
behaviour extends to some pt values greater than pt,lim [Fig. 4.19].  However, as 
explained earlier, the use of pt values in this range is not permitted by the Code for 
design purpose. 

It can also be seen that the gain in MuR with pt falls off significantly, and 
somewhat exponentially, beyond the point where fst drops below 0.87 fy.  Beyond the 
‘balanced’ point, there is a stage when the ultimate moment capacity is dictated 
entirely by the compressive strength of concrete, and hence does not depend on the 
grade of steel; in this range,  << ε st ε y , whereby the steel stress is given by fst = 
Es ε st , regardless of the grade of steel, and the same Tu = Ast fst is obtained whether 
Fe 250 or Fe 415 steel is used.  This is indicated by the merging together of the thin 
lines (for a given concrete grade, and for Fe 250 and Fe 415 steel grades) in 
Fig. 4.19(a).   

It is thus evident that over-reinforced sections are undesirable not only from the 
Code perspective of the loss in ductility, but also from the practical viewpoint of 
economy. 

Analysis Aids 

The variation of Mu/bd2 with pt for different grades of concrete and steel (depicted in 
Fig. 4.19) is expressed in tabular form and presented in Tables A.2(a), (b) in 
Appendix A of this book.  As with analysis by WSM [Tables A.1(a), (b)], these 
Tables serve as useful analysis aids.  They enable rapid determination of the ultimate 
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moment capacity of any given singly reinforced rectangular beam section.  The use 
of these Tables is demonstrated in Example 4.11. 

EXAMPLE  4.9 

Determine the neutral axis depth  (at the ultimate limit state) for the beam section 
in Example 4.2. 

xu

SOLUTION 

• Given:  b = 300 mm, d = 550 mm, Ast = 1963 mm2, fy = 415 MPa , fck = 20 MPa  
• For Fe 415 steel, xu,max d = 0.479  [Table 4.3 or Eq. 4.50] 

⇒ xu,max .479= ×0 550 = 263.5 mm 
• Assuming  and applying the force equilibrium condition Cx xu u≤ ,max u = Tu 

xu =
× ×
× ×

0 87 415 1963
0 362 20 300
.
.

 = 326.3 mm (  = 263.5 mm). > xu,max

• As , steel would not have ‘yielded’; accordingly, the ‘strain 

compatibility method’ is adopted to obtain the correct value of . 
x xu u> ,max

xu

First Cycle : 

1) assume xu ≈ +(264 326 2)  = 295 mm; 

2) strain compatibility ⇒ ε st = 0 0035 550
295

1.  −⎛
⎝⎜

⎞
⎠⎟

  = 0.00303; 

3)  f⇒ st = 351.8 + (360.9 – 351.8) 303 276
380 276

−
−

⎛
⎝⎜

⎞
⎠⎟

 = 354.2 MPa [refer Table 3.2, 

for Fe 415] 

4) Cu = Tu ⇒ x fu st= ×
× ×

⎛
⎝⎜

⎞
⎠⎟

1963
0 362 20 300.

 = 354.2 × (0.9038) = 320.1 mm. 

Second Cycle : 

1) assume (320 + 295)/2 = 308 mm xu ≈

2) ⇒ ε st = 0 0035 550
308

1.  −⎛
⎝⎜

⎞
⎠⎟

 = 0.00275; 

3) [Table 3.2]   f⇒ st = 351.5 MPa; 
4)  = 317.7 mm. (xu = ×3515 09038. . )

Third Cycle : 

1) assume   (318 + 308)/2 = 313 mm; xu ≈

2) ⇒ ε st = 0 0035 550
313

1.  −⎛
⎝⎜

⎞
⎠⎟

 = 0.00265; 

3)  ⇒ ( )f st = + − ×
−
−

⎛
⎝⎜

⎞
⎠⎟

342 8 3518 342 8 265 241
276 241

. . .  = 349.0MPa. 
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4)  = 315.4 mm.   (xu = ×349 0 0 9038. . )
The final value of  may be taken as:   = 315 mm. xu xu

EXAMPLE  4.10 

Repeat the problem in Example 4.9, considering Fe 250 grade steel in lieu of Fe 415. 

SOLUTION 

• Given: b = 300 mm, d = 550 mm, Ast = 1963 mm2, fy = 250 MPa , fck = 20 MPa  
• For Fe 250 steel, xu,max d  = 0.5313 [Table 4.3, Eq. 4.50] 

⇒ xu,max  =  =292.2 mm. 0 5313 550. ×

• Assuming , and applying the force equilibrium condition x xu u≤ ,max

xu =
× ×
× ×

0 87 250 1963
0 362 20 300
.
.

 = 196 6. ,max mm < xu  = 292.2 mm. 

Therefore, =196.6 mm. xu

EXAMPLE  4.11 

Determine the ultimate moments of resistance for the beam sections in 
(a) Example 4.9 and (b) Example 4.10. 

SOLUTION 

(a) 

• Given: b = 300 mm, d = 550 mm, Ast = 1963 mm2,  fy = 415 MPa , fck = 20 MPa. 
• = 315  = 263.5 mm (from Example 4.9). xu  mm > xu,max

• Taking moments about the tension steel centroid, 
M f bx d xuR ck u u= − =0 362 0. ( .416 ) 0.362 × 20 × 300 × 315 

× (550 – 0.416 × 315) 
   = 286.6 × 106 Nmm =  287 kNm. 

• Note that MuR can also be calculated in terms of the steel tensile stress fst , which is 
less than 0.87fy ,  as xu > xu,max.  From the last cycle of iteration in Example 4.9, 
the value of fst is obtained as 349 MPa. 

⇒ M f A d xuR st st u= −( .416 )0  = 287 kNm (as before). 

Evidently, it is easier to evaluate MuR in terms of the concrete strength. 

Alternative (using analysis aids) 

pt =
×
×

100 1963
300 550

 = 1.190 

Referring to Table A.2(a) — for M 20 concrete and Fe 415 steel, for pt = 1.190, 
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M
bd

uR
2  = ( . . )3145 3170 2+  = 3.158 MPa 

⇒ MuR = 3.158 × 300× 5502 = 286.6 × 106 Nmm 
      = 287 kNm (exactly as obtained earlier). 

(b) 

• Given: b = 300 mm, d = 550 mm, Ast = 1963 mm2, fy = 250 MPa , fck = 20 MPa 
•  = 196.6 mm <  = 292.2 mm (from Example 4.10) xu xu,max

• Taking moments about the tension steel centroid, 
MuR = × × × × − ×0 362 20 300 196 6 550 0 196 6. . ( .416 . )

x

 
         = 199.9 × 106 Nmm = 200 kNm. 

• Alternatively, as xu < xu,max , it follows that  fst = 0.87fy, and  
M f A duR y st u= −0 87 0. ( .416 )  
         = 0.87 × 250 × 1963 × (550 – 0.416 × 196.6) 
         = 199.6 × 106 Nmm = 200 kNm. 

Alternative (using analysis aids) 

pt = 1.190 (as in the previous case).  
Referring to Table A.2(a) — for M 20 concrete and Fe 250 steel, 
M
bd

uR
2  = ( . . )2 188 2 219 2+  = 2.204 MPa 

⇒ MuR = 2.204 × 300× 5502 = 200.0 × 106 Nmm 
          = 200 kNm (exactly as obtained earlier). 

4.7.4   Analysis of Singly Reinforced Flanged Sections 

Flanged beams (T-beams and L−beams) were introduced in Section  4.6.4, where the 
analysis at service loads was discussed.  The present section deals with the analysis 
of these beam sections at the ultimate limit state. 

The procedure for analysing flanged beams at ultimate loads depends on whether 
the neutral axis is located in the flange region [Fig. 4.20(a)] or in the web region 
[Fig. 4.20(b)]. 

If the neutral axis lies within the flange (i.e., xu ≤ Df ), then ⎯ as in the analysis at 
service loads [refer Section 4.6.4] ⎯ all the concrete on the tension side of the 
neutral axis is assumed ineffective, and the T-section may be analysed as a 
rectangular section of width bf and effective depth d [Fig. 4.20(a)].  Accordingly, 
Eq. 4.55 and Eq. 4.59 are applicable with b replaced by bf . 

If the neutral axis lies in the web region (i.e., xu > Df ), then the compressive 
stress is carried by the concrete in the flange and a portion of the web, as shown in 
Fig. 4.20(b).  It is convenient to consider the contributions to the resultant 
compressive force Cu , from the web† portion (bw × xu) and the flange portion (width 
                                                           
† In the computation of Cuw, the ‘web’ is construed to comprise the portion of the flanged beam 
(under compression) other than the overhanging parts of the flange. 
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bf − bw) separately, and to sum up these effects.  Estimating the compressive force 
Cuw in the ‘web’ and its moment contribution Muw is easy, as the full stress block is 
operative: 

C fuw ck w ub x= 0.362                                              (4.68a) 

( )M C duw uw u= − 0.416 x                                       (4.68b) 

However, estimating the compressive force Cuf in the flange is rendered difficult 
by the fact that the stress block for the flange portions may comprise a rectangular 
area plus a truncated parabolic area [Fig. 4.20(b)].  A general expression for the total 
area of the stress block operative in the flange, as well as an expression for the 
centroidal location of the stress block, is evidently not convenient to derive for such a 
case.  However, when the stress block over the flange depth contains only a 
rectangular area (having a uniform stress 0.447 fck), which occurs when 
3 7x Du f ≥ , 
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Fig. 4.20  Behaviour of flanged beam section at ultimate limit state 

an expression for Cuf and its moment contribution Muf  can easily be formulated.  For 
the case, 1 7 3< <x Du f , an equivalent rectangular stress block (of area 0.447fck yf) 

can be conceived, for convenience, with an equivalent depth yf ≤ Df , as shown in 
Fig. 4.20(c).  The expression for yf  given in the Code (Cl. G − 2.2.1) is necessarily an 
approximation, because it cannot satisfy the two conditions of ‘equivalence’, in terms 
of area† of stress block as well as centroidal location.  A general expression for yf  
may be specified for any  xu > Df: 

                                                           
† It may be noted that the equivalence in terms of area is approximately satisfied at the limiting 
conditions xu / Df = 1, and exactly satisfied at xu / Df = 7/3. 

bf

d
xu >Df

0.447fck 0.447fck

WEB

FLANGE 

Df

fst

0.0035

N.A

εst
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STRAINS STRESSES 

A fstst

Ast

STRAIN
STRESSES 
IN FLANGE 

STRESSES IN 
WEB 

STRAINS STRESSES IN FLANGE
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yf  = 0.15xu+0.65Df
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7
x Du

f<

FLANGE 

Df

0.0035

0.002
xu

0.447fck

Df

4
7
xu

(c)  concept of equivalent flange thickness  yf  for  (Df < xu < 7/3 Df) 
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y
x D x

D x Df
u f u

f u f
=

+ < <

≥

⎧
⎨
⎪

⎩⎪

0 15 0 65 1
7

3

. .     for D 7
3     

                        for        
   f           (4.69) 

The expressions for Cuf and Muf  are accordingly obtained as: 

( )C f b buf ck f w f= −0.447 y f   for           (4.70a) x Du >

( )M C d yuf uf f= − 2                                           (4.70b) 

The location of the neutral axis is fixed by the force equilibrium condition (with yf  
expressed in terms of xu [Eq. 4.70]). 

C C f Auw uf st st+ =                                                  (4.71) 

where fst = 0.87 fy for xu ≤ xu,max.  Where xu > xu,max, the strain compatibility method 
has to be employed to determine  xu. 

Substituting Eq. 4.68a and Eq. 4.70a in Eq. 4.71, and solving for  xu, 

( )
x

f A f b b y

f bu
st st ck f w f

ck w
=

− −0.447

0.362
           for     (4.72) x Du > f

The final expression for the ultimate moment of resistance MuR is obtained as: 

M M MuR uw uf= +                                                   (4.73) 

( ) ( ) ( )⇒ = − + − −M f b x d x f b b y d yuR ck w u u ck f w f f0 362 0 0 2. .416 .447   (4.74) 

Limiting Moment of Resistance 

The limiting moment of resistance Mu,lim is obtained for the condition xu = xu,max, 
where xu,max takes the values of 0.531d, 0.479d and 0.456d for Fe 250, Fe 415 and 
Fe 500 grades of tensile steel reinforcement [refer Table  4.3].  The condition 
xu /Df ≥7/3 in Eq. 4.69, for the typical case of Fe 415, works out, for xu = xu,max, as 
0 7.479d Df ≥ 3 , i.e., D df ≤ 0 205. .  The Code (Cl. G−2.2) suggests a simplified 
condition of D df ≤ 0 2.  for all grades of steel — to represent the condition 

xu /Df ≥ 7/3. 
Eq. 4.74 and Eq. 4.69 take the following forms: 

( )M f b x d xu ck w u u, ,lim max max0.362 0.416= − , +  

( ) ( )0.447  2f b b y d yck f w f f− −     for   (4.75) xu,max > Df

where 
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y
x D

Df
u f

f
=

+
≤

⎧
⎨
⎩

0.15 0.65     for  D d > 0.2  
                               for  D d 0.2    max f

f

,                   (4.76) 

The advantage of using Eq. 4.76 in lieu of the more exact Eq. 4.69 (with xu = 
xu,max) is that the estimation of yf  is made somewhat simpler.  Of course, for  
xu,max ≤ Df   (i.e., neutral axis within the flange), 

( )M f b x d xu ck f u u, ,lim max max0.362 0.416= − , Df      for xu,max ≤       (4.77) 

As mentioned earlier, when it is found by analysis of a given T-section that 
xu > xu,max , then the strain compatibility method has to be applied.  As an 
approximate and conservative estimate, MuR may be taken as Mu,lim, given by 
Eq. 4.76 / 4.77.  From the point of view of design (to be discussed in Chapter 5), 
Mu,lim provides a measure of the ultimate moment capacity that can be expected from 
a T-section of given proportions.  If the section has to be designed for a factored 
moment Mu > Mu,lim , then this calls for the provision of compression reinforcement 
in addition to extra tension reinforcement. 

EXAMPLE  4.12 

Determine the ultimate moment of resistance for the T−section in Example 4.4 

SOLUTION 

• Given: bf = 850 mm, Df = 100 mm, bw = 250 mm, d = 520 mm, Ast = 3695 mm2, 
fy = 250 MPa and fck = 20 MPa 

• xu,max d  = 0.531 for Fe 250 ⇒  = 0xu,max 531 520. ×  = 276.1 mm. 

• First assuming  and x Du ≤ f x xu u≤ ,max , and considering force equilibrium  

Cu = Tu     ⇒  0 362 0 87. .f b x f Ack f u y st=  

⇒
85020362.0
369525087.0
××
××

=ux  = = >130 6.  mm Df  = 100 mm. 

Hence, this calculated value of  is not correct, as xxu u > Df. 
• As , the compression in the ‘web’ is given by x Du > f

xC f buw ck w u= 0 362.  
         = ux××× 25020362.0  = = (1810 ) N xu

• Assuming x Du ≥ 7
3 f

D

 = 233.3 mm, the compression in the ‘flange’ is given by 

( )C f b buf ck f w f= −0 447.  

       ( ) 10025085020447.0 ×−××=   = 536400 N. 
• Also assuming  = 276.1 mm, x xu u≤ ,max

Tu = × ×0 87 250 3695.  = 803662 N. 
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• Applying the force equilibrium condition ( )C C Tuw uf u+ = , 

1810 + 536400 = 803662.⇒  = 147.7 mmxu xu < 7
3 D f   = 233.3 mm. 

Hence, this calculated value of  is also not correct. xu

• As D x Df u< < 7
3 f )

f u f= +0 15 0 65. .

, the depth  of the equivalent concrete stress block 

is obtained as: 

y Df f(≤

y x D  ( )= +0 15 65. xu  mm. 

⇒ C
y

Duf
f

f
= × ⎛

⎝⎜
⎞
⎠⎟

536400  = ( )804 6 348660. xu +  N . 

•  C C Tuw uf u+ =

⇒ ( )1810 804 6 348660x xu u+ +.   = 803662. 

⇒   = 174.0mm < ; hence, the assumption  fxu xu,max st = 0.87 fy is OK. 
⇒ yf = (0.15 × 174.0) + 65.0 = 91.1 mm 

• Taking moments of  and C  about the centroid of tension steel, Cuw uf

( ) ( )M C d x C d yuR uw u uf f= − + −0 2.416  

      = ( ) ( ) ( ) ( )1810 174 0 520 0 174 0 804 6 174 0 348660 520 911 2× × − × + × + × −. .416 . . .  .

           =  = 373 kNm. 

EXAMPLE  4.13 

372 8 106. × Nmm

Repeat the T−section problem in Example 4.12, considering 8 - 28φ bars instead of 

 = 850 mm, D  = 100 mm, b  = 250 mm, d = 520 mm, fy = 250 MPa and 

6 - 28φ bars. 

SOLUTION 

• Given: bf f w

fck = 20 MPa,  Ast =  2)28(8 ××
4
π  = 4926 mm2 

x  = 276.1 mm (as in Exam• ple 4.12) 

First as
u,max

• suming x Du f≤  and x xu u≤ ,max  ,   

85020362.0
49262587.0 ×

=x   = 100 m0
××
×

u m. 

Hence this calculated value of  is not correct. 
• 

x
          = (1810 ) N. 

• 

fD>= mm 1.174

xu

As x Du f> , 

Cuw u= × ×0 362 20 250.  
xu

Assuming  x Du f3≥ 7  = 233.3 mm, 
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( )Cuf = 0 447 0 250 100.  × × − ×20 85

         = 536400 N. 
•  = 276.1 mm, 

 = 10714

• Applying the force e tion

Further assuming x xu u≤ ,max

4925087.0 ××=uT 05 N. 26

quilibrium condi  ( )C C Tuw uf u+ = , 

1810
536400 1071405 −

=x  = 295.6 mm 
u

which implies x Df
7

3  = 233.3u >  mm, but not x xu u≤ ,max  = 276.1 mm. 

Exact So ring strailution (conside n compatibility) 

( )16.2955200035.• Corresponding to xu  = 295.6 mm, 0 −=stε  = 0.00266 

ield for Fe 250,  
[Eq. 4.56] 
which is clearly greater than the strain at y
i.e.,   0 87 250 2 0 10 5. ( . )× ×  = 0.00109. 
Hence tress is inde, the design steel s ed fst = 0.87fy , and the so calculated 
xu  = 295.6 mm is the correct depth of the neutral axis† . 
Accordingly, 

M C d x C d D= −uR uw u uf f+ −( .416 ) ( )0 2  
        ( ) ( ) ( )505205364006.295416.05206.2951810 −×+×−××=  
         =  = 465 kNm  > 

This is the correct estimate of the  of the section; as the 
 Nmm 105.464 6× Mu,lim  

 ultimate moment capacity
steel strain is beyond the yield strain a limited amount of ductile behaviour can also 
be expected.  However, as per the Code, this will not qualify as an admissible under-
reinforced section since xu > xu,max.  [Note that if the ε st  computed had turned out to 
be less than ε y ,  fst < 0.87fy  and a trial-and-error procedure has to be resorted to.] 

Approximate Solution 

• An approximate and conservative solution for MuR can be obtained by limiting xu  
to xu,max  = 276.1 mm, and taking moments of uw  and Cuf  about the centroid 
of the tension steel (Note that, following the Code procedure, 

C

D df = = <100 520 0 192 0 2. .  ⇒ yf = Df  = 100 mm [Eq. 4.76] ). .  Accordingly, 

M MuR u≈ =,lim  ( ) ( )C d x C d Duw u uf f− + −0 2.416 ,max  

( ) ( ) ( 505205364001.276416.05201.2761810 −× )+×−××                        = 

                                                           
† This is a case where, being Fe 250 grade steel with a sharp yield point, the strain at first 
yield, ε y yf E= s , is lower than the strain for the ‘balanced’ condition  specified by the 

Code.  Hence, even though x

ε st
*

u > xu,max, the steel has yielded.  See also footnote on p. 136 and 
Fig. 4.19(b). 
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                      =  = 455 kNm. 

4.7.5   Analy  Reinforced S

Doubly reinforced beam sections (i.e., sections with compression steel as well as 
the analysis at service loads 

beam sections 

Nmm6106.454 ×

sis of Doubly ections 

tension steel) were introduced in Section 4.6.5, where 
was discussed.  The present section deals with the analysis of these 
(rectangular) at the ultimate limit state. 

 b

Asc 

0.0035

d 

xu 
′d

(a)  beam section (b)  strains (c)  stresses (d)  resultant force 

Ast

εsc

ε st

0.447fck

fsc

fst

d d− ′

Cus = fscAsc 
Cuc = 0.362fck bxu 

d – 0.416xu 

Tu = fst Ast 

′d

 

Fig. 4.21  Behaviour of doubly reinforced rectangular section at ultimate limit state 

The distributions of stresses and strains in a ‘doubly reinforced’ rectangular 
se n 
[Fig. 

ction [Fig. 4.21] are similar to those obtained in a ‘singly reinforced’ sectio
4.17], except that there is a stress fsc in the compression steel (area Asc) which 

also needs to be accounted for.  This stress fsc may or may not reach the design yield 
stress 0.87fy, depending on the strain ε sc  in the compression steel.  An expression 
for ε sc  can be easily obtained from strain compatibility [Fig. 4.21(b)]: 

ε sc
u

d
x= × − ′

where  is the distance between the centroid of the
extreme compression fibre in the concrete.  In practice

⎛
⎝⎜

⎞
⎠⎟0 0035 1.                                     (4.78) 

′d  compression steel and the 
, the ratio ′d d  is found to 

vary in the range 0.05 to 0.20.  It can be shown that the compression steel will, in 
most cases, attain the design yield stress (fsc = 0.87fy) in the case of Fe 250 grade 
steel, but is generally unlikely to do so in the case of Fe 415 and Fe 500 (because of 
their higher strains at yield).  Values of the stress fsc (corresponding to xu = xu.max) for 
various grades of steel and ratios of ′d d  are listed in Table 4.5. 

Table 4.5  Value of fsc (in MPa  units) at xu = xu,max — for various ′d d ratios and 
different grades of compression steel 
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′d d  
Grade of steel 
 0.05 0.10 0.15 0.20 

217.5 217.5 217.5 217.5 Fe 250 

Fe 415 355.1 351.9 342.4 329.2 

Fe 500 423.9 411.3 395.1 370.3 

Applying the condition of force equilibrium [Fig. 4.21(d)] 

C C Tuc us u+ =                                                      (4.79) 

wh pressive forces in the 
concrete and the compression steel.  For con
under compression ( b× xu) is assumed to be uc

ere Cuc and Cus denote, respectively, the resultant com
venience, the full area of the concrete 
effective in estimating C .  The force 

in concrete area displaced by steel (equal to Asc, stressed to a level that is exactly or 
nearly equal to 0.447 fck, the stress in concrete) already included in Cuc, is accounted 
for in the estimation of Cus as follows: 

C f bxuc ck u= 0.362                                                (4.80a) 

( )C fus sc= f Ack sc− 0.447                                  (4.80b) 

Tu =fstAst,  where fst = 0.87fy if xu ≤ xu,max.  Acco
xu is obtainable from Eq. 4.79 as: 

rdingly, the depth of the neutral axis 

( )
x

f
f bu

st st sc ck sc=
0 362.

                                      (4.81) 

This equation provides a closed-form

f A f A

ck

− − 0.447

 solution to xu only if fst = 0.87fy and 
fsc= 0.87fy; otherwise, fst and fsc will depend on xu.  In
may be taken as 0.87fy, and then revised, if necessary, employing the strain 
co

d of the tension steel 
[Fig. 4.21(d)] as follows: 

itially the values of fsc and fst 

mpability method.  This is demonstrated in Example 4.15.  
 
Having determined fsc and xu , the ultimate moment of resistance can be calculated 

by considering moments of Cuc and Cus about the centroi

( ) ( )M C d x C d duR uc u us= − + − ′

sistance 

The ‘limiting’ value of MuR, obtained for the condition xu

0.416                                (4.82) 

Limiting Moment of Re

 = xu,max, is given by the 
following expression : 

( )M f bx d xu ck u u,lim ,max ,max= −0.362 0.416 + ( )f f A dsc ck sc− − ′0.447 ( )d   (4.83) 
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where the value of fsc depends on ε sc  (obtainable from Eq. 4.78 and Table 3.2).  For 
convenience, the values of the s fsc (corresponding to xu = xu,max) for various 
grades of steel and ratios of 

tress 
′d d  are listed in Table 4.5.  Linear interpolation

used to determine f  for any value of 
 may be 

sc ′d d  other than the tabulated constants. 

EXAMPLE  4.14 

Determine the ultimate mom of resistance of the doubly reinforced beam section 
of Example 4.6. 

ent 

• b d A 2 f f

SOLUTION 

 Given :  = 300 mm,  = 550 mm, st = 3054 mm , y = 250 MPa and ck = 
20 MPa, d′ = 50 mm, Asc = 982 mm2 

• x du,max .= 0 531  for Fe 250  xu,max =  ⇒ 0 531 550. ×  = 292.1 mm. 
• Assuming f fsc st= = 0.87 f y , and considering force equilibrium : 

C C Tuc us u+ = , with 
( )N 2172300 uu xx20362.0ucC =×  ××=

( ) 98220447.025087.0 ××−  =20×=C 4806 N 
250 305

2172 + 204806 = 664 245 
 xu = 211.5 mm < xu,max = 292.1 mm

Hence, the assumption f   = 0.87f  is j

• Also, 

us

Tu = ×0 87 4.  = 664 245N ×

⇒ xu
⇒ . 

ustified. st y

5102
25087.0

×
×

=ε y( )5.2115010035.0 −=ε = 0.00267 >  sc  = 0.00109 

• 
 fsc = 0.87 fy is also justified. ⇒

Ultimate moment of resistance 
( ) ( )M C d x C d duR = −uc u us+ × − ′0.416

Nm. 

15 

 
= (2172 × 211.5) × (550 – 0.416 × 211.5) + 204806 × (550 – 50) 
= 314.6 × 106 Nmm = 315 k

EXAMPLE  4.

Repeat t . 

SOLUTI

300 mm, d = 550 mm, Ast = 3054 mm2, fy  = 415 MPa and 
’ 2

he problem in Example 4.14, considering Fe 415 instead of Fe 250

ON 

• Given : b = 
fck = 20 MPa, d  = 50 mm, Asc = 982 mm  

•  xumax = 0.479 ×550 = 263.5 mm x d  = 0.479 for Fe 415 ⇒u,max

• Assuming  fsc = fst  = 0.87 × fy , and considering force equilibrium [Eq. 4.81], 
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( ) ( )× × − × − × ×
x =u × ×0 362 20 300.

x

0 8 7.

      = 348.5 mm > 

7 415 3054 0 8 415 0 20 982. .447  

u ,max = 263.5 mm. 
Evidently, the section is over-reinforced. 

Ex dering s tibility) : 

• 

act Solution  (consi train compa

Applying [Eq. 4.81] : ( )
x

f
u

st=
× − f sc − × ×3054

× ×

0 447 20 982
300

.
 

0 362 20.
⇒ ( )x f fu st sc= − +3054 982 8779 2172.  

F

1) Evidently,    263.5 mm < xu < 348.5 mm. 

irst Cycle : 

xu ≈ 1
2

2) Assume (263.5 + 348.5) = 306 mm. 

3) [Eq. 4.78] ⇒  ε sc  = ( )0 0035 1 50 306. −  = 0.00293 

]4) [Eq. 4.56  ⇒ ε st  = ( )0 0035 550 306 1. −  = 0.00279 
5) [Table 3.2] ⇒ ( ) ( )fsc = + − × − −35 8 293 276. (18 360 9 351 380 276. . )  

Pa  
d 

 = 353.3 M
an  ( ) ( ) ( )f st + − −518 360 9 351 76 380 276. .  

6)  =

= × −3 8 279 2.
 = 352.1 MPa  

⇒ xu ( )3054 352 1 982 353 3×. . 8779 2172+  = 339.3 mm. 

Second Cycle : 

Assu

× −

xu ≈ +
1
2

306 339( )1) me  = 323 mm 

 ε sc2) [Eq. 4.78] ⇒  = 0.00296 
] ⇒ ε st  3) [Eq. 4.56 = 0.0024

fsc converged
6 

4) [Table 3.2]  =353.5 MPa  ( ⇒  , insensitive to changes in ) 
f   = 344.1 MPa  

)

xu

and    
5) ⇒ x  = (

st
30 4 1 982 35− ×.u 54 3 5 8779 2172× +.  = 328.0 mm. 

Third Cycle : 

xu

34

 ≈ 1
2

1) (323 + 328) = 325.5 mm 

2)  [Eq. 4.56] ⇒  ε st = 0.00241 

4)  x  =
3) [Table 3.2] ⇒  fst  = 342.8 MPa  

( )3054 342 8 982 3535 8779 2172× − × +. .⇒ u  = 326.2 mm (converged). 
• , q. 4.82, 

R  = (0.362×20×300×326)×(550−0.416×326) +  

Taking x  = 326 mm nd applyingu  a  E

Mu
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(353
6

.5−0.447×20)×982× (550–50) 

(Note : this moment is associated with br

Ap

• xu to xu,max = 263.5 mm,  

         = 462.6×10  Nmm = 463 kNm 

ittle failure). 

proximate Solution 

As an approximate and conservative estimate, limiting 
(ε sc = −0 0035 1 50 263. )5.  = 0.00284 

⇒ fsc  = 352.5 MPa [Table 3.2]. 
[This value is alternativ ble from Table 4.5 for ely obtaina ′ =d d 0 09.  and 
Fe 415.] 
Ac te moment of resistance M  to the ‘limiting 

EX

cordingly, limiting the ultima uR  
moment’ Mu,lim [Eq. 4.83], 

Mu,lim = 0.362 × 20 × 300 × 263.5 × (550–0.416 × 263.5) 
              + (352.5–0.447 × 20) × 982 × (550–50) = 420.7 ×106 Nmm = 421 kNm. 

AMPLE  4.16 

Determine the ultimate moment of resistance of the doubly reinforced section shown 
e M 20 concrete and Fe 415 steel. in Fig. 4.22.  Assum

700

300
2 – 25 φ 45

655

4 – 25 φ  
Fig. 4.22  Example 4.16 

SOLUTION 

• Given : b = 300 mm, d = Pa and fck = 20 MPa 655 mm, ′d = 45 mm, fy = 415 M 

Asc =
π (25 ×)

4 2
2

= 491 × 2 =982 m Ast = 491 × 4 = 1964 mm2 m2, 

• x du ,max  = 0.479 for Fe 415 ⇒  xu, xma

• Assuming (for a fi
Cuc = 0.362 × 20 × 300 × xu
Cus = 7 ×

• Cons

 = 0.479 × 655 = 313.7 mm 

rst approximation) fsc = fst  = 0.87fy , 
 = (2172xu)N 

 (0.87 × 415  –  0.44  20) × 982 = 345772N 
Tu = 0.87 × 415 × 1964 = 709102N 
idering force equilibrium : Cuc + Cus = Tu, 
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2172
x
xu + 345772 = 709102 
u = 167.3 mm < xu,max = 313.7 mm ⇒  

• Evidently, the assumption fst = 0.87fy is justified 
Further, ε sc  = 0 0035 1 45. ( 167 3. )−  = 0.00256 

For Fe 415, ε y = ×2 105  + 0.002 = 0.0038 ×0 87 415.

, t 0.87fAs ε sc  < ε y he assumption fsc = justified, whereby the calculated 
x lso not correct.  The correct value 

has to be obtained iteratively using strain mpatibility. 

• 

y is not 
value of Cus (and hence of u = 167.3 mm) is a

 co

First cycle : 

Assuming ε sc  = 0.00256, 

 256 241
276 241

−
−

fsc = 342.8 + (351.8 – 342.8) ×  = 346.7 MPa 

46 20) × 982 = 331680 N ⇒  Cus = (3 .7 – 0.447 × 

Cuc + Cus = Tu ⇒  −709102  = 173.8 mm 331680
2172

xu =

⇒  ε sc  = 0.0035 ( . )1 45 173 8−  = 0.00259 ≈  0.00256 (calculated earlier) 

• Assumi

Second cycle : 

ng ε sc  = 0.00259, 

51.8 – 342.8) × 259 241
276 241

−
−

fsc = 342.8 + (3  = 347.4 MPa 

47 20) × 982 = 332368 N ⇒  Cus = (3 .4 – 0.447 × 

⇒  xu =
−709102 332368

2172
 = 1 converged) 73.4 mm (

• Tak
Mu Cuc(d – 0.416xu) + C

ing xu = 173.4 mm, 
R = us ( )d d− ′  

= (2172 × 173.4)(655 – 0.416 × 173.4) + 332368 (655 – 45) 
2 kNm 

4.7

As explained earlier, ‘over-reinforced’ sections are undesirable, both from the Code 
viewpoint of lack of ductile failure, as well as the practical viewpoint of loss of 

ary to restrict the depth of the 

max.  If pt ≤ pt,lim, and yet 
co

= 422.3 × 106 Nmm = 42

.6   Balanced Doubly Reinforced Sections  

economy. Hence, from a design viewpoint it is necess
neutral axis to the limit prescribed by the Code [Eq. 4.50]. 

In a singly reinforced rectangular beam, the requirement xu ≤ xu,max can be ensured 
by limiting the tension reinforcement percentage pt ≤ pt,lim where pt,lim (given by 
Eq. 4.62) corresponds to the ‘balanced’ condition xu = xu,

mpression reinforcement is provided (i.e., the beam is ‘doubly reinforced’), then 
evidently the condition xu < xu,max is satisfied. 
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If the section is doubly reinforced with pt > pt,lim and pc > 0, then the requirement 
xu ≤ xu,max, can be ensured by restricting  pt – pt,lim  to a value commensurate with the 
percentage compression reinforcement (pc = 100A  /bd) provided.  Alternatively, 
thi

ced by the compressive force in the concrete C  = 0.362 f  b x , and in the 
lat

sc
s can be ensured by providing adequate compression steel (pc) for a given pt > 

pt,lim.
It is convenient to visualise pt as comprising a component pt,lim [Eq. 4.62] and 

another component ( pt − pt,lim);  the tensile force in the former is visualised as being 
balan uc ck u,max 

ter by the compressive force in the compression steel Cus alone.  Accordingly, 
considering force equilibrium in the latter parts, and denoting the value of pc for 
‘balanced’ section a pc

* : 

0 87
100

.
( ),f
p p bd

y
t t l−

=im ( .447 )
*

f f p bdc− 0  sc ck 100

 = ⇒ pc
* ( )0 870

0
.

.447 ,
f

f f
p py

sc ck
t t−
− lim                   for xu = xu,max   (4.84) 

where fsc is obtainable from Table 4.5. 
It also follows that if the actual pc  provided in a

 is ‘under-reinforced’.  On the other 

u,lim

 beam section exceeds p* (given c

by Eq. 4.84), then xu < xu,max, and hence the beam
hand, if p  < p* , then the beam is ‘ovc c er-reinforced’.  For example, in the beam of 

Example 4.14, pc
*  works out to 0.547, whereas the pc provided is 0.595 > pc ; hence, 

the beam is ‘under-reinforced’.  However, in Example 4.15, pc
* works out to 0.914 

while p

*

c provided remains at 0.595; hence, pc < pc
*  and the beam is ‘over-

reinforced’. 
In the case of a ‘balanced’ section an expression for MuR = M –DR can be 

derived in terms of the percentage tensile steel (pt ) as follows: 

M fu DR y, ( . )lim− = 0 87
p bd

d x
p p bd

d dt l
u

t t,
,

,( .416 )
( )

( )im
max

lim  
100

0
100

− +
−

− ′
⎡

⎣
⎢

⎤
⎥  
⎦

⇒ ( )M

bd
fu DR

y
, .lim− =2 087

( ) ( )p x
d

p p d
d

t u t t, , ,lim.416lim max

100
1 0

100
1−

⎛
⎝⎜

⎞
⎠⎟
+

−
− ′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     (4.85) 

where the additional subscript ‘DR’ (for doubly reinforced section) is inse
avoid confusion with the Mu,lim defined earlier for the singly reinforced sec
corresponding percentage compression steel pc = s as given by Eq. 4.84. 

rted — to 
tion.  The 

pc
*  i
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4.8   ANALYSIS OF SLABS AS RECTANGULAR BEAMS 

Slabs under flexure behave in much the same way as beams.  A slab of uniform 
thickness subject to a bending moment uniformly distributed over its width 
[Fig. 4.23] may be treated as a wide shallow beam for the purpose of analysis and 
design. 

 
TYPICAL STRIP 

1m WIDE 

Mu   per 
m width 

(a)  slab

A
s

Ast b=
1000

(b)  cross section

s s

(mm)Ab =
πφ2

4
( )mm 2  

1000 mm 

(c)  design strip 

Ab 

s 

(d) rectangular beam bending

cross section 
after bending 

Induced 
secondary 

moments in 
transverse 
direction for 
cylindrical 
bending (e)  design strip, subject to 

primary bending one-way 

s

Restraint offered by 
slab on either side 

 

Fig. 4.23  Analysis of slabs 

In such slabs, the reinforcing bars are usually spaced uniformly over the width of 
the slab.  For convenience, computations are generally based on a typical one-metre 
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wide strip of the slab considered as a beam [Fig. 4.23(c)], i.e., with b = 1000 mm.  
The loads are generally uniformly distributed† and expressed in units of kN/m2.  

If s is the centre-to-centre spacing of bars in mm, then the number of bars in the 1-
metre wide strip is given by 1000/s.  Accordingly, denoting Ab as the cross-sectional 
area of one bar (equal to πφ2/4), the area of tensile steel (Ast), expressed in units of  
mm2/m, is given by  

sAA bst 1000=                                                    (4.86) 

In practice, reinforced concrete slabs are generally under-reinforced and singly 
reinforced.  In the example to follow, the analysis of a typical slab is undertaken to 
determine the moment resisting capacity at working loads as well as at the ultimate 
limit state. 

4.8.1   Transverse Moments in One-way Slabs  

Although a one-metre wide strip of the slab is considered as a beam of width 
b = 1000 mm for the analysis/design for flexural strength, there is a difference which 
the student will do well to bear in mind.  As a beam bends (sags), the portion of the 
section above the neutral axis is under compression and hence subjected to a lateral 
expansion due to the Poisson effect.  Similarly, the part below the NA is subjected to 
a lateral contraction.  Hence, after bending, the cross section will strictly not be 
rectangular, but nearly‡ trapezoidal, as shown (greatly exaggerated) in Fig. 4.23(d).  
In the case of a one-way slab, for a design strip such as shown in Fig. 4.23(c, e), such 
lateral displacements (and hence strains) are prevented by the remainder of the slab 
on either side (except at the two edges).  In other words, in order for the rectangular 
section to remain rectangular even after bending (as a slice of a long cylindrically 
bent surface, with no transverse curvature, should be), the remainder of the slab 
restrains the lateral displacements and strains, by inducing lateral stresses on the 
design strip as shown in Fig. 4.23(e).  This is known as the ‘plain strain’ condition 
[Ref. 4.1].  These lateral stresses give rise to secondary moments in the transverse 
direction as shown in Fig. 4.23(e).  

Hence, even a one-way slab will need (‘secondary’) reinforcements in the 
transverse direction to resist these secondary moments.  Furthermore, bending 
moments in the transverse direction are generated locally when the slab is 
subject to concentrated loads.  Also, shrinkage and temperature effects 
introduce secondary stresses which require transverse reinforcement.   

                                                           
† When concentrated loads act on a one-way slab, the simplified procedure given in Cl. 24.3.2 
of the Code may be adopted. 
‡ To be exact, just as the beam undergoes a ‘sagging’ curvature along the span, there will be a 
‘hogging’ (‘anticlastic’) curvature in the transverse direction.  Thus the top surface will be 
curved rather than straight [see Ref. 4.1]. 
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EXAMPLE  4.17 

Determine (a) the allowable moment (at service loads) and (b) the ultimate moment 
of resistance of a 150 mm thick slab, reinforced with 10 mm φ bars at 200 mm 
spacing located at an effective depth of 125 mm.  Assume M 20 concrete and Fe 415 
steel. 

SOLUTION 

• Given : d = 125 mm, fy =415 MPa and fck = 20 MPa, and  

( )
Ast =

×1000 10 4

200

2π
 = 393  mm2/m. 

a) Analysis at working loads : 

For M 20 concrete, σ cbc  = 7.0 MPa and  m = 13.33. 

For Fe 415 steel, σ st  = 230 MPa and kb
st

=
+

280
280 3σ

 = 0.289. 

The neutral axis depth kd is obtained by considering moments of areas in the 
transformed−cracked section [Eq. 4.12], and considering b = 1000 mm 

( )1000 22× kd  = 13.33 × 393 × (125 – kd) 
Solving, kd = 31.33 mm < kbd = 0.289 × 125 = 36.1 mm 
Hence, the section is ‘under−reinforced (WSM)’. 
⇒ fst st= σ  = 230 MPa 

( )M A d kdall st st= −σ 3  
          = 230 × 393 × (125 – 31.33/3) 
           = 10.35 × 106 N mm/m = 10.4 kNm/ m. 

b) Analysis at ultimate limit state  

For Fe 415 steel, xu,max = 0 479 125. ×  = 59.9 mm  
• Assuming xu ≤ xu,max, and considering C Tu u= , 

x
f A

f bu
y st

ck
=

0 87
0 362

.

.
 = 0 87 415 393

0 362 20 1000
.

.
× ×
× ×

 = 19.60 mm < xu,max

Accordingly, 
( )M f bx duR ck u u= −0 362 0 416. . x  

         = ( )0 362 20 1000 19 60 125 0 19 60. . .416 .× × × × − ×  
         = 16.58 × 106 N mm/m = 16.6 kNm/m 

• Alternatively, 

pt =
×
×

100 393
1000 125

 = 0.314 < pt,lim = 0.961 [Table 4.4] 

Applying Eq. 4.65, or using analysis aids [Table A.2(a)], 
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M
bd

uR
2 = 0 87 415 0 314

100
1 415

20
0 314
100

. .
× × × − ×⎛

⎝⎜
⎞
⎠⎟

.  = 1.060 MPa  

⇒ MuR = × ×1060 1000 1252.  = 16.56 × 106 Nmm/m = 16.6 kNm/m. 

REVIEW QUESTIONS 

4.1 What is the fundamental assumption in flexural theory?  Is it valid at the 
ultimate state? 

4.2 Explain the concept of ‘transformed section’, as applied to the analysis of 
reinforced concrete beams under service loads.  

4.3 Why does the Code specify an effectively higher modular ratio for compression 
reinforcement, as compared to tension reinforcement?  

4.4 Justify the assumption that concrete resists no flexural tensile stress in 
reinforced concrete beams.  

4.5 Describe the moment-curvature relationship for reinforced concrete beams.  
What are the possible modes of failure?  

4.6 The term ‘balanced section’ is used in both working stress method (WSM) and 
limit state method (LSM).  Discuss the difference in meaning.  

4.7 Why is it undesirable to design over-reinforced sections in (a) WSM, (b) LSM?  
4.8 The concept of locating the neutral axis as a centroidal axis (in a reinforced 

concrete beam section under flexure) is applied in WSM, but not in LSM.  
Why?  

4.9 Why is it uneconomical to use high strength steel as compression reinforcement 
in design by WSM?  

4.10 Justify the Code specification for the limiting neutral axis depth in LSM.  
4.11 “The ultimate moment of resistance of a singly reinforced beam section can be 

calculated either in terms of the concrete compressive strength or the steel 
tensile strength”.  Is this statement justified in all cases?  

4.12 Compute and plot the ratio 
all

uR

M
M

 for a given singly reinforced beam section 

for values of pt in the range 0.0 to 2.0, considering combinations of (i) M 20 
and Fe 250 and (ii) M 25 and Fe 415.  (Refer Figs 4.13 and 4.19).  Comment on 
the graphs generated, in terms of the safety underlying beam sections that are 
designed in accordance with WSM. 

4.13 Define “effective flange width”. 
4.14 What are the various factors that influence the effective flange width in a T-

beam?  To what extent are these factors accommodated in the empirical 
formula given in the Code? 

4.15 Is it correct to model the interior beams in a continuous beam-supported slab 
system as T-beams for determining their flexural strength at all sections?  
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4.16 Discuss the variation of the ultimate moment of resistance of a singly 
reinforced beam of given rectangular cross-section and material properties with 
the area of tension steel.  

4.17 Explain how the neutral axis is located in T-beam sections (at the ultimate limit 
state), given that it lies outside the flange.  

4.18 Given percentages of tension steel (pt) and compression steel (pc) of a doubly 
reinforced section, how is it possible to decide whether the beam is under-
reinforced or over-reinforced (at the ultimate limit state)?  

4.19 Show that the procedure for analysing the flexural strength of reinforced 
concrete slabs is similar to that of beams.  

4.20 What are the significant differences between the behaviour in bending of a 
beam of rectangular section and a strip of a very wide one-way slab? 

4.21 Why is it necessary to provide transverse reinforcement in a one-way slab? 
4.22 “A reinforced concrete beam can be considered to be safe in flexure if its 

ultimate moment of resistance (as per Code) at any section exceeds the factored 
moment due to the loads at that section”.  Explain the meaning of safety as 
implied in this statement.  Does the Code call for any additional requirement to 
be satisfied for ‘safety’?  

4.23 If a balanced singly reinforced beam section is experimentally tested to failure, 
what is the ratio of actual moment capacity to predicted capacity (as per Code) 
likely to be?  (Hint: to estimate actual strength, no safety factors should be 
applied; also, there is no effect of sustained loading). 

PROBLEMS 

4.1 A beam has a rectangular section as shown in Fig. 4.24.  Assuming M 20 
concrete and Fe 250 steel, 
(a)  compute the stresses in concrete and steel under a service load moment of 
125 kNm.  Check the calculations using the flexure formula. 

[Ans. : 4.84 MPa; 499.0 MPa] 
(b)  determine the allowable moment capacity of the section under service 
loads.  Also determine the corresponding stresses induced in concrete and steel. 

[Ans. : 164 kNm; 6.35 MPa; 130 MPa]  
 

4.2 Determine the allowable moment capacity of the beam section [Fig. 4.24] of 
Problem 4.1, as well as the corresponding stresses in concrete and steel (under 
service loads), considering 
(i)    M 20 concrete and Fe 415 steel; 

[Ans. : 181 kNm; 7.00 MPa; 143 MPa]  
(ii)   M 25 concrete and Fe 250 steel. 

[Ans. : 164 kNm; 6.35 MPa; 130 MPa]  
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 350

700

2 – 28 φ

2 – 25 φ

Fig. 4.24  Problems 4.1 – 4.3 

30 clear cover

 
4.3 Determine the ultimate moment of resistance of the beam section [Fig. 4.24] of 

Problem 4.1, considering 
(i)    M 20 concrete and Fe 250 steel; 

[Ans. : 278 kNm] 
(ii)   M 20 concrete and Fe 415 steel; 

[Ans. : 420 kNm] 
(iii)  M 25 concrete and Fe 250 steel; 

[Ans. : 285 kNm] 
(iv)   M 25 concrete and Fe 415 steel. 

[Ans. : 440 kNm] 

Compare the various results, and state whether or not, in each case, the beam 
section complies with the Code requirements for flexure. 

 

700

300

4 – 25 φ

Fig. 4.25  Problems 4.4 – 4.5

655

 
4.4 A beam carries a uniformly distributed service load (including self-weight) of 

38 kN/m on a simply supported span of 7.0 m.  The cross-section of the beam is 
shown in Fig. 4.25.  Assuming M 20 concrete and Fe 415 steel, compute 

   (a)  the stresses developed in concrete and steel at applied service loads; 
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[Ans. : 10.4 MPa; 209 MPa]  
   (b)  the allowable service load (in kN/m) that the beam can carry (as per the 
          Code).           [Ans. : 25.5 kN/m] 

4.5 Determine the ultimate moment of resistance of the beam section [Fig. 4.25] of 
Problem 4.4.  Hence, compute the effective load factor (i.e., ultimate 
load/service load), considering the service load of 38 kN/m cited in 
Problem 4.4. 

[Ans. : 366 kNm; 1.57]  

4.6 The cross-sectional dimensions of a T- beam are given in Fig. 4.26.  Assuming 
M 20 concrete and Fe 415 steel, compute : 

(a) the stresses in concrete and steel under a service load moment of 
150 kNm; 

[Ans. : 4.30 MPa; 92.9 MPa]  
(b)  the allowable moment capacity of the section at service loads. 

[Ans. : 244 kNm]  

1300
100

325

7 – 28 φ

420

325

7 – 25 φ

1000
100

Fig. 4.26  Problems 4.6 – 4.7 Fig. 4.27  Problems 4.8 – 4.9

d = 420 500

 
4.7 Determine the ultimate moment of resistance of the T - beam section [Fig. 4.26] 

of Problem 4.6. 
[Ans. : 509 kNm]  

4.8 Assuming M 25 concrete and Fe 415 steel, compute the ultimate moment of 
resistance of the L - beam section shown in Fig. 4.27. 

[Ans. : 447 kNm]  

4.9 Determine the ultimate moment of resistance of the L- section [Fig. 4.27] of 
Problem 4.8, considering Fe 250 grade steel (in lieu of Fe 415). 

[Ans. : 288 kNm]  

4.10 A doubly reinforced beam section is shown in Fig. 4.28.  Assuming M 20 
concrete and Fe 415 steel, compute 

(a) the stresses in concrete and steel under a service load moment of 
125 kNm; 

[Ans. : 11.7 MPa; 170 MPa; 218 MPa]  
(b) the allowable service load moment capacity of section. 
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[Ans. : 74.6 kNm]  
4.11 Determine the ultimate moment of resistance of the beam section [Fig. 4.28] of 

Problem 4.10. 
[Ans. : 201 kNm]  

250

400

30 clear

30 clear

3 – 22 φ

3 – 28 φ

M 20 concrete
Fe 415 steel

 
Fig. 4.28  Problems 4.10 – 4.12 

4.12 Repeat Problem 4.11, considering the compression bars to comprise 3 – 20 φ 
(instead of 3 – 22 φ, as shown in Fig. 4.28). 

[Ans. : 196 kNm]  

4.13 Determine (a) the allowable moment (at service loads) and (b) the ultimate 
moment of resistance of a 100 mm thick slab, reinforced with 8 mm φ bars at 
200 mm spacing located at an effective depth of 75 mm.  Assume M 20 
concrete and Fe 415 steel. 

[Ans. : (a) 4.21 kN/m; 
(b) 6.33 kN/m] 

4.14 A simply supported one–way slab has an effective span of 3.5 metres.  It is 150 
mm thick, and is reinforced with 10 mm φ bars @ 200 mm spacing located at 
an effective depth of 125 mm.  Assuming M 20 concrete and Fe 415 steel, 
determine the superimposed service load (in kN/m2) that the slab can safely 
carry  (i) according to WSM , and (ii) according to LSM (assuming a load 
factor of 1.5).  

[Ans. : (i) 3.01 kN/m2; 
(ii) 3.46 kN/m2] 
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          5 
      Design of Beams and 
      One-Way Slabs for Flexure 

 

5.1   INTRODUCTION 

In the previous chapter, the behaviour of reinforced concrete beams (and one-way 
slabs) was explained, and procedures given for the analysis of sections.  Analysis of 
beam sections may involve calculations of (1) stresses under known service load 
moments, (2) allowable service load moments Mall (working stress method) and 
(3) ultimate moment of resistance MuR (limit states method).  It may be noted that the 
results of the analysis of a given beam section are unique, being dictated solely by the 
conditions of equilibrium of forces and compatibility of strains.  On the basis of these 
computations, it is possible to decide whether or not the beam is ‘safe’ under known 
moments. 

The design problem is somewhat the reverse of the analysis problem.  The 
external loads (or load effects), material properties and the skeletal dimensions of the 
beam are given, and it is required to arrive at suitable cross-sectional dimensions and 
details of the reinforcing steel, which would give adequate safety and serviceability.  
In designing for flexure, the distribution of bending moments along the length of the 
beam must be known from structural analysis.  For this, the initial cross-sectional 
dimensions have to be assumed in order to estimate dead loads; this is also required 
for the analysis of indeterminate structures (such as continuous beams).  The 
adequacy of the assumed dimensions should be verified and suitable changes made, 
if required. 

Unlike the analysis problem, the design problem does not have a unique solution 
because the flexural strength of a section is dependent on its width and effective 
depth, and on the area of reinforcement; and there are several combinations of these 
which would give the required strength.  Different designers may come up with 
different solutions, all of which may meet the desired requirements.   
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Of course, it is possible to conceive of an ‘optimal’ solution — by formulating the 
problem as an optimisation problem† [Ref. 5.1].  However, such a mathematically 
intensive procedure is not commonly adopted, nor warranted in standard design 
practice.  

A complete design of a beam involves considerations of safety under the ultimate 
limit states in flexure, shear, torsion and bond, as well as considerations of the 
serviceability limit states of deflection, crack-width, durability etc. 

The present chapter focuses on the considerations of safety under the ultimate 
limit state of flexure alone. Considerations of other limit states are covered in detail 
in subsequent chapters.  However, some acceptance criteria under serviceability limit 
states are introduced indirectly, such as by specifying limiting span/depth ratios (for 
deflection control) and clear cover to reinforcement (for durability). 

The traditional working stress method (WSM) of design is not considered here, as it 
is no longer used in practice, being superseded by the limit states method (LSM) of 
design.  WSM is no longer recommended by most international Codes on reinforced 
concrete design.  In the recent (2000) revision of the Code (IS 456), the provisions 
relating to the WSM design procedure, as an alternative to LSM, have been relegated 
from the main text of the Code to an Annexure (Annex B).  It is generally not used in 
practice — except in the design of liquid retaining structures and bridges.  However, 
most modern codes insist on LSM even for such structures, where the serviceability 
limit state of cracking is a major criterion; crack-widths are best directly controlled (as 
in LSM), rather than indirectly by permissible stresses in steel and concrete (as in 
WSM). 

Prior to taking up problems related to design in flexure, it is necessary to have first 
an understanding of the requirements related to the placing of flexural reinforcement, 
control of deflection, as well as other guidelines for the selection of member sizes.  
These are discussed in the following sections. 

5.2   REQUIREMENTS OF FLEXURAL REINFORCEMENT 

5.2.1   Concrete Cover 

Clear cover is the distance measured from the exposed concrete surface (without 
plaster and other finishes) to the nearest surface of the reinforcing bar.  The Code 
(Cl. 26.4.1) defines the term nominal cover as “the design depth of concrete cover to 
all steel reinforcements, including links”.  This cover is required to protect the 
reinforcing bars from corrosion and fire, and also to give the reinforcing bars 
sufficient embedment to enable them to be stressed without ‘slipping’ (losing bond 
with the concrete).  As mentioned earlier, the recent revision in the Code with its 
emphasis on increased durability, has incorporated increased cover requirements, 
based on the severity of the environmental exposure conditions (refer Table 2.1).  

                                                           
† i.e., suitably defining an ‘objective function’ and various ‘constraints’, involving economy, 
deflection control, crack control, ductility requirements, headroom limitations, reinforcement 
percentage limits, etc., and a set of variables such as width, depth, material properties, area of 
reinforcement, etc. 
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The ‘nominal cover’ to meet durability requirements, depending on exposure 
condition, are summarised in Table 5.1.  

As corrosion of reinforcing bars is a common and serious occurrence, it is 
advisable to specify liberal clear cover in general (particularly in excessively wet and 
humid environments, and in coastal areas).  It may be noted that in actual 
construction, the clear cover obtained may be (and often is) less than the specified 
clear cover; however, this should be within the tolerance allowed and appropriate 
allowance should be made for such errors in construction.  In this context, it is 
important to note the revised tolerance specified in IS 456 (2000), according to which 
the maximum deviation in clear cover from the value specified by the designer are 
“+10 mm and –0 mm†”. 

Table 5.1  Nominal cover requirements based on exposure conditions  

Exposure 
Condition 

Minimum 
Grade 

Nominal 
Cover (mm) 

Allowance permitted 

Mild M 20 20 Can be reduced by 5mm for main 
rebars less than 12mm dia  

Moderate M 25 30 . 
Severe M 30 45 
Very severe M 35 50 

} Can be reduced by 5mm if concrete 
} grade is M35 or higher 

Extreme M 40 75 . 
 

The clause in the earlier version of the Code, limiting the maximum clear cover in 
any construction to 75 mm has, for some reason, been eliminated in the revised code.  
The general message underlying the revised recommendations in the code pertaining 
to clear cover seems to be: “the more the cover, the more durable the concrete”.  
Unfortunately, the code does not also convey the message that the provision of very 
large covers (100 mm or more) is undesirable, and can be counter-productive, causing 
increased crack-widths, particularly in flexural members (such as slabs and beams).  
Large crack-widths (greater than 0.3 mm) permit the ingress of moisture and chemical 
attack to the concrete, resulting in possible corrosion to reinforcement and 
deterioration of concrete.  There is little use in providing increased cover to 
reinforcement, if that cover is cracked, and the likelihood of cracking increases with 
increased cover.  It is therefore necessary to impose an upper limit to clear cover 
(usually 75 mm), and to enforce the checking for the limit state of cracking when large 
covers are provided (Ref. 5.2).   

It may be noted that in the earlier version of the Code, the clear cover 
requirements were based on the type of structural element (for example, 15 mm in 
slabs, 25 mm in beams, 40 mm in columns, etc.).  The clear cover specifications are 
now made applicable for all types of structural elements.  However, certain minimum 
clear cover requirements have been specified in Cl. 26.4.2.1 of the Code for columns 

                                                           
† i.e., no reduction in clear cover is permitted; an increase in clear cover up to 10 mm above 
the specified nominal cover is allowed. 
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(for longitudinal bars, 40 mm in general) and in Cl. 26.4.2.2 for footings (50 mm in 
general).  These are discussed in Chapters 13 and 14.  

In addition, the Code has introduced nominal cover requirements, based on fire 
resistance (in terms of hours) required.  These provisions have been apparently 
borrowed from BS 8110.  They are described in Cl. 26.4.3 of the Code.  In general, 
for a nominal 1 hour fire resistance, the nominal cover specified is 20 mm for beams 
and slabs, and 40 mm for columns.  Larger cover is required only if the structural 
element under consideration has to be specially designed for fire resistance. 

5.2.2   Spacing of Reinforcing Bars 

The Code specifies minimum and maximum limits for the spacing between parallel 
reinforcing bars in a layer.  The minimum limits are necessary to ensure that the 
concrete can be placed easily in between and around the bars during the placement of 
fresh concrete.  The maximum limits are specified for bars in tension for the purpose 
of controlling crack-widths and improving bond. 

The minimum spacing limits can be met without difficulty in slabs in general, 
because of the large widths available and the relatively low percentage of flexural 
reinforcement required.  However, in the case of beams, which have limited widths 
and are required to accommodate relatively large areas of flexural reinforcement, the 
minimum spacing requirements can sometimes govern the selection of the widths of 
the beams.  If all the reinforcing bars cannot be accommodated in a single layer with 
the necessary clearance between the bars and the clear cover on the two sides 
[Fig. 5.1], the options are: 

• to increase the beam width; 
• to place the bars in two or more layers, properly separated [Fig. 5.1(a)]; 

and 
• to bundle groups of parallel bars (two, three or four bars in each 

bundle) [Fig. 5.1(c)]. 
While fixing the overall size of the beam or the thickness of the slab, it is 

desirable to use multiples of 5 mm for slabs and 50 mm (or 25 mm) for beams.  This 
will be convenient in the construction of the formwork.  The requirements for 
placement of flexural reinforcement are described in Cl. 26.3 of the Code.  The 
salient features of these specifications are summarised in Fig. 5.1.  The student is 
advised to read the relevant clauses in the Code, while studying Fig. 5.1.  The 
requirements for singly reinforced beams, slabs and doubly reinforced beams are 
depicted in parts (a), (b) and (c) respectively of Fig. 5.1. 

Stirrups provided in beams serve as transverse shear reinforcement [refer 
Chapter 6].  In singly reinforced beams, they may be provided as U-shaped stirrups, 
with two hanger bars at top [Fig. 5.1(a)].  However, it is more common to provide 
fully closed rectangular stirrups [Fig. 5.1(c)], for both singly and doubly reinforced 
sections; this is mandatory in the latter case for the effective functioning of the 
compression steel.  Stirrups required for resisting torsion must also be of the closed 
form [refer Chapter 7]. 
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(d) Fig. 5.1  Code requirements for flexural reinforcement placement 
In addition to the requirements indicated in Fig. 5.1, the Code specifies limits to 

the maximum spacing of tension reinforcing bars for crack control [refer Table 15 of 
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several small-diameter bars (that are well distributed in one or more layers in the 
extreme tension zone) is more effective in controlling cracks and improving bond 
than providing fewer bars of larger diameter.  For this reason, the Code (Cl. 26.5.2.2 
& 26.3.3b) limits the maximum diameter of reinforcing bars in slabs to one-eighth of 
the total thickness of the slab, and the maximum spacing of such main bars to 3d or 
300 mm (whichever is less) [Fig. 5.1(b)].  However, it may be noted that when large 
cover is provided, more stringent bar spacing may be required to achieve the desired 
crack control [Ref. 5.2]. 

Furthermore, in relatively deep flexural members, a substantial portion of the web 
will be in tension.  Tension reinforcement properly distributed will, no doubt, control 
the crack width at its level; however, wider cracks may develop higher up in the web.  
Moreover, as explained in Section 2.12, cracking can occur in large unreinforced 
exposed faces of concrete on account of shrinkage and temperature variations.  In 
order to control such cracks, as well as to improve resistance against lateral buckling 
of the web [Ref. 5.3], the Code (Cl. 26.5.1.3) requires side face reinforcement to be 
provided along the two faces of beams with overall depth exceeding 750 mm: 

“the total area of such reinforcement shall be not less than 0.1 percent of 
the web area and shall be distributed equally on two faces at a spacing not 
exceeding 300 mm or web thickness whichever is less” 

5.2.3   Minimum and Maximum Areas† of Flexural Reinforcement 

A minimum area of tension reinforcing steel is required in flexural members not only 
to resist possible load effects, but also to control cracking in concrete due to 
shrinkage and temperature variations. 

Minimum Flexural Reinforcement in Beams 

In the case of beams, the Code (Cl. 26.5.1.1) prescribes the following: 

y

st

fbd
A 0.85)( min =                                                   (5.1) 

which gives 
bd
A

p st
t

min
min

)(100
)( ≡  values equal to 0.340, 0.205 and 0.170 for Fe 250, 

Fe 415 and Fe 500 grades of steel respectively.  In the case of flanged beams, the 
width of the web bw should be considered in lieu of b. 

It can be shown that the (Ast)min given by Eq. 5.1 results in an ultimate moment of 
resistance that is approximately equal to the ‘cracking moment’ of an identical plain 
concrete section.  Thus, the minimum reinforcement requirement ensures that a 
sudden failure is avoided at M = Mcr. 

Minimum Flexural Reinforcement in Slabs 

                                                           
† The limits specified here (as per IS 456) are applicable to reinforced concrete flexural 
members in general.  However, for earthquake-resistant design (‘ductile detailing’), different 
limits are applicable; this is described in Chapter 16. 
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As specified in Cl. 26.5.2, the minimum reinforcement (Ast)min in either direction in 
slabs is given by  

⎩
⎨
⎧

=
 415 Fefor    0012.0 

250 Fefor    0015.0
)( min

g

g
st A

A
A                                      (5.2) 

where Ag denotes the gross area of the section (b×D).   
In the design of one-way slabs, this minimum reinforcement is also to be provided 

for the secondary (or distributor) reinforcement (refer Section 4.8.1) along the 
direction perpendicular to the main reinforcement†, with the spacing of such bars not 
exceeding 5d or 450 mm (whichever is less) [Fig. 5.1(b)].  It may be noted that in the 
case of slabs, sudden failure due to an overload is less likely owing to better lateral 
distribution of the load effects.  Hence, the minimum steel requirements of slabs are 
based on considerations of shrinkage and temperature effects alone, and not on 
strength.  Accordingly, the specified value of (pt)min is somewhat smaller in the case 
of slabs, compared to beams.  However, for exposure conditions where crack control 
is of special importance, reinforcement in excess of that given by Eq. 5.2 should be 
provided. 

Maximum Flexural Reinforcement in Beams 

Providing excessive reinforcement‡ in beams can result in congestion (particularly at 
beam-column junctions), thereby adversely affecting the proper placement and 
compaction of concrete.  For this reason, the Code (Cl. 26.5.1) restricts the area of 
tension reinforcement (Ast) as well as compression reinforcement (Asc) in beams to a 
maximum value of 0.04 bD.  If both Asc and Ast are provided at their maximum 
limits, the total area (Asc + Ast) of steel would be equal to 8 percent of the gross area 
of the beam section; this is rather excessive.  It is recommended that such high 
reinforcement areas should be generally avoided by suitable design measures.  These 
include: 

• increasing the beam size (especially depth); 
• improving the grades of concrete and steel. 

5.3   REQUIREMENTS FOR DEFLECTION CONTROL 

Excessive deflections in slabs and beams are generally undesirable as they cause 
psychological discomfort to the occupants of the building, and also lead to excessive 
crack-widths and subsequent loss of durability and ponding in roof slabs. 

The selection of cross-sectional sizes of flexural members (thicknesses of slabs, in 
particular) is often governed by the need to control deflections under service loads.  
For a given loading and span, the deflection in a reinforced concrete beam or slab is 
inversely proportional to its flexural rigidity.  It is also dependent on factors related 
                                                           
† Note that the direction of the secondary reinforcement need not be the same as that of the 
long span.  This case is encountered, for example, in a slab supported on opposite edges, with 
the actual span dimension being larger than the transverse dimension.   
‡ Heavy reinforcement may be designed in doubly reinforced beam sections and in flanged 
beam sections, without resulting in over-reinforced sections.   
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to long−term effects of creep and shrinkage [refer Sections 2.11, 2.12].  From the 
point of view of design, it is the ratio of the maximum deflection to the span that is of 
concern, and that needs to be limited.  The Code (Cl. 23.2a) specifies a limit of 
span / 250 to the final deflection due to all loads (including long-term effects of 
temperature, creep and shrinkage).  Additional limits are also specified in Cl. 23.2(b) 
of the Code ⎯ to prevent damage to partitions and finishes [refer Chapter 10 for 
details]. 

The explicit computation of maximum deflection can be rather laborious and 
made difficult by the need to specify a number of parameters (such as creep 
coefficient and shrinkage strain as well as actual service loads), which are not known 
with precision at the design stage.  For convenience in design, and as an alternative to 
the actual calculation of deflection, the Code recommends certain span/effective 
depth (l / d) ratios which are expected to satisfy the requirements of deflection 
control (Δ l < 1 250) .  Nevertheless, explicit calculations of deflections (refer 
Chapter 10) become necessary under the following situations [Ref. 5.3]: 

• when the specified l/d limits cannot be satisfied; 
• when the loading on the structure is abnormal; and 
• when stringent deflection control is required. 

5.3.1   Deflection Control by Limiting Span/Depth Ratios 

For a rectangular beam, made of a linearly elastic material, the ratio of the maximum 
elastic deflection to the span (Δ l ) will be a constant if the span /overall depth ratio 
(l /D) is kept constant.  This can be proved as follows for the case of a simply 
supported rectangular beam, subjected to a uniformly distributed load w per unit 
length: 

EI
wl 4

384
5

=Δ                                          (5.3a) 

8

2

max
wlM =  

⇒    
2max
8)(
l

Mw =
2
8)(
l

Zσ= 2

2 8
6 l

bD
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= σ              (5.3b) 

where σ  is the bending stress at service loads and 
6

2bDZ =  is the section 

modulus. 
Substituting Eq. 5.3(b) and  I = 
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3bD  in Eq. 5.3(a), it can be shown that  
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where, in the present case of a simply supported beam with uniformly distributed 
loading, the ‘constant’ works out to E24

5σ . 
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Eq. 5.4 is generalised, and holds good for all types of loading and boundary 
conditions (with appropriately different constants).  It is thus seen that, by limiting 
the l /D ratio, deflection (in terms of Δ l ) can be controlled. 

Eq. 5.4 is not directly applicable in the case of reinforced concrete, because it is 
not a linearly elastic material and the parametersσ , Z and E are not constants, being 
dependent on such factors as the state of cracking, the percentage of reinforcement, 
as well as the long−term effects of creep and shrinkage.  The Code however adopts 
this concept, with suitable approximations, and prescribes limiting l/d ratios for the 
purpose of deflection control. 

5.3.2   Code Recommendations for Span/Effective Depth Ratios 

For prismatic beams of rectangular sections and slabs of uniform thicknesses and 
spans† up to 10 m, the limiting l /d ratios are specified by the Code (Cl. 23.2.1) as: 

ctbasic kkdldl ××= )()( max                                          (5.5) 

where    ( )
⎪
⎩

⎪
⎨

⎧
=

spans  continuousfor  26
spans  supportedsimply for  20

spans cantileverfor  7  
/ basicdl

and the modification factors kt (which varies with pt and fst) and kc (which varies with 
pc) are as given in Fig. 4 and Fig. 5 of the Code (based on Ref. 5.4).  Alternatively, 
the values of these ‘modification factors’ can be obtained from Tables 5.2 and 5.3 
which are based on the figures given in the Code [Ref. 5.4]. 

It can be seen from Table 5.2 that the values of kt increase with the use of lower 
percentages and lower service load stress levels‡ of tension reinforcement.  This is 
attributable to the fact that, under given service loads, lower values of pt  and fst are 
indicative of larger beam (or slab) cross-sections, resulting in higher flexural rigidity, 
and hence lesser deflections.  Alternatively, for given cross-sections, lower values of 
pt and fst are indicative of lower design loads and lower strains distributed across the 
cross-section, and hence lower curvatures and lesser deflections.  The use of mild 
steel bars (Fe 250), with relatively low allowable stress levels, is particularly 
effective in reducing deflections; the values of kt are invariably greater than unity ⎯ 
even at high pt values.  The calculation of the stress in the tension steel fst should 
ideally be worked out considering the transformed cracked section properties.  
However, for convenience, the Code permits an approximate calculation of fst, given 
as follows: 

provided steel of Area
required steel of Area  0.58  yst ff =  

                                                           
† The Code (Cl. 22.2) uses the term effective span, defined as the clear span plus effective 
depth, or centre-to-centre support distance, whichever is smaller. 
‡ In the earlier version of the Code, the modification factor kt was a function of the 
characteristic (yield) strength, fy; this has been now corrected in the 2000 revision of the Code. 
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It should be noted that, in the estimation of kt for the control of deflections in 
continuous beams and slabs, the value of pt  and fst should be calculated at the 
midspan region; however, in the case of cantilevers, pt  and fst  should be calculated at 
the support [Ref. 5.3]. 

Table 5.2  Modification factor kt  for different values of pt and fst  
[Ref. Fig.4  of IS 456 : 2000] 

fst  (MPa) 
p A

bdt
st≡

100  
120 145 190 240 290 

0.2 - - - 1.68 1.40 
0.3 - - 1.89 1.47 1.23 
0.4 - - 1.68 1.34 1.13 
0.5 - 1.95 1.53 1.23 1.04 
0.6 - 1.79 1.43 1.17 0.98 
0.8 1.78 1.57 1.29 1.06 0.90 
1.0 1.60 1.42 1.20 0.99 0.85 
1.2 1.50 1.33 1.12 0.95 0.81 
1.4 1.41 1.26 1.08 0.92 0.78 
1.6 1.34 1.21 1.03 0.88 0.75 
1.8 1.30 1.17 0.99 0.85 0.72 
2.0 1.23 1.12 0.97 0.83 0.71 
2.2 1.20 1.10 0.94 0.82 0.70 
2.4 1.18 1.06 0.91 0.81 0.69 
2.6 1.15 1.04 0.90 0.80 0.68 
2.8 1.13 1.02 0.89 0.79 0.67 
3.0 1.11 1.00 0.88 0.78 0.67 

From Table 5.3, it can be seen that the provision of compression steel can 
significantly contribute towards reducing deflections.  For example, the modification 
factor kc takes values of 1.25 and 1.50 for values of pc equal to 1 percent and 3 
percent respectively ⎯ for all grades of compression steel.  This beneficial effect of 
compression reinforcement is attributable to its contribution in reducing differential 
shrinkage strains across the reinforced concrete section [refer Section 2.12 and 
Chapter 10], thereby reducing long−term shrinkage deflections. 

In the case of flanged beams, the Code (Cl. 23.2.1e) recommends that the values 
of pt and pc considered in estimating the modification factors should be based on an 
area of section equal to bf d, and that the calculated ( )maxl d  [Eq. 5.5] should be 
further modified by a ‘reduction factor’ which depends on b  (as given in Fig. 6 
of the Code).  However, this code procedure has been found to give anomalous 
results ⎯ as reported in the Explanatory Handbook to the Code [Ref. 5.3].  Hence, it 
is recommended that, for the purpose of using Eq. 5.5, the overhanging portions of 
the flanges be ignored, and that the beam be treated as a rectangular beam with width 
b

bw / f

w and effective depth d;  this will give conservative results. 
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Table 5.3  Modification factor kc for different values of pc
[Ref. Fig. 5 of IS 456 : 2000] 

p
A

bdc
sc≡

100  kc

0.00 1.00 
0.25 1.08 
0.50 1.14 
0.75 1.20 
1.00 1.25 
1.25 1.29 
1.50 1.33 
1.75 1.36 
2.00 1.39 
2.25 1.42 
2.50 1.45 
2.75 1.48 
3.00 1.50 

5.4   GUIDELINES FOR SELECTION OF MEMBER SIZES 

As explained in Sections 5.2 and 5.3, the selection of flexural member sizes (from a 
structural viewpoint) is often dictated by serviceability criteria (need to control 
deflections and crack-widths) as well as requirements related to the placement of 
reinforcement.  However there are other structural, economic and architectural 
considerations that come into play in the design of reinforced concrete beams. 

5.4.1   General Guidelines for Beam Sizes 

The design problem does not have a unique solution (Section 5.1).  Many choices of 
beam sizes are feasible in any given design situation.  In general, for the purpose of 
designing for flexure, it is economical to opt for singly reinforced sections with 
moderate percentage tension reinforcement (pt ≈  0.5 to 0.8 times pt,lim). 

Given a choice between increasing either the width of a beam or its depth, it is 
always advantageous to resort to the latter.  This results not only in improved 
moment resisting capacity, but also in improved flexural stiffness, and hence, less 
deflections, curvatures and crack-widths.  However, very deep beams are generally 
not desirable, as they result in a loss of headroom or an overall increase in the 
building height.  In general, the recommended ratio of overall depth (D) to width (b) 
in rectangular beam sections is in the range of 1.5 to 2.  It may be higher (up to 3 or 
even more) for beams carrying very heavy loads.  The width and depth of beams are 
also governed by the shear force on the section [refer Chapter 6].  Often, architectural 
considerations dictate the sizes of beams.  If these are too restrictive, then the desired 
strength of the beam in flexure can be provided by making it ‘doubly reinforced’ 
and/or by providing high strength concrete and steel.  In the case of beam-supported 
slab systems which are cast integrally, the beams can be advantageously modelled as 
‘flanged beams’, as explained earlier. 
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In the case of building frames, the width of beams should, in general, be less than 
or equal to the lateral dimension of the columns into which they frame. Beam widths 
of 200 mm, 250 mm and 300 mm are common in practice world-wide.  Where the 
beam is required to support a masonry wall, the width of the beam is often made such 
that its sides are flush with the finished surfaces of the wall; thus, beam widths of 
230 mm are also encountered in practice in India.  In design practice, the overall 
depths of beams are often fixed in relation to their spans.  Span to overall depth ratios 
of 10 to 16 are generally found to be economical in the case of simply supported and 
continuous beams.  However, in the case of cantilevers, lower ratios are adopted, and 
the beams are generally tapered in depth along their lengths, for economy.  Such 
traditional heuristic methods of fixing the depth of beams are generally satisfactory 
from the viewpoint of deflection control — for the normal range of loads. 

From practical considerations, it is desirable to limit the number of different beam 
sizes in the same structure to a few standard modular sizes, as this will greatly 
convenience the construction of formwork, and permit reusability of forms.  

5.4.2   General Guidelines for Slab Thicknesses 

In the case of slabs, whose thicknesses are very small in comparison with the depths 
of beams, the limiting span /depth ratios of Eq. 5.5 will generally govern the 
proportioning.  In practice, Fe 415 grade steel is most commonly used, and for such 
steel, a pt value of about 0.4 – 0.5 percent may be assumed for preliminary 
proportioning.  This gives a kt value of about 1.25 [Table 5.2]; accordingly, the 
required effective depth (for preliminary design) works out to about span/25 for 
simply supported slabs and about span/32 for continuous slabs. 

In order to determine the thickness of the slab, the clear cover (based on exposure, 
refer Table 5.1) plus half the bar diameter of the main reinforcement (usually along 
the shorter span) have to be added to the effective depth, as indicated in Fig. 5.1(b).  
The calculated value of the thickness should be rounded off to the nearest multiple of 
5 mm or 10 mm. 

5.4.3   Deep Beams and Slender Beams 

In certain extreme situations, the designer may be called upon to deal with very low 
span /depth ratios.  In such cases, where the depth of the beam becomes comparable 
to its span, the beam is referred to as a deep beam†.  It calls for special design 
requirements, which are covered in Cl. 29 of the Code. 

In other situations, slender beams may be encountered.  When the length of a 
beam is excessive in comparison with its cross−sectional dimensions (particularly its 
width b), there is a possibility of instability due to slenderness — in particular, lateral 
buckling in the compression zone.  The Code (Cl. 23.3) specifies certain ‘slenderness 
limits’ to ensure lateral stability.  The clear distance between lateral restraints should 
not exceed 60b or 250 b2/d, whichever is less, in the case of simply supported and 

                                                           
† By definition, a ‘deep beam’ is one whose l/D ratio is less than 2.0 for a simply supported 
beam, and 2.5 for a continuous beam [refer Cl. 29.1 of the Code]. 
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continuous beams.  For a cantilever, the distance from the free end to the edge of the 
support should not exceed 25b or 100 b2/d, whichever is less. 

5.5   DESIGN OF SINGLY REINFORCED RECTANGULAR SECTIONS 

The design problem is generally one of determining the cross-sectional dimensions of 
a beam, viz. b and D (including d), and the area of tension steel Ast required to resist 
a known factored moment Mu.  The material properties fck and fy are generally 
prescribed/selected on the basis of exposure conditions, availability and economy.  
For normal applications, Fe 415 grade steel is used, and either M 20 or M 25 grade 
concrete is used (for exposures rated ‘severe’, ‘very severe’ and ‘extreme’, the 
minimum concrete grades specified are M 30, M 35 and M 40 respectively, as shown 
in Table 5.1).  As explained earlier in Section 4.7.3, for under-reinforced sections, 
the influence of fck on the ultimate moment of resistance MuR is relatively small; 
hence, the use of high strength concrete is not beneficial from the point of economy, 
although it is desirable from the point of durability. 

The basic requirement for safety at the ‘ultimate limit state of flexure’ is that the 
factored moment Mu should not exceed the ultimate moment of resistance MuR, and 
that the failure at the limit state should be ductile.  Accordingly, the design equation 
for flexure is given by: 

uRu MM ≤                  with  max,uu xx ≤

This implies that, for singly reinforced beam sections, Eq. 4.65 is applicable, with 
Mu = MuR: 
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For any chosen value of pt , the constant R
M
bd

u≡ 2
 (in MPa units) is determined 

from Eq. 5.6 (or, alternatively from the analysis aids given in Table A.2).  The 
limiting percentage tension reinforcement pt,lim and the corresponding 
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are constants given by Eq. 4.62 and 4.61(a): 
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5.5.1   Fixing Dimensions of Rectangular Section 

Obviously, there are several combinations of pt, b and d (or D) which can satisfy 
Eq. 5.6.  However, the problem is simplified if the values of b and D are either given 
(by architectural considerations) or arrived at on some logical basis. 

In the case of slabs, b is taken as 1000 mm (as explained in Section 4.8) and d is 
governed by the limiting l/d ratios for deflection control (refer Section 5.3.2).  As 
suggested in Section 5.4.2, a trial value of d may be assumed as approximately l/25 
for simply supported spans, l/32 for continuous spans and l/8 for cantilevers.  The 
overall depth D may be taken as d plus effective cover.  The effective cover will be 
the sum of the clear cover, the diameter of the stirrup and half the bar diameter (in the 
case of a single layer of tension reinforcement).  Assuming a stirrup diameter of 
10mm and a bar diameter of 20mm, the effective cover will be in the range of 40 – 
95 mm, depending on the exposure condition†.   

In the case of beams, it is generally found economical to adopt under−reinforced 
sections with pt < pt,lim.  The value of b may be suitably fixed as 200 mm, 250 mm, 
300  mm, etc., and the value of d corresponding to any R ≤ Rlim is given by: 

Rb
Md u=                                                    (5.9) 

where Mu is the factored moment‡ (in N mm) and R is given by Eq. 5.6 for the 
chosen value of pt.  The minimum value of d corresponding to the limiting case pt = 
pt,lim is obtained by substituting R = Rlim (given by Eq. 5.8).  It is desirable to adopt a 
value of d which is larger than dmin in order to obtain an under-reinforced section.  
The overall depth of the beam may be taken as D > dmin + effective cover, and should 
be expressed in rounded figures (for ease in formwork construction).  Multiples of 50 
mm (or 25 mm) are generally adopted in practice.  However, as explained earlier, the 
resulting D /b ratio should neither be excessive nor too small; ideally, it should be in 
the range 1.5 to 2.0.  If the resulting D /b ratio is unacceptable and needs to be 
modified, this can be achieved by suitably modifying b, recalculating d (using 
Eq. 5.9) and fixing D.  

Having fixed the rounded-off value of D, the correct value of the effective depth d 
can be obtained (assuming that the reinforcing bars can be accommodated in one 
layer) as follows: 

2
cover)clear ( tie

φ
−φ−−= Dd  

                                                           
† effective cover (in mm) may be taken as 40, 50, 65, 70 and 95 respectively for mild, 
moderate, severe, very severe and extreme conditions of exposure. 
‡ This will include the contribution of the self-weight of the flexural member.  A conservative 
estimate of the size of the member may be made at the initial stage, for calculating 
self−weight.  The unit weight of concrete should be taken as 25 kN/m3 [Cl. 19.2.1 of Code; see 
also Appendix B.1 of this book]. 
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If the bars need to be accommodated in two or more layers, the values of D and d 
should be fixed accordingly [refer Fig. 5.1]. 

5.5.2   Determining Area of Tension Steel 

At this stage of the design process, b and d are known, and it is desired to determine 
the required Ast so that the section has an ultimate moment of resistance MuR equal to 
the factored moment Mu.

From Eq. 4.60, considering Mu = MuR  and  xu < xu,max, it follows that: 
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u
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=                                      (5.10) 

where xu/d is obtained by solving Eq. 4.59: 
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which is a quadratic equation, whose solution gives: 

[ ]ck
u fR

d
x 597.411 202.1 −−=                                     (5.11) 

where, as mentioned earlier, 2bdMR u≡ . 
It is possible to calculate (Ast)reqd directly, without having to determine xu/d.  By 

re-arranging Eq 5.6, 
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The above formula provides a convenient and direct estimate of the area of 
tension reinforcement in singly reinforced rectangular sections. 

Alternative:  Use of Design Aids 

In practice, this is the most widely used method.  Expressing the relationship between 
R M bdu≡ 2 and pt [Eq. 5.12] in the form of charts or tables for various combinations 
of fy and fck is relatively simple.  These are available in design handbooks such as 
SP : 16 [Ref. 5.5].  The tabular format is generally more convenient to deal with than 
the Chart. 
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Accordingly, Tables A.3(a) and A.3(b) have been developed (based on Eq. 5.12) 
for M 20, M 25, M 30 and M 35 grades of concrete, each Table covering the three 
grades of steel [Fe 250, Fe 415 and Fe 500]; these Tables are placed in Appendix A 
of this book.  For a given value of R, and specified values of fy and fck, the desired 
value of pt can be read off (using linear interpolation for intermediate values). 

Converting Area of Steel to Bars 

The calculated area of steel (Ast)reqd has to be expressed in terms of bars of specified 
nominal diameter φ and number (or spacing).  Familiarity with the standard bar areas 
(Ab = πφ 2 4) [Table 5.4] renders this task easy. 

Table 5.4  Standard bar areas ( Ab = πφ
2 4 ) and mass per metre (kg/m) 

φ 
(mm) 

6 8 10 12 14 16 18 20 22 25 28 32 36 

Ab 
(mm2) 28.3 50.3 78.5 113 154 201 254 314 380 491 616 804 1018 

Mass  

kg/m 
.222 .395 .616 .887 1.21 1.58 1.99 2.46 2.98 3.85 4.84 6.31 7.99 

For a chosen bar diameter φ, the number of bars required to provide the area of 
tension steel Ast is given by Ast/Ab, taken as a whole number.  Alternatively, for a 
chosen number of bars, the appropriate bar diameter can be worked out.  In some 
cases, it may be economical to select a combination of two different bar diameters 
(close to each other) in order to arrive at an area of steel as close as possible to the Ast 
calculated.  As explained earlier, in the case of slab, the area of steel is expressed in 
terms of centre-to-centre spacing of bars, given by 

reqdstbreqd AAs )(1000=  

The actual spacing provided should be rounded off to the nearest lower multiple of 
5 mm or 10 mm. 

For convenience, Tables A.5 and A.6 (provided in Appendix A) may be referred 
to — for a quick selection of bar diameter and number/spacing of bars.  The values of 
bar areas given in Table 5.4 are also obtainable from Table A.5.  Table 5.4 also gives 
the mass per metre length of the bars which may be useful in cost estimation. 

The arrangement of bars finally proposed must comply with the Code 
requirements for placement of flexural reinforcement described in Section 5.2. 

5.5.3   Design Check for Strength and Deflection Control 
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The actual Ast and d provided should be worked out, and it should be ensured that the 
consequent pt is less than pt,lim (for ductile failure at the ultimate limit state).  It is 
good practice to calculate the actual MuR of the section designed (using Eq. 4.65 or 
4.66), and thereby ensure that the actual MuR  M≥ u. 

A check on the adequacy of the depth provided for deflection control is also called 
for in flexural members.  In the case of beams, the limiting (l/d) ratio given by 
Eq. 5.5 is generally more-than-adequately satisfied by singly reinforced sections.  
However, in the case of slabs, the criteria for deflection control are generally critical.  
In anticipation of this, it is necessary to adopt a suitable value of d at the initial stage 
of the design itself, as explained in Section 5.5.1. 

The section should be suitably redesigned if it is found to be inadequate. 

EXAMPLE  5.1 

A rectangular reinforced concrete beam, located inside a building in a coastal town, 
is simply supported on two masonry walls 230 mm thick and 6m apart (centre-to-
centre).  The beam has to carry, in addition to its own weight, a distributed live load 
of 10 kN/m and a dead load of 5 kN/m.  Design the beam section for maximum 
moment at midspan.  Assume Fe 415 steel.  

SOLUTION 

The beam is located inside the building, although in a coastal area, and thereby 
protected against weather, and not directly exposed to ‘coastal environment’†.  
Hence, according to the Code (Table 3), the exposure condition may be taken as 
‘moderate’.  The corresponding grade of concrete may be taken as M 25 and the clear 
cover as 30 mm.  This cover will be adequate for normal fire resistance requirement 
also. 
Determining Mu for design  
• Assume a trial cross-section   b = 250 mm, and D = 600 mm (span/10). 

Let d = D – 50 = 550 mm. 
∴Effective span (Cl. 22.2 of Code) 

⎩
⎨
⎧

+=+−
=

)span(clear  32.655.0)23.00.6(
supports)between  (distance           m 0.6

d
l  

Taking the lesser value (as per Code), m 0.6=l  

• Distributed load due to self-weight 
m 6.0m 25.0mkN 25 3 ××=Δ DLw  = 3.75 kN/m 

∴ ,mkN 75.875.30.5 =+=DLw  =LLw  10.0 kN/m (given) 
• Factored load (as per Code):  ∴

)( 5.1 LLDLu www +=  = 1.5 (8.75+10.0) = 28.1 kN/m 

                                                           
† Had the beam been located in the roof, the exposure condition would be ‘severe’.  Further, if 
the structure is located at the seafront (subject to sea water spray), the exposure condition 
would be ‘very severe’, according to the Code. 
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• Factored Moment (maximum at midspan) ⇒
8/0.61.288/ 22 ×== lwM uu   = 126 kNm. 

Fixing up b, d and D 
• For Fe 415 steel, Mu,lim = 0.1389 fck bd2  [Eq 5.8] 
• For M 25 concrete, 

f ck = 25 MPa ⇒ 2
im,

lim bd

M
R lu≡  = 0.1389×25 = 3.472 MPa  

• Assuming b = 250 mm, for a singly reinforced section, the minimum value of d, 
corresponding to xu = xu,max is given by 

bR
M

d u

lim
min =  

250472.3
10126 6

×
×

=  = 381 mm. 

• Adopt D = 450 mm†. Assuming 25 φ  bars, 8φ stirrups and clear cover of 30 mm, 
(note that specified cover is required for the stirrups as well), 
d = 450 – 30 – 8 –  25/ 2 = 399mm 

Determining (Ast)reqd

• 
2

6

2 399250
10126

×
×

=≡
bd
MR u  = 3.166 MPa  
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Solving this quadratic equation in terms of pt [Eq. 5.12],  

•    
100 bd

Ap stt ≡  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ×
−−=

25
166.3598.411

)415(2
25  = 1.065 × 10-2  

⇒ 399250)10065.1()( 2 ×××= −
reqdstA  = 1062 mm2

• [Alternatively, using ‘design aids’ [Table A.3(a)], for 
2bd

M u = 3.166 MPa, M 25 

concrete and Fe 415 steel,  = 1.065 — which gives the same result]. pt
Detailing 
• Using 3 bars in one layer, 3 × (π φ2 / 4) =1062 ⇒ φ reqd = 21.2 mm. 

Provide 1 -25φ  bar and 2 -20φ  bars, for which Ast = 491+2(314) = 1119 > 1062.  
The placement of bars [Fig. 5.2] complies with the clearances specified by the 
Code. 

Design Checks 
• (a)  For strength in flexure 

Actual d = 450 – 30 – 8 – 25/2 = 399 mm. 
⇒

399250
1119100
×
×

=tp  = 1.121    <  pt,lim = 1.201. 

                                                           
† The resulting D/b ratio is 1.8, which is satisfactory. 
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⇒ 2399250
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      =131.1 ×106 Nmm  >  Mu = 126 kNm      — Hence, safe. 

 

450
399

250 

1 – 25φ  and 2 – 20 φ

mm 5.54
13

)251()202()382(250 =
−

×−×−×−
=hs  

Note : 
 details of bar curtailment are 
given in Fig. 5.16; 
 details of stirrup 
reinforcement are given in 
Example. 6.1. 

30+8  
Fig. 5.2  Singly reinforced beam design — Example 5.1 

[Note: As the actual depth provided (399 mm) is greater than the calculation 
value (d = 381 mm), and as the Ast provided (1119 mm2 ) is also greater than the 
required value  = 1062 mm399250)10065.1()( 2 ×××= −

reqdstA 2, it is evident 
(without the need for further proof) that the section is safe in flexure.] 

• (b)  For deflection control: 
For  = 1.121, and  pt

⎟
⎟
⎠
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⎝
⎛××
1119
106241558.0  = 228.4 

kt = 1.014 (from Fig. 4 of Code or Table 5.2), 
 and, as pc = 0 (singly reinforced beam), kc = 1  

⇒  [Eq 5.5]:  = max)/( dl 1014.120 ××  = 20.28 
                            399

6000)/( =provideddl  = 15.04  <   — Hence, OK. max)/( dl

EXAMPLE  5.2 

Design a one−way slab, with a clear span of 4.0 m, simply supported on 230 mm 
thick masonry walls, and subjected to a live load of 4 kN/m2 and a surface finish of 
1 kN/m2.  Assume Fe 415 steel.  Assume the beam is subjected to moderate exposure 
conditions. 

SOLUTION 

Determining Mu  

• Assume an effective depth  
25

4000
≈d  = 160 mm 
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and an overall depth mm 20040160 =+=D  

∴Effective span  l  =
+ =
+ =

⎧
⎨
⎩

4000 230 4230
4000 160 4160

 mm   (c / c distance)
 mm                          

Taking the lesser values (as per Code), l = 4.16 m. 
• Distributed load due to self-weight,  23 mkN 0.5m 2.0mkN 25 =×=Δ DLw  

∴ 2mkN 0.60.10.5 =+=DLw  ; 2mkN 0.4=LLw  (given) 
• Factored load (as per Code) :∴ )(5.1 LLDLu www +=  
                                                               = 1.5 (6.0+4.0) =15.0 kN/m2

• Factored Moment (maximum at midspan) ⇒
=×== 8/16.40.158/ 22lwM uu 32.4 kNm/m. 

Determining Ast (main bars)  

• 
23

6

2 16010
104.32

×
×

=≡
bd
M

R u  = 1.267 MPa. 

• For moderate exposure conditions, considering M25 grade concrete, = 25 
MPa  and applying Eq. 5.12,  

f ck

⇒
)415(2

25
100

=≡
bd
Ap stt

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ×
−−

25
267.1598.411  = 0.374 × 10 2−  

•  (0.374× 10⇒ ( )Ast reqd = -2) × 1000 × 160 = 599 mm2/m.  [Alternatively, using 
‘design aids’ [Table A.3(a)], the same result is obtained]. 

• Spacing of bars  stb AAs /1000=
Assuming 10φ  bars , )mm 5.784/10( 22 =×=πbA

spacing  sreqd =
599

5.781000×   = 131 mm 

[Alternatively, this can be obtained from Table A.6]. 
• Maximum spacing limits: 3d = 3 × 160 = 480 mm or 300 mm  (whichever less) 

∴Provide 10φ @ 125 mm c/c for main reinforcement. 
Distribution bars 

(to be provided at right angles, in plan, to the main reinforcement — refer 
Section 5.2.3) 

• 20010000012.0)( ××=diststA  = 240 mm2/m. 
Assuming 8φ  bars , )mm 3.504/8( 22 =×= πbA

spacing 
240

501000 ×
=reqds   

              = 208 mm. 
Maximum spacing limit: 5d = 5 × 160 = 800 mm or 450 mm   (whichever less) 
∴Provide 8φ @ 200 mm c/c for distribution bars. 

Strength check 
• Providing a clear cover of 30 mm, d = 200–30–10/2 = 165 mm.  
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125
5.781000×

=stA  = 628  mm2/m  

⇒  
1651000
628100
×
×

=tp  = 0.380  

   < pt,lim = 0.72. 

As the actual depth provided (165 mm) is greater than the calculation value 
(160 mm), and the steel area provided is also greater than the calculation value, it 
is evident that the section is safe in flexure. 

Deflection control check 

• For pt = 0.380 and 234
628
61041558.0 =××=sf  N/mm2, 

       kt = 1.40 [Fig. 3 of Code or Table 5.2] 
⇒ 0.2840.120)/( max =×=dl  

165/4160)/( =provideddl  = 25.2 < 28.0         
                  — Hence, OK. 

Detailing  
The complete detailing of the slab† is indicated in Fig. 5.3; this meets the Code 
requirements [refer Section 5.5].  Alternate bars of the main reinforcement are 
bent up (cranked) near the supports at a distance of 0.1 l from the support 
(Cl. D-1.6 of Code) ⎯ in order to resist any flexural tension that may possibly 
arise on account of partial fixity at the support [refer Fig. 1.9(d)]. 

5.6   DESIGN OF CONTINUOUS ONE−WAY SLABS 

In wall−supported and beam−supported slab floor systems (with stiff beams) [refer 
Section 1.6.1], the slab panels are generally continuous over several supporting 
walls/beams.  When the bending is predominantly in one−direction [Fig. 1.9(b),(e)], 
the slab is called a one−way continuous slab system. 

5.6.1   Simplified Structural Analysis ⎯ Use of Moment Coefficients 

In order to determine the distribution of bending moments under the design loads 
(dead loads plus live loads), structural analysis has to be performed.  For 
convenience, a strip of 1 metre width [Fig. 5.4(a)] is considered (i.e., b = 1000 mm) 
for analysis and design.  As the live loads (unlike the dead loads) are not expected to 
act all the time, various arrangements of live load have to be considered [refer 
Cl. 22.4.1 of the Code] in order to determine the maximum load effects;  this is 
discussed in detail in Chapter 9.  The (linear elastic) analysis may be done by 
methods such as the ‘moment distribution method’. 

                                                           
† Plans are generally drawn to a scale of 1:50 or 1:100, and section details to a scale of 1:10 or 
1:20. 
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8 φ @ 200 c/c

10 φ @ 125 c/c
420 

200 mm THICK 

M 25 
Fe 415 

PLAN

(0.1L) 

A A

230 230 4000

SECTION A – A  

10 φ @ 250c/c distributors 8 φ

230 
420 

> s/2 = 100 
10 φ @ 125 c/c 
(alternate bars 

bent up)

200 mm 

Clear cover 30 8 φ @ 200 c/c 
(distributors) 

Fig. 5.3  Details of a one-way slab — Example 5.2 

For convenience, the Code (Cl. 22.5) lists moment coefficients (as well as shear 
coefficients‡

 ) that are close to the ‘exact’ values of the maximum load effects 
obtainable from rigorous analyses on an infinite number of equal spans on point 
supports [refer 5.3].  The moment coefficients [Table 12 of the Code] are depicted in 
Fig. 5.4(b).  These are applicable to cases of (uniformly loaded) one-way continuous 
slabs and (secondary) continuous beams with at least three spans “which do not differ 
by more than 15 percent of the longest”.  In the case of two adjacent spans which are 
either unequal or unequally loaded, for the negative moment at the support, the 
average of the two values may be taken.  The ‘shear coefficients’ given by the Code 
are not shown here, as slabs do not generally have to be checked for shear, the shear 
stresses being kept in check by the adequate depths provided for deflection control 
[refer Chapter 6]. 

                                                           
‡ The ‘shear coefficients’ [Table 13 of the Code] are required in the design of continuous 
secondary beams. 
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Fig. 5.4  A continuous one-way slab floor system — Example 5.3 

In any span, the maximum sagging (‘positive’) moment is assumed to be located at 
the midspan location, and the maximum hogging (‘negative’) moment at the face of 
the support (wall / beam).  The magnitude of the moment due to the factored dead 
load wu,DL (per unit length) is obtained by multiplying wu,DL with the relevant moment 
coefficient and the square of the effective span l.  Similarly, the moment due to the 
factored live load wu,LL is obtained. 

Effective Span 

For continuous spans, the effective span (length) depends on the relative width of the 
support [vide Cl.  22.2 (b) of the Code].  If the width of the support exceeds 1/12 of 
the clear span or 600 mm, whichever is less, the effective span should be taken as the 
clear span — except for the end span (whose one end is discontinuous) for which the 
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effective span should be taken as the clear span plus d /2 or clear span plus half the 
width of the discontinuous support, whichever is less.  Otherwise, it should be taken 
as the clear span plus effective depth or centre-to-centre distance between supports, 
whichever is less (as for simply supported spans). 

It should be noted that the moment coefficients have been derived, assuming 
unyielding supports.  Hence, the use of these coefficients is justified only if the 
supports are walls or beams that are adequately rigid. 

5.6.2   Design Procedure 

The factored moment Mu at any section is obtained by detailed analysis (or the use of 
moment coefficients where appropriate), with the load factors applied to DL and LL.  
The thickness of the slab is usually governed by limiting l /d ratios (for deflection 
control).  In this regard, the end span (whose one end is discontinuous) is more 
critical than the interior span.  As the midspan moment in the end span is 
significantly larger than that in the interior span [Fig. 5.4(b)], the end span will 
require a larger area of tensile steel, and will govern the thickness based on (l /d )max 
[Eq. 5.5].  Often, the same thickness is provided for the interior spans also ⎯ unless 
there are a large number of interior spans involved, whereby a separate and lesser 
thickness may be specified for the interior spans, in the interest of economy. 

The required Ast for the calculated Mu at the different midspan and support 
sections should then be determined ⎯ by applying Eq. 5.12 or ‘design aids’ (SP : 16 
or Tables A.3(a), (b) given in this book). 

The ‘positive’ and ‘negative’ moment reinforcement required in the midspan and 
support regions may be provided in one of two alternative ways, as shown in 
Fig. 5.5(a) and (b).  In the first method, separate reinforcement is detailed for the 
positive moments and the negative moments [Fig. 5.5(a)].  Alternatively, in the 
second method, the top (‘negative moment’) reinforcement over a support region 
may be provided by bending up alternate bars of the bottom (‘positive moment’) 
reinforcement from either side of the support, with additional bars provided (at top), 
if required.  
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Fig. 5.5  Arrangement of main reinforcement in one-way continuous slabs 

[Ref. 5.6] 

The calculated spacings (required theoretically) in different spans/support regions 
are not directly provided as such (including rounding off to the nearest lower 
multiple of 5 mm or 10 mm).  In practice, it is found desirable to correlate the 
spacings requirements at the different locations of the continuous slab, and to provide 
either the same spacing s or a fraction/multiple of it (s/4, s/2, 2s etc.) in all 
spans/supports, so that placement (including bending up over support become 
convenient.  Detailing of bar cut−off (curtailment), bending and extensions are 
discussed in Section 5.9.  This involves detailed calculations (involving the bending 
moment envelope) which are not necessary in the present case, as a simplified 
analysis (using moment coefficients) is adopted.  Accordingly, the details shown in 
Fig. 5.5, based on the recommendations of SP : 34 [Ref. 5.5], may be adopted for 
such continuous slabs. 

The proposed design should be checked for adequacy in terms of deflection 
control.  Appropriate distribution bars should also be provided, as required by the 
Code. 

EXAMPLE  5.3 

The plan of a floor slab system, covering an area 8.0 m × 14.5 m (clear spans) is 
shown in Fig. 5.4(a).  The slab rests on a 230 mm thick masonry wall all around.  For 
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economy, the span of the slab is reduced by providing three (equally spaced) 
intermediate beams along the 8.0 m direction, as shown.  The specified floor loading 
consists of a live load of 4 kN/m2, and a dead load (due to floor finish, partitions etc.) 
of 1.5 kN/m2 in addition to the self−weight.  Assuming Fe 415 steel, design and detail 
the floor slab.  Assume the beam is subjected to moderate exposure conditions.  

SOLUTION 

• Assuming each beam to be 300 mm wide, the clear spacing between beams is 
equal to (14.5 – 0.3×3)/4 = 3.4 m.  Each slab panel (with clear spans 3.4 m × 
8.0 m) has an L/B ratio greater than 2.0, and hence may be treated as one-way 
(continuous) [refer Section 1.6.1]. 

Determining Values of Mu at Critical Sections 

Consider a 1 m wide design strip [Fig. 5.4(a)]. 
• Thickness of slab: 

Assume a uniform thickness for both end span and interior span.  The ‘end span’, 
which is critical, is discontinuous on one edge and continuous at the other.   
Accordingly, assuming  (l /d)max 34.1

2
2620

×
+

≈
† = 30, 

       117 mm (for an assumed effective span of l = 3.5m) =≈ 30/3500mind

Assume overall depth D≈117+35≈160 mm for all spans and d = 125 mm. 
• Effective length l: As the beam width (300 mm) exceeds 3400/12 = 283 mm, 

l =3400 mm (clear span) for the interior span — as per Cl. 22.2(b) of Code. 
For the end span, l = 3400+d/2 = 3400+125/2 = 3463 mm. 

• Distributed load due to self-weight: 
Δw DL = 25 kN/m3 × 0.16 = 4.0 kN/m2  
∴ =wDL 4.0+1.5 = 5.5 kN/m2; = 4.0 kN/mLLw 2 (given) 

• Factored loads  ∴
⎪⎩

⎪
⎨
⎧

=×=

=×=
2

,

2
,

kN/m 00.65.10.4

kN/m 25.85.15.5

LLu

DLu

w

w

• Factored Moments at critical sections: 
As the spans are almost equal, uniformly loaded and more than three in number, 
the simplified analysis using moment coefficients [Table 12 of Code] can be 
applied [Fig. 5.4(b)]. 

For end span (l = 3.463 m), 

⎪
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† modification factor kt corresponding to pt ≈  0.4 and fs= 240 N/mm2 [refer Section 5.4.2]. 
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For interior span (l = 3.400 m), 
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At the first interior support, an average value of Mu should be considered:  
     Mu = – (17.89+17.24)/ 2 = –17.6 kNm/m 

Determining Ast  
• For the maximum moment, Mu = –17.6 kNm/m at the first interior support, 

2

6

2 1251000
106.17

×

×
=≡

bd
M

R u  = 1.126 MPa  

Applying Eq. 5.12, or using design aids (Table A.3(a) SP 16), for M 25 concrete 
(since the slab is subjected to moderate exposure conditions) and Fe 415 steel, 

[ ])25261.1598.4(11
)415(2

25
100

×−−=tp  = 0.33 × 10-2

( )pt reqd = 0.33 ⇒ =( )Ast reqd mmm 4131251000
100

33.0 2=××  

Assuming 10φ  bars , spacing reqd = ( .Ab = 78 5 mm2 )
413

5.781000×  = 190 mm. 

Alternatively, for 8φ  bars (Ab = 50.3 mm2), spacing reqd = 
413

3.501000×  = 122 mm 

[Note: maximum spacing allowed = 3 × 125 = 375 mm (< 450 mm)]. 
• For convenience, the results for all  at the various sections are tabulated 

in Table 5.5, after performing appropriate calculations (as shown for 
( )Ast reqd

)mkNm 6.17=uM .  The Table also shows the details of the actual steel provided 
(assuming the arrangement of bars shown in Fig. 5.5(a)). 

• Distribution bars: (Ast)min = 0.0012bD = 192 mm2/m.  Provide 8 mmφ @ 250c/c 

Deflection control check   
• Maximum midspan steel in the end span:  

(Ast)provided: 8φ @ 110 c c  = 
110

3.501000×  = 457 mm2/m. 

Providing a clear cover of 30 mm, d = 160–30–8/2 = 126 mm. 

⇒
1261000
457100
×
×

=tp  = 0.363, 
457
36041558.0 ××=sf = 189.6 N/mm2  

⇒ kt = 1.76 [Table 5.2] 
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⇒ 76.1)2620(
2
1)/( max ×+=dl =40.4 

      3463/126 = 27.5 < 40.4 ⇒  OK ( / )l d provided =

Evidently, the limiting  ratio will be satisfied by the interior span as well. ( / )l d

Table 5.5  Calculation of Ast at critical locations of a one-way continuous slab system 
— Example 5.3 

Location End Span Interior Span 

 end 
support 

midspan first 
int.support 

midspan int.support 

Mu (kNm/m) –7.1 +15.4 –17.6 +11.7 –15.6 
Mu/bd2 (MPa ) 0.456 0.988 1.126 0.751 1.002 

(pt)reqd 0.129 0.287 0.33 0.215 0.292 

(Ast)reqd (mm2/m) 162 360 413 270 365 

(Ast)min (mm2/m) 0.0012bD = 0.0012×103×160 = 192 

Reqd. Spacing (mm) 
using  

 
 

a) 10 φ   
b)  8φ  

408 
261 

 
 

218 
139 

 
 

190 
121 

 
 

285 
186 

 
 

215 
137 

Max.Spacing (mm) 3×d = 3×126 = 378 (> 300) 

Spacing of bars 
provided 

10 φ  
8 φ  
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— 
220 
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— 
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— 
110 
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— 
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(top) 
 

— 
110 

 

Detailing : the sectional details of the design are shown in Fig. 5.6.  
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Fig. 5.6  Details of one-way continuous slab — Example 5.3 
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5.7   DESIGN OF DOUBLY REINFORCED RECTANGULAR SECTIONS 

As explained earlier, doubly reinforced sections are generally resorted to in situations 
where the cross-sectional dimensions of the beam are restricted (by architectural or 
other considerations) and where singly reinforced sections (with pt = pt,lim) are not 
adequate in terms of moment-resisting capacity.  Doubly reinforced beams are also 
used in situations where reversal of moments is likely (as in multi-storeyed frames 
subjected to lateral loads).  The presence of compression reinforcement reduces long-
term deflections due to shrinkage (refer Section 5.3.2).  All compression 
reinforcement must be enclosed by closed stirrups [Fig. 5.1(c)], in order to prevent 
their possible buckling and to provide some ductility by confinement of concrete. 

5.7.1   Design Formulas 

As the dimensions of the beam section already are fixed, the design problem is one of 
determining the areas of reinforcement required in tension (Ast) and compression 
(Asc). 

As explained in Section 4.7.5, from the design point of view, it is necessary to 
limit the neutral axis depth xu to xu,max.  This can be done conveniently by 
considering xu = xu,max and resolving the factored moment Mu = MuR into two 
components [Fig. 5.7]: 

M M M Mu uR u u= = +,lim Δ                                   (5.13) 

BALANCED
BEAM

SECTION

STRAINS BALANCED SINGLY
REINFORCED

SECTION

STRESSES “STEEL BEAM”
(balanced)

STRESSES

d

b

Asc

Ast

xu,max
εsc

0.0035

ε st
*

Ast,lim

(0.87fy)Ast

0.447fck

Asc

ΔAst

(fsc – 0.447fck)Asc

′d

d d− ′

(0.87fy) ΔAst

0.362fckbxu,max

d – 0.416xu,max

(a) (b) (c)

 
Fig. 5.7  Concept underlying the design of a ‘balanced’ doubly reinforced section 

where Mu,lim is the limiting moment capacity of a singly reinforced ‘balanced’ section 
(without compression steel) [Fig. 5.7(b)] given by Eq. 5.8, and Δ Mu is the additional 
moment capacity desired from the compression steel Asc and the corresponding 
additional tension steel AΔ st — which may be visualised as the flanges of an 
equivalent ‘steel beam’ [Fig. 5.7(c)].  As the contribution of concrete in compression 
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is entirely accounted for in Mu,lim, it does not contribute to Δ Mu.  The distribution of 
strains, given by the condition, [Fig. 5.7(a)] is identical for both the components, and 
the corresponding distributions of stresses are as shown in Fig. 5.7(b) and (c). 

If pt denotes the total percentage of tension steel required for a ‘balanced’ doubly 
reinforced section, then corresponding to Eq. 5.13, it can also be resolved into two 
components. 

p p pt t lim t= +, Δ                                             (5.14a) 

or    A A Ast st st= +,lim Δ                                           (5.14b) 

where Ast,lim =
pt,lim
100

bd or (given by Eq 5.7) is the tension steel corresponding to 

Mu,lim and Δ  = 100( Apt Δ st)/bd is that corresponding to Δ Mu.  Evidently, the 
moment  is obtained from a couple comprising a (compressive) force (fΔMu sc – 
0.447fck)Asc and an equal and opposite (tensile) force (0.87fy Δ Ast), with a lever arm 
( ).  The stress fd d− ′ sc in the compression steel (at the ultimate limit state) depends 
on the strain ε sc  (given by Eq. 4.78) which is controlled by the linear strain 
distribution with the neutral axis located at x = xu,max [Fig. 5.7(a)].  Values of fsc for 
different grades of steel and typical ′d d/  ratios are listed in Table 4.5.  (It may be 
noted from Table 4.5 that the full design yield stress is attained only in the case of 
mild steel.)  Based on the above, following formulas are obtainable: 

ΔA
M M

f d dst
u u

y
=

−
− ′

,

. (
lim

0 87 )
                                      (5.15a) 

Δp R R
f d d

t

y100 0 87 1
=

−
− ′

lim

. ( / )
                                   (5.15b) 

p p R R
f d dt t lim

y
= +

−
− ′,

(
. ( /
100

0 87 1
lim )

)
                        (5.16) 

where R ≡ M bdu
2  and  Rlim ≡ M bdu lim,

2  

A
f A

f fsc
y st

sc ck
=

−

( . )( )
.447

0 87
0

Δ
                                            (5.17a) 

or p
f p p

f fc
y t t

sc ck
=

−

−

0 87
0

. (
.447

,lim )
                                    (5.17b) 

Applying Eq. 5.16 and Eq. 5.17b, design aids can be generated to give values of pt 
and pc for a given Mu /(bd2) — for various combinations of concrete and steel grades 
and different ′d d  ratios.  These have been developed in Table A.4 (placed in 
Appendix A of this book) for the commonly used combination of M 20 and M 25 
grades of concrete with Fe 415 steel.  Four typical ratios of ′d d  (viz., 0.05, 0.10, 
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0.15, and 0.20) are covered in Table A.4. The Design Handbook, SP 16 [Ref. 5.5], 
gives such Tables for other combinations of concrete and steel grades. 

5.7.2   Design Procedure for Given Mu

Determining Ast  
For a given rectangular section (with given b, d, and given fck, fy ), the limiting 
moment capacity for a singly reinforced section (Mu,lim) should be first determined, 
using Eq. 5.8.  If Mu,lim is greater than or equal to the factored moment Mu, the 
section should be designed as a singly reinforced section — as described in 
Section 5.5.2.  Otherwise (for Mu > Mu,lim), the section should be designed as a 
doubly reinforced section. 

The value of pt,lim is determined from Eq. 5.7, and the values of AΔ st from 
Eq. 5.15(a) assuming a suitable value for ′d .  The total (Ast)reqd is then obtained from 
Eq. 5.14(b).  The bars should be suitably selected such that the Ast actually provided 
is as close as possible in magnitude to, but not less than (Ast)reqd.  Tables A.5 and A.6 
may be used for this purpose. 

If the placement of bars results in a new value of the effective depth d which is 
significantly different from the original value assumed, Mu,lim,  Ast,lim  and (Ast)reqd 
should be recalculated at this stage itself. 

Determining Asc

Using the value of AΔ st actually provided, the value of (Asc)reqd may be calculated 
from Eq. 5.17a.  The value of fsc can be obtained from the value of ε sc [Fig. 5.7(a) or 
Eq. 4.78] and the stress-strain relation [Table 3.2], or alternatively from Table 4.5 by 
interpolating for the calculated value of ′d d .  The compression bars should be 
suitably selected such that the Asc provided is as close as possible (but not less than 
(Asc) reqd).  Such a design procedure will result invariably in an adequately ‘safe’ 
design with MuR ≥Mu and xu≤ xu,max; however, a design check for strength is always 
desirable. 

Alternative: Using Design Aids 
Design aids (Table A.4, SP:16) may be used to determine the (pt)reqd and (pc)reqd for 
the calculated value of Mu/bd2; accordingly, Ast and Asc are suitably provided.  This 
is the most commonly adopted method in practice.  However, it should be noted that 
if the Ast actually provided is well in excess of the (Ast)reqd, there is a possibility of 
ending up with an over-reinforced section (with xu > xu,max).  In order to avoid such a 
situation, (which is undesirable, and also not permitted by the Code), a 
correspondingly higher value of Asc should by provided [Eq. 5.17a] such that the 
resulting  (given by Eq. 4.84). p pc c> *

A design check for safety in flexural strength is desirable — by properly analysing the 
designed section.  It may be noted, however, that designers in practice, who are 
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habituated with the use of design aids, often neglect to do this.  It is often assumed 
that the strength design requirements are automatically satisfied if the values of pt and 
pc provided are in excess of that given in the Tables.  This is not always true — as 
demonstrated in Example 5.4. 

Check for Deflection Control  
The limiting (l/d) ratio for deflection control [Eq. 5.5] is generally satisfied by 
doubly reinforced beams, on account of the modification factor (kc) for the 
compression steel [Table 5.3].  However, in the case of relatively shallow beams, a 
check for deflection control becomes necessary. 

EXAMPLE  5.4 

Design the flexural reinforcement for the beam in Example 5.1, given that its size is 
limited to 250 mm × 400 mm, and that it has to carry, in addition to the loads already 
mentioned, a concentrated dead load of 30 kN placed at the midspan point.  Assume 
that the beam is subjected to moderate exposure conditions. 

SOLUTION 

Determining Mu for design  
Given b = 250 mm, D = 400 mm, fck = 25 MPa , fy = 415 MPa  
Let d = D–50 = 350 mm. 
⇒Effective span l = 6.0 m (as in Example 5.1). 

• Loads: w wDL DL= +5 0.  kN / m Δ  (self-weight), WDL = 30 kN  at midspan. 
Due to self-weight,  = 25×0.25×0.4 = 2.5 kN/m, WΔwDL LL = 10.0 kN/m 
Factored Load: wu = (5.0 + 2.5 + 10.0) × 1.5 = 26.25 kN/m 
and Wu = 30 ×1.5 = 45 kN (at midspan) 

• Factored Moment (maximum at midspan): ∴
Mu = × + ×26 25 6 0

8 45 6 0
4

2
. . .

u c, .lim = =0 1389 2

 = 185.6 kNm = 186 kNm. 
Singly reinforced or doubly reinforced section? 
• For (for Fe 415 with M 25) M f bdk

2350250251389.0 ×××

           = 106.3 × 106  Nmm = 106 kNm 
As , the section has to be doubly reinforced, with , where 

p

M Mu u> ,lim p pt t> ,lim

t,lim = 41 61. ,maxf
f

x
d

ck

y

u⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝⎜

⎞
⎠⎟

 = 1.201 for Fe 415 with M 25. 

Determining Ast

• Considering a ‘balanced section’ ( ),maxx xu u= , 
A A Ast st st= +,lim Δ  

where =××= 350250
100
201.1

lim,stA 1051 mm2

• Assuming 20 mm φ bars for compression steel, 
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mm 48≈′d  (30 mm clear cover + 8 mm stirrup +φ /2) 

( )ΔAst reqd  = 
)48350(41587.0

10)106186( 6

−××
×−  = 734 mm2

∴ ( )Ast reqd  = 1051+ 734 = 1785 mm2  

Using 3 bars, φ reqd  = 
4

31777
π

 = 27.5 mm 

φ  [Ast = 3 × 616 = 1848 mm2]. Provide 3 nos 28 mm
• Actual d (assuming 30 mm clear cover and 8 mm stirrups): 

d = 400-(30+8+28/2) = 348 mm < 350 mm assumed earlier 
Revising the above calculations with d = 348 mm, 
Mu,lim = 105 kNm, Ast,lim = 1.201×250×348/100 = 1045 mm2, 
( )ΔAst reqd =  748 mm2, = 1045+748 = 1793 mm( )Ast reqd

2, 

∴Actual (ΔAst) provided = 1848 – 1045 = 803 mm2 

Determining Asc

• Assuming xu = xu,max, for ′d d  = 48/348 = 0.138, from Table 4.5, 

f sc  = 351.9  –  (351.9 – 342.4)×
10.015.0
100.0138.0

−
−  = 344.7 MPa  

[Alternatively, applying xu,max d  = 0.479 in Eq. 4.78, 
)479.0/138.01( 0035.0 −=scε  = 0.00249 

⇒ f sc  = 344.7 MPa (from Table 3.2 or design stress-strain curve)] 

( )Asc reqd  = 
0 87

0
. (

.447
)f A

f f
y st

sc ck

Δ

−
= 

)25447.0(7.344
803)41587.0(
×−
××  = 869 mm2

Using 2 bars, φ reqd  = 
4
2869

π
 = 23.5 mm 

Using 3 bars, φ reqd  = 
4
3869

π
 = 19.2 mm 

Provide 3 nos 20 mmφ  [Asc = 3 × 314 = 942 mm2 > 869 mm2]. 
The proposed section is shown in Fig. 5.8. 

[As an exercise in analysis, the student may verify that this section satisfies the 
design conditions:  and M MuR u≥ x xu u≤ ,max .] 
Alternative method: using design aids 

Assuming d = 350 mm, ′d = 50 mm, 
M

bd
u
2

 = 
2

6

350250
10186

×
×  = 6.073 MPa  

Referring to Table A.4b (M 25 concrete and Fe 415 steel), 
for ′d d  = 50/350 = 0.143 and M bdu

2  = 6.073 MPa, by linear interpolation, 
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pt ≈ 2.042 ⇒  = ( )Ast reqd 350250
100
042.2

××  = 1787 mm2

pc ≈ 0.913 ⇒  = ( )Asc reqd 350250
100
913.0

××  = 799 mm2

Provide 3–28φ  for tension steel [Ast = 3×616 = 1848 mm2 > 1787] 
and 4–16φ  for compression steel [Asc = 4×201 = 804 mm2 > 799]. 

 

Fig. 5.8  Doubly reinforced section design — Example 5.4 

Design check 
• To ensure , it suffices to establish  [Eq. 4.84] max,uu xx ≤ p pc ≥

*
c

Actual d provided: d = 400 – 30 – 8 – 28/2 = 348 mm; 
21630 +=′d  +8= 46 mm 

For ′d d  = 46/348 = 0.132,  = 345.8 MPa [Table 4.5]. f sc
 [Alternatively, )479.0132.01(0035.0 −=scε = 0.00253 
       f⇒ sc = 345.8 MPa (Table 3.2).] 
Actual  provided:  = 100×1848/ (250×348) = 2.124 pt pt
Actual  provided:  = 100×804/ (250×348) = 0.924 pc pc

pc
*  = 0 87

0
. (

.447
,f p p

f f
y t t

sc ck

−

−
lim )  = 

)25447.0(8.345
)201.1124.2(41587.0

×−
−××  = 0.996 

• As  is slightly less than , the section is slightly over-reinforced.  [This can 
also be verified by applying Eq. 4.81, which gives 

pc pc
*

x du  = 0.505 > xu,max d  = 0.479.] 

Revised design  
To ensure ductile failure, 

• >Asc
p

bdc
*

100
 = 348250

100
996.0

××  = 867 mm2  

250

400

30 clear

38 53

3 – 20 φ

3 – 28 φ

30 clea

38

8 φ

r

BEAM SECTION
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Provide 3–20φ for compression steel [  = 3×314 = 942 mmAsc
2 > 867 — as 

shown in Fig. 5.8]: pc = 100 × 942/(250 × 348) = 1.083 >  OK. pc
* ⇒

Check for deflection control  
pt = 2.124 and fst = 0.58×415×1787/1848 = 233 MPa 

⇒ kt = 0.842 [Table 5.2 or Fig. 4 of Code] 
pc = 1.083 = 1.263 [Table 5.3 or Fig. 5 of Code] ⇒ kc

• Applying Eq. 5.5, 
( )l d max = 20 × 0.842 × 1.263 = 21.27 
( )l d provided = 6000/348 = 17.24 < 21.27   — Hence OK. 

5.8   DESIGN OF FLANGED BEAM SECTIONS 

T-beams and L-beams were introduced in Section 4.6.4.  The integral† connection 
between the slab and the beam in cast in-situ construction makes the two act 
integrally, so that some portion of the slab functions as a flange of the beam.  It 
should be noted that the flange is effective only when it is on the compression side, 
i.e., when the beam is in a ‘sagging’ mode of flexure (not ‘hogging’) with the slab on 
top.  Alternatively, if the beam is ‘upturned’ (inverted T-beam) and it is subjected to 
‘hogging’ moments (as in a cantilever), the T-beam action is effective, as the flange 
is under compression. 

Ideal flanged beam action occurs when the flange dimensions are relatively small 
while the beam is deep — as in the case of closely spaced long-span bridge girders in 
a T-beam bridge.  The beam is invariably heavily reinforced in such cases. 

5.8.1   Transverse Reinforcement in Flange 

The integral action between the flange and the web is usually ensured by the 
transverse bars in the slab and the stirrups in the beam.  In the case of isolated 
flanged beams (as in spandrel beams of staircases), the detailing of reinforcement 
depicted in Fig. 5.9(a) may be adopted.  The overhanging portions of the slab should 
be designed as cantilevers and the reinforcement provided accordingly. 

Adequate transverse reinforcement must be provided near the top of the flange.  
Such reinforcement is usually present in the form of negative moment reinforcement 
in the continuous slabs which span across and form the flanges of the T-beams.  
When this is not the case (as in slabs where the main bars run parallel to the beam), 
the Code (Cl. 23.1.1b) specifies that transverse reinforcement should be provided in 
the flange of the T-beam (or L-beam) as shown in Fig. 5.9(b).  The area of such steel 
should be not less than 60 percent of the main area of steel provided at the midspan 
of the slab, and should extend on either side of the beam to a distance not less than 
one-fourth of the span of the beam. 

                                                           
† Where the slab and beam are not cast monolithically, flanged beam action cannot be 
assumed, unless special shear connectors are provided at the interface between beam and the 
slab. 
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Fig. 5.9  Detailing of flanged beams to ensure integral action of slab and beam. 

5.8.2   Design Procedure 

In the case of a continuous flanged beam, the negative moment at the face of the 
support generally exceeds the maximum positive moment (at or near the midspan), 
and hence governs the proportioning of the beam cross-section.  In such cases of 
negative moment, if the slab is located on top of the beam (as is usually the case), the 
flange is under flexural tension and hence the concrete in the flange is rendered 
ineffective.  The beam section at the support is therefore to be designed as a 
rectangular section for the factored negative moment† .  Towards the midspan of the 
beam, however, the beam behaves as a proper flanged beam (with the flange under 
flexural compression).  As the width of the web bw and the overall depth D are 
already fixed from design considerations at the support, all that remains to be 
determined is the area of reinforcing steel; the effective width of flange is determined 
as suggested by the Code [Eq. 4.30]. 

In simply supported flanged beams, however, the web dimensions must also be 
designed (if not otherwise specified).  The width of the web is generally fixed as 250 
mm, 300 mm, 350 mm (as for a rectangular section), and the overall depth assumed 
to be approximately span/13 to span/16.  An approximate estimate of the area of 
tension steel Ast can be obtained as follows:  

zf
MA

y

u
reqdst 0.87

)( =                                            (5.18) 

where the lever arm z may be taken approximately as 0.9d or (d – Df / 2), whichever 
is larger.  If convenient, the reinforcement should be accommodated in one layer — 
although, often this may not be possible.  When the tension steel is provided in more 
than one layer, the effective depth gets reduced. 

The determination of the actual reinforcement in a flanged beam depends on the 
location of the neutral axis xu, which, of course, should be limited to xu,max.  If Mu 
exceeds Mu,lim for a singly reinforced flanged section, the depth of the section should 
be suitably increased; otherwise, a doubly reinforced section is to be designed. 
                                                           
† In such cases it is desirable to distribute the tension steel at the top of the web across the 
effective width of the flange, to protect the integral flange from cracking — as recommended 
by the ACI Code.  Alternatively, additional reinforcement may be provided in the flange 
region for this purpose. 

(a) (b)

≥ l 4 ≥ l 4  

(l = span of beam) 
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Neutral Axis within Flange (xu ≤ Df): 

This is, by far, the most common situation encountered in building design.  Because 
 contributed by the flange in T-beams and 

 is the limiting ultimate moment of resistance for the condition  = D   

an

of the very large compressive concrete area
L-beams of usual proportions, the neutral axis lies within the flange (xu ≤ Df), 
whereby the section behaves like a rectangular section having width bf and effective 
depth d. 

A simple way of first checking xu ≤ Df  is by verifying Mu ≤ ( )MuR x Du f=  where 

( )MuR x =Du f u f

d is given by 

fu DxuRM =)(  = ffck Dbf0.362 )0.416( fDd

x

−                    (5.19) 

It may be noted that the above equation is meaningful only if x
situations involving very thick flanges and relatively shallow beam u,max
les

 > , it follows that  xu > Df.  The accurate determination of xu 

ined in Chapter 4, the contributions of the 
forces Cuw 

u,max > Df.  In rare 
s, x  may be 

s than Df.  In such cases, Mu,lim is obtained by substituting xu,max in place of Df in 
Eq. 5.19. 

Neutral Axis within Web (xu > Df):  

When Mu fu DxuR

can be somewhat laborious

M =)(
†.  As expla

compressive and Cuf in the ‘web’ and ‘flange’ may be accounted for 
separately as follows: 

)2()0.416( fufuuwu ydCxdCM −+−=                 (5.20) 
where, 

uwckuw xbfC 0.362=                                                   (5.21) 

fwfckuf ybbfC )(0.447 −=                                       (5.22) 

and the equivalent flange thickness  yf  is equal to o
whether xu exceeds 7Df /3 or not. 

r less than Df  depending on 

For xu,max ≥ 7Df /3, the value of the ultimate moment of resistance 
( )MuR x Du f=7 3 corresponding to x  = 7D /3 and y  = D   may be first computed.  If u f f f

the o fact red moment Mu ≥ ( )MuR x Du f=7 3 , it follows that xu > 7Df /3 and yf = Df .  

f xOtherwise, D  < f =u < 7D  /3 for ( )M
f

 < MuR x Du u < ( )MuR x Du f=7 3  and  

fDy 0.65uf x0.15= +                                          (5.23) 

                                                           
† As an alternative to this procedure, a design based on the approximate estimate of Ast 
[Eq. 5.18] may be assumed, and the resulting section analysed to determine MuR.  The design 
becomes acceptable if MuR ≥ Mu and xu ≤ xu,max. 
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Inserting the appropriate value — Df  or the expre
— in Eq. 5.20, the resulting quadratic equation (in terms of the unknown x ) can be 
so

ssion for yf (given by Eq. 5.23) 
u

lved to yield the correct value of xu.  Corresponding to this value of xu , the values 
of Cuw and Cuf can be computed [Eq. 5.21, 5.22] and the required Ast obtained by 
solving the force equilibrium equation. 

   u CCAfT ufuwsty +== 0.87  

⇒
y

ufuw
reqdst f

CC
A

0.87
)(

+
=                                  (5.24) 

EXAMPLE  5.5 

Design the interi
that the beam is subjected to m

or beam in the floor system in Example 5.3 [Fig. 5.4(a)]. Assume 
oderate exposure conditions. Use Fe 415 steel. 

is one-way, spanning between the beams, which are simply supported 
 behave as T-beams [ = 8230 mm, D  = 160 mm, b  = 300 mm]. 

]
, 

• e overall depth D

SOLUTION 

• The slab 
and hence l0 f w

Effective flange width (Cl 23.1.2 Code): 
b f  = l b D6 6/ + +  [Eq. 4.30  w f0

      (3006/8230 ++ 32 mm= )1606×  = 26
which is acceptable as it is less than bw + clear span of slab (300+3400 = 3700). 
Assum  = 550 mm. ≈ l / 15
⇒ effective depth d ≈500 mm. 
⇒ effective span l  = 8.0 + 0.23 m = 8.23 m (less than 8.0 + 0.5 = 8.5 m). 

Determ

 20.35 kN/m 

Additional dead load due to self weight of web: 
/m 

•  = 57.12 kN/m. 

erm
  0.9d = 450 mm and d – Df /2 = 420 

M  ining u for design  
ple 5.3): • Distributed loads from slab (refer Exam

w  = 5.5 kN/m2×3.7 m =DL

wLL  = 4.0 kN/m2×3.7 m = 14.8 kN/m 

 = 25×0.3×(0.55–0.16) = 2.93 kNΔ wDL

∴Factored load w  = 1.5×(20.35 + 14.8 + 2.93)u
ent (m• Factored mom aximum at midspan) 

 = w l 2 8/  = 57.12×8.232/8 = 484 kNm 
⇒
Mu u

Det ining approximate A    st

• Assuming a lever arm z equa
mm, i.e., z ≈  450 mm, 

l to the larger of

( )A
M

st reqd
u=

45041587.0
10484 6×

≈
××

 = 2979 mm2

. f zy0 87
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 = 
4

32979
π

 φ reqd• Providing 3 bars, = 35.5 mm 

4
42979

π
φ r  =  = 30.8 mor, providing 4 bars, eqd m 

• [Alternatively, this is obtainable from Table A.6.]   
at th rs (eitheIt may be observed th e ba r 3–36φ  or 4–32φ ) can be accommodated 

b φ  bars and 8 mmφin one layer, given w = 300 mm.  Assuming 32 mm stirrups,  

De

u f
16×160)  [for M 25 concrete] 

• Accordingly ion 
with 

⇒ Actual d = 550–32–8–32/2 = 494 mm  
(clear cover shall not be less than the diameter of the bar) 

termining actual Ast

xu,max  = 0.479×494 = 237 mm > D  = 160 mf m. 
al axis to be located at x  = D   • Assuming the neutr

( )M  = 0.362x Du f= ×25×2632×160× (494–0.4
6 

uR

             = 1629×10 Nmm > Mu = 484 kNm 
Hence, the neutral axis is located definitely within the flange (xu < Df ). 

, designing the T-section as a singly reinforced rectangular sect
b = bf  = 2632 mm and d = 494 mm, 

22 4942632×
=≡

bd
R u  = 0.753 MPa 

610484×M

100
)( reqdtp

⎥
⎥
⎦

⎤⎡ ×4

⎢
⎢
⎣×

753.0598.1
4152

25  = 0.216 × 10-2

 = 

 = −−
25

1

4942632
100
216.0

××  ⇒ ( )Ast reqd = 2808 2

(which incidentally is about 6 percent less than the approximate value calculated 
earlier). 

• Provide 2–32

 mm

φ plus 2–28φ  bars 

s-section of the beam, showing the location of bars, is depicted in 

 
Fig. 5.10  T-beam of Example 5.5 

Check for Deflection Control  
• Ignoring the contribut Section 5.3.2], 

[Ast = (2×804) + (2×616) = 2840 mm2 > 2808 mm2]. 
The cros
Fig. 5.10. 

ion of flanges (conservative) [refer 

160

550 

32

32 33

300

2–32 φ
2–28 φ

40

8 φ
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pt  = 
494300×

2840100×  = 1.92; 
2840s

⇒

280841558.0 ××  = 238 MPa 

 = 0.844 [Table 5.2] 
 = 20×0.844×1 = 16.88 [Eq. 5.5] 

16.66 < 16.88 — Hence, OK. 

EXAMPLE  5.6 

=f

kt
⇒ ( / ) maxl d
( / )l d provided  = 8230/494 = 

A continuous T-beam
web dimensions

 has the cross-sectional dimensions shown in Fig. 5.11(a).  The 
 have been determined from the consideration of negative moment at 

st

flange width bf 
500 mm; Df = 100 mm, bw = 300 mm. 

a  (0.7 × 10000)/6 + 300 + (6 × 100) = 2067 mm  
> 1500 mm.  

• Assuming d ≈ 650 mm and a lever arm z equal to the larger of 0.9
= 600 mm, i.e.,  z ≈ 600 mm,  

support and shear strength requirements.  The span is 10 m and the design moment at 
midspan under factored loads is 800 kNm.  Determine the flexural reinforcement 
requirement at midspan.  Consider Fe 415 steel.  Assume that the beam is subjected 
to moderate exposure conditions. 

SOLUTION 

Determining approximate A    
• Effective 
Actual flange width provided = 1
M ximum width permitted =

∴bf  = 1500 mm 
d = 585 mm 

and d  – Df /2 

( )
.

Ast reqd ≈
×

× ×
800 10

0 87 415 600

6
 = 3693 mm2

φ
πreqd =

3693 4
4

• Providing 4 bars,  = 34.3 mm

not be accomm bw = 300 

, i.e., 36 mm.  

As 4–36φ bars can odated in one layer within the width 
mm, two layers are required. 
Assuming a reduced d ≈ 625 mm,  z ≈ 625 – 100/2 = 575 mm. 

⇒(A )  ≈ st reqd 3693 600
×  = 38

575
54 mm . 

2

2

•  5 φ [Ast = 804 m ] with 3 bars in the lower layer plus 2 
per layer, w ical separation of 32 mm — as shown in 

Provide –32  × 5 = 4020 m
bars in the up ith a clear vert
Fig. 5.11(b). Assuming 8 mm stirrups and a clear 32 mm cover to stirrups, 

⇒ d = 700 – 32 – 8– 1
5

3 16 2 32 32 16[( ) ( )]× + × + +  

m = 700 – 40 – 41.6 = 618 m
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300 

1500 

 

Fig. 5.11  T-beam of Example 5.6 

Determining actual Ast   
 296 mm 

ndition xu = Df satisfies xu ≤ xu,max: 

                    
f /2), 

u) N 
13410yf ) N 

• 

xu,max = 0.479 × 618 =
• s xA u,max >Df  = 100 mm, the co
• Assuming M 25 concrete, fck = 25 MPa 

( )M  = 0.362 × 25 × 1500 × 100 × (618 – 0.416 × 100) uR x Du f=

  = 782.5 × 106 Nmm < Mu = 800 kNm 
⇒ xu > Df  and   Mu = Cuw(d – 0.416 xu) + Cuf (d – y

xwhere Cuw = 0.362fck bw u = 0.362 × 25 × 300xu = (2715x
band Cuf = 0.447fck ( f – bw)yf  = 0.447 × 25 × (1500 – 300)yf  = (

Considering xu = 7Df /3 = 233 mm ( < xu,max = 296 mm), yf = Df = 100 mm 
⇒ ( )MuR x Du f=7 3  = (2715 × 233)(618 – 0.416 × 233) +  

(13410
6 

 × 100) × (618 – 100/2) 
        = 1091.3 × 10 Nmm > Mu = 80

• Evidently, Df 

0 kNm. 

< xu < 7
3

Df , for which  yf  = 0.15xu + 0.65Df  

⇒ Cuf = 13410(0.15x .65 × 100) = (2011.5xu + 0 N. 
6

 (0.15xu + 65)/2]  
6

Solving this q

• , 

u + 871650) 
Mu = 800 × 10  = (2715xu)(618 – 0.416xu)  

u+ (2011.5x  + 871650) × [618 –
   =  –1280.3xu

2 + 2790229.5 xu + 510.35×10
uadratic equation, 

m xu = 109.3 mm < xu,max = 296 m
⇒ yf  = 0.15xu + 65 = 81.4 mm 

 CApplying Tu = 0.87fyAst = Cuw + uf

41587.0
)4.8113410().1092715()(

×
×+×

=reqdstA 3  = 3845 mm2 

The reinforcement (5–32 φ; Ast = 4020 mm2, based on the approximate estimate of Ast 
[Fig. 5.11(b)] is evidently adequate and appropriate. 

100
700 d = 618

5–32 φ 

32 φ separators 
@ 1000 c/c 

centroid of 
tension steel

42

32+8

(a)  given section (b)  proposed reinforcement 
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5.9   CURTAILMENT OF FLEXURAL TENSION REINFORCEMENT  

In simply supported beams, the maximum (positive) bending moment occurs at or 
near the midspan, and the beam section is accordingly designed.  Similarly, in 
continuous spans, the cross-section at the face of the support is designed for the 
maximum negative moment, and the cross-section at the midspan region is designed 
for the maximum positive moment.  Although the bending moment progressively 
decreases away from these critical sections, the same overall dimensions of the beam 
are usually maintained throughout the length of the beam — mainly for convenience 
in formwork construction. 

In order to achieve economy in the design, it is desirable to progressively curtail 
(‘cut-off’) the flexural tension reinforcement, commensurate with the decrease in 
bending moment.  However, there are several other factors to be considered in 
arriving at the actual bar cut-off points — such as unexpected shifts in maximum 
moments, development length requirements, influence on shear strength and 
development of diagonal tension cracks due to the effects of discontinuity.  
Accordingly, the Code (Cl. 26.2.3) has listed out a number of requirements that need 
to be considered for the curtailment of flexural reinforcement. 

5.9.1   Theoretical Bar Cut-off Points 
The ‘theoretical cut-off point’ for a bar in a flexural member is that point beyond 
which it is (theoretically) no longer needed to resist the design moment. 

 
In a prismatic beam (with constant b, d) the required area of tension reinforcement 

varies nearly linearly with the bending moment.  This was indicated in Fig. 4.19, and 
can further be demonstrated for a uniformly loaded and simply supported beam 
[Fig. 5.12a] as follows. 

Let Ast be the tension steel area required at the section of maximum factored 
moment Mu,max [Fig. 5.12(b), (c)], and let Ast1 be the tension steel area required at a 
section where the factored moment decreases to Mu1.  Evidently, 

Ast  = M
f z

u

y

,

.
max

0 87
 and  = Ast1

M
f z
u

y

1

1087.
 

     ⇒
A
A

st

st

1  = M
M

u

u

1

,max
×

z
z1
≈ M

M
u

u

1

,max
, as z

z1
≈1. 

Actually, the lever arm ratio z/z1 decreases slightly below unity at sections further 
removed from the critical section, as the area of steel is reduced [Fig. 5.12(c)].  
Accordingly, the approximation Ast1≈ ( ,M M Au u s1 max ) t is acceptable as it results in 
slightly conservative estimates of Ast1.  Based on this, it can be seen that at a section 
where the moment is, say, 60 percent of Mu,max, the reinforcement area required is 
only 60 percent of the designed area Ast, and the remaining 40 percent may be ‘cut 
off’ — as far as the flexural requirement is concerned. 
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Fig. 5.12  Illustration of theoretical bar cut-off points 

As bars are available only in discrete sizes and can be provided only in full 
numbers, the actual reinforcement provided in practice at the critical section is often 
slightly greater than the calculated area Ast.  Also, bars to be cut off are selected in 
terms of numbers rather than percentage of areas.  Hence, for detailing of bar cut-off, 
it is appropriate to consider the strength contributed by each bar in terms of the 
critical section’s ultimate moment resisting capacity.  If there are n bars provided at 
the critical section, and if the bars are all of the same diameter, then the strength per 
bar is MuR/n, where MuR is the actual ultimate moment of resistance at the critical 
section. 
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Thus, for example, as shown in Fig. 5.12(d),(e), the ‘theoretical cut-off point’ for 
the first two bars (of the group of 5 bars) occurs at a section where the factored 
moment is equal to (n–2)MuR/n.  Similarly, the theoretical cut-off point for the third 
bar occurs at the section where the factored moment is equal to (n–3)MuR/n, and so 
on. 

In determining the theoretical bar cut-off points in this manner, the factored 
bending moment diagram must represent the possible maximum at each section, i.e., 
the moment envelope must be considered [Fig. 5.13]. 

This is of particular significance where moving loads are involved and in 
continuous spans where the loading patterns (of live loads) for the maximum 
negative moment at supports and for the maximum positive moment in the span are 
different [refer Chapter 9].  In a continuous span, the point of zero moment† for the 
negative moment envelope (marked  in Fig. 5.13) is often different from that of 
the positive moment envelope, (marked  in Fig. 5.13). 

P0
−

P0
+

 

Fig. 5.13  Moment envelope for continuous spans 

5.9.2   Restrictions on Theoretical Bar Cut-off Points 

As mentioned earlier, the actual bar cut-off points differ from the ‘theoretical’ ones 
for a number of reasons, some of which are described below: 
• Unexpected shifts in design moments:  The theoretical bending moment 

diagrams represent idealisations or ‘best estimates’; these are subject to some 
                                                           
† It is not appropriate to use the term point of inflection here, as the reference is to a bending 
moment envelope.  A point of inflection occurs where there is a change in sign of curvature 
(and hence, of bending moment) under a given loading. 

Mu(–ve)

point of zero (+ve) 
moment Po

+

Mu(+ve)

point of zero (–ve) 
moment Po

–

x
V
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variability on account of the assumptions and approximations involved in the 
calculation of load and load effects, yielding of supports, etc. 
Development length requirements:  The stress at the end of a bar is zero; it 
builds up gradually along its length through bond with the su

• 
rrounding concrete 

[refer Chapter 8].  In order to develop the full design stress (0.87fy) in the bar at a 
section, a minimum development length Ld is required on either side of the 
section.  Some typical values of Ld φ  (in accordance with the Code — 
Cl. 26.2.1) are listed in Table 5.6.   

Table 5.6  Ld / φ  values for fully stressed bars in tension* 

Grade of Grade of concrete 
Steel M 20 M 25 M 30 M 35 M 40 and above 

Fe 250 45 39 29 36 32 

Fe 415 47 40 38 33 30 

Fe 500 57 49 45 40 36 

*for bars in co ression ltiply these values of Ld /mp , mu φ   by

For ex are u
taken as 47 times the bar diameter

 0.8. 

ample, if Fe 415 grade steel and M 20 concrete sed,  Ld should be 
φ .  If the bar is subjected to a stress that is less 

 

• 
ially the shear strength (and ductility) of beams 

sho um of forces† indicated on the freebody in 
Fig

                                                          

than 0.87fy, then the required ‘development length’ is proportionately less.  No 
bar should be terminated abruptly at any section, without extending it by the 
required development length. 
Development of premature diagonal tension cracks: Cutting off bars in the 
tension zone lowers substant
[Ref. 5.7].  The discontinuity at the cut end of the bar introduces stress 
concentration which can cause premature flexural cracks that may further develop 
into diagonal tension cracks — particularly if the shear stress at this section is 
relatively high [refer Chapter 6]. 

Such a diagonal tension crack in a flexural member without shear reinforcement is 
wn in Fig. 5.14.  The equilibri
. 5.14(c) shows that the tensile force in the reinforcement at section ‘b-b’ (located 

approximately d beyond the theoretical cut-off point at section ‘a-a’) depends on the 
moment Mu1 at section ‘a-a’.  Thus, the area of steel required at section ‘a-a’ must 
extend up to section ‘b-b’. 

 
† The forces due to ‘aggregate interlock’ and ‘dowel action’ in the reinforcing bars [refer 
Chapter 6] are neglected here. 
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Mu1

b a

b a

(a) 
bending 

moments 

(b) 
diagonal 

tension crack 

 

Fig. 5.14  Influence of diagonal tension crack on tension steel stress 

5.9.3   Code Requirements 

In view of the various considerations involved in the curtailment of flexural 
reinforcement, the Code (Cl. 26.2.3) has specified certain requirements. 

Shear Strength Requirements for Curtailment 

To safeguard against the development of diagonal tension cracks, the tension steel 
should not be terminated unless any one of the following three requirements is 
satisfied: 

1. The shear at the cut-off point does not exceed two-thirds of the shear resisting 
capacity of the section. 

2. Excess stirrups are provided over a distance of 0.75d from the cut-off point 
having an area Asv and a spacing  sv such that: 

A
b s
fsv

w v

y
≥

0 4.      ;       s d
v

b
≤

8β  

where β b  is the ratio of the area of bars cut off to the total area of the bars at 
the section. 

d

≈ d

z 

T M
zu
u= 1  

Cu

Vu x = 1059 
Vu

 A′′
restrictedφ
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3. For 36 mmφ  and smaller bars, the continuing bars provide at least twice the 
area required for flexure at the cut-off point and the shear does not exceed 
three-fourth of the shear resisting capacity of the section. 

End Extension of Bars 

The extension of bars beyond the theoretical cut-off points, denoted La, should not be 
less than the effective depth d, as indicated in Fig. 5.15.  The Code specifies that it 
should also not be less than 12 times the bar diameter φ . 

dLa ≥       and     φ12≥aL  

This requirement of ‘end extension’ should be satisfied by the curtailed bars (i.e., 
assuming there are additional continuing bars) of both positive moment 
reinforcement and negative moment reinforcement [Fig. 5.15]. 

 

Po
−

Po
+

≥ Ld

≥ Ld

area ≥ Ast (-) / 3 

La

x = 1059
Vu

 ≥ (d or 12 φ or clear span /16) 
La ≥ d or 12 φ

Ast(+)

area ≥  Ast (+) /4 
(area ≥ Ast (+)/3  if 
simply supported) 

c 

Ast(-)

La

Ld / 3  
(Ld if lateral load resisting)

  ⇒   theoretical 
cut-off point 

ENVELOPE OF 
MAXIMUM BENDING 

MOMENTS 

Fig. 5.15  Code requirements (Cl. 25.2.3) for curtailment of tension reinforcement 

For the continuing bars which are to be finally terminated, different requirements 
are applicable, regarding continuation beyond the point of zero moment (where they 
are no longer required theoretically).  In the case of negative moment reinforcement, 
at least one-third of the total steel provided at the face of the support must extend 
beyond the point of zero moment (  for a distance not less than d, 12)Po

− φ  or 1/16 
times the clear span.  In the case of positive moment reinforcement, at least one-third 
of the total steel in simply supported members and one-fourth the total steel in 
continuous members should be extended straight into the support by a distance not 
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less than Ld 3  [Fig. 5.15].  If the support width is inadequate to provide this 
embedment, the bars should be suitably anchored by bending/hooks. 

Development Length Requirements  

As mentioned earlier, no bar should be terminated without providing the required 
development length Ld [Table 5.6] on either side of the point of maximum design 
stress (0.87fy).  At the supports at exterior columns, the bars may be bent (standard 
90 degree bend) to anchor them suitably and thus provide the required Ld — for the 
negative moment reinforcement. 

In the case of positive moment reinforcement of beams (in frames) that constitute 
part of a lateral load resisting system, the Code requires that such steel should also be 
anchored into the support by a length Ld beyond the face of the support. 

Every point of stress in a bar requires a corresponding ‘development length’ that 
is directly proportional to the bar diameter φ  as well as the stress level at the point.  
The values of Ld generally specified [Table 5.6] correspond to the ‘fully stressed’ 
condition (fst = 0.87fy) which occurs at a ‘critical section’.  However, providing a 
length Ld on either side of the critical section does not necessarily ensure that 
adequate embedment is provided at all stressed points along the length of the bar — 
except when the variation of bar stress is linear (which occurs only when the bending 
moment falls off linearly).  In particular, the ‘positive’ moment regions of beams 
with distributed loading require special consideration, as in such regions the moment 
diagram is nonlinear (and convex), whereas the bar stress development over the 
length Ld is assumed to be linear. 

This is illustrated with the aid of Fig. 5.16, which shows a typical nonlinear 
variation of bending moment near a simple support of a beam.  For the purposes of 
illustration, it is assumed that the theoretical cut-off point of a group of bars 
(marked ‘a’) is at point A, located at a distance equal to Ld of the continuing group of 
bars (marked ‘b’) from the point of zero moment (support C).  At A, bars ‘b’ are fully 
stressed (fst = 0.87fy) and possess an ultimate moment of resistance MuR equal to the 
factored moment MA.  As these bars are terminated at C, it follows that the bar stress 
will decrease linearly (assuming uniform bond stress distribution) from 0.87fy at A to 
zero at C, and hence the moment resisting capacity will also drop linearly from MA to 
zero, as depicted by the dotted line A″C´ in Fig. 5.16.  Evidently, this means that the 
ultimate moment capacity at any intermediate point (such as B at, say, 0.4Ld from C) 
in the region AC will generally fall short of the factored moment MB, as shown in 
Fig. 5.16. 

B

Clearly, this indicates the need for an adequate extension (Lo) of the tension bars 
beyond the point of zero moment (either at a simple support or at a point of 
inflection).  How much to extend, of course, depends on how nonlinear the variation 
of the factored moment (Mu) is, in the region CA near the point of zero moment.  A 
measure of this rate of change of the factored moment is given by the factored shear 
force Vu (= dMu/dx) at the point of zero moment, C [Fig. 5.17].   
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Fig. 5.16  Need for extending bars beyond point of zero moment 

Ld

0.4Ld

La

It is seen that adequate flexural strength can invariably be ensured by providing a 
full development length Ld to a point D beyond a critical section at B, located at a 
distance MuR/Vu from the section of zero moment (C).  Here MuR denotes the ultimate 
moment of resistance due to the continuing bars and Vu denotes the factored shear 
force at the section of zero moment, as depicted in Fig. 5.17. 

With a full development length Ld provided beyond point B, the moment 
resistance diagram will vary from zero at the bar end D to MuR at section B, and will 
lie completely outside the factored moment diagram [as shown in Fig. 5.17(a)]; this 
ensures that MuR > Mu all along the segment CA.  In the case of a simple support 
where the reaction confines the ends of the reinforcement, the Code (Cl. 26.2.3.3c) 
permits an increase in MuR/Vu by 30 percent. 

If the anchorage length beyond the zero moment location is denoted as Lo, then 
the Code requirement may be expressed as: 

( )M V L LuR u o d
* + ≥                                        (5.25) 

where (MuR/Vu)* = 1.3MuR/Vu at a simple support with a confining reaction, and 
MuR/Vu otherwise. 

At a point of inflection, the anchorage length Lo is limited to the effective depth d 
or 12φ, whichever is greater.  At a simple support although the entire embedment 
length beyond the centre of support (including the equivalent anchorage value of any 
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hook† or mechanical anchorage) qualifies as a proper measure of Lo, there may be 
practical limitations.  The most effective way of satisfying Eq. 5.25 is by controlling 
the bar diameter φ, thereby reducing Ld. 

 

Fig. 5.17  Code requirement (Cl. 25.2.3c) for limiting bar size of positive moment 
requirement at zero moment location 

The Code (Cl. 26.2.3.3c) explicitly states that the purpose of the requirement 
given by Eq. 5.25 is to limit the bar diameter of positive tension reinforcement 
at a zero moment location.  It is apparent that the objective is to ensure 
adequate development length and moment resisting capacity at locations such 
as depicted in Fig. 5.17. 

 

                                                           
† The anchorage value of a standard U-type hook should be taken as 16φ.  If bends are 
provided, an anchorage value of 4φ should be taken for each 45o bend, subject to a maximum 
of 16φ [Cl. 26.2.2.1b of the Code]. 
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Curtailment of Bundled Bars 

Where bundled bars (provided as tension reinforcement) are to be curtailed, the 
individual bars in a bundle must be terminated at different points that are at least 40 
diameters apart.  This, however, is not applicable for bundles terminating at a 
support. 

It is desirable to curtail first the bars in a bundle that are closer to the neutral axis; 
this is also desirable when bars (not bundled) are provided in multiple layers. 

The ‘development length’ for each bar in a bundle should be taken as 1.1Ld, 
1.2Ld, and 1.33Ld for 2-bar bundles, 3-bar bundles and 4-bar bundles respectively, 
where Ld is the development length for an individual bar. 

5.9.4   Bending of Bars 

As an alternative to curtailment, bending (‘cranking’) of bars may be resorted to.  In 
continuous beams, some of the bars (usually, not more than two at a time) may be 
bent over (at intervals, if large numbers are involved) from the bottom side of the 
beam to the top side, and continued over the support to form part of the negative 
moment reinforcement.  Such a system is shown in Fig. 5.5(b) for one-way 
continuous slabs.  The bars are usually bent at an angle of 45o, although angles up to 
60o are also resorted to in practice for relatively deep beams.  The bent portion of the 
bar contributes towards increased shear strength of the beam section by resisting 
diagonal tensile strength and restraining the spread of diagonal tension cracks [refer 
Chapter 6].  This contrasts with the adverse effect of bar curtailment on shear 
strength. 

The discontinuity effects discussed in Section 5.9.2 are, therefore, less severe for 
bars which are bent, in comparison with bars which are cut off.  Hence a requirement 
that the bend points be extended beyond the ‘theoretical bar cut-off points’ by the 
end extension distance (La  d or 12φ) may be too conservative.  It has been 
suggested [Ref. 5.6] that for bar extension purpose, a bent bar may be considered 
effective up to a section where the bar crosses the mid-depth of the beam; this would 
reduce the extension required by d / 2.  However, for bar extension, the Code does 
not distinguish between cut-off bars and bent bars. 

≥

EXAMPLE  5.7 

Design a suitable longitudinal arrangement of the tension reinforcement (including 
bar cut-off) for the simply supported beam of Example 5.1.  

SOLUTION 

• Given: From Example 5.1, Ast = 1119 mm2 (1-25φ  and 2–20φ ), b = 250 mm, d = 
399 mm, fy = 415 MPa, fck = 25 MPa, factored load  = 28.1 kN/m, span = 6.0 
m [Fig. 5.18(a)],  M

wu

u,max = 126 kNm, (MuR)3bars = 131 kNm. 
• The middle bar (1-25φ ) may be curtailed.  Let the theoretical cut-off point be at a 

distance x from the support.  The value of x can be obtained by solving the 
moment equilibrium equation: 
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Mx = Vux –  wux2/ 2 
where Mx is the ultimate moment of resistance of the two continuing 20φ  bars:  

M x ≈  (2×314/1119)×131 kNm = 73.5 kNm. [Fig. 5.18(b)]. 
Vu  = w lu 2  = 28.1×3.0 = 84.3 kN. 

⇒ 84.3x – 28.1 x 2

2  = 73.5 
=> x2 – 6x + 5.231 = 0 
Solving, x = 1.059 m = 1059 mm. 

• End extension for curtailed bar   

Bar extension beyond theoretical cut-off point is given by d = 399 mm, which is 
greater than 12φ  = 240 mm. 
∴Actual point of termination = 1059 – 399 = 660 mm from the centre of support 
[Fig. 5.18(c)]. 

• Check bar size limitation at support   

13. M
V

LuR

u
o+

⎛

⎝
⎜

⎞

⎠
⎟  must exceed  [Eq. 5.25]. Ld

For Fe 415 steel and M 25 concrete,  = 40×25 = 1000 mm [Table 5.6]. Ld

For the continuing two bars, MuR = 73.5 kNm 

⇒ 13. M
V

LuR

u
o+

⎛

⎝
⎜

⎞

⎠
⎟  = oL+

×
×

3.84
105.733.1

3
 = (1133 mm + ) oL

which exceeds  = 1000 mm, regardless of .  Hence, the bar diameter Ld Lo

φ  = 20 mm is acceptable. 

• Extension over support for continuing bars   

At the simple support the two bars must extend beyond the face of the support by 
a distance not less than:  /3 = 1000/3 = 333 mm Ld

which is not possible over a support width of 230 mm (with end cover of 30 mm 
minimum) — unless the bar is bent upwards.  Accordingly, provide standard 90o 
bend with 4φ  extension, having a total anchorage value of 12φ  = 240 mm, as 
shown in Fig. 5.18(c). 
∴Embedment length provided = (230 – 30 – 5×20) + 240 = 340 mm > /3 Ld

• Development length requirements   

1) For the curtailed bar, the critical section is at midspan; the length provided  
(3000 – 660 = 2340 mm) is well in excess of  = 940 mm. Ld

2) For the continuing bars, the requirement M V L Lu u o d
* + ≥  has been satisfied. 

— Hence, OK. 
• Shear strength requirements for curtailment   
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This is covered in Example 6.1 of Chapter 6. 

 

Fig. 5.18  Example 5.7 — Curtailment of bar 

REVIEW QUESTIONS 

5.1 Why does the Code impose minimum and maximum limits with regard to 
(a) spacing, (b) percentage area of flexural reinforcement? 

5.2 What are the advantages and disadvantages of providing large clear cover to 
reinforcement in flexural members? 

5.3 Show that deflection control in normal flexural members can be achieved by 
limiting span/effective depth ratios. 

5.4 Explain the dependence of span/effective depth ratios (for deflection control, as 
per Code) on the percentage tension and compression reinforcement, as well as 
the grade of tension steel. 

5.5 Under what circumstances are doubly reinforced beams resorted to? 
5.6 Reinforced concrete slabs are generally singly reinforced.  Why not doubly 

reinforced? 
5.7 A designer provides areas of tension and compression reinforcement (in a 

doubly reinforced beam) that result in percentage pt and pc in excess of the 
values obtained from design tables (corresponding to a given Mu/bd2).  Is it 
guaranteed that the design will meet all the Code requirements? 

5.8 Discuss the proportioning of sections in T-beam design. 
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5.9 What is a ‘theoretical bar cut-off point’?  Why does the Code disallow 
curtailment of flexural tension reinforcement at this point? 

5.10 Discuss the influence of diagonal tension cracks on the tension steel stress in a 
flexural member. 

5.11 Discuss the Code requirement related to ensuring adequate development length 
in the bars near the zero moment location. 

PROBLEMS 

5.1 A rectangular beam of span 7 m (centre-to-centre of supports), resting on 
300 mm wide simple supports, is to carry a uniformly distributed dead load 
(excluding self-weight) of 15 kN/m and a live load of 20 kN/m.  Using Fe 415 
steel, design the beam section at midspan, based on first principles.  Check the 
adequacy of the section for strength, using design aids.  Also perform a check 
for deflection control.  Assume that the beam is subjected to moderate exposure 
conditions. 

5.2 Design a suitable arrangement of the tension reinforcement (including bar cut-
off) for the beam in Problem 5.1 

5.3 Design the beam section in Problem 5.1, given that the overall beam depth is 
restricted to 550 mm. 

5.4 Design a one-way slab, with a clear span of 5.0m, simply supported on 230 mm 
thick masonry walls, and subjected to a live load of 3 kN/m2 and a surface 
finish load of 1 kN/m2, using Fe 415 steel.  Assume that the beam is subjected 
to (a) mild exposure and (b) very severe exposure, and compare the results.  

5.5 Repeat Problem 5.4, considering Fe 250 steel in lieu of Fe 415 steel. 
5.6 The floor plan of a building is shown in Fig. 5.19.  The specified floor loading 

consists of a live load of 5.0 kN/m2 and a dead load of 2.5 kN/m2 (excluding 
self-weight).  Design the slab thickness and reinforcement area required at the 
various critical sections, using Fe 415 steel.  Assume that the beam is subjected 
to moderate exposure conditions. 
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Fig. 5.19  Floor system — Problems 5.6 – 5.8 

5.7 Design the interior beam of the floor system in Fig. 5.19, considering the beam 
to be simply supported. 

5.8 Design the edge beam (L-beam) of the floor system in Fig. 5.19, with the width 
of the web equal to 250 mm.  Assume the beam to be simply supported and 
neglect the effect of torsion. 

5.9 A T-beam of 8m clear span, simply supported on wall supports 230 mm wide, 
is subjected to a dead load of 20 kN/m (including self-weight) and a live load 
of 25 kN/m.  The overall size of the beam is given in Fig. 5.20.  Design the 
beam for tension reinforcement and detail the bar cut-off.  Assume that 50 
percent of bars are to be cut off.  Use Fe 415 steel.  Assume moderate exposure 
conditions. 

1300

350

100

550

350

1300

100

Fig. 5.20  Problem 5.9 Fig. 5.21  Problem 5.10  

5.10 The section of a cantilever (inverted T-beam) is shown in Fig. 5.21.  The 
cantilever has a clear span of 4m and carries a total distributed load of 25 kN/m 
(including self-weight) and a concentrated load of 50 kN at the free end.  
Design and detail the tension reinforcement, considering the cantilever to be 
supported from a 600 mm wide column.  Assume that the beam is subjected to 
severe exposure conditions. 

5.11 Work out the bar cut-off details for the beam designed in Example 5.5. 
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     Design for Shear 

 

6.1   INTRODUCTION 

As mentioned earlier (in Section 4.1), bending moments are generally accompanied 
by transverse shear forces, and sometimes by axial forces and torsion as well.  The 
ultimate limit state considered in Chapters 4 and 5 dealt with flexure (bending) alone.  
This chapter deals with the ultimate limit state in flexural shear, i.e., shear associated 
with a varying bending moment.  Commonly, flexural shear is simply referred to as 
‘shear’.  The method described in this Chapter (for convenience, referred to as the 
Conventional Method or the “Simplified Method”) is intended to be used for the 
design of “flexural regions” of members; ie. beams, columns, or walls (or portions of 
the member as are) designed by the conventional theory of flexure, in which the 
assumption that “plane sections remain plane” is reasonably valid.  In this method, 
the transverse reinforcement is designed for the shear, while the longitudinal 
reinforcement is designed for the combined effects of flexure and axial (compressive 
only) load.  The effects of shear on the longitudinal reinforcement (Section 5.9.2) are 
taken care of by bar detailing requirements.  In the case of slabs, this type of shear is 
sometimes referred to as one−way shear ⎯ as distinct from two−way shear 
(‘punching shear’), which is associated with the possibility of punching through a 
relatively thin slab by a concentrated column load (refer Chapter 11).  Another type 
of shear that needs consideration is torsional shear (due to torsion), which, when it 
occurs, generally does so in combination with flexural shear; this is covered in 
Chapter 7. 

A more general method for shear and torsion design, based on the so-called 
Compression Field Theory, is presented in Chapter 17.  In this method, the member 
is designed for the combined effects of flexure, shear, axial (compressive or tensile) 
load and torsion. 

A method based on the ‘Strut-and-Tie Model’ is also presented in Chapter 17.  
This method is particularly suitable for the design of regions where the assumption 
that “plane sections remain plane” is not applicable.  Such regions include deep 
beams, parts of members with a deep shear span, brackets and corbels, pile caps, 
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regions with abrupt changes in cross-section (web openings in beams and 
articulations in girders) and regions near discontinuities. 

Interface shear transfer and the shear-friction procedure are also described in this 
Chapter (Section 6.9).  This is applicable for situations involving the possibility of 
shear failure in the form of sliding along a plane of weakness. 

Failure of a reinforced concrete beam in flexural shear often may not lead to an 
immediate collapse by itself.  However, it can significantly reduce flexural strength 
(moment−bearing capacity) as well as ductility.  Hence, the state of (impending) 
shear failure is treated by the Code as an ultimate limit state (i.e., limit state of 
collapse) for design purposes. 

The behaviour of reinforced concrete under shear (flexural shear alone or in 
combination with torsion and axial forces) is very complex ⎯ mainly because of its 
non-homogeneity, presence of cracks and reinforcement, and the nonlinearity in its 
material response.  The current understanding of and design procedures for shear 
effects are, to a large measure, based on the results of extensive tests and simplifying 
assumptions, rather than on an exact and universally accepted theory. 

6.2   SHEAR STRESSES IN HOMOGENEOUS RECTANGULAR BEAMS 

In order to gain an insight into the causes of flexural shear failure in reinforced 
concrete, the stress distribution in a homogeneous elastic beam of rectangular section 
is reviewed here.  In such a beam, loaded as shown in Fig. 6.1(a), any transverse 
section (marked ‘XX’), in general, is subjected to a bending moment M and a 
transverse shear force V. 

From basic mechanics of materials [Ref. 6.1], it is known that the flexural 
(normal) stress fx and the shear stress τ  at any point in the section, located at a 
distance y from the neutral axis, are given by:  

f
M y

Ix =  

τ =
VQ
Ib

                                                     (6.1) 

where I is the second moment of area of the section about the neutral axis, Q the first 
moment of area about the neutral axis of the portion of the section above the layer at 
distance y from the NA, and b is the width of the beam at the layer at which τ  is 
calculated.  The distributions of fx and τ  are depicted in Fig. 6.1(b).  It may be noted 
that the variation of shear stress is parabolic, with a maximum value at the neutral 
axis and zero values at the top and bottom of the section. 

Considering an element at a distance y from the NA [Fig. 6.1(c)], and neglecting 
any possible vertical normal stress fy caused by the surface loads, the combined 
flexural and shear stresses can be resolved into equivalent principal stresses f1 and f2 
acting on orthogonal planes, inclined at an angle α  to the beam axis (as shown): 
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Fig. 6.1  Stress distribution in homogeneous beams of rectangular section 
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+ τ                                         (6.2) 

tan  2 2α τ
=

f x

                                                          (6.3) 

In general, the stress f1 is tensile (say = ft) and f2 is compressive (say = fc).  The 
relative magnitudes of ft and fc and their directions depend on the relative values of  
fx and τ  [Eq. 6.2, 6.3].  In particular, at the top and bottom fibres where shear stress 
τ  is zero, it follows from Eq. 6.3 that α = 0, indicating that one of the principal 
stresses is in a direction parallel to the surface, and the other perpendicular to it, the 
latter being zero in the present case.  Thus, along the top face, the nonzero stress 
parallel to the beam axis is fc, and along the bottom face, it is ft.  On the other hand, a 
condition of ‘pure shear’ occurs for elements located at the neutral axis (where τ  is 
maximum and fx = 0), whereby ft = fc = τ max  and α = 45o.  The stress pattern is 
indicated in Fig. 6.1(d), which depicts the principal stress trajectories† in the beam. 

In a material like concrete which is weak in tension, tensile cracks would develop 
in a direction that is perpendicular to that of the principal tensile stress.  Thus the 
compressive stress trajectories [firm lines in Fig. 6.1(d)] indicate potential crack 
patterns (depending on the magnitude of the tensile stress), as shown in Fig. 6.1(e).  
It should be noted, however, that once a crack develops, the stress distributions 
depicted here are no longer valid in that region, as the effective section gets altered 
and the above equations are no longer valid. 

6.3   BEHAVIOUR OF REINFORCED CONCRETE UNDER SHEAR 

6.3.1   Modes of Cracking 

In reinforced concrete beams of usual proportions, subjected to relatively high 
flexural stresses fx and low shear stresses τ , the maximum principal tensile stress is 
invariably given by the flexural stress fx,max in the outer fibre (bottom face of the 
beam in Fig. 6.1) at the peak moment locations; the resulting cracks are termed 
flexural cracks [Fig. 6.2(a)].  These are controlled by the tension bars.  On the other 
hand, in short−span beams which are relatively deep and have thin webs (as in I-
sections) and are subjected to high shear stresses τ  (due to heavy concentrated 
loads) and relatively low flexural stresses fx, it is likely that the maximum principal 
tensile stress is located at the neutral axis level at an inclination α = 45o (to the 
longitudinal axis of the beam); the resulting cracks (which generally occur near the 
supports, where shear force is maximum) are termed web shear cracks or diagonal 
tension cracks [Fig. 6.2(b)]. 

                                                           
† ‘Principal stress trajectories’ are a set of orthogonal curves whose tangent/normal at any 
regular point indicate the directions of the principal stresses at that point.  The firm lines 
indicate directions of compressive stress, and the broken lines indicate directions of tensile 
stress. 
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(a)  flexural cracks

(c)  flexure–shear cracks

(b)  web–shear crack
a

(d)  secondary cracks (e)  dowel forces in bars  

Fig. 6.2  Modes of cracking 

In general, in a beam under flexure and shear, a biaxial state of combined tension 
and compression exists at various points, as shown in Fig. 6.1.  As explained in 
Section 2.10.2, the presence of shear stress reduces the strength of concrete in 
compression as well as tension.  Accordingly, the tensile strength of the concrete in a 
reinforced concrete beam subjected to flexural shear will be less than the uniaxial 
tensile strength of concrete. The so-called ‘diagonal tension cracks’ can be expected 
to occur in reinforced concrete beams in general, and appropriate shear 
reinforcement is required to prevent the propagation of these cracks.  When a 
‘flexural crack’ occurs in combination with a ‘diagonal tension crack’ (as is usually 
the case), the crack is sometimes referred to as a flexure-shear crack [Fig. 6.2(c)].  In 
such a case, it is the flexural crack that usually forms first, and due to the increased 
shear stresses at the tip of the crack, this flexural crack extends into a diagonal 
tension crack. 

Sometimes, the inclined crack propagates along the tension reinforcement towards 
the support [Fig. 6.2(d)].  Such cracks are referred to as secondary cracks or splitting 
cracks.  These are attributed to the wedging action of the tension bar deformations 
and to the transverse ‘dowel forces’ introduced by the tension bars functioning as 
dowels across the crack, resisting relative transverse displacements between the two 
segments of the beam (dowel action) [Fig. 6.2(e)]. 
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6.3.2   Shear Transfer Mechanisms 

There are several mechanisms by which shear is transmitted between two adjacent 
planes in a reinforced concrete beam.  The prominent among these are identified in 
Fig. 6.3, which shows the freebody of one segment of a reinforced concrete beam 
separated by a flexure-shear crack. 

V Vd

Vax

Vay
Va

Vs
Vcz

C

T

 

Fig. 6.3  Internal forces acting at a flexural-shear crack 

The transverse (external) shear force is denoted as V (and has a maximum value 
near the support, equal to the support reaction).  It is resisted by various mechanisms, 
the major ones [Fig. 6.3] being: 

1. shear resistance Vcz of the uncracked portion of concrete; 
2. vertical component Vay of the ‘interface shear’ (aggregate interlock) force 

Va; 
3. dowel force Vd in the tension reinforcement (due to dowel action); and 
4. shear resistance Vs carried by the shear (transverse) reinforcement, if any. 

The interface shear Va is a tangential force transmitted along the inclined plane of 
the crack, resulting from the friction against relative slip between the interlocking 
surfaces of the crack.  Its contribution can be significant, if the crack-width is limited.  
The dowel force Vd comes from ‘dowel action’ [Fig. 6.2(e)], as explained earlier. 

The equilibrium of vertical forces in Fig. 6.3 results in the relation: 

V V V V Vcz ay d s= + + +                                       (6.4) 

The relative contribution of the various mechanisms depends on the loading stage, 
the extent of cracking and the material and geometric properties of the beam.  Prior to 
flexural cracking, the applied shear is resisted almost entirely by the uncracked 
concrete .  At the commencement of flexural cracking, there is a 
redistribution of stresses, and some interface shear V

(V Vcz≈ )
a and dowel action Vd develop.  

At the stage of diagonal tension cracking, the shear reinforcement (hitherto 
practically unstressed) that intercepts the crack undergoes a sudden increase in tensile 
strain and stress.  All the four major mechanisms are effective at this stage.  The 
subsequent behaviour, including the failure mode and the ultimate strength in shear, 
depends on how the mechanisms of shear transfer break down and how successfully 
the shear resisting forces are redistributed. 
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The presence of increased longitudinal reinforcement in the flexural tension zone 
not only contributes to enhanced dowel action (Vd), but also serves to control the 
propagation of flexural cracks and contributes to increasing the depth of the neutral 
axis, and thereby the depth of the uncracked concrete in compression; this enhances 
the contributions of Va and Vcz.  Thus, the higher the percentage tension 
reinforcement, the greater the shear resistance in the concrete – up to a limit.  

Beams without Shear Reinforcement 

In beams without shear reinforcement, the component Vs is absent altogether.  
Moreover, in the absence of stirrups enclosing the longitudinal bars, there is little 
restraint against splitting failure, and the dowel force Vd is small.  Furthermore, the 
crack propagation is unrestrained, and hence, fairly rapid, resulting in a fall in the 
aggregate interface force Va and also a reduction in the area of the uncracked 
concrete (in the limited compression zone) which contributes to Vcz.  However, in 
relatively deep beams, tied−arch action [Fig. 6.4(b)] may develop following inclined 
cracking, thereby transferring part of the load to the support, and so reducing the 
effective shear force at the section.  

Thus, in beams without shear reinforcement, the breakdown of any of the shear 
transfer mechanisms may cause immediate failure, as there is little scope for 
redistribution.  Further, owing to the uncertainties associated with all the above 
effects, it is difficult to predict precisely the behaviour and the strength beyond the 
stage of diagonal cracking in beams without shear reinforcement. 

As seen in Chapter 5, design for flexure is done so as to ensure a ductile flexural 
failure.  The objective of shear design is to avoid premature brittle shear failures, 
such as those displayed by beams without web reinforcement, before the attainment 
of the full flexural strength.  Members should be designed so that the shear capacity 
is high enough to ensure a ductile flexural failure. 

Beams with Shear Reinforcement 

In beams with moderate amounts of shear reinforcement, shear resistance continues 
to increase even after inclined cracking, until the shear reinforcement yields in 
tension, and the force Vs cannot exceed its ultimate value Vus.  Any additional shear 
V has to be resisted by increments in Vcz, Vd and/or Vay.  With progressively 
widening crack-width (now accelerated by the yielding of shear reinforcement), Vay 
decreases (instead of increasing), thereby forcing Vcz  and Vd to increase at a faster 
rate until either a splitting (dowel) failure occurs or the concrete in the compression 
zone gets crushed under the combined effects of flexural compressive stress and 
shear stress. 

Owing to the pronounced yielding of the shear reinforcement, the failure of shear 
reinforced beams is gradual and ductile in nature ⎯ unlike beams without shear 
reinforcement, whose failure in shear is sudden and brittle in nature.  However, if 
excessive shear reinforcement is provided, it is likely that the ‘shear-compression’ 
mode of failure [see next section] will occur first, and this is undesirable, as such a 
failure will occur suddenly, without warning. 
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Fig. 6.4  Typical shear failure modes 

6.3.3   Shear Failure Modes 

As explained earlier (with reference to Eq. 6.2), the magnitude and direction of the 
maximum principal tensile stress, and hence the development and growth of inclined 
cracks are influenced by the relative magnitudes of the flexural stress  fx and the 
shear stress τ .  As an approximation, stresses fx and τ  can be considered 
proportional to M/(bd2) and V/(bd) respectively, where M and V are the applied 
bending moment and shear force respectively at the beam section under 
consideration, b is the width and d the effective depth. 
Accordingly, 
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                             (6.5) 

where F1, F2, F3 are constants of proportionality.  For beams subjected to 
concentrated loads [Fig. 6.4(a)], the ratio M/V at the critical section subjected to the 
maximum V works out exactly to the distance a, called shear span, between the 
support and the load.  In such a case, the ratio M/(Vd) becomes equal to a/d, the 
shear span-depth ratio, whereby Eq. 6.5 reduces to  

f
d

x

τ
  ∝

a
                                                           (6.6) 

It can be seen that the dimensionless ratio a/d (or M/(Vd)) provides a measure of 
the relative magnitudes of the flexural stress and the shear stress, and hence enables 
the prediction of the mode of failure of the beam in flexural shear [Ref. 6.2, 6.3].  
The prediction is based on considerable experimental evidence involving simply 
supported beams of rectangular cross-section subjected to symmetrical two-point 
loading. 

Case 1: a/d < 1 

In very deep beams (a/d < 1) without web reinforcement, inclined cracking 
transforms the beam into a tied-arch [Fig. 6.4(b)].  The tied−arch may fail either by a 
breakdown of its tension element, viz. the longitudinal reinforcement (by yielding, 
fracture or failure of anchorage) or a breakdown of its compression chord (crushing 
of concrete), as shown in Fig. 6.4(b). 

Case 2: 1 < a/d < 2.5 

In relatively short beams with a/d in the range of 1 to 2.5, the failure is initiated by 
an inclined crack ⎯ usually a flexure-shear crack.  The actual failure may take place 
either by (1) crushing of the reduced concrete section above the tip of the crack under 
combined shear and compression, termed shear-compression failure or (2) secondary 
cracking along the tension reinforcement, termed shear-tension failure.  Both these 
types of failure usually occur before the flexural strength (full moment-resisting 
capacity) of the beam is attained. 

However, when the loads and reactions applied on the top and bottom surfaces of 
the beam are so located as to induce a vertical compressive stress in concrete between 
the load and the reaction, the shear strength may be increased significantly ⎯ 
requiring very heavy loads to cause inclined cracking. 

Case 3: 2.5 < a/d < 6 

Normal beams have a/d ratios in excess of 2.5.  Such beams may fail either in shear 
or in flexure.  The limiting a/d ratio above which flexural failure is certain depends 
on the tension steel area as well as strength of concrete and steel; generally, it is in 
the neighbourhood of 6. 
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For beams with a/d ratios in the range 2.5 to 6, flexural tension cracks develop 
early.  Failure in shear occurs by the propagation of inclined flexural-shear cracks.  
As mentioned earlier, if shear (web) reinforcement is not provided, the cracks extend 
rapidly to the top of the beam; the failure occurs suddenly and is termed diagonal 
tension failure [Fig. 6.4(d)].  Addition of web reinforcement enhances the shear 
strength considerably.  Loads can be carried until failure occurs in a shear-tension 
mode (yielding of the shear reinforcement) or in a shear-compression mode†, or in a 
flexural mode. 

Web−Crushing Failure 

In addition to the modes described above, thin-webbed members (such as I−beams 
with web reinforcement) may fail by the crushing of concrete in the web portion 
between the inclined cracks under diagonal compression forces [Fig. 6.4(e)]. 

6.4   NOMINAL SHEAR STRESS 

The concept of average shear stress τ av  in a beam section is used in mechanics of 
materials, with reference to a homogeneous elastic material [Fig. 6.1].  It is defined 
as  

τ av
shear force

area of  cross secti
=

on
 

For simplicity, this parameter is used as a measure of the shear stresses in a 
reinforced concrete beam section as well. 

6.4.1   Members with Uniform Depth 

For prismatic members of rectangular (or flanged) sections, the Code (Cl. 40.1) uses 
the term nominal shear stress τ v , defined at the ultimate limit state, as follows: 

τ v
uV

bd
=                                                     (6.7) 

where Vu is the factored shear force at the section under consideration, b is the width 
of the beam (taken as the web width bw in flanged beams), and d the effective depth 
of the section. 

It should be noted that τ v  is merely a parameter intended to aid design and to 
control shear stresses in reinforced concrete; it does not actually represent the true 
average shear stress (whose distribution is quite complex in reinforced concrete). 

                                                           
† If web steel is excessive, it may not yield; instead concrete in diagonal compression gets 
crushed. 
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6.4.2   Members with Varying Depth 

In the case of members with varying depth [Fig. 6.5], the nominal shear stress, 
defined by Eq. 6.7, needs to be modified, to account for the contribution of the 
vertical component of the flexural tensile force Tu which is inclined at an angle β  to 
the longitudinal direction. 
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Fig. 6.5  Design shear force in beams of variable depth 

Assuming the horizontal component of Tu as Mu/z ≈  Mu/d, it can be seen from 
Fig. 6.5 that the net shear force Vu,net for which the section should be designed is: 

βtan, d
M

VV u
unetu ±=                                                  (6.8) 
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Accordingly, the nominal shear stress (Cl. 40.1.1 of the Code), defined with 
respect to Vu,net, is obtained as 

bd
d

M
V u

u

v

β
τ

tan±
=                                                 (6.9) 

where Vu and Mu are the applied factored shear force and bending moment at the 
section under consideration.  The negative sign in Eq. 6.8, 6.9 applies where Mu 
increases in the same direction as the depth increases and the positive sign applies 
where Mu decreases in this direction, as shown clearly in Fig. 6.5. 

A similar adjustment to the shear Vu and the nominal shear stress τ v  is called for 
when the flexural compression Cu is inclined to the longitudinal axis of the beam, 
i.e., the compression face is sloping.  Such a situation is encountered in tapered base 
slabs of footings [refer Chapter 14].  It can be shown that Eq. 6.9 holds good in this 
case also. 

It may be noted that when the depth increases in the same direction as the bending 
moment (as is usually the case in cantilever beams), there is an advantage to be 
gained, in terms of reduced shear stress, by the application of Eq. 6.9 rather than 
Eq. 6.7.  In such a case, the use of the simpler Eq. 6.7 for nominal shear stress τ v  
(sometimes adopted in practice, for convenience) will give conservative results.  
However, the use of Eq. 6.9 becomes mandatory when the effect of the vertical 
component of Tu is unfavourable, i.e., when the depth decreases with increasing 
moment. 

6.5   CRITICAL SECTIONS FOR SHEAR DESIGN 

In designing for flexural shear, the critical sections to be investigated first (for 
calculating the nominal shear stress τ v ) are the ones where the shear force is 
maximum and/or the cross-sectional area is minimal. 

The maximum shear force usually occurs in a flexural member at the face of the 
support, and progressively reduces with increasing distance from the support.  When 
concentrated loads are involved, the shear force remains high in the span between the 
support and the first concentrated load. 

When a support reaction introduces transverse compression in the end region of 
the member, the shear strength of this region is enhanced, and inclined cracks do not 
develop near the face of the support (which is usually the location of maximum 
shear).  In such a case, the Code (Cl. 22.6.2.1) allows a section located at a distance d 
(effective depth) from the face of the support to be treated as the critical section 
[Fig. 6.6(a)].  The beam segment between this critical section and the face of the 
support need be designed only for the shear force at the critical section.  As the shear 
force at this critical section will be less than (or equal to) the value at the face of the 
support, the Code recommendation will usually result in a more favourable (less) 
value of τ v  than otherwise.  This is of particular significance in base slabs of footing 
where flexural (one-way) shear is a major design consideration [refer Chapter 14]. 
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Fig. 6.6  Critical sections for shear at support 

However, when a heavy concentrated load is introduced within the distance 2d 
from the face of the support, then the face of the support becomes the critical section 
[Fig. 6.6(b)], as inclined cracks can develop within this region if the shear strength is 
exceeded.  In such cases, closely spaced stirrups should be designed and provided in 
the region between the concentrated load and the support face. 

Also, when the favourable effect of transverse compression from the reaction is  
absent ⎯ as in a suspended beam [Fig. 6.6(c)], or a beam (or bracket) connected to 
the side of another supporting beam [Fig. 6.6(d)] ⎯ the critical section for shear 
should be taken at the face of the support. 

In the latter case [Fig. 6.6(d)], special shear reinforcement detailing is called for 
— to ensure that effective shear transfer takes place between the supported beam (or 
bracket in some situation) and the supporting beam.  It is recommended [Ref. 6.8] 
that full depth stirrups should be designed in both the supported member and the 
supporting member in the vicinity of the interface for ‘hanging up’ a portion of the 
interface shear, equal to Vu (1 − hb/D), the dimensions hb and D being as shown in 
Fig. 6.7.  The shear reinforcement (stirrups) so designed must be accommodated in 
the effective regions indicated in Fig. 6.7 [refer Section 6.8 for design procedure]. 
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Fig. 6.7  Detailing of stirrups for interface shear at indirect support 

6.6   DESIGN SHEAR STRENGTH WITHOUT SHEAR REINFORCEMENT 

6.6.1   Design Shear Strength of Concrete in Beams 

As explained earlier in Section 6.3.2, the margin of strength beyond diagonal 
cracking is subject to considerable fluctuation on account of various factors, and 
hence is ignored for design purposes [Ref. 6.4, 6.5].  Accordingly, the (average) 
design shear strength τ c  of concrete in reinforced concrete beams without shear 
reinforcement is limited to the value of the nominal shear stress τ v  corresponding to 
the load at which the first inclined crack develops; some partial factor of safety 
( 1.2) is also introduced. ≈

The magnitude of the design shear strength τ c  depends on various factors (refer 
Section 6.3.2) that are related to the grade of concrete (fck) and the percentage tension 
steel pt = 100Ast/(bd).  The values of τ c  given in the Code (Table 19) are based on 
the following empirical formula [Ref. 6.5, 6.6]: 

τ βc ckf= +0 85 0 8 1 5 1 6. ( . )( ) ( β− )                          (6.10) 
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Table 6.1  Design Shear Strength of Concrete τ c  (MPa) 

Concrete grade 
p

A
bdt

st=
100  

M 20 M 25 M 30 M 35 M 40 and 
above 

0.2 0.326 0.331 0.334 0.337 0.339 
0.3 0.388 0.395 0.400 0.403 0.407 
0.4 0.437 0.446 0.452 0.457 0.461 
0.5 0.478 0.489 0.497 0.503 0.508 

0.6 0.514 0.526 0.536 0.543 0.549 
0.7 0.546 0.559 0.570 0.578 0.585 
0.8 0.574 0.589 0.601 0.611 0.618 
0.9 0.599 0.616 0.630 0.640 0.649 
1.0 0.623 0.641 0.656 0.667 0.677 

1.1 0.644 0.664 0.680 0.692 0.703 
1.2 0.664 0.686 0.703 0.716 0.727 
1.3 0.682 0.706 0.724 0.738 0.750 
1.4 0.700 0.725 0.744 0.759 0.771 
1.5 0.716 0.742 0.762 0.779 0.792 

1.6 0.731 0.759 0.780 0.797 0.811 
1.7 0.746 0.775 0.797 0.815 0.830 
1.8 0.760 0.790 0.813 0.832 0.847 
1.9 0.773 0.804 0.828 0.848 0.864 
2.0 0.785 0.818 0.843 0.864 0.880 

2.1 0.797 0.831 0.857 0.878 0.896 
2.2 0.808 0.843 0.871 0.893 0.911 
2.3 0.819 0.855 0.883 0.906 0.925 
2.4 0.821 0.867 0.896 0.919 0.939 
2.5 0.821 0.878 0.908 0.932 0.952 

2.6 0.821 0.888 0.919 0.944 0.965 
2.7 0.821 0.899 0.930 0.956 0.978 
2.8 0.821 0.909 0.941 0.968 0.990 
2.9 0.821 0.918 0.952 0.979 1.001 
3.0 0.821 0.918 0.962 0.989 1.013 

3.1 0.821 0.918 0.971 1.000 1.024 
3.2 0.821 0.918 0.981 1.010 1.034 
3.3 0.821 0.918 0.990 1.020 1.045 
3.4 0.821 0.918 0.999 1.029 1.055 
3.5 0.821 0.918 1.006 1.039 1.065 

3.6 0.821 0.918 1.006 1.048 1.074 
3.7 0.821 0.918 1.006 1.056 1.084 
3.8 0.821 0.918 1.006 1.065 1.093 
3.9 0.821 0.918 1.006 1.073 1.102 
4.0 0.821 0.918 1.006 1.081 1.110 

4.1 0.821 0.918 1.006 1.087 1.119 
4.2 0.821 0.918 1.006 1.087 1.127 
4.3 0.821 0.918 1.006 1.087 1.135 
4.4 0.821 0.918 1.006 1.087 1.143 
4.5 0.821 0.918 1.006 1.087 1.151 

4.6 0.821 0.918 1.006 1.087 1.158 
4.7 0.821 0.918 1.006 1.087 1.162 
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where           β ≡ ⎧⎨
⎩

( . ) ( . )0 8 6 89
1

f pck t

                         
  whichever is greater             (6.10a) 

Typical values of τ c  are listed in Table 6.1 for different values of fck and pt.   

It may be observed that, for a given fck, there is a value of pt (corresponding to 
β  = 1 in Eq. 6.10a), beyond which τ c  remains constant, implying that the beneficial 
effects due to dowel action, control of crack propagation and increased depth of 
uncracked concrete in compression, cannot increase indefinitely with increasing pt. 

Further, it may be noted that the use of the values of τ c  listed in Table 6.1 (based 
on Eq. 6.10) for a given value of pt are applicable at bar cut-off regions, only if the 
detailing requirements are adequately satisfied (refer Section 5.9.3).  Where bars are 
proposed to be curtailed at locations where the shear requirements are not otherwise 
satisfied, it is necessary to provide additional stirrups locally near the cut-off points 
(thereby satisfying Cl. 26.2.3.2 of the Code). 

As explained in Section 6.5 [Fig. 6.6(a)], the shear strength of concrete is 
enhanced in regions close to the support (located 2d away from the face of the 
support), when the support reaction introduces transverse compression.  It is seen that 
a substantial portion of the load is transmitted to the support directly through strut 
action, rather than through flexural shear.  A recent revision in the Code allows for 
enhancement of shear strength of concrete τ c  in this region, provided the flexural 
tension reinforcement is extended beyond this region and well anchored.  The Code 
(Cl. 40.5) permits an increase in τ c  at any section located at a distance av (less than 
2d) from the face of the support by a factor (2d)/av.  However, this increase should be 
used with caution, as it is implied that as the critical section approaches the face of 
the support, the shear strength will increase asymptotically, which is not realistic.  
The authors suggest that the shear strength in concrete for sections within a distance 
d from the face of the support should be limited to 2τ c .   

6.6.2   Design Shear Strength of Concrete in Slabs 

Experimental studies [Ref. 6.2−6.4] have shown that slabs and shallow beams fail at 
loads corresponding to a nominal stress that is higher than that applicable for beams 
of usual proportion.  Moreover, the thinner the slab, the greater is the increase in 
shear strength.  In recognition of this, the Code (Cl. 40.2.1.1) suggests an increased 
shear strength, equal to k cτ  for ‘solid slabs’ (i.e., not including ribbed slabs), the 
multiplication factor k having a value in the range 1.0 to 1.3, expressed as follows: 

k
D

D D
D

=
≤

−
≥

⎧

⎨
⎪

⎩
⎪

13 150
1 6 0 002
1 0 300

.
. .
.

                     for  mm                     
      for 150 < < 300 mm           

                     for  mm                     
               (6.11) 

where D is the overall depth of the slab in mm. 
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It should be noted that these provisions for design shear strength are applicable 
only for considerations of flexural shear (or ‘one-way shear’).  For flat slabs and 
column footings, punching shear (‘two-way shear’) has to be considered, which 
involve different considerations of shear strength [refer Chapter 11]. 

In general, slabs subjected to normal distributed loads satisfy the requirement 
τ τv k< c , and hence do not need shear reinforcement.  This is mainly attributable to 
the fact that the thickness of the slab (controlled by limiting deflection criteria) is 
usually adequate in terms of shear capacity.  This is demonstrated in Example 6.1. 

6.6.3   Influence of Axial Force on Design Shear Strength 

In Section 2.10.2, it was indicated that the actual shear strength of concrete is 
generally improved in the presence of uniaxial compression and weakened in the 
presence of uniaxial tension. 

As explained earlier (in Section 6.6.1) the design shear strength is based on a safe 
estimate of the limiting nominal stress at which the first inclined crack develops.  The 
effect of an axial compressive force is to delay the formation of both flexural and 
inclined cracks, and also to decrease the angle of inclination α  of the inclined cracks 
to the longitudinal axis [Ref. 6.5].  Likewise, an axial tensile force is expected to do 
exactly the reverse, i.e., it will decrease the shear strength, accelerate the process of 
cracking and increase the angle α of the inclined cracks. 

Accordingly, the Code (Cl. 40.2.2) specifies that the design shear strength in the 
presence of axial compression should be taken as δτ c , the multiplying factor δ  
being defined as: 

δ =
+⎧

⎨
⎪

⎩⎪

1
3

1 5

P
A f

u

g ck
.             

           whichever is less          (6.12) 

where Pu is the factored compressive force (in N), Ag is the gross area of the section 
(in mm2) and fck is the characteristic strength of concrete (in MPa). 

Although the Code does not explicitly mention the case of axial tension, it is  
evident that some reduction in design shear strength is called for in such a case.  The 
following simplified expression for δ , based on the ACI Code [Ref. 6.7], may be 
used: 

δ = +1
3

P
A

u

g.45
      for Pu < 0                                  (6.13) 

where Pu is the factored axial tension (in N), with a negative sign. 
Alternatively, when axial tension is also present, design for shear may be done 

based on the Compression Field Theory or the Strut-and-Tie Model, described in 
Chapter 17. 
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6.7   DESIGN SHEAR STRENGTH WITH SHEAR REINFORCEMENT 

6.7.1  Types of Shear Reinforcement 

Shear reinforcement, also known as web reinforcement may consist of any one of the 
following systems (Cl. 40.4 of the Code) 

• stirrups perpendicular to the beam axis; 
• stirrups inclined (at 45° or more) to the beam axis; and 
• longitudinal bars bent-up (usually, not more than two at a time) at 45° to 60° 

to the beam axis, combined with stirrups. 

By far, the most common type of shear reinforcement is the two-legged stirrup, 
comprising a closed or open loop, with its ends anchored properly around 
longitudinal bars/stirrup holders (to develop the yield strength in tension).  It is 
placed perpendicular to the member axis (‘vertical† stirrup’), and may or may not be 
combined with bent-up bars, as shown in Fig. 6.8.   

BENT-UP BARS

VERTICAL
STIRRUPS

INCLINED
STIRRUPS

ALTERNATIVE FORMS OF
TWO-LEGGED STIRRUPS

MULTI-LEGGED STIRRUPS  

Fig. 6.8  Types of shear reinforcement 

                                                           
† The term vertical is commonly used (as in the Code), with the assumption that the beam axis 
is horizontal (as is commonly the case); the term is also (although inappropriate) used in the 
case of beams inclined to the horizontal. 
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The direction of bending up of the tension bar (or the direction of the inclined 
stirrup) should be such that it intercepts the potential inclined (diagonal tension) 
crack, nearly at right angles, thereby most effectively restraining the opening up and 
propagation of crack.  The bent-up bar must be properly anchored; in order to be 
effective, a full ‘development length’ Ld is required beyond the midpoint of the 
inclined portion of the bar. 

The stirrup (particularly, the inclined stirrup) is considered to be most effective in 
enhancing the overall shear resistance of the beam, because in addition to 
contributing in much the same way as the bent−up bar, it contributes significantly 
towards improved dowel action of the longitudinal tension bars, by restraining the 
latter from undergoing transverse (dowel) displacements.  Strictly, simple U-shaped 
(‘open’) stirrups with the free ends anchored properly in the compression zone by 
hooks suffice as shear reinforcement.  However, ‘closed’ loops are called for in 
resisting torsion and confining the compression reinforcement (when provided, in 
doubly reinforced beams).  It is desirable to locate the hook in the closed stirrup in 
the compression zone, rather than the tension zone, for improved anchorage and to 
avoid crack initiation. 

The shear resistance of bent-up bars cannot be fully relied upon, unless stirrups 
are also provided, to ensure adequate development of dowel action of the 
longitudinal bars.  The Code (Cl. 40.4) specifies that  

“Where bent-up bars are provided, their contribution towards shear 
resistance shall not be more than half that of the total shear reinforcement” 

6.7.2   Factors Contributing to Ultimate Shear Resistance 

If Vuc and Vus denote respectively the ultimate shear resistance of the concrete and 
the shear reinforcement, then the total ultimate shear resistance VuR at any section of 
the beams is given by 

V V VuR uc us= +                                                        (6.14) 

In Eq. 6.14, the shear resistance Vuc of concrete is made up of all the components 
Vcz, Vay and Vd  of Eq. 6.4.  Although the relative magnitudes of these components of 
Vuc vary with the stage of loading and the state of cracking (refer Section 6.3.2), their 
aggregate value Vuc is assumed to be constant, and obtainable from the design 
strength of concrete τc as 

Vuc cbd= τ                                                      (6.15) 

This follows from the concept of τ c  as the ‘safe’ limiting value of the nominal 
shear stress τ v  (given by Eq. 6.7) of concrete without shear reinforcement.  In beams 
with shear reinforcement, it is found from actual measurements of strain (in the shear 
reinforcement) that, prior to the formation of diagonal tension cracks, there is 
practically no tensile stress developed in the shear reinforcement [Ref. 6.2].  
Accordingly, Vuc denotes the shear resistance at the stage of initiation of diagonal 
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cracking in flexural members, regardless of whether or not shear reinforcement is 
provided. 

As explained earlier in Section 6.3.2, all the four shear transfer mechanisms (Vcz, 
Vay, Vd, Vs) become operational, following the development of inclined cracks.  The 
shear reinforcement contributes significantly to the overall shear resistance by 
increasing or maintaining the individual components Vcz, Vay and Vd of Eq. 6.4, in 
addition to directly contributing by means of the tension Vs in the legs of the stirrup 
and the bent-up portions of the bent-up bars (where provided). 

For simplicity, it is assumed that the contribution Vcz + Vay + Vd remains 
practically unchanged following the stage of inclined cracking.  Hence, Vuc 
(calculated using Eq. 6.15) is assumed to represent the shear resistance of the 
concrete at the ultimate limit state in beams with shear reinforcement as well.  
Further, as explained in Section 6.3.2, once the shear reinforcement starts yielding in 
tension, its shear resisting capacity remains practically constant as Vus.  Expressions 
for Vus are derived in Section 6.7.4. 

From a design viewpoint, suitable shear reinforcement has to be designed if the 
factored shear Vu  exceeds Vuc  (i.e., τv exceeds τc), and the shear resistance required 
from the web reinforcement is given by 

Vus u uc v c  V  V        bd≥ − = −( )τ τ                             (6.16) 

6.7.3   Limiting Ultimate Shear Resistance 

As explained earlier, the yielding of the shear reinforcement at the ultimate limit state 
is essential to ensure a ductile failure (with ample warning).  However, such a failure 
will not occur if the shear reinforcement provided is excessive.  If the total cross-
sectional area Asv of the stirrup legs and the bent-up bars exceeds a certain limit, it is 
likely that the section becomes stronger in diagonal tension compared to diagonal 
compression.  Hence, a shear-compression failure [Fig. 6.4(c)] may occur even 
before the shear reinforcement has yielded (and thus realised its full potential).  Such 
a situation is undesirable due to the brittle nature of the failure; moreover, it turns out 
to be uneconomical, in much the same way as over-reinforced beams. 

In order to prevent such shear-compression failures and to ensure yielding of the 
shear reinforcement at the ultimate limit state, the Code (Cl. 40.2.3) has indirectly 
imposed a limit on the resistance Vus, by limiting the ultimate shear resistance VuR: 

VuR c,lim ,maxbd= τ                                           (6.17) 

where τ c f,max ( .≈ 0 62 ck )  is given values (in MPa) of 2.4, 2.8, 3.1, 3.4, 3.7 and 3.9 
for concrete grades M 15, M 20, M 25, M 30, M 35 and M 40 respectively (vide 
Table 20 of the Code). 

Thus, if the calculated nominal shear stress τ v uV bd ( )=  at a beam section 
exceeds the limit τ c,max  (or the factored shear force Vu exceeds VuR,lim), the design 
should be suitably revised, either by improving the grade of concrete (thereby, 
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raising τ c,max ) or increasing the dimensions of the beam (thereby, lowering τ v ).  
The increase in τ c,max  with the compressive strength of concrete follows logically 
from the fact that the shear strength in diagonal compression gets enhanced. 

In the case of solid slabs, the Code (Cl. 40.2.3.1) specifies that τ v  should not 
exceed 0.5τ c,max  (i.e., 1.2 MPa for M 15, 1.4 MPa for M 20, 1.55 MPa for M 25, 
1.7 MPa for M 30, 1.85 MPa for M 35 and 1.95 MPa for M 40 concrete). 

6.7.4   Shear Resistance of Web Reinforcement 

Traditionally, the action of web reinforcement in reinforced concrete beams has been 
explained with the aid of the truss analogy, the simplest form of which is shown in 
Fig. 6.9.  This design model was first enunciated by Ritter in 1899.  In this model, a 
reinforced concrete beam with inclined cracks is replaced with a pin-jointed truss, 
whose compression chord represents the concrete compression zone at the top, and 
whose tension chord at the bottom represents the longitudinal tension reinforcement.  
Further, the tension web members (shown vertical in Fig. 6.9a) represent the stirrups, 
and the diagonal web members represent the concrete in compression between the 
inclined cracks.  (The truss model is akin to the Strut-and-Tie model). 

In this model, the compression diagonals do not have to go from top of one stirrup 
to the bottom of the next.  In reality, rather than having discrete diagonal 
compressive struts, there is a continuous field of diagonal compression contributing 
to shear resistance. 

The truss model is a helpful tool in visualising the forces in the stirrups (under 
tension) and the concrete (under diagonal compression), and in providing a basis for 
simplified design concepts and methods.  However, this model does not recognise 
fully the actual action of the web reinforcement and its effect on the various types of 
shear transfer mechanisms identified in Fig. 6.3. 

Fig. 6.9(b) shows one segment of the beam separated by a diagonal tension crack.  
This is an idealization of Fig. 6.9(a), wherein the diagonal crack is assumed to be 
straight, inclined at an angle θ  to the beam axis and extends over the full depth of the 
beam.  The general case of inclined stirrups is considered in the freebody in 
Fig. 6.9(b); only the forces in the web reinforcement that contribute to the resistance 
Vus are shown.   

The inclined stirrups are assumed to be placed at an angleα  (not less than 45o in 
design practice) with the beam axis, and spaced sv apart along the beam axis.  If Asv 
is the total cross-sectional area of one stirrup (considering all the legs intercepting the 
inclined crack) and 0.87fy is the design yield stress in it (assuming yielding at the 
ultimate limit state), then the total shear resistance of all the stirrups intercepting the 
crack is given by:  

            V vertical component of tension per stirrup number of stirrupsus = ×( ) ( )  
            ⇒Vus = × +( . sin ) (cot cot )0 87 f A d sy sv vα θ α  
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Fig. 6.9  Classical truss analogy for action of web reinforcement 

Assuming, for convenience, that the crack is located at θ  = 45o, the above relation 
simplifies to  

V f A d sus y sv v= +087. ( )(sin coα s )α             (6.18) 

The case of ‘vertical stirrups’ may be considered as a special case with α  = 90o.  
Hence, for vertical stirrups, the shear resistance Vus is obtained from Eq. 6.18 as 

V f A dus y sv vs= 0 87.                                       (6.19) 

The shear resistance of bent-up bars may also be obtained from Eq. 6.18 ⎯ when 
a series of single or parallel bent-up bars are provided at regular intervals in the 
manner of inclined stirrups.  However, when a single bar or a single group of parallel 
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bars are bent-up at the same location at an angleα , the vertical component of the 
total tension in these bars is given† by 

V f Aus y sv= 0 87. sinα                                      (6.20) 

6.7.5   Influence of Shear on Longitudinal Reinforcement 

The truss analogy illustrates an important effect pertaining to influence of shear on 
the tension in the longitudinal reinforcement.  Usually, the tension steel area 
requirement at any section is governed by the bending moment in the beam at that 
section.  However, when the beam is cracked (especially, at ultimate loads), there 
will be a change in the calculated tensile stress.  The presence of a diagonal crack 
will alter the tensile stress in the longitudinal steel, as observed earlier in the context 
of curtailment of bars (refer Fig. 5.14).  This is also clear in the truss analogy, as 
revealed by the section of the truss shown in Fig. 6.9(c).  By applying the ‘method of 
sections’, we observe that the compressive force in the top chord will be less than the 
tensile force in the bottom chord of the truss in any given panel (owing to the 
presence of the diagonals) and this difference will be equal to the horizontal 
component of the force in the diagonal.  Whereas the force in the top chord 
(compression in concrete) is governed by the bending moment at A, the force in the 
bottom chord (tension reinforcement) is governed by the bending moment at B, 
which is higher than that at A.  Thus, the presence of a diagonal tension crack due to 
shear results in an increase in the tension in the longitudinal reinforcement.  The 
increased tension is given approximately by half of the horizontal component of the 
force in the diagonal strut in Fig. 6.9(c)‡; i.e., equal to 0.5V/tanθ.  This influence of 
shear in enhancing the longitudinal reinforcement requirement was not realised till 
the 1950s.  Even now, this is not directly reflected in the I.S. Code provisions as a 
specified additional amount of longitudinal reinforcement required for shear.  
Instead, it is accounted for indirectly by provisions for extension of flexural 
reinforcements (Cl. 26.2.3 – see also Sections 5.9.2 and 5.9.3).  The Code (Cl. 
26.2.3.1) requires that the flexural tension reinforcement be extended for a distance 
of d or 12φ, whichever is greater, beyond the location required for flexure alone.  
Here φ is the nominal diameter of the longitudinal bar concerned, and the provision is 
applicable for locations other than at the supports of simple spans and at the free ends 
of cantilevers with concentrated loads.  This provision is equivalent to the outward 
shifting of the design moment diagram by a distance of d or 12φ (Fig. 6.10a). 

                                                           
† It may be noted that Eq. 6.20 is applicable only in the limited region where the bar is bent up. 
‡ The horizontal component of the force in the diagonal strut, equal to V/tanθ is assumed to be 
balanced equally by forces in the top and bottom chords.  This, incidentally, also implies that 
there will be a reduction in the longitudinal compression in the top chord, equal to 0.5 V/tanθ. 
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Fig. 6.10  Design bending moment for tension steel, including shear effect 

At simple supports and near free ends of cantilevers, the flexural tension 
reinforcement should be capable of resisting a tensile force of Vf  – 0.5 Vs at the 
inside edge of the bearing area, where Vs is the factored shear resistance provided by 
the shear reinforcement in this location.  This expression can be derived from 
equilibrium considerations of the forces in the free body diagram of the support 
region, separated by a diagonal crack [Fig. 6.10b].  Taking moments about A and 
neglecting small quantities of second order, 

2zVzTzV sf +≈  

⇒ sf VVT 5.0−=                                              (6.21) 

If the actual straight embedment length available at the support, x, is less than the 
development length, Ld, the stress that can be developed in the bar at the critical 
section at the inside edge of the bearing area (Fig. 6.10b) may be taken as: 

( )dyss Lxff φ=  

Alternatively, the embedment length required to develop the stress fs in the bar can 
be computed as: 

d
ys

s L
f

fx
φ

=  

Code Recommendations 

Eq. 6.18−6.20 are given in the Code under Cl. 40.4.  Further, the Code limits the 
maximum value of fy to 415 MPa, as higher strength reinforcement may be rendered 
brittle at the sharp bends of the web reinforcement; also, a shear compression failure 
could precede the yielding of the high strength steel. 

The Code (Cl. 26.5.1.5) also limits the value of the spacing sv to 0.75 d for 
‘vertical’ stirrups and d for inclined stirrups with α  = 45°.  This is done to ensure 
that every potential diagonal crack is intercepted by at least one stirrup.  Further, the 
Code specifies that “in no case shall the spacing exceed 300 mm”. 



DESIGN  FOR  SHEAR 249 

The overall shear resistance VuR is given by Eq. 6.14.  For the purpose of design 
for a given factored shear force Vu, the web reinforcement is to be designed for a 
design shear force of (Vu − τ cbd ), provided τ τv c≤ ,max  (i.e., Vu < VuR,lim). 

From the viewpoint of analysis of a given reinforced concrete beam, the capacity 
Vus may be determined from Eq. 6.18 − 6.20, assuming that the steel has yielded.  
However, the total shear resistance VuR, given by Eq. 6.14, should be limited to 
VuR,lim given by Eq. 6.17. 

6.7.6   Minimum Stirrup Reinforcement 

The Code (Cl. 26.5.1.6) specifies a minimum shear reinforcement to be provided in 
the form of stirrups in all beams where the calculated nominal shear stress τ v  
exceeds 0.5τ c : 

yv

sv

fbs
A

87.0
4.0

≥     when τ τv > 0 5.  c                        (6.22) 

⇒ 
b

Af
s svy

v
175.2

<                                                    (6.23) 

The maximum spacing of stirrups should also comply with the requirements 
described earlier.  For normal ‘vertical’ stirrups, the requirement is 

s
d

v ≤
⎧
⎨
⎩

0 75
300

.
 mm  

whichever is less                             (6.24) 

The Code objective in recommending such minimum shear reinforcement is to 
prevent the sudden formation of an inclined crack in an unreinforced (or very lightly 
reinforced) web, possibly leading to an abrupt failure.  Further, the provision of 
nominal web reinforcement restrains the growth of inclined shear cracks, improves 
the dowel action of the longitudinal tension bars, introduces ductility in shear and 
provides a warning of the impending failure. 

6.8   ADDITIONAL COMMENTS ON SHEAR REINFORCEMENT DESIGN 

• Bent-up bars generally give lower shear strength and often result in wider cracks 
than stirrups.  Hence, unless there is a series of such bars bent up at relatively 
close spacings (as is possible in long-span bridge girders), there is not much 
economy resulting from considering their shear strength contribution.  In normal 
situations, where there are only a few isolated bent-up bars scattered widely along 
the span, their shear strength contribution (not available at all sections) is ignored.  
Accordingly, the stirrups are designed to carry the full excess shear, given by: 

Vus v c bd= −( )τ τ                                            (6.25) 

• Inclined stirrups are most effective in reducing the width of the inclined cracks, 
and are desirable when full depth transverse cracks are likely (as in beams with 
high axial tension).  However, such reinforcement may be rendered entirely 
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ineffective if the direction of the shear force is reversed (as under seismic loads† 
). 

• ‘Vertical’ stirrups are the ones most commonly employed in practice.  It should 
be noted that the use of closely spaced stirrups of smaller diameter gives better 
crack control than stirrups of larger diameter placed relatively far apart.  The 
diameter is usually 8 mm, 10 mm or 12 mm.  Where heavy shear reinforcement is 
called for, multiple-legged stirrups should be employed (as often required in the 
beams of slab-beam footings). 

• For n-legged stirrups of diameter φ s  (where n = 2, 4, 6), 

A nsv s= πφ2 4                                              (6.26) 

The required spacing sv of ‘vertical stirrups’ for a selected diameter φ s  is given 
by applying Eq. 6.19, as: 

s
f A

V dv
y sv

us
≤

087.
                                         (6.27) 

where (from Eq. 6.25), 

V
d

bus
v c= −(τ τ )                                         (6.28) 

It can also be seen from Eq. 6.19 and Eq. 6.26, that for a given arrangement of 
vertical stirrups (with specified n, φ s , sv), the shear resistance in terms of Vus/d is 
a constant (in N/mm units) given by 

V
d

f A
s

us y sv

v
=

0 87.
                                     (6.29) 

Accordingly, suitable design aids can be prepared expressing the above equation, 
as done in Table 62 of SP : 16 [Ref. 6.9] ⎯ to enable a quick design of vertical 
stirrups, for a specified Vus/d. 

• The stirrup bar diameter is usually kept the same for the entire span of the beam.  
Theoretically, the required spacing of stirrups will vary continuously along the 
length of the beam owing to the variation in the shear force Vu.  However, 
stirrups are usually arranged with the spacing kept uniform over portions of the 
span ⎯ satisfying the requirements of shear strength [Eq. 6.27] and maximum 
spacing [Eq. 6.23, 6.24].  The first stirrup should be placed at not more than one-
half spacing (sv / 2) from the face of the support†.  Also, a longitudinal bar (at 
least a ‘hanger bar’ of nominal diameter) must be located at every bend‡ in a 

                                                           
† Special provisions for shear reinforcement design, under earthquake loading, are covered in 
Chapter 16. 
† See Section 6.5 and Fig. 6.7 regarding special case involving shear transfer. 
‡ The stirrup is tied to the longitudinal bar using ‘binding wire’. 
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stirrup.  The ends of the stirrup enclosing the longitudinal bars should satisfy 
anchorage requirements (discussed in Chapter 8). 

• Although the Code does not call for shear reinforcement in portions of beams 
where τ τv c< 2 , it is good design practice to provide minimum (nominal) 
stirrups [Eq. 6.23] in this region ⎯ to improve ductility and to restrain inclined 
cracks in the event of accidental overloading. 

• The factored shear force Vu to be considered for design at any section must take 
into account possible variations in the arrangement of live loads.  The 
construction of shear envelope for this purpose is demonstrated in Examples 6.1 
and 6.3.  

• Termination of flexural reinforcement in the tension zone can lower the shear 
strength of beams (refer Section 5.9).  Hence, such sections may also be critical 
and have to be checked for shear; if necessary, additional stirrups should be 
provided over a distance of 0.75d from the cut-off point to satisfy the Code 
requirement (Cl. 26.2.3.2).  This is demonstrated in Examples 6.1 and 6.3.  

• When reversal of stresses occurs, as in the case of earthquake loading or reversed 
wind direction, the shear strength of the (previously cracked) concrete cannot be 
relied upon.  In such cases, the stirrups should be designed to take the entire 
shear.  Moreover, the stirrups should necessarily be in the form of closed loops 
placed perpendicular to the member axis.  [The details of earthquake-resistant 
design for shear are described in Chapter 14.] 

6.9 INTERFACE SHEAR AND SHEAR FRICTION 

6.9.1 Shear-Friction 

There are situations where shear has to be transferred across a defined plane of 
weakness, nearly parallel to the shear force and along which slip could occur (Fig. 
6.11).  Examples are planes of existing or potential cracks, interface between 
dissimilar materials, interfaces between elements such as webs and flanges, and 
interface between concrete placed at different times.  In such cases, possible failure 
involves sliding along the plane of weakness rather than diagonal tension.  Therefore 
it would be appropriate to consider shear resistance developed along such planes in 
the form of resistance to the tendency to slip.  The shear-friction concept is a method 
to do this. 

When two bodies are in contact with a normal reaction, R, across the surface of 
contact, the frictional resistance, F, acting tangential to this surface and resisting 
relative slip is known to be F = μR, where μ is the coefficient of friction (Fig. 6.12a).  
Figure 6.12(b) shows an idealised cracked concrete specimen loaded in shear.  In 
such a specimen, a clamping force between the two faces of the crack can be induced 
by providing reinforcement (shear-friction reinforcement, Avf) perpendicular to the 
crack surface.  Any slip between the two faces of the rough irregular crack causes the 
faces to ride upon each other, which opens up the crack (Fig. 6.12c).  This in turn 
induces tensile forces in the reinforcement, which ultimately yields (Fig. 6.12d).  If 
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the area of reinforcement is Avf and yield stress fy, at ultimate, the clamping force 
between the two faces is R = Avf fy, and the frictional resistance is Σ F = Avf fy μ.. 

( a )   Corbel 

potential
crack

potential 
crack 

potential
crack

(b) Precast beam seat (c) Column face plate 

A s 
V f 

Vf

Vf

A vf 

A vf 

Avf

 
Fig. 6.11  Typical cases where shear friction is applicable (adapted from Ref. 6.10) 

In reality, the actual resistance to shear, Vr, is composed of this frictional force (Σ 
F), the resistance to shearing off of the protrusions on the irregular surface of the 
crack, the dowel force developed in the transverse reinforcement, and when there are 
no cracks developed yet, the cohesion between the two parts as well.  The nominal or 
characteristic (i.e. without safety factors) shear resistance, Vsn, due to the friction 
between the crack faces, is given by Eq. 6.30.  Other less simple methods of 
calculation have been proposed (Refs. 6.11, 6.12) which result in predictions of shear 
transfer resistance in substantial agreement with comprehensive test results. 

For shear-friction reinforcement placed perpendicular to the shear plane, 

μyvfsn fAV =                                                     (6.30) 
where,     Vsn     = nominal shear resistance due to the assumed friction part 

alone contributed by reinforcement stress 
Avf      = area of shear-friction reinforcement, placed normal to the 

plane of  possible slip 
μ       = coefficient of friction. 

Shear-friction reinforcement may also be placed at an angle αf to the shear plane, 
such that the shear force produces tension in the shear-friction reinforcement, as 
shown in Fig. 6.13(a), (b) (i.e., αf ≤ 90°). As the shear-friction reinforcement yields, 
the tensile force in the reinforcement is Avf fy, which has a component parallel to the 
shear plane of Avf fy cosαf, and a component normal to the plane equal to Avf fy sin αf . 
The latter produces the clamping force. The total force resisting shear is then 
obtained as Avf fy cos αf + μ.Avf fy sin αf, and the nominal shear resistance is given by: 

Vsn = Avf fy (cos αf + μ sin αf)                                         (6.31) 
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Fig. 6.12  Shear-friction analogy 

If the area of concrete section at the interface resisting shear transfer is Acv, the 
nominal shear resistance per unit area can be expressed (from Eq. 6.31) as: 

)sin(cos fyvfyvsn ffv αρμαρ +=                               (6.31a) 

where ρv = Avf /Acv, and vsn = nominal shear resistance due to the transverse 
reinforcement.  

If there is a load, N, normal to the interface, this will either increase or decrease 
the effective normal pressure across the interface, and correspondingly affect the 
shear resistance associated with shear-friction, depending on whether it is 
compressive or tensile (Fig. 6.13d). Taking N positive if compressive, the effective 
normal pressure R across the interface will then be: 

NfAR fyvf += αsin  

Reinforcement inclined at an angle αf > 90° is ineffective in resisting interface 
shear, because, as relative slip between the two parts occurs and the reinforcement 
deforms, the effect is to separate the two parts farther rather than to introduce any 
clamping forces (Fig. 6.13c). Hence reinforcement with αf ≤ 90° (i.e., placed such 
that shear force produces tension in the bar) only is effective as shear-friction 
reinforcement. [Indeed, this type of inclined bars will be more effective than bars 
perpendicular to the interface as tensile strains are initiated in the former sooner and 
more effectively than in the latter]. 
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Fig. 6.13  Inclined shear-friction reinforcement 

If allowance is made for the shear strength contribution due to the cohesion 
between the two parts across the interface, the nominal shear resistance (for the 
general case of inclined shear-friction reinforcement and normal force N) can be 
obtained as: 

fyvgfyvrn fANfcv αραρμ cos)/sin( +++=
                    

(6.32) 

where       c = stress due to cohesion 
N     = load across shear plane (positive if compressive and 

negative if tensile) 

6.9.2  Recommendation for Interface Shear Transfer  

The Code IS 456 : 2000 does not give any guidance related to shear friction concepts.  
The Canadian standard CSA A23.3 recommends the following formula for 
determining the factored interface shear resistance, vr, based on the shear-friction 
concept:  

fyvscr fcv αρφμσλφ cos)( ++=
                              

(6.33) 
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where, σ  = ρv fy sinαf + N/Ag                                                                                              (6.34) 
Acv ≡ area of concrete section resisting shear 
Ag ≡ gross area of section transferring N 
Avf ≡ area of shear-friction reinforcement 
c ≡ resistance due to cohesion 
fy ≡ yield stress of shear-friction reinforcement 
N       ≡ unfactored permanent compressive load perpendicular to the shear 

plane 
vr ≡ Vr /Acv = factored shear stress resistance 
αf ≡ inclination of shear-friction reinforcement with shear plane 
ρv ≡ Avf /Acv = ratio of shear-friction reinforcement 
μ ≡ coefficient of friction 
φc , φs ≡ material resistance factors for concrete and steel reinforcement and 
λ ≡ factor to account for low density concrete 

The material resistance factors, φc and φs, applied to the material strengths as 
multipliers, used in the Canadian Code format correspond to the inverse of the 
partial safety factors for materials (see Sections 3.5.4 and 3.6.2) used in the IS Code 
format; and have values of 0.60 and 0.85 respectively.  These compare well with 
corresponding values of 1/1.5 = 0.67 and 1/1.15 = 0.87 used in IS 456 for concrete 
and steel.  The design Eq. 6.33 is obtained from the nominal strength Eq. 6.32, by 
introducing the safety factors φc and φs for concrete and steel and, in addition, a 
density factor λ to allow for low density concrete (which has lower shear strength) 
when used.  Recommended values for λ are 1.00 for normal density concrete, 0.85 
for structural semi-low density concrete and 0.75 for structural low density concrete.  
The CSA Code recommends the following values for c and μ:.   

Table 6.2  Values of c and μ to be used with Eq. 6.33 

Case Concrete placed against: c (MPa) μ 
1 Hardened concrete 0.25 0.60 
2 Hardened concrete, clean and intentionally 

roughened 
0.50 1.00 

3 Monolithic construction 1.00 1.40 
4 As-rolled structural steel and anchored by headed 

studs or reinforcing bars 
0.00 0.60 

An upper limit on the first term of Eq. 6.33 is specified, equal to 
0.25φc fc' ≤ 7.0 φc MPa, to avoid failure of concrete by crushing (here fc' is the 
cylinder strength of concrete). 

Any direct tension, Nf, across the shear plane must be provided for by additional 
reinforcement having an area equal to Nf /(φsfy).  Such tensile forces may be caused 
by restraint of deformations due to temperature change, creep and shrinkage, etc.  
Although there is a beneficial effect of a permanently occurring net compressive 
force across the shear plane that reduces the amount of shear-friction reinforcement 
required, it is prudent to ignore this effect.  When there is a bending moment acting 
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on the shear plane, the flexural tensile and compressive forces balance each other, 
and the ultimate compressive force across the plane (which induces the frictional 
resistance) is equal to Asfy.  Hence, the flexural reinforcement area, As, can be 
included in the area Avf for computing Vr.  When there is no bending moment acting 
on the shear plane, the shear-friction reinforcement is best distributed uniformly 
along the shear plane in order to minimise crack widths.  When a bending moment 
also exists, most of the shear-friction reinforcement is placed closer to the tension 
face to provide the required effective depth.  Since it is assumed that the shear-
friction reinforcement yields at the ultimate strength, it must be anchored on both 
sides of the shear plane so as to develop the specified yield strength in tension. 

Equation 6.32 can be adapted to the IS code format by introducing the 
corresponding partial safety factors. Thus introducing the factors given in Section 
3.6.2, the interface shear resistance may be taken as: 

vr = 0.447 (c + μσ) + 0.87ρv fy cosαf                                      (6.34) 

where, σ  = ρv fy sinαf + N/Ag 

Values for c and μ given in Table 6.2 may be adopted. 

6.10 SHEAR CONNECTORS IN FLEXURAL MEMBERS 

6.10.1 Shear along Horizontal Planes 

The shear stress distribution in a homogeneous elastic beam was discussed in Section 
6.2 and presented in Fig. 6.1.  Just as a vertical section is subjected to shear stresses 
as shown in Fig. 6.1 (b), every horizontal plane in the beam is also subjected to shear 
stresses, as shown in the top and bottom faces of the element depicted in Fig. 6.1(c).  
At times, a beam is made up of two dissimilar materials, such as a rolled steel joist 
with a concrete compression flange as shown in Fig. 6.13(a).  Similarly, under 
special circumstances, a concrete beam may be cast in two steps (such as a precast 
part and a cast-in-situ part, or a slab cast over a prestressed concrete beam) with a 
horizontal layer forming the interface between the concrete cast at different times 
(Fig. 6.13(b)).  In such a situation, if the beam is to act as a single composite integral 
flexural member with the entire cross section acting integrally (rather than as two 
separate beams, one sitting on top of the other with a discontinuity along the plane of 
contact), provision has to be made to transmit the horizontal shear across the 
interface and prevent relative slippage between the parts above and below.  In a 
composite beam such as shown in Fig. 6.13(a), this is achieved by providing shear 
connectors in the form of studs, channel shapes, etc. welded on top of the steel beam 
as shown in Fig. 6.13(c).  In the case of beams with concrete-to-concrete interface, as 
in Fig. 6.13 (b), providing full depth stirrups together with the bond and friction 
along the interface can provide shear connection (Fig. 6.13(d)). 

Sometimes, attempts are made to strengthen a flexural member in distress by 
increasing the depth by casting another layer on top.  Such a layer will not be 
effective unless positive and effective steps are taken to have shear transfer across the 
interface.  Cleaning and chipping the surface of the older member, application of 
bonding materials, etc. will not be effective except for very small localised areas.  
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The engineer should be wary of such dubious steps for the rehabilitation of distressed 
members. 

 
Cast in-situ Precast Concrete flange 

Stud shear 
connector 

Full depth 
stirrup 

(a) Composite beam (b) Concrete cast in two stages 

(c) Stud shear connector (d) Stirrup shear connectors 

Fig. 6.13  Shear Connectors 
 

6.11 SHEAR DESIGN EXAMPLES – CONVENTIONAL METHOD 

EXAMPLE  6.1    

The simply supported beam in Example 5.1 (and Example 5.7) is provided with web 
reinforcement of 8 mm plain bar U-stirrups at a uniform spacing of 200 mm, as 
shown in Fig. 6.14(a).  Check the adequacy of the shear design.  If necessary, revise 
the design. 

SOLUTION 

• Factored loads [refer Example 5.1]: 

Dead Load wu,DL = 1.5 × 8.75 = 13.1 kN/m 
Live Load wu,LL = 1.5 × 10.0 = 15.0 kN/m 

• Factored shear force envelope 
The placement of live load† giving the maximum shear force (Vu) at any section 
X on the left-half of the span is shown in Fig. 6.14(b).  (The dead load act on the 
entire span).  Although the resulting shape of the shear envelope is curvilinear, it 
is adequate and conservative to consider the shear force envelope to vary as a 

                                                           
† This follows from the influence line diagram for shear force at the section X [refer any basic 
text on structural analysis]. 
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straight line between the maximum values computed for the support and for the 
midspan. 

At support, Vu = + × =( . . ) . .131 15 0 6 0 2 84 3 kN  
At midspan†, Vu = + × =0 15 0 3 0 4 11 25( . . ) .  kN  

The factored shear force diagram is shown in Fig. 6.14(c). 
• Factored shear force at critical section near support 

The critical section for shear is at a distance d = 399 mm from the face of support, 
i.e., 230/2 + 399 = 514 mm from the centre of support [Fig. 6.14(a)]. 
The factored shear force at this section is obtainable from the shear force 
envelope [Fig. 6.14(c)]: 

( )
3000

514300025.113.8425.11 −
×−+=uV  = 71.8 kN 

• Check adequacy of section 

Nominal shear stress τ v
uV

bd
=  =

399250
108.71 3

×
×  = 0.72 MPa < τc,max = 3.1 MPa (for 

M 25 concrete).  Hence the size of the section is adequate. 
• Design shear resistance at critical section 

At the critical section, Ast (due to 2 – 20φ ) = 314 × 2 = 628 mm2

399250
628100

×
×

=tp  = 0.63 

⇒ Design shear strength of concrete (from Eq. 6.10 or Table 6.1, for M 25 
grade): τ c  = 0.536 MPa < τ v  = 0.72 MPa  

⇒ 399250536.0 ××=ucV  = 53466 N = 53.47 kN 
Shear resistance of ‘vertical’ stirrups (8φ @ 200 c/c, Fe 250 grade): 

Asv = × =2 50 3. 100.6 mm2, sv = 200 mm 
       V f A dus y sv v= 087. s

=

                                                          

 

              = 0.87×250×100.6×399/200 = 43651 N 
              = 43.65 kN 

∴Total shear resistance at critical section: 
V V VuR uc us= + 53.47 + 43.65 = 97.12 kN > Vu = 71.8 kN 
Hence, the section is safe in shear. 

• Check minimum stirrup requirements (maximum spacing) 
Eq. 6.22:  ( ) bAfs svyv /175.2max =

        = 2.175×250×100.6/250  
        = 219 mm 

            = 200 mm < (s( )sv provided v)max           ⇒ OK 

 
† The live load is placed only on one-half of the span for maximum shear force at the midspan 
section [refer Fig. 6.14(b)]. 
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Further, applying Eq. 6.23, 

⎩
⎨
⎧ =×=

≤
mm

mmd
sv 300

29939975.075.0
 

which are evidently satisfied by sv = 200 mm. 

• Check shear strength at bar cut-off point 

The cut-off point is located at 660 mm from centre of support [Fig. 6.14(a)]. 
Factored shear at cut-off point [from Fig. 6.14(c)]: 

( )
3000

660300025.113.8425.11 −
×−+=uV  = 68.23 kN 

Shear resistance of the section VuR = 97.12 kN  
2
3

shear resistance = 2
3

 × 97.12 = 64.75 kN  < Vu = 68.23 kN 

 
Fig. 6.14  Example 6.1 

As, shear strength requirements (Cl. 26.2.3.2(a) of the Code, Section 5.9.3) are NOT 
satisfied, additional stirrups must be provided over a distance of 0.75d = 299 mm 
(‘along the terminated bar’) with a spacing < d b8β  = 399/(8× 0.44) = 113 mm 
[since βb = 491/(491+628)) = 0.44, Cl. 26.2.3.2(b) of the Code].  This is achieved by 
adding three additional stirrups along the last portion of the cut-off bar, as shown in 
Fig. 6.14  

514

84.3 71.8 68.23 
11.25

(a)  beam details

(b)  loading diagram 
for (Vu)max at X 

(c)  shear force Vu (kN)

Vu

Dead load 

Live load 

X

230 d = 399 

660 
3000

399 450 

250 

1-25φ  bar terminated

1-25φ and 2–20 φ 00

3 extra stirrups at 
cut-off points 

8 mm plain bar U-
stirrups at 200c/c 

C 

C 

200

2–12 φ 
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⇒  spacing = 0.75 × 399/3 = 99.75 mm which is less than 113 mm 

Excess stirrup area required = 
0 4. bs

f
v

y
 = 0 250 83

415
.4 .3× ×  = 20.1 mm2. 

Although it suffices to provide 6 mmφ  additional 2-legged stirrups 
(Asv = 56.6 mm2), from a practical viewpoint, it is convenient to use the same 
8 mmφ  (Asv = 100.6  mm2) for the additional stirrups. 

EXAMPLE  6.2 

Slabs, in general, do not require shear reinforcement, as the depth provided (based on 
deflection criteria) is usually adequate to meet shear strength requirements.  Verify 
this in the case of the one-way slab of Example 5.2. 

SOLUTION 

• Given: Slab thickness = 200 mm, Effective depth = 165 mm, fck = 25 MPa (from 
Example 5.1) 
Ast provided at support (10φ @ 250 c/c) = 314  mm2/m 

⇒ pt = 
1651000
314100
×
×  = 0.19 

Factored load (DL + LL) = 15 kN/mwu
2

simply supported span l= 4.165 m 
• It is convenient to prove that the section has adequate shear strength at the 

support itself, which has the maximum factored shear, rather than at d from the 
face of support: 

Vu = 2/165.415×  = 31.24 kN/m 

 Nominal shear stress  τv = 
bd
Vu = 

16510
1024.31

3

3

×

×  = 0.189 MPa  ⇒

Design shear strength (from Eq. 6.10): for M 25 concrete and = 0.19, pt

τc = 0.323 MPa 
This value may further be enhanced by a multiplying factor  

k = 1.6 – 0.002 × 200 = 1.2 [Eq. 6.11]. 
⇒ kτc = 1.2×0.323 = 0.39 MPa 

       >>τ v = 0.189 MPa  
• As the section is safe at the support section itself (where shear is maximum), 

there is no need to confirm this at the ‘critical’ section located d away from the 
face of support. 
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EXAMPLE  6.3 

Design the shear reinforcement for the beam in Example 5.4.  Assume the 
curtailment of longitudinal bars as shown in Fig. 6.15(a).  Assume Fe 415 grade steel 
for the shear reinforcement. 

SOLUTION 

• Factored loads [refer Example 5.4]: 
Dead Load wu,DL = 7.5 kN/m × 1.5 = 11.25 kN/m 
Additional DL Wu,DL: 30 × 1.5 = 45.0 kN concentrated at midspan 
Live Load wu,LL = 10 kN/m × 1.5 = 15.0 kN/m 

• Factored shear force envelope 
As explained in the Example 6.1 it is adequate and conservative to consider the 
shear force envelope to vary as a straight line between the maximum values 
computed at the support and at the midspan. 
At support, Vu = + × +( . . ) . .11 25 15 0 6 0 2 45 0 2  = 101.25 kN 
At midspan, Vu = + ×45 0 2 15 0 3 0 4. ( . . )            = 33.75 kN 

• Factored shear force at critical section 
The critical section is d = 348 mm from the face of support, i.e., 
230/2+348 = 463 mm from the centre of support [Fig. 6.15(a)]. 

( )
3000

463300075.3325.10175.33 −
×−+=uV  = 90.8 kN 

• Check adequacy of section size 

Nominal shear stress 
348250
108.90 3

×
×

=vτ  = 1.044 MPa  

which is less than τ c,max  = 3.1 MPa (for M 25 concrete)  
Hence, the size of the section is adequate. 

• Design shear strength of concrete 
At the critical section, Ast (due to 2–28φ ) = 616 × 2 = 1232 mm2

⇒
348250

1232100
×
×

=tp = 1.416 

⇒ Design shear strength of concrete (from Eq. 6.10 or Table 6.1, for M 25 
concrete).  τ c  = 0.728 MPa < τ v  = 1.019 MPa  

• Design of ‘vertical’ stirrups 
Shear to be resisted by stirrups V bdus v c= −( )τ τ  

⇒
d

Vus  = (1.019 – 0.728) × 250 = 72.75 N/mm  

Assuming 2-legged closed stirrups of 8 mm dia, 
Asv = ×2 50 3.  = 100.6 mm2
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⇒ required spacing s
f A

V dv
y sv

us
≤

087.
 =

75.72
6.10041587.0 ××  = 499 mm 

Code requirements for maximum spacing: 

⎪
⎩

⎪
⎨

⎧

=×=

=××=

=
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v
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(a)  beam details

(b)  loading diagram 
for (Vu)max at X 

(c)  shear force Vu (kN)
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X
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d = 348 

860 

3 – 20 φ

3000

one bar terminated

3 – 28 φ 00

3000

250

8 φ two–legged (closed loop) stirrups at 250 c/c

00

348 400 
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(d)  detailing of stirrups

400 

250 

Fig. 6.15  Example 6.3 

Provide 8φ  two-legged closed stirrups at 250 mm c/c spacing. 
[Note: The stirrups should be closed as the section is doubly reinforced]. 
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• Check shear strength at bar cut-off point 
The cut-off point is located at 860 mm from the centre of support [Fig. 6.15(a)].  
The factored shear force at this section [Fig. 6.15(b)] is given by: 

Vu = + − ×
−33 75 101 25 33 75 3000 860

3000
. ( . . ) ( )  = 81.9 kN 

Shear resistance V bd
f A d
suR c

y sv

v
= +τ

087.
 

 = ( ) ( ) 250/3486.10041587.0348250728.0 ×××+××  
 = 113896 N = 114 kN 

2
3

 shear resistance = 2
3

 × 114 = 76 kN < 81.9 kN 

Hence, additional stirrups must be provided over a distance of 0.75d = 261 mm 
(‘along the terminated bar’) with a spacing < d b8β  = 348 / (8×1/3) = 130 mm 
[Cl. 26.2.3.2(b) of the Code]. 
This is achieved by adding three additional stirrups along the last portion of the 
cut-off bar, as shown in Fig. 6.11(d).  
⇒  spacing = 250

3  = 83.3 mm which is less than 133 mm 

Excess stirrup area required = 
0 4. bs

f
v

y
 = 0 250 83

415
.4 .3× ×  = 20.1 mm2. 

Although it suffices to provide 6 mmφ  additional 2-legged stirrups 
(Asv = 56.6 mm2), from a practical viewpoint, it is convenient to use the same 
8 mmφ  (Asv = 100.6  mm2) for the additional stirrups. 

REVIEW QUESTIONS 

6.1 Under what conditions is the traditional method of shear design inappropriate? 
6.2 Under what situations do the following modes of cracking occur in reinforced 

concrete beams: (a) flexural cracks, (b) diagonal tension cracks, (c) flexural-
shear cracks and (d) splitting cracks? 

6.3 Describe the force components that participate in the shear transfer mechanism 
at a flexural-shear crack location in a reinforced concrete beam. 

6.4 How does the shear span influence the mode of shear failure? 
6.5 How is the computation of nominal shear stress for beams with variable depth 

different from that for prismatic beams? 
6.6 Generally, the critical section for shear in a reinforced concrete beam is located 

at a distance d (effective depth) away from the face of the support.  Why?  
Under what circumstances is this not permitted? 

6.7 Why is the design shear strength of concrete (τ c ) related to the percentage 
tension steel pt? 

6.8 Reinforced concrete slabs are generally safe in shear and do not require shear 
reinforcement.  Why? 
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6.9 How does the presence of an axial force (tension or compression) influence the 
shear strength of concrete? 

6.10 Stirrups may be open or closed.  When does it become mandatory to use closed 
stirrups? 

6.11 Stirrups may be ‘vertical’ or inclined.  When does it become mandatory to use 
vertical stirrups? 

6.12 The shear resistance of bent-up bars cannot be counted upon, unless stirrups are 
also provided.  Why? 

6.13 Why is an upper limit τ c,max  imposed on the shear strength of a reinforced 
concrete beam with shear reinforcement? 

6.14 Explain the action of a reinforced concrete beam (with shear reinforcement) 
with the aid of the truss analogy model. 

6.15 The provision of a minimum stirrup reinforcement is mandatory in all 
reinforced concrete beams.  Why? 

6.16 The site of curtailment of tension reinforcement in a reinforced concrete beam 
is considered a critical section for shear.  Why? 

6.17 In the traditional method of design for shear, how is the influence of shear on 
longitudinal reinforcement requirement taken care of? 

6.18 What are shear connectors? Where are they needed? What are the different 
types used? 

6.19 Explain the concept of interface shear and shear friction theory? Where are 
these relevant? 

6.20 Relate interface shear and shear connectors. 

PROBLEMS 

6.1 A simply supported beam of 6 m span (c/c), (shown in Fig. 6.16), is to carry a 
uniform dead load of 20 kN/m (including beam weight) and a uniform live load 
of 30 kNm.  The width of the supporting wall is 230 mm.  Assume M 25 
concrete and Fe 415 steel. 

230

3000

C

600 650

300

10 φ stirrups @ 280 mm c/c

4 – 25 φ

2 – 12 φ

 
Fig. 6.16  Problem 6.1 

a) Determine the adequacy of the 10 mmφ  U-stirrups as shear reinforcement. 
[Ans.: adequate]  

b) If the shear reinforcement is to be provided in the form of 10φ  stirrups 
inclined at 60o to the beam axis, determine the required spacing.  

 [Ans.: 450 mm]  
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c) If two of the tension reinforcement bars are terminated at 300 mm from the 
centre of the support, check the adequacy of shear strength at the bar cut-
off point.  

 [Ans.: inadequate]  
6.2 A simply supported T-beam of 9 m span (c/c) is subjected to a dead load 

(including self weight) of 20 kN/m and a live load of 25 kN/m.  Details of the 
section and bar cut-offs are shown in Fig. 6.17.  Design and detail the shear 
reinforcement using ‘vertical’ stirrups.  Assume M 20 concrete and Fe 415 
steel. 

890
2070

300

4500

C

8–28 φ6–28 φ4–28 φ 478550

350

1300 100

 
Fig. 6.17  Problem 6.2 

6.3 A simply supported beam (shown in Fig. 6.18) is subjected to a dead load 
(including self weight) of 20 kN/m and a live load of 20 kN/m.  Design and 
detail the shear reinforcement using vertical stirrups.  Use M 20 concrete and 
Fe 415 steel. 

890

2070
4500

300

4–28 φ 6–28 φ 8–28 φ

(a)

1300

478 550

350

100

8–28 φ

(b)  
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Fig. 6.18  Problem 6.3 

6.4 Figure 6.19 shows a uniformly loaded cantilever beam with the depth linearly 
tapered along the span.  The dead load, including self-weight of the beam is 
20 kN/m and the live load is 50 kN/m.  Design the shear reinforcement using 
vertical stirrups.  The bar cut-off details are as shown.  Assume M 20 concrete 
and Fe 415 steel. 

1000
2000

3000

5 – 25 φ 4 – 25 φ

2 – 25 φ

2 – 25 φ

350

300

700 655

45
SECTION AT SUPPORT 

Fig. 6.19  Problem 6.4 
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       Design for Torsion 

 

7.1   INTRODUCTION 

Torsion when encountered in reinforced concrete members, usually occurs in 
combination† with flexure and transverse shear.  Torsion in its ‘pure’ form (generally 
associated with metal shafts) is rarely encountered in reinforced concrete. 

The interactive behaviour of torsion with bending moment and flexural shear in 
reinforced concrete beams is fairly complex, owing to the non-homogeneous, 
nonlinear and composite nature of the material and the presence of cracks.  For 
convenience in design, codes prescribe highly simplified design procedures, which 
reflect a judicious blend of theoretical considerations and experimental results. 

These design procedures and their bases are described in this chapter, following a 
brief review of the general behaviour of reinforced concrete beams under torsion. 

7.2   EQUILIBRIUM TORSION AND COMPATIBILITY TORSION 

Torsion may be induced in a reinforced concrete member in various ways during the 
process of load transfer in a structural system.  In reinforced concrete design, the 
terms ‘equilibrium torsion’ and ‘compatibility torsion’ are commonly used to refer to 
two different torsion-inducing situations‡. 

In ‘equilibrium torsion’, the torsion is induced by an eccentric loading (with respect 
to the shear centre at any cross-section), and equilibrium conditions alone suffice 
in determining the twisting moments.  In ‘compatibility torsion’, the torsion is 
induced by the need for the member to undergo an angle of twist to maintain 
deformation compatibility, and the resulting twisting moment depends on the 
torsional stiffness of the member. 

                                                           
† In some (relatively rare) situations, axial force (tension or compression) may also be 
involved. 
‡ It must be clearly understood that this is merely a matter of terminology, and that it does not 
imply, for instance, equilibrium conditions need not be satisfied in cases of ‘compatibility 
torsion’! 
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There are some situations (such as circular beams supported on multiple columns) 
where both equilibrium torsion and compatibility torsion coexist. 

7.2.1   Equilibrium Torsion 

This is associated with twisting moments that are developed in a structural member to 
maintain static equilibrium with the external loads, and are independent of the 
torsional stiffness of the member.  Such torsion must be necessarily considered in 
design (Code Cl. 41.1).  The magnitude of the twisting moment does not depend on 
the torsional stiffness of the member, and is entirely determinable from statics alone.  
The member has to be designed for the full torsion, which is transmitted by the 
member to the supports.  Moreover, the end(s) of the member should be suitably 
restrained to enable the member to resist effectively the torsion induced.  Typically, 
equilibrium torsion is induced in beams supporting lateral overhanging projections, 
and is caused by the eccentricity in the loading [Fig. 7.1].  Such torsion is also 
induced in beams curved in plan and subjected to gravity loads, and in beams where 
the transverse loads are eccentric with respect to the shear centre of the cross-section. 

cantilevered shell roof

column

beam subjected to
equilibrium torsion

(a)  beam supporting
        a lateral overhang

(c)  twisting moment
diagram

T
2

(b)  freebody of beam

total torque = T

T
2

T
2

T
2  

Fig. 7.1  Example of ‘equilibrium torsion’ 

7.2.2   Compatibility Torsion 

This is the name given to the type of torsion induced in a structural member by 
rotations (twists) applied at one or more points along the length of the member.  The 
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twisting moments induced are directly dependent on the torsional stiffness of the 
member.  These moments are generally statically indeterminate and their analysis 
necessarily involves (rotational) compatibility conditions; hence the name 
‘compatibility torsion’.  For example, in the floor beam system shown in Fig. 7.2, the 
flexure of the secondary beam BD results in a rotation θB at the end B.  As the 
primary (spandrel) beam ABC is monolithically connected with the secondary beam 
BD at the joint B, deformation compatibility at B implies an angle of twist, equal to 
θ

B

BB, in the spandrel beam ABC at B.  Corresponding to the angle θB, a twisting 
moment will develop at B in beam ABC, and a bending moment will develop at the 
end B of beam BD.  The bending moment will be equal to, and will act in a direction 
opposite to the twisting moment, in order to satisfy static equilibrium.  The 
magnitude of θ

B

BB and the twisting/bending moment at B depends on the torsional 
stiffness of beam ABC and the flexural stiffness of beam BD. 

θB

θBA

B

C

F

D

E

primary (spandrel)
beam

secondary
beam

column

 
Fig. 7.2  Example of ‘compatibility torsion’ 

In statically indeterminate structures (such as the grid floor system shown in 
Fig. 7.2), the torsional restraints are ‘redundant’, and releasing such redundant 
restraints will eliminate the compatibility torsion.  Thus, the Code states: 

“…where torsion can be eliminated by releasing redundant restraints, no 
specific design for torsion is necessary, provided torsional stiffness is 
neglected in the calculation of internal forces.”  [Cl. 41.1 of the Code]. 

The torsional stiffness of a reinforced concrete member is drastically reduced by 
torsional cracking.  This results in a very large increase in the angle of twist 
(formation of a ‘torsional hinge’), and, in the case of ‘compatibility torsion’, a major 
reduction in the induced twisting moment.   

With reference to Fig. 7.2, application of Code Cl. 41.1 implies providing a hinge-
like connection (i.e., with no rotational restraint) at the end B (and D) of the beam 
BD; i.e., treating BD as a simply supported beam, and analysing it independent of 
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ABC.  Alternatively, cognisance can be taken of the torsional hinge-like behaviour of 
the member ABC after torsional cracking and resulting release of flexural restraint 
offered by it to beam BD at end B.  In this case, the grid system is analysed as a 
whole, but the value of the torsional stiffness of the member ABC is taken as zero† in 
the structural analysis for calculation of internal forces.  Incidentally, this assumption 
helps in reducing the degree of static indeterminacy of the structure (typically, a grid 
floor), thereby simplifying the problem of structural analysis.  

Of course, this simplification implies the acceptance of cracking and increased 
deformations in the torsional member.  It also means that, during the first time 
loading, a twisting moment up to the cracking torque of the plain concrete section 
develops in the member, prior to torsional cracking.  In order to control the 
subsequent cracking and to impart ductility to the member, it is necessary to provide 
a minimum torsional reinforcement, equal to that required to resist the ‘cracking 
torque’.  In fact, one of the intentions of the minimum stirrup reinforcement specified 
by the Code (Cl. 26.5.1.6) is to ensure some degree of control of torsional cracking of 
beams due to compatibility torsion. 

If, however, the designer chooses to consider ‘compatibility torsion’ in analysis 
and design, then it is important that a realistic estimate of torsional stiffness is made 
for the purpose of structural analysis, and the required torsional reinforcement should 
be provided for the calculated twisting moment. 

7.2.3  Estimation of Torsional Stiffness 

Observed behaviour of reinforced concrete members under torsion [see also 
Section 7.3] shows that the torsional stiffness is little influenced by the amount of 
torsional reinforcement in the linear elastic phase, and may be taken as that of the 
plain concrete section.  However, once torsional cracking occurs, there is a drastic 
reduction in the torsional stiffness.  The post-cracking torsional stiffness is only a 
small fraction (less than 10 percent) of the pre-cracking stiffness, and depends on the 
amount of torsional reinforcement, provided in the form of closed stirrups and 
longitudinal bars.  Heavy torsional reinforcement can, no doubt, increase the torsional 
resistance (strength) to a large extent, but this can be realised only at very large 
angles of twist (accompanied by very large cracks). 

Hence, even with torsional reinforcement provided, in most practical situations, 
the maximum twisting moment in a reinforced concrete member under 
compatibility torsion is the value corresponding to the torsional cracking of the 
member.  This ‘cracking torque’ is very nearly the same as the failure strength 
obtained for an identical plain concrete section. 

In the usual linear elastic analysis of framed structures, the torsional stiffness Kt 
(torque per unit twist T/θ ) of a beam of length l is expressed as 

K GC
lt =                                                        (7.1) 

                                                           
† For greater accuracy, this value may be treated as 10 percent of the uncracked torsional 
stiffness.  The analysis of this indeterminate system will result in some flexural moment at end 
B in beam BD and twisting moments in beam ABC, which should be designed for. 
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where GC is the torsional rigidity, obtained as a product of the shear modulus G and 
the geometrical parameter† C of the section [Ref. 7.1].  It is recommended in the 
Explanatory Handbook to the Code [Ref. 7.2] that G may be taken as 0.4 times the 
modulus of elasticity of concrete Ec (given by Eq. 2.4) and C may be taken as 0.5K, 
where K is the appropriate ‘St. Venant torsional constant’ calculated for the plain 
concrete section.  For a rectangular section of size b × D, with b < D,  

K b= β 3D                                                       (7.2) 

where β is a constant which depends on the D/b ratio, having values varying from 
0.141 to 0.333 [Ref. 7.1].  Alternatively, the following formula [Ref. 7.1] may be 
used: 

β = −⎛
⎝⎜

⎞
⎠⎟1 0 63 3. b

D
                                            (7.3) 

For sections composed of rectangular elements (T-, L-, channel sections), the 
value of K (and hence, C and Kt ) may be computed by summing up the individual 
values for each of the component rectangles, the splitting into component rectangles 
being so done as to maximise K. 

7.3   GENERAL BEHAVIOUR IN TORSION 

7.3.1   Behaviour of Plain Concrete 

The theory of torsion (St. Venant torsion) of prismatic, homogeneous members 
having circular, non-circular and thin-walled cross-sections is described in detail in 
books on mechanics of materials [Ref. 7.1, 7.3].  It is seen that torsion induces shear 
stresses and causes warping of non-circular sections.  For rectangular sections under 
elastic behaviour, the distribution of torsonal shear stress over the cross-section is as 
shown in Fig. 7.3. 

The maximum torsional shear stress occurs at the middle of the wider face, and 
has a value given by  

τ
αt

T
D,max =  b2                                                      (7.4) 

where T is the twisting moment (torque), b and D are the cross-sectional dimensions 
(b being smaller), and α  is a constant whose value depends on the D/b ratio; α  lies 
in the range 0.21 to 0.29 for D/b varying from 1.0 to 5.0 respectively. 

The state of pure shear develops direct tensile and compressive stresses along the 
diagonal directions, as shown in the element at A in Fig. 7.3(a).  The principal tensile 
and compressive stress trajectories spiral around the beam in orthogonal directions at 
45o to the beam axis.  One such line (across which the principal tensile stress ft acts) 
is marked in Fig. 7.3(a); it is evidently a potential line of crack in the case of 

                                                           
† C is a property of the section having the same relationship to the torsional stiffness of a 
rectangular section as the polar moment of inertia has for a circular section. 
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concrete.  Such a crack would develop in a concrete beam when the diagonal tensile 
stress reaches the tensile strength of concrete.  Owing to the brittle nature of concrete 
under tension, the crack will rapidly penetrate inwards from the outer surface of the 
cross-section.  This effectively destroys the torsional resistance, which is primarily 
contributed by the stresses in the outer fibres (that are the largest in magnitude and 
also have the greatest lever arm).  Hence, in a plain concrete member, the diagonal 
torsional cracking in the outer fibres would lead, almost immediately, to a sudden 
failure of the entire section.  Of course, as the point of failure is approached, some 
degree of plasticity is introduced, resulting in somewhat larger stresses in the interior 
fibres than what the elastic theory would indicate.  Sometimes, for simplicity, the 
material is assumed to be rigid plastic with a uniform stress distribution over the 
entire cross-section [Fig. 7.3(c)]. 

(a)  part section of beam

(b)  torsional shear
      stress distributions

(c)  degrees of plastic
      behaviour

potential tensile crack

45o

45o

ft t

y

z

x

T

= τ

b

D 0
B B0

elastic

inelastic

plastic

A

τ t,max

 
Fig. 7.3  Torsional shear stresses in a beam of rectangular section 

The cracking torque Tcr provides a measure of the ultimate torsional resistance 
(strength) of a plain concrete section. It is generally computed by equating the 
theoretical nominal maximum torsional shear stress τ t,max (which is a measure of the 
resulting diagonal tension) to the tensile strength of concrete.  Various expressions 
for Tcr have been derived based on (a) elastic theory [given by Eq. 7.3], (b) plastic 
theory, (c) skew bending theory and (d) equivalent tube analogy [Ref. 7.4, 7.5].  Each 
of these different expressions for Tcr needs to be correlated experimentally with an 
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appropriate measure of the tensile strength of concrete to be used with it.  The Code 
has adopted the design shear strength of concrete τ c  [given by Table 6.1] as the 
measure of tensile strength, for convenience in combining the effects of torsional 
shear and flexural shear [refer Section 7.4.1]. 

A typical torque-twist relation for a plain concrete section is shown in Fig. 7.4(a) 
[Ref. 7.6].  The relationship is somewhat linear up to failure, which is sudden and 
brittle, and occurs immediately after the formation of the first torsional crack. 
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torque
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Fig. 7.4  Typical torque-twist curves for concrete members in pure torsion 

7.3.2   Behaviour of Concrete with Torsional Reinforcement  
As mentioned earlier, the failure of a plain concrete member in torsion is caused by 
torsional cracking due to the diagonal tensile stresses.  Hence, the ideal way of 
reinforcing the beam against torsion is by providing the steel in the form of a spiral 
along the direction of the principal tensile stresses.  However, this is often 
impractical, and the usual form of torsional reinforcement consists of a combination 
of longitudinal and transverse reinforcement — the former in the form of bars 
distributed around the cross-section, close to the periphery, and the latter in the form 
of closed rectangular stirrups, placed perpendicular to the beam axis.  It may be noted 
here that the longitudinal reinforcement (on the tension side) is also needed for 
flexure and the transverse reinforcement is needed for shear. 

The torque-twist behaviour of torsionally reinforced concrete member is similar to 
that of plain concrete until the formation of the first torsional crack (corresponding to 
the cracking torque Tcr), as shown in Fig. 7.4(b) [Ref. 7.7].  The value of Tcr is 
insensitive to the presence of torsional reinforcement, and is practically the same as 
for an identical plain concrete section.  When cracking occurs, there is a large 
increase in twist under nearly constant torque, due to a drastic loss of torsional 
stiffness [Fig. 7.5].  Beyond this, however, the strength and behaviour depend on the 
amount of torsional reinforcement present in the beam. 



274   REINFORCED  CONCRETE  DESIGN 

For very small amounts of torsional reinforcement, no increase in torsional 
strength beyond Tcr is possible, and failure occurs soon after the first crack, in a 
brittle manner.  Increasing the torsional reinforcement will no doubt increase the 
ultimate torsional strength and the (ductile) failure is preceded by yielding of steel, 
but this can be realized only at very large angles of twist.  However, the strength 
cannot be raised indefinitely with increasing torsional reinforcement as crushing of 
concrete in diagonal compression may precede, and thereby prevent, the yielding of 
the reinforcement in tension. 

The torsional stiffness after cracking is primarily dependent on the amount of 
torsional reinforcement, and is usually in the range of 0 – 10 percent of the value 
prior to cracking. 

7.4   DESIGN STRENGTH IN TORSION 

7.4.1   Design Torsional Strength without Torsional Reinforcement  

As already indicated, the strength of a torsionally reinforced member at torsional 
cracking Tcr is practically the same as the failure strength of a plain concrete member 
under pure torsion.  Although several methods have been developed to compute Tcr , 
the plastic theory approach is described here, as the Code recommendation can be 
explained on its basis. 

Cracking Torque 

As explained earlier, the idealised assumption that the unreinforced section is fully 
plasticised at the point of failure implies that the shear stress is constant throughout 
the section, having a magnitude τ t ,max  [Fig. 7.3(c)].  The resultant shears are 
obtainable from the shear flow diagram, as shown in Fig. 7.5. 

The resultant horizontal shear Vh is simply obtained by multiplying the tributary 
area, triangular-shaped, (equal to b2/4) by τ t ,max .  Similarly, the resultant vertical 

shear Vv is obtained by multiplying the trapezoidal tributary area bD b
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τ t ,max .  The two equal and opposite Vh forces form a couple which has a lever arm 
z1 = D – b/3.  Similarly, the two equal and opposite Vv force form another couple, 
with a lever arm z2, which can be shown to be: 
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The summation of the two couple-moments gives the desired value of Tcr: 
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Fig. 7.5  Plastic theory to determine Tcr

The above relation can also be derived using the so-called ‘sand heap’ analogy.  
Evidently, the assumption of full plastification of the section is not justified for a 
material like concrete.  Hence, a correction factor has to be applied, by either 
modifying the expression in Eq. 7.5, or by using a reduced value of τ t ,max  (which is 
otherwise equal to the tensile strength of concrete) — to conform with experimental 
results.  Test results indicate an ultimate strength value of τ t ,max  (MPa units) of 

about 0 2. fck , to be used with Eq. 7.5. 

Torsional Shear Stress 

As the torque-twist behaviour up to torsional cracking is approximately linear 
[Fig. 7.4], torsional shear stress τ t  corresponding to any factored torque, Tu ≤ Tcr 
may be obtained from Eq. 7.5 for a plain concrete rectangular section as  

τ t
uT

b D b
=

−
2

32 ( )
                                                  (7.6) 

Extending this expression for τ t  to a reinforced concrete member with effective 
depth d, Eq. 7.6 reduces to the following form: 

τ t
uT

b d
≈ ×

2 1
2 constant

 

where the constant, equal to ( )[ ]D d b d− ( ) 3 , takes values in the range 0.8 – 1.15 
for most rectangular sections in practice.  Considering an average value for this 
constant and further providing a correction factor for the assumption of full 
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plastification of the section, the above expression reduces to the following simplified 
form, given in the Code: 

τ t
uT b

bd
=

1 6. ( )
                                              (7.7) 

where Tu is the twisting moment acting on the section, b is the width of the 
rectangular beam (or the width of the web of the flanged beam) and d the effective 
depth. 

It may be noted here that this expression [Eq. 7.7] for torsional stress τ t  has a 
form similar to that of the ‘nominal’ (flexural) shear stress τ v uV bd=  (given by 
Eq. 6.7).  By comparison, it follows that ( . )16T bu  provides a measure of the 
equivalent ‘torsional shear’. 

Need for Torsional Reinforcement  

Torsional reinforcement has to be suitably designed when the torsional shear stress 
τ t  exceeds the shear strength τ c  of the plain concrete section.  Where flexural shear 
Vu occurs in combination with torsional shear (as is commonly the case), the 
combined shear stress (flexural plus torsional) has to be considered.  For this purpose, 
the term equivalent shear Ve is used by the Code (Cl. 41.3.1) to express the combined 
shear effects on a reinforced concrete beam, subject to flexural shear and torsional 
shear: 

V V
T
be u
u= + 16.                                                  (7.8) 

It may be noted that the shear† due to Vu and Tu are additive only on one side of the 
beam; they act in opposite directions on the other side. 

The equivalent nominal shear stress, τve , is given by 

τ ve
u uV T

bd
=

b+
 

1 6.
                                                 (7.9) 

If τ ve  exceeds τ c,max  [refer Section 6.6], the section has to be suitably 
redesigned — by increasing the cross-sectional area (especially width) and/or 
improving the grade of concrete.  If τ ve  is less than the design shear strength of 
concrete τ c  [refer Section 6.6], minimum stirrup reinforcement has to be provided, 
as explained in Section 6.7.5.  If the value of τ ve  lies between τ c  and τ c,max , 
suitable torsional reinforcement (both transverse and longitudinal) has to be designed 
for the combined effects of shear and torsion. 

                                                           
† Care must be taken to express Vu and Tu in consistent units, i.e., Vu in N and Tu in Nmm, b 
in mm and d in  mm. 
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7.4.2   Design Torsional Strength with Torsional Reinforcement 

Several theories have been proposed for the computation of the torsional strength of 
reinforced concrete members with torsional reinforcement — notably the space-truss 
analogy and the skew bending theory [Ref. 7.9 – 7.12]. 

Space Truss Analogy 

The space truss analogy is essentially an extension of the plane truss analogy 
[Fig. 6.9] used to explain flexural shear resistance.  The ‘space-truss model’ 
(illustrated in Fig. 7.6) is an idealisation of the effective portion of the beam, 
comprising the longitudinal and transverse torsional reinforcement and the 
surrounding layer of concrete.  It is this ‘thin-walled tube’ which becomes fully 
effective at the post-torsional cracking phase.  The truss is made up of the corner 
longitudinal bars as stringers, the closed stirrup legs as transverse ties, and the 
concrete between diagonal cracks as compression diagonals. 

For a closed thin-walled tube, the shear flow q (force per unit length) across the 
thickness of the tube [Ref. 7.1] is given by: 

q
T
A
u

o
=

2
                                                       (7.10) 

where Ao is the area enclosed by the centreline of the thickness.  The proof for 
Eq. 7.10 is indicated in Fig. 7.6(c).  For the box section under consideration, 

A b do = 1 1                                                       (7.11) 

where b1 and d1 denote the centre-to-centre distances between the corner bars in the 
directions of the width and the depth respectively.  Accordingly, substituting Eq. 7.11 
in Eq. 7.10, 

q
T
b d

u=
2 1 1

                                                    (7.12) 

Assuming torsional cracks (under pure torsion) at 45o to the longitudinal axis of 
the beam, and considering equilibrium of forces normal to section AB [Fig. 7.6(b)], 
the total force in each stirrup is given by qsv tan 45o = qsv where sv is the spacing of 
the (vertical) stirrups.  Further, assuming that the stirrup has yielded in tension at the 
ultimate limit state (with a design stress of 0.87fy), it follows from force equilibrium 
that 

A f qt y( . )0 87 sv=                                             (7.13) 

where At is the cross-sectional area of the stirrup (equal to Asv /2 for two legged 
stirrups).  Substituting Eq. 7.12 in the above equation, the following expression is 
obtained for the ultimate strength Tu = TuR  in torsion: 

T A b d fuR t y vs= 2 0 871 1 ( . )                               (7.14) 
Further, assuming that the longitudinal steel (symmetrically placed with respect to 

the beam axis) has also yielded at the ultimate limit state, it follows from longitudinal 
force equilibrium [Fig. 7.6(a)] that: 
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Fig. 7.6  The idealised space-truss model 

A f q b dl yl o( . )
tan

(0 87
45

2 1 1= × + )                                (7.15) 

where Al ≡ ∑As is the total area of the longitudinal steel and fyl its yield strength. 
Substituting Eq. 7.12 in the above equation, the following expression is obtained 

for the ultimate strength Tu = TuR in torsion: 

T A b d f b duR l yl= +1 1 1 10 87( . ) ( )                               (7.16) 
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The two alternative expressions for TuR) viz. Eq. 7.14 and Eq. 7.16, will give 
identical results only if the following relation between the areas of longitudinal steel 
and transverse steel (as torsional reinforcement) is satisfied: 

A A
b d

s
f
fl t

v

y

yl
= ×

+
×

2 1 1( )                                     (7.17) 

If the relation given by the Eq. 7.17 is not satisfied, then TuR may be computed by 
combining Eq. 7.14 and Eq. 7.16 [Ref. 7.10], taking into account the areas of both 
transverse and longitudinal reinforcements: 

T b d
A f

s
A f
b duR

t y

v

l yl=
⎛

⎝
⎜

⎞

⎠
⎟

×

+
⎛

⎝
⎜

⎞

⎠
⎟ ×2

2
0871 1

1 1( )
.                           (7.18) 

To ensure that the member does not fail suddenly in a brittle manner after the 
development of torsional cracks, the torsional strength of the cracked reinforced 
section must be at least equal to the cracking torque Tcr (computed without 
considering any safety factor). 

For any design torsional moment, Tu (= TuR ), Eq. 7.14 and Eq. 7.17 give the 
required areas for transverse and longitudinal reinforcements respectively.  These 
areas At and Al calculated for the effect of torsion alone, should then be added to the 
corresponding reinforcement required to resist shear and flexure respectively.  This 
procedure is adopted by many codes — but not the IS Code.  The provisions in the IS 
Code are based on the skew bending theory for rectangular beams and not on the 
space truss analogy [Ref. 7.2]. 

Skew Bending Theory 

The post-cracking behaviour of reinforced concrete members may be alternatively 
studied on the basis of the mechanism of failure, rather than on the basis of stresses 
[Ref. 7.10, 7.13].  In the consideration of the failure mechanism, the combined action 
of torsion with flexure and shear has to be taken into account. 

Three modes of failure have been identified for beams subjected to combined 
flexure and torsion [Fig. 7.7].  The action of torsion is to skew the failure surface 
(which is otherwise vertical under the action of flexure alone); the skewing is in the 
direction of the resultant moment-torsion vector.  The most common type of failure is 
as shown in Mode 1 [Fig. 7.7(b)] — with bending predominating over torsion and the 
compression zone (shown shaded) remaining on top†, albeit skewed (θ < 45o).  This 
type of failure (sometimes called ‘modified bending failure’) will occur in wide 
beams, even if torsion is relatively high.  However, if a beam with a narrow section 
(D >> b) is subject to predominant torsion, a Mode 2 type of failure [Fig. 7.7(c)] is 
likely, with the compression zone skewed to a side of the section; this type of failure 
is sometimes called a lateral bending failure.  A third mode of failure — Mode 3 
[Fig. 7.7(d)] — is possible when the compression zone occurs at the bottom and the 
area of the longitudinal top steel is much less than that of the bottom steel; this type 
of failure is sometimes called a negative bending failure. 
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Fig. 7.7  Failure Modes for combined flexure and torsion 

In a beam with a square cross-section, with symmetrical longitudinal 
reinforcement, subjected to pure torsion, the three modes become identical. 

Expressions for the ultimate strength in torsion have been derived for each of the 
three possible modes of failure.  The interested reader is advised to refer to Ref. 7.13 
(or Ref. 7.14) for the derivation of these expressions.  It is customary to check for all 
the three modes and to choose the lowest value of the torsional strength. 

It may be noted that the presence of shear may cause a beam to fail at a lower 
strength.  The Code attempts to prevent the possibility of such shear type of failure by 
the concept of designing for equivalent shear [refer Section 7.4.4]. 

7.4.3   Design Strength in Torsion Combined with Flexure 

The strength of a member subjected to combined torsion (Tu) and flexure (Mu) is best 
described in terms of the interaction of Tu/TuR with Mu/MuR, where TuR and MuR denote 
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respectively the strengths of the member under pure torsion and pure flexure 
respectively.  The following parabolic interaction formulas [Ref. 7.15] have been 
proposed, based on experimental studies on rectangular reinforced beams: 

Mode 1 failure                     :  
′⎛
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⎜
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⎟
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Mode 3 failure                     :  
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where and denote, respectively, the areas of longitudinal steel provided in the 
‘flexural tension zone’ and ‘flexural compression zone’ of the rectangular beam 
section 
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Fig. 7.8  Torsion-Flexure Interaction 

The torsion-flexure interaction curves, based on Eq. 7.19, are depicted in Fig. 7.8 
for ′A As s in the range 0.3 to 1.0.  Each curve represents a ‘failure envelope’, in the 
sense that any  combination of Tu/TuR and Mu/MuR that falls outside the area bounded 
by the curve and the coordinate axes is ‘unsafe’.  In general, it is seen that the 
torsional strength (Tu) increases beyond the ‘pure torsion’ strength (TuR) in the 
presence of bending moment (Mu) — provided Mu/MuR is low and ′A As s is also low.  
In such cases, failure may occur in Mode 3 (i.e., initiated by the yielding of the 
compression steel) at very low values of Mu/MuR  [Fig. 7.8].  In general, however, a 
Mode 1 failure is likely to occur (i.e., initiated by the yielding of the ‘tension’ steel); 
this becomes inevitable when is equal to A′As s. 
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It may also be noted from Fig. 7.8 that the presence of torsion invariably brings 
down the flexural strength of the reinforced concrete member. 

IS Code Provisions for Design of Longitudinal Reinforcement 

The Code (Cl. 41.4.2) recommends a simplified skew-bending based formulation 
[Ref. 7.15] for the design of longitudinal reinforcement to resist torsion combined 
with flexure in beams with rectangular sections.  The torsional moment Tu is 
converted into an effective bending moment Mt defined† as follows: 

M T D bt u= +( )1 .17

u

                                            (7.20) 

where D is the overall depth and b the width of the beam. 
Mt, so calculated, is combined with the actual bending moment Mu at the section, 

to give ‘equivalent bending moments’, Me1 and Me2: 

M M Me t1 = +                                                 (7.21a) 

M M Me t2 u= −                                                (7.21b) 

The longitudinal reinforcement area Ast is designed to resist the equivalent moment 
Me1, and this steel is to be located in the ‘flexural tension zone’.  In addition, if 
Me2 > 0 (i.e., Mt > Mu), then a reinforcement area Ast’ is to be designed to resist this 
equivalent moment, and this steel is to be located in the ‘flexural compression zone’. 

It follows from the above that in the limiting case of ‘pure torsion’ (i.e., with 
Mu = 0), equal longitudinal reinforcement is required at the top and bottom of the 
rectangular beam, each capable of resisting an equivalent bending moment equal to 
Mt. 

7.4.4   Design Strength in Torsion Combined with Shear 

Torsion-shear interaction curves have been proposed [Ref. 7.16], similar to torsion-
flexure interaction curves.  In general, the interaction between Tu/TuR and Vu/VuR  
takes the following form: 

T
T

V
V

u

uR

u

uR

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ ≤

α α

1                                           (7.22) 

Tu and Vu are the given factored twisting moment and factored shear force 
respectively; TuR and VuR are the ultimate strengths in ‘pure torsion’ and ‘flexural 
shear’ (without torsion) respectively; α is a constant, for which values in the range 
1 to 2 have been proposed [Fig. 7.9].  A value of α equal to unity results in a linear 
interaction and generally provides a conservative estimate. 

                                                           
† This formula can alternatively be generated from the space truss analogy [Fig. 7.6(a)], by 
visualising the longitudinal tensile forces in the bars (located either at top or at bottom) as 
those required to resist an effective bending moment Mt which can be shown to be equal to 
Tu (1+ d1/b1); the Code has simplified this formula to the form given in Eq. 7.20. 
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Fig. 7.9  Torsion-shear interaction 

IS Code Provisions for Design of Transverse Reinforcement 

The Code provisions (Cl. 41.4.3) for the design of transverse stirrup reinforcement 
(2-legged, closed) are based on the skew-bending theory and are aimed at resisting a 
Mode 2 failure [Fig. 7.7(b)], caused by a large torsion combined with a small flexural 
shear: 

A
T s

b d f
V s

d fsv
u v

y

u v

y
= +

1 1 10 87 2 5 087( . ) . ( . )
                                 (7.23) 

where Asv = 2At is the total area of two legs of the stirrup; sv is the centre-to-centre 
spacing of the stirrups; b1 and d1 are the centre-to-centre distances between the 
corner bars along the width and depth respectively; and Tu and Vu are the factored 
twisting moment and factored shear force acting at the section under consideration. 

It may be observed that for the extreme case of strength in ‘pure torsion’ (i.e., with 
Vu = 0 and Tu = TuR), Eq. 7.23 becomes exactly equivalent to Eq. 7.14, which was 
derived using the space-truss analogy. 

In addition to Eq. 7.23, the Code (Cl. 41.4.3) specifies a minimum limit to the 
total area of transverse reinforcement: 

A
bs

fsv
ve c v

y
≥

−
 

 ( )
.

τ τ
0 87

                                             (7.24) 

where τ ve  is the ‘equivalent nominal shear stress’ given by Eq. 7.7.  The purpose of 
Eq. 7.24 is to provide adequate resistance against flexural shear failure, which is 
indicated in situations where Tu is negligible in comparison with Vu.  Indeed, for the 
extreme case of Tu = 0, Eq. 7.24 becomes exactly equivalent to Eq. 6.25, which was 
derived for flexural shear.  It may be noted that the contribution of inclined stirrups 
and bent up bars can be included in the calculation of Asv in Eq. 7.24, but not 
Eq. 7.23. 

Distribution of Torsional Reinforcement 

The Code (Cl. 26.5.1.7a) specifies maximum limits to the spacing sv of the stirrups 
provided as torsional reinforcement — to ensure the development of post-cracking 
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torsional resistance, to control crack-widths and to control the fall in torsional 
stiffness on account of torsional cracks: 

s
x
x yv ≤ +

⎧

⎨
⎪

⎩⎪

1

1 1 4
300

                   

 mm     
( )                                                 (7.25) 

where x1 and y1 are, respectively, the short and long centre-to-centre dimensions of 
the rectangular closed stirrups.  The spacing sv should satisfy all the limits given in 
Eq. 7.25. 

The Code (Cl. 26.5.1.7b) also recommends that the “longitudinal reinforcement 
shall be placed as close as is practicable to the corners of the cross-section, and in 
all cases, there shall be at least one longitudinal bar in each corner of the ties”. 

Further, if the torsional member has a cross-sectional dimension (usually, overall 
depth rather than width) that exceeds 450 mm, additional longitudinal bars are 
required to be provided as side face reinforcement, with an area not less than 0.1 
percent of the web area.  These bars are to be distributed equally on the two faces at a 
spacing not exceeding 300 mm or web thickness, whichever is less. 

7.5   ANALYSIS AND DESIGN EXAMPLES 

EXAMPLE 7.1 

A plain concrete beam (M 20 grade concrete) has a rectangular section, 300 mm wide 
and 500 mm deep (overall).  Estimate the ‘cracking torque’.  Also determine the 
limiting torque beyond which torsional reinforcement is required (as per the Code), 
assuming τ c = 0.3 MPa. 

SOLUTION 

• Using the plastic theory formula [Eq. 7.5]: 

T b Dcr t= −
1
2

32τ ,max ( )b  

where b = 300 mm, D = 500 mm. 
Assuming τ t ckf,max .≈ 0 2  = 0 2  = 0.894 MPa. 20.

⇒ Tcr  = 1
2

0894 300 500 300 32( . ) ( )× × −  

            = 16.09 × 106 Nmm = 16.1 kNm. 
• As per IS Code formulation, torsion has to be combined with shear for deciding 

whether or not torsional reinforcement is required. 

Torsional reinforcement is required if τ v >τ c ,  i.e.,
V T b

bd
u u16.

> τ c   
+

Assuming Vu = 0, d D mm≈ =0 9 450.  and τ c  = 0.3 MPa, 

⇒
0 16 10 300

300 450
0 30

6+ ×
×

>
. ( )

.
Tu   

⇒ Tu  > 7.59 × 106 Nmm = 7.6 kNm.  
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EXAMPLE 7.2 

The beam of Example 7.1 is reinforced (using Fe 415 grade steel) as shown in 
Fig. 7.10(a).  Determine the design torsional resistance of the beam under pure 
torsion.  Assume moderate exposure condition.  

SOLUTION 
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500

30
30 

2 – 16 φ

10 φ @150 c/c

2 – 10 φ

2 – 16 φ

(a) (b)

b1 = 204

y1 = 430 
d1 = 404

x1 = 230

300 

 
Fig. 7.10  Example 7.2 

• Given b = 300 mm, D = 500 mm, fck = 20 MPa, fy = fyl = 415 MPa,  
Al (due to 4 – 16 φ  plus 2 – 10φ ) = (201 × 4) + (78.5 × 2) = 961 mm2. 
At (10φ  stirrup) = 78.5 mm2, Asv = 2At = 157 mm2. 
sv = 150 mm 
b1 = 300 – 30 × 2 – 10 × 2 – 16 = 204 mm  
d1 = 500 – 30 × 2 – 10 × 2 – 16 = 404 mm [Fig. 7.10(b)].   

• Applying the general space truss formulation, considering the contribution of both 
transverse and longitudinal reinforcements [Eq. 7.18]: 
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⎠
⎞
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)404204(2
961

150
5.78  

        = 38.27 × 106 Nmm = 38.3 kNm 
which is greater than  = 16.1 kNm (refer Example 7.1). Tcr

• Alternatively, using the IS Code formula, considering shear-torsion interaction 
[Eq. 7.23] with Vu = 0, which corresponds to the space truss formulation 
considering the contribution of the transverse reinforcement alone [Eq. 7.14]: 

T A b d f suR sv y v= 1 1 0 87( . )  

       = 157 × 204 × 404 × ( . )087 415
150

×  

       = 31.1 × 106 Nmm = 31.1 kNm.   
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• In the above formulation, we had tacitly assumed that the torsional strength is 
governed by shear considerations and not ‘equivalent moment’.  The reader may 
verify this assumption by checking the equivalent moment capacity due to the 
longitudinal reinforcement† using Eq.7.20.   

EXAMPLE 7.3 

A beam, framing between columns, has an effective span of 5.0 m and supports a 
cantilevered projection, 1 m wide [Fig. 7.11(a)] throughout its length.  Assume that 
the cross-sectional details of the beam are exactly the same as in Example 7.2 
[Fig. 7.10].  Determine the adequacy of the section (as per IS Code), assuming a total 
uniformly distributed load (DL+LL) of 5 kN/m2 on the cantilever projection as 
shown.  Assume fixity at the ends of the beam against torsion as well as flexure. 

SOLUTION 

Structural Analysis  
This is a problem involving equilibrium torsion, combined with flexure and shear. 

• Loads on beam [Fig. 7.11(b)]: 
from projection: 5.0 kN/m2    × 1m = 5.0 kN/m 
from self weight: 25.0 × 0.3 × 0.5  = 3.75    ” 
                         8.75 kN/m 
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Fig. 7.11  Example 7.3 

                                                           
† The corresponding value of MuR is 73.3 kNm, whereby Tu = 46.7 kNm [Eq.7.20]. 
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Assuming a load factor of 1.5, 
Factored distributed load  = 8.75 × 1.5 = 13.13 kN/m. wu

Eccentricity of cantilever load from beam centreline = 1.0/2 + 0.3/2 = 0.65 m. 
∴Factored distributed torque tu = (5.0 × 0.65) × 1.5 = 4.88 kNm/m 

• Stress resultants: 

Max. twisting moment (at support)  T
t l

u
u=
2

 = 4.88 5 0
2
.⎛

⎝⎜
⎞
⎠⎟  = 12.20 kNm. 

Max. bending moment (at support) M
w l

u
u=

2

12
 = 27.35 kNm (hogging). 

Max. shear force (at support) V
w l

u
u=
2

 = 32.82 kN. 

The distributions of twisting moment, bending moment and shear force are shown 
in Fig. 7.11(c), (d), and (e).  Evidently, the critical section for checking the 
adequacy of the beam under the combined effects of Tu, Mu and Vu is at the 
support [at midspan, Tu = 0, Vu = 0]. 

Need for torsional reinforcement 
• Equivalent nominal shear stress [Eq. 7.9]: 

τ ve
u uV T

bd
=

+16. b
 

       = 
462300

300)1020.12(6.1)1082.32( 63

×
×+×

 = 0.706 MPa  

             <τ c = 2.8 MPa  max

• Shear strength of concrete [Eq. 6.10]: 

Ast = 402 mm2 ⇒ pt = 402 100
300 462

×
×

 = 0.290 ⇒β = × ×0 8 20 689 0 290. ( . . )  

              = 8.01 > 1.0 
⇒ τ c  = ( )085 08 20 1 5 8 01 1 6 8 01. ( . ) ( . ) ( .× + × − × )  = 0.383 MPa  

• As τ ve  > τ c , torsional reinforcement is required. 

Adequacy of longitudinal reinforcement 

• Effective bending moment  = M t T
D b

u
1

17
+⎛

⎝⎜
⎞
⎠⎟.

 [Eq. 7.20] 

                = 12.20
1 500 300

17
+⎛

⎝⎜
⎞
⎠⎟.

 = 19.14 kNm 

• Equivalent bending moments [Eq. 7.21]: 
Me1 = Mt + Mu = 19.14 + 27.35 = 46.49 kNm (with flexural tension on top) 
Me2 = Mt – Mu < 0  not to be considered. ⇒
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• Ultimate resisting moment of section with Ast = 402 mm2  (pt = 0.290 at top) 

MuR = 0.87fy 
p f

f
p

bdt y

ck

t

100
1

100
2−

⎛

⎝
⎜

⎞

⎠
⎟       [Eq. 4.65] 

        = 0870 415 0 290
100

1 415
20

0 290
100

300 4622. . .
× × × − ×⎛

⎝⎜
⎞
⎠⎟
× ×  

        =  = 63.0 kNm 63 01 10 6. × Nmm
• MuR > Me = 46.49 kNm ⇒  safe. 

Adequacy of side face reinforcement 

• As the depth (500 mm) exceeds 450 mm, additional Ast = 0.001 bD = 150 mm2 is 
required at a spacing less than 300 mm, distributed equally on the two side faces.  
This has been provided in the form of 2 – 10φ  bars (157 mm2) [Fig. 7.11(a)]. 

— Hence, OK. 

Adequacy of transverse reinforcement  

• Area of 2–legged 10φ  stirrups provided, Asv = 157 mm2 
This should exceed the requirements given by Eq. 7.23 and Eq. 7.24 
sv = 150 mm, b1 = 224 mm, d1 = 424 mm [Fig. 7.10(a), (b)] 

• [Eq. 7.23]: ( )Asv reqd = ( . ) ( ( .T b V s d fu u v y1 12 5 087 ))+   

               = × + × ×
×

( . . . )
( . )

12 20 10 224 32 82 10 2 5 150
424 0 87 415

6 3  

 = 66.2 mm2 < 157 mm2 provided ⇒   OK. 
• Minimum limit of area of transverse reinforcement [Eq. 7.24]: 

( )Asv reqd =
( )

.
τ τve c v

y

bs
f

−
087

 

   = ( . . )
.

0 706 0 383 300 150
087 415

− × ×
×

 

   = 40 mm2 < 157 mm2 provided  OK. ⇒
• Further, the spacing of stirrups provided (sv = 150 mm) should satisfy the 

requirements of Eq. 7.25: 

( )sv reqd ≤
x
x y

d

1

1 1

224 16 10 250
4 250 450 4 175

0 75 0 75 462 346

= + + =
+ = + =
= × =

⎧

⎨
⎪

⎩
⎪

 mm               
 mm

 mm               
( ) ( )
. .

 

( )sv provided  = 150 mm <   OK. ( )sv reqd ⇒

• Hence the section provided is adequate in all respects. 
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EXAMPLE 7.4 

Design the torsional reinforcement in a rectangular beam section, 350 mm wide and 
750 mm deep, subjected to an ultimate twisting moment of 140 kNm, combined with 
an ultimate (hogging) bending moment of 200 kNm and an ultimate shear force of 
110kN.  Assume M 25 concrete, Fe 415 steel and mild exposure conditions. 

SOLUTION 

• Given: b = 350 mm, D = 750 mm, fck = 25 MPa, fy = 415 MPa, Tu = 140 kNm,  
    Mu = 200 kNm, Vu = 110kN. 

    Minimum required cover to the stirrups is 20mm. Assuming 50 mm   
effective cover all around, d = 700 mm. 

Design of longitudinal reinforcement  
• Effective bending moment due to torsion: 

M T D bt u= +( )1 1.7  
       = × +140 1 750 350 17( ) .

u

 = 259 kNm 
• Equivalent bending moments for design: 

M M Me t= ±  

       = 259 ± 200 =  
459
59

 kNm          (flexural tension at top)       
 kNm       (flexural tension at bottom)      

⎧
⎨
⎩

• Design of top steel: 

R1 ≡ 
M
bd

e1
2

6

2
459 10

350 700
=

×

× ( )
 = 2.676 MPa  

       <
M

bd
u,lim

2  = 0.1389 × 25 = 3.472 MPa  

⇒  [Eq. 5.12]: p A
bd

f
f

t st ck

y100 2
≡ = [ ]1 4 598 1− . R fck  

                     [ ]= − ×
25

2 415
1 4 598 2 676 25

( )
. .  

       = 0.866 × 10-2

[Note: The same result is obtainable directly using Design Aids — Table A.3(a) 
or SP : 16]. 
⇒  2122 mm( ) .Ast reqd = × × ×−0 866 10 350 7002 = 2

Provide 2 – 28 φ + 2 – 25 φ at top [Ast = (616 × 2) + (491 × 2) = 2214  mm2]. 
• Design of bottom steel: 

R2 ≡ 
M
bd

e2
2

6

2
59 10

350 750
=

×
× ( )

 = 0.344 MPa  

∴ = − −
×⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )
( )

. .pt reqd

100
25

2 415
1 1 4 598 0 344

25
 = 0 097 10 2. × −  (very low) 
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Provide minimum reinforcement: 
A
bd

st = = × −0 85
415

0 205 10 2. .  

⇒ (Ast)reqd = 0.205 × 10–2 × 350 × 700 = 502 mm2

Provide 3 – 16 φ (Ast = 201 × 3 = 603 mm2) at bottom. 

• Side face reinforcement: 

As D > 450 mm, side face reinforcement for torsion is required. 
(Ast)reqd = 0.001bD = 0.001 × 350 × 750 = 263 mm2

Provide 4 – 10 φ (Ast = 78.5 × 4 = 452 mm2), two bars on each side face.  The 
(vertical) spacing between longitudinal bars will be less than 300 mm, as required 
by the Code.  The designed cross-section is shown in Fig. 7.12. 

350
50

50

750

50

4–10 φ

2–25 φ

2–28 φ

3–16 φ

12 φ
STIRRUPS
@ 85 c/c

 

Fig. 7.12  Example 7.4 

Design of transverse reinforcement  
• Equivalent nominal shear stress: 

τ ve
u uV T

bd
=

+16. b
 

      = × + × ×
×

( ) . ( )110 10 16 140 10 350
350 700

3 6
 = 3.06 MPa  

              < =τ c,max .31 MPa  (for M 25 concrete) 
• Shear strength of concrete [Eq. 6.10]: 

For pt =
×
×

2214 100
350 700

 = 0.904, β = 3211. ⇒ =τ c 0 618.  MPa  (for M 25 concrete) 

• As torsional shear is relatively high, Eq. 7.23 is likely to govern the design of 
stirrups (rather than Eq. 7.24). 
Assuming 10 φ 2-legged stirrups, Asv = 78.5 × 2 = 157 mm2. 

⇒  ( )
( . )

.
s

A d f
T b Vv reqd

sv y

u u
=

+
1

1

0 87
2 5

 

With 50 mm effective cover assumed all around, [Fig. 7.12]. 
d1  = 750 – 50 × 2 = 650 mm 
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b1  = 350 – 50 × 2  = 250 mm 

⇒ ( ) ( . )
( ) (

sv reqd =
×

. )
× ×

× + ×
157 650 0 87 415

140 10 250 110 10 2 56 3  = 61.0 mm (low) 

Alternatively, providing 12 φ 2-legged stirrups, Asv = 113 × 2 = 226 mm2

⇒ ( ) .sv reqd = ×61 0 226
157

 = 87.8 mm 

Further, applying Eq. 7.24,  

( )
.

( )
s

f A
bv reqd

y sv

ve e
=

−

0 87
τ τ

= 0 87 415 226
3 06 0 618 350

.
( . . )

× ×
− ×

 = 95 mm 

• Minimum spacing requirements [Eq. 7.25]: 

( ) ( ) ( )s
x
x yv ≤

= + + =
+ = + + =

⎧

⎨
⎪

⎩
⎪

   mm                      
 mm

 mm                                                    

1

1 1

250 28 12 290
4 290 650 34 4 243

300
 

Provide 12 φ  2-legged stirrups at 85 mm c/c [Fig. 7.12] 
• Check cover: 

With 50 mm effective cover, 12 φ stirrups and 28 φ longitudinal bars, clear cover 
to stirrups is: 50 – 12 – 28/2 = 24 mm, > 20 mm ⇒  OK. 

REVIEW QUESTIONS 

7.1 Explain, with examples, the difference between equilibrium torsion and 
compatibility torsion. 

7.2 “Equilibrium torsion is associated with statically determinate structures, 
whereas compatibility torsion is associated with statically indeterminate 
structures”.  Is this statement true?  Comment. 

7.3 Reinforced concrete columns are rarely subjected to torsion.  Cite an example 
where this situation occurs, i.e., torsion exists in combination with axial 
compression, and perhaps also with flexure and shear. 

7.4 How is torsional stiffness estimated for ‘compatibility torsion’? 
7.5 (a)  Estimate the torsional stiffness of a reinforced concrete beam element (of 

a frame), having a span l = 6.0 m and a rectangular section with width 
b = 200 mm and overall depth D = 500 mm.  Assume M 25 concrete. 
(b)  Compare the torsional stiffness with the flexural stiffness, 4EI / l, for the 
same beam element. 

7.5 In the case of a circular shaft subject to pure torsion, it is well known that the 
maximum torsional shear stress occurs at locations of maximum radius.  If the 
member has a rectangular (instead of circular) cross-section, the corner points 
are the ones located furthest from the shaft axis.  However, the torsional shear 
stress at these points is not the maximum; the stress, in fact, is zero! [refer 
Fig. 7.3(b)].  Why? 

7.6 Discuss the torque-twist relationship for (a) plain concrete and (b) reinforced 
concrete members subjected to pure torsion. 
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7.7 Inclined stirrups and bent-up bars are considered suitable for shear  
reinforcement, but not torsional reinforcement.  Why? 

7.8 For a thin-walled tubular section of arbitrary shape (but uniform thickness) 
subjected to pure torsion Tu, the shear flow q can be assumed to be constant 
(in the plastified state) at all points on the centreline of the thickness.  Using 
this concept, derive the relationship [Eq. 7.9] between q and Tu in terms of A0, 
the area enclosed by the centreline of the thickness. 

7.9 Briefly explain the concept underlying the space truss analogy for estimating 
torsional strength of a reinforced concrete beam. 

7.10 Briefly discuss the different modes of failure under combined flexure and 
torsion. 

7.11 Briefly discuss torsion-shear interaction of reinforced concrete beams. 

PROBLEMS 

7.1 Determine the design torsional resistance of the beam shown in Fig. 7.13 
under pure torsion by (i) IS Code procedure, (ii) general space truss 
formulation.  Assume M 25 concrete and Fe 415 steel. 

Ans.   (i)  48.6 kNm (ii)  62.2 kNm 
 300

2–12 φ 

2–20 φ

2–20 φ

10 φ 
STIRRUPS 
@ 125 c/c

600 
clear cover = 25 mm 

on all sides 

 
Fig. 7.13  Problems 7.1, 7.2 

7.2 For the beam section shown in Fig. 7.13, derive and hence plot suitable 
interaction relationships (satisfying IS Code requirements) between: 

(a)  torsion and bending (Tu – Mu) 
(b)  torsion and shear (Tu – Vu) 

Plot Tu on the y - axis in both cases. 
7.3 Consider the problem described in Example 7.3 as a design problem instead of 

an analysis problem.  Consider a total distributed service load of 10 kN/m2 
(instead of 5 kN/m2) on the 1 m wide cantilever projection [Fig. 7.11].  Design 
the reinforcement in the beam section (300 mm × 500 mm), assuming M 25 
concrete, moderate exposure conditions and Fe 415 steel. 

7.4 Design a rectangular beam section, 300 mm wide and 550 mm deep (overall), 
subjected to an ultimate twisting moment of 25 kNm, combined with an 
ultimate bending moment of 60 kNm and an ultimate shear force of 50 kN.  
Assume M 20 concrete, moderate exposure conditions and Fe 415 steel. 
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7.5 Repeat the Problem 7.4, considering an ultimate twisting moment of 50 kNm 
(instead of 25 kNm). 

 

A 

B

45o

R = 5m

(a)  plan : circular girder

(b)  stress resultants at angle θ

B

A 

P 

Tu 

Mu 
Vu 

θ 
45o 

A B 
Vu(θ)

A B 
Mu(θ) 

A B Tu(θ)

(c)  Variation of Vu, Mu and Tu 

SHEAR FORCE θ

θ = 0o

θ = 22.5o 

BENDING MOMENT 

TWISTING MOMENT 

 
Fig. 7.14  Problem 7.6 

7.6 Consider a circular girder of radius R = 5 m with rectangular cross-section, 
350 mm wide and 750 mm deep (overall), supported symmetrically on 8 
pillars [Fig. 7.14(a)].  Design and detail one typical span (AB) of the girder, 
assuming M 20 concrete and Fe 415 steel.  The total ultimate (uniformly 
distributed) load on span AB may be taken as Wu = 1400 kN, inclusive of self-
weight of the girder.  Expressions for the bending moment (Mu), twisting 
moment (Tu) and shear force (Vu) at any location θ  (in radians) [Fig. 7.14(b)] 
can be derived from first principles.  For convenience, these expressions are 
summarised below: 

Mu = (WuR)[0.5sinθ  + 1.20711cosθ  – 1.27324] 
[ ]T W Ru u= − −( ) . . .120711 05 4 05sin cosθ θ θ π +  

Vu = 0.5 Wu (1 – 8θ / π ) 
Assume moderate exposure conditions. 
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          8 
      Design for Bond 

 

8.1   INTRODUCTION 

‘Bond’ in reinforced concrete refers to the adhesion between the reinforcing steel and 
the surrounding concrete.  It is this bond which is responsible for the transfer of axial 
force from a reinforcing bar to the surrounding concrete, thereby providing strain 
compatibility and ‘composite action’ of concrete and steel [refer Section 1.2.2].  If 
this bond is inadequate, ‘slipping’ of the reinforcing bar will occur, destroying full 
‘composite action’.  Hence, the fundamental assumption of the theory of flexure, viz. 
plane sections remain plane even after bending, becomes valid in reinforced concrete 
only if the mechanism of bond is fully effective. 

It is through the action of bond resistance that the axial stress (tensile or 
compressive) in a reinforcing bar can undergo variation from point to point along its 
length.  This is required to accommodate the variation in bending moment along the 
length of the flexural member.  Had the bond been absent, the stress at all points on a 
straight bar would be constant†, as in a string or a straight cable. 

8.1.1   Mechanisms of Bond Resistance 

Bond resistance in reinforced concrete is achieved through the following 
mechanisms: 

1. Chemical adhesion — due to a gum-like property in the products of 
hydration (formed during the making of concrete). 

2. Frictional resistance — due to the surface roughness of the 
reinforcement and the grip exerted by the concrete shrinkage. 

3. Mechanical interlock — due to the surface protrusions or ‘ribs’ (oriented 
transversely to the bar axis) provided in deformed bars. 

                                                           
† Such a situation is encountered in prestressed concrete — in unbonded post-tensioned 
members. 
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Evidently, the resistance due to ‘mechanical interlock’ (which is considerable) is 
not available when plain bars are used.  For this reason, many foreign codes prohibit 
the use of plain bars in reinforced concrete — except for lateral spirals, and for 
stirrups and ties smaller than 10 mm in diameter.  However, there is no such 
restriction, as yet, in the IS Code. 

8.1.2   Bond Stress 

Bond resistance is achieved by the development of tangential (shear) stress 
components along the interface (contact surface) between the reinforcing bar and the 
surrounding concrete.  The stress so developed at the interface is called bond stress, 
and is expressed in terms of the tangential force per unit nominal surface area of the 
reinforcing bar. 

8.1.3   Two Types of Bond 

There are two types of loading situations which induce bond stresses, and 
accordingly ‘bond’ is characterised as: 

1. Flexural bond; 
2. Anchorage bond or development bond. 

dx

A B CD
L

(a)

(b) (c)

z

C+dC

M+dM

T+dTT

M V V
A B

dx

perimeter = Σo

(d)  flexural bond (e)  development bond

A B D CT+dT

dx

P P

V

C

uf

T

L

ua

 

Fig. 8.1  Bond stress in a beam 
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‘Flexural bond’ is that which arises in flexural members on account of shear or a 
variation in bending moment, which in turn causes a variation in axial tension along 
the length of a reinforcing bar [Fig. 8.1(d)].  Evidently, flexural bond is critical at 
points where the shear (V dM dx= ) is significant. 

‘Anchorage bond’ (or ‘development bond’) is that which arises over the length of 
anchorage provided for a bar or near the end (or cut-off point) of a reinforcing bar; 
this bond resists the ‘pulling out’ of the bar if it is in tension [Fig. 8.1(e)], or 
conversely, the ‘pushing in’ of the bar if it is in compression. 

These two types of bond are discussed in detail in the sections to follow. 

8.2   FLEXURAL BOND 

As mentioned earlier, variation in tension along the length of a reinforcing bar, 
owing to varying bending moment, is made possible through flexural bond.  The 
flexural stresses at two adjacent sections of a beam, dx apart, subjected to a 
differential moment dM, is depicted in Fig. 8.1(b).  With the usual assumptions made 
in flexural design, the differential tension dT in the tension steel over the length dx is 
given by  

dT dM
z

=                                                         (8.1) 

where z is the lever arm. 
This unbalanced bar force is transferred to the surrounding concrete by means of 

‘flexural bond’ developed along the interface.  Assuming the flexural (local) bond 
stress uf to be uniformly distributed over the interface in the elemental length dx, 
equilibrium of forces gives: 

u o dx df ( ) T∑ =                                            (8.2) 

where Σo is the total perimeter of the bars at the beam section under consideration 
[Fig. 8.1(c)]. 

From Eq. 8.2, it is evident that the bond stress is directly proportional to the 
change in the bar force.  Combining Eq. 8.2 with Eq. 8.1, the following expression 
for the local bond stress uf  is obtained: 

( )
u

zf = ∑
dM dx

o
                                                  (8.3a) 

Alternatively, in terms of the transverse shear force at the section V dM dx= ,  

( )
u V

o zf = ∑
                                                    (8.3b) 

It follows that flexural bond stress is high at locations of high shear, and that this 
bond stress can be effectively reduced by providing an increased number of bars of 
smaller diameter bars (to give the same equivalent Ast). 

It may be noted that the actual bond stress will be influenced by flexural cracking, 
local slip, splitting and other secondary effects — which are not accounted for in 
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Eq. 8.3.  In particular, flexural cracking has a major influence in governing the 
magnitude and distribution of local bond stresses. 

8.2.1   Effect of Flexural Cracking on Flexural Bond Stress 

From Eq. 8.3(b), it appears that the flexural (local) bond stress uf  has a variation that 
is similar to and governed by the variation of the transverse shear force V.  In fact, it 
would appear that in regions of constant moment, where shear is zero, there would be 
no bond stress developed at all.  However, this is not true.  The tensile force T in the 
reinforcement varies between flexural crack locations, even in regions of constant 
moment, as indicated in Fig. 8.2.  At the flexural crack location, the tension is carried 
by the reinforcement alone, whereas in between the cracks, concrete carries some 
tension and thereby partially relieves the tension in the steel bars.  As local bond 
stress is proportional to the rate of change of bar force [Eq. 8.2], local bond stresses 
do develop in such situations. 

 

(a)  constant moment 
   region between 
 flexural cracks 

concrete

reinforcing bar 

(b)  probable  
variation of 
bar tension T 

(c)  probable 
 variation of 
flexural (local) 
bond stress uf 

Tmax 
TminT

Tmax

Tmax Tmax

uf

uf 

 
Fig. 8.2  Effect of flexural cracks on flexural bond stress in constant moment region 
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The bond stresses follow a distribution somewhat like that shown in Fig. 8.2(c), 
with the direction of the bond stress reversing between the cracks [Ref. 8.1].  The net 
bond force between the cracks will, of course, be zero in a region of constant 
moment.  When the moment varies between the flexural cracks, the bond stress 
distribution will differ from that shown in Fig. 8.2(c), such that the net bond force is 
equal to the unbalanced tension in the bars between the cracks [Eq. 8.2]. 

Beam tests show that longitudinal splitting cracks tend to get initiated near the 
flexural crack locations where the local peak bond stresses can be high.  The use of 
large diameter bars particularly renders the beam vulnerable to splitting and/or local 
slip. 

Finally, it may be noted that flexural cracks are generally not present in the 
compression zone.  For this reason, flexural bond is less critical in a compression bar, 
compared to a tension bar with an identical axial force. 

8.3   ANCHORAGE (DEVELOPMENT) BOND 

As mentioned earlier, anchorage bond or development bond is the bond developed 
near the extreme end (or cut-off point) of a bar subjected to tension (or compression).  
This situation is depicted in the cantilever beam of Fig. 8.3, where it is seen that the 
tensile stress in the bar segment varies from a maximum (fs) at the continuous end D 
to practically zero at the discontinuous end C. 

Ab = πφ2 4

(a)  cantilever beam

(b)  probable variation
 of anchorage bond stress ua

(c)  assumed uniform
 average bond stress uar

ua

C D

uav
C D

T = Abfs
C D

T = Abfs

L

ua uav

 

Fig. 8.3  Anchorage bond stress 
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The bending moment, and hence the tensile stress fs, are maximum at the section 
at D.  Evidently, if a stress fs is to be developed in the bar at D, the bar should not be 
terminated at D, but has to be extended (‘anchored’) into the column by a certain 
length CD.  At the discontinuous end C of the bar, the stress is zero.  The difference 
in force between C and D is transferred to the surrounding concrete through 
anchorage bond.  The probable variation of the anchorage bond stress ua is as shown 
in Fig. 8.3(b) — with a maximum value at D and zero at C.  It may be noted that a 
similar (but not identical† ) situation exists in the bar segment CD of the simply 
supported beam in Fig. 8.1(e). 

An expression for an average bond stress uav can be derived by assuming a 
uniform bond stress distribution over the length L of the bar of diameter φ 
[Fig. 8.3(c)], and considering equilibrium of forces as given below: 

( ) ( ) sav fuL 42φππφ =   ⇒ =u f
Lav
sφ

4
                                   (8.4) 

This bond stress may be viewed as the average bond stress generated over a length 
L in order to develop a maximum tensile (or compressive) stress fs at a critical 
section; hence, this type of bond is referred to as ‘development bond’.  Alternatively, 
this bond may be viewed as that required to provide anchorage for a critically 
stressed bar; hence, it is also referred to as ‘anchorage bond’. 

8.3.1   Development Length 

The term development length has already been introduced in Section 5.9.2, in relation 
to restrictions on theoretical bar cut-off points.  The concept of ‘development length’ 
is explained in the Code as follows: 

“The calculated tension or compression in any bar at any section shall be 
developed on each side of the section by an appropriate development 
length or end anchorage or by a combination thereof” [Cl. 26.2]. 

The concept underlying ‘development length’ is that a certain minimum length of 
the bar is required on either side of a point of maximum steel stress, to prevent the 
bar from pulling out under tension (or pushing in, under compression).  However, 
when the required bar embedment cannot be conveniently provided due to practical 
difficulties, bends, hooks and mechanical anchorages can be used to supplement 
with an equivalent embedment length [refer Section 8.5.3].  The term anchorage 
length is sometimes used in lieu of ‘development length’ in situations where the 
embedment portion of the bar is not subjected to any flexural bond [Fig. 8.3]. 

The expression given in the Code (Cl. 26.2.1) for ‘development length’ 
~Ld

‡ 
follows from Eq. 8.4: 

                                                           
† It can be seen that in the case shown in Fig. 8.1(e), flexural bond coexists with anchorage 
bond, owing to variation of bending moment in the segment CD. 
‡ In this book, the notation Ld is reserved for development length of fully stressed bars 
(fs = 0.87 fy).  For fs < 0.87 fy, evidently ( )~L L f 0.87fd d s y=  
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~L
f

4d
s

bd
=
φ
τ

                                                      (8.5) 

where τ bd  is the ‘design bond stress’, which is the permissible value of the average 
anchorage bond stress ua.  The values specified for τ bd  (Cl. 26.2.1.1 of the Code) 
are 1.2 MPa, 1.4 MPa, 1.5 MPa, 1.7 MPa and 1.9 MPa for concrete grades M 20, 
M 25, M 30, M 35 and M 40 and above respectively for plain bars in tension, with 
an increase of 60 percent for deformed bars in tension, and a further increase of 25 
percent for bars in compression. 

The development length requirements in terms of Ld φ  ratios for fully stressed 
bars (fs = 0.87 fy ) of various grades of steel in combination with various grades of 
concrete are listed in Table 5.6.  It may be noted that when the area of steel As 
actually provided is in excess of the area required (for fs = 0.87fy), then the actual 
development length required 

~Ld  may be proportionately reduced [Ref. 8.5]: 

~ ( )
( )

L L
A

Ad d
s reqd

s provided
= ×                                           (8.6) 

In the case of bundled bars, the Code specifies that the “development length of 
each bar of bundled bars shall be that for the individual bar, increased by 10 percent 
for two bars in contact, 20 percent for three bars in contact and 33 percent for four 
bars in contact.”  Such an increase in development length is warranted because of 
the reduction in anchorage bond caused by the reduced interface surface between the 
steel and the surrounding concrete. 

8.4   BOND FAILURE AND BOND STRENGTH 

8.4.1   Bond Failure Mechanisms 

The mechanisms that initiate bond failure may be any one or combination of the 
following: 

• break-up of adhesion between the bar and the concrete; 
• longitudinal splitting of the concrete around the bar; 
• crushing of the concrete in front of the bar ribs (in deformed bars); and 
• shearing of the concrete keyed between the ribs along a cylindrical 

surface surrounding the ribs (in deformed bars). 

The most common type of bond failure mechanism is the pulling loose of the 
reinforcement bar, following the longitudinal splitting of the concrete along the bar 
embedment [Fig. 8.4].  Occasionally, failure occurs with the bar pulling out of the 
concrete, leaving a circular hole without causing extensive splitting of the concrete.  
Such a failure may occur with plain smooth bars placed with large cover, and with 
very small diameter deformed bars (wires) having large concrete cover [Ref. 8.1].  
However, with deformed bars and with the normal cover provided in ordinary beams, 
bond failure is usually a result of longitudinal splitting. 
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In the case of ribbed bars, the bearing pressure between the rib and the concrete is 
inclined to the bar axis [Fig. 8.4(b)].  This introduces radial forces in the concrete 
(‘wedging action’), causing circumferential tensile stresses in the concrete 
surrounding the bar (similar to the stresses in a pipe subjected to internal pressure) 
and tending to split the concrete along the weakest plane [Ref. 8.2 – 8.4].  Splitting 
occurs along the thinnest surrounding concrete section, and the direction of the 
splitting crack (‘bottom splitting’ or ‘side splitting’) depends on the relative values of 
the bottom cover, side cover and bar spacing as shown in Fig. 8.4(b). 

BOTTOM SPLITTING
CRACKS

(a) bottom and side splitting cracks

Cs

Cb

Cb < Cs

Cb > Cs

potential crack

Csb Cs

Cb

least of  Cb , Cs , Csb

(b) splitting forces with deformed
b  

Fig. 8.4  Typical bond splitting crack patterns 

Splitting cracks usually appear on the surface as extensions of flexural or diagonal 
tension cracks in flexural members, beginning in regions of high local bond stress 
[Fig. 8.2].  With increased loads, these cracks propagate gradually along the length of 
embedment (‘longitudinal splitting’) with local splitting at regions of high local bond 
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stress and associated redistribution of bond stresses.  It is found that in a normal 
beam, local splitting can develop over 60 – 75 percent of the bar length without loss 
of average bond strength and without adversely affecting the load-carrying capacity 
of the beam [Ref. 8.1].  The presence of stirrups offers resistance to the propagation 
of continuous longitudinal splitting cracks [Fig. 8.5].  However, in beams without 
stirrups, the failure due to bond can occur early and suddenly, as the longitudinal 
split runs through to the end of the bar without the resistance offered by the stirrups. 

stirrups

 

Fig. 8.5  Stirrups resisting tensile forces due to bond 

A simply supported beam can act as a two-hinged arch, and so carry substantial 
loads, even if the bond is destroyed over the length of the bar, provided the tension 
bars are suitably anchored at their ends [Fig. 8.6].  However, the deflections and 
crackwidths of such a beam may be excessive.  The anchorage may be realised over 
an adequate length of embedment beyond the face of the support, and/or by bends 
and hooks or mechanical anchorages (welded plates, nuts and bolts, etc.). 

P P

ANCHORAGE ANCHORAGE 

BOND DESTROYED

Fig. 8.6  Tied-arch action with bar anchorage alone 

8.4.2   Bond Tests 

Bond strength is usually ascertained by means of pull out tests or some sort of beam 
tests. 

The typical ‘pull out’ test is shown schematically in Fig. 8.7(a).  A bar embedded 
in a concrete cylinder or prism is pulled until failure occurs by splitting, excessive 
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slip or pull out.  The nominal bond strength is computed as P L( )πφ , where P is the 
pull at failure, φ  the bar diameter and L the length of embedment.  It may be noted, 
however, that factors such as cracking (flexural or diagonal tension) and dowel 
forces, which lower the bond resistance of a flexural member, are not present in a 
concentric pull out test.  Moreover, the concrete in the test specimen is subjected to a 
state of compression (and not tension), and the friction at the bearing on the concrete 
offers some restraint against splitting.  Hence, the bond conditions in a pull out test 
do not ideally represent those in a flexural member. 

concrete
cylinder

bar
PULL P

(a) ‘pull out’ test set up

shield separating bar
from concrete

reaction
embedment length

L

reactions

PULL P

(b) bond test on modified cantilever specimen

L
φ

φ

 

Fig. 8.7  Bond tests 
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Of the several types of beam tests developed to simulate the actual bond 
conditions, one test set-up is shown in Fig. 8.7(b) [Ref. 8.3].  The bond strength 
measured from such a test, using the same expression [ P L( )πφ ] as for a pull-out 
test, is bound to give a lesser (and more accurate) measure of the bond strength than 
the pull out strength.  However, the pull out test is easier to perform, and for this 
reason, more commonly performed. 

From the results of such bond tests, the ‘design bond stress’ (permissible average 
anchorage bond stress),τ bd ,is arrived at — for various grades of concrete.  Tests 

indicate that bond strength varies proportionately with fck φ for small diameter 

bars and f ck  for large diameter deformed bars [Ref. 8.1]. 

8.4.3   Factors Influencing Bond Strength 

Bond strength is influenced by several factors, some of which have already been 
mentioned.  In general, bond strength is enhanced when the following measures are 
adopted: 

• deformed (ribbed) bars are used instead of plain bars; 
• smaller bar diameters are used; 
• higher grade of concrete (improved tensile strength) is used; 
• increased cover is provided around each bar; 
• increased length of embedment, bends and /or hooks are provided; 
• mechanical anchorages are employed; 
• stirrups with increased area, reduced spacing and/or higher grade of 

steel are used; 
• termination of longitudinal reinforcement in tension zones is avoided; 
• any measure that will increase the confinement of the concrete around 

the bar is employed. 

Another factor which influences bond strength in a beam is the depth of fresh 
concrete below the bar during casting.  Water and air inevitably rise towards the top 
of the concrete mass and tend to get trapped beneath the horizontal reinforcement, 
thereby weakening the bond at the underside of these bars.  For this reason, codes 
specify a lower bond resistance for the top reinforcement in a beam. 

8.5   REVIEW OF CODE REQUIREMENTS FOR BOND 

8.5.1   Flexural Bond 

Traditionally, design for bond required the consideration of both flexural (local) 
bond stress uf and development (anchorage) bond stress uav.  However, since the 
1970s, there has been an increased awareness of the fact that the exact value of 
flexural bond stress cannot be accurately computed (using expressions like Eq. 8.3a 
or 8.3b) owing to the unpredictable and non-uniform distribution of the actual bond 
stress.  In fact, it is found that localised bond failures can and do occur, despite the 
checks provided by Eq. 8.3.  However, as explained earlier, these local failures do 
not impair the strength of the beam (in terms of ultimate load-carrying capacity) 
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provided the bars are adequately anchored at their ends [Fig. 8.6].  Thus, the concept 
underlying limit state design for flexural bond has shifted from the control of local 
bond stresses (whose predicted values are unrealistic) to the development of required 
bar stresses through provision of adequate anchorage — at simple supports and at 
bar cut-off points. 

The Code requirement for such a check on anchorage, in terms of development 
length plus end anchorage and the variation of tensile stress in the bar [Eq. 5.25], has 
already been discussed at length in Section 5.9.3, and illustrated with several 
examples. 

8.5.2   Development (Anchorage) Bond 

The computed stress at every section of a reinforcing bar (whether in tension or 
compression) must be developed on both sides of the section — by providing 
adequate ‘development length’, 

~Ld .  Such development length is usually available 
near the midspan locations of normal beams (where sagging moments are generally 
maximum) and support locations of continuous beams (where hogging moments are 
generally maximum).  Special checking is generally called for in the following 
instances only: 

• in flexural members that have relatively short spans; 
• at simple supports and points of inflection [refer Section 5.9.3]; 
• at points of bar cut-off [refer Section 5.9.3]; 
• at cantilever supports; 
• at beam-column joints in lateral load resisting frames; 
• for stirrups and transverse ties; and 
• at lap splices [refer Section 8.6]. 

8.5.3   Bends, Hooks and Mechanical Anchorages 

Bends, conforming to standards are frequently resorted to in order to provide 
anchorage, contributing to the requirements of development length of bars in tension 
or compression.  The Code (Cl. 26.2.2.1) specifies that “the anchorage value of a 
bend shall be taken as 4 times the diameter of the bar for each 45o bend, subject to a 
maximum of 16 times the diameter of the bar”. 

Commonly a ‘standard 90o bend’ (anchorage value = 8φ) is adopted [Fig. 8.8(a)], 
including a minimum extension of 4φ.  Any additional extension beyond the bend 
also qualifies to be included in development length calculations.  However, for bars 
in compression (as in column bases), it is doubtful whether such extensions can 
meaningfully provide anchorage.  The 90o bend itself is very effective in 
compression as it transfers part of the force by virtue of bearing stresses, and 
prevents the bar from punching through the concrete cover.  When the bend is turned 
around 180o (anchorage value = 16φ) and extended beyond by 4φ, it is called a 
standard U-type hook [Fig. 8.8(b)].  The minimum (internal) turning radius (r in 
Fig. 8.8) specified for a hook is 2φ for plain mild steel bars and 4φ for cold-worked 
deformed bars [Ref. 8.5].  Hooks are generally considered mandatory for plain bars 
in tension [refer Cl. 26.2.2.1a of the Code]. 
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(a)  standard 90o bend

φ

4φ

equivalent anchorage
length = 8φ

r

φ

4φ

equivalent anchorage
length = 16φ

r

(b)  standard U–type hook  

Fig. 8.8  Anchorage lengths of standard bends and hooks 

In the case of stirrup (and transverse tie) reinforcement, the Code (Cl. 26.2.2.4b) 
specifies that complete anchorage shall be deemed to have been provided if any of 
the following specifications is satisfied: 

• 90o bend around a bar of diameter not less than the stirrup diameter φ, 
with an extension of at least 8 φ; 

• 135 o bend with an extension of at least 6 φ; 
• 180 o bend with an extension of at least 4 φ. 

It may be noted that bends and hooks introduce bearing stresses in the concrete 
that they bear against.  To ensure that these bearing stresses are not excessive, the 
turning radius r (in Fig. 8.8) should be sufficiently large.  The Code (Cl. 26.2.2.5) 
recommends a check on the bearing stress  fb  inside any bend, calculated as follows: 

f F
rb

bt=
φ

                                                   (8.7) 

where Fbt is the design tensile force in the bar (or group of bars), r the internal radius 
of the bend, and φ the bar diameter (or size of bar of equivalent area in case of a 
bundle).  The calculated bearing stress should not exceed a limiting bearing stress, 

given by 
15

1 2
. f

a
ck

+ φ
, where a is the centre-to-centre spacing between bars 

perpendicular to the bend, or, in the case of bars adjacent to the face of the member, 
the clear cover plus the bar diameter φ.  For fully stressed bars, 

F fbt y=
⎛

⎝
⎜

⎞

⎠
⎟0 87

4

2
. πφ  

Accordingly, it can be shown that the limiting radius is given by 
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f
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⎝
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0 456 1 2. φ φ
                                   (8.8) 
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Mechanical anchorages in the form of welded plates, nuts and bolts, etc. can be 
used, provided they are capable of developing the strength of the bar without damage 
to concrete (Cl. 26.2.2.3 of the Code).  In general, the effectiveness of such devices 
must be ascertained through tests. 

8.6   SPLICING OF REINFORCEMENT  

Splices are required when bars placed short of their required length (due to non-
availability of longer bars) need to be extended.  Splices are also required when the 
bar diameter has to be changed along the length (as is sometimes done in columns).  
The purpose of ‘splicing’ is to transfer effectively the axial force from the 
terminating bar to the connecting (continuing) bar with the same line of action at the 
junction.  This invariably introduces stress concentrations in the surrounding 
concrete.  These effects should be minimised by: 

• using proper splicing techniques; 
• keeping the splice locations away from sections with high flexural/shear 

stresses; and 
• staggering the locations of splicing in the individual bars of a group (as, 

typically in a column). 

The Code recommends that 

“splices in flexural members should not be at sections where the bending 
moment is more than 50 percent of the moment of resistance; and not more 
than half the bars shall be spliced at a section” (Cl. 26.2.5). 

When splicing in such situations becomes unavoidable, special precautions need 
to be employed, such as  

• increasing the length of lap (in lap splices and lap welding); 
• using spirals or closely-spaced stirrups around the length of the stirrups. 

Splicing is generally done in one of the following three ways: 
1 Lapping of bars (lap splice) 
2 Welding of bars (welded splice) 
3 Mechanical connection. 

8.6.1   Lap Splices 

Lap splices are achieved by overlapping the bars over a certain length, thereby 
enabling the transfer of axial force from the terminating bar to the connecting bar 
through the mechanism of anchorage (development) bond with the surrounding 
concrete — [Fig. 8.9(a)].  The cracking and splitting behaviour observed in lap splice 
tests are found to be similar to those in anchorage bond tests [Ref. 8.2]. 

Lap splices are usually not permitted for very large diameter bars (φ > 36 mm), for 
which welded splices are recommended.  However, where welding is not practicable, 
the Code (Cl. 26.2.5.1a) permits lap splices with additional spirals around the lapped 
bars [Fig. 8.9(b)]. 
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L
≥ 15φ , 200 mm slope less than 1 in 6 

bar 2 

bar 1 

fall in bar 1 force through bond

build up of bar 2 force
through bond 

φ > 36 mm 

(a) lap splice action through development bond

spiral (6 mm φ) 
@ 100 mm pitch

(b) use of spirals in lap splices for large diameter bars 

¢ ¢

L

L

≥ 1.3 L

(c) staggered splicing of bars
 

Fig. 8.9  Lap splices 

It is desirable to bend the bars slightly (particularly large diameter bars) near the 
splice location in order to ensure a collinear transfer of force (without eccentricity), 
as shown in Fig. 8.9(a).  The Code specifies that the straight length of the lap should 
not be less than 15φ or 200 mm.  As the force transfer is through development bond, 
the lap length should at least be equal to the development length .  The Code 

(Cl. 26.2.5.1c) specifies a lap length of 2  in situations where the member is 
subjected to direct tension.  In no case should the lap length be less than 30φ under 

~Ld
~Ld
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flexural or direct tension and 24φ under compression†.  When bars of two different 
diameters are to be spliced, the lap length should be calculated on the basis of the 
smaller diameter.  Splices in tension members shall be enclosed in spirals made of 
bars not less than 6 mm diameter with pitch not more than 10mm. 

In the revised Code, some additional clauses have been incorporated (Cl. 
26.2.5.1c) to account for the reduction in bond strength with regard to rebars located 
near the top region [refer Section 8.4.3‡].  When lapping of tension reinforcement is 
required at the top of a beam (usually near a continuous support location or a beam-
column junction) and the clear cover is less than twice the diameter of the lapped bar, 
the lapped length should be increased by a factor of 1.4.  If the rebar is required to 
turn around a corner (as in an exterior beam-column junction), the lapped length 
should be increased by a factor of 2.0.  This factor may be limited to 1.4 in the case 
of corner bars when the clear cover on top is adequate but the side cover (to the 
vertical face) is less than twice the diameter of the lapped bar.    

When more than one bar requires splicing, care must be taken to ensure that the 
splicing is staggered, with a minimum (centre-to-centre) separation of 1.3 times the 
lap length, as indicated in Fig. 8.9(c).  It is also desirable to provide (extra) transverse 
ties (especially in columns), connecting the various longitudinal bars in the spliced 
region.  In the case of bundled bars, the lap length should be calculated considering 
the increased  [refer Section 8.3.1], and the individual splices within a bundle 
should be staggered. 

~Ld

8.6.2   Welded Splices and Mechanical Connections 

Welded splices and mechanical connections are particularly suitable for large 
diameter bars.  This results in reduced consumption of reinforcing steel.  It is 
desirable to subject such splices to tension tests in order to ensure adequacy of 
strength [refer Cl. 12.4 of the Code].  Welding of cold-worked bars needs special 
precautions owing to the possibility of a loss in strength on account of welding heat 
[Ref. 8.6].  The Code (Cl. 26.2.5.2) recommends that the design strength of a welded 
splice should in general be limited to 80 percent of the design strength of the bar for 
tension splices. 

Butt welding of bars is generally adopted in welded splices.  The bars to be spliced 
should be of the same diameter.  Additional two or three symmetrically positioned 
small diameter lap bars may also be provided (especially when the bars are subjected 
to tension) and fillet welded to the main bars.  Even in the case of ‘lap splices’, lap 
welding (at intervals of 5φ) may be resorted to in order to reduce the lap length. 

End-bearing splices are permitted by the Code (Cl. 26.2.5.3) for bars subject to 
compression.  This involves square cutting the ends of the bars and welding the bar 
ends to suitable bearing plates that are embedded within the concrete cover. 

                                                           
† Columns are frequently subjected to compression combined with bending.  Hence, it may be 
prudent to calculate the lap length, assuming flexural tension, and not compression. 
‡ As explained in Section 8.4.3, this reduction in bond strength is strictly applicable for all 
situations, not only lapping.  It may also be noted that the reduction in bond strength of top 
reinforcement may not be significant in shallow members.   
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8.7   DESIGN EXAMPLES 

EXAMPLE 8.1 

Check the adequacy of the anchorage provided for the longitudinal bars in the 
cantilever beam shown in Fig. 8.10 and suggest appropriate modifications, if 
required.  The beam is subjected to a uniformly distributed factored load of 100 kN 
(total, including self-weight).  Assume M 20 concrete and Fe 415 steel, deformed 
bars. 

SOLUTION 

Preliminary check on anchorage length 
• Assuming the bars are fully stressed at the location of maximum moment (i.e., 

face of column support), full development length Ld is required for anchorage of 
the bars inside the column, beyond this section. 

450

280

300

300

2–25 φ

2–16 φ

Wu = 100 kN

200
40

40

2–25 φ

2–16 φ

200

200

2000 section at face of support

Fig. 8.10  Example 8.1 

• For the tension bars (2 – 25 φ at top), L
0.87f
4

 d
y

bd
=
⎛

⎝
⎜

⎞

⎠
⎟

τ
φ  = 47 φ 

[This follows from fy = 415 MPa and τbd  = 1.2 MPa × 1.6 for M 20 concrete with 
Fe 415 steel deformed bars; Ld φ  ratios are also listed in Table 5.4] 
⇒ = ×Ld 47 25  = 1175 mm. 
Actual anchorage length provided (including effect of the 90o bend and extension 
of bar beyond bend + 4φ minimum extension) = 280 + (4 × 25) + 300 = 680 mm  

     < Ld = 1175 mm ⇒  Not OK. 
• For the compression bars (2 – 16 φ at bottom), 

τbd  can be increased by 25 percent, whereby Ld = (47 φ) × 0.8 
⇒  Ld = 47 × 16 × 0.8 = 602 mm. 
Actual anchorage length provided = 300 mm. 

   < Ld = 602 mm  Not OK. ⇒
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• Before providing increased anchorage length, it is desirable to verify whether the  
bars are fully stressed under the given loading, and to make more precise 
development length ( )~Ld  calculations [refer Eq. 8.6]. 

Actual anchorage length required 
• Maximum factored moment at the critical section : 

M W Lu u= × 2  = 100 kN × ( .2 0 2 m)  = 100kNm  
b = 200 mm, d = 400 – 40 = 360 mm 

⇒
M
bd

u
2  = 100 10

200 360

6

2
×
×

 = 3.858 MPa > Mu,lim = 0.1389 × 20 

         = 2.778 MPa (for M 20) 
Hence, the section has to be doubly-reinforced. 

• Using Design Aids [Table A.4 or SP : 16], with ′d d  = 40/360 = 0.11, 
( )pt reqd  = 1.30  ( )  = (1.30/100) × (200 × 360) = 936 mm⇒ Ast reqd

2

( )pc reqd  = 0.37  ( )  = (0.37/100) × (200 × 360) = 266 mm⇒ Asc reqd
2

( )Ast provided  = 2 × 491 = 982 mm2 > 932 mm2

( )Asc provided  = 2 × 201 = 402  mm2 > 266 mm2

• Actual anchorage length required =  = ~Ld
( )

( )
A

A
Ls reqd

s provided
d×  

⇒ For the tension bars,  = ~Ld
936
982

1175×  = 1120 mm > 680 mm provided. 

For the compression bars,  = ~Ld
266
402

602×  = 398 mm > 300 mm provided.  

⇒  Not OK. 
Modifications proposed 
• It is desirable to reduce the anchorage length requirements by providing smaller 

diameter bars: 
• For tension bars (at top), provide 3 – 20 mm φ (instead of 2 – 25 φ): 

⇒ Ast = 3 × 314 = 942 mm2 > 936 mm2 reqd. 
~L Ld≈  = 47 × 20 = 940 mm > 680 mm provided 
⇒ Extend the bars by 940 – 680 = 260 mm. 

• For compression bars (at bottom), provide 3 – 12 mm φ (instead of 2 – 16 φ) 
⇒ Asc = 3 × 113 = 339 mm2 > 266 mm2 reqd. 
~Ld  = 266

339
 × (47 × 12) × 0.8 = 354 mm > 300 mm provided. 

⇒ Extend the bars by providing a standard 90o bend (Additional anchorage 
obtained = 8 φ = 8 × 12 = 96 mm).                                                — Hence OK. 
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EXAMPLE 8.2 

The plan of a ground floor column in a building is shown in Fig. 8.11(a).  It is 
desired to reduce the longitudinal bar diameter from 28 mm to 20 mm above the 
second floor level.  Design and detail a suitable lap splice.  Assume M 25 concrete 
and Fe 415 steel. 

 

slope 1 : 6 
maximum 

lap splice ¢

¢ lap splice 
L = 800 mm 

1040

400

20φ bar

28φ bar

28φ bar

20φ bar

600

300 8φ ties @ 
200 c/c 

{28φ (6 nos) below second floor 
20φ (6 nos) above second floor

(a) plan of column

(b) typical lap slice detail 
    (only two bars shown here) 

floor 
beam

 
Fig. 8.11  Example 8.2 
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SOLUTION 

• As the column is subjected to compression combined with flexure, some of the 
bars may be under tension.  Hence, the lap length should be calculated, assuming 
tension, i.e., L = Ld or 30 φ, whichever is greater.  Moreover, at the splice 
location, as the smaller diameter (20 mm φ) bars are adequate in providing the 
derived strength, the lap length calculation should be based on the smaller 
diameter: 

L Ld= =
×

× ×
=⎧

⎨
⎪

⎩⎪

0 87 415
4 1 1 25

52

30

.
( .4 . )

φ φ

φ

   (greater)

                                                
  ⇒ L = 40φ 

⇒ L = 40 × 20 = 800 mm. 

• Staggered splicing: 
As required by the Code (Cl. 25.2.5.1), the splicing of the bars should be ideally 
staggered with a minimum (centre-to-centre) separation of  
1.3L = 1.3 × 800 = 1040 mm. 
The splice detail is shown in Fig. 8.11(b). 

REVIEW QUESTIONS 

8.1 How is the assumption that plane sections remain plane even after bending 
related to ‘bond’ in reinforced concrete? 

8.2 What are the mechanisms by which bond resistance is mobilised in reinforced 
concrete?  

8.3 Explain clearly the difference between flexural bond and development bond. 
8.4 There is no direct check on flexural bond stress in the present Code.  

Comment on this.  
8.5 Define ‘development length’.  What is its significance? 
8.6 Briefly describe the various bond failure mechanisms. 
8.7 How is bond strength of concrete measured in the laboratory? 
8.8 Enumerate the main factors that influence bond strength. 
8.9 Can there be a difference in the bond resistance of identical bars placed at the 

top and bottom of a beam? If so, why?  Does the current Code IS 456 
recognise this in (i) development length, (ii) lap splice? 

8.10 Briefly describe the situations where a check on development bond is called 
for. 

8.11 What is the most effective way of reducing the development length 
requirement of bars in tension? 

8.12 What is the criterion for deciding the minimum turning radius in a bend in a 
reinforcing bar? 

8.13 Determine the minimum internal radius at a bend in a 20 mm φ bar of Fe 415 
grade in concrete of grade M 20.  Assume that the centre-to-centre spacing of 
bars normal to the bend is 100 mm.  

8.14 What is the purpose of splicing of reinforcement?  What are the different 
ways by which this can be achieved? 
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8.15 Why is a welded splice generally preferred to a lap splice? 
8.16 How would you decide on the location of a splice in the tension reinforcement 

in a flexural member?  
8.17 When there is a marked change in the direction of a bar, care must be taken to 

ensure that the resultant force in the bar at the bending point does not have a 
component that tends to break the concrete cover.  Cite a suitable example and 
suggest detailing measures to solve such a problem.  

PROBLEMS 

8.1 The outline of a typical (exterior) beam-column joint is shown in Fig. 8.12.  
The maximum factored moment in the beam at the face of the column is found 
to be 350 kNm (hogging) under gravity loads.  Design the flexural 
reinforcement in the beam at this critical section, and determine the desired 
anchorage for the reinforcement.  Mark the reinforcement and anchorage 
details in Fig. 8.12.  Assume M 25 concrete and Fe 415 steel. 

8.2 In the case of the beam of Problem 8.1 [Fig. 8.12], it is seen that under lateral 
(wind) loads combined with gravity loads, the maximum factored design 
moments are obtained as 350 kNm (hogging) or 150kNm (sagging).  Does the 
earlier design (solution to Problem 8.1) need any modification?  Detail the 
modification, if any. 

400

600

300beam
column

clear cover = 30 mm
 

Fig. 8.12  Problem 8.1 

8.2 In a reinforced concrete tension member, a 16 mm φ bar has to be lap spliced 
with a 20 mm φ bar.  Assuming M 20 concrete and Fe 415 steel, design a 
suitable lap splice. 

8.3 The plan of a column (with 4–25φ bars plus 4–20φ bars) at a certain level in a 
multi-storeyed building is shown in Fig. 8.13.  It is desired to reduce the 
longitudinal bar sizes from 25 mm to 20 mm, and from 20 mm to 16 mm, 
above the next floor level.  Design and detail suitable lap splices.  Assume 
M 25 concrete and Fe 415 steel. 
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600

450

4–25 φ (at corners)

4–20 φ (at middle
of each face)

8 φ TIES @ 300 c/c
(staggered)

(clear cover
= 40 mm)

 

Fig. 8.13  Problem 8.4 

REFERENCES 

8.1 ACI Committee 408, Bond Stress — The State of the Art, Journal ACI, 
Vol.63, Oct.1966, pp1161–1190. 

8.2 Orangun, C.O., Jirsa, J.O. and Breen, J.E., A Re-evaluation of Test Data on 
Development Length and Splices, Journal ACI, Vol.74, March 1977, pp114–
122.  

8.3 Kemp, E.L. and Wilhelm, W,J., Investigation of the Parameters Influencing 
Bond Cracking, Journal ACI, Vol.76, Jan.1979, pp 47–71. 

8.4 Jimenez, R., White, R.N. and Gergely, P., Bond and Dowel Capacities of 
Reinforced Concrete, Journal ACI, Vol. 76, Jan.1979, pp 73–92.  

8.5 — Handbook on Concrete Reinforcement and Detailing, Special Publication 
SP 34, Bureau of Indian Standards, New Delhi, 1987. 

8.6 — Recommendations for Welding Cold Worked Bars for Reinforced Concrete 
Construction (first revision), IS 9417 : 1989, Bureau of Indian Standards, 
New Delhi, 1989.  

 

 



          9 
 Analysis for Design Moments 
       in Continuous Systems 

 

9.1   INTRODUCTION 

The behaviour and design of flexural members subjected to given bending moments 
were covered in Chapters 4 and 5.  In the design procedure, it was assumed implicitly 
that the distribution of bending moments along the length of the beam is known from 
structural analysis (as stated in Section 4.1.2).  It is not within the scope of this book 
to describe detailed and exact methods of analysis of indeterminate structures.  
However, there are many approximations, assumptions and simplified procedures 
permitted by codes, which assist in the analysis of indeterminate structures and these 
are discussed here.  In particular, this chapter deals with the following aspects: 

• gravity load patterns for maximum moments; 
• simplified (approximate) methods of analysis; 
• proportioning of member sizes for preliminary design; 
• estimation of stiffnesses of frame elements; 
• adjustments in calculated moments at beam-column junctions; and 
• inelastic analysis and moment redistribution. 

9.1.1   Approximations in Structural Analysis 

In a typical reinforced concrete building [refer Section 1.6], the structural system is 
quite complex.  The structure is three-dimensional, comprising floor slabs, beams, 
columns and footings, which are monolithically connected and act integrally to resist 
gravity loads (dead loads, live loads) and lateral loads (wind loads, seismic loads).  
The nature of the load transfer mechanisms [Fig. 1.8] and the various load 
combinations (as well as the associated load factors) have already been discussed in 
Sections 1.6 and 3.6 respectively. 
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Gravity Load Patterns 

From the viewpoint of designing for the limit state in flexure, what is essentially 
required is the distribution of the maximum (‘positive’ as well as ‘negative’) bending 
moments (moment envelope) under the ‘worst’ combination of factored loads.  This 
is a problem of structural analysis, and for this purpose, the Code (Cl. 22.1) 
recommends that all structures may be analysed by the linear elastic theory to 
calculate internal actions produced by design loads.  In order to simplify the 
analysis, the effects of gravity loads and lateral loads may be considered separately 
and their results superimposed†, after applying appropriate weighting factors (load 
factors), to give the design factored moments (as well as shear forces, axial forces 
and twisting moments).  In the case of live loads, special loading patterns have to be 
considered so that the loads are so placed as to produce the worst effects at the design 
section considered.  These loading patterns, as well as the related Code 
simplifications, are discussed in Section 9.2. 

Simplified Methods of Frame Analysis 

In order to simplify the analysis, the three-dimensional framed structure is generally 
divided into a series of independent parallel plane frames along the column lines in 
the longitudinal and transverse directions of the building, as shown in Fig. 9.1.  To 
analyse the gravity load effects, these plane frames may further be simplified into 
continuous beams or partial frames.  The Code also permits the use of certain 
moment and shear coefficients for continuous beams, which directly give the design 
moments and shear forces.  Simplified methods are also suggested in the Code for 
analysing plane frames subjected to gravity loads as well as lateral‡ loads.  These 
methods are described in Section 9.3. 

Unless the structure is very unsymmetrical or very tall or of major importance, the 
simplified methods of analysis are usually adequate.  In such cases, rigorous analyses 
can be avoided.  From a practical design viewpoint, it should be appreciated that 
when considerable uncertainties exist with regard to the loads and material properties 
(inputs of structural analysis), the very concept of an nth order accuracy in the 
computation of design moments is questionable.  A good designer is, therefore, one 
who makes sensible decisions regarding the modelling and analysis of the structural 
system, depending on its behaviour and complexity.  With the increasing availability 
of digital computers as well as software packages (finite element method based), the 
modern trend is to let the computer do all the analyses as a ‘black box’, with as much 
rigour as is available with the software.  However, the results of such analyses are 
highly dependent on the input data fed into the computer, and errors in the input — 
conceptual or numerical — may lead to disastrous results.  The approximate (manual) 
                                                           
† The principle of superposition is strictly applicable only in a ‘first order’ analysis, where the 
structure is assumed to behave in a linear elastic manner.  In cases where deflections are 
significant, a ‘second order’ analysis (involving the so-called  P–Δ effect) may be called for; in 
such cases, superposition is not valid. 
‡ Wind load or earthquake loads are dynamic loads, which require dynamic analysis.  
However, the Code permits the use of conventional static analysis in most cases, wherein the 
loads are treated as equivalent static loads. 
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methods of analyses prove to be highly useful in this context, as they provide a rough 
check on the detailed analyses.  Moreover, these approximate methods are useful in 
proportioning members in the preliminary design stage; this is discussed in 
Section 9.4. 
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Fig. 9.1  Building frame idealised as a series of independent plane frames 

Stiffness of Frame Elements 

The sizes of the various members must be known prior to structural analysis, not only 
to enable the calculation of dead loads, but also to fix the relative stiffnesses of the 
various members of the indeterminate structure.  As mentioned earlier, cracking is 
unavoidable in reinforced concrete structures, and the presence of cracks complicates 
the determination of the stiffness (flexural, torsional or axial) of a reinforced concrete 
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member.  Accordingly, certain simplified assumptions are called for in the estimation 
of stiffnesses — even for the ‘rigorous’ methods of analysis; these are discussed in 
Section 9.5. 

Furthermore, there are approximations involved in specifying the stiffnesses at the 
beam-column junctions of frames [Fig. 9.6].  The errors arising from such 
approximations, and the consequent adjustments required in the design moments at 
the beam-column junctions are discussed in Section 9.6. 

9.1.2   Factored Moments from Elastic Analysis and Moment  
Redistribution 

As mentioned earlier, the maximum load effects (moments, shear forces, etc.) are 
generally determined (vide Cl. 22.1 of the Code) on the basis of elastic analyses of 
the structure under service loads (characteristic loads).  The factored moments 
(design moments) are then obtained by multiplying the service load moments by the 
specified load factors, and combining the results of different load combinations.  
This is equivalent to considering elastic moment distributions under the factored 
loads. 

There is an apparent inconsistency in determining the design moments based on 
an elastic analysis, while doing the design based on a limit state design procedure.  
The structural analysis is based on linear elastic theory, whereas the structural 
design is based on inelastic section behaviour.  It should be noted, however, that 
there is no real inconsistency if the moment-curvature (M-ϕ ) relationship remains 
linear even under ultimate loads.  As explained earlier in Section 4.5.3, the moment-
curvature relationship is practically linear up to the point of yielding of the tension 
steel in under-reinforced sections†.  If under the factored loads, no significant 
yielding takes place at any section in the structure, the bending moment distribution 
at the ultimate limit state will indeed be the same as that obtained from a linear elastic 
analysis under factored loads.  In other words, the structure continues to behave 
more-or-less in a linear elastic manner even under the factored loads, provided no 
significant yielding of the reinforcing steel takes place.  As the design moments at 
various critical sections, determined by superimposing different combined factored 
load effects, are greater than (or at best equal to) the bending moments due to any 
one loading pattern, most sections (excepting a few) would not have reached their 
ultimate moment capacities and will be well within the linear phase. 

Also, as explained earlier, the main advantage underlying under-reinforced 
sections is that they exhibit ductile behaviour, due to the ability of the sections to 
undergo large curvatures at nearly constant moment after the yielding of steel 
[Fig. 4.8(a)].  This ductile behaviour enables the structure to enter into an inelastic 
phase, wherein the sections which have reached their ultimate moment capacities 
undergo rotations (under constant moment).  This causes additional load effects to be 

                                                           
† Actually, the linear M–ϕ  relationship is valid only up to the point of yielding of the tension 
steel in under-reinforced sections [Fig. 4.8(a)].  However, the moment of resistance at this 
point is practically equal to MuR, which is finally attained only after a significant increase in 
curvature. 



ANALYSIS  FOR  DESIGN  MOMENTS  IN  CONTINUOUS  SYSTEMS 321 

borne by less stressed sections — a phenomenon which is described as redistribution 
of moments (or, in general, stresses).  This capacity for moment redistribution can be 
advantageously made use of in many cases, resulting in designing for ultimate 
moments that are less than the peak factored moments obtained from elastic analysis.  
The Code (Cl. 37.1.1) permits a limited redistribution of moments, provided adequate 
ductility is ensured at the critical sections.  This is discussed in the concluding 
section (Section 9.7) of this chapter. 

9.2   GRAVITY LOAD PATTERNS FOR MAXIMUM DESIGN MOMENTS 

Gravity loads comprise dead loads and live loads — to be estimated in accordance 
with Parts 1 and 2 respectively of IS 875 : 1987 [also refer Appendix B].  Whereas 
dead loads, by their inherent nature, act at all times, live loads occur randomly — 
both temporally and spatially.  In order to determine the maximum (‘positive’ as well 
as ‘negative’) moments that can occur at any section in a continuous beam or frame, 
it is first necessary to identify the spans to be loaded with live loads so as to create 
the ‘worst’ (most extreme) effects. 
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Fig. 9.2  Influence lines and gravity load patterns for a continuous beam 
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This can be conveniently done by sketching, qualitatively, the shape of the 
influence line for the bending moment at the section under consideration, using the 
Müller-Breslau Principle [Ref. 9.1].  A fictitious hinge is first inserted at the section 
under consideration, and a rotation introduced therein in a direction corresponding to 
the moment desired.  The resulting deflected shape, corresponding to a unit value of 
the imposed rotation, gives the desired influence line.  The influence lines for the 
bending moments at two sections (one in the midspan region and another near the 
support) in a continuous beam, and at two similar sections in a plane frame, are 
shown in Fig. 9.2 and Fig. 9.3 respectively. 
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Fig. 9.3  Influence lines and gravity load patterns for a plane frame 

9.2.1   Design Moments in Beams 

Based on the shapes of the influence lines in Figs 9.2 and 9.3, the following 
conclusions may be drawn regarding the positioning of live loads for obtaining the 
critical design moments in continuous beams and plane frames: 
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(1) The maximum ‘positive’ moment in a span occurs when live loads are placed 
on that span and every other alternate span [Fig. 9.2b(ii)]; in the case of a 
plane frame, this arrangement corresponds to a ‘checkerboard’ pattern 
[Fig. 9.3(a)]. 

(2) The minimum ‘positive’ moment in a span (which may turn out to be a 
maximum ‘negative’ moment in some cases†) occurs when it is not loaded 
with live loads, and when live loads are placed on adjoining spans, as well as 
alternate spans further away [Fig. 9.2b(iii)]. 

(3) The maximum ‘negative’ moment at a support section [marked ‘C’ in 
Fig. 9.2(c) and Fig. 9.3(b)] occurs when live loads are placed on the span 
(BC) in which the support section is located as well as the adjoining span CD, 
and also on every alternate span thereafter, as shown.  [Note that in 
Fig. 9.3(b), the influence line is partially positive in the beams above and 
below beam BC, and strictly, live loads should not be placed on the small 
‘positive’ portions in these spans.  However, this is ignored generally and the 
full live load is placed on these spans, as the error involved is small.] 

(4) The influence of loads on spans far removed from the sections under 
consideration is relatively small.  (This forms the basis of the substitute frame 
method, to be discussed in Section 9.3). 

Code Recommendations 

The Code recommendations for ‘arrangement of imposed load’ (Cl. 22.4.1) in 
continuous beams (and one-way slabs) and frames are in conformity with the 
conclusions (1) – (3) cited above.  It may be noted, however, that with respect to the 
live load pattern required to estimate the maximum moment at a support section, the 
Code does not call for live loads to be placed on alternate spans [refer span EF in 
Fig. 9.2(c)] in addition to the placement on the two spans adjacent to an interior 
support [this is justified by conclusion (4) above]. 

Furthermore, in the case of frames in which the design live load does not exceed 
three-fourths of the design dead load, the Code (Cl. 22.4.1b) permits the designer to 
ignore altogether the problem of analysing different live load patterns.  In such cases, 
it suffices to perform a single frame analysis for gravity loading — with full design 
dead load plus live load on all the spans.  It may be noted that this major concession 
is permitted only for frames, and not for continuous beam and one-way slabs.  Also, 
it should be noted that redistribution of moments (refer Section 9.8) cannot be 
applied in this case [Ref. 9.2]. 

9.2.2   Design Moments in Columns 

Bending moments in columns, unlike beams, need to be studied in association with 
co-existing axial compressive forces.  The interaction between axial compressive 
strength and flexural strength of a given column section is such that its ultimate 
moment resisting capacity MuR is nonlinearly dependent on the factored axial load Pu 

                                                           
† For example, in a lightly loaded short span, flanked on either side by heavily loaded long 
spans. 
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[refer Chapter 13].  Strictly, this calls for an investigation of all gravity load patterns 
that result in all possible combinations of Pu and Mu.  Strictly, the combinations 
should include Pu, Mux and Muy — considering the biaxial bending moments that 
occur simultaneously from the longitudinal and transverse frames connected to the 
same column [Fig. 9.1]. 

However, it is generally accepted [Ref. 9.3] that considerations may be limited to 
gravity load patterns that result in (a) maximum eccentricity e = Mu /Pu and 
(b) maximum Pu.  The former is generally obtainable from the checkerboard patterns 
of loading (which are, at any rate, required to determine the maximum span moments 
in beams).  The latter is obtained by loading all the panels on all the floors above the 
storey under consideration.  It may be noted here that the Loading Code 
[IS 875 : 1987 (Part 2)] permits some reduction in live load values to account for the 
low probability of simultaneous occurrence of full live loads on all the floor slab 
areas in all the floors above.  Incidentally, the live load arrangement on the floor 
below have some influence on the bending moment to be considered in combination 
with the maximum Pu.  For this purpose, it is recommended [Ref. 9.3] that it is 
sufficient to consider live loads on a single span (the one that is longer and more 
heavily loaded) adjoining the lower end of the column member under consideration. 

9.3   SIMPLIFIED (APPROXIMATE) METHODS OF ANALYSIS 

9.3.1   Moment Coefficients for Continuous Beams Under Gravity Loads 

The use of moment coefficients (in lieu of rigorous analyses of various gravity load 
patterns) was introduced in Section 5.6.1, with reference to continuous one-way 
slabs.  These ‘moment coefficients’ as well as related ‘shear coefficients’ (Cl. 22.5.1 
of the Code) are listed in Table 9.1.  The use of the moment coefficients has already 
been demonstrated in Example 5.3. 

It may be noted that the use of the ‘moment coefficients, as well as the related 
‘shear coefficients’, for continuous beams and one-way slabs is subject to the 
following conditions (Cl. 22.5.1 of the Code):  

• the continuous spans should be at least three in number; 
• the supports should be fairly rigid and should not themselves deflect; 
• all the spans should have the same cross-sections;  
• the effective length of each span should be more-or-less the same, and at any 

rate should not differ by more than 15 percent of the largest effective span; 
• the loading on all spans should be ‘substantially uniformly distributed’; and 
• no redistribution of moments is permitted. 

9.3.2   Substitute Frame Method of Frame Analysis for Gravity Loads 

As explained earlier, the skeleton of a typical framed building is a three-dimensional 
‘rigid frame’, which may be resolved, for the purpose of analysis, into a series of 
independent parallel ‘plane frames’ along the column lines in the longitudinal and 
transverse directions of the building.  Each of these plane frames [Fig. 9.4(a)] in turn, 
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has to be analysed separately for a number of gravity load patterns as well as lateral 
loads. 

Table 9.1  Factored moments and shears in continuous beams using Code 
coefficients (Cl. 22.5 of the Code) 

(a) ‘POSITIVE’ MOMENTS: 
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(b) ‘NEGATIVE’ MOMENTS: 

1. End support (if partially 
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(c) SHEAR FORCES: 

1. End support 

• unrestrained 
  

• partially restrained 

2. First interior support 

• exterior face 
  

• interior face 
  

3. Other interior supports 

This is essentially a problem of structural analysis of indeterminate structures, and 
various techniques are available for this purpose [Ref. 9.4, 9.5].  For the detailed 
analysis of large frames, with high indeterminacy, computer-based matrix methods 
are ideally suitable [Ref. 9.5].  A large number of established ‘finite element method’ 
based software packages (such as ANSYS, NASTRAN, NISA, SAP) are available in 
the market and are increasingly being used by designers worldwide.  However, the 
good old manual methods such as the Moment Distribution Method are still in vogue, 
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and are ideally suited for analysing small non-sway frames under gravity loading.  
Convenient tabular arrangements for performing moment distribution (up to four 
cycles) are given in Ref. 9.6 and 9.7.   
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Fig. 9.4  ‘Substitute frames’ for gravity load analysis 

In the cases of frames that are substantially unsymmetrical or unsymmetrically 
loaded, and are otherwise not braced against sway, the effects of sway also have to be 
considered.  For such analyses, the use of the Moment Distribution Method can be 
cumbersome, as it requires more than one distribution table to be constructed (and 
later combined); Kani’s Method is better suited for such analyses, as it manages with 
a single distribution table. 

In cases where the effects of sway are negligible, it is found that the problem of 
frame analysis can be considerably simplified by resolving the frame into partial 
frames (‘substitute frames’), as indicated in Fig. 9.4 [Ref. 9.2].  This simplification is 
justified on the grounds that the bending moment or shear force at a particular section 
(of a beam or column) is not influenced significantly by gravity loads on spans far 
removed from the section under consideration [refer conclusion (4) in Section 9.2.1].  
Accordingly, an entire floor, comprising the beams and columns (above and below) 
may be isolated, with the far ends of the columns above and below considered ‘fixed’ 
[Fig. 9.4(b)].  This frame can be conveniently analysed for various gravity load 
patterns by the moment distribution method; two cycles of moment distribution are 
generally adequate [Ref. 9.8, 9.2].  This method of ‘substitute frame analysis’ is 
permitted by the Code (Cl. 22.4.2).  If there are a large number of bays in the 
substitute frame, then a further simplification is possible by truncating the beams 
appropriately, and treating the truncated end as ‘fixed’ [Fig. 9.4(c)].  In determining 
the support moment, the beam member may be assumed as fixed at any support two 
panels distant, provided the beam continues beyond that point.  In analysing for 
maximum and minimum ‘positive’ moments in spans, the far ends of adjacent spans 
may similarly be considered as fixed. 

9.3.3   Simplified Methods for Lateral Load Analysis 

Multi-storeyed buildings have to be designed to resist the effects of lateral loads due 
to wind or earthquake, in combination with gravity loads.  The lateral load transfer 
mechanism of a framed building has been explained briefly in Chapter 1 (refer 
Fig. 1.8).  It is seen that the lateral loads are effectively resisted by the various plane 
frames aligned in the direction of the loads.  The wind loads and seismic loads are to 
be estimated in accordance with IS 875:1987 (Part 3) and IS 1893:2002 respectively.  
They are assumed to act at the floor levels and are appropriately distributed among 
the various resisting frames (in proportion to the relative translational stiffness†).  
Although these loads are essentially dynamic in nature, the loading Codes prescribe 

                                                           
† A measure of the translational stiffness of a plane frame in a multi-storey building is 
approximately given by E(ΣIc)/ h where ΣIc denotes the sum of moments of inertia of the 
columns (with appropriate axis of bending) that form part of the frame.  However, the presence 
of an infill masonry wall can substantially increase the stiffness (up to two times or more), and 
this should also be accounted for.  Also, if the lowermost storey of the building is free of infill 
walls (on account of ground floor parking), the adverse effects of reduction in mass and 
stiffness in this critical storey should be specially accounted for in seismic-resistant design, as 
advocated in IS 1893 (2002). 
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equivalent static loads to facilitate static analysis in lieu of the more rigorous 
dynamic analysis [Ref. 9.9].  However, if the building is very tall and/or 
unsymmetrically proportioned, rigorous dynamic analysis is called for.  Otherwise, in 
most ordinary situations, simplified static analysis is permitted by the Code 
(Cl. 22.4.3).  In fact, the Explanatory Handbook to the Code [Ref. 9.2] states: 

“Considerable uncertainty prevails regarding the magnitude as well as the 
distribution of wind and earthquake forces.  Therefore, it will be sufficient, in 
most cases, to use an approximate method which gives an accuracy which 
is greater than that of the load data and other assumptions”. 

The simple methods of lateral load analysis in vogue are the Portal Method and 
the Cantilever Method [Ref. 9.10], wherein the static indeterminacy in the frame is 
eliminated by making reasonable assumptions.  The Portal Method, in particular, is 
very simple and easy to apply.  It is based on the following assumptions: 

• The inflection points of all columns and beams are located at their respective 
middle points. 

• For any given storey, the ‘storey shear’ (which is equal and opposite to the sum 
of all lateral loads acting above the storey) is apportioned among the various 
columns in such a way that each interior column carries twice the shear that is 
carried by each exterior column. 

The limitation of the Portal Method (as well as the Cantilever Method) is that it 
does not account for the relative stiffnesses of the various beams and columns.  An 
improved method of analysis, which takes into account these relative stiffnesses (in 
locating the points of inflection and apportioning the storey shear to the various 
columns) is the so-called Factor Method, developed by Wilbur [Ref. 9.10].  This 
method works out to be fairly accurate, although it requires more computational 
effort. 

9.4   PROPORTIONING OF MEMBER SIZES FOR PRELIMINARY DESIGN 

As mentioned earlier, it is necessary to estimate the cross-sectional dimensions of 
beams and columns prior to frame analysis and subsequent design — in order to 

• assess the dead loads due to self-weight; 
• determine the various member stiffnesses for analysis. 

This requires a preliminary design, whereby the design values of bending 
moments, shear forces and axial forces in the various members may be approximately 
computed. 

Gravity Load Effects 

The apportioning of gravity loads to the various secondary/primary beams and 
columns may be done by considering the tributary areas shown in Fig. 9.5.  These 
areas are based on the assumption that the (uniformly distributed) gravity loads in 
any panel are divided among the supporting beams by lines midway between the 
lines of support, the load in each area is transferred to the adjacent support.  In the 
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general case of a ‘two-way’ rectangular slab panel, this implies a triangular shaped 
tributary area on each of the two short span beams and a trapezoidal area on each of 
the two long span beams, as shown in Figs 9.5 (a), (b) [refer Cl. 24.5 of the Code]†.  
When the slab is ‘one-way’, the trapezoidal tributary area on each long span beam 
may be approximated (conservatively) as a simple rectangle, as indicated. 

(b)  twoway slabs with primary beams

ONE-WAY SLABTWO-WAY SLAB

(a) slabs

(c)  slabs with primary and secondary beams

PRIMARY BEAMS
slab loads on primary beam

 (along  AA)

slab loads on secondary beam
 (along  BB)

slab loads on secondary beam
 (along  CC)

SECONDARY BEAM

one-way slabtwo-way slab

A A

B

B C

C

(d)  column tributary areas

load from secondary beams

support from
primary beams

 
Fig. 9.5  Tributary areas for beams and columns 

                                                           
† The lines forming the two sides of the triangle may be assumed to be at 45o to the base. 
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When the floor system is made up of a combination of primary beams and 
secondary‡ beams, the tributary areas may be formed in a similar fashion 
[Figs. 9.5(c), (d)].  One-way slabs are assumed to transfer the loads only on to the 
longer supporting sides [Fig. 9.5(d)].  The loads from the ‘secondary beams’ are 
transferred as concentrated loads to the supporting ‘primary beams’ [Fig. 9.5(c)].  
However, for preliminary calculations, a uniformly distributed load may be assumed 
on each primary beam, with the tributary areas appropriately taken. 

The axial loads on the columns at each floor level are obtained from the tributary 
areas of the primary beams, the load on each primary beam being shared equally by 
the two supporting columns.  The tributary areas for the columns are indicated in 
Fig. 9.5(d).  In addition to the gravity loads transferred from the floor slabs, loads 
from masonry walls (wherever applicable) as well as self-weight of the 
beams/columns should be considered. 

For a preliminary design, the influence of different possible live load patterns may 
be ignored, and all panels may be assumed to be fully loaded with dead loads plus 
live loads.  Substitute frame analysis may be done to determine the bending moments 
and shear forces in the primary beams and columns; the secondary beams may be 
analysed as continuous beams using moment coefficients (except when they are 
discontinuous at both ends).  A crude estimate of the maximum design moment in a 
beam may be taken as ±  W lu 10 , where Wu is the total factored load on the beam 
and  its span; similarly the design shear force may be approximately taken as  Wl u / 

2. 
Sizes of interior columns are primarily determined by the axial loads coming from 

the tributary areas of all the floors above the floor under consideration.  However, 
exterior columns are subjected to significant bending moments (on account of 
unbalanced beam end moments) in addition to axial forces.  Accordingly, these 
columns must be designed for the combined effect of axial compression and bending 
moment; this can be conveniently done using appropriate interaction curves (design 
aids), as explained in Chapter 13. 

Finally, it should be noted that if the frames are unsymmetrical, the additional 
moments induced by sway should also be accounted for. 

Lateral Load Effects 

In the case of tall buildings, the effects of wind or earthquake moments are likely to 
influence the design bending moments in primary beams and column, especially in 
the lower floors.  These load effects may, for the purpose of preliminary design, be 
determined approximately using the Portal Method described in Section 9.3.3.  The 
design (factored) moments are obtained by combining the effects of gravity loads 
with lateral loads, using the specified partial load factors.  Earthquake-resistant 
design calls for special design and detailing, as discussed in detail in Chapter 16.  

                                                           
‡ ‘Primary’ beams (or girders) are those which frame into the columns, whereas ‘secondary’ 
beams are those which are supported by the primary beams — as explained in Section 1.6.1 
[refer Fig. 1.10].  In the load transfer scheme shown in Fig. 9.5(c), it is assumed that the 
primary beams offer ‘rigid’ supports to the secondary beams. 
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9.5   ESTIMATION OF STIFFNESSES OF FRAME ELEMENTS 

A typical building frame — even a ‘substitute frame’ — is a statically indeterminate 
structure.  To enable its analysis, whether by approximate methods or rigorous 
methods, it is necessary to know the stiffnesses (flexural, torsional, axial) of the 
various members that constitute the frame.  Frequently, it is only the flexural stiffness 
that needs to be known.  Axial stiffness is generally high, resulting in negligible axial 
deformations.  Furthermore, as explained in Chapter 7, the torsional stiffness of a 
reinforced concrete member is drastically reduced following torsional cracking and 
hence can be ignored altogether.  Recommendations for computing torsional 
stiffness, wherever required, are given in Section 7.2.3. 

The ‘flexural stiffness’ of a beam element (with the far end ‘fixed’) is given by 
4EI l , where EI is the ‘flexural rigidity’, obtained as a product of the modulus of 
elasticity E and the second moment of area I, and  is the length of the member.  As 
the analysis is generally a ‘linear static’ analysis, the appropriate value of E is given 
by the static modulus of elasticity E

l

c, defined in Section 2.8.3.  The problem lies with 
specifying the value of I, which must ideally reflect the degree of cracking, the 
amount of reinforcement and the participation of flanges (in beam-slab members). 

The Code (Cl. 22.3.1) permits the calculation of flexural stiffness based on the 
‘gross’ concrete section, the ‘uncracked-transformed’ section or the ‘cracked-
transformed’ section [refer Chapter 4]; however, the same basis is to be applied to all 
the elements of the frame to be analysed.  This is reasonable, because what really 
matters is the relative stiffness, and not the absolute stiffness.  The most common 
(and simplest) procedure is to consider the ‘gross’ section (i.e., ignoring both the 
amount of reinforcement and the degree of cracking) for calculating the second 
moment of area.  An alternative procedure, which better reflects the higher degree of 
flexural cracking in beams relative to columns, is to use Igross for columns and 0.5 
Igross for beam stems [Ref. 9.11]. 

In slab-beam systems, the presence of the flange enhances the stiffness of the 
beam.  However, the flanged beam action (with effective width bf as described in 
Section 4.6.4) is not fully effective when the flanges are subjected to flexural tension, 
as in the regions of ‘negative’ moment.  Some designers ignore the contribution of 
the flanges altogether (mainly for convenience) and treat the beam section as being 
rectangular.  An improved procedure, suggested in Ref. 9.8, is to use twice the 
moment of inertia of the gross web section ( I b Dw= ×2 3 12

w

).  This corresponds to 
an effective flange width b bf ≈ 6  with D Df ≈ 0.2 to 0.4.  The use of such a 
procedure eliminates the explicit consideration of the flanges; it gives reasonable 
results and is simple to apply, and hence is recommended by the authors of this book. 

9.6   ADJUSTMENT OF DESIGN MOMENTS AT BEAM-COLUMN 
JUNCTIONS 

In frame analysis, centreline dimensions of beams and columns are generally used to 
define the geometry of the frame ‘line diagram’ [Fig. 9.6(a)] (refer Cl. 22.2c of the 
Code).  In the analysis, it is tacitly assumed that the specified flexural stiffness of any 
member (beam or column) is valid even at the ends of the member [i.e., right up to 
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the point of intersection of the centre lines, including the zone where the column and 
beam merge, as shown in Fig. 9.6(b)].  It is also assumed tacitly that the restraint 
offered by the column against vertical deflection of the beam is limited to a single 
point, corresponding to the centre of the beam-column junction.  This results in beam 
deflections at points located between the centreline and the face of the column [see 
point ‘B’ in Fig. 9.6(c)] — which is obviously not possible in reality. 
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Fig. 9.6  Assumptions implicit in frame analysis at beam-column junctions 
 

The neglect of the increased stiffness and restraint of the beam within the column 
width results in a slight under-estimation of the ‘negative’ moment at the beam end 
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and a corresponding over-estimation of the ‘positive’ moment in the span, under 
gravity loads.  It has been shown that, in the interest of greater accuracy, the beam 
bending moment diagram (from frame analysis) may be adjusted† [Fig. 9.6(d)] by an 
upward shift by Vb/6, where V is the shear force at the column centreline and b the 
width of the column support [Ref. 9.8].  This results in an adjusted ‘negative’ 
moment at the face of the column support, equal to Mc – Vb/3, where Mc is the 
theoretically computed moment at the column centreline.  The slight reduction (equal 
to Vb/6) in the design ‘positive’ moment at midspan may be ignored; this is 
conservative and satisfactory. 

The Code (Cl. 22.6.1) permits flexural members (in monolithic construction) to be 
designed for moments computed at the faces of the supports, as the effective depth 
(and hence, flexural resistance) of the flexural member (beam or column) is greatly 
enhanced in the region where the beam merges with the column.  In the case of 
beams, this often results in a much lower moment than the computed ‘negative’ 
moment at the support centreline, owing to the steep variation in the bending moment 
diagram of the support region [Fig. 9.6(d)].  However, in the case of columns, the 
moment gradient is not so significant, and so there is little to gain in taking the 
moment at the beam face, rather than at the beam centreline [Fig. 9.7].   

 
Fig. 9.7  Column moments from frame analysis 

Also, the adjustment in the bending moment diagram due to the increased stiffness 
of column at the beam-column junction is generally negligible.  Hence, the column 
                                                           
† This is based on the assumption that the stiffness of the beam is infinite within the column 
width b, where it is monolithic with the column. 
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moment for design may be taken as that obtained from frame analysis at the beam 
centreline. 

It may be noted that, in practice, most designers do not bother to consider the 
adjustment in the bending moment diagram, indicated in Fig. 9.6(d); the design 
moment at the face of the column supports is simply taken as (Mc – Vb/2), rather than 
as (Mc – Vb/3).  This is also justifiable, if consideration is given to the possibility of 
redistribution of moments, as explained in Section 9.7. 

9.7   INELASTIC ANALYSIS AND MOMENT REDISTRIBUTION 

9.7.1   Limit Analysis 

Reinforced concrete structures are generally analysed by the conventional elastic 
theory (refer Cl. 22.1 of the Code).  In flexural members, this is tantamount to 
assuming a linear moment-curvature relationship, even under factored loads.  For 
under-reinforced sections, this assumption is approximately true [refer Fig. 4.8(a)], 
provided the reinforcing steel has not yielded at any section.  Once yielding takes 
place (at any section), the behaviour of a statically indeterminate structure enters an 
inelastic phase, and linear elastic structural analysis is strictly no longer valid. 

For a proper determination of the distribution of bending moments for loading 
beyond the yielding stage at any section, inelastic analysis is called for.  This is 
generally referred to as limit analysis, when applied to reinforced concrete framed 
structures [Ref. 9.12–9.17], and ‘plastic analysis’ when applied to steel structures.  In 
the special case of reinforced concrete slabs, the inelastic analysis usually employed 
is the ‘yield line analysis’ due to Johansen [Ref. 9.18].  The assumption generally 
made in limit analysis is that the moment-curvature relation is an idealised bilinear 
elasto-plastic relation [Fig. 9.8].  This has validity only if the section is adequately 
under-reinforced and the reinforcing steel has a well-defined yield plateau.  The 
ultimate moment of resistance (MuR) of such sections, with specified area of steel, can 
be easily assessed, as described in Chapter 4. 

MuR

 Moment M
EI

1

Curvature ϕ

yielding
of steel

ϕ y ϕmax

 
Fig. 9.8  Idealised moment-curvature relation 

Plastic Hinge Formation 
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With the idealised M – ϕ  relation, the ultimate moment of resistance (MuR) is 
assumed to have been reached at a ‘critical’ section in a flexural member with the 
yielding of the tension steel [Fig. 9.8].  On further straining (increase in curvature: 
ϕ > ϕy), the moment at the section cannot increase.  However, the section ‘yields’, 
and the curvature continues to increase under a constant moment (M = MuR).  In 
general (with bending moment varying along the length of the member), the zone of 
‘yielding’ spreads over a small region in the immediate neighbourhood of the section 
under consideration, permitting continued rotation, as though a ‘hinge’ is present at 
the section, but one that continues to resist a fixed moment MuR.  A plastic hinge is 
said to have formed at the section.  If the structure is statically indeterminate, it is still 
stable after the formation of a plastic hinge, and for further loading, it behaves as a 
modified structure with a hinge at the plastic hinge location (and one less degree of 
indeterminacy).  It can continue to carry additional loading (with formation of 
additional plastic hinges) until the limit state of collapse is reached on account of one 
of the following reasons:  
• formation of sufficient number of plastic hinges, to convert the structure (or a 

part of it) into a ‘mechanism’; 
• limitation in ductile behaviour (i.e., curvature ϕ reaching the ultimate value 

ϕmax, or, in other words a plastic hinge reaching its ultimate rotation capacity) 
at any one plastic hinge location, resulting in local crushing of concrete at that 
section. 

Example of Limit Analysis 

A simple application of limit analysis is demonstrated here, with reference to a two-
span continuous beam subjected to an increasing uniformly distributed load w per 
unit length [Fig. 9.9(a)].  For convenience, it may be assumed that the beam has 
uniform flexural strength (MuR) at all sections [Fig. 9.9(b)].  The limit of the linear 
elastic behaviour of the structure is reached at a load w = w1, corresponding to which 
the maximum moment (occurring at the continuous support) becomes equal to MuR 
[Fig. 9.9(c)], i.e., 

M w l M luR uR= ⇒ =   w  1
2

1
2

8
8  

At this load, a plastic hinge will form at the continuous support [Fig. 9.9(d)].  
However, the maximum moment in the span is only 0.5624 MuR.  How much 
additional load the beam can take will now depend on the plastic rotation capacity of 
this ‘plastic hinge’.  For any additional loading, the beam behaves as a two-span 
beam with a hinge at support B (i.e., two simply supported spans) and the span 
moment alone increases [Fig. 9.9(d),(f)] while the support moment remains constant 
at MuR.  Assuming that the support section is sufficiently under-reinforced such that it 
will not break down prior to the formation of the next plastic hinge(s), this phase of 
behaviour will continue until the peak moment in the span reaches MuR 
[Fig. 9.9(e),(f)].  Analysis of the structure for this condition [Fig. 9.9(e)] indicates 
that this corresponds to a maximum span moment given by: 
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Fig. 9.9  Limit analysis of a two-span continuous beam 
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As the load w2 is reached, two additional plastic hinges† are formed in the two 
spans at the peak moment locations, and the structure is transformed into an unstable 
hinged mechanism which can deflect with no increase in load [Fig. 9.9(h)].  
Obviously, w2 is the ultimate (collapse) load of the structure, even allowing for 
inelastic behaviour. 

This indicates that the beam is capable of carrying additional loads up to 46 
percent beyond the limit of elastic behaviour, thanks to the ductile behaviour of the 
beam section at the continuous support. 

The bending moment distributions in the inelastic phase are indicated in 
Fig. 9.9(f).  It is seen in this example that, a ‘redistribution of moments’ takes place, 
with the support moment remaining constant at MuR while the span moments continue 
to increase until they too reach MuR.  The variation of support moment and maximum 
span moment with increasing loading is shown in Fig. 9.9(g).  The gain in moments 
is linear in the ‘elastic phase’ (w < w1), and corresponding to the formation of the 
first plastic hinge (at w = w1), there is a discontinuity in each of the two M–w curves. 

It may be noted that the so-called ‘limit analysis’ is essentially a superposition of a 
series of ‘elastic analyses’, the inelasticity being confined to the plastic hinge locations.  
The structure gets modified — with the introduction of successive plastic hinges, and 
each so-called ‘inelastic’ phase of the analysis is in fact ‘elastic’.  This is reflected in 
the piece-wise linear segments of the M–w relationship in Fig. 9.9(h). 

In deriving the expression for w2, allowing full moment redistribution on to the 
spans, it was assumed above that the plastic hinge at the support section will continue 
to yield (rotate) without breakdown.  If the rotation capacity‡ of the plastic hinge at B 
gets exhausted prior to the span moment reaching MuR, the ‘inelastic’ phase will get 
terminated at a stage w1 < w < w2.  If the plastic hinge possesses adequate ductility, 
then the maximum collapse load is reached at wu = w2, corresponding to the 
formation of a ‘mechanism’. 

9.7.2   Moment Redistribution 

As seen in the previous section, the distribution of bending moments in a continuous 
beam (or frame) gets modified significantly in the inelastic phase.  The term moment 
redistribution is generally used to refer to the transfer of moments to the less stressed 
sections as sections of peak moments yield on their ultimate capacity being reached 
(as witnessed in the example above).  From a design viewpoint, this behaviour can be 
taken advantage of by attempting to effect a redistributed bending moment diagram 
                                                           
† In this example, two plastic hinges will form simultaneously — one in each span, due to 
symmetry in the geometry as well as the loading. 
‡ For a detailed calculation of plastic rotations, the reader is advised to consult Ref. 9.15. 
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which achieves a reduction in the maximum moment levels (and a corresponding 
increase in the lower moments at other locations).   
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Fig. 9.10  Moment redistribution in a two-span continuous beam 

Such an adjustment in the moment diagram often leads to the design of a more 
economical structure with better balanced proportions, and less congestion of 
reinforcement at the critical sections. 

Considering the earlier example of the two-span continuous beam [Fig. 9.10(a)], 
as a design problem (rather than an analysis problem), it may be seen that the 
designer has several alternative factored moment diagrams to choose from, 
depending on the amount of redistribution to be considered.  If the design 
[Fig. 9.10(b)] is to be based on a purely elastic moment distribution (without 
considering any redistribution) then the bending moment diagram to be considered is 
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as shown in Fig. 9.10(c), and the corresponding design support moment  and 

span moment  are obtained as: 

MuR E( )
 −

MuR E( )
 +

M M wuR E E u( ) ( )
  − −= ≡

1
8

2l  

M M wuR E E u( ) ( )
  + += ≡

9
128

2l     =⎛
⎝⎜

⎞
⎠⎟

−9
16

M E( )
                      (9.1) 

where  and  denote the support and span moments in the elastic solution; 
the subscript (E) here represents elastic analysis

M E( )
 − M E( )

 +

†. 

Reduction in Peak ‘Negative’ Moments 

The relatively high support moment M(E)
– may call for a large section (if singly 

reinforced); alternatively, for a given limited cross-section, large amounts of 
reinforcement may be required.  Therefore, in such situations, it is desirable to reduce 
the design moment at the support to a value, say C1M(E)

– (where the factor C1 has a 
value less than unity), and to correspondingly increase the span (positive) moments 
which are otherwise relatively low.  The percentage reduction in the design support 
moment is given by: 

δM C= − ×( )1 1001                                           (9.2) 
Consequent to a reduction in the support moment from M(E)

– to C1 M(E)
–, there is 

an increase in the design (‘positive’) moment in the span region from M(E)
+ to C2 

M(E)
+, where the factor C2 obviously is greater than unity.  Accordingly, as indicated 

in Fig. 9.9(d), 

M C MuR L E( ) ( )
 − = 1

 −

 +

                                               (9.3a) 

M C MuR L E( ) ( )
 + = 2                                               (9.3b) 

where the subscript (L) represents limit analysis.  The factor C2 (indicating the 
increase in the elastic span moment M(E)

+) depends on the factor C1   The factor C1 is 
fixed (based on the percentage reduction desired), and the factor C2 has to be 
determined for design — by considering ‘limit analysis’ [Fig. 9.10(e)].  It can be 
shown easily, by applying static equilibrium, that: 
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Introducing Eq. 9.1 in Eq. 9.4, the following quadratic relationship between the 
constants C2 and C1 can be established: 

C C
2

1
264

9
1
2 8

= −⎛
⎝⎜

⎞
⎠⎟

                                          (9.5) 

                                                           
† In this example, it is tacitly assumed that the gravity loads indicated in Fig. 9.10 are entirely 
due to permanent dead loads, and that there are no live loads. 
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This relation is depicted graphically in Fig. 9.10(f).  It is seen that, for instance, a 
25 percent reduction in the elastic support moment (M(E)

–) results in a 17.3 percent 
increase in the span moment (M(E)

+) and a 50 percent reduction in M(E)
– results in a 

36.1 percent increase in M(E)
+.  However, it should be noted that a large amount of 

moment redistribution requires a correspondingly large amount of plastic rotation of 
the plastic hinge (at the support, in this example) — which is often not practically 
feasible.  If the desired ductility is not available, a premature failure is likely (due to 
crushing of the concrete in the compression zone at the plastic hinge forming region) 
at a load that is less than the factored load wu. 

For the desired moment redistribution to take place, the plastic hinges that 
develop must have the required rotation capacities to ‘hold on’ without 
inducing premature failure. 

Through proper design and detailing, it may be possible to muster the ductility 
required for significant amounts of moment redistribution.  However, excessive 
moment redistribution can be undesirable if it results in plastic hinge formation at 
low loads (less than the service loads), and the consequent crack-widths and 
deflections are likely to violate serviceability requirements.  Codes generally attempt 
to preclude such a situation by ensuring that plastic hinges are not allowed to form 
under normal service loads.  In general, codes allow only a limited amount of 
redistribution in reinforced concrete structures. 

Reduction in Peak ‘Positive’ Moments 

Moment redistribution† may also be advantageously applied to situations where 
‘positive’ moments are relatively high and need to be reduced — for greater 
economy and less congestion of reinforcement. 

For instance, with reference to the earlier example of the two-span continuous 
beam, if part of the total factored load wu is due to live load wu,LL, then the 
arrangement of loads for maximum span moment is as shown in Fig. 9.11(a). 

                                                           
† It may be noted that ‘redistribution’ merely refers to a transfer of load effects from heavily 
stressed locations to less heavily (or lightly) stressed locations, regardless of whether the peak 
moments are ‘positive’ or ‘negative’. 
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Fig. 9.11  Moment redistribution: reduction in peak positive moment 

  The maximum span moment from elastic analysis [Fig. 9.11(b)] can be 
redistributed by allowing the first plastic hinge to form in the span region.  The 
reduction in span moment is accompanied by a corresponding increase in the support 
moment [Fig. 9.11(c)] — to maintain equilibrium at the limit state.  Such a 
redistribution may be desirable if the elastic span moment is relatively high, as would 
be the case if the live load component in the loading is high. 

9.7.3   Code Recommendations for Moment Redistribution  

The Code (Cl. 37.1.1) permits the designer to select the envelope of redistributed 
factored moment diagrams for design, in lieu of the envelope of elastic factored 
moments, provided the following conditions are satisfied: 

1. Limit Equilibrium: The redistributed moments must be in a state of static 
equilibrium with the factored loads at the limit state. 

2. Serviceability: The ultimate moment of resistance (MuR) at any section should 
not be less than 70 percent of the factored moment (Mu,max) at that section, as 
obtained from the elastic moment envelope (considering all loading 
combinations).  In other words, the flexural strength at any section should not 
be less than that given by the elastic factored moment envelope, scaled by a 
factor of 0.7: 

( )M MuR u elastic
≥ 0 7. ,max      at all sections               (9.6) 

This restriction is aimed at ensuring that plastic hinge formation does not take 
place under normal service loads, and even if it does take place, the yielding of 
the steel will not be so significant as to result in excessive crack-widths and 
deflections.  It is mentioned in the Explanatory Handbook to the Code that the 
value of 70% is arrived at as the ratio of service loads to ultimate loads with 
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respect to load combinations involving a uniform load factor of 1.5, as 1/1.5 = 
0.67 ≅ 0.7. 

3. Low Demand for High Plastic Hinge Rotation Capacities: The reduction in 
the elastic factored moment (‘negative’ or ‘positive’) at any section due to a 
particular combination of factored loads should not exceed 30 percent of the 
absolute maximum factored moment (Mu,max), as obtained from the envelope of 
factored elastic moments (considering all loading combinations).  Although the 
basis for this clause in the Code (Cl. 37.1.1.c) is different from the previous 
clause, which is based on the idea of preventing the formation of plastic hinges 
at service loads, for the case of gravity loading, in effect, this clause is no 
different.  However, in the design of lateral load resisting frames (with number 
of storeys exceeding four), the Code (Cl. 37.1.1.e) imposes an additional over-
riding restriction.  The reduction in the elastic factored moment is restricted to 
10 percent of Mu,max.  Thus, 

( )
. ( )
. ( )

,max

,max
M M

M
Mu elastic uR

u elastic

u elastic
− ≤

⎧
⎨
⎩

  
 in general                                              
   for lateral load - resisting frames only

0 3
01

 

(9.7) 

This restriction is intended to ensure that the ductility requirements at the 
plastic hinge locations are not excessive. 

4. Adequate Plastic Hinge Rotation Capacity: The design of the critical section 
(plastic hinge location) should be such that it is sufficiently under-reinforced, 
with a low neutral axis depth factor (xu/d), satisfying: 

x
d

Mu   ≤ −0 6
100

.
δ

                                            (9.8) 

where δM  denotes the percentage reduction in the maximum factored elastic 
moment (Mu,max)elastic at the section: 

δM
M M

M
u elastic uR

u elastic
≡

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
×

( )
( )
,max

,max
100             (9.9) 

In practice, it is sometimes more convenient to express Eq. 9.8 alternatively as: 

δM x
d

u

100
0 6  ≤ −.                                             (9.10) 

For singly reinforced rectangular beam sections, the expression for x du  is 
given by Eq. 5.11, which is repeated here for convenience, with MuR = Mu,  

[ ]x
d

R fu
ck= − −1 202 1 1 4 597. .                                (9.11) 

Moment Redistribution in Beams 
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Low values of xu/d (and, thus large values of δΜ) are generally not possible in beams 
without resorting to very large sections, which may be uneconomical.  However, 
even with the extreme case of a balanced section (with xu = xu,max), it can be shown, 
by applying Eq. 9.10 and Eq. 4.50 (or Table 4.3), that 

⎪
⎩

⎪
⎨

⎧
<

500for   4.14
415for   1.12
250for    9.6

Fe
Fe
Fe

Mδ       with xu = xu,max          (9.12) 

Thus, it is seen that a limited moment distribution (for example, up to 12.1 percent 
in the case of Fe 415 steel) is possible, even with the limiting neutral axis depth 
permitted for design [refer Chapter 4]. 

Inelastic Analysis of Slabs 

As discussed earlier (in Chapter 5), the thicknesses of reinforced concrete slabs are 
generally governed by deflection control criteria, with the result that the sections are 
invariably under-reinforced, with low xu/d values.  Hence, significant inelastic action 
is possible in such cases. 

It may be noted, however, that, in the case of one way continuous slabs, (and 
continuous beams), no moment redistribution is permitted by the Code (Cl. 22.5.1) if 
the analysis is based on the use of the Code moment coefficients [Table 12 of the 
Code].  This is so, because such coefficients are only approximations, and minor 
errors are assumed to be accommodated through the inherent capacity for moment 
redistribution in the structure [Ref. 9.2]. 

In the case of two-way slab systems, which are statically indeterminate, detailed 
inelastic analysis (yield line analysis) is often resorted to [Fig. 9.12], and, in fact, the 
moment coefficients given in the Code (Table 26) for two-way rectangular slabs with 
various possible edge conditions are based on such analyses [refer Chapter 11]. 

‘Yield line analysis’ is the equivalent for a two-dimensional flexural member 
(plate or slab) of the limit analysis of a one-dimensional member (continuous beam), 
explained in Section 9.7.1.  It is based on the elastic-plastic M–ϕ relation [Fig. 9.8], 
according to which, as the moment at a section reaches MuR, a plastic hinge is 
formed, and therefore rotation takes place at constant moment. In slabs, peak 
moments occur along lines (such as ‘negative’ moments along support lines and 
‘positive’ moments along lines near the midspan), and hence the yielding (plastic 
hinge formation) occurs along lines (“yield lines”), and not at sections, as in beams.  
In a skeletal structure (continuous beam, grid, plane frame, space frame), the ultimate 
(collapse) load is reached when sufficient number of plastic hinges are formed to 
transform the structure into a mechanism.  In a similar way, the ultimate load is 
reached in plates when sufficient number of yield lines are formed to transform the 
slab into a series of plate segments† connected by ‘yield lines’, resulting in 
mechanism type behaviour.  

As in the case of limit analysis of beams and frames, it is assumed in ‘yield line 
analysis’ [Fig. 9.12] that the plastic hinges which form (along the ‘yield lines’) 
                                                           
† Such plate segment can freely rotate about the ‘yield line’, in much the same way as a door 
can rotate about a line hinge. 
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possess adequate plastic rotation capacities to ‘hold on’ till a complete set of yield 
lines are formed, leading to a mechanism type of collapse.  This is justifiable in view 
of the relatively low xu/d values in slabs in general.  Applications of yield line 
analysis are discussed further in Chapter 11.  For a more comprehensive study,  
reference may be made to Refs. 9.18–9.22. 

Moment Redistribution in Columns 

Reduction of moments on account of moment redistribution is generally not applied 
to columns, which are essentially compression members that are also subjected to 
bending (due to frame action).  In general, the neutral axis location‡ at the limit state 
is such that the Code requirements [Eq. 9.8] cannot be satisfied by a column section 
— unless the column is very lightly loaded axially and the eccentricity in loading is 
very large.  Furthermore, in the case of a typical beam-column joint in a reinforced 
concrete building, it is desirable that the formation of the plastic hinge occurs in the 
beam, rather than in the column, because the subsequent collapse is likely to be less 
catastrophic.  This is particularly necessary in earthquake-resistant design [refer 
Chapter 16]. 

                                                           
‡ When the loading on the column is not very eccentric, the neutral axis will lie outside the 
cross-section. 
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Fig. 9.12  Concept underlying yield line analysis of slabs 

It may be noted that when moment redistribution is applied to frames with the 
objective of reducing the peak moments in beams, this will also result in changes in 
the elastic factored moments in columns.  These changes in column moments may be 
ignored in design, if the redistribution results in a reduction in column moments 
(which is usually the case).  However, if the redistribution results in an increase in 
column moments, then the column section must necessarily be designed for the 
increased moments. 

Limit Analysis with Torsional Hinges 

The basis for the flexural plastic hinge formation, moment redistribution and Limit 
Analysis is the moment-curvature relation of under-reinforced beams, which can be 
idealised as a bilinear elastic-plastic relation [Fig. 9.8].  Interestingly, a beam with 
adequate torsional reinforcements has a similar bilinear elastic-plastic torque-twist 
relation [see Fig. 7.4(b)].  In such beams, the formation of a plastic hinge in torsion 
and subsequent redistribution of torque/moments can occur [Ref. 9.23].  Limit 
Analysis can also be extended to structures with members subjected to significant 
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torsion, such as transversely loaded grid structures (or bridges), where the collapse 
mechanisms may involve torsional hinges as well [Ref. 9.24].  Recognising this, 
some codes [Ref. 9.3] permit the limiting of the maximum design torque in spandrel 
beams to 0.67Tcr.  Here Tcr is the cracking torque of the spandrel beam, and 0.67Tcr 
represents a torque corresponding to a ‘plastic torsional hinge’ formation and 
consequent cracking and reduction in torsional stiffness. 

9.8   DESIGN EXAMPLES 

EXAMPLE  9.1 

Analyse a three-span continuous beam (with equal spans l ), subjected to a uniformly 
distributed load w per unit length, to determine the critical ‘positive’ moments M1 (in 
the end span) and M2 (in the interior span), as well as the ‘negative’ moment M3 at 
the continuous support [Fig. 9.13(a)].  Assume that the dead load (wD) and live load 
(wL) components of the total load (w) are equal.  Also assume all spans to have the 
same cross-section.  Compare the moment coefficients obtained by 

a) elastic analysis considering total load w on all spans† ; 
b) elastic analysis considering ‘pattern loading’; 
c) Code recommendations for moment coefficients. 

SOLUTION 

(a) Elastic analysis considering total load (w) on all spans 

By taking advantage of the symmetry in the structural geometry and loading, the 
analysis can be easily performed by considering a simple one-cycle moment 
distribution, as shown in Fig. 9.13(a).  The results indicate: 

span moments
wl
wl

    
M  
M  

1 = +
= +

⎧
⎨
⎩

0 0800
0 0250

2

2
2

.

.
 

2
3 1000.0 M    s wlmomentupport −=  

(b) Elastic analysis considering ‘pattern loading’ 

Here, too, the advantage of symmetry of the structure can be availed of for 
analysing the maximum span moments due to live loads appropriately arranged, as 
shown in Fig. 9.13(b) and (c).  The results of uniform dead loads on all spans is 
obtainable form Fig. 9.13(a), by considering wD in lieu of w.  By superimposing 
the effects of live load and dead load contributions separately, and considering 
wL = wD =0.5w, the final results (critical moments) may easily be obtained, as 
shown in Fig. 9.14(a),(b). 

M w1
20 0903= + . l

wl

                                                          

 

M2
20 0500= + .  and  – 0.0125 wl2  

 
† Note that such an analysis is included here only for the purpose of comparison; such analysis 
is not permitted by the Code for design purposes. 



348    REINFORCED  CONCRETE  DESIGN 

 

0.6  0.4 
+ 0.1250  – 0.0833 
– 0.0250  – 0.0167 

 

+ 0.1000  – 0.1000 
(× wl2) 

0.6  0.4 
+ 0.1250     0.0000 
+ 0.0750  – 0.0500 

 

+ 0.0500  – 0.0500 
(× wLl2) 

0.6  0.4 
   0.0000  – 0.0833 
+ 0.0500  + 0.0333 

 

+ 0.0500  – 0.0500 
(× wLl2) 

C 

A B C D A B

C 

l l l l l/2 

0.40l M3 = – 0.1000wl2 

M1 = + 0.0800wl2  M2 = + 0.0250wl2 M1

(a)  uniform load w on all spans

A B C D A B
0.45l 

(RA = 0.40wl ) 

wL wL wL

l l/2 

M1 = + 0.1013wLl2 

M2 = M3 = – 0.0500wLl2 

(b)  live loads wL on end spans
(RA = 0.45wl ) 

A B C D

wL wL

A Bl l/2 
M3 = – 0.0500 wLl2 

M2 = + 0.0750 wLl2 

(RA = – 0.05wl ) (c)  live load wL on middle span alone

w w

 
Fig. 9.13  Example 9.1 — analysis by moment distribution method 

The loading arrangement for maximum ‘negative’ moment M3 at the 
continuous support is shown in Fig. 9.14(c).  The corresponding moment 
distribution table is shown in Fig. 9.14(c), from which it follows that  

M w3
20 1082= − . l  

(c) Use of Code moment coefficients 
The results are easily obtainable from Table 9.1 of this chapter (Cl. 22.5): 
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Fig. 9.14  Example 9.1 — analysis considering wD = wL = 0.5w 

Comparison of results 

The results of moment coefficients obtained by the three methods are 
summarised in Table 9.2 as follows: 

Table 9.2  Example 9.1 — Moment coefficients by various methods 

Method Span moments Support moment 
 M1 M2 M3

(a) Total load on all spans + 0.0800 + 0.0250 – 0.1000 

(b) Pattern loading + 0.0903 
+ 0.0500 
– 0.0125 

– 0.1082 

(c) Code coefficients + 0.0917 + 0.0729 – 0.1056 
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Comments 

It is evident that the ‘exact’ analysis corresponds to case (b), viz. consideration of 
‘pattern loading’.  With reference to these results, for the particular problem 
analysed, it follows that: 

• the simplified consideration of total loading on all spans [case (a)] results in a 
50 percent under-estimation in the ‘positive’ midspan moment (M2) in the 
interior span; M1 and M3 are also under-estimated, but marginally; 

• the Code coefficient method over-estimates the midspan ‘positive’ moment M3 
in the interior span by as much as 45.8 percent and the moment M1 in the end 
span by 1.5 percent; 

• in general, the relatively crude method of considering total loads on all spans 
results in an unconservative design, whereas the use of Code moment 
coefficients results in a relatively conservative† design. 

EXAMPLE  9.2 

(a)  Based on the elastic factored moment envelope obtainable from Example 9.1, 
design the flexural reinforcement in the three-span continuous beam of Example 9.1, 
given the following data: 
w = 30 kN/m  (wD = 15 kN/m, wL = 15 kN/m);  l = 8.0 m 
Assume a partial load factor of 1.5 for both dead loads and live loads (as per 
IS Code).   Use M 20 concrete and Fe 415 steel. 

(b)  Redesign the three-span continuous beam by applying moment redistribution (to 
the extent permitted by the Code). 

SOLUTION 

(a) 
• Factored load  = 1.5 × 30 = 45 kN/m wu

⇒ w lu
2  = 45 × (8.0)2 = 2880 kNm  

• The elastic factored moment envelope, based on the results of Example 9.1, is 
shown in Fig. 9.15(a).  The critical design moments are: 

span moments
M w l
M w l

u u

u u
  

   kNm (end span)      
   kNm (interior span)

1
2

2
2

0 0903 260 1
0 0500 144 0

= + = +
= + = +

⎧
⎨
⎪

⎩⎪

. .

. .
 

[Also note that  Mu2, min = – 0.0125 wu l2] 
support moment Mu3 = - 0.1082 wu l2 =  – 311.7 kNm 

                                                           
† Note that although the moment at the continuous support is slightly under-estimated (by 2.4 
percent), this difference can be easily accommodated by moment redistribution.  Also, the 
minimum span moments in the central span are hogging in nature (requiring steel to be 
designed at top); however, M2 = – 0.0125wl2 is relatively small and is likely to fall within the 
flexural strength of the nominal top steel provided. 
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Proportioning of beam section: 
• Assume a beam width b = 300 mm.  Considering the maximum design moment of 

311.7 kN/m, for an under-reinforced section,  

effective depth d
M
Rb

u=  

where  = 0.1389fRlim ck = 0.1389 × 20 = 2.778 MPa  

⇒
300778.2
107.311 6

min ×
×

=d  = 611.6 mm 

• Assume overall depth D = 700 mm and d ≈ 655 mm  (for an economical design) 

Design of flexural reinforcement 

• [ ]p A
bd

f
f

R ft st ck

y
ck100 2

1 1 4 598≡ = − − .  

where R
M
bd

u≡ 2  

• Considering  fck = 20 MPa, fy = 415 MPa, b = 300 mm, d = 655 mm, the following 
results are obtained: 

1. for Mu1 = + 260.1 kNm, R = 2.021 MPa p⇒ t = 0.647 
⇒ (Ast)reqd = 1271 mm2

Provide 2–25φ + 1–20φ at bottom in the end span [Ast = 1296 mm2 > 1271] 
2. for Mu2 = + 144.0  kNm, R = 1.119 MPa p⇒ t = 0.333 

⇒ (Ast)reqd = 655 mm2

Provide 2–16φ + 1–20φ at bottom in the central span [Ast = 716 mm2 > 654] 
Mu2 = – 0.0125 wul2 = 36 kNm is accommodated by the nominal top steel 
(2–16φ bars) provided† [see Fig. 9.15(b)]. 

3. for Mu3 = – 311.7 kNm, R = 2.422 MPa ⇒ pt = 0.805 
⇒ (Ast)reqd = 1583 mm2  
Provide 2–28 φ + 2–16 φ at top [Ast = 1634 mm2 > 1583] up to, say 0.3l on 
the end span side, and 0.4l on the central span side of the continuous 
support; beyond this, the 2–16 φ bars may be extended over the span regions 
as nominal top steel. 

(b) 
• By applying ‘moment redistribution’, the maximum ‘negative’ moment at the 

continuous support can be reduced.  The amount of reduction possible depends on 
the plastic hinge rotation capacity at the section.  [Eq. 9.10 has to be satisfied]. 

• The maximum reduction in moment permitted by the Code is 30 percent, 
corresponding to which, the design moment at the continuous support is given by: 
~Mu3 = 0.7 Mu3 = 0.7 × – 0.1082  wul2  

                                                           
† The flexural strength due to the 2–16φ bars, in fact, works out to 91kNm; this may be 
verified. 
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        = – 0.07574 wul2

        = – 218.2 kNm 
• Assuming b = 300 mm and d = 655 mm (as before), 

• [Eq. 9.11]: 
x
d
u = 1.202 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

××
××

−− 2

6

65530020
102.218598.411  

      = 0.263 
which satisfies the Code requirement [Eq. 9.8]: 
x
d
u ≤ 0.6 – 30

100
= 0.30 (for 30% reduction in Mu3). 

Hence, the desired plastic rotation capacity is ensured. 

Bending moment envelope after redistribution 

• In the elastic analyses for maximum/minimum span moments [Fig. 9.14(a)], the 
support moment was found to be equal to 0.0750wul2, which is less than the 
design support moment (after redistribution), ~Mu3 = 0.07574wul2.  Hence, no 
plastic hinge will form at the continuous support under these loading conditions 
(alternate spans loaded with live load).  Accordingly, the bending moment 
distributions shown in [Fig. 9.14(a),(b)] do not get altered, as no redistribution 
takes place. 

• For the loading pattern shown in Fig. 9.14(c), the possibility of redistribution has 
been recognised by reducing the design flexural strength at the continuous 
support from the elastic solution value of –0.1082 wul2 to ~Mu3 = –0.07574 wul2.  
What remains to be done is to calculate the revised span moments and locations 
of points of inflection, corresponding to the lowering of the support moment, i.e., 
redistribution.   

• By performing an analysis of the continuous beam with a plastic hinge at the 
continuous support, (with ~Mu3  = –0.07574 wul2) [Fig. 9. 15], the maximum 
‘positive’ moments in the end span and central span are obtained as: 

       end span: ~Mu1 = + 0.0900 wul2 <  (Mu1)elastic = + 0.0903 wul2

central span: ~Mu2 = + 0.0497 wul2 <  (Mu2)elastic = + 0.0500 wul2 

In fact, the bending moment diagrams obtained, after redistribution [Fig. 9.15(c)], 
for spans AB and BC, are very much similar to those obtained earlier in 
Fig. 9.14(a), (b). 

• Thus, it is seen that, in the case of the end span as well as the central span, the 
design moments remain governed by the loading conditions given in Fig. 9.14(a) 
and (b), with ~Mu1 = + 0.0903 wul2 = + 260.1 kNm, and 2

~
uM = + 0.0500 wul2 = 

+ 144.0 kNm.  The corresponding ‘positive’ moment envelopes are shown in 
Fig. 9.16(a).  
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Fig. 9.15  Example 9.2 
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• The moment envelope is obtained by combining the bending moment diagrams of 
Figs. 9.14(a), 9.14(b) and 9.15(c);  the diagram of 9.15(c) is seen to practically 
merge with Fig. 9.14(a),(b).  This is depicted in Fig. 9.16(a).  In combining these 
diagrams, the outermost lines yield the moment envelope. 

Design of flexural reinforcement  
• Considering  fck = 20 MPa, fy = 415 MPa, b = 300 mm, d = 655 mm (as before), 

 for ~Mu1 = + 260.1 kNm, (which is identical to Part(a) of this Example). 
 Provide 2–25 φ + 1–20 φ at bottom in the end span (Ast = 1296 mm2 >1256). 
 Note: There is no increase in the reinforcement provided [refer Fig. 9.15(b)] 

on account of redistribution. 
  
1) for ~Mu2 = + 144.0 kNm, (which is identical to Part(a) of this Example) 
 Provide 2–16 φ + 1–20 φ at bottom in the central span (exactly as before). 

2) for ~Mu3 = + 218.2 kNm, R ≡ 
M
bd

u
2 = 1.695 MPa 

 ⇒ pt = 0.527 ⇒ (Ast)reqd = 1036 mm2   
 Provide 2–22 φ + 2–16 φ at top (Ast = 1162 mm2 >1036), with the 2–22 φ bars 

curtailed exactly as before. 
 Note: This results in some savings, compared to the earlier design 

[Fig. 9.15(b)], which required 2–28 φ + 2–16 φ. 
• The detailing is shown in Fig. 9.16(b). 
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Fig. 9.16  Example 9.2 (contd.) 
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REVIEW QUESTIONS 

9.1 Comment on the apparent inconsistency in combining elastic analysis of 
structures with design at the ultimate limit state. 

9.2 Explain how the critical live load patterns in a plane frame can be obtained by 
the application of the Müller-Breslau Principle. 

9.3 Under what circumstances does the Code permit the neglect of ‘pattern loading’ 
for the purpose of arriving at the critical design moments in a framed structure? 

9.4 Why does the Code disallow moment redistribution when bending moments in 
continuous beams are based on the Code moment coefficients? 

9.5 When is it inappropriate to apply the substitute frame method for multi-storeyed 
buildings? 

9.6 Justify the use of approximate methods of frame analysis for multi-storeyed 
buildings. 

9.7 What are the basic assumptions underlying the approximate methods of lateral 
load analysis of multi-storeyed frames? 

9.8 What are the problems associated with specifying the flexural stiffnesses of 
reinforced concrete frame members for the purpose of structural analysis?  
How may these problems be resolved? 

9.9 “The bending moment diagram obtained from frame analysis needs adjustment 
in order to obtain the design moments at beam-column junctions”.  Discuss this 
statement. 

9.10 What is meant by ‘moment redistribution’ and what are its implications in 
design? 

9.11 Explain the bases underlying the various limitations imposed by the Code with 
regard to moment redistribution. 

9.12 Can moment redistribution be applied to reduce bending moments in columns?  
Explain. 

9.13 Can moment redistribution be applied to reduce bending moment in beams with 
doubly reinforced sections?  Explain. 

9.14 What is meant by a ‘torsional plastic hinge’?  Cite practical situations where 
such hinges are encountered. 

PROBLEMS 

9.1 Repeat the problem given in Example 9.1, considering the live load component 
(wL) to constitute 80 percent of the total load (w). 

 Ans.: (a) M1 = +0.0800wu l2; M2 = +0.0250wu l2; M3  = – 0.1000wu l2. 
 (b) M1 = +0.0968wu l2; M2 = +0.0650wu l2; M3  = – 0.1143wu l2. 
 (c) M1 = +0.0968wu l2; M2 = +0.0750wu l2; M3  = – 0.1089wu l2. 

9.2 Using the results of Problem 9.1, design the three-span continuous beam, 
considering 25 percent reduction in the maximum factored elastic ‘negative’ 
moment, with moment redistribution.  Assume w = 30 kN/m, l = 8 m, M 20 
concrete and Fe 415 steel. 

9.3 Consider the symmetric portal frame in Fig. 9.17.  From an elastic analysis 
under factored loads, the hogging moment at B and C is obtained as MB = MB C = 
100 kNm. 
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(a) Determine the ratio MuR
– : MuR

+, as required by elastic analysis, where MuR
– 

and MuR
+ denote respectively the design hogging and sagging moment 

capacities for the beam BC.  In order to make this ratio 1:1, determine the 
percentage redistribution required.  Draw the redistributed bending moment 
diagram for the portal frame, indicating the values at the critical locations.   
(b) Show that the above redistribution is allowable, given that the beam is 200 
mm wide, and has an effective depth of 450 mm.  Assume M20 concrete and Fe 
415 steel.  Also determine the area of tension steel Ast (mm2) required at the 
support/midspan sections.   

 

8 m 

4 m 

wu = 20 kN/m 

A 

B C

D 

E  

 
Fig. 9.17  Problem 9.3 

9.4 Analyse the design moments and sketch the moment envelope for the beam 
members in the substitute frame shown in Fig. 9.18.  Assume suitable 
dimensions for the frame members.  The beams are integrally connected to a 
floor slab 150 mm thick.   

9.5 Applying appropriate moment redistribution (to the results of Problem 9.3), 
design the flexural reinforcement in the beams AB and BC in Fig. 9.18.  
Assume M 20 concrete and Fe 415 steel. 
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Fig. 9.18  Problems 9.4, 9.5 
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           10 
     Serviceability Limit States:  
          Deflection and Cracking 

 

10.1   INTRODUCTION 

According to the design philosophy of the limit states method (refer Section 3.5), 
there are two distinct classes of limit states to be considered: ultimate limit states and 
serviceability limit states.  Whereas the former deals with safety in terms of strength, 
overturning, sliding, buckling, fatigue fracture, etc., the latter deals with 
serviceability in terms of deflection, cracking, vibration, durability, etc.  The aim of 
structural design by the LSM philosophy is to ensure both ‘safety’ and 
‘serviceability’, so that the structure performs its intended function satisfactorily. 

In the chapters considered hitherto, the focus has been on ultimate limit states (or 
‘limit states of collapse’) dealing with strength† (flexure, shear, torsion and bond).  
The importance of controlling deflection and cracking has been briefly covered in 
Chapter 5, in terms of proper detailing of reinforcement (Section 5.2) and limiting 
span/effective depth ratios (Section 5.3) in beams and slabs.  In fact, the Code (Cl. 42 
and 43) does not require the designer to perform any explicit check on deflection or 
crack-width for all normal cases, provided the Code recommendations for limiting 
l/d ratios (for deflection control) and spacing of flexural reinforcement (for crack 
control) are complied with.  However, the minimum depths indicated by these l/d 
ratios may not be adequate for certain sequences of shoring during construction or 
large live to dead load ratios. 

It is well recognised that, in modern practice, structural ‘failures’ are all-too-
common in terms of serviceability, and are relatively rare in terms of safety.  In 
particular, it is the serviceability limit state of durability that calls for particular 
attention, indeed all over the world.  The problem of inadequate durability is linked 
                                                           
† The ultimate limit state of strength in compression, not considered so far, is discussed at 
length in Chapter 13.  The ultimate limit states in overturning and sliding are considered in 
Chapter 14, in connection with the design of foundations. 
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not only to such factors as improper making of concrete, chemical attack from the 
environment and corrosion of reinforcement [refer Section 2.13], but also to 
inadequate cover to reinforcement [refer Section 5.2.1], improper detailing and 
inadequate sizes for structural members, resulting in excessive deflections and crack-
widths (and consequent loss of durability).  Some of these problems as well as their 
solutions are addressed in Chapter 15 of this book. 

Adoption of limit states design and higher grades of concrete and steel in modern 
reinforced concrete design has led to overall thinner member sections and higher 
stress levels at service loads. These, in turn, have resulted in larger deflections, crack-
widths, vibrations, etc., in such structures, compared to earlier ones designed by more 
the conservative working stress design and using mild steel and lower grades of 
concrete.  Hence, the need for serviceability checks has assumed greater importance 
in present-day design. 

The scope of the present chapter is limited to describing methods of explicitly 
calculating deflections and crack-widths in flexural members for the purpose of 
checking the serviceability limit states of deflections and cracking.  This is required 
especially when the limiting l/d ratios of the Code are not complied with, when the 
specified load is abnormally high, and in special structures where limits to deflection 
and crack-width are of particular importance. 

10.2   SERVICEABILITY LIMIT STATES: DEFLECTION 

10.2.1   Deflection Limits 

Various factors are involved in prescribing limits to deflection in flexural members, 
such as: 

• aesthetic/psychological discomfort; 
• crack-width limitation (limiting deflection is an indirect way of limiting crack-

widths); 
• effect on attached structural and non-structural elements; 
• ponding in (roof) slabs. 

The selection of a limit to deflection depends on the given situation, and this 
selection is somewhat arbitrary [Ref. 10.1]. 

The Code (Cl. 23.2) prescribes the following two limits for flexural members in 
general: 

1. span/250 — the final deflection due to all loads 
(including long-term effects of creep and 
shrinkage); 

2. span/350 or 20 mm 
(whichever is less) 

— the deflection (including long-term 
effects of creep and shrinkage) that occur 
after the construction of partitions and 
finishes†. 

                                                           
† This involves loads applied after this stage, which in general, comprise live loads. 
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The first limit is based on considerations of crack control and 
aesthetic/psychological discomfort to occupants, and the second limit is aimed at 
preventing damage to partitions and finishes [Ref. 10.2].  These limits constitute 
broad guidelines and may be exceeded in situations where the deflections are 
considered to not adversely affect the appearance or efficiency of the structure. 

It may be noted that the prescribed Code limits are concerned only with 
deflections that occur under service loads; hence, the partial load factor to be applied 
on the characteristic load should be taken as unity in general [refer Section 3.6.3].  
Furthermore, the Code (Cl. 36.4.2.2) specifies that the modulus of elasticity and other 
properties to be considered in deflection calculations should be based on the 
characteristic strength of concrete and steel. 

10.2.2   Difficulties in Accurate Prediction of Deflections 

Accurate prediction of deflections in reinforced concrete members is difficult 
because of the following factors: 
• uncertainties in predicting the flexural rigidity (EI) of the member, which is 

influenced by: 
∗ varying degrees of tensile cracking of concrete; 
∗ varying amounts of flexural reinforcement; 
∗ variations in modulus of elasticity of concrete; and 
∗ variations in modulus of rupture of concrete; 

• uncertainties regarding time-dependent and environmental effects which 
influence shrinkage and creep; 

• inelastic flexural behaviour of members; and 
• inherent high variability in measured deflections, even under carefully controlled 

laboratory conditions. 
In view of the above uncertainties, approximations and simplifications are 

essential in deflection calculations.  The calculations are considered in two parts: 
(i) immediate or short-term deflection occurring on application of the load, and 
(ii) additional long-term deflection, resulting mostly from differential shrinkage and 
creep under sustained loading.  For calculating the ‘immediate’ deflection, the 
loading to be considered is the full load (dead plus live).  However, for calculating 
the long-term deflection due to creep, only the ‘permanent’ load (dead load plus the 
sustained part of live load) is to be considered.  Despite these simplifications and 
assumptions, the calculations are quite lengthy and may give the impression of being 
sophisticated and rigorous — which is rather illusory, in view of the random nature 
of deflection and its high variability.  Nevertheless, in the absence of more precise 
information, these deflection calculations become necessary, and may be regarded as 
providing representative values that serve the purpose of comparison with 
empirically set deflection limits. 
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10.3   SHORT-TERM DEFLECTIONS 

10.3.1   Deflections by Elastic Theory 

Short-term deflections, due to the applied service loads, are generally based on the 
assumption of linear elastic behaviour, and for this purpose, reinforced concrete is 
treated as a homogeneous material [refer Section 4.2].  Expressions for the maximum 
elastic deflection Δ of a homogeneous beam of effective span l and flexural rigidity 
EI (for any loading and support conditions) can be derived using the standard 
methods of structural analysis, and are available for several standard cases in 
handbooks [Ref. 10.3, 10.4].  Typically, they take the form: 

Δ = =k Wl
EI

k Ml
EIw m

3 2

                                         (10.1) 

where W is the total load on the span, M the maximum moment, and kw and km are 
constants which depend on the load distribution, conditions of end restraint and 
variation in the flexural rigidity EI (if any).  For the standard case of a simply 
supported beam of uniform section, subjected to a uniformly distributed load, kw = 
5/384 and km = 5/48, as shown in Fig. 10.1(a).  If the same beam is subjected instead 
to an end moment M alone, the midspan deflection Δm is given by km = 1/16 in 
Eq. 10.1 [Fig. 10.1(b)]. 

Generally, the expression Δ in Eq. 10.1 refers to the midspan deflection (Δm), 
which is usually very close to the maximum value.  For example, in the case of a 
‘propped cantilever’ with a uniformly distributed load, Δm is within 3.5 percent of the 
maximum deflection.  This is found to be true even when the beam or loading is 
unsymmetrical about the midspan location, provided the beam is supported at both 
ends (i.e., not free at one end). 

A standard case frequently encountered in design is that of a continuous beam of 
uniform section, subject to a uniformly distributed load [Fig. 10.1(c)].  As the 
support moments (M1, M2) are usually known from structural analysis of the statically 
indeterminate structure, it would be convenient to express the midspan deflection Δm 
in terms of these two moments as well as the midspan moment Mm = M0 –
(M1 + M2) /2.  Applying the principle of superposition, and making use of the results 
of Fig. 10.1(a) and Fig. 10.1(b), an expression for the midspan deflection Δm may be 
derived as follows:  

Δ m
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where Mo = Wl/8  
Substituting Mm = Mo – (M1 + M2)/2, and eliminating Mo,  
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Fig. 10.1  Midspan deflections of homogeneous beams by elastic theory 

Alternatively, eliminating (M1 + M2), 

[ ]Δm m
l
EI

M M= −
5

48
1 2 0 2

2

. . o                                                (10.3) 

Similar expressions can be worked out for concentrated loadings [Ref. 10.5]. 

10.3.2   Effective Flexural Rigidity 

For the purpose of calculating short-term deflections in reinforced concrete flexural 
members, expressions such as Eq. 10.1 – 10.3, based on elastic theory, may be made 
use of.  An important parameter that needs to be considered in these calculations is 
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the flexural rigidity EI, which is the product of the modulus of elasticity of concrete† 
E = Ec, and the second moment of area, I, of the cross-section.  As discussed in 
Chapter 2 (Section 2.8), the modulus of elasticity of concrete depends on factors such 
as concrete quality, age, stress level and rate or duration of applied load.  However, 
for short-term loading up to service load levels, the Code expression [Eq. 2.4] for the 
short-term static modulus of elasticity ( )ckc fE 5000=  is satisfactory. 

The second moment of area, I, to be considered in the deflection calculations is 
influenced by percentage of reinforcement as well as the extent of flexural cracking, 
which in turn depends on the applied bending moment and the modulus of rupture fcr 
of concrete. 

10.3.3   Tension Stiffening Effect 

During the first time loading of a reinforced concrete beam, the portions of the beam 
where the applied moment (M) is less than the cracking moment (Mcr) will remain 
uncracked and have the second moment of area (IT) corresponding to the gross 
transformed section [refer Section 4.4.3 and Example 4.1].  Where the moment 
exceeds Mcr, the concrete in tension is expected to fail at the outer tension fibres and 
the cracks propagate inward (towards the neutral axis).  The average spacing between 
cracks reduces and the average crack-width increases with increase in moment M 
beyond Mcr.  In a beam segment subject to a constant moment M > Mcr, theoretically, 
the entire segment should be fully cracked on the tension side of the neutral axis.  
But, in practice, it is seen that this does not happen, and in fact, the flexural cracks 
are dispersed randomly such that there are significant portions in between the cracks, 
which remain uncracked, as shown in Fig. 10.2(a).   

The concrete in between the cracks resists some tension, and this is reflected by a 
reduction in tensile strain in the reinforcement [Fig. 10.2(b)], a lowering of the 
neutral axis [Fig. 10.2(a)], a fluctuation in the bond stress† [see also Fig. 8.2] as well 
as a reduction in curvature [Fig. 10.2(c)] — with reference to these parameters 
calculated at the crack location. 

The tensile strain in the steel midway between the cracks (at the section marked 
‘2’ in Fig. 10.2) may be as low as 60 percent of the strain at the crack location 
(marked ‘1’ in the Fig. 10.2) — at service load levels.  Of course, at higher load 
levels, increased cracking occurs, and the difference between the two strains gets 
reduced — and eventually gets practically eliminated as ultimate load conditions are 
approached (in an under-reinforced beam).   

                                                           
† The material called ‘reinforced concrete’ is essentially concrete, as the embedded 
reinforcement comprises only a very small fraction of the volume of the reinforced concrete 
member. 
† As explained in Chapter 8, [Fig. 8.2], the bond stress is zero at every crack location and also 
midway between cracks (in the region of constant moment); elsewhere the bond stress varies 
nonlinearly. 
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Fig. 10.2  Effective flexural rigidity of a beam subject to constant moment 
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An effective curvature ϕeff may be defined for the beam segment, as being 
representative of the mean curvature of the segment, under the action of a constant 
moment M.  For this purpose, the strain profile to be considered may be reasonably 
based on the mean strain profile [Fig. 10.2(c)], rather than the strain profile at the 
crack location (which is obviously higher): 

eff

smcm
eff EI

M
d

=
ε+ε

=ϕ                                                     (10.4) 

where εcm and εsm are the mean strains in the extreme compression fibre in concrete 
and tension steel respectively, d is the effective depth, and EIeff  is the effective 
flexural rigidity of the section. 

‘Flexural rigidity’ EI is obtainable as the slope (secant modulus) of the moment-
curvature relationship, which in turn can be established from an average of a number 
of test results [Ref. 10.5 – 10.11].  As shown in Fig. 10.2(d), this may be obtained 
variously as: 

• EIT — based on the ‘uncracked-transformed’ section; 
• EIgr — based on the ‘gross’ (uncracked) section, i.e., ignoring the 

     presence of steel; 
•   
• EIeff — based on the ‘effective’ section; 
• EIcr — based on the ‘cracked-transformed’ section [refer Eq. 4.15]. 

Evidently, EIT  represents the true flexural rigidity for M < Mcr, and EIeff  
represents the true flexural rigidity for M > Mcr.  Whereas EIT  is a constant and a 
property of the beam section, EIeff depends on the load level (applied moment).  It 
follows that: 

EIT > EIgr > EIeff  > EIcr

Thus, determining the flexural rigidity (stiffness) on the basis of the uncracked 
section results in an under-estimation of the actual deflection of a reinforced concrete 
beam under service loads; whereas doing so on the basis of the (fully) cracked 
section results in an over-estimation of the actual deflection. 

The increase in stiffness over the ‘cracked section’ stiffness, on account of 
the ability of concrete (in between cracks) to resist tension, is referred to as 
the tension stiffening effect. 

10.3.4   Effective Second Moment of Area Formulation 

Various empirical expressions for the ‘effective second moment of area’ Ieff (for 
calculating short-term deflections in simply supported beams) have been proposed 
[Ref. 10.5 – 10.11] and incorporated in different codes.  Some of these formulations 
are based on assumed transition moment-curvature relations [Ref. 10.5 – 10.8], 
whereas the others [Ref. 10.9 – 10.11] are based on assumed transition of 
strains/stresses in the region between cracks (and involve stress-strain relations and 
equilibrium of forces).  The expression given in the Indian Code (IS 456: 2000, 
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Cl. C–2.1) is based on an earlier version of the British Code, which assumes an 
idealised trilinear moment-curvature relation [line OABCD in Fig. 10.3].  The initial 
uncracked stiffness EIgr and the cracked stiffness (at ultimate load) EIcr are 
represented by the slopes of lines OA and OC respectively.  Any intermediate 
stiffness (EIeff  corresponding to line OB) can be interpolated by defining the slope of 
the intermediate line ABC in the region Mcr < M < Mu.  The slope of this line (which 
commences with the cracking moment point A) is approximated as 0.85EIcr. 

It follows that: 

EI M
M M EIeff

cr cr cr
=

+ −ϕ ( ) ( .0 85 )
          for Mcr ≤ M ≤ Mu  

where ϕ cr cr grM EI= and M f I ycr cr gr t=  [Note that this expression for Mcr is 
similar to Eq. 4.10, except that Igr

† is used instead of IT].  Simplifying the above 
expression, it can be shown that  
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Fig. 10.3  Idealised trilinear moment-curvature relation 
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M Meff

cr

cr
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−1 2. ( )η
         with Icr ≤ Ieff  ≤ Igr                     (10.5a) 

where                     η   ≡ 1.2 – I Icr gr                                                              (10.5b) 

The IS code formula for the effective moment of inertia is identical to Eq. 10.5a, 
except that the non-dimensional parameter η  in the equation takes a more 
complicated form than the one given by Eq. 10.5b: 

b
b

d
x

d
z w 1   ⎟

⎠
⎞

⎜
⎝
⎛ −≡η                                                  (10.6) 

                                                           
† The use of the gross transformed section (i.e., ignoring the contribution of steel), instead of 
the uncracked-transformed section, is done for convenience. 
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where is the depth of the neutral axis, x kd≡ z jd≡  the lever arm, bw the ‘breadth 
of the web’, and b the ‘breadth of the compression face’.  Sometimes, the 
calculations will yield values of Ieff  that may exceed Igr or be less than Icr.  In such 
cases, the bounds on Ieff, as indicated in Eq. 10.5a, should be applied. 

An alternative expression for Ieff , widely used in North American practice (ACI 
code [Ref. 10.13], Canadian code [Ref. 10.14]), is due to Branson [Ref. 10.5] and 
takes the form: 

cr
cr

gr
cr

eff I
M

MI
M

MI  1
33

⎥
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⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛=    for  M > Mcr  (10.7) 

Eq. 10.7 gives a value of Ieff which is effectively a weighted average of Igr and Icr
.. 

Comparison with test results indicates reasonable agreement (within the range of 
± 20 percent !) between the deflections measured and those computed using Eq. 10.5a 
or Eq. 10.7.  It may be noted that for the general case of a non-uniform bending 
moment diagram, Ieff varies along the span, and the consequent calculation of 
maximum deflection can be very difficult.  However, Eq. 10.5a and Eq. 10.7 have 
been developed with the intention of generating a single value of Ieff  (for the entire 
beam, assumed to be prismatic) in association with the maximum moment (M) on the 
beam, which is assumed to be bent in single curvature.  Thus, Eq. 10.5 (or 10.7) can 
be used to give an average value† of Ieff for simply supported spans and cantilever 
spans, but not continuous spans.  It may also be noted that these expressions cannot 
be applied in the case of bending combined with axial force, or in the case of two-
way slab bending.   

10.3.5   Average Ieff for Continuous Spans 

In the case of continuous spans, the sense of curvature at midspan is different from 
that near the support; the former is (generally) ‘sagging’, and the latter ‘hogging’.  In 
beam-slab construction, the flanged section properties are substantially different 
under ‘positive’ and ‘negative’ moments; in the case of the former, the flange is 
effective, being under compression, but in the case of the latter, the flange is under 
tension [refer Sections 4.6.4, 4.7.4].  Even in the case of beams with rectangular 
cross-sections, there are differences in reinforcement ratios and differences in the 
influence of cracking in the two regions.  Hence, a weighted average of the Ieff values 
at mid-span and support regions is generally recommended. 

A simple expression for a weighted average Ieff, av, recommended in Ref. 10.5 and 
10.15, is as follows: 

I I I Ieff av eff m eff eff, , ,. . (= , )+ +0 7 015 1 2 

,

                             (10.8a) 
(for beams with both ends continuous) 

I I Ieff av eff m eff cont, ,. .= +0 85 0 15                                         (10.8b) 
(for beams with one end continuous) 

                                                           
† Assuming a uniform Ieff (calculated with respect to the maximum span moment) will 
generally result in a conservative estimate of deflection. 
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where the subscript m denotes the midspan location, and the subscripts cont, 1, 2 
denote the continuous end location(s). 

Typically, in a continuous span, the gravity loading pattern which produces the 
maximum deflection (as well as maximum ‘positive’ moment) is different from that 
which produces the maximum ‘negative’ moment at the supports [refer Chapter 9].  
In order to account for the more widespread cracking near the support regions under 
these larger ‘negative’ moments, it becomes necessary to consider the maximum 
‘negative’ moment at the support region for evaluating Ieff,1, Ieff,2 or Ieff,cont using 
Eq. 10.5a or Eq. 10.7.  Similarly, the maximum ‘positive’ moment should be 
considered for evaluating Ieff,m.  Of course, once the Ieff,av has been evaluated this way 
(using Eq. 10.8), the deflection calculation (using Eq. 10.3) should be based on 
values of Mm, M1 and M2, corresponding to that loading diagram which causes 
maximum deflection (in the span region). 

It may also be noted that, generally, in continuous spans, Ieff values at the 
continuous ends have a much smaller effect† on the deflections than Ieff, m, and 
reasonable predictions of deflection can be obtained by using Ieff, m alone, instead of a 
weighted average [Ref. 10.15].  However, when there is a significant variation in 
flexural rigidity (as in flanged beams), or when the negative moment at either 
continuous end is relatively large, the use of a weighted average such as Eq. 10.8 is 
recommended. 

The weighted average expression given in the Code (Cl. C–2.1) for continuous 
beams is somewhat complicated and takes the form (similar to Eq. 10.5a): 

I
I

M Meff av
cr av

cr av
,

,

,. ( )
=

−1 2  η
      with Icr, av ≤ Ieff, av ≤ Igr, av   (10.9a) 

where Icr, av, Igr, av and Mcr, av are to be computed as weighted averages using the 
following generalised expression: 

X k X X k Xav m= + + −1 1 2 12 1( ) ( )                                       (10.9b) 

where the subscripts 1 and 2 denote the two continuous support locations and m 
denotes the midspan location; k1 is a weighting factor which lies between 0 and 1, 
and depends on the ratio of the sum of the corresponding fixed end moment 
(MF1 + MF2) — as given in Table 21 of the Code.  The expression for η  in 
Eq. 10.9(a) is the same as that given in Eq. 10.6.  It is not clear from either the Code 
or the Explanatory Handbook to the Code [Ref. 10.2] whether, in the case of 
continuous beams, the value of the applied moment M (in Eq. 10.9a) and the values 
of the neutral axis depth x and lever arm z (in Eq. 10.6) are to be based on the 
midspan location or the support location, or as a weighted average.  [It appears 
logical that when an expression such as Eq. 10.2 is used for calculation of Δ, the M 
should be the moment at midspan.]  In view of these uncertainties and complications, 

                                                           
† This can be easily observed from the conjugate beam method, where the span moment in the 
conjugate beam (which gives Δ) is governed predominantly by the M/EI values (which is the 
loading on the conjugate beam) in the midspan regions than in the end regions. 
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the Code procedure for evaluating Ieff, av in its present form, is not generally used in 
design practice. 

10.3.6   Effective Curvature Formulation 

In the latest British code, BS: 8110 [Ref. 10.12], the use of Eq. 10.5a (involving the 
concept of Ieff ) is dispensed with, and the formulation is now based on an assumed 
distributions of strains and stresses that attempt to account for the tension-stiffening 
effect more directly.  From the assumed distribution of strains, the effective curvature 
is directly obtained [Fig. 10.4], and the deflections may be computed from the 
effective curvatures.  It may be noted that if the beam section under consideration is 
subject to a low bending moment, it is likely to behave as an uncracked section, and 
this possibility [Fig. 10.4a] should also be investigated.  It is stated in the British 
code that the curvature at any section should be taken (conservatively) as the larger 
of the values obtained by considering the section as (a) uncracked and (b) cracked 
[Fig. 10.4].  This clause is intended to ensure that even if the applied bending 
moment is less than the cracking moment, it is possible that the section may behave 
as a cracked section due to some prior heavier loading (or cracking due to 
temperature and shrinkage effects)†.  It is also mentioned that the calculation of 
effective curvature is to be done at the mid-span for simply supported beams and at 
the support section for cantilevers, and the appropriate relationship between elastic 
deflection and curvature used for calculating the maximum deflection [Eq. 10.1].  

It may be noted that the distribution of strains [Fig. 10.4] is linear for both 
uncracked and cracked sections (being based on the fundamental assumption of plane 
sections remaining plane after bending), and the formula for effective curvature, 
applicable for both sections, may be easily derived using strain compatibility 
considerations.  The formula may be expressed in terms of either the concrete 
compressive stress fc : 

c

cc
eff xE

f
x
=

ε
=ϕ                                                (10.10a) 

or, in terms of the mean tensile stress in steel: 

s

smsm
eff Exd

f
xd )()( −

=
−
ε

=ϕ                                      (10.10b) 

where 
fc ≡ compressive stress in concrete at the extreme compression fibre 
fsm ≡ mean tensile stress in steel 
fcts ≡ allowable tensile stress in concrete at the level of the tension steel, 
        to be taken appropriately. 

The value of fcts is to be limited to 1.0 MPa in the case of the uncracked section 
[Fig. 10.4b], and the corresponding stress in steel is given by fsm = m fcts.  It may be 
noted that the corresponding stress in the extreme tension fibre in concrete, given by 
fcts.(D – x)/(d – x), will be considerably less than the modulus of rupture (0.7 ckf ).  

                                                           
† Refer Example 10.1 
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This is done in order to ensure that when the applied moment is less than but close to 
the ‘cracking moment’ Mcr, it would be more appropriate (and conservative) to treat 
the section as a cracked section for the purpose of estimating deflections.  The 
magnitude of cracking moment, by this formulation reduces to:  

⎟
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⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
=

D
I

Dd
DfM gr

ctscr 0.55.0
5.0~                                                   (10.11) 

 

(a) Stresses in 
      uncracked section 

Stress (fcts) in concrete to 
be limited to 1.0 MPa 

x

fc 
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εc = fc/Ec 

εsm = fsm /Es 

φeff 

d 

fsm 

fc 

fsm = mfcts 

fcts =   1.0 MPa (short-term) 
           0.55 MPa (long-term) 

(b) Stresses in 
      cracked section 

 

Fig. 10.4  Distribution of strains and stresses (BS 8110) for serviceability calculations, 
including tension stiffening effect 

In the case of the cracked section, the maximum contribution of concrete in 
tension is considered by taking fcts = 1.0 MPa, and considering the short-term elastic 
modulus Ec.  However, for the purpose of calculating long-term deflections due to 
creep, it is recommended that a lower value, fcts = 0.55 MPa, should be taken (as 
indicated in Fig. 10.4b), and the effective modulus of elasticity (including creep 
coefficient) Ece should be considered.  It may be noted that in both the cracked and 
uncracked cases, the total tensile force resisted by concrete below the neutral axis 
may be obtained by assuming a triangular stress block.   

For the uncracked section, the curvature can be obtained directly, using Eq. 10.4 
with Ieff=Igr (which ignores the contribution of the steel, and effectively assumes x = 
0.5D).  However, for the cracked section, it is necessary to apply Eq. 10.10, which 
involves the neutral axis depth x and either the concrete compressive stress fc [Eq. 
10.10a] or the mean tensile stress in steel fsm [Eq. 10.10b].  This cannot be directly 
determined by means of a closed-form solution, and an iterative (trial-and-error) 
procedure is required.  The following force and moment equilibrium equations need 
to be satisfied: 

ctstsmc fxDbAfbxf )(5.05.0 −+=                                                   (10.12) 

( xDfbDxdfAM ctsmst −+⎟
⎠
⎞

⎜
⎝
⎛ −=  

3
1

3
)                                               (10.13) 
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where            ctsct f
xd
xDf ×⎟
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⎜
⎝
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=                                           (10.14) 

Using strain compatibility relations [Fig. 10.4(a)], 
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E
E

xd
xf
−

=                                                             (10.15) 

whereby    ( )csm mff
dx

+
=

1
                                               (10.15a) 

One may begin by assuming a trial value of the neutral axis depth x (≈ d / 3).  
Next, trial values of fct and fsm are calculated by solving Eq. 10.14 and 10.13 
respectively.  Using these values, fc is calculated solving Eq. 10.12, and an improved 
value of x can now be obtained from Eq. 15a.  For the next trial, an average of this 
value and the initial trial value of x may be considered, and the procedure repeated.  
Usually, convergence in the trial-and-error procedure can achieved within two or 
three iterations, as demonstrated in Example 10.2. 

EXAMPLE 10.1 

For the one-way (simply supported) slab system designed in Example 5.2, compute 
the maximum short-term deflection due to dead loads plus live loads.  Solve (a) using 
the concept of Ieff specified in IS 456 (2000), and (b) using the concept of effective 
curvature given in BS 8110 (1997).  

SOLUTION 

• Given: l = 4.16 m, D = 200 mm, Ast = 628 mm2/m, (pt = 0.380), d = 165 mm,  
  fck = 25 MPa,  fy = 415 MPa, wDL = 6.0 kN/m2 wLL = 4.0 kN/m2, [refer 

Example 5.2]. 
• Formula for maximum short-term deflection (at midspan): 

Δ = =
5

384
5
48

4 2wl
EI

Ml
EIeff eff

 

• Maximum moment at midspan (under service loads — dead plus live): 
M = (6.0 + 4.0) × 4.162/8 = 21.63 kNm per m width 

• Short-term modulus of elasticity: 
E = Ec = 5000 ckf  

           = 5000 25  = 25000 MPa  
 
(a) SOLUTION AS PER IS 456 (2000)
 
• )5.0( DIfM grcrcr =  

where  fcr = 0.7 fck  (as per Code) 

        = 0.7 25  = 3.5 MPa  
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⇒ Mcr = 3.5 × 6.667 × 108 / (0.5 × 200) 
            = 23.33 × 106 Nmm/m = 23.33 kNm/m  
   > M = 21.63 kNm/m (implying that the section is likely to be uncracked). 
⇒ Ieff  = Igr

3 12eff grI I bD= =  = 1000 × (200)3/12 = 6.667 × 108 mm4  

Maximum short-term deflection (uncracked section) 

)mm)(10667.6()mmN(25000
)mm()4160()Nmm(1063.21

48
5

48
5

482

2262

××

××
×==Δ

effEI
Ml  

  = 2.34 mm (l / 1778) 
 
Note:  As the applied moment of 21.63 kNm/m is close to the cracking moment of 
23.33 kNm/m, it may be unconservative to calculate deflections based on the 
uncracked section.  It would be more prudent (as suggested in BS 8110) to limit the 
use of the uncracked section to applied moments that are less than Mcr [refer 
Eq. 10.10 for crM~ ].  The IS Code, however, does not give any recommendations in 

this regard.  A recent study indicates that the use of the BS Code estimate of crM~ , 
when coupled with the IS Code procedure, results in very large deflection estimates.  
The authors suggest that, for the application of the IS Code procedure, the value of 

crM~ may be taken as approximately 0.7 Mcr.  In the present problem, the reduced 
cracking moment works out to: 
 crM~ = 0.7 × 23.33 kNm/m = 16.33 kNm/m. 

(The use of Eq. 10.11 results in a more conservative estimate of crM~ = 10.26 
kNm/m). 
This value (16.33 kNm/m) is considerably less than the applied moment of 21.63 
kNm/m. 
Hence, the section should be treated as a cracked section for calculation of short-term 
deflection.  For meaningful results in the estimation of Ieff., Mcr should be replaced by 

crM~  in Eq. 10.5a. 

Effective second moment of area 

• 
η−

=
)~(2.1 MM

I
I

cr

cr
eff  

η = −j k b bw( )(1 )  as per IS 456 formulation 

• I b kd d kdcr st= + −( ) ( )3 3   m A 2  [see Fig. 10.5] 
The neutral axis (NA) depth kd is obtainable by considering moments of areas of the 

cracked transformed section about the NA: 
• b kd m A d kdst× = −( ) ( )2 2  
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where m‡ = Es/Ec = 2 × 105/25000 = 8.0 
⇒ 1000 × ( )kd 2 2  = (8.0) × 628 (165 – kd) 
Solving, kd = 36.00 mm ⇒ k = 36.00/165 = 0.2182 
[Note: k can be directly obtained from Eq. 4.13]. 

bb = 1000mm

 
Fig. 10.5  Example 10.1 

⇒ Icr = 1000(36.0)3/3 + (8.0 × 628) × (165 – 36.0)2

         = 0.9916 × 108 mm4 (= 0.1487 Igr) 
η = −j k b bw( )(1 )   
    = (1 – k/3) (1 – k) (1) = (1 – 0.2182/3) (1 – 0.2182) 
    = 0.7249 

7249.0)21.6333.16(1.2
)109916.0(

)~(2.1

8

×−
×

=
η−

=
MM

I
I

cr

cr
eff = 1.5192 ×108 mm2

    (which lies between Icr and Igr) and is equal to 
0.2279 Igr). 

Maximum short-term deflection (cracked section) 

)mm)(105192.1()mmN(25000
)mm()4160()Nmm(1063.21

48
5
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5
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××

××
×==Δ

effEI
Ml  

  = 10.26 mm (= 405l ) 
[Note:  The deflection calculated on the basis of ‘cracked section’ (10.26 mm) is 
considerably larger than the value calculated on the basis of ‘uncracked section’ 
(2.34 mm).  This is because Ieff = 0.228 Igr]. 
 
 (b) ALTERNATIVE SOLUTION AS PER BS: 8110-1997) 

 The effective curvature should be calculated assuming that the section is (i) 
uncracked and (ii) cracked, and the higher value is to be taken. 
(i) Uncracked section  
The curvature is given by 

                                                           
‡ Note: for short-term deflection calculations, Ec should be taken as the short-term modulus of 
elasticity.  Hence, the empirical expression for modular ratio given by the Code for flexural 
design (m = 280/3σcbc) should not be used here. 

D = 200 

kd

d = 165
N.A.

mAst

SLAB 
SECTION 

CRACKED - TRANSFORMED 
SECTION 
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grc
eff IE
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=ϕ  = 
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××

×  = 1.298 × 10-6 / mm 

(ii) Cracked section  
The equations 10.11 – 10.14 have to be satisfied. 
Trial 1:  Assume x ≈ d / 3 = 165/3 = 55 mm.  

⇒ 0.1
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Trial 2:  Assuming an average value x ≈ (55 + 52.8)/2 = 53.9 mm, and repeating the 
procedure,  

⇒ =  1.315 MPa ctf
⇒ = 95.5 MPa smf
⇒ = 5.79 MPa cf
⇒ x = 53.9 mm, which indicates convergence. 

The effective curvature of the cracked section may now be calculated using either 
Eq.10.10a: 

 
250009.53
79.5
×

==ϕ
c

c
eff xE

f
= 4.297 × 10-6 per mm 

or Eq.10.10b: 

 
)102)(9.53165(

5.95
)( 5×−

=
−

=ϕ
s

sm
eff Exd

f
= 4.298 × 10-6 per mm 

The curvature due to the cracked section (4.298 × 10-6 per mm) is larger than the one 
due to uncracked section (1.298 × 10-6 per mm), and accordingly, considering this 
larger value, for the uniformly loaded beam,   

262 )4160(10298.4
48
5

48
5

×××=ϕ=Δ −leff = 7.75 mm 

 which is less than 10.26 mm predicted as per IS 456 (cracked section). 

10.3.7   Additional Short-Term Deflection Due to Live Loads Alone 

As mentioned in Section 10.2.1, the check on deflection involves a separate check on 
deflection due to live loads (including long-term effects of creep and shrinkage) that 
occur after the construction of partitions and finishes.  This requires the calculation 
of the short-term deflection due to live load alone.   
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Because of the variations in effective flexural rigidity with the applied moment 
[Fig. 10.2], the load-deflection behaviour of a reinforced concrete beam is non-linear 
[Fig. 10.6]; hence, the principle of superposition is not applicable in deflection 
calculations.  Unlike the live loads, the dead loads act all the time.  Hence, the 
immediate (short-term) deflection due to the live load part alone, ΔL, has to be 
obtained as the difference between the short-term deflection due to dead plus live 
loads, ΔD + L, and that due to dead load alone, ΔD:   

ΔL = ΔD + L – ΔD                                                              (10.16) 

This is depicted in Fig. 10.6.  In the calculation of ΔD , for deciding whether to 
consider the section to be cracked or uncracked, it is prudent to compare the dead 
load moment MD with the reduced cracking moment crM~ , as discussed in Example 

10.1(a).  The section may be treated as uncracked only if MD  is less than crM~ .   

 

crM~  

moment 
M 

MD 

MD + L 

Δcr ΔD ΔD + L
0 

ΔL

based on Igr

Ieff, D
Ieff, D + L

deflection Δ 

based on Icr

 

Fig. 10.6  Short-term deflections due to dead loads and live loads 

EXAMPLE 10.2 

For the slab of Example 10.1, determine the short-term deflection due to live loads 
alone. 

SOLUTION 

• ΔL = ΔD + L – ΔD, where ΔD + L = 10.26 mm as per IS 456 (from Example 10.1a) 
 

Short-term deflection due to dead loads alone: ΔD

• MD = wDLl2/8 = 6.0× 4.162/8 = 12.98 kNm per m width 
              < crM~  = 16.33 kNm per m width [refer Example 10.1(a)]. 
Hence, the section should be treated as uncracked. 

⇒ Ieff, D = Igr = 6.667× 108  mm4; [refer Example 10.1] 
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               E = Ec = 25000 MPa  

⇒ 
)106.667(25000

)4160()1098.12(
48
5

48
5

8

262

××

××
×==Δ

eff

D
D EI

lM
 

     = 1.35 mm 

Short-term deflection due to live loads alone: ΔL

ΔL = ΔD+L – ΔD  
     = 10.26 – 1.35 
     = 8.91 mm 

EXAMPLE 10.3 

Determine the maximum short-term deflection under dead loads and live loads for 
the doubly reinforced beam of Example 5.4.  Also determine the short-term 
deflection due to live loads only. 

SOLUTION 

• Given: l = 6.0 m, b = 250 mm, D = 400 mm, d = 348 mm, ′d = 48mm, 
Ast = 1848 mm2, Asc = 942.5 mm2, fck = 25 MPa, fy = 415 MPa, wDL = 7.5 kN/m 

(including self-weight) plus WDL = 30 kN at midspan, wLL = 10.0 kN/m [refer 
Example 5.4] 
The details of the beam loading and section are shown in Fig. 10.7. 

• Formula for maximum short-term deflection (at midspan): 

Δ = +
5

384
1
48

4 3wl
EI

Wl
EIeff eff

 

    = 5
48

08
2

1
l

EI
M M

eff
[ .+ 2 ]  [refer Fig. 10.7(a), (b)] 

where M1 and M2 are the midspan moments due to distributed loading and 
concentrated load respectively. 

• Maximum moments at midspan 
i) due to DL alone: MD = M1,D + M2,D = w lDL

2 8 +W lDL 4  
            = (7.5 × 6.02/8) + (30.0 × 6.0/4) 

            = 33.75 + 45.0 = 78.75 kNm 
ii) due to DL + LL: MD + L = MD + M1, L  
        = 78.75 + (10.0 × 6.02/8) 

        = 78.75 + 45.0 = 123.8 kNm 
• Short-term modulus of elasticity: 
E = Ec = 5000 25  = 25000 MPa 
• Gross section properties:  

I bDgr =
3 12  = 250 × 4003/12 = 13.3333 × 108 mm4

Mcr = f I Dcr gr ( . )05   
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where fcr = 0.7 20  = 3.13 MPa 
⇒ Mcr = 3.13 ×(13.3333 × 108)/(0.5 × 400) 
            = 20.87 × 106 Nmm = 20.87 kNm  

crM~ =0.7 Mcr =0.7 × 20.87 × 106 = 14.61 × 106 Nmm <MD, MD+L 

Hence, Ieff < Igr  
WDL = 30 kN

WDL = 7.5 kN/m
WLL = 10 kN/m

3.0m3.0m 

M1 = 17.5 × 6.02/8 = 78.8 kNm

M2 = 30 × 6.0/4 = 45.0 kNm

(a)  loads and moments

(b)  deflection diagram

250 
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52 

3–20 φ  
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(Asc = 1848 mm2)
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Fig. 10.7  Example 10.3 

Effective second moment of area 

• 
η−

=
)~(2.1 MM

I
I

cr

cr
eff ; 

η = −j k b bw( )(1 )  as per IS 456 formulation 

where I b kd d kd m A kd dcr st sc= + − + − − ′( ) ( ) ( ) ( )3 23 1  m A 2  
• The NA depth, kd, is obtainable by considering moments of areas of the cracked-

transformed section† about the NA (centroidal axis) [Fig. 10.7(b)] 
b kd m A kd d m A d kdsc st( ) ( ) ( ) ( )2 2 1+ − − ′ = −  
where m = Es/Ec = 2 × 105/25000 = 8 

                                                           
† Note that the transformed area of compression steel is taken as (m – 1)Asc and not (1.5m –
 1)Asc as considered in stress calculations [refer Section 4.6.5], because the increased modular 
ratio 1.5m (to account for creep effects) is not applicable in the context of short-term 
deflections. 
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⇒ 250(kd)2/2 + (8 – 1) (942.5) (kd – 48) = (8 × 1848) (348 – kd) 
⇒ 125(kd)2 + 21381.5 (kd) – 5461512 = 0 
Solving, kd = 140.3 mm (⇒ k = 140.3/348 = 0.4032) 
⇒ Icr = 250(140.3)3/3 + (8 × 1848) (348 – 140.3)2 + (7 × 942.5) (140.3 – 48)2

          = 9.24117 × 108 mm4  
⇒η = −j k b bw( )(1 ) = (1-0.4032/3)(1-0.4032)1.0 = 0.5166 

• MD = 78.75 kNm ⇒ crDeff II ,  = [1.2 – (14.61/78.75)(0.5166)]–1 
    = 0.906< 1.0 

As Ieff  cannot be less than Icr, and Ieff, D+ L ≤ Ieff, D, it follows that 
Ieff, D = Ieff, D+ L = Icr = 9.24117 × 108 mm4  

Maximum short-term deflection 
(i) due to dead loads plus live loads: 

ΔD L
eff D L

l
EI

M M
D L D L+

+
= +

+ +

5
48

0 8
2

1 2
,

[ .  ]  

           = 
)1024117.9(2500048

10)}0.458.0(75.78{)6000(5
8

62

×××

××+××  

           = 18.62 mm (= 322l ) 
(ii) due to dead loads alone: 

ΔD
eff D

l
EI

M M= +
5

48
0 8

2

1 2
,

[ .  ]  

       = 
)1024117.9(2500048
10]458.075.33[)6000(5

8

62

×××

××+××  

       = 11.32 mm 
  ΔL = ΔD + L – ΔD
       = 18.62 – 11.32 
       = 7.3 mm 
Note: The reader may compare the results obtained in this Example with other 
methods (BS 8110 and Branson’s formula). 

EXAMPLE 10.4 

For the one-way continuous slab system designed in Example 5.3, compute the 
maximum midspan deflection in the end span due to dead loads and live loads.  Also 
compute the deflection due to live loads only. 

SOLUTION 

• Given: l = 3463 m, D = 160 mm, d = 127 mm, Ast = 357  mm2/m (at midspan), 
 Ast = 457  mm2/m, and Asc = 178  mm2/m, at first interior support (as shown in 

Fig. 10.8),  fck = 25 MPa, fy = 415 MPa, wDL = 5.25 kN/m2 wLL = 4.0 kN/m2.  
[Refer Fig. 10.8]. 

 Ec = 5000 25  = 25000 MPa 
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 m = Es/Ec = 2 × 105/25000 = 8 
Igr = 1000 × 1603/12 = 3.4133 × 108 mm4  
fcr = 0.7 25 = 3.5 MPa 
⇒ Mcr = fcr Igr/(0.5D) = 3.5 × (3.4133 × 108)/(0.5 × 160) 

              = 14.93 × 106 Nmm = 14.93 kNm per m width 
     crM~ = 0.7Mcr =10.45 kNm per m width 

 A

A

B

B230 
3400 300 

160 
457 mm2/m 

457 mm2/m
167.55 mm2/m

(a)

(b)  SECTION ‘A A’ (c)  SECTION ‘B B’

b = 1000 1000
mAst

(m – 1) AscmAst 
35

34

160 

228.4 mm2/m 

228.4 mm2/m 

 

Fig. 10.8  Example 10.4 

• The moment coefficients prescribed by the Code (and used in Example 5.3) will 
be used here to determine the moments. 
(a) at midspan: MM,D = wDLl2/12 = 5.5 × 3.4632/12 
               = 5.5 kNm per m width < crM~ = 10.45 kNm 
  MM,D + L = MM,D + wLLl2/10 = 5.5 + (4.0 × 3.4632/10) 
               = 10.3 kNm per m width < crM~  
(b) at end support: M1,D = wDLl2/24 = 5.5 × 3.4632/24  
                    = 2.75 kNm < crM~  
       M1,D + L = (wDL + wLL)l2/24 = 9.5 × 3.4632/24 
                    = 4.75 kNm < crM~  
 
(c) at first interior support: 
       M2,D = wDLl2/10 = 5.5 × 3.4632/10 
               = 6.60 kNm per m width < crM~  
   M2,D + L = M2,D + wLLl2/9 = 6.60 + (4.0 × 3.4632/9)  
                = 11.93 kNm > crM~  

Effective second moment of area 
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(a) at midspan: 
(i)  due to DL: MM,D < crM~ ⇒ (Ieff, m)D = Igr = 3.4133 × 108 mm4  

(ii) due to DL + LL: MM,D + L = 10.3 kNm < crM~   
⇒ (Ieff, m)D + L = 3.4133 × 108 mm4

(b) at end support: 
M1,D + L < crM~   ⇒ (Ieff, 1)D = (Ieff, 1)D + L = Igr = 3.4133 × 108 mm4  
(c) at first interior support: 
(i) due to DL: M2,D = 6.6 kNm < crM~  

(ii) due to DL + LL: M2,D + L = 11.93 kNm > crM~  
The section is doubly reinforced [Fig. 10.8(c)].  Taking moments of areas of 
the cracked-transformed about the NA, 
1000 × (kd)2/2 + (7 × 167.55)(kd – 35) = (8 × 457) × (126 – kd) 
⇒ 500(kd)2 + 4828.85 (kd) – 501705.8 = 0 
Solving, kd = 27.2 mm, k = 27.2 /126 =0.2158 
⇒ Icr = 1000 × (27.2 )3/3 + (7 × 167.55) (27.2 – 34)2 + (8 × 457)(126 – 27.2)2  
         0.4245 × 108 mm4  
⇒η = −j k b bw( )(1 ) = (1-0.2158/3)(1-0.2158)1.0 = 0.7278 

⇒ 
7278.0)93.1145.10(2.1

10 0.4245
)~(2.1

8

−
×

=
η−

=
MM

I
I

cr

cr
eff =0.7547 × 108  

M2,D = 6.6 kNm ⇒ (Ieff, 2)D = Igr = 3.4133 × 108 mm4  
M2,D + L = 11.63 kNm ⇒ (Ieff, 2)D + L = 0.7547 × 108 mm4 > Icr  

• Weighted average [Fig. 10.8(a)] 
Ieff, av = 0.7Ieff, m + 0.15(Ieff,1 + Ieff, 2) 
(i) under DL: (Ieff, av)D = 0.7 × (3.4133 × 108) + 0.15 (3.4133 + 3.4133) × 108  
               = 3.4133 × 108  mm4  
(ii) under DL + LL: (Ieff, av)D + L = 0.7 × (3.4133 × 108) 

 + 0.15 (3.4133 + 0.7547) × 108 = 3.0145 × 108  mm4  
Short-term deflection 

• Δ Δ≈ =m
eff

l
EI
5

48

2
 [1.2Mm – 0.2Mo] (Eq. 10.3) 

where Mo = wl2/8 
(i) due to DL, Mm = 5.5 kNm, Mo = 5.5 × 3.4632/8 = 8.245 kNm 

⇒  = ΔD
)104133.3(2500048

10)245.82.05.52.1()3463(5
8

62

×××

××−×××  = 0.73 mm 

(ii) due to DL + LL, Mm = 10.3 kNm , Mo = 9.5 × 3.4632/8 = 14.24 kNm 

⇒  = ΔD L+
)100145.3(2500048

10)24.142.03.102.1()3463(5
8

62

×××

××−×××  = 1.58 mm (= l/2192) 

(iii) due to LL alone: = Δ L ΔD L+  – ΔD  
       = 1.58 – 0.73 
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        = 0.85 mm 

10.4   LONG-TERM DEFLECTION 

The deflection of a reinforced concrete flexural member increases with time, mainly 
due to: 

• differential shrinkage or temperature variation (causing differential strains 
across the cross-section, resulting in curvature); 

• creep under sustained loading; and 
• temperature effects in statically indeterminate frames [Fig. 10.9]. 
The factors affecting shrinkage and creep are related to the environment, making 

of concrete and loading history; these have been described in detail in Sections 2.11 
and 2.12.  It may be noted that, unlike creep strains, shrinkage and temperature 
strains are independent of the stress considerations in the concrete.  Furthermore, 
shrinkage and temperature effects are reversible to a large extent, unlike creep 
effects. 

due to
TEMPERATURE

INCREASE

due to SHRINKAGE
or TEMPERATURE

DECREASE

 
Fig. 10.9  Deflections in a statically indeterminate frame due to temperature effects or 

shrinkage 

The combined long-term deflection due to shrinkage, creep and temperature 
effects may be as large as two to three times the short-term deflection due to dead 
and live loads.  It may also be noted that, whereas excessive short-term deflections 
can be effectively countered by cambering, this is not generally done in the case of 
long-term deflections.  Providing a camber to a reinforced concrete flexural member 
implies casting the member in such a configuration that, following the removal of the 
formwork, the member deflects (under dead loads) into a horizontal position.  This is 
commonly done in the case of cantilever beams and slabs. 

The fact that the observed deflections of a structure soon after construction 
are well within limits is no guarantee that this will remain so in the future.  In 
most cases, it is the long-term deflection that gradually builds up over a 
period of time (2–5 years or even more), and if the total deflection exceeds 
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the acceptable limit, a serviceability failure will occur.  Designers will do well 
to bear this in mind. 

Additional factors which can contribute to increased long-term deflection (not 
considered here) include formation of new cracks, widening of earlier cracks, and 
effects of repeated load cycles. 

10.4.1   Deflection Due to Differential Shrinkage 

In an unrestrained reinforced concrete member, drying shrinkage of concrete results 
in shortening of the member.  However, the reinforcing steel embedded in the 
concrete resists this shortening to some extent, with the result that compressive stress 
is developed in the steel, and tensile stress is developed in the concrete.  When the 
reinforcement is placed symmetrically in the cross section, shrinkage does not result 
in any curvature of the member — except in statically indeterminate frame elements, 
where shrinkage results in an overall change in geometry of the entire frame, and has 
an effect similar to temperature [Fig. 10.9]. 

When the reinforcement is unsymmetrically placed in the cross-section (as is 
usually the case in flexural members), differential strains are induced across the cross 
section — with the locations with less (or no) reinforcement shrinking more than the 
location with relatively high reinforcement.  This is depicted in Fig. 10.10(a) for a 
simply supported beam (where the main bars are located at the bottom), and in 
Fig. 10.10(b) for a cantilever beam (where the main bars are on top).  For 
convenience, it is assumed that the strain gradient is linear.  The differential 
shrinkage causes a curvature (ϕsh) in the member, which is in the same direction as 
that due to flexure under loading.  Thus the shrinkage deflection enhances the 
deflection due to loads. 

Code Expression for Shrinkage Curvature 

The shrinkage curvature ϕsh (due to differential shrinkage) may be expressed in terms 
of the shrinkage strains εsh (at the extreme concrete compression fibre) and ε st  (at 
the level of the tension steel) [refer Fig. 10.10] as follows:  

ϕ
ε ε

sh
sh st

d
=

−                                                          (10.17) 

where d is the effective depth. 

⇒ ϕ ε ε
εsh

sh st
shd

= ⎛
⎝⎜

⎞
⎠⎟

−⎡
⎣⎢

⎤
⎦⎥

1  

⇒ ϕ
ε

sh
sh

D
k= ⎛

⎝⎜
⎞
⎠⎟

  

where                                                     k = 1− ε εst sh

d D
 

The parameter, k, evidently depends, amongst other things, on the extent of 
asymmetry in the reinforcement provided in the cross-section.  The Code (Cl. C–3.1) 
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suggests the following expression for shrinkage curvature based on empirical fits 
with test data [Ref. 10.2]: 
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d

(a)

(b)

ϕ
ε ε

sh
sh st

d
≈
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d

1

εst  

ϕsh 

1 

d 

εsh 

1
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ϕsh

1
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Fig. 10.10  Curvature due to differential shrinkage 

ϕ
ε

sh
csk
D

= 4                                                                (10.18) 

where, εcs ≡ the ultimate shrinkage strain of concrete, and  

k
p p p p p
p p p p p
t c t t c

t c t t c
4

0 72 1 0 0 25 1 0
0 65 1 0 1 0

=
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− ≤ − ≥

⎧
⎨
⎪

⎩⎪

. ( ) . ( ) .
. ( ) . ( ) .

         for .         
        for                   

    (10.19) 

where pt ≡ 100Ast/(bd) and pc ≡ 100Asc/(bd) denote the percentages of tension 
reinforcement and compression reinforcement respectively.  When pt = pc (i.e., the 
beam is symmetrically reinforced), k4 = 0, and hence ϕ sh = 0. 

Relation Between Deflection and Shrinkage Curvature 

The deflection due to shrinkage in a reinforced concrete beam depends on the 
variation of shrinkage curvature ϕsh along the span of the beam and the boundary 
conditions of the beam.  For convenience, it may be assumed that the curvature ϕsh 
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remains constant in magnitude† and merely changes sign at points of inflection, 
which separate the beam into sagging (‘positive’ curvature) and hogging (‘negative’ 
curvature) segments.  This is depicted in Fig. 10.11 for some typical boundary 
conditions. 

 Δsh = ϕsh l 2/8

ϕsh 
ϕsh 

Δsh = ϕsh l 2/8 

l l

(a)  simply supported 
beam 

(b)  cantilever 
beam 

l /4 l /2 l /4

Δsh = 0.063 ϕsh l 2
Δsh 

x1 x2

x x l 1 2 1 1 2= = −( )

l

(c)  fixed beam (d)  propped cantilever 

ϕsh

ϕsh

 

Fig. 10.11  Relation between deflection and shrinkage curvature 

The relationship between deflection Δ sh  and curvature ϕsh, for any set of 
boundary conditions [Fig. 10.11] can be established by any of the standard methods 
of structural analysis (such as the conjugate beam method or the moment area 
method).  In these methods, the curvature ϕsh takes the place of M/EI.  Using these 
methods, the deflections can be obtained as: 

Δ sh

sh

sh

sh

sh

l
l
l
l

=

⎧

⎨
⎪
⎪

⎩
⎪
⎪

0 125
0 500
0 063
0 086

2

2

2

2

.
.
.
.

ϕ
ϕ
ϕ
ϕ

         for simply supported beams
         for cantilever  beams           
        for fixed beams                   
        for propped cantilevers       

            (10.20) 

or, in general,  

Δ sh shk l= 3
2ϕ                                                  (10.21) 

                                                           
† In actual beams, the ratio ( )p p pt c− t in Eq . 10.19, may not be uniform along the span.  
It is generally satisfactory to compute this ratio (and hence, k4) at the midspan location in 
simply supported and continuous beams, and at the support section in cantilever beams. 
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where l is the effective span of the beam. 

The ratio (Δsh /ϕsh l2 ) is denoted by the parameter k3 in the Code (Cl. C–3.1) and 
the results obtained above are summarised in the Code.  For convenience, the Code 
permits the use of the condition of ‘fixity’ for continuous ends, and thus the Code 
recommends values of 0.086 and 0.063 for k3  for beams continuous at one end and 
both ends respectively. 

Expression for Maximum Shrinkage Deflection 

The maximum shrinkage deflection Δsh in a reinforced concrete flexural member may 
be expressed (by combining Eq. 10.18 Eq. 10.21 follows: 

Δ sh csk k l D= 3 4
2ε ( )                                                  (10.22) 

where k3 is a constant which varies between 0.063 and 0.50, depending on the 
boundary conditions [Eq. 10.20]; k4 is another constant which varies between 0.0 and 
1.0, depending on the relative magnitudes of pt and pc [Eq. 10.19]; εcs is the ultimate 
shrinkage strain of concrete [refer Section 2.12.1]; D is the overall depth and l the 
effective span of the flexural member. 

The value of ε cs  to be considered for calculating Δsh [Eq. 10.22] depends on 
various factors such as the constituents of concrete (especially water content at the 
time of mixing), size of the member, relative humidity and temperature.  As 
explained in Section 2.12.1, the value of εcs = 0.0003 mm/mm suggested by the Code 
(Cl. 6.2.4.1) in the absence of test data is rather low.  Under hot and low-humidity 
conditions, and where high water content has been employed in the making of 
concrete, values of εcs up to 0.0010 mm/mm have been reported.  Hence, the choice 
of εcs should be judiciously made.  It may be noted that ACI Committee 435 
[Ref. 10.17] and Branson [Ref. 10.5] have suggested the use of εcs = 0.0004 mm/mm 
for routine deflection calculation, and higher values wherever required. 

Other empirical methods of determining shrinkage deflection are described in 
Ref. 10.5 – 10.7, 10.10, 10.16 – 10.18. 

10.4.2   Deflection Due to Creep 

Under sustained loading, compressive strains in concrete keep increasing nonlinearly 
with time, owing to the phenomenon called creep.  The variation of creep strain with 
time for concrete under uniaxial compression [refer Fig. 2.15] and the factors 
influencing creep in concrete have been described in Section 2.11.  The creep 
coefficient, Ct, defined as the ratio of the creep strain, εcp, to the initial elastic strain 
(‘instantaneous strain’), εi, provides a measure of creep in concrete at any given time.  
The maximum value of Ct, called the ultimate creep coefficient (designated as θ by 
the Code), is required for predicting the maximum deflection of a flexural member 
due to creep.  In the absence of data related to the factors influencing creep, the Code 
(Cl. 6.2.5.1) recommends values of θ  equal to 2.2, 1.6 and 1.1 for ages of loading 
equal to 7 days, 28 days and 1 year respectively. 
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In a flexural member, the distribution of creep strains across the depth at any 
cross-section is non-uniform, with a practically linear variation similar to that 
produced by the applied loading (i.e., bending moment).  This linear variation of 
creep strains [Fig. 10.12(b)] results in a creep curvature, ϕcp, which is additive to the 
initial elastic curvature, ϕi, and is similar in effect to the shrinkage curvature ϕsh 
described in Section 11.4.1.  It may be noted that although the creep effect is 
primarily related to increased strains in concrete under compression, there is also a 
marginal increase in the tensile strain in the steel†, as indicated in Fig. 10.12. 

ϕcp

ϕi

ϕi + ϕcpxcp

xi

εi εcp

initial (elastic)
initial

+ creep

(a)  section (b)  strains (c)  stresses

σci

Ci

initial

initial +
creep

T

 

Fig. 10.12  Creep curvature in a flexural member 

Relation Between Creep Deflection and Initial Elastic Deflection 

Within the range of service loads, creep curvature ϕcp may be assumed to be 
proportional to the initial elastic curvature ϕi.  With reference to Fig. 10.12(b), 

ϕ
ϕ

ε
ε

cp

i

cp cp

i i

x
x

=  = kr Ct                                                (10.23) 

where Ct ≡ εcp/εi is the creep coefficient, and kr ≡ xi /xcp is the ratio of the ‘initial’ 
neutral axis depth (xi) to the neutral axis depth due to creep (xcp).  As xi < xcp, the 
coefficient kr is less than unity.  For singly reinforced flexural members, kr ≈ 0.85 
[Ref. 10.17].  The presence of compression reinforcement reduces εcp and hence ϕcp.  
To allow for this reduced curvature and deflections, the following expression is 
recommended by ACI [Ref. 10.17]: 

kr = 0.85/(1 + 0.5pc)                                               (10.24) 

where pc ≡ 100Asc/bd is the percentage of compression reinforcement. 
The variation of creep curvature ϕcp along the span of the flexural member may be 

assumed to be identical to the variation of ϕi.  Hence, it follows that: 

                                                           
† Steel itself is not subjected to creep.  However, due to creep in concrete (see Fig. 10.12), 
there is a slight increase in the depth of neutral axis, with a consequent reduction in the 
internal lever arm.  Hence, to maintain static equilibrium with the applied moment at the 
section, there has to be a slight increase in the steel stress, and hence the steel strain. 
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Δ

Δ
cp

i

cp

i
=
ϕ

ϕ
= kr Ct

where Δi and Δcp denote respectively the maximum initial elastic deflection and the 
additional deflection due to creep.  For estimating maximum (ultimate) deflection 
due to creep, the ‘ultimate creep coefficient’ θ  should be used in lieu of Ct.  
Accordingly, 

Δcp = (kr θ) Δi                                                (10.25) 

where Δi is to be taken as the ‘initial’ elastic displacement due to the permanently 
applied loads (dead loads plus sustained part of live loads).  It may be noted that 
although transient live loads are excluded in the computation of Δi, the possibility of 
a reduced flexural stiffness on account of prior cracking due to such live loads should 
be considered.  Hence, the calculation of Δi should be based on Ieff, D + L, and not on 
Ieff,D.  It is in this respect that Δi differs from ΔD [refer Fig. 10.5].  In case both live 
load moments and dead load moments have the same distribution along the span, it 
follows that: 

Δ cp
DL

DL LL
D L

w
w w

=
+ +Δ

                                                          

                                        (10.26) 

This is because both Δcp and ΔD +L are computed with the same flexural rigidity, 
EIeff, D + L and hence they are proportional to the load intensity. 

Code Procedure for Estimating Creep Deflection 

The procedure given in the Code (Cl. C – 4.1) for calculating creep deflection is 
different from the ACI recommendation [Eq. 10.27].  Instead of determining the 
creep deflection Δcp directly in terms of the initial elastic deflection Δi (due to the 
permanent loads), the Code procedure involves the explicit calculation of the 
deflection Δi+ cp due to the permanent load plus creep, using an effective modulus of 
elasticity Ece = Ec/(1 + θ) [refer Section 2.11.4, Eq. 2.8].  The creep deflection Δcp is 
then obtained as the difference between Δi + cp and Δi: 

Δ cp  = Δi + cp – Δi                                               (10.27) 

where Δi + cp is calculated assuming Ece and the corresponding Ieff
†

 i

c eff, D + L

, whereas Δ  is 
calculated assuming E  and I  . 

The Code formula for the effective modulus of elasticity is based on the 
reasonable assumption that the total strain in concrete εi + cp (i.e., initial elastic strain 
plus creep strain) is directly proportional to the stress σi induced by the permanent 
loads [Fig. 10.13].  

As 
 

† The increased modular ratio m = Es/Ece is generally quite high, with the result that the second 
moment of area of the corresponding cracked-transformed section (with steel area 
contributions mAst, mAsc) will also be high — but has to be limited to Igr.  In case the 
calculated Icr is less than Igr, then Ieff  has to be calculated using Eq. 10.5a and considering the 
moment due to dead load plus live load. 
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εi + cp = εi + εcp = εi (1 + θ) 
it follows that 

Ece ≡ σ
ε

i

i cp+
 = 

σ
ε θ

i

i

cE
   1
1 1+

=
+θ

                              (10.28) 

where Ec ≡ σi/εi

εi

σi

εi + cp0

σ

working stress limit

1
Ec

1
Ece = Ec /(1 + θ )

εcp = θεi

ε  

Fig. 10.13  Effective modulus of elasticity under creep 

The steps involved in the Code procedure for determining Δcp may be summarised 
[Ref. 10.2] as follows: 

1. Compute ΔD + L due to the characteristic dead plus live loads (considering Ec 
and Ieff, D + L). 

2. Compute Δi due to permanent (dead) loads alone, considering Ec and Ieff, D + L. 
3. Compute Δi + cp due to permanent loads plus creep, considering Ece and 

Ieff, D + L. 
4. Calculate the creep deflection Δcp = Δi + cp – Δi    [Eq. 10.27]. 

10.4.3   Deflection Due to Temperature Effects  

As mentioned earlier with reference to Fig. 10.9, seasonal changes in temperature can 
introduce curvatures (and stresses) in statically indeterminate frames, that may be 
significant.  The determination of bending moments due to temperature loading may 
be done by any of the standard methods of structural analysis of indeterminate 
frames.  An appropriate value of the coefficient of thermal expansion should be 
considered  — as explained in Section 2.12.2.  The deflections in the various beam 
members may now be determined (using Eq. 10.2 or 10.3) in a manner identical to 
the determination of short-term deflection in continuous beams [refer Section 10.3.5].  
The same procedure is applicable to deflections induced by overall shrinkage in 
statically indeterminate frames. 

In addition to overall curvatures in an integrated structure, local deflections may 
be introduced in individual members (such as beams and slabs) owing to 
unsymmetrical reinforcement.  The calculation of such deflections is similar to the 
calculation of deflections induced by differential shrinkage [refer Section 10.4.1].  In 
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case of a known thermal gradient across the depth of a flexural member, a simple 
‘strength of materials’ approach may be adopted for calculating deflections. 

It may be noted, however, that in routine designs of reinforced concrete buildings, 
deflections due to temperature effects are rarely computed.  This is largely because 
such deflections are not usually significant† and are reversible.  However, the tensile 
stresses (and consequent cracks) induced by restraints against temperature changes 
can be significant, and these need to be taken care of by proper detailing of 
reinforcement — as explained in Section 2.12.2. 

10.4.4   Checks on Total Deflection 

After calculating the various components of short-term deflection (ΔD, ΔD + L) and 
long-term deflection (Δsh, Δcp, Δtemp), the acceptability of these deflections should be 
verified with reference to the deflection limits specified by the Code.  As explained 
in Section 10.2.1, two checks on total deflection are called for: 

ΔD + L + Δlong-term  ≤  l /250                                                 (10.29a) 

ΔL + Δlong-term  ≤  
l 350

20 mm
          (whichever is less)

⎧
⎨
⎩

     (10.29b) 

where 
Δlong-term = Δsh + Δcp + Δtemp                                  (10.29c) 

and l is the effective span of the flexural member under considerations. 
In case these limits are exceeded, it may be investigated if the excess can be 

contained by providing a camber (as explained earlier).  Otherwise, the design of the 
member should be suitably revised — ideally, by enhancing the depth (and thereby 
the stiffness) of the member.  If there are constraints on the cross-sectional 
dimensions, then the grade of concrete (and hence, Ec) should be increased suitably.  
Alternatively, measures may be taken to reduce the effective span and/or the loading 
on the member.  Providing compression reinforcement will also reduce deflections, 
especially those due to shrinkage and creep. 

EXAMPLE 10.5 

In continuation with Example 10.1 and 10.2, determine the maximum long-term 
deflections due to shrinkage and creep, and hence apply the Code checks on the total 
deflection.  Assume an ultimate shrinkage strain εcp = 0.004 and an ultimate creep 
coefficient θ = 1.6. 

SOLUTION 

• From Examples 10.1 and 10.2, 

                                                           
† In special circumstances, these may be significant, and in such cases deflections due to 
temperature effects should be explicitly computed. 
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l = 4160 mm, D = 200 mm, Ast = 628 mm2/m (pt = 0.38), d = 165 mm, fck = 25 MPa, 
fy =415 MPa, wDL = 6.0 kN/m2, wLL = 4.0 kN/m2, Ec = 25000 MPa, crM~ = 16.33 
kNm/m., Icr = 0.9916 × 108 mm4, Igr =  6.667 × 108 mm4, MD + L = 21.63 kNm/m, 
Ieff, D + L = 1.5192 × 108 mm4, ΔD + L = 10.26 mm,  

MD = 12.98 kNm/m, Ieff, D = Igr, ΔD = 1.35 mm, ΔL = 8.91mm. 
Long-term deflection due to shrinkage: Δsh  
• Δsh = k3 k4 εcs (l2/D)   [refer Eq. 10.22] 

where k3 = 0.125 for simply supported end conditions, 
           k4 = 0.72 pt  = 0.72 38.0  = 0.444 (< 1.0)    [refer Eq. 10.19, pc = 0] 
          εcs = 0.0004  (given) 
⇒ Δsh = (0.125)(0.444)(0.0004)(4160)2/(200) = 1.92 mm 

Long-term deflection due to creep: Δcp  
• Ece = Ec/(1 + θ) 

      = 25000/(1 + 1.6) = 9615.4 MPa  
⇒ m = Es/Ece = 2 × 105/9615.4 = 20.8 
⇒ ρm = (0.38 × 10–2) × 20.8 = 0.079 

⇒ k = 2 2( ) ( )ρ ρ ρm m+ − m  = 0.3263 
⇒ kd = 0.3263 × 165 = 53.84 mm 
⇒ Icr = 1000 × (53.84)3/3 + (20.8 × 628) × (165 – 53.84)2

          = 2.1343 × 108 mm4 < Igr = 6.667× 108 mm4  
⇒η = −j k b bw( )(1 ) = (1-0.3263/3)(1-0.3263)1.0 = 0.6 

⇒ Ieff  = 
η− + )~(2.1 LDcr

cr

MM
I

 = 
)6.0)(63.2133.16(2.1

101343.2 8

−
×  

              = 2.8571 × 108 mm4 < Igr  

• Δi + cp = 5
48

2M l
E I

D

ce eff D L, +
 = 

)108571.2(4.9615
)4160(1098.12

48
5

8

26

××

××
×  = 8.52 mm 

• Δi = 
w

w w
DL

DL LL
D L+ +Δ  = 

10
6  × 10.26 = 6.16 mm 

∴ Δcp
† = Δi + cp i – Δ  = 8.52 – 6.16 = 2.36 mm 

Checks on total deflection 
1. ΔD + L + Δsh + Δcp = 10.26 + 1.92 + 2.36 = 14.54 mm 

Allowable limit = l/250 = 4160/250 = 16.64 mm > 14.54 — OK. 
2. ΔL + Δsh + Δcp = 8.91 + 1.92 + 2.36 = 13.19 mm 

Allowable limit = l/350 = 11.88 mm (which is less than 20 mm) 
          < 13.19 mm, indicating a marginal excess 

                                                           
† Alternatively, applying the ACI method, kr = 0.85 for pc = 0 [Eq. 10.24] ⇒ Δcp = kr θ  Δi = 
0.85 × 1.6 × 6.16 = 8.38 mm, which is much greater than Δcp = 2.36 mm obtained as per IS 
Code procedure. 
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EXAMPLE 10.6 

In continuation with Example 10.3, determine the maximum long-term deflections 
due to shrinkage and creep, and hence apply the checks on the total deflection.  
Assume an ultimate shrinkage strain εcp = 0.0004 and an ultimate creep coefficient 
θ = 1.6. 

SOLUTION 

• From Example 10.3, 
l = 6000 mm, b = 250 mm, D = 400 mm, d = 348 mm, ′d = 48 mm, Ast = 1848 mm2 

(pt = 2.124), Asc = 942.5 mm2 (pc = 1.0833),  fck = 25 MPa, fy = 415 MPa, wDL = 
7.5 kN/m, plus WDL = 30 kN, at midspan, wLL = 10.0 kN/m [refer Fig. 10.7], Ec = 
25000 MPa, crM~ = 16.33 kNm, Icr = 9.24117 × 108 mm4, Igr = 13.3333 × 
108 mm4, MD = M1 + M2 = 23.75 + 45.0 = 78.75 kNm, MD + L = 123.8 kNm;  

Ieff, D = Ieff, D + L = Icr = 9.24117× 108 mm4, ΔD + L = 18.62 mm, ΔD = 11.32 mm, 
ΔL = 7.3 mm. 

Long-term deflection due to shrinkage: Δsh  
• Δsh = k3 k4 εcs (l2/D) 

where k3 = 0.125 for simply supported end conditions, 
pt – pc = 2.124 –1.0833 = 1.0407 > 1.0 
⇒ k4 = 0.65 ( )p p pt c t− = 0.65 2.124)1.0407(  = 0.464 (< 1.0) [Eq. 10.19] 
 εcs = 0.0004 (given) 
⇒ Δsh = (0.125)( 0.464)(0.0004)(6000)2/(400) = 2.088 mm 

Long-term deflection due to creep: Δcp  
• Ece = Ec/(1 + θ) = 25000/(1 + 1.6) = 9615.4 MPa 

⇒ m = Es/Ece = 2 × 105/9804 = 20.8 
Taking moments of areas of the cracked-transformed section about the NA 
[Fig. 10.7(b)], 
250(kd)2/2 + (20.8 – 1)(942.5)(kd – 48) = (20.8 × 1848)(348 – kd) 
⇒ 125(kd)2 + 57099.9(kd) – 14272315 = 0 

• Solving, kd = 179.45 mm 
⇒ Icr = 250 (179.45)3/3 + (20.8 × 1848) (348 – 179.45)2 + (19.8 × 942.5)  
(179.45– 48)2

          = 18.96 × 108 mm4  
but cannot exceed Igr = 13.3333 × 108 mm4  
⇒ Ieff  = Igr = 13.3333 × 108 mm4  

⇒ Δi + cp = 5
48

2l
E Ice eff

 × [M1D + 0.8 M2D] 

               = 
)103333.13(4.961548

10)}0.458.0(75.33{)6000(5
8

62

×××

××+××  = 20.4 mm 

Δi =ΔD (as Ieff, D = Ieff, D + L — refer Example 10.3) 
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= 11.32 mm 
⇒∴ Δcp

† = Δi + cp i – Δ  = 20.4 – 11.32 = 9.08 mm 

Checks on total deflection 
1. ΔD + L + Δsh + Δcp = 18.62 + 2.088 + 9.08 = 29.79 mm 

Allowable limit = l/250 = 6000/250 = 24.0 mm < 29.79 mm.  Hence, there is 
an excess of 5.79 mm beyond the permissible limit — which can be overcome 
by providing a camber of at least 6 mm at the midspan location.  
[Compensation by camber is usually limited to the dead load deflection.  
Here, ΔD = 11.32 mm; hence OK.  The camber can be as much as 10 mm.] 

2. ΔL + Δsh + Δcp = 7.3 + 2.088 + 9.08 = 18.47 mm 
Allowable limit = l/350 = 17.14 mm (which is less than 20 mm) 
          < 18.47 mm 
which represents only a marginal excess. 

10.5   SERVICEABILITY LIMIT STATE: CRACKING 

10.5.1   Cracking in Reinforced Concrete Members 

Cracking of concrete will occur whenever the tensile strength (or the ultimate tensile 
strain) of concrete is exceeded.  As concrete has relatively low tensile strength as 
well as low failure strain in tension, cracking is usually inevitable in normal 
reinforced concrete members.  However, the degree of cracking (in terms of width 
and spacing of cracks) can be controlled through proper design.  Cracking is 
considered undesirable, not only for obvious aesthetic reasons, but also because it 
adversely affects durability (in aggressive environments) and leads to corrosion of 
the embedded steel.  Also, in some cases, such as liquid-retaining structures and 
pressure vessels, it can adversely affect the basic functional requirements (such as 
water-tightness in a water tank).  Hence, it is important for the designer to have an 
understanding of the various causes of cracking, the allowable limits on crack-widths 
under different situations as well as the methods to achieve crack control.  It may also 
be stated that there is presently widespread lack of awareness of these aspects related 
to the serviceability limit state of cracking.  In the modern trend of adopting limit 
states design concepts, the emphasis has been on the limit of state of collapse, and 
often the limit state of serviceability with respect to cracking of concrete gets 
compromised, as is the case with deflection.   

Cracking in reinforced concrete members is attributable to various causes 
[Ref. 10.18], particularly: 

1. flexural tensile stress due to bending under applied loads [Fig. 10.14]; 
2. diagonal tension due to shear and/or torsion; 

                                                           
† Alternatively, using the ACI formulation, kr = 0.85/(1 + 0.5 × 1.0833) = 0.551 [Eq. 10.24] ⇒ 
Δcp = kr θ  Δi = 0.551 × 1.6 × 11.32 = 9.98 mm, which is close to (but slighly greater than) 
Δcp = 9.08 mm obtained by the Code procedure. 
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3. direct tensile stress under applied loads (for example, hoop tension in a 
circular water tank); 

4. lateral tensile strains accompanying high compressive stress/strain due to 
Poisson effect (as in a compression test) or due to heavy concentrated loads as 
in a split cylinder test; 

5. restraint against volume changes due to shrinkage and temperature 
[Fig. 10.15], as well as due to creep and chemical effects; and 

6. additional curvatures due to continuity effects, settlement of supports, etc. 

Distributed loading

 
Fig. 10.14  Typical flexural cracks in a continuous one-way slab due to gravity loading 

Structural cracking in concrete occurs in tension, flexure or a combination of the 
two effects (eccentric tension).  When this happens, splitting of the concrete occurs at 
the surface, penetrating inwards.  Under direct tension, the crack generally runs 
through the thickness of the member (wall or slab), whereas under flexure, the crack 
is limited to the flexural tension zone.  In all cases, the spacing of cracks as well as 
width of individual cracks depends not only on the magnitude of tensile force acting, 
but also on the reinforcement detailing, properties of concrete and thickness of 
section.  It is observed that wide crack spacing is associated with relatively wide 
crack-widths, which is undesirable.  Such cracking is often associated with low 
reinforcement percentages, wide spacing of bars and the use of high strength 
reinforcing steels, such as Fe 415 and Fe 500 (because the associated tensile strains at 
service load levels will be relatively high).  

 

 
Fig. 10.15  Cracking due to restrained shrinkage and temperature effects in a lightly 

loaded slab 

Although cracking of concrete is inevitable, it is desirable to aim for a large 
number of well-distributed fine hairline cracks, rather than a few but wide 
cracks.  This is the objective of limit state design for the serviceability limit 
state of cracking. 
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It should be noted that although through proper design (for example, providing 
increased thickness), it is possible to contain the tensile stress in concrete within 
acceptable limits, the occurrence of cracking due to restrained shrinkage and thermal 
effects and induced tensile strains cannot be altogether eliminated†. 

The discussion in this Chapter is primarily limited to the estimation of crack-
widths due to applied bending moments and direct tensile forces.  The problems 
associated with the prediction of crack-widths due to restrained deformation are also 
briefly discussed.   

Cracking of concrete cannot be predicted with accuracy, because of inherent 
randomness in the nature of cracking.  The width (and spacing) of cracks is subject to 
wide scatter, and methods of crack-width calculation only attempt to predict the most 
probable‡ maximum crack-width as observed in laboratory tests.  The primary 
objective of calculating crack width is to avoid gross errors in design, which might 
result in concentration and excessive width of cracks. 

10.5.2   Limits on Cracking 

The acceptable limits of cracking vary with the type of structure and its environment.  
The Code (Cl. 35.3.2) recommends a maximum limit of 0.3 mm on the assessed 
surface width of cracks for concrete structures subject to ‘mild’ exposure.  This limit 
of 0.3 mm is based essentially on aesthetic considerations, but this limit is also 
considered to be adequate for the purpose of durability when the member is 
completely protected against weather or aggressive conditions [Ref. 10.2].  

However, in the case of “members where cracking in the tensile zone is harmful 
either because they are exposed to the effects of weather or continuously exposed to 
moisture or in contact with soil or ground water” (‘moderate’ exposure category), the 
crack-width limit specified by the Code is 0.2mm.  Under more aggressive 
environments (exposure categories: ‘severe’, ‘very severe’ and ‘extreme’), a more 
stringent limit of 0.1mm is recommended.   

For water-retaining structures, the British code BS 8007 (1987) [Ref.10.19] 
recommends a limiting surface crack-width of 0.2mm in general (deemed adequate 
for water-tightness) and a more stringent limit of 0.1mm when aesthetic appearance 
is of particular importance.  It is believed that cracks less than 0.2mm heal 
autogenously, as water percolates through the crack and dissolves calcium salts in the 
cement, preventing subsequent leakage.   

10.5.3   Factors Influencing Crack-widths 

Crack-widths in RC members subject to flexure, direct tension or eccentric tension, 
are influenced by a large number of factors, many of which are inter-related.  These 
include: 

                                                           
† For this reason, even in liquid retaining structures, where proportioning is sometimes done so 
as to keep tensile stresses in concrete at levels below its tensile strength, some minimum 
reinforcement is specified by Codes.  Also, the designer is required to design the reinforcement 
to resist fully the applied tension, ignoring the tension-resisting capacity of concrete. 
‡ Statistically, with 90 percent confidence limit, in general. 
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• tensile stress in the steel bars; 
• thickness of concrete cover; 
• diameter and spacing of bars; 
• depth of member and location of neutral axis; and 
• bond strength and tensile strength of concrete. 

When a beam is subject to a uniform bending moment [Fig. 10.2] and when the 
limiting tensile strain of concrete is exceeded (at the weakest location), a flexural 
crack will form, and the concrete in the regions adjoining the crack will no longer be 
subject to tensile force.  Due to the variability in tensile strength and ultimate tensile 
strain along the length of the beam, discrete cracks will develop at different stages of 
loading (within ±10 percent of the ‘cracking moment’) [Ref. 10.18].  Experimental 
studies indicate that these initial cracks (sometimes referred to as ‘primary’ cracks) 
are roughly uniformly spaced.  As discussed earlier (with reference to Fig. 10.2), the 
concrete in-between the cracks resist some tension, and the tensile strain is maximum 
midway between the cracks.  With increase in loading, additional cracks (called 
‘secondary cracks’) will form somewhere midway between these cracks, when the 
limiting tensile strain capacity is exceeded.  Both primary and secondary cracks will 
widen with increase in loading, and additional cracks may form (as the loading 
approaches the ultimate load), provided the bond between concrete and steel is 
capable of sustaining the development of significant tensile strain in the concrete 
(which can exceed the limiting strain capacity).  A similar mechanism of 
development of primary and secondary cracks is found to occur in RC members 
subject to direct or eccentric tension [Ref. 10.18].  In all cases of applied loading, the 
width of the crack is found to be maximum at the surface of the member, reducing 
(tapering) to a near-zero value at the surface of the reinforcement†.  Internal cracks 
(not visible from outside) are also likely to develop in the tension zone, with the 
width increasing at distances remote from the reinforcing bar.   

Studies have shown that the width of the crack at a point depends primarily on 
the following three key factors:  

1. the mean tensile strain (εsm) in the neighbouring reinforcement; 
2. the distance (acr) to the nearest longitudinal bar that runs perpendicular to 

the crack; and 
3. the distance to the neutral axis location (in the case of flexural cracks). 

From the point of view of crack-width control, it is the surface crack-width that is 
of concern.  The most obvious ways of minimising surface crack-widths at service 
loads are by (1) limiting the tensile stress in the steel (cracked section analysis), (2) 
minimising the spacing of reinforcing bars, and (3) providing bars as close as 
possible to the concrete surface in the tension zone (including side face 
reinforcement in relatively deep beams).   

                                                           
† If, however, the member is very lightly reinforced, the crack-width may be significant at the 
surface of the reinforcement, and the bar may even yield at the crack location.  This condition 
is, of course, highly undesirable under normal service loads, and can be avoided by providing 
appropriate minimum reinforcement. 
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It may be noted that increased cover results in increased crack-widths at the 
surface.  On the other hand, increased cover is highly desirable from the point of 
view of durability and protection against corrosion of reinforcement.  These two 
aspects appear to be contradictory [Ref. 10.2], but it is always desirable to provide 
the requisite concrete cover for durability, and to control the crack-width by adopting 
other measures such as increasing the depth of the flexural member, reducing the bar 
diameter and spacing, and maintaining low stress levels in the tension steel.  The use 
of low grade steel (mild steel) as tension reinforcement is particularly desirable in 
flexural members (such as bridge girders) where both control of crack-width and 
prevention of reinforcement corrosion are of extreme importance. 

In the earlier version of the Code, no explicit recommendations were given 
regarding procedures to calculate crack-widths.  However, in the recent revision 
(2000) of the Code, a procedure is given in Annex F for the estimation of flexural 
crack-widths (in beams and one-way slabs).  Unfortunately, the Code does not 
emphasise sufficiently on the need to estimate crack-widths, especially where 
relatively large cover is used.  Instead, the Code has retained a rather outdated clause 
from the old Code (which was perhaps valid in earlier times when admissible 
minimum clear covers were 15mm in slabs and 25mm in beams).  According to this 
clause (Cl. 43.1), explicit calculations of crack-widths are required only if the 
spacing of reinforcement exceeds the nominal requirements specified for beams and 
slabs [refer Section 5.2], regardless of the cover provided.  To make matters worse, 
the clause in the earlier code, limiting the maximum clear cover in any construction 
to 75 mm has, for some reason, been eliminated.  Of course. the highest figure given 
in Table 16 of the Code for the nominal cover is 75 mm, however, since this is the 
minimum required cover and there is no upper limit specified, a designer may be 
tempted to give a larger cover.  However, as highlighted in a recent study 
[Ref. 10.21], increased cover implies increased crack-widths, particularly in flexural 
members.   

There is little use in providing increased cover to reinforcement (with the 
desired objective of providing increased durability against chemical attack and 
corrosion) if that cover is cracked.  Such cracking (due to large covers) can be 
considerable, unless proper precautions are taken during design.  
Precautionary steps, under such circumstances, include the reduction of the 
tensile stress in the steel (by providing more reinforcement) and use of more 
closely spaced bars. 

10.5.4   Estimation of Flexural Crack-width 

The estimation of the probable maximum width of surface cracks in a flexural 
member is a fairly complex problem, and despite a fair amount of research in this 
field over the past four decades, the different equations evolved over the years 
predict values of crack-widths that are, in some cases, widely different.  Different 
methods (with semi-empirical formulations) have been adopted by different 
international codes, and these too have undergone revisions over the years. 

Experiments have shown that the average spacing sav of surface cracks is directly 
proportional to the distance acr from the surface of the main reinforcing bar.  Cracks 
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are most likely to form on the surface in the tensile zone mid-way between two 
adjacent bars, as shown in Fig. 10.16.  The value of acr , in terms of the bar spacing s, 
bar diameter db and effective cover dc is given by: 

( ) 22 22
bccr ddsa −+=                                                      (10.30) 

 
 

Spacing 
s

acr 

P ≡ Probable location of  
      maximum crack-width

P

Bar dia db 

s / 2
Effective 
cover dc 

Cross section of slab  

Fig. 10.16  Geometrical parameters of relevance in determining flexural crack-width in 
a slab 

In the case of a typical rectangular beam, the locations for determining maximum 
surface crack-widths are mainly at the soffit of the beam (when subject to sagging 
curvature), at distances where the value of acr is likely to be maximum [points P1 and 
P2 in Fig. 10.17].  Also, points on the side of the beam section, mid-way between the 
neutral axis and the centreline of reinforcement, should be investigated [point P3 in 
Fig. 10.17].   

mcrcr aw ε××=     constant                                                (10.31) 
where the constant has a value of 3.33 for deformed bars and 4.0 for plain round 
bars, and the cracks are likely to occur at a mean spacing of  1.67acr. 
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Fig. 10.17  Critical locations for determining flexural crack-width in a typical beam 
section 
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Thus, it is seen from Eq. 10.31 that the flexural crack-width at a beam surface is 
directly proportional to (i) the distance to the nearest longitudinal bar (or the neutral 
axis for location such as P3) and (ii) the mean strain in the concrete at the level under 
consideration.   

IS 456 Formulation 

The IS code in Annex F describes a procedure† for predicting flexural crack-
widths, which is apparently borrowed from the British Code [Ref. 10.12].  The 
expression for wcr takes the form shown in Eq. 10.31:  

wcr = 
)()( 21

3

min xDCa
a

cr

mcr

−−+
ε

                                        (10.32) 

where  acr and εm are as defined earlier (Eq. 10.31), D is the overall depth of the 
member, Cmin the minimum cover to the main longitudinal bar, and x the neutral axis 
depth [refer Fig. 10.17].  The calculations of  εm and x are crucial, and must account 
for the effect of ‘tension stiffening’.  Accordingly, the British Code BS 8110, on 
which Eq. 10.31 is based, recommends that they be based on the procedure described 
in Section 10.3.6 (which involves iterative calculations).  It may be noted that the 
calculations should also accommodate the long-term effects of creep.  This is done by 
taking the value of the allowable tensile stress in concrete at the level of the steel, fcts, 
to be equal to 0.55 MPa [compared to the value 1.0 MPa for short-term effects - refer 
Fig. 10.4(b)], and by including considerations of creep in the modular ratio.  It is also 
important to note that it is implicitly assumed that the strains in the steel are well 
within the elastic limit.  The Code, accordingly, does not permit the application of 
Eq. 10.32 to situations where the tensile stress in the steel (at the crack location) 
exceeds 0.8 fy.  After calculating x and fsm, the average tensile stress in the 
reinforcement, the value of εm at any point is easily obtained as: 

xd
xa

E
f

s

sm
m −

−′
=ε                                                      (10.33) 

where a’ refers to the distance from the extreme compression fibre to the point (such 
as P1, P2, P3 etc) at which the surface crack-width is being calculated [refer 
Fig. 10.17].   

The calculations, involving an iterative procedure to determine x and fsm, as 
described above, can be tedious, as shown in Example 10.7.  The Code IS 456:2000 
allows for an approximation for computing εm which involves only the conventional 
‘cracked’ section analysis using the modular ratio concept, whereby x and the 

                                                           
† However, the manner in which this formulation has been presented in Annex F of the Code 
lacks clarity, because it is incomplete and the background information regarding the exact 
procedure to estimate the neutral axis depth, x is not given.  Also, it may be noted that while 
the British Code adopts the same formulation (for the calculation of x) for computations of 
both crack-widths and deflections (based on ‘effective curvature’), the IS Code adopts a 
different formulation for deflection calculations (based on ‘effective second moment of area’), 
which is borrowed from a much older version of the British Code.  
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‘apparent’ strain ε1 at the location of interest are first calculated (assuming concrete 
to resist no tension), with 

xd
xa

E
f

s

st

−
−′

=ε1                                                     (10.34) 

where fst is the tensile stress in the reinforcement (in MPa units) and Es (= 2×105 
MPa) the modulus of elasticity of steel.   

The effect of tension stiffening is now accounted for through a term ε2, such that 
the desired mean tensile strain in concrete εm is now obtained simply as: 

21 ε−ε=εm                                                                 . 

The strain ε2 corresponds to a reduction in tensile stress in reinforcement.  For 
computing this, the Code (Annex F) suggests a reduction in tensile force in 
reinforcement, equal to the force generated by the triangular distribution of tensile 
stresses in concrete given in Fig. 10.4(b).  The tensile stress in concrete at steel level 
fcts is to be taken as 1.0 MPa (for short-term calculations) and 0.55 N/mm2 (for 
inclusion of long-term effects) [refer Annex F of Code].  Accordingly, ε2 works out 
to: 

ε2  = fcts × b (D – x) (a’ – x)/{2Es Ast (d - x)}                      (10.35a) 

The following empirical expression for ε2 is given in the Code†: 

)(3
))((

2 xdAE
xaxDb

sts −
−′−

=ε                                              (10.36) 

where b is the width of the section at the centroid of the tension steel, Ast is the area 
of the tension steel, and Es = 2×105 MPa.  If the value of ε2, calculated by Eq. 10.36, 
exceeds ε1 (i.e., εm < 0), then it should be construed that the section is uncracked. 

Considering the crack-width at the surface remote from the compression face 
[refer Fig. 10.17],  

′a  = D 
whereby Eq. 10.35 simplifies to  

⎥
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xDb
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  1                                (10.37) 

where fst is the stress at the centroid of the tension steel (cracked section), 
expressed in MPa units. 

Gergely Lutz Formula  

The practice in North America [Ref. 10.13, 10.14] is based on a formula due to 
Gergely and Lutz [Ref. 10.23].  In several European countries, the CEB–FIP 
procedure [Ref. 10.10] is favoured.  Some recent studies [Refs 10.24, 10.25], which 
                                                           
† Note that in the empirical Eq. 10.36, the multiplication factor 1/3 has the unit of stress 
(N/mm2).   
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compare the predictions of the prevailing international Code methods with a very 
large number of experimental test results reported by Clark, Hognestad, Base and 
others, conclude that the best results are predicted by the Gergely and Lutz formula. 

The formula for the maximum probable crack-width, in this case, is given by†: 

wcr = (11 × 10–6) stec f
xd
xDnAd ⎟
⎠
⎞

⎜
⎝
⎛

−
− )(3                             (10.38) 

where  
dc ≡ thickness of concrete cover measured from the extreme tension fibre to the 

centre of the nearest bar;  
Ae ≡ effective area of concrete in tension surrounding the main tension 

reinforcement, having the same centroid as the tension steel [Ae = 2(D – d)bw 
in Fig. 10.18(a)].  

 n ≡ number of bars in tension; in case different diameters are used, n shall be taken 
as the total steel area divided by the area of the largest bar diameter; and 

fst ≡ stress (in MPa) at the centroid of the tension steel. 

ε

x

c

fst/Es

shaded area = Ae =
2(D – d) bw

N.A.

εm

D d

ε1

d – x
D – x

s/2 s/2 centroid of steel area

D – d
D – d

acrdc
bw

Cmin

(a)  beam section (b)  strains  

Fig. 10.18  Parameters for crack-width calculation (Gergely-Lutz formula) 

EXAMPLE 10.7 

Determine the maximum probable crack-width for the one-way slab designed in 
Example 5.2 (and analysed for deflection in Example 10.1). 

SOLUTION 

• From Example 5.2 and Example 10.1, 
D = 200 mm, d = 165 mm, Cmin = 30 mm, db = 10 mm dc= 35 mm,  

                                                           
* Note that for dimensional homogeneity in the empirical Eq. 10.38, the constant 11 × 10–6, 
which is obtained from statistical analysis of the experimental data, evidently has the inverse 
unit of stress.   
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s = 125 mm, Ast = 628 mm2/m (10φ @ 125 mm c/c), pt = 0.3806, 
fy = 415 MPa, fck = 25 MPa, fcts = 0.55 MPa,  
M (at midspan, under service loads) = 21.63 kNm/m. 

a) Based on detailed procedure for calculating x and εm

The procedure for calculating the neutral axis depth x is identical to the one 
described in Example 10.1, except that allowable tensile stress in steel fcts  needs 
to be altered, in order to account for the long-term effects due to creep.  
fcts = 0.55 MPa [refer Fig. 10.4(b)]. 
Also, the modular ratio† m may be taken as: 
m = 280/(3 σcbc) = 280/(3 × 8.5) = 11.0 
 

Trial 1:  Assume x ≈ d / 3 = 165/3 = 55 mm.  

⇒ 55.0
165
200

×⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
x
xf ct =0.725 MPa 

⇒
( )

⎟
⎠
⎞

⎜
⎝
⎛ −×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −×××
−×=

3
165628

3
2002001000

1063.21 6 xxf
f ct

sm  

= 158.7 MPa 

⇒
bx

fxDbAf
f ctstsm

c 5.0
)(5.0 −+

= = 5.54 MPa 

⇒ ( )csm ff
x

111
165

+
= = 45.8 mm 

Trial 2:  Assuming an average value x ≈ (55 + 45.8)/2 = 50.4and repeating the 
procedure,  

⇒ =  0.718 MPa ctf
⇒ = 155.5 MPa smf
⇒ = 6.0 MPa cf
⇒ x = 49.2 mm. 

Trial 3:  Assuming an average value x ≈ (50.4 + 49.2)/2 = 49.8 mm, and repeating the 
procedure,  

⇒ =  0.717 MPa ctf
⇒ = 155.0 MPa smf
⇒ = 6.1 MPa cf
⇒ x = 49.8 mm, which indicates convergence. 

 
• wcr = (3acr εm)/[1 + 2(acr – Cmin)/(D – x)] 

( ) 22 22
bccr ddsa −+= = 5)35()2/125( 22 −+  = 66.6 mm 

                                                           
† According to BS 8110, the value of m should be based on Es / Ece, considering Ece as half the 
short-term elastic modulus of concrete. 
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εm = 
8.49165
8.49200

102
0.155
5 −

−
×

×
=

−
−

×
xd
xD

E
f

s

sm  = 0.00101 

wcr = (3 × 66.6 × 0.00101)/[1 + 2(66.6 – 30)/(200– 49.8)] 
 = 0.136 mm 
 

b) Based on ‘Approximate’ procedure of IS 456 (Annex F) 

This calls for the conventional cracked section analysis, with the modular ratio† 
m taken as: 
m = 280/(3 σcbc) = 280/(3 × 8.5) = 10.98 

k = )()()(2 2 mmm ρ−ρ+ρ  where ρ  = pt/100 = 0.3806×10–2  
⇒ k = 0.2443 ⇒ x = kd = 0.2443 × 165 = 40.3 mm 
⇒ Icr = (1000)(40.3)3/3 + (11.0 × 628)(165 – 40.3)2 = 1.2904×10–2 mm4

⇒ fst = 8

6

102904.1
)3.40165()1063.21(0.11

×
−××× = 229.5 MPa   

(which is within 230 MPa, the allowable stress for FE 415 steel, as per working 
stress design) 

ε1 = 
3.40165
3.40200

102
5.229
5 −

−
×

×
=

−
−

×
xd
xD

E
f

s

st  = 0.001470 

)3.40165)(628)(102(3
)3.40200(1000

)(3
))((

5

2

2
−×

−
=

−
−′−

=ε
xdAE
xaxDb

sts
= 0.000543 

⇒ 21 ε−ε=εm = 0.000927 > 0 
⇒ wcr = (3acr εm)/[1 + 2(acr – Cmin)/(D – x)] 
 = (3 × 66.6 × 0.000927) / [1 + 2(66.6 – 30)/(200 – 40.3)] 
 = 0.127 mm 

 (which compares reasonably with the value of 0.136mm obtained by the 
‘exact’ procedure). 
 

  

10  φ  @ 125 c/c  

200   d  =  165   

dc  =  35   

2d c  =  70   

 70 = 8750  mm 2   Ae/n = 125 ×

s = 125 
 

Fig. 10.19  Example 10.7 

                                                           
† According to BS 8110, the value of m should be based on Es / Ece, considering Ece as half the 
short-term elastic modulus of concrete. 
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Crack-width calculation using Gergely & Lutz formula 

• wcr = (11 × 10–6) stec f
xd
xDnAd

−
−3 )(  [Eq. 10.38] 

where 
dc = 30 + 10/2 = 35 mm [refer Fig. 10.14] 
Ae/n = effective concrete area in tension per bar 
        = s(2dc) = 125 × 70 = 8750 mm2  

⇒ wcr = (11 × 10–6) )5.229(
3.40165
3.402008750353 ×

−
−

×  

           = 0.218 mm 
(which is larger than the value of 0.13 mm obtained by the IS/BS Code formula). 
Note: It is clear that the maximum probable crack-width is less than 0.3 mm, and 

hence is acceptable. 

EXAMPLE 10.8 

Determine the maximum probable crack-width for the doubly reinforced beam 
designed in Example 5.4. 

SOLUTION 

• From Example 5.4, 
D = 400 mm, b = 250 mm, d = 348 mm, Cmin = 30 mm, = 48 mm, A′d st = 
1848 mm2, (3 – 28 φ), Asc = 942.5 mm2  (3 – 20 φ), MD + L (at midspan, under 
service loads) = 124 kNm, fck = 25 MPa, fy = 415 MPa. 
The cross-sectional details are shown in Fig. 10.20. 

• Depth of neutral axis: x = kd 
m =280 / (3×8.5) = 11 
Taking moments of areas of the cracked-transformed section about the NA [refer 
Section 4.6.5], 
b (x)2/2 + (1.5m – 1) Asc (x – ) = mA′d st (d – x) 
⇒ 250 (x)2/2 + (15.5 × 942.5) (x – 48) = (11.0 × 1848) (348 – x) 
⇒ 125 (x)2 + 34936.75 (x) – 7775364 = 0 
Solving, x = 146.14 mm 

 

3 - 20φ

3 - 28φ

d’ = 48

250 

D = 400 
d = 348 

Cmin = 30 
s = 81 

x 

dc = 52
2dc = 104

(a) (b)

Ae = 250 × 104 
        = 26000mm2 

 
Fig. 10.20  Example 10.8 
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• Depth of neutral axis: x = kd 
m =280 / (3×8.5) = 11 
Taking moments of areas of the cracked-transformed section about the NA [refer 
Section 4.6.5], 
b (x)2/2 + (1.5m – 1) Asc (x – ) = mA′d st (d – x) 
⇒ 250 (x)2/2 + (23 × 942.5) (x – 48) = (16 × 1848) (348 – x) 
⇒ 125 (x)2 + 51245.5 (x) – 11330184 = 0 
Solving, x = 159.24 mm 

• Tensile stress in steel under service loads: fst 
( )

st
cr

M d xf m
I
−

=  

where M = 124 kNm per m width. 
Icr = 250 (146.14)3/3 + (11.0 × 1848) (348 – 146.14)2 + (15.5 × 942.5) × 
(146.14 – 48)2 

    = 12.29 × 108 mm4  

⇒ fst = 
6

8
11 (124 10 ) (348 146.14)

12.29 10
× × × −

×
 

         = 224.0 MPa  
(which, incidentally, is slightly less than σst = 230 MPa allowed as per working 
stress design). 
 

Crack-width calculation using IS Code formula 

The approximate procedure is followed here.  The reader may verify that the detailed 
procedure yields roughly the same results.  Crack-widths are calculated at the three 
critical positions (P1, P2 and P3) indicated in Fig. 10.17. 
For position P1

( ) 22 22
bccr ddsa −+=  

2 2(52) (52) 14cra = + − = 51.91 mm with a′ = D        = 
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⎦

⎤
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f
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  1     [Eq. 10.37] 

      5
1 400 146.14 250(400 146.14)  224.0  

348 146.14 3 18482 10
− −⎡ ⎤= −⎢ ⎥− ×× ⎣ ⎦

 

       = 1.336 × 10–3  
• Cmin = 30 mm 
• wcr = (3acr εm)/[1 + 2(acr – Cmin)/(D – x)] 

      = (3 × 51.91 × 1.336 × 10–3)/ [1 + 2(51.91 – 30)/ (400 – 146.14)] 
      = 0.177 mm 
 

For position P2 (corner) 

( ) 22 22
bccr ddsa −+=  
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       = 2 2(52) (52) 14cra = + − = 73.54 mm and a′=D 

• ⎥
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⎤
⎢
⎣

⎡ −
−

−
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=ε
st

st
s

m A
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f
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  1     [Eq. 10.37] 

      5
1 400 146.14 250(400 146.14)  224.0  

348 146.14 3 18482 10
− −⎡ ⎤= −⎢ ⎥− ×× ⎣ ⎦

 

       = 1.336 × 10–3  
• Cmin = 30 mm 
• wcr = (3acr εm)/[1 + 2(acr – Cmin)/(D – x)] 

      = (3 × 73.54 × 1.336 × 10–3)/ [1 + 2(73.54 – 30)/ (400 – 146.14)] 
      = 0.219 mm 

 
For position P3 (side of beam) 
Ce = 30 + 8 +14 = 52 mm 
s = (d – x)/2 = 100.93 mm 

• acr = 
2

2( ) 14
2 c

d x d−⎛ ⎞ + −⎜ ⎟
⎝ ⎠

= 2 2(100.93) (52) 14+ − =  99.54 mm  

• a′= distance of point where crack-width is desired from the extreme 
compression fibre 
    = 100.93 + 146.14 = 247.07 mm 

ε1 is the strain at the crack location considering a cracked section 

ε1 = 
2

st

s

f
E

= 5
224.0

2 2 10× ×
= 5.6 × 10-4

• 1
( )( )
3 ( )
t

m
s st

b D x a x
E A d x

ε ε
′− −

= −
−

= 4
5

250(400 146.14)(247.07 146.14)6 10
3 2 10 1848(348 146.14)

− − −
× −

× × × −
 5.

                = 5.314× 10-4

• wcr = (3acr εm)/[1 + 2(acr – Cmin)/(D – kd)] 
      = (3 × 99.54 × 5.313 × 10–4)/ [1 + 2(99.54 – 30)/ (400 – 146.14)] 
      = 0.102 mm 

Hence, the maximum probable surface crack-width is 0.219 mm., and this occurs at 
the bottom corner. 

Crack-width calculation using Gergely & Lutz formula 
• dc = 30 +8+ 28/2 = 52 mm [refer Fig. 10.15a] 

Ae = 250 × (2 × 52) = 26000 mm2 [as shown in Fig. 10.15(b)] 
n = 3 

For positions P1 and P2

• wcr = (11 × 10–6) 3 ( )c e st
D xd A n f
d x
−  
−

= (11 × 10–6) 3 400 146.1452(26000 3) 224.0
348 146.14

−
×

−
 

= 0.237 mm 
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Note: The maximum probable crack-width is less than 0.3 mm, and hence is 
acceptable. 

10.5.5   Estimation of Crack-width under Direct and Eccentric Tension 

In some reinforced concrete members, such as the walls of water tanks, bins and 
silos, pressure vessels, suspenders and ties in arch, roof and bridge structures, it is 
axial (or membrane) tension that is the predominant structural action, and not flexure.  
In many instances in such members, direct or eccentric tension due to applied 
loading, may act in combination with restraint to volume changes caused by 
temperature and shrinkage [Ref. 10.18].  This can lead to significant cracking, which 
should be controlled in the interest of serviceability.  In this Section, the discussion is 
limited to cracking caused by applied loading; thermal and shrinkage cracking are 
discussed in the next Section. 

Cracking due to direct tension is of somewhat more serious concern than flexural 
cracking, because it causes a clear separation in the concrete, through the entire 
thickness of the member, as shown in Fig. 10.21.  Control of such cracking is 
therefore of particular importance in liquid retaining structures and pressure vessels. 

At the crack location, the reinforcement is required to resist the entire tension, and 
the width and spacing of cracks are governed primarily by the reinforcement 
detailing.  If very low percentages of reinforcement are provided, the steel may yield 
and result in wide crack-widths.  However, crack-widths can be significantly 
controlled by maintaining sufficient reinforcement at close spacing, with relatively 
low tensile stress and strain in the steel at service loads.  As in the case of flexure, the 
concrete in between the cracks resists some tension (‘tension stiffening’ effect).  The 
axial stiffness of the member can be greatly reduced by the presence of wide cracks, 
but this reduction is mitigated by the tension stiffening effect.  Recommendations for 
assessing axial stiffness are given in Ref. 10.18.  These may be used in the structural 
analysis of statically indeterminate reinforced concrete structures involving 
significant axial tension.   

 
 

N N 

wcr 

s 

 

Fig. 10.21  Cracking under direct tension 

The IS Code does not give any recommendations for estimating crack-widths in 
members subject to direct or eccentric tension.  However, such recommendations are 
given in the British codes BS 8110 [Ref. 10.12] and BS 8007 [Ref. 10.19], and these 
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are discussed here.  BS 8110 permits the extension of the procedure (approximate 
method) prescribed for crack-width prediction under pure flexure [Eq. 10.34–10.36] 
to situations of flexure combined with axial tension.  When axial tension 
predominates, the entire section is likely to be under tension with the neutral axis 
lying outside the section, as shown in Fig. 10.22.  In such cases, the neutral axis 
depth x will have a negative value, and this must be taken special note of, while 
applying Eq. 10.34 and 10.36.  In the extreme case of pure tension (i.e., x → –∞), it 
is suggested that it suffices to consider x = – D. 

 

– x
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xD.
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smf  
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and bending moment M 

distribution of mean tensile strains 
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Fig. 10.21  Analysis for crack-width under eccentric tension 

BS 8007 [Ref. 10.19] suggests an alternative empirical formula for the probable 
surface crack-width in members subject to direct tension: 

wcr = 3 acr εm                                                               (10.39) 

which has the form given by Eq. 10.31, with the terms acr  and εm as defined earlier.  
The constant, ‘3’ is based on a probability of exceedance of the calculated value of 
crack-width being equal to about 1 in 100.  The expression for the mean tensile strain 
εm is the same as given in Eq. 10.35: 

21 ε−ε=εm  
where, as in the case of flexure, ε1  is the ‘apparent strain’ (tensile strain in steel at the 
crack location) given by Eq. 10.34 and ε2  is the reduction in strain due to the tension 
stiffening effect, which is given by: 

sst

grct

EA
Af

=ε2                                                             (10.40) 

where Agr is the gross area of the cross-section, Ast the area of tension steel, and fct is 
the allowable tensile stress in concrete.  While the above formulas can be used to 
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compute the crack width for an applied tensile force, conversely it can also be used to 
compute the admissible fst (and hence the tension admissible) for a permissible crack 
width.  For such calculations, the allowable value of fct is specified as 1.0 MPa if the 
permissible crack-width is 0.1 mm, and 0.67 MPa if the permissible crack-width is 
0.2 mm.  For other crack-widths, values of fct have not been specified by BS 8007 
(which is the British code for design of water retaining structures), and linear 
interpolation or extrapolation are not permitted. 

Unlike the British codes (BS 8110 and BS 8007), the ACI codes (ACI 318 for 
general RC design and ACI 350 for liquid retaining structures) do not specifically 
recommend any procedure for the estimation of crack-widths under direct or 
eccentric tension.  However, reference is made to the formula given in the ACI 224 
Committee Report [Ref. 10.26], which is based on a formula by Broms and Lutz 
(similar to the one by Gergely and Lutz for flexure).  In SI units, this equation takes 
the following form 

3100.02 −×= etstfcrw                                                     (10.41) 
where wcr is the maximum probable surface crack-width (in mm), fst is the tensile 
stress (in MPa) in the steel at the crack, and te is the ‘effective concrete cover’, which 
may be taken as: 

2
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1
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⎞

⎜
⎜

⎝

⎛
+=

cd
s

cdet                                                  (10.42) 

where s is the spacing of bars, located at an effective cover dc. 

EXAMPLE 10.9 

Consider a cylindrical water tank, whose wall is subject to hoop tension on account 
of hydrostatic pressure.  If the wall is 250 mm thick, and reinforced with 12 mm dia 
bars @ 150 mm c/c, determine the allowable hoop tension (per unit width of wall) 
corresponding to a permissible crack-width of 0.2mm.  Assume M 30 concrete and 
Fe 415 steel.  Assume a clear cover of 40 mm. 

SOLUTION 

• D = 250 mm, Cmin = 40 mm, db = 12 mm, s = 150 mm,  dc= 46 mm 
Ast = (201×103) / 150 = 1340 mm2/m 
 
The allowable hoop tension is given by  stst AfN = , where the allowable value 
of fst is to be determined. 

BS 8007 formula 

wcr = 3 acr (ε1 – ε2) = 0.2 mm 

where ( ) 22 22
bccr ddsa −+= = 6)46()2/150( 22 −+  = 82.0 mm 
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)1340)(102(
)2501000)(67.0(
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==ε
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AE
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= 0.000625 

⇒ 
)0.82(3

2.0
3 21 =ε+=ε

cr

cr

a
w

 + 0.000625 = 0.001438 

⇒ fst = Es ε1 = (2×105)(0.001438) = 287.6 MPa 

(which incidentally is higher than 230 MPa assumed in usual working stress 
design, but is well  within the yield strength). 

⇒ = (287.6 N/mmstst AfN = 2)(1340 mm2/m) = 385,384 N = 385.4 kN 

BS 8100 procedure 

wcr = 
)()( 21

3

min xDCa
a

cr

mcr

−−+
ε

= 0.2 mm 

⇒ { }min0.2 1 2 ( ) ( ) / 3m cra C D x aε = + − − cr  
where, x = –D = –250mm for pure tension [refer Section 10.5.5] 
   d = 250 – 40 – 6 = 204 mm 
⇒ εm = { }0.2 1 2 (82 40) (250 250) /(3 82)+ − + × = 0.0009496 
εm= ε1 – ε2

2

2 5
( )( ) 1000(250 250)
3 ( ) 3(2 10 )(1340)(204 250)s st

b D x a x
E A d x

ε
′− − +

= =
− × +

= 0.0006849 

ε1 = εm + ε2 = 0.0016345 
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E
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s

st

−
−

=ε1  

⇒ fst = (2×105)(0.0016345)(204+250)/(500) = 296.8 MPa 
stst AfN = = (296.8 N/mm2)(1340 mm2/m) = 397745 N = 397.7 kN 

(which compares very well with the solution obtained by the BS 8007 formula). 

ACI Committee 224 procedure 
The effective concrete cover is given by 
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⎟
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⎛
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cdet  = 
215046 1

4 46
⎛+ ⎜ ×⎝ ⎠

⎞
⎟ = 59.35mm               [Eq. 10.42] 

⇒ 3100.02 −×= etstfcrw = 0.2 mm              [Eq. 10.41] 

⇒ fst  = 168.5 MPa 
⇒ = (168.5 N/mmstst AfN = 2)(1340 mm2/m) = 225790 N = 225.8 kN 
(which is a conservative estimate in comparison to the BS codes). 
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10.5.6 Thermal and Shrinkage Cracking 

Early Thermal Shrinkage 

During mixing of concrete, heat of hydration is generated, causing the temperature of 
concrete to rise.  The temperature at casting may be significantly higher than the 
ambient temperature, but the peak hydration temperature (which may occur within 
three days or so after casting) can be considerably higher than the ambient 
temperature.  This difference in temperature (between the peak and ambient 
temperatures) may vary from 10 to 50°C, depending on various factors, such as the 
volume of concrete cast, the volume of cement content, the type of cement used, type 
of formwork, etc†.  The temperature in the middle region is often higher than at the 
surface (with a gradient of up to 20°C in very thick members).  The concrete cools 
and attains the ambient temperature within seven days or so.  This results in 
shortening of the hardened concrete, and such shortening is sometimes referred to as 
‘early thermal shrinkage’.  The concrete at the surface is subject to tension (and the 
concrete in the middle region to compression) owing to the temperature gradient 
across the thickness.  Additionally, the overall shortening is frequently restrained by 
the adjoining concrete, resulting in further development of tensile strains throughout 
the section.  If the overall tensile strain (maximum at the surface regions) exceeds the 
ultimate tensile strain capacity of the hardening concrete, cracking is likely to occur.  
Such ‘early thermal cracking’ can be prevented by controlling the factors affecting 
the heat of hydration (using a low cement content, using pozzalanic admixtures, 
using ice to control temperature during mixing, etc.).  Studies have also established 
that delaying the process of cooling, such as by delaying the formwork removal and 
insulating the concrete, are also advantageous [Ref. 10.27]. 

Drying Shrinkage 

Accompanying the early thermal movement associated with the hardening of 
concrete, another factor which contributes to the shortening of concrete is drying 
shrinkage [refer Section 2.12.1].  However, unlike early thermal movements, drying 
shrinkage is a long-term phenomenon.  It is best controlled by adopting as low a 
water-cement ratio as practicable, thereby keeping to a minimum the volume of 
moisture in the concrete that can evaporate.  Cracking due to drying shrinkage occurs 
due to restraints that cause tensile stresses and strains in the concrete.  The external 
restraints are due to fixity with adjoining members or friction against any surface in 
contact (such as the earth, in the case of footings supporting walls).  There is also 
internal restraint caused by the embedded steel resisting the free shrinkage of 
concrete.  (It may be noted that such internal restraint does not occur in the case of 
thermal shrinkage, because the coefficient of thermal expansion for concrete and 
steel are approximately the same.)  If the external restraints are absent, then drying 
shrinkage can generate a system of self-equilibrating forces, with the concrete in 

                                                           
† Temperatures increase with the use of rapid-hardening cement or higher grade cement (with 
greater fineness), with increased cement content, larger volumes cast (with larger thickness of 
section) and use of timber formwork (instead of steel).   
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tension and the embedded steel in compression (with longitudinal bond forces at the 
interface).  If the percentage of steel provided is relatively low, cracking of concrete 
is likely to occur, and the likelihood of such cracking is enhanced in the presence of 
external restraints. 

Other Thermal Effects 

There are two other factors that can contribute to thermal cracking.  The first is due 
to seasonal variations in temperature, resulting in volume changes in the hardened 
concrete.  When the season changes from summer to winter, thermal shrinkage 
occurs, and in the presence of restraints, this can result in cracking.  The second 
factor is due to the differential temperature gradient caused by the action of the sun 
on the external surface of a slab or a wall, with the other surface relatively insulated 
(‘solar radiation’ effect).  The presence of restraints restricts the free expansion of the 
external surface and induces flexural tension on the inner surface, causing possible 
cracking.  The incidence of such cracking particularly needs to be controlled in 
structural elements such as walls of overhead water-tanks (whose liquid face is prone 
to cracking).   

Methods of Crack Control and Crack-width Estimation 

Cracking due to thermal and shrinkage effects can be effectively controlled by 
provision of (i) adequate reinforcement and (ii) appropriate ‘movement joints’, such 
as contraction and expansion joints [Fig. 10.22].  The designer may choose to adopt 
closely spaced movement joints with low percentage of reinforcement, or widely 
spaced joints with a relatively high percentage of reinforcement.  The choice is 
governed by factors such as the size of the structure, method of construction and 
economics [Ref. 10.20]. 

 Thermal and drying shrinkage 
strains partially relieved by 

movement joints 

Vertical cracking due to 
strain betw een joints 

controlled by reinforcement

 

Fig. 10.22  Crack control in a base-restrained wall 

The methods of estimating crack-widths under flexure, direct tension and 
eccentric tension described earlier can be applied here, provided the magnitude of 
internal forces are known.  Unfortunately, methods to estimate crack width and 
spacing due to thermal and drying shrinkage are fraught with various uncertainties.  
These pertain, not only to uncertainties associated with temperature and shrinkage 
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parameters as well as degree of restraint, but more important, to uncertainties 
associated with the tensile forces induced in the structure.  These are ‘deformation-
induced forces’, which get partially relieved on account of cracking.  It would be 
very conservative to estimate these forces by the usual elastic structural analysis 
(including finite element analysis), considering all sections to be uncracked, as the 
tensile forces generated are likely to be high.  It would indeed be appropriate to 
assign appropriate ‘effective’ stiffnesses (axial and flexural), taking into account the 
effect of tension stiffening, while performing the structural analysis.  However, this is 
a nonlinear problem, as the amount of tension stiffening depends on the magnitude of 
internal forces, and these may vary from location to location.  The designer must 
exercise good engineering judgement and caution in estimating the design forces for 
a maximum permissible crack-width.  If the reinforcement provided is inadequate 
and movement joints are altogether absent, the consequences of thermal and 
shrinkage cracking can be alarming [Fig. 10.23]. 

 
Fig. 10.23  Typical thermal and shrinkage cracks in a large reservoir structure 

In the case of structures such as water tanks, where crack-width control is of 
special importance, design codes attempt to achieve such control through guidelines 
relating to provision of movement joints and minimum reinforcement requirements 
[Ref. 10.20].  The absolute minimum reinforcement area (Ast) min is usually governed 
by the consideration that the steel should not yield when cracking occurs (due to the 
ultimate tensile strength of concrete being exceeded).  Accordingly, considering 
force equilibrium, 

( ) ctgyst fAfA =min  
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p 100100 min =≡⇒                                 (10.43) 
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where (pt)cr  is called the ‘critical percentage reinforcement’, fct and fy denote the 
limiting tensile strength of concrete and yield strength of steel respectively, and Ag 
denotes the gross area of the cross-section under consideration.  As control of 
cracking is critical during the early life of the concrete, it is recommended that the 
value of fct should correspond to the 3-day tensile strength of concrete, which may be 
taken as 1.15 MPa for M 25 grade, 1.3 MPa for M 30 grade and 1.6 MPa for M 35 
grade [Ref. 10.20].  

Thus, for example, considering M 25 grade concrete, the critical percentage 
reinforcement works out to 0.28 in the case of Fe 415 grade steel and 0.46 in the case 
of Fe 250 steel.  It is desirable to provide this minimum reinforcement in two equal 
layers (in each direction) with minimum cover (from durability point-of-view), and if 
the member (wall or slab) is very thick (thicker than 600 mm), the calculations may 
be based on a maximum thickness of 600 mm (i.e., considering only 300mm on 
either surface).  However, additional reinforcement is called for if movement joints 
are not provided in large structures, or if high crack-width control is desired.  A 
minimum value of 0.65% is suggested in Ref. 10.28 (referred to in ACI 350), based 
on considerations of drying shrinkage alone.  For large continuous constructions, 
without expansion joints, this value may be as high as 1.0%, to include the effect of 
other temperature effects, in the absence of more rigorous analysis. 

Finally, it may be mentioned that recent trends in concrete technology suggest that 
‘high performance concrete’ with new materials such as high volume fly ash (HVFA) 
have the advantage of well-bonded micro-structure with relatively low potential for 
shrinkage and thermal cracking [Ref. 10.29].  Such materials, which are also 
‘sustainable’ (low cement consumption), are likely to be used widely in the decades 
to come. 

REVIEW QUESTIONS 

10.1 Explain the importance of serviceability limit states in the structural design of 
reinforced concrete flexural members. 

10.2 Why is it necessary to limit deflections in reinforced concrete flexural 
members? 

10.3 Why is it difficult to make an accurate prediction of (a) the total deflection, 
(b) the maximum crack-width in a reinforced concrete flexural member? 

10.4 Distinguish between short-term deflection and long-term deflection. 
10.5 What is meant by the tension stiffening effect in reinforced concrete members 

subject to flexure?  Explain with suitable sketches. 
10.6 How is the short-term deflection due to live loads alone estimated?  What is 

its relevance? 
10.7 Explain the difficulty in estimating the short-term deflection as per IS Code 

procedure when the applied moment at service loads is marginally less than 
the cracking moment (calculated using the modulus of rupture of concrete). 

10.8 Explain briefly the BS Code procedure of estimating short-term deflections 
using the concept of ‘effective curvature’. 

10.9 How does shrinkage of concrete lead to deflections in reinforced concrete 
flexural members? 
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10.10 How does the magnitude of compression reinforcement affect deflections due 
to (a) shrinkage (b) creep? 

10.11 Explain the Code procedure for calculating deflection due to creep. 
10.12 Explain how temperature effects lead to deflections in reinforced concrete 

flexural members. 
10.13 What are the different options available to a designer with regard to control of 

cracking in flexural members? 
10.14 What are the major factors which influence crack-widths in flexural 

members? 
10.15 The Code does not call for explicit checks on the serviceability limit states of 

deflection provided certain requirements are complied with in the design.  
What are these requirements? 

10.16 Are the nominal detailing requirements of the Code adequate for ensuring 
crack-width control?  Comment. 

10.17 Discuss the issues involved in designing for achieving control over thermal 
and shrinkage cracking in large RC structures. 

PROBLEMS 

10.1 The section of a cantilever beam, designed for a span of 4.0 m is shown in 
Fig. 10.24.  The beam has been designed for a bending moment of 200 kNm 
(at the support) under service loads, of which 60 percent is due to permanent 
(dead) loads.  The loading is uniformly distributed on the span.  Assume M 20 
concrete and Fe 415 steel. 

 300

600 

3–28 φ

3–20 φ

M 20 
Fe 415 
clear cover = 40 mm

 

Fig. 10.24  Example 10.1 

(a) Calculate  
(i)   the maximum short-term elastic deflection; 
(ii)  the short-term deflection due to live loads alone; 
(iii) the maximum deflection due to shrinkage, assuming εcs = 0.0004; 
(iv)  the maximum deflection due to creep, assuming θ = 1.6. 

(b) Check whether the beam satisfies the deflection limits specified by the Code.  
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10.2 A one-way slab has been designed for a simply supported span of 4.0 m with 
an overall depth of 170 mm and clear cover of 20 mm, using M 20 concrete 
and Fe 415 steel.  The dead loads are taken as 5.0 kN/m2 and the live loads as 
2.0 kN/m2.  The longitudinal bars are designed as 10 mm φ @ 150 c/c.  Verify 
the adequacy of the thickness provided, 

(i) applying the limiting span/effective depth ratio; 
(ii) actual calculation of total deflections. 

10.3 For the T-beam designed in Example 5.5, calculate the following: 
(i)    short-term deflection due to service loads; 
(ii)   incremental short-term deflection due to live loads; 
(iii)  long-term deflection due to shrinkage; 
(iv)   long-term deflection due to creep. 

 Hence, verify whether the design satisfies the Code limits on deflection. 

10.4 Repeat Problem 10.3 for the continuous T-beam designed in Example 5.6.  
Assume that 60 percent of the loading is due to dead (permanent) loads.  Also 
assume that the moments at the two supports are equal to the midspan moment 
of 533.3 kNm (under service loads) and that the reinforcement provided at the 
support section is as shown in Fig. 10.25. 

 

700 d = 620
M 20 
Fe 415 
clear cover = 40 mm 

6–32 φ

3–32 φ

100 

 

Fig. 10.25  Example 10.4 — support section 

10.5 Determine the maximum probable crack-width for the cantilever beam of 
Example 10.1 

10.6 Determine the maximum probable crack-width for the one-way slab of 
Example 10.2. 

10.7 Determine the maximum probable crack-width for the T-beam of 
Example 10.3. 

10.8 A 150 mm thick wall of a cylindrical water tank is subject to a direct tensile 
force of 270 kN/m due to hydrostatic loading.  Determine the required spacing 
of 12 mm dia bars in order to achieve crack-width control of 0.1 mm.  
Assume a clear cover of 40mm, M 30 concrete and Fe 415 steel. 
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11 
      Design of Two-Way Slab 
          Systems 

 

11.1   INTRODUCTION 

Slab panels that deform with significant curvatures in two orthogonal directions must 
be designed as two-way slabs, with the principal reinforcement placed in the two 
directions. 

This chapter deals with the design of rectangular two-way slab systems [refer 
Section 1.6.1], and includes: 

• slabs supported on walls (or rigid beams); 
• slabs supported on flexible beams; 
• slab supported directly on columns (‘flat plates’ and ‘flat slabs’). 

11.1.1   One-Way and Two-Way Actions of Slabs 

The design of one-way slabs (simply supported/continuous/cantilevered) has already 
been described in Chapter 5.  It was pointed out that ‘one-way’ action may be 
assumed when the predominant mode of flexure is in one direction alone.  
Rectangular slabs which are supported only on two opposite sides by unyielding 
(wall) supports and are uniformly loaded (along the direction parallel to the supports) 
provide examples of ideal one-way action [Fig. 11.1(a)].  The initially plane surface 
of the slab deforms into a cylindrical surface†, in which curvatures (and hence, 
primary bending moments) develop only in one direction.  For the purpose of 
analysis and design, the slab may be divided into a parallel series of identical one-
way beam-strips, with the primary reinforcement placed (with uniform spacing) 

                                                           
† Within the elastic phase, when a plate bends into a cylindrical surface, although the curvature 
in the direction parallel to the axis of the cylinder is zero, the moment in this direction is not 
zero, but is equal to υ times the moment in the direction of the curvature, where υ is the 
Poisson’s ratio of the material of the plate (see also Section 4.8). 
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along each strip [refer Section 4.8]. Some nominal secondary reinforcement should 
also be placed in the perpendicular direction (normal to the beam-strip span) — to 
take care of tensile stresses that arise due to the secondary moment in this direction 
caused by the Poisson effect [Ref. 11.1], any non-uniform (or concentrated) loading, 
and temperature and shrinkage effects. 
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beam strip

simply
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edge

cylindrical
deflected
surface(a)  one-way slab action

deflection contours

ly

lx

loads
transferred

to short
edge

to long
edge

(b)  two-way slab action

(c)  variation of short
span and long span

moments

My

Mx

Mx

My

ly /2 ly /2

ly ly /2

lx /2

lx /2

lx /2

lx /2

Mx
My

My, max << Mx, max
for ly >> lx(d)  

Fig. 11.1  One-way and two-way slab actions 

This primary one-way action [Fig. 11.1(a)] ceases to exist if either the support 
conditions or the loading conditions are altered.  For example, if the uniformly 
loaded rectangular slab of Fig. 11.1(a) is supported on all four edges, then the 
deformed surface of the slab will be doubly curved, with the load effects transferred 
to all the four supporting edges [Fig. 11.1(b)].  Such action is called a two-way 
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action, involving significant curvatures along two orthogonal directions.  The typical 
variation of longitudinal and transverse bending moments is depicted in Fig. 11.1(c).  
The bending moments are expectedly maximum at the middle of the slab, and of the 
two principal moments (Mx, My) at the middle point, the one (Mx) along the short 
span (lx) is invariably greater. 

As the ‘aspect ratio’ ly /lx (i.e., long span/short span) increases, the curvatures and 
moments along the long span progressively reduce, and more and more of the slab 
load is transferred to the two long supporting edges by bending in the short span 
direction.  In such cases, the bending moments (My) are generally low in magnitude 
[Fig. 11.1(d)].  Hence, such long rectangular slabs (ly /lx > 2) may be approximated as 
one-way slabs, for convenience in analysis and design [refer Example 5.3]. 

The reinforcements in a two-way slab should ideally be oriented in the directions 
of the two principal moments (i.e., principal curvatures) at every point.  However, 
this is not generally convenient in practice, and the bars are usually placed along the 
transverse and longitudinal directions† throughout the slab.  Such slabs are said to be 
‘orthotropically reinforced’; they are said to be ‘isotropically reinforced’ in case the 
reinforcements are such that the moment of resistance per unit width of slab is the 
same in both directions at the point considered. 

11.1.2   Torsion in Two-Way Slabs 

In general, twisting moments develop in addition to bending moments in a two-way 
slab element — except when the element is oriented along the principal curvatures.  
These twisting moments can become significant at points along the slab diagonals 
[Fig. 11.2(a)].  The variations of principal moments (M1, M2) along and across a 
diagonal of a simply supported and uniformly loaded square slab of homogeneous 
material, as obtained from an elastic analysis [Ref. 11.1], are depicted in Fig. 11.2(b).  
It is seen that the principal moment M1 (along the diagonal) is ‘negative’ (hogging) at 
locations close to the corner, and the reactions developed at the supports in the corner 
region will be downward in nature.  If such downward reactions cannot be developed 
at the supports, the corners will lift up [Fig. 11.2(d)]. 

In practice, however, corners are usually prevented from lifting up (by wall loads 
from above, or by monolithic edge beams framing into columns); such slabs are said 
to be torsionally restrained.  In such cases, the corners have to be suitably reinforced 
at top, (for the moment M1 with reinforcement placed parallel to the diagonal) and 
also at bottom (for the moment M2 with reinforcement placed perpendicular to the 
diagonal); otherwise cracks are liable to form at the corner, as shown in Fig. 11.2(c). 

                                                           
† It may be noted that an orthogonally placed set of reinforcing bars in a slab is capable of 
generating flexural strength in any direction. 
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Fig. 11.2  Torsion effects in a two-way slab 

11.1.3   Difference between Wall-Supported Slabs and Beam/Column 
Supported Slabs 

The distributed load w on a typical two-way slab is transmitted partly (wx) along the 
short span to the long edge supports, and partly (wy) along the long span to the short 
edge supports.  In wall-supported panels, these portions (wx, wy) of the load are 
transmitted by the respective wall supports directly to their foundations (or other 
supports) vertically below, as shown in Fig. 11.3(a).  On the contrary, when the edge 
supports comprise beams spanning between columns, the portion of the load 
transmitted by the slab in any one direction is in turn transmitted by the beam in the 
perpendicular direction to the two supporting columns, as shown in Fig. 11.3(b) (i). 
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Fig. 11.3  Load transfer in wall-supported and column-supported slabs 

In general, in column-supported slabs, with or without beams along the column 
lines, 100 percent of the slab load has to be transmitted by the floor system in both 
directions (transverse and longitudinal) towards the columns (Fig. 11.3 (b) ii & iii).  
In such cases, the entire floor system and the columns act integrally in a two-way 
frame action.  The analysis of such systems is described in Section 11.4. 

It may be noted, however, that if beams are provided along the column lines, and 
if these beams are sufficiently rigid, then the analysis and design of the slab part can 
be considered separately and treated in same manner as wall-supported slabs. 

The design of wall-supported two-way slabs is covered in Section 11.2.  
Subsequent sections in this chapter (Sections 11.3 to 11.9) deal with the design of 
two-way slabs supported on columns, with or without beams along the column lines. 
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11.2   DESIGN OF WALL-SUPPORTED TWO-WAY SLABS 

The design considerations of wall-supported two-way slabs are similar to those 
pertaining to one-way slabs [refer Chapter 5].  The thickness of the slab is generally 
based on deflection control criteria, and the reinforcements in the two orthogonal 
directions are designed to resist the calculated maximum bending moments in the 
respective directions at the critical sections.  [Additional reinforcement may be 
required at the corners of two-way slabs in some cases, as explained later].  The slab 
thickness should be sufficient against shear, although shear is usually not a problem 
in two-way slabs subjected to uniformly distributed loads. 

11.2.1   Slab Thickness Based on Deflection Control Criterion 

The initial proportioning of the slab thickness may be done by adopting the same 
guidelines regarding span/effective depth ratios, as applicable in the case of one-way 
slabs [refer Chapter 5].  The effective span in the short span direction should be 
considered for this purpose.  However, the percentage tension reinforcement 
requirement in the short span direction for a two-way slab is likely to be less than 
that required for a one-way slab with the same effective span.  Hence, the 
modification factor kt to be considered for two-way slabs may be taken to be higher 
than that recommended for one-way slabs [refer Section 5.4.2].  A value of kt ≈ 1.5 
may be considered for preliminary design.  The adequacy of the effective depth 
provided should be verified subsequently, based on the actual pt provided. 

For the special case of two-way slabs with spans up to 3.5 m and live loads not 
exceeding 3.0 kN/m2, the Code(Cl. 24.1, Note 2) permits the slab thickness (overall 
depth D) to be calculated directly as follows, without the need for subsequent checks 
on deflection control: 

(i) using mild steel (Fe 250 grade), 

D
l
l
x

x
≥
⎧
⎨
⎩

35
40

           for simply supported slabs 
          for continuous slabs           

                    (11.1a) 

(ii) using Fe 415 grade steel,  

D
l
l
x

x
≥
⎧
⎨
⎩

28        
32        

   for simply supported slabs 
  for continuous slabs           

                    (11.1b) 

11.2.2   Methods of Analysis 

Two-way slabs are highly statically indeterminate†.  They may be visualised as being 
comprised of intersecting, closely-spaced grid beam-strips which are subject to 
flexure, torsion and shear. Owing to the high static indeterminacy, rigorous solutions 
are not generally available.  The available solutions, based on the classical theory of 
                                                           
† It should be noted that on account of the multiple load paths possible, two-way slabs are 
capable of considerable stress redistribution.  Hence, the reinforcements in such slabs can be 
designed in many different ways. 
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plates [Ref. 11.1], for such standard problems as simply supported and uniformly 
loaded two-way slabs (due to Navier and Levy), need modification to accommodate 
the differences observed experimentally on account of the non-homogeneous and 
nonlinear behaviour of concrete.  Such solutions have been proposed by Westergaard 
[Ref. 11.2, 11.3] and others [Ref. 11.4] in the form of convenient moment 
coefficients, which have been widely used by codes all over the world.  Another 
approximate method, very elementary in approach, is the so-called Rankine-Grashoff 
method.  The main feature of this method is that it simplifies a highly indeterminate 
problem to an equivalent simple determinate one.  This method, as well as its 
modified version due to Marcus [Ref. 11.5, 11.6] have also been widely in use during 
the past five decades.  Modern computer-based methods include the finite difference 
method [Ref. 11.5] and the finite element method [Ref. 11.7].  Other methods, which 
are particularly suited for limit state design, and are relatively simple, are inelastic 
methods based on yield line analysis [Ref. 11.8 – 11.10]. 

According to the Code (Cl. 24.4), two-way slabs may be designed by any 
acceptable theory.  In the case of uniformly loaded two-way rectangular slabs, the 
Code suggests design procedures for  

• simply supported slabs whose corners are not restrained from lifting up 
[Cl. D–2 of the Code].; 

• ‘torsionally restrained’ slabs, whose corners are restrained from lifting up and 
whose edges may be continuous or discontinuous [Cl. D–1 of the Code]. 

11.2.3   Uniformly Loaded and Simply Supported Rectangular Slabs 

The moment coefficients prescribed in the Code (Cl. D–2) to estimate the maximum 
moments (per unit width) in the short span and long span directions are based on the 
Rankine-Grashoff theory.  According to this theory, the slab can be divided into a 
series of orthogonal crossing unit (beam) strips, and the load can be apportioned to 
the short span and long span strips such that the deflections δ of the two middle strips 
is the same at their intersection [Fig. 11.4]. 

If torsion between the interconnecting strips and the influence of adjoining strips 
on either side are ignored†, each of the two strips along the centrelines can be 
considered to be simply supported and subjected to uniformly distributed loads wx 
(on the short span strip) and wy (on the long span strip) [Fig. 11.4].  Hence, the mid-
point deflection δ  is easily obtained as: 

δ = =
5

384
5

384

4 4w l
EI

w l
EI

x x y y                                     (11.2) 

where it is assumed that the second moment of area, I, is the same for both strips.  A 
simple relation between wx and wy is obtainable from Eq. 11.2: 

w w l lx y y x= ( )4                                            (11.3) 
Also, 

                                                           
† It should be noted that these assumptions lead to a high degree of approximation. 
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w wx y w+ =                                                 (11.4) 
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Fig. 11.4  Concept underlying Rankine-Grashoff theory 
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where                                             r ≡  ly/lx  

The maximum short span moment Mx (per unit width) and maximum long span 
moment My (per unit width) are easily obtained as: 

M w l
M w l

x x x

y y y

=
=

⎫
⎬
⎪

⎭⎪

2

2
8
8

                                               (11.6) 

Substituting Eq. 11.5 in Eq. 11.6, the following expressions (in the format presented 
in the Code) are obtained: 

M wl
M wl

x x x

y y x

=
=

⎫
⎬
⎪

⎭⎪

α
α

  
  

      
2

2                                          (11.7) 
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where the ‘moment coefficients’ αx and αy are given by 

α

α
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y

r
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                                             (11.8) 

It is important to note that both Mx and My are given (in Eq. 11.7) in terms of the 
short span lx. 

Values of αx and αy for different aspect ratios r ≡ ly /lx are listed in Table 11.1 (also 
given in Table 27 of the Code).  The variations of these coefficients with the aspect 
ratio, r, are also depicted in Fig. 11.5. 

Table 11.1  Rankine-Grashoff moment coefficients for simply supported, uniformly 
loaded rectangular slabs (with corners torsionally unrestrained) 

ly /lx 1.0 1.1 1.2 1.3 1.4 
αx 0.0625 0.0743 0.0843 0.0926 0.0992 
αy 0.0625 0.0614 0.0586 0.0548 0.0506 

 
ly /lx 1.5 1.75 2.0 2.5 3.0 
αx 0.1044 0.1130 0.1176 0.1219 0.1235 
αy 0.0464 0.0369 0.0294 0.0195 0.0137 

As expected, the short span moment coefficient progressively increases and the 
long span moment coefficient αy progressively decreases as the aspect ratio r 
increases.  In the case of a square slab (ly/lx = 1), wx = wy = w/2, and Mx = My 

= 1 )
2

82(wlx  = 0.0625 .  For high values of lwlx
2

y /lx, αx approaches the ‘one-way’ 

value of 1/8 = 0.125 and αy becomes negligible. 
Also shown in Fig. 11.5, by means of thinner lines, are the variations of αx and αy 

with r for the case of a rectangular slab with corners torsionally restrained (using 
Code moment coefficients).  This is discussed in Section 11.2.4.  It is evident that the 
corner restraints lead to a reduction in moment coefficients. With regard to the long 
span moment coefficient, the Code recommends a constant value of αy ≡ 0.056 for all 
aspect ratios [refer Fig. 11.5]. 

It should be noted that the moments predicted by the Rankine-Grashoff theory are 
somewhat conservative because the effect of the restraint along the sides of the strips 
offered by the rest of the slab through torsion, transverse shear and moment are 
ignored.  For example, the slope θ  in the elastic curve of the longitudinal strip AB at 
E (Fig. 11.4) is also the angle of twist at E of the transverse strip GF.  Owing to the 
torsional stiffness of the strip GF, a twisting moment will develop at E in the 
transverse strip GF (‘compatibility torsion’ — as explained in Chapter 7).  The 
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twisting moments thus developed in the various transverse strips (such as GF, CD) at 
the middle, due to the integral action with the longitudinal middle strip AB, 
effectively reduce the flexure in AB.  Conversely, the bending in the transverse 
middle strip CD is reduced by torsion in the interconnecting longitudinal strips 
(parallel to AB).  Thus, the treatment of strips such as AB and CD as discrete strips 
free of interaction from the rest of the slab results in conservative estimates of the 
design bending moments. 
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Fig. 11.5  Variation of IS Code moment coefficients αx, αy with ly/lx for simply 

supported and uniformly loaded rectangular slabs 

Detailing of Reinforcement 

The flexural reinforcements in the two directions are provided to resist the maximum 
bending moments Mux = αx wu lx

2 (in the short span) and Muy = αy wu lx
2 (in the long 

span).  The steel requirements at the midspan locations in strips distant from the 
middle strip progressively reduce with the distance from the middle strip.  However, 
the usual design practice is to provide bars that are uniformly spaced† throughout the 
span (in both directions), with a flexural resistance that is not less than the calculated 
maximum ultimate bending moment (Mux or Muy). 

Furthermore, considering any particular strip (transverse or longitudinal), the 
bending moment varies from a maximum value at the midspan to zero at either 
support [Fig. 11.4].  Hence, it is possible to curtail the bars in accordance with the 
Code provisions explained in Section 5.9.  For the special case of simply supported 

                                                           
† The spacing of reinforcement should not exceed 3d or 300 mm (whichever is smaller). 
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two-way slabs (torsionally unrestrained), the Code (Cl. D–2.1.1) suggests a 
simplified procedure for reinforcement curtailment.  According to this procedure, up 
to 50 percent of the bars may be terminated within a distance of 0.1l from the 
support, while the remaining bars must extend fully into the supports. 

If the slab is truly simply supported at the edges, there is no possibility of 
‘negative’ moments developing near the supports, due to partial fixity.  However, it 
is good design practice to always safeguard against the possibility of partial fixity.  
As explained with reference to the design of one-way slabs [refer Chapter 5] this can 
be achieved either by bending up alternate bars [Fig. 5.3, 5.5(b)], or by providing 
separate top steel, with area equal to 0.5 times that provided at bottom at midspan, 
with an extension of 0.1l from the face of the support [Fig. 5.5(a)].  [The recent trend 
is to do away with bent up bars and instead to opt for separate layers at top and 
bottom.  This type of detailing is illustrated in Example 11.1 [Fig. 11.14]. 

11.2.4   Uniformly Loaded ‘Restrained’ Rectangular Slabs 

The Code (Cl. D–1) uses the term restrained slabs to refer to slabs whose corners are 
prevented from lifting and contain suitable reinforcement to resist torsion 
[Ref. 11.11].  All the four edges of the rectangular ‘restrained’ slab are assumed to be 
supported (tied down) rigidly against vertical translation, and the edges may be either 
continuous/fixed or discontinuous.  Accordingly, nine different configurations of 
restrained rectangular slab panels are possible (as shown in Fig. 11.6), depending on 
the number of discontinuous edges (zero, one, two, three or four) and also depending 
on whether the discontinuous edge is ‘short’ or ‘long’.  Panel type À corresponds to 
the slab with all four edges continuous/fixed, and panel type È corresponds to the 
slab with all four edges simply supported [Fig. 11.6].  [Incidentally, there will be 
several mare cases if combinations involving free (unsupported) edges are also 
considered]. 

lx

continuous (or
fixed) edge

simply supported
edge

ly

 

Fig. 11.6  Nine different types of ‘restrained’ rectangular slab panels 
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The torsional restraint at the corner calls for the provision of special corner 
reinforcement, as explained earlier [refer Fig. 11.2(c)].  The corner restraints have the 
beneficial effect of reducing the deflections and curvatures in the middle of the slab.  
Expressions for design moment coefficients for uniformly loaded two-way 
‘restrained’ rectangular slabs with fixed or simply supported edge conditions, based 
on the classical theory of plates, are available [Ref. 11.1, 11.5, 11.6].  Approximate 
solutions based on the Rankine-Grashoff theory are also available.  Modifications to 
these solutions were proposed by Marcus (‘Marcus correction’), whereby the 
moment coefficients are reduced to account for the effects of torsional restraint at the 
corners, as well as torsional resistance of the transverse and longitudinal unit strips 
[Ref. 11.5].  For example, the ‘Marcus correction’ in the case of simply supported 
slabs, results in a reduction in the design moment Mx by about 42 percent for ly /lx 
=1.0 (square slab) and 9 percent for ly /lx = 3.0, when compared to the slab with 
corners free to lift up [Table 11.1]; these results compare favourably with the 
rigorous solutions from elastic theory [Ref. 11.5]. 

However, the moment coefficients recommended in the Code (Cl. D–1) are based 
on inelastic analysis (yield line analysis) [Ref. 11.12, 11.13], rather than elastic 
theory.  This analysis is based on the following assumptions: 

• the bottom steel in either direction is uniformly distributed over the ‘middle 
strip’ which spreads over 75 percent of the span; 

• the ‘edge strip’ lies on either side of the middle strip, and has a width equal to 
lx /8 or ly /8 [Fig. 11.7]; 

• top steel is provided in the edge strip adjoining a continuous edge (and at right 
angles to the edge) such that the corresponding flexural strength (ultimate 
‘negative’ moment capacity) is 4/3 times the corresponding ultimate ‘positive’ 
moment capacity due to the bottom steel provided in the middle strip in the 
direction under consideration; 

• the corner reinforcement provided is sufficient to prevent the formation of 
‘corner levers’, i.e., forking of diagonal yield lines near the corners. 

The resulting moment coefficients αx
+, αy

+ for ‘positive’ moments at midspans in 
the short span and long span directions respectively, and the coefficients αx

-, αy
- for 

‘negative’ moments at the continuous edge(s) in the two directions, for the nine 
different sets of boundary conditions [Fig. 11.6] are listed in Table 26 of the Code.  
The design factored moment is obtained as  

M wu = α 2lu x                                                 (11.9) 

where wu is the uniformly distributed factored load and lx the effective short span and 
α is the appropriate moment coefficient. 
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Fig. 11.7  Basis for Code moment coefficients for ‘restrained’ two-way slabs 

 ‘Positive’ moment coefficients αx
+, αy

+

The variations of the short span ‘positive’ moment coefficient αx
+, with ly/lx is plotted 

for the nine types of two-way slabs in Fig. 11.8.  In all cases, there is a marked 
increase in αx

+ as ly/lx increases from 1.0 to 2.0.  The Code recommends a constant 
value of αy

+ for all values of ly/lx.  The value of αy
+ is obtainable from the following 

formula [Ref. 11.13]: 

α y d dn n+ = + +( . )24 2 1 5 10002                                   (11.10) 

where nd denotes the number of discontinuous edges.  Corresponding to nd = 0, 1, 2, 
3 and 4, the values of αy

+ are obtained as 0.0240, 0.0275, 0.0340, 0.0435 and 0.0560 
respectively†. 

An expression for αx
+ may be obtained in terms of αy

+ and r ≡ ly/lx from yield line 
analysis [Ref. 11.12, 11.13] as follows: 

α
α

x
y s s

l l

C C r

C C
+

+

=
− +

+

⎡

⎣

⎢
⎢

⎤

⎦
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3 18 1 2

1 2
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( )

( )
                                     (11.11) 

where 

C =
⎧
⎨
⎩

             for a discontinuous edge 
      for continuous edge        

1
7 3

                          (11.12) 

and the subscripts s and l denote ‘short edge’ and ‘long edge’ respectively, while the 
additional subscripts ‘1’ and ‘2’ represent the two edges in either direction.  Thus, for 
                                                           
† In Table 26 of the Code, the specified values of αy are 0.024, 0.028, 0.035, 0.043, and 0.056 
— corresponding to nd = 0, 1, 2, 3 and 4 respectively. 
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example, for the slab panel of type ‘4’ (“two adjacent edges discontinuous”), 
Cs1 + Cs2 = Cl1 + Cl2 = 1 + 7 3  = 2.5275.  For such a case, nd = 2; hence, applying 
Eq. 11.10, αy

+ = 0.0340.  Further, applying Eq. 11.11, 

α x
r+ =

− ×⎡
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⎢
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⎦
⎥
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Fig. 11.8  Variations in short span ‘positive’ moment coefficients with ly/lx in 
‘restrained’ two-way slabs 

This results in values of αx
+ varying from 0.0356 (for r = 1.0) to 0.0700 (for r = 2.0); 

the corresponding values given in Table 26 of Code are 0.035 (for r = 1.0) and 
0.069(for r = 2.0). 

Similarly, values of αx
+ and αy

+ can be easily obtained for any value of r ≡ ly/lx in 
the range [1.0, 2.0] and given set of boundary conditions.  If the value of ly/lx exceeds 
2.0, the Code (Cl. D–1.11) recommends that the slab should be treated as one-way 
[refer Chapter 5]; the provision of the secondary reinforcement in the long span 
direction is expected to take care of the nominal bending moments that may arise in 
this direction. 

‘Negative’ moment coefficients αx
–, αy

–

As explained earlier, the Code moment coefficients have been derived (using yield 
line analysis) with the basic assumption that the ultimate moment of resistance (for 
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‘negative’ moment) at a continuous support is 4/3 times the ‘positive’ moment 
capacity in the midspan region.  Of course, at a discontinuous support, the ‘negative’ 
moment developed is zero‡ .  Accordingly,  

α α
−

+=
⎧
⎨
⎪

⎩⎪

0
4
3

                at a discontinuous support     

          at a continuous support                              (11.13) 

Detailing of Flexural Reinforcement  
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Fig. 11.9  Detailing of flexural reinforcement in two-way ‘restrained’ rectangular slabs† 
(excluding corner reinforcement) 

                                                           
‡ However, as explained earlier, the possibility of partial restraint must be considered at the 
time of detailing. 
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• The bottom steel for the design moments (per unit width) Mux
+ = αx

+wulx
2 and 

 be uniformly distributed across Muy
+ + 2 ddl ri

• 

i    

• 
nds that top steel with area equal to 

• 
 — at top and 

Detailing of Torsional Reinforcement at Corners 

tangular slab panels whose 
ded in the form of a mesh 

,
+

He  the ment in the 

ay b

Fig

                                                                                                                                         

 = αy wulx  should the ‘mi e st ps’ in the 
short span and long span directions respectively.  The Code (Cl. D–1.4) 
recommends that these bars should extend to within 0.25l of a continuous edge or 
0.15l of a discontinuous edge.  It is recommended [Ref. 11.14] that alternate bars 
(bottom steel) should extend fully into the support, as shown in Fig. 11.9. 
The top steel calculated for the design moments Mux

– = αx
– wulx

2 and Muy
– = 

α w l− 2  at continuous supports should be uniforml i tribut d r ss thy u x y d s e  ac o e ‘edge 
strips’ n the long span and short span directions respectively.  The Code (Cl.  
D–1.5) recommends that at least 50 percent of these bars should extend to a 
distance of 0.3l from the face of the continuous support, on either side.  The 
remaining bars may be curtailed at a distance of 0.15l from the face of the 
continuous support, as shown in Fig. 11.9† . 
To safeguard against possible ‘negative’ moments at a discontinuous edge due to 
partial fixity, the Code (Cl. D–1.6) recomme
50 percent of that of the bottom steel at mid-span (in the same direction) should 
be provided, extending over a length of 0.1l, as shown in Fig. 11.9. 
In the edge strip, distribution bars parallel to that edge (conforming to the 
minimum requirements specified in Section 5.2) should be provided
bottom — to tie up with the main bars [Fig. 11.9]. 

Torsional reinforcement is required at the corners of rec
edges are discontinuous.  This can conveniently be provi
(or grid pattern) at top and bottom.  The bars can be made U-shaped (wherever 
convenient) and provided in the two orthogonal directions as shown in Fig. 11.10 
[Ref. 11.14].  The Code (Cl. D–1.8) recommends that the mesh should extend 
beyond the edge‡ over a distance not less than one-fifth of the shorter span (lx).  The 
total area of steel to be provided in each of the four layers should be not less than: 

• 0.75 Ast x,
+  if both edges meeting at the corner are discontinuous; 

• 0.375 x if one edge is continuous and the other discontinuous.  Ast

re, Ast x,
+  is  area of steel required for the maximum midspan mo

slab. 
It m e noted that if both edges meeting at a corner are continuous, torsional 

reinforcement is not called for at the corner [refer Cl. D–1.10].  This is indicated in 
. 11.10.  [However, this area will have some reinforcement provided anyway, 

 
† For convenience in estimating lengths of bars and locations of bar cut-off points, lx and ly 
may be taken as the spans, measured centre-to-centre of supports. 
† In Fig. 11.9, the top bars and bottom bars are shown as being separate.  Alternatively, the 
bottom bars can be bent up to form the top steel, as shown in Fig. 5.5. 
‡ Here, the term ‘edge’ refers to the face of the support. 
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because of the ‘negative’ moment reinforcements over supports in the middle strips 
and the distributor reinforcements in the edge strips.] 

Design ‘Negative’ Moments at Continuous Supports 

slab panel is analysed In a wall-supported continuous slab system, each rectangular 
separately (for design moments) using the Code moment coefficients.  The ‘negative’ 
moments (M1, M2) calculated for two panels sharing a common continuous edge may 
not be equal [Fig. 11.11] due to one or more of the following reasons: 

ly

lx

0.2lx
AA

0.2lx

0.2lx

0.2lx

0.2lx

0.75 Ast,x
+ at top

and bottom and bottom
0.375 Ast,x

+ at top

0.375 Ast,x
+ 0.2lx

0.2lx

no special torsional
reinforcement
required here

PLAN

bars at top and bottom
(may be U–shaped)

SECTION  ‘AA’  

Fig. 11.10  Detailing of torsional reinforcement at corners 

• the two adjacent spans are unequal; 
joining panels are different; • the boundary conditions in the two ad

• the loading on one panel is different from that in the other panel. 
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Since the Code moment coefficients are based on inelastic analysis, with a fixed 
ratio (4/3) of ‘negative’ to ‘positive’ moment capacities, no redistribution of 
moments is permissible†.  Hence, it is logical to take the larger factored moment (M1 
in Fig. 11.11) as the design ‘negative’ moment at the continuous edge. 

D2D1

span l1 span l2

wall

choose      →       M1

M2
bending
moment
diagram

 

Fig. 11.11  Design ‘negative’ moment at a continuous support 

Influence of Pattern Loading 

ystems — whether one-way or two-way — the 

                                                          

In the case of continuous slab s
influence of variability in live loads must be considered.  The concept of ‘pattern 
loading’ was introduced in Section 9.7, with reference to elastic analysis of 
multistoreyed frames, and also in Section 5.6, with reference to continuous beams 
and one-way slabs.  In the case of two-way slabs, the ‘checkerboard pattern’ of 
loading [Fig. 11.12(a)] generally results in the maximum ‘positive’ moments in slabs, 
and the ‘strip pattern’ of loading [Fig. 11.12(b)] results in the maximum ‘negative’ 
moments in slabs. 

As explained earlier, the Code moment coefficients for ‘restrained’ slab panels are 
based on inelastic analysis, and not elastic analysis.  Each panel is analysed 
separately for its worst (‘collapse’) loading, and hence the concept of pattern loading 
is not relevant here. 

 
† It may be noted that the Code recommends the use of the same moment coefficients for 
design by the working stress method.  In a WSM context (i.e., under service loads), it may be 
argued that the design moments should be obtained through some kind of moment distribution 
procedure [Ref. 11.5].  However, this is not meaningful in design by LSM.  Moreover, the 
basis of the Code moment coefficients is inelastic analysis, and not elastic analysis. 
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A

(b)  ‘strip loading’ pattern for
maximum ‘negative’ moments along
panel edges/support lines (along AB)

(a)  ‘checkerboard loading’
pattern for maximum ‘positive’
moments (in panels with LL)

DL only

B

DL + LL

lines of
support

Fig. 11.12  Pattern loadings for maximum slab moments 

Redistribution of Moments 

Bending mom ysis, can be 
hapter 9, for more economical distribution of 

the Code moment coefficients for ‘restrained’ slabs 

erning design consideration in wall-supported reinforced 
xplained earlier 

n, the 

.4), 
ac

                                                          

ents in continuous systems, based on elastic anal
redistributed, as explained in C
reinforcement.  However, when 
are used, moment redistribution is prohibited [refer Cl. D–1.3], as the coefficients are 
based on inelastic analysis. 

11.2.5   Shear Forces in Uniformly Loaded Two-Way Slabs 

Shear is generally not a gov
concrete slabs subject to uniformly distributed loads.  This was e
[refer Example 6.2] with reference to one-way slabs.  With two-way actio
magnitude of shear stresses are likely to be even lesser than with one-way action. 

The distribution of shear forces at the various edges of a two-way slab is 
complicated in general.  However, the Code (Cl. 24.5) recommends a simple 
distribution of loads on the supporting edges (as explained earlier in Section 9

cording to which, the distribution of load on the short edge is triangular, and the 
distribution of load on the long edge is trapezoidal, with the lines demarcating the 
contributing areas at 45 degrees to the boundaries [Fig. 11.13].  The critical section 
for shear† is to be considered d away from the face of the support. 

 
† This type of shear is called ‘one-way shear’ or ‘beam shear’, which is distinct from ‘two-way 
shear’ (‘punching shear’) applicable for slabs supported on columns [see Section 11.8]. 



436   REINFORCED  CONCRETE  DESIGN 

As shown in Fig. 11.13, the maximum factored shear force per unit length, Vu, is 
obtained as: 

Vu = wu ( . )0 5l dxn −                                                   (11.14) 

where lxn is the clear span ort span dir
The corresponding nom ress 

 in the sh ection. 
inal shear st τ v uV bd=  (with b = 1000 mm) should 

be less than the design shear strength of concrete for slabs, k cτ  [refer Section 6.6.2]. 
 average effective depth d = (d

 
An y be considx + dy)/2 ma ered in the calculations. 

For a more accurate estimation of load distribution in slabs with different 
boundary conditions, reference may be made to Ref. 11.16. 

 

d

d

45o

45o

max. shear force per
unti width

Vu = wu × shaded area
 = wu (0.5lxn – d)

critical section for
one-way shear

0.5lxn

lyn

lxn

strips of
unit width

0.5lxn

 

Fig. 11.13  Assumed distribution of loads on the edges of a rectangular slab, uniformly 
loaded 

EXAMPLE 11.1 

Design a simply s
5.0 m and 230 mm

upported slab to cover a room with internal dimensions 4.0 m × 
 thick brick walls all around.  Assume a live load of 3 kN/m2 and a 

 short span ≈ 4150 mm 

finish load of 1 kN/m2.  Use M 20 concrete and Fe 415 steel.  Assume that the slab 
corners are free to lift up.  Assume mild exposure conditions. 

SOLUTION 

• Effective
4150Assume an effective depth d ≈ 

20 1 5× .
 = 138 mm 

 and s rs, overall thickness of slab 

⇒ Provide D = 165 mm 

With a clear cover of 20 mm ay, 10 φ ba
D ≈ 138 + 20 + 5 = 163 mm. 

⇒ dx = 165 – 20 – 5 = 140 mm 
     dy = 140– 10 = 130 mm 
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⇒ Effective spans ⎨
⎧

=
=+= mm 

5000
41401404000x

l
l

⇒
⎩ y =+ mm 5130130

  
4140
5130

=≡ yl

xl
r  = 1.239 

 as (clear span + d), as this is less than centre-to-
rts)]. 

Loads on sl
5 kN/m3 × 0.165m = 4.13 kN

     w = 8.13 kN/m2

oad  wu = 8.13 × 1.5 = 12.20 kN/m2

De  direction) 
• the Rankine-Grashoff method 

α

[Note that effective span is taken
centre span (between suppo

ab: 
(i) self weight @ 2 /m2  
(ii) finishes (given)                              = 1.0       ” 
(iii) live loads (given)                           = 3.0       ” 

                   
⇒ Factored l

sign Moments (for strips at midspan, 1 m wide in each
As the slab corners are torsionally unrestrained, 
[Cl. D–2 of Code] may be applied: 
short pan: Mux =  s x wu x

long span: M
l 2  

uy = αy wulx
2  

where  

α x
r

r
=

+

⎡

⎣
⎢

⎤

⎦
⎥

1
8 1

4

4  = 1
8

1 239
1 1 239

4

4
.

.+

⎡

⎣
⎢

⎤

⎦
⎥  = 0.0878 

and α r
=

⎡
⎢

⎤
⎥

1
4  = y r+⎣ ⎦8 1

2 1
⎢8

1 239
1 1 239

2

4
.

.+⎣

⎤

⎦
⎥  = 0.0571 

⇒ Mux = 0.0878 × 4.1402 = 18.36 kNm/m 
     Muy = 0.0571 .20 × 4.1402 = 11.94 kNm/m 

Design of Reinforcement  

• 

⎡

× 12.20 
× 12

R
M
bdx

2x
ux≡  = 

23 14010 ×

636.18 ×  = 0.9367 MPa  

• 

10

R
M
bdy

y
2

uy≡  = 
23 13010 ×

61094.11 ×  = 0.7065 MPa 

( ) ( )p A
bd

t reqd st reqd

100
≡  = [ ]f

R f
y

ck2
 

⇒

f
ck 1 1 4 589− − .

[ ]20)9367 
( ) ,pt x reqd = .0598.4(1 ×−−

100
1

4152
20
×

 = 0.275 × 10–2  

⇒ (Ast)x, reqd = (0.275 × 10–2) × 1000 × 140 = 385 mm2/m  

⇒ required spacing of 10 φ bars = 
385

5.781000×  = 204 mm 

• ilarly, [ ]20)5  = 0.204 ×
( ) ,pt y reqd 706.0598.4(1120

×−−
×

 10–2  

  

Sim =
100 4152

⇒ (Ast)y, reqd = (0.204 × 10–2) × 1000 × 130 = 265.7 mm2/m
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7.265
5.781000×

⇒ required spacing of 10 φ bars =  = 295 mm 

Maximum m 
span (short mm 

 spacing for primary reinforcement = 3d or 300 m
=×

span) (long mm 
)4201403

   

• 

    = 
⎩
⎨ =× 3901303
⎧

Provide 
⎪⎩ =⇒ mm   span) (long        7.270290@10 , ystAccφ
⎪
⎨
⎧ = msp (short      5.392200@10 ,xccφ ⇒

m
mm   an)

2

2
stA

 

The detailing is shown in Fig. 11.14. 
Check for deflection control 

• 
14010

,xtp 5.392
3 ×

=  × 100 = 0.280 

• f  = 0.58 × 415 × 385/392.5 = 236 MPa 
able 5.2 or Fig. 3 of Code) 

s

⇒ modification factor kt = 1.5 (from T
⇒ (l/d)max = 20 × 1.5 = 30 

 

4000 

230 

8 φ bars

165 

525

SECTION  ‘AA’

PLAN OF FLOOR SLAB

A

165 mm 
thick

A 

10 φ @ 200 c/c 

10 φ @ 290 c/c 

10 φ @ 290 c/c

10 φ @ 200 c/c

5000230 230

230
425

525 

 

Fig. 11.14  Example 11.1 
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140
4140

†

(l/d)provided =  = 29.6 < 30      — OK. 

Check for shear   
• average effective depth d = (140 + 130)/2 = 135 mm 

Vu = wu(0.5lxn – d) = 12.20 (0.5 × 4.0 – 0.135) = 22.75 kN/m  
⇒ τ v  = 22.75 × 103/(1000 × 135) = 0.169 MPa  

• pt = 0.28 ⇒  = 0.376 MPa ⇒ k c vτ τ>   τ c — Hence, OK. 

EXAMPLE 11.2 

Repeat Example 11.1, assuming that the slab corners are prevented from lifting up. 

SOLUTION 

• [Refer Example 11.1]: Assume D = 160 mm (which is 5 mm less than the 
previous case) 
Assuming 8 φ bars ⇒ d  = 160 – 20 – 4 = 136 mm, dy = 136 – 8 = 128 mm 

          ⇒ ⇒

x

 
⎩
⎨
⎧

=+=
=+=

mm 
mm 

51281285000
41361364000

y

x

l
l

  
l
l
y

x
= 1.240 

Loads on slab: (same as in Example 11.1) 
• Factored load  wu = 12.20 kN/m2  
Design Moments (for middle strips, 1 m width in each direction). 

As the slab corners are to be designed as torsionally restrained, the moment 
coefficients given in Table 26 of the Code (Cl. D–1) may be applied‡ for 
ly/lx = 1.240: 

• Short span: αx = 0.072 + ( 1 240 1 2
13 1 2
. .

. .
−
−

0.079 – 0.072) ×  = 0.0748 

u lx
2  

 × 12.20 × 4.1362 = 15.61 kNm/m  
ally, is about 15 percent less than the value of 18.36 kNm/m 

• 
u

6  11.69 k m/m  
(which is comparable to the earlier value of 11.94 kNm/m) 

rcement  

⇒ Mux = αx w
            = 0.0748
(which, incident
obtained in Example 11.1) 
Long span: αy = 0.056 
⇒ M y = αy wu lx

2  
            = 0.05  × 12.20 × 4.1362 = N

Design of reinfo

• R
M

x
ux≡  = 

23

61061.15 ×  = 0.844 MPa  
bdx

2 13610 ×

                                                           
† As explained earlier, a check on shear is not really called for in uniformly loaded, wall-
supported two-way slabs.  This is evident from the results of this example. 
‡ Alternatively, Eq. 11.10, 11.11 may be applied. 
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PLAN

830

830

525 

5000

B

230 230

230 
B 

425

AA 
4000 

230 

5 nos 8 φ bars 
(U–shaped) 

both ways (typ) 

8 

at each corner 

φ @ 15

8 

0 c/c

φ @ 190 c/c

830

5 nos 8 φ 
U–shaped 

bars 

160

SECTION  ‘BB’

525 8 φ @ 190 c/c 

8 φ @ 150 c/c 

160 

SECTION  ‘AA’

 

Fig. 11.15  Example 11.2 

R
M
bdy

uy

y
≡ 2  = 

23

6

12810
1069.11

×

×  = 0.714 MPa 

⇒ 
( ) ,pt x reqd

100
= [ ]20844.0589.411

4152
20

×−−
×

 = 0.2465 × 10–2  
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⇒ (Ast)x, reqd = (0.246 × 10–2) × 1000 × 136 = 334 mm2/m  

⇒ Required spacing of 8 φ bars = 
334

3.501000×  = 150.7 mm 

Maximum spacing permitted = 3 × 136 = 408 mm, but < 300 mm.  

⇒ 
( ) ,pt y reqd

100
= [ ]20714.0589.411

4152
20

×−−
×

–2

 = 0.206 × 10–2  

⇒ (Ast)y, reqd = (0.206 × 10 ) × 1000 × 128 = 264 mm2/m  

⇒ Required spacing of 8 φ bars = 
264

3.501000×  = 191 mm 

Maximum spacing permitted = 3 × 128 = 384 mm, but < 300 mm  

• Provide 
⎩
⎨
⎧

span) (long        
span) (short      

cc
cc

190@8
150@8

φ
φ

 

The detailing is shown in Fig. 11.15. 

Check for deflection control 
•  = 0.2465 
• fs = 0.58 × 415 × 334/335 = 240 MPa 

⇒ modification factor kt = 1.55 (from Table 5.2 or Fig. 3 of Code) 
• ⇒ (l/d)max = 20 × 1.55 = 31 

(l/d)provided = 

pt x,

136
4136  = 30.4 < 31  — Hence, OK. 

Corner Reinforcement  
As the slab is designed as ‘torsionally restrained’ at the corners, corner 
reinforcement has to be provided [vide Cl. D–1.8 of the Code] over a distance lx/5 
= 830 mm in both directions in meshes at top and bottom (four layers), each layer 
comprising 0.75 Ast, x. 

⇒ spacing of 8 φ bars = 150
0 75.

 = 200 c/c 

Provide 8 φ @ 200 c/c both ways at top and bottom at each corner over an area 
830 mm × 830 mm, i.e., 5 bars U-shaped in two directions, as shown in 
Fig. 11.15. 

EXAMPLE 11.3 

The floor slab system of a tw n Fig. 11.16.  The slab 
system is supported on loa mm thick, as shown.  
Assuming a floor finish load of 1.0 kN/m2 and a live load of 4.0 kN/m2, design and 
detail the mult el slab sys  concrete and Fe 415 steel.  Assume mild 
exposure conditions. 

o-storeyed building is shown i
d-bearing masonry walls, 230 

ipan tem.  Use M 20
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SO

• The slab system [Fig. 11.6] has two axes of symmetry passing through the centre, 
rent slab pa gned is four: 

LUTION 

owing to which the number of diffe nels to be desi

panel clear spans boundary conditions type [refer 
Fig. 11.6] 

S1 4.0 m × 5.0 m one short edge disc Á ontinuous 

S2 3.0 m × 5.0 m one long edge discontinuous Â 

Ã S3 3.0 m × 5.0 m two adjacent edges discont. 

À S4 4.0 m × 5.0 m all four edges continuous 

 

 S3 S3S2

S1

S3S2 S3

S4 S1

230230
5000230 230 5000 5000

230

3000

23

23

230

0

0

4000

3000

 
Fig. 11.16  Floor slab system — Example 11.3 

Slab thicknesses: based on deflection control criteria 
• Panels S1 and S4: 4.0 m × 5.0 m clear spans 

lx ≈ 4000 + 150 = 4150 mm 

⇒ dx = ≈ 4150
26 1 5× .

 = 107 mm 

Assuming a clear cover of 20 mm and 8 φ bars, 
D ≈ 107 + 20 + 8/2 = 131 mm 
Provide D = 135 mm 
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⇒ Effective depths 
⎩
⎨ =−=  mm       1038111yd

 

⎧ =+= mm 41111114000xl

⎧ =−−= mm 111420135xd

⇒ effective spans†
⎨ =+= mm 51031035000l

 

⇒ ly x

• Pane 2 an 0 
⇒ lx 000 m
⇒ dx = ≈ 3100/  is only rtial in the 
case of panel s ic l/d ra hich is an 
average of the si e e., (20 + 26)/  = 23.] 
Assum g a c   20 + 8/2 = 114 mm 
Provide D = 115 mm 

⇒ effective depths 
=

=−−=
          

mm  
9

91420115

y

x

d
d

 

 effective spans 

lx = 5083/

Loading on slabs 

• self-weight of slab 

 
⎩ y

4111 = 1.241 /l  = 5103/
ls S d S3: 3.0 m × 5. m clear spans 
≈ 3 + 100 = 3100 m

(23 × 1.5) = 90 
 

mm [The continuity effect  pa
 S3.  Hence, it i appropriate to consider a bas tio w

mply support
lear cover of 20

d and continuous cases, i.
mm and 8 φ bars, D ≈ 90 +

2
in

⎩
⎨
⎧

=− mm 8381

⇒

⇒ l
⎩
⎨
⎧

=+=
=+=

mm 
mm 

5083835000
3091913000

y

x

l
l

 

y/ 3091 = 1.644 

⎪⎩

⎪
⎨
⎧

=×
=×

32
2

41
23

,875.2115.025@
,375.3135.025@
SS

SSmmkN
 for   mkN             

 for   mkN   

fini  1.0 kN/
live loads @ 4.0 kN/m2  

•  Factored load wu = 

shes @ m2  

 ⇒
⎪⎩

⎪
⎨
⎧

=++×
=++×

43
2

21
2

,81.11)0.40.1875.2(5.1
,56.12)0.40.1375.3(5.1
SS
SS

 for   mkN 
 for   mkN  

Design Moments ( ode moment coe ients for ‘restrained’ slabs) 
• Referring to Table 26 of the Code, or alternatively applying Eq. 11.10 – 11.12, 

oment coefficients αx
+, αy

+ (for ‘positive’ moments in the middle 
rip) in the different panels are obtained as: 

⎩ 4

2

3

4

     
      "     

 

     

using C ffic

the following m
st

α αx y
+ + = ⎨

⎪,
5      "

S
S

⎧
⎪

. , .
. , .

0 037 0 028
0 056 0 028

1     panel 
        "      

S
S

⎪
⎪

. , .
. , .

0 060 0 03
0 034 0 02

  
  

                                                      
 (230 mm) is less th† T an 1/12 of the clear span (4000/12 = 

333 s to be taken as (clear span + d) or (centre-to-centre 
distance between supports), whichever is less [refer Cl. 22.2 of Code]. 

he width of the continuous support
ve span i mm); hence, the effecti
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• he ‘negative’ moments in th various continuous edge strips 
 α– = 4/3α+  

• The corresponding design (factored) moments Mu = α wulx
2 in the various panels 

ined as follows: 

The coefficients for t e 
are easily obtained as

are accordingly obta

S1 S2 S3 S4panel 
load wu (kN/m ) 12.56 112 .81 11.81 12.56 

span lx (m) 4.111 3.091 3.091 4.111 
short 
span 

moments 

Mux
+

Mux
–

7.85 
10.47 

6.32 
8.43 

6.77 
9.03 

7.22 
9.62 

long span 
moments 
(kNm/m) M

Muy
+ 5.94 3.16 3.95 5.09 

7.92 4.21 5.27 6.79 
uy

–

 
Design ‘negative’ moments at common supports 
• The ‘negative’ moments at the continuous edges, as obtained from the Code 

equal — as shown in Fig. 11.17(a).  In all such cases, the 
design ‘negative’ moment is taken as the larger of the two values obtained from 

gn moments so obtained are shown in 
Fi

coefficients, are un

either sides of the support.  The desi
g. 11.17. 

Flexural reinforcement requirements  
( ) ( )p A f

f
M f bdck

y
u ck2

1 1 4 598 2− −⎡
⎣⎢

⎤
⎦⎥

. (  • 
bd100

 = t reqd st reqd≡ )

 = 415 MPa, b = 1000 mm 

Panel S1: dx = 111 mm, dy = 103 mm 
 kNm/m ⇒ (Ast)reqd = 203.6  mm2/m 

    ⇒ reqd spacing of 8 φ bars = 247 mm 

• 
 reqd spacing of 8 φ bars = 304 mm— to be 

limited to 300 mm 
            = 7.92 kNm/m ⇒ (Ast)reqd = 223  mm2/m

    ⇒ reqd spacing of 8 φ bars = 225 mm 
Panel S2: dx = 91 mm, dy = 83 mm 
• short span  = 6.32 kNm/m ⇒ (Ast)reqd = 201.6  mm2/m 
    ⇒ reqd spacing of 8 φ bars = 249 mm 

where f  = 20 Mck Pa, fy

• short span: Mux
+  = 7.85

           Mux
−  = 10.47 kNm/m ⇒ (Ast)reqd = 275.5  mm2/m 

    ⇒ reqd spacing of 8 φ bars = 183 mm 
long span: Muy

+  = 5.94 kNm/m ⇒ (Ast)reqd = 165.2  mm2/m 
⇒

Muy
−  

: Mux
+

           Mux
−  = 9.62 kNm/m ⇒ (Ast)reqd = 315.5  mm2/m 

    ⇒ reqd spacing of 8 φ bars = 159 mm 
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• long span: Muy
+  = 3.16 kNm/m ⇒ (Ast)reqd = 108.4  mm2/m 

    ⇒ reqd spacing of 8 φ bars = 464 mm — to be 
limited to 3dy = 249 mm 

           M −  = 5.27 kNm/m ⇒ (Auy st)reqd = 184.4  mm2/m 
   ⇒ reqd spacing of 8 φ rs = 272  — to be 

ed to 3 49 mm 
 

  ba mm
limit dy = 2

 

 S3 S3S2

S1

S3S2 S3 

S4 S1 

 S  3 S3S2

S1

S3S2 S3 

S4 S  1

– 10.47

– 10.47

– 7.92– 7.92

– 9.62

– 9.62

– 5.2795.3=+M 16.3=+M

77.6=+
uxM 32.6=+

uxM

uy uy

94.5

85.7

=

=
+
uy

ux

M

M +

09.5

22.7

=

=
+

+

uy

ux

M

M

– 5.27

(b)  final design moments (kNm/m)  

(a) ‘negative’ moments (kNm/m) at 
continuous edges for each panel 

8.439.03

03

4.215

8.439.

5.27.27 4.21

9.6210.47

7.926.796.797.92

9.6210.47

Fig. 11.17  Design moments — Example 11.3 
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Panel S3: dx = 9 m, d1 m
• 
    ⇒ reqd spacing of 8 φ ba

 
• long span  = 3.95 kNm/m ⇒ (Ast)reqd = 136.5  mm2/

    ⇒ reqd spacing of 8 φ bars = 368 mm — to be 
limited to 3dy = 249 mm 

            =5.27 kNm/m ⇒ (Ast)reqd = 184.4  mm2/m 
    ⇒ reqd spacing of 8 φ bars = 272 mm — to be 

limited to 3dy = 249 mm 
Panel S4: dx = 111 mm, dy = 103 mm 
• short span  = 7.22 kNm/m ⇒ (Ast)reqd = 186.7  mm2/m 
    ⇒ reqd spacing of 8 φ bars = 269 mm 

            = 9.62 kNm/m ⇒ (Ast)reqd = 251.9  mm2/m 
    ⇒ reqd spacing of 8 φ bars = 199 mm 
• long span  = 5.09 kNm/m ⇒ (Ast)reqd = 140.9  mm2/m 

    ⇒ reqd spacing of 8 φ bars = 357 mm — to be 
limited to 3dy or 300 mm 

            = 7.92 kNm/m ⇒ (Ast)reqd = 223  mm2/m 
        ⇒ reqd spacing of 8 φ bars = 225 mm 

Detailing of Reinforcement  

• Based on the requirements of reinforcement calculated above, the detailing of 
flexural reinforcement in the various middle strips and edge strips is shown in 
Fig. 11.18.  For practical convenience, only two different bar spacings (220 mm 
and 150 mm) are adopted (except for slab S3 for , for which a spacing of 145 
mm is used).  The detailing is in conformity with the requirements specified in 
Cl. D–1 of the Code, and satisfies the requirements of minimum spacing. 

• Nominal top steel (50 percent of bottom steel) is provided at the discontinuous 
edges — against possible ‘negative’ moments due to partial fixity. 

Torsional reinforcement at corners 
• As required by the Code, the reinforcement is provided in the form of a mesh, 

extending over a distance of 0.2lx beyond the face of the supporting wall.  The 
bars are provided as U-shaped (i.e., with the mesh extending over top and 
bottom). 

• At the extreme corner of the slab system, required spacing of 8 mm φ bars = 4/3 × 
220 = 293 mm — over a distance of 0.2 × 3103 = 620 mm. 

⇒ Provide 3 nos 8  mm φ U-shaped bars in both directions at the extreme corner of  
the slab system 

y = 83 mm 
short span: Mux

+  = 6.77 kNm/m ⇒ (Ast)reqd = 216.8  mm2/m 
rs = 232 mm 

            = 10.47 kNm/m ⇒ (AMux
−

st)reqd = 346  mm2/m 
   ⇒ reqd spacing of 8 φ bars = 145 mm 

m : Muy
+

Muy
−

: Mux
+

Mux
−

: Muy
+

Muy
−

Mux
−

— over a distance 620 mm × 620 mm. 
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• The area of steel required at the other corners, where torsional reinforcement is 
f  3 nos 8 mm φ at top 

 of S2 and 
3

•  of S  and S3.  Provide 

g is

required, is hal  the above requirement — however, provide
and bottom.  The size of the mesh is 620 mm × 620 mm at the junction
S , where one edge of t tinuous. he corner is discon
The size of the mesh is 0.2 × 4111 ≈ 820 mm at the junction 1

3 nos 8 mm φ bars at top and bottom. 
The detailin  shown in Fig. 11.18. 
[Note: The slab panels satisfy the limiting l /d ratios for deflection control; this 

may be verified.] 

 

135 115

650650 3930 650

 

SECTION ’AA’

PLAN (showing main bars)

400 

2430 

135 thick 135 thick

115 thick115 thick

400 

2615

145 c/c 
8 φ @ 

8 φ @ 
220 c/c 

8 φ @ 220 c/c 8 φ @ 220 c/c 

8 φ @ 

6 φ @ 220 c/c

150 c/c 

6 φ @ 
220 c/c 

8 φ @ 220 c/c

6 φ @ 220 c/c 

5230

3230 

2115 

S3

S1

S2

S4

A

A

3 – 8 φ at top and 
bottom (4 layers, 
at each corner) 

 530

[for lengths of bars, refer SP : 34 or Fig. 11.9(a)]

 

Fig. 11.18  Detailing of multi panel slab system — Example 11.3 
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11.2.6   Design of Circular, Triangular and Other Slabs 

n-rectangular slabs, with shapes such as circular, triangular and trapezoidal, are 
etimes encountered in structural design practice.  Rectangular slabs, supported on 

ee edges or two adjacent edges, are also met with in

No
som

r  

uni ar slabs are sometimes designed by 
con inscri thin the boundaries of the slabs, 
and te 
analyses o ectangular and other slabs are obtainable from the 
computer-based finite difference method [Ref. 11.6] and finite element method 
[Ref. 11.7].  Yield line analyses provide simple and useful solutions for slabs of all 
possible shapes and boundary conditions [Ref. 11.8 – 11.10]. 

Some of the standard solutions for a few typical cases are given here (without 
derivation).  In all these cases, slabs are assumed to be subjected to uniformly 
distributed loads w (per unit area). 

Circular Slabs, Simply Supported [Fig. 11.19] 
Elastic theory 

• Moment in radial direction  Mr = 

th  practice.  Classical solutions, 
based on the elastic theory, are available in the case of rectangular and circular plates, 

formly loaded [Ref. 11.1].  Nonrectangul
sidering the largest circle that can be bed wi
 treating these slabs as equivalent circular slabs [Ref. 11.16].  More accura

f stresses in nonr

w a r
16

3 2 2[( )( )]+ −ν                            (11.15a) 

• Moment in circumferential direction    Mθ  = w a r
16

3 12 2[ ( ) ( )]+ − +ν ν  3

  (11.15b) 
where      a ≡ radius of the circular slab; 
                r ≡ radius where moment is determined (0 ≤ r ≤ a); 
                              ν  ≡ Poisson’s ratio — may be taken as zero in the case of reinforced 

concrete. 
• Maximum moments (at centre): M M war,max ,max= =θ 3 12 6                  (11.15c) 
• The two-way reinforcement may be provided by means of an orthogonal mesh 

with isotropic reinforcement [Fig. 11.19(b)]; Providing radial plus circumferential 
reinforcement [Fig. 11.19(c)] is also (theoretically) a solution; however, this is 
not convenient in practice, as the radial bars need to be specially welded at the 
centre. 

Yield line theory  (assuming isotropic reinforcement) 
• Collapse load  wu = 6MuR/a2 

⇒ design moment    Mu = wua2/6                                                         (11.16) 
(which is less than the elastic theory solution: Mu = wua2/5.333) 

Circular Slabs, Fixed at the Edges 
Elastic theory 

• Mr = w a r
16

1 32 2[ ( ) ( )+ − +ν ν ]                                                                (11.17a) 
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• M  = θ 
w a r1 1 32 2[ ( ) ( )]+ − +ν ν                                              
16

where the notations are exactly as mentioned earlier [Fig. 11.19] 
Design moments  (assuming υ = 0):  

               (11.17b) 

M M war,max ,max
  + += =θ

2 16  (‘positive’ at centre)          (11.17c) 

     M wa Mr,max ,max( ) ;   − −= − ⋅ =2 8 0θ  (at edges)                 (11.17d) 
[Top steel is required near the supports, in the radial direction]. 

(a)

a

r

radia
(wel

centre)
(c)

l bars
ded at

orthogonal
mesh

circumferential
bars

(b)  

Circular slabs, simply supported and isotropically reinforc

Yie
• 

As the elastic  the support is twice that at the centre, it is desirable to 
 : 2 

Fig. 11.19  ed 

ld line theory (assuming isotropic reinforcement) 
Collapse load wu = 6( MuR

 +  + MuR
 − )/a2 

moment at
provide MuR

 + : MuR
 −  in the ratio 1

Accordingly, for design,  M wau
 + = +( ) 2 18                                            (11.18a) 

      M wau
 − = −( ) 2 9                                              (11.18b) 

uilateral Triangular Slabs, Simply Supported   [Fig. 11.20(a)] Eq
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unsupported 
edge

60o 60o

l 

(b)

60o60o 

l 

(a) 
 

Fig. 11.20  Equilateral triangular slabs, isotropically reinforced 

Yield line theory ing isotropic reinforcement) 
• Collapse load wu = 72 MuR/l2 

where l is the length of one side  
⇒ design moment (at midspan)  Mu = wul2/72                                       (11.19) 

Equilatera riangular Slabs, Two ges Simply Supported
[Fig. 11.20(b)]

Rectangular Slabs, Three Edges Simply Supported and One Edge Free  
[Fig. 11.21(a

 (assum

l T  Ed   
          and One Edge Free  

Yield line theory (assuming isotropic reinforcement) 
• Collapse load  w  = 24 Mu

where l is the length of one side  
uR/l2 

⇒ design moment (at midspan)  Mu = wul2/24                                       (11.20) 

)] 

Yield line theory 
Let μ ≡ M MuR Y uR X, ,  and R ≡ lY/lX ; the X- and Y- directions are as indicated in 
Fig. 11.21(a). 

• Design moments:  

{ }
M

w R l
R

w l
R R

uX

u X

u X
=

+ −

+ −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧

⎨

⎪
⎪

⎩

⎪
⎪

2 2
2

2

2

2
24

4 9 2

24
3

4 2

μ
μ

μ μ
(whichever is greater)        (11.21) 

• By suitably selecting μ  (which can even be taken as unity), design moments 
 and  = MuX MuY μ MuX  can be determined. 
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M 

–
uR,Y = iY M 

+
uR,Y

M 

+
uR,X

M 

+
uR,YMuR,Y = μ MuR,X

lY = RlX

Y

X

lX lX

M 

–
uR, X =

iX M 

+
uR,X

(a) (b)

M uR, X

 

Fig. 11.21  Rectangular slabs, supported on three edges 

 [Fig. 11.21(b)] Rectangular Slabs, Three Edges Fixed and One Edge Free
Yield line theory 

Let μ ≡ M MuR Y uR X, ,  

        iX ≡ M MuR X uR X, ,
  − +  

M M        iY  uR Y uR Y, ,    − +≡

M i
w lu

Y 

 
+ = +

⎨
⎪ 1

2 2
6( )α

α
(wh

w lu Y −⎧
⎪

2
13( )α

• Design moments:           

i
u Y

Y+
⎪ 2

6 1( )

ichever is greater)       (11.22) Y

⎩⎪

where  

( )α1 1 14 4 3 2≡ + −K K  

K i
R1 2 i

Y

X

3
1

≡
+
+

μ( )  
( )

( )α 21 3≡ + −K2 21 K  

K i
i
X

2
4 1

1
≡

+
+

( )
( )μ Y

 

• By suitably selecting μ, iX and iY, all the design moments can be determined.  This 
is illustrated in Example 11.5. 

Rectangular Slabs, Two Adjacent Edges Fixed and the Other Two Free 
[Fig. 11.22] 



452   REINFORCED  CONCRETE  DESIGN 

X

Y

lY = RlX

M 

+
uR,Y

iY M 

+
uR,Y

 M 

+
uR,XiX

M 

+
uR,X

lX

 

Fig. 11.22  Rectangular slab, two edges fixed and the other two free 

: 

Yield line theory 
• Using the same notations as in the previous case [refer Fig. 11.22], 

design moment

{ }
M

w l i
R

w l
i i R

uX

u X X

u X
X Y

 + =

+
+

⎧
⎨
⎩

⎫
⎬
⎭

+

⎧

⎨
⎪⎪

⎩
⎪
⎪

2

3
2 2

2
2

6
1

6

α
μ

μ

(whichever is greater)        (11.23) 

( )α3 1where                             11  1 3≡ + −K K

• By suitably selecting μ, iX and iY , all the design moments can be determined. 

EX 4 AMPLE 11.

Design a circular slab of 3.5 m di eter to cover an underground sump.  The slab is 
simply supported at the periphery by a wall 200 mm thick.  Assume a finish load of 
1.0 kN/m2 and live loads of 4.0 kN/m2.  Use M 20 concrete and Fe 415 steel.  
Assume mild exposure conditions.  

SOLUTION 

• Clear span = 3500 – (200 × 2) = 3100 mm 
Assuming a slab thickness of 100 mm, with 20 mm clear cover (mild exposure 

 – 20 – 8 = 72 mm 

• Loads: (i) self weight @ 25 kN/m3 × 0.10 m = 2.5 kN/m2 
     (ii) finishes        = 1.0    ” 
    (iii) live loads        = 4.0    ” 
       w = 7.5 kN/m

am

condition) and 8 mm φ bars (in an orthogonal mesh),  
average effective depth d = 100
⇒ effective span (diameter) = 3100 + 72 = 3172 mm 
⇒ effective radius a = 3172/2 = 1586 mm 

2
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⇒ Factored load wu = 7.5 × 1.5 = 11.25 kN/m2 

• Design moments (assuming yield line th ith isotopic reinforcement) eory w
M w au u= 2 6  = 11.25 × 1.5862/6 = 4.72 kNm/m 

⇒  = 
23

6

7210
1072.4

×

× R
M
bd

u≡ 2  = 0.910 MPa  

[ ])20910.0598.4(11
4152

20
100

×−−
×

≡tp

–2 3

 = 0.267 × 10–2

⇒ Ast, reqd = (0.267 × 10 ) × 10  × 2 = 192 mm2/m 
⇒ required spacing of 8 mm φ bar = 50.3 × 103/192 
                    = 262 mm 
Maxi

• Provide 8 mm φ 210 c/c both ways at bottom, as shown in Fig. 11.23. 

 
Fig. 11.23  Circular slab – Example 11.4 

 7

mum spacing allowed = 3d = 3 × 72 = 216 mm 

 
A 

8 φ @ 

EXAMPLE 11.5 

Det × 4 m), with three edges 
con ly distributed factored load 
wu inforced.  Also assume that 
the  to be equal to that at 

d

 = lY = 4.0 m, R = 1, 

ermine the design moments in a square slab (4 m 
tinuous and one edge free, subject to a uniform

= 10.0 kN/m2.  Assume the slab to be isotropically re
 ‘negative’ moment capacity at the continuous support

mi span in either direction. 

SOLUTION 

• Applying the yield line theory solution [Eq. 11.22] with lX

μ = iX = iY = 1, 

A 

220 c/c 

100 

30200
/c 

0
8 φ @ 210 c

PLAN 

SECTION A–A 

2003100 200 
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K iY3 2=
+

=
R1 2 iX1+
μ( )  

( )

K i
i
X

Y
2

4 1
1+(μ

4=
+

=
( )

)
 

⇒ ( )α1 14 4 3 2= + −K K1  = 2.325 

( )α 2 2 21 3 1+ −K K  = 0.651    =

M i
uY

Y+ = +
⎨
⎪ 1

2 2
α

w lY −⎧ 2 3( )α
             w lu

u Y=1 2

6
0 0338

( )
.        

⇒ 
w l

i
w l greateru Y

u Y+
=⎪

⎪
2 2

6 1
0 0353. ( )

α 
         

Y

⎪

⎩ ( )

 
 

⇒  =  =  =  = 0.0353 × 10.0 × 4.02

     = 5.65 kNm/m 

11.2.7   Two-Way Slabs Subjected to Concentrated Loads 

Two-way slabs subjected to concentrated loads (such as wheel loads) are frequently 
encountered in the design of bridge slabs.  Analyses by elastic theory have been 
developed by Westergaard and Pigeaud.  However, the theory is mathematically 
complex, and recourse has to be made to design charts developed for this purpose.  
The reader may refer to Handbooks such as Ref. 11.16 for such design charts. 

11.3   DESIGN OF BEAM-SUPPORTED TWO-WAY SLABS 

11.3.1   Behaviour of Beam-Supported Slabs 

Slabs supported on beams [refer Fig. 1.8] behave differently, when compared to slabs 
supported on walls, because of the influence of the following three factors: 

1. deflections in the supporting beams; 
2. torsion in the su

ents (primarily rotations) in the supporting columns. 

n slabs, with the result that the ‘moment coefficients’ 
r wall-supported slabs [refer Section 11.2] are not applicable for slabs 

p
am 

alon ing of the slab.  This results in torsion in the beam, the magnitude 
of the torsion being equal to the unbalanced moment (if any) in the slabs at the slab-
beam junction.  The magnitude of the torsion depends, among other factors, on the 

 MuY
+ MuX

+ MuY
 − MuX

 −

pporting beams; 
3. displacem

Deflections in the supporting beams become significant when they have relatively 
large span/depth ratios and their end connections are relatively flexible.  These 
deflections, caused by relatively low flexural stiffnesses of the beams, get enhanced 
with time, due to the long-term effects of creep and shrinkage.  The support 
flexibility significantly influences the magnitudes and distributions of bending 
moments and shear forces i
applicable fo
su ported on flexible beams. 

The monolithic construction of beam and slab results in the twisting of the be
g with the bend
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torsional stiffness of the beam.  In general, it is observed that with increase in beam 
torsional stiffness, there is a consequent decrease in ‘positive’ moments in interior 
slab panels, but a significant increase in the ‘negative’ moment at the discontinuous 
edge of the exterior panel. 

The columns also influence the behaviour of the beam-supported slabs, because 
the m part of an integral slab lumn system which can sway and bend in a 
vari  of ways. 

11.3.2   Use of Code Moment Coefficients for Slabs Supported  
on Stiff Beams 

When the supporting beams (and columns) are relative  rigid, the slabs may be 
assumed to be supported on undeflecting supports.  The torsion in the beams may 
also be neglected for convenience.  This results in conservative estimates of moments 
in slab xcep  the erior panel (as explained 

table top steel at the 
ling requirements of the 

hermore, the 
e provide some 

y for -beam-co
ety

ly

the s, e t at  discontinuous edge of the ext
ier) he l m m be resolved by providiearl .  T atter proble ay ng sui

discontinuous edge of the slab — as required by the detai
Code (to account for ‘negative’ moments due to partial fixity).  Furt
minimum stirrup requirements prescribed for beams by the Cod
measure of torsional strength to the supporting beams.  With these assumptions, slabs 
supported on stiff beams may be designed using the Code moment coefficients of 
wall-supported slabs [refer Section 11.2]. 

The Code does not provide any specific recommendations for the procedure for 
designing beam-supported two-way slabs.  Generally, in Indian practice, the design is 
done by treating continuous beam-supported slabs as identical to continuous wall-
supported slabs, for which moment coefficients are readily available in the Code 
(Table 12 of the Code for one-way slabs, and Table 26 of the Code for two-way slabs).  
However, this is justifiable only if the supporting beams are adequately stiff.  

ust 
take precautions to ensure that the supporting beams are adequately stiff, in order to 
jus

sure that it is 
‘adequately

The Code limitation on beam deflection (Cl. 23.2) does provide some indirect 
control on the flexural stiffness of the supporting beam.  However, the designer m

tify the application of the Code moment coefficients for the slab design. 
A simple guideline for selecting the overall depth of a beam Db (to en

 stiff’), based on Swedish regulations is given in Ref. 11.17: 

D
D for r
rD for rb

s

s
≥

≤
>

⎧
⎨
⎩

2 5 1 5
2 5 1 5
. .
. .

            
          

                                     (11.24a) 

where Ds is the thickness of the slab and r ≡ ly/lx. 
Thus, for example, a 100 mm thick slab requires the supporting beams to be at 

least 250 mm deep for a square panel, and at least 500 mm deep for a rectangular 
panel with ly/lx = 2.0. 

An alternative guideline, given by the Canadian code [Ref. 11.18], which 
explicitly accounts for the width of the beam, b and its clear span l, is as follows: 

D D l b D l bb s s≥ =( ) . ( )2 1 261 3 1 3                                (11.24b) 
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Considering a square panel with clear spans of 2.8 m and a slab 100 mm thick, the 
required beam depth for a width of 250 mm works out to 282 mm (which is slightly 
higher than 250 mm, obtained earlier).  Furthermore, if the panel is rectangular, with 
clear spans 2.8 m × 5.6 m, and if the slab thickness remains as 100 mm, the required 
depth of the long span beam (assuming b = 250 mm) is 355 mm, while that of the 
sh

e integral slab-beam-column system, for design purposes.  The 
reactions due to the gravity loads on the slab are transferred to the supporting stiff 

eams are 
‘seconda 0(c)], then these ‘secondary’ beams may, in turn, be 

not adequately stiff. 
It may be noted that the ACI Code had made such a treatment mandatory for all 

(fl

†

[R

frame’, is 
pre

y of Illinois, 
USA [Ref. 11.11].  However, unlike the ACI and Canadian codes, the IS Code is yet 
to extend the ‘equivalent frame’ concept of analysis to

The problem of designing slabs on flexible beams has therefore not yet been 
nformation is also not generally 

ort span beam is 282 mm. 
By treating the beam supports as wall supports, the slab system can be effectively 

isolated from th

beams, as explained in Section 9.4 [refer Fig. 9.5].  If the supporting b
ry’ [refer Fig. 1.1

isolated and assumed to be supported on the ‘primary’ beams, for design purposes.  
The primary beams and columns constitute a continuous skeletal framework, which 
can be separated into plane frames (longitudinal and transverse), and can be designed 
to resist gravity loads as well as lateral loads [refer Chapter 9]. 

11.3.3   Slabs Supported on Flexible Beams — Code Limitations 

As an alternative to the idealised assumption as continuous slabs supported on walls,  
the Code (Cl. 24.3) suggests that slabs monolithically connected with beams may be 
analysed as members of a continuous framework with the supports, taking into 
account the stiffness of such supports.  This suggestion becomes significant in 
situations where the supporting beams are 

exible) beam-supported two-way slabs, as far back as in 1971, and had altogether 
dispensed with the use of moment coefficients for such slabs.  Another significant 
change introduced in the 1971 version of the ACI Code was the unification of the 
design methods for all slabs supported on columns — with and without beams, 
including flat slabs.  This is considered to be an advancement as it ensures that all 
types of sl reliabilityabs have approximately the same  (or risk of failure  ) 

ef. 11.6].  Some other codes, such as the Canadian code [Ref. 11.18], have also 
incorporated these changes, but retain the moment coefficient method as an 
alternative for slabs supported on walls or stiff beams. 

In the IS Code, such a procedure, based on the concept of ‘equivalent 
scribed for flat slabs.  This method [Cl. 31 of the Code] follows closely the 

extensive research undertaken in this area, since 1956, at the Universit

 beam-supported slabs. 

satisfactorily addressed by the IS Code.  This i
available in standard Indian books on reinforced concrete design. 

                                                           
† It is reported that the application of the ‘moment coefficient’ procedure to beam-supported 
slabs results in more conservative designs, with the result that such slabs turn out to be 
significantly stronger than beamless (flat) slabs, given the same gravity loads and material 
grades [Ref. 11.6]. 
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In the sections to follow, procedures for analysis an
slabs are described — in line with the by-now-well-established ACI concept of 

-dimensional skeletal 
to (two-
s of the 

the 
rotational restraint offered by the column at the joint is for the entire beam (with both 
beam and column undergoing the same rotation at the joint), in the ‘equivalent 
frame’, the column connection is only over part of the slab-beam member width, and 

d design of beam-supported 

unified procedures for all slabs, supported on columns, with or without beams. 

11.3.4   The ‘Equivalent Frame’ Concept 

As mentioned in Section 11.1.3, in the case of beam-supported two-way slabs, 100 
percent of the gravity loads on the slabs are transmitted to the supporting columns, in 
both longitudinal and transverse directions (see Fig. 11.3(b)).  The mechanism of 
load transfer from slab to columns is achieved by flexure, shear and torsion in the 
various elements.  The slab-beam-column system behaves integrally as a three-
dimensional system, with the involvement of all the floors of the building, to resist 
not only gravity loads, but also lateral loads.  However, a rigorous three-dimensional 
analysis of the structure is complex, and not warranted except in very exceptional 
structures. 

Conventionally, when stiff beams are provided along column lines, the slab design 
is separated from the design of beams (and columns), as in the case of wall-supported 
slabs.  The remaining part of the structure, comprising a three
framework of beams and columns, is separated for convenience, in
dimensional) plane frames in the longitudinal and transverse direction
building.  As the integrally cast slab also contributes to the strength and stiffness of 
the beams, the beam members are considered as flanged beams (T-beams, L-beams), 
with portions of the slab acting as the flanges of these beams; this concept was 
explained in Chapter 9.  However, when the beams are flexible or absent, it is not 
appropriate to separate the slab design from the beam design. 

In using the concept of a plane frame comprising columns and slab-beam 
members at various floor levels, fundamentally, the slab-beam member should 
consist of the entire floor member (slab and beam, if any) tributary to a line of 
columns forming the frame.  This is illustrated in Fig. 11.24(a) and (b), which show 
how a building structure may be considered as a series of ‘equivalent (plane) frames’, 
each consisting of a row of columns and the portion of the floor system tributary to 
it.  The part of the floor bound by the panel centrelines, on either side of the columns, 
forms the slab-beam member in this plane frame.  Such ‘equivalent frames’ must be 
considered in both longitudinal and transverse directions, to ensure that load transfer 
takes place in both directions [Fig. 11.24(a)]. 

The equivalent frames can now be analysed under both gravity loads and lateral 
loads using the procedures mentioned in Chapter 9.  The primary difference between 
the frame in Fig. 9.1(b) and the one in Fig. 11.24(b) lies in the width of the slab-
beam member and the nature of its connections with the columns.  Whereas in the 
conventional skeletal frame, the full beam is integral with the column, and 

hence the flexural restraint offered by the column to the slab-beam member is only 
partial. Thus, the rotation of the slab-beam member along a transverse section at the 
column support will vary, and will be equal to the column rotation only in the 
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im

For example, for the purpose of gravity load analysis, it is possible to simplify the 
mes.  Accordingly, instead of 

mediate vicinity of the column.  This, in turn, results in torsion in the portion of 
the slab transverse to the span and passing through the column (i.e., a cross-beam 
running over the column). 

In the elastic analysis of the plane frame in Fig. 9.1(b), it was shown (in 
Section 9.3) that several approximations can be made, subject to certain limitations.  
Similar approximations can also be made in the present case.   

analysis by applying the concept of substitute fra
analysing the full ‘equivalent frame’ [Fig. 11.24(b)], it suffices to analyse separate 
partial frames [Fig. 11.24(c)], comprising each floor (or roof), along with the 
columns located immediately above and below.  The columns are assumed to be 
fixed at their far ends [refer Cl. 24.3.1 of the Code].  Such substitute frame analysis is 
permissible provided the frame geometry (and loading) is relatively symmetrical, so 
that no significant sway occurs in the actual frame. 
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internal equivalent
frame (Y direction)

internal
equiv. frame
(X direction)

external
equiv. frame
(X direction)

lc/2

lb/2

lc/2

lb/2

la/2

la/2

X

Y

(a)  Floor Plan — definition of equivalent frame

l2

l1

(b)  typical internal equivalent frame (X - direction)

(c)  substitute internal equivalent frame (X - direction)

l2

l1

 

Fig. 11.24  The ‘equivalent frame’ concept 
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Fig. 1 anel 1.25  Moment variations in a two-way slab p

columnC

wl2 per unit length

ln

l1

M = Mcs + 2 Mhms

(b)

Mef

Mab
Mcd

Mo = wl2ln2/8

D A

C 

(Mhms/bhms) 
(d) (c) (a)

half middle strip 
(Mcs/bcs)

half middle strip

ln

l2
bcs

bhms

column strip

B F

E

A E

FB

Ms/2

beam

(e)

Mb



DESIGN  OF  TWO-WAY  SLAB  SYSTEMS 461 

Variations of Moments in a Two-Way Slab Panel 

Although the horizontal member in the ‘equivalent partial frame’ in Fig. 11.24(c) is 
modelled as a very wide beam (i.e., slab with or without beam along the column 
line), it is actually supported on a very limited width.  Hence, the outer portions of 
the member are less stiff than the part along the column line, and the distribution of 
moment across the width of the member is not uniform — unlike the beam in the 
conventional plane frame [Fig. 9.1(b)].  The probable variations of moments in a 
typical panel of the ‘equivalent frame’ are shown in Fig. 11.25. 

The variation of bending moment in the floor member along the span, under 
gravity loads is sketched in Fig. 11.25(b).  Such a variation — with ‘negative 
moments’ near the supports and ‘positive moments’ in the neighbourhood of the 
midspan — is typical in any beam subject to uniformly distributed loads.  In 
Fig. 11.25(b), Mab denotes the total ‘negative’ moment in the slab-beam member 
along the support line AB (extending over the full width of the panel), and Mef 
denotes the total ‘positive moment’ along the middle line EF of the panel. 

These moments are distributed across the width of the panel nonuniformly, as 
sketched in Fig. 11.25(c).  The actual variation along AB or EF (marked by the solid 
line in Fig. 11.25(c) depends on several factors, such as the span ratio l2/l1, relative 
stiffness of beam (if any) along column lines, torsional stiffness of transverse beams 
(if any), etc.  The actual moment variation is very difficult to predict exactly, and 
hence suitable approximations need to be made.  This is generally achieved by 
dividing the slab panel into a column strip (along the column line) and two half-
middle strips [Fig. 11.25(a)], and by suitably apportioning the total moment (Mab or 
Mef) to these strips with the assumption that the moment within each strip is uniform.  
This is indicated by the broken lines in Fig. 11.25(c), and is also clearly shown in 
Fig. 11.25(d). 

When beams are provided along the column line, the beam portion is relatively 
stiffer than the slab and resists a major share of the moment at the section.  In this 
case, the moment has to be apportioned between the beam part and the slab part of 
the slab-beam member as indicated in Fig. 11.25(e). 

The calculations involved in the design procedure are given in the next section, 
which follows the unified procedure of design for all types of column-supported 
slabs — with or without beams (i.e., including flat slabs). 

11.4   DESIGN OF COLUMN-SUPPORTED SLABS (WITH / WITHOUT 
BEAMS) UNDER GRAVITY LOADS 

11.4.1   Code Procedures Based on the Equivalent Frame Concept 

Two-way slabs supported on columns include flat plates [Fig. 1.12], flat slabs 
[Fig. 1.13], waffle (ribbed) slabs [Fig. 1.11], and solid slabs with beams along the 
column lines [Fig. 1.10(b)].  Such slabs may be designed by any procedure which 
satisfies the basic conditions of equilibrium and geometrical compatibility, and the 
Code requirements of strength and serviceability.  Specific design procedures have 
been laid out in l. 31) for the design of ‘flat slabs’, which are defined, 
according to the

 the Code (C
 Code (Cl. 31.1) as follows: 
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The term ‘flat slab’ means a reinforced concrete slab with or without drops, 
supported generally without beams, by columns with or without flared 
column heads.  A flat slab may be a solid slab or may have recesses 
formed on the soffit so that the soffit comprises a series of ribs in two 
directions. 

The above definition is very broad and encompasses the various possible column-
supported two-way slabs mentioned earlier.  Flat slabs may have an edge beam, 
which helps in stiffening the discontinuous edge, increasing the shear capacity at the 
critical exterior column supports and in supporting exterior walls, cladding etc.  
Furthermore, they have a favourable effect on the minimum thickness requirement 
for the slab (see Section 11.4.2).  As mentioned earlier, the Code procedure is based 
on the elastic analysis of ‘equivalent frames’ [Fig. 11.24] under gravity loads, and 
follows closely the 1977 version of the ACI Code [Ref. 11.11].  However, unlike the 
unified ACI Code procedure, there is no elaboration in the IS Code (Cl. 31) for the 
particular case of two-way slabs with beams along column lines as in Fig. 1.10(b). 

†The design procedures described hereinafter  will not only cover the provisions in 
the prevailing IS Code, but also include provisions in other international codes 
[Ref. 11.18, 11.19] to cover the case of two-way rectangular slabs supported on 
flexible beams.  These Code procedures are an outcome of detailed analyses of 
results of extensive tests, comparison with theoretical results based on the theory of 
plates, and design practices employed successfully in the past.  The interested reader 
may also refer to the background material for the Code procedures presented in 
Refs. 11.20 - 11.22. 

The following two methods are recommended by the Code (Cl. 31.3) for 
determining the bending moments in the slab panel: either method is acceptable 
(provided the relevant conditions are satisfied): 

1. Direct Design Method 
2. Equivalent Frame Method 

These methods are applicable only to two-way rectangular slabs (not one-way slabs), 
and, in the case of the Direct Design Method, the recommendations apply to the 
gravity loading condition alone (and not to the lateral loading condition). 

Both methods are based on the ‘equivalent frame concept’ (described in 
Section 11.3.4).  The slab panel is defined (Cl. 31.1.1c of the Code) as that part of 

anel 
p’ is 

defined p having a width equal to the lesser 
in this 
e two 

the slab bounded on each of its four sides by the column centrelines.  Each slab p
is divided into column strips and middle strips [Fig. 11.26].  A ‘column stri

 (Cl. 31.1.1a of the Code) as a design stri
of 0.25l1 or 0.25l2 on each side of the column centreline, and includes with
width any drop panel or beam (along the column line).  Here, l1 and l2

‡ are th
spans of the rectangular panel, measured centre-to-centre of the column supports.  

                                                           
† Other design procedures based on yield line analysis and finite element analysis are also 
acceptable, provided they satisfy all the requirements mentioned earlier. 
‡ In general, subscript 1 identifies parameters in the direction where moments are being 
determined, and subscript 2 relates to the perpendicular direction. 
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The ides 
by th

‘middle strip’ is defined (Cl. 31.1.1b) as a design strip bound on each of its s
e column strip. 

l1

l2

panel C

MIDDLE
STRIP

COLUMN
STRIP

COLUMN
STRIP

half middle strip

half middle strip

width of
equivalent

frame

panel C

l2/4 ≤ l1/4

 

Fig. 11.26  Column strip and middle strip in a slab panel 

While considering an ‘equivalent frame’ along a column line, the slab width l2 
con rips flanking one column strip, as shown in 
Fig onolithic beams are provided along the column 

hichever is 
gre

see Sections 5.6.1 and 9.3), whereas the latter requires an elastic partial frame 
analysis.  The procedure for apportioning the factored moments between the middle 

sists of two half middle st
. 11.25(a) and Fig. 11.26.  When m

lines, the effective (flanged) beam sections (which form part of the column strip) are 
considered to include a portion of the slab on either side of the beam, extending by a 
distance equal to the projection of the beam above or below the slab (w

ater), but not exceeding four times the slab thickness, as shown in Fig. 11.27 
[Ref. 11.18].  In cases where the beam stem is very short, the T-beam may be 
assumed to have a width equal to that of the column support [Fig. 11.27(c)]. 

The Direct Design Method (described in Section 11.5) and the Equivalent Frame 
Method (described in Section 11.6) for gravity load analysis differ essentially in the 
manner of determining the distribution of bending moments along the span in the 
slab-beam member [Fig. 11.25(b)].  The former uses moment coefficients (similar in 
concept to the simplified Code procedure for continuous beams and one-way slabs – 

strip and the column strip (or between the slab and the beam when beams are present 
along the column line) is identical for both design methods. 

Both methods require the values of several relative stiffness parameters in order to 
obtain the longitudinal and transverse distribution of factored moments in the design 
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strips.  For this purpose, as well as for determining the dead loads on the slab, it is 
necessary to assume, initially, the gross section dimensions of the floor system (and 
the columns).  These dimensions may need to be modified subsequently, and the 
analysis and design ma herefore need to be suitably revised. y t

Dw ≤ 4Df

(a) (b)

Dw

Df

bw

Dw ≤ 4Df

bw + Dw ≤ bw + 4Df
bw + 2Dw ≤ bw + 8Df

Df

Dw

bw

beam width not less
than column width

column

(c) (d)  
Fig. 11.27  Definition of beam section 

11.4.2   Proportioning of Slab Thickness, Drop Panel and Column Head 

Slab Thickness 

The thickness of the slab is generally governed by deflection control criteria.  [Shear 
is also an important design criterion — especially in flat plates (slabs without beams 
and drop panels) and at exterior column supports].  The calculation of deflections of 
two-way slab systems is quite complex, and recourse is often made to empirical rules 
which limit maximum span/depth ratios as indirect measures of deflection control.  
For this purpose, the Code (Cl. 31.2.1) recommends the same l/d ratios prescribed (in 
Cl. 23.2, also refer Section 5.3.2) for flexural members in general, with the following 
important differences: 
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• the longer span should be considered‡ (unlike the case of slabs supported on 
walls or stiff beams, where the shorter span is considered); 

• for the purpose of calculating the modification factor kt [Table 5.2] for tension 
reinforcement, an average percentage of steel across the whole width of panel 
should be considered [Ref. 11.11]; 

• When drop panels conforming to Cl. 31.2.2 are not provided around the column 
supports, in flat slabs the calculated l/d ratios should be further reduced by a 
factor of 0.9; 

• the minimum thickness of the flat slab should be 125 mm. 

Slab Thickness Recommended by other Codes 

Other empirical equations fo um span/depth ratios have been established, 
based on the results of extensive tests on floor slabs, and have been supported by past 
experience with such construction under normal values of uniform loading 
[Ref. 11.18, 11.19].  Thus Ref. 11.8 recommends equations 11.25 to 11.26a for the 
minimum overall thickness of slabs necessary for the control of deflections.  If these 
minimum thickness requirements are satisfied, deflections need not be computed.  
These equations are also applicable for two-way slabs supported on stiff beams.  
However, these thicknesses may not be the most economical in all cases, and may 
even be inadequate for slabs with large live to dead load ratios.  In the calculation of 
span/depth ratio, the clear span ln in the longer direction and the overall depth 
(thickness) D are to be considered.  

For flat plates and slabs with column capitals, the minimum overall thickness of 
slab is:  

D ≥ [ln (0.6 + fy / 1000)] / 30                                        (11.25) 
However, discontinuous edges shall be provided with an edge beam with stiffnes

ratio, αb, of not less than 0.8, fai  Eq. 11.25 shall be 
increased by 10 per cen

n y d n d

e smaller of the values determined in the two directions, and xd is 

d  face of column to edge of drop panel, mm; 
    fy ≡  characteristic yield strength of steel (in MPa); 

                                                          

r maxim

s 
ling which the thickness given by

t. 
For slabs with drop panels, the minimum thickness of slab is: 

D ≥ [l  (0.6 + f  / 1000)] / [30{1+(2x /l )(D -D)/D}]                (11.26) 
where xd / (ln/2) is th
not greater than ln/4, and (Dd-D) is not larger than D. 

For slabs with beams between all supports, the minimum thickness of slab is: 
D ≥ [ln (0.6 + fy / 1000)] / {30 + 4βαbm }                             (11.26a) 

where αbm is not greater than 2.0.  This limit is to ensure that with heavy beams all 
around the panel, the slab thickness does not become too thin.  In the above 
equations, 
        Dd ≡  overall thickness of drop panel, mm; 
         x  ≡  dimension from

 
‡ These IS Code provisions apply to ‘Flat Slabs’ as defined in Cl. 31.1.  However, it is not 
clear from the Code whether they apply to slabs with flexible beams between all supports as 
such slabs are not specifically covered by the Code.  Ref. 11.8 does cover such slabs also. 
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   β  ≡  (clear long span)/(clear short span); 
  αbm ≡  average value of αb for all beams on edges of slab panel; 

el (if any) on each side of the beam. 

                αb≡  ‘beam stiffness parameter’, defined as the ratio of the flexural stiffness of 
the beam section to that of a width of slab bounded laterally by the 
centreline of the adjacent pan

Referring to Fig. 11.27, 

α αb
c b

c s
b

sE I I
b= ⇒ =                                        (11.27) 

e centroidal axis of the gross 
a), (b), (c) and (d)] and Is = 

E I I

where Ib is the second moment of area with respect to th
flanged section of the beam [shaded area in Fig. 11.27(
lD3/12 is the second moment of area of the slab.  The minimum thickness for flat 
slabs obtained from Eq. 11.25 are given in Table 11.2 

Table 11.2  Minimum thicknesses for two-way slabs without beams between interior 
column supports (Eq. 11.25) 

 
Steel 

Without Drop Panels* 

Grade no edge beam with edge beam** 

Fe 250 ln /32.1 ln /35.3 

Fe 415 ln /26.9 ln /29.6 

*     Thickness to be not less than 125 mm (as per Code). 
**   Edge beam must satisf

 local thickening of the slab in the neighbourhood of 
the ided mainly for the 
purpose of redu

 and 
ha
direction.  For 

e does not specify a minimum thickness requirement for the drop panel.  
] that the projection below the slab 

 not less than 
100

y α ≥ 0.80. 

Drop Panels 

The ‘drop panel’ is formed by
 supporting column.  Drop panels (or simply, drops) are prov

cing shear stresses around the column supports.  They also help in 
reducing the steel requirement for ‘negative’ moments at the column supports.  [Also 
refer Section 11.7 for calculation of reinforcement at drop panels]. 

The Code (Cl. 31.2.2) recommends that drops should be rectangular in plan,
ve a length in each direction not less than one-third† of the panel length in that 

exterior panels, the length, measured perpendicular to the 
discontinuous edge from the column centreline should be taken as one-half of the 
corresponding width of drop for the interior panel [Fig. 11.28(a)]. 

The Cod
It is, however, recommended [Ref. 11.18, 11.19
should not be less than one-fourth the slab thickness, and preferably

 mm [Fig. 11.28(b)]. 

                                                           
† This may be interpreted as one-sixth of the centre-to-centre dimension to columns on either 
side of the centre of the column under consideration, as depicted in Fig. 11.28(a). 
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Co

Th
pri
Section 11
geometry 

lumn Capital 

e ‘column capital’ (or column head), provided at the top of a column, is intended 
marily to increase the capacity of the slab to resist punching shear [see 

.8.2].  The flaring of the column at top is generally done such that the plan 
at the column head is similar to that of the column. 

lx1

y2 ≥ ly2/6
y1 ≥ ly1/6
x2 ≥ lx2/6
x1 ≥ lx1/6

lx2

x2x1

y1

y2

column capital

column capita
(head)

l

column

drop panel

slab

drop panel

only that portion of column capital
lying within a pyramid/cone with

vertex angle of 90o to be
considered in design calculations

effective capital size

clear span 1 clear span 2

clear span

ly1

ly2

(b)  SECTION ‘AA’

(a)  PLAN

AA

(y1 + y2)/2

(x1 + x2)/2

D > 125 mm

>D/4
45

 

Fig. 11.28  Drop panel and column capital 
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The Code (Cl. 31.2.3) restricts the structurally useful portion of the column capital 

olumn [Ref. 11.11]. 
In the Direct Design Method, the calculation of bending moments is based on a 

clear span ln, measured face-to-face of the supports (including column capitals, if 
any) but not less than 0.65 times the panel span in the direction under consideration 
[Cl. 31.4.2.2. of the Code].  When the column (support) width in the direction of 
span exceeds 0.35 l1, (to be more precise, 0.175l1 on either side of the column 
centreline), the critical section for calculating the factored ‘negative’ moment should 
be taken at a distance not greater than 0.175l1 from the centre of the column 
(Cl.31.5.3). 

11.4.3   TRANSFER OF SHEAR AND MOMENTS TO COLUMNS IN 
BEAMLESS TWO-WAY SLABS 

Shear forces and bending moments have to be transferred between the floor system 
and the supporting columns.  In slabs without beams along column lines, this needs 
special considerations. 

The design moments in the slabs are computed by frame analysis in the case of the 
Equivalent Frame Method, and by empirical equations in the case of the Direct 
Design Method.  At any column support, the total unbalanced moment must be 
resisted by the columns above and below in proportion to their relative stiffnesses 
[Fig. 11.29(a)]. 

In slabs without beams along the column line, the transfer of the unbalanced 
moment from the slab to the column takes place partly through direct flexural 
stresses, and partly through development of non-uniform shear stresses around the 
column head.  A part (Mub) of the unbalanced moment Mu can be considered to the 
transferred by flexure and the balance (Muv) through eccentricity of shear forces, as 
shown in Fig. 11.29(b) and (c).  The Code recommendation (Cl. 31.3.3) for the 
apportioning of Mub and Muv is based on a study described in Ref. 11.23: 

to that portion which lies within the largest (inverted) pyramid or right circular cone 
which has a vertex angle of 90 degrees, and can be included entirely within the 
outlines of the column and the column head [Fig. 11.28(b)].  This is based on the 
assumption of a 45 degree failure plane, outside of which enlargements of the 
support are considered ineffective in transferring shear to the c

M Mub u= γ                                                     (11.28a) 

M Muv u= −( )1 γ                                                    (11.28b) 

where                              γ =
+ +

+

1

1 2
3

1

2

c d
c d

                                                   (11.29) 

Here, c1 and c2 are the dimensions of the equivalent rectangular column, capital or 
bracket, measured in the direction moments are being determined and in the 
transverse direction, respectively, and d is the effective depth of the slab at the 
critical section for shear [refer Section 11.8.2].  For square and round columns, c1  
c2 , and 

 =
 = 0.6. γ
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column

Muv = (1 – γ)Mu

Mub = γ Mu

M1
M2 > M1

column

unbalanced moment 
Mu = M2 – M1 

(a)

Mu = Mub + Muv

c2 + d 

c1 + d

c1 c1

c2 + 3D 

c2
c2

D 

(b) moment transferred 
by flexure 

(c) moment transferred 
through shear  

Fig. 11.29  Transfer of unbalanced moment from slab to column 
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The width of the slab considered effective in resisting the moment Mub is taken as 
the width between lines a distance 1.5 times slab/drop thickness on either side of the 
column or column capital [Fig. 11.29(b)], and hence this strip should have adequate 
reinforcement to resist this moment.  The detailing of reinforcement for moment 
transfer, particularly at the exterior column where the unbalanced moment is usually 
the largest, is critical for the safety as well as the performance of flat slabs without 
edge beams. 

The critical section considered for moment transfer by eccentricity of shear is at a 
distance d/2 from the periphery of the column or column capital [Fig. 11.29(c)].  The 
shear stresses introduced because of the moment transfer, (assumed to vary linearly 
about the centroid of the critical section), should be added to the shear stresses due to 
the vertical support reaction [refer Section 11.8.2]. 

11.5   DIRECT DESIGN METHOD 

11.5.1   Limitations 

The Direct Design Method (DDM) is a simplified procedure of determining the 
‘negative’ and ‘positive’ design moments (under gravity loads) at critical sections in 
the slab (slab-beam member), using empirical moment coefficients.  In order to 
ensure that these design moments are not significantly different from those obtained 
by an elastic analysis, the Code (Cl. 31.4.1) specifies that the following conditions 
must be satisfied by the two-way slab systems for the application of DDM. 

1. There must be at least three continuous spans in each direction. 
2. Each panel must be rectangular, with the long to short span ratio not 

exceeding 2.0. 
3. The columns must not be offset by more than 10 percent of the span (in the 

direction of offset) from either axis between centrelines of successive 
columns†. 

4. The successive span lengths (centre-to-centre of supports), in each direction, 
must not differ by more than one-third of the longer span. 

5. The factored live load must not exceed three times the factored dead load 
(otherwise, moments produced by pattern loading would be more severe than 
those calculated by DDM). 

There is an additional limitation prescribed by other codes [Ref. 11.18, 11.19], 
with regard to the application of this method to slab panels supported on flexible 
beams on all sides.  The following condition, relating the relative stiffnesses of the 
beams in the two perpendicular directions, needs to be satisfied in such cases: 

0 2 5 01 2
2

2 1
2. .    ≤ ≤

α
α

b

b

l
l

                                                (11.30) 

where αb is the beam stiffness parameter (defined by Eq. 11.27), and the subscripts 1 
and 2 refer to the direction moments are being determined, and transverse t t, 

                 

o i

                                          
† If the column offsets result in variation in spans in the transverse direction, the adjacent 
transverse spans should be averaged while carrying out the analysis [Cl. 31.4.2.4]. 
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res

1 o

pectively.  Ref. 1.18 also limits the live load/dead load ratio to ≤ 2.0.  
Furthermore, the loads are assumed to be gravity loads, uniformly distributed over 
the entire panel. 

11.5.2   Total Design Moment for a Span 

In any given span, l , the total (factored) design moment M  for the span, is expressed 
as [refer Cl. 31.4.2.2 of the Code]: 

M w l lo u n=   2
2 8                                               (11.31) 

where   wu ≡ factored load per unit area of the slab; 
 ln ≡ clear span in the direction of Mo, measured face-to-face of columns§ ,
        capitals, brackets or walls, but not less than 0.65l1

‡
 ; 

tion of Mo; and  
pan transverse to l1.

for s

11.5.3   Longitudinal Distribution of Total Design Moment 

Th p
has al
(Cl
bet n
sup t
Fig .

• Inte

∗ ‘negative’ design moment at exterior support  = (0.65/q)M        
(11.33a) 

 l1 ≡ length of span in the direc
 l2 ≡ length of s

With reference to Fig. 11.25(b), it can be seen that considering statics, the 
absolute sum of the ‘positive’ and average ‘negative’ design moments in the slab 
panel must not be less than Mo.  The expression for Mo [Eq. 11.31] is obtained as the 
maximum midspan static moment in an equivalent simply supported span ln, 
subjected to a uniformly distributed total load W = wu(l2ln), where l2ln is the effective 
panel area on which wu acts.  When drop panels are used, the contribution of the 
additional dead load (due to local thickening at drops) should be suitably accounted 

; thi  is illustrated in Example 11.7. 

e ty ical variation of moments (under gravity loads) in the slab, along the span, 
ready been introduced in Fig. 11.25(b).  The Code recommendation 

. 31.4.3.3) for the distribution of the calculated ‘total design moment’, Mo, 
wee  critical ‘negative’ moment sections (at the face of equivalent rectangular 
por s) and ‘positive’ moment sections (at or near midspan) is as depicted in 
. 11 30. 

rior span: 
∗ ‘negative’ design moment Mo

 −  = 0.65Mo                                             (11.32a) 

∗ ‘positive’ design moment Mo
 +  = 0.35Mo                                              (11.32b) 

• Exterior span: 
 −Mo ext, o

                                                           
§ Circular / nonrectangular column supports are to be treated as equivalent square/rectangular 
supports having the same area (Cl. 31.4.2.3 of the Code). 

. 11.11]. 
‡ This condition is imposed in order to prevent undue reduction in the design moment when the 
columns are long and narrow in cross-section or have large brackets or capitals [Ref
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∗ ‘negative’ design moment at interior support Mo,int
 −  = (0.75 – 0.10/q)Mo  

(11.33b) 
∗ ‘positive’ design moment  = (0.63 – 0.28/q)Mo                           (11.33c)  Mo

 +

where        q ≡ 1 1+ ( )α                                                                                (11.34) c

 α c  ≡ ( )K Kc sb∑                                                                            (11.35) 

        ≡ sum of flexural stiffnesses of columns meeting at the exterior joint; 
and 

-beam member) in the direction 

Kc∑  

               Ksb ≡ flexural stiffness of the slab (or slab
           moments are calculated (i.e., along span l1), at the exterior joint. 

interior spanexterior span

Mo = wul2ln2/8
0.65Mo

0.35Mo

0.65Mo
0.65Mo/q

αc ≡ ∑Kc/Ksb

q = 1 + 1/αc

ln, ext ln, int

[0.63 – 0.28/q]Mo

[0.75 – 0.10/q]Mo

A C

 

B

Fig. 11.30  Distribution of Mo into ‘negative’ and ‘positive’ design moments 
(longitudinal) 

At interior supports such as B in Fig. 11.30, the ‘negative’ moment sections 
must be designed to resist the larger of the two design ‘negative’ moments 
(on either side of the support), unless an analysis is made to distribute the 
unbalanced moment in accordance with the relative stiffnesses of the 
elements framing into the support (Cl. 31.4.3.5 of the Code).  [However, the 
moments may be modified as given below] 

s a l
mo n

 Desi
11.31.  No addi

red
For the purpose of calculating the flexural stiffness (Ksb) of the slab-beam member 

and that of the column (Kc), it is permitted [Ref. 11.11] to assume that the members 
are prismatic (i.e., having uniform cross-section throughout their lengths).  This is 

The Code (Cl. 31.4.3.4) permit imited readjustment in the apportioned design 
me ts — but by no more than 10 percent, because of the approximations and 

t in the Direct gn Method — provided the total design limitations inheren
moment M  for theo  panel is not less than the value given by Eq. tional 

istribution of moments is permitted. 

done purely for convenience, and is in keeping with the simplifications underlying 
DDM.  This assumption implies that the contributions of drop panels, column 
capitals and brackets may be neglected.  Furthermore, the increase in the second 



DESIGN  OF  TWO-WAY  SLAB  SYSTEMS 473 

mo n and 
column face, may be neglected.  With these simplifications, the flexural st
(of the column or slab-beam member) is simply obtained as: 

me t of area of the slab-beam member, between the column centreline 
iffness K 

K E I lc4                                                   (11.36) =

where    short us of elasticity of concrete (for the grade applicable t
 

E  ≡c -term modul o 
       the element); 
 ≡

l ≡ appropriate centre-to-centre span. 

eams 
between column supports.  However, other codes [Ref. 11.18] do permit the use of 
DDM for the latter case mentioned above.  For two-way slabs with beams, for 
interior spans, Eq. 11.32(a), (b) are applicable.  For exterior spans, the distribution of 
Mo r sl ms may be made  the facto given in Table 11.3 – 
case (2). 

Table 11.3  Moment factors for end span [Ref. 11.18] 

 I  second moment of area (considering the gross section† ); and 
 

The Code (under Cl. 31) covers only flat slabs, and as such Eq. 11.32 to 11.35 are 
not specifically meant for use in the case of two-way slabs with flexible b

 fo abs with bea according to rs 

Case (1) (2) (3) (4) 
Exterior edge 

fully 
 Exterior edge 

not restrained 
Slab ams  with be Slab without 

between all beams between 
supports interior supports restrained 

Interior 
negative 
factored 
m

0.75 0.70 0.70 0.65 

oment 
Positive 
factored 
m

0.66 0.59 0.52 0.35 
oment 

Exterior 
negative 
factored 

oment 

0 0.16 0.26 0.65 

m

It may be noted that when the slab is stiffened with beams along the column lines, 
the calculation of the second moment of area I must logically include the contribution 
of the portion of the beam projecting below (or above) the slab. 

The calculations related to flexural stiffness are required for the purpose of 
determining the parameter αc [Eq. 11.35], required for the moment factors in the end 
span [Eq. 11.33].  An alternative and simpler scheme for end spans (with moment 
coefficients independent of αc), suggested in Ref. 11.18, is shown in Table 11.3.  [As 
already indicated above, this Table also covers the case of end spans of two-way 
slabs with beams between all columns.] 
                                                           
† In the case of the slab-beam member, the width of the section should be taken as the full 
panel width, l2. 
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11.5.4   Apportioning of Moments to Middle Strips, Column Strips and 
Beams 

As mentioned earlier [Fig. 11.25(c), (d)], the calculated design ‘positive’ and 
‘negative’ slab moments in the panel in t
apportioned transversely to the design strips of the panel (column strip (cs) and half 

eams) a s.  This procedure of transverse distribution of moments 
 

he longitudinal direction have to be 

middle strips (hms) in flat slabs, and the beam part and the slab part when there are 
b t all critical section
is common for both Direct Design Method and Equivalent Frame Method..

IS Code Recommendations 

The Code recommendations for flat slabs (Cl. 31.5.5) in this regard are based mainly 
on studies reported in Ref. 11.24: 
• ‘Negative’ moment at exterior support: 

∗ column strip: Mcs ext,
 −  = 

1 00 0 75 2

2

. / .
( )

,

,

M if column wall width l
b l M otherwise

o ext

cs o ext

 

 
              

                                      

−

−
<⎧

⎨
⎪
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(11.37a) 
∗ half midd

 = 

le strip: 

Mhms ext,
 − 0 0 75 2                                                       

      
if col width l

b l herwcs

. .<⎧

where bcs is th olu . 11
• ‘Neg ’ moment at interior support

n strip = 0                                               (11.38a) 

iddle strip  = 0.125                                            (11.38b) 
• ‘ ’ moment r all spans: 

n strip  = 0.60                                                     (11.39a) 

∗ iddle strip  = 0.20                                                    (11.39b) 

T verse distribution of moments for a typical exterior slab panel is depicted 
in F .  The moments indicated are assumed to be uniformly distributed across 
the wi

hal

0 5.⎨ 1( −⎩ 2      M oto ext) ,         ise

.25]. 

                    
(11.37b)  −

e width of the c mn strip [Fig
: ative
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dth of the respective design strips. 

In the case of a panel with a discontinuous edge in the direction of Mo (span l1), 
such as in the external equivalent frame shown in Fig. 11.24(a), the design of the 

f-column strip adjoining and parallel to the discontinuous edge, as well as the 
middle strip in the panel, depends on whether a marginal beam (with depth > 1.5Ds) 
or wall is supporting the slab at the edge.  If such a stiffening of the edge exists, the 
bending moments in the half-column strip should be taken as one-quarter of that for 
the first interior column strip, and the moments in the middle strip as twice that 
assigned to the half-middle strip corresponding to the first row of interior columns 
(Cl. 31.3.2b and 31.5.5.4c of the Code). 
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Fig. 11.31  Tr verse distribution of bending moments in a typical exterior

ribution of moment, which accounts for the 
abi om iven i e 
highly greatly
form i long sec peak moment, effecting considerable moment 

ent (see Section 9.7 and Fig. 9.12).  This inherent 
i si sider d 

des t a y, s d 
req m d ser y be s 
without beams, the Canadian code a range of values
mo

b1

2 1  Direct Design Method and Equivalent Frame 
Me

lumn -  0.6 to 1.00 
• Negative moment at exterior column -  1.00 
• Positive moment in all spans -   0.50 to 0.70 

 

ans  panel 

Canadian Code Recommendations 
A more simplified scheme for transverse dist

lity of slabs to redistribute m ents, is g n the Canadian code [Ref. 11.18].  Slabs ar
statically indeterminate and usually  under-reinforced.  This leads to the 

at on of yield lines a tions of 
redistribution to sections of lesser mom
ab delity of the slab gives the gner con able leeway in adjusting the moment field an

igning the reinforcemen ccordingl ubject to static equilibrium conditions an
uire ents of strength an viceabilit ing met.  Reflecting this flexibility, for slab

gives  for the column strip share of 
ment, from which the designer can choose an appropriate value; the balance is apportioned 

to the middle strip.  For slabs with beams, the distribution is between the beam part and the 
slab part, the proportions being dependent on the beam stiffness ratio α  and the span ratio 
l /l .  This procedure is applicable to both

thod.  These provisions are summarised below: 
(a) Regular slabs without beams 
This includes flat plates and slabs with drop panels and/or column capitals, which may or may 
not have edge beams along the discontinuous edges. 

(i)  Column strip moments: 
The column strips are designed to resist the total negative or positive moments at the 
critical sections (given in Fig. 11.30 for DDM) multiplied by an appropriate factor 
within the following ranges: 
• Negative moment at interior co
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Furthermore, at interior columns, at least one-third of the reinforcement for the total 
negative moment shall be located in a band with a width extending a distance of 
1.5D from the sides of the column.  Similarly, reinforcement for the total negative 
moment at exterior column is placed within such a bandwidth.  This is to facilitate 
the transfer of unbalanced moment to the column by flexure. 
(ii)  Middle strip moments: 
At all critical sections, the portion of the negative and positive moments not resisted 
by the column strip is assigned proportionately to the two half middle strips on either 
side of the column strip.  A full middle strip in a panel has moments assigned to its 
two halves from the equivalent frames on either side (Fig. 11.32).  The middle strip 
adjacent to and parallel with an edge supported by a wall must be designed for twice 
the moment assigned to its interior half portion forming part of the equivalent frame 
along the first row of interior supports (Fig. 11.32). 

 

2 

l1 

M = 2 M 1middle strip  M1

Wall supported 

middle strip  2 

d
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3 3

2 2 

3 3 
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Fig. 11.32  Factored moments in middle strips 

(b) Regular slabs with beams between all supports 

utside the beam part. 

rior columns and positive moment in all spans -  
l2 1)2]                                  (11.40) 

 –  

In this case, the slab-beam member is divided into the beam part (see Figs.11.25e and 11.27) 
and the slab part which is the portion of the member o

(i)  Moments in beams: 
The beam shall be designed to resist the following fractions of the total negative and 
positive moments at the critical sections (given in Fig. 11.30 for DDM): 
• Negative moment at inte

     αb1/[1+( /l
• Negative moment at an exterior column 100 percent 
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Here αb1 is not taken larger than 1.0.  The m so resist mombea  must al ents due to 

e and positive moments not resisted by the beam is 

11.5.5 L

The I
(edge be  times the slab thickness or 
walls supporting a flat slab.  According to this procedure, the slab portion in the 
‘half-column strip’ adjacent to the edge beam (or wall) should be designed to resist 
one-quarter of the design moment assigned to the ‘first interior column strip’.  The 
edge beam or wall should be designed to carry the loads acting directly on it (if any) 
plus a uniformly distributed load equal to one-quarter of the total load on the slab 
panel [also refer Section 11.5.8]. 

11.5.6   Torsion in Edge Beam 

Although the IS Code does not offer any specific recommendation for torsion in the 
transverse beam at the exterior edge, it is evident that some of the ‘negative’ moment 
at the exterior edge of the panel ) will be transferred to the column by torsion 
in the edge beam [Fig. 11.33], and the balance will be transferred to the column 
through flexure at the column-slab connection. 

The edge beam, therefore, has to be designed as a spandrel beam subjected to a 
torsional moment distributed along its length (in addition to the bending moments 
and shear force due to the loads indicated in Section 11.5.5).  For this purpose, it may 
be assumed, conservatively, that the entire ‘negative’ design moment at the exterior 
support, is uniformly distributed over the width of the design strip, l2, as 
shown in Fig. 11.33.  This results in a linear variation of twisting moment in the edge 
beam, with a zero value at the midspan (panel centreline) and a maximum value
the face of the column, as illustrated.  

If the maximum (Tcr) of the edge 
(spandrel) beam, to a reduction in the 

n of moments† [Ref. 11.29] resulting 

Tcr, provided a 
correspo made to the ‘positive’ moment in the span.  If this is 

                 

loads directly applied on it and not considered in slab design such as weight of walls 
and the beam rib.  The negative moment reinforcement at exterior support must be 
placed within a band of width extending a distance 1.5D past the sides of the column 
or the side of the beam web, whichever is larger. 
(ii)  Moments in slabs: 
The portion of the negativ
assigned to the slab parts outside the beam.  The slab reinforcement for the negative 
moment at interior supports is uniformly distributed over the width of the slab.  
Positive moment reinforcements may also be distributed uniformly. 

oads on the Edge Beam 

S Code (Cl. 31.3.2) describes a procedure for the design of ‘marginal beams’ 
ams) having an overall depth greater than 1.5

 ( Mo ext,
 −

 Mo ext,
 −  

 at 

 torque (Tmax) exceeds the cracking torque 
rsional cracking will occur; there will be 

torsional stiffness and a consequent redistributio
in a relaxation in the induced torque.  For this reason, if Tmax exceeds 0.67Tcr, Ref. 
11.18 permits the use of a maximum factored torque of 0.67

nding readjustment is 

                                          
 9.7.3 (‘t† refer Section orsional plastic hinge’). 
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done,
the span

The d
describe

Some transverse beams at the interior 
columns oments in the panels on the two sides of these beams.  
Howeve
hence no

 Mo ext, cr 2 2 2 ositive’ moment in 
 has to be correspondingly adjusted to maintain the value of M

 −  gets restricted to 2 × 0.67 T  l / (l  – c ), and the ‘p

o [Eq. 11.31]. 
esign of the edge beam for torsion should conform to the requirements 

d in Chapter 7. 
 torsion can also be expected to occur in the 
, due to unbalanced m
r, such torsion is generally negligible (except in exceptional cases), and 
t considered in design. 

torsional member
(stiffness Kt)c2

T

c1

l2

T l c
l

Mo extmax ,=
−⎛

⎝
⎜

⎞

⎠
⎟ −2 2

22

≤   0 67. Tcr

 

stiffn

ue for C by subdividing the section into 
rec

Fig. 11.33  Torsion in edge beam 

Torsional member and stiffness 

The transverse torsional member (at the edge as in Fig. 11.33 or over an interior 
column) is assumed to have a cross section consisting of the larger of:  (i) a portion 
of the slab having a width equal to that of the column, bracket, or capital measured in 
the direction l1 plus that part of the transverse beam (if any) above and below the 
slab; and (ii) the beam section as defined in Fig. 11.27. For the calculation of the 
torsional ess of this member, needed for the Equivalent Frame Method, the 
torsional property C of the section (refer Section 7.2.3) is needed.  

The computation of an exact value of C for a flanged section being very difficult, 
it suffices to obtain an approximate val

tangles such that the summation of the C values of the component rectangles 
results in a maximum value [Fig. 11.34].  This is done by subdividing in such a way 
as to minimise the length of the common boundaries. 
The expression for C [refer Section 7.2.3] is accordingly obtained as: 

C x x y
= −

⎛
⎜

⎞
⎟∑ 1 0 63

3
.                                          (11.41) 

y⎝ ⎠ 3
where x and y are the short and long dimensions of the rectangular part [Fig. 11.34]. 
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Adopt larger C computed for cases 1 and 2
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Fig. 11.34  Computation of torsional property ed edge beam 

11.5.7 Moments in Columns and Pattern Loading 

As explained in Section 11.4.3, columns (and walls) built monolithically with the 
slab must be designed to resist the unbalanced moments transferred from the slab.  
The total moment transferred to the exterior column is the same as the ‘negative’ 
design moment ) at the exterior support, computed by the factors in Fig. 11.30 
and Table 11.3 for DDM and obtained by frame analysis in EFM.  The negative 
moments at faces of supports computed by these factors for the DDM correspond to 
the action of full factored live load plus dead load, whereas the maximum unbalanced 
moment at the interior support would occur under pattern loading.  Hence, in the 
case of the interior column, the Code (Cl. 31.4.5.2) recommends the use of the 
following empirical expr factored) moment to be 
resisted by the column: 

C for a flang

 ( Mo ext,
 −

ession† for the total unbalanced (

Mu
c

=
+1 1 α

                  (11.42) 

where             

wu DL +0 08 0 5. [( ., w l l w l lu LL n u DL n− ′ ′ ′2
2

2
2) ( ) ], ,

α c  ≡  (Σ Kc / Σ Ks) 
           wu,DL, wu,LL ≡ design (factored) dead and live loads per unit area on the longer 
       span; 
     ′wu DL,  ≡ design dead load per unit area on the shorter span; 
    l , ′l  ≡ lengths transverse to the direction of M2 2

        and short span respectively; 
   ln , ′ln  ≡ lengths of clear spans (measured face to face of supports) in the 
    direction of M

u in the long span  

u, in the long span and short span respectively;  
        α c  ≡ relative column stiffness parameter; and 
 Kc and  Ks are flexural stiffnesses of column and slab respectively. 

                                                           
† This expression for M  has been derived for the case of two adjacent unequal spans, with full 

 
(partially) accounting for the effects of pattern loading [Ref. 11.11]. 

u
dead load plus half live load on the long span and dead load alone on the short span, thereby
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The total anced moment transferred to the colum  (exterior or interior) 
should be distributed to the colum  above and below the floor under consideration, 
in direct proportion to their relative stiffnesses. 

Furthermore, in the case of beamless slabs, as explained in Section 11.4.3, a 
fraction, ub = γ Mu, of the unbalanced moment  transferred by flexure of a width of 
slab, and the balance, Mu – Mub, is transferred by shear.  The design of the slab 
should account for the resulting flexural and shear stresses. 

Effects of Patter

The moments at critical sections in the slab, computed in DDM using the factors in 
Fig. 11 ive 
load) on all spans.  Due to ‘pattern loading’ (i.e., occurrence of dead load on all spans 

that the ‘positive’ bending 
ding (on all spans), in an 

s to b

m s

unbal n
ns

M  is
Muv = 

n Loading on Slab Moments 

.30 also correspond to the application of full factored load (dead load plus l

and live load only on certain critical spans), it is possible 
moments could exceed the calculated values for full loa
extreme case, by as much as 100 percent [Ref. 11.11].  However, there is no 
likelihood of a significant increase in the calculated ‘negative’ moment at the 
support, because the loading pattern for maximum moment for such a case requires 
full factored load e considered on both spans adjoining the support. 

If the relative stiffness of the columns, measured by the parameter αc (defined by 
Eq. 11.35), is high, such excess of the maximum ‘positive’ moment under pattern 
loading (over that calculated with full loading on all spans) is low.  The Code 
(Cl. 31.4.6) prescribes that if αc is not less than a specified value αc, min, then the 
possible increase in the design ‘positive’ moment may be ignored.  If, however, the 
columns lack the desired minimum relative stiffness, i.e., αc < αc, min, then the 
calculated ‘positive’ design mo ents should be increased by a factor, δ , defined as 
follows: 

δ
α

αs
DL LL

DL LL

c

c

w w
w w

= +
−
+

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1

2
4

1  
( )
( ) ,min

         

The value of , as well 
s the b  αc, min, 
sted in 1  which 

es
e m

s given n the 19 For 
termed al n may be resorted to.  

ts the use 
of DDM to cases with wLL/wDL ≤ 2 and dispenses with the factor δs. 

                   (11.43) 

where wDL and wLL denote respectively the characteristic (unfactored) dead load and 
live load per unit area. 

αc, min depends on the wDL/wLL load ratio, the l2/l1 span ratio
a eam stiffness parameter αb (defined by Eq. 11.27).  The values of
li  Table 7 of the Code are for Flat Slabs (i.e. without beams) for
α nd  are same as the values given ab = 0; a th e s the first set in column 3 of Table 
11.4.  Mor  co prehensive values for αc, min, covering values of αb other than zero, 
a  i 84 revision of the Canadian Code are included in Table 11.4.  
in iate v ues of wDL/wLL, l2/l1 and αb, linear interpolatio
The more recent (1994) revision of the Canadian Code [Ref. 11.18] restric
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Table 11.4  Values of αc, min

wDL/wLL l2/l1
Beam stiffness parameter αb1

  0 0.5 1.0 2.0 4.0 

2.0 0.5 – 2.0 0 0 0 0 0 
0.5 0.6 0 0 

1.0 
0.8 
1.0 

0.7 
0.7 

0 
0.1 

1.25 
2.0 

0.8 
1.2 

0.4 
0.5 

0 
0.2 

0 
0 

0 
0 

0 
0 

0 
0 
0 

0 
0 
0 

0.5 

0.5 
0.8 
1.0 
1.25 
2.0 

1.3 
1.5 
1.6 
1.9 
4.9 

0.3 
0.5 
0.6 
1.0 
1.6 

0 
0.2 
0.2 
0.5 
0.8 

0 
0 
0 
0 

0.3 

0 
0 
0 
0 
0 

0.33 

0.5 
0.8 

1.8 
2.0 

0.5 
0.9 

0.1 
0.3 

0 
0 

0 
0 
 1.0 

1.25 
2.0 

2.3 
2.8 
13.0 

0.9 
1.5 
2.6 

0.4 
0.8 
1.2 

0 
0.2 
0.5 

0
0 

0.3 
 

11.5.8 Beam Shears in Two-way Slab System with Flexible Beams 

Shear in two-way slabs without flexible beams along column lines is discussed in 
Section 11.8.  When there are beams, in addition to designing the slab to resist the 
shear force in it, the beam must also be designed to resist the shear it is subjected to.  
As mentioned earlier, the design of two-way slabs supporte
adequately covered in the Code, and hence there are no specific recommendations for 

dis

d on flexible beams is not 

determining the design shear forces in such beams.   
In general, the Code (Cl. 24.5) suggests that the design shear in beams supporting 

solid slabs spanning in two directions at right angles and supporting uniformly 
tributed loads may be computed as that caused by loads in tributary areas bounded 

by 45o lines drawn from the corners of the panels, as explained in Chapter 9 
[Fig. 9.5].  However, such an idealisation is meaningful only if the supporting beams 
can be considered to be “adequately stiff”, which, as explained earlier, is indicated by 
the condition α b l l1 2 1  ≥ 1.0. In the other extreme, when there are no beams, 
α b l l1 2 1  = 0, the ‘beam’ carries no load and the full shear in the panel is transmitted 
by the slab to the column in two-way action [refer Section 11.8].  For the case of 
flexible beams, with 0 < α b l l1 2 1  < 1, the beams framing into the columns transmit 
only part of the shear, and the balance of the shear in the panel is assumed to be 
transmitted by the slab to the column.  A simple means of evaluating the shear 
component in the beam in such a case is by applying linear interpolation between the 
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α b l l1 2 1  above two extreme conditions of ‘adequate stiffness’ ( ≥ 1.0) and zero 
stiffness (α b l l1 2 1  = 0), as recommended in Ref. 11.18.  Accordingly, 

V l l V for l l                flexible beam b stiff beam b = <( )α α1 <2 1 1 2 1 1           (11.44) 

This means that, in such cases, the beam in to th lumn smit only 
part of the sh from  th lumn nd the lance ear is transmitted by 
the slab directly to the mns o-wa shear. n such ases, t  total shear 
strength of lab-bea olum nnec  has  be checked t ensure that 
resistance to the full s ccur  on nel i rovided.  This ves the 
checking of the shear st lab-beam part und th colum meter as 
in the case of flat slabs (Section 11.8.2). 

It may be noted that, dditio  the r du slab l ds, be s must also 
resist shears due to factored loads ed di ly on beam

The application of the Direct Design Method is illustrated in Example 11.6. 

11.6   EQUIVALENT F E M OD

The ‘equival ame m d’ (E  of d n (al alled ic Frame Method) 
of two-way beam-suppo slabs t slabs, flat pl  and ffle sl s is a more 
general (and more rigorous) metho an DDM, an not subject to t imitations 
of DDM [refer Section 11.5.1].  F rmo nder ral l , rec e has to be 
taken to design by EFM. 

11.3.4.  
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The ‘equivalent frame’ concept has already been introduced in Section 
Such a concept simplifies the analysis of a three-dimensional reinforced co
building by subdividing it into a series of two-dimensional (plane) frames 
(‘equivalent frames’) centred on column lines in longitudinal as well as transverse 
directions [Fig. 11.24].  The ‘equivalent frame method’ differs from DDM in the 
determination of the total ‘negative’ and ‘positive’ design moments in the slab panels 
— for the condition of gravity loading.  However, the apportioning of the moments 
to ‘column strips’ and ‘middle strips’ (or to beam and slab) across a panel [refer 

ction 11.5.4] is common to both methods. 

11.6.1   Equivalent Frame for Analysis 

The bending moments and shear forces in an ‘equivalent frame’ are obtained in EFM 
by an elastic analysis†.  Such an analysis should generally be performed on the entire 
plane frame [Cl. 31.5.1(a) of the Code].  However, if the frame is subjected to gravity 
loading alone, a  frame geometry and loading are not so unsymmetrical as to 

nificant ‘sway’ (lateral drift) of the frame, each floor may be analysed 
separately, considering the appropriate ‘substitute frame’, with the columns attached 
to the floor assumed fixed at r far ends [Fig. 11.24(c)].  A further simplification 
may be made for the purpose of determining the design moment at a given support or 

                                                           
† It is now possible to do such analysis of the entire frame by methods such as the Finite 
Element Method.  The successive levels of simplifications and approximations given below are 
for use when such computer–based methods are not resorted to, or are found unnecessary. 
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span in the slab-beam member, by assuming the slab-beam  to be fixed at any 
support tw  distant, provided the slab is continuous beyond thi
Cl. 31.5.1(b) of t ode]. 

 member
o panels s point [refer 

he C
The load transfer system in the ‘equivalent frame’ involves 

interconnected elements [Fig. 11.35(a)]: 
three distinct 

• the slab-beam members (along span l1); 
• the columns (or walls); and 
• the torsional members, transverse to the frame (along span l2) and along the 

column lines. 

column above
slab-beam member

wul2 per unit length

panel

slab-beam
(K )sequivalent

column
(K )ec

column
line

panel

torsional member (stiffness Kt)

(stiffness Ks)

c1

l2

l1

B

A

c

C

C

l1

c2

(a)  elements of equivalent frame at a connection

(b) equivalent frame for analysis
 

Fig. 11.35  Equivalent frame method 

In conventional plane frames, the torsional members are absent, and the skeletal 
frame comprises only beams and columns.  However, in the case of the ‘equivalent 
frame’, the wide slab-beam member is supported at its support section only over part 
of its width by the column, and the remaining (and generally substantial) portion is 
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supported by the transverse torsional member, which provides only elastic (flexible) 
restraint (spring support) — both rotationally (in a twisting mode) and translationally 
(in a vertical direction).  In other words, significantly, the flexural restraint to the 
sla

case of a beam-column connection in a 
con n ough the vertical supporting member 
(col  has. 

line 
apportioning of the design ‘positive’ and ‘negative’ moments over the panel width to 
column strip and middle strips.  However, the xibility of the slab-to-
c  has to be accounted for in some manner in t sment of the 
rela es of the various members of the ‘equivalent fram though the 
IS Code provisions do not include any speci c suggestion as to how this can be done, 
the ACI Code (on which the EFM procedure of the IS Code is based) recommends 
the concept of an ‘equivalent column’ with stiffness Kec which can be used to replace 
the actual columns (above and below th oor at any joint) as well as the to  
member at the column line under consideration [Fig. 11.35(b)]. 

Thus, for the purpose of gravity load analysis, the substitute frame to be analysed 
by EFM can be modelled as a simple multi-bay, single storeyed portal frame, 
comprising only horizontal slab-beam members and vertical ‘equivalent columns’ 
[Fig. 11.35(b)]. 

The calculation of stiffnesses of the slab-beam members and the equivalent 
columns are to be based on their respective  sections [Cl. 31.5.1(c) of 
the Code].  Details of the calcula n the next section. 

11.6.2   Slab-Beam

The slab-beam member in an interior frame is bounded laterally by the centreline of 
the panel on each side of the column line column strip plus two 
half-middle strips.  For an exterior frame, the slab-beam member extends laterally 
from the edge to the centre  adjacent panel [Fig. 11.24(a)].  The slab-beam 
comprises rop panel rovided) and beam(s) (if provided). 

The cross-section of the slab-beam member varies along its span, on account of 
provision of  panels (if provided) and the increased cross-section within the 
bounds of the supporting column; the consequent variation of second moment of area 
along the span must be accounted for in the frame analysis by EFM [Cl. 31.5.1(d)† of 
the Code].  In order to account for the enhancement in the second moment of area of 
the slab-beam membe lumn face and the column 
centreline, a magnification factor of (1 – /l2)  is recommended [Ref. 11.18, 11.19].  
The variation of the sec  member in a flat slab 
(with drop panels) is sho
    

b-beam member (horizontal member) at the support section is less (i.e., the 
member is more flexible), than in the 

ve tional plane frame.  In effect, it is as th
han it reallyumn) has less flexural stiffness t

The nonuniform translational restraint to the slab-beam member along a transverse 
at the column is ignored in frame analysis, its effect being accounted for in the 

 increased fle
olumn connection he asses

tive stiffness e’.  Al
fi

e fl rsional

gross concrete
tion procedure are discussed i

 Member 

, thus comprising a 

line of the
 the slab, d  (if p

 drop

r in the region between the co
2c2

ond moment of area of the slab-beam
wn in Fig. 11.36(a), (b), (c). 

                                                       
† With reference to waffle slabs (‘recessed’ or ‘coffered’) which are made solid in the region of 
the columns [Fig. 1.11(b)], the Code suggests that the stiffening effect may be ignored 
provided the solid part of the slab does not extend more than 0.15le into the span measurement 
from the centreline of the columns. 
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The calculation of the stiffness factors, carry-over factors and fixed-end moments 
of the slab-beam member (required for conventional frame analysis‡ ) are dependent 
on the variation of the second moment of area along the span.  Such factors have 
been tabulated for common geometric and loading configurations in various design 
handbooks [Ref. 11.11, 11.25, 11.26].  Factors for two typical cases are listed in 
Tables 11.5 and 11.6.  The use of such tables is demonstrated in Example 11.7. 

 

D2 
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face of support

c1 
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C 

A

C

C

A

B

B

C

C

SECTION ‘AA’, I1 

l1
I1

I2 I2 /[1 – c2/l2]2

I = ∞ 

Ic lc 

(d)  variation of I 
   of column 

(b)  variation of I of slab

(c)  sections through slab

(a)  slab system

l2
D1 

D2 

I = I2/[1 – c2/l2]2

SECTION ‘BB’, I2 

ln

D1

SECTION ‘CC’ 

 

Fig. 11.36  Variation of second moment of area along member axis 

                                                           
‡ However, these factors are not required in modern computer-based analyses using the finite 
element method; nodes are introduced at the locations where the second moment of area 
changes. 
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Table 11.5  Moment distribution constants for slab-beam elements 

 

Far end (F)Near end (N)
bl1

al1

w(kN/m)
l1

CF1/2CN1/2

EcIs

EcIs /(1 – CN2/l2)2

l1

CC F2

CF1

FEM m lNF NFi i
i

n
=

=
∑  w  1

2

1

CN1

N2 l2

KNF = kNF EcIs / l1
 

 

CN1/l1 CN2/l2 Stiff-
ness 

Unif. 
load Fixed end moment coeff. (mNF) for (b – a) = 0.2 

Carry f.e.m. 
over coeff. 

  factor 
KNF

factor (mNF) a = 0.0 a = 0.2 a = 0.4 a = 0.6 a = 0.8 CNF

CF1 = CN1 ; CF2 = CN2  

0.00 -- 4.00 0.50 0.0833 0.0151 0.0287 0.0247 0.0127 0.00226 

0.10 

0.00 
0.10 
0.20 
0.30 
0.40 

4.00 
4.18 
4.36 
4.53 
4.70 

0.50 
0.51 
0.52 
0.54 
0.55 

0.0833 
0.0847 
0.0860 
0.0872 
0.0882 

0.0151 
0.0154 
0.0158 
0.0161 
0.0165 

0.0287 
0.0293 
0.0300 
0.0301 
0.0314 

0.0247 
0.0251 
0.0255 
0.0259 
0.0262 

0.0127 
0.0126 
0.0126 
0.0125 
0.0124 

0.00226 
0.00214 
0.00201 
0.00188 
0.00174 

0.20 

0.00 
0.10 
0.20 
0.30 
0.40 

4.00 
4.35 
4.72 
5.11 
5.51 

0.50 
0.52 
0.54 
0.56 
0.58 

0.0833 
0.0857 
0.0880 
0.0901 
0.0921 

0.0151 
0.0155 
0.0161 
0.0166 
0.0171 

0.0287 
0.0299 
0.0311 
0.0324 
0.0366 

0.0247 
0.0254 
0.0262 
0.0269 
0.0276 

0.0127 
0.0127 
0.0126 
0.0125 
0.0123 

0.00226 
0.00213 
0.00197 
0.00178 
0.00156 

0.30 

0.00 
0.10 
0.20 
0.30 
0.40 

4.00 
4.49 
5.05 
5.69 
6.41 

0.50 
0.53 
0.56 
0.59 
0.61 

0.0833 
0.0863 
0.0893 
0.0923 
0.0951 

0.0151 
0.0155 
0.0160 
0.0165 
0.0171 

0.0287 
0.0301 
0.0317 
0.0334 
0.0352 

0.0247 
0.0257 
0.0267 
0.0278 
0.0287 

0.0127 
0.0128 
0.0128 
0.0127 
0.0124 

0.00226 
0.00219 
0.00207 
0.00190 
0.00167 

0.40 

0.00 
0.10 
0.20 
0
0.40 

4.00 
4.61 

7.37 

0.50 
0.53 

0.64 

0.0833 
0.0866 

0.0971 

0.0151 
0.0154 

0.0168 

0.0287 
0.0302 

0.0359 

0.0247 
0.0259 

0.0297 

0.0127 
0.0129 

0.0128 

0.0022
0.0022
0.00221 
0.00211 
0.00195 

.30 
5.35 
6.25 

0.56 
0.60 

0.0901 
0.0936 

0.0158 
0.0162 

0.0318 
0.0337 

0.0271 
0.0284 

0.0131 
0.0131 

6 
5 
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Table 11.5 (contd.) 

CN1/l1 CN2/l2 Stiff-
ness 

Carry 
over 

Unif. 
load 

f.e.m. 
coeff. 

Fixed end moment coeff. (mNF) for (b – a) = 0.2 

  factor 
KNF

factor 
CNF

(mNF) a = 0.0 a = 0.2 a = 0.4 a = 0.6 a = 0.8 

CF1 = 0.5CN1 ; CF2 = 0.5CN2  

0.00 -- 4.00 0.50 0.0833 0.0151 0.0287 0.0247 0.0127 0.0023 

0.10 

0.00 
0.10 
0.20 
0.30 
0.40 

4.00 
4.16 
4.31 
4.45 
4.58 

0.50 
0.51 
0.52 
0.54 
0.54 

0.0833 
0.0857 
0.0879 
0.0900 
0.0918 

0.0151 
0.0155 
0.0158 
.0162 
.0165 

0.0287 
0.0296 
0.0304 
0.0312 
0.0319 

0.0247 
0.0254 
0.0261 
0.0267 
0.0273 

0.0127 
0.0130 
0.0133 
0.0135 
0.0138 

0.0023 
0.0023 
0.0023 
0.0023 
0.0023 

0
0

0.20 

0.00 

0.30 
0.40 

4.00 0.50 0.0833 
0.0872 

0.0151 

0.0167 

0.0287 

0.0332 

0.0247 

0.0285 

0.0127 

0.0143 

0.0023 

0.0024 

0.10 
0.20 

4.30 
4.61 
4.92 
5.23 

0.52 
0.55 
0.57 
0.58 

0.0912 
0.0951 
0.0989 

0.0156 
0.0161 

0.0301 
0.0317 

0.0259 
0.0272 

0.0132 
0.0138 

0.0023 
0.0023 

0.0172 0.0347 0.0298 0.0148 0.0024 

0.30 

0.00 
0.10 
0.20 
0.30 

 
4.43 

 
0.53 

0.0833 0.0151 0.0287 
0305 

0.0247 
0.0263 

0.0127 
0.0134 

0.0023 
0.0023 

0.40 

4.00

4.89 
5.40 
5.93 

0.50

0.56 
0.59 
0.62 

0.0881 0.0156 0.
0.0932 
0.0986 
0.1042 

0.0161 
0.0167 
0.0173 

0.0324 
0.0345 
0.0367 

0.0281 
0.0300 
0.0320 

0.0142 
0.0150 
0.0158 

0.0024 
0.0024 
0.00235 

0.40 

0.00 
0.10 
0.20 
0.30 
0.40 

4.00 
4.54 
5.16 
5.87 
6.67 

0.50 
0.54 
0.57 
0.61 
0.64 

0.0833 
0.0884 
0.0941 
0.1005 
0.1076 

0.0151 
0.0155 
0.0159 
0.0165 
0.0170 

0.0287 
0.0305 
0.0326 
0.0350 
0.0377 

0.0247 
0.0265 
0.0286 
0.0310 
0.0336 

0.0127 
0.0135 
0.0145 
0.0155 
0.0166 

0.0023 
0.0024 
0.0025 
0.0025 
0.0026 

C  = 2CF1 N1 C; C  = 2F2 N2  
0.00 -- 4.00 0.50 0.0833 0.0151 0.0287 0.0247 0.0127 0.0023 

0.10 

0.00 
0.10 
0.20 

4.00 
4.27 
4.56 

0.50 
0.51 
0.52 

0.0833 
0.0517 
0.0798 

0.0150 
0.0153 
0.0156 

0.0287 
0.0289 
0.0290 

0.0247 
0.0241 
0.0234 

0.0127 
0.0116 
0.0103 

0.0023 
0.0018 
0.0013 

0.20 

0.00 
0.10 
0.20 

4.00 
4.49 
5.11 

0.50 
0.51 
0.53 

0.0833 
0.0819 
0.0789 

0.0151 
0.0154 
0.0158 

0.0287 
0.0291 
0.0293 

0.0247 
0.0240 
0.0228 

0.0127 
0.0114 
0.0096 

0.0023 
0.0019 
0.0014 
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Table 11.6  Moment dis r slab-beam elements, 
drop thickness = 0.50D 

tribution constants fo

Far end (F)Near end (N)

l1

bl1
a

/m

l1

w(kN )

CF1/2CN1/2

EcIs /(1 – CN2/l2)2

CF2

CF1

FEM m 2lNFi i w  1NF = ∑
i=1

n

CN1

CN2 l2

KNF = kNF EcI

l1/6

EcI

l1/6

s
s / l1EcId

l2/3

l1/6
l1

 

CN1/l1 CN2/l2 Stiff-
ness 

Carry 
over 

Unif. 
load 

f.e.m. 
coeff. 

Fixed en  –d Moment coeff. (mNF) for (b  a) = 0.2 

  factor 
KNF

factor 
CNF

(mNF) a = 0.0 a = 0.2 a = 0.4 a = 0.6 a = 0.8 

C  = CF1 N1 N; C  = CF2 2  

0.00 -- 5.84 0.59 0.0926 0.0164 0.0335 0.0279 0.0128 0.0020 
0.00 
0.10 
0.20 
0.30 

5.84 
6.04 
6.24 
6.43 

0.59 
0.60 
0.61 
0.61 

0.0926 
0.0936 
0.0940 
0.0952 

0.0164 
0.0167 
0.0170 
0.0173 

0.0335 
0.0341 
0.0347 
0.0353 

0.0279 
0.0282 
0.0285 
0.0287 

0.0128 
0.0126 
0.0125 
0.0123 

0.0020 
0.0018 
0.0017 
0.0016 

0.10 

0.20 0.20 
0.30 

6.62 
7.01 

0.62 
0.64 

0.0356 
366 

0.0290 
0.0294 

0.0123 
0.0120 

0.0016 
0.0014 

0.00 
0.10 

5.84 
6.22 

0.59 
0.61 

0.0926 
0.0942 
0.0957 
0.0971 

0.0172 
0.0177 0.0

0.0164 
0.0168 

0.0335 
0.0346 

0.0279 
0.0285 

0.0128 
0.0126 

0.0020 
0.0018 

0.30 

0.00 
0.10 
0.20 
0.30 

5.84 
6.37 
6.95 
7.57 

0.59 
0.61 
0.63 
0.65 

0.0926 
0.0947 
0.0967 
0.0986 

0.0164 
0.0168 
0.0172 
0.0177 

0.0355 
0.0348 
0.0362 
0.0375 

0.0279 
0.0287 
0.0294 
0.0300 

0.0128 
0.0126 
0.0123 
0.0119 

0.0020 
0.0018 
0.0016 
0.0014 

CF 1 .51 = 0.5CN ; CF2 = 0 CN2  

0.00 -- 5.84 0.59 0.0926 0.0164 0.0335 0.0279 0.0128 0.0020 

0.10 0.10 
0.20 

6.00 
6.16 

0.60 
0.60 

0.0945 
0.0962 

0.0167 
0.0170 

0.0343 
0.0350 

0.0285 
0.0291 

0.0130 
0.0132 

0.0020 
0.0020 

0.00 5.84 0.59 0.0926 0.0164 0.0335 0.0279 0.0128 0.0020 

0.20 
0.00 
0.10 
0.20 

5.84 
6.15 
6.47 

0.59 
0.60 
0.62 

0.0926 
0.0957 
0.0987 

0.0164 
0.0169 
0.0173 

0.0335 
0.0348 
0.0360 

0.0279 
0.0290 
0.0300 

0.0128 
0.0131 
0.0134 

0.0020 
0.0020 
0.0020 

CF1 = 2CN1 ; CF2 = 2CN2  
0.00 -- 5.84 0.59 0.0926 0.0164 0.0335 0.0279 0.0128 0.0020 

0.10 
0.00 
0.10 

5.84 
6.17 

0.59 
0.60 

0.0926 
0.0907 

0.0164 
0.0166 

0.0335 
0.0337 

0.0279 
0.0273 

0.0128 
0.0116 

0.0020 
0.0015 



DESIGN  OF  TWO-WAY  SLAB  SYSTEMS 489 

Equivalent columns 

As menti ember 
are replaced by an equivalent colum ec.  The cross-section to be 
considered for the torsional member is that of the flanged section of the transverse 
beam defined earlier in Fig. 11.27, and in the absence of a beam along the column 
line, it may be limited to the portion of the slab having a width equal to that of the 
column, bracket or capital measured in the direction of the span l1 [Ref. 11.18]. 

The concept of an ‘equivalent column’ is introduced to account for the increased 
flexibility (reduced flexural restraint) of the connection of the slab-beam member to 
its support (see Section 11.6.1), because of its connection to the column, for most of 
its width, through a torsional member.  This is effected by taking the equivalent (or 
effective) flexibility (inverse of stiffness) of the connection as equal to the sum of the 
flexibilities of the actual columns and the torsional member.  The stiffness, Kec, of the 
equivalent column is thus obtained from: 

oned earlier, the actua low, and the torsional ml columns above and be
n of stiffness K

1 1
K K

1

ec c
+                                               (11.45a) 

ec

Kt
=
∑

⇒    K  ∑=
+

K 
                                              (11.45b) 

Evidently, Kec ΣKc;  the effect f f the torsional member is to 
reduce the rotational restraint offe  member at the support section.  

con on K ΣK ly  t i g i h 
Fig. 11.35(a) is ame  be assumed u f i fn

ran e t al er it h n a ll 
width e ing over the e a b t  h
ΣKc = ∝  = mpl th u c s l th
underg e s ota s t he a e t h 

1  ex or dth c
Anot nte g r ned for th h as

torsion mb ith 0, or for t b  supported on a 
nr l ( 0) ho le e  e 

res d a the  A e c  c
location), and in the latter ca , l rained throughout the 

e length AB n bot
r th urp  co ng io fn h e b

wi pro e expressio 1 e n

∑Kc

Kt c

Kt

 ≤ i.e., o  the flexibility o
red to the slab-beam

The diti ec = c (imp ing that he rotat on alon  the ent re lengt AB in 
 the s ) can  to occ r only i  the tors onal stif ess of 

the t svers orsion memb  is infin e or if t e colum  is in f ct a wa with a 
xtend  full width of th  slab-be m mem er.  On he other and, if 
, Kec  Kt, i ying at altho gh the olumn i  infinite y stiff, e slab 

oes th ame r tion a hat of t  torsion l memb r along he lengt AB in 
Fig. 1 .35(a) cept f the wi   at the olumn location. 

her i restin esult of K  = 0 ec is obtai e hypot etical c e of a 
al me er w Kt = he case of a sla  simply

maso
flexural

y wal K  = c throug ut the ngth AB.  In th  former case, th slab is 
ly un traine long  length B (exc pt for the width 2 at the olumn 

se  the slab is flexura ly unrest
uralentir

Fo
, and i

ose of
h cases 

mputi
Kec shoul

 the tors
d nat

nal stif
ly be zero. 

ess of te p e transv rse mem er, the 
follo ng ap ximat n [Ref. 1 .18] is r comme ded: 

K
E C9

l2 c l− 2 2
t 1( )

     (

 E  ≡ modulus of elastic orsional member); 

c= ∑ 3                                    11.46) 

where 

c ity of concrete (in the t
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  C ≡ torsional property of the cross-section† [refer Eq. 11.41]; and 
c2 ≡ width of the equivalent rectangular column, capital or bracket, 

measured transverse to the direction in which moments are being 
determined. 

It should be noted that the concept of the ‘equivalent column stiffness’, Kec, 
explained here, is applicable for gravity load analysis, and not for lateral 
load analysis. 

It may be noted that the elastic frame analogy may also be used for the lateral load 
analysis of this type of unbraced frames, comprising column-supported slab system.  
However, the Code does not give any guidance on assigning member stiffnesses in 
such situations.  For gravity load analysis, the reduced restraint to the slab-beam 
member at the column support is accounted for by reducing the effective column 
stiffness, as explained above.  By analogy, for lateral load analysis, the effective 
stiffness of the slab-beam member has to be reduced.  However, it should be realised 
that, due to the large flexural stiffness of the floor slab in its own plane, the sway for 
all columns in a storey will, in most cases, be v
share the lateral load very nearly in proportion to their stiffnesses; and the column 
shears determine the column moments at the connection.  For this reason, the 
effective slab-beam mem ural) stiffnes
mo
(sw

in cross-section on 
ac

ith the appropriate 
stiffnesses for the slab-beam members and equivalent columns, may be done by any 
method of structural analysis.  For manual calcul
method is particularly suitable, as illustrated in Example 11.7. 

ery nearly equal.  Hence, the columns 

 
ber (flex s does not usually affect the column 

ments under lateral load significantly [Ref. 11.29].  However, if the lateral drift 
ay) is to be computed, a realistic assessment of the effective slab-beam member 

stiffness is required.  Some studies [such as Ref. 11.29] have indicated that 
calculations with an effective width for the slab-beam member, be = c2 + 2D, gives 
satisfactory drift predictions. 

For the calculation of the column stiffness, Kc, the variation of the second moment 
of area along the height of the actual column should be taken into account.  The 
height of the column lc, is measured centre-to-centre of floors, and the second 
moment of area of the column section for the portion integral with the slab-beam 
member should be taken as infinite [Fig. 11.36(d)].  The change 

count of the column capital and drop panel (wherever provided) should also be 
considered in computing the stiffness and carry-over factors.  To facilitate 
calculations, these factors have been evaluated for common configurations in various 
design handbooks [Ref. 11.11, 11.25, 11.26], and are indicated in Table 11.7. 

Method of Analysis 

The gravity load analysis of the equivalent (substitute) frame, w

ations, the moment distribution 

                                                           
† For calculation purposes, the torsional member is assumed to have a uniform section 
throughout its length.  In flat slabs, this implies that the provision of drop panels (if any) is 
ignored. 
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Table 11.7  Stiffness and carry-over factors for columns 

ta

Ic Ic
H Hc

A A A
Kc = k(EIc)/ Hta ta

For values
kBA and CB

 of
A,

read (ta/tb) as
(t /t )

Hc HcIc

BB B
tbtbtb

b a

 
 

ta/tb
H/Hc 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 

0.0 
KAB 
CAB

4.20 
0.57 

4.40 
0.65 

4.60 
0.73 

4.80 
0.80 

5.00 
0.87 

5.20 
0.95 

5.40 
1.03 

5.60 
1.10 

5.80 
1.17 

6.00 
1.25 

0.2 
KAB 
CAB

4.31 
0.56 

4.62 
0.62 

4.95 
0.68 

5.30 
0.74 

5.65 
0.80 

6.02 
0.85 

6.40 
0.91 

6.79 
0.96 

7.20 
1.01 

7.62 
1.07 

0.4 
KAB 
CAB

4.38 
0.55 

4.79 
0.60 

5.22 
0.65 

5.67 
0.70 

6.15 
0.74 

6.65 
0.79 

7.18 
0.83 

7.74 
0.87 

8.32 
0.91 

8.94 
0.94 

0.6 
KAB 
CAB

4.44 
0.55 

4.91 
0.59 

5.42 
0.63 

5.96 
0.67 

6.54 
0.70 

7.15 
0.74 

7.81 
0.77 

8.50 
0.80 

9.23 
0.83 

10.01 
0.85 

0.8 
KAB 
CAB

4.49 
0.54 

5.01 
0.58 

5.58 
0.61 

6.19 
0.64 

6.85 
0.67 

7.56 
0.70 

8.31 
0.72 

9.12 
0.75 

9.98 
0.77 

10.89 
0.79 

1.0 
KAB 
CAB

4.52 
0.54 

5.09 
0.57 

5.71 
0.60 

6.38 
0.62 

7.11 
0.65 

7.89 
0.67 

8.73 
0.69 

9.63 
0.71 

10.60 
0.73 

11.62 
0.74 

1.2 
KAB 
C

4.55 
0.53 

5.16 
0.56 

5.82 
0

6.54 7.32 8.17 9.08 10.07 11.12 12.25 
AB .59 0.61 0.63 0.65 0.66 0.68 0.69 0.70 

1.4 
KAB 
CAB

4.58 
0.53 

5.21 
0.55 

5.91 
0.58 

6.68 
0.60 

7.51 
0.61 

8.41 
0.63 

9.38 
0.64 

10.43 
0.65 

11.57 
0.66 

12.78 
0.67 

1.6 
KAB 
CAB

4.60 
0.53 

5.26 
0.55 

5.99 
0.57 

6.79 
0.59 

7.66 
0.60 

8.61 
0.61 

9.64 
0.62 

10.75 
0.63 

11.95 
0.64 

13.24 
0.65 

1.8 
KAB 
CAB

4.62 
0.52 

5.30 
0.55 

6.06 
0.56 

6.89 
0.58 

7.80 
0.59 

8.79 
0.60 

9.87 
0.61 

11.03 
0.61 

12.29 
0.62 

13.65 
0.63 

2.0 
KAB 
CAB

4.63 
0.52 

5.34 
0.54 

6.12 
0.56 

6.98 
0.57 

7.92 
0.58 

8.94 
0.59 

10.06 
0.59 

11.27 
0.60 

12.59 
0.60 

14.00 
0.61 

2.2 
KAB 
CAB

4.65 
0.52 

5.37 
0.54 

6.17 
0.55 

7.05 
0.56 

8.02 
0.57 

9.08 
0.58 

10.24 
0.58 

11.49 
0.59 

12.85 
0.59 

14.31 
0.59 

2.4 
K  AB
CAB 0.52 0.53 0.55 0.56 0.56 0.57 0.57 0.58 

 
0.58 

14.60 
0.58 

4.66 5.40 6.22 7.12 8.11 9.20 10.39 11.68 13.08

2.6 
KAB 
CAB

4.67 
0.52 

5.4
0.5

2 
3 

6.26 
0.54 

7.18 
0.55 

8.20 
0.56 

9.31 
0.56 

10.53 
0.56 

11.86 
0.57 

13.29 
0.57 

14.85 
0.57 

2.8 
KAB 
CAB

4.68 
0.52 

5.44 
0.53 

6.29 
0.54 

7.23 
0.55 

8.27 
0.55 

9.41 
0.55 

10.66 
0.56 

12.01 
0.56 

13.48 
0.56 

15.07 
0.56 

3.0 
KAB 
CAB

4.69 
0.52 

5.46 
0.53 

6.33 
0.54 

7.28 
0.54 

8.34 
0.55 

9.50 
0.55 

10.77 
0.55 

12.15 
0.55 

13.65 
0.55 

15.28 
0.55 

3.2 
KAB 
CAB 0.52 0.53 0.53 0.54 0.54 0.54 

 
0.54 

12.28 
0.54 

13.81 
0.54 

15.47 
0.54 

4.70 5.48 6.36 7.33 8.40 9.58 10.87

KAB 
3.4 CAB

4.71 
0.51 

5.50 
0.52 

6.38 
0.53 

7.37 
0.53 

8.46 
0.54 

9.65 
0.54 

10.97 
0.54 

12.40 
0.53 

13.95 
0.53 

15.64 
0.53 
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Table 11.7 (contd.) 

ta/tb
H/Hc 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 

3.6 
KAB 
CAB

4.71 
0.51 

5.51 
0.52 

6.41 
0.53 

7.41 
0.53 

8.51 
0.53 

9.72 
0.53 

11.05 
0.53 

12.51 
0.53 

14.09 
0.53 

15.80 
0.52 

3.8 
KAB 
CAB

4.72 
0.51 

5.53 
0.52 

6.43 
0.53 

7.44 
0.53 

8.56 
0.53 

9.78 
0.53 

11.13 
0.53 

12.60 
0.52 

14.21 
0.52 

15.95 
0.52 

4.0 
KAB 
CAB

4.72 
0.51 

5.54 
0.52 

6.45 
0.52 

7.47 
0.53 

8.60 
0.53 

9.84 
0.52 

11.21 
0.52 

12.70 
0.52 

14.32 
0.52 

16.08 
0.51 

4.2 
KAB 
CAB

4.73 
0.51 

5.55 
0.52 

6.47 
0.52 

7.50 
0.52 

8.64 
0.52 

9.90 
0.52 

11.27 
0.52 

12.78 
0.51 

14.42 
0.51 

16.02 
0.51 

4.4 
KAB 
CAB

4.73 
0.51 

5.56 
0.52 

6.49 
0.52 

7.53 
0.52 

9.95 
0.52 

11.34 
0.51 

12.86 
0.51 

14.52 
0.51 

16.32 
0.50 

8.68 
0.52 

4.6 
KAB 
CAB

4.74 
0.51 

5.57 
0.52 

6.51 
0.52 

7.55 
0.52 

8.71 
0.52 

9.99 
0.52 

11.40 
0.51 

12.93 
0.51 

14.61 
0.50 

16.43 
0.50 

4.8 
KAB 
CAB

4.74 
0.51 

5.58 
0.52 

6.53 
0.52 

7.58 
0.52 

8.75 
0.52 

10.03 
0.51 

11.45 
0.51 

13.00 
0.50 

14.69 
0.50 

16.53 
0.49 

5.0 
KAB 
CAB

4.75 
0.51 

5.59 
0.51 

6.54 
0.52 

7.60 
0.52 

8.78 
0.51 

10.07 
0.51 

11.50 
0.51 

13.07 
0.50 

14.77 
0.49 

16.62 
0.49 

6.0 
KAB 
CAB

4.76 
0.51 

5.63 
0.51 

6.60 
0.51 

7.69 
0.51 

8.90 
0.50 

10.24 
0.50 

11.72 
0.49 

13.33 
0.49 

15.10 
0.48 

17.02 
0.47 

7.0 
KAB 
CAB

4.78 
0.51 

5.66 
0.51 

6.65 
0.51 

7.76 
0.50 

9.00 
0.50 

10.37 
0.49 

11.88 
0.48 

13.54 
0.48 

15.35 
0.47 

17.32 
0.46 

8.0 
KAB 
CAB

4.78 
0.51 

5.68 
0.51 

6.69 
0.50 

7.82 
0.50 

9.07 
0.49 

10.47 
0.49 

12.01 
0.48 

13.70 
0.47 

15.54 
0.46 

17.56 
0.45 

9.0 
KAB 
CAB

4.79 
0.50 

5.69 
0.50 

6.71 
0.50 

7.86 
0.50 

9.13 
0.49 

10.55 
0.48 

12.11 
0.47 

13.83 
0.46 

15.70 
0.45 

17.74 
0.45 

10.0 KAB 
CAB

4.80 
0.50 

5.71 
0.50 

6.74 
0.50 

7.89 
0.49 

9.18 
0.48 

10.61 
0.48 

12.19 
0.47 

13.93 
0.46 

15.83 
0.45 

17.90 
0.44 
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oad a f the uival nt (su titute rame, with th  appro riate 
stiffn r the s  mem ers an  equi ent c umns ay b one  any 
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method

d of 
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ructur l anal sis.  r ma ual ca ulatio s, the moment distribution 
ticula  suita le, as lustra d in E mple 1

†
1.7. 
h uW en sp cific g avity ad pa erns a  indi ted  , e eq alent rame ould 

lysed
le, b

for th e pat rns [ . 31.5 .1 of he Co e].  When the live load is 
varia does n t exce d thre -fourt  of th dead ad, or e nat e of t  live 
load
recom

 such
mend

hat al the pa els wi  be lo ed si ultane usly th  Code Cl. 31. .2.2) 
a sing  loadi g case f full actore  loads dead p us live on all pans 

for a lysis n moments in he sla  [Fig. 11.37(a)].   
Fo

only
 larg
r th

 live ad/dea  load atios LL/wDL > 0.7 ), it is ccepta le to design 
-four s of th  full l e load on alt nate s ns fo axim m ‘po tive’ 

mom nts in 
, a

spans and o  adja nt sp ns fo maximum ‘negative’ mome ts at 
ts s
        

ndicat  in F . 11.3 b) an (c) re ectively [Cl. 31.5.2.3 f the Code].  
                                    
† For example, water tank bases are often two-way slabs (with or without beams) supported on 
columns.  The loading due to water should be expected to act on all the panels (bounded within 
the tank walls) simultaneously [Ref. 11.11]. 
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However, in no case must the de ess than those occurring 
with full factored loads (dead plus live) on all spans [Fig. 11.37(a)].  The use of only 

e- s e de li m m e at
un r p le e ist o e  1

sign moments be taken as l

thre
acco

fourth of th full sign ve load for aximu  mom nt loading p terns 
ts fo ossib  mom nt red ributi n in th frame [Ref. 1 .11]. 

(c)  loading pattern for M –u,max at support B
for  wu,LL > 0.75 wu,DL

(b)  loading p +
u,m BC

and DE for  wu,LL > 0.75 wu,DL

lo  p  f LL  

C

Dw

attern for M ax in spans 

(a)  ading attern or wu,  ≤ 0.75 wu,DL

EDA B

wu,DL

wu, Lu,LL

0.75wu,LL

EDCA B

0.75wu,LL wu,DL

EDCA B

 

Fig. 11.37  Gravity loading patterns for equivalent frame analysis 

11.6.4   Design Moments in Slab-Beam Members 

The results of the equivalent frame analysis using centreline dimensions gives 
‘negative’ moments at the centreline of the supports, from which the design 
‘negative’ moments at the critical sections have to be deduced, as shown in 
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Fig. 11.38.  The Code (Cl. 31.5.3.1) recommends that the critical section of the slab-
beam member for ‘negative’ moment at an interior support is to be taken at the face 
of the support (column, capital or bracket), but in no case at a distance greater than 
0.175l1 from the centre of the column.  At an exterior support with a capital or 
bracket, the critical section is to be taken [Cl. 31.5.3.2 of the Code] at a distance from 
the face of the colu ot greater than one-half of the projection of the bracket or 
capital beyond the face of the column‡.  These Code specifications are illustrated in 
Fi  11.38. 

mn n

g.

 l1

C
BA

a/2

b ≤ 0.175 l1 
Mcol 

below 

Mcol 
above 

Mo

M –A

M+
max

M+
C

M 
–

B

M c 

Mc

a

(c) 

(a)

(b)  

Fig. 11.38  Critical sections for ‘negative’ design moments in the slab-beam member 
olumn 

The design ‘positive’ (maximum) moment in the beam-slab member should be 
ob ined from the zero shear location, w h, in general need not correspond to he 
midspan location [Fig. 11.38(b)]. 

To maintain consistency in design requirements, the Code (Cl. 31.5.4) provides 
that in a two-way slab system which meets the limitations of DDM (given in 
Section 11.5.1), but is analysed by EFM, the design moments obtained from 
equivalent frame analysis, if found excessive, may be reduced in such proportion that 
the numerical sum of average ‘negative’ 
moment used in design need not exceed the value Mo obtained from Eq. 11.31 
[Fig. 11.38(b)]. 

The ap s in the 
transverse d  the column strip and half-middle strips in the case of slabs 

th beams between all 

and c

ta hic  t

the ‘positive’ moment at midspan and the 

portioning of the design ‘positive’ and ‘negative’ moment
irection to

without beams, and to the beam and slab in the case of slabs wi
supports, should be done as explained in Section 11.5.4.  
                                                           
‡ Circular or regular polygon shaped supports are to be treated as equivalent square supports 
having the same cross–sectional area [Cl. 31.5.3.3 of the Code]. 
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11.6.5   Design Moments in Columns and Torsion in Transverse Beam 

The design moments in the ‘equivalent columns’ are obtained from equivalent frame 
analysis.  The moment (due to gravity loads) is usually significant only at the exterior 
support.  This moment has to be distributed to the actual columns located above and 
below the floor in proportion to their relative flexural stiffnesses [Fig. 11.38(c)]. 

At an exterior support, the negative moment in the slab part of the slab-beam 
member acts as a twisting moment in the torsional member [see Section 11.5.6].  As 
indicated in Fig. 11.33 and conservatively, the twisting moment may be assumed to 
be uniformly distributed along the length of the torsional member (with a maximum 
value at the face of the column support. The twisting moment will generally be 
significant only in the presence of an edge beam†, and the edge beam has to be 
suitably designed to resist this moment, using the design principles explained in 
Chapter 7.  Transverse beams at interior supports will also be subject to some torsion 
due to the unbalanced negative moments in the slabs on either side, but the 
magnitude of this will usually be very small. 

11.7   REINFORCEMENT DETAILS IN COLUMN-SUPPORTED TWO-WAY 
SLABS 

• When slabs are provided with drop panels, the slab thickness to be considered for 
calculation of area of ‘negative’ reinforcement at the support should be limited to 
the total thickness of the drop panel or the thickness of the slab plus one-fourth 
the distance between the edge of the drop and the edge of the column capital, 
whichever is smaller [Cl. 31.7.2 of the Code].  This limitation is intended to 
discourage the use of excessively thick drop panels solely for the purpose of 
reducing ‘negative’ reinforcement area [Ref. 11.11]. 

•  
‘negative’ moments at the critica ould not be less than the minimum 
specified for shrinkage and temperature stresses [Cl. 26.5.2.1 and Cl. 26.3.3(b) of 

ion, reduce cracking, and to provide for the 

 The flexural reinforcement requirements, calculated for the design ‘positive’ and
l sections, sh

the Code].  Furthermore, the Code (Cl. 31.7.1) limits the spacing of bars at critical 
sections in flat slabs to a maximum of twice the slab thickness.  This limitation is 
intended to ensure slab act
distribution of concentrated loads. 

• Considerable uncertainties are generally associated with the ‘degree of fixity’ 
along the exterior edge of the slab system.  The degree of flexural restraint 
depends on the torsional stiffness of the edge beam (if provided) and interaction 
with an exterior wall (if provided). 

                                                           
† In the absence of a beam, the torsional stiffness Kt will be very low, which means that the 
slab is nearly unrestrained flexurally at the edges.  Hence the negative moment in the slab part 
and consequently the twisting moment in the edge portion of the slab (which acts as a torsional 
member) will be negligible. 



496   REINFORCED  CONCRETE  DESIGN 

c c c

ca

ff

a

Type of
without drop panel with drop panel

Minimum percentageLocationStrip bars

Top

d d ee

bbbb

of steel at section

Bent*
bars

Straight
bars

Bent*
bars

Top

Bottom

Straight
bars

150 min.

0.125l max.
150

75 max.

EXTERIOR
SUPPORT

150

0.15l max.

75 max.

Bottom 24 φ (300 min.)0.125l max.

75 max.75 max.

50
 Remainder

Bottom

100Top

Bottom

Top

d d e

e bbb

gg

c

c

cc

b

50
 Remainder

24φ (300 min)

50
 Remainder

ALL BARS

150

Col.
strip edge of

drop

50
 Remainder

edge of
drop

ALL BARS

150

150150

150

75 max.

50

Middle
trip

50
 Remainder

 Remainder

s

ALL BARS

50
 Remainder

CLEAR SPAN – ln

INTERIOR SUPPORT

FACE OF SUPPORT FACE OF SUPPORT

EXTERIOR SUPPORT

CLEAR SPAN – ln

* Bent bars at exterior support may
be used if general analysis is made

Minimum Length of bar Max. Length

Mark a b c d e f g

Length 0.14ln 0.20ln 0.22ln 0.30ln 0.33ln 0.20ln 0.24ln
 

Fig. 11.39  Minimum lengths of reinforcements in beamless two-way slabs 
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It is therefore desirable to provide ‘negative’ moment reinforcement at the 
discontinuous edge, as required for wall-supported slabs [Cl. D–1.6 of the Code], 
and to provide proper anchorage for the same.  Furthermore, all ‘positive’ 
reinforcement perpendicular  the discontinuous edge should be extended to the 
slab edge, and embedd ngth, straight or hooked, of at least 150 mm 
[Cl. 31.7.4 of the Code]. 

• For two-way systems supported on relatively stiff beams 

 to
ed for a le

(α b l l1 2 1  > 1.0

 ‘restrained’ sl e Code, and 
Sec
The on th

 Eq
ensi

ational
ateral load

t by e anal

oad in 
ng 

a co orts  stee
be p

. 11.40(b)]
anging by nforcem column

), it is 
necessary to provide the special corner reinforcement at exterior corners, as in the 
case of wall-supported abs [refer Cl. D–1 of th

tion 11.2.4]. 
•  location of bar cut-off or bend points must be based e moment 

envelopes (obtainable in the uivalent Frame Method) and the requirements of 
development length and bar ext ons described in Section 5.9. 

• In the case of flat slabs and flat plates, the Code (Cl. 31.7.3) prescribes specific 
bend point locations and minimum extensions for reinforcement.  These 
recommendations are based on ACI code recommendations and have been 
incorporated in other intern  codes [Ref. 11.18, 11.19].  They are depicted 
in Fig. 11.39.  Under l s, (combined with gravity loads), the actual 
lengths of reinforcement should be worked ou  equivalent fram ysis, but 
must not be less than those prescribed in Fig. 11.39. 

• It is seen that punching shear failure (discussed in Section 11.8.2) may lead to the 
tearing out of the top steel over the support section from the top surface of the 
slab [Fig. 11.40(a)], resulting in a complete ‘punch through’ at the support.  Such 
a complete failure of one support will result in the slab l this area getting 
transferred to the neighbouri support, overloading it, which may, in turn, cause 
its failure and thus set off a progressive type of collapse.  In order to prevent such 

llapse, it is recommended that at slab supp , adequate bottom l should 
rovided†, such that it passes through the columns in both span directions and 

has sufficient anchorage [Fig .  With this, even after a punching shear 
failure, the slab will be h  these rei ents from the  head.  
The minimum area of such bottom reinforcement in each direction, Asb, is 
prescribed in Ref. 11.18 as: 

A
w l l

fsb

ded in each ction, and t

nimum lap length of 2 ].  At discon
 be provided into t rt by mean

 to de p the full design yield stress at the face of the supp

n

y
=

0 5
0 87

2.
.
   

                                              (11.47) 

where w is the total (dead plus live) characteristic load per unit area, but not less 
than 2wDL.  At least two bars should be provi  dire he bars 
should be effectively lap spliced, preferably outside the reaction area, with a 
mi  Ld [refer Chapter 8 tinuous edges, proper 
anchorage should he suppo s of bends, hooks, etc., so 
as velo ort on the slab side. 

                                                           
† Such reinforcement is, however, not called for if punching shear reinforcement is provided in 
the slabs [refer Section 11.8]. 
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When openings are provided in flat slabs and flat plates, the requirements of 
Cl. 31.8 of the Code should be satisfied.  In particular, the requirement for the 
total amount of reinforcement for the slab without opening should be maintained, 
such that the equivalent of the reinforcement interrupted should be added on all 
sides of the openings. 

• 

Asb

(a)  Tearing out of top (b)  Bottom reinforcement for
hanging up slabreinforcement after shear failure

 

Fig. 11.40  Minimum bottom steel required to pass through column 

.8   SHEAR IN COLUMN-SUPPORTED TWO-WAY SLABS 

ere are two types of shear to be considered in th

11

Th e design of two-way slabs 

Co
col
pro
pre
one
flex

11

The critical section for one-way shear in column-supported slabs is located at a 
distance d from the face of the support (colum
section 1–1 in Fig. 11.41. The slab acts as a wide beam supported on, and spanning 
bet
bea
stri
zer
(sim

supported on columns (with or without beams along column lines): 

1. one-way shear or beam shear, and 
2. two-way shear or punching shear. 

nsiderations of one-way shear predominate when beams are provided along the 
umn lines; in fact, there is no need to check for two-way shear when the beams 
vided are relatively stiff.  On the other hand, two-way shear considerations 
dominate in the case of beamless slabs (flat slabs and flat plates).  However, both 
-way shear and two-way shear need to be checked in two-way slabs supported on 
ible beams† (see also Section 11.5.8) . 

.8.1   One-Way Shear or Beam Shear 

n, capital or bracket), as shown in 

ween, the columns (and hence, the name beam shear, i.e., shear as in the case of 
ms).  The shear stress may be computed for the full slab width, l2, or for a typical 
p of slab one metre wide, shown shaded in Fig. 11.41.  Assuming the shear to be 
o at midspan‡, the factored one-way shear force per unit length Vu1 is given 

ilar to Eq. 11.14) as: 

V w l du u n1 0 5= −( . )                                            (11.48) 

                                                           
† As mentioned earlier, the Code does not adequately cover provisions related to slabs 

lone. 
supported on flexible beams.  In the general category of flat slabs, the Code (Cl. 31.6) confines 
its attention to two-way shear a
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In the case of a slab with drop panels [Fig. 11.41(b)], a second section where one-
y shear may be critical is at section 2–2, at a distance dwa

pan
 

2 from the edge of the drop 
el, where d2 is the effective depth of the slab outside the drop. 

d

1 panel C
C

1m

C

l2

1

1

(ln/2) – d
1

ln

(a)

21

(b)
1 2

21

21

d2

1m
corner column

d

d / 2

d

edge of slab

critical section
for one-way
shear

(c)  

Fig. 11.41  Critical sections for one-way shear 
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The slab thickness must be adequate to ensure that the shear resistance in one-way 
action (equal to τ cd  per unit length) is not less than the factored one-way shear Vu1.  
However, generally, deflection control criteria are more critical in governing the slab 

ickness [see Example 11.1], and slabs are mostly safe in one-way shear. 
In the vicinity of a corner column, the critical section of the slab for one-way 

shear is taken along a straight line having a minimum length and located no farther 
than d/2 from the corner column.  In case the slab cantilevers beyond the face of the 
corner column, the critical section may be extended into the cantilevered portion by a 
length not exceeding d, [Fig. 11.41(c)]. 

11.8.2   Two-Way Shear or Punching Shear 

When a large concentrated load is applied on a small slab area‡, there is a possibility 
of a ‘punch through’ type of shear failure.  A similar situation arises in flat plates and 
flat slabs supported on columns and subjected to gravity loading and consequent two-
way bending.  The reaction to the loading on the slab is concentrated on a relatively 
small area, and if the thickness of the slab is not adequate in this region, shear failure 
can occur by punching through of the reaction area along a truncated cone or 
pyramid, with the failure surface sloping outwards in all directions from the 
perimeter of the loaded (reaction) area, as shown in Fig. 11.42(a).  The shear 
associated with this type of failure is termed two-way shear or punching shear. 

Extensive research related to punching shear [Ref. 11.27] indicates that the critical 
section governing the ultimate shear strength in two-way action of slabs (and 
footings) is along the perimeter of the loaded area.  Furthermore, for square columns 
and loaded areas, it is found that the ultimate shear stress at this section is a function 
of two parameters, viz., 

th

fck  

 bey
gn shear st

and the ratio of the side of the square loaded area to 
the effective depth of the slab.  The shear strength can be made relatively 
independent of the second parameter by considering a critical section for punching 
shear at a distance d/2 ond the edge of the loaded area [Fig. 11.41(b)].  An 
expression for the desi rength τ c2  (in two-way shear), based on Ref. 11.27 
and 11.28, is given [Cl. 31.6.3.1 of the Code] as: 

( )τ c s ckk f2 0 25= .                                            (11.49) 

where                                   ks  ≡  0.5 + βc  ≤ 1.0                                           (11.49a) 

and βc
† is the ratio of the short side to the long side of the column or capital.  The 

corresponding ultimate shear resistance, Vc2, is given by 

dV bc c o2 = τ                                               (11.50) 

where bo is the perimeter of the critical section, equal to 2(c1 + c2 + 2d) for the 
column, as indicated in Fig. 11.42(b). 

                                                           
ncountered in a footing supporting a column [see Cha‡ Such a situation is e pter 14]. 

† Tests have shown that the shear strength reduces with increasing rectangularity of the loaded 
area [Ref. 11.28]. 
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shear 
area 

c2
c1

c2 + d 
c1 + d

Vu2d

d/2

(a)  punching shear failure 

(b)  assumed critical section  
Fig. 11.42  Shear stresses in slabs due to punching shear 

In general, the factored shear force, Vu2, causing punching shear, may be 
computed as the net upward column reaction minus the downward load within the 
area of the slab enclosed by the perimeter of the critical section.   

In the Equivalent Frame Method, the column reaction can be obtained from frame 
analysis.  In the Direct Design Method, and for preliminary design purposes, Vu2 may 
be computed as the total design load acting on the shaded area shown in Fig. 11.43. 

For computing Vu2 (and Vc2), the critical sectio
distance d/2 from the periphery of the column/capital/drop panel, perpendicular to 

l r 

r than d/2 from column face 
and having the least perimeter, may be taken as t
(e)]. 

reaction area, or within a column strip in a flat 
slab, the portion of the periphery of the critical section which is enclosed by radial 

dered 

n to be considered should be at a 

the plane of the slab [Cl. 31.6.1 of the Code], and having a plan shape geometrically 
simi a to the column section, as shown in Fig. 11.43(a), (b).  Here, d is to be taken as 
the effective depth at the section under consideration.  For column sections (or 
loaded areas) with re-entrant corners, a section, no close

he critical section [Fig. 11.43(d) and 

When openings in the slab are located within a distance of ten times the slab 
thickness from a concentrated load or 

projections of the openings to the centroid of the loaded area must be consi
ineffective in computing the shear stress [Cl. 31.6.1.2 of the Code].  Some examples 
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of the effective portions of critical sections for slabs with openings are shown in 
Fig. 11.44. 

C

panel

panel

(e)(d)(c)

(b)

(a)

critical
section

critical section

drop

loaded area

loaded
area

d/2

d/2

d/2

d/2

d/2

d/2

d/2

d/2

C

C

C

d/2

d/2

 

Fig. 11.43  Critical sections and loading for punching shear 

 

opening

(b) (c)(a)

critical
section

d/2

d/2

d/2

d/2

d/2

d/2
 

Fig. 11.44  Effective perimeter for punching shear calculations in slabs with openings 

The ultimate shear stress induced by the factored punching shear force Vu2 at the 
critical section around a column must be combined with the shear stress due to the 
transfer of part of the unbalanced slab moment (Muv) to the column through shear 
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[refer Section 11.4.3 and Fig. 11.29(c)].  For the purpose of computing shear stresses 
at the critical section due to Muv, the Code (Cl. 31.6.2.2) recommends that the shear 
stresses may be assumed to vary linearly about the centroid of the critical section. 

Accordingl  combining the effects of both Vu2 and Muv, the shear stress 
distribution is as shown in Fig. 11.45, and the maximum shear stress 

y,
2  (two-wayτ v ) 

may be expressed as: 

τ v
u

o

uv

c

V
b d

M c
J2

2= +
 

                                           (11.51) 

where 
 bo ≡ perimeter of the critical section; 
 Jc ≡ property of the critical sect alogous to the polar moment of  
        inertia; and 
 the face of critical section to 
       the centroidal axisof the critical section. 

Expressions for Jc and c (for maximum shear) are in d in Fig. 11.45 for two 
typical cases.  For other cases, reference may be made gn handbooks such as 
Ref. 11.25. 

ion an

c ≡ distance of the point under consideration on 

dicate
 to desi

c = a/2
Jc = (ad3 + a3d)/6 + a2bd/2

(b)  exterior column

(a)  interior column

max shear

Muv

Vu

c

a = c1 + d

b = c2 + d

c = a2/(2a + b)
Jc = (ad3 + a3d)/6 + bdc2

+ 2ad(a/2 – c)2

max shear

c
c

c ntroidal axis of
itical section

centroidal axis of
critical section

ce
cr

a = c1 + d/2

b = c2 + d

 

Fig. 11.45  Combined shear due to punching and transfer of unbalanced moment from 
slab to column 

If the calculated factored shear stress τ v2  exceeds the design shear strength τ c2  
(given by Eq. 11.49), but not 1.5τ c2 , appropriate shear reinforcement must be 
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provided along the perimeter of the column.  The total cross-sectional area Asv of all 
the stirrup legs in the perimeter is calculated using the following expression [refer 
Cl. 31.6.3.2 and Ref. 11.11]: 

A b d
fsv

v c o

y
=

−( . )
.

τ τ2 20 5
0 87

                                        (11.52) 

Some typical types of shear reinforcement, recommended in Ref. 11.11 and 
Ref. 11.14, are shown in Fig. 11.46. 

alternative SECTION‘AA’

closed stirrups castellated
stirrups

SECTION ‘AA

PLAN

TYPE II :TYPE I :

’

rsstirrup holde

lines of stirrups
(spacing 0.75d)

AA

 

Fig. 11.46  Reinforcement for punch

Stirrups may be closed or castellated and must pass around one row of tension 
steel running perpendicular to the stirrups at each face of the relevant section.  If the 
val

ing shear 

ue of τ v2  exc  eeds 1.5τ v2 , the slab thickness should be suitably increased.  
Alte inforcem  up of ‘shearhead reinforcement’, 
consisting of structural steel  section embedded within the slab, 

shifted farther from the column.  Hence, the Code (Cl. 31.6.3.2) requires that the 
shear stresses should be investigated at successive sections (at intervals of 0.75d, as 

rnatively, re ent may be made
 I-section or channel

and designed in accordance with the ACI Code provision [Ref. 11.19].  Generally, 
when shear reinforcement is provided, the critical section for punching shear gets 
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pe lumr Ref. 11.11) more distant from the co n, and shear reinforcement should be 
provided up to a section where the shear stress does not exceed 0.5 τ v2 . 

It is recommended that the spacing of stirrups should not exceed 0.75d and must 
be continued to a distance d beyond the section at which the shear stress is within 
allowable limits [Ref. 11.11, 11.29]. 

The design of such shear reinforcement is demonstrated in Exam e 11.7 

11.9   DESIGN EXAMPLES OF COLUMN-SUPPORTED TWO-WAY SLABS 

Tw
he unified approach using the equivalent frame 

concept.  In the first example to follow (Example 11.6), the Direct Design Method is 
applied, and in the next example (Example 11.7), the Equivalent Frame Method is 
applied. 

EXAMPLE 11.6:  DIRECT DESIGN METHOD 

pl

o examples are presented here for the design of two-way slabs supported on 
columns (with or without beams) by t

The plan of a two-way floor slab system, with beams along the column lines, is 
shown in Fig. 11.47.  Based on preliminary estimates, the columns are of size 
400 mm × 400 mm and the beams are of size 400 mm × 550 mm.  The floor-to-floor 
height is 3.5 m.  Assume a live load of 5.0 kN/m2 and a finish load of 1.0 kN/m2.  
Determine the design moments and reinforcement requirements in the various strips 
in the E–W direction for an edge panel and an interior panel (marked S1 and S2 
respectively in Fig. 11.47), using the Direct Design Method.  Assume M 20 concrete 
and Fe 415 steel. 

SOLUTION 

The moments in panels S1 and S2 in Fig. 11.47(a) (in the E–W direction) can be 
determined by DDM, by considering an ‘equivalent frame’ along column line 2–
2, which is isolated and shown in Fig. 11.47(b). 

1.  Check limitations of DDM 
1. There are three continuous spans in each direction. 
2. The panels are rectangular with long span/short span ratio = 7.5/6.0 
            = 1.25 < 2.0. 
3. There are no offset columns. 
4. There is no difference in successive span lengths. 
5. Assuming th 18) = 5.5 kN/m2 
⇒ wu,DL = 5.5 × 1.5 =   8.25

e slab to be 180 mm thick, wDL = 1.0 + (25 × 0.
 kN/m2

      wu,LL = 5.0 × 1.5 =   7.50     ” 
             wu = 15.75 kN/m2

wu,LL/wu,DL = 7.50/8.25 = 0.91 < 3.0 — OK 
[The more severe condition in Ref. 11.8 is also satisfied as the ratio is < 2.0, 
and the loads are uniformly distributed gravity loads.] 
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6. Relative stiffnesses of beams: 
α
α

b

b

l
l

1 2
2

2 1
2  

where α b b sI I1 1 1= , α b b sI I2 2 2=  
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S2 S1
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1
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(b)  panel for equivalent frame

(a)  plan of slab system
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6.0 m 6.  m0 6.0 m
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l1 = 6000 6000 6000

2 2
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l

400ln = 5600

2 = 7500

 

Fig. 11.47  Example 11.6 
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As the beam stem dimensions are the same along all edges of the panel, it may 
be assumed that Ib  ≈ Ib2

⇒

1

 
α
α

b

b

1

2
 ≈ 

I
I

s

s

2

1
 = l

l
1

2
 

⇒ 
α
α

b

b

l
l

1 2
2

2 1
2  × l

l
2
2

1
2≈ l

l
1

2
  = l

l
2

1
 = 7 5

6
.  = 1.25 

which lies between 0.2 and 5.0, thereby satisfying Eq. 11.30. 
• Hence, all limitations are satisfied, and DDM is applicable. 

2.  Slab thickness for deflection control 
• The critical panel to be considered is the exterior panel S1. 
• Applying the Canadian Code formula [Eq. 11.26a]: 

D ≥ [ln (0.6 + fy / 1000)] / {30 + 4βαbm}  
where 

 ln = 7100 mm (longer clear span) 
 β = longer clear span/shorter clear span = 7100/5600 = 1.268 
 fy = 415 MPa  
           αbm ≡ average value of αb for all beams on the edges of panel S1. 

The beam and slab sections for computing αb = Ib/Is along the four edges (along 
with values of Ib and Is) are depicted in Fig. 11.48(a), (b), (c).  [Note that the 
flanged beam section corresponds to Fig. 11.27]. 
As indicated in Fig. 11.48,  

⇒ αbm = {4.807 + 2.999 + (2.399 × 2)}/4  = 3.151 
But αbm is not greater than 2.0 
⇒ D ≥ [7100(0.6+415/1000)]/ {30 + 4 × 1.268 × 2.0} = 179.5 mm 
[Note that the parameter, αb1l2/l1, is greater than 1.0 for all the four beams.  
Hence, the supporting beams can be considered to be ‘adequately stiff’, whereby 
the limiting l/d ratios prescribed by the IS Code can be applied, with l taken as the 
effective short span.] 

• A slab thickness of 180 mm is therefore adequate. 

3.  Total (static) design moment 
As calculated earlier†, 

wu = 15.75 kN/m2

⇒ Total design (factored) moment in the E–W direction in an interior equivalent 
frame: 

                                                          

α b =
⎧

⎨
⎪

⎩
⎪

4 807
2 999
2 399

.
.
.

    for transverse beams at exterior support     
    for transverse beams at interior support      
    for longitudinal beams                                 

 

 
† Note: the self-weight of the be itional loads applied directly on 

the beam are to be accounted for separately
not considered here in the slab design. 

am stem as well as other add
 in the design of the beam; hence, these are 
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Mo = w l lu n  2
2 8  

      = 15.75 × 7.5 × 5.62/8 
    = 3 m    46 kN

 232.0 

(d)  slab–beam member along A2–B2

(c)  beam and slab sections for αb along edge B2–B3 

(b)  beam and slab sections for αb along A2–B2, A3–B3 

1140 

117.2 180 
7500

6000

7500

180

205.2 

1140 
180

370 

370 
370 370 

370 370 

205.2 

550

400

400 

400 

370 

⇒ αb = Ib/Is = 4.807 
Is = 1.555 × 10 mm9 4
Ib = 7.475 × 109mm4

(a)  beam and slab sections for αb along edge A2–A3 

3200

⇒ αb = 2.399 
I  = 3.645 × 109mm4
Ib = 8.745 × 109mm4

⇒ αb = 2.999 
Is = 2.916 × 109mm4
Ib = 8.745 × 109mm4

370 400 

550 
180

s

Is
Isl

 

of beams and slabs — Example 11.6 

4.  Longitudinal distribution of Mo

• ‘positive’ design moment  = 0.35 × 463 = 162 kNm 

b = 15.420 × 109mm4 
ab =3.645 × 109mm4 

Fig. 11.48  Sections 

Interior Span – Panel S2 [Eq. 11.32a, b] 
• ‘negative’ design moment M  −  = 0.65 × 463 = 301 kNm o

 Mo
 +
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Exterior Span el S  [Eq. 11.33a, b, c]  – Pan 1

α c
c

sb

K
K

= ∑   
( )4 2EI hc c=

4 1EI lsb

×
 = 

2 1I lc  
I hsb c

where Ic = (400)4/12 = 2.133 × 109 mm4; hc = 3500 mm (given) 
          I  = 15.420 × 109 mm [see Fig. 11.48(d)]; l1 = 6000 mm 

    ⇒

sb

 α c =
× × ×

× ×
2 2 133 10 6000

15 10 3500

9

9
( . )

( .420 )
 = 0.4743 

⇒ q = 1 + 1/αc = 1 + (1/0.4743) = 3.108      [Eq. 11.34] 
• ‘negative’ design moment at exterior support  = (0.65 /q)Mo 
                = 0.209 × 463 
                = 96.8 kNm 
• ‘negative’ design moment at interior support  = (0.75 – 0.10/q)Mo 
               = 0.718 × 463 
               = 332 kNm 
• ‘positive’ design moment  = (0.63 – 0.28/q)Mo = 0.540 × 463 = 250 kNm 
[Alternatively, following the Canadian code recommendations, the coefficients 
given in Table 11.3, case (2) may be applied.  The corresponding factors there are 
0.16, 0.70 and 0.59 respectively, which compare well with the factors above.]  

• Check for effects of pattern loading: 
Corresponding to wDL/wLL = 5.5/5.0 = 1.1, l2/l1 = 7.5/6.0 = 1.25, and αb1 = 2.40, 
referring to Table 11.4, 

αc, min = 0 

Actual αc = 0.4743 > 0; hence, the column stiffness is adequate, and so there is no 
need to modify the ‘positive’ design moments to account for the effects of pattern 
loading. 

• The longitudinal distribution of moments (as per IS Code) is shown in 
Fig. 11.49(a).  [The 10 percent modification of bending moments permitted by the 
Code is not considered here.] 

5.  Transverse distribution of moments in design strips 
• At each critical section, part of the design moment is assigned to the beam and the 

balance to the slab portion.  The fraction of the positive moment in all spans and 
negative moment at interior columns t  be resisted by the beam is given by Eq. 
11.40, with α taken not larger than 1.0 (in this case α  = 2.40), as:  
1.0/ [1 + (
Hence, the moment share of the slab is 61 percent. 

ust be designed for 100 percent of the exterior 

• art are depicted in 

h  wi
 

 Mo ext,
 −

 Mo,int
 −

 Mo
 +

o
b1 b1

7.5/6)2] = 0.39 = 39 percent 

At the exterior support, the beam m
negative moment. 
These distributed moments in the beam part and the slab p
Fig. 11.49(b).  The beam width is 1140 mm (Fig. 11.48c), and each slab part on 
eit er side of beam is 3180 mm de. 
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96.8 
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(a)  ‘positive’ and ‘negative’ design moments

A B C D 250250 

96.8

332301301
332 

–  –

– – –
––

beam 
(400 wide) 

symmetryC

(b) beam and slab design moments (kNm) 

slab

slab49.59210176.3 

96.8 63 11713097.5 beam 

31 0 8

1  140

49.592 10176.3 
3180 

 

Fig. 11.49  Design moments in various in E–W direction — Example 11.6 

• 

rring in panel S .  [Note that this difference could 
n obtained by resorting to 

6. F
• 1 and S2 are 

e shorter span is in the E-W 

 elements 

The factored design moments (in the E–W direction) in the panels S1 and S2 of the 
slab are summarised in Fig. 11.50(a).  The moments, expressed in kNm per m 
width, are also indicated in parenthesis in Fig. 11.50(a).  As the moments on 
either side of the common continuous support (shared by S1 and S2) are unequal, 
for slab design purposes, it is sufficient and conservative to design for the higher 
moment — in this case, occu 1
have been brought down and a more economical desig
the modification of moments by up to 10 percent as permitted by Code, 
Cl.31.4.3.4]. 

lexural reinforcements in slab and beam 
uirements in the slab panels SThe calculations of reinforcement req

summarised in Table 11.8.  For the slab panel, th
direction and hence the reinforcement in this direction is placed at the outer layer.  
The effective depth, d, used in the calculations is based on the assumption of 10 φ 
bars with 20 mm clear cover. 

⇒ d = 180 – 20 – 10/2 = 155 mm 
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The largest moment per metre width in the slab is 31.8 kNm at the first interior 
support.  If a reinforcement ratio of pt = 0.48 is selected (which corresponds to 
about 0.5 pt,lim ),  R = 1.560 MPa (Table A.2(a)), and the required effective depth is:  

   D = √[31.8 ×106/(1.560 × 1000)] = 143 mm 

 The effective depth provided, 155 mm, is more than this and the slab will be 
under-reinforced throughout.  In this case, deflection control dictated the slab 
thickness. 

 The effective depth of the beam, assuming 30-mm clear cover, 8 φ stirrups and 20 
φ main bars is 502 mm.  The beam width is taken as 400 mm.  It is assumed that 
there are no additional loads acting directly on the beams [to be more exact, the 
weight of beam rib should be taken as a directly applied load, but this being 
negligible, is not done here].  For the largest moment of 130 kNm at the first 
interior support, R = 1.29 for which required pt = 0.389 which is well below the 
limiting value.  Beam reinforcements are indicated in Table 11.8.  The negative 
moment reinforcement in the beam at the top must be spread over a width of 400 
+ 1.5 Ds = 940 mm (i.e. beam rib + width of slab of 270 mm on either side). 

• The percentage tension steel requirement, (pt)reqd, is calculated for the respective 
R ≡ Mu/bd2 values, using Eq. 5.12 or Table A.3(a) — for M 20 concrete and 
Fe 415 steel. 

Table 11.8  Slab reinforcement requirements — Example 11.6 

 Panel S Panel S1 2

Location exterior support midspan interior support midspan 

1. beam portion     

Mu (kNm) (–) 96.8 (+) 97.5 (–) 130 (+) 63 
R ≡ M

bd
u
2

 (MPa) 0.960 0.967 1.290 0.625 

(pt)reqd , (×10-2) 0.283 0.285 0.389 0.180 
(Ast)reqd ( mm2) 

(Ast)min
No. of bars 

567 

- 

2 - 20 φ 

572 

- 

2 – 20 φ 

780 

- 

2-20 φ + 1-16φ 

361 

411* 

2 – 18 φ 

2. slab     

Mu (kNm/m) 0.0 (+) 24.0 (–) 31.8 (+) 15.6 
R (MPa) - 0.999 1.324 0.649 
(pt)reqd  * 0.295 0.400 0.187 

(Ast)reqd ( mm2/m) 216* 457 620 290 

* Note: (Ast)min governs 

Minimum reinforcement: • 
For beam (Cl. 26.5.1.1  411 mm2   
For slab (Cl. 26.5.2.1), (Ast)min = 0.0012 bD = 0.0012 × 1000 × 180 
         = 216  mm2/m 

), (Ast)min = 400 × 502 × 0.85/415 =
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Maximum spacing of bars: 3d = 3 × 155 = 465 mm, to be limited to 300 mm 
Spacing of bars 
∗ corresponding to (A

• 

s g re 00 mm controls. 
correspondi , at

• 

st)min = 216  mm2/m, using 10 φ bars, 
pacin qd = 1000 × 78.5/216 = 363 mm, minimum 3

∗ ng to A  = 620  mm2/m  interior support, st

spacing of 10 φ bars reqd = 1000 × 78.5/620 = 127 mm (at top) 
∗ corresponding to Ast = 457  mm2/m, at midspan of panel S1, 

spacing of 10 φ bars reqd = 1000 × 78.5/457 = 172 mm (at bottom) 
∗ corresponding to Ast = 290  mm2/m, at midspan of panel S2, 

spacing of 10 φ bars reqd = 1000 × 78.5/290 = 270 mm (at bottom) 
There is no negative moment assigned to the slab part at the exterior support.  
However, the slab at this part has to be provided with the minimum 
reinforcement.  Although the design moment is zero, in order to take care of 
possible negative moments due to partial fixity, it would be appropriate (Cl. D-
1.6) to provide top reinforcement equal to 50 percent of that provided at mid-
span, extending 0.1 l into the span. 

 symmetryC

400 

400 

slab part 

A A

400400400
5600 560028002800

6360 

96  .8 63 117130 97.5 

(b)  reinforcem

ctored de ments  part a art 

ent details 

(a)  fa sign mo  in beam nd slab p

0.0 99 184 202152
 (24.0

.6 
(0.0) (15.)(31.) 6)(28.98)

S2 S1 

beam part

10 φ @250 

@300

 10 180 φ @ 250

10 φ @ 270 
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10 φ @ 15010 φ @ 150 

 @ 310 φ 00 

1800 1800
900

SECTION ‘AA’ (through slab)

1500 1500

1200
900

1140 

(mome  width)

@300

 

nt/meter
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F W 
direction — Example 11.6 

• Fur  the 

l
• orsion on the 

g ue will be 
r  the edge 

n lesser. 

ig. 11.50  Design moments and reinforcement details in panels S1 and S2 in E–

thermore, all positive moment reinforcement perpendicular to
edge and embedded discontinuous edge should be extended to the slab 

(C . 31.7.4). 
the tWith no moment assigned to the slab at the exterior support, 

ed e beam transmitted by the slab is also zero.  In actuality, some torq
s esses inint oduced, but this will be low.  Therefore, the torsional tr

beam may be neglected.  Similar stresses at interior supports will be eve
• The actual spacings of 10 φ bars provided in panels S1 and S2 are indicated in 

Fig. 11.50(b). 
• 

/m, at top and bottom over a square of size 
0.2 × 6.0 = 1.2m.  Provide 10 φ bars at 300-mm spacing. 

7.  Transfer of moments to columns 
Since beams are provided along column lines, transfer of unbalanced moment to 
the supporting columns is not critical in this example.  The largest unbalanced 
moment occurs at the exterior support and the beam is designed to resist this in 
full.  The requirement in Cl. 31.3.3 for moment transfer between slab and column 
through flexure is of primary concern in flat slabs.  

8.  Shear in slab and beams 
Since all beams in this example have the parameter αb1l2/l1 greater than 1.0, they 
are adequately stiff.  Hence they are proportioned to resist th  full shear from the 
loads on the respective tributary areas (Fig. 11.51) and no part of this need be 
assigned to the slab to be resisted by two-way action (Section 11.5.8).  In beam-
supported slabs, the slab shear is essentially that associated with one-way action.  
For one-way shear in slab, considering a one metre wide strip, the distribution of 
loads as shown in Fig. 11.51 may be assumed, with the critical section located d 
away from the face of the beam.  The factored shear force Vu is given by: 

     = 15.75 × (0.5 × 5.6 – 0.155) = 41.66 kN 
⇒

As the supporting beams are ‘adequately stiff’ (αb1l2/l1 > 1.0), torsional 
reinforcement has to be provided at the corners with discontinuous edges in panel 
S1 — as in the case of wall-supported slabs.  The area requirement (0.375 Ast

+ ) 
works out to 0.375 × 457 = 172 mm2

e

V w l du u n= −( . )0 5  

 τ v  = 41.66 × 103/(103 × 155) = 0.269 MPa  
shear strength of concrete in one-way shear = kτ c    

where, corresponding to M 20 concrete and pt = 
1551000125
1005.781000

××
××  = 0.405,  

τ c  = 0.44 MPa, and k > 1.0 
⇒ kτ c  > τ v   — Hence, OK. 
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Note: As the beams in this example are adequately stiff, the slab system may b
 the (much simpler) method of 

e 
alternatively designed by moment coefficients 
prescribed by the Code for wall-supported slabs. 

 

A B

CD 

1 m

155
5600/2  

Fig. 11.51 Shear in slab and beams 

EXAMPLE 11.7:  EQUIVALENT FRAME METHOD 

Th  
Th
500
(co
me
E–
Co
che
mil

SOLUTION 

1.  Slab 
or slab in all panels.  At 
o α ≥ 0.8 will be provided so 

he exterior panel
irements, the C .2.1) 

recomm h ratios given in Cl. 23.2, with the longer span 
consi the ratio recommended is 26.  For two-way 
slabs, as already m ion 11.2.1, the modification factor (Fig. 4 of 

e floor plan of a flat slab floor for an office building is shown in Fig. 11.52(a).  
e floor-too-floor height may be taken as 3.3 m.  The columns are of size 500 mm × 
 mm.  Assume live loads of 2.5 kN/m2 and superimposed dead loads of 2.7 kN/m2 

mprising finishes: 1.0 kN/m2; partitions: 1.0 kN/m2; false ceiling: 0.2 kN/m2, 
chanical and electrical fittings: 0.5 kN/m2).  Analyse a typical interior bay in the 
W direction, shown shaded in Fig. 11.52(a), using the equivalent frame method.  
mpute the reinforcement requirements in the various design strips of the slab, and 
ck shear stresses.  Assume M 20 concrete and Fe 415 steel. Exposure condition is 
d. 

thickness for deflection control 
The e 
discontinuous edges, edge beams with a stiffness rati

sam thickness will be provided for the flo

that no increase in slab thickness is required for t s. 
     For slabs with drops conforming to the requ ode (Cl. 31

ends span to effective dept
dered.  For continuous spans, 

entioned in Sect
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Code) may be taken as 1.5.  Considering the larger span, ln = 7500 mm.  With 
these, the effective depth required is: 

d ≥ 7500 / (1.5 × 26) = 192 mm 

equiv. frame
68006800

8000

8000

equiv.
frame

8000

6800

C

D

F

E

C of
symmetry

elevator

drop
panelinterior

column

stairs

A A

C C

N

W

S

E

6800 6800

(a)  Floor framing plan

500 sqr.
drop panel 3300

6800 6800

(b)  Section AA (enlarged)  

Fig. 11.52  Example 11.7 

     An alternative is to use Eq. 11.26.  Assume drop panels extending 1.5 m in 
each direction from column centre (i.e. 3m × 3m panels) and projecting by half 
the slab thickness below the slab.  In Eq. 11.26, 
 ln  = larger span = 8000-500 =7500 mm 
 xd  = distance from face of column to edge of drop panel 
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      = 1500 – 250 = 1250 mm < ln /4,  OK 
Of the two directions, the smaller value of x  /(l /2) = 2 × 1250/7500 = 1/3 
(Dd - D)/ D  = 0.5 
With these, Eq. 11.26 gives 

D ≥ [7500 (0.6 +415 / 1000)] / [30{1+(1/3)(0.5}] = 217.5mm 
A slab thickness of 200 mm is selected.  This being marginally less than the value 
calculated above, strictly, a deflection computation is required to check that it is 
within specified limits. 

2.  Drop panels 
As specified by the Code (Cl. 31.2.2), the minimum extension of the drop panel 
in each direction from the centre of the column is 1/6 centre-to-centre span, i.e., 
6.8/6 = 1.133 m in the E–W direction, and 8.0/6 = 1.333 m in the N–S direction.  
As assumed earlier, their extension is taken as 1.5 m, resulting in a drop panel 
size of 3 m × 3 m.  The thickness of the drop panel, projecting below the slab is 
taken as 100 mm (which is greater than D/4).  The overall thickness of the drop 
panel is 300 mm; the entire thickness is effective in calculations of ‘negative’ 
moment reinforcement, as this is less than D + 0.25 (distance between face of 
column and edge of drop) = 200 + 0.25(1250) = 512.5 mm [Cl. 31.7.2 of the 
Code]. 

3.  Edge beam 
The edge beam must have a beam stiffness parameter αb ≥ 0.8 (to have a 
favourable effect on the minimum thickness requirement).  Assuming a beam of 
250 mm width and 450 mm depth [Fig. 11.53(a), (b)], the flanged section 
[Fig. 11.53(b)] has a second moment h can be shown to be 

Ib = 2.714 × 109 mm4  

d n

of area whic
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drop panel

300 200

3000 × 3000500 sqr

500 sqr15001500

(a)

(d)

(c)

(b)

195

250

450 300

Is = 2.433 × 109 mm4

I  = 2.714 × 109 mm4
b

200

300 500
500

6800

3650

Cext = 2.974 × 109 mm4

Cint = 2.799 × 109  mm4

 

Fig. 11.53  Slab dimensions and sectional properties 

• w

⇒ αb = Ib/Is  0.8 — OK 

• For the edge beam along the short edge, the associated slab width is 8000/2 + 250 
= 4250 mm, and  

Is = 4250 × 2003/12 = 2.833 × 109 mm4  

⇒ αb = Ib/Is = 2.714/2.833 = 0.958 > 0.8                             —  OK. 

4.  Effective depths 
• Reinforcement will be placed in the outer layer for the bars in the N–S direction 

(in order to resist the larger moments in this direction), and in the inner layer for 
the bars in the E–W direction.  Assuming 16 φ bars with a clear cover of 20 mm, 
the effective depths are obtained as: 

dN–S slab = 200 – 20 – 16/2 = 172 mm 
dN–S drop = 300 – 20 – 16/2 = 272 mm 
dE–W slab = 172 – 16 = 156 mm 
dE–W drop = 272 – 16 = 256 mm 

For the edge beam along the long edge, the associated slab idth is 6800/2 + 250 
= 3650 mm [Fig. 14.53(c)], and the second moment of area of the slab is  

Is = 3650 × 2003/12 = 2.433 × 109 mm4  

= 2.714/2.433 = 1.115 >
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5.  Factored loads 
(i) self-weight of slab @ 25 × 0.2  = 5.0 kN/m2  
(ii) superimposed dead load            = 2.7    ” 
(iii) live load                                     = 2.5     ” 

             10.2 kN/m2

⇒ factored load on slab wu = 10.2 × 1.5 = 15.3 kN/m2

• additional factored load in drop panel 
    = (25 × 0.1) × 1.5 = 3.75 kN/m2

6.  Relative stiffness parameters of equivalent frame  

olumn stiffness, 
Ic = (500)4/12 = 5.208 × 10  mm
H/Hc = 3.3/3.0 = 1.1 
t  200/100 = 2.0,  tb/ta = 0.5 
Referring to Tabl 7, the stiffness and carry-over factors are: 

• for column below, H/Hc = 1.1, ta/tb

⇒ KAB = 5.34 , Kc = Ec Ic/H = 5.34 × c × (5.208 × 109)/3300 = (8.427 × 106)Ec
CAB = 0.54 

• for column above, H/Hc = 1.1, ta/tb = 0.5 
⇒ KAB = 4.85, Kc = 4.85 × Ec × (5.208  109)/3300 = (7.654 × 106) Ec
CBA = 0.595 

a. C Kc [refer Fig. 11.54] 
4 4

a/tb =
e 11.

 = 2 
 E

×

A
ta = 200

Ic
H = 3300

Hc = 3000500 sqr.

B

tb = 100

b. T
• For ge beam [Fig. 11.53(b)] acts as the 

torsio nt 
Cext =  250)/3 + (1 – 0.63 × 300/500)  
   × (3003 × 500)/3 
       = 2.974 × 109 mm4  

 

Fig. 11.54  Column properties — Example 11.7 

orsional member stiffness, Kt

ex  columns, the long span ed
al member, having a torsional consta
terior

n
1 – 0.6 3 ( 3 × 150/250) × (150  ×
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⇒ Kt  = ∑,ext
9
12 2 2

3l c l( )−
   [Eq. 11.46]  E Cc ext

             = 
2 9 2 974 109× × ×E ( . )
8000 1 5 8000 3−

c

( )
 = (8.121 × 1

00
06)Ec

• al member is as shown in 
nt  

For interior columns, the cross-section of the torsion
Fig. 11.53(d), having a torsional consta
Cint = (1 – 0.63 × 300/500) × (3003 × 500)/3 = 2.799 × 109 mm4  

2 9 2 799 10
8000 1 500 8000

9

3
× × ×

−
Ec ( . )
( )

 = (7.643 × 106)Ec⇒ Kt,int = 

c. Equivalent column stiffnesses, K ce

Kec = ( )
K∑
K Kc t

c     [Eq. 11.45(b)]
∑

  

16.081 × 106)E /(1 + 1.980) = (5.396 × 106) Ec

6.081 × 106)Ec/(1 + 2.104) = (5.181 × 106) Ec

+1
where ∑Kc = (8.427 + 7.654) × 106Ec = (16.081 × 106) Ec

• For external ‘equivalent column’, 
∑Kc/Kt, ext = 16.081/8.121 = 1.980 
⇒ Kec,ext = ( c

• For internal ‘equivalent column’, 
∑Kc/Kt, int = 16.081/7.643 = 2.104 
⇒ Kec,int = (1
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VR 

VL 

VR 
VL 

3.75 × 3 kN/m 15.3 × 8 kN/m 

1500
CF1/2 = 250CN1/2 = 250 

1500 

1500 

0.22l1 
0.2l1 

250 

(column support region, enlarged)M 
–

u,L 

ML

M u
+

MR ML 

(f) 

(e) 

(d) 

(c) 

(b) 

(a) 

6800

(122.4 + 11.25) kN/m 

col C col C 

11.25 kN/m 11.25 kN/m 

3.75 × 3 = 11.25 kN/m

15.3 × 8 = 122.4 kN/m

x

122.4 kN/m

ln = 6300
1250 

11.25 kN/m col C 

3.75 × 3 kN/m 

11.25 × 0.22/0.2 = 12.38 kN/m

1500

VL 

 

Fig. 11.55  Loading details on slab-beam member — Example 11.7 

d. Slab stiffnesses Ks and fixed-end moment coefficients 
[Although Table 11.6 is strictly applicable for a drop extension of l1/6 = 1.13 m, 
the same is used in this example for a drop extension of 1.5 m.]  

• Referring to Fig. 11.53(a) for the slab geometry and Fig. 11.55(a) for the loading, 
and to Table 11.6 for the various stiffness and moment coefficients, with  

CF1 = CN1; CF2 = CN2  
 CN1/l1 = 0.5/6.8 = 0.074,  CN2/l2 = 0.5/8.0 = 0.063 

⇒ (interpolating from Table 11.6 for these values),  
∗ stiffness factor KNF = 5.933 
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∗ carry-over factor CNF = 0.595 
∗ FEM coefficient mNF1 = 0.0931 for uniform load 

• For the additional load due to the drop panel, Table 11.6 gives moment 
coefficients for partial loadings of 0.2l1, with b – a = 0.2.  The drop panel loading, 
3.75 kN/m2 × 3 m = 11.25 kN/m applies over a length of 1.5 m = 0.22l1 from the 
column centrelines.  An equivalent load acting over a length of 0.2l1, equal to 
11.25 × 0.22/0.20 = 12.38 kN/m, may be considered to facilitate the use of 
Table 11.6 [see Fig. 11.55(b)]. 
Interpolating from Table 11.6, for CN1/l1 = 0.074 and CN2/l2 = 0.063,  

∗ for drop panel at near end (a = 0), mNF2 = 0.01654 
∗ for drop panel at far end (a = 0.8), mNF3 = 0.00191 

• Slab stiffness Ks = KNF Ec Is /l1   
where Is is the second moment of area of the slab section beyond the drop:  
Is = 8000 × 2003/12 = 5.333 × 109 mm4   
⇒ Ks = 5.933 × Ec × (5.333 × 109)/6800  
          = (4.653 × 106) Ec  

7.  Equivalent Frame Analysis 
• The properties of the ‘equivalent frame’ for analysis by the moment distribution 

method is indicated in Table 11.9.  As the specified live load (2.5 kN/m2) is less 
than three-fourths of the dead load (7.7 kN/m2), it suffices to consider a single 
loading pattern, comprising full factored dead plus live loads on all spans.  The 
factored loads on each slab-beam member are indicated in Fig. 11.55(a). 

• The slab fixed-end moments are: 
  FEMNF = ∑mNF w l1

2

             = {(0.0931 × 122.4) + (0.01654 + 0.00191) × 12.38} × 6.82

              = 537 kNm  
• The moment distribution factors are calculated based on the relative stiffnesses, 

and are indicated (for the slab-beam members), along with the carry-over factors 
in Table 11.9, which also shows the moment distribution procedure. 

• With reference to the freebody diagram of a typical slab-beam member shown  
Fig. 11.56(c), the following expression for maximum shear forces VL and VR may 
be deri rium: 

 in

ved, in terms of the moments ML and MR, considering static equilib

VL =
×122 4 6 8. .

2
 + (11.25 × 1.5) – 

M ML R+
6 8.

  ⇒ V  = [433.0 – (M  + M )/6.8] kN 

 

• location of zero 

L L R
and VR = [433.0 + (ML + MR)/6.8] kN 
The location of maximum ‘positive’ moment is given by the 
shear, marked x from the left support [Fig. 11.56(d)] 

x L= ⎜
V − ×⎛ ⎞( . . )1125 15
⎝ ⎠.122 4

• ve

⎟  

 n by: The corresponding maximum ‘positive’ moment is gi

M M V xu L L
 + = + − ×[ ( . .1125 1 x x− − ×)( . ) . ]5 0 75 122 4 22  kNm 
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Table 11.9  ent distribution method) — Example 11.7 Equivalent frame analysis (mom

Ks × 10  E 6
c = 

Kec × 10  E6
c = 

4.653 
5.396 

4.653 
5.181 

4.653 
5.181 

  

DF 
COF 

0.463   0.321 
0.595 

0.321   0.321 
0.595 

0.321   0.321 
0.595 

0.321  0.321 
0.595 

0.321  0.463 
0.595 

FEM
Bal

 
 

– 537      537 
249 

– 537      537 – 537      537 – 537     537 – 537     537 
– 249 

C.O
Bal.

  – 148 
     48 

. 148  
 – 48 – 48 48 

C.O
Bal. 

28 
– 13 

. – 28 – 28  28 
13 9 9              – 9 – 9 

C.O. 
l

– 5 – 8 
   4 Ba . – 4 – 4              2 

8 5 – 5              5 
   2              2 – 2             4 

C.O. – 2 
   1             -- 

1              – 2 
--                1 

– 1              1 
  1            – 1 

2             – 1 
– 1             -- --          

2 
    – 1 

∑ = – 519     583 – 641     304 M , M   – 304      641 – 583      519 – 531      531 L R
(kNm) 

VL, 442         424 423         433   VR (kN) 383         483 
x (m) 2.991 3.473 3.400   

M  
(kNm) 

256 168 189   
u
+

Mu L
− , Mu R,

 −  

(kNm) 
– 212      524 – 477      417 – 427      427   

,
 

 (kNm) 614 615 616   M
Mo (kNm) 616 616  616   
 

• cr ctions for the ‘nega
 −

 The itical se tive’ design moments are at the column faces; 
the moments at the left end ( Mu L, ) and right end ( Mu R,

 − ) are, accordingly given 
by [Fig. 11.56(e)]. 

M M Vu L L L, [ ( . ) ( .4 . ) ( . ) ]= + × − + ×0 25 122 11 25 0 25 2  kNm  + 2

M M Vu R R R, [ ( . ) ( .4 . ) ( . ) ] + = − × + + ×0 25 122 11 25 0 25 22  kNm 

The values of V , x, M  + , M  −  +  have been tabulated, using t• V , and he 
above formulas f s in Table 11.9† . 

•  the Direct Design Method, the sum of the 
average negative moment, 

L R u u L ,

or the various span
, Mu R

As the slab satisfies the limitations for
M‘positive’ moment at midspan and , need not 

Mo = (122.4 × 6.32/8) + (11.25 × 1.252 ) = 616 kNm 

exceed Mo, the maximum static moment on the simply supported span ln = 6.3 m 
[Fig. 11.56(f)]: 

/2

                                                           
† These are indicated only for the first three spans, as the six-bay frame metric with 
respect to its middle. 

 is sym
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It is seen that M  ≤ Mo for all the three spans [refer Table 11.9]; hence the 
Mproportional reduction in the design moments (for  > M ), permitted by the 

ot ap le here. 

se  o
e transverse ion sp  by Co 31.5.5 i  by Eq. to 
.39. 

ccordingl
 = 1.00    [Eq. 11.37a] 

egative’ moment a e
= 0   [Eq

−

• ve’ moment 
0. o .

⇒  = 0.2

o
Code, is n plicab

8.  Transver  distribution f moments 
Th  distribut ecified de Cl. s given 11.37 
11
A y: 
⇒ Mcs ext,

 − Mo ext,
 −

⇒ Mhms ext,
 −  = 0 

• N ‘ t int rior support 
Mcs,int

 −  .75 Mo,int
 

 −  . 11.38a] 

⇒ Mhms,int
 −  = 0.125 Mo,int  

‘Positi
M  +  = M  +    [Eq. 11 39a] cs 6

 Mhms
 + Mo

 +  

panel

COL STRIP

8000
3400

230037.8– 53.451.2

154 101 113–212

– 52.133.6– 59.6

37.8– 53.4– 52.1

percent

percent

kNm189168256 – 427– 417– 477– 524– 212

Half Mid–
Strip

Column
Strip

Factored
Moment

33.6– 59.6– 65.5

– 313– 358– 393

– 65.5

6800

2300

HALF MID–STRIP C

0

– 320

60 75100

20 12.50

6075 75

2012.5 12.5 2012.5

6075

0

HALF MID–STRIP

51.2

 

Fig. 11.56  Factored moments in column and middle strips in E–W direction — 
Example 11.7 
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The distributed m ments in the column strips and half-middle strips in the various 
panels (in the E–W direction) are indicated in Fig. 11.

o
56

9.  
the various supports are transmitted to the 

mn above and the column below in proportion to their relative stiffnesses. 

of moment in column above = 

‡. 

Column moments  
The total unbalanced slab moments at 
respective columns.  At each support, the unbalanced slab moment is shared by 
the colu

7 654
8 7 654

.
.427 .+

• Fraction  = 0.476  

with a carry ermined earlier) 
Fraction of moment in column below = 1.0 – 0.476 = 0.524 

The un d slab tainable from Table 11.9: 
• at u  

at inte n 2: 641 – 583 = 58 kNm 
mn 3: 531 – 519 = 12 kNm 

-over factor = 0.595 (det
• 

with a carry-over factor = 0.54 
balance  moments are ob
 exterior col mn 1: 304 kNm

• rior colum
• at interior colu

100mm

200mm
slab

bottom
of drop

top of
slab

c.o.f. = 0.595

c.o.f. = 0.54

159

85.9

145

86.3 16.4 10.5

27.6

16.4

30.4 17.6

19.4

10.5

C

3300

3300

 

Fig. 11.57  Column moments (kNm) — Example 11.7 

However, at interior column locations, the unbalanced moment should not be less 
than that given by Eq. 11.42:  

[ ] ( )M w w l l w l lu u DL u LL n u DL n c= + − ′ ′ ′ +0 08 0 5 1 12
2

2
2. ( . ) ( ), , , α  

where  = 7.7 × 1.5 = 11.55 kN/m2 (neglecting drop panel)  
     w  = 2.5 × 1.5 = 3.75 kN/m2

         = 8.0 m,

w wu DL u DL, ,= ′

u,LL

l l2 2= ′  l ln n= ′  = 6.3 m 

                                                           
is distribution is nearly identical to one that will be obtained by following Ref. 11.18 a‡ Th nd 

the median values of the range of factors given in Section 11.5.4 (sub-section (a)) for the 
Canadian Code. 
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α c c sb
cK k

E
E

= ∑ =
+ ×

×

( .427 . )
( . )

8 7 654 10
4 653 10

6

6  = 3.456 
c

]⇒ [ ( )M u + × × − × × +0 08 11 55 0 5 3 75 8 0 6 3 11 55 8 0 6 3 1 1 3. ( . . . )( . . ) ( . . . ) .456  

  = 0.08 × 461.7 = 37 kNm 
Accordingly, the unbalanced moment at the interior column 3 should be taken as 

= 2 2

37 kNm
T  the various  above and 
below  derived) are depicted 
in

10.  Flex
ritical sections is 

comp mm wide for ‘positive’ 
m oments), and in Table 11.11 for 
th moments and 5000 mm wide for 
‘negative’ moments).  16 mm diameter bars have been used and the Code 
restrictions of mi um reinforcemen d maximum sp ed.  

Table 11.10  Design of reinforcement in column strip, E–W direction —  Example 11.7 

 (and not 12 kNm).  
he distribution of unbalanced moments to  columns,

, including carry-over effects (using the coefficients
 Fig. 11.57. 

ural reinforcement  
The requirement of flexural (tension) reinforcement at all c

uted in Table 11.10 for the column strip (3400 
oments, and 3000 mm† wide for ‘negative’ m
e middle strip (4600 mm wide for ‘positive’ 

nim t an acing have been adopt

                                                    �                                                          � �    
Moment in col. strip, 
Mu  (kN

   212         154         393  358        101         313     113 
m) 

  320      

Width of strip, or 
drop b   (mm) 

 3000       3400        3000 3000     3400       3000    3400 3000     

Effective depth d          
(mm) 

   256        156          256   256          156  256        156         256 

R ≡ Mu (bd2)                 
(MPa) 

1.078       1.861      1.999     --        1.221          -- 1.628      1.366 

p [Table A.3(a)] 0.319       0.587      0.638     --        0.366          -- 0.504      0.414 

Ast = (p/100)bd  
(mm2) 

3871        2196  2456        3113       4900     --         1941          -- 

Number of 16 φ bars     12            16           25     --            10           --   201           11 

Spacing                        
(mm) 

  250          212         120     --          340           --   150         309 

It ma anced slab moment is significant (at the 
exterior rt only xampl ate reinforcement should be provided 
over a distance c2 + 3Ddrop = 1400 mm, centred about the column line, to permit the 

y be noted that, where the unbal
suppo , in this E e), adequ

                                                           
† The effective width of the column strip at supports (for ‘negative’ moments) is restricted to 
that of the drop panel, for convenience. 



DESIGN  OF  TWO-WAY  SLAB  SYSTEMS 527 

transfer by flexure from the slab to the column the portion Mub of the unbalanced 
moment. 

M  0.6 × 304 = 182 kNm [Eq. 11.28a] 

⇒

ub =

 R
M
bd

ub =≡
×
×

6182 10 4 MPa  

⇒
⇒
⇒

Th or support, 12 nos of 16 φ bars must be distributed over a width of 
umn.  The remaining outer portions of the drop panel, 
00)/2 = 800 mm may be provided with two bars each, 

to 
the
indi

11.

(i) d = 256 mm from the face of column; and 

2 21400 256
 = 1.98

  pt = 0.632 [Table A.3(a) or Eq. 5.12, for M 20 and Fe 415] 
 Ast = (0.632/100) × (1400 × 256) = 2265 mm2  
 No. of 16 φ bars required = 2265/201 = 12 

us, at the exteri
1400 mm centred over the col
with width equal to (3000 – 14

limit the spacing to < 2D.  The column strip ‘negative’ moment reinforcement at 
 exterior support, adds up to 12 + (2 × 2) = 16 bars, compared to the 12 bars 
cated in Table 11.10. 

  Check on one-way shear stress 
There are two critical sections to be considered: 

(ii) d = 156 mm from the edge of drop panel. 

Table 11.11  Design leof reinforcement in midd  strip, E–W direction — Example 11.7 

                       �                                           �                                    �   

Moment in col. strip, 
Mu  (kNm) 

   0        102     131    119    67.2         104   107           75 

Width of strip 
8000 – col. strip bs 
(mm) 

5000    4600   5000   5000  4600       5000 5000        4600 

Effective depth d          
(mm) 

  156      156     156     156    156         156   156          156 

R ≡ Mu /(bd2)      
(MPa) 

    --     0.911  1.077      --    0.600            -- 0.879      0.679 

p [Table A.3(a)] 0.002*  0.267  0.319      --    0.172            -- 0.257      0.196 

Ast = (p/100)bd             
(mm2 ) 

 1200    1917   2488      --     1234            -- 2005        1406 

Number of 16 φ bars    
(No.) 

      6        10        13      --           7            --    10              7 

Spacing                        
(mm) 

   833†    460†    385†      --       657†          --  500†        657†

Number of 16 φ bars     12         12       13      --         12            --    12 
to limit spacing < 2D 

* minimum reinforcement (Ast = 0.0012 bD) governs. 
† maximum allowable spacing governs.  
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From the equivalent frame analysis [Table 11.9], the maximum shear force, equal to 
483 kN, is found to be at the exterior face of first interior support.  Referring to 
Fi  and  and to Fig. 11.58, 

 (i)  at d = 256 mm from face of column, i.e., 506 mm from centre of column,  

Vu1 = 483 – (122.4 + 11.25) × 0.506 = 415 kN 

dth of the panel 
utside the drop panel (where d = 

g. 11.56(d), with x = 2.991 m  VR = 483 kN,

Assuming the shear force to be uniformly distri
(8.0m), and considering a 1 m strip of the slab o

buted over the wi

156 mm), 

τ v1

3415 10 8 0
1000 156

=
×
×

( ) .  = 0.333 MPa  

which is less than kτ c  given by the Code (Cl. 40.2.1) for pt = 0.32 and M 20 
concrete. 

(ii)  at d = 156 mm from the edge of the drop panel, the shear force and hence the 
alculated above.  shear stress, will be less than that c

 This will obviously be safe. 

21
6800

82

632

764

82

82

764

764

256256

156156

panelC

critical sections for
one–way shear

critical section
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Fig. 11.58  Critical sections for one-way and two-way shear — Example 11.7 
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12.  Check on two-way (punching) shear stress 
The maximum column reaction and unbalanced slab moment (in an interior 
column) occurs at column 2 (or 5).  From Table 11.9, the vertical reaction is 

a.  Interior column 

= (256 + 272)/4 = 132 mm from the column face all around; and 
(ii) d/2 = (156 + 172)/4 = 82 mm from t , 

as indicated in Fig. 11.58 
i) 

o th d = 264 mm 

The moment transferred by shear is 40 percent of the unbalanced moment 
Mu = 58 kNm at column 2 [Eq. 11.28b]  

Muv = 0.4 × 58 = 23.2 kNm 

and the parameters c and Jc in Eq. 11.51 [Fig. 11.45(a)] are given by:  
  c = (c  + d)/2 = 764/2 = 382 mm 

Jc = 

obtained as the sum of the shears on either side as: 

R = 483 + 442 = 925 kN 

The effective depth in punching shear calculations may be taken as the average of 
the effective depths in the E–W and N–S directions.  The critical sections are 

(i) d/2 
he edge of the drop panel

For the critical section at d/2 from the column face, the punching shear is 
[Fig. 11.55]  

Vu2 = 925 – (15.3 + 3.75) × 0.7642 = 914 kN 

and the perimeter is  

b  = 4 × 764 = 3056, wi

1

( )c d d1
3

6
+  

 + ( )c d d1
3

6
+   + ( ) ( )c d c d d1

2
2

2
+ +   

764 264
6

3×  + 764 264
6

3 ×  + 764 264
2

3 ×      = 

    = 80.83 × 109 mm4

Applying Eq. 11.51, 

 + 
M c

J
uv

c
 τ v

u

o

V
b d2

2=

914 10
3056 264

3×
×

 + ( . )
.

23 2 10 382
80 83 10

6

9
× ×

×
        = 

      = 1.133 + 0.110 = 1.243 MPa  

( )τ c s ckk f2 0 25= .   [Eq. 11.49] 

       = 1.0 × 0.25 20  = 1.118 MPa†  

                                                           
† Note that if the concrete grade is improved to M 25, τ c2  = 1.25 MPa > τ v2 , and no shear 
reinforcement is required. 
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The applied shear stress τ v2 , therefore, marginally exceeds the shear strength 
τ c2 .  Note, however that τ v2  < 1.5τ c2 .  Hence, shear reinforcement is required, 
with a total cross-sectional area: 

( )
A

b dv c o−τ τ2 20 5.
f y0 87.

  [Eq. 11.sv = 52] 

                 = ( . . . )( )
( . )

1243 0 5 1118 3056 264
0 87 415

− × ×
×

 = 1526  mm2

• U  l legs 
re e ) = 8.  This 

iding 8-legged 8 mm φ stirrups comprising 4 nos 2-

ed at the stirrup corners if regular top steel and bottom steel are not 
otherwise availabl ided at a spacing 
of not more than 0.75  and should be 

ce d = 264 mm beyond the section where the shear stress 
does not exceed 0.5

sing 8 mm φ stirrups [Type I arrangement, Fig. 11.46], number of vertica
quir d on each side (of the square of side 764 mm) = 1528/(50.3 × 4

can be achieved by prov
legged closed stirrups [Fig. 11.46] on each side.  Nominal 10 mm φ holder bars 
may be provid

e.  This arrangement of stirrups should be prov
d = 0.75 × 264 = 198 mm ≈ 200 mm

continued to a distan
τ c2 . 

• 

Vu2 = 925 – (15.3 + 3.75) 2 kN 

Checking at a section four spacings further removed from the first critical section, 
and now ignoring the marginal shear stress due to the unbalanced moment, 

× (0.764 + 0.2 × 4)  = 878

        bo = [764 + (200 × 4)] × 4 = 6256 mm, 

⇒ τ uV 2=  = v
ob d2

878 103×  = 0
6256 264×

.532 MPa  

< 0.5τ c2  = 0.5 × 1.118 = 0.559 MPa    — OK.  
 it is nece y to provi + 1 = 5 spacings of stirrups on all sides Thus, ssar de 4 

@ 200mm the first line of stirrups located d/2 = 
e column face. 

(ii) For the critical section d/2 = 82 mm from the edge of the drop panel, 
Vu2 = 925 – (15.3 × 3.1642 ) – (3.75 × 32 ) = 738 kN 

       b  = 3164 × 4 = 12656 mm, d = 164 mm 

2  = 

 c/c — within the drop panel, with 
132 mm away from th

o

738 103

12656 164
×
×

 = 0.356 MPa  ⇒ τv

<< τ c2  = 1.118 MPa    — OK.  
b.  Exterior column 

am, part of the shear will be transmitted by 
on.  However, to simplify calculations, the 

shear stress is conservatively computed by neglecting the contributions of the 
edge beam. 
The reaction at the exterior column = 383 kN [Table 11.9] 

Owing to the presence of the edge be
this beam to the column by beam acti
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i) F

uv  
   bo = (632 × 2) + 764 = 2028 mm, d = 

Referring to Fig. 11.45(b),  

or the critical section, d/2 = 132 mm from the column face [Fig. 11.58]. 

 Vu2 = 383 – (15.3 + 3.75) × (0.764 × 0.632) = 374 kN 

 M  = 0.4 × 304 = 122 kNm
264 mm 

c
c d

c c d
=

+
+ +

( )2
 = 1

1 2

2
2 2

( )
( ) ( )

632
2 500 500 2 264

2

× + + ×
 = 197 mm 

Jc = [(c1 + d/2) d3 + (c1 + d/2)3 d ]/6 + (c2 + d) dc2 + 2(c1 + d/2)(d)  
       × [(c1 + d/2)/2 – c]2

   = [(632)(264)3 + (632)3(264)]/6 + (764)(264)(197)2 + 2(632)(264)  
       × [632/2 – 197]2

   = 25.60 × 109 mm4

⇒ τ v
u

o

V
b d2

2=  + M c
J
uv

c
 = 374 10

2028 264

3×
×

 + ( )
.

122 10 197
25 60 10

6

9
× ×

×
 

  = 0.699 + 0.939  = 1.638 MPa  
which is greater than τ c2  = 1.118 MPa but less than 1.5τ c2  = 1.677 MPa.  
Hence, shear reinforcement is required to be designed; this may be done as shown 
in the case of the interior column.  

(ii) For  of the drop panel 

u2 × 3.0 × 1.75)   = 275 kN 
 b  = (2 × 2) + 3164 = 164 mm 

⇒ 

the critical section at d/2 = 82 mm from the edge
[Fig. 11.58],  

V  = 383 – (15.3 × 1.832 × 3.164) –  (3.75 
       183  6828 mm, d = o

τ v2  = 275 10
6828 164

3×
×

 = 0.246 MPa  

 << τ c2  = 1.11 Pa    — OK.  8 M

RE

11. e behaviour of one-way slabs and two-way 

11.2 E slabs whose 

11.3 sfer between wall-supported slabs and 
am lumn suppor

11.4 What are the main considera  th ickness of a two-

11.

11.
egative’ moments at 

VIEW QUESTIONS 

1 Explain clearly the difference in th
slabs. 

xplain the need for corner reinforcement in two-way rectangular 
corners are prevented from lifting up. 
Explain the difference in load tran
be /co ted slabs. 

tions at generally govern the th
way slab? 

11.5 Explain the concept underlying the Rankine-Grashoff theory as applied to 
uniformly loaded and simply supported rectangular two-way slabs. 

6 What are the assumptions underlying the Code moment coefficients for two-
way ‘restrained’ slabs? 

7 In the design of a multipanel two-way slab system by the use of the Code 
moment coefficients, it is found that the design ‘n
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continuous supports are often unbalanced.  Why does this occur, and how 
m

11.8 H ? 
11.9 H ur in a column-supported slab system, with 

b fnesses of the supporting 

11.10 Why is it inappropriate to apply the Code moment coefficients for two-way 
slabs, if the sla re supported on flexible be

11.11 Explain briefly the ‘equivalent frame’ concept.  Also sketch the variations of 
eams. 

11. ent 

11. in flat 

11.14 how the ‘unbalanced’ mom  transferred from the slab to the 
lumn in flat slabs. 

11.15 Discuss briefly

11. in dinal 

rger share than the middle strips.  Why? 
11.18 R nsverse 

lab-beam member in two-
s.  How is this j  

11.19  fl lab floors e to provide an edge beam along the 
discontinuous edges.  Why?

11.20 What are the considerations in the desi s in flat slab floors? 
 forces in beams are estimated in two-way slab systems 

 
 

 
 

 

PROB

 

ay this problem be resolved? 
ow are two-way wall-supported slabs checked for shear
ow is two-way slab behavio
eams along column lines, affected by the stif

beams? 

bs a ams? 

moments in a typical two-way slab panel supported on flexible b
12 Briefly describe the Direct Design Method and compare it with the Equival

Frame Method. 
13 What is the function of (i) the drop panel and (ii) the column capital, 

slab design? 
 Explain ent is

co
 how the effects of pattern loading can be included in (i) Direct 

ethod (ii) Equivalent Frame MethDesign M od. 
16 In flat slabs, what are the parameters, which determ e (i) the longitu

distribution of moments and (ii), the transverse distribution of moments in a 
panel? 

11.17 In the transverse distribution of moments at critical sections, the column strip 
is given a la

eference 11.8 gives some freedom to the designer in choosing the tra
distribution of moments at critical sections in the s
way slab system ustified?

 In at s , it is desirabl
 

gn of edge beam
11.21 Explain how shear

supported on flexible beam. 
11.22 Explain the concept of ‘equivalent column’ in the Equivalent Frame Method. 

What i11.23 s the difference between one-way shear and two-way shear in column-
supported slab systems? 
How is punching shear stress calculate11.24 d in column-supported slab systems? 

11.25 Suggest suitable reinforcement details for resistance against punching shear in 
flat slabs and flat plates. 

11.26 In flat slabs, how can a total punch-through and a progressive collapse 
prevented? 

LEMS 

11.1 Design a simply supported slab to cover a hall with internal dimensions 4.0 m
× 6.0 m.  The slab is supported on masonry walls 230 mm thick.  Assume a 
live load of 3 kN/m2 and a finish load of 1 kN/m2.  Use M 20 concrete and 
Fe 415 steel.  Assume that the slab corners are free to lift up. 
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11.2 

al panel which is 

11.4 
.0 kN/m  and a floor finish load of 1.0 kN/m .  The slab is supported 

Repeat Problem 11.1, considering the slab corners to be prevented from lifting 
up. 

11.3 Repeat Problem 11.1, considering the slab to be an intern
part of a multipanel slab system. 
Design the multipanel floor slab system shown in Fig. 11.59, assuming a live 
load of 4 2 2

on 230 mm thick masonry walls, as shown.  Use M 20 concrete and Fe 415 
steel. 

 

Fig. 11.60 : Problem 11.5 

S2 S3 

S4 S1 

5000 230 230230 5000
230 

3000 

Fig. 11.59 : Problem 11.4 230 

230 

4000 

30003000 4000230 230 230

230 

5000 

230 

S2 S1 S  1

 

11.5 Design the multipanel floor slab system shown in Fig. 11.60, assuming a live 
load of 4.0 kN/m2 and a floor finish load of 1.0 kN/m2.  The slab is supported 
on 230 mm thick masonry walls, as shown.  Use M 20 concrete and Fe 415 
steel. 

11.6 Design the slab panels S1 and S2 in the multipanel floor system of 
Example 11.6, [Fig. 11.47] using the Code moment coefficients, assuming 
that the supporting beams are adequately stiff.  Compare the results with those 
obtained earlier.  (in Example 11.6). 
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11.7 Design a circular slab of 4.0 m diameter (overall), simply supported at the 
perip 2hery, by a masonry wall 230 mm thick.  Assume a live load of 5.0 kN/m  

11.8 6, apply the Direct Design Method to design 

11.9 

11.10 t Example 11.7, applying the Direct Design Method, instead of the 
Equivalent Frame Method. 

11.11 Repeat Example 11.6, applying Equivalent Frame Method instead of the 
Direct Design Method. 

11.12 Redesign the interior equivalent frame in Example 11.7, assuming that beams 
300 mm wide and 500 mm deep (overall) are provided along the column lines, 
and no drop panels are used. 
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           12 
       Design of Staircases 

 

12.1   INTRODUCTION 

The design of staircases is generally included in a first course on reinforced concrete 
design, and for this reason, this topic is included in this book.  It should be noted that, 
from a structural viewpoint, the staircase merely comprises slab/beam elements, 
whose basic principles of design have already been dealt with in the previous 
chapters. 

Functionally, the staircase is an important component of a building, and often the 
only means of access between the various floors in the building.  It consists of a flight 
of steps, usually with one or more intermediate landings (horizontal slab platforms) 
provided between the floor levels.  The horizontal top portion† of a step (where the 
foot rests) is termed tread and the vertical projection of the step (i.e., the vertical 
distance between two neighbouring steps) is called riser [Fig. 12.1].  Values of 
300 mm and 150 mm are ideally assigned to the tread and riser respectively — 
particularly in public buildings.  However, lower values of tread (up to 250 mm) 
combined with higher values of riser (up to 190 mm) are resorted to in residential and 
factory buildings.  The width of the stair is generally around 1.1 – 1.6m, and in any 
case, should normally not be less than 850 mm; large stair widths are encountered in 
entrances to public buildings.  The horizontal projection (plan) of an inclined flight 
of steps, between the first and last risers, is termed going.  A typical flight of steps 
consists of two landings and one going, as depicted in Fig. 12.1(a).  Generally, risers 
in a flight should not exceed about 12 in number.  The steps in the flight can be 
designed in a number of ways: with waist slab, with tread-riser arrangement (without 
waist slab) or with isolated tread slabs — as shown in Fig. 12.1(b), (c), (d) 
respectively. 

                                                           
† The tread is sometimes projected outwards to provide more space; this projection is termed 
nosing.  Frequently, the nosing is provided in the finish over the concrete tread. 
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T 

RISER R 
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tread slab’ 
type 

T 

R 

T 

R 
t

t

waist slab 
thickness t 

WIDTH

T

GOING LANDING
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LANDING 

(a) 
PLAN 
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Fig. 12.1  A typical flight in a staircase 
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12.2   TYPES OF STAIRCASES 

12.2.1   Geometrical Configurations 

A wide variety of staircases are met with in practice.  Some of the more common 
geometrical configurations are depicted in Fig. 12.2.  These include: 

• straight stairs (with or without intermediate landing) [Fig. 12.2(a)]  
• quarter-turn stairs  [Fig. 12.2(b)] 
• dog-legged stairs [Fig. 12.2(c)] 
• open well stairs  [Fig. 12.2(d)] 
• spiral stairs  [Fig. 12.2(e)] 
• helicoidal stairs  [Fig. 12.2(f)] 

(a)  straight stairs (b)  quarter-turn stairs

(c)  dog-legged stairs

(e)  spiral stairs

PLAN  VIEWS

(d)  open-well stairs

(f)  helicoidal stairs

precast
treads

central
post

UP

UP

 
Fig. 12.2  Common geometrical configurations of stairs 
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The architectural considerations involved in the selection and location of 
staircases include accessibility, function, comfort, lighting, ventilation, aesthetics, 
etc.  Structural feasibility also has a major role in deciding the proportioning of the 
slab thickness (dimension ‘t’ in Fig. 12.1) which contributes much to the aesthetic 
appeal of a staircase.  Perhaps the most daring of all staircases is the free-standing 
staircase which is supported entirely at the base, and behaves essentially as a 
cantilever in space [Ref. 12.1, 12.2, 12.7].  The helicoidal staircase (or ramp), with 
intermediate supports also presents a challenging problem of structural analysis 
[Ref. 12.3, 12.4, 12.7].  These problems, however, are not discussed in the present 
chapter, the scope of which is limited to the simple geometrical configurations. 

12.2.2   Structural Classification 

Structurally, staircases may be classified largely into two categories, depending on 
the predominant direction in which the slab component of the stair undergoes 
flexure: 

1. stair slab spanning transversely (stair widthwise); 
2. stair slab spanning longitudinally (along the incline). 

Stair Slab Spanning Transversely 

This category generally includes: 

1. slab cantilevered from a spandrel beam or wall [Fig. 12.3(a)]; 
2. slab doubly cantilevered from a central spine beam [Fig. 12.3(b)]; 
3. slab supported between two stringer beams or walls [Fig. 12.3(c)]. 
The slab component of the stair (whether comprising an isolated tread slab, a 

tread-riser unit or a waist slab [Fig. 12.1]) is supported on its side(s) or cantilevers 
laterally from a central support [Fig. 12.1(b)].  The slab supports gravity loads by 
bending essentially in a transverse vertical plane, with the span along the width of 
the stair. 

In the case of the cantilevered slabs [Fig. 12.3(a), (b)], it is economical to provide 
isolated treads‡ (without risers), as indicated in Fig. 12.1(d).  However, the tread-
riser type of arrangement [Fig. 12.1(c)] and the waist slab type [Fig. 12.1(b)] are also 
sometimes employed in practice, as cantilevers.  The spandrel beam is subjected to 
torsion (‘equilibrium torsion’), in addition to flexure and shear. 

When the slab is supported at the two sides by means of ‘stringer beams’ or 
masonry walls [Fig. 12.3(c)], it may be designed as simply supported, but 
reinforcement at the top should be provided near the supports to resist the ‘negative’ 
moments that may arise on account of possible partial fixity. 

It may be noted that, although the stair slab spans transversely, the supporting 
spandrel/spine/stringer beams span longitudinally along the incline of the stair, 

                                                           
‡ The isolated tread slabs are often precast.  The treads may form part of a straight flight or a 
curved flight [Fig. 12.2(e), (f)].  For example, in a reinforced concrete chimney or tower, 
cantilevered tread slabs are fixed to the circular shaft and arranged in a helicoidal pattern. 
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framing into supporting columns.  The design of the beam is not discussed in this 
chapter, as all the design principles have already been covered in earlier chapters. 

SPANDREL BEAM
or  R.C. WALL

width of flight
(span L)

80 mm min.

main bars distributors

(a)  slab cantilevered from a spandrel beam or wall

(c)  slab supported between two stringer beam or walls

(b)  slab doubly cantilevered from a central spine beam

width of flight
(span L)

distributors
(6 φ @ 250 c/c)main bars

STRINGER BEAM
or WALL

t > 80 mm

width of flight
main bars

distributors
(6 φ @ 250 c/c)SPINE BEAM

≈ L /10

t > 80 mm

tread surface

span
(cantilever)

top of step

 

Fig. 12.3  Typical examples of stair slabs spanning transversely†  

                                                           
† The figures depict transverse sections of the stairs. 
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When the slab is doubly cantilevered from a central (spine) beam [Fig. 12.3(b)], it 
is essential to ensure, by proper detailing, that the slab does not separate from the 
beam when loaded on one side only.   This can be done by anchoring the slab 
reinforcement into the beam, so that the same reinforcement acts as a stirrup in the 
beam, as shown in Fig. 12.3(b).  Alternative arrangements are possible; however, it 
should be ensured that the beam stirrups are ‘closed’, to provide the desired torsional 

t, suitable mechanical connections have to 
 units. 

co

cal to provide 
su

mparable to the ‘positive’ span moments) develop at the 
jun

junctions.  It is recommended that an economical and conservative design can be 
achieved by designing for a ‘positive’ moment of wl 

2/8 for the going (at midspan) 

resistance.  When the slab units are precas
be provided between the beam and the slab

Stair Slab Spanning Longitudinally 

In this case, the supports to the stair slab are provided parallel to the riser at two or 
more locations, causing the slab to bend longitudinally between the supports, as 
shown in Fig. 12.4.  It may be noted that longitudinal bending can occur in 

nfigurations other than the straight stair configuration (shown in Fig. 12.4), such as 
quarter-turn stairs, dog-legged stairs, open well stairs and helicoidal stairs [Fig. 12.2]. 

The slab arrangement may either be the conventional ‘waist slab’ type 
[Fig. 12.1(b)] or the ‘tread-riser’ type [Fig. 12.1(c)].  The slab thickness depends on 
the ‘effective span’, which should be taken as the centre-to-centre distance between 
the beam/wall supports, according to the Code (Cl. 33.1a, c).  Fig. 12.4(a) shows a 
simple arrangement with simple supports at the far ends of the two landings.  
However, such an arrangement can result in large slab thicknesses for relatively long 
spans (4m or more).  In such cases, it is economical to reduce the span, and hence the 
slab thickness, by providing additional intermediate supports — at locations ‘B’ and 
‘C’, as shown in Fig. 12.4(b); this will induce ‘negative’ moments near the supports, 
requiring steel at the top in these regions.  It is sometimes economi

pports at B and C alone and to treat the landings (AB, CD) as overhangs — as 
depicted in the ‘balanced cantilever’ design shown in Fig. 12.4(b)(iii). 

In certain situations, beam or wall supports may not be available parallel to the 
riser at the landing.  Instead, the flight is supported between the landings, which span 
transversely, parallel to the risers, as shown in Fig. 12.5(a).  In such cases, the 
Code(Cl. 33.1b) specifies that the effective span for the flight (spanning 
longitudinally) should be taken as the going of the stairs plus at each end either half 
the width of the landing or one metre, whichever is smaller, as depicted in 
Fig. 12.5(a).  Recent research [Ref. 12.5, 12.6, 12.8] indicates that ‘negative’ 
moments (of magnitudes co

ction where the inclined waist slab meet the landing slabs, and it is desirable to 
detail the slab accordingly. 

Another case frequently encountered in residential and office buildings is that of 
the landings supported on three sides, as shown in Fig. 12.5(b).  This case has not 
been explicitly covered by the Code.  The ACI Code and BS Code also do not have 
any special provision as yet for this condition.  However, recent studies (based on 
experiments as well as finite element analysis) reveal that the flight essentially spans 
between the landing-going junctions, with hogging moments developing at these 
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and a ‘negative’ moment of wl 
2/8 at the junction of landing and the going† .  Here, w 

is the distributed gravity load acting on the going and l is the length of the going 
(projected on a horizontal plane) [Ref. 12.5, 12.6, 12.8]. 

                                                           
† More detailed expressions for design moments in dog-legged and open-well stairs (with waist 
slab or with tread-riser) are described in Ref. 12.8. 
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INCORRECT  DETAILING
(bar in tension may break

through at the kink due to the
tendency to straighten up

under tension)

C

C

CORRECT  DETAILING

DC

BA

wall
or

beam
effective span

waist slab
thickness

T

R

A B C D
landing landinggoing

(a)  simply supported arrangement

DC

BA DC

BA DC

BA

(i)

(ii)

(iii)

(b)  alternative support arrangement  

Fig. 12.4  Typical examples of stair slabs spanning longitudinally 
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effective span (l )

going
GX X Y Y

landinglanding

(a)  transversely spanning landings

landing landing

(b)  landings supported on three edges

l = G + x + y
x = X or 1 m (whichever is less)
y = Y or 1 m (whichever is less)

support of
landing

 

Fig. 12.5  Special support conditions for longitudinally spanning stair slabs 

12.3   LOADS AND LOAD EFFECTS ON STAIR SLABS 

Stair slabs are usually  designed to resist gravity loads† , comprising dead loads and 
live loads. 

                                                           
† In the case of cantilevered tread slabs, the effects of seismic loads should also be 
investigated.  The vertical vibrations induced by earthquakes may induce flexural stresses of 
considerable magnitude.  It is desirable to provide bottom steel in the cantilever slabs (near the 
support locations) to counter the possibility of reversal of stresses. 
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12.3.1   Dead Loads 

The components of the dead load to be considered comprise: 
• self-weight of stair slab (tread/tread-riser slab/waist slab); 
• self-weight of step (in case of ‘waist slab’ type stairs); 
• self-weight of tread finish (usually 0.5 – 1.0 kN/m2) 

The unit weight of reinforced concrete for the slab and step may be taken as 25kN/m3 
as specified in the Code (Cl. 19.2.1). 

12.3.2   Live Loads 

Live loads are generally assumed to act as uniformly distributed loads on the 
horizontal projection of the flight, i.e., on the ‘going’.  The Loading Code 
[IS 875 : 1987 (Part II)] recommends a uniformly distributed load of 5.0 kN/m2 in 
general, on the going, as well as the landing.  However, in buildings (such as 
residences) where the specified floor live loads do not exceed 2.0 kN/m2, and the 
staircases are not liable to be overcrowded, the Loading Code recommends a lower 
live load of 3.0 kN/m2 [Fig. 12.6(a)]. 

w  kN m       in general                                 
 kN m      when overcrowding is unlikelyLL =

⎧
⎨
⎩

5 0
3 0

2

2
.
.

(a) (b)

WLL = 1.3 kN

 

Fig. 12.6  Code specifications for live loads on stair slabs 

Further, in the case of structurally independent cantilever steps, the Loading Code 
requires the tread slab to be capable of safely resisting a concentrated live load of 
1.3 kN applied to the free end of each cantilevered tread [Fig. 12.6(b)]. 

It may be noted that the specified live loads are characteristic loads; these loads as 
well as the characteristic dead loads should be multiplied by the appropriate load 
factors in order to provide the factored loads required for ‘limit state design’. 

12.3.3   Distribution of Gravity Loads in Special Cases 

The Code (Cl. 33.2) specifies the following: 

• When a staircase takes a right-angled turn [Fig. 12.2 b, d], fifty percent of the 
gravity loads on the areas (usually landings) common to the two flights (at 
right angles) may be assumed to act in each direction. 

• When a longitudinally spanning flight (or landing) is embedded at least 
110 mm into a side wall, then some marginal ‘two-way’ action can be 
expected.  In such cases, the longitudinally acting component of the gravity 
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load can be assumed to act on a reduced width of flight; a reduction of 
150 mm is permitted by the Code.  Furthermore, the effective width of the 
section can be increased by 75 mm for purposes of design.  In other words, if 
the width of the flight be W (in  mm) then the load may be assumed to act over 
a reduced width (W–150) mm and the effective width resisting flexure may be 
taken as (W+75) mm. 

12.3.4   Load Effects in Isolated Tread Slabs 

As mentioned earlier, isolated tread slabs [Fig. 12.1(d)] are invariably associated with 
stair slabs spanning transversely.  The tread slabs are structurally independent and are 
designed as simple one-way slabs. 

If the tread slab is simply supported, the thickness required is generally minimal 
(for stair widths less than 2 m).  A slab thickness of 80 mm is usually provided, with 
minimum reinforcement (comprising at least 3nos 8 mm φ bars).  The distribution 
bars may be of 6 mm φ, with a nominal spacing of 250 mm.  It suffices to use Fe 250 
grade steel in such cases, as the steel requirement is minimal. 

In the case of cantilevered tread slabs [Fig. 12.3a,b], the slab thickness may be 
taken as at least one-tenth of the effective cantilever span.  For large spans, it is 
economical to taper the slab thickness to a minimum value of 80 mm at the free end, 
as shown in Fig. 12.3(a).  The design of a cantilevered tread slab is demonstrated in 
Example 12.1. 

12.3.5   Load Effects in Waist Slabs 

In the ‘waist slab’ type staircase, the longitudinal axis of the flight is inclined to the 
horizontal and the steps form a series of triangles on top of the waist slab 
[Fig. 12.1(b), 12.7(a)].  The steps† are usually treated as non-structural elements and 
it is the waist slab which is designed to resist the load effects on the stairs.  Some 
nominal reinforcement is provided in the step (if made in concrete) — mainly to 
protect the nosing from cracking [Fig. 12.7(a)]. 

The vertical acting gravity loads w may be resolved into two orthogonal 
components, as shown in Fig. 12.7(a).  The component wn = w cosθ acts normal to 
the waist slab and the component wt = w sinθ acts tangential to the waist slab.  The 
manner in which these load components are resisted by the waist slab depends on 
whether the slab spans transversely or longitudinally. 

Waist Slab Spanning Transversely 

In this case, the normal load component wn causes the waist slab to bend in transverse 
planes normal to the sloping surface of the slab.  The loading direction, cross 
sectional dimensions, neutral axis position, compression zone, main reinforcement 
and effective depth for a design strip of slab having a width B corresponding to one 
tread (one step) are sketched in Fig. 12.7(b)(i),(ii) for the simply supported and 

                                                           
† The steps are sometimes constructed using brickwork. 
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cantilever cases respectively,  As can be seen, the main bars† are provided 
transversely, either at the bottom or top, depending on whether the slab is simply 
supported or cantilevered.   

θ
wt = w sinθ

w
8 φ nosing

bar

R

T

6 φ ties @ 150 c/c

t

step
waist slab

θ

(a)  waist slab–steps arrangement

B R T= +2 2

SECTION A – A

SECTION B –B

(i)
SIMPLY

SUPPORTED

(ii)
CANTILEVERED

(b)  transversely spanning waist slabs

main bars

A

A

B

B

(c)  longitudinally spanning waist slabs

t

d

wn = w cosθ wt

t

d

wn = w cosθ

B

B

main bars

M

wt

M

wt

wn

V

N

deflection curve

(i) (ii)

M

(iii)

w W=wl

l
l

w

wn = w cosθ

Wn = W cosθ

θ
Mmax = Wns/8
         = wl2/8

s/2 = l /(2cosθ  )

 

Fig. 12.7  Load effects and detailing in waist slabs 

                                                           
† It is desirable to provide a bar in line with every point where the step meets the waist slab, as 
the effective depth is minimum at this location, if the step is considered to behave integrally 
with the waist slab.  This is shown in Fig. 12.7(b). 
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The tangential load component wt causes the waist slab to bend in its own plane.  
However, as the slab is extremely deep in this plane, the flexural stresses so induced 
are of a small order, and do not call for any particular design.  Distributor bars are 
provided in the longitudinal direction.  The proportioning of the waist slab thickness 
is as described earlier (in Section 12.3.4) for cantilevered treads. 

Waist Slab Spanning Longitudinally 

In this case, the slab thickness t may be taken as approximately l/20 for simply 
supported end conditions and l/25 for continuous end conditions.  The normal load 
component wn causes flexure in vertical planes containing the span direction (parallel 
to the longitudinal axis of the slab), and the tangential load component wt causes 
axial compression (of low order) in the slab [Fig. 12.7(c)(i)].  The main bars are 
placed longitudinally, and designed for the bending moments induced in the vertical 
planes along the slab span.  These moments may be conveniently computed by 
considering the entire vertical load w acting on the projected horizontal span (going), 
rather than considering the normal load component wn acting on the inclined span s 
[Fig. 12.7(c)(iii)].  The distributor bars are provided in the transverse directions. 

Care must be taken to ensure proper detailing of the longitudinal bars at the junction of 
the flight and landing slab.  The bottom bars in the waist slab should not be continued 
to the bottom of the upper landing slab at the reentrant corner, but extended to the top 
of the landing slab.  This is to prevent the bars (in tension) from breaking out at 
reentrant corners, as shown in the detail in Fig. 12.4(a). 

12.3.6   Load Effects in Tread-Riser Stairs 

In the tread-riser type of arrangement [Fig. 12.1(c)], the ‘slab’‡ is repeatedly folded, 
and behaves essentially like a ‘folded plate’.  A rigorous analysis of such a structure 
is difficult and laborious.  However, the analysis can be rendered simple by means of 
certain idealisations, and designs based on such simplified analysis are found to work 
well in practice.  These simple design methods are described here. 

Tread-Riser Units Spanning Transversely 

In this case, the assumption made is that each tread-riser unit, comprising the ‘riser 
slab’ and one-half of each ‘tread slab’ on either side [Fig. 12.8(b)], can be assumed to 
behave independently as a beam with a Z-section.  Such an assumption is made in 
one-way slab design (where design is done for a standard strip of unit width), and 
indeed, slabs spanning transversely are basically one-way slabs, designed for 
uniformly distributed gravity loads. 

This ‘tread-riser’ unit behaves essentially as a flanged beam which is transversely 
loaded.  The overall depth of the beam is given by (R + t), where R is the riser and t 
the thickness of the ‘slab’ [Fig. 12.8(a)].   

                                                           
‡ Sometimes, this type of stair is referred to as a ‘slabless’ stair, referring to the absence of a 
continuous waist slab. 
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Fig. 12.8  Load effects and detailing in tread-riser units 
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In most cases of tread-riser units spanning transversely, the bending moments are 
low, and it generally suffices to provide a nominal slab thickness t = 100 mm.  For 
convenience in calculations, the ‘flange’ portions of the beam may be ignored and 
the rectangular portion of the riser slab alone may be considered.  It will be found 
that the reinforcement required is nominal.  The detailing of the tread-riser slab may 
be done as indicated in Fig. 12.8(b).  The nominal distributor bars (generally 6 φ @ 
200 c/c) may be provided in the form of ties (stirrups) — in both riser slab and tread 
slab — as shown.  The main bars are concentrated in the ‘riser slab’ portion, and may 
be located at the top or bottom, depending on whether the slab is cantilevered or 
simply supported.  At every bend in the ties where there are no main bars, a nominal 
8 mm φ bar should be provided.  The clear cover to the main bars should be as 
required for normal slabs. 

Tread-Riser Units Spanning Longitudinally 

In this case, the bending moments to be considered occur in the longitudinal 
direction, in the ‘riser slab’ as well as the ‘tread slab’.  The overall behaviour of the 
inter-connected tread-riser units, including calculation of bending moments, is 
similar to longitudinally spanning waist slabs.  The variation of bending moment 
along the span is as for a horizontal slab having the projected horizontal span with 
the entire vertical load acting on it [Fig. 12.8(c)].  As depicted in the freebody 
diagram in Fig. 12.8(c), each ‘tread slab’ is subjected to a bending moment (which 
varies slightly along the tread) combined with a shear force, whereas each ‘riser slab’ 
is subjected to a bending moment (which is constant for a given riser) combined with 
an axial force (which may be compressive or tensile† ).  It is assumed that the 
connection between the ‘riser slab’ and the adjoining ‘tread slab’ is a ‘rigid joint’.  
For all practical purposes, it suffices to design both tread slabs and riser slabs for 
flexure alone, as the shear stresses in tread slabs and axial stresses in riser slabs are 
relatively low.  The slab thickness t may be kept the same for both tread slab and 
riser slab, and may be taken as about span/25 for simply supported stairs and span/30 
for continuous stairs. 

It is generally accepted that the tread-riser arrangement has considerable aesthetic 
appeal, and in this sense, it is superior to the conventional ‘waist slab’ type of 
staircase.  However, this aesthetic appeal of the tread-riser staircase is lost if the slab 
thickness t is excessive — especially if it exceeds the riser R.  For this reason, it 
becomes necessary to work out a suitable support scheme for the tread-riser staircase, 
which results in a relatively low effective span — generally not exceeding about 
3.5 m. 

The reinforcement detailing, shown in Fig. 12.8(c), is similar to that shown in 
Fig. 12.8(b) — except that the main bars (ideally in the form of closed loops, as 
shown) lie in the longitudinal direction, while the distributors (generally 8 φ) are 
located transversely.  The closed loop arrangement of the main bars (in the tread slab 
as well as the riser slab) serves to provide the required development length.  
Furthermore, this arrangement provides reinforcement at top, required to resist 
                                                           
† The axial force is generally tensile in the risers located in the upper half of the flight; this 
tension is resisted by the closed ties provided as main reinforcement [Fig. 12.8(c)]. 
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negative moments near the supports which are likely to be partially restrained.  Also, 
the closed loop arrangement enhances both the shear- and axial force-resisting 
capacities, as well as ductility of the slabs.  The diameter and/or spacing of the main 
bars in the tread-riser units may be suitably varied along the span (to conform to the 
bending moment diagram), in order to achieve an economical design. 

12.4   DESIGN EXAMPLES OF STAIR SLABS SPANNING 
TRANSVERSELY 

EXAMPLE 12.1 

A straight staircase is made of structurally independent tread slabs, cantilevered from 
a reinforced concrete wall.  Given that the riser is 150 mm, tread is 300 mm, and 
width of flight is 1.5 m, design a typical tread slab.  Apply the live loads specified in 
the IS Loading Code for stairs liable to be overcrowded.  Use M 20 concrete and 
Fe 250 steel.  Assume mild exposure conditions.  

SOLUTION 

• Given: R = 150 mm, T = 300 mm, W = 1.5 m 
⇒ effective span l = 1.5 m 
It is desirable to make the actual width of the tread slab, B, about 10 mm more 
than the effective tread, T, so that there is a marginal overlap between adjacent 
tread slabs [see Fig. 12.1(d)].  B = 310 mm ⇒

• Assume a slab thickness at the fixed support, t l
≈

10
 = 150 mm.  The slab 

thickness may be kept constant for a distance of, say, 300 mm, from the support, 
and tapered to a minimum thickness of 80 mm, as shown in Fig. 12.9. 

• Dead Loads: 
(i) self weight of tread slab ≈25 kN/m3 × (0.15† × 0.31) m2  = 1.162 kN/m 
(ii) finishes  ≈ ×0 6 0 312. .kN m  m     = 0.186 kN/m 

            1.348 kN/m 
⇒  wu,DL = 1.348 × 1.5 = 2.022 kN/m  

• Live Loads: 
Alternative I: wu,LL = (5.0 kN/m2 × 0.3 m) ×  1.5 = 2.250 kN/m 
Alternative II: Wu,LL = 1.3kN × 1.5 = 1.95 kN (at free end) 

• Design Moment: 
At fixed end, Mu DL, . .= ×2 022 1 5 22        = 2.27 kNm 

                                                           
† The actual slab thickness varies along the slab; however, it is convenient and conservative to 
assume a uniform thickness equal to 150 mm for the purpose of calculating dead load and 
bending moment. 
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Mu LL,
. . .

. . .
=

× =
× =

⎧
⎨
⎩

2 250 1 5 2 2 53
1 95 1 5 2 93

2     kNm                       
             kNm (more critical)

 

⇒ Mu = 2.27 + 2.93 = 5.20 kNm 

• Design of Main Bars: 
Assuming a clear cover of 20 mm (mild exposure) and a bar diameter of 10 mm, 
effective depth d = 150 – 20 – 10/2 = 125 mm. 

2

6

2 125310
1020.5

×

×
=≡

bd
M

R u  = 1.0735 MPa  

[ ]⇒ ≡ = − −
p A

bd
f
f

R ft st ck

y
ck100 2

1 1 4 598.  

             = 0.528 × 10–2 (for fck = 20 MPa and fy = 250 MPa) 
[Alternatively, this is obtainable from design aids Table A.3(a)] 
⇒ (Ast)reqd = (0.528 × 10–2) × 310 × 125 = 205 mm2

Provide 3–10 φ bars [Ast = 78.5 × 3 = 235.5 mm2 > 205]. 

• Anchorage length required: Ld =
× ×
×

( . )
.

087 250 10
4 12

 = 453 mm [Eq. 8.5] 

• Distributors 
(Ast)min = 0.0015bt (for Fe 250 bars, Cl. 26.5.2.1) 
            = 0.0015 × 103 × 150 = 225 mm2/m (assuming uniform slab thickness) 

Required Spacing of 8 φ bars = 503 10
225

3. ×  = 223 mm  

Provide 8 φ distributors @ 220c/c 

• Check for shear‡  
Design (factored) shear force at support: 
Vu = (2.022 + 2.250) × 1.5 = 5.72 kN 

⇒ τ v
uV

bd
= =

×
5720

310 127
 = 0.145 MPa  

τ c MPa= ×( . . )0 47 13 [vide Cl. 40.2.1.1 of the Code]. 
⇒ <<τ τv c

                                                          

    — Hence, safe. 

 
‡ This is generally not required, as shear stresses are invariably of low magnitude.  A check for 
deflection control is also not called for in the case of well-proportioned slabs — especially 
since the major load component (live load) is a transient load. 
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1500
300

3–8 φ
(desirable — to
resist possible
stress reversal
under seismic

loads)

≥ Ld = 453 mm

80

8φ @ 220 c/c

3 – 10 φ

SECTION A–A

A

A

150

310

 
Fig. 12.9  Example 12.1 

• 
of the tread slab is shown in Fig. 12.9. 

Detailing 
The detailing 

EXAMPLE 12.2 

Repeat Example 12.1, considering a tread-riser arrangement spanning transversely. 

• 

• 
φ bars and 8 φ ties) 

• ical ‘tread-riser’ unit [Fig. 12.10(a)]: 

 
(2) nishes @ 0.6 kN m2 × 0.3 m                        

 .305 kN/m 
dead load wu,DL = 1.305 × 1.5 = 1.958 kN/m  

/m 
 = 1.5 × 1.3kN = 1.95 kN (at free end) 

• 
ad at the free end [see Ex. 12.1] will result in 

a slig

venience), and considering a rectangular 
section with b = 100 mm, d = 217 mm, 

SOLUTION 

Given (as in previous Example): 
R = 150 mm, T = 300 mm, l = 1.5 m. 
Assume a nominal slab thickness t = 100 mm. 
Effective depth (assuming 20 mm cover, 10 
d = (150 + 100) – 20 – 8 – 10/2 = 217 mm. 
Load on a typ
Dead Loads: 
(1) self-weight @ 25kN/m3 × (0.3 + 0.15) m × 0.1 m = 1.125 kN/m

fi /         = 0.180    ” 
             = 1

⇒ Factored 
Live Loads: 
Alternative I: wu,LL = 1.5 × (5.0 kN/m2 × 0.3 m) = 2.250 kN
Alternative II: Wu,LL

Design Moment 
Consideration of concentrated live lo

htly larger design moment of  
Mu = 1.958 × 1.52 / 2 + 1.95 × 1.5 = 5.13 kNm 

This moment is resisted by the flanged section shown in Fig. 12.10(a).  Ignoring 
the contribution of the flanges (for con

2

6

2 217100×bd
R 1013.5 ×

=≡
M u  = 1.089 MPa 

• Design of main bars 
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[ ]20089.1598.41
25020

×−
×bd

 

 φ bars on top (A  = 78.5 × 2 = 157 mm  > 117)  
revious Example) 

• 

.1).  These distributors are 
provided in the form of closed loops, with a bar (8φ minimum) provided 
transversely at each bend, as shown in Fig. 12.10(b).  

120
−=≡⇒

Ap stt

10
                       = 0.537 × 10–2

       22 117)217100()10537.0()( mm =×××= −
reqdstA  

2Provide 2–10 st
Anchorage length = 453 mm (as in p
Distributors 
(Ast)min = 0.0015bt (for Fe 250 bars) 
            = 0.0015 × 1000 × 100 = 225 mm2/m 
Provide 8 φ @ 220c/c distributors (as in Example 12

 

8 φ ties @ 220 c/c 

150

100

100 

300 

150 

100 

100 100

100

300

2–10 φ

8 φ

3–8 φ 

3–8 φ 

(b)(a)  

Fig. 12.10  Example 12.2 

EXAMPLE 12.3 

Design a ‘waist slab’ type staircase comprising a straight flight of steps, supported 
between two stringer beams along the two sides.  Assume an effective span of 1.5 m, 

0 mm and a tread of 270 mm.  Assume a live load of 3.0kN/m2.  Use 
 20 concret

SOLUTION 

a riser of 15
M e and Fe 250 steel.  Assume mild exposure conditions. 

• Given R = 150 mm, T = 270 mm, l = 1.5 m 

⇒ +R T2 2  = 309 mm 
Assume a nominal waist slab thickness t = 80 • mm [Fig. 12.11(a)].  Further, 

ded entirely by the waist slab, with 
rs, 

• idth

assuming the flexural resistance to be provi
20 mm clear cover (mild exposure) and 10 φ ba
effective depth d = 80 – 20 – 10/2 = 55 mm. 

Loads acting vertically over each tread w : 



552   REINFORCED  CONCRETE  DESIGN 

(1) self-weight of slab @ 25 kN/m3 × (0.080 × 0.309) m2     = 0.618 kN/m 

(2) self-weight of step @ 25 kN/m  × 3 1⎛ ⎞
2

0 15 0 27× ×⎝⎜ ⎠⎟. . m    = 0.506  ” 

(3) finishes                    @ 0.6 kN/m2 × 0.27 m                     = 0.162  ” 
(4) live loads                 @ 3.0 kN/m             = 0.810  ” 

       w = 2.096 kN/m 
Fac . 12.11(a)]: 

2 × 0.27 m         

tored load causing flexure in the transverse‡ direction [Fig

( . ) cos ( . . )w × = × × ⎛
⎝⎜

⎞
⎠⎟

1 5 2 096θ  kN/m 1 5 270
309

 = 2.747

⇒ Distributed factored load per m width along inclined slab 

= 2 747.  = 8.89kN/m
0309.

2

• Design of main bars ) 
Maximum moment at mi

 (spanning transversely
dspan: 

Mu =
×889 15
8

2. .  = 2.50 kNm/m 

2

6

2 551000
1050.2

×
×

=≡
bd
MR u  = 0.826 MPa  

[ ]⇒ ≡ = − −
p A

bd f y100 2
f R ft st ck

ck1 1 4 598.  = 0.4 × 10–2  

⇒ mmm 22205510)104.0()( 32 =×××= −
reqdstA  

⇒ Required spacing of 10 φ bars = 103

220
5.78 ×  = 357 mm 

Required spacing of 8 φ bars = 
220

100.50 3×  = 227 mm 

(Minimum spacing = 3d = 3 × 55 = 165 mm) 
Provide 8 φ bars @ 309/2 = 155 mm c/c, as shown in Fig. 12.11(b). 

                                                           
‡ The load component wt = w sinθ acting tangentially in the longitudinal direction (i.e., in the 
plane of the waist slab) results in very low flexural stresses owing to the large depth of the 
waist slab in its own plane; hence, this is ignored. 
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80 8 φ @ 155 c/c

6 φ @ 230 c/c

300

stringer beam
6 φ @ 230 c/c

distributors

8 φ @ 155 c/c
main bars

R = 150

T = 270
t = 80

309

waist slab

w

wn = w cosθ
wt θ

(a)

(b)

X

X

SECTION  XX

 

Fig. 12.11  Example 12.3 

• Distributors (spanning longitudinally) 
(Ast)min = 0.0015 bt (for Fe 250 bars) 
            = 0.0015 × 1000 × 80 = 120  mm2/m 

Spacing of 6 φ bars = 283 10
120

3. ×  = 235 mm 

Provide 6 φ distributors @ 230c/c, as shown in Fig. 12.11(b)  

12.5   DESIGN EXAMPLES OF STAIR SLABS SPANNING 
LONGITUDINALLY 

EXAMPLE 12.4 

Design the staircase slab, shown in Fig. 12.12(a).  The stairs are simply supported on 
beams provided at the first riser and at the edge of the upper landing.  Assume a 
finish load of 0.8 kN/m2 and a live load of 5.0 kN/m2.  Use M 20 concrete and 
Fe 415 steel.  Assume mild exposure conditions.  

SOLUTION 

• Given: R = 150 mm, T = 300 mm ⇒ +R T2 2  = 335.4 mm 
Effective span = c/c distance between supports = 4.5 m [Fig. 12.12(a)] 

• Assume a waist slab thickness ≈ l 20  = 4500/20 = 225 mm, say 230 mm 
Assuming 20 mm clear cover and 12 φ main bars, 
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effective depth d = 230 – 20 – 12/2 = 204 mm. 
• Loads on going [Ref. Fig. 12.12(b)] on projected plan area: 

(1) self-weight of waist slab @ 25 kN/m3 × (0.230 × 335.4/300)m  = 6.43 
kN/m2 

(2) self-weight of steps @ 25 kN/m3 × (0.5 × 0.15) m                      = 1.88      ” 
(3) finishes                                     (given)                                        = 0.80      ” 
(4) live load                                    (given)                                       = 5.00      ” 

         14.11 kN/m2 

⇒ Factored load = 14.11 × 1.5 = 21.17 kN/m2

• Loads on landing 
(1) self-weight of slab @ 25 × 0.23 = 5.75 kN/m2 
(2) finishes           @ 0.80     ” 
(3) live loads          @ 5.00     ” 

               11.55 kN/m2

⇒ Factored load = 11.55 × 1.5 = 17.33 kN/m2

• Design Moment [refer Fig. 12.12(c)], considering 1m wide strip of waist slab: 

Reaction R1 2117 3 4 5 1 725
4 5

17 33 1 05 0 525
4 5

= × ×
−⎛

⎝⎜
⎞
⎠⎟
+ × ×⎛
⎝⎜

⎞
⎠⎟

. .45 . .
.

. . .
.

 = 47.16 kN/m 

Max. factored moment occurs at the section of zero shear, located at 
x = 47.16/21.17 = 2.228 m from the left support. 
⇒ Mu = (47.16 × 2.228) – (21.17 × 2.2282/2) = 52.53 kNm/m 
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C

10 × 300 = 3000 1500

150 150
R = 150

T = 300

230 230 × 335.4/300

going landing

avg. thickness of
step = 150/2

335.4 mm

(a)

(b)

21.17 kN/m2
17.33 kN/m2

3.45 m 1.05 m
4.5 m

R2R1

typical in
each step

(c)
Mu = 52.53 kNm per m width

12 φ @ 280 c/c

6 φ @ 200 c/c
8 φ @ 180 c/c

12 φ @ 140 c/c

12 φ @ 140 c/c

8 φ nosing bar

700

230

230

(d)

300 (last step)

300

300

{

2.228 m

 
Fig. 12.12  Example 12.4 

• Main reinforcement 

23

6

2 20410
1053.52

×
×

=≡
bd
MR u  = 1.262 MPa  

Assuming  fck = 20 MPa,  fy = 415 MPa, 

[ ]⇒ ≡ = − −
p A

bd
f
f

R ft st ck

y
ck100 2

1 1 4 598.  = 0.379 × 10–2
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[This may also be obtained from design aids: Table A.3(a)]. 
⇒ mmm277420410)10379.0()( 32 =×××= −

reqdstA  

Required spacing of 12 φ bars = 
774

10113 3×  = 146 mm 

Provide 12 φ @ 140c/c 
• Distributors 

( )Ast reqd  = 0.0012 bt (for Fe 415 bars) 
         = 0.0012 × 103 × 230 = 276  mm2/m 

Assuming 8 φ bars, spacing reqd = 50 3 1000
276

. ×  = 182 mm 

Provide 8 φ @ 180 c/c distributors 
The detailing of bars is shown in Fig. 12.12(d). 

• Check for shear‡ (check at d = 204 mm from support) 
Vu = 47.16 – (21.17 × 0.204) = 42.8 kN/m 

20410
108.42

3

3

×
×

=vτ  = 0.21 MPa << τ c  = 0.42 × 1.19 = 0.499 MPa 

[refer Cl. 40.2.1.1 of the Code].  Hence, safe. 

EXAMPLE 12.5 

Design a (‘waist slab’ type) dog-legged staircase for an office building, given the 
following data: 
• height between floor = 3.2 m; 
• riser = 160 mm, tread = 270 mm; 
• width of flight = landing width = 1.25 m 
• live load = 5.0 kN/m2 
• finishes load = 0.6 kN/m2 
Assume the stairs to be supported on 230 mm thick masonry walls at the outer edges 
of the landing, parallel to the risers [Fig. 12.13(a)].  Use M 20 concrete and Fe 415 
steel.  Assume mild exposure conditions.  

SOLUTION 

• Given: R = 160 mm, T = 270 mm ⇒ +R T2 2  = 314 mm 
Effective span = c/c distance between supports = 5.16 m [Fig. 12.13(a)]. 

• Assume a waist slab thickness ≈ l 20  = 5160/20 = 258 260 mm. →
Assuming 20 mm clear cover (mild exposure) and 12 φ main bars, 
effective depth d = 260 – 20 – 12/2 = 234 mm. 
The slab thickness in the landing regions may be taken as 200 mm, as the bending 
moments are relatively low here. 

                                                           
‡ As observed earlier in Example 12.1, the slab (if well-proportioned) is invariably safe in 
shear, and does not require shear reinforcement.  Also, as explained earlier, a check for 
deflection control is not called for here. 



DESIGN  OF  STAIRCASES 557 

• Loads on going [Ref. 12.13(b)] on projected plan area: 
(1) self-weight of waist slab @ 25 × 0.26 × 314/270      = 7.56 kN/m2 

(2) self-weight of steps @ 25 × 1
2

016×⎛
⎝⎜

⎞
⎠⎟

.                      = 2.00      ” 

(3) finishes                                     (given)                        = 0.60      ” 
(4) live load                                    (given)                       = 5.00     ” 

                                 15.16 kN/m2

⇒ Factored load = 15.16 × 1.5 = 22.74 kN/m2

• Loads on landing 
(1) self-weight of slab @ 25 × 0.20 = 5.00 kN/m2 
(2) finishes           @ 0.6        ” 
(3) live loads          @ 5.0        ” 

              10.60 kN/m2

⇒ Factored load = 10.60 × 1.5 = 15.90 kN/m2

• Design Moment [refer Fig. 12.13(b)] 
Reaction R = × + ×( . . ) ( . .43)15 90 1 365 22 74 2 2  = 49.33 kN/m 
Maximum moment at midspan: 
Mu = (49.33 × 2.58) – (15.90 × 1.365) × (2.58 – 1.365/2)  

    – (22.74) × (2.58 – 1.365)2/2 
      = 69.30 kNm/m 

• Main reinforcement 

23

6

2 23410
1030.69

×
×

=≡
bd
MR u  = 1.265 MPa  

Assuming fck = 20 MPa, fy = 415 MPa, 

[ ]20265.1598.411
4152

20
100

×−−
×

=≡
bd
Ap stt  = 0.381 × 10–2

[This may also be obtained from design aids Table 3(a)]. 
⇒ mmm 89223410)10381.0()( 232 =×××= −

reqdstA  

Required spacing of 12 φ bars = 
892

10113 3×  = 127 mm 

Required spacing of 16 φ bars = 
892

10201 3×  = 225 mm (to be reduced slightly to 

account for reduced effective depth) 
Provide 16 φ @ 220c/c 

• Distributors 
( )Ast reqd  = 0.0012 bt (for Fe 415 bars) 
   = 0.0012 × 103 × 260 = 312  mm2/m 
spacing 10 φ bars = / 312 = 251 mm 3105.78 ×
Provide 10 φ @ 250c/c as distributors 
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1250

1250

100

230
2301250270 × 9 = 24301250

T = 270
R = 160

(a)

R R1.365 2.43 m 1.365 m

Mu = 69.30 kNm/m

15.90 kN/m222.74 kN/m2
15.90 kN/m2

2.58 m

FACTORED LOADS

BENDING MOMENTS

(b)

(c)

10 φ @ 220 c/c
8 φ @ 250 c/c

10 φ @ 220 c/c

16 φ @ 220 c/c

10 φ @ 250 c/c

16 φ @ 220 c/c200

200

260

R T mm2 2 314+ =  

AA

SECTION A – A
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Fig. 12.13  Example 12.5 

The detailing of bars for the first flight is shown in Fig. 12.13(c).  Some nominal 
reinforcement  (10 φ @ 220c/c) is provided in the landing slabs near the support 
at top to resist possible ‘negative’ moments on account of partial fixity; 8 φ @ 

utors are also provided. 250 c/c distrib

EXAMPLE 12.6 

Repeat the problem of the dog-legged staircase in Example 12.5, considering the 
be supported only on two edges perpendicular to the risers 

)]. 

ndations are adopted here for determination of 

• 

landings to 
[Fig. 12.14(a

SOLUTION 

• The prevailing IS Code recomme
the design moments†. 

⇒ +R T2 2  = 314 mm Given: R = 160 mm, T = 270 mm 
As the flight is supported on the landings (whose length is less than 2.0 m), the 

ta n landings. effective span (as per Code) is given by the c/c dis nce betwee
l = + =2 1 25 3 68.43 . .  m  

• Assume a waist slab thickness ≈  3680/20 = 184 → 185 mm. 
Let thickness of the landing slabs also be 185 mm 
Assuming 20 mm cover and 12 φ bars, d = 185 – 20 – 12/2 = 159 mm 

• 
 

Loads on going [Ref. 12.14(b)] on projected plan area: 
(1) self-weight of waist slab @ 25 × 0.185 × 314/270      = 5.38 kN/m2

(2) self-weight of steps @ 25 × 1 016×⎛
⎜

⎞
⎟.                       = 2.00        ” 

2⎝ ⎠
(3) 
(4)                   = 5.00        ” 

                               12.98 kN/m

• g 
 of sla @ 25 × 2 

(2) nishes 
(3)    ” 

 

g longitudinally, 
 kN/m  [Fig. 12.14(b)]. 

Design of waist slab [refer Fig. 12.14(b)]  
                                                          

finishes                                     (given)                         = 0.60        ” 
 live load                                    (given)      

   2 

⇒ Factored load = 12.98 × 1.5 = 19.47 kN/m2

Loads on landin
(1) self-weight b  0.185 = 4.63 kN/m

fi           @ 0.60       ” 
 live loads          @ 5.00    

              10.23 kN/m2

⇒ Factored load = 10.23 × 1.5 = 15.35 kN/m2

50% of this load may be assumed to be actin
2i.e., 15.35 ×1/2 = 7.68

 
† As explained earlier, this will result in a conservative estimate of sagging moments (and 
consequently, thicker waist slab) and does not address the development of hogging moments at 
the going-landing junctions.  More rational and economical design procedures are described in 
Ref. 12.6 and 12.8. 
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Reaction on landing R = × + ×( . . ) ( .47 .43 )7 68 0 625 19 2 2  = 28.46 kN/m 
 

 T = 270
R = 160 

1250

1250

100

314

C 
2600 2.6

m

34.28 kN/m

Mu = 29.0 
kN/m 

625 625 2430 625 625

R R

Mu = 30.69 kNm/m 

19.47 kN/m2 7.68 kN/m2
7.68 kN/m2 

(a)

(b)

(c)

(d)

600 185

12 φ @ 380 c/c 

10 φ @ 190 c/c 

12 φ @ 200 c/c

8 φ @ 200 c/c
12 φ @ 190 c/c

8 φ @ 220 c/c
12 φ @ 200 c/c 

10 φ @ 380 c/c 

185 

185 

3.68m

 
g. 12.14  Example 12.6 

• 
M  = (28.46 × 3.68/2) – (7.68 × 0.625) × (1.84 – 0.625/2) – 19.47 

  = 30.69 kN/m 
• Main reinforcement 

Fi

Design Moment at midspan: 
× 1.2152/2 u

232 15910 ×
=≡⇒

bd
R u  = 1.214 MPa  

61069.30 ×M

Assuming M 20 concrete and Fe 415 steel, 
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[ ]20214.1598.411
4152

20
100

×−−
×

=≡
bd
Ap stt  = 0.364 × 10–2

mmm57910)10364.0()( 22 ××= −
reqdstA 1593 =×  ⇒

Required spacing of 12 φ bars = 
579

10113 3×  = 195 mm. 

Provide 12 φ @ 190c/c main bars in the waist slab; these bars are continued into 
the landing slab, as shown in Fig. 12.14(c).  Nominal top steel 10 φ @ 190c/c is 

at top at the junction of the waist slab with the landing slab to resist 
possible

• Distributors: 

also provided 
 ‘negative’ moments.  

( )Ast min  = 0.0012 × 1000 × 185 = 222 mm2/m 

Required spacing 8 φ bars = 50 3 103. ×  = 226 mm 
222

Provide 8 φ @ 220c/c distributors in the waist slab.  

sign of landing slabs [refer Fig. 12.14(c)]. De

bending of the la
• 

full wid  of 1.25 m) 
)  d ectly on landing: 15.35 ×

(ii)
     42.85 kN/m 
 42.85/1.25 = 34.28 kN/m 

• Design Moment (at m
M  =34.28 × 2.602/8 

The entire loading on the staircase is transmitted to the supporting edges by the 
nding slab in a direction parallel to the risers. 

Loads (assumed to be uniformly distributed): 
(considering the th of landing

(i ir  1.25 = 19.19 kN/m 
 from going: 19.47 × 2.43/2  = 23.66     ” 

    
⇒ Loading on 1 m wide strip =
Effective span = 2.60 m 

idspan): 
= 29.0 kNm/m u

23

6

2 15910
100.29

×
×

=⇒
bd
Mu  = 1.147 MPa  

[ ]20147.1598.411
4152

20
100

×−−
×

=≡
bd
Ap stt  = 0.342 × 10–2

mmm 254410)10342.0()( 2 ××= −
reqdstA 1593 =×  ⇒

Required spacing of 12 φ bars = 
544

 = 207 mm. 

Provide 12 φ @ 200 c/c at bottom in a direction parallel to the risers. 
The detailing of the staircase (one typical flight) is depicted in Fig. 12.14(d).  
Note that the bars from the waist slab are kept above the main bars of the landing 
slab so that the desired maximum effective depth is obtained for the main bars in 
the landing slab.  This arrangement is essential all the more because the waist slab 
is supported by the landing, and to facilitate effective

10113 3×

• 

 load transfer, the waist slab 
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bars must be placed above the main bars in the landing.  Nominal bars 8 φ @ 

7 

200 c/c are also provided at top in the landing slabs. 

EXAMPLE 12.

Repeat Example 12.6, considering a ‘tread-riser’ type of staircase, instead of a ‘waist 

SO

• 

slab’ type. 

LUTION 

⇒ +R T2 14 mm Given: (as in Example 12.6) R = 160 mm, T = 270 mm 2  = 3
Effective span of the flight [Fig. 12.14(a)]: 

l = + =2 1 25 3 68.43 . .  m  
ser slab Assume thickness of tread slab = thickness of ri ≈ l 25  = 147 

• 
(1) elf-weig t of tre -riser s b @ 25 (0.16+0 7) × 0.
(2)                                   = 0.60      ” 

                                         = 5.00       ” 
                 11.37 kN/m

d = 11. 7 × 1.5 
• g (assume 175 m

(1) elf-weig t of sla @ 25 × 2 
(2)   ” 

 
× 1.5 = 14.97 kN/m

ed to be acting longitudin ple 12.6;  
2 [refer Fig. 12.15(a)] 

De
Reaction on landing 

→ 145 mm. 
Assuming 20 mm cover and 12 φ bars, d = 145 – 20 – 12/2 = 119 mm 
Loads on going [Ref. 12.15(a)] on projected plan area: 

s h ad la × .2 145/0.27 = 5.77 kN/m2 
 finishes                                                       

(3) live load                                              
      2

⇒ Factored loa 3 = 17.06 kN/m2

Loads on landin m thick) 
s h b  0.175 = 4.38 kN/m

 finishes           = 0.60    
(3) live loads          = 5.00      ” 

              9.98 kN/m2

2⇒ Factored load = 9.98 
 be assum50% of this load may ally, as in Exam

i.e., 14.97 ×1/2 = 7.49 kN/m

sign of tread-riser unit 
R = × + ×( . . ) ( . . )7 49 0 625 17 06 2 43 2  = 25.41

• Design Moment at midspan
Mu = (25.41 × 3.68/2) – (7.49 × 0.625) × (1.84 – 0.625/2) – 17.06 × 1.2152/2 

 = 27.01 kNm/m 

 kN/m 
: 

23

6

2 11910
1001.27

×
×

=≡⇒
bd
MR u  = 1.907 MPa  

Assuming M 20 concrete and Fe 415 steel, 

[ ]20907.1598.411
4152100 ×bd

20
×−−=≡

Ap stt  = 0.604 × 10–2

⇒ mmm 22− 71911910)10604.0()( 3 =×××=A  reqdst

Required spacing of 12 φ bars = 
719

 = 157 mm. 1113 3× 0
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Provide 12 φ @ 150 c/c in the form of closed ties [Fig. 12.15(b)], as explained 

De

• The entire loading on the staircase is transmitted by flexure of the landing slabs in 
a direction parallel to the risers. 

Effective span = 2.60 m; effective depth = 175 – 20 – 12/2 = 149 mm 

earlier in Section 12.3.5 [Fig. 12.8(c)]. 
Distributors: provide an 8 φ bar transversely at each bend. 

sign of landing slabs 

 

C 

C

(a)

625 2430 625

1
2

3
4

5
6

7
8

9
10 landing 

landing

2 17.06 kN/m27.49 kN/m 2

(b)

Mu = 25.41 kNm/m

3.68 m

7.49 kN/m

175 

145
270

160

145
10 φ @ 200 c/c 

(nominal) 

12 φ @ 210 c/c

10 

12 φ ties @ 150 c/c

3–8 φ

φ @ 160 c/c

3–8 φ

12 φ ties@ 150 c/c 

 

• 
)  directly on landing      @14.97 kN/m2

Fig. 12.15  Example 12.7 

L
(i

oads (assumed to be uniformly distributed) — as in Example 12.6 
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(ii) from going  @ 17.06 kN/m2 × 2.43 m / 2                            16.58 kN/m2

       31.55 kN/m2 

 

• Design Moment (at mi
M  = 31.55 × 2.602/8 = 26.66 kN/m 

     

dspan): 
u

23

6

2 14910
1066.26

×
×

=⇒
bd
Mu  = 1.201 MPa  

[ ]2001411
4152100

−−
×

=≡⇒
bd

stt  = 0.2.1598.20
×

Ap 359 × 10–2

⇒ mmm 253614910)10359.0()( 32 =×××= −
reqdstA  

Required spacing of 12 φ bars = 
536

10113 3×  = 211 mm 

/c at bottom in a direction parallel to the risers.  In the 
, provide nominal bars 10 φ @ 160c/c.  The detailing of 

REVIE

12.2 

12.4 

t at re-
orners? 
 meant by “stair slabs supported on landings”?  Explain the Code 

PROB

12.1 
om a reinforced 

Provide 12 φ @ 210c
perpendicular direction
the bars is shown in Fig. 12.15(b).  

W QUESTIONS 

12.1 Describe the common geometrical configurations of staircases. 
Explain the basic difference in structural behaviour between ‘stair slabs 
spanning transversely’ and ‘stair slabs spanning longitudinally’.  

12.3 The gravity loading on a ‘waist slab’ type flight can be resolved into 
components normal to the flight and tangential to the flight.  Describe their 
load effects on the waist slab if it is (i) spanning transversely, (ii) spanning 
longitudinally.  
In the case of ‘tread-riser’ type stairs spanning longitudinally, discuss the load 
effects produced by gravity loading.  

12.5 Sketch the appropriate detailing of longitudinal bars in longitudinally 
spanning ‘waist slab’ type stairs at the junction of the flight and (i) lower 
landing slab, (ii) upper landing slab.  Is there any special requiremen
entrant c

12.6 What is
recommendations for the effective span of the stair slab in such cases.  

LEMS 

A straight staircase is made of structurally independent tread slabs, with riser 
r160 mm, tread 280 mm, and width 1600 mm, cantilevered f

concrete wall.  Design a typical tread slab, assuming M 20 concrete and 
Fe 415 steel.  Apply the live loads specified in the IS Loading Code for stairs 
liable to be overcrowded.  Assume mild exposure conditions 

12.2 Repeat Problem 12.1, considering a tread-riser arrangement. 
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12.3 

12.5 slab’ type) for an office building, 

ssume the stairs to be supported on 230 mm thick masonry 

12.6 

12.7 

 and upper and lower landings of 1250 mm width each.  The 

ed.  Assume mild exposure conditions. 
12.9 Repeat Problem 12.8, considering a ‘tread-riser’ type of staircase, instead of a 

‘waist slab’ type. 
12.10 Design and detail a typical intermediate flight (shown in section ‘AA’) of the 

‘open-well’ staircase, details of which are shown in Fig. 12.16.  Use M 20 
concrete and Fe 415 steel and assume live loads of 5.0 kN/m2.  Assume mild 
exposure conditions. 

Repeat Problem 12.1, considering the isolated tread slabs to be supported on 
two stringer beams, each 250 mm wide.  The clear spacing between the beams 
is 1600 mm.  

12.4 Repeat Problem 12.3, considering a ‘waist slab’ type arrangement. 
Design a dog-legged staircase (‘waist 
assuming a floor-to-floor height of 3.0m, a flight width of 1.2m, and a landing 
width of 1.25m.  A
walls at the edges of the landing, parallel to the risers.  Use M 20 concrete and 
Fe 415 steel. Assume live loads of 5.0 kN/m2 and mild exposure conditions. 
Repeat Problem 12.5, considering each of the landings to be supported only 
on two edges perpendicular to the risers. 
Repeat Problem 12.6, considering a ‘tread-riser’ type of staircase, instead of a 
‘waist slab’ type.  

12.8 Design a single flight straight staircase, with 11 risers, each 160 mm, and with 
the tread 280 mm,
edges of the two landings are simply supported on two masonry walls, 
230 mm thick.  Design a ‘waist slab’ type stair, assuming M 20 concrete and 
Fe 415 steel.  Apply the live loads specified in the IS Loading Code for stairs 
liable to be overcrowd
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R = 150

 

T = 275

PLAN
floor slab 

A A 

230 

1500 

2200 

230 230150016501500

SECTION ‘A – A’ 

 

Fig. 12.16  Problem 12.8 
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       Design of Compression 
         Members 

 

13.1   INTRODUCTION 

A ‘compression member’ is a structural element which is subjected (predominantly) 
to axial compressive forces.  Compression members are most commonly encountered 
in reinforced concrete buildings as columns (and sometimes as reinforced concrete 
walls), forming part of the ‘vertical framing system’ [refer Section 1.6.2].  Other 
types of compression members include truss members (‘struts’), inclined members 
and rigid frame members. 

The ‘column’ is representative of all types of compression members, and hence, 
sometimes, the terms ‘column’ and ‘compression member’ are used interchangeably.  
The Code (Cl. 25.1.1) defines the column as a compression member, the ‘effective 
length†’ of which exceeds three times the least lateral dimension.  The term 
‘pedestal’ is used to describe a vertical compression member whose ‘effective length’ 
is less than three times its least lateral dimension [Cl. 26.5.3.1(h) of the Code]. 

13.1.1   Classification of Columns Based on Type of Reinforcement  

Reinforced concrete columns may be classified into the following three types based 
on the type of reinforcement provided: 

 1)  Tied columns : where the main longitudinal bars are enclosed 
    within closely spaced lateral ties [Fig. 13.1(a)]; 
 2)  Spiral columns : where the main longitudinal bars are enclosed 
    within closely spaced and continuously wound 
    spiral reinforcement [Fig. 13.1(b)]; 

                                                           
† For the definition of ‘effective length’, refer Section 13.2. 
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 3)  Composite columns : where the reinforcement is in the form of  
   structural steel sections or pipes, with or without 
   longitudinal bars [Fig. 13.1(c)]. 

tie spiral

longitudinal
bars

(a)  tied column (b)  spiral column

(c)  composite column

structural
steel section

 

Fig. 13.1  Types of columns —  tied, spiral and composite 

This chapter primarily deals with tied columns and spiral columns, which are the 
most commonly used types in reinforced concrete construction.  Among these two, 
tied columns are more common, being applicable to all cross-sectional shapes 
(square, rectangle, T-, L-, cross, etc.).  Spiral columns are used mainly for columns 
that are circular in shape, and also for square and octagonal sections. 

13.1.2   Classification of Columns Based on Type of Loading  

Columns may be classified into the following three types, based on the nature of 
loading: 

1. Columns with axial loading (applied concentrically) [Fig. 13. 2(a)]; 
2. Columns with uniaxial eccentric loading [Fig. 13. 2(b)]; 
3. Columns with biaxial eccentric loading [Fig. 13. 2(c)]. 
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Fig. 13.2  Different loading situations in columns 

The occurrence of ‘pure’ axial compression in a column (due to concentric loads) is 
relatively rare.  Generally, flexure (and, sometimes, shear‡) accompanies axial 
compression — due to ‘rigid frame’ action, lateral loading and/or actual (or even, 
unintended/accidental) eccentricities in loading.  The combination of axial 
compression (P) with bending moment (M) at any column section is statically 
equivalent to a system consisting of the load P applied with an eccentricity e = M/P 
with respect to the longitudinal centroidal axis of the column section.  In a more 
general loading situation, bending moments (Mx and My) are applied simultaneously 
on the axially loaded column in two perpendicular directions — about the major axis 
(XX) and minor axis (YY) of the column section.  This results in biaxial 
eccentricities ex= Mx /P and ey = My /P, as shown in [Fig. 13.2(c)]. 

Columns in reinforced concrete framed buildings, in general, fall into the third 
category, viz. columns with biaxial eccentricities.  The biaxial eccentricities are 
particularly significant in the case of the columns located in the building corners.  In 
the case of columns located in the interior of symmetrical, simple buildings, these 
eccentricities under gravity loads are generally of a low order (in comparison with 
the lateral dimensions of the column), and hence are sometimes neglected in design 
calculations.  In such cases, the columns are assumed to fall in the first category, viz. 
columns with axial loading.  The Code, however, ensures that the design of such 
columns is sufficiently conservative to enable them to be capable of resisting nominal 
eccentricities in loading [refer Section 13.3.2]. 

Frequently, the eccentricity about one axis is negligible, whereas the eccentricity 
about the other axis is significant.  This situation is encountered in the exterior 
                                                           
‡ Considerations of shear in columns are usually neglected because the shear stresses are 
generally low, and the shear resistance is high on account of the presence of axial compression 
and the presence of lateral reinforcement. 
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columns of interior frames in a reinforced concrete building, under gravity loads.  
Under lateral loads (wind or seismic), indeed all columns (external as well as 
internal) in multi-storeyed buildings are subjected to significant uniaxial† bending 
moments.  Such columns fall into the second category, viz. columns with uniaxial 
eccentricity. 

13.1.3   Classification of Columns Based on Slenderness Ratios  

Columns (i.e., compression members) may be classified into the following two types, 
depending on whether slenderness effects are considered insignificant or significant: 

1. Short columns; 
2. Slender (or long) columns. 

‘Slenderness’ is a geometrical property of a compression member which is related 
to the ratio of its ‘effective length’ to its lateral dimension.  This ratio, called 
slenderness ratio, also provides a measure of the vulnerability to failure of the 
column by elastic instability (buckling) — in the plane in which the slenderness ratio 
is computed.  Columns with low slenderness ratios, i.e., relatively short and stocky 
columns, invariably fail under ultimate loads with the material (concrete, steel) 
reaching its ultimate strength, and not by buckling.  On the other hand, columns with 
very high slenderness ratios are in danger of buckling (accompanied with large 
lateral deflection) under relatively low compressive loads, and thereby failing 
suddenly.  Design codes attempt to preclude such failure by specifying ‘slenderness 
limits’ to columns [refer Section 13.3.1]. 

There is another important consequence of slenderness of a column subjected to 
eccentric compression.  When a column is subjected to flexure combined with axial 
compression, the action of the axial compression in the displaced geometry of the 
column introduces ‘secondary moments’ — commonly referred to as the P– effect 
— which is ignored in the usual ‘first-order’ structural analysis.  These secondary 
moments become increasingly significant with increasing column slenderness.  On 
the other hand, the secondary moments are negligible in columns with low 
slenderness ratios; such columns are called short columns.  Design codes provide 
guidelines, in terms of slenderness ratios, in drawing the line between ‘short 
columns’ (wherein secondary moments can be ignored) and ‘slender (or long) 
columns’ (wherein secondary moments must be explicitly considered). 

Δ

According to the IS Code (Cl. 25.1.2), a compression member may be classified as 
a ‘short column’ if its slenderness ratios with respect to the ‘major principal axis’ 
(lex/Dx) as well as the ‘minor principal axis’ (ley/Dy) are both less than 12‡ ; otherwise, 
it should be treated as ‘slender column’.  Here lex and Dx denote the effective length 
and lateral dimension (‘depth’) respectively for buckling in the plane passing through 
the longitudinal centroidal axis and normal to the major principal axis; i.e. causing 
                                                           
† Lateral loads, with their maximum design values, are generally assumed to operate only in 
one direction at a time.  The action of lateral loads (especially seismic) in a diagonal direction 
(inducing biaxial bending in columns) may also have to be investigated in some cases. 
‡ In the British Code, this value is specified as 15 for ‘braced columns’ and 10 for ‘unbraced 
columns’ [Ref. 13.2]. 
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buckling about the major axis [refer Fig. 13.2(c)]; likewise, ley and Dy  refer to the 
minor principal axis. 

Such a definition, is, however, not suitable for non-rectangular and non-circular 
sections — where the slenderness ratio is better expressed in terms of the radius of 
gyration† r (as in steel columns), rather than the lateral dimension D.  In such cases, 
reference may be made to the ACI Code [Ref. 13.1], which recommends that the 
dividing line between short columns and slender columns be taken as le/r equal to 34 
for ‘braced columns’ and 22 for ‘unbraced columns’ [refer Section 13.2.3 for 
definitions of braced/unbraced columns].  A more precise definition of this 
demarcating slenderness ratio, in terms of the magnitudes and directions of the 
applied primary moments (at the column ends) is given in Section 13.7.1. 

The design of slender columns is described in Section 13.7.  The design of short 
columns subject to axial compression, uniaxially eccentric compression and biaxially 
eccentric compression are described in Sections 13.4, 13.5 and 13.6 respectively.  
Code requirements relating to slenderness limits, minimum eccentricities and 
reinforcement are explained in Section 13.3. 

The ‘effective length’ of a column (lex, ley) is an important parameter in its design.  
Methods of estimating the effective length are described in the next section. 

13.2   ESTIMATION OF EFFECTIVE LENGTH OF A COLUMN 

13.2.1   Definition of Effective Length 

The effective length of a column in a given plane may be defined as the distance 
between the points of inflection‡ in the buckled configuration of the column in that 
plane.  The effective length depends on the unsupported length l (i.e., distance 
between lateral connections, or actual length in case of a cantilever) and the 
boundary conditions at the column ends introduced by connecting beams and other 
framing members.  An expression for le may be obtained as 

lkle  =                                                             (13.1) 

where k is the effective length ratio (i.e., the ratio of effective length to the 
unsupported length — also known as effective length factor) whose value depends on 
the degrees of rotational and translation restraints at the column ends. 

Unsupported Length 

The Code (Cl. 25.1.3) defines the ‘unsupported length’ l of a column explicitly for 
various types of constructions.  In conventional framed construction, l is to be taken 
as the clear distance between the floor and the shallower beam framing into the 
columns in each direction at the next higher floor level.  By this, it is implied that 

                                                           
† For a rectangular section, r  0.3D; for a circular section, r = 0.25D. ≅
‡ When there exists relative translation of the ends of the column member, the points of 
inflection (zero moment) may not lie within the member.  In such cases, they may be located 
by extending the deflection curve beyond the column end(s) and by applying conditions of 
symmetry, as shown in [Fig. 13.4(a), (b)]. 
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when a column is framed in any direction by beams of different depths on either side, 
then the unsupported length (with respect to buckling about a perpendicular axis) 
shall be considered, conservatively, with reference to the shallower beam.  It may be 
noted that the unsupported length in one direction may be different from that in the 
perpendicular direction.  For a rectangular column section (width Dy × depth Dx), we 
may use the terms, lex = kx lx and ley = ky ly to denote the effective lengths referring to 
buckling about the major and minor axes respectively, where lx and ly denote the 
corresponding unsupported lengths and kx and ky denote the corresponding effective 
length factors.  These concepts are made clear in Fig. 13.2a, and further illustrated in 
Examples 13.1 and 13.2. 

 

Fig. 13.2a  Definitions of unsupported and effective lengths in a rectangular column 
 
In the case of ‘flat slab construction’, the unsupported length l is to be taken as the 
clear distance between the floor and the lower extremity of the capital, the drop 
panel or slab, whichever is the least. 

13.2.2   Effective Length Ratios for Idealised Boundary Conditions 

When relative transverse displacement between the upper and lower ends of a 
column is prevented, the frame is said to be braced (against sideway).  In such cases, 
the effective length ratio k varies between 0.5 and 1.0, as shown in Fig. 13.3.  The 
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extreme value k = 0.5 corresponds to 100 percent rotational fixity at both column 
ends [Fig. 13.3(a)] (i.e., when the connecting floor beams have infinite flexural 
stiffness), and the other extreme value k = 1.0 corresponds to zero rotational fixity at 
both column ends (‘pinned’) [Fig. 13.3(c)] (i.e., when the beams have zero flexural 
stiffness).  When one end is fully ‘fixed’ and the other ‘pinned’, k = 0.7 [Fig. 13(b)]. 

 
Fig. 13.3  Effective lengths of columns braced against sideway 

When relative transverse displacement between the upper and lower ends of a 
column is not prevented, the frame is said to be unbraced (against sideway).  In such 
cases, the effective length ratio k varies between 1.0 and infinity, as shown in 
Fig. 13.4.  The lower limit k = 1.0 corresponds to 100 percent rotational fixity at both 
column ends [Fig. 13.4(a)], and the upper theoretical k = ∝ corresponds to zero 
rotational fixity at both column ends, i.e. a column pinned at both ends and permitted 
to sway (unstable) [Fig. 13.4(c)].  When one end is fully ‘fixed’ and the other ‘free’, 
the column acts like a vertical cantilever in the buckled mode, corresponding to 
which k = 2 [Fig. 13.4(b)]. 
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Fig. 13.4  Effective lengths of columns unbraced against sideway 

Code Recommendations for Idealised Boundary Conditions 

Although, in design practice, it is convenient to assume the idealised boundary 
conditions of either zero or full restraint (rotational and translational) at a column 
end, the fact is that such idealisations cannot generally be realised in actual 
structures.  For this reason, the Code (Cl. E–1), while permitting these idealisations, 
recommends the use of ‘effective length ratios’ k = le/l that are generally more 
conservative than those obtained from theoretical considerations [Fig. 13.3, 13.4]. 

These recommended values of k are as follows: 

1. columns braced against sideway: 
a) both ends ‘fixed’ rotationally [Fig. 13.3(a)]  : 0.65 (instead of 0.5) 
b) one end ‘fixed’ and the other ‘pinned’[Fig. 13.3(b)] : 0.80 (instead of 0.7) 
c) both ends ‘free’ rotationally (‘pinned’) [Fig. 13.3(c)] : 1.00 

2. columns unbraced against sideway: 
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a) both ends ‘fixed’ rotationally [Fig. 13.4(a)]  : 1.20 (instead of 1.0) 
b) one end ‘fixed’ and the other ‘partially fixed’  : 1.50 
c) one end ‘fixed’ and the other free [Fig. 13.4(b)] : 2.00 

The most common case encountered in framed buildings is the one involving 
partial rotational fixity at both ends of the column.  For such a case in a ‘braced’ 
frame, k = 0.85 may be assumed for preliminary designs — conforming to an average 
of cases 1(a) and 1(c) indicated above.  If the frame cannot be considered to be fully 
braced† , it is desirable to assume a more conservative estimate — say k = 1.0 or 
more.  However, if the frame is clearly ‘unbraced’, it is necessary to ascertain the 
effective length ratio more accurately, as described in the next section. 

13.2.3   Effective Length Ratios of Columns in Frames 

The rotational restraint at a column end in a building frame is governed by the 
flexural stiffnesses of the members framing into it, relative to the flexural stiffness of 
the column itself.  Hence, it is possible to arrive at measures of the ‘degree of fixity’ 
at column ends, and thereby arrive at a more realistic estimate of the effective length 
ratio of a column than the estimates given in Section 13.2.2 (for idealised boundary 
conditions). 

For this purpose, different methods have been recommended by different codes.  
The IS Code (Cl. E–1) recommendations are based on design charts proposed by 
Wood [Ref. 13.3].  The British Code [Ref. 13.2] and the Commentary to the 
ACI Code [Ref. 13.1] recommend the use of certain simplified formulas, which are 
particularly suitable for computer-aided design.  Other methods, including the use of 
certain ‘alignment charts’ [Ref. 13.4, 13.5], have also been proposed.  All of these 
methods provide two different sets of charts/formulas: one set for columns ‘braced’ 
against sideway, and the other set for ‘unbraced’ columns.  This is a shortcoming in 
these methods, because columns in actual frames are rarely completely ‘braced’ 
(prevented from side-sway) and rarely completely ‘unbraced’, and the difference 
between the two estimates of effective length ratio can be considerable.  A recent 
study [Ref. 13.22] shows how this problem can be resolved using fuzzy logic 
concepts, which incorporates the concept of ‘partial bracing’.  This aspect of ‘partial 
bracing’ may be more accurately accounted for by means of a proper second-order 
analysis of the entire frame is required [Ref. 13.6]; however, this is computationally 
too difficult for routine design problems.   

Deciding Whether a Column is Braced or Unbraced 

An approximate way of deciding whether a column is ‘braced’ or ‘unbraced’ is given 
in the ACI Code commentary.  For this purpose, the ‘stability index’ Q of a storey in 
a multi-storeyed building is defined as: 

                                                           
† Generally, the assumption of a fully braced frame can be safely made if there are special 
bracing elements in a building such as shear walls, shear trusses, etc. [Ref. 13.7] (which are 
designed to resist practically all the lateral loads on the frame).  Even otherwise, if a rigid 
frame possesses sufficient inherent translational stiffness, and especially if there are in-fill 
masonry walls, it may be considered to be braced — at least partially, if not fully. 
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where sum of axial loads on all columns in the storey; Pu ≡∑
   h height of the storey; s ≡
  Δu ≡ elastic first-order lateral deflection of the storey; 
  H total lateral force acting on the storey. u ≡

It can be shown [Ref. 13.8] that, in the absence of bracing elements, the ‘lateral 
flexibility’ measure of the storey Δu uH  (storey drift per unit storey shear) may be 
taken (for a typical intermediate storey) as: 

∑∑
+=

Δ
)/(12

  
)(12

  
,

2

,

2

bbbeamc

s

sccolc

s

u

u

lIE
h

hIE
h

H
           (13.3) 

where sum of second moments of areas of all columns in the storey in the 

plane under consideration; 

Ic∑ ≡

      I lb b∑ ≡ sum of ratios of second moment of area to span of all floor members 

in the storey in the plane under consideration; 
  modulus of elasticity of concrete. Ec ≡

Eq. 13.2 is derived by assuming points of inflection at the mid-heights of all 
columns and midspan locations of all beams, and by applying the unit load method to 
an isolated storey [Ref. 13.8].  If special bracing elements such as shear walls, shear 
trusses and infill walls are present, then their effect will be to reduce Δu uH  
significantly. 

The recommendation given in the ACI Code is that the storey can be 
considered to be braced † only if the stability index Q < 0.05.  

The application of this concept is demonstrated in Example 13.1. 

Use of Code Charts 

Charts are given in Fig. 26 and Fig. 27 of the Code for determining the effective 
length ratios of braced columns and unbraced columns respectively, in terms of 
coefficients β1 and β2 which represent the degrees of rotational freedom at the top 
and bottom ends of the column [Ref. 13.7]: 
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      for braced columns         (13.4a) 

                                                           
† It is found that when Q < 0.05, the second-order moments due to the ‘lateral drift effect’ will 
be less than 5 percent of the first-order moments [refer Section 13.7].  It may also be noted that 
in the earlier versions of ACI 318, the limiting value of Q was specified as 0.04.  Code IS 
456:2000 (Annex E) gives limiting value for Q as 0.04. 
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      for unbraced columns    (13.4b) 

where the notation jt denotes that the summation is to be done for the members 
framing into the top joint (in case of β1) or the bottom joint (in case of β2).  The 
increased beam stiffness for unbraced columns [Eq. 13.4b], compared to braced 
columns [Eq. 13.4a], is attributable to the fact that in the case of the latter, the 
(braced) columns are bent in single curvature, whereas in the case of the former, the 
(unbraced) columns are bent in double curvature. 

The limiting values β = 0 and β = 1 represent ‘fully fixed’ and ‘fully hinged’ 
conditions respectively. 

The use of these Code charts (not reproduced in this book) is demonstrated in 
Examples 13.1 and 13.2. 

Use of Formulas 

The following formulas, given in BS 8110 [Ref. 13.2] and the Commentary to the 
ACI Code [Ref. 13.1], provide useful estimates of the effective length ratio k: 
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For a fully fixed condition, α = 0 may be considered, and for a ‘hinged’ condition, 
α = 10 may be considered. 

The application of these formulas is demonstrated in Examples 13.1 and 13.2. 

EXAMPLE 13.1 

The framing plan of a multi-storeyed building is shown in Fig. 13.5(a).  Assume that 
all the columns have a size 300 mm × 400 mm; the longitudinal beams (global X-
direction) have a size 250 mm × 600 mm and the transverse beams (global Y-
direction) have a size 250 mm × 400 mm as shown.  The storey height hs = 3.5 m.  
For a column in a typical lower floor of the building, determine the effective lengths 
lex and ley with respect to the local x- and y- axes (major and minor), as shown in 
Fig. 13.5(b).  

For the purpose of estimating the total axial loads on the columns in the storey, 
assume a total distributed load of 35 kN/m2 from all the floors above (combined).  
Also assume M 25 grade concrete for the columns and M 20 grade concrete for the 
beams. 
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Fig. 13.5  Example 13.1 

SOLUTION 

Unsupported lengths of column  
ly = 3500 – 600 = 2900 mm (for buckling about y-axis) 
lx = 3500 – 400 = 3100 mm (for buckling about x-axis) 

Relative stiffness measures of columns and beams 
• Columns: 16nos, 300 mm × 400 mm, hs = 3500 mm 
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33
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×=⇒ ∑ sc hI  (for sway in the global Y-

direction). 
• Longitudinal Beams: 12nos, 250 mm × 600 mm, lb = 6000 mm 
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×=⇒ ∑ Xbb lI  = 9000 × 103 mm3

• Transverse Beams: 12nos, 250 mm × 400 mm, lb = 4000 mm 
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×=⇒ ∑ Ybb lI  = 4000 × 103 mm3 

Columns Braced or Unbraced ? 
Lateral Flexibility measures of the storey: Xuu H )(Δ  and Yuu H )(Δ  

Ignoring the contribution of in-fill walls [Eq. 13.3]: 
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where ckc fE 5000=  (as per Code Cl. 6.2.3.1) 

For columns, fck = 25 MPa ⇒ 255000, =colcE  = 25000 MPa  

For beams, fck = 20 MPa ⇒ 205000, =beamcE  = 22361 MPa 
• Longitudinal direction (global X-direction): 
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      = 1.4998 × 10-5  mm/N 
• Transverse direction (global Y-direction):: 
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      = 1.6996 × 10-5  mm/N 

Stability Index Q 
• Total axial load on all columns ≈ 35 kN/m2 × (12.0 m × 18.0 m) = 7560 kN 
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Longitudinal direction: QX = 5
3
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×  = 0.0324 

Transverse direction: QY = 5
3
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107560 −××
×  = 0.0367 
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• As QX = 0.0324 < 0.05, the storey can be considered ‘braced’ in the longitudinal 
direction. 
As QY = 0.0367 < 0.05, the storey can be considered ‘braced’ in the transverse 
direction. 
Hence, the columns in the storey may be assumed to be ‘braced’ in both 
directions.  (Note that QX and QY are less than the IS Code limit of 0.04 as well) 

Effective Lengths by IS Code charts 

β1 = β2 =  

I h

I h I l

c s
jt

c s
jt

b b
jt

∑

∑ ∑+ 0 5. ( )
         [Eq. 13.4a] 

• Buckling with respect to minor (local y-) axis:  

33
3

mm105142
3500

12/300400)( ×=×
×

=∑
jt

sc hI    

33
3

1015002
6000

12/)600(250)( mm×=×
×

=∑
jt

bb lI  

β1 = β2 = 
)1500(5.0514

514
+

 = 0.407 

Referring to Fig. 26 of the Code, ky = 0.64 
⇒ ley = ly × ky =  0.64 × 2900 = 1856 mm 

• Buckling with respect to major (local x-) axis:  

33
3

109142
3500

12/400300)( mm×=×
×

=∑
jt

sc hI    

( ) ( ) /I lb b
jt

=
×

∑ × = ×
250 400 12

4000
2 667 10

3
3 3 mm  

β1 = β2 = 
)667(5.0914

914
+

 = 0.733 

Referring to Fig. 26 of the Code, kx = 0.82 
⇒ lex = lx × kx =  0.82 × 3100 = = 2542 mm 

Alternative: Effective Lengths by Formulas [Eq. 13.5a] 

α α1 2= =

I h

I l

c s
jt

b b
jt

∑
∑ ( )

 

• Buckling with respect to minor (local y-) axis: 3427.0
1500
514

21 ==α=α  
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⇒  
⎩
⎨
⎧

=+
=×+

=
8671.0)3427.0(05.085.0

(lesser)   7343.0)3427.02(05.07.0
yk

⇒ ley = 0.7343 × 2900 = 2129 mm 

• Buckling with respect to major (local x-) axis: 3703.1
667
914

21 ===αα   

⇒  
⎩
⎨
⎧

=+
=×+

=
9185.0)3703.1(05.085.0

8370.0)3703.12(05.07.0 (lesser)   
xk

⇒ lex = 0.8370 × 3100 = 2595 mm 

• Note 1: The use of formulas gives effective lengths that are generally within 
      ± 8 percent of the corresponding values obtained from the Code charts. 

• Note 2: Alternatively, the designer may assume idealised boundary conditions — 
             braced columns with partial rotational fixity at top and bottom. 
             Assuming a value k = 0.85 (as explained in Section 13.2.2) 

⇒  ley = 0.85 × 2900 = 2465 mm, and  lex = 0.85 × 3100 = 2635 mm 
This results in a slightly conservative estimate of effective length. 

• Note 3:  A realistic assessment of effective length is called for in the case of  
 slender columns.  In the present case, as ley /Dy and lex /Dx are  
approximately  7, and well below 12, the column is definitely a short 
column, and  there is no real need for a rigorous calculation of effective 
length.   

EXAMPLE 13.2 

Repeat the problem in Example 13.1, considering a column size of 250 mm × 
250 mm (instead of 300 mm × 400 mm). 

SOLUTION 

• Unsupported lengths of column  
ly = 2900 mm and lx = 3100 mm (as in Example 13.1) 

• Relative stiffness measures of columns and beams 
Columns: ∑ sc hI  =16 × (250)4/(12 × 3500) = 1488 × 103 mm3  

Longitudinal Beams: ( )
Xbb lI∑  = 9000 × 103 mm3 (as in Example 13.1) 

Transverse Beams: ( )
Ybb lI∑  = 4000 × 103 mm3 (as in Example 13.1) 

• Lateral Flexibility measures of the storey:  

( ){ } ( ){ }Δ u

u
s c col c s c beam b bH

h E I h E I l= × + ×⎡
⎣⎢

⎤
⎦⎥∑ ∑

− −2 1 1
12 12, ,  

Substituting Ec,col = 25000 MPa, Ec,beam = 22361 MPa (as in Example 13.1) and 
hs = 3500 mm, and values of relative stiffness measures, 
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Longitudinal direction (global X-direction): =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ

Xu

u

H
 3.2514 × 10-5  mm/N 

Transverse direction (global Y-direction): =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ

Yu

u

H
 3.8855 × 10-5  mm/N 

[Comparing these values with those obtained in Example 13.1, it is seen that the 
reduction in column size results in a drastic increase (more than double) in the 
lateral flexibility of the storey]. 

• Stability Index Q 
Pu = 7560 kN (as in Example 13.1) 

QX = 5
3

102514.3
3500

107560 −××
×  = 0.0702 > 0.05 

QY = 5
3

108855.3
3500

107560 −××
×  = 0.0839 > 0.05 

Hence, the columns in the storey should be considered as ‘unbraced’ in both 
directions. 

Effective Lengths by IS Code charts 

β1 = β2 = 
∑∑

∑
+

jt
bb

jt
sc

jt
sc

lIhI

hI

)(5.1
          [Eq. 13.4 (b)] 

• Buckling with respect to minor (local y-) axis:  

2
3500

12/250)(
4

×=∑
jt

sc hI  = 186 × 103 mm3 ;  ∑
jt

bb lI )(  = 1500 × 103 mm3  

(as in Example 13.1) 

β1 = β2 = 
)1500(5.1186

186
+

 = 0.076  

Referring to Fig. 27 of the Code, ky = 1.04 
⇒ ley = ly × ky =  1.04 × 2900 = 3016 mm 

• Buckling with respect to major (local x-) axis:  

∑
jt

sc hI )( = 186 × 103 mm3 ; ∑
jt

bb lI )( = 667 × 103 mm3 (as in Example 13.1) 

β1 = β2 = 
)667(5.1186

186
+

 = 0.157 

Referring to Fig. 27 of the Code, kx = 1.09 
⇒ lex = lx × kx =  1.09 × 3100 = 3379 mm 
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Alternative: Effective Lengths by Formulas [Eq. 13.5a] 

=α=α 21 ∑

∑

jt
bb

jt
sc

lI

hI

)(
 

• Buckling with respect to minor (local y-) axis: 
1500
186

21 ==αα  = 0.124 

⇒  
⎩
⎨
⎧

=+
=×+

=
0372.2)124.0(30.00.2

0372.1)124.02(15.00.1 (lesser)   
yk

⇒ ley = 1.037 × 2900 = 3007 mm 

• Buckling with respect to major (local x-) axis: 
667
186

21 ==αα  = 0.2789 

⇒  
⎩
⎨
⎧

=+
=×+

=
084.2)2789.0(30.00.2

084.1)2789.02(15.00.1 (lesser)    
xk

⇒ lex = 1.084 × 3100 = 3360 mm 

• Note 1: The effective lengths predicted by the two different methods are fairly 
 close. 

• Note 2: Considering the effective lengths given by the Code charts, the 
 slenderness ratios of the column are obtained as follows: 

ley/Dy = 3016/250 = 12.1.  
lex/Dx = 3379/250 = 13.5; 

      The column should be designed as a ‘slender column’.  

13.3   CODE REQUIREMENTS ON SLENDERNESS LIMITS, MINIMUM 
ECCENTRICITIES AND REINFORCEMENT 

13.3.1   Slenderness Limits 

Slenderness effects in columns effectively result in reduced strength, on account of 
the additional ‘secondary’ moments introduced [refer Section 13.7].  In the case of 
very slender columns, failure may occur suddenly under small loads due to instability 
(‘elastic buckling’), rather than due to material failure.  The Code attempts to prevent 
this type of failure (due to instability) by specifying certain ‘slenderness limits’ in the 
proportioning of columns. 

The Code (Cl. 25.3.1) specifies that the ratio of the unsupported length (l) to the 
least lateral dimension (d) of a column should not exceed† a value of 60: 

60≤dl                                                           (13.6) 
Furthermore, in case one end of a column is free (i.e., cantilevered column) in any 

given plane, the Code (Cl. 25.3.2) specifies that 

                                                           
† In the case of ‘unbraced’ columns, it is desirable to adopt a more stringent limit — say, 
l/d < 40. 
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Dbl 2100≤                                                        (13.7) 
where D is the depth of the cross-section measured in the plane of the cantilever and 
b is the width (in the perpendicular direction). 

13.3.2   Minimum Eccentricities 

As explained in Section 13.1.2, the general case of loading on a compression member 
is one comprising axial compression combined with biaxial bending.  This loading 
condition is represented by a state of biaxial eccentric compression, wherein the axial 
load P acts eccentric to the longitudinal centroidal axis of the column cross-section, 
with eccentricities ex and ey with respect to the major and minor principal axes 
[Fig. 13.2(c)]. 

Very often, eccentricities not explicitly arising out of structural analysis 
calculations act on the column due to various reasons, such as: 

• lateral loads not considered in design; 
• live load placements not considered in design; 
• accidental lateral/eccentric loads; 
• errors in construction (such as misalignments); and 
• slenderness effects underestimated in design. 

For this reason, the Code (Cl. 25.4) requires every column to be designed for a 
minimum eccentricity emin (in any plane) equal to the unsupported length/500 plus 
lateral dimension/30, subject to a minimum of 20 mm.  For a column with a 
rectangular section [Fig. 13.2], this implies: 

e
l D

x
x

,min =
+⎧

⎨
⎩

500 30
20 mm          

(whichever is greater)            (13.8a) 

e
l D

y
y

,min =
+⎧

⎨
⎩

500 30
20 mm          

(whichever is greater)            (13.8b) 

For non-rectangular and non-circular cross-sectional shapes, it is recommended 
[Ref. 13.7] that, for any given plane, 

e
le

min =
⎧
⎨
⎩

300
20

         
 mm          

(whichever is greater)            (13.8c) 

where le is the effective length of the column in the plane considered. 

13.3.3   Code Requirements on Reinforcement and Detailing 

Longitudinal Reinforcement (refer Cl. 26.5.3.1 of the Code) 

• Minimum Reinforcement: The longitudinal bars must, in general, have a cross-
sectional area not less than 0.8 percent of the gross area of the column section.  
Such a minimum limit is specified by the Code: 
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∗ to ensure nominal flexural resistance under unforeseen eccentricities in 
loading; and 

∗ to prevent the yielding of the bars due to creep† and shrinkage effects, 
which result in a transfer of load from the concrete to the steel. 

In very large-sized columns (where the large size is dictated, for instance, by 
architectural considerations, and not strength) under axial compression, the limit 
of 0.8 percent of gross area may result in excessive reinforcement.  In such cases, 
the Code allows some concession by permitting the minimum area of steel to be 
calculated as 0.8 percent of the area of concrete required to resist the direct 
stress, and not the actual (gross) area.  
However, in the case of pedestals (i.e., compression members with le/D < 3) 
which are designed as plain concrete columns, the minimum requirement of 
longitudinal bars may be taken as 0.15 percent of the gross area of cross-section. 
In the case of reinforced concrete walls, the Code (Cl. 32.5) has introduced 
detailed provisions regarding minimum reinforcement requirements for vertical 
(and horizontal) steel.  The vertical reinforcement should not be less than 0.15 
percent of the gross area in general.  This may be reduced to 0.12 percent if 
welded wire fabric or deformed bars (Fe 415 / Fe 500 grade steel) is used, 
provided the bar diameter does not exceed 16 mm.  This reinforcement should be 
placed in two layers if the wall is more than 200mm thick.  In all cases, the bar 
spacing should not exceed three times the wall thickness or 450 mm, whichever is 
less. 

• Maximum Reinforcement: The maximum cross-sectional area of longitudinal bars 
should not exceed 6 percent of the gross area of the column section.  However, a 
reduced maximum limit of 4 percent is recommended in general in the interest of 
better placement and compaction of concrete — and, in particular, at lapped 
splice locations. 
In tall buildings, columns located in the lowermost storeys generally carry heavy 
reinforcement (∼ 4 percent).  The bars are progressively curtailed in stages at 
higher levels.  

• Minimum diameter / number of bars and their location: Longitudinal bars in 
columns (and pedestals) should not be less than 12 mm in diameter and should 
not be spaced more than 300 mm apart (centre-to-centre) along the periphery of 
the column‡ [Fig. 13.6(a)].  At least 4 bars (one at each corner) should be 
provided in a column with rectangular cross-section, and at least 6 bars (equally 
spaced near the periphery) in a circular column.  In ‘spiral columns’ (including 
noncircular shapes), the longitudinal bars should be placed in contact with the 

                                                           
† Creep effects can be quite pronounced in compression members under sustained service loads 
[refer Section 13.4.2].  The consequent increase in steel stress (due to creep strain) is found to 
be relatively high at very low reinforcement percentages: hence, the minimum limit of 0.8 
percent is prescribed [Ref. 13.7]. 
‡ In the case of reinforced concrete walls, the Code (Cl. 32.5b) recommends a maximum 
spacing of three times the wall thickness or 450 mm, whichever is smaller. 
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spiral reinforcement, and equidistant around its inner circumference 
[Fig. 13.6(b)].  In columns with T-, L-, or other cross-sectional shapes, at least 
one bar should be located at each corner or apex [Fig. 13.6(c)].  
Longitudinal bars are usually located close to the periphery (for better flexural 
resistance), but may be placed in the interior of the column when eccentricities in 
loading are minimal.  When a large number of bars need to be accommodated, 
they may be bundled, or, alternatively, grouped, as shown in [Fig. 13.6(d)].  

 

Fig. 13.6  Some Code recommendations for detailing in columns 

• Cover to reinforcement: A minimum clear cover of 40 mm or bar diameter 
(whichever is greater), to the column ties is recommended by the Code 
(Cl. 26.4.2.1) for columns in general; a reduced clear cover of 25 mm is permitted 
in small-sized columns (D ≤ 200 mm and whose reinforcing bars do not exceed 
12mm) and a minimum clear cover of 15 mm (or bar diameter, whichever is 
greater) is specified for walls.  However, in aggressive environments, it is 

≤ 300

clear cover 
to links 
≥ 40 mm 

ties

longitudinal 
bar 
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common 
closed tie 

closed 
tie 
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(cross) 
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≤ 48 φt
≤ 75 mm≤ 75 mm 
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(e) 
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(c) 

(f)

(d)
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desirable, in the interest of durability, to provide increased cover [Table 5.1] — 
but preferably not greater than 75 mm. 

Transverse Reinforcement  (refer Cl. 26.5.3.2 of the Code) 

• General: All longitudinal reinforcement in a compression member must be 
enclosed within transverse reinforcement, comprising either lateral ties (with 
internal angles not exceeding 135o) or spirals.  This is required: 
∗ to prevent the premature buckling of individual bars;  
∗ to confine the concrete in the ‘core’, thus improving ductility and strength; 
∗ to hold the longitudinal bars in position during construction; and 
∗ to provide resistance against shear and torsion, if required. 

• Lateral Ties: The arrangement of lateral ties should be effective in fulfilling the 
above requirements.  They should provide adequate lateral support to each 
longitudinal bar, thereby preventing the outward movement of the bar.  The 
diameter of the tie φt is governed by requirements of stiffness, rather than 
strength, and so is independent of the grade of steel [Ref. 13.7].  The pitch st 
(centre-to-centre spacing along the longitudinal axis of the column) of the ties 
should be small enough to reduce adequately the unsupported length (and hence, 
slenderness ratio) of each longitudinal bar.  The Code recommendations (based 
on Ref. 13.9) are as follows: 

tie diameter† 
⎩
⎨
⎧φ

≥φ
          mm 6

4max ,long
t                                  (13.9) 

tie spacing‡                                   (13.10) 
⎪
⎩

⎪
⎨

⎧
φ≤

      mm 003
16

               

min ,longt

D
s

where φlong denotes the diameter of longitudinal bar to be tied and D denotes the 
least lateral dimension of the column. 

Ideally, the tie must turn around (and thereby provide full lateral restraint to) 
every longitudinal bar that it encloses — particularly the corner bars.  When the 
spacing of longitudinal bars is less than 75 mm, lateral support need only be 
provided for the corner and alternate bars [Fig. 13.6(e)]. The straight portion of a 
closed tie (between the corner bars) is not really effective if it is large, as it tends 
to bulge outwards when the concrete core is subjected to compression 
[Ref. 13.10].  For this reason, supplementary cross ties are required for effective 
confinement of the concrete.  If the longitudinal bars spaced at a distance not 
exceeding 48φt are effectively tied in two directions, then the additional 
longitudinal bars in between these bars need be tied only in one direction by open 
ties [Fig. 13.6(f)]. 

                                                           
† In earlier version of Code, minimum tie diameter was specified as 5 mm, instead of 6 mm. 
‡ In earlier version of Code, maximum tie spacing was specified as 48× tφ instead of 300 mm 
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The ends of every tie (whether closed or open) should be properly anchored.  
In the case of grouping of longitudinal bars at the corners of a large-sized column 
[Fig. 13.6(d)], each group should be separately tied together, along with a single 
common closed tie for all groups.  The diameter and pitch of this common tie 
should be computed [Eq. 13.9 and 13.10] by treating each bar group as a single 
longitudinal bar (of equivalent area); however the diameter of the common tie 
need not exceed 20 mm. 

Finally, it should be noted that when multiple ties are provided in a column 
(which is usually the case, except in small-sized columns), the locations of these 
different ties should preferably be staggered along the longitudinal axis of the 
column.  Extra ties should be provided at lapped splice locations in the 
longitudinal reinforcement — especially at the bends. 

• Spirals: Helical reinforcement provides very good confinement to the concrete in 
the ‘core’ and enhances significantly the ductility of the column at ultimate loads.  
The diameter and pitch of the spiral may be computed as in the case of ties 
[Eq. 13.9, 13.10] — except when the column is designed to carry a 5 percent 
overload (as permitted by the Code), in which case 

pitch                                       (13.11a) 
⎩
⎨
⎧

<
6/ 

                 mm 75
diametercore

st

and                                                       (13.11b) 
⎩
⎨
⎧
φ

>
    3

mm 25

t
ts

The ends of the spiral should be anchored properly by providing one and a half 
extra turns. 

13.4   DESIGN OF SHORT COLUMNS UNDER AXIAL COMPRESSION 

13.4.1   Conditions of Axial Loading 

Axial loading on a compression member may be defined as loading that produces a 
uniform (compressive) strain distribution across the cross-section.  If the column is 
symmetrically reinforced, as shown in Fig. 13.7(a), the line of action of the load Po 
must coincide with the longitudinal centroidal axis of the column section, in order to 
produce a uniform strain distribution.  Equilibrium conditions require the resultant 
compressive force Cc + Cs in the section to be equal to and act opposite to and 
through the point of application of the external load Po [Fig. 13.7(a)].  If fcc and fsc 
denote respectively the stresses in the concrete and the longitudinal steel, 
corresponding to the uniform compressive strain εc, then it follows that 

P C Co c s= +  
                 = +f A f Acc c sc sc  

⇒ = + −P f A f f Ao cc g sc cc sc( )                                     (13.12) 

where Ag = gross area of cross-section = Ac + Asc ; 
          Asc = total area of longitudinal reinforcement = ∑ Asi ; 
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          Ac = net area of concrete in the section = Ag – Asc 

When the section is unsymmetrically reinforced and subject to axial load 
conditions [Fig. 13.7(b)], Eq. 13.12 remains valid.  However, the line of action of the 
applied load Po must now be eccentric to the geometric centroidal axis.  This 
eccentricity ec is easily obtained from moment equilibrium conditions as  

( )
e

f f A x

Pc
sc cc si i

o
=

− ∑                                            (13.12a) 

where xi = distance measured [+ve as indicated in Fig. 13.7(b)] of the ith row of 
reinforcement of area  with reference to the geometrical centroid. Asi

 
geometric 
centroid 

As1 As4As3 As2 Asi

Cs1 Cs4Cs3Cs2 

SECTION

ec

xi

plastic centroid 
(at ultimate loads) 

PoPo 
εc  

(axial strain)

Cs = ∑ Csi 
     = fsc Asc 

(fsc – fcc)Asi 

fcc fcc

Cc = fcc Ac fcc Ag

STRESS 
RESULTANTS

(a)  symmetrically 
reinforced 

(b)  unsymmetrically 
reinforced  

Fig. 13.7  Axial loading on short columns 

At the limit state of collapse, the section would have ‘plastified’, and for this 
reason, the axis through which Po must act for axial load conditions is termed the 
plastic centroidal axis.  Under symmetrical reinforcement conditions of axial 
loading, ec = 0, and the plastic centroid coincides with the geometric centroid. 

13.4.2   Behaviour Under Service Loads 

Until the early 1950s, reinforced concrete columns were invariably designed using 
the elastic theory, which involves the concepts of permissible stresses, modular ratio 
and transformed section [refer Sections 3.2, 4.6].  It was realized subsequently, from 
extensive experimental investigations, that there can be no fixed ratio of steel stress 
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fsc to concrete stress fcc, even under axial loading conditions [Ref. 13.10].  The ratio 
of these stresses depended on: 

1. the amount of creep, which is influenced by the history of sustained loading 
and numerous factors related to the quality of concrete [refer Section 2.11]. 

2. the amount of shrinkage, which in turn depended on the age of concrete, 
method of curing, environmental conditions and several other factors related 
to the quality of concrete [refer Section 2.12] 

In general, the strain in the cross-section εc increases with age on account of creep 
and shrinkage, with a consequent redistribution of stresses in concrete and steel, such 
that the load shared by the concrete is partially transferred to the steel.  Consequently, 
it becomes difficult to predict the stresses fcc and fsc (in Eq. 13.12) under service 
loads. 

According to conventional working stress method of design, substituting the 
permissible stresses σcc and σsc in lieu of fsc and fcc respectively, the design equation 
is obtained from Eq. 13.12 as 

scccscgcco AAP )( σ−σ+σ=                                  (13.13) 

where σsc is taken approximately as 1.5mσcc (as in doubly reinforced beams — refer 
Section 4.6).  However, this assumption renders the steel stress σsc independent of 
the grade of steel, and results in unrealistic and uneconomical designs.  The Code (B-
2.2) in its provision for working stress design, attempts to somewhat remedy this 
situation by recommending 

⎩
⎨
⎧

=σ
 steels 500 Fe 415, Fefor          MPa 190

                steel 250 Fefor         MPa 130
sc          (13.14a) 

The allowable stresses in concrete (σcc) under direct compression are specified as  

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=σ

35 Mfor         MPa 0.9
30 Mfor         MPa 0.8
25 Mfor         MPa 0.6
20 Mfor         MPa 0.5
15 Mfor         MPa 0.4

cc
                                    (13.14b) 

However, most codes of other countries have dispensed with the working stress 
method (WSM) of design altogether, with the advent of the ultimate load method 
(ULM) of design initially, and the more rational limit states method (LSM) of design 
subsequently (since the 1980s).  Indeed, in the revised Indian Code too, priority is 
given to the LSM design procedure and the WSM relegated to an Annex. 

13.4.3   Behaviour Under Ultimate Loads 

Unlike service load conditions, the behaviour of an axially compressed short column 
is fairly predictable under ultimate load conditions.  It is found that the ultimate 
strength of the column is relatively independent of its age and history of loading.  As 
axial loading is increased, axial shortening of the column increases linearly up to 
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about 80 percent of the ultimate load Puo (path OA in Fig. 13.8); this behaviour is 
found to be independent of the type of transverse reinforcement [Ref. 13.10].  
However, beyond the ultimate load (point B in Fig. 13.8), the behaviour depends on 
the type and amount of transverse reinforcement. 

Tied columns 

Generally, the longitudinal steel would have reached ‘yield’ conditions at the 
ultimate load level Puo [point B in Fig. 13.8] — regardless of whether transverse 
reinforcement is provided or not†.  However, in the absence of transverse 
reinforcement (or with widely spaced lateral ties), failure will be sudden and brittle, 
caused by crushing and shearing of the concrete (as in a plain concrete cylinder test 
— refer Section 2.8) and accompanied by the buckling of longitudinal bars.  In the 
case of tied columns, some marginal ductility [paths BC, BD in Fig. 13.8] can be 
introduced by providing closely spaced lateral ties which undergo yielding in tension 
prior to collapse of the columns.  The descent in the load-axial shortening curve is 
attributable to ‘softening’ and micro-cracking in the concrete. 
 

 

Puo 

axial 
load 
Po 

axial shorteningo 

A 
B

C
D

E

tied columns

spiral 
columns

 

Fig. 13.8  Behaviour of axially loaded tied and spiral columns 

Spiral Columns 

It is with the spiral column that substantial ductility is achieved prior to the collapse 
of the column [path BE in Fig. 13.8].  It is found that, approximately at load level Puo 
[point B in Fig. 13.8], the outer shell of the concrete (covering the spiral) spalls off; 
but the concrete in the ‘core’, laterally confined by the helical reinforcement, 
continues to carry load.  Collapse ultimately takes place when the spiral 
reinforcement yields in tension.  The load carrying capacity after the spalling can 
exceed Puo provided the amount of spiral reinforcement is such that the load capacity 
                                                           
† It may be noted, however, that, for design purposes, the Code limits the ultimate strain in 
concrete to 0.002, as a conservative measure.  Corresponding to this strain, yield conditions 
will not be attained in the case of Fe 415 and Fe 500 grades of steel [refer Fig. 3.6, 3.7]. 



590   REINFORCED  CONCRETE  DESIGN 

contributed by it more than makes up for the loss in load capacity due to spalling of 
the concrete shell.  Based on experimental findings [Ref. 13.10], the Code (Cl. 39.4) 
permits a 5 percent increase in the estimation of strength beyond Puo, provided the 
following requirement is satisfied by the spiral reinforcement: 

sy

ck

core

g
s f

f
A
A

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≥ρ 136.0                                        (13.15) 

where ρ s ≡
volume of spiral reinforcement

volume of core
 per unit length of column; 

       Acore ≡ total area of concrete core, measured outer-to-outer of the spirals; 
          Ag ≡ gross area of cross-section; 
          fsy ≡ characteristic (yield) strength of spiral, limited to 415 MPa. 

However, it may be observed that the 5 percent increase in strength will be 
realised only after extensive cracking of concrete and will be accompanied by large 
deformations.  It is stated in the Explanatory Handbook to the Code [Ref. 13.7] that 
the permitted increase in design capacity of such columns is because the failure will 
be gradual and ductile and not because the Code intends to make use of increase in 
capacity beyond the spalling load. 

In addition to increased ductility and warning prior to collapse, spiral columns 
exhibit increased toughness (resistance to impact loading) and are particularly 
effective under dynamic loading conditions (such as seismic loading). 

13.4.4   Design Strength of Axially Loaded Short Columns 

The maximum compressive strain in concrete under axial loading at the limit state of 
collapse in compression is specified as εc = 0.002 by the Code (Cl. 39.1a).  
Corresponding to this (somewhat conservative) limiting strain of 0.002, the design 
stress in the concrete is 0.67fck/1.5 = 0.447fck (refer Fig. 3.5), and the design stress in 
steel is 0.87fy in the case of Fe 250 (refer Fig. 3.6) and 0.790fy and 0.746fy in the case 
of Fe 415 and Fe 500 respectively (refer Fig. 3.7 and Table 3.2). 

Accordingly, under ‘pure’ axial loading conditions, the design strength of a short 
column is obtainable from Eq. 13.12 as: 

P f A f fuo ck g sc ck scA= + −0 0.447 ( .447 )                  (13.16) 

with                                   (13.16a) 
⎪
⎩
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500 Fefor     746.0
415 Fefor     790.0
250 Fefor     870.0
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However, as explained in Section 13.3.2, the Code requires all columns to be 
designed for ‘minimum eccentricities’ in loading.  Hence, Eq. 13.16 cannot be 
directly applied.  Nevertheless, where the calculated minimum eccentricity (in any 
plane) does not exceed 0.05 times the lateral dimension (in the plane considered), the 
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Code (Cl. 39.3) permits the use of the following simplified formula, obtained by 
reducing Puo (from Eq. 13.16) by approximately 10 percent† [Ref. 13.7]: 

scckygckuo AffAfP )4.067.0(4.0~
−+=                 (13.17) 

where 
~Puo  denotes the design strength in uniaxial compression permitted by the 

Code (including the effect of minimum eccentricities).  It is found that the use of 
Eq. 13.17 results in a conservative design, compared to the rigorous design involving 
axial compression and biaxial bending with the minimum eccentricities. 

As mentioned earlier, the Code (Cl. 39.4) permits the load capacity be enhanced 
by 5 percent when spiral reinforcement is provided, conforming to Eq. 13.15. 

EXAMPLE 13.3 

Design the reinforcement in a column of size 450 mm × 600 mm, subject to an axial 
load of 2000 kN under service dead and live loads.  The column has an unsupported 
length of 3.0m and is braced against sideway in both directions.  Use M 20 concrete 
and Fe 415 steel. 

SOLUTION 

Short Column or Slender Column ? 

• Given: lx = ly = 3000 mm, Dy = 450 mm, Dx = 600 mm 

slenderness ratios 
⎩
⎨
⎧

=×==
=×==

yyyyyyey

xxxxxxex

kkDlkDl
kkDlkDl
67.64503000

56003000      
 

As the column is braced against sideway in both directions, effective length ratios 
kx and ky are both less than unity, and hence the two slenderness ratios are both 
less than 12. 

• Hence, the column may be designed as a short column. 

Minimum Eccentricities     [Eq. 13.8] 

ex,min = +
3000
500

600
30

 = 26.0 mm (> 20.0 mm) 

ey,min = +
3000
500

450
30

 = 21.0 mm (> 20.0 mm) 

• As   0.05Dx = 0.05 × 600 = 30.0 mm > ex,min = 26.0 mm 
and  0.05Dy = 0.05 × 450 = 22.5 mm > ey,min = 21.0 mm, 
the Code formula for axially loaded short columns can be used. 

Factored Load 
• Pu = service load × partial load factor 

       = 2000 × 1.5 = 3000 kN 

                                                           
† The reduction works out as 10 percent with respect to Fe 415/Fe 500 grades of steel.  
However, with respect to Fe 250 steel, the reduction in fsc is as high as 30 percent, while the 
reduction in fcc is 10 percent. 
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Design of Longitudinal Reinforcement 
• P f A f fu ck g y ck= + Asc−0 0 67 0.4 ( . .4 )             [Eq. 13.17] 

⇒ 3000 × 103 = 0.4 × 20 × (450 × 600) + (0.67 × 415–0.4 × 20)Asc
= 2160×103 + 270.05Asc

⇒ Asc = (3000–2160) × 103/270.05 = 3111 mm2

• In view of the column dimensions (450 mm, 600 mm), it is necessary to place 
intermediate bars, in addition to the 4 corner bars: 
Provide 4–25 φ at corners : 4 × 491 = 1964 mm2

      and  4–20 φ additional: 4 × 314  = 1256 mm2

           ⇒ Asc = 3220 mm2 > 3111 mm2 

⇒ p = (100×3220) / (450×600) = 1.192 > 0.8 (minimum reinf.)  — OK. 

600

450

 

4–25 φ (at corners) 

4–20 φ (at middle 
of each face) 

8 φ TIES @ 300 c/c 
(staggered) 

(clear cover to 
ties = 40 mm) 

Fig. 13.9  Example 13.3 

Lateral Ties 

• Tie diameter 
⎩
⎨
⎧

>
mm 6

425
tφ           : provide 8 mm dia;  

Tie spacing  : provide 300 mm. 
⎪
⎩

⎪
⎨

⎧
=×<

                        mm 003
          mm 3202016

                         mm 450

ts

∴Provide 8 φ ties @ 300 c/c 
The detailing of reinforcement is shown in Fig. 13.9 

EXAMPLE 13.4 

Design the reinforcement in a spiral column of 400 mm diameter subjected to a 
factored load of 1500 kN.  The column has an unsupported length of 3.4 m and is 
braced against sideway.  Use M 25 concrete and Fe 415 steel. 

SOLUTION 

Short Column or Slender Column ? 
• Given: l = 3400 mm, D = 400 mm ⇒ slenderness ratio = le/D ≤ 3400/400 = 8.5 

(as column is braced). 
• As le/D < 12, the column may be designed as a short column. 
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Minimum eccentricity 

• emin .= + =
3400
500

400
30

20 1 mm  (> 20.0 mm) 

As 0.05D = 20.0 mm ≈ emin, the Code formula for axially compressed short 
columns may be used. 

Factored Load  
• Pu = 1500 kN (given) 

     = 1.05 [0.4fck Ag + (0.67 fy – 0.4 fck) Asc]  
        for spiral columns (appropriately reinforced) 

Design of longitudinal reinforcement: 

• 1500 10
1 05

3×
.

 = 0.4 × 25 × π × 400
4

2
 + (0.67 × 415 – 0.4 × 25)Asc 

⇒ 1428.6 × 103 = 1256.6 × 103 + 268.05 Asc

⇒ Asc = (1428.6 – 1256.6) × 103/268.05 
 = 642 mm2 (equal to 0.51% of gross area). 

• Asc,min at 0.8% of Ag 

           = 0 8
100

400
4

2.
×

×π  = 1005 mm2

Provide 6 nos 16 φ: Asc = 201 × 6 = 1206 mm2 > 1005 mm2. 
Design of Spiral reinforcement  
• Assuming a clear cover of 40 mm over spirals, 

Core diameter = 400 – (40 × 2) = 320 mm 
• Assuming a bar diameter of 6 mm and pitch st 

coreof Volume
entreinforcem spiral of Volume

≡sρ  per unit length of column 

 = ( ) ( )π π
π

× × × −
×

6 4 320 6
320 4

2

2
st  = 0 3468.

st
 

• As per the Code requirement (Eq. 13.15, Cl. 39.4.1 of Code) 
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Assuming for the spiral reinforcement, fsy = 415 MPa 

⇒
0 3468.
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⇒ st ≤ 28.4 mm 

• Code restrictions on pitch (Eq. 13.11, Cl. 26.5.3.2d of Code) 

st < =
⎧
⎨
⎩

75
53 3

 mm                      
core dia 6  mm.

 

st
t

>
=

⎧
⎨
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25
3 18

 mm                      
 mm             φ
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Provide 6 φ spiral @ 28 mm c/c pitch 
• The detailing of reinforcement is shown in Fig. 13.10. 

6–16 φ

6 φ spiral @ 28 c/c pitch
(clear cover = 40 mm

over spiral)

M 25
Fe 415400

28 mm

6 φ spiral

6–16 φ

 

Fig. 13.10  Example 13.4 

13.5   DESIGN OF SHORT COLUMNS UNDER COMPRESSION WITH 
UNIAXIAL BENDING 

This section deals with the behaviour and design of short compression members 
subject to axial compression combined with uniaxial bending, i.e., bending with 
respect to either the major axis or minor axis (but not both).  As explained in Section 
13.1.2, this loading condition is statically equivalent to a condition of uniaxial 
eccentric compression wherein the factored axial load Pu is applied at an eccentricity 
e = Mu/Pu with respect to the centroidal axis, Mu being the factored bending moment. 

The traditional ‘working stress method’ of design is not covered in this section, 
not only because of the fact that it has become obsolete, but also because the Code 
(Cl. B 4.3) makes it mandatory that designs for eccentric compression by WSM, 
based on ‘cracked section’ analysis† should be further checked for their strength 
under ultimate load conditions to ensure the desired margin of safety.  This condition 
effectively makes WSM redundant, as it suffices to design in accordance with LSM.   

13.5.1   Distribution of Strains at Ultimate Limit State 

A special limiting case of uniaxial eccentric compression is the condition of zero 
eccentricity (e = 0, i.e., Mu = 0) which corresponds to the axial loading condition, 
discussed in Section 13.4.  Corresponding to this condition, the strain across the 
                                                           
† ‘Uncracked section’ analysis is permitted by the Code (Cl. 46.1) when the eccentricity in 
loading is so small that the resulting flexural tension, if any, can be borne by the concrete. 
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column section is uniform and limited to εcu = 0.002 at the limit state of collapse in 
compression (as per the Code). 

The other limiting case of uniaxial eccentric compression corresponds to infinite 
eccentricity (e = ∞, i.e., Pu = 0), which is equivalent to a condition of ‘pure’ flexure, 
discussed in Chapter 4.  Corresponding to this condition, the strains are linearly 
distributed across the section with a ‘neutral axis’ (NA) located somewhere within 
the section, and with tensile strains on one side of the NA and compressive strains on 
the other side.  Under ultimate load conditions, i.e., at the limit state of collapse in 
flexure, the strain in the highly compressed edge of the column is specified by the 
Code as εcu = 0.0035 [refer Section 4.7]. 

In the general case of uniaxial eccentric compression (Mu ≠ 0, Pu ≠ 0), it follows 
that 0 ≤ e < ∞, and for such a condition, the strain profile is non-uniform and 
assumed to be linearly varying across the section, with the maximum strain in the 
highly compressed edge, εcu, having a value between 0.002 and 0.0035 at the ultimate 
limit state.  This is depicted in the Fig. 13.11.   

 Pu 

D

e = Mu/PuMu 
Pu 

D 

highly 
compressed 

edge 

xu > D

xu = D
3D/7

1
2

3

4

5

εcu = 0.002 

εcu = 0.0035 

εc, min
xu, b

xu, min

xu = ∞

e = eb

e = 0

e = ∞

e = eD

tension 

compression 

εy

PIVOT

ELEVATION

CROSS SECTION STRAIN PROFILES
 

Fig. 13.11  Possible strain profiles under ultimate limit state in eccentric compression 

It may be noted that all the assumptions made in the analysis of the ultimate limit 
state in flexure [refer Section 4.7] — excluding the one related to the minimum 
tensile strain εst

* at the centroid of the tension steel — are also applicable in the case 
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of eccentric compression [refer Cl. 39.1 of the Code].  In fact, the assumption of a 
linear distribution of strains [Fig. 13.11] follows directly from the basic assumption 
that  plane sections before bending remains plane after bending; this has been 
validated experimentally.  In the case of eccentric compression, however, the ‘depth’ 
of the NA (with reference to the ‘highly compressed edge’) can vary from a 
minimum value xu,min (corresponding to e = ∞) to the maximum value xu = ∞ (i.e., no 
neutral axis(!), corresponding to e = 0). 

The Code (Cl. 39.1) permits εcu = 0.0035 to be considered in cases where the 
loading eccentricity (i.e., Mu/Pu) is sufficiently high as to induce some tensile strain 
in the column section.  The limiting condition for this occurs when the resulting 
neutral axis coincides with the edge farthest removed from the highly compressed 
edge, i.e., xu = D, corresponding to which e e ex D Du

= ≡= , as indicated in Fig. 13.11. 
When the loading eccentricity is relatively low, such that the entire section is 

subjected to (non-uniform) compression and the NA lies outside the section (xu > D), 
the Code (Cl. 39.1b) limits the strain in the highly compressed edge to a value 
between 0.002 and 0.0035 as follows: 

εcu = 0.0035 – 0.75 εc, min     for xu ≥ D                             (13.18) 

where εc, min is the strain in the least compressed edge, as shown in Fig. 13.11.  It can 
be seen that Eq. 13.18 satisfies the limiting strain conditions εcu = 0.0035 
(corresponding to εc, min = 0; i.e, xu = D or e = eD) and  εcu = 0.002 (corresponding to 
εc, min = 0.002; i.e, xu = ∞ or e = 0).  The point of intersection of these two limiting 
strain profiles (corresponding to e = 0 and e = eD) occurs at a distance of 3D/7 from 
the ‘highly compressed edge’, and in fact, this point acts like a ‘pivot’ for strain 
profiles.  It serves as a common point through which all strain profiles (with xu ≥ D) 
pass, as indicated in Fig. 13.11.  Using similar triangles, it can be shown that: 

⎥
⎦

⎤
⎢
⎣

⎡
−

+=ε
73

73
1002.0

Dx
D

u
cu      for xu ≥ D                         (13.18a) 

13.5.2   Modes of Failure in Eccentric Compression 

Although the term limit state of collapse in compression is generally used by the 
Code (Cl. 39) to describe the ‘ultimate limit state’ of compression members (whether 
axially loaded or eccentrically loaded), the actual failure need not necessarily occur 
in compression.  This is because an eccentrically loaded column section is subjected 
to an axial compression (Pu) as well as a bending moment (Mu). 

The mode of failure depends on the eccentricity of loading; i.e., the relative 
magnitudes of Pu and Mu.  If the eccentricity e = Mu/Pu is relatively small, the axial 
compression behaviour predominates, and the consequent failure is termed 
compression failure.  On the other hand, if the eccentricity is relatively large, the 
flexural behaviour predominates, and the consequent failure is termed tension failure.  
In fact, depending on the exact magnitude of the loading eccentricity e, it is possible 
to predict whether a ‘compression failure’ or a ‘tension failure’ will take place. 
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Balanced Failure 

In between ‘compression failure’ and ‘tension failure’, there exists a critical failure 
condition, termed ‘balanced failure’.  This failure condition refers to that ultimate 
limit state wherein the yielding of the outermost row of longitudinal steel on the 
tension side and the attainment of the maximum compressive strain in concrete εcu = 
0.0035 at the highly compressed edge of the column occur simultaneously.  In other 
words, both crushing of concrete (in the highly compressed edge) and yielding of 
steel (in the outermost tension steel) occur simultaneously.  In this context, for design 
purpose, the ‘yield strain’ εy is defined simply as that corresponding to the 
conventional definition of ‘yield point’ in the design stress-strain curve for steel 
[refer Fig. 3.6, 3.7], i.e., 

⎩
⎨
⎧

+
=ε

500 415/Fe Fefor      002.087.0
            250 Fefor                   87.0

sy

sy
y Ef

Ef
                       (13.19) 

The ‘balanced strain profile’ is depicted, along with other strain profiles in 
Fig. 13.11.  The corresponding eccentricity in loading is denoted eb ≡ ; i.e., 

the eccentricity which results in a ‘balanced’ neutral axis depth x

ex xu u b= ,

u = xu, b.  Evidently, 
eD < eb < ∞, where, as explained earlier with reference to Fig. 13.11, eD corresponds 
to a neutral axis depth xu = D and e = ∞ corresponds to a minimum neutral axis depth 
x = xu, min (when Pu = 0). 

Compression Failure 

When the loading eccentricity is less than that corresponding to the ‘balanced failure’ 
condition, i.e., when e < eb, ‘yielding’ of longitudinal steel in tension does not take 
place, and failure occurs at the ultimate limit state by crushing of concrete at the 
highly compressed edge.  The compression reinforcement may or may not yield, 
depending on the grade of steel and its proximity to the highly compressed edge. 

Tension Failure 

When the loading eccentricity is greater than that corresponding to the ‘balanced 
failure’ condition, i.e., when e > eb, failure will be initiated by the yielding of the 
tension steel.  The outermost longitudinal bars in the tension side of the neutral axis 
first undergo yielding and successive inner rows (if provided), on the tension side of 
the neutral axis, may also yield in tension with increasing strain.  Eventually, collapse 
occurs when the concrete at the highly compressed edge gets crushed. 

13.5.3   Design Strength: Axial Load - Moment Interaction 

The design strength of an eccentrically loaded short column depends on the 
eccentricity of loading.  For uniaxial eccentricity, e, the design strength (or 
resistance) has two components: an axial compression component, PuR, and a 
corresponding uniaxial moment component, MuR = PuR e. 

As seen in Section 13.5.1, there exists a unique strain profile (and neutral axis 
location) at the ultimate limit state, corresponding to a given eccentricity of loading 
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[Fig. 13.11].  Corresponding to this distribution of strains (‘strain compatibility’), the 
stresses in concrete and steel, and hence, their respective resultant forces† Cc and Cs, 
can be determined.  Applying the condition of static equilibrium, it follows that the 
two design strength components are easily obtainable as: 

PuR = Cc + Cs                                                 (13.20) 

and        MuR = Mc + Ms                                               (13.21) 

where Mc and Ms denote the resultant moments due to Cc and Cs respectively, with 
respect to the centroidal axis (principal axis under consideration). 

From the nature of the equilibrium equations [Eq. 13.20, 13.21], it may be 
observed that, for a given location of the neutral axis (xu/D), the design strength 
values PuR and MuR can be directly determined, and the eccentricity e = MuR/PuR 
resulting in such a NA location can be deduced.  However, given an arbitrary value 
of e, it is possible to arrive at the design strength (PuR or MuR = PuR e) using 
Eq. 13.20, only after first locating the neutral axis — which can be achieved by 
considering moments of forces Cc and Cs about the eccentric line of action of PuR, 
and applying static equilibrium.  Unfortunately, the expressions for Cc and Cs in 
terms of xu (derived in Section 13.5.4) are such that, in general, it will not be possible 
to obtain a closed-form solution for xu in terms of e.  The relationship is highly 
nonlinear, requiring a trial-and-error solution. 

Interaction Curve 

The ‘interaction curve’ is a complete graphical representation of the design strength 
of a uniaxially eccentrically loaded column of given proportions.  Each point on the 
curve corresponds to the design strength values of PuR and MuR associated with a 
specific eccentricity (e) of loading.  That is to say, if load P is applied on a short 
column with an eccentricity e, and if this load is gradually increased till the ultimate 
limit state (defined by the Code) is reached, and that ultimate load at failure is given 
by Pu = PuR and the corresponding moment by Mu = MuR = PuR e, then the coordinates 
(MuR, PuR)† form a unique point on the interaction diagram (such as point ‘2’ in 
Fig. 13.12).  The interaction curve defines the different (MuR, PuR) combinations for 
all possible eccentricities of loading 0 ≤ e < ∞.  For design purposes, the calculations 
of MuR and PuR are based on the design stress-strain curves (including the partial 
safety factors), and the resulting interaction curve is sometimes referred to as the 
design interaction curve (which is different from the characteristic interaction 
curve). 

Using the design interaction curve for a given column section, it is possible to 
make a quick judgement as to whether or not the section is ‘safe’ under a specified 
factored load effect combination (Pu, Mu).  If the point given by the coordinates (Mu, 
Pu) falls within the design interaction curve, the column is ‘safe’; otherwise, it is not.   
                                                           
† Some of the longitudinal steel may be subjected to tension, rather than compression.  The 
term Cs here denotes the net force (assumed positive if compressive) considering all the bars in 
the section. 
† It is customary to use the x - axis for Mu values and the y - axis for Pu  values. 
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In other words, the design interaction curve serves as a failure envelope.  Of 
course, it must be appreciated that by the term ‘safe’, all that is implied is that the risk 
of failure is deemed by the Code to be acceptably low.  It does not follow (as some 
designers are inclined to believe), that if the point (Mu, Pu) falls outside the failure 
envelope, the column will fail! 

Salient Points on the Interaction Curve 

The salient points, marked 1 to 5 on the interaction curve [Fig. 13.12] correspond to 
the failure strain profiles, marked 1 to 5 in Fig. 13.11: 

• The point  in Fig. 13.12 corresponds to the condition of axial loading with 
e = 0.  For this case of ‘pure’ axial compression, M

1
uR = 0 and PuR is denoted as 

Puo (given by Eq. 13.16). 

5

4

3

2

1′

1Puo

e = eb

e = ∞

e = eD

e = emin

e = 0

Mu = Pu e
Muo Mub

Pub

(Pu = PuR, Mu = MuR )

e < eb

e > eb

DESIGN INTERACTION CURVE

⇒ ‘compression failure’

⇒ ‘tension failure’

~
Puo

‘balanced failure’

1
e

Pu

 

Fig. 13.12  Typical Pu — Mu interaction diagram 

• The point  in Fig. 13.12 corresponds to the condition of axial loading with the 
mandatory minimum eccentricity e

′1
min [prescribed by the Code (Cl. 25.4 and 

39.3)].  The corresponding ultimate resistance is approximately given by ~Puo   
(Eq. 13.17). 

• The point 3 in Fig. 13.12 corresponds to the condition xu = D [refer Fig. 13.11], 
i.e., e = eD.  For e < eD, the entire section is under compression and the neutral 
axis is located outside the section (xu > D), with 0.002 < εcu < 0.0035.  For e > eD, 
the NA is located within the section (xu < D) and εcu = 0.0035 at the ‘highly 
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compressed edge’ [Fig. 13.11].  Point 2 represents a general case, with the neutral 
axis outside the section (e < eD ). 

• The point 4 in Fig. 13.12 corresponds to the balanced failure condition, with e = 
eb and xu = xu, b [refer Fig. 13.11].  The design strength values for this ‘balanced 
failure’ condition are denoted as Pub and Mub.  For PuR < Pub (i.e., e > eb), the 
mode of failure is called tension failure, as explained earlier.  It may be noted that 
Mub is close to the maximum‡ value of ultimate moment of resistance that the 
given section is capable of, and this value is higher than the ultimate moment 
resisting capacity Muo under ‘pure’ flexure conditions [point 5 in Fig. 13.12]. 

• The point 5 in Fig. 13.12 corresponds to a ‘pure’ bending condition (e = ∞, 
PuR = 0); the resulting ultimate moment of resistance is denoted Muo and the 
corresponding NA depth takes on a minimum value xu, min. 

13.5.4   Analysis for Design Strength 

In this section, the detailed calculations for determining the design strength of a 
uniaxially eccentrically loaded column with a rectangular cross-section (b × D) is 
described in detail.  The notation D denotes the ‘depth’ of the rectangular section in 
the plane of bending, i.e., either Dx or Dy, depending on whether bending occurs with 
respect to the major axis or minor axis, and the notation b denotes the ‘breadth’ 
(width) of the section (in the perpendicular direction).  The basic procedure for other 
cross-sectional shapes (including circular sections) is similar, and this is 
demonstrated in Example 13.8 for an H-shaped section.  This procedure can also be 
extended to large tubular towers (such as chimneys), albeit with some modifications 
[Ref. 13.11]. 

As explained in Section 13.5.3, the design strength of an eccentrically loaded 
column is not a unique value, but comprises infinite sets of values of PuR and MuR 
(corresponding to 0 < e < ∞) — all of which are describable by means of a single 
curve, termed the design interaction curve  [Fig. 13.12].  It was also pointed out that 
the analysis for design strength basically entails two conditions:  strain compatibility 
[Fig. 13.11] and equilibrium [Eq. 13.20, 13.21]. 

The distribution of strains in the rectangular column section and the corresponding 
(compressive) stresses in concrete are depicted in Fig. 13.13.  Two different cases 
need to be distinguished.  In the first case [Fig. 13.13(a)], the loading eccentricity is 
relatively high [e > eD in Fig. 13.11], such that the neutral axis is located inside the 
column section (xu ≤ D).  In the second case [Fig. 13.13(b)], the loading eccentricity 
is relatively low  [e < eD in Fig. 13.11], such that the NA is located outside the 
section.  In both cases, the force/moment equilibrium equations, described by 
Eq. 13.20 and 13.21, remain valid; however, the formulas for Cc, Cs, Mc and Ms 
involve parameters that have different expressions for the two cases. 
                                                           
‡ Muo corresponds to the ultimate moment of resistance of an under–reinforced beam section.  
The presence of some axial compression delays the yielding of the tension steel (and hence, 
the development of the ultimate limit state), thereby enhancing the moment resisting capacity 
beyond Muo.  However, the presence of axial compression also enhances the compressive stress 
in concrete, and the gain in MuR due to delayed yielding of tension steel becomes offset by the 
loss in MuR due to hastening of the compression failure condition, when PuR exceeds Pub. 
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Generalised expressions for the resultant force in concrete (Cc) as well as its 
moment (Mc) with respect to the centroidal axis of bending may be derived as 
follows, based on Fig. 13.13: 

Cc = a fck bD                                                      (13.22) 

)2( xDCM cc −=                                              (13.23) 

where a ≡ stress block area factor 
         x  ≡ distance between highly compressed edge and the line of action of Cc (i.e., 

centroid of stress block area) 
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Fig. 13.13  Analysis of design strength of a rectangular section 
under eccentric compression 
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By means of simple integration, it is possible to derive expression for a and x  for 
the case (a): xu ≤ D [refer Section 4.7] and for the case (b): xu > D [Ref. 13.12]: 

⎩
⎨
⎧

>−
≤

=
Dxg
DxDx

a
u

uu

for       )2141(447.0
for               362.0

                                   (13.24) 

{ }⎩
⎨
⎧

>−−
≤

=
DxgDg
Dxx

x
u

uu

for        )2141()4985.0(
for                                         416.0

               (13.25) 

where        2)37(
16

−
=

Dx
g

u
                                                        (13.26) 

Similarly, the expressions for the resultant force in the steel (Cs) as well as its 
moment (Ms) with respect to the centroidal axis of bending is easily obtained as: 

( ) si
n

i
cisis AffC  

1
∑
=

−=                                                       (13.27) 

( ) isi
n

i
cisis yAffM   

1
∑
=

−=                                                    (13.28) 

where 
Asi ≡ area of steel in the ith row (of n rows) [refer Fig. 13.13]; 
 yi ≡ distance of ith row of steel from the centroidal axis, measured positive in 

the direction towards the highly compressed edge; 
 fsi ≡ design stress in the ith row (corresponding to the strain εsi) obtainable 

from design stress-strain curves for steel; 
εsi ≡ strain in the ith row, obtainable from strain compatibility conditions (εsi 

and fsi are assumed to be positive if compressive, and negative if tensile); 
fci ≡ design compressive stress level in concrete, corresponding to the strain 

εci = εsi adjoining the ith row of steel, obtainable from the design stress-
strain curve for concrete [Fig. 3.5] [Note: fci = 0 if the strain is tensile]: 

fci = 
[ ]⎪

⎩

⎪
⎨

⎧

ε−ε
≥ε
≤ε

otherwise    )002.0()002.0(2447.0
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Also, from Fig. 13.13, it can be observed (applying similar triangles) that: 
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It should be noted that, in the case of spiral columns, the Code permits an 
enhancement in the design strength (both PuR and MuR) by 5 percent — for short 
columns only. 
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EXAMPLE 13.5 

For the column section shown in Fig. 13.14(a), determine the design strength 
components corresponding to the condition of ‘balanced failure’.  Assume M 25 
concrete and Fe 415 steel.  Consider loading eccentricity with respect to the major 
axis alone.  Assume 8 φ ties and 40 mm clear cover. 

SOLUTION 

• Given: b = 300 mm, D = 500 mm, fck = 25 MPa, fy = 415 MPa,  
As1 = As2 = As3 = 2 × 491 mm2 = 982 mm2, [as shown in Fig. 13.14(b)],  
y1 = (–)189.5 mm, y2 = 0 mm, y3

 = (+)189.5 mm with reference to centroidal axis 
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0.447fck

8 φ ties

 

Fig. 13.14  Example 13.5 

• Neutral axis depth xu, b  
The ‘balanced strain’ profile is as shown in Fig. 13.14(c). 

For Fe 415 steel, 
5102

41587.0
×

×
=ε y  + 0.002 = 0.003805 
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Considering simil . 13.14(c)], ar triangles [Fig

x  = u, b 003805000350 .. +
5600 ) .−  = 210.6 mm (< D/2 = 250 mm) 

•  (3 rows): Consi
)εy = – 0.003805 (ten

5000350 (. ×

Strains in steel dering Fig. 13.14(b), (c), 
εs1 = (– sile) 

εs2 = (–)0.0035 × 
6.210

6.210250 −  = – 0.000655 (tensile) 

6.210
5.606.210 −εs3 = (+)0.0035 ×  = + 0.002495 (compression) > 0.002 

• Design stresses in steel (3 rows): R
F able 3.2], 

eferring to the design stress-strain curve for 
e 415 [Fig. 3.7, T

fs1 = (–)0.87fy = –360.9 MPa  
fs2 = Es εs2 = (2 × 105) × (–)0.000581 = –131 MPa 

fs3 = +[342.8 + ⎟
⎞

⎜
⎛ − 2415.249

⎠⎝ − 241276
 × (351.8 – 342.8)] = +345 MPa  

•  component in
efer Fig. 13.1

1 9 N 

Design strength  axial compression: Pub,x 
Pub,x = Cc + Cs [r 4(d)] 
Cc = 0.362 fck b xu, b = 0.362 × 25 × 300 × 210.6 = 57 77

3

Cs = C f f A= −∑∑ ( )  [Eq.si si ci si
i 1

 13.27] 
=

 [(–360.9) + (–131) + (34 5)] × 982 
 –155230N (tensile) 

• ub, x

 the centroidal axis, 

6

89.5 )] × 982 
Nmm 

        = 5 – 0.447 × 2
        =
        ⇒ Pub, x = (571.8– 155.2) kN = 416.6 kN 

 in flexure: M  Design strength component
 +Mub, x = Mc  Ms   

ult nts aboutwhere, considering moments of stress res a
Mc C = .416xc (0.5D – 0 u) 
      = 571779 × (250 – 0.416 × 210.6) = 92.85 × 10  Nmm 
Ms = C ysi i∑  

     = [(–360.9)(–189.5 ) + (–131)(0) + (345 – 0.447 × 25)(1
     = 129.3 × 106

⇒ Mub, x = (92.85 + 129.3) kNm = 222.15 kNm 

[Note: e  = b,x
Mub x,  
Pub x,

= 
6.416

 = 533.2 1015.222 × mm ⇒ (e/D)x = 1.066 and 

u,b/D = 210.6/500 = 0.
/D)x > 1.066 or xu/D < 0

3

corresponding x 4212.  This implies that tension failure 
occurs only if (e .4212]. 
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EXAMPLE 13.6 

For the column section shown in Fig. 13.14(a), determine the design strength 
components corresponding to a neutral axis location given by xu/D =1.2.  Consider 
loading eccentricity with respect to the major axis alone. 

SOLUTION 

• Given: data as in Example  13.5 [Figs. 13.14(a), (b)]. 
• Neutral axis depth xu = 1.2 × 500 = 600 mm 

As the NA falls outside the section, the entire section is under compression, and 
the corresponding failure strain diagram is as shown in Fig. 13.13(b). 

500

 

Fig. 13.15  Example 13.6 
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• Strains in steel 
From the distribution of failure strains shown in Fig. 13.15(a), by applying 
similar triangles, 
εs1 = (+)0.003111 × 160.5/600 = + 0.000832                      < 0.002 
εs2 = (+)0.003111 × 350/600 = + 0.001815                         < 0.002 
εs3 = (+)0.003111 × (600 – 60.5)/600 = + 0.002797            > 0.002 
[Note that these values can alternatively be obtained by applying the generalised 
formula given by Eq. 13.30] 

• Design stresses in steel 
Referring to the design stress-strain curve for Fe 415 [Fig. 3.7, Table 3.2], 
fs1 = (2 × 105) × (+)0.000832 = + 166.4 MPa  

fs2 = + [306.7 +
163192
1635.181

−
−  × (324.8 – 306.7)] = + 318.2 MPa 

fs3 = + [351.8 + 
276380
2767.279

−
−  × (360.9 – 351.8)] = + 352.1 MPa  

• Design strength component in axial compression: PuR 
PuR = Cc + Cs [refer Fig. 13.15(b)] 
The properties of the truncated stress block have to be considered [Eq. 13.24 – 
13.26] as xu >D: 
g x Du= 16 7 3 2( − )                 [Eq. 13.26] 
    = 16/(7 × 1.2 – 3)2 = 0.5487 
a = 0.447 × (1 – 4g/21)              [Eq. 13.24] 
   = 0.447 × 0.8955 = 0.4003 
∴ Cc = a fck b D = 0.4003 × 25 × 300 × 500 = 1501125 N 

Cs =  ( )f f Asi ci si
i

−
=
∑

1

3

    = [(166.4 – 0.295† × 25) + (318.2 – 0.443‡ × 25) + (352.5 – 0.447 × 25)] × 982 
    = 792940N 
    ⇒ PuR = (1501.1 + 792.9) kN = 2294 kN 

• Design strength component in flexure: (MuR)x 
(MuR)x = Mc + Ms  
where, considering moments of resultant forces about the centroidal axis, 
Mc = Cc (0.5D – x ) 
x  = (0.5 – 8g/49) {D g(1 4 21− })

                                                          

             [Eq. 13.25] 
     = (0.5 – 8 × 0.5487/49)(500/0.8955) 
     = 229.2 mm 
⇒ Mc =1501125 (0.5 × 500 – 229.2) = 31.22 × 106 Nmm 

 
† Applying Eq. 13.29 with εs1 = + 0.000832, fc1 = 0.447fck × 0.6589 = 0.295 fck. 
‡ Applying Eq. 13.29 with εs2 = + 0.001815, fc2 = 0.447fck × 0.9914 = 0.443 fck. 
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     Ms =    i
i

sicisi yAff  ∑
=

−
3

1

)(

     = [(166.4 – 0.295 × 25)(–189.5) + 0 + (352.5 – 0.447 × 25)(+189.5)] × 982 
     = 33.92 × 106Nmm 
⇒ (MuR)x = (31.22 + 33.92) kNm = 65.1 kNm 

[Note that 
uR

xuR
x P

M
e

)(
= =

2294
101.65 3× = 28.4 mm ⇒ (e/D)x = 0.057, 

corresponding to xu/D = 1.2] 

EXAMPLE 13.7 

For the column section shown in Fig. 13.14(a), determine the design strength 
components and corresponding eccentricity of loading with respect to the minor axis 
alone, for the limiting condition of ‘no tension’ in the section. 

SOLUTION 
300
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• For bending about the minor axis, the column details are as shown in 
Fig. 13.16(a).  In this case, b = 500 mm, D = 300 mm.  There are only two rows 
of steel. 
As1 = As2 = 3 × 491 mm2 = 1473 mm2

y1 = (–)89.5 mm and y2 = (+)89.5 mm with reference to the centroidal axis. 
• Neutral axis depth 

xu = 300 mm, as shown in Fig. 13.16(c) for the limiting strain profile for ‘no 
tension’ (i.e., xu= D) 

• Strains in steel (2 rows): Considering Fig. 13.16(c), 

εs1 = (+)0.0035 × 
300

5.60  = + 0.000706                   < 0.002 

εs2 = (+)0.0035 × 
300

5.60300 −  = + 0.00279          > 0.002 

• Design stresses in steel (2 rows): 
Referring to the design stress-strain curve for Fe 415 [Fig. 3.7, Table 3.2], 
fs1 = (2 × 105) × (+)0.000706 = +141.2 MPa  

fs2 = +[351.8 +
276380
276279

−
−  × (360.9 – 351.8)] = +352.0 MPa 

• Design strength component in axial compression: PuR 
PuR = Cc + Cs [refer Fig. 13.16(d)] 
Cc = 0.362 × 25 × 500 × 300 = 1357500 N 
Cs = Cs1 + Cs2 = [(141.2 – 0.259† × 25) + (352.0 – 0.447 × 25)] × 1473 
     = 700485 N 
⇒ PuR = (1357.5 + 700.5) kN = 2058 kN 

• Design strength component in flexure: MuR, y 
MuR, y = Mc + Ms  
where, considering moments of stress resultants about the centroidal axis, 
Mc = 1357500 × (0.5 × 300 – 0.416 × 300) = 34.21 × 106 Nmm   
Ms = Cs1 y1 + Cs2 y2  
     = [(141.2 – 0.259× 25)(–89.5) + (352.0 – 0.447 × 25) × (+89.5)] × 1473 
     = 27.17 × 106Nmm 
⇒ MuR, y = (34.21 + 27.17) kNm = 61.38 kNm 

• Eccentricity eD,y corresponding to ‘no tension’ limit 

e
M
PD y

uR y

uR
,

( )
=  = 

2058
1038.61 3×  = 29.82 mm 

[⇒ (e/D)y = 29.82/300 = 0.0994, implying that the entire section will be under 
compression at the ultimate limit state if (e/D)y < 0.0994].   
 

                                                           
† Applying Eq. 13.29 with εs1 = + 0.000706, fc1 = 0.447fck × 0.5814 = 0.259fck. 
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EXAMPLE 13.8 

For the H-shaped column section shown in Fig. 13.17(a), determine the design 
strength components corresponding to a neutral axis location given by xu/D = 0.75.  
Consider loading eccentricity with respect to the major axis alone.  Assume M 30 
concrete and Fe 415 steel. 

SOLUTION 

 

Fig. 13.17  Example 13.8 
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• Given: data as indicated in Fig. 13.17(a), (b) 
As1 = As2 = 314 × 3= 942 mm2  ;  y1 = –150 mm,      y2 = +150 mm,  
fck = 30 MPa        fy = 415 MPa  
D = 400 mm ⇒ xu = 0.75 × 400 = 300 mm 

• Strains in steel (2 rows) 
Referring to strain profile shown in Fig. 13.17(c), εcu = 0.0035 (as xu < D),  
εs1 = (–)0.0035 × 50/300 = – 0.000583 (tensile) 
εs2 = (+)0.0035 × 250/300 = + 0.002917 (compressive) 

• Design stresses in steel 
Referring to the design stress-strain curve for Fe 415 [Fig. 3.7, Table 3.2], 
fs1 = (2 × 105) × (–)0.000583 = –116.6 MPa  

fs2 = +[351.8 + 291 7 276
380 276

. −
−

 × (360.9 – 351.8)] = +353.2 MPa 

• Design strength component in axial compression: PuR 
PuR = (Cc1 + Cc2) + (Cs1 + Cs2), as shown in Fig. 13.17(d) 
Cc1 = 0.362 × 30 × 100 × 300 = 325800 N 
Cc2 = 0.447 × 30 × 200 × 100 = 268200 N 
Cs1 = –116.6 × 942 = –109837 N 
Cs2 = +(353.2 – 0.447 × 30) × 942 = +320082 N 
      ⇒ PuR = (325.80 + 268.20 – 109.84 + 320.08) kN = 804.2 kN 

• Design strength component in flexure: MuR, x 
Referring to Fig. 13.17(d), taking moments of stress resultants about the 
centroidal axis of bending, 
MuR, x = Cc1(0.5D – 0.416xu) + Cc2(0.5D – 50) + Cs1 y1 + Cs2 y2  
           = 325800(200 – 0.416 × 300) + 268200 (200 – 50) + (–109837)(–150)  

+ (320082)(150) 
           = (24.50 + 40.23 + 16.48 + 48.01) × 106 Nmm 
           = 129.2 kNm 

• Corresponding eccentricity e M
Px
uR x

uR
=

,  = 129 2 10
804 2

3.
.
×  = 135.8  mm 

[⇒ (e/D)x = 135.8/400 = 0.339, corresponding to  xu/D = 0.75]. 

13.5.5   USE OF INTERACTION DIAGRAM AS AN ANALYSIS AID   

Analysis of the strength of a given column section basically implies determination of 
its design strength components PuR and MuR — with the objective of assessing the 
safety of the column section subjected to specified factored load effects Pu and Mu 
(i.e., either Mux or Muy).  It should be noted that { }P MuR uR,  denotes the resistance 

inherent in the column section, whereas { }P Mu u, denotes the load effects induced in 
the section by the action of external factored loads on the structure.  The point 

lies on the design ‘interaction curve’, whereas the point {P MuR uR, } { }P Mu u, is any 
point on the ‘interaction diagram’ (i.e., in the two-dimensional space bounded by the 
two coordinate axes).  Various combinations of factored axial compression Pu and 
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factored uniaxial moment Mu will act on the column section due to different factored 
loading patterns on the structure.  As explained in Chapter 9, it generally suffices to 
consider two critical combinations of Pu and Mu, viz. (i) maximum Pu along with the 
corresponding Mu, and (ii) Pu and Mu corresponding to maximum eccentricity 
e = Mu/Pu.  These critical load effects are obtainable from structural analyses of the 
structure (of which the column under consideration is a part) under different loading 
patterns (gravity loads, lateral loads) [refer Section 9.2]. 

Thus, in effect, the column strength analysis problem reduces to determining 
whether a given column section, subjected to given factored load effects { } , is 
‘safe’ or not.  One way of checking this is by determining the design strength 

, corresponding to the applied eccentricity e = M

P Mu u,

{P MuR uR, }

}

u/Pu, and if PuR ≥ Pu and 
MuR ≥ Mu, the column section can be considered safe†, according to the Code.  An 
alternative method of checking safety is by assuming that the ultimate limit state has 
been reached under the factored load Pu, i.e., PuR = Pu, and then comparing the 
corresponding ultimate moment of resistance MuR with the applied factored moment 
Mu; if MuR ≥ Mu, the column section is ‘safe’. 

Regardless of the criterion used for checking safety of a column section under 
factored load effects , a trial-and-error type of procedure has to be adopted, 
if calculations are to be based on first principles.  The basic stress resultants C

{P Mu u,

c and 
Cs (in Eq. 13.22(c) and 13.23) are expressed in terms of an unknown neutral axis 
depth (xu), and the nature of this relationship is too complicated to enable a closed-
form solution for xu — by solving a suitable equilibrium equation for a given PuR 
(Eq. 13.20) or a given eccentricity† e. 

Indeed, as mentioned in the Code (Note to Cl. 39.5): 

“The design of a member subject to combined axial load and uniaxial 
bending will involve lengthy calculation by trial and error.  In order to 
overcome these difficulties, interaction diagrams may be used”. 

Although the above statement refers to design (discussed in Section 13.5.6), it is 
equally valid in the case of analysis.  If an interaction diagram [refer Fig. 13.12] is 
readily available (or can be constructed) for the given column section, then the 
analysis problem simply reduces to determining whether or not the point 
corresponding to factored load effects { }P Mu u, lies within the envelope of the 
interaction curve, as explained in Section 13.5.3.  Furthermore, the design strength 
components  can be easily read off from the interaction curve, 
corresponding to any given eccentricity e, or given P

{P MuR uR, }

                                                          

u (= PuR). 

 
† By the term ‘safe’, it is only implied that the risk of failure (measured in terms of probability 
of failure) is acceptably low [refer Chapter 3]. 
† For a given eccentricity e, Eq. 13.20 is not suitable as it involves an unknown xu as well as an 
unknown PuR.  In this case, it is best to construct a moment equilibrium equation with 
reference to the eccentric line of action of PuR, thereby eliminating PuR. 
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Construction of a Design Interaction Curve 

The coordinates of the ‘design interaction curve’, viz. MuR (on the x-axis) and PuR (on 
the y-axis), can be determined for any arbitrary neutral axis depth xu, using 
Eqs. 13.20 and 13.21.  The starting value of xu corresponding to PuR = 0, viz. xu,min 
[refer Fig. 13.11], poses some problem as it is unknown and has to be determined by 
solving Eq. 13.20 with PuR = 0 by trial-and-error.  To begin with, a trial value xu,min ≈ 
0.15D can be assumed; this, in all probability, will result in a negative value of PuR, 
which corresponds to a condition of eccentric tension.  By incrementing xu/D suitably 
(in steps of 0.05 or less), the transition between PuR < 0 and PuR > 0 can be traced.  
(The ‘exact’ value of the ultimate moment of resistance Muo corresponding to ‘pure 
bending’ (PuR = 0), if required, can be obtained by repeated trial-and-error‡ , using 
very fine increments of xu/D). 

Having located (approximately) xu, min/D, the coordinates of the design interaction 
curve can be obtained (using Eq. 13.20, 13.21) and tabulated for incremental values 
of xu/D — say, increments of 0.05.  The process can be terminated when PuR exceeds 
the maximum limit ~Puo permitted by the Code [refer Eq. 13.17], and may be extended 
to Puo (e = 0) [Eq. 13.16].  As the procedure is repetitive, this can be more 
conveniently done on a computer.  The coordinates (MuR, PuR) of the design 
interaction curve can then be tabulated and/or plotted.  It is useful to include the 
ratios xu/D and e/D in the Table.  The construction and use of a design interaction 
curve for a typical column section is demonstrated in Examples 13.9 and 13.11. 

EXAMPLE 13.9 

For a column section shown in Fig. 13.14(a), construct the design interaction curve 
for axial compression combined with uniaxial bending about the major axis.  Hence, 
investigate the safety of the column section under the following factored load effects: 

(i) Pu = 2275 kN,   Mux = 46.4  kNm (maximum axial compression); 

(ii) Pu = 1105 kN,   Mux = 125  kNm (maximum eccentricity). 

SOLUTION 

• Given: b = 300 mm, D = 500 mm, fck = 25 MPa, fy = 415 MPa, Asc = 2946  mm2  
As1 = As2 = As3 = 2 × 491 mm2 = 982 mm2 [as in Example 13.5] 
y1 = –189.5 mm, y2 = 0 mm, y3 = +189.5 mm 

• Maximum axial compression resistance: 
~Puo = 0.4fck bD + (0.67 fy – 0.4fck)Asc            [Eq. 13.17] 

       = (0.4 × 25 × 300 × 500) + (0.67 × 415 – 0.4 × 25) × (2946) 
       = (1500 000 + 789 675) N = 2290 kN 

                                                           
‡ The problem of determining xu/D for any given PuR can be more elegantly solved using a 
suitable numerical procedure [Ref. 13.13].  Thus, a computer program can be written and used 
to derive the interaction curve coordinates, using increments of PuR, rather than xu/D. 
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Interaction Curve Coordinates 
The theoretical maximum axial compression (with e = 0) is given by Eq. 13.16: 
Puo = 0.447fck bD + (0.790fy – 0.447fck) Asc — for Fe 415 
      = (0.447 × 25 × 300 × 500) + (0.79 × 415 – 0.447 × 25) × (2946) 
      = (1676250 + 932925) N = 2609 kN. 
The coordinates (MuR,x, PuR) are derived for 0 ≤ PuR ≤ Puo, considering 
incremental values of xu/D, using the equilibrium equations (Eq. 13.20, 13.21).  
The results, obtained by a computer program, are tabulated in Table 13.1(a).  The 
reader may verify some of the solutions by simple manual calculations.  The 
‘balanced failure’ point (Pub,x = 416.6 kN, Mub,x = 222.15 kNm) obtained in 
Example 13.5 is a salient point on the interaction curve. 

An alternative, and perhaps more elegant, computer-based procedure for 
determining the interaction curve coordinates, is by considering incremental 
values of PuR (instead of xu/D).  The ‘bisection method’ was employed here to 
determine xu/D (to an accuracy of 10–6) for a given PuR.  Thus, it becomes 
possible to accurately compute xu, min/D and Muo, corresponding to PuR = 0; the 
values are obtained as  

xu, min /D = 0.284 
Muo, x =  199.8 kNm 

The results obtained by this alternative procedure are tabulated in Table 13.1(b).  
The design interaction curve is plotted in Fig. 13.18. 
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Fig. 13.18  Example 13.9: Interaction diagram 
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Table 13.1  Example 13.9 — Design interaction curve coordinates 

(a)  (b) 
xu/D PuR

( kN) 

MuR,x

( kNm) 

 PuR

( kN) 

MuR,x

( kNm) 

xu/D 

0.28 -9.1 198.9  0 199.8 0.284 
0.30 33.0 203.1  100 208.7 0.330 
0.34 125.0 210.6  200 214.2 0.362 
0.38 268.6 216.9  300 218.1 0.388 
0.42 412.2 222.0  400 221.6 0.416 
0.46 545.3 225.1  500 224.1 0.446 
0.50 667.8 226.9  600 226.1 0.477 
0.54 785.9 226.4  700 227.0 0.511 
0.58 900.5 224.4  800 226.3 0.545 
0.62 1018.3 219.5  900 224.4 0.580 
0.66 1162.4 207.9  1000 220.4 0.614 
0.70 1298.3 196.2  1100 213.0 0.642 
0.74 1425.6 184.7  1200 204.6 0.671 
0.78 1545.5 173.2  1300 196.0 0.700 
0.82 1659.0 161.6  1400 187.0 0.732 
0.86 1764.5 149.7  1500 177.6 0.765 
0.90 1857.6 137.7  1600 167.7 0.799 
0.94 1946.5 125.3  1700 157.1 0.835 
0.98 2030.5 112.5  1800 145.2 0.875 
1.02 2102.6 100.2  1900 132.0 0.919 
1.06 2157.7 90.1  2000 117.3 0.965 
1.10 2204.4 81.5  2100 100.7 1.018 
1.14 2244.2 74.2  2200 82.3 1.096 
1.18 2278.6 67.9  2300 64.0 1.208 
1.22 2308.6 62.4  2400 44.8 1.392 
1.26 2334.5 57.5  2500 25.2 1.755 
1.30 2357.2 53.1  2600 3.0 5.717 
∞ 2609.0 0.0  2609 0.0 ∞ 

Safety under given factored load effects 
(i) Pu = 2275 kN, Mux = 46.4 kNm 

From fig. 13.18, it can be seen that this point falls within the design interaction 
curve (failure envelope).  Hence, the section is ‘safe’ under the given load effects. 

Alternatively, corresponding to PuR = 2275 kN, MuR,x ≈ 69 kNm (from 
Fig. 13.18).  As this ultimate moment of resistance is greater than Mux = 
46.4 kNm, the column section is safe. 

Alternatively, ex = 46 10
2275 10

6

3
.4

( )
×
×

 = 20.40 mm† (i.e., (e/D)x = 0.0408).  The 

design strength corresponding to this loading eccentricity can be obtained from 
Fig. 13.18 as the intersection of the design interaction curve with a straight line 
passing through the origin and the given point.  Accordingly, 

                                                           
† This roughly corresponds to the minimum uniaxial eccentricity (for short columns) specified 
by the Code. 
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PuR  = 2402 kN > Pu = 2275 kN 
MuR = 49 kNm > Mu = 46.4 kNm    — Hence, safe. 

(ii) Pu = 1105 kN, Mux = 125 kNm 
This point also falls within the design interaction curve [Fig. 13.18].  Hence, the 
section is ‘safe’. 
Alternatively, corresponding to PuR = 1105 kN  (from Fig. 13.18), 
MuR, x = 212 kNm > Mux = 125 kNm         — Hence, safe. 

EXAMPLE 13.10 

Using the design interaction curve obtained in Example 13.9, determine 

(i) the maximum eccentricity ex with which a factored load Pu = 1400 kN can 
be safely applied; 

(ii) the design strength components corresponding to an eccentricity ex = 0.6D. 

SOLUTION 

(i) Considering the design interaction curve in Fig. 13.18, or Table 13.1(b) 
corresponding to PuR = Pu = 1400 kN, the design flexural strength is obtained as  

MuR, x = 187 kNm 
This is the maximum factored moment  that can be applied on the column section, 
in combination with Pu = 1400 kN. The corresponding eccentricity is given by  

1400
10187 3×

==
u

ux
x P

M
e  = 133.6 mm  

(ii) ex = 0.6D = 0.6 × 500 = 300 mm 
Draw the radial line with ex = 0.3, and locate its intersection with the interaction 
curve.  For this, consider a point with coordinates Pu = 1000 kN and Mux = 1000 × 
0.30 = 300 kNm.  Passing a straight line from the origin to this point on the 
interaction diagram (extending this line if necessary), to intersect the design 
interaction curve [see Fig. 13.18], the design strength components are obtained as  

PuR = 753 kN 
MuR, x = 226 kNm 

EXAMPLE 13.11 

For the column section shown in Fig. 13.14(a), construct the design interaction curve 
for axial compression combined with uniaxial bending about the minor axis.  Hence, 
determine: 

(i) the maximum eccentricity ey with which a factored load Pu = 1400 kN can 
be safely applied; 

(ii) the design strength components corresponding to an eccentricity 
ey = 180 mm. 
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SOLUTION 

• The design interaction curve PuR – MuR, y is constructed in a manner similar to the 
PuR – MuR, x curve of Example 13.9.  In the present case, the depth of the section is 
taken as 300 mm and the width as 500 mm.  There are only two rows of 
reinforcement to be considered [see Example 13.7]: 
As1 = As2 = 3 × 491 = 1473 mm2   
y1 = –89.5 mm, and y2 = +89.5 mm 
The coordinates of the interaction curve (along with values of xu/D) are shown in 
Table 13.2 and plotted in Fig. 13.19. 

• Some salient points on this interaction curve are: 
~Puo  = 2290 kN,  Puo = 2609 kN (as in Example 13.9) 
Muo y,  = 105.4 kNm (as against Muo, x = 199.8 kNm in Example 13.9)   
Pub,y = 650.0kN,  Mub,y = 145.2 kNm  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 13.2  Example 13.11 — Design Interaction Curve Coordinates 

PuR  
( kN) 

MuR,y  
( kNm) 

xu/D 

0 105.0 0.250 
100 113.8 0.274 
200 122.4 0.300 
300 130.7 0.329 
400 138.2 0.369 
500 143.0 0.420 
600 145.3 0.471 
700 145.0 0.518 
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800 142.7 0.557 
900 138.0 0.585 
1000 132.8 0.611 
1100 127.5 0.639 
1200 122.0 0.669 
1300 116.3 0.701 
1400 110.4 0.734 
1500 104.2 0.769 
1600  97.7 0.806 
1700  90.8 0.845 
1800  83.4 0.886 
1900  75.5 0.929 
2000  66.8 0.973 
2100  57.1 1.026 
2200  46.4 1.103 
2300  35.8 1.212 
2400  25.1 1.384 
2500  14.3 1.699 
2600    1.7 5.713 
2609    0.0 ∞ 

 
(i) Corresponding to PuR = Pu = 1400 kN, the design flexural strength is obtained 

from Table 13.2 or Fig. 13.19 as  
MuR, y = 110.4 kNm (compared to 187 kNm in Example 13.10) 
This is maximum factored moment Muy that can be applied on the column section, 
in combination with Pu = 1400 kN.  The corresponding eccentricity is given by 

1400
104.110 3×

==
u

uy
y P

M
e  = 78.86 mm  

(ii) ey = 180 mm 
Considering a straight line with slope such that Pu : Muy = 1000 kN : 180 kNm, 
i.e., a slope of 1:ey,  the desired strength components are obtained as the point of 
intersection of the design curve with this straight line [see Fig. 13.19]: 

PuR = 789 kN 
MuR, y = 142 kNm  

[In this case, ey/D = 180/300 = 0.60.  The results may be compared with PuR = 
775 kN, MuR,x = 233 kNm corresponding to ex/D = 0.6, obtained in 
Example 13.10(ii)]. 
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Fig. 13.19  Example 13.11 

 

13.5.6   Non-dimensional Interaction Diagrams as Design Aids 

In a typical design situation, the column section has to be designed to resist certain 
critical combinations of factored axial compression (Pu) and factored bending 
moment (Mu) — as obtained from structural analyses.  Commonly, the overall 
dimensions of the column are assumed†, and the grades of concrete and steel are 
specified; of course, these could be changed subsequently — in a redesign.  The 
problem of ‘design’, therefore, reduces to the provision of longitudinal and 
transverse reinforcement.  Designing of transverse reinforcement is relatively simple, 
as it is largely a matter of compliance with Code specifications related to bar 
diameter and spacing [refer Section 13.3.3].  Designing of longitudinal reinforcement 
can also be made simple by the use of interaction diagrams, as explained in 
Section 13.5.5.  Indeed, as pointed out earlier, in the absence of such analysis/design 
aids, the problem is difficult to solve as it calls for repeated trial-and-error in order to 
locate the neutral axis. 

The interaction diagrams discussed hitherto [such as Fig. 13.18 or Fig. 13.19] are 
applicable only for particular sections, details of which are indicated in the inset of 
each diagram.  The application of the interaction diagram can be rendered more 

                                                           
† Indeed, these dimensions need to be assumed at the stage of structural analysis itself, if the 
column forms part of a statically indeterminate structure — as is usually the case. 
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versatile by making coordinates Pu and Mu independent of the cross-sectional 
dimensions — by defining suitable non-dimensional parameters pu and mu: 

pu ≡ 
P

f bD
u

ck
                                                   (13.31) 

mu ≡ 
M

f bD
u

ck
2                                                  (13.32) 

The pu – mu interaction diagram [Fig. 13.20] now becomes applicable to all sections 
geometrically similar to and having the same material (steel) properties as the one 
shown in the inset of the figure.  The design interaction curve has coordinates puR and 
muR (corresponding to PuR and MuR); expressions for puR and muR are obtainable from 
Eq. 13.20  – 13.30: 

pu ≡
P

f bD
u

ck
= a + ( )f f k p

fsi ci
i

cki

n

−
=
∑ 1001

                              (13.33) 

mu ≡ M
f bD

u

ck
2  = a (0.5 – x D ) + ( )f f

k p
f

y
Dsi ci

i

cki

n
i−

=
∑ 1001

           (13.34) 

where expressions for the non-dimensional parameters a and x D  are obtainable 
from Eq. 13.24 and 13.25; and ki is the fraction of the total percentage of 
reinforcement p located at the ith row, where 

p ≡ 
100A

bD
s                                                  (13.35) 
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Fig. 13.20  Typical non-dimensional interaction diagram 

From the nature of Eq. 13.33 and 13.34, it follows that by selecting p/fck as a 
parameter, the interaction diagram (valid for given arrangement of bars), can be 
rendered independent of the grade of concrete† .  A family of non-dimensional 
design interaction curves (puR – muR) can thus be generated for a given arrangement 
of bars.  For example, considering the arrangement of six bars in the rectangular 
column section of Example 13.5 [see Fig. 13.14(a), Fig. 13.18], with bending about 
the major axis, a family of interaction curves can be generated, as shown in 
Fig. 13.20 — for some typical values of p/fck (0.05, 0.10, 0.15, 0.20, 0.25) and 
specific grade of steel, viz. Fe 415.  In this particular arrangement of bars, it is 
assumed that all the bars are of equal diameter and symmetrically arranged, with one 
pair of bars located along the major centroidal axis.  This is indicated in the inset 
shown at the top of the figure.  The ratio of the effective cover to the overall depth 
D is another parameter of significance.  A typical value 

′d
′d D = 0.10 is assumed in 

the interaction diagram shown in Fig. 13.20.  In practice, ′d D  usually varies in the 
range 0.05 – 0.20, and p/fck in the range 0.01 – 0.26.  For a fairly exhaustive set of 
interaction diagrams (including different bar arrangements and grades of steel), 
reference may be made to the Design Handbook, SP : 16 [Ref. 13.12] 

                                                           
† Note that the term fci in Eq. 13.33 and 13.34 is dependent on fck if εsi > 0 (compressive) 
[refer Eq. 13.29].  However, it is sufficiently accurate to consider fck = 20 MPa or 25 MPa for 
this purpose and thereby make the curves applicable for all grades of concrete [Ref. 13.12]. 
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It is seen that the different ‘balanced failure’ condition points on the various 
design interaction curves of the same ‘family’ all happen to fall on the same straight 
line — as indicated in Fig. 13.20. 

It may also be noted that the non-dimensional design strength components puR and 
muR can be obtained for any given eccentricity e, as the point of intersection of the 
non-dimensional interaction curve with a straight line passing through the origin and 
having a slope given by : 

pu : mu = 1 : e/D,  as indicated in Fig. 13.20. 
The non-dimensional interaction curves can be used to handle all types of design 

and analysis problems.  In the design problem, the desired value of percentage 
reinforcement p can be easily obtained from the family of interaction curves for a 
given pu and mu.  This is demonstrated in Examples 13.12 – 13.14. 

Design Charts (for Uniaxial Eccentric Compression) in SP : 16 

The design Charts (non-dimensional interaction curves) given in the Design 
Handbook, SP : 16 [Ref. 13.12] cover the following three cases of symmetrically 
arranged reinforcement : 
(a) rectangular sections with reinforcement distributed equally on two sides (Charts 

27 – 38): the ‘two sides’ refer to the sides parallel to the axis of bending; there 
are no inner rows of bars, and each outer row has an area of 0.5As 
[Fig. 13.21(a)], this includes the simple 4–bar configuration; 

(b) rectangular sections with reinforcement distributed equally on four sides (Charts 
39 – 50): two outer rows (with area 0.3As each) and four inner rows (with area 
0.1As each) have been considered in the calculations† ; however, the use of these 
Charts can be extended, without significant error, to cases of not less than two 
inner rows (with a minimum area 0.3As in each outer row), as shown in 
Fig. 13.21(b). 

(c) circular column sections (Charts 51 – 62): the Charts are applicable for circular 
sections with at least six bars (of equal diameter) uniformly spaced 
circumferentially, as shown in Fig. 13.21(c). 

Corresponding to each of the above three cases, there are as many as 12 Charts 
available — covering the 3 grades of steel (Fe 250, Fe 415, Fe 500), with 4 values of 
′d D  ratio for each grade (viz., ′d D = 0.05, .0.10, 0.15, 0.20).  For intermediate 

values of ′d D , linear interpolation may be done.  Each of the 12 Charts of SP : 16 
covers a family of non-dimensional design interaction curves with p/fck values 
ranging from 0.0 to 0.26. 

It may be noted that there are other types of symmetrical reinforcement 
arrangements such as the 6–bar arrangement of Fig. 13.14(a) which are not covered 
by SP : 16 [Fig. 13.21].  In such cases, the designer may make judicious 
                                                           
† If bars of equal diameter are used, this is equivalent to using 20 bars.  While actually 
providing reinforcement to conform to As computed using these Charts, some adjustments may 
be called for in practice.  Providing a greater proportion of reinforcement (more than 0.3As) on 
the outermost rows is on the safer side [refer Example 13.13]. 
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approximations if he still wishes to avail of the SP : 16 Charts.  However, a proper 
course of action would be to construct the proper interaction diagram (as in Examples 
13.9 and 13.11) for the section chosen, and thereby to verify the safety of the section; 
if required, the design should be suitably revised, to make it more economical. 

NO
INNER
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b

D/2D/2

0.5As 0.5As

′d ′d

bending axis

(a)  rectangular section with
“reinforcement distributed equally on two sides”
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AT LEAST TWO
INNER ROWS

 

Fig. 13.21  Reinforcement arrangements for which SP : 16 Charts are applicable 

There are other situations, encountered in practice, which are not amenable for the 
use of SP : 16 Charts.  These include cases of: 
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• unsymmetrically arranged reinforcement in rectangular sections; 
• non-rectangular and non-circular sections — such as L-shaped, T-shaped, H-

shaped, cross shaped sections, etc. 
In such cases, it becomes necessary to construct proper interaction diagrams in 

order to obtain accurate and reliable solutions. 

EXAMPLE 13.12 

Using the design aids given in SP : 16, design the longitudinal reinforcement in a 
rectangular reinforced concrete column of size 300 mm × 600 mm subjected to a 
factored load of 1400 kN and a factored moment of 280 kNm with respect to the 
major axis.  Assume M 20 concrete and Fe 415 steel. 

SOLUTION 

 M 20 
Fe 415

600

300 8 φ ties @ 200 c/c 
(staggered) 

2–28 φ
4–22 φ

2–28 φ 

(nominal cover
 40 mm)

 

        Fig. 13.22  Example 13.12 

• Given: b = 300 mm, D = 600 mm, fck = 20 MPa, fy = 415 MPa, Pu = 1400 kN, 
Mux = 280 kNm 

• Arrangement of bars: as D = 600 mm, the spacing between the corner bars will 
exceed 300 mm; hence inner rows of bars have to be provided to satisfy detailing 
requirements [refer Section 13.3.3].  Assuming two or more inner rows, the 
SP : 16 Charts for “equal reinforcement on four sides” can be made use of 
[Fig. 13.21(b)]. 

• Assuming an effective cover  = 60 mm, ′d
⇒ ′d D  = 60/600 = 0.1 

p
P

f bDu
u

ck
=  = 1400 10

20 300 600

3×
× ×

 = 0.389 

m M
f bDu

ux

ck
= 2  = 

280 10
20 300 600

6

2
×

× ×
 = 0.130 

• Referring to Chart 44 ( ′d D = 0.10) of SP : 16, it can be observed that, the 
coordinates pu = 0.389, mu = 0.130 would lie on a design interaction curve with 
p/fck ≈ 0.11 
⇒ preqd = 0.11 × 20 = 2.2 
⇒ As, reqd = 2.2 × 300 × 600/100 = 3960 mm2
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Detailing of longitudinal reinforcement  
• The design chart used refers to the case of “equal reinforcement on four sides” 

[Fig. 13.21(b)], 
Outermost rows 
Minimum area required in each outermost row = 0.3 × 3960 = 1188 mm2  
Provide 2 – 28 φ: area = 616 × 2 = 1232 mm2 > 1188 mm2

Inner rows 
Total area required = 3960 – (1232 × 2) = 1496 mm2

Provide 4 – 22 φ in two inner rows: area = 380 × 4 = 1520 mm2 > 1496 mm2

• Total area provided = (1232 × 2) + 1520 = 3984 mm2 > 3960 mm2 
(⇒ p = 100 × 3984/(300 × 600) = 2.213) 

Assuming 8mm ties, effective cover = 40+8+(28/2) = 62mm ≈ 60mm – OK 
The detailing is shown in Fig. 13.22.  Details of transverse reinforcement are also 

indicated in the figure.  (It may be verified that this detailing adequately satisfies the 
Code requirements). 

EXAMPLE 13.13 

Referring to the column section shown in Fig. 13.22, investigate the safety of the 
column section under uniaxial eccentric compression with respect to the minor axis, 
considering Pu = 1400 kN and Muy = 200 kNm.  If the section is unsafe, suggest 
suitable modifications to the reinforcement provided. 

SOLUTION 

• Given: b = 600 mm, D = 300 mm, fck = 20 MPa, fy = 415 MPa, Pu = 1400 kN  
Muy = 200 kNm, As = 3984 mm2, p = 2.213  
Effective cover = 40 + 8 + 14 = 62 mm ′d

• The arrangement of bars in this case conforms to “reinforcement distributed 
equally on two sides” [Fig. 13.22(a)]. 
′d D  = 62/300 = 0.207 ≈ 0.2  

p/fck = 2.213/20 = 0.1106 ≅  0.11 

p
P

f bDu
u

ck
=  = 1400 10

20 600 300

3×
× ×

 = 0.389 

m M
f bDu

ux

ck
= 2  = 200 10

20 600 300

6

2
×

× ×
 = 0.185 

• Referring to Chart 34 ( ′d D = 0.2) of SP: 16, it can be seen that the point 
Pu = 0.389, mu = 0.185 lies outside the design interaction curve envelope for p/fck 
= 0.11 and ′d D = 0.09.  The value of p/fck corresponding to puR = 0.389 and  
muR = 0.185 is given by: 

(p/fck)reqd = 0.18 > (p/fck)provided = 0.11.  Hence, the given section is unsafe. 
• Revised Design 

Corresponding to (p/fck)reqd = 0.175, 
preqd = 0.175 × 20 = 3.5 
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⇒ As, reqd = 3.5 × 600 × 300/100 = 6300 mm2

(to be provided equally in two rows) 
Provide 8 – 32 φ (instead of 4 – 28 φ + 4 – 22 φ) 
⇒ As, provided = 804 × 8 = 6432 mm2 > 6300 mm2 (p = 3.573) 
The detailing for the revised design is shown in Fig. 13.23 

EXAMPLE 13.14 

Consider a spiral circular short column, with details as given in Fig. 13.10 
(Example 13.4).  Assess the safety of the column section, when subjected to a 
factored compressive load of 260 kN and a factored bending moment of 78 kNm.  In 
case the section is found unsafe, redesign the reinforcement. 

SOLUTION 

(nominal cove

 

         Fig. 13.23  Example 13.13 

• Given: diameter D = 400 mm, As = 1206 mm2(6 – 16 φ),  fck = 25 MPa, 
fy = 415 MPa, Pu = 260 kN, Mu = 78 kNm  

• As the spiral reinforcement satisfies the Code requirements (Cl. 39.4.1), as seen 
in Example 13.4, the design strength (i.e., PuR, MuR) may be enhanced by 5 
percent, as permitted for short columns. 

• Effective cover = 40 + 6 + 16/2 = 54 mm ′d
⇒ ′d D = 54/400 = 0.135 (which lies between 0.10 and 0.15) 

• percentage of reinforcement  p = 
100

42
A

D
s

π
 = 

100 1206
400 42
×

×π
 = 0.960 

⇒ p/fck = 0.960/25 = 0.0384 

• Eccentricity of loading e = 
M
P

u

u
 = 78 10

260

3×  = 300 mm 

⇒ e/D = 300/400 = 0.75  
⇒ puR : muR = 1 : 0.75, or more conveniently, 0.1 : 0.075 
Thus, the design strength components puR, muR can be obtained as the point of 
intersection of the design interaction curve with a straight line joining the origin 
to a point with Pu = 0.1, mu = 0.75 in the non-dimensional interaction diagram  

M 20 
Fe 415

r
 40 mm)

600

300

8–28 φ
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• Referring to Chart 56 ( ′d D  = 0.10) and Chart 57 ( ′d D = 0.15) of SP : 16, and 
interpolating results for ′d D = 0.135 and p/fck = 0.038, and enhancing the puR, 
muR values by 5 percent ( as permitted by the Code for spiral columns, suitably 
reinforced),  

≅≡ 2Df
Pp

ck

uR
ur 0.063 × 1.05 = 0.0661 

≅≡ 3Df
Mm

ck

uR
ur 0.0515 × 1.05 = 0.0541 

⇒ PuR = 0.0661× 25 × 4002 = 264.4 × 103 N = 264 kN 
MuR = 0.0541× 25 × 4003 = 86.56 × 106 Nmm = 86.5 kNm 

As PuR = 264 kN is greater than Pu = 260 kN and MuR = 86.5 kNm is greater than 
Mu = 78 kNm, the section can be considered to be safe, and hence there is no need 
for a redesign. 

13.6   DESIGN OF SHORT COLUMNS UNDER AXIAL COMPRESSION 
WITH BIAXIAL BENDING 

13.6.1   Biaxial Eccentricities 

As mentioned in Section 13.3.2, all columns are (in a strict sense) to be treated as 
being subject to axial compression combined with biaxial bending, as the design 
must account for possible eccentricities in loading (emin at least) with respect to both 
major and minor principal axes of the column section.  Uniaxial loading is an 
idealised approximation which can be made when the e/D ratio with respect to one of 
the two principal axes can be considered to be negligible.  Also, as mentioned in 
Section 13.4.1, if the e/D ratios are negligible with respect to both principal axes, 
conditions of axial loading may be assumed, as a further approximation. 

In the recent revision to the Code, it is clarified (Cl. 25.4) that “where biaxial 
bending is considered, it is sufficient to ensure that eccentricity exceeds the minimum 
about one axis at a time”.  This implies that if either one or both the factored bending 
moments Mux and Muy (obtained from analysis) is less than the corresponding value, 
calculated from minimum eccentricity considerations (Eq. 13.8), it suffices to ensure 
that at least one of the two minimum eccentricity conditions is satisfied.  However, it 
also becomes necessary to check for the other biaxial bending condition wherein the 
minimum eccentricity in the other direction is also satisfied.  In lieu of the above, of 
course, it will be sufficient and conservative to ensure that both minimum 
eccentricities are simultaneously satisfied in a single design check. 

The factored moments Mux and Muy acting on a column section (with respect to 
bending about the major axis and minor axis respectively) can be resolved into a 
single resultant moment Mu which acts about an axis inclined to the two principal 
axes [Fig. 13.24(a)]: 

M M Mu ux= +2
uy
2                                           (13.36) 



DESIGN  OF  COMPRESSION  MEMBERS 627 

Alternatively, the resultant eccentricity e = Mu/Pu may be obtained [refer 
Fig. 13.24(b)] as: 

e e ex y= +2 2                                                        (13.37) 

When the column section (including the reinforcement) is axisymmetric (with 
reference to the longitudinal axis) — as in a circular column — the resultant axis of 
bending is also a principal axis [Fig. 13.24(c)].  In such a situation, the case of biaxial 
bending simplifies into a case of uniaxial bending.  The neutral axis, in this instance, 
will remain parallel to the resultant axis of bending. 
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Fig. 13.24  Resultant eccentricity of loading 

However, in the more general case of non-axisymmetric reinforced concrete 
column sections, the neutral axis is generally not parallel to the resultant axis of 
bending [Fig. 13.24(d)].  In fact, the determination of the exact neutral axis location 
is a laborious process of trial and error.  For a given neutral axis location, however, 
the failure strain distribution can be drawn (with the same assumptions as in the case 
of uniaxially eccentric compression) [Fig. 13.25].   
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Fig. 13.25  Analysis of design strength for a given location of neutral axis 

13.6.2   Interaction Surface for a Biaxially Loaded Column 

Various simplified procedures for the design of biaxially loaded columns have been 
proposed [Ref. 13.14, 13.15] and adopted by different design codes.  Most of these 
simplified procedures are based on an approximation of the interaction surface, 
which may be visualised in a three-dimensional plot of PuR – Mux – Muy [Fig. 13.26].   

The surface is generated as the envelope of a number of design interaction curves 
for different axes of bending.  Each point on the interaction surface [Fig. 13.26] 
corresponds to values of PuR, Mux and Muy obtained from the analysis of a chosen 
neutral axis location and orientation, such as the one in Fig. 13.25.  The design 
interaction surface can be considered to be a failure surface in that the region 
bounded within this surface is a ‘safe’ region and any point (Pu, Mux, Muy) that lies 
outside the surface is ‘unsafe’†. 

The traces of the interaction surface on the x-z and y-z (vertical) planes correspond 
to the design interaction curves for uniaxial eccentricity with respect to the major and 
minor principal axes respectively.  In order to avoid confusion, the notations used for 
the design flexural strength under uniaxial eccentricity and under biaxial 
eccentricities, the following notations shall be used in the context of biaxial loading 
of columns: 
MuR, x ≡ design flexural strength with respect to major axis under biaxial loading 
MuR, y ≡ design flexural strength with respect to minor axis under biaxial loading 
                                                           
† That is, the corresponding probability of failure is unacceptable, according to the Code. 
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Fig. 13.26  Interaction surface for a biaxially loaded column 

Mux1 ≡ design flexural strength with respect to major axis under uniaxial loading 
 (i.e., ey = 0) 

Muy1  ≡ design flexural strength with respect to minor axis under uniaxial loading 
 (i.e., ex = 0) 

The notations and their respective meanings are depicted in Fig. 13.26, 
corresponding to an axial compression Pu = PuR. 
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It is interesting to note (in Fig. 13.26) that the trace of the interaction surface on a 
horizontal plane (parallel to the x-y plane) at any load level Pu is also an interaction 
curve — depicting the interaction between the biaxial bending capacities MuR,x and 
MuR,y.  Such an interaction curve is sometimes referred to as a load contour, as all the 
points on the curve pertain to a constant axial load level. 

13.6.3   Code Procedure for Design of Biaxially Loaded Columns 

The simplified method adopted by the Code (Cl. 39.6) is based on Bresler’s 
formulation [Ref. 13.14] for the ‘load contour’ — whereby an approximate 
relationship between MuR,x and MuR,y (for a specified Pu = PuR) is established.  This 
relationship is conveniently expressed in a non-dimensional form as follows: 

1 
11

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
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⎝

⎛
αα nn

uy

uy

ux

ux

M
M

M
M

                                      (13.38) 

where Mux and Muy denote the factored biaxial moments acting on the column, and 
(as explained earlier) Mux1 and Muy1 denote the uniaxial moment capacities with 
reference to the major and minor axes respectively, all under an accompanying axial 
load Pu = PuR.  It may be noted that Mux, Muy (and Pu) are measures of the load effects 
due to external loading on the structure, whereas Mux1, Muy1 (and PuR) are measures of 
the inherent resistance of the column section. 

αn in Eq. 13.38 is a constant which depends on the factored axial compression Pu 
and which defines the shape of the ‘load contour’ [refer Fig. 13.27].  For low axial 
load levels, the load contour (in non-dimensional coordinates) is approximated as a 
straight line; accordingly αn = 1.  For high axial load levels, the load contour is 
approximated as the quadrant of a circle; accordingly αn = 2.  For moderate load 
levels, αn takes a value between 1 and 2, as shown in Fig. 13.27(a).  In order to 
quantitatively relate αn with Pu, it is convenient to normalise Pu with the maximum 
axial load capacity of the column (under ‘pure compression’).  This was denoted as 
Puo in Section 13.4.3, and defined by Eq. 13.16, with slightly different expressions 
for different grades of steel.  In the context of biaxial loading, the Code (Cl. 39.6) 
uses the notation Puz (instead of Puo), and suggests the following rounded-off version 
of Eq. 13.16, applicable for all grades of steel: 

Puz = 0.45fck Ac + 0.75fy Asc, 

⇒ Puz = 0.45fck Ag +( 0.75fy – 0.45fck) Asc                   (13.39) 

where Ag denotes the gross area of the section and Asc the total area of steel in the 
section. 

αn = 1 for Pu/Puz < 0.2; αn = 2 for Pu/Puz > 0.8; and αn is assumed to vary linearly 
for values of Pu/Puz between 0.2 and 0.8 as shown in Fig. 13.27(b).  Accordingly, 

α n
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                               for < 0.2 
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      otherwise         
                           (13.40) 
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Fig. 13.27  Approximation of load contour 

A recent study [Ref. 13.23], based on rigorous analyses of several rectangular column 
sections with varying aspect ratios and reinforcement patterns has brought out that the 
above simplified formulation in the Code turns out to be conservative at very low axial 
load levels (0.0 ≤ Pu/Puz < 0.3), and a little unconservative at higher axial load levels (levels 
(0.5 < Pu/Puz < 0.8); improved expressions for αn are proposed. 

Code Procedure 

1. Given Pu, Mux, Muy, verify that the eccentricities ex = Mux/Pu and ey = Muy/Pu are 
not less than the corresponding minimum eccentricities (refer Section 13.6.1). 

2. Assume a trial section for the column. 
3. Determine Mux1 and Muy1, corresponding to the given Pu (using appropriate design 

aids).  Ensure that Mux1 and Muy1 are significantly greater than Mux and Muy 
respectively; otherwise, suitably redesign the section† . 

4. Determine Puz [Eq. 13.39], and hence αn [Eq. 13.40]. 
5. Check the adequacy of the section [Eq. 13.38]; if necessary, redesign the section 

and check again. 

Selection of Trial Section 

Generally, in practice, the cross-sectional dimensions of the column are tentatively 
fixed in advance, and the structural analysis is performed on the basis of these 
dimensions.  Indeed, the biaxial moments obtained from frame analyses (considering 

                                                           
† This is usually achieved by increasing the percentage of reinforcement and/or improving the 
grade of concrete; the dimensions may also be increased, if required. 
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various load combinations) are based on the assumed cross-sectional dimensions 
(required for stiffness calculations).  Hence, in the selection of the ‘trial section’ for 
the design of biaxially loaded columns, it is only reinforcement details that need to be 
suitably assumed in practical situations. 

One simple way of doing this is by designing the trial section for uniaxial 
eccentricity, considering a moment of approximately 15 percent‡ in excess of the 
resultant moment, i.e.,  

Mu ≅ 1.15 M Mux uy
2 + 2                                            (13.41) 

This bending moment should be considered to act with respect to the major 
principal axis if Mux ≥ Muy; otherwise, it should be with respect to the minor principal 
axis.  The reinforcement may be assumed to be distributed equally on all sides of the 
section. 

EXAMPLE 13.15 

A corner column (400 mm × 400 mm), located in the lowermost storey of a system of 
braced frames, is subjected to factored loads: Pu = 1300 kN, Mux = 190 kNm and 
Muy = 110 kNm.  The unsupported length of the column is 3.5m.  Design the 
reinforcement in the column, assuming M 25 concrete and Fe 415 steel. 

SOLUTION 

• Given: Dx = Dy = 400 mm, l = 3500 mm, Pu = 1300 kN, Mux = 190 kNm,  
Muy = 110 kNm, fck = 25MPa, fy = 415MPa. 

Slenderness ratios 
• Assuming an effective length ratio of 0.85 for the braced column,  
lex = ley = 0.85 × 3500 = 2975 mm 
⇒ lex/Dx = ley/Dy = 2975/400 = 7.44 < 12 

Hence the column may be designed as a short column. 
Check minimum eccentricities 
• Applied eccentricities: ex = 190 × 103/1300 = 146 mm 

 ey = 110 × 103/1300 = 84.6 mm 
Minimum eccentricities as per Code [Eq. 13.8]: 
ex, min = ey, min = 3500/500 + 400/30 = 20.3 mm > 20 mm 
As the minimum eccentricities are less than the applied eccentricities, no 
modification to Mux, Muy is called for.  

Trial section: Longitudinal reinforcement 
• Designing for uniaxial eccentricity with Pu = 1300 kN and 

Mu ≈ 1.15 M Mux uy
2 2+  

     = 1.15 190 1102 + 2

                                                          

 = 252 kNm 
• Assuming = 60 mm, ′d

 
‡ Lower percentages (up to 5 percent) can be assumed if the axial loading level (Pu/Puz) is 
relatively high. 
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′d D  = 60/400 = 0.15 
P

f bD
u

ck
=

×
×

1300 10
25 400

3

2  = 0.325 

M
f bD

u

ck
2 =

252 10
25 400

6

3
×

×
 = 0.157 

• Referring to chart 45 of SP : 16 (“equal reinforcement on all sides”), 
p/fck = 0.14 
⇒ preqd = 0.14 × 25 = 3.5 
[Note: This relatively high percentage of steel is particularly acceptable for a 
column located in the lowermost storey of a tall building.] 
⇒ As, reqd = 3.5 × 4002/100 = 5600 mm2

• Provide 12 – 25 φ: As = 491 × 12 = 5892 mm2 > 5600 mm2.  The arrangement of 
bars is shown in Fig. 13.28. 

Uniaxial moment capacities: Mux1, Mux2   [Here, due to symmetry, Mux1 = Mux2] 
P

f bD
u

ck
 = 0.325 (as calculated earlier) 

• pprovided = 5892 × 100/4002 = 3.68 
⇒ p/fck = 3.68/25 = 0.147 
′d = 40 + 8 + 25/2 = 60.5 mm (assuming a clear cover of 40 mm and 8 mm ties) 

⇒ ′d D  = 60.5/400 = 0.151 ≈ 0.15 
• Referring to Chart 45 ( ′d D = 0.15), 

M
f bD

ux

ck

1
2 = 0.165  

⇒ Mux1 = Muy1 = 0.165 × 25 × 4003 = 264 × 106  Nmm 
= 264 kNm 

which is significantly greater than Mux = 190 kNm and Muy = 110 kNm 

Values of Puz and αn  
• Puz = 0.45fck Ag + (0.75fy – 0.45fck)Asc                  [Eq. 13.40] 
      = (0.45 × 25 × 4002) + (0.75 × 415 – 0.45 × 25) × 5892 
      = (1800 × 103 + 1767.6 × 103)N = 3568 kN 
⇒ Pu/Puz = 1300/3568 = 0.364 (which lies between 0.2 and 0.8) 

⇒ αn = 1.0 + 0 364 0 2
0 8 0 2
.

. .
−
−

. (2.0 – 1.0) = 1.273 

[Alternatively, Eq. 13.40 may be used]. 

Check safety under biaxial loading 

• M
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 = 0.658 + 0.328 
 = 0.986 < 1.0 

Hence, the trial section is safe under the applied loading. 
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Transverse reinforcement  
• The minimum diameter φt and maximum spacing st of the lateral ties are specified 

by the Code [Eq. 13.9, 13.10]:  
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⎨
⎧ =

>
               mm 6
mm 25.6425

tφ  

⇒ Provide 8 φ ties 

⎪
⎩

⎪
⎨

⎧
=×

=
<

              mm 003
mm 4002516

       mm 400D
st  

Provide 8 φ ties@ 300 c/c as shown in Fig. 13.28. 
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Fig. 13.28  Example 13.15 

EXAMPLE 13.16 

Verify the adequacy of the short column section Fig. 13.14(a) under the following 
load conditions: 
Pu = 1400 kN, Mux = 125 kNm, Muy = 75 kNm  
The design interaction curves [Fig. 13.18, 13.19] derived earlier may be used for this 
purpose.  Assume that the column is a ‘short column’. 

SOLUTION 

• Given: Dx = 500 mm, Dy = 300 mm, As = 2946 mm2 Mux = 125 kNm, 
Muy = 75 kNm, fck = 25 MPa, fy = 415 MPa [refer Example 13.5]. 

Applied eccentricities 
• ex = Mux/Pu = 125 × 103/1400 = 89.3 mm ⇒ ex/Dx = 0.179 

ey = Muy/Pu = 75 × 103/1400 = 53.6 mm ⇒ ey/Dy = 0.179 
• These eccentricities for the short column are clearly not less than the minimum 

eccentricities specified by the Code. 
Uniaxial moment capacities: Mux1, Muy1

• As determined in Example 13.10 and 13.11 [also see Fig. 13.19], corresponding 
to Pu = 1400 kN,  
Mux1 = 187 kNm  
Muy1 = 110 kNm  
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Values of Puz and αn

• Puz = 0.45fck Ag + (0.75fy – 0.45fck)Asc 
= (0.45 × 25 × 300 × 500) + (0.75 × 415 – 0.45 × 25)×2946 
= (1687500 + 883800)N = 2571 kN 

• ⇒ Pu/Puz = 1400/2571 = 0.545 (which lies between 0.2 and 0.8) 

• ⇒ αn = 1.0 + 0 545 0 2
0 8 0 2
.

. .
−
−

. (2.0 – 1.0) = 1.575 

Check safety under biaxial bending 
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      = 0.530 + 0.547 
      = 1.077 > 1.0 
Hence, the given load is found to marginally exceed the safe limit prescribed by the 
Code (by 8%). 

13.7   DESIGN OF SLENDER COLUMNS 

13.7.1   Behaviour of Slender Columns 

As discussed in Section 13.1.3, compression members are categorised as being either 
short or slender (long), depending on whether slenderness effects can be ignored or 
need special consideration.  It is also explained in Section 13.1.3 that the slenderness 
ratios (lex/Dx, ley/Dy) provide a simple basis for deciding whether a column is short or 
‘slender’.  The behaviour and design of short columns under axial, uniaxial eccentric 
and biaxial eccentric loading conditions have been extensively described in 
Sections 13.4, 13.5 and 13.6 respectively. 

This section describes the behaviour of slender columns, and shows how this 
behaviour increasingly deviates from the short column behaviour with increasing 
slenderness ratios.  To begin with, a simple example of a pin-ended column with an 
eccentrically applied load [Fig. 13.29(a)] is considered.  The height l between the 
pinned ends is the ‘unsupported length’, which, in this case, is also equal to the 
‘effective length’ [refer Fig. 13.3(a)].  By considering different heights of the 
column, with the same cross-section, the effects of different slenderness ratios can be 
studied.  Subjecting the column to a gradually increasing load P, applied at an 
eccentricity e (with the undeflected longitudinal axis), the behaviour of the column 
can be observed until failure. 

Due to the applied eccentricity e, ‘primary moments’ Mpr = Pe are developed not 
only at the end sections of the column, but all along the height [Fig. 13.29(b)].  The 
bending of the column causes it to deflect laterally, thereby introducing additional 
displacement (load) dependent eccentricities.  If the lateral deflection of the 
longitudinal axis is denoted as Δ, then the total eccentricity is e + Δ, and the total 
moment M at any section is given by 

M = P(e + Δ)                                              (13.42a) 

M = Mpr + PΔ                                             (13.42b) 
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Fig. 13.29  Behaviour of slender columns 

where PΔ is the ‘secondary moment’ (also called ‘P–Δ moment’), which has a 
variation along the height of the column that is identical to that of Δ [refer 
Fig. 13.29(a), (b)].  The maximum value of Δ (i.e., Δmax), and hence the maximum 
value of the total moment Mmax = P(e + Δmax) occurs at the mid-height section of the 
column. 

It should be noted that the lateral deflection Δmax is not only due to the curvature 
produced by the primary moment Mpr, but also due to the P–Δ moment.  Hence, the 
variation of Mmax with P is nonlinear, with Mmax increasing at a faster rate as P 
increases.  The axial thrust P effectively reduces the flexural stiffness of the column 
(‘beam column’), and, in the case of a very slender column, it may so happen that the 
flexural stiffness is effectively reduced to zero, resulting in an instability (buckling) 
failure.  On the other hand, in the case of a very short column, the flexural stiffness is 
so high that the lateral deflection Δ is negligibly small† ; consequently, the P–Δ 
moment is negligible, and the primary moment Mpr alone is of significance in such a 
case. 

Fig. 13.29(c) shows the axial load-moment interaction curve (at the ultimate limit 
state) for the column section.  This curve, therefore, represents the strength of the 
column.  Also shown in Fig. 13.29(c) are three different loading paths OA, OB, OC 
that are possible (for different slenderness ratios) as the column in Fig. 13.29(a) is 
loaded to failure, with increasing P (and hence, M) and constant eccentricity e.  In the 
case of a very short column, Δmax ≈ 0 (as explained earlier) and Mmax = Pe.  The 
resulting P – M path is linear, as indicated by the line OA in Fig. 13.29(c).  The 
                                                           
† Theoretically, Δmax = 0 only if the effective length le = 0 or if e = 0 (pure axial loading).  In 
practical ‘short’ columns, some lateral deflection is unavoidable, particularly at high 
eccentricities of loading.  However, it is expected that the P–Δ moment in a short column will 
not exceed about 5 percent of the primary moment, and so may be neglected. 
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termination of this line at the point of intersection A with the interaction (failure) 
curve indicates the failure of the column at a load, say P = Ps and a moment 
Mmax = Pse.  The failure occurs by the crushing of concrete at the section of 
maximum moment. 

Had the column been longer (and hence, ‘slender’), with increasing load P, the 
deflection Δmax is no longer negligible, and the moment Mmax = P(e + Δmax) will vary 
nonlinearly with P,  as indicated by the line OB in Fig. 13.29(c).  Failure occurs at a 
load P = P1 and a moment Mmax = P1(e + Δ1); this is represented by the point B on the 
interaction curve.  In this case, P1e and P1Δ, denote respectively the primary moment 
and secondary (P–Δ) moment at failure.  As shown in the figure, the secondary 
moment can become comparable to the primary moment in magnitude at the ultimate 
limit state.  Furthermore, comparing the loading paths OA with OB, it follows that 
although the column section and the eccentricity in loading are identical in the two 
cases, the mere fact that one column is longer than the other can result in a reduction 
in the load-carrying capacity (as well as the primary moment resistance).  In both 
cases, the final failure will be a material failure — either a ‘compression failure’ or a 
‘tension failure’ — depending on which parts of the interaction curve the points A 
and B lie [refer Section 13.5.2].  Most columns in practical building frames are 
expected to have this type of failure at the ultimate limit state. 

If the column in Fig. 13.29 is very long, the increase in lateral deflection Δmax may 
be so excessive that the load-moment path corresponds to OC, with dP/dM reaching 
zero at the point C.  In this case, the column is so slender that it fails by instability 
(buckling) at a relatively low axial load P2.  This type of failure may occur in very 
slender columns in unbraced frames. 

Braced Slender Columns: Member Stability Effect 

As explained in Section 13.2.3, a ‘braced column’ is one which is not subject to 
sidesway, i.e., there is no significant relative lateral displacement between the top and 
bottom ends of the column.  The pin-jointed column of Fig. 13.29 is a simple 
example of a braced column.  In general, the ends of a braced column (which forms 
part of a ‘braced frame’) are partially restrained against rotation (by the connecting 
beams).  The primary moments M1 and M2 that are applied at the two ends of the 
column are determined from a ‘first-order’ structural analysis; i.e., analysis which 
assumes linear elastic behaviour, and neglects the influence of change in geometry of 
the frame due to deflections.  The column may be bent in single curvature or double 
curvature, depending on the directions of M1 and M2 [Fig. 13.30].  The notations M1 
and M2 generally refer to the smaller and larger column end moments, and the ratio 
M1/M2 is considered positive if the column is bent in single curvature, and negative if 
it is bent in double curvature. 

If M1/M2 = +1.0, the column is bent in symmetrical single curvature, and the 
slenderness in the column will invariably result in an increased moment.  However, 
in the more general case of unequal end moments (M1/M2 ≠ 1.0), it is not necessary 
that slenderness will result in a peak moment in the column that is greater than the 
larger primary end moment M2 — as indicated by the curves labelled “1” in 
Fig. 13.30.  If, however, the column is very slender, and the consequent lateral 
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deflection Δ2 is sufficiently high (curve ‘2’ in Fig. 13.30), the total moment to be 
considered in design (i.e., including the additional moment PΔ2) may exceed M2.  
This is less likely in columns bent in double curvature [Fig. 13.30(b)].  In fact, the 
chances of a given slenderness resulting in a peak design moment larger than M2 fall 
off significantly as the ratio M1/M2 drops below about +0.5 and approaches the limit 
of –1.0.  The possible amplification in bending moment (over the primary moment 
M2) on account of lateral displacements (relative to the chord joining the column 
ends) is termed as member stability effect. 
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Δmax
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PΔ2
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Fig. 13.30  Braced columns: member stability effect 

Thus, the criticality of slenderness effects is also dependent on the ratio M1/M2.  
The ACI Code [Ref. 13.1] recommends that slenderness effects may be ignored (i.e., 
the column may be designed as a ‘short column’) if, for a braced column, 

le/r  <  34 – 12 M1/M2                                           (13.43) 

where le is the effective length and r the radius of gyration.  Thus, the slenderness 
ratio (le/r) limit for short columns lies in the range 22–34 in single curvature and 34–
46 in double curvature.  It is shown [Ref. 13.16] that this slenderness limit 
[Eq. 13.43] corresponds to effective lengths for which the ultimate axial load 
capacity, including ‘member stability’ effect, is at least 95 percent of the axial 
compressive strength of the cross-section. 

Unbraced Slender Column: Lateral Drift Effect 

As explained in Section 13.2.3, an ‘unbraced column’ is one which is subject to 
sideway (or ‘lateral drift’), i.e., there is significant lateral displacement between the 
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top and bottom ends of the column.  The lateral drift may occur due to the action of 
lateral loads, or due to gravity loads when the loading or the frame is asymmetric.  
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Fig. 13.31  Unbraced columns: lateral drift effect 

Considering the simple portal frame of Fig. 13.31(a) (in which the beam is 
assumed to be infinitely rigid, for convenience), the lateral drift (or sideway) of the 
column is the relative translational displacement Δ (= ΔA + ΔB) between the ends of 
the column.  The additional moments at the column ends caused by the action of the 
vertical load acting on the deflected configuration of the unbraced column is termed 
the lateral drift effect.  In unbraced columns, the action of the primary moments (M

B

1, 
M2) generally results in ‘double curvature’, which is further enhanced by the lateral 
drift effect.  In addition, there is the ‘member stability effect’ (described earlier) on 
account of the lateral displacements at points along the length of the column relative 
to the chord joining the column ends [Fig. 13.31(d)].  However, generally, for 
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unbraced columns, the moments at the column ends are maximum, and these are due 
to the primary moments enhanced by the lateral drift effect alone. 

The moment amplification possible due to lateral drift effect in an unbraced 
column is generally much more than that due to member stability effect in a braced 
column.  Further, as explained in Section 13.2.3, the effective length of an unbraced 
column is much more than that of a braced column with the same unsupported 
length.  Hence, columns in unbraced frames are weaker than similar columns in 
braced frames. 

13.7.2   Second-Order Structural Analysis of Slender Column Structures 

The main problem with slender column design lies in determining the factored 
moments (including P–Δ effects) to be considered in design.  In other words, the 
problem is essentially one of structural analysis, rather than structural design.  The 
principles of designing a column section under a given factored axial compression Pu 
and factored moments Mux, Muy [described in Section 13.6] remain the same for both 
short columns and slender columns; the only difference is that Mux and Muy must 
include secondary moment components in slender column design, whereas these 
secondary moment components (being negligible) are ignored in short column 
design. 

Rigorous Analysis 

In general, the Code (Cl. 39.7) broadly recommends that when slender columns are 
involved in a reinforced concrete structure, a detailed ‘second-order’ structural 
analysis should be carried out to determine the bending moments and axial forces for 
which the slender columns are to be designed.  Indeed, such a rigorous analysis is 
particularly desirable for slender columns in unbraced frames.  Such analysis must 
take into account all slenderness effects, viz. the influence of column and frame 
deflections on moments, effects of axial loads and effects of sustained loads.  
Realistic moment-curvature relationships should be made use of.  The details of 
procedures for second-order analysis lie outside the scope of this book; these details 
are presented in Ref. 13.17 – 13.19. 

It should be noted that the principle of superposition is not valid in second-order 
analysis, and for this reason, the load effects due to different load combinations 
cannot be obtained by an algebraic summing up (with appropriate load factors); each 
load combination should be investigated separately.  This requires substantial 
computational effort. 

13.7.3   Code Procedures for Design of Slender Columns 

In routine design practice, only first-order structural analysis (based on the linear 
elastic theory and undeflected frame geometry) is performed, as second-order 
analysis is computationally difficult and laborious.  In recognition of this, the Code 
recommends highly simplified procedures for the design of slender columns, which 
either attempt to predict the increase in moments (over primary moments), or, 
equivalently, the reduction in strength, due to slenderness effects. 
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Strength Reduction Coefficient Method 

This is a highly simplified procedure, which is given in the Code for the working 
stress method of design [refer Section 13.4.3].  According to this procedure (B-3.3 of 
the Code) the permissible stresses in concrete and steel [Eq. 13.15, 13.16] are 
reduced by multiplication with a strength reduction coefficient Cr, given by: 

Cr = 1.25 – 
l

d
e

48
                                             (13.44a) 

where d is the least lateral dimension of the column (or diameter of the core in a 
spiral column).  Alternatively, for more exact calculations, 

Cr = 1.25 – 
l
r
e

160 min
                                       (13.44b) 

where rmin is the least radius of gyration of the column.  There is some ambiguity in 
Eq. 13.44(a), (b) regarding the plane in which the effective length le is to be 
estimated. This can be resolved by considering (le/d)max in Eq. 13.44(a) and (le/r)max in 
Eq. 13.44(b) i.e., considering the maximum effective slenderness ratio of the column. 

It is recommended in the Explanatory Handbook to the Code [Ref. 13.7] that 
instead of applying the strength reduction factor Cr  to the ‘permissible stresses’, this 
factor may be directly applied to the load-carrying capacity estimated for a 
corresponding short column.  Furthermore, it may be noted that although this method 
has been prescribed for WSM, it can be extended to the limit state method (LSM) for 
the case of axial loading (without primary bending moments).  This is demonstrated 
in Example 13.17. 

Additional Moment Method 

The method prescribed by the Code (Cl. 39.7.1) for slender column design by the 
limit state method is the ‘additional moment method’† , which is based on Ref. 13.20, 
13.21.  According to this method, every slender column should be designed for 
biaxial eccentricities which include the P–Δ moment (“additional moment”) 
components eax ≡ Max/Pu and eay ≡ May/Pu : 

~Mux =  Pu (ex + eax) = Mux + Max                                    (13.45a) 

~Muy =  Pu (ey + eay) = Muy + May                                    (13.45b) 

Here, ~Mux and denote the total design moments; M~Muy ux, Muy denote the primary 
factored moments‡ (obtained from first-order structural analyses); and Max, May 
denote the additional moments with reference to bending about the major and minor 
axes respectively. 

                                                           
† An alternative method called the ‘moment magnification method’ is adopted by the ACI and 
Canadian codes. 
‡ The primary moments should not be less than those corresponding to the minimum 
eccentricities spcified by the Code. 
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The essence of this method lies in a simple formulation for the determination of 
the additional eccentricities eax, eay.  In the basic formulation, the P–Δ effect in a 
braced slender column with pin-joined ends [Fig. 13.29a] is considered.  The 
‘additional eccentricity’ ea is equal to Δmax in Fig. 13.29(a), which is a function of the 
curvatures to which the column is subjected.  If the maximum curvature (at mid-
height) is denoted as ϕmax, it can be shown [refer Fig. 13.32] that Δmax lies between 
ϕmaxl2/12 and ϕmaxl2/8, the former limit corresponding to a linearly varying curvature 
(with zero at the pin joints and a maximum of ϕmax at midheight) and the latter 
corresponding to a constant curvature along the column height [Fig. 13.32(b),(c)]. 

Taking an average value, 

ea = Δmax ≈ ϕmax l2/10                                           (13.46) 

(c)  case 2
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Fig. 13.32  Relation between Δmax and ϕmax in a pin-joined braced slender column 

Failure of the column at the ultimate limit state is expected to occur at the section 
corresponding to ϕmax.  By making suitable assumptions, ϕmax can be expressed in 
terms of the failure strains εcu and εst in concrete (at the highly compressed edge) and 
steel (in the outermost row) respectively, as shown in Fig. 13.33.  The values of εcu 
and εst evidently depend on the factored axial load Pu (as explained in 
Section 13.5.1); this determines the location of the point of failure, marked B in the 
interaction curve in Fig. 13.29(c). 
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Fig. 13.33  Determination of curvature from failure strain profile 

Assuming that εcu = 0.0035 and εs = 0.002† , ≈ 0.1D and further assuming (rather 
conservatively) that the additional moment comprises about 80 percent of the total 
moment, 

′d

D9.0
002.00035.0

max
+

≅ϕ  × 0.8 ≈ 
D200

1                              (13.47) 

Combining Eq. 13.47 with Eq. 13.46, the following expression for the additional 
eccentricity ratio ea/D is obtained: 

ea/D ≈ 
2000

)( 2Dl
                                           (13.48) 

Accordingly, the following expressions for additional moments Max, May [in 
Eq. 13.45a, b] are obtained, as given in the Code (Cl. 39.7.1): 

Max = Pu eax = 
P Du x

2000
 (lex/Dx)2                                   (13.49a) 

May = Pu eay = 
2000

yu DP
 (ley/Dy)2                                   (13.49b) 

where lex and ley denote the effective lengths, and Dx and Dy denote the depths of the 
rectangular column section with respect to bending about the major axis and minor 
axis respectively.  It may be noted that the height l in Eq. 13.48 has been replaced by 
                                                           
† This approximately corresponding to the ‘balanced failure’ condition, whereby εst = εy at the 
cracked section.  For deflection calculations, the mean steel strain should be considered, 
including the effect of ‘tension stiffening’ (refer chapter 10). 
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the effective length le in Eq. 13.49 to extend the application of the formulation to the 
various boundary conditions (other than the pinned-end condition) that occur in 
practical columns including unbraced columns.  It is reported [Ref. 13.7] that the use 
of Eq. 13.49 has been validated with reference to a large number of experimental 
tests [Ref. 13.20].  It is seen from Eq. 13.48 and Eq. 13.49 that the ea/D ratio 
increases with the square of the slenderness ratio le/D; ea/D has a minimum value of 
0.072 for le/D =12 (transition between ‘short column’ and ‘slender column’) and a 
maximum value of 0.450 for le/D = 30 (recommended limit for unbraced columns) 
and 1.800 for le/D = 60 (braced column). 

It should be noted that Eq. 13.49 relates to the ‘additional moments’ to be 
considered in addition to the maximum factored primary moments Mux, Muy in a 
column.  Under eccentric loading, these primary moments should not be less than 
those corresponding to the minimum eccentricities specified by the Code.  Where a 
primary moment is not considered, i.e., taken as zero, (as under axial loading), it 
should be ensured that the corresponding additional moment is not less than that 
computed from considerations of minimum eccentricity.  The derivation of Eq. 13.49 
assumes that the column is braced and bent symmetrically in single curvature; some 
modification is required when the primary moments applied at the column ends are 
unequal and/or of different signs.  Further, it is assumed that the axial load level 
corresponds approximately to the ‘balanced failure’ condition Pu = Pub; Eq. 13.49 
needs to be modified for other axial load levels.  Hence, the Code recommends the 
following modifications to be incorporated with the use of Eq. 13.49 (and Eq. 13.45) 
for the design of slender columns in general: 
• For Pu > Pub, the failure mode is one of ‘compression failure’, and the 

corresponding e/D ratio is low.  At relatively high axial loads, the entire section 
may be under compression, suggesting low curvatures [Fig. 13.34].  Hence, the 
use of Eq. 13.49 in such situations can result in highly conservative results.  The 
additional moments Max, May given by Eq. 13.49 may be reduced by multiplying 
factors (refer Cl. 39.7.1.1 of the Code) defined as: 

xubuz

uuz
ax PP

PP
k

,−
−

=     for Pu > Pub,x                                  (13.50a) 

yubuz

uuz
ay PP

PP
k

,−
−

=     for Pu > Pub,y                                  (13.50b) 

where Puz is the maximum ‘pure compression’ strength of the column and Pub,x 
and Pub,y correspond to the axial strength corresponding to balanced failure with 
respect to bending about the major axis and minor axis respectively.  Puz is readily 
obtainable from Eq. 13.39 and Pub from the interaction curve (refer Fig. 13.20) 
corresponding to a design tensile stress of fyd = 0.87 fy in the outermost layer of 
steel.   
It can be seen that k varies linearly from zero (for Pu = Puz) to unity (for Pu = Pub) 
and is a highly simplified formula.  It should also be noted that Eq. 13.50 is not 
applicable for Pu < Pub; i.e., ka = 1 for Pu < Pub. 
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• For braced columns subject to unequal primary moments M1, M2 at the two ends 
[Fig. 13.30(a)], the value of Mu to be considered in the computation of the total 
moment ~Mu in Eq. 13.45 may be taken as: 

Mu = 0.4M1 + 0.6M2 ≥ 0.4M2                                     (13.51) 

where M2 is the higher column end moment.  As mentioned earlier, with reference 
to Fig. 13.30, M1 and M2 are considered to be of opposite signs if the column is 
bent in double curvature.  In the case of braced columns subject to double 
curvature, it is possible that the use of Eq. 13.51 in Eq. 13.45 may result in a total 
moment  that is less than M~Mu 2; this obviously, cannot be allowed.  Hence, a 
further condition needs to be imposed: 

uM~  ≥ M2        for braced columns                       (13.52) 

• In the case of unbraced columns, the lateral drift effect (hitherto not considered) 
needs to be included [Fig. 13.31].  An approximate way of accounting for this is 
by assuming that the additional moment Ma (given by Eq. 13.49† ) acts at the 
column end where the maximum primary moment M2 is operational.  Hence, for 
design purposes, the total moment  may be taken as: ~Mu

~Mu = M2 + Ma            for unbraced columns        (13.53) 

EXAMPLE 13.17 

Determine the maximum factored axial load-carrying capacity of the column in 
Fig. 13.14(a), given that the column is ‘braced’ against sideway, and has an 
unsupported length of 7.0 m.  Assume effective length ratios  kx = ky = 0.85. 

SOLUTION 

• Given: (refer Example 13.5): Dx = 500 mm, Dy = 300 mm, Asc = 2946 mm2, 
fck = 25 MPa, fy = 415 MPa. 
Also, l = 7000 mm, kx = ky = 0.85. 

Slenderness ratios:  
• lex = 0.85 × 7000 = 5950 mm ⇒ lex/Dx = 5950/500 = 11.90 < 12 
      ley = 0.85 × 7000 = 5950 mm ⇒ ley/Dy = 5950/300 = 19.83 > 12 
• Hence, the column has to be treated as a slender column. 

Strength reduction coefficient method 
• Extending the strength reduction coefficient method given in the Code (B-3.3) for 

WSM to LSM, 

Cr = 1.25 – 
( )maxl De

48
 

           = 1.25 – 19.83/48 = 0.837 
                                                           
† It is inadvisable to apply the reduction factor k (given by Eq. 13.50) for unbraced columns. 
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• Considering short column behaviour (with dimensions satisfying Cl. 39.3 of the 
Code), 
~Puo  = 0.4fck Ag + (0.67fy – 0.4fck)As

        = 2290 kN (as determined earlier in Example 13.9). 
• Considering slender column behaviour,  
      (Pu)max = Cr 

~Puo  
    = 0.837× 2290 
    = 1917 kN 

Note: The safety of the column under this factored load, combined with minimum 
eccentricities, may now be verified by the additional moment method given in the 
Code for LSM. 

Additional moment method 
• Minimum eccentricities 

      ex,min = l Dx

500 30
 +   = 7000

500
500
30

 +   = 30.67 mm > 20 mm 

      ey,min = l Dy

500 30
 +   = 7000

500
300
30

 +   = 24.00 mm > 20 mm 

• Primary moments 
As the column is under axial loading, Mux = Muy = 0.  However, it must be 
ensured that the total moments ~Mux ,  should not be less than those due to 
corresponding minimum eccentricities. 

~M uy

Additional moments 
• Without modification factors:  
      eax = Dx (lex/Dx)2/2000 = 500 (11.90)2/2000 = 35.40 mm 
      eay = Dy (ley/Dy)2/2000 = 300 (19.83)2/2000 = 58.98 mm 
• modification factors kax, kay 

      k P P
P Pax

uz u

uz ub x
=

−
− ,

; k
P P

P Pay
uz u

uz ub y
=

−
− ,

 

      where 
      Puz = 0.45fck Ag + (0.75fy – 0.45fck)As
 = (0.45 × 25 × 300 × 500) + (0.75 × 415 – 0.45 × 25) × 2946 

= (1687.5 × 103 + 883.8 × 103)N = 2571 kN 
      Pub,x = 445 kN, Pub,y = 470 kN (as determined in Examples 13.9, 13.11). 
      ⇒ kax = (2571 – 1935)/(2571 – 445) = 0.299 
           kay = (2571 – 1935)/(2571 – 470) = 0.303 
      Max = Pu (kaxeax) = 1935 × (0.299 × 0.0354) = 20.5 kNm  
      May = Pu (kayeay) = 1935 × (0.303 × 0.05898) = 34.6 kNm  
• Total Moments 

~Mux = Mux + Max = 0.0 + 20.5 = 20.5 kNm 
     < Pu ex, min = 1935 × 0.03067 = 59.3 kNm  
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~Muy = Muy + May = 0.0 + 34.6 = 34.6 kNm  
     < Pu ey, min = 1935 × 0.0240 = 46.4 kNm  
Check safety under biaxial loading 
• Corresponding to Pu = 1935 kN,  

Mux1 = 130 kNm [refer Table 13.1, Fig. 13.18] > ~Mux  = 59.3 kNm  

Muy1 = 75.7 kNm [refer Table 13.2, Fig. 13.19] >  = 46.4 kNm  ~Muy

• Pu/Puz = 1935/2571 = 0.753 (which lies between 0.2 and 0.8) 

⇒ αn = 1.0 + 0 753 0 2
0 8 0 2
.

. .
−
−
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   = 0.221 + 0.390 
   = 0.611 < 1.0         — safe 
• Evidently, Pu = 1935 kN is a slightly conservative estimate of the axial load-

carrying capacity of the slender column.  This is as expected, owing to the 
conservatism built into the highly simplified ‘strength reduction coefficient’ 
method. 

EXAMPLE 13.18 

Design the longitudinal reinforcement for a braced column, 300 mm × 400 mm, 
subject to a factored axial load of 1500 kN and factored moments of 60 kNm and 
40 kNm with respect to the major axis and minor axis respectively at the top end.  
Assume that the column is bent in double curvature (in both directions) with the 
moments at the bottom end equal to 50 percent of the corresponding moments at top.   
Assume an unsupported length of 7.0 m and an effective length ratio of 0.85 in both 
directions.  Use M 30 concrete and Fe 415 steel. 

SOLUTION 

• Given: Dx = 400 mm, Dy = 300 mm, Pu = 1500 kN; Mux = 60 kNm, Muy = 
40 kNm, at top; Mux = 30 kNm, Muy = 20 kNm, at bottom; l = 7000 mm, kx = ky = 
0.85. 

Slenderness ratios 
• lex = ley = 0.85 × 7000 = 5950 mm  

⇒ lex/Dx = 5950/400 = 14.88 > 12 
     ley/Dy = 5950/300 = 19.83 > 12 
Hence, the column should be designed as a slender column. 

Minimum eccentricities 

• ex,min = l Dx

500 30
 +   = 7000

500
400
30

 +   = 27.33 mm > 20 mm 

ey,min = l Dy

500 30
 +   = 7000

500
300
30

 +   = 24.00 mm > 20 mm 
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Primary moments for design 
• As the column is braced and bent in double curvature [refer Eq. 13.51], 

Mux = (0.6 × 60 – 0.4 × 30) = 24 kNm    (≥ 0.4 × 60 = 24 kNm) 
Muy = (0.6 × 40 – 0.4 × 20) = 16 kNm    (≥ 0.4 × 40 = 16 kNm) 
⇒ corresponding (primary) eccentricities:  
ex = 24 × 103/1500 = 16 mm < ex min = 27.33 mm 
ey = 16 × 103/1500 = 10.67 mm < ey min = 24.00 mm 
The primary eccentricities should not be less than the minimum eccentricities. 

• ∴Primary moments for design: Mux = 1500 × (27.33 × 10–3) = 41.0 kNm  
    Muy = 1500 × (24.00 × 10–3) = 36.0 kNm  
Additional moments 
• Without modification factor, additional eccentricities 

eax = Dx (lex/Dx)2/2000  
      = 400 (14.88)2/2000 = 44.28 mm 
eay = Dy (ley/Dy)2/2000  
      = 300 (19.83)2/2000 = 58.98 mm 

• Assuming modification factors kax = kay ≈ 0.5 (to be verified later),  
       additional moments: 

Max = Pu (kaxeax) = 1500(0.5 × 0.04428) 
       = 33.2 kNm 
May = Pu (kayeay) = 1500(0.5 × 0.05898) = 34.6 kNm 
       = 44.2 kNm 

Total factored moments 
~Mux  = Mux + Max = 41.0 + 33.2 = 74.2 kNm  
~Muy = Muy + May = 36.0 + 44.2 = 80.2 kNm > ~Mux = 74.2 kNm  

Trial section 
• Designing for a resultant uniaxial moment with respect to the minor axis, 

Mu ≈ 1.15 22 2.802.74 +  = 126 kNm  
combined with Pu = 1500 kNm  
⇒ Pu/fckbD = (1500 × 103/(30 × 400 × 300) = 0.417 
Mu/fckbD2 = 126 × 106/(30 × 400 × 3002) = 0.117 

• Assuming 25 φ for main bars, 8 φ ties and 40 mm clear cover, d' = 60.5 mm  
⇒ ′d D  ≈ 60.5/300 = 0.201 ≈ 0.20 with “equal reinforcement on all sides”, and 
referring to Chart 46 of SP : 16, 
p/fck = 0.13 ⇒ preqd = 0.13 × 30 = 3.9 
⇒ As,reqd = 3.9 × 300 × 400/100 = 4680 mm2   

• Provide 8–28 φ (as shown in Fig. 13.34). 
[As = 8 × 616 mm2] 4928 > 4680 
⇒  pprovided = 4928 × 100/(300 × 400) = 4.107 
⇒ p/fck = 4.107/30 = 0.137. 
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Fig. 13.34  Example 13.18 

Check additional moments 
• Assuming a clear cover of 40 mm,  = 40 + 8 + 28/2 = 62 mm ′d

⇒ ′d Dx = 0.155 ≈ 0.15 and ′d Dy = 0.207 ≈ 0.20   
• Referring to Charts 45 ( ′d D = 0.15) and 46 ( ′d D = 0.20) of SP :16, the 

ultimate loads Pub,x Pub,y at balanced failure can be determined by considering the 
stress level fyd = 0.87fy (marked on the interaction curves). 

• Corresponding to p/fck = 0.137, 
for ′d Dx = 0.15, Pub,x/fckbD = 0.07 ⇒ Pub,x = 252 kN 
for ′d Dy = 0.20, Pub,y/fckbD = 0.03 ⇒ Pub,y = 108 kN 

•  Puz = 0.45fck Ag + (0.75fy – 0.45fck)As 
= (0.45 × 30 × 300 × 400) + (0.75 × 415 – 0.45 × 30) × 4928 
= (1620 × 103 + 1467 × 103) = 3087 kN 

• Modification  factors: 

k
P P

P Pax
uz u

uz ub x
=

−
− ,

= 
2523087

15003087
−
− = 0.559 

yubuz

uuz
ay PP

PP
k

,−
−

= = 
1083087

15003087
−
− = 0.533 

• Hence, the assumed values kax = kay = 0.5 are fairly accurate.  The actual (revised) 
total moments are obtained as: 
~Mux  = 41.0 + 1500(0.559 × 0.04428) = 78.13 kNm  
~Muy  = 36.0 + 1500(0.533 × 0.05898) = 83.15 kNm 

Check safety under biaxial bending 
• Referring to the design Charts in SP : 16, uniaxial moment capacities 

corresponding to 
Pu/fckbD = 0.417 and  p/fck = 0.137 
are obtained as 
Mux1/fckbD2 = 0.135 (for ′d Dx = 0.15) 
Muy1/fckbD2 = 0.115 (for ′d Dy = 0.20) 
⇒ Mux1 = 0.135 × 30 × 300 × 4002 = 194.4 × 106 Nmm = 194.4 kNm 

       > ~Mux = 78.1 kNm  
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Muy1 = 0.115 × 30 × 400 × 3002 =124.2 × 106 Nmm = 124.2 kNm  
       > = 83.1 kNm  ~Muy

• Pu/Puz = 1500/3087 = 0.486 (which lies between 0.2 and 0.8) 

⇒ αn = 1.0 + 
2.08.0

2.0486.0
−
− (2.0 – 1.0) = 1.477  

• 
~M

M
ux

ux

n

1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

α

+ 
~M

M
uy

uy

n

1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α

= 
477.1

4.194
1.78
⎟
⎠
⎞

⎜
⎝
⎛ + 

447.1

2.124
1.83
⎟
⎠
⎞

⎜
⎝
⎛  

   = 0.260 + 0.552 
   = 0.812 < 1.0         — Hence, safe 

REVIEW QUESTIONS 

13.1 What is meant by slenderness ratio of a compression member and what are its 
implications? 

13.2 Distinguish between (i) unsupported length and effective length of a 
compression member; (ii) braced column and unbraced column. 

13.3 Why does the Code require all columns to be able to resist a minimum 
eccentricity of loading? 

13.4 Why does the Code specify limits to the minimum and maximum 
reinforcement in columns? 

13.5 A short column, 600 mm × 600 mm in section, is subject to a factored axial 
load of 1500 kN.  Determine the minimum area of longitudinal steel to be 
provided, assuming M 20 concrete and Fe 415 steel. 

13.6 Enumerate the functions of the transverse reinforcement in a reinforced 
concrete column. 

13.7 Explain the limitations of the traditional working stress method with regard to 
the design of axially loaded reinforced concrete column. 

13.8 Compare the behaviour of tied columns with spiral columns, subject to axial 
loading. 

13.9 Sketch a typical axial load — moment interaction curve for a column and 
explain the salient points on it. 

13.10 A column is subject to a uniaxially eccentric load which results in a point (on 
the interaction diagram) that lies (i) marginally outside (ii) marginally inside 
the envelope of the ‘design interaction curve’.  Comment on the safety of the 
column for the two situations. 

13.11 Explain the reinforcement arrangement details underlying the design 
interaction curve given in SP : 16 for the condition “rectangular section with 
reinforcement distributed equally on four sides”. 

13.12 Briefly explain the difficulties in a rigorous analysis for the design strength 
components of a given rectangular column section under biaxial loading. 

13.13 Explain the basis for the simplified Code procedure for analysing the design 
strength components of a biaxially loaded column with rectangular cross 
section. 
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13.14 What is the main difference, in terms of structural behaviour, between a ‘short 
column’ and a ‘slender column’? 

13.15 Distinguish between ‘member stability effect’ and ‘lateral drift effect’ in 
slender column behaviour. 

13.16 In frame analysis, the columns are assumed to be fixed at their bases and the 
foundations have to be designed to resist the base moments as well as axial 
loads.  In the case of slender columns located at the lowermost storey, is it 
necessary to include ‘additional moments’ (due to slenderness effect) while 
designing the foundations?  (Hint: Does this depend on whether the frame is 
‘braced’ or ‘unbraced’?) 

PROBLEMS 

13.1 A seven-storeyed building has a floor-to-floor height of 4m and a plan area of 
18m × 30m with columns spaced at 6m intervals in the two directions.  
Assume that all columns have a size 400 mm × 400 mm with M 25 concrete, 
and all primary beams have a size 250 mm × 600 mm with M 20 concrete. 
(a)  Determine the stability indices of the structure in the transverse and 
longitudinal directions, considering the second storey. Assume a total 
distributed load of 50 kN/m2 from all the floors above combined. 
(b)  Determine the effective lengths of a corner column in the second storey. 

13.2 With reference to the short column section shown in Fig. 13.35, assuming 
axial loading conditions, determine the maximum service load that the column 
can be safely subjected to: 
(i)  according to the LSM provisions of the Code (assuming a load factor 

       of 1.5) 
(ii) according to the WSM provisions of the Code. 

8 φ TIES @ 200 c/c

M 20 concrete
Fe 415 steel

clear cover = 40 mm

4–25 φ
400

400

 

Fig. 13.35  Problem 13.2 

13.3 Repeat Problem 13.2 with reference to the column shown in Fig. 13.36.  
[Hint: The 5 percent increase in strength is allowed subject to certain 
conditions.  Verify]. 
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400 φ

6 φ spiral @
50 mm c/c pitch

M 20 concrete
Fe 415 steel

8–20 φ

clear cover = 40 mm

Fig. 13.36  Problem 13.3

4–25 φ

450

300

8 φ TIES
@ 200 c/c

Fig. 13.37  Problem 13.6  
13.4 Design the reinforcement in a column of size 400 mm × 600 mm, subject to a 

factored axial load of 2500 kN.  The column has an unsupported length of 
3.0 m and is braced against sideway in both directions.  Use M 20 concrete 
and Fe 415 steel. 

13.5 Repeat Problem 13.4, considering a circular column of 400 mm diameter.  
Assume (i) lateral ties (ii) spiral reinforcement. 

13.6 For the column section shown in Fig. 13.37, determine the design strength 
components corresponding to  

(i)   the condition of ‘balanced failure’; 
(ii)  x Du  = 0.55; 
(iii) x Du = 1.1.  

Assume bending with respect to the major axis. 
13.7 Repeat Problem 13.6, considering bending with respect to the minor axis. 
13.8 Generate the design interaction curves for the column section in Fig. 13.37, 

considering uniaxial eccentricity with respect to (i) the major axis (ii) the 
minor axis.  [It is convenient to achieve this with the help of a suitable 
computer program].  Verify with reference to the charts in SP : 16. 

13.9 For the L - shaped section shown in Fig. 13.38, determine the design strength 
components corresponding to the neutral axis location shown in the Figure. 

8 – 20 φ

250

250

600

600

50
neutral axis

highly compressed edge

M 25 concrete
Fe 415 steel
40 mm clear cover

 

Fig. 13.38  Problem 13.9 
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13.10 A short square column 300 mm × 300 mm is reinforced with 4 bars of 25 φ, 
placed with a clear cover of 45 mm.  Assuming M 25 concrete and Fe 415 
steel, determine 

(i)  the maximum eccentricity with which a factored load of 1250 kN can be  
      safely applied; 
(ii) the maximum factored load that can be applied at an eccentricity of  
      400 mm. 

13.11 A short circular tied column 350 mm diameter is reinforced with 6 bars of 
20 φ, placed  with a clear cover of 40 mm.  It is subject to a factored axial load 
of 1000 kN, combined with factored bending moments of 50 kNm each 
applied in two perpendicular directions.  The concrete is of grade M 25 and 
the steel of grade Fe 415.  Check the safety of the column.  If the column is 
found to be unsafe, suggest suitable modification to the proposed 
reinforcement. 

13.12 Design a short square column, with effective length 3.0m, capable of safely 
resisting the following factored load effects (under uniaxial eccentricity): 

(i) Pu = 1625 kN, Mu =  75 kNm 
(ii) Pu =365 kN, Mu = 198 kNm. 

Assume M 25 concrete and Fe 415 steel. 
13.13 Repeat Problem 13.12, considering a suitably proportioned rectangular 

section. 
13.14 Repeat Problem 13.12, considering a circular column with spiral 

reinforcement. 
13.15 Design the reinforcement for a column with lex = ley = 3.5m and size 300 mm 

× 500 mm, subject to a factored axial load of 1250 kN with biaxial moments 
of 180 kNm, and 100 kNm with respect to the major axis and minor axis 
respectively (i.e., Mux = 180 kNm, Muy = 100 kNm).  Assume M 25 concrete 
and Fe 415 steel. 

13.16 Repeat Problem 13.15, considering Pu = 1500 kN, Mux = 100 kNm, 
Muy = 80 kNm. 

13.17 Consider a square column, 400 mm × 400 mm, with 4 – 25 φ bars at corners 
placed with a clear cover of 45 mm, and lex = ley = 12D, subject to axial 
loading conditions.  Determine the maximum factored axial load Pu that the 
column can safely carry considering: 

(a)  short column behaviour under axial loading, assuming l = 12D; 
(b) short column behaviour under biaxial loading with minimum 
     eccentricities; 
(c) slender column behaviour (considering ‘additional eccentricities’ 
alone†

 ). 
Comment on the results obtained.  Assume M 20 concrete and Fe 415 steel. 

13.18 Design the reinforcement in a column of size 250 mm × 400 mm, with an 
unsupported length of 6.0 m, subject to a factored axial load of 1100 kN.  

                                                           
† That is, assuming zero primary moments. 
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Assume the column to be braced, and pinned at both ends in both directions.  
Assume M 25 concrete and Fe 415 steel, and design by 

(i) strength reduction coefficient method; 
(ii) additional moment method. 

13.19 Repeat Problem 13.18(ii), considering biaxial moments Mux = Muy = 100 kNm 
in addition to Pu = 1100 kN. 
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           14 
   Design of Footings and 
       Retaining Walls 

 

14.1   INTRODUCTION 

In a typical structure built on ground, that part of the structure which is located above 
ground is generally referred to as the superstructure, and the part which lies below 
ground is referred to as the substructure or the ‘foundation structure’ (or simply, 
foundation).  The purpose of the foundation is to effectively support the 
superstructure by  

1 transmitting the applied load effects (reactions in the form of  vertical and 
horizontal forces and moments) to the soil below, without exceeding the ‘safe 
bearing capacity’ of the soil, and  

2 ensuring that the settlement of the structure is within tolerable limits, and as 
nearly uniform† as possible. 

Further, the foundation should provide adequate safety against possible instability 
due to overturning or sliding and/or possible pullout.  Design against forces inducing 
overturning and sliding are of special importance in the design of retaining walls, 
whose very purpose is to provide lateral support to earthfill/embankment in order to 
retain the side of the earthfill in a vertical position.  The choice of the type of 
foundation depends not only on the type of the superstructure and the magnitudes 
and types of reactions induced at the base of the superstructure, but also on the nature 
of the soil strata on top of which the substructure is to be founded.  This comes under 
                                                           
† Non-uniform (differential) settlement of a structure generally results in significant stresses in 
the superstructure, which are usually not foreseen in design.  In order to avoid this, it is 
necessary to ensure that the different footings in a building are proportioned in such a way as 
to result in soil pressures of nearly equal magnitude under their bases (under permanent loads).  
In those exceptional situations where differential settlements are unavoidable, it is necessary to 
consider this in the analysis of the structure itself; this will involve a trial-and-adjustment 
process, as the settlements are not known a priori. 



656   REINFORCED  CONCRETE  DESIGN 

the specialised domain of geotechnical engineering (soil mechanics), and for 
important structures and/or difficult soil conditions, the type of foundation to be used 
is based on a soil study by a geotechnical consultant.  In the case of retaining walls, 
the choice of the type of wall is governed by the height of the earth to be retained and 
other site/soil conditions. 

It is not the objective of this book to cover the designs of all the different types of 
foundations and retaining walls.  Nor is it the objective of the Code on Reinforced 
Concrete Design (IS 456) to do this.  The Code recommendations (Cl. 34) are 
confined to the design of footings that support isolated columns or walls and rest 
directly on soil or on a group of piles [Ref. 14.1].  This chapter is, accordingly, 
confined to the design of these simple types of footings† (including combined 
footings supporting two columns) as well as retaining walls (cantilever and 
counterfort walls).  These simple types of footings [Fig. 14.1] are the most widely 
used types of foundation and are relatively cheap to build.  The design of more 
complex types of foundations (continuous footings, raft foundations, pile 
foundations, wells and caissons, etc.) is clearly outside the scope of this book, and for 
this, reference may be made to books on foundation engineering [Ref. 14.2, 14.3] and 
related IS Codes [IS 2911 (Parts I–III), IS 2950, etc.].  The special codes related to 
the design of simple footings (discussed in this chapter) are IS 1904:1986 [Ref. 14.4] 
and IS 1080:1980 [Ref. 14.5].   

Sections 14.2 – 14.6 deal with the types, behaviour and design of footings, while 
Sections 14.7 – 14.9 deal with the types, behaviour and design of retaining walls. 

14.2   TYPES OF FOOTINGS 

‘Footings’ belong to the category of shallow foundations (as opposed to deep 
foundations such as piles and caissons) and are used when soil of sufficient strength 
is available within a relatively short depth below the ground surface.  Shallow 
foundations comprise not only footings (which support columns/walls, and have a 
limited area/width in plan) but also rafts which support multiple columns on a large 
plan area).  The shallow foundation (footing or raft) has a large plan area in 
comparison with the cross-sectional area of the column(s) it supports because: 
• the loads on the columns (axial thrust, bending moments‡) are resisted by 

concrete under compression and reinforcing steel under tension and/or 
compression, whereas these load effects are transmitted by the footing/raft to a 
relatively weak supporting soil by bearing pressures alone; 

• the ‘safe bearing capacity’ of the soil is very low (100 – 400 kPa) in comparison 
with the permissible compressive stresses in concrete (5–15 MPa) and steel (130–
190 MPa) in a column under service loads. 

                                                           
† The design of pile caps is not included in this chapter. 
‡ Shear forces are also induced in columns, which may result in significant horizontal forces at 
column bases, under lateral loads.  These are resisted by friction between the underside of the 
footing and the soil below, and also by passive resistance of the soil adjoining the sides of the 
footing, and in some cases, by ‘keys’ cast integrally with the footing. 
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P P P

FLAT STEPPED SLOPED

(a)  isolated footings

(b)  combined footings

P1 P2 P1 P2

central beam
(if required)

property lineindividual footing
areas overlap

 
P1 P2

beam P/unit length
masonry or

r c  wall

(c)  strap footing (d)  wall footing  

Fig. 14.1  Types of footings 



658   REINFORCED  CONCRETE  DESIGN 

14.2.1   Isolated Footings 

For ordinary structures located on reasonably firm soil, it usually suffices to provide 
a separate footing for every column.  Such a footing is called an isolated footing.  It 
is generally square or rectangular in plan; other shapes are resorted to under special 
circumstances.  The footing basically comprises a thick slab which may be flat (of 
uniform thickness), stepped or sloped (on the upper surface), as shown in 
Fig. 14.1(a). 

The soil bearing pressures from below tend to make the base slab of the footing 
bend upwards, somewhat into a saucer-like shape (cantilever action), and hence the 
footing needs to be suitably reinforced by a mesh provided at the bottom of the slab.  
However, in the exceptional case of very small and relatively thick footings, the 
structural action is likely to occur, not by bending of the footing slab, but by a lateral 
dispersion of the compressive stress at the base of the column; in such a case, it 
suffices to provide a plain concrete pedestal footing [refer Section 14.4.7].  

The term ‘pedestal’ is also used to refer to that portion of a column below ground 
level where the cross-sectional dimensions are enlarged.  The provision of a pedestal 
is optional, but is often resorted to by design engineers, as it results in reduced 
development length requirements for the column bars, reduced slenderness of the 
column† (especially when the founding depth is large), increased direct bearing area 
on the footing base slab, and reduced shear stresses and design moments.  Pedestals 
are also used to support structural steel columns, the load transfer between the steel 
column and the concrete pedestal being achieved generally through gussetted steel 
base plates with ‘holding down’ bolts.   

14.2.2   Combined Footings 

In some cases it may be inconvenient to provide separate isolated footings for 
columns (or walls) on account of inadequate areas available in plan.  This may occur 
when two or more columns (or walls) are located close to each other and/or if they 
are relatively heavily loaded and/or rest on soil with low safe bearing capacity, 
resulting in an overlap of areas if isolated footings are attempted.   

In such cases, it is advantageous to provide a single combined footing 
[Fig. 14.1(b)] for the columns.  Often, the term ‘combined footing’ is used when two 
columns are supported by a common footing, the term ‘continuous strip footing’ is 
used if the columns (three or more in number) are aligned in one direction alone, and 
the term ‘raft foundation’ (‘mat foundation’) is used when there is a grid of multiple 
columns‡.  The combining of footings contributes to improved integral behaviour of 
the structure.   

                                                           
† Tie beams are also sometimes provided (for this purpose), interconnecting different columns 
at the top of pedestal level (about 150 mm below ground level).  Plinth beams also serve as tie 
beams. 
‡ The raft foundation consists of a thick slab which may be (i) of uniform thickness (flat plate), 
(ii) with locally thicker panels near column bases (flat slab), or (iii) with stiffening beams 
interconnecting the columns. 
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Fig. 14.1(b) also shows a two-column combined footing, in which there is a 
‘property line’ which restricts the extension of the footing on one side.  In this case, 
the non-availability of space near the exterior column is circumvented by combining 
the footing with that of an interior column.  The width of the footing may be kept 
uniform or tapered, as shown.  The trapezoidal shaped footing (with a larger width 
near the exterior column) is required when the exterior column is more heavily 
loaded than the interior column.  Another option is a combined footing which is T-
shaped.  It is sometimes economical to provide a central beam interconnecting the 
column bases; this causes the base slab to bend transversely, while the beam alone 
bends longitudinally.   

An alternative to the conventional combined footing is the strap footing, in which 
the columns are supported essentially on isolated footings, but interconnected with a 
beam, as shown in Fig. 14.1(c). 

14.2.3   Wall Footings 

Reinforced concrete footings are required to support reinforced concrete walls, and 
are also sometimes employed to support load-bearing masonry walls†.  Wall footings 
distribute the load from the wall to a wider area, and are continuous throughout the 
length of the wall [Fig. 14.1(d)].  The footing slab bends essentially in the direction 
transverse to the wall (a ‘one-way’ slab), and hence is reinforced mainly in the 
transverse direction, with only distributors in the longitudinal direction. 

14.3   SOIL PRESSURES UNDER ISOLATED FOOTINGS 

14.3.1   Allowable Soil Pressure 

The plan area of a footing base slab is selected so as to limit the maximum soil 
bearing pressure induced below the footing to within a safe limit.  This safe limit to 
the soil pressure is determined using the principles of soil mechanics [Ref. 14.2, 
14.3].  The main considerations in determining the allowable soil pressure, as well as 
fixing the depth of foundation, are (i) that the soil does not fail under the applied 
loads, and (ii) that the settlements, both overall and differential, are within the limits 
permissible for the structure.  The safety factor, used in soil mechanics, lies in the 
range 2 – 6, and depends on the type of soil, and related uncertainties and 
approximations. 

It should be noted that the value of the safe soil bearing capacity (‘allowable soil 
pressure’), qa, given to the structural designer by the geotechnical consultant‡, is 
applicable for service load conditions, as qa includes the factor of safety.  Hence, the 
calculation for the required area of a footing must be based on qa and the service load 
effects.  The ‘partial load factors’ to be used for different load combinations (DL, LL, 

                                                           
† It is more common to have stepped masonry (stone or brick) foundation for masonry walls. 
‡ The soil bearing capacity, according to soil mechanics theory, depends on the size of the 
footing, and this is to be accounted for (approximately) in the recommendation made in the 
Soil Report. 
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WL/EL) should, therefore, be those applicable for the serviceability limit state and 
not the ‘ultimate limit state’ [refer Section 3.6.3] when used in association with qa. 

Another point to be noted is that the prescribed allowable soil pressure qa at a 
given depth is generally the gross pressure, which includes the pressure due to the 
existing overburden (soil up to the founding depth), and not the net pressure (in 
excess of the existing overburden pressure).  Hence, the total load to be considered in 
calculating the maximum soil pressure q (≤ qa) must include the weight of the footing 
itself and that of the backfill.  Often, in preliminary calculations these weights are 
accounted for approximately as 10 – 15 percent of the axial load on the column; 
however, this assumption should be verified subsequently. 

14.3.2   Distribution of Base Pressure 

The distribution of the soil reaction acting at the base of the footing depends on the 
rigidity of the footing as well as the properties of the soil.  The distribution of soil 
pressure is generally non-uniform.  However, for convenience, a linear distribution of 
soil pressure is assumed in normal design practice. 

Concentrically Loaded Footings 

Thus, in a symmetrically loaded footing, where the resultant vertical (service) load 
P + ΔP (where P is the load from the column and ΔP the weight of footing plus 
backfill)  passes through the centroid of the footing, the soil pressure is assumed to 
be uniformly distributed [Fig. 14.2], and its magnitude q is given by 

q P
A

=
P+ Δ                                                 (14.1) 

where A is the base area of the footing.   

 P

GROUND LEVEL

backfill
footing ΔP

FOUNDING 
LEVEL GROSS SOIL PRESSURE 

q = (P+ΔP)/A 

L

B 
area A = BL
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Fig. 14.2  Assumed uniform base pressure distribution under concentric loading 
Limiting q to the allowable soil pressure qa will give the minimum required area of 
footing: 

A P P
qreqd

a
=

+ Δ
                                              (14.1a) 

Eccentrically Loaded Footings 

The load P acting on a footing may act eccentrically with respect to the centroid of 
the footing base.  This eccentricity e may result from one or more of the following 
effects: 
• the column transmitting a moment M in addition to the vertical load 

[Fig. 14.3(a)]; 
• the column carrying a vertical load offset with respect to the centroid of the 

footing [Fig. 14.3(b)]; 
• the column (or pedestal) transmitting a lateral force located above the foundation 

level, in addition to the vertical load [Fig. 14.3(c)]. 
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Fig. 14.3  Eccentric loading on a footing 

In a general case, biaxial eccentricities (i.e., eccentricities of loading with respect 
to both the principal centroidal axes of the footing) are possible — as in the case of a 
footing for the corner column of a building.  However, the case of uniaxial 
eccentricity† is more commonly encountered in design practice. 

For the purpose of determining the base pressures under eccentric loading, the 
footing is assumed to be rigid and the contact pressure distribution to be linear.  The 
magnitude of the pressure distribution is determined from considerations of simple 
static equilibrium.  Essentially this means that the centre of pressure (through which 
the resultant soil reaction R acts) must be collinear with the resultant line of action of 
the eccentrically applied load P + ΔP, with R = P + ΔP [Fig. 14.4]. 

For preliminary calculations, ΔP, the weight of footing plus backfill, may be taken 
as 10–15 percent of P.  Various possible linear base pressure distributions are 
depicted in Fig. 14.4 for the case of uniaxially eccentric loading on a rectangular 
footing. 

Case 1:    e L≤ 6  

If the resultant loading eccentricity e = M/(P + ΔP) lies within the “middle third” of 
the footing (i.e.,    e L≤ 6 ), it is seen that the entire contact area of the footing is 
subject to a (nonuniform) pressure which varies linearly from qmin to qmax 
[Fig. 14.4(a)].  These pressures are easily obtained by superposing the separate 
effects due to the direct load (P + ΔP) and the bending moment M = (P + ΔP) e: 

q P P
A

P P
Zmax,min

( ) (
=

e)+
±

+Δ Δ                                    (14.2a) 

with area A = BL and section modulus Z = BL2/6, where L is the length of the footing 
in the direction of the eccentricity e, and B the width of the footing.  Accordingly, 

q P P
A

e
Lmax,min

( )
=

+
±⎛

⎝⎜
⎞
⎠⎟

Δ  1  6
      for    e L≤ 6            (14.2b) 

In the limiting case of    e L= 6 , qmin = 0 and qmax = 2(P + ΔP)/A, resulting in a 
triangular pressure distribution.  The uniform pressure distribution q = (P + ΔP)/A 
[Eq. 14.1] is obtained as special case of Eq. 14.2b, with e = 0. 

This limiting case of 6   Le = , is valid only for uniaxial bending.  In case of bi-

axial bending, the limiting case shall be taken as  

                                                           
† Eccentricities in loading can be quite significant in footings which support columns that form 
part of a lateral load resisting frame.  However, as the lateral loads are generally assumed to 
act (with maximum values) in only one direction at a time, the problem is essentially one of 
uniaxial eccentricity .  Eccentricities in both directions should be considered, but usually only 
one at a time. 
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Case 2:    e L> 6  

When the resultant eccentricity e exceeds L/6, Eq. 14.2 becomes invalid because it 
will yield a negative value for qmin, implying a tensile force at the interface.  
However, such tension resisting capacity cannot be practically expected from soil† .  
Assuming a triangular pressure distribution (considering the soil under compression 
alone), and considering a collinear line of action of the resultant soil reaction R with 
the eccentric load P + ΔP, with R = P + ΔP (for static equilibrium), [Fig. 14.4(b)],  

q P P
BLmax

( )
=

+
′

2 Δ
                                            (14.3) 

                                                           
† In fact, it can be expected that the soil will tend to separate from the footing base, thereby 
offering no pressure whatsoever in the base regions farthest removed from qmax. 
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Fig. 14.4  Assumed linear base pressure distributions under uniaxially eccentric 
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Thus, it is seen that the effective length of contact is reduced from L to = 3c, 
and the maximum soil pressure q

′L
max is increased from (P + ΔP)/A to twice the load 

(P + ΔP) divided by the effective area BL ′ .  In order to limit qmax to the allowable 
bearing pressure qa, and also to maximise the effective bearing area ratio ′L L , it 
may be necessary to design a footing with a large base area.  Such footings are 
commonly encountered in industrial buildings where columns are relatively lightly 
loaded axially, but subject to high bending moments due to lateral wind loads or 
eccentric gantry crane loads. 

It may be noted that highly nonuniform base pressures (especially under sustained 
eccentric loads) are undesirable as this can result in possible tilting of the footing.  
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Hence, proportioning of the footing base should be such as to make the contact 
pressure as uniform as possible. 

Case 3: Eliminating Eccentricity in Loading 

Where the magnitude of eccentricity in loading is known with some degree of 
certainty and its direction is fixed, it is possible to arrive at an economical design 
solution by laterally shifting the footing base, relative to the column, such that the 
effective eccentricity in loading is reduced considerably, if not eliminated altogether.  
This is not only desirable from the viewpoint of economy but also desirable from the 
viewpoint of eliminating possible titling of the footing on account of non-uniform 
base pressure.  The ideal situation of zero effective eccentricity is depicted in 
Fig. 14.4(c), where it is shown that by suitably offsetting the footing base so that the 
resultant line of thrust passes through the centroid of the footing, a uniform pressure 
distribution is obtainable, with q = (P + ΔP)/A.  However, some increase in bearing 
pressure should be considered in practice, to account for possible variations in the 
estimated M/P ratio. 

Indeed, such a design solution becomes impracticable when the M/P ratio is 
highly uncertain in magnitude, and especially when the bending moment can be 
reversible (as under wind loads). 

14.3.3   Instability Problems: Overturning and Sliding 

When lateral loads act on a structure, adequate stability of the structure as a whole 
should be ensured at the foundation level — against the possibilities of overturning 
and sliding.  Instability due to overturning may also occur due to eccentric loads, in 
footings for columns which support cantilevered beams/slabs. 

The Code (Cl. 20) recommends a factor of safety of not less than 1.4 against both 
sliding and overturning† under the most adverse combination of the applied 
characteristic loads.  In cases where dead loads contribute to improved safety, i.e., 
increased frictional resistance against sliding or increased restoring moment against 
overturning moment, only 0.9 times the characteristic dead load should be 
considered. 

It may be noted that problems of overturning and sliding are relatively rare in 
reinforced concrete buildings, but are commonly encountered in such structures as 
retaining walls [refer Section 14.8], chimneys, industrial sheds, etc.  The resistance 
against sliding is obtained by friction between the concrete footing base and the soil 
below, as well as the passive resistance of the soil in contact with the vertical faces of 
the footing.  Improved resistance against sliding can be obtained by providing a local 
‘shear key’ at the base of the footing, as is sometimes done in foundations for 
retaining walls.  Such a ‘shear key’ serving as construction joint, may also be 
provided at the interface of the wall/column and the footing, thereby facilitating the 

                                                           
† Against overturning, the Code (Cl. 20.1) permits a reduced minimum factor of safety of 1.2 if 
the overturning moment is entirely due to dead loads.  However, it is advisable to apply a 
uniform minimum factor safety of 1.4 in all cases of loading. 
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transfer of horizontal shear forces (due to lateral loads) at the base of the 
wall/column. 

The restoring moment, counterbalancing the overturning moment due to 
lateral/eccentric loads is generally derived from the weight of the footing plus 
backfill.  In some cases, this may call for footings with large base area [refer 
Fig. 14.4(b)] and large depths of foundation.  However, in cases where the 
overturning moment (not due to wind or earthquake) is not reversible, the problem 
can be more economically solved by suitably making the column/wall eccentric to 
the centre of the footing [refer Fig. 14.4(c)]. 

Another possibility, relatively rare in practice, is the case of pullout of a 
foundation supporting a tension member.  Such a situation is encountered, for 
example, in an overhead tank (or silo) structure (supported on multiple columns), 
subjected to a very severe lateral wind load.  Under minimal gravity load conditions 
(tank empty), the windward columns are likely to be under tension, with the result 
that the forces acting on these column foundations will tend to pull out the column-
footing from the soil.  The counteracting forces, comprising the self weight of the 
footing and the weight of the overburden, should be sufficiently large to prevent such 
a ‘pullout’.  If the tensile forces are excessive, it may be necessary to resort to tension 
piles for proper anchorage. 

14.4   GENERAL DESIGN CONSIDERATIONS AND CODE 
REQUIREMENTS  

14.4.1   Factored Soil Pressure at Ultimate Limit State 

As mentioned earlier, the area of a footing is fixed on the basis of the allowable 
bearing pressure qa and the applied loads and moments under service load conditions 
(with partial load factors applicable for the ‘serviceability limit state†’).  Once the 
base area of the footing is determined, the subsequent structural design of the footing 
is done for the factored loads, using the partial load factors applicable for the 
‘ultimate limit state’.  In order to compute the factored moments, shears, etc., acting 
at critical sections of the footing, a fictitious factored soil pressure qu, corresponding 
to the factored loads, should be considered. 

It may further be noted that the soil pressure which induces moments and shears in 
the footing base slab are due to the net pressure qnet, i.e., excluding the pressure 
induced by the weight ΔP of the footing and the backfill (assumed to be uniformly 
distributed).  This net pressure is due to the concentrated load on the column (from 
the superstructure) and the moments at the base of the column (or pedestal), as shown 
in Fig. 14.5.  Using gross pressures instead of net pressures will result in needlessly 
conservative designs.  The ‘factored net soil pressure’ qu to be considered in the 
design of the footing at the limit state is obtainable from the factored loads on the 
column (Pu, Mu) as shown in Fig. 14.5(b). 

                                                           
† As mentioned in Section 3.6.3, the partial load factor may be taken as unity in general — 
except for the load combination DL + LL + WL/EL, where a partial load factor of 0.8 is 
applicable for live loads (LL) and for wind loads (WL)/earthquake loads (EL). 
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Fig. 14.5  Net soil pressure causing stresses in a footing 

14.4.2   General Design Considerations 

The major design considerations in the structural design of a footing relate to flexure, 
shear (both one-way and two-way action), bearing and bond (development length).  
In these aspects, the design procedures are similar to those for beams and two-way 
slabs supported on columns.  Additional considerations involve the transfer of force 
from the column/pedestal to the footing, and in cases where horizontal forces are 
involved, safety against sliding and overturning. 

Deflection control is not a consideration in the design of footings which are buried 
underground (and hence not visible).  However, control of crack-width and 
protection of reinforcement by adequate cover are important serviceability 
considerations, particularly in aggressive environments.  It is considered sufficient to 



668   REINFORCED  CONCRETE  DESIGN 

limit the crack-width to 0.3 mm in a majority of footings, and for this the general 
detailing requirements will serve the purpose of crack-width control [Ref. 14.1]. 

Although the minimum cover prescribed in the Code (Cl. 26.4.2.2) is 50 mm, it 
is desirable to provide a clear cover of 75 mm to the flexural reinforcement in 
all footings. 

14.4.3   Thickness of Footing Base Slab 

The thickness of a footing base slab is generally based on considerations of shear and 
flexure, which are critical near the column location.  Generally, shear considerations 
predominate, and the thickness is based on shear criteria.   

Except in the case of small footings, it is economical to vary the thickness from a 
minimum at the edge to a maximum near the face of the column, in keeping with the 
variations in bending moment and shear force.  This may be achieved either by 
sloping the top face of the base slab or by providing a stepped footing. 

In any case, the Code (Cl. 34.1.2) restricts the minimum thickness at the edge of 
the footing to 150 mm for footings in general (and to 300 mm in the case of pile 
caps).  This is done to ensure that the footing has sufficient rigidity to provide the 
calculated bearing pressures.  A ‘levelling course’ of lean concrete (about 100 mm 
thick) is usually provided below the footing base. 

14.4.4   Design for Shear 

The thickness (depth) of the footing base slab is most often dictated by the need to 
check shear stress, and for this reason, the design for shear usually precedes the 
design for flexure. 

Both one-way shear and two-way shear (‘punching shear’) need to be considered 
in general [refer Cl. 34.2.4.1 of the Code].  However, in wall footings [Fig. 14.1(d)] 
and combined footings provided with a central beam [Fig. 14.1(b)], the base slab is 
subjected to one-way bending, and for this reason, need to be designed for one-way 
shear alone.  The critical section for one-way shear is taken, as for beams, at a 
distance d (effective depth) from the face of the column/pedestal [Fig. 14.6(a)] or 
wall/beam [Fig. 14.6(d)].  The effective area resisting one-way shear [Fig. 14.6(a), 
(d)] may be rectangular or polygonal, depending on whether the footing is flat 
[Fig. 14.6(a)] or sloped [Fig. 14.6(c)]. 
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The behaviour of footings in two-way (punching) shear is identical to that of a 
two-way flat slab supported on columns, discussed in Chapter 11.  The critical 
section for two-way shear is taken at a distance d/2 from the periphery of the column, 
as shown in Fig. 14.6(b), (c). 

The design procedures for one-way and two-way shear are identical to those 
discussed in Chapters 6 and 11 respectively.  However, shear reinforcement is 
generally avoided in footing slabs, and the factored shear force Vu is kept below the 
factored shear resistance of the concrete Vuc

‡ by providing the necessary depth. 
Where, for some reason, there is a restriction on the depth of the footing base slab on 
account of which Vu uc

u uc

 > V , appropriate shear reinforcement should be designed and 
provided, to resist the excess shear V  – V . 

Finally, it may be noted that in the case of a column/pedestal with a circular or 
octagonal cross-section, the Code (Cl. 34.2.2) recommends that an equivalent square 
section should be considered, for the purpose of locating the critical sections for 
shear (and moment).  The equivalent squares should be inscribed within the perimeter 
of the round or octagonal column or pedestal. 

14.4.5   Design for Flexure 

As mentioned earlier, the footing base slab bends upward into a saucer-like shape on 
account of the net soil pressure qu from below [Fig. 14.6(a)].  Based on extensive 
tests, it has been determined that the footing base slab may be designed against 
flexure by considering the bending moment at a critical section defined as a straight 
section passing through 
• the face of a column, pedestal or wall for a footing supporting a concrete column, 

pedestal or wall [Fig. 14.6(a)]; 
• halfway between the face and centreline of the wall for a footing supporting 

masonry wall [Fig. 14.6(d)]. 
In one-way reinforced footings (such as wall footings), the flexural reinforcement 

(calculated for the moment at the critical section) is placed perpendicular to the wall 
at a uniform spacing.  In the perpendicular direction (along the length of the wall), 
nominal distributor reinforcement should be provided — mainly to account for 
secondary moments due to Poisson effect and possible differential settlement, and 
also to take care of shrinkage and temperature effects. 

In two-way reinforced square footings also, flexural reinforcement may be placed 
at a uniform spacing in both directions.  In two-way reinforced rectangular footings, 
the reinforcement in the long direction is uniformly spaced across the full width of 
the footing, but in the short direction, the Code (Cl. 34.3.1c) requires a larger 
concentration of reinforcement to be provided within a central band width, equal to 
the width B of the footing: 

                                                           
‡ For the purpose of calculating the design shear strength τ c  of concrete, a nominal 
percentage of flexural tensile reinforcement (pt = 0.25) may be assumed (in preliminary 
calculations). 
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Reinforcement in central band width = Ast short, ×
+
2

1β
                               (14.5) 

where 
≡shortstA , total flexural reinforcement required in the short direction 

and           β ≡ ratio of the longside (L) to the short side (B) of the footing. 
This reinforcement is to be uniformly distributed within the central band width 

(equal to width B), and the remainder of the reinforcement distributed uniformly in 
the outer portions of the footing, as shown in Fig. 14.7.  This is done to account 
(approximately) for the observed variation of the transverse bending moment along 
the length of the footing. 
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Fig. 14.7  Detailing of flexural reinforcement in a rectangular footing with uniform 
thickness 
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These special detailing requirements are strictly intended for footings with 
uniform slab thickness.  In the case of sloped footings, it usually suffices to provide 
uniformly distributed reinforcement in the short direction also, as the reduced 
bending moment in the outer portions is coupled with reduced effective depths in 
these regions.  In the long direction also, the common practice is to provide 
uniformly spaced reinforcement throughout the width of the footing, despite the 
variations in depth. 

In general, the percentage flexural reinforcement requirement in footing base slabs 
is low, owing to the relatively large thickness provided on shear considerations.  At 
any rate, the reinforcement should not be less than the minimum prescribed for slabs 
[refer Chapter 5], unless the footing is designed as a plain concrete (pedestal) 
footing.  Furthermore, the percentage reinforcement provided should be adequate to 
mobilise the required one-way shear strength in concrete. 

It is advisable to select small bar diameters with small spacings, in order to reduce 
crackwidths and development length requirements. 

Development length requirements for flexural reinforcement in a footing should 
be satisfied at the sections of maximum moment, and also at other sections where the 
depth is altered.  Shortfall in required development length can be made up by 
bending up the bars near the edges of the footings.  This may be required in footings 
with small plan dimensions. 

Furthermore, the longitudinal reinforcement in the column/pedestal must also 
have the required development length, measured from the interface between the 
column/pedestal and the footing.  When the column is subjected to compression 
alone (without the bars being subject to tension), it is possible to achieve a full 
transfer of forces from the column/pedestal to the footing by bearing, as discussed in 
the next section (Section 14.4.7).  Where this is not possible, and the transfer of force 
is accomplished by reinforcement, such reinforcement must also have adequate 
development length on each side. 

14.4.6   Transfer of Forces at Column Base 

All forces (axial force, moment) acting at the base of the column† (or pedestal) must 
be transferred to the footing either by compression in concrete or by 
tension/compression in reinforcing steel.  The force transfer achieved through 
compression in concrete at the interface is limited by the bearing resistance of 
concrete for either surface (i.e., supported surface or supporting surface).  Under 
factored loads, the maximum bearing stress fbr, max is limited by the Code (Cl. 34.4) to 

f f Abr ck,max .45= 0 1 2A

                                                          

                                      (14.6) 

where A2 is the loaded area at the column base, and A1 the maximum area of the 
portion of the supporting  surface that is geometrically similar to and concentric with 
the loaded area.  In the case of stepped or sloping footings, the area A1 is to be taken 
as that of the lower base of the largest frustrum of a pyramid (or cone) contained 

 
† This is equally applicable in the case of force transfer from the column base to the pedestal 
(if provided) and from the pedestal base to the footing. 
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wholly within the footing (with area A2 on top) with a side slope of 1 in 2, as shown 
in Fig. 14.8(a).  The factor A A1 2 in Eq. 14.6 allows for the increase in concrete 
strength in the bearing area in the footing due to confinement offered by the 
surrounding concrete.  This factor A A1 2  is limited to 2.0.  A limitation on the 
bearing stress is imposed because very high axial compressive stresses give rise to 
transverse tensile strains which may lead to spalling, lateral splitting or bursting of 
concrete.  This possibility, however, can be countered by providing suitable 
transverse and confinement reinforcement.  
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Fig. 14.8  Transfer of forces at column base 

It should be noted that  fbr, max may be governed by the bearing resistance of the 
concrete in the column at the interface (for which A A1 2  is obviously unity), 

rather than that of the concrete in the footing (for which 1 < A A1 2  ≤ 2).  If the 
actual compressive stress exceeds fbr,max, then the excess force is transferred by 
reinforcement, dowels or mechanical connectors.  For transferring a moment at the 
column base (involving tension in the reinforcement), it may be necessary to provide 
the same amount of reinforcement in the footing as in the column, although some 
relief in the compression reinforcement is obtainable on account of transfer through 
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bearing.  This may be achieved by either continuing the column/pedestal bars into the 
footing or by providing separate dowel bars across the interface as depicted in 
Fig. 14.8(b).  The diameter of dowels should not exceed the diameter of the column 
bars by 3 mm.  Furthermore, the reinforcement provided across the interface must 
comprise at least four bars, with a total area not less than 0.5 percent of the cross-
sectional area of the supported column or pedestal [refer Cl. 34.4.3 of the Code]. 

Finally, it should be ensured that all reinforcement provided across the interface 
(whether by extension of column bars or dowels) must have the necessary 
development length in compression or tension, (as applicable) on both sides of the 
interface. 

Where pedestals are provided, and full force transfer is possible at the interface of 
column and pedestal, no reinforcement is theoretically required in the pedestal.  
However, the Code (Cl. 26.5.3.1h) specifies that nominal longitudinal reinforcement 
(i.e., in a direction parallel to the column load) of not less than 0.15 percent of the 
cross-sectional area should be provided, for reasons similar to those pertaining to 
minimum reinforcement in columns [refer Section 13.3.3]. 

14.4.7   Plain Concrete Footings 

When the column is relatively lightly loaded (without any bars in tension) and the 
base area requirement of a footing is relatively low, it may be economical to provide 
a simple plain concrete block as a footing.  Such a footing is sometimes called a 
pedestal footing. 

If the bearing stress at the column base under ultimate loads is less than fbr,max 
(given by Eq. 14.6), the force transfer from the column base to the footing (pedestal) 
is achievable without the need for any reinforcement at the interface.  Further, if the 
base area of the footing falls within a certain zone of dispersion of internal pressure 
in the footing, the entire force is transmitted to the footing base by compression† 
(strut action, as shown in Fig. 14.9a), and the soil pressure does not induce any 
bending in the footing.  The (imaginary) struts are inclined to the vertical, and the 
horizontal component of the strut forces will necessarily call for some tie action 
(‘strut and tie’ concept – see Section 17.2), as shown in Fig. 14.9(b).  To carry the tie 
forces and to avoid possible cracking of concrete due to the resulting tensile forces, it 
is necessary to provide some minimum reinforcement to serve as effective ties 
[Fig. 14.9(b)].   

Although, the Code does not specify the need for any reinforcement, a 
minimum reinforcement is necessary, not only for tie action, but also to provide 
resistance against temperature and shrinkage effects. 

For the purpose of defining this zone of dispersion of internal pressure in the 
footing, thereby enabling the determination of the required thickness of the footing 
block, the Code (Cl. 34.1.3) defines an angle α  between the plane through the 
bottom edge of the footing and the corresponding edge of the column at the interface 
[Fig. 14.9], such that 

                                                           
† This is only a convenient idealisation; the actual state of stress is difficult to assess. 
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11009.0tan max +≥ ckfq  α                                     (14.7) 

where qmax is the maximum soil pressure under service loads, as defined earlier 
[Eq. 14.2a, Fig. 14.4a]. 
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Fig. 14.9  Plain concrete (pedestal) footing 

An expression for the thickness D of the footing block is obtainable [Fig. 14.9] as: 

D L b= −( )(tan )α 2  

( )⇒ ≥ + −     D q f Lck0 9 100 1 2. /max b                       (14.8) 

where b is the width of the column and the expression for tanα  in Eq. 14.7 governs 
the minimum thickness of the footing. 

The design of a plain concrete footing is demonstrated in Example 14.1. 

14.5   DESIGN EXAMPLES OF ISOLATED AND WALL FOOTINGS 

EXAMPLE 14.1: Design of a Plain Concrete Footing 

Design a plain concrete footing for a column, 300 mm × 300 mm, carrying an axial 
load of 330 kN (under service loads, due to dead and live loads).  Assume an 



676   REINFORCED  CONCRETE  DESIGN 

allowable soil bearing pressure of 360 kN/m2 at a depth of 1.0 m below ground.  
Assume M 20 concrete and Fe 415 steel. 

SOLUTION 

Transfer of axial force at base of column 
• In order to provide a plain concrete block footing, full force transfer must be 

possible at the column base, without the need for reinforcement at the interface.  
That is, the factored axial load Pu must be less than the limiting bearing resistance 
Fbr. 

• Assuming a load factor of 1.5, Pu = 330 × 1.5 = 495 kN 
 Limiting bearing stress fbr, max = 0.45fck A A1 2  
 At the column-footing interface, fbr, max will be governed by the column face in 

this case (and not the footing face), with A1 = A2 = (300 × 300) mm2  
 ⇒ Fbr = 0.45 × 20 × 3002 = 810 × 103 N 
         > Pu = 495 kN 
Hence, full force transfer is possible without the need for reinforcement. 

Size of footing 
• Assuming the weight of footing + backfill to comprise 10 percent of the axial 

load, base area required = 330 11
360
× . = 1.01 m2 

 Provide 1 m × 1 m footing, as shown in Fig. 4.10. 

Thickness of footing 

• D =
−⎛

⎝⎜
⎞
⎠⎟

1000 300
2

tanα  

 where tan . maxα ≥ +0 9 100 1q fck  
 qmax = 360 kN/m2 = 0.360 N/mm2  
 fck = 20 N/mm2  
 ⇒ D ≥ 350 × 0.9 100 0 36 20 1× +.  
  = 527 mm  
 Provide 530 mm. 
 Hence, provide a concrete block 1000 × 1000 × 530 mm. 
• Further, it is necessary to provide minimum reinforcement to provide for ‘tie 

action’, and to account for temperature and shrinkage effects:  
 Ast,min = 0.0012BD = 0.0012 × 1000 × 530 = 636 mm2  

Provide 6 – 12 mm φ bars (Ast = 678 mm2) both ways with a clear cover of 
75 mm, as shown in Fig. 4.10.  The spacing is within limits (< 5d or 450 mm). 

Check gross base pressure 
• Assuming unit weight of concrete and soil as 24 kN/m3 and 18 kN/m3 
respectively, 

 actual gross soil pressure qmax = 330
1 0 1 0. .×

 + (24 × 0.53) + (18 × 0.47) 
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               = 330.0 + 12.7 + 8.5 
               = 351.2 kN/m2  
               < qa = 360 kN/m2           — Hence, safe. 

α

300 350
470

530

1000

1000

300

300

6 – 12 φ bars both ways
(nominal reinforcement)

75

 

Fig. 14.10  Example 14.1 

EXAMPLE 14.2: Square Isolated Footing, Concentrically Loaded 

Design an isolated footing for a square column, 450 mm × 450 mm, reinforced with 
8–25 φ bars, and carrying a service load of 2300 kN.  Assume soil with a safe bearing 
capacity of 300 kN/m2 at a depth of 1.5 m below ground.  Assume M 20 grade 
concrete and Fe 415 grade steel for the footing, and M 25 concrete and Fe 415 steel 
for the column. 

SOLUTION 

Size of footing 
• Given: P = 2300 kN, qa = 300 kN/m2 at h = 1.5 m 



678   REINFORCED  CONCRETE  DESIGN 

Assuming the weight of the footing + backfill to be 10 %† of the load 

P = 2300 kN, base area required = 2300 11
300
× . = 8.43 m2

 ⇒ Minimum size of square footing = 8.43  = 2.904 m 
 Assume a 3 m × 3 m footing base 

Thickness of footing slab based on shear 
• Net soil pressure at ultimate loads (assuming a load factor of 1.5) 

 qu =
×
×

2300 1 5
3 0 3 0

.
. .

 = 383 kN/m2  

        = 0.383 N/mm2

(a)  One-way shear 
• The critical section is at a distance d from the column face [refer Fig. 14.11]. 
 ⇒ Factored shear force Vu1 = 0.383 × 3000 × (1275 – d) 
            = (1464,975 – 1149d) N. 
 Assuming τ c = 0.36 MPa (for M 20 concrete with, say, pt = 0.25) [refer Table 6.1 

or Table 13 of the Code], 
 One-way shear resistance Vc1 = 0.36 × 3000 × d 
               = (1080d) N 
 Vu1 ≤ Vc1 ⇒ 1464975 – 1149d ≤ 1080d 

 ⇒ d ≥ 658 mm 

(b)  Two-way shear 
• The critical section is at d/2 from the periphery of the column [refer Fig. 14.11] 
 ⇒ Factored shear force Vu2 = 0.383 × [30002 – (450 + d)2] 
 Assuming d = 658 mm (obtained earlier† ) 

 Vu2 = 2976.8 × 103N 
Two-way shear resistance Vc2 = ks τ c ×[4 × (450 + d) d] 

 where ks = 1.0 for a square column, and τ c = 0.25 20 = 1.118 MPa (refer 
Cl. 31.6.3.1 of the Code) 

 ⇒ Vc2 = 1.0 × 1.118  × 4d (450 + d) 
     = (2012.4d + 4.472d2) N 
 Vu2 ≤ Vc2 ⇒ 2976.8 × 103 ≤ 2012.4d + 4.472d2

 Solving, d ≥ 621 mm 
• Evidently, in this problem, one-way shear governs the thickness.  Assuming a 

clear cover of 75 mm and 16 φ bars in both directions, with an average 
d = 658 mm, 

 thickness D ≥ 658 + 75 + 16 = 749 mm 

                                                           
† This assumption is verified subsequently. 
† Actual effective depth provided will not be less than this value; hence, the use of this value in 
this context can only be on a slightly conservative side; such an assumption simplifies 
calculations. 
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 Provide D = 750 mm.  The effective depths in the two directions will differ by 
one bar diameter, which is not significant in relatively deep square footings.  For 
the purpose of flexural reinforcement calculations, an average value of d may be 
assumed: 

 ⇒ d = 750 – 75 – 16 = 659 mm 
• Assuming unit weights of concrete and soil as 24 kN/m3 and 18 kN/m3 

respectively, actual gross pressure at footing base (under service loads) 
  

dav = 659

450

750

3000

75

3000
450

d/2

d/2

d/2
d

450

section for moment

section for
one-way shear

section for
two-way shear

25 nos 16 φ both ways

(3000 – 450)/2
= 1275

75

XX

PLAN

SECTION  ‘XX’

 
Fig. 14.11  Example 14.2 

 
 q = 2300/(3.0 × 3.0) + (24 × 0.75) + (18 × 0.75) = 287 kN/m2  
                  < 300 kN/m2     — OK. 

Design of flexural reinforcement 
• Factored moment at column face (in either direction): 
 Mu = 0.383 × 3000 × 12752/2 = 933.9 × 106 Nmm 
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 ⇒ R ≡ 
M
Bd

u
2 = 933 9 10

3000 659

6

2
. ×
×

= 0.717 MPa  

 ⇒
( )pt reqd

100
 = [ ]20

2 415
1 1 4 598 0 717 20

×
− − ×. . = 0.207 × 10–2  

 Ast,min = 0.0012BD = 0.0012 × 3000 × 750 = 2700 mm2  
 ⇒ pt,min = 100 × 2700/(3000 × 659) = 0.137 < 0.207 
• However, this reinforcement is less than assumed for one-way shear design‡ , 

( τ c  = 0.36 MPa). 
 for which pt = 0.25 (for M 20 concrete) 
 ⇒ Ast,reqd = 0.25 × 3000 × 659/100 = 4943 mm2  
 Using 16 mm φ bars, number of bars required = 4943/201 = 25 
 [corresponding spacing  s = {3000 – (75 × 2) – 16}/(25 –1) = 118 mm — is 

acceptable.]  
 Provide 25 nos 16 φ bars both ways as shown in Fig. 14.11 

 Required development length Ld = 
φ

τ
( . )0 87
4

fy

bd
[refer Cl. 26.2.1 of Code] 

 For M 20 concrete and Fe 415 steel, Ld = φ (0.87 × 415)/(4 × 1.2 × 1.6) = 47.0 φ 
 For 16 φ bars in footing, Ld =47.0 × 16 = 752 mm 
 Length available = 1275 – 75 = 1200 mm > 752 mm   — Hence, OK. 

Transfer of force at column base 
• Factored compressive force at column base: Pu = 2300 × 1.5 = 3450 kN 
 Limiting bearing stress at column-footing interface, fbr, max = 0 1 2.45 f A Ack . 
 (i)  for column face, fck = 25 MPa, A1 = A2 = 4502 mm2  
 ⇒ fbr, max - col = 0.45 × 25 × 1 = 11.25 MPa  
 (ii) for footing face, fck = 20 MPa, A1 = 30002 mm2, A2 = 4502 mm2  
 ⇒ A A1 2 = 3000/450 = 6.67, limited to 2.0 
 ⇒ fbr, max- ftg = 0.45 × 20 × 2 = 18.0 MPa 
• Evidently, the column face governs, and  fbr, max = 11.25 MPa  
 ⇒ Limiting bearing resistance Fbr = 11.25 × 4502 = 2278.1 × 103 N 
       < Pu = 3450 kN 
 ⇒ Excess force (to be transferred by reinforcement): 
   ΔPu = 3450 – 2278 = 1172 kN 
 This may be transferred by reinforcement, dowels or mechanical connectors.  In 

this case, it is convenient to extend the column bars into the footing, as shown in 
Fig. 14.11. 

                                                           
‡ Unless the footing dimensions are revised (to result in less shear stress), the reinforcement 
requirement here will be governed by shear strength requirements, and not flexural strength 
requirements.  If the resulting pt is excessive, it may be more economical to revise the footing 
dimensions, providing larger plan area and less depth of footing.  In a practical design, this 
should be investigated. 
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• Required development length of the 8–25 φ bars provided in the column, 
assuming a stress level equal to (0.87fy) × (ΔPu/Pu), and M 20 concrete with 
Fe 415 steel (in compression) 

 For fully stressed bars in compression (M 20, Fe 415): Ld = 
φ ( . )
( . . . )

0 87 415
4 1 2 16 1 25

×
× ×

 

        = 37.6 φ 
 ⇒ ~Ld  = Ld × ΔPu/Pu  
     = 37.6 × 25 × 1172/3450 
     = 319 mm. 
 Available vertical embedment length in footing (d = 659 mm) > 319 mm. 

The bars are bent (with 90o standard bend) into the footing, and may rest directly 
on the top of the reinforcement layer in the footing, as shown in Fig. 14.11. 

Alternative Design 
• Providing a uniform thickness of 750 mm for the footing slab is rather 

uneconomical, as such a high thickness is required essentially near the face of the 
column (due to shear considerations); the effective depth requirement falls off 
with increasing distance from the critical section for one-way shear; theoretically, 
only a minimum thickness (150 mm, specified by the Code) need be provided at 
the edge of the footing. 

• However, the slope provided at the top of the footing should preferably not 
exceed about 1 in 1.5 (i.e., 1 vertical : 1.5 horizontal), as a steeper slope will 
require the use of additional formwork on top (to prevent the concrete from 
sliding down). 
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Fig. 14.12  Example 14.2 — Alternative 

• As the thickness of the footing near the column base is governed by shear (one-
way shear, in this example) and the effective area available at the critical section 
is a truncated rectangle, the effective depth required is slightly larger than that for 
a flat footing. 

• Assuming a thickness D = 750 mm up to a distance of 660 mm (> d = 659 mm) 
from the periphery of the column; and providing a slope of 1 in 1.5 over the 
remaining distance of 1275 – 660 = 615 mm on all four sides [Fig. 14.12], the 
edge thickness is obtained as  750 – 615/1.5 = 340 mm 

 ⇒ Vu1 = 0.383 × (1275 – 659) × 3000 = 707784 N  
 ⇒ τ v1 = 707784 / (3000 × 659 – 616 × 410)‡ = 0.410 MPa 
 Providing pt = 0.35 ⇒ τ c = 0.413 MPa (for M 20 concrete) [refer Table 6.1] 
 τ c  > τ v  — Hence, OK. 
 ⇒ (Ast)reqd = (0.35/100) × (3000 × 659 – 616 × 410) = 6036 mm2  
                                                           
‡ The area resisting the shear is polygonal in shape. 
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 ⇒ No. of 16 φ bars required = 6036/201 = 30 (as shown in Fig. 14.12). 
• Other alternative designs are possible.  These include (i) providing a proper 

sloped footing with a thickness varying linearly from a minimum at the edge to a 
maximum† at the face of the column, and (ii) providing a stepped footing.  In the 
latter case, the section at the step location becomes a critical section at which one-
way shear, flexural reinforcement and development length requirements need to 
be verified. 

EXAMPLE 14.3: Rectangular Isolated Footing, Concentrically Loaded 

Redesign the footing for the column in Example 14.2, including a spatial restriction 
of 2.5 m on one of the plan dimensions of the footing. 

SOLUTION 

Size of footing 
• As in Example 14.2, required base area = 8.43 m2 
 Width B = 2.5 m, ⇒ length L = 8.43/2.5 = 3.37 m 
 ⇒ Provide a rectangular footing 3.4 m × 2.5 m. 
 ⇒ Net factored soil pressure = 2300 × 1.5/(3.4 × 2.5) = 406 kN/m2  
               = 0.406 N/mm2  
Thickness required for shear 
• An exact solution for the required depth for shear (one-way shear as well as two-

way shear) may be obtained using the conditions Vu1 ≤ Vc1 and Vu2 ≤ Vc2, as done 
in Example 14.2.  In this example, a trial-and-error procedure is used. 
Assuming an overall depth (thickness) of footing D = 850 mm, with clear cover 
of 75 mm and 20 mm φ bars in the long direction (placed at bottom) and 16 mm φ 
bars in the short direction, 

 effective depth (long span) dx = 850 – 75 – 20/2 = 765 mm 
 effective depth (short span) dy = 850 – 75 – 20 – 16/2 = 747 mm 
 Average d for two-way shear calculations: d = (765 + 747)/2 = 756 mm 
• One-way shear at dx = 765 mm away from column face in the long direction: 
 Vu1 = 0.406 × 2500 × (1475 – 765) = 720650 N 
 ⇒ τ v1 = 720650/(2500 × 765) = 0.377 MPa  
 For τ c = τ v1 = 0.377 MPa, (pt)reqd = 0.28  [refer Table 6.1]. 
 [In the short span direction, dy = 747 mm and Vu1 = 0.406 × 3400 × (1025 – 747) 

= 383751 N ⇒ τ v1 =383751/(3400 × 747) = 0.151 MPa <<τ c,min ; hence this is 
not critical]. 

                                                           
† In this case, advantage may be availed of the reduction in one-way shear owing to the 
inclination in the compressive force [refer Section 6.4.2]. 
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Fig. 14.13  Example 14.3 

• Two-way shear (at dav/2 from column periphery): 
 Vu2 = 0.406 × [3400 × 2500 – (450 + 756)2] = 2860 × 103 N 
 ⇒ τ v = 2860 × 103/{(450 + 756) × 4 × 756} = 0.784 MPa  

            < ks cτ = 1.0 × 0.25 20 = 1.118 MPa (refer Cl. 31.6.3.1 of Code). 
 —Hence, OK. 

Design of flexural reinforcement 
(a)  long direction (section XX in Fig. 14.13) 
• Mux = 0.406 × 2500 × 14752/2 = 1104.1 × 106  Nmm 

 ⇒ R ≡ M
Bd

u

x
2 = 1104 1 10

2500 765

6

2
. ×
×

= 0.755 MPa  
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 ⇒
( )pt reqd

100
 = [ ]20

2 415
1 1 4 598 0 755 20

×
− − ×. . = 0.219 × 10–2  

• This is less than pt = 0.28 required for one-way shear. 
 ⇒ (Ast,x)reqd = 0.28 × 2500 × 765/100 = 5355 mm2

 Using 20 φ bars, number required = 5355/314 = 18 
 ⇒ Corresponding spacing s = {2500 – (75 ×2) – 20}/17 = 137 mm — OK. 
 Provide 18 nos 20 φ bars at uniform spacing in the long direction. 
• Development length required: Ld = 47.0 φ (for M 20 concrete, Fe 415 steel, as in 

previous Example) 
        = 47.0 × 20 = 940 mm 
 Development length available = 1475 – 75 = 1400 mm > 940 mm — OK. 
 (b)  short direction (section YY in Fig. 14.13) 
• Muy = 0.406 × 3400 × 10252/2 = 725.1 × 106 Nmm 

 ⇒ R ≡ 
M

Bd
u

y
2 = 7251 10

3400 747

6

2
. ×
×

= 0.382 MPa  

 ⇒
( )pt reqd

100
 = [ ]20

2 415
1 1 4 598 0 382 20

×
− − ×. . = 0.108 × 10–2  

• This is less than the minimum reinforcement required for slabs: 
 (Ast)min = 0.0012 bD = 0.0012 × 3400 × 850 = 3468 mm2

 Using 16 φ bars, number required = 3468/201 = 18 
• Ast to be provided within a central band width B = 2500 mm is: 

 3468 × 
2

1β +
= 3468 × 

2
3 5 2 5 1( . . )+

= 2890 mm2

 Using 16 φ bars, number required = 2890/201 = 15 
• Provide 15 nos 16 φ bars at uniform spacing within the central band of width 

2.5 m, and 2 nos 16 φ bars each in the two outer segments; making a total of 19 
bars, as shown in Fig. 14.13.  The spacings are within limits (3d, 300 mm). 

• Required development length = 47.0 × 16 = 752 mm 
 Development length available = 1025 – 75 = 950 mm > 752 mm — OK. 

Transfer of force at column base 
The calculations are identical to those given in Example 14.2 (except that for the 
footing face, A A1 2 = 2500/450 = 5.56, limited to 2.0).  The excess force of 
1171.9 kN may be transferred across the column-footing interface by simply 
extending the column bars, as in the previous Example, and as indicated in 
Fig. 14.13. 

Alternative: As in the previous Example, a sloped footing may be designed; this is 
likely to be more economical than a flat footing. 

EXAMPLE 14.4: Masonry Wall Footing 

Design a reinforced concrete footing for a 230 mm thick masonry wall which 
supports a load (inclusive of self-weight) of 200 kN/m under service loads.  Assume 
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a safe soil bearing capacity of 150 kN/m2 at a depth of 1 m below ground.  Assume 
M 20 grade concrete and Fe 415 grade steel. 

SOLUTION 

Size of footing 
• Given: P = 200 kN/m, qa = 150 kN/m 2 at a depth of 1 m. 
• Assuming the weight of the footing + backfill to constitute 10 percent of the 

applied load P, and considering a 1 m length of footing along the wall, 

 required width of footing = 200 11
150
× .  = 1.47 m. 

 Provide 1.5 m wide footing. 

Thickness of footing based on shear considerations 
• Factored net soil pressure (assuming a load factor of 1.5) is: 

 qu = 200 1 5
1 5 1 0

×
×

.
. .

 = 200 kN/m2 = 0.200 N/mm2  

• The critical section for (one-way) shear is located at a distance d away from the 
face of the wall 

 ⇒ Vu = 0.200 × 1000 [(1500 – 230)/2 –d] 
    = (127000 – 200d) N 
• Assuming nominal flexural reinforcement (pt = 0.25), τ c = 0.36 MPa for M 20 

concrete, the shear resistance of concrete is: 
 Vuc = 0.36 × 1000 × d = (360d) N. 
• Vu ≤ Vuc ⇒ 127000 – 200d ≤ 360d 
 ⇒ d ≥ 227 mm 
• Assuming a clear cover of 75 mm and 16 φ bars, 
 thickness D ≥ 227 + 75 + 16/2 = 310 mm 
 Provide D = 310 mm upto a distance of 250 mm from the face of the wall.  At the 

edge of the footing, a minimum thickness of 150 mm may be provided, and the 
thickness linearly tapered upto 310 mm, as shown in Fig. 14.14. 
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Fig. 14.14  Example 14.4 

Design of flexural reinforcement  
• The critical section for maximum moment is located halfway between the 

centreline and edge of the wall, i.e., at a distance 1500/2 – 230/4 = 692.5 mm 
from the edge of the footing [refer Fig. 14.4].  Considering a 1 m long footing 
strip with d = 227 mm, 

• ⇒ Mu = 0.200 × 1000 × 692.52/2 = 48.0 kNm 

 ⇒ R ≡ 
M
bd

u
2 = 48 0 10

1000 227

6

2
. ×
×

= 0.932 MPa  

 ⇒
( )pt

100
 = [ ]20

2 415
1 1 4 598 0 932 20

×
− − ×. . = 0.274 × 10–2  

 which is greater than the nominal value (pt = 0.25) assumed for τ c  
• (Ast)reqd = 0.274 × 10–2 × 1000 × 227 = 622 mm2 per  m length of footing. 

 ⇒ Spacing of 16 φ bars = 1000 20
622
× = 323 mm 

      Spacing of 12 φ bars = 1000 113
622
×  = 182 mm (< 3d or 300 mm) 

 Provide 12 φ @ 180 c/c, as shown in Fig. 14.14. 
• Development length required = 47.0 φ (for M 20 concrete, Fe 415 steel) 



688   REINFORCED  CONCRETE  DESIGN 

               = 47.0 × 12 = 564 mm†  
 Length available = 692.5 – 75 = 617.5 mm > 564 mm — OK. 

Distributors  
 Some nominal bars may be provided, to account for possible secondary stresses 

due to differential settlement. 
 Provide 10 φ distributors @ about 200 c/c  (7 nos will be adequate) [Fig. 14.4]. 
Transfer of force at wall base 

Assuming a load factor of 1.5, maximum bearing stress at wall/footing interface 
(loaded area is 230 mm wide) 

fbr = 
200 10 1 5

1000 230

3× ×
×

.
= 1.304 MPa  

which is relatively low and can be accommodated by the concrete 
[fbr, max = 0.45 fck A A1 2 ] in the footing face; the masonry must also be capable of 
providing this bearing resistance. 

EXAMPLE 14.5: Isolated footing, eccentrically loaded 

Design an isolated footing for a column, 300 mm × 500 mm, reinforced with 6–25 φ 
bars with Fe 415 steel and M 25 concrete [refer Fig. 13.14(a), Example 13.5], subject 
to a factored axial load Pu = 1000 kN and a factored uniaxial moment Mux = 120 kNm 
(with respect to the major axis) at the column base.  Assume that the moment is 
reversible.  The safe soil bearing capacity may be taken as 200 kN/m2 at a depth of 
1.25 m.  Assume M 20 concrete and Fe 415 steel for the footing. 

SOLUTION 

Size of footing 
• Given: Pu = 1000 kN, Mux = 120 kNm, qa = 200 kN/m2 at a depth of 1.25 m. 
• As the moment is reversible, the footing should be symmetric with respect to the 

column.  Assuming the weight of the footing plus backfill to constitute about 15 
percent of Pu, resultant eccentricity of loading at footing base, 

 e = 
15.11000

10120 3

×
×  

    = 104 mm 
• Assuming e < L/6 (i.e., L > 6 × 104 = 624 mm) 

 
BL

15.11000× +
6

120
2BL

 ≤ (200 × 1.5‡) kN/m2  

                                                           
† This is required with reference to the section of maximum moment.  Strictly, development 
length should also be checked at sections where the thickness is reduced.  However, in this 
case, it can be seen that in the region of tapered thickness, the drop in bending moment (due to 
cantilever action) is steeper than the drop in effective depth, and hence there is no cause for 
concern. 
‡ Assuming an enhanced soil pressure under ultimate loads is equivalent to considering 
allowable pressures at the serviceability limit state.  A load factor of 1.5 is assumed here. 
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 ⇒ 300 BL2 – 1150L – 720 ≤ 0 
 various combinations of width B and length L can satisfy the above equation. 
 Assuming B = 1.0 m ⇒ L ≥ 4.381 m 
          B = 1.5 m ⇒ L ≥ 3.075 m 
          B = 2.0 m ⇒ L ≥ 2.414 m 
• An economical proportion of the base slab is generally one in which the 

projection beyond the face of column (or pedestal) is approximately equal in both 
directions (for effective two-way behaviour, i.e., (L – a)/2 ≈ (B – b)/2 [refer 
Fig. 14.7]. 

• Provide B = 2000 mm and L = 2450 mm; this gives projection of 850 mm (in the 
short direction) and 975 mm (in the long direction), as shown in Fig. 14.15. 

975
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dy = 401

700500

144.1 kN/m2

204.1 216.3
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2000

d
X

X
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YY

one–way
shear
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300

2450

C

 

Fig. 14.15  Example 14.5 

Thickness of footing based on shear 

• Factored (net) soil pressure qu,max = 
1000

2 0 2. .45×
+

120 6
2 0 2 2

×
×. .45

 = 204.1 + 60.0 

            = 264.1 kN/m2  
• qu,min = 204.1 – 60.0 = 144.1 kN/m2 
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(a)  One-way shear 
• The critical section is located d away from the column face, as shown in 

Fig. 14.5.  The average pressure contributing to the factored one-way shear is†  
 qu = 264.1 – 60.0 × {(975 – d)/2}/1225 
     = (240.2 + 0.02449d) kN/m2

     ≈ 255 kN/m2 (assuming d = 600 mm conservatively) 
     = 0.255 N/mm2  
 ⇒ Vu1 = 0.255 × 2000 × (975 – d) 
             = (497250 – 510d) N 
• Assuming τ c = 0.36 MPa (for M 20 concrete with nominal pt = 0.25), 
 Vuc = 0.36 × 2000 × d = (720d) N 
• Vu1 ≤ Vuc ⇒   497250 – 510d ≤ 720d 
 ⇒ d ≥ 404 mm 
(b)  Two-way shear 
• The critical section is located d/2 from the periphery of the column all around.  

The average pressure contributing to the factored two-way shear is 
qu = 204.1 kN/m2 = 0.2041 N/mm2 

 ⇒ Vu2 = 0.2041 [2000 × 2450 – (300 +d)(500+d)] 
 Assuming d = 404 mm (conservatively), 
 Vu2 = 870 × 103 N 
• For two-way shear resistance, limiting shear stress of concrete  
 τ cz = ks (0.25 fck ), where ks = 0.5 + 300/500, but limited to 1.0. 

 ⇒ τ cz = 1.0 × 0.25 20 = 1.118 MPa  
 ⇒ Vuc = 1.118 × [(300 +d) + (500 + d)] × 2 × d 
     = (1788.8d + 2.236d2) N 
 d = 404 mm ⇒ Vuc = 1088 kN > Vu2 = 870 kN 
• Hence, one-way shear governs the footing slab thickness and d ≥ 404 mm.  

Assuming a clear cover of 75 mm and a bar diameter of 16 mm,  
 D ≥ 404 + 75 + 16/2 = 487 mm 
 Provide D = 500 mm 
 ⇒ effective depth (long span) dx = 500 – 75 – 8 = 417 mm 
      effective depth (short span) dy = 417 – 16 = 401 mm 

Check maximum soil pressure 
• Assuming unit weights of concrete and soil as 24 kN/m3 and 18 kN/m3 

respectively, at the factored loads, 

 qmax-gross = 1000
2 0 2. .4× 5

+ {(24 × 0.5) + 18 × (1.25– 0.5)} × 1.5 + 120 6
2 0 2 2

×
×. .45

 

               = 302 kN/m2 ≈ 200 × 1.5 kN/m2   — Hence, OK. 

                                                           
† In this problem, the variation in the soil pressure over the length from the edge to the critical 
section is not very large.  In such cases, it is sufficient and conservative to assume a uniform 
pressure equal to the maximum at the edge. 
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Design of flexural reinforcement 
• The critical sections for moment are located at the faces of the column in both 

directions (XX and YY) as shown in Fig. 14.15. 
(a)  long span 
• cantilever projection = 975 mm, width = 2000 mm, dx = 417 mm, 

qu = 0.2163 N/mm2 at face of column, 0.2641 N/mm2 at footing edge. 

• Mux = (0.2163 × 2000 × 9752/2) + (0.2641 – 0.2163) × 1
2

 × 2000 × 9752 × 2/3 

        = (205.6 + 30.3) × 106 = 236 × 106 Nmm  

 ⇒ R ≡ M
bd

u

x
2 = 236 10

2000 417

6

2
×
×

= 0.679 MPa  

 ⇒
( )pt

100
 = [ ]20

2 415
1 1 4 598 0 679 20

×
− − ×. . = 0.197 × 10–2  

 pt assumed for one-way shear = 0.25 > 0.197 
 ⇒ (Ast)reqd = 0.25 × 2000 × 417/100 = 2085 mm2

• Using 16 φ bars, number required = 2085/201 = 11 
 [corresponding spacing = (2000 – 75 × 2 – 16)/10 = 183 mm] 
 Provide 11 nos 16 φ bars at uniform spacing in the long direction, as shown in 

Fig. 14.15. 
• Development length required = 47.0 φ (for M 20 with Fe 415) 
               = 47.0 × 16 = 752 mm 
               < 900 mm available                — OK. 
(b)  short span 
• cantilever projection = 850 mm, width = 2450 mm, dy = 401 mm, qu varies along 

the section YY, with an average value of 0.2041 N/mm2 at the middle.  
Considering a slightly greater value (mean of values at centre and footing edge), 
qu ≈ (0.2041 + 0.2641)/2 = 0.2341 N/mm2  

• Muy = 0.2341 × 2450 × 8502/2) = 207.2 × 106 Nmm 

 ⇒ R ≡ 
M

bd
u

y
2 = 207 2 10

2450 401

6

2
. ×
×

= 0.526 MPa  

 ⇒
( )pt

100
 = [ ]20

2 415
1 1 4 598 0 526 20

×
− − ×. . = 0.150 × 10–2  

 ⇒ (Ast)reqd = 0.150 × 10–2 × 2450 × 401 = 1474 mm2

 (Ast)min = 0.0012 × 2450 × 500 = 1470 mm2 < 1474 mm2  
• Number of 12 φ bars required = 1474/113 = 14 
 As the difference in dimensions between the two sides (B = 2000 mm, 

L = 2450 mm) is not significant, it suffices to provide these bars at a uniform 
spacing. 

• Provide 14 nos 12 φ bars in the short direction at uniform spacing, as shown in 
Fig. 14.15. 

• Development length required =  47.0 × 12 = 564 mm 
               < 775 mm available         — Hence, OK. 
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Transfer of forces at column base 
• As some of the bars are in tension, no transfer of the tensile force is possible 

through bearing at the column-footing interface, and these bars may be extended 
into the footing. 

• Required development length of 25 φ bars in tension = 47.0 × 25 
           = 1175 mm 
• Length available (including standard 90o bend on top of upper layer of footing 

reinforcement) = (500 – 75 – 16 – 12 – 25/2) + 8 × 25 = 584 mm.  The balance, 
1175 – 584 = 591 mm, can be made up by extending these bars into the footing 
beyond the bend.  A total extension of 4 × 25 + 591 = 691 ≈ 700 mm needs to be 
provided beyond the bend point, as shown in Fig. 14.15.  As the moment on the 
column is reversible, this embedment should be provided for all the column bars. 

• Alternatively, a pedestal (with cross-sectional dimensions of, say, 450 mm × 
750 mm) may be provided to the column below ground level (or 150 mm below 
GL), and the longitudinal bars in the pedestal designed to resist the factored axial 
load-moment combination; small diameter bars (say 16 mm φ) may be selected, 
with the aim of reducing the development length requirements. 

EXAMPLE 14.6: Isolated footing eccentrically loaded 

Redesign the footing in Example 14.5 for a uniformly distributed base pressure, 
considering that the applied moment at the column base is entirely due to dead loads 
(and hence, irreversible). 

SOLUTION 

• Given: (as in the previous Example) Pu = 1000 kN, Mux = 120 kNm, 
qa = 200 kN/m2 at a depth of 1.25 m, fck = 20 MPa, fy = 415 MPa  

Size of footing 
• Required eccentricity between column centroid and footing centroid = Mu/Pu  

= 
120 10

1000

3×
 = 120 mm 

• Assuming the weight of the footing + backfill to constitute 10 percent of Pu, and 
assuming a load factor of 1.5, 

 base area required = 1000 11
200 1 5

×
×

.
.

 = 3.67 m2  

• For economical proportions, the cantilever projections (for flexural design) 
should be approximately equal in the two directions. 

 ⇒ Provide L = B = 1.95 m (Area = 3.80 m2 > 3.67 m2) 
With the column offset by 120 mm, this results in cantilever projections of 
845 mm and 825 mm in the two directions, as shown in Fig. 14.16. 

Thickness of footing based on shear 

• Factored (net) soil prressure qu = 1000
1 95 1 95. .×

= 263.0kN/m2 

             = 0.263 N/mm2
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(a)  One-way shear 
• The critical section is located d away from the column face [refer Fig. 14.16] 
 Vu1 = 0.263 × 1950 × (845 – d) = (433358 – 512.8d) N 
• Assuming τ c = 0.36 MPa (for M 20 concrete with nominal pt = 0.25), 
 Vuc = 0.36 × 1950 × d =(702d) N 
• Vu1 ≤ Vuc ⇒ 433358 – 512.8d ≤ 702d  
 ⇒ d ≥ 356.7 mm 
(b)  Two-way shear 
• The critical section is located d/2 from the column periphery all around. 
 Vu2 = 0.263 × [19502 – (300 + d) (500 + d)] 
• Assuming d ≥ 357 mm, Vu2 ≤ 851976 N 

FTG.

e = 120  mm

C

845

C

605

450

uniform pressure
qu = 263.0 kN/m2

COL.

750 mm extension
(by making bar

incilined in plan)

d critical section for
one-way shear

130

120

150
150

975

1950

975 975

1950

500

 

Fig. 14.16  Example 14.6 
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• Two-way shear resistance (as in Example 14.5) 
 Vuc = 1.118 × [(300 + d) + (500 + d)] × 2 × d 
 d = 357 mm ⇒ Vuc = 1208.6 kN > Vu2,max = 852.0 kN 
 Hence, one-way shear governs the thickness.  As a square footing is provided and 

the one-way shear requirement is equally applicable in both directions, the d 
calculated may be taken as an average depth: (dx + dy)/2. 

 Assuming 75 mm clear cover and 12 φ bars, 
 D ≥ 357 + 75 + 12 = 444 mm  
• Provide D = 450 mm and consider the average effective depth, 

d = 450 – 75 – 12 = 363 mm while designing for flexure. 
Design of flexural reinforcement 
• Maximum cantilever projection = 845 mm (from face of column) 
 Mu = 0.263 × 1950 × 8452/2 = 183.1 × 106 kNm 

 ⇒ R ≡ 2Bd
Mu  = 2

6

3631950
101.183

×
× = 0.713 MPa  

 ⇒ 
100

tp = [ ]20713.0598.411
4152

20
×−−

×
= 0.206 × 10–2  

 pt = 0.25 has been assumed for one-way shear strength 
 Accordingly, Ast = 0.25 × 1950 × 363/100 = 1770 mm2  
 Number of 12 φ bars required = 1770/113 = 16 
 [corresponding spacing = (1950 – 75 × 2 – 12)/15 = 119 mm  — OK]. 
 Provide 16 nos 12 φ bars in both directions. 
 Development length required = 47.0 φ = 47.0 × 12 = 564 mm — available [refer 

Fig. 14.16]. 
Transfer of forces at column base 
• This is as explained in Example 14.5, with the difference that some of the bars are 

always under compression, requiring reduced development length.  However, the 
bars in tension need an additional extension of 50 mm beyond the bend point, on 
account of the reduced footing thickness of 450 mm (as against 500 mm in 
Example 14.5).  The total extension of 641 + 50 = 741 ≈ 750 mm requires 
reorienting the bars diagonally in plan for this length to be available. 

14.6   DESIGN OF COMBINED FOOTINGS 

14.6.1   General 

As mentioned in Section 14.2.2, a footing supporting more than a single column or 
wall is called a combined footing, and when many columns (more than two) are 
involved, terms such as continuous strip footing (if columns are aligned in one 
direction only) and raft foundation or mat foundation are used.  Multiple column 
foundations become necessary in soils having very low bearing capacities.  However, 
even in soils having moderate or high ‘safe bearing capacity’ for the use of individual 
footings, combined footings become necessary sometimes — as when: 
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• columns are so closely spaced that isolated footings cannot be conveniently 
provided, as the estimated base areas tend to overlap; 

• an exterior column located along the periphery of the building is so close to the 
property line that an isolated footing cannot be symmetrically placed without 
extending beyond the property line. 

14.6.2   Distribution of Soil Pressure 

As mentioned earlier (in Section 14.3.2), the prediction of the exact distribution of 
base pressure under a footing is difficult, as it depends on the rigidity of the footing 
as well as the properties of the soil.  If this is difficult for an isolated footing, indeed, 
it is more so for a combined footing.   

For a very rigid footing supported on an elastic soil base, a straight line pressure 
distribution is appropriate.  Such an assumption is found to lead to satisfactory 
designs in the case of relatively rigid footings.  However, for relatively flexible 
footings, such an assumption is not realistic; the problem is rather complex and 
involves consideration of soil-structure interaction. 

In this section, only two-column combined footings are considered.  The footing is 
assumed to be rigid and the soil response elastic, and hence a straight line distribution 
of soil pressure is assumed. 

14.6.3   Geometry of Two-Column Combined Footings 

Examples of two-column combined footings are shown in Fig. 14.17.  The geometry 
of the footing base should preferably be so selected as to ensure that the centroid of 
the footing area coincides with the resultant of the column loads (including 
consideration of moments if any, at the column bases).  This will result in a uniform 
distribution of soil pressure, which is desirable in order to avoid possible tilting of 
the footing (as mentioned earlier in Section 14.3.2).   

The footing may be rectangular or trapezoidal in shape [Fig. 14.17], depending on 
the relative magnitudes of loads on the two columns which the footing supports.  
When the exterior column (which has the space limitation for an independent 
footing) carries the lighter load ( )x s> 2 , a rectangular footing [Fig. 14.17(b)] or a 
trapezoidal footing (with a reduced width under the exterior column) as shown in 
Fig. 14.17(c) may be provided.  On the other hand, when the exterior column carries 
the heavier load [ x s< 2 in Fig. 14.17(e)], the wider end of the trapezoidal footing 
should be located under the exterior column. 

14.6.4   Design Considerations in Two-Columns Footings 

Fixing Plan Dimensions 

As discussed earlier with reference to Fig. 14.17, the plan dimensions of the two-
column combined footing may be selected to satisfy the following two requirements 
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Fig. 14.17  Geometry of two-column combined footings 

1. Base area of footing  A = Total (service) load†/qa. 
2. The line of action of the resultant of the column loads must pass through the 

centroid of the footing. 
In the case of a rectangular footing [Fig. 14.17(b)], the second requirement results 

in a length L of the footing equal to 2( x a+ ).  The edge distance a may be fixed with 
reference to a property line (as shown in Fig. 14.17); otherwise, it may be suitably 
assumed.  Having fixed L, the footing width B is obtained as A/L.  In the case of a 
trapezoidal footing [Fig. 14.8(c), (e)], usually the length L is selected first, and the 
dimensions BB1, B2B

                                                          

 adjusted to satisfy the two requirements cited above. 

Load Transfer Mechanism 

As in the case of isolated footings, the factored net soil pressure qu is computed as the 
resultant factored load divided by the base area provided, and the pressure may be 

 
† Including the weight of the footing plus backfill. 
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assumed to be uniformly distributed‡ [refer Fig. 14.18]. 

 Pu2Pu1 

a1 a2

RESULTANT

d D 

pressure quB 
per unit length Pu1 + Pu2

a1 + 1.5d a2 + 1.5d

L

B 

(a) 

(b)
C

transverse beam 
(column strip) 

 
a1 a2

d

d
Vu

Mu
–

Mu
+

shear force
diagram

bending moment
diagram

(c)

(d)

 

Fig. 14.18  Assumed load transfer in two-column combined footing 

                                                           
‡ In cases where the ratio of the column loads P1 : P2 is subject to uncertainty, or when these 
loads are accompanied by moments which may be reversible, the line of action of the resultant 
load will not always match with the centroid of the footing, and the pressure distribution will 
be nonuniform.  However, it is conservative to assume uniform distribution with maximum qu. 
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The base slab of the combined footing is subject to two-way bending, and one-
way as well as two-way shear (as in the case of isolated footing).  In general, the 
width of the footing (B) is much less than the length (L), with the result that the 
flexural behaviour is predominantly one-way (i.e., in the longitudinal direction), and 
the two-way action (i.e., including transverse bending) is limited to the 
neighbourhood of the column locations. 

For the purpose of structural design, a simplified (and usually conservative) load 
transfer mechanism may be assumed — as shown in Fig. 14.18.  In this idealised 
model, the footing is treated as a uniformly loaded wide longitudinal beam (width B, 
length L and factored load quB per unit length), supported on two column strips, 
which in turn act as transverse beams cantilevered from the columns.  The width of 
each column strip may be taken approximately as the width of the column (a) plus 
0.75d on either side of the column [Fig. 14.18(b)]. 

The thickness of the footing is generally governed by shear considerations, as in 
isolated footings.  The critical sections for one-way shear are at a distance d from the 
column face [Fig. 14.18(c)], and at d/2 from each column periphery for two-way 
shear.  The distribution of longitudinal shear forces and bending moments may be 
easily determined from statics, treating the footing slab as being simply supported† 
on the two column strips, with overhangs (if any) beyond each column strip, as 
shown in Fig. 14.18(c), (d). 

The flexural reinforcement in the longitudinal direction is designed for the 
‘positive’ moment at the face of the column and the maximum ‘negative’ moment 
between the columns; the reinforcement is placed at the bottom in the case of the 
former, and at top in the case of latter, as depicted in Fig. 14.18(a),(d).  The flexural 
reinforcement in the transverse direction (in the column strip) is designed for the 
‘positive’ moment at the section in line with the face of the column, considering the 
column strip as a beam with uniformly distributed factored loads (whose total 
magnitude is equal to the factored load on the column).  This reinforcement is 
provided at the bottom, and located in a layer above the longitudinal reinforcement 
[refer Fig. 14.18(a)].  Nominal transverse reinforcement may be provided elsewhere 
(i.e., other than the column strips), to tie with the longitudinal reinforcement 
(wherever provided); these nominal bars, however, are not indicated in Fig. 14.18(a).  
Development length requirements should be satisfied by the flexural reinforcement 
provided. 

The column strip (transverse beam) should also be checked for one-way shear at a 
distance, equal to the effective depth of the transverse reinforcement, from the face of 
the column/pedestal.  The design of a two-column rectangular footing is illustrated in 
Example 14.7. 

Beam-Slab Combined Footings 

If the case of relatively large footings, providing a uniform large thickness for the 
entire footing results in a somewhat expensive footing.  In such a case, it may be 

                                                           
† As the design section for both shear and moment are outside the column section, it suffices to 
assume the supports to be concentrated at the column centrelines; the corresponding shear 
force and bending moment distributions are shown by dashed lines in Fig. 14.18(c), (d). 
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more economical to design a beam-slab footing, in which the footing consists of a 
base slab stiffened by means of a central longitudinal beam (of sufficient depth), 
interconnecting the columns [Fig. 14.19]. 

G.L. Y

Y

column

pedestal b

beam

slab150 min

SECTION ‘XX’ SECTION ‘YY’

b B

slab

beam

L

PLAN

X X

 

Fig. 14.19  Beam-slab combined footing 

The base slab behaves like a one-way slab, supported by the beam, and bends 
transversely under the uniform soil pressure acting from below.  The loads 
transferred from the slab are resisted by the longitudinal beam.  The size of the beam 
is generally governed by (one-way) shear at d from the face of the column/pedestal.  
For effective load transfer, the width of the footing beam should be made equal to the 
column/pedestal width, and it is advantageous to provide a pedestal to the column.  
The high shear in the beam will usually call for heavy shear reinforcement, usually 
provided in the form of multi-legged stirrups [Fig. 14.19]. 

The base slab may be tapered (if the span (B – b)/2 is large), for economy.  The 
thickness of the slab should be checked for one-way shear at d (of slab) from the face 
of the beam.  The flexural reinforcement in the slab is designed for the cantilever 
moment at the face of the beam, and provided at the bottom, as shown in Fig. 14.19.  
Two-way shear is not a design consideration in beam-slab footings.  The top and 
bottom reinforcement in the beam should conform to the longitudinal bending 
moment diagram, and development length requirements should be satisfied. 
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EXAMPLE 14.7 

Design a combined footing for two columns C1 (400 mm × 400 mm with 4–25 φ 
bars) and C2 (500 mm × 500 mm with 4–28 φ bars) supporting axial loads P1 = 
900 kN and P2 = 1600 kN respectively (under service dead and live loads).  The 
column C1 is an exterior column whose exterior face is flush with the property line.  
The centre-to-centre distance between C1 and C2 is 4.5 m.  The allowable soil 
pressure at the base of the footing, 1.5 m below ground level, is 240 kN/m2.  Assume 
steel of grade Fe 415 in columns as well as footing, and concrete of M 30 grade in 
columns and M 20 grade in footing. 

SOLUTION 

Footing base dimensions 
• Assuming the weight of the combined footing plus backfill to constitute 15 

percent of the column loads, 

 Areqd = 
P P P

qa

1 2+ + Δ
= ( )900 1600 115

240
.+ × = 11.98 m2  

• In order to obtain a uniform soil pressure distribution, the line of action of the 
resultant load must pass through the centroid of the footing.  Let the footing 
centroid be located at a distance x from the centre of C1 [refer Fig. 14.20(a)]: 

• Assuming a load factor of 1.5, the factored column loads are: 
 Pu1 = 900 × 1.5 = 1350 kN; Pu2 = 1600 × 1.5 = 2400 kN ⇒ Pu1 + Pu2 = 3750 kN 
• spacing between columns s = 4500 mm 

 ⇒ x  = P s
P P

u

u u

2

1 2

 

+ +
 = 2400 4500

3750
×  = 2880 mm 

• As x > s/2 = 2250 mm, a rectangular footing may be provided, with length 
 L = 2(2880 + 200) = 6160 mm 
 Provide L = 6.16 m 
 ⇒ width required B ≥ A/L = 11.98/6.16 = 1.95 m 
 Provide B = 2.00 m 

Stress resultants in longitudinal direction 
• Treating the footing as a wide beam (B = 2000 mm) in the longitudinal direction, 

the uniformly distributed load (acting upward) is given by 
 quB = (Pu1 + Pu2)/L = 3750/6.16 = 608.8 kN/m [as shown in Fig. 14.20(b)]. 
• The distribution of shear force is shown in Fig. 14.20(c).  The critical section for 

one-way shear is located at a distance d from the (inside) face of C2, and has a 
value 

 Vu1 = 2400 – 608.8 (1460 + 250 + d) × 10–3 = (1359 – 0.6088d) kN 
• The distribution of bending moment is shown in Fig. 14.20(d).  The maximum 

‘positive’ moment at the face of column C2 is given by 
 Mu

+ = 608.8 × (1.460 – 0.250)2/2 = 446 kNm 
• The maximum ‘negative’ moment occurs at the location of zero shear, which is at 

a distance x from the edge (near C1) of the footing [Fig. 14.20(c)]: 



DESIGN  OF FOOTINGS  AND  RETAINING  WALLS 701 

 
4500

200
1460

B = 2000 

C 2 
(500 × 500)C 1 

(400 × 400) 

C

L/2 = 3080L/2 = 3080 

(a) 
footing 

plan 

(b) 
loading 

Pu1 = 1350 kN Pu2 = 2400 kN

Pu1 + Pu2

608.8 kN/m 

(c) 
shear 
force 
(kN) 

(d) 
bending 
moment 
(kNm) 

(e)  column strips as transverse beams 

121.8 

1511

888.8
1228 

x Mu
– = – 1227 kNm

500400

Mu
+ = 446

1038 1777
Pu1 = 2400 kN 

A

A

851

1200 
kN/m SECTION ‘A–A’ 

x = 2880  

 

Fig. 14.20  Example 14.7 
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 x = 1350/608.8 = 2.2175 m 
• ⇒ Mu

– = 608.8 × (2.2175)2/2 – 1350 × (2.2175 – 0.2) = (–) 1227 kNm 

Thickness of footing based on shear 

(a)  One-way shear (longitudinal): Vu1

• Assuming = 0.48 MPa (for M 20 concrete, assuming  pτ c t = 0.50) 
 Vuc = 0.48 × 2000 × d = (960d) N 
 Vu1 = Vuc ⇒ (1359 – 0.6088d) × 103 ≤ 960d 
         ⇒ d ≥ 866 mm 

(b)  Two-way shear 
• The critical section is located d/2 from the periphery of columns C1 and C2 

[Fig. 14.20(a)], and the factored soil pressure qu = (qu B)/B = 608.8/2.0) 
         = 304.4 kN/m2.   
 Assuming d = 866 mm, 

 Vu2 = 
⎩
⎨
⎧

=+−
=++−

2
2

1

1832)866.05.0(4.3042400
1029)2866.04.0)(866.04.0(4.3041350

C
C

 column at        kN                       
 column at           kN  

 

 Limiting two-way shear stress τ c2 = ks ( 0 25. fck ) 

 For square columns, ks = 1.0 ⇒ τ c2 = 1.0 × 0 25 20. = 1.118 MPa  

 ⇒  Vuc =
× + × × = ×
× × × = ×

⎧
⎨
⎩

1118 1266 833 2 866 2839 10 1029
1118 1366 4 866 5290 10 1832

3

3
. ( ) ( )
. ( ) ( )

  N >  kN             
            N >  kN            

 Hence, the depth is governed by considerations of one-way shear alone.  
Assuming an overall thickness D = 950 mm and 20 mm φ bars with a clear cover 
of 75 mm,  effective depth d = 950 – 75 – 20/2 = 865 mm 

 (very close to 866 mm required — OK) 
• Check base pressure:  
 Assuming unit weights of 24 kN/m3 for concrete and 18 kN/m3 for backfill, gross 

soil pressure under service loads 
 q = (900 + 1600)/(6.16 × 2.0) + (24 × 0.95) + (18 × 0.55) 
    = 235.6 kN/m2 < qa = 240 kN/m2    — OK. 

Design of longitudinal flexural reinforcement 
• Maximum ‘negative’ moment: = 1227 kN/m   Mu

 −

 ⇒ R ≡ 
M
Bd

u
2  = 

1227 10
2000 865

6

2
×

×
= 0.820 MPa  

 ⇒ 
pt

100
= [ ]20

2 415
1 1 4 598 0820 20

×
− − ×. = 0.239 × 10–2  

 ⇒ pt = 0.239 < 0.50† required for one-way shear 

                                                           
† Note: In general, it is not good practice (and often, not economical) to fix the flexural steel 
requirement based on shear strength requirements, if the steel requirement is excessive.  
However, in this situation, pt = 0.50 cannot be considered to be excessive. 
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 ⇒ (Ast)reqd = 0.50 × 2000 × 865/100 = 8650 mm2  
                   > (Ast)min = 0.0012BD 
 Number of 20 mm φ bars required = 8650/314 = 28 
 [Corresponding spacing = (2000 – 75 × 2 – 20)/27 = 68 mm, which is low but 

acceptable.] 
 ∴ Provide 28 nos 20 mm φ bars at top between the two columns as indicated in 

Fig. 14.21. 
• Required development length (with M 20 concrete and Fe 415 bars) will be less 

than Ld = 47.0 × 20 = 940 mm 
 Adequate length is available on both sides of the peak moment section. 
• Maximum ‘positive’ moment: = 446 kNm (at face of column CMu

 +
2) 

 ⇒ R ≡ 
M
Bd

u
2  = 446 10

2000 865

6

2
×
×

= 0.298 MPa  

 ⇒ 
pt

100
= [ ]20

2 415
1 1 4 598 0 298 20

×
− − ×. = 0.084 × 10–2 (low) 

 (Ast)min = 0.0012 BD = 0.0012 × 2000 × 950 = 2280 mm2  
• Number of 16 mm φ bars required = 2280/201 = 12 
 [Corresponding spacing = (2000 – 75 × 2 – 16)/11 = 167 mm — OK.] 
 ∴ Provide 12nos 16 mm φ bars at bottom as indicated in Fig. 14.21. 
• Required development length = 47.0 × 16 = 752 mm, which is available on the 

side of the column C2 close to the edge of the footing; by placing the bars 
symmetrically with respect to column C2, the required length will be available on 
both sides of the section of maximum ‘positive’ moment. 

Design of column strips as transverse beams [Fig. 14.20(e)]. 

(a)  Transverse beam under column C1: 
• Factored load per unit length of beam = 1350/2.0 = 675 kN/m 
 Projection of beam beyond column face = (2000 – 400)/2 = 800 mm 
• Maximum moment at column face: 
 Mu = 675 × 0.802/2 = 216 kNm 
• Effective depth for transverse beam (16 mm φ bars placed above the 16 mm φ 

longitudinal bars): d = 950 – 75 – 16 × 1.5 = 851 mm 
 Width of beam = width of column + 0.75d 
                         = 400 + 0.75 × 851 = 1038 mm 

 ⇒ R ≡ 
M
Bd

u
2  = 216 10

1038 851

6

2
×
×

= 0.287 MPa (low) 

 ⇒ Provide minimum reinforcement: Ast = 0.0012 bD 
 ⇒ Ast = .0012 × 1038 × 950 = 1183 mm2

• Number of 16 mm φ bars required = 1183/201 = 6 
 [Corresponding  spacing = (1038 – 75 – 16)/5 = 189 mm] 
 Alternatively, no. of 12 mm φ bars required = 1183/113 = 11 
 Provide 11 nos 12 mm φ bars 
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 Required development length = 47.0 × 12 = 564 mm < (800 – 75) mm available  
         — OK. 
• There is no need to check one-way transverse shear in this case as the critical 

section (located at d = 851 mm from column face) lies outside the footing. 

(b)  Transverse beam under column C2: 
• Factored load per unit length = 2400/2.0 = 1200 kN/m 
 Projection beyond column face = (2000 – 500)/2 = 750 mm 
 ⇒ Moment at column face = 1200 × 0.752/2 = 338 kNm 
• Width of beam = 500 + 1.5 × 851 = 1777 mm 

 ⇒ R ≡ 
M
Bd

u
2  = 338 10

1777 851

6

2
×
×

= 0.263 MPa (low) 

 ⇒ Provide(Ast)min = 0.0012 × 1777 × 950 = 2026 mm2  
• Number of 12 mm φ bars required = 2026/113 = 18 
 Provide 18 nos 12 mmφ bars 
• Required development length = 47.0 × 12 = 564 mm is available beyond the 

column face. 
• As in the previous case, check for one-way shear is not called for. 
Transfer of force at column base 
(a) Column C1: 
• Limiting bearing stress at i) column face = 0.45fck = 0.45 × 30 = 13.5 MPa  
        ii) footing face = 0.45fck A A1 2  
        [As the column is located at the edge of the footing, A1 = A2 = 4002  mm2] 
      = 0.45 × 20 × 1.0 = 9.0 MPa  
         < 13.5 MPa  
 ⇒ Limiting bearing resistance at column-footing interface  
 Fbr = 9.0 × 4002 = 1440 × 103 N > Pu1 = 1350 kN — OK. 
• Hence, full force transfer can be achieved without the need for reinforcement 

across the interface.  However, it is  desirable to provide some nominal dowels 
(4 nos 20 mm φ), as shown in Fig. 14.21. 

4500 1460

1780
1040 75
85

18 nos 12 φ bars
12 nos 16 φ bars

6 nos 16 φ bars (contd.)11 nos 12 φ bars

28 nos 20 φ bars
4 – 20 φ dowels

col C 1 (400 sq.)

950

10 nos 20 φ
bars (contd.)

col C 2 (500 sq.)

12 φ bars
(distributors)

 

Fig. 14.21  Details of reinforcement, Example 14.7 



DESIGN  OF FOOTINGS  AND  RETAINING  WALLS 705 

(b) Column C2: 
• Limiting bearing stress at i) column face = 0.45fck = 13.5 MPa (as before) 
        ii) footing face = 0.45fck A A1 2  

        [A1 = 20002 , A2 = 5002  mm2 ⇒ A A1 2 = 4.0, limited to 2.0] 
      = 0.45 × 20 × 2.0 = 18.0 MPa  
         > 13.5 MPa 
 ⇒ Fbr = 13.5 × 5002 = 3375 × 103 kN > Pu2 = 2400 kN. 
• In this case also, full force transfer can be achieved without the need for 

reinforcement across the interface.  However, it is desirable to provide some 
nominal dowels (4 nos 20 mm φ) as shown in Fig. 14.21. 

Reinforcement details 
• The reinforcement details are indicated in Fig. 14.21.  Some of the longitudinal 

bars at the bottom are shown (arbitrarily) extended across the full length of the 
footing in order to provide some nominal reinforcement in the large (otherwise 
unreinforced) area of concrete between the columns and also to tie up with the 
transverse bars under column C1.  Nominal transverse reinforcement is also 
indicated at top between the columns, in order to tie up with the main longitudinal 
bars provided. 

14.7   TYPES OF RETAINING WALLS AND THEIR BEHAVIOUR 

As explained in Section 14.1, retaining walls are used to retain earth (or other 
material) in a vertical (or nearly vertical) position at locations where an abrupt 
change in ground level occurs.  The wall, therefore, prevents the retained earth from 
assuming its natural angle of repose.  This causes the retained earth to exert a lateral 
pressure on the wall, thereby tending to bend, overturn and slide the retaining wall 
structure.  The wall, including its supporting footing, must therefore be suitably 
designed to be stable under the effects of the lateral earth pressure, and also to satisfy 
the usual requirements of strength and serviceability. 

Retaining walls are usually of the following types: 

1.  Gravity Wall [Fig. 14.22(a)] 
The ‘gravity wall’ provides stability by virtue of its own weight, and therefore, is 
rather massive in size.  It is usually built in stone masonry, and occasionally in 
plain concrete.  The thickness of the wall is also governed by the need to 
eliminate or limit the resulting tensile stress to its permissible limit (which is very 
low† in the case of concrete and masonry).  Plain concrete gravity walls are not 
used for heights exceeding about 3 m, for obvious economic reasons. 

                                                           
† The ‘middle third rule’ is generally applied, wherein the wall thickness is made sufficiently 
large, to ensure that the resultant thrust at any cross-section falls within the ‘middle third’ 
region of the section. 
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(e)  basement wall (f)  bridge abutment

(c)  counterfort wall (d)  buttress wall

approach
pavement

BRIDGE DECKFLOOR SLAB

WALL
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BASE SLABBASE SLAB

WALL
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earth

retained
earth

(b)  cantilever wall(a)  gravity wall
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HEEL SLAB
TOE SLABheeltoe
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STEM
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on this side

COUNTERFORT

HEEL SLAB

STEM retained earth
on this side

 
 

Fig. 14.22  Types of retaining wall structures 
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2.  Cantilever Wall [Fig. 14.22(b)]  
The ‘cantilever wall’ is the most common type of retaining structure and is 
generally economical for heights up to about 8 m.  The structure consists of a 
vertical stem, and a base slab, made up of two distinct regions, viz. a heel slab 
and a toe slab.  All three components behave as one-way cantilever slabs: the 
‘stem’ acts as a vertical cantilever under the lateral earth pressure; the ‘heel slab’ 
acts as a (horizontal) cantilever under the action of the weight of the retained 
earth (minus soil pressure acting upwards from below); and the ‘toe slab’ also 
acts as a cantilever under the action of the resulting soil pressure (acting upward).  
The detailing of reinforcement (on the flexural tension faces) is accordingly as 
depicted in Fig. 14.22(b).  The stability of the wall is maintained essentially by 
the weight of the earth on the heel slab plus the self weight of the structure.  

3.  Counterfort Wall [Fig. 14.22(c)]  
For large heights, in a cantilever retaining wall, the bending moments developed 
in the stem, heel slab and toe slab become very large and require large 
thicknesses.  The bending moments (and hence stem/slab thicknesses) can be 
considerably reduced by introducing transverse supports, called counterforts, 
spaced at regular intervals of about one-third to one-half of the wall height), 
interconnecting the stem‡ with the heel slab.  The counterforts are concealed 
within the retained earth (on the rear side of the wall).  Such a retaining wall 
structure is called the counterfort wall, and is economical for heights above 
(approx.) 7 m.  The counterforts subdivide the vertical slab (stem) into 
rectangular panels and support them on two sides (suspender-style), and 
themselves behave essentially as vertical cantilever beams of T-section and 
varying depth.  The stem and heel slab panels between the counterforts are now 
effectively ‘fixed’ on three sides (free at one edge), and for the stem the 
predominant direction of bending (and flexural reinforcement) is now horizontal 
(spanning between counterforts), rather than vertical (as in the cantilever wall).  

4.  Buttress Wall [Fig. 14.22(d)] 
The ‘buttress wall’ is similar to the ‘counterfort wall’, except that the transverse 
stem supports, called buttresses, are located in the front side, interconnecting the 
stem with the toe slab (and not with the heel slab, as with counterforts).  
Although buttresses are structurally more efficient (and more economical) than 
counterforts, the counterfort wall is generally preferred to the buttress wall as it 
provides free usable space (and better aesthetics) in front of the wall.  

5.  Other Types of Walls 
Retaining walls often form part of a bigger structure, in which case their 
structural behaviour depends on their interaction with the rest of the structure.  
For example, the exterior walls in the basement of a building [Fig. 14.22(e)] and 

                                                           
‡ The toe slab is also frequently interconnected with the stem (in the front side of the wall) by 
means of a ‘front counterfort’, whose height is limited by the ground level on the toe side, so 
that it is concealed and provides free usable space in front of the wall. 
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wall-type bridge abutments [Fig. 14.22(f)] act as retaining walls.  In both these 
situations, the vertical stem is provided an additional horizontal restraint at the 
top, due to the slab† at the ground floor level (in the case of the basement wall) 
and due to the bridge deck (in the case of bridge abutment).  The stem is 
accordingly designed as a beam, fixed at the base and simply supported or 
partially restrained at the top.  The side walls of box culverts also act as retaining 
walls.  In this case, the box culvert (with single/multiple cells) acts as a closed 
rigid frame, resisting the combined effects of lateral earth pressures, dead loads 
(due to self weight and earth above), as well as live loads due to highway traffic.  

In the sections to follow, only the cantilever and counterfort retaining walls are 
discussed — with particular emphasis on the cantilever wall, which is the most 
common type of retaining wall structure.  

14.8   EARTH PRESSURES AND STABILITY REQUIREMENTS  

14.8.1   Lateral Earth Pressures 

The lateral force due to earth pressure constitutes the main force acting on the 
retaining wall, tending to make it bend, slide and overturn.  The determination of the 
magnitude and direction of the earth pressure is based on the principles of soil 
mechanics, and the reader may refer to standard texts in this specialised area (such as 
Ref. 14.2, 14.3, 14.8) for a detailed study. 

In general, the behaviour of lateral earth pressure is analogous to that of a fluid, 
with the magnitude of the pressure p increasing nearly linearly with increasing depth 
z for moderate depths below the surface: 

p = Cγe z                                                    (14.9) 

where γe is the unit weight of the earth and C is a coefficient that depends on its 
physical properties, and also on whether the pressure is active  or passive.  ‘Active 
pressure’ (pa) is that which the retained earth exerts on the wall as the earth moves in 
the same direction as the wall deflects.  On the other hand, ‘passive pressure’ (pp) is 
that which is developed as a resistance when the wall moves and presses against the 
earth (as on the toe side of the wall).  The coefficient to be used in Eq. 14.9 is the 
active pressure coefficient, Ca, in the case of active pressure, and the passive pressure 
coefficient, Cp, in the case of passive pressure; the latter (Cp) is generally much 
higher than the former (Ca) for the same type of soil. 

In the absence of more detailed information, the following expressions for Ca and 
Cp, based on Rankine’s theory [Ref. 14.2, 14.3], may be used for cohesionless soils 
and level backfills: 

Ca =
−
+

1
1

sin
sin

φ
φ

                                              (14.10a) 

                                                           
† The slab is integrally connected to numerous beam–column frames, and the lateral restraint 
offered by it is due to the high storey stiffness at the lowermost storey. 
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Cp =
+
−

1
1

sin
sin

φ
φ

                                              (14.10b) 

where φ is the angle of shearing resistance (or angle of repose).  For a typical 
granular soil (such as sand), φ ≈ 30o, corresponding to which, Ca = 1/3 and Cp = 3.0. 

When the backfill is sloped† , as shown in Fig. 14.23, the expression [Eq. 14.10a] 
for Ca should be modified as follows: 

Ca =
− −

+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

cos cos cos

cos cos cos
cos

θ θ φ

θ θ φ
θ

2 2

2 2
                               (14.11) 

where θ is the angle of inclination of the backfill, i.e., the angle of its surface with 
respect to the horizontal [Fig. 14.23]. 

 

Fig. 14.23  Forces acting on a cantilever retaining wall 

The direction of the active pressure, pa [given by Eq. 14.9], is parallel to the 
surface of the backfill.  The pressure has a maximum value at the heel, and is equal to 
C ha eγ ′, where is the height of the backfill, measured vertically above the heel 
[Fig. 14.23].  For the case of a level backfill, θ = 0 and  = h, and the direction of 
the lateral pressure is horizontal and normal to the vertical stem. 

′h
′h

The force, Pa, exerted by the active earth pressure, due to a backfill of height  
above the heel, is accordingly obtained from the triangular pressure distribution 
[Fig. 14.23] as 

′h

P C ha a e= ′γ ( )2 2                                           (14.12) 

                                                           
† Sometimes, the term ‘inclined surcharge’ is used to refer to a sloping backfill; the term 
‘surcharge’ implies the additional height of the backfill above the level of the top of the wall 
[refer Section 14.8.2]. 

R
μR

Pa

Pa sinθ

heeltoe
(neglect)

Pp

xW

W

θ

′h

θ
Pa cosθ

′h 3

xR

L
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This force has units of kN per  m length of the wall, and acts at a height ′h 3  
above the heel at an inclination θ with the horizontal. 

The force, Pp, developed by passive pressure on the toe side of the retaining wall 
is generally small (due to the small height of earth†

 ) and usually not included in the 
design calculations, as this is conservative. 

14.8.2   Effect of Surcharge on a Level Backfill 

Frequently, gravity loads act on a level backfill due to the construction of buildings 
and the movement of vehicles near the top of the retaining wall.  These additional 
loads can be assumed to be static‡ and uniformly distributed on top of the backfill, 
for calculation purposes.  This distributed load ws (kN/m2) can be treated as statically 
equivalent to an additional (fictitious) height, hs = ws/γe, of soil backfill with unit 
weight γe.  This additional height of backfill is called surcharge, and is expressed 
either in terms of height hs, or in terms of the distributed load ws [Fig. 14.24]. 

μR

R

L – xR

Pa2

Pa1

Caws = Ca γe hs

Ca γe h

hs = ws/γesurcharge
ws

xW
W

h 3
h 2

xR

h

L  

Fig. 14.24  Effect of surcharge on a level backfill 

The presence of the surcharge not only adds to the gravity loading acting on the 
heel slab, but also increases the lateral pressure on the wall by C ha e sγ  = Caws.  The 
resulting trapezoidal earth pressure distribution is made up of a rectangular pressure 
                                                           
† Strictly, for the full development of passive earth pressure, it is necessary that during the 
construction of the wall, there should be no disturbance to the soil against which the concrete 
in the toe slab is placed. 
‡ In the case of vehicular traffic and other live loads, the equivalent loading should include a 
dynamic magnification factor. 
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distribution (of intensity Caws), superimposed on the triangular pressure distribution 
due to the actual backfill, as shown in Fig. 14.24.  The total force due to active 
pressure acting on the wall is accordingly given by 

Pa = Pa1 + Pa2                                                (14.13) 

where  
Pa1 = Caws h = Ca γe hs h                               (14.13a) 

Pa2 = Ca γe h2/2                                             (14.13b) 

with the lines of action of Pa1 and Pa2 at h/2 and h/3 above the heel. 

14.8.3  Effect of Water in the Backfill 

When water accumulates in the backfill, it can raise the lateral pressure on the wall to 
very high levels.  If the water in the backfill does not have an escape route, it will 
build up a hydrostatic pressure on the wall, causing it to behave like a dam.  The 
resulting pressure† distributions are depicted in Fig. 14.25. 

Pa4

Pa3Pa2

W
Pa1

γw hwCaγsub hwCaγe (h – hw)R
μR

DRY SOIL
(γe, Ca)

SUBMERGED
SOIL (γsub)

+
WATER (γw)

h

hw

h – hw

 

Fig. 14.25  Effect of water in the backfill 

The purpose of the retaining wall is to retain earth, and not water.  Hence, 
submerged earth conditions should be avoided by providing and 
maintaining proper drainage facilities (including provision of weep holes).  
Failure to do so can result in the building up of enormous pressures, which, 
if not anticipated in the design, can result in serious failures.  Such failures 
are not uncommon in practice; the designer must accept some 
responsibility for this. 

                                                           
† The presence of water does not significantly alter the shearing resistance of granular soils; 
hence the coefficient, Ca  is practically the same for both dry and submerged conditions. 
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14.8.4   Stability Requirements  

The Code (Cl. 20) specifies that the factors of safety against overturning (Cl. 20.1) 
and sliding (Cl. 20.2) should not be less than 1.4.  Furthermore (as explained in 
Section 14.3.3), as the stabilising forces are due to dead loads, the Code specifies that 
these stabilising forces should be factored by a value of 0.9 in calculating the factor 
of safety, FS.  Accordingly,  

FS =
×

≥
0 9

1
.

.4
  (stabilising force or moment)
destabilising force or moment

                          (14.14) 

Overturning 

If the retaining wall structure were to overturn, it would do so with the toe acting as 
the centre of rotation.  In an overturning context, there is no upward reaction R acting 
over the base width L.  The expressions for the overturning moment Mo and the 
stabilising (restoring) moment Mr depend on the lateral earth pressure and the 
geometry of the retaining wall. 

For the case of a sloping backfill [Fig. 14.23], 

[ ]M P h C ho a a e= ′ = ′( cos )( ) ( ) cosθ γ3 3 θ6                      (14.15) 

LPxLWM awr )sin()( θ  +−=                                        (14.16) 

where W denotes the total weight of the reinforced concrete wall structure plus the 
retained earth resting on the footing† (heel slab), and xw is the distance of its line of 
action from the heel, as shown in Fig. 14.23. 

For the case of a level backfill with surcharge [Fig. 14.24], 

M P h P ho a a= +1 22( ) ( 3)                                            (14.17) 

where Pa1 and Pa2 are as given by Eq. 14.13(a) and Eq. 14.13(b) respectively.  The 
expression for Mr is the same as that given by Eq. 14.16, but with θ = 0. 

The factor of safety required against overturning [Eq. 14.14] is obtained as 

( )
.

.4FS
M

Moverturning
r

o
    = ≥

0 9
1                                 (14.18) 

Sliding 

The resistance against sliding is essentially provided by the friction between the base 
slab and the supporting soil, given by 

F = μR                                                        (14.19) 

where R = W is the resultant soil pressure acting on the footing base and μ is the 
coefficient of static friction between concrete and soil. [In a sloping backfill, R will 
                                                           
† The weight of the earthfill above the toe slab is usually (conservatively) ignored.  Similarly, 
the passive earth pressure Pp is also usually ignored. 
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also include the vertical component of earth pressure, Pa sinθ  (see Fig. 14.23)].  The 
value of μ varies between about 0.35 (for silt) to about 0.60 (for rough rock) 
[Ref. 14.2]. 

The factor of safety against sliding [Eq. 14.14] is obtained as  

( ) .
cos

.4FS F
Psliding

a
   ,  which should be  = ≥

0 9 1
θ

                  (14.19a) 

When active pressures are relatively high (as when surcharge is involved), it will 
be generally difficult to mobilise the required factor of safety against sliding, by 
considering frictional resistance below the footing alone [Eq. 14.19].  In such a 
situation, it is advantageous to use a shear key projecting below the footing base and 
extending throughout the length of the wall [Fig. 14.26].  When the concrete in the 
‘shear key’ is placed in an unformed excavation (against undisturbed soil), it can be 
expected to develop considerable passive resistance.  Different procedures have been 
proposed to estimate this passive resistance Pp [Ref. 14.8, 14.9].  A simple and 
conservative estimate is obtained by considering the pressure developed over a 
region, h2 – h1, below the toe: 

( )P C h hp p e= −γ 2
2

1
2 2                                        (14.20) 

where h1 and h2 are as indicated in Fig. 14.26.  It may be noted that the overburden 
due to the top 0.3 m of earth below ground level is usually ignored in the calculation. 

300 mm overburden
neglected

h1

Pp

h2

SHEAR
KEY

φ

xsk

Cp γe h2

dsk

 

Fig. 14.26  Passive resistance due to shear key 

The shear key is best positioned at a distance xsk from the toe in such a way that 
the flexural reinforcement from the stem can be extended straight into the shear key 
near the toe. 

14.8.5   Soil Bearing Pressure Requirements 

The width L of the base slab must be adequate to distribute the vertical reaction R to 
the foundation soil without causing excessive settlement or rotation.  As explained in 
Section 14.3, the required founding depth and the associated allowable pressure qa 
are usually prescribed by a geotechnical consultant on the basis of a soil study, and 
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the control on vertical settlement is built into these recommendations.  However, the 
designer must further ensure that tilting of the footing is also avoided by avoiding a 
highly non-uniform base pressure in weak soils. 

14.9   PROPORTIONING AND DESIGN OF CANTILEVER AND 
COUNTERFORT WALLS 

Prior to carrying out a detailed analysis and design of the retaining wall structure, it 
is necessary to assume preliminary dimensions of the various elements of the 
structure using certain approximations.  Subsequently, these dimensions may be 
suitably revised, if so required by design considerations. 

14.9.1   Position of Stem on Base Slab for Economical Design 

An important consideration in the design of cantilever and counterfort walls is the 
position of the vertical stem on the base slab.  It can be shown [Ref. 14.10] that an 
economical design of the retaining wall can be obtained by proportioning the base 
slab so as to align the vertical soil reaction R at the base with the front face of the 
wall (stem).  For this derivation, let us consider the typical case of a level backfill 
[Fig. 14.27].  The location of the resultant soil reaction, R, is dependent on the 
magnitude and location of the resultant vertical load, W, which in turn depends on the 
dimension X (i.e., the length of heel slab, inclusive of the stem thickness).  For 
convenience in the derivation, X may be expressed as a fraction, αx, of the full width 
L of the base slab (X = αxL).  Assuming an average unit weight γe for all material 
(earth plus concrete) behind the front face of the stem (rectangle abcd), and 
neglecting entirely the weight of concrete in the toe slab, 

R = W = γe h X = γe h (αXL) 

LR = αRL

Pa = Caγeh2/2neglect

R = W

F = μ R heel

W

X = αxL

xw ≈ αxL/2

cde

ba

h/3

h

L  

Fig. 14.27  Proportioning of retaining wall 
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For a given location of R corresponding to a chosen value of X, the toe projection 
of the base slab (and hence its total width, L) can be so selected by the designer as to 
give any desired distribution of base soil pressure.  Thus, representing the distance, 
LR, from the heel to R as a fraction αR of base width L, [Fig. 14.27], the base pressure 
will be uniform if L is so selected as to make αR = 0.5.  Similarly, for αR = 2/3, the 
base pressure distribution will be triangular.  Thus, for any selected distribution of 
base pressure, αR is a constant and the required base width L = LR/αR. 

Considering static equilibrium and taking moments about reaction point e, and 
assuming  Xw ≈ αXL/2, 

W(αRL – αXL/2) = Pa h /3 

     ⇒ γe hL2 (αR αX – αX
2/2) = Caγe h3/6 

⇒ 
L
h

Ca

R X X
=

−

3
2 2α α α

                                      (14.21) 

For economical proportioning for a given height of wall (h), the length of the base 
(L) must be minimum, i.e., L/h should be minimum.  From Eq. 14.21, this implies 
that (2 αR αX – αX

2) should be maximum.  The location of R, and hence the base width 
for any selected pressure distribution, is dependent on the variable X, i.e., αx.  For 
maximising   (2αR αx – α2

x), 
αX  =  αR  

 ⇒ αR L  =  αX L = X 

Hence, for an economical design, the soil pressure resultant should line up 
with the front face of the wall. 

Width of Base  

Applying the above principle, an approximate expression for the minimum length of 
base slab for a given height of wall is obtained from Eq. 14.21 as: 

L
h

C

R

a⎛
⎝⎜

⎞
⎠⎟

≈
min

1
3α

 

⇒ L h CR amin ( )≈ α 3                                            (14.22) 

Alternatively, the minimum width of heel slab is given by: 

Xmin = αX Lmin = αR Lmin = h Ca 3                                     (14.23) 

The effect of surcharge or sloping backfill may be taken into account, 
approximately, by replacing h with h + hs , or h', respectively. 

Alternatively, and perhaps more conveniently, using the above principle, the heel 
slab width (X in Fig. 14.27) may be obtained by equating moments of W and Pa about 
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the point d.  The required L can then be worked out based on the base pressure 
distribution desired. 

It may be noted that the total height h of the retaining wall is the difference in 
elevation between the top of the wall and the bottom of base slab.  The latter is based 
on geotechnical considerations (availability of firm soil) and is usually not less than 
1 m below the ground level on the toe side of the wall. 

After fixing up the trial width of the heel slab ( = X) for a given height of wall and 
backfill conditions, the dimension L may be fixed up.  Initially, a triangular pressure 

distribution may be assumed, resulting in L =
3
2

X

                                                          

.  Using other approximations 

(discussed in the next section) related to stem thickness and base slab thickness, a 
proper analysis‡ should be done to ascertain that  

(1) the factor of safety against overturning is adequate; 
(2) the allowable soil pressure, qa, is not exceeded; and 
(3) the factor of safety against sliding is adequate. 

Condition (1) is generally satisfied; however, if it is not, the dimensions L and X 
may be suitably increased.  If condition (2) is not satisfied, i.e., if qmax > qa, the length 
L should be increased by suitably extending the length of the toe slab; the dimension 
X need not be changed.  If condition (3) is not satisfied, which is usually the case, a 
suitable ‘shear key’ should be designed. 

14.9.2   Proportioning and Design of Elements of Cantilever Walls 

Initial Thickness of Base Slab and Stem 

For preliminary calculations, the thickness of the base slab may be taken as about 8 
percent of the height of the wall plus surcharge (if any); it should not be less than 
300 mm.  The base thickness of the vertical stem may be taken as slightly more than 
that of the base slab.  For economy, the thickness may be tapered linearly to a 
minimum value (but not less than 150 mm) at the top of the wall; the front face of the 
stem is maintained vertical†.  If the length of the heel slab and/or toe slab is 
excessive, it will be economical to provide a tapered slab. 

With the above preliminary proportions, the stability check and determination of 
soil pressure (at the base) may be performed, and dimensions L and X of the base slab 
[Fig. 14.27] finalised.  It may be noted that changes in thicknesses of base slab and 
stem, if required at the design stage, will be marginal and will not affect significantly 
either the stability analysis or the calculated (gross) soil pressures below the base 
slab. 

 
‡ In such an analysis, it will be seen that the actual vertical reaction R below the footing base 
will be close to, although rarely coincident with, the front face of the stem (as assumed 
initially). 
† It is recommended that a batter of 1 : 50 be provided to the front face of the stem during 
construction, to offset the deflection of the stem or possible forward tilting of the structure 
[Ref. 14.10]. 
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Design of Stem, Toe Slab and Heel Slab 

The three elements of the retaining wall, viz., stem, toe slab and heel slab have to be 
designed as cantilever slabs to resist the factored moments and shear forces.  For this 
a load factor of 1.5 is to be used. 

In the case of the toe slab, the net pressure is obtained by deducting the weight§ of 
the concrete in the toe slab from the upward acting gross soil pressure.  The net 
loading acts upward (as in the case of usual footings) and the flexural reinforcement 
has to be provided at the bottom of the toe slab.  The critical section for moment is at 
the front face of the stem, while the critical section for shear is at a distance d from 
the face of the stem.  A clear cover of 75 mm may be provided in base slabs. 

In the case of the heel slab, the pressures acting downward, due to the weight of 
the retained earth (plus surcharge, if any), as well as the concrete in the heel slab, 
exceed the gross soil pressures acting upward.  Hence, the net loading acts 
downward, and the flexural reinforcement has to be provided at the top of the heel 
slab.  The critical section for moment is at the rear face of the stem base. 

The critical section for shear in the heel slab should be taken at the face of the 
support and not d away from it, because there is no compression introduced by 
the support reaction, and the probable inclined crack may extend ahead of the 
rear face of the stem [also refer Fig. 6.6(c)]. 

In the case of the stem (vertical cantilever), the critical section for shear may be 
taken d from the face of the support (top of base slab), while the critical section for 
moment should be taken at the face of the support.  For the main bars in the stem, a 
clear cover of 50 mm may be provided.  Usually, shear is not a critical design 
consideration in the stem (unlike the base slab).  The flexural reinforcement is 
provided near the rear face of the stem, and may be curtailed in stages for economy 
[refer Example 14.9]. 

Temperature and shrinkage reinforcement (Ast,min = 0.12 percent of gross area) 
should be provided transverse to the main reinforcement.  Nominal vertical and 
horizontal reinforcement should also be provided near the front face which is 
exposed. 

14.9.3   Proportioning and Design of Elements of a Counterfort Wall 

Initial Thicknesses of Various Elements 

In a counterfort wall, counterforts are usually provided at a spacing of about one-
third to one-half of the height of the wall.  The triangular shaped counterforts are 
provided in the rear side of the wall, interconnecting the stem with the heel slab.  
Sometimes, small buttresses are provided in the front side below the ground level, 
interconnecting the toe slab with the lower portion of the stem. 

The presence of counterforts enables the use of stem and base slab thicknesses 
that are much smaller than those normally required for a cantilever wall.  For 

                                                           
§ The weight of the earthfill in this region is (conservatively) ignored. 
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preliminary calculations, the stem thickness and heel slab thickness may be taken as 
about 5 percent of the height of the wall, but not less than 300 mm.  If the front 
buttress is provided, the thickness of the toe slab may also be taken as 0.05h; 
otherwise, it may be taken as in the case of the cantilever wall (0.08h).  The thickness 
of the counterforts may be taken as about 6 percent of the height of the wall at the 
base, but not less than 300 mm.  The thickness may be reduced along the height of 
the wall. 

With the above preliminary proportions, the stability check and determination of 
soil pressures (at the base) may be performed, and dimensions L and X of the base 
finalised, as in the case of the cantilever wall. 

Design of Stem, Toe Slab and Heel Slab 

Each panel of the stem and heel slab, between two adjacent counterforts, may be 
designed as two-way slabs fixed on three sides, and free on the fourth side (free 
edge).  These boundary conditions are also applicable to the toe slab, if buttresses are 
provided; otherwise the toe slab behaves as a horizontal cantilever, as in the case of 
the cantilever wall. 

The loads acting on these elements are identical to those acting on the cantilever 
wall discussed earlier.  For the stem, bending in the horizontal direction between 
counterforts† is generally more predominant than bending in the vertical direction.  
Near the counterforts, the main reinforcement will be located close to the rear face of 
the stem, whereas midway between counterforts, the reinforcement will be close to 
the outside face; the latter is indicated in Fig. 14.22(c).  These two-ways slabs, 
subject to triangular/trapezoidal pressure distributions may be designed by the use of 
moment and shear coefficients (based on plate theory), available in various 
handbooks, and also in the IS Code for the design of liquid storage structures, viz., IS 
3370 (Part 4) [Ref. 14.11].  Alternatively, the slabs may be designed by the yield line 
theory.  An alterantive simplified method of analysis is demonstrated in Example 
14.10. 

Design of Counterforts 

The main counterforts should be firmly secured (by additional ties) to the heel slab, 
as well as to the vertical stem, as the loading applied on these two elements tend to 
separate them from the counterforts.  In addition, the counterfort should be designed 
to resist the lateral (horizontal) force transmitted by the stem tributary to it.  The 
counterfort is designed as a vertical cantilever, fixed at its base.  As the stem acts 
integrally with the counterfort, the effective section resisting the cantilever moment is 
a flanged section, with the flange under compression.  Hence, the counterforts may 
be designed as T-beams [refer Chapter 5] with the depth of section varying (linearly) 
from the top (free edge) to the bottom (fixed edge), and with the main reinforcement 
provided close to the sloping face.  Since these bars are inclined (not parallel to the 

                                                           
† An approximate and conservative estimate of this bending moment can be obtained by 
treating the slab as one-way continuous slab spanning the counterforts. 
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compression face), allowance has to be made for this in computing the area of steel 
required. 
 

EXAMPLE 14.8 

Determine suitable dimensions of a cantilever retaining wall, which is required to 
support a bank of earth 4.0 m high above the ground level on the toe side of the wall.  
Consider the backfill surface to be inclined at an angle of 15o with the horizontal.  
Assume good soil for foundation at a depth of 1.25 m below the ground level with a 
safe bearing capacity of 160 kN/m2.  Further assume the backfill to comprise granular 
soil with a unit weight of 16 kN/m3 and an angle of shearing resistance of 30o.  
Assume the coefficient of friction between soil and concrete to be 0.5. 

SOLUTION 

1. Data given:   h = 4.0 + 1.25 = 5.25 m; μ  = 0.5 
  θ  = 15o   γe = 16 kN/m3

  φ  = 30o   qa = 160 kN/m2

• Earth pressure coefficients: Ca =
− −

+ −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

cos cos cos

cos cos cos
cos

θ θ φ

θ θ φ
θ

2 2

2 2
  = 0.373 

           Cp =
+
−

=
1
1

sin
sin

θ
θ

 3.0  

2. Preliminary proportions 
• Thickness of footing base slab ≈ 0.08h = 0.08 × 5.25 = 0.42 m 

Assume a thickness of 420 mm. 
• Assume a stem thickness of 450 mm at the base of the stem, tapering to a value of 

150 mm at the top of the wall. 
• For an economical proportioning of the length L of the base slab, it will be 

assumed that the vertical reaction R at the footing base is in line with the front 
face of the stem.  For such a condition, (assuming the height above top of wall to 
be about 0.4 m), the length of the heel slab (inclusive of stem thickness) 
[Eq. 14.23]: 

( )X Ca≈ 3 ′ =h 0 373 3. (5.25 + 0.4) ≈ 2.0 m 

• Assuming a triangular base pressure distribution, 
L = 1.5X = 3.0 m 

• The preliminary proportions are shown in Fig. 14.28(a). 
3. Stability against overturning 
• Force due to active pressure: P C ha a e= ′γ 2 2  

where   [Fig. 14.28(a)] ′ = +h h X tanθ
       = 5250 + 2000 tan 15o = 5786 mm 

Pa = (0.373)(16)(5.786)2/2 = 99.9 kN (per m length of wall)  
⇒ Pa cos θ  = 99.9 cos 15o = 96.5 kN 
Pa sin θ  = 99.9 sin 15o = 25.9 kN 
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• Overturning moment Mo = ( cos )P ha θ ′ 3  = (96.5)(5.786/3) = 186.1 kNm 
• Line of action of resultant of vertical forces [Fig. 14.28(a)] with respect to the 

heel can be located by applying statics, considering 1 m length of the wall: 

force (kN) 
distance from 

heel (m) moment (kNm) 

W1 = (16)(1.85)(5.25 – 0.42)      = 143.0 0.925 132.3 
W2 = (16)(1.85)(0.5 × 0.536)      =     7.9 0.617 4.9 
W3 = (25)(0.15)(5.25 – 0.42)      =   18.1 1.925 34.8 
W4 = (25 – 16)(4.83)(0.5 × 0.30) =    6.5 1.750 11.4 
W5 = (25)(3.0)(0.42)                   =   31.5 1.500 47.2 
Pa sinθ                                       =    25.9 0.000 0.0 

W = 232.9  MW = 230.6 kNm 

θ = 15o

4000

h = 5250

W5

W4

536

(b)  calculation of soil pressures (c)  design of shear key

(a)  forces on wall
       (with preliminary

         proportions)
925

W2

W1

W3

1250

heel420

450

250

75

L = 3000
X = 2000

1000
1500

Pa sinθ
Pa

Pa cosθ

′h 3

=′h 5786

xR.= 1789

xw = 990
W = 232.9 kN/m

Mo = 186.1 kNm/m

122.5 kN/m2

e = 289
R = W

1500

150

150

32.8 kN/m2

300 neglect

h1 = 950

φ = 30o

300

300

1000

Pp
h2

3000

1300

 

Fig. 14.28  Example 14.8 

⇒ distance of resultant vertical force from heel 
 xW  = MW /W = 230.6/232.9 = 0.990 m 



DESIGN  OF FOOTINGS  AND  RETAINING  WALLS 721 

• Stabilising moment (about toe):  
Mr = W (L – xW) 
     = 232.9 × (3.0 – 0.99) 
     = 468.1 kNm (per m length of wall) 

⇒ (FS)overturning = 0 9. M
M

r

o
 = 0 9 4681

186 1
.

.
.×  = 2.26 > 1.40   — OK 

4. Soil pressures at footing base [refer Fig. 14.28(b)] 
• resultant vertical reaction R = W = 232.9 kN (per m length of wall) 
• distance of R from heel: L M MR W o R= +( )  
             = (230.6 + 186.1)/232.9 = 1.789 m†

• eccentricity e = LR – L/2 = 1.789 – 3.0/2 = 0.289 m, < L/6 = 0.5 
• Hence, the resultant lies within the middle third of the base, which is desirable 

6 6 0 289
3 0

e
L

=
× .

.
 = 0.578 

⇒ qmax = R
L

e
L

1 6
+⎛

⎝⎜
⎞
⎠⎟

 = 232 9
3 0

.
.

(1 + 0.578)  

               = 122.5 kN/m2 < qa   — OK 

and  qmin = 232 9
3 0

.
.

(1 – 0.578) = 32.8 kN/m2 [refer Fig. 14.28(b)]  

5. Stability against sliding 
• Sliding force = Pa cosθ  = 96.5 kN 
• Resisting force (ignoring passive pressure on the toe side) F = μR  
           = 0.5 × 232.9 = 116.4 kN 

⇒ (FS)sliding = 0 9 0 9 116
96 5

1 085 1.
cos

. .4
.

. .F
Pa θ

= 40×
= <  

• Hence, a shear key may be provided to mobilise the balance force through passive 
resistance. 

• Assume a shear key 300 mm × 300 mm, at a distance of 1300 mm from toe as 
shown in Fig. 14.28(c).  Distance h2 = 0.950 + 300 + 1.300 tan 30o = 2.001 m 

Pp = Cpγe(h2
2 – h2

1)/2 = 3 × 16 × (2.0012 – 0.952)/2 
     = 74.44 kN 

(F.S)sliding = 0 9 116 74
96 5

. ( .4 .44)
.
+  = 1.78 > 1.4    — OK 

EXAMPLE 14.9 

Repeat the problem in Example 14.8, considering the backfill to be level, but subject 
to a surcharge pressure of 40 kN/m2 (due to the construction of a building).  Design 
the retaining wall structure, assuming M 20 and Fe 415 steel. 

                                                           
† Note that this value of LR is different from, although close to, the value of X = 2.0 m 
asssumed in the initial proportioning. 
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SOLUTION 

1. Data given:  (as in Example 14.8) 

 
 
 

(b)  calculation of  
        soil pressures 

45.7 kN/m2142.4 kN/m2

W = 366.8 kN/m
Mo = 441.0 kNm/m

xw = 1432
1300

R = W

LR = 2284
1950

x 

L = 3900

surcharge hs = 2500

2400

1200

4000 
h = 5250

Pa2

Pa1

W1W2

W4

W3

350

650

620 
1300

1250 

100

Ca γe hs = Ca ws

Ca γe h

h/3
h/2

X = 2600
L = 3900

(a)  forces on wall 
       (with preliminary 

       proportions) 

200

(c)  design of shear 
key 

Pp

h2

h1 = 950 

φ = 30o

400

300

1300

Cp γe h2 1600

300 neglected 
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Fig. 14.29  Example 14.9 
 

  h = 4.0 + 1.25 = 5.25 m  γe = 16 kN/m3

  φ  = 30o    qa = 160 kN/m2

  μ  = 0.5    ws = 40 kN/m2

⇒ Equivalent height of earth as surcharge, h
w

s
s

e
=
γ

 = 40
16

 = 2.5 m 

⇒ h + hs = 5.25 + 2.5 = 7.75 m 

• Earth pressure coefficients: Ca =
−
+

1
1

sin
sin

φ
φ

 = 1/3 

            C Cp a=1       = 3.0 
2. Preliminary proportions 
• Thickness of footing base slab ≈ 0.08 (h + hs) = 0.08 × 7.75 = 0.620.  Assume a 

thickness of 620 mm. 
• Assume a stem thickness of 650 mm at the base of the stem, tapering to a value of 

200 mm at the top of the wall. 
• For an economical proportioning of the length L of the base slab, it will be 

assumed that the vertical reaction R at the footing base is in line with the front 
face of the stem.  For such a condition, the length of the heel slab (inclusive of 
stem thickness) 

( )X C h ha s≈ + =3 1 3 3( ) ( .7 75)  = 2.58 m 

Let X = 2.6 m. 
• Assuming a triangular soil pressure distribution below the base, 

L = 1.5X = 1.5 × 2.6 = 3.9 m 
• The preliminary proportions are shown in Fig. 14.29(a) 
3. Stability against overturning 
• Forces due to active pressure (per m length of wall) [Fig. 14.29(a)]: 

Pa1 = Ca ws h = (1/3)(40)(5.25) = 70.0 kN 
Pa2 = Ca γe h2/2 = (1/3)(16)(5.25)2/2 = 73.5 kN 
⇒ Pa = 70.0 + 73.5 = 143.5 kN 

• Overturning moment Mo = Pa1 h/2 + Pa2 h/3 
⇒ Mo = (70.0)(5.25/2) + (73.5)(5.25/3)  
           = 312.4 kNm (per m length of wall)  

• Line of action of resultant of vertical forces [Fig. 14.29(a)] with respect to the 
heel can be located by applying statics, considering 1 m length of the wall: 

force (kN) 
distance from 

heel (m) moment (kNm) 

W1 = (16)(2.40)(7.75 – 0.62)           = 273.8 1.20 328.6 
W2 = (25)(0.20)(4.63)                      =   23.2 2.50 58.0 
W3 = (25 – 16) (0.5 × 0.45) (4.63)    =    9.4 2.25 21.1 
W4 = (25)(3.90)(0.62)                       =   60.4 1.95 117.8 

W = 366.8  MW = 525.5 kNm 
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⇒ distance of resultant vertical force from heel 
 xW  = MW /W = 525.5/366.8 = 1.432 m 
Referring to Fig. 14.29(b),  

• Stabilising moment (about toe):  
Mr = W (L – xW) 
     = 366.8 × (3.9 – 1.432) 
     = 905.3 kNm (per m length of wall) 

⇒ (FS)overturning = 0 9. M
M

r

o
 = 0 9 905 3

312
.

.4
.×  = 2.61 > 1.40   — OK 

4. Soil pressures at footing base [refer Fig. 14.29(b)] 
• resultant vertical reaction R = W = 366.8 kN (per m length of wall) 
• distance of R from heel: L M MR W o R= +( )  
            = (525.5 + 312.4)/366.8 = 2.284 m†

• eccentricity e = LR – L/2 = 2.284 – 3.9/2 = 0.334 m  (< L/6 = 0.65) 
indicating that the resultant lies well inside the middle third of the base.  

⇒ 6 6 0 334
3 9

e
L

=
× .

.
 = 0.514 

⇒ qmax = R
L

e
L

1 6
+⎛

⎝⎜
⎞
⎠⎟

 = 366 8
3 9

.
.

(1 + 0.514)  

               = 142.4 kN/m2  < qa = 150 kN/m2   — OK. 

⇒ qmin = R
L

e
L

1 6
−⎛

⎝⎜
⎞
⎠⎟

 = 366 8
3 9

.
.

(1 – 0.514)  = 45.7 kN/m2, 

as shown in Fig. 14.29(b).  
5. Stability against sliding 
• Sliding force = Pa = 143.5 kN (per m length of wall) 
• Resisting force (ignoring passive pressure) F = μR  
           = 0.5 × 366.8 = 183.4 kN > Pa 

• (F.S)sliding = 0 9. F
Pa

 = 0 9 183
143 5

.
.

.4×  = 1.15 < 1.4 

• Hence, a shear key needs to be provided to generate the balance force through 
passive resistance. 
Required Pp = 1.40 × 143.5 – 0.9×183.4 = 35.8 kN (per m length of wall) 

 Providing a shear key 300 mm × 400 mm at 1.6 m from toe [Fig. 14.29(c)], 
 h2 = 0.95 + 0.3 + 1.6 tan 30o = 2.17 m 
 Pp = 3 × 16(2.172 – 0.952)/2 = 91.4 kN 

 ⇒ (F.S)sliding = 
5.143

)4.914.183(9.0 +  = 1.72 > 1.4   — OK 

                                                           
† Note that this value of xR is close to, but not equal to, the value of X = 2.6 m assumed in the 
initial proportioning. 
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6. Design of toe slab 
• The loads considered for the design of the toe slab are as shown in Fig. 14.30(a).  

The net pressures, acting upward, are obtained by reducing the uniformly 
distributed self-weight of the toe slab from the gross pressures at the base. 
Self-weight loading = 25 × 0.62 = 15.5 kN/m2

• The net upward pressure varies from 126.9 kN/m2 to 94.7 kN/m2, as shown in 
Fig. 14.30(b). 

• Assuming a clear cover of 75 mm and 16 φ bars, d = 620 – 75 – 8 = 537 mm 
• Applying a load factor of 1.5, the design shear force (at d = 537 mm from the 

front face of the stem) and the design moment at the face of the stem are given 
by: 
Vu ≈ 1.5(126.9 + 94.7)/2 × (1.3 – 0.537) = 126.8 kN/m 
Mu = 1.5 × [(94.7 × 1.32/2) + (126.9 – 94.7) × 0.5 × 1.32 × 2/3] = 147.2 kNm/m 

• Nominal shear stress τ v
uV

bd
= =

×
×

126 8 10
10 537

3

3
.  = 0.236 MPa  

For a τ c  = 0.24 MPa, the required pt = 0.10 with M 20 concrete [refer Eq. 6.1] 

 

 

94.0
110.2

45.7 kN/m2 

15.5 kN/m2 

142.4 kN/m2 

129.6 kN/m2 

(a)

94.7 kN/m2

126.9 kN/m2

83.9 kN/m2 

(b)

35.6 kN/m2

1300 650 1950

 

Fig. 14.30  Net soil pressures acting on base slab 

• R ≡ 
M
bd

u
2  = 147 2 10

10 537

6

3
. ×
× 2  = 0.510 MPa  
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⇒ 
( )pt reqd

100
 = [ ]20

2 415
1 1 4 598 0 510 20

×
− − ×. .  = 0.15 × 10–2, which is 

adequate for shear also 
⇒ (Ast)reqd = (0.15 × 10–2) × 103 × 537 = 806  mm2/m 

• Using 16 φ bars, spacing required = 201 × 103/806 = 249 mm 
 Provide 16 φ bars @ 240 c/c at the bottom of the toe slab.  The bars should 

extend by at least a distance Ld = 47.0 × 16 = 752 mm beyond the front face of 
the stem, on both sides.  As the toe slab length is only 1.3 m overall, no 
curtailment of bars is resorted to here. 

7. Design of heel slab 
• The loads considered for the design of the heel slab are as shown in Fig. 14.30(a).  

The distributed loading acting downward on the heel slab is given by  
i)  overburden + surcharge @ 16 × (7.75 – 0.62) = 114.1 kN/m2  
ii) heel slab @ 25 × 0.62          =   15.5    ” 

                 ⇒ w = 129.6 kN/m2 

• The net pressure acts downwards, varying between 35.6 kN/m2 and 83.9 kN/m2 
as shown in Fig. 14.30(b). 

• Applying a load factor of 1.5, the design shear force and bending moment at the 
(rear) face of the stem are given by 
Vu = 1.5(35.6 + 83.9)/2 × 1.95 = 174.8 kN/m 
Mu = 1.5 × [(35.6 × 1.952/2) + (83.9 – 35.6) × 0.5 × 1.952 × 2/3] = 193.4 kNm/m 

• Assuming a clear cover of 75 mm and 16 φ bars, d = 620 – 75 – 8 = 537 mm 

• Nominal shear stress τ v
uV

bd
= =

×
×

174 8 10
10 537

3

3
.  

                                                   = 0.326 MPa  
 Corresponding τ c  = 0.33, with M 20 concrete [refer Eq. 6.1], 
  = 0.20 ( )pt reqd

• R ≡ 
M
bd

u
2  = 193 10

10 537

6

3 2
.4 ×
×

 

                      = 0.670 MPa  

⇒ 
( )pt reqd

100
 = [ ]20

2 415
1 1 4 598 0 670 20

×
− − ×. .  

                     = 0.193 × 10–2  
             < 0.20 × 10–2 required for shear 
⇒ (Ast)reqd = (0.20 × 10–2) × 103 × 537 
                  = 1074  mm2/m 

• Using 16 φ bars, spacing required = 201 × 103/1074 = 187 mm 
 Provide 16 φ bars @ 180 c/c at the top of the heel slab.  The bars should extend 

by at least a distance Ld = 47.0 × 16 = 752 mm beyond the rear face of the stem, 
on both sides.  The bars may be curtailed part way to the heel; however, since the 
length is relatively short, this is not resorted to in this example. 
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8. Design of vertical stem 
• Height of cantilever above base h = 5.250 – 0.62 = 4.63 m 
• Assuming a clear cover of 50 mm and 20 φ bars, 

d (at the base) = 650 – 50 – 10 = 590 mm 
• Assuming a load factor of 1.5, maximum design moment 

Mu = 1.5[Ca ws h2/2 + Ca γe h3/6]  
      = 1.5 × (1/3)[40 × 4.632/2 + 16 × 4.633/6]  
      = 346.7 kNm/m   

⇒ R ≡ 
M
bd

u
2  = 346 7 10

10 590

6

3
. ×
× 2  = 1.00 MPa 

⇒ 
( )pt reqd

100
 = [ ]20

2 415
1 1 4 598 1 00 20

×
− − ×. .  = 0.295 × 10–2

⇒ (Ast)reqd = (0.295 × 10–2) × 103 × 590 = 1741 mm2/m 

• Using 16 φ bars, spacing required = 
201 10

1741

3×
 = 115 mm 

Provide 16 φ @ 110 c/c, bars extending into the ‘shear key’.  [This anchorage 
will be more than the minimum required: Ld = 47.0 × 16 = 752 mm]  

• Check for shear at base:  
Critical section is at d = 0.59 m above base, i.e., at zs = 4.63 – 0.59 = 4.04 m 
below top edge.  Shear force at critical section = 1.5 [Ca ws zs + Ca γs zs

2 /2]  
                 = 1.5 × (1/3)[40 × 4.04 + 16 × 4.042/2] 
                 = 146 kN/m 

τ v =
×
×

146 10
10 590

3

3  = 0.248 MPa < τ c  for pt = 0.295 

          — OK 
Note that since the shear stress is low and flexural reinforcement ratio also is low, 
the thickness of stem at base could be reduced for a more economical design.  

• Curtailment of bars:  
The curtailment of the bars may be done in two stages (at one-third and two-third 
heights of the stem above the base) as shown in Fig. 14.31.  It can be verified that 
the curtailment satisfies the Code requirements.  

• Temperature and Shrinkage reinforcement  
Provide two-thirds of the (horizontal) bars near the front face (which is exposed 
to weather and the remaining one-third near the rear face.  For the lowermost one-
third height of the stem above base,  
Ast = (0.0012 × 103 × 650) × 2/3 
     = 520  mm2/m 

• Using 8 φ bars, spacing required = 50.3 × 103/520 = 97 mm ≈ 100 mm.  Provide 
8 φ @ 100 c/c near front face and 8 φ @ 200 c/c near rear face in the lowermost 
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one-third height of the wall; 8 φ @ 200 c/c near front face and 8 φ @ 400 c/c in 
the middle one-third height; and 8 φ @ 300 c/c near front face and 8 φ @ 600 c/c 
near the rear face in the top one-third height of the wall. 

• Also provide nominal bars 10 φ bars @ 300 c/c vertically near the front face.  
• The detailing is shown in Fig. 14.31.  

8 φ @ 200 c/c

10 φ @ 300 c/c
8 φ @ 100 c/c

16 φ @ 240 c/c

16 φ @ 330 c/c

16 φ @ 220 c/c

8 φ @ 400 c/c

8 φ @ 600 c/c

8 φ @ 200 c/c

16 φ @ 110 c/c
16 φ @ 180 c/c

300 × 400 shear key

450200

1500

1500

1600

3900

1300

620
1250

4000

8 φ @ 300 c/c

10 φ

10 φ @ 300 c/c

300

400

 
Fig. 14.31  Detailing of cantilever wall — Example 14.9 

EXAMPLE 14.10 

Design a suitable counterfort retaining wall to support a level backfill, 7.5 m high 
above the ground level on the toe side.  Assume good soil for foundation at a depth 
of 1.5 m below the ground level with a safe bearing capacity of 170 kN/m2.  Further 
assume the backfill to comprise granular soil with a unit weight of 16 kN/m3 and an 
angle of shearing resistance of 30o.  Assume the coefficient of friction between soil 
and concrete to be 0.5.  Use M 25 and Fe 415 steel. 
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SOLUTION 

1. Data given:   h = 7.5 + 1.5 = 9.0 m; μ  = 0.5 
  θ  = 0o   γe = 16 kN/m3

  φ  = 30o   qa = 170 kN/m2

• Earth pressure coefficients:  
θ
θ

sin1
sin1

+
−

=aC = 0.333 

 
θ
θ

sin1
sin1

−
+

=pC  = 3.0 

2. Preliminary proportions 
• The (triangular shaped) counterforts are provided on the rear (backfill) side of the 

wall, interconnecting the stem with the heel slab.   

Spacing of counterforts ≈ h
3
1

 to h
2
1  = 3.0 m to 4.5 m   

Assume the counterforts are placed with a clear spacing of 3.0 m.   
Thickness of counterforts ≈ 0.05h = 0.05 × 9.0 = 0.45 m.  Assume a thickness of 
500 mm.  

• Thickness of heel slab ≈ 0.05h = 0.05 × 9.0 = 0.45 m.  Assume a thickness of 
500 mm 

• Assuming that the front buttresses are not provided,  
Thickness of toe slab ≈ 0.08h = 0.08 × 9.0 = 0.72 m.  Assume a thickness of 
720 mm 

• Thickness of stem slab ≈ 0.06h = 0.06 × 9.0 = 0.54 m.  Assume a stem thickness 
of 600 mm at the base of the stem, tapering to a value of 300 mm at the top of the 
wall. 

• For an economical proportioning of the length L of the base slab, it is assumed 
that the vertical reaction R at the footing base is in line with the front face of the 
stem.  For such a condition, (inclusive of stem thickness) [Eq. 14.23]: 

( )X Ca≈ 3 3333.0=h (9.0) = 3.0 m 

• Assuming a triangular base pressure distribution, 
L = 1.5X = 4.5 m 

• The preliminary proportions are shown in Fig. 14.32(a). 

3. Stability against overturning 
• Forces due to active pressure (per m length of wall) [Fig. 14.32(a)]: 

Pa = Ca γe h2/2 = (0.333)(16)(9.0)2/2 = 216.0 kN 
• Overturning moment Mo = Pa × h/3 

⇒ Mo = 216.0 × (9.0/3)  
           = 648.0 kNm (per m length of wall)  
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Fig. 14.32  Example 14.10 
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• Line of action of resultant of vertical forces [Fig. 14.32(b)] with respect to the 
heel can be located by applying statics, considering 1 m length of the wall (the 
marginal additional weight due to counterfort is ignored). 

 

force (kN) 
distance from 

heel (m) moment (kNm) 

W1 = (16)(2.7)(9.0 – 0. 5)                   = 367.20 1.35 495.72 
W2 = (25)(0.3)(9.0 – 0.5)                    =   63.75 2.85 181.70 
W3 = (25-16)(0.5)(0.3)(9.0 – 0.5)        =   11.48 2.60 29.85 
W4 = (25)(3.0)(0.5)                             =   37.50 1.50 56.30 
W5 = (25)(1.5)(0.72)                            =   27.00 3.75 101.25 

W  =    506.9   MW = 864.8 

⇒ distance of resultant vertical force from heel 
 xW  = MW /W = 864.8 / 506.9 = 1.706 m 

Referring to Fig. 14.32(b),  
• Stabilising moment (about toe):  

Mr = W (L – xW) 
     = 506.9 × (4.5 – 1.706) 
     = 1416.4 kNm (per m length of wall) 

⇒ (FS)overturning = 0 9. M
M

r

o
 = 

0.648
4.14169.0 ×

 = 1.967 > 1.40   — OK 

4. Soil pressures at footing base [refer Fig. 14.32(b)] 

• resultant vertical reaction R = W = 506.9 kN (per m length of wall) 
• distance of R from heel: L M MR W o R= +( )  
            = (864.8 + 648.0) / 506.9 = 2.984 m†

• eccentricity e = LR – L/2 = 2.984 – 4.5/2 = 0.734 m  (< L/6 = 0.75) 
indicating that the resultant lies well inside the middle third of the base.  

⇒ 
5.4
734.066 ×

=
L
e

 = 0.978 

⇒ qmin = R
L

e
L

1 6
−⎛

⎝⎜
⎞
⎠⎟

 = 
5.4
9.506

 (1 – 0.978)  = 2.5 kN/m2  > 0 — OK 

⇒ qmax = R
L

e
L

1 6
+⎛

⎝⎜
⎞
⎠⎟

 = 
5.4
9.506

 (1 + 0.978)  

               = 222.8 kN/m2  > qa = 170 kN/m2   — UNSAFE. 
Hence, the length of the base slab needs to be suitably increased on the toe side – 
say, by 500 mm.  

                                                           
† Note that this value of xR is very close to the value of X = 3.0 m assumed in the initial 
proportioning. 
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Let L = 5.0 m (as shown in Fig. 14.32c). 
Additional weight due to 500 mm extension of toe slab 

ΔW = 25 × 0.5 × 0.72 = 9.0 kN 
⇒ R = W + ΔW = 506.9 + 9.0 = 515.9 kN 

Considering moments about the heel [Fig. 14.32 (c)] 
515.9 LR = 864.8 + (9.0)(5.0 – 0.25) + 648.0  
⇒ LR =3.015 m 

• Revised eccentricity e = LR – L/2 = 3.015 – 5.0/2  
      = 0.515 m  (< L/6 = 0.83) 

⇒ 
0.5
515.066 ×

=
L
e

 = 0.618 

⇒ qmin = R
L

e
L

1 6
−⎛

⎝⎜
⎞
⎠⎟

 = 
0.5

9.515
 (1 – 0.618)  = 39.4 kN/m2  > 0 — OK 

⇒ qmax = R
L

e
L

1 6
+⎛

⎝⎜
⎞
⎠⎟

 = 
0.5

9.515
 (1 + 0.618) = 167.0 kN/m2   

< qa = 170 kN/m2  — OK.   
as shown in Fig. 14.32c. 

5. Stability against sliding 
• Sliding force = Pa = 216.0 kN (per m length of wall) 
• Resisting force (ignoring passive pressure) F = μR  
           = 0.5 × 515.9 = 257.9 kN > Pa 

• (F.S)sliding = 0 9. F
Pa

 = 
0.216

9.2579.0 ×
 = 1.075 < 1.4  — UNSAFE. 

• Hence, a shear key needs to be provided to generate the balance force through 
passive resistance. 

Required Pp = 1.4 × 216.0 – 0.9×257.9 = 70.3 kN (per m length of wall) 

 Providing a shear key 400 mm × 300 mm at 2.4 m from toe [Fig. 14.32(d)], 
 h2 = 1.2 + 0.3 + 2.4 tan 30o = 2.89 m 
 Pp = 3 × 16(2.892 – 1.22)/2 = 165.9 kN 

 ⇒ (F.S)sliding = 
( )

0.216
9.1659.2579.0 +×

 = 1.766 > 1.4  — OK 

6. Design of toe slab 
• The loads considered for the design of the toe slab are as shown in Fig. 14.33(a).  

The net pressures, acting upward, are obtained by reducing the uniformly 
distributed self-weight of the toe slab from the gross pressures at the base. 
Self-weight loading = 25 × 0.72 = 18.0 kN/m2  
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(b) 
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Fig. 14.33  Net soil pressures acting on base slab 

 
• The net upward pressure varies from 149.0 kN/m2 to 97.9 kN/m2, as shown in 

Fig. 14.33(b). 

• Assuming a clear cover of 75 mm and 16 φ bars, d = 720 – 75 – 8 = 637 mm 
• Applying a load factor of 1.5, the design shear force (at d = 637 mm from the 

front face of the stem) and the design moment at the face of the stem are given 
by: 
Vu ≈ 1.5 × (149.0 + 97.9)/2 × (2.0 – 0.637) = 252.4 kN/m 
Mu = 1.5 × [(97.9 × 2.02/2) + (149.0 – 97.9) × 0.5 × 2.02 × 2/3] = 395.9 kNm/m 

• Nominal shear stress 
63710
104.252

3

3

×

×
==

bd
Vu

vτ  = 0.396 MPa  

For a τ c  = 0.396 MPa, the required pt = 0.32 with M 25 concrete [refer Eq. 6.1] 

• R ≡ 
M
bd

u
2  = 23

6

63710
109.395

×

×
 = 0.976 MPa  

⇒ 
( )pt reqd

100
 = [ ]25976.0598.411

4152
25

×−−
×

 = 0.284 × 10–2  

      < 0.32 × 10–2 required for shear 

 ⇒ (Ast)reqd = (0.32 × 10–2) × 103 × 637 = 2039  mm2/m 
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• Using 16 φ bars, spacing required = 201 × 103/2039 = 98.6 mm 
• Using 20 φ bars, spacing required = 314 × 103/2039 = 154 mm 

Provide 20 φ bars @ 150 c/c at the bottom of the toe slab.  The bars should extend 
by at least a distance Ld = 47.0 × 20 = 940 mm beyond the front face of the stem, on 
both sides.   

Distribution steel: 
Provide 10 φ bars @ 200 c/c for the transverse reinforcement.   

7. Design of heel slab 
• The loads (net pressures) considered for the design of the heel slab are as shown 

in Fig. 14.33(a).  The distributed loading acting downward on the heel slab is 
given by  

i)  overburden @ 16 × (9.0 – 0.5)  =  136.0 kN/m2  
ii) heel slab @ 25 × 0.5    =    12.5    ” 

           ⇒ w =  148.5 kN/m2 

The net pressure acts downwards, varying between 47.3 kN/m2 and 109.1 kN/m2 
as shown in Fig. 14.33(b).   

• The counterforts are provided at a clear spacing of 3.0 m throughout the length of 
the wall [Fig. 14.32(a)].  Thus, each heel slab panel (2.4m × 3.0m) may be 
considered to be fixed (continuous) at three edges (counterfort locations and 
junction with stem) and free at the fourth edge.  The moment coefficients given in 
IS 456 do not cater to this set of boundary conditions, and reference needs to be 
made to other handbooks.  Alternatively, we may apply the formulas obtained 
from yield line theory (such as those given in Section 11.2.6).   

A common simplified design practice is to assume that some tributary (triangular) 
portion of the net load acting on the heel slab is transmitted through cantilever 
action [Fig. 14.34(a)], while much of the load (particularly near the free edge) is 
transmitted in the perpendicular direction through continuous beam action.  The 
reinforcements in the remaining regions are judiciously apportioned.  This 
procedure is followed here. 
 

• Design of heel slab for continuous beam action 
Assuming a clear cover of 75 mm and 16 φ bars, d = 500 – 75 – 8 = 417 mm 
Consider a 1 m wide strip near the free edge of the heel (Fig.14.34b).  The 
intensity of pressure at a distance of 1 m from the free edge is 83.4 kN/m2.  
Hence, the average loading on the strip may be taken as (83.4 + 109.1)/2 = 96.25 
kN/m2.  Applying a load factor of 1.5, wu = 1.5 × 96.25 = 144.4 kN/m2.  The 
effective span is given by  l = 3.0 + 0.417 = 3.417 m 
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Fig. 14.34  Loading considerations for simplified analysis of heel slab 

Max. negative moment occurring in the heel slab at the counterfort location is 
given by 

Mu,-ve = wul2/12 = 144.4 × 3.4172 /12 = 140.5 kNm/m 
Max. mid-span moment may be taken as  

Mu,+ve = wul2/16 ≈ 0.75 × Mu,-ve = 105.4 kNm/m 
Design shear force  

Vu = wu × (clear span / 2 – d) = 144.4 × (3.0/2 – 0.417) = 156.4 kN/m 

Design of top reinforcement (for –ve moments) at the counterforts 

• Nominal shear stress 
41710
104.156

3

3

×

×
==

bd
Vu

vτ  = 0.375 MPa  

For a τ c  = 0.375 MPa with M 25 concrete [refer Eq. 6.1], the required pt = 0.28. 

• R ≡ 
M
bd

u
2  = 23

6

41710
105.140

×

×
 = 0.808 MPa 
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⇒ 
( )pt reqd

100
 = [ ]25808.0598.411

4152
25

×−−
×

 = 0.233 × 10–2 < pt = 0.28 

required for shear (in the absence of stirrups). 
⇒ (Ast)reqd = (0.28 × 10–2) × 103 × 417 = 1168 mm2/m (required at 1m from the 
free edge) 
Using 16 φ bars, spacing required = 201 × 103 / 1168 = 172 mm 
Using 12 φ bars, spacing required = 113 × 103 / 1168 = 96 mm 
Minimum reinforcement for temperature and shrinkage:   

Min. Ast = ( )(5001000
100

12.0 )  = 600 mm2/m < 1168 mm2/m   –  OK. 

At a distance beyond 1m from the free edge, only minimum reinforcement need 
be provided: 
Spacing of 12 φ bars required for min. reinf. = 113 × 103 / 600 = 188 mm 
 
Provide 12 φ bars @ 180 c/c at the top of the heel slab throughout, and introduce 
additional 12 φ bars in between two adjacent bars at the counterforts near the free 
edge over a distance of approx. 1m;  
i.e., Provide 5 additional 12 φ bars on top, extending 1m from either side of the 
face of the counterfort.   
 
Design of bottom reinforcement (for +ve moment) at mid-span of heel slab  

• R ≈ 0.75 × 0.808 = 0.606 MPa  

⇒ 
( )pt reqd

100
 = [ ]25606.0598.411

4152
25

×−−
×

 = 0.173 × 10–2  

⇒ (Ast)reqd = (0.173 × 10–2) × 103 × 417 = 721 mm2/m > (Ast)min = 600 mm2/m 
Spacing of 12 φ bars required = 113 × 103 / 721 = 156 mm 
Provide 12 φ bars @ 150 c/c at the bottom of the heel slab throughout.  
Distribution steel: 
Provide 10 φ bars @ 200 c/c for the transverse reinforcement.   

• Design of heel slab for cantilever action 
Consider the triangular loading on the heel slab [Fig. 14.34(a)] to be carried by 
cantilever action with fixity at the face of the stem.  
The intensity of load at the face of the stem = 47.3 kN/m2. 
The intensity of load at a distance of 1.5m from the face of the stem is 
85.9 kN/m2.  
Total B.M. due to loading on the triangular portion  

= ( ) ⎥⎦
⎤

⎢⎣
⎡

×
×−+××⎟

⎠
⎞

⎜
⎝
⎛ ××

32
5.13.479.85

3
5.13.475.10.3

2
1

 = 74.93 kNm 

This moment is distributed non-uniformly across the width of 3.0m.  For design 
purposes, the max. moment intensity (in the middle region) may be taken as two 
times the average value 
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⇒ Mmax = 2 × (74.93 / 3.0) 
  = 49.95 kNm/m 
d = 417 – 12 = 405mm 

Applying a load factor of 1.5,  

R ≡ 
M
bd

u
2  = 2

6

4051000
1095.495.1

×

××
 = 0.457 MPa  

⇒ 
( )pt reqd

100
 = [ ]25457.0598.411

4152
25

×−−
×

 = 0.130 × 10–2  

⇒ (Ast)reqd = (0.130 × 10–2) × 103 × 405 = 527 mm2/m < (Ast)min = 600 mm2/m (for 
temperature and shrinkage)  

Provide 12 φ bars @ 180 c/c at the top of the heel slab throughout. 

8. Design of vertical stem 
The simplified analysis procedure adopted for the heel slab is used here for the 
vertical stem also.  The cantilever action is limited to the bottom region only 
(triangular portion) with fixity at the junction of the stem with the base slab.  
Elsewhere, the stem is treated as a continuous beam spanning between the 
counterforts.  The bending moments reduce along the height of the stem, owing to 
the reduction in the lateral pressures with increasing height.  

Height of stem above base h = 9.0 – 0.5 = 8.5 m.   

Intensity of earth pressure at the base of the stem is 
pa = Ca γe h = (0.333)(16)(8.5)  

     = 45.33 kN/m2 (linearly varying to zero at the top)  
Applying a load factor of 1.5, wu = 1.5 × 45.33 = 68.0 kN/m2 at base.  
Clear spacing between the counterforts = 3.0 m.  

• Design of stem for continuous beam action 
At base 
Assuming a clear cover of 50 mm and 20 φ bars,  
d = 600 – 50– 10 = 540 mm and effective span, l = 3.0 + 0.54 = 3.54 m 
Max. –ve moment occurring in the stem at the counterfort location is given by 

Mu,-ve = wul2/12 = 68.0 × 3.542 /12 = 71.0 kNm/m 
Max. mid-span moment may be taken as  

Mu,+ve = wul2/16 ≈ 0.75 × Mu,-ve = 53.3 kNm/m 
Design shear force  

Vu = wu × (clearspan/2 – d) = 68.0 × (3.0/2 – 0.54) = 65.3 kN/m 
 

Design of (rear face) reinforcement for –ve moments at the counterforts  

⇒ R ≡ 
M
bd

u
2  = 23

6

54010
100.71

×

×
 = 0.244 MPa 
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⇒ 
( )pt reqd

100
 = [ ]25244.0598.411

4152
25

×−−
×

 = 0.068 × 10–2

⇒ (Ast)reqd = (0.068 × 10–2) × 103 × 540 = 369 mm2/m 

Min. Ast = ( )(6001000
100

12.0 )  = 720 mm2/m > 369 mm2/m 

Check for shear at base 

54010
103.65

3

3

×

×
=vτ  = 0.121 MPa < τ c  = 0.29 MPa (for minimum pt = 0.15)   — OK 

(Evidently, it is possible to reduce the thickness of the stem, for economy). 

Design of (front face) reinforcement for +ve moments in the mid-span of stem  
The minimum reinforcement requirement will govern the design on both faces, 
since Mu,+ve < Mu,-ve. 
Using 12 φ bars, spacing required = 113 × 1000/ 720 = 156 mm 
Provide 12 φ bars (horizontal) @ 150 c/c on both faces of the stem (up to one-
third height above base). 
 
At one-third height above base 
d = 500 – 50 – 6 = 444 mm and effective span l = 3.444m 
Mu,-ve = wul2/12 = (68.0 × 2/3) × (3.444)2 /12 = 44.81 kNm/m   

⇒ R ≡ 
M
bd

u
2  = 23

6

44410
1081.44

×

×
 = 0.227 MPa 

⇒ 
( )pt reqd

100
 = [ ]25227.0598.411

4152
25

×−−
×

 = 0.064 × 10–2

⇒ (Ast)reqd = (0.064 × 10–2) × 103 × 444 = 282 mm2/m 

Min. Ast = ( )(5001000
100

12.0 )  = 600 mm2/m > 282 mm2/m 

Using 12 φ bars, spacing required = 113 × 1000/ 600 = 188 mm 
Provide 12 φ bars (horizontal) @ 180 c/c on both faces of the stem (in the 
middle one-third height).  

At two-thirds height above base 

Min. Ast = ( )(4001000
100

12.0 )  = 480 mm2/m  

Using 10 φ bars, spacing required = 78.5 × 1000/ 480 = 163 mm 
Using 12 φ bars, spacing required = 113 × 1000/ 480 = 235 mm 
Provide 12 φ bars (horizontal) @ 230 c/c on both faces of the stem (in the upper 
one-third height). 
 

• Design of stem for cantilever action 
Consider the triangular loading on the stem [Fig. 14.35] to be carried by 
cantilever action about the face of the stem as follows:   
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h = 8500

500 

45.3 kN/m2  500 

stem 

counterforts

heel slab

37.3 kN/m2 

1500 

3000 
500 

 

Fig. 14.35  Loading considerations for simplified analysis of stem 

The intensity of horizontal pressure at the base of the stem = 45.3 kN/m2. 
The intensity of horizontal pressure at a distance of 1.5 m from the base of the 
stem is 37.3 kN/m2.  

Total B.M. due to loading on the triangular portion   

= ( ) ⎥⎦
⎤

⎢⎣
⎡

×
×−+××⎟

⎠
⎞

⎜
⎝
⎛ ××

32
5.13.373.45

2
5.13.375.10.3

2
1  = 67.5 kNm 

This moment is distributed non-uniformly across the width of 3.0m.  For design 
purposes, the max. moment intensity (in the middle region) may be taken as two 
times the average value 
⇒ Mmax = 2 × (67.5 / 3.0) 
  = 45.0 kNm/m 

effective depth  d = 515 – 12 = 503 mm 

R ≡ 
M
bd

u
2  = 2

6

5031000
100.455.1

×

××
 = 0.267 MPa  

⇒ 
( )pt reqd

100
 = [ ]25267.0598.411

4152
25

×−−
×

 = 0.075 × 10–2  (required up to 

1.5m height above base) 
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⇒ (Ast)reqd = (0.075 × 10–2) × 103 × 503 = 377 mm2/m < (Ast)min = 720 mm2/m (for 
temperature and shrinkage)  
The minimum reinforcement requirement will govern the design. 
Provide 12 φ bars (vertical) @ 150 c/c on both faces of the stem through out the 
height of the stem.   
 
The reinforcement details for the stem, toe slab and heel slab are shown in 
Fig. 14.36 
 

 

12φ @ 180 c/c

12φ @ 150 c/c 

20 φ @ 150c/c 

12φ @ 180 c/c

12φ @ 230 c/c

12φ @ 150 c/c 

300

2830 

2830 

720 
1500 

7500 

12φ @ 230 c/c

10 φ @ 200 c/c 
300

2840 12 φ @ 180c/c + addl. 5 bars 
in 1m span from free edge 

12 φ @ 180 c/c

10 φ @ 200 c/c 12 φ @ 150 c/c  

12φ @ 150 c/c

2000 600 2400 

12φ @ 150 c/c

400

 

Fig. 14.36  Reinforcement details of stem, toe slab and heel slab 

 
9. Design of interior counterfort 

The typical interior counterfort acts as a T beam of varying section cantilevering 
out of the base slab.  The design should include: 

• provision for beam action 
• provision of horizontal ties against separation from stem 
• provision of vertical ties against separation of base 
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• Design of counterfort for T-beam action 
The thickness of counterforts = 500 mm 
Clear spacing of counterforts = 3.0 m 
Thus, each counterfort receives earth pressure from a width of  
l= 3.0 + 0.5 = 3.5 m 

At base 
The intensity of earth pressure at the base of the stem is 

pa = Ca γe h = (0.333)(16)(8.5) = 45.33 kN/m2   
Applying a load factor of 1.5,  

Mu = 1.5 × 
3
5.85.35.833.45

2
1

××⎟
⎠
⎞

⎜
⎝
⎛ ××  = 2866 kNm 

Vu = 1.5 × 5.35.833.45
2
1

×⎟
⎠
⎞

⎜
⎝
⎛ ××  = 1012 kN 

From Fig. 14.37, 
tan θ = 2700/8500 ⇒ θ = 17.6o  
and Dbase = 2400 × cosθ = 2287 mm 
Assuming a clear cover of 50 mm and 25 φ bars, 
d = 2287 – 50 – 12.5 = 2224 mm 

 

h = 8500 

1500 

l = 2400600

D =l cosθ

θ

θ

tanθ = 
2700/8500

90o
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Fig. 14.37  Depth consideration for analysis of counterfort 

• Effective flange width (Cl 23.1.2 Code): 
b f  = l b  [Eq. 4.30] Dw0 6 6/ + + f

      =  = 5517 mm, )6006(5006/8500 ×++

b f  = bw + clear span of slab 

      = 500 + 3000 = 3500 mm 
Thus,  = 3500 mm (least of the above two values) b f

Approximate requirement of tension steel is given by assuming a lever arm z to 
be the larger of 0.9d = 2001mm and d – Df /2 = 1924mm, i.e., 2001mm: 

(Ast)reqd = 
)2001)(415(87.0

102866
87.0

6×
=

zf
M

y

u = 3967 mm2

No. of 25 φ bars required = 
491

3967
 ≈ 8 bars (provide in two layers, with 25 φ 

spacer bars) 
⇒ d  = 2287 – 50 – 25 – 12.5 = 2199 mm 
Assuming the neutral axis to be located at xu = Df , 
MuR = 0.362×25×3500×600 × (2199 – 0.416×600) = 37048 × 106 Nmm  

> Mu = 2866 × 106 Nmm 
This clearly indicates that the neutral axis lies within the flange. 

R ≡ 
M
bd

u
2  = 2

6

21993500
102866

×

×
 = 0.169 MPa  

⇒ 
( )pt reqd

100
 = [ ]25169.0598.411

4152
25

×−−
×

 = 0.047 × 10–2  

⇒ (Ast)reqd = (0.047 × 10–2) × 3500 × 2199 = 3639  mm2/m (which is close to the 
approximate value of 3967 mm2 calculated) 

Minimum reinforcement in a beam is given by 
y

s

fbd
A 85.0

=   

⇒ As = 0.85 × 500 × 2199 / 415 = 2252 mm2 < 3639 mm2    

Provide 8 nos 25 φ bars in two layers, four bars in each layer with a 25 mm 
separation.   

Above one-third height from the base 
The intensity of earth pressure at h (= 8.5 × 2 / 3) = 5.67m from top is 

pa = Ca γe h = 45.33 × 2 / 3 = 30.22 kN/m2   
Applying a load factor of 1.5,  

Mu = 1.5 × 
3
67.55.367.522.30

2
1

××⎟
⎠
⎞

⎜
⎝
⎛ ××  = 850 kNm 
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Vu = 1.5 × 5.367.522.30
2
1

×⎟
⎠
⎞

⎜
⎝
⎛ ××  = 450 kN 

Dh=5.67 = 2287 × 2 / 3 = 1525 mm 
Assuming a clear cover of 50 mm and 25 φ bars, 
d = 1525 – 50 – 12.5 = 1462 mm 
Approximate requirement of tension steel is given by assuming a lever arm z to 
be the larger of 0.9d = 1316mm and d – Df /2 = 1212 mm, i.e., 1316 mm: 

(Ast)reqd = 
)1316)(415(87.0

10850
87.0

6×
=

zf
M

y

u = 1789 mm2

No. of 25 φ bars required = 
491

1789
 ≈ 4 bars  

⇒ d  = 1462 mm 

Assuming the neutral axis to be located at xu = Df , 
MuR = 0.362×25×3500×500 × (1462 – 0.416×500) = 19860 × 106 Nmm  

> Mu = 850 × 106 Nmm 
This clearly indicates that the neutral axis lies within the flange. 

R ≡ 
M
bd

u
2  = 2

6

14623500
10850

×

×
 = 0.114 MPa   

⇒ 
( )pt reqd

100
 = [ ]25114.0598.411

4152
25

×−−
×

 = 0.032 × 10–2  

⇒ (Ast)reqd = (0.032 × 10–2) × 3500 × 1462 = 1638  mm2/m (which is close to the 
approximate value of 1789 mm2 calculated) 

Minimum reinforcement in a beam is given by 
y

s

fbd
A 85.0

=   

⇒ As = 0.85 × 500 × 1462 / 415 = 1497 mm2 < 1638 mm2    

Curtail 4 nos 25 φ bars and extend 4 nos 25 φ bars (rear face). 
In order to satisfy the minimum reinforcement criteria, 4 nos 25 φ bars may be 
extended to the top of the counterfort, without any further curtailment.  
 

• Design of horizontal ties 
Horizontal tie (closed stirrup) reinforcement in the counterfort serves as shear 
reinforcement against flexural shear in the counterfort and also as ties resisting 
the separation of the stem from the counterfort due to the lateral pressure. 
 
At base 
Shear reinforcement requirement: 

 θ−= tan, d
M

VV u
unetu  
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            = ( 6.17tan
199.2

28661012− )  = 598.0 kN 

Nominal shear stress 
2199500
10598 3

,

×
×

==τ
bd

V netu
v  = 0.544 MPa 

     pt = 100 Ast/b = 100 × (8×491) / (500×2199) = 0.357 
⇒ τc = 0.416 MPa 
Hence, shear reinforcement is to be provided for a shear force of  
Vus = (τv – τc) bd = (0.544 – 0.416) 500 × 2199 
   = 140.8 × 103 N 
Assuming 10 φ 2-legged stirrups,  
Asv = 2 × 78.5 = 157 mm2  

Required spacing = sv = 
us

svy

V
dAf87.0

 = 
3108.140

219915741587.0
×

×××  = 885 mm 

Max. spacing specified by Code = = 300mm (lesser value) 
⎩
⎨
⎧

mm 300
75.0 d

Tie connection requirement: 
The tension resisted by the tie reinforcement is given by the lateral pressure on 
the wall multiplied by the tributary area.  At the base (pa = 45.33 kN/m2), the 
tensile force intensity is accordingly given by: 

T = 45.33 kN/m2 × 3.5m = 158.7 kN/m 
Applying a load factor of 1.5, the total area of reinforcement required to resist this 

direct tension = 
41587.0

107.1585.1 3

×
××  = 660 mm2/m. 

Spacing of 10 φ 2 legged stirrups required = 2 × 78.5 × 103 / 660 = 237 mm 
This tie reinforcement requirement governs (compared to shear reinforcement 
requirement). 
Provide 10 φ 2 legged stirrups @ 200 mm c/c in lower one-third region 
The tie reinforcement requirement will vary linearly along the height of the stem, 
as the lateral pressure variation is linear. 
 
At one-third height from the base  

(Ast)reqd = (2/3) × 660 = 440 mm2/m 
Spacing of 8 φ 2 legged stirrups required = 2 × 50.3 × 103 / 440 = 228 m 
Provide 8 φ 2 legged stirrups @ 200 mm c/c above one-third height. 
 

• Design of vertical ties 
As in the case of the connection between the counterfort and the vertical stem, the 
connection between the counterfort and the heel slab must be designed to resist 
the tension arising out of the net downward pressures acting on the heel slab [Fig. 
14.34b].  Considering a 1m strip from the free edge, the average downward 
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pressure is (83.4 + 109.1)/2 = 96.25 kN/m2, and hence the average tensile force 
intensity is: 

T = 96.25 kN/m2 × 3.5m = 336.9 kN/m  
Applying a load factor of 1.5, the total area of reinforcement required to resist this 

direct tension = 
41587.0

109.3365.1 3

×
××  = 1400 mm2/m. 

Spacing of 10 φ 2 legged ties required = 2 × 78.5 × 103 / 1400 = 112 mm 
Provide 10 φ 2 legged vertical ties @ 100 mm c/c up to 1m from the free edge. 
The spacing may be increased to 150 mm beyond 1m, owing to the significant 
reduction in net pressure. 
 
The counterfort reinforcement details are shown in Fig. 14.38 and Fig. 14.39. 
 

 

12 φ @ 150 c/c

12 φ @ 150 c/c

10 φ 2 legged vertical
ties @ 150 c/c 

12 φ @ 150 c/c

toe slab 

heel slab

12 φ @ 150 c/c 3000 

500 

500 

10 φ 2 legged vertical
ties @ 100 c/c 

8 no.s 25 φ

24006002000 

8 / 10 φ 2 legged horizontal 
ties @ 200 c/c 

 

 

Fig. 14.38  Reinforcement details of stem and counterfort  
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4 nos 25 

8 nos 25 φ (2 
layers with 25φ 
separators @ 1m 

10 φ 2 legged 
vertical stirrups @ 
100 c/c, with hooks 

10 φ 2 legged 
vertical stirrups 

@ 150 c/c 

10 φ 2 legged horizontal 
stirrups @ 200 c/c 

3000 

8 φ 2 legged horizontal 
stirrups @ 200 c/c 

 

Fig. 14.39  Section through counterfort showing counterfort reinforcement  
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REVIEW QUESTIONS 

14.1 What are the main requirements of a foundation system for a structure? 
14.2 Why is it necessary to ensure, by proper proportioning of footings, that the 

bearing pressures underlying all the footings in a building are more-or-less of 
the same order of magnitude?  

14.3 What are the situations in which combined footings are preferred to isolated 
footings?  

14.4 Distinguish among the terms (i) allowable soil pressure (ii) gross soil pressure 
(iii) net soil pressure, (iv) factored soil pressure.  

14.5 What is meant by eccentric loading on a footing, and under what 
circumstances does this occur?  

14.6 Why is it desirable to eliminate eccentricity in loading on a footing, wherever 
possible, by means of proper proportioning?  

14.7 From structural analyses, it is found that the following stress resultants 
develop at a column base under the action of characteristic loads:  

 (i) P = 475 kN, M = 35 kNm under dead loads; 
 (ii) P = 380 kN, M = 39 kNm under live loads;  
 (iii) H = ± 30 kN, P = ±12 kN, M = ± 41 kNm under wind loads. 
 Determine the combined loads to be considered in deciding the area of the 

footing to be located in a soil with an allowable soil pressure of 200 kN/m2 at 
a depth of 1.5 m below ground level.  

14.8 What are the advantages of providing pedestals to columns?  
14.9 Briefly explain the conditions in which transfer of forces at the interface of 

column (or pedestal) and footing can be achieved without the aid of 
reinforcement.  

14.10 Under what circumstances is a trapezoidal shape preferred to a rectangular 
shape for a two-column combined footing?  

14.11 Describe briefly the load transfer mechanism in a two-column combined 
footing.  

14.12 What is the purpose of a retaining wall?  What are the different types of 
concrete retaining walls?  

14.13 Distinguish between active pressure and passive pressure of earth, in relation 
to retaining wall structures?  

14.14 What is meant by (a) surcharge (b) inclined surcharge?  
14.15 Describe the effect of water in the backfill on the active earth pressure on a 

retaining wall.  
14.16 What is the purpose of a shear key?  Describe its action.  
14.17 Briefly describe the behaviour of the various elements of a cantilever 

retaining wall.  
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14.18 Briefly describe the behaviour of the various elements of a counterfort 
retaining wall.  

14.19 Where are the critical sections for shear located in the case of (a) the toe slab 
(b) the heel slab in the design of the base slab of a cantilever retaining wall?  

PROBLEMS 

14.1 Design a plain concrete footing for a column, 400 mm × 400 mm, carrying an 
axial (service) load of 400 kN.  Assume an allowable soil pressure of 
350 kN/m2 at a depth of 1.0 m below ground.  Assume M 20 concrete and 
Fe 415 steel.  

14.2 Design a square footing for a rectangular column 300 mm × 500 mm, 
reinforced with 6–25 φ bars, and carrying a service load of 1250 kN.  Assume 
soil with an allowable pressure of 200 kN/m2 at a depth of 1.25 m below 
ground.  Assume Fe 415 grade steel for both column and footing, and M 20 
grade concrete for the footing and M 25 grade concrete for the column.  

14.3 Repeat Problem 14.2, considering a uniaxial moment (with respect to the 
major axis of the column) of 100 kNm (under service loads — dead plus live) 
in addition to the axial force of 1250 kN at the column base.  Assume a 
suitable rectangular footing.  Also assume that the moment is irreversible.  

14.4 Design a square footing for a circular column, 500 mm in diameter, reinforced 
with 8–25 φ bars, and carrying an axial load of 2500 kN.  Assume soil with a 
safe bearing capacity of 300 kN/m2 at a depth of 1.5 m below ground.  
Assume Fe 415 grade steel for both column and footing, and M 20 grade 
concrete for the footing and M 30 grade concrete for the column.  

14.5 Repeat Problem 14.4, considering a rectangular footing with a spatial 
restriction of 2.5 m on one of the plan dimensions.  

14.6 Design a footing for a 250 mm thick reinforced concrete wall which supports 
a load (inclusive of self-weight) of 250 kN/m under service loads.  Assume a 
safe soil bearing capacity of 180 kN/m2 at a depth of 1 m below ground.  
Assume M 20 grade concrete and Fe 415 grade steel for both wall and 
footing.  Assume the longitudinal reinforcement of the wall to comprise 0.25 
percent of the gross cross-sectional area.  

14.7 Repeat Problem 14.6, considering the wall to be made of masonry (instead of 
reinforced concrete).  

14.8 Repeat Problem 14.6, considering a bending moment of 30 kNm/m 
(reversible) at the base of the wall, in addition to the axial load of 250 kN/m, 
under service loads.  

14.9 Repeat the design of the two-column combined footing of Example 14.7, 
considering the property line to be located 500 mm away from the centre of 
column C1.  
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14.10 Repeat the design of the two-column combined footing of Example 14.7, 
considering a beam-slab footing, and assuming that the allowable soil 
pressure is 180 kN/m2  (instead of 240 kN/m2).  

14.11 Design and detail the stem and base slab of the cantilever retaining wall of 
Example 14.8.  

14.12 Design a cantilever wall to retain earth with a backfill sloped at 20o to the 
horizontal.  The top of the wall is 5.5 m above the ground level, and the 
foundation depth may be taken as 1.2 m below ground level, with a safe 
bearing capacity of 120 kN/m2.  Assume that the backfill has a unit weight of 
17 kN/m2 and an angle of shearing resistance of 35o.  Further, assume a 
coefficient of friction between soil and concrete, μ = 0.55.  Use M 20 concrete 
and Fe 415 steel.  

14.13 Repeat Problem 14.12, considering the backfill to be level, with a surcharge, 
equivalent to an additional 2.52 m of the backfill.  

14.14 Suggest suitable proportions for a counterfort retaining wall to support 
difference in ground elevation of 9 m.  The foundation depth may be taken as 
1.5 m below ground level, with a safe bearing capacity of 160 kN/m2.  
Assume a level backfill with a unit weight of 16 kN/m3 and an angle of 
shearing resistance of 30o.  Assume a coefficient of friction, μ = 0.5, between 
soil and concrete.  Check the stability of the wall.  

14.15 Design and detail the various elements of the counterfort wall structure of 
Problem 14.14.  

REFERENCES 

14.1 — Explanatory Handbook on Indian Standard Code of Practice for Plain and 
Reinforced Concrete (IS 456:1978), Special Publication SP:24, Bureau of 
Indian Standards, New Delhi, 1983. 

14.2 Bowles, J.E., Foundations Analysis and Design, Third edition., McGraw-Hill 
Book Co., New York, 1982. 

14.3 Peck, R.R., Hanson, W.E., and Thornburn, T.H., Foundation Engineering, 
Second edition, John Wiley & Sons Inc., 1974. 

14.4 — Code of Practice for Structural Safety of Buildings: Shallow Foundations, 
IS:1904 (third revision), Bureau of Indian Standards, New Delhi, 1986. 

14.5 — Code of Practice for Design and Construction of Simple Spread 
Foundations, IS:1080 (First revision), Bureau of Indian Standards, New 
Delhi, 1980. 

14.6 ACI Committee 336, Suggested Design Procedures for Combined Footings 
and Mats, Journal ACI, Vol. 63, No. 10, Oct. 1966, pp 1041–1057. 

14.7 Kramisch, F. and Roberts, P., Simplified Design of Combined Footings, 
ASCE Journal, Soil Mechanics Div., Vol. 87, No.SM5, October 1961, pp 19–
44. 

14.8 Huntington, W.C., Earth Pressures and Retaining Walls, John Wiley, New 
York, 1968. 



750   REINFORCED  CONCRETE  DESIGN 

14.9 Fisher, G.P. and Mains, R.M., Sliding Stability of Retaining Walls, Civil 
Engineering, July 1952, pp 490. 

14.10 Wang, C–K. and Salmon, C.G., Reinforced Concrete Design, Fourth edition, 
Harper & Row, New York, 1985. 

14.11 — Code of Practice for Concrete Structures for the Storage of Liquids, Part 4: 
Design Tables, IS:3370 (Part 4) 904 (Third revision), Bureau of Indian 
Standards, New Delhi, 1967. 

 



           15 
     Good Detailing and 
   Construction Practices 

 

15.1   INTRODUCTION 

The objective of structural design and construction is to build safe, serviceable, 
economical, durable and aesthetic structures.  Analysis and design, together, 
comprise only one of the phases in the process of a building construction.  The 
elaborate computations involved in this phase become worthwhile only if the design 
is translated into a correspondingly high quality structure.  This necessitates good 
detailing and construction practices. 

In Chapter 3, it was explained that the primary aim of design by the Limit States 
Method (LSM) is to minimise the probability of failure to an acceptable low value.  
In this context, failure is defined as the attainment of a limit state.  Limit states imply 
those conditions whereby a structure ceases to fulfil the functions for which it has 
been designed.   The limit states include both ultimate limit states and serviceability 
limit states.  Thus, the term, failure, in general, includes both ultimate failure — local 
or overall — (exceeding the load carrying capacity, instability and buckling, 
overturning, sliding, fatigue and fracture, and progressive type of collapse) under 
factored loads, and serviceability failure (unacceptable deflections, vibrations, 
cracking, inadequate durability, permanent deformation, leakage, wetting, spalling of 
concrete, etc.) under service loads. 

It is rarely that buildings fail in a manner that can be classified as an ultimate limit 
state failure (collapse).  On the other hand, it is much too common for comfort that 
buildings (especially those of more recent construction) perform unsatisfactorily in 
their day-to-day normal service; i.e., fail to meet serviceability criteria. 

In the fifties and sixties, reinforced concrete buildings used to be designed by the 
working stress method (WSM) with relatively low permissible stresses (for example, 
5 MPa for 1:2:4 nominal mix concrete and 140 MPa for mild steel).  Moreover, many 
analysis and design methods used in those days employed approximations which 
‘erred on the safe side’.  Modern structures are designed with higher strength 
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materials, for higher stresses, and by the Limit States Method (including allowances 
for inelasticity and moment redistribution) with ‘partial safety factors’ lower than the 
‘factors of safety’ inherent in the WSM as practised in the early sixties.  Furthermore, 
the methods of analysis and design have become more sophisticated and accurate, 
and the conservatism in-built in approximate methods is no longer available.  As a 
result, these modern structures are comparatively taller and have longer spans, more 
slender members and thinner slabs and walls, and are built at a faster pace.  They are 
therefore, more flexible (in terms of deflections) and are more ‘crack prone’, as 
compared with the old structures, which used to be low in height, had thicker 
(stockier) members, were lightly stressed and were built at a slow pace.  Thus, the 
serviceability criteria assume far greater importance in modern structures.  It is in 
this context that this chapter is included in this book.  It is meant to draw the 
attention of engineers involved in all the stages of planning, design, detailing, 
fabrication and construction to these important aspects related to the performance of 
buildings. 

Detailing practices, construction practices, quality control in construction, 
building failures, causes and prevention of cracks/leakage in buildings, etc. are all 
large enough topics to write separate books and/or publish journals on each of them, 
as indeed have been done (Ref. 15.1 to 15.8).  Nor are all these topics strictly within 
the scope of this book.  As such, an attempt is made here only to draw attention to 
some of the major and most common causes of failure pertaining to the design (and 
construction) of reinforced concrete buildings.  These are by no means exhaustive.  
For a more comprehensive coverage, reference may be made to Ref. 15.1–15.11. 

In this context it is worthwhile to note that, in most cases, the cost of the structure 
itself forms only a small part of the total cost of a project.  Further, the cost of the 
concrete and reinforcement forms only a fraction of the cost of the structure.  Hence, 
the designer would do well to remember that: 

aiming for minimum quantities of concrete and reinforcement (based on 
strength criteria alone) may not lead to significant cost reduction, and may 
well result in unforeseen long-term cost or failure related to serviceability 
criteria. 

15.1.1   Serviceability Failures 

The commonly observed shortcomings in the context of serviceability requirements 
are: 

• leakage from roofs and floors, particularly at construction / expansion joints, 
junctions, etc.; 

• wetting of ceilings, walls (especially around toilet areas), leading to 
dampness, discoloration, growth of algae and moss on surfaces, growth of 
vegetation in fissures in walls and around drain pipes, sunshades, ledges, etc. 

• cracking in slabs, beams, walls, etc.; 
• poor drainage and ponding of water on roof slabs, sunshades, bathrooms, 

open staircase steps, etc.; 
• corrosion of reinforcement and spalling of concrete; 
• excessive deflections of slabs, beams, etc. 
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Many of the above effects are interactive.  For example, large deflections of roof 
slabs can lead to ponding of rain water as well as cracking on the top side in negative 
moment regions, which in turn can lead to wetting and leakage, and also corrosion of 
reinforcement. 

15.1.2   Reasons for Building Failures 

There are many causes that could lead to the failure (ultimate and/or serviceability) 
of a structure.  Some of these, which must be of concern to the design and 
construction engineers are listed below: 

Failure during 
construction or soon after Failure a long time after construction 

• Deficiency in design / shift 
from actual design; 

• Failure of a primary load carrying 
member by accident;  

• Poor detailing; • Change in use (change of structural 
arrangement) or overloading. 

• Poor quality materials; • Unforeseen disasters like severe 
earthquake, bomb blast, etc. 

• Poor quality construction. • Deterioration arising out of poor 
quality materials, construction and/or 
lack of repair and maintenance. 

• Poor 
formwork/scaffolding 

• Exposure to adverse environment, not 
considered in original design 

15.1.3   Structural Integrity 

Some causes for failures long after completion of construction are identified in the 
above section.  Most of these causes such as accidents, overloading and disasters are 
not directly related to either the design or the construction.  However, a related 
design consideration is the need for the structure to have structural integrity.  A 
structure is said to have structural integrity if it is able to withstand localised damage 
or failure of a structural member, caused by any unforeseen or abnormal events (that 
may reasonably be expected) without spread of damage or collapse to a large part of 
the structure.  In other words, the failure of one element should not lead to a 
progressive collapse or incremental collapse of the rest of the structure. 

A typical example of a progressive type of collapse is the failure of a flat plate 
structure originating from the punching shear failure at one slab-column connection 
(in the absence of special reinforcement for structural integrity at such connections; 
refer Section 11.7, Fig. 11.40).  Punching shear failure at one column can lead to 
increased shear and moment at an adjacent column connection, causing it to fail.  
Such progressive failure of slab-column joints may lead to the slab falling on to the 
slab below, causing it to fail as well, and so on vertically down the building.  
Examples of such progressive collapse are reviewed in Refs. 15.12 and 15.13. 
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In design, consideration should be given to the integrity of the overall structural 
system to minimise the likelihood of progressive collapse.  This involves a careful 
selection of the structural system, understanding its behaviour under load and 
possible failure modes and ensuring a robust and stable design with sufficient 
redundancy and alternative load paths.  Most continuously reinforced cast-in-place 
concrete structures designed and detailed in accordance with codes will generally 
possess a satisfactory level of structural integrity.  Special provisions for structural 
integrity may be required for two-way flat slabs at slab-column connections, precast 
concrete structures, unusual structural systems, and structures exposed to severe 
loads such as vehicle impact, fire accident or explosion. 

15.2   DESIGN AND DETAILING PRACTICES 

It is very rare that a building fails as a result of a major design flaw.  The design 
codes are fairly conservative, if not up to date, as far as reinforced concrete design is 
concerned.  The engineering curriculum is also reasonably up to date in this regard.  
Moreover, highly sophisticated and accurate softwares are now available for 
computer aided analysis, and also for design and drafting.  However, in using these 
softwares, a word of caution is appropriate.  The outputs of these programs are only 
as good as the inputs are!  Hence they should only be used by persons who have a 
full understanding of what the program does, as well as of the properties of materials, 
structural behaviour, failure modes, structural system employed, overall deformation 
patterns, compatibility conditions, load transmission paths to supports, and possible 
weak links, if any.  Furthermore, it should be possible to identify the critical and 
primary load carrying elements, and to perform an approximate manual check on the 
stress resultants and design resistance of such members, in order to avoid gross 
errors.  For example, the use of appropriate moment coefficients applied to a 
simplified substitute frame will yield a rough estimate of moments [refer Chapter 9].  
Similarly, an approximate estimation of the ultimate moment of resistance of a 
beam/slab section can be obtained as (0.87 fy Ast)(0.9d). 

As mentioned earlier, the analysis of structures for stress resultants and the design 
of individual elements (critical sections of slabs, beams and columns) for maximum 
load effects (bending moment, shear and torsion, and axial force) are done, in 
general, fairly competently.  However, the attention given to the combining of these 
elements together to form the whole structure is generally found wanting both in the 
engineering curriculum and in many design offices.  This includes the attention given 
to such important details as: termination, extending and bending of bars; anchorage 
and development; stirrup anchorage; splices; construction details at connections 
(slab-beam, beam-column, rigid frame corners, etc.); provision of 
continuity /discontinuity at junctions of members; construction sequencing and 
reinforcement placement to suit; deflection calculations (including long-term 
deflections) and control; crack control; special cases such as upturned (inverted) 
beams, edge and spandrel beams, cantilevered members; cover, bar support and 
reinforcement protection; durability; recognition of and allowance for long-term 
effects of creep, shrinkage and temperature; details of control/construction/expansion 
joints; structures needing special procedures (tanks, chimneys, etc.). 
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The practical work in concrete Laboratory Courses in most universities is also 
found wanting.  Experiments and assignments are mostly limited to the standard tests 
on cement, aggregate and hardened concrete.  Applied problems aimed at the 
understanding of concrete technology (influence of various parameters, and concrete 
mix design) and fabrication and testing of reinforced concrete elements (design-
fabricate-cast-cure-test-analyse type assignments) are seldom included in the 
laboratory courses. 

15.2.1   Reinforcement Layout 

Heavy live loads and lack of regularity in framing (widely differing adjoining spans, 
variation in column sizes and spacings, fluctuations in relative stiffnesses, etc.) can 
move the zone of contraflexure considerably, thereby affecting the termination, 
extension and bending of bars considerably.  Such lack of regularity could 
necessitate continuing of top bars over the full length of a short span located between 
two long ones (common in school buildings, hotels, etc. with narrow central 
corridors), or may make it impracticable to bend any bar at all, or conversely, may 
make it possible to bend up considerably more than half the bottom bars in a heavy 
girder, anchoring and terminating them in a compression zone, or may necessitate 
provision of stirrups for the full length of a member.  Admittedly, considerably 
improved design skill is required in delineating the reinforcement throughout the 
length of members than in selecting top and bottom bars for maximum moments. 

Concrete being weak in tension, reinforcement is provided to take care of all 
tensions envisioned by the designer, whether direct/flexural (main reinforcement) or 
diagonal (stirrups).  In addition, suitable reinforcement must be provided across any 
potential crack.  In particular, attention should be paid to locations at which tensile 
stresses, not ordinarily calculated, exist — such as due to shrinkage, settlement, 
temperature and stress concentration effects.  Cracking due to thermal and shrinkage 
movements can be reduced by making provision in the design and construction of 
structures for unrestrained movement of parts, wherever feasible, by introducing 
movement joints (expansion joints, control joints and slip joints).  Where provision 
of movement joints is not structurally feasible (as in rigid frames, shell roofs), 
thermal stresses have to be taken into account at the structural design itself.  Even 
where joints for movement are provided, some amount of restraint to movement due 
to bond and friction is unavoidable.  In cases where the design reinforcement is only 
in one direction (as in one-way slabs, cantilevered slabs, etc.) cracks could develop 
across the perpendicular direction due to contraction and shrinkage in that direction, 
and it is necessary to provide some reinforcement (variously called as ‘distributor 
reinforcement’ or ‘temperature reinforcement’) in the direction perpendicular to the 
main reinforcement.  In case of members exposed to the sun (sunshades, fins, 
canopies, balconies, roof slab without adequate insulation cover, etc.), the 
“minimum” reinforcement specified by the Code should be increased by 50 to 100 
percent, depending upon the severity of exposure, size of member and local 
conditions [Ref. 15.5].  Reference may also be made to Section 5.2.2, with regard to 
the need for side face reinforcement to control cracking in large unreinforced 
exposed faces of concrete members.  
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15.2.2   Design Drawings 

Much time and expense can be saved, and costly mistakes avoided, if simple, clear 
and complete drawings are prepared.  More than serving as a graphic delineation of a 
structure, a drawing acts as a definite order to workmen to perform certain operations 
in a specified manner.  The drawing also serves as a record of some of the important 
assumptions made in the design (which, for example, can reveal whether or not 
future expansion of the structure is possible at a later date).  Engineering drawings 
prepared by the designer should specify grades of concrete and steel, live load, 
dimensions, reinforcement, lap lengths, concrete cover, and all other information 
needed for detailing the reinforcement, building the forms, placing the reinforcement 
and placing the concrete.  The designer has full data on the assumptions made, the 
computations, moment diagrams and the whole philosophy of structural design, and 
it is his responsibility to define the design requirements by way of anchorages, laps, 
bends, splices and similar details.  Indeed, it is only he who can supply such 
information to the detailers, fabricators and construction personnel.  Hence, design 
drawings must be complete to the extent that every bit of information regarding the 
size and arrangement of concrete members, and the size, positioning and detailing of 
reinforcing bars is completely covered either by a drawing, description, diagram, 
note, rule, or reference to a standard manual. 

Notes and statements should be clear and unambiguous.  A note “16 bars 2 ways 2 
faces” is highly ambiguous, as it could mean 16 bars each way each face (total 64) or 
4 bars each way each face (total 16), or indeed almost anything in between.  Instead, 
the note should have been made explicit, giving the number each way in each face.  
Similarly, descriptions are best given in the imperative: “Do this”, “Bend these bars”, 
rather than “This may be done”, or “These bars may be bent”.  Graphical 
representations (true-scale elevations, sections, etc.) are preferable to complicated 
notes and descriptions, to show precisely what is wanted; they are also, to a 
considerable extent, self-checking. 

While, with uniform loads and equal spans, it may be satisfactory to bend bars at 
the quarter-point and to extend them to the 3/10th point as in Fig. 5.5 (following 
standard practices/manuals for such cases), this is not safe as a general practice for all 
cases.  Hence, the drawing should make it clear, by way of a separate section, 
indicating the departure from standard practice. 

15.2.3   Construction Details at Connections and Special Situations 

Frequently, locations and members needing special detailing considerations are 
encountered.  These include locations of abrupt changes in section size and other 
sudden discontinuities, edge beams, inverted beams, odd-shaped/sized members, 
connections, etc.  A few such cases are described below.  In many such instances, a 
useful procedure for design and/or detailing is to adopt the strut-and-tie model [see 
Section 17.2].  
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Offset Columns 

When a column in a particular storey is smaller than the one below, some of the 
vertical bars from below may have to be offset to come within the column above, or 
dowel splices must be used [Fig. 15.1(a)].   

The slope of the inclined portion should not exceed 1 in 6.  Where column 
verticals are offset, additional ties shall be provided and placed close to the point of 
bend in order to carry the transverse force generated due to the change of direction at 
the bend.  When the offset between column faces exceeds 75 mm, the vertical bars in 
the column below shall be terminated at the floor slab, and splicing of column bars 
by dowels may be necessary [Fig. 15.1(b)].  Dowels may also be necessary when the 
placing of part of the structure is delayed, and also between various units of 
structures (such as footings and columns).  Dowels should, in general, be of the same 
size and grade as the bars joined, and should be of sufficient length to splice with the 
main bars. 

When column bars are spliced, additional ties shall be provided at and near the 
ends of spliced bars, to provide confinement to the highly stressed concrete in the 
regions of the bar ends. 

Members with a Break in Direction 

Whenever there is a change of direction in a main reinforcing bar, a resultant radial 
force is generated at the location of the kink, as shown in Fig. 15.2(a).  If the radial 
force acts outwards, as is the case in Fig. 15.2(a), this force tends to push out the 
cover concrete causing splitting.  Moreover, as a straight length (such as AC) is 
shorter than the bent length (ABC) of the bar, the spalling will lead to a relieving of 
the bar stress resulting in lowering of the resistance of the section, and possible 
failure.  When the angular change is small (say < 15o) the radial force resultant (R) is 
small and can be carried and transferred to the compression zone by providing 
adequate number of stirrups at the location of the kink and on either side at close 
spacing as shown [Fig. 15.2(b)]. 

When the angular change is larger, the reinforcement from either side should be 
continued straight and anchored to develop the full design stress [see Fig. 15.3].  
Note that in Fig. 15.3 the bar A, which cannot get a straight length of Ld beyond the 
location of the kink in the beam face is continued on the compression face and 
anchored there, so that no outward splitting force is developed due to the bend in this 
bar.  Examples are junction of stairs and landing‡ , inside corners of rigid frames 
[Fig. 15.4(a)] and where the soffit of beam forms an angle as in a gable bent 
[Fig. 15.4(b)]. 

                                                           
‡ This detail is indicated in Fig. 12.4(a) of Chapter 12. 
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Fig. 15.1  Some construction details at connections 
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Fig. 15.2  Member with a change in direction in flexural stresses (small angle) 

Ld

A

 

Fig. 15.3  Large directional change in flexural stresses 

inside bars to be
extended separately

(a)

Ld (as required)

bottom bars to be
extended separately

(b)  

Fig. 15.4  Reentrant corners with tension bars 

A similar situation exists when the internal compression force changes direction in 
such a way that the resultant force acts outward [Fig. 15.5(a)].  In the example 
shown, a breaking away of the flange can be prevented by transverse reinforcement 
tying the flange to the web of the beam [Fig. 15.5(b)]. 

Construction and bar placing details of the corner connection of a rigid frame are 
shown in Fig 15.1(c).  In detailing such connections, care must be taken particularly 
in providing full continuity around as large a uniform radius as possible in splicing 
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the top bars from the girder to the outside bars in the column.  Rigid corner 
connections of beams to columns often require closed stirrups or ties around the bend 
[see also Section 15.2.4 on Rigid Frame Joints].  The designer must provide complete 
information showing the radius of bend, location and dimensions of the lap splices 
(or other type of splices) used and stirrup details. 

R

R
C

C

C C

(a) (b)  
Fig. 15.5  Change in direction of compressive stresses 

(a) stirrup forming closed tie

optional to 90o hook
closed by standard 90o stirrup

hook, extension = 6 φ

minimum 10 φ bars.
Continuous, except when
spliced to other top steel.
These bars must be same
size as stirrups if stirrups

are larger than 10 φall stirrups provided in edge
beams must be closed

24 φ
(300 min)

corner bars must be properly
anchored at supports

φ

construction joint where
required by designer

minimum 10 φ bars.
Continuous except when
spliced to other top steel

corner bars must be properly
anchored at supports

straight bar splice; lap length
as specified by designer

two–piece stirrup,
forming closed tie

(b) two-piece stirrup forming closed tie  

Fig. 15.6  Typical edge and spandrel beam details 
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Edge Beams 

In edge and spandrel beams, stirrups must be of the closed type and at least one 
longitudinal bar should be located at each corner of the beam section.  Typical details 
are shown, for normal and inverted edge/spandrel beams in Fig. 15.6(a) and (b) 
respectively.  For easier placing of the longitudinal bars in an inverted beam, two-
piece closed stirrups can also be used as shown in Fig. 15.6(b). 

Corners of Walls 

In concrete walls, horizontal reinforcement may be required to resist moment, shear 
or temperature and shrinkage effects.  All such bars in both faces of wall must be 
sufficiently extended past a corner or intersection to satisfy development 
requirements.  Typical details are shown in Fig. 15.7 for resistance against moment 
(inward and outward), with the reinforcement from the appropriate faces anchored. 

not less than 12 φ, 300 mm or
50% of lap length specified

not less than 24 φ, 300 mm or
50% of lap length specified

load face

(a) (b)  

Fig. 15.7  Typical corner details in walls 

Special Conditions 

For special or unusual conditions, adequate details should be shown for proper 
placing of reinforcement, as the average steel setter cannot be expected to understand 
engineering principles.  Examples are cantilevers and continuous footings, in which 
the reinforcement is in the opposite side from the one to which the steel setter is 
accustomed. 

There are situations where the embedment length available for end anchorage of 
bars is insufficient to develop the design stress in the bar through bond.  Examples 
include corbels, deep beams, small size footings, precast beams, etc.  In such cases, 
special devices such as welded cross bars, end plates [Fig. 15.8] must be provided. 
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end plate
(welded to bars)

angle end
plate

(welded)
cross bar
(welded)

 

Fig. 15.8  Special anchorage devices 

Intersection of Members 

Congestion of steel should be avoided at locations where members intersect, such as 
intersection of (secondary) beams with girder (primary beam) and girders with 
column.  In the interior beam-column joint, generally there is overcrowding of the 
negative (top) reinforcement in the beam if they are all placed within the beam width 
[Fig. 15.9(a)].  This usually interferes with proper placing and compaction of the 
concrete at the joint.  The bond developed in these top reinforcement also is 
relatively inferior.  The spreading of the top reinforcement into the adjoining slab, 
preferably using smaller diameter bars, [Fig. 15.9(b)] has been shown to reduce the 
crack-widths in these beams considerably [Ref. 15.12].  This has the added benefit 
that the effective depth is slightly increased and the placement and compaction of 
concrete is facilitated better. 

(b)(a)  
Fig. 15.9  Negative moment reinforcement at beam-column joint 

At the intersection of a beam and girder, the beam bars should be placed at a 
different elevation than those in the girder so as to avoid interference.  The relative 
positions of the bars must be in accordance with the load transfer order assumed in 
design.  Thus the beam reinforcement must come over the girder reinforcement at the 
intersection [Fig. 15.10].  In addition, adequate hanging up bars (suspender stirrups) 
should be provided in both members in the joint zone as given in Section 6.10 [see 
also Fig. 6.15].  Similarly, at slab-beam junctions, the bottom and top bars of the slab 
must be draped over the bottom and top bars in beam respectively.  When slabs frame 
flush with the bottom of inverted beams or hanger walls, special stirrup hanger 
reinforcement shall be provided [see also Section 6.5 and Figs 6.7 and 15.4]. 
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slab

primary beam (girder) secondary beam

bars of secondary
beam to rest on bars of

primary beam

 
Fig. 15.10  Bars of secondary beam to be placed over bars of primary beam, with 

suspender stirrups enclosing primary beam bars 

15.2.4   Beam and Column Joints (Rigid Frame Joints) 

Joints of beams and columns in rigid-jointed frames are critical locations requiring 
careful design and detailing.  Such joints should have adequate strength to enable the 
development, at the joint face, of the full design strengths (and plastic hinges with 
adequate ductility, if required by design) in the members framing into each joint 
under the most adverse loading pattern, without distress in the joint itself.  This type 
of rigid connection occurs in rigid jointed multistorey frames, portal frames, box 
culverts, at the base of cantilever retaining walls, etc. 
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Fig. 15.11  Knee joint subjected to ‘closing’ moment 
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A simple example of a rigid beam-column joint, for which the design and 
detailing considerations can be explained with relative ease, is the corner joint of a 
portal frame, usually called a “knee joint” [Fig. 15.11].  The joint, to be rigid, must 
have full continuity between the two members.  The main flexural reinforcement in 
the joint zone undergoes a change of direction, and as a result transverse forces are 
developed, as in the cases considered in Fig. 15.11.  There can be three types of 
stress patterns to which the joint zone is subjected to, depending on the nature of 
loading on the structure itself, namely:  

(a) where the moment at the joint tends to ‘close’ the knee i.e., hogging moment 
causing tension in the outer fibres [Fig. 15.11],  

(b) where the moment tends to “open” the knee [Fig. 15.12] and  
(c) where the moment is subject to reversal as in the case of seismic loading. 

The nature of induced forces in the joint zone in case (a) is shown in Fig. 15.11(b) 
and (c).  The diagonal resultant thrust tends to develop splitting cracks along the 
diagonal ac.  A significant portion (ae) of the diagonal ac will be under tensile stress 
and liable to crack, as shown in Fig. 15.11(c).  It may be noted that the joint is 
usually subjected to axial forces and shearing forces, in addition to the bending 
moment.  For satisfactory performance in this case, the outer tension bars should be 
continuous around the corner.  The inner bars are in compression; however, the 
concrete alone may be adequate to carry the compressive forces here.  These bars are 
better continued straight, as shown, rather than being made continuous by bending 
around near the re-entrant corner.  In case these bars are also accounted as 
contributing part of the required compressive force, they should be continued straight 
and anchored to develop the design stress at the joint faces along corner c.  
Furthermore, the diagonal compression along ac and the possible diagonal cracking 
along ae should be countered.  When the members are of small size (as in the case of 
slab-wall joint or the corner of a small size lightly reinforced and thin walled box 
culvert), no special provisions may be needed to carry the diagonal compression and 
tension along diagonals ac and bd.  However, in large size or heavier reinforced 
members, the diagonal compression may be resisted, and the diagonal cracking 
controlled, by secondary reinforcements placed along diagonal directions as shown in 
Fig. 15.11(d).  An alternative arrangement is to place these reinforcement 
orthogonally as in Fig. 15.11(e).  This arrangement is particularly suited for cases of 
moment reversals.  

The case of a knee joint subjected to ‘opening’ moment is shown in Fig. 15.12.  In 
general this loading case (moment tending to open the knee joint) is more critical 
than the case of moment tending to ‘close’ the knee joint [case (a) discussed in 
Fig.15.11].  The nature of stresses in the joint and potential crack locations are shown 
in Fig. 15.12(b) and (c).  The need to provide reinforcements along diagonal ac to 
carry the resultant tension in this direction and parallel to diagonal bd closer to the 
interior corner c, to control flexural cracking are self evident.  The concrete near the 
corner a is stress-free and is likely to spall off, being pushed out by the resultant 
thrust along ca, and nominal reinforcement is required to control such cracking.  
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Suggested reinforcing details [Ref. 15.11] for large size joints of type (b) are shown 
in Fig. 15.12(d). 
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Fig. 15.12  Knee joint subjected to ‘opening’ moment 

When the moment is subject to reversals, the concrete in the joint zone is likely to 
crack along both diagonals and significant amounts of secondary reinforcements are 
required along both diagonals.  For this situation it is more convenient to provide an 
orthogonal mesh of reinforcement (horizontal and vertical) in the joint zone in the 
form of closed ties.  These will resist the horizontal and vertical components of the 
tensile forces along the diagonal.  A model for computing the area of the horizontal 
and vertical secondary steel (stirrups) required is suggested in Ref. 15.11. 

When the joint is subject to high intensity reversed loading for several cycles, the 
concrete in the joint is likely to be cracked along both principal directions, and it is 
recommended that the resistance offered by the concrete should not be taken into 
account. 

In multi-storey building frames the joint behaviour is more complex as up to four 
beams may be framing into a joint with columns above and below at an interior joint.  
When both beams framing into a joint from opposite directions reach their ultimate 
capacity and bend in a reverse curvature mode, the diagonal compressive and tensile 
stresses induced in the joint panel may be very high.  Moreover, the beam/column 
reinforcement may have to develop full anchorage within the joint zone, which may 
be difficult if the concrete is severely cracked, parallel to both diagonal directions.  
The joint shear may also be twice as high as that in an exterior joint with beam only 
on one side.  The diagonal compressive stresses and potential diagonal cracking 
would require an orthogonal mesh of well anchored horizontal and vertical 
reinforcement ties in the joint region.  Furthermore, the concrete in the joint core 
should be laterally confined.  Effective lateral confinement would require cross ties 
between the legs of the orthogonal ties to prevent the lateral bulging of the concrete 
in the core. 

15.2.5   Construction Joints 

It is desirable to indicate at least some of the more obvious construction joints so that 
all the trades are working along the same line.  This also facilitates the designer to 
indicate shouldered joints [such as in rigid frame bents — see Fig. 15.1(c)], 
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reinforced to take moment, shear and thrust.  The lapping and splicing of bars should 
be illustrated clearly, and not just schematically (indicating the amount of steel 
required at a few points). 

15.2.6   Bar Supports and Cover 

It is essential to have the reinforcing steel accurately located in the forms and firmly 
held in place before and during the placing of concrete by means of supports and 
spacers.  Such supports should be adequate to prevent displacement during the course 
of construction and to keep the bars at the proper distance (cover) from the forms.  In 
countries such as USA and Canada, standard bar supports in the form of individual or 
continuous metal bar chairs (plain, galvanised, or plastic protected) are commercially 
available and usually specified, although precast concrete blocks are also used.  
However, in India, while the recommended practice is to use precast mortar blocks 
(of thickness equal to the specified cover) for bottom bars and individual (locally 
fabricated) metal chairs for top/bent bars, actual site practices vary considerably.  It is 
fairly common to see bottom bars being supported by just slipping in pieces of coarse 
aggregate between the bar and the formwork.  Needless to say, these angular 
aggregate pieces, precariously poised between the formwork and the round steel bars, 
slip out easily during placing of concrete (if not earlier).  The result is that the bar 
often comes to rest on the formwork with little or no cover.  When the formwork is 
removed, it is a sorry sight to see the bars exposed from underneath slabs and beams 
at several places!  This gets covered up in plaster soon enough to give an appearance 
that all is well (well, at least for the time being!).  However, it is not long before the 
poorly protected reinforcing bars get corroded, and in this process increase in 
volume, setting up internal bursting stresses in the concrete.  In course of time, this 
causes first cracks in line with the reinforcement, and later spalling of the concrete 
dislodging the plaster and whatever little concrete cover there is, thereby fully 
exposing the corroded bars.  The seriousness of the resulting damage is obvious to 
all. 

In the case of top bars, locally made individual high chairs are used.  However, 
often these are few and far between, and at times are too flexible [Fig. 15.13].  In 
such cases, with the unskilled workmen frequently stepping on the top bars, the 
chairs may get bent (sag) or bent bars may get turned sideways, in either case 
resulting in a reduced effective depth (particularly so in slabs) in the negative 
moment regions.  A reduced depth in this high moment region is likely to lead to 
undesirable cracking on the top face of slabs near the support (continuous) regions.  
This is one reason for the wetting visible underneath roof slabs where they join 
supporting beams.  The multiple and cumulative effects of reduced effective depth at 
support on deflections, cracking, wetting, leakage, and corrosion of reinforcement 
can be easily understood. 

Inadequate concrete cover for steel bars is a very commonly observed 
construction error in India.  Much more attention needs to be paid for providing 
adequate cover and proper bar supports.  Significantly, the recent (2000) revision of 
the Code has enhanced the cover requirements for reinforcements, including links. 
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bar at top of slab
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high chair  

Fig. 15.13  Inadequate rigidity of a steel chair 

15.2.7   Deflection Control 

In Section 15.1, it was explained that modern designs result in relatively slender 
members with associated larger deflections.  Creep and shrinkage causes deflections 
to increase with age, and such increases may be as much as 2 to 3 times the initial 
elastic deflections.  The possible adverse effects of large deflections on a continuous 
roof slab is schematically shown in Fig. 15.14. 

cracking spalling of plaster

wetting, leakage,
corrosion of steelponding of water

 

Fig. 15.14  Adverse effects of large deflections on a continuous roof slab 

Beam/slab deflections can also cause cracking in other elements (such as walls) 
supported by it.  This points to the need for deflection calculations and control.  
While for normal slabs and beams it is enough to control deflections indirectly by 
limiting span/depth ratios [see Section 5.3], for members which are heavily loaded or 
exposed to adverse environmental conditions, it is necessary to calculate initial and 
long-term deflections and to ensure that these are within limits.  In large spans where 
significant deflections can be anticipated, it is desirable to provide initial upward 
camber in floor slab/beam so as to offset deflection, especially in roof slabs and 
cantilevered spans. 

15.3   MATERIALS AND CONSTRUCTION PRACTICES 

Strict adherence to codes and specifications, use of good quality materials, 
engagement of trained and skilled masons and labour, and good workmanship under 
strict, honest and competent supervision are prerequisites for avoiding malfunction 
and failures, and for ensuring high quality structures.  Regular materials testing, 
selection of competent contractors, supervisors and construction engineers as well as 
periodic inspection by regulatory agencies are needed for good quality construction. 
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Poor quality of construction materials is a real problem in India.  Periodic testing 
of building materials is seldom resorted to in most construction sites.  Adulteration of 
cement has been reported from the sites of even major hydro-electric projects 
undertaken by large public sector organisations.  Reinforcing steel is being supplied 
by many rerolling mills in the small scale sector, which do not have in-house testing 
and quality control facilities, with the result that there is little guarantee about the 
strength, ductility, uniformity, and dimensional tolerances of such bars.  All these 
underscore the need for periodic testing and quality control of materials used for 
construction. 

The major reason for poor performance of reinforced concrete structures is the 
poor quality of construction.  This is apparent if one realises that with the same 
quantity of cement and aggregate, both very poor quality and very high quality 
concrete can be obtained, depending on the water-cement ratio used and degree of 
control exercised.  With reduction in w/c ratio, nearly all the engineering properties 
of concrete (strength, modulus of elasticity, durability, reduced shrinkage and creep, 
impermeability, etc.) improve.  Reduction in creep and shrinkage also results in 
reduced long-term curvatures and deflections due to them, and reduced shrinkage 
cracks in concrete.  Yet, most masons routinely use excess water in the mix to save 
time and labour on compaction and screeding; and this could be a major contributing 
factor to every one of the serviceability failures listed in Section 15.1.  It being the 
most important single factor influencing concrete quality, the quantity of water used 
in the mix should be the minimum, consistent with requirements of laying and proper 
compaction.  To enable the use of a dry mix (low w/c ratio) and yet get good 
compaction, all structural concrete should be compacted using vibrators.  There are 
other requirements for good quality concrete like grading and cleanliness of 
aggregates, weight-batching, thorough mixing, adequate curing, etc., and for more 
details on these  and other such requirements, reference may be made to books on 
concrete technology [Ref. 2.1–2.6]. 

In this context, it is worth noting that leakage through concrete slabs is a very 
frequent problem in many parts of the country.  Such leakages, if restricted to small 
areas, can be repaired.  However, repairs of a poorly built roof slab with extensive 
leakage spread over large areas is virtually impossible†.  Therefore, it is prudent and 
it pays to do the initial construction meticulously. 

Yet another common mistake seen usually in sites of small projects relates to too 
flimsy and inadequately supported formwork.  Such forms deflect and vibrate as 
workmen move about over it.  Deflection and vibration during periods of placing, 
setting and early curing of concrete can result in cracks developing in the concrete.  
Formwork supports are also frequently seen to be infirm, unstable or yielding. 

Other common constructions errors include inadequate curing, improper levels 
and slopes, inadequate drainage arrangements, poor bonding between hardened and 

                                                           
† Note: Various manufactures and propritery agencies advertise various methods such as tar 
felting, special plastering with chemical/adhesive cements, etc., for repairing leaky slabs.  
These may work for small areas and for a short period for larger areas, but do not offer a 
permanent solution. 
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freshly laid concrete at construction points, poorly constructed expansion joints, 
superficial filling of holes cut for plumbing/electrification fixtures, etc. 

Reference has been made here to deterioration arising out of poor quality 
materials and construction.  Associated with this is the need for timely repair and 
maintenance.  Apart from regular and routine inspection and maintenance, every 
concrete structure should undergo a special inspection and associated special repairs 
once in 10–15 years. 

15.4   SUMMARY 

In this chapter, an attempt has been made to draw attention to some of the essential 
precautions to be taken and to a few of the very common mistakes with regard to the 
design, detailing and construction of concrete structures.  It would be desirable for 
designers to develop a list of “do’s and don’ts” based on codes and specifications, 
manuals such as Ref. 10.1–10.6, and their own experiences and observations.  A 
partial list of such guidelines is given below: 

1. It should be ensured (to the extent possible) that the materials specified can be 
readily obtained in the size, length and grade required.  The quality of materials 
should be ensured by regular materials testing. 

2. Apart from strength and durability considerations, the specification for concrete 
should also be decided so as to obtain minimum of drying shrinkage and creep.  

3. Concrete mix design should aim at obtaining durable concrete of required 
strength through proper grading of aggregates, control of w/c ratio, thorough 
mixing, proper compaction and adequate curing.  

4. The quantity of water used in concrete should be the minimum practicable, 
consistent with requirements for proper placement and compaction.  

5. Consistent with requirements of economy, the integrity of the structure should 
be improved by building in structural redundancy in the framing system, 
reinforcement placement, etc. 

6. Flexural members (slabs and beams) should have adequate stiffness so as to 
limit deflections.  

7. In members liable to undergo large deflections, upward camber may be 
provided to offset the deflections.  

8. Reinforcement design and detailing should take care of all tensions in concrete, 
whether direct, flexural, diagonal or due to shrinkage and temperature.  

9. Suitable reinforcement should be provided across all potential cracks in 
concrete, whatever the cause.  

10. To minimise shrinkage and temperature stresses, wherever feasible, provision 
may be made for unrestricted movements of parts, by introducing 
control/expansion/slip  joints.  

11. Concrete slabs in exposed situations, such as sunshades, balconies, canopies, 
open verandas, etc. should be provided with adequate quantities of temperature 
reinforcement in order to prevent cracks due to shrinkage and contraction 

12. Adequate development length and/or anchorage should be provided so that the 
computed stress at every section of a reinforcing bar is fully developed on both 
sides. 
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13. It should be ensured that hooked and bent bars can be placed conveniently and 
have adequate concrete protection. 

14. Congestion of bars should be avoided at points where members intersect, and it 
should be ensured that all the reinforcement required can be properly placed.  

15. When a member has a break in its direction so that the reinforcement in tension 
tends to separate from the body of concrete, special anchorage should be 
provided and properly detailed.  

16. When slabs frame flush with bottom of inverted beams or when a load is 
applied to the side of a member through brackets, ledges or cross beams, special 
stirrup hanger reinforcement should be provided.  

17. Liberal concrete cover for reinforcement should be provided in general, and 
particularly in humid, wet or aggressive environments.  The desired cover 
should be ensured in actual construction with proper cover blocks / bar 
supports. 

18. Complete and accurate dimensions should be specified in engineering drawings.  
The notations must be unambiguous and not liable to be misinterpreted. 

19. The lengths of laps, points of bend and extension of bars should be specified 
clearly in drawings.  

20. Details of corners, intersection of members, control and construction / 
expansion joints and similar special locations should be drawn.  

21. For special and unusual conditions, adequate details should be shown in 
drawings so as to ensure proper placing of reinforcement [Examples: 
cantilevers, continuous footings, hinged base of rigid frames, etc.] 

22. Proper bar supports should be provided to ensure that the reinforcing bars are 
accurately and firmly held in place before and during concreting, and thus the 
required concrete cover and effective depths are obtained.  

23. Compaction of concrete should be done using vibrators (wherever feasible), 
enabling the use of low w/c ratio and ensuring better strength and durability. 

24. Formwork should be built firmly and with rigid supports and without gaps and 
holes through which the cement paste can escape.  

25. Curing of the concrete should be done for durations as recommended by the 
Code, and should be terminated gradually to prevent quick drying. 

26. In case of members which are liable to large deflections (Examples: cantilever 
beams and slabs), the removal of centering should be delayed as much as 
possible so that the concrete attains sufficient strength. 

27. Adequate slopes for roofs, bathroom floors, etc., should be provided to ensure 
quick drainage. 

REVIEW QUESTIONS 

15.1 List the areas in which the basic Reinforced Concrete Design course content in 
your university is deficient. 

15.2 List ten most common construction mistakes in the order of their importance. 
15.3 What are the factors in concrete-making that influence creep and shrinkage of 

the concrete ? 
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15.4 What are the precautions to be taken (a) at the design stage, (b) at the detailing 
stage and (c) at the construction stage for ensuring a high quality structure ? 

15.5 What are the types of serviceability failures that can occur ? 
15.6 Describe a ‘serviceability failure’ that you have observed in a structure you are 

familiar with, and analyse its causes and effects and suggest remedial/repair 
measures.  

15.7 Explain the concept of ‘structural integrity’. 
15.8 In a three-hour long training programme to be given to masons engaged in 

construction of concrete structures, list out the important topics that you would 
include.  

15.9 Make a literature survey and write a ‘state-of-the-art’ report on 
 (a) Building failure studies; 
 (b) Deflection calculations and control in concrete structures; 
 (c) Cracking and control in concrete structures; and 
 (d) Leakage and control in concrete buildings. 
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           16 
     Special Provisions for 
  Earthquake-Resistant Design 

 

16.1   INTRODUCTION 

During an earthquake, ground motions occur in a random fashion, both horizontally 
and vertically, in all directions radiating from the epicentre.  The ground 
accelerations cause structures to vibrate and induce inertial forces on them.  Hence, 
structures in such locations need to be suitably designed and detailed to ensure 
stability, strength and serviceability with acceptable levels of safety under seismic 
effects.  The resultant inertial force at any floor level† depends on the mass at the 
floor level and also the height above the foundation.  The inertial forces usually 
follow a parabolic distribution in regular multi-storey buildings, with maximum 
values at the top floor levels.  In regions of high seismic intensity, it is desirable to 
minimise the weights at various floor levels, especially the roofs and upper storeys.  
Also, it is desirable to avoid discontinuities in mass or stiffness in plan or elevation.  
Torsional effects should particularly be accounted for in buildings with asymmetry in 
plan‡.  The codes published by the Bureau of Indian Standards, which specify 
minimum design requirements for earthquake-resistant design, are listed as 
Refs. 16.1–16.3.  These requirements take into consideration the characteristics and 
probability of occurrence of earthquakes, the characteristics of the structure and the 
foundation, and the amount of damage that is considered tolerable.  References 16.4–
16.7 give details of code provisions in some seismic regions of the world. 

                                                           
† Sufficient number of modes of vibration have to be considered in the ‘response spectrum’ 
analysis, as prescribed in IS 1893 (2002), and a suitable mode combination scheme (such as 
‘SRSS’ or ‘CQC’) has to be employed. 
‡ Torsional effects should be considered when the eccentricity between the ‘centre of mass’ 
and ‘centre of stiffness’ at any floor level is significant (more than 5% of the floor plan 
dimension). 



772    REINFORCED  CONCRETE  DESIGN 

The criteria adopted by codes for fixing the level of the design seismic loading are 
generally as follows [Ref. 16.7]: 

• structures should be able to resist minor earthquakes without damage; 
• structures should be able to resist moderate earthquakes without significant 

structural damage, but with some nonstructural damage; and 
• structures should be able to resist major earthquakes without collapse, but 

with some structural and nonstructural damage. 
The magnitude of the forces induced in a structure due to a given ground 

acceleration (or given intensity of earthquake) will depend, amongst other things, on 
the mass of the structure, the material and type of construction, and the damping, 
ductility and energy dissipation capacity of the structure.  By enhancing ductility and 
energy dissipation capacity in the structure, the induced seismic forces can be 
reduced, and a more economical structure obtained, or alternatively, the probability 
of collapse reduced.  Buildings with lateral load resisting system comprising (i) a 
ductile moment-resisting space frame or (ii) a dual system consisting of ductile 
moment resisting space frame and ductile flexural (shear) wall, qualify for very low 
seismic induced forces. 

Ductility may be broadly defined as the ability of a structure or member to 
undergo inelastic deformations beyond the initial yield deformation with no 
decrease in the load resistance. 

Since reinforced concrete is relatively less ductile in compression and shear, 
dissipation of seismic energy is best achieved by flexural yielding.  A frame of 
continuous construction, comprising flexural members, columns and their 
connections, designed and detailed to accommodate reversible lateral displacements 
after the formation of plastic hinges (without decrease in strength), is known as a 
ductile moment-resisting frame.  Similarly, shear walls (more appropriately called 
flexural walls), are reinforced concrete structural walls cantilevering vertically from 
the foundation, and designed and detailed to be ductile and to resist seismic forces 
and to dissipate energy through flexural yielding at one or more plastic hinges. 

Modern codes [Ref. 16.1†, 16.4, 16.5] provide for reduction of seismic forces 
through provision of special ductility requirements.  Details for achieving ductility in 
reinforced concrete structures are given in IS 13920 [Ref. 16.3].  Methods of 
determining design seismic forces, either in the form of equivalent static lateral 
loading or through proper dynamic analysis, lie outside the scope of this chapter; the 
reader may refer to the codes, handbooks and other texts [Ref. 16.8–16.10] for this 
purpose. 

This chapter explains the major code provisions, particularly those given in 
Ref. 16.3, dealing with designing and detailing for ductility in moment-resisting 
frames and shear walls.  Such provisions are mandatory for structures located in 

                                                           
† In the recent revision of IS 1893 (2002), the procedure recommended is to first calculate the 
actual force that may be experienced by the structure during the ‘probable maximum 
earthquake’, if it were to remain elastic.  Then, the effect of ductile deformation and energy 
dissipation is accounted for by means of a ‘response reduction factor’. 
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relatively high intensity seismic zones (zones III, IV and V), specified in IS 
1893 : 2002 [Ref. 16.1]. 

16.2   IMPORTANCE OF DUCTILITY IN SEISMIC DESIGN 

16.2.1  Measures of Ductility 

A general qualitative definition of ductility was given in the preceding section.  A 
quantitative measure of ductility has to be with reference to a load-deformation 
response. A ductile response would be reflected in the deformation increasing at 
nearly constant load such as was shown in Fig. 9.8.  Then, the ratio of the ultimate 
deformation to the deformation at the beginning of the horizontal path (or, at first 
‘yield’) can give a measure of ductility.  However, each choice of deformation 
(strain, rotation, curvature, or deflection) may give a different value for the ductility 
measure. 

Curvature Ductility 

For an under-reinforced beam section in flexure, the moment-curvature (M–ϕ) 
relation is typically as shown in Fig. 16.1(a).  Based on the idealised M–ϕ behaviour, 
curvature ductility, μ, may be defined as the ratio ϕu/ϕy, where ϕy is the curvature at 
first yield (idealised), and ϕu the maximum (ultimate) curvature at the section: 

μ
ϕ
ϕ

≡ u

y
                                                              (16.1) 

Indeed, IS 13920 [Ref. 16.3] defines curvature ductility as the ratio of curvature at 
the ultimate strength to the curvature at first yield of tension steel in the section. 

The value of μ is a property of the beam cross section, and can be computed easily 
using the principles described in Chapter 4.  It can be shown that ‘curvature 
ductility’, μ, of a section increases with: 

• decrease in the percentage tension steel (pt); 
• increase in the percentage compression steel (pc); 
• decrease in the tensile strength of steel; 
• increase in the compressive strength of concrete† ; 
• increase in the compression flange area in flanged beams; and 
• increase in the transverse (shear) reinforcement. 
• increase in the confinement of concrete and compression reinforcement (by 

closely spaced hoops, spirals, etc.). 
A curvature ductility of at least 5 is considered to be adequate for reinforced 

concrete [Ref. 16.2]. 

Different Measures of Ductility 
In the case of a beam member [Fig. 16.1(b)], it is more difficult to define a unique 
ductility ratio, as it could be in terms of the curvature (ϕ) at a particular section, or 

                                                           
† However, very high grades of concrete are undesirable, as the they have lower ultimate 
compressive strains [refer Fig. 2.7]. 
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the rotation (θ) at a joint, or the displacement (Δ) at a selected point.  The ductility 
ratios  
obtained by the three methods will differ.  Furthermore, the rotations and 
displacements will depend on several factors, such as the span dimensions, shape of 
the moment diagram, type of support restraints, etc. 

 

Fig. 16.1  Measures of ductility 
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The problem becomes more complex when it comes to defining a ductility 
measure for an entire structure.  In general, a reinforced concrete ductile structure 
will have a load-displacement response as shown schematically in Fig. 16.1(c).  This 
ductility is achieved by ensuring ductile member section responses (as indicated by 
the M–ϕ relation in Fig. 16.1(a)), so that an adequate member of plastic hinges [refer 
Section 9.7] would develop at appropriate locations under extreme lateral seismic 
forces. 

16.2.2   Energy Dissipation by Ductile Behaviour 

Under seismic forces, structures are subject to several cycles of reversed cyclic 
loading.  If the structure, modelled (for simplicity) as a single degree-of-freedom 
system, were to behave in a linear elastic manner under reversed cyclic loading, it 
will exhibit a linear load-displacement behaviour as shown in Fig. 16.2(a).  The 
shaded area under the curve denotes the potential energy stored in the structure at the 
maximum displacement position; this gets released and converted to kinetic energy as 
the structure returns to its zero-load position. 

However, if the structure responds in an elastoplastic (ductile) manner, developing 
fully plastic behaviour at a load level (less than F shown in Fig. 16.2a), then the 
load-displacement behaviour is as shown in Fig. 16.2(b).  In this case, the maximum 
deflection 

′F

′Δ is greater than that (Δ) obtained in Fig. 16.2(a) for elastic behaviour.  
Furthermore, when the structure returns to its zero-load position, the actual energy 

which gets converted to kinetic energy is limited to the triangular area cde in 
Fig. 16.2(b).  The remainder of the input energy (given by area abcd) gets 
dissipated† by the plastic hinge.  In summary, under seismic loadings, for a given 
energy input, elastoplastic response differs from elastic response in the following 
ways: 

• the energy gets dissipated; 
• the induced force is less; and 
• the maximum deflection is more. 

Thus, while ductility helps in reducing induced forces and in dissipating 
some of the input energy, it also demands larger deformations to be 
accommodated by the structure. 

It may be noted that the actual behaviour of reinforced concrete is different from 
the idealised behaviour shown in Fig. 16.2(b).  As indicated schematically in 
Fig. 16.2(c), the hysterisis behaviour of reinforced concrete is characterised by 
‘rounding’ and ‘pinching’ of the loops, which is associated with the Bauschinger 
effect‡ in steel, and stiffness degradation in concrete (due to repeated opening and 
closing of cracks and bar slip at anchorage zones) [Ref. 16.11].  This results in the 
areas within successive loops becoming smaller. 

                                                           
† gets converted into heat and other forms of nonrecoverable energy. 
‡ When reinforcing steel is subjected to reversed cyclic loading, it is found that the yield 
strength obtained in the reloading or reversed direction is substantially less than the initial 
yield strength; this is known as the Bauschinger effect [refer Fig 2.19]. 
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Fig. 16.2  Load-displacement behaviour under reversed cyclic loading 
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16.2.3   Flexural Yielding in Frames and Walls 

As reinforced concrete is relatively less ductile in compression and shear, dissipation 
of seismic energy is best achieved by flexural yielding.  Hence, weakness in 
compression and shear, in relation to flexure, should be avoided. 

In a structure composed of ductile moment-resisting frames and/or shear (flexural) 
walls, the desired inelastic (ductile) response is developed by the formation of plastic 
hinges (flexural yielding) in the members, as shown in Fig. 16.3. 
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Fig. 16.3  Formation of plastic hinges in a ductile structure 
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In the case of ductile frames, plastic hinges may form in the beams or in the 
columns, as shown in Fig. 16.3(a).  It is desirable to design the frame such that the 
plastic hinges form in the beams [Fig. 16.3(a)(iii)], and not the columns, because: 

• plastic hinges in beams have larger rotation capacities than in columns; 
• mechanisms involving beam hinges have larger energy-absorptive capacity on 

account of the larger number of beam hinges (with large rotation capacities) 
possible; 

• eventual collapse of a beam generally results in a localised failure, whereas 
collapse of a column may lead to a ‘global’ failure; and 

• columns are more difficult to straighten and repair than beams, in the event of 
residual deformation and damage. 

16.3   MAJOR DESIGN CONSIDERATIONS 

16.3.1   General Design Objectives 

The objective of the special design and detailing provisions in IS 13920 [Ref. 16.3] is 
to ensure adequate toughness and ductility (with ability to undergo large inelastic 
reversible deformations) for individual members such as beams, columns and walls 
and their connections, and to prevent other non-ductile types of failure. 

In order to maintain overall ductile behaviour of the structure with minimal 
damage, it becomes necessary to achieve, in relative terms, combinations 
of  
• strong foundations and weak superstructure; 
• members stronger in shear than in flexure; and 
• strong columns, and beams with little over-strength. 

Some of the main design considerations in providing ductility include: 
• using a low tensile steel ratio (with relatively low grade steel) and/or using 

compression steel; 
• providing adequate stirrups to ensure that shear failure does not precede 

flexural failure; 
• confining concrete and compression steel by closely spaced hoops or spirals; 

and 
• proper detailing with regard to connections, anchorage, splicing, minimum 

reinforcement, etc. 

Furthermore, continuity in construction and redundancy in structural framing are 
desirable for the development of more inelastic response, and thereby more moment 
redistribution and energy dissipation at several plastic hinges.  Earthquake is often 
followed by fire and hence fire resistance should also be a major consideration in 
building construction in seismic regions. 

16.3.2   Requirements of Stability and Stiffness 

Under a severe earthquake, it is expected that in a structure designed to resist seismic 
forces in a ductile manner, large lateral deformations and oscillations will be induced, 
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resulting in the development of reversible plastic hinges at various locations in the 
ductile frames and walls.  The structural system should be so designed as to ensure 
that the formation of plastic hinges at suitable locations may, at worst, result in the 
failure of individual elements, but will not lead to instability or progressive collapse.  
This calls for building-in redundancy into the structural system.  Redundancy assists 
in the development of alternative load paths, thereby helping redistribution of forces, 
dissipation of energy and avoidance of progressive collapse. 

In addition to the requirements of stability and strength to resist seismic forces, the 
structure must have sufficient stiffness to limit the lateral deflection or drift. Ref. 16.4 
suggests that the anticipated drift due to seismic forces may be taken as three times 
the lateral deflection obtained from the usual elastic analysis under equivalent 
factored static loads.  [This factor is intended to account for the effects of material 
and geometric nonlinearities, as well as additional amplification due to dynamic 
effects].  The inter-storey drift is to be limited to 0.004 times the storey height (under 
the specified seismic forces) as per IS code [Ref. 16.1].  The effect of drift on the 
vertical load-carrying capacity of the lateral load resisting system should also be 
taken into account in the analysis. 

16.3.3   Materials 

Reinforcing Steel 

As mentioned earlier, ductility calls for the use of relatively low grades of steel.  
Lower grade steel has clearly defined and longer yield plateau, and hence the plastic 
hinges formed will have larger rotation capacities, leading to greater energy 
dissipation.  Similarly, locations of potential plastic hinges should not have too much 
over-strength, i.e., strength more than the required design strength.  Over-strength 
will result in the section not yielding, as intended, at the expected lateral load levels.  
This may result in adjoining elements and/or foundations being subjected to loads 
larger than the design loads, with consequent damage.  In other words, the actual 
yield strength of the steel used should not be markedly higher than the yield strength 
specified and used in design computations.  Furthermore, yield strength, far in excess 
of that specified, may lead to excessive shear and bond stresses, as the plastic 
moment is developed.  Another point to note is that, the lower the grade of steel, the 
higher is the ratio of the ultimate tensile strength (fu) to the yield strength (fy) [refer 
Section 2.14.2].  A high ratio of fu/fy is desirable, as it results in an increased length of 
plastic hinge (along the member axis), and thereby an increased plastic rotation 
capacity. 

For these reasons, mild steel (Fe 250) is best suited for use as flexural 
reinforcement in earthquake-resistant design.  However, its use will necessitate larger 
sections of flexural members.  Hence, the code [Ref. 16.3] permits the use of the 
higher grade Fe 415 (which is most commonly used in practice), but prohibits the use 
of grades higher than Fe 415. 
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Concrete 

With regard to the grade of concrete, the code [Ref. 16.3] limits the minimum grade 
of concrete to M 20 (for all buildings which are more than 3 storeys in height).  It 
may be noted that very high strength concrete is also undesirable because higher 
compressive strength is associated with lower ultimate compressive strain (εcu) [refer 
Section 2.8.2, Fig. 2.7] — which adversely affects ductility.  Likewise, low density 
concrete is undesirable because of its relatively poor performance under reversed 
cyclic loading.  The ACI and Canadian codes [Ref. 16.4, 16.6] limits the maximum 
cylinder strength of low density concrete for use in earthquake-resistant design to 
30 MPa. 

16.3.4   Foundations 

It is important to ensure that the foundation of a structure does not fail prior to the 
possible failure of the superstructure.  As plastic deformations are permitted to occur 
at suitable locations in the superstructure under a severe earthquake, the maximum 
seismic forces transmitted to the foundation will be governed by the lateral loads at 
which actual yielding takes place in the structural elements transferring the lateral 
loads to the foundation.  The ultimate moment, corresponding to ‘actual yielding’ at a 
section is obtained as its characteristic (nominal) moment capacity†, i.e., without 
applying partial safety factors (i.e., with γc = γs = 1.0). 

The corresponding moments, shear forces and axial forces transferred from the 
frames and walls to the foundation system (under conditions of ‘actual yielding’) 
should be resisted by the foundation system with the usual margin of safety (i.e., with 
γc = 1.5 and γs = 1.15) in order to ensure a combination of a relatively stronger 
foundation and weaker superstructure.  Although such a recommendation is yet to be 
incorporated in the IS codes [Ref. 16.1–16.3], it is in vogue in several international 
codes (such as Ref. 16.4, 16.7).  Such a design concept is necessary to provide for 
ductile behaviour of the superstructure without serious damage to the foundation. 

16.3.5   Flexural Members in Ductile Frames 

The code recommendations [Ref. 16.3] for design and detailing of flexural members 
in earthquake-resistant design are as follows: 
• To qualify as “flexural members”, the factored axial stress under earthquake 

loading should not exceed 0.1 fck.  Further, the overall depth D should not exceed 
one-fourth of the clear span (to limit shear deformations) and the width b should 
not be less than 200 mm, with a b/D ratio of more than 0.3 (to avoid lateral 
instability and provide for improved torsional resistance). 

• To ensure significant ductile behaviour even under reversals of displacements in 
the inelastic range, to avoid congestion of steel, and to limit the shear stresses in 
beams, the tensile reinforcement ratio ρmax is limited to 0.025 i.e., pt, max = 2.5. 

                                                           
† Alternatively, this may be taken (conservatively) as 1.4 times the factored moment of 
resistance (MuR) — as recommended by the code [Ref. 16.3], for estimating plastic moment 
capacities in the calculation of design shear forces. 
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• To avoid sudden brittle failure of a beam (when the cracking moment of the 
section is reached) a minimum reinforcement ratio, ρmin = yck ff /24.0 , must be 

provided at both the top and bottom for the entire length of the member, with at 
least two bars placed at each face. 

• Flexural members of lateral force resisting ductile frames are assumed to yield at 
the design earthquake.  To ensure proper development of reversible plastic hinges 
near continuous supports (beam-column connections) where they usually develop 
in such members, 
∗ the ‘positive’ moment reinforcement at a joint face must not be less than 

half the ‘negative’ moment reinforcement at that joint face; 
∗ the top and bottom steel at any section along the length of the member 

should not be less than one-fourth of the ‘negative’ moment reinforcement 
at the joint face on either side; 

∗ both top and bottom bars must be taken through the column and made 
continuous wherever possible, in case of an interior joint.  In other cases, 
they must be extended to the far face of the confined column core and 
provided an anchorage length of Ld + 10 φ, where Ld is the development 
length of the bars (diameter φ) in tension [Fig. 16.4]; and 

∗ Not more than 50 percent of the bars shall be spliced at one section. Because 
of the possibility of spalling of the concrete shell (cover) under large 
reversed strains, lap splices of flexural reinforcement are not permitted in 
and near possible plastic hinge locations.  If welded splices or mechanical 
connections are used, it must be ensured that not more than 50 percent of the 
bars are spliced in the region of potential plastic hinging. 

∗ The provisions for redistribution of moments (See Section 9.7.3) shall be 
used only for vertical load moments and not for lateral load moments. 

φ top 

φ bottom 

Ld + 10 φ top 

Ld + 10 φ bottom 

 

Fig. 16.4  Anchorage of beam bars at an external joint 
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• When lap splices are provided (at regions other than plastic hinging regions), 
transverse reinforcement for confining concrete and to support longitudinal bars, 
in the form of closed stirrups or ‘hoops’ (with a 135o hook and 10 φ ≥ 75 mm 
extension) should be provided over the entire splice length, at a spacing not 
exceeding 150 mm [Fig. 16.5]. 

• The bar extensions must provide for possible shifts in the inflection points, which 
may occur under the combined effects of gravity and seismic loadings. 

• During an earthquake, a structure should be capable of undergoing extensive 
inelastic deformation (through ductile behaviour) without a significant loss in 
strength.  Yielding softens the structure, which effectively increases its time 
period and reduces the earthquake force.  Damping also increases significantly in 
the inelastic range of response and this further helps to improve the earthquake 
response.  For these desirable effects to take place, it should be ensured that none 
of the brittle modes of failure (particularly, shear failure) should occur before 
ductile flexural failure.  Hence, the shear design philosophy in an earthquake 
resistant structure differs significantly from that in an ordinary structure 
[Ref. 16.20, 16.24].  Due to extensive cracking in the zones of high shear, it is 
desirable to completely ignore the shear strength of concrete (τc) and to 
design the stirrups to resist the entire shear. 

HOOPS

φ

≤ 150mm

(for details,
refer Fig. 16.7)

≥ Ld  

Fig. 16.5  Lap splice in a flexural member 

• In earthquake resistant structure, the design shear force will be the larger of   
1. Shear force as obtained from analysis for given load combinations, and 
2. Actual shear force likely to develop in a member after flexural failure 

has taken place. 
According to the code (Cl. 6.3.3; IS 13920: 1993), the web reinforcement in the 
form of vertical stirrups shall be provided so as to develop the vertical shear due 
to formation of the plastic hinges at both ends of the beam plus the factored 
gravity load on the span. 

• To ensure that a shear failure does not precede the full development of plastic 
hinges in a beam, the design shear forces in the member should be suitably 
overestimated, considering plastic moment capacities† of 1.4 MuR at the beam 
ends, as shown in Fig. 16.6(b).  The component shear force diagrams, including 

                                                           
† The factor of 1.4 specified by the code [Ref. 16.3] is intended to account for the condition of 
‘actual yielding’ (involving characteristic values of material strengths) as well as increased 
tensile strength due to possible strain hardening, and also some margin of safety. 
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the effects of factored gravity loads and sway in either direction, are indicated in 
Fig. 16.6(c).  The maximum design shear forces (Vu) at the support faces (left or 
right) are accordingly obtained as: 

( ) nrightuRleftuRnuleftu lMMlwV +− ++=  
,

 
, , 4.15.0                     (16.2a) 

( ) nrightuRleftuRnurightu lMMlwV −+ ++=  
,

 
, , 4.15.0                    (16.2b) 

where ln is the clear span, and 
( )LLDLu www += 2.1                                            (16.2c) 

assuming that the gravity loads (dead loads wDL and live loads wLL) are uniformly 
distributed.  

 

QL 

(c)  design shear forces in beam (sway to left)

(b)  design shear forces in beam (sway to right)

(a)  loading on 
beam 

0.5 wu ln

0.5 wu ln

0.5 wu ln
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wu = 1.2 (wDL + wLL)
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–
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plastic hinge
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Fig. 16.6  Calculation of design shear forces in beams 
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• Because of the alternating direction of the shear force due to seismic effects, the 
direction of the associated diagonal tensile stress also alternates, as shown in 
Fig. 16.7(a).  For this reason, inclined bars (which are effective only against 
shear in one direction) are not allowed as effective shear reinforcement. 

• Web reinforcement for seismic design must be in the form of closed stirrups, 
called hoops, placed perpendicular to the longitudinal reinforcement and must be 
provided throughout the length of the member.  These hoops should have a 
minimum diameter φs of 8 mm in beams with a clear span exceeding 5m (6mm in 
shorter beams).  The free ends of the hoops should be bent at 135o

 with a 
minimum bar extension of 10 φs (but not < 75 mm) [Fig. 16.7(b)], so that the ends 
are adequately anchored in the core of the concrete. 

 (c)

(b)

(a)

φs

10 φs , ≥ 75mm 

hoops spacing ≤ d/2

hoops spacing 
≤ d/4 and 8φ

hoops for 
vertical shear 

inclined bars 
are ineffective 

inclined bars effective

cracks 

Vu

Vu 

Vu 

d

2d

135

Fig. 16.7  Type of web reinforcement for reversed shear condition 

• The hoops serve the additional purposes of confining the concrete and preventing 
buckling of the longitudinal bars, particularly near the beam-column joints, where 
reversible plastic hinges are expected to develop and where the concrete cover is 
liable to spall off after a few cycles of inelastic rotations.  The code [Ref. 16.3] 
specifies a closer spacing of hoops over a length equal to twice the effective depth 
(i.e., 2d) from the face of the column.  The hoop spacing should not exceed d/4 or 
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8 times the diameter of the smallest longitudinal bar, with the first hoop located at 
a distance not exceeding 50 mm from the column face.  Elsewhere, in the beam, 
the spacing of hoops should not exceed d/2, as shown in Fig. 16.7(c). 

16.3.6  Columns and Frame Members Subject to Bending and Axial 
Load 

• Members in this category are those having a factored axial stress which is greater 
than 0.1 fck under the effect of seismic forces.  Further, the minimum dimension of 
the member should not be less than 200 mm, with the ratio of the shortest cross-
sectional dimension to the perpendicular dimension preferably not being less than 
0.4.  However, in frames having beams with centre to centre span exceeding 5 m 
or columns with unsupported length exceeding 4 m, the shortest dimension 
should not be less than 300 mm [Ref. 16.3]. 

• To ensure that the combined flexural resistance of the columns is greater than that 
of the beams at the beam-column joint (so that the plastic hinges form at the beam 
ends, rather than the column ends), it is necessary to design the column section 
for a suitably higher moment.  Although the IS code [Ref. 16.3] does not make 
any specific recommendation in this regard, the ACI and Canadian codes 
[Ref. 16.4, 16.7] recommend that the sum of the factored moment resistances of 
the columns framing into the joint be at least 1.1 times the sum of the 
characteristic moment resistances (i.e., γc = γs = 1.0) of the beams† framing into 
the joint [Fig. 16.8(a)]. 

• Lap splices are not permitted near the ends of the column where spalling of the 
concrete shell is likely to occur.  Lap splices (suitably designed as tension 
splices), however, are permitted in the central half of the member length.  Hoops 
should be provided over the entire splice length at a spacing not exceeding 
150 mm (centre-to-centre).  Not more than 50 percent of the bars should be 
spliced at any section. 

• The design shear force in a column should be taken as the larger of (1) the shear 
force due to the factored loads and (2) the shear force in the column due to the 
development of the plastic moments (suitably enhanced, as in Eq. 16.2) in the 
beams framing into the column, given approximately by [Ref. 16.3]: 

( ) stbuRbuRu hMMV 2,1,4.1 +=                                   (16.3) 

where MuR, b1 and MuR, b2 are the factored moments of resistance (of opposite sign) 
of beam ends ‘1’ and ‘2’  framing into the column from opposite faces, and hst is 
the storey height [refer Fig. 16.8(b)]. 

• Unless a larger amount of transverse reinforcement is required from shear 
strength considerations, special confining reinforcement should be provided as 
given below.  Special confining reinforcement must be provided over a length lo 
from each joint face (high moment regions), and on both sides of any section, 
where flexural yielding may occur under seismic forces [Fig. 16.9(a)].  The 

                                                           
† The effects of the slab reinforcement within a distance of three times the slab thickness on 
either side of the beam should be included in calculating the beam moment capacity. 
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length lo should not be less than (a) the larger lateral dimension of the member at 
the section where yielding may occur, (b) 1/6 of the clear span (height) of the 
member, and (c) 450 mm.  The spacing of hoops used as special confining 
reinforcement should not exceed 1/4 of the minimum member dimension, but 
need be less than 75 mm, or more than 100 mm.  The area of cross-section (Ash) 
of the bar to be used as special confining reinforcement should be taken as: 
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where 
  s ≡ pitch of spiral or spacing of hoops; 
Dk ≡ diameter of core, measured to the outside of the spiral or hoop; 
Dh ≡ longer dimension of the rectangular hoop, measured to its outer face — not 

to exceed 300 mm; 
Ag ≡ gross area of the column section; and 
Ak ≡ area of the concrete core (contained within the outer dimension of the 

hoop/spiral). 
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Fig. 16.8  Column resistance requirements 

Vu

Vu
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MuR, col → factored ultimate 
 moment capacity of 
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(b)  shear resistance requirement

(a)  moment resistance requirement

hst

sway 

Vu = 1.4(MuR, b1 +  MuR, b2)/hst
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(a)  detailing of hoops in column 
(at and near joint) 

(b)  detailing at column-footing 
interface 

lo

lo

SPECIAL CONFINING 
REINFORCEMENT 

(HOOPS) 

SPECIAL CONFINING 
REINFORCEMENT 

(HOOPS) 
≥ 300 

(d)  columns with 
         varying stiffness 

(c)  special confining reinforcement 
       requirement for columns under 

discontinued walls 

relatively stiff 
columns 

(attracting large 
seismic forces) 

MEZZANINE 
FLOOR OR 

LOFT 

Fig. 16.9  Special confining reinforcement  
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• When a column terminates into a footing or mat, the ‘special confining 
reinforcement’ should extend at least 300 mm into the footing or mat, to account 
for possible development of plastic hinges at the base of a building [Fig. 16.9(b)].  
Such detailing should also be provided in columns supporting discontinued stiff 
members (such as walls or trusses) for the full height of the column as shown in 
Fig. 16.9(c).  Provision of special confining reinforcement over the full height of 
the column is also required in cases where there is a significant variation of 
stiffness along the height of the column — as when mezzanine floors/lofts are 
provided locally [Fig. 16.9(d)] or due to in-filled masonry walls not extending 
fully over the panel. 

16.3.7   Joints in Ductile Frames 

• Beam-column joints in ductile frames must have adequate shear strength and 
ductility to facilitate the development of large inelastic reversible rotations, in the 
event of a severe earthquake.  Tests have indicated that the shear strength of 
joints is dependent primarily on the grade of concrete and is not sensitive to the 
amount of shear reinforcement [Ref. 16.4]; hence, it is desirable to use high 
strength concrete in the joint regions, and to achieve good compaction of this 
concrete [Ref. 16.12]. 

• The special confining reinforcement (hoops) provided near the column ends 
should be extended through the joint as well [see Fig. 16.9(a)].  However, when 
the joint is ‘externally confined’, this reinforcement may be reduced to one-half 
of that required at the end of the column, with the maximum spacing limited to 
150 mm (Code Cl. 8.2).  A joint is said to be ‘externally confined’ if beams frame 
into all the vertical faces of the joint, and if each beam width is at least three-
fourths of the column width at the joint [Ref. 16.3 &16.12]. 

• Development length requirements of the flexural reinforcement within the joint 
[refer Fig. 16.4] are particularly important.  The joint zone is an area of high 
concentration of beam bars, column bars and hoops.  Extreme care is needed in 
detailing the reinforcement at the beam-column connection in order to provide for 
proper stress transfer, and to avoid congestion and placing difficulties for both 
reinforcement and concrete.  Many structural failures under seismic loading can 
be traced to poor detailing of beam-column joints. 

• The reinforcements detailed in this chapter pertain to monolithic concrete 
construction.  In precast construction, subject to seismic loading, the most critical 
location is the beam-column connection.  However, it has been shown that by 
careful detailing, ductile beam-column connections (having adequate strength, 
stiffness, ductility and energy-dissipating capacity) can be made in precast 
concrete construction as well [Ref. 16.19]. 

16.3.8   Shear Walls (Flexural Walls) 

• Ductile ‘shear walls’ (more appropriately called flexural walls), which form part 
of the lateral load resisting system, are vertical members cantilevering vertically 
from the foundation, designed to resist lateral forces in its own plane, and are 
subjected to bending moment, shear and axial load.  Unlike a beam, a wall is 
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relatively thin and deep, and is subjected to substantial axial forces.  The wall 
must be designed as an axially loaded beam, capable of forming reversible plastic 
hinges (usually at the base†, as shown in Fig. 16.3(b)) with sufficient rotation 
capacity. 

• The code [Ref. 16.3] recommends that the thickness of any part of the wall should 
preferably be not less than 150 mm.  Walls that are thin are susceptible to 
instability (buckling) at regions of high compressive strain.  Stability of the 
compression zones can be improved by local thickening of the wall or by 
providing flanges or cross walls (which is convenient at such locations as lift 
cores).  Flanged walls also have higher bending resistance and ductility.  The 
code [Ref. 16.3] restricts the effective flange width of flanged walls to (a) half the 
distance to an adjacent shear wall web, and (b) one-tenth of the total wall height. 

• The wall should be reinforced with uniformly distributed reinforcement in both 
vertical and horizontal directions, with a minimum reinforcement ratio of 0.0025 
of the gross section in each direction.  The bar diameter should not exceed one-
tenth the wall thickness, and the bar spacing in either direction should not exceed 
(a) 1/5 of the horizontal length of wall, (b) thrice the wall (web) thickness, and (c) 
450 mm.  The distributed reinforcement provides the shear resistance, controls the 
cracking, inhibits local breakdown in the event of severe cracking during an 
earthquake, and also resists shrinkage and temperature stresses.  The vertical 
reinforcement, comprising both the distributed reinforcement and concentrated 
reinforcement near wall ends (see below), should be designed for the required 
flexural and axial load resistance. 

• In walls which do not have flanges (‘boundary elements’), concentrated vertical 
reinforcement should be provided towards each end face of the wall, in addition 
to the uniformly distributed steel.  A minimum of 4 nos 12 mm φ bars arranged in 
at least two layers should be provided near each end face of the wall [Ref. 16.3].  
The concentrated vertical flexural reinforcement near the ends of the wall must be 
tied together by transverse ties, as in a column, to provide confinement of the 
concrete, and to ensure yielding without buckling of the compression bars when a 
plastic hinge is formed. 

• Where the extreme fibre compressive stress in the wall exceeds 0.2 fck, boundary 
elements should be provided along the vertical boundaries of walls.  These are 
portions along the wall edges that are strengthened by longitudinal and transverse 
reinforcement, and may have the same or larger thickness as that of the wall web. 

• To prevent a premature brittle shear failure of the wall before the development of 
its full plastic resistance in bending, it is desirable to design the shear resistance 
of the wall for an overestimated shear force, as in the case of the column.  
Because of possible severe shear cracking under reversed cyclic loading, the 
shear carried by concrete in the plastic hinge region is neglected. 

• For other details regarding the design of boundary elements, coupled shear walls, 
walls with openings, etc., reference should be made to Ref. 16.3. 

                                                           
† Locations of abrupt changes in the strength and stiffness of the lateral load resisting system 
are also potential zones of flexural yielding in ductile walls. 
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16.3.9   Infill Frames 

Generally, in the analysis of multi-storey buildings, the contribution of masonry infill 
walls is ignored, and the frame analysis is based on the bare RC frame.  The mass of 
the masonry infill is considered, but the stiffness and strength contributions of the 
masonry infill are neglected.  However, the infill frame has some significant effects 
under lateral loading that merit consideration [Ref. 16.21, 16.22]: 
• Infills alter the behaviour of buildings from predominantly frame action to 

predominantly shear action [Fig. 16.10].  Also, the infills are capable of resisting 
the applied lateral seismic forces through axial compression along the diagonal; 
there is no tensile resistance capability in the other diagonal, but the cracking 
induced in the masonry on account of this serves to dissipate energy. 

• The neglect of infill contribution results in a significant under-estimation of the 
lateral stiffness of the structure, and thereby can result in an under-estimation of 
the seismic forces.  Infills may also significantly modify the position of centre of 
rigidity and consequently can affect the behaviour in torsion.   

• In regular multi-storey buildings, in general, the neglect of infill frame action 
results in a conservative estimation of bending moments in columns and beams 
(except when ‘soft storey’ is provided, as shown in Fig. 16.11). 

(a) Bare frame: predominant
frame action 

(b) Infilled frame: predominant 
shear action 

 
Fig. 16.10  Behaviour of infill frame [Ref. 16.23] 

Thus, the bare RC frame of the building considered in design is inconsistent with 
actual behaviour.  In general, however, the infills are expected to significantly reduce 
the demand on the RC frame members.  Numerous cases are cited in the technical 
literature where brick walls acting together with RC elements have saved buildings 
from collapse during earthquake.  

Several techniques have been proposed to evaluate the allowable horizontal force 
of an infilled frame subject to in-plane bending and axial force.  The simplest 
procedure is to model the masonry infill by means of an equivalent compressive 
diagonal strut [Ref. 16.21].  At the tensile corners of the non-integral infill walls, 
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separation of frame occurs from the infill at early stages.  The panels are in contact 
with the frame only at the compression corners, and this contact is strengthened 
under increased loading, with high stress concentrations near the corners.  The 
diagonal part of the infill acts as a compressive diagonal strut and is effective in 
resisting lateral loads.  As the tensile corners are subjected to very small stress, the 
tensile diagonal region is not really effective in resisting lateral loads.  Since the 
infills act as diagonal struts, an infill wall can be replaced by an equivalent strut in 
the analysis model.  

16.3.10   Soft Storey 

The soft storey concept is related to a discontinuity in the stiffness of building.  
According to IS 1893: 2002 a soft storey is one in which the sum of the lateral 
translational stiffness is less than 70% of that in the storey above or less than 80% of 
the average lateral translational stiffness of three stories above.  In modern multi-
storey construction, such soft stories are commonly encountered in the ground storey.  
Owing to high cost of land and small sizes of plots, parking is often accommodated 
in the ground storey area of the building itself.  Frame bays of the ground storey are 
not infilled with masonry walls, as in the case of upper stories.  Usually, all panels 
are left open for parking.  The sudden discontinuity in stiffness and mass at the 
lowermost storey (soft storey) leads to the following effects that make soft storey 
construction particularly dangerous.  
• The stiffness discontinuity leads to severe stress concentrations at the soft storey 

corners, accompanied by large plastic deformations [Fig. 16.11(a)]. 
• Most of the deformation energy is dissipated by the soft storey columns, and this 

leads to major overstressing of these elements; onset of plastic hinges may 
transform the soft storey into a mechanism resulting in collapse.  Such a collapse 
could also turn out to be more catastrophic. 

 

(a) Open ground storey (b) Bare frame 
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Fig. 16.11  Lateral load responses of open ground storey frame (with infills above 
ground storey) and bare frame 

For designing a ‘soft storey’ building, dynamic analysis should be carried out 
including the strength and stiffness effects of infills and inelastic deformation in the 
members.  Alternatively, the code suggests the following design criteria based on a 
conventional earthquake analysis, neglecting the effect of infill walls in other 
stories†.  The columns and beams of the soft storey are to be designed for 2.5 times 
the storey shears and moments calculated under seismic load (which ignores the infill 
frame effect). 

16.3.11 Performance Limit States 

In several countries, seismic design is in the process of fundamental change.  One 
important reason for the change is that although code-designed buildings performed 
well (in countries such as USA) in recent earthquakes from a life-safety perspective, 
the level of damage to structures, economic loss due to non-usage of buildings and 
costs of repair were unexpectedly high.  Conventional methods of seismic design 
have the objectives to provide for life safety (through strength and ductility) and 
damage control (through serviceability – drift limits).  The design criteria are defined 
by limits on stresses and member forces calculated from prescribed levels of applied 
lateral shear force. Performance-based design philosophy involves design criteria that 
are expressed in terms of achieving stated performance objectives when the structure 
is subjected to stated levels of seismic hazard [Ref. 16.25].  The performance targets 
may be a level of stress, a load, a displacement, a limit state or a target damage state 
not to be exceeded.  Required performance criteria for a seismic hazard are ‘safety’, 
‘restorability’ and ‘usability’.  Safety refers to protection of human life.  Restorability 
refers to structural integrity.  Usability refers to function and habitability. 

16.4   CLOSURE 

The purpose of this chapter is to explain the background to the seismic design 
provisions of the IS code and related international codes.  A detailed discussion of 
seismic analysis and design of reinforced concrete structures is beyond the scope of 
this book.  Rapid advances are being made in this area, and recent publications (for 
example, Refs. 16.13-16.18) may be consulted for more details. 

REVIEW QUESTIONS 

16.1 What are the objectives of earthquake-resistant design of reinforced concrete 
structures? 

16.2 What is meant by ductility?  Give a qualitative description and also describe 
briefly the qualitative measures of ductility in reinforced concrete.  

16.3 What are the measures one can take for improving the ductility of a reinforced 
concrete structure? 

                                                           
† The design criteria have been newly introduced in the recent (2002) revision of IS 1893. If 
these are applied to existing buildings, it will be seen that a majority of such buildings will be 
found deficient in terms of earthquake resistant design.   
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16.4 What are the advantages/disadvantages of elastoplastic behaviour over elastic 
behaviour in structures subjected to severe earthquakes? 

16.5 What are the objectives behind the special detailing provisions in IS 13920? 
16.6 Differentiate between the terms strength, stiffness and stability as applied to a 

reinforced concrete structure. 
16.7 Why is it desirable to design for the formation of plastic hinges in beams 

rather than columns in earthquake-resistant design? 
16.8 Is it desirable to have (a) high strength steel (b) high strength concrete in 

earthquake-resistant design of reinforced concrete structures?  Justify your 
answers. 

16.9 Suggest a design procedure for ensuring that the foundation is stronger than 
the superstructure in earthquake-resistant design. 

16.10 What are the limits placed on tensile reinforcement ratios in beams in 
earthquake-resistant design?  Why are such limits enforced? 

16.11 How are the design shear forces estimated in the beams of ductile frames? 
16.12 Why are inclined stirrups and bent-up bars unsuitable as shear reinforcement 

in earthquake-resistant design? 
16.13 What is meant by special confining reinforcement in columns of ductile 

frames? 
16.14 What are the design requirements of beam-column joints in earthquake-

resistant design? 
16.15 Explain the differences between an ordinary wall and a shear wall in a 

reinforced concrete tall building, with regard to function, loading and design. 
16.16 What are the main design requirements of ductile shear (flexural) walls in 

earthquake-resistant design? 
16.17 What is the effect of ignoring the contribution of masonry infill in the lateral 

load analysis of a multi-storey frame? 
16.18 In what manner is the behaviour of a ‘soft storey’ construction likely to be 

different from a regular construction in the event of an earthquake? 
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  Selected Special Topics 

 

17.1 DESIGN FOR SHEAR BY COMPRESSION FIELD THEORY 

17.1.1   Introduction  

In the traditional method given in Chapter 6, the transverse reinforcement for shear is 
designed separately and added on to the reinforcement designed for flexure (with 
axial load if any), and for torsion.  Influence of shear on longitudinal reinforcement 
requirements is taken care of by detailing provisions.  This procedure, widely 
adopted in practice, does not explicitly account for the interaction among the various 
stress resultants (shear force, bending moment and axial force).  Also, the 
calculations aim to satisfy equilibrium requirements, and do not account for the 
requirements of deformation compatibility.  In the absence of shear, however, the 
combined effect of flexure and concurrent axial force is made in one step considering 
the deformation pattern (‘plane section remaining plane’), stress and strain 
compatibility and equilibrium conditions (refer Chapter 13).  Indeed, there have been 
attempts to design for flexure, shear and axial force taking all their effects together.  
The Compression Field Theory [Ref. 17.1] is an attempt in this direction.  However, 
the mechanics involved are such that an exact solution is complex and intractable.  
Hence, recourse has been made to several simplifying assumptions, which are 
perhaps questionable. 

The name “compression field theory” is based on the analogous problem of the 
post-buckling shear resistance of thin-webbed metal girders (plate girders).  In such 
girders, following the buckling of the thin web due to diagonal compression caused 
by shear, the web cannot resist any more compression.  Instead, the shear is resisted 
by a ‘field of diagonal tension’ [Fig. 17.1].  This approach is known as tension field 
theory.  Similarly, in the case of concrete beams, after diagonal cracking, shear 
would not be resisted by diagonal tension, however a field of diagonal compression 
would still resist shear.  This concept came to be called compression field theory. 
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 tension field 
(diagonal) 

buckling of the thin web stiffeners  

Fig.17.1  Tension field in thin-webbed metal girder under shear 

As in the case of the conventional method dealt with in Chapter 6, in its simplified 
version, the compression field theory also uses the truss analogy.  However, while in 
the conventional method the inclination of the diagonal cracks is taken as 45o, here, 
the angle of inclination, θ, of the diagonal compressive stresses is considered 
variable.  Also, the negative influence of diagonal tension cracking on the diagonal 
compressive strength of concrete [see Section 17.1.3] is accounted for.  Moreover, 
the influence of shear on the design of longitudinal reinforcement is accounted for 
more directly. 

17.1.2   General Concepts 

In order to understand the complexity involved in an exact analysis for shear 
strength, consider the compressive stress trajectories in a beam subjected to a 
bending moment, M, an axial force, N (considered positive if tensile), and a shear 
force, V, as shown in Fig. 17.2.  At any section 1-1, the magnitude and direction of 
the principal compressive stresses and principal compressive strains will vary over 
the depth of the section.  At the bottom face, the inclination θ will be 90°, and at the 
top face θ will have a minimum value.  The shear stress will also vary over the depth 
of section.  On a small element such as at A at a depth y, the stresses, strains, and the 
corresponding Mohr's circles are as shown in Fig. 17.2(h) and (j).  Concrete is 
assumed to have no tensile strength.  In addition, the directions of principal stresses 
and principal strains are assumed to coincide. 

For a correct analysis, at each point over the depth of the section, three parameters 
are required to be known/computed.  These may be considered, for instance, as the 
principal strains ε1 and ε2 and the angle θ.  In addition, the stress-strain relationships 
for concrete and reinforcing steel are necessary.  With these known, the principal 
stress, f2, can be computed (f1 = 0) and hence the normal stress, fcx, and the tangential 
stress, v, at all points over the depth of the section.  The stress in longitudinal steel, fs, 
can be computed from the steel strain, εsx, assuming that reinforcing steel carries only 
axial forces.  Thus, the distributions of axial and tangential stresses over the cross 
section can be obtained as shown in Fig. 17.2(e) and (d).  By integrating these 
stresses (multiplied by the width of the cross-section) over the depth of section, the 
stress resultants N, M and V can be obtained [Fig. 17.2(f)].  The strain in the 
transverse direction, εt, determines the tensile stress, fv, in the transverse shear 
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reinforcement, and the tension in this reinforcement balances the transverse 
compressive stress in the concrete, fcy, over the area tributary to it [Fig. 17.2(g)]. 
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Fig.17.2  Stress and strain under combined stress resultants  M, N, and V 

The strain distribution must be compatible with the geometry of deformation.  
Thus, with the usual assumption that plane sections of the beam remain plane (in 
shallow flexural members), the distributions of ε1, ε2 and θ  must be such that the 
corresponding longitudinal strain, εx varies linearly over the depth of the member, as 
shown in Fig. 17.2(c).  Obviously, knowing/assuming, a priori, such distributions of 
ε1, ε2 and θ over the depth at all sections is a tall order! 

Because of the large number of unknowns involved, a direct solution to the 
problem is not possible, and a trial and error procedure together with simplifying 
assumptions has to be used.  Two parameters that may be assumed initially are the 
shear stress distribution and the longitudinal strain distribution.  This gives v and εx at 
all points.  Taking trial values of a third parameter also, such as ε1, and by successive 
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iterations to satisfy equilibrium, compatibility, and stress-strain relations, the 
appropriate values of fcx and v at element A can be found.  Such a procedure to 
compute the shear strength of a given section subjected to moment M and axial force 
N is presented in Ref. 17.2.  However, such procedures are lengthy and tedious and 
seldom resorted to in practice.  Instead, approximate procedures are specified in 
Codes, for example the Canadian specifications CSA A23.3-94. 

The procedure recommended in CSA A23.3-94 (Cl. 11.4) is based on the 
‘modified compression field theory’ [Ref. 17.1, 17.3].  This is dealt with in 
Section 17.1.4. 

17.1.3   Stress-Strain Relationship for Diagonally Cracked Concrete 

For the evaluation of shear strength, the stress-strain relationship for steel and 
concrete must be known.  The state of stress in element A is shown in Fig. 17.2(h).  
The maximum (principal) compressive stress in concrete, f2, is inclined at an angle θ 
to the axis of the member.  The maximum compressive strain along f2 is ε2, and the 
maximum tensile strain, ε1, is at right angles to the direction of f2.  Because of the 
low tensile strength of concrete (which is neglected here), tensile cracks will develop 
early along the direction of f2, and the concrete in between these cracks acts as the 
parallel compression diagonals in the truss analogy.  Therefore, the concrete carrying 
the diagonal compressive stress has cracks parallel to the direction of compression as 
shown in Fig. 17.3(a).  

Biaxially strained concrete, as in Fig. 17.3(a), with compression in one direction 
and a concurrent transverse tensile strain is weaker than concrete in uniaxial 
compression as in a cube or cylinder test [Fig. 17.3(b)], where the lateral strain is 
only due to the Poisson effect.  Based on tests [Ref. 17.3] the maximum compressive 
strength, f2,max, of concrete in the presence of transverse tensile strain, ε1, is given by: 

c

c

f
ff
′≤

ε+′= )1708.0/( 1max,2                                         (17.1) 

where  f2,max = compressive strength of concrete in presence of transverse tensile 
strain ε1

  = specified compressive (cylinder) strength of concrete cf ′
  ε1  = transverse tensile strain 

Eqn. 17.1 gives f2,max, the maximum strength of concrete under transverse tensile 
strain ε1.  To compute the stress f2 corresponding to a compressive strain ε2 
(concurrent with transverse tensile strain ε1), a stress-strain relation for biaxially 
strained concrete [Fig. 17.3(a)] is necessary.  For this, it may be assumed that the 
general shape of this stress-strain relation remains the same as for uniaxial 
compression.  One such relationship proposed in Ref. 17.4 is given in Eqn. 17.2.  
Equation 17.2 is also shown in Fig. 17.3(c) where it is compared with the parabolic 
stress-strain diagram for uniaxial compression 
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Fig.17.3  Stress-strain relationship for diagonally cracked concrete 
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17.1.4   Analysis Based on Modified Compression Field Theory 

(a)   Assumptions and Equations – Case of Pure Shear 

To begin with, the simple case of a symmetrically reinforced beam under pure shear 
is considered.  The effects of bending moment and axial force are considered 
subsequently. 

Prior to cracking, pure shear causes principal tensile and compressive stresses of 
equal magnitude along diagonal directions, inclined at 45o to the beam axis.  After 
diagonal tension cracks are formed, the corresponding tensile stress in concrete is 
reduced to zero at the cracks, while the concrete in-between cracks can still sustain 
tensile stresses.  The early compression field theory neglected any contribution to the 
shear strength from such diagonal tensile stresses in the cracked concrete and 
assumed the tensile stress in concrete to be uniformly zero throughout and hence was 
found to be conservative.  In contrast, the modified compression field theory accounts 
for the contribution of the diagonal tensile stresses in the cracked concrete.  Such 
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tensile stresses vary from zero at the cracks to a maximum value in between cracks 
and, for deriving equilibrium equations, an average value, f1, can be used.  This 
average stress, f1, is less than the maximum tensile stress reached prior to diagonal 
cracking.  Furthermore, the following simplifying assumptions are made in deriving 
the equations that follow: 

(i) The shear stress, v, is uniformly distributed over the web, which has a 
width bw and depth dv (taken as the distance between the resultants of the 
tensile and compressive forces due to flexure), so that. 

vwdb
V

=ν                                                           (17.3) 

(ii) Under uniform shear stress as above, and with symmetry, the 
longitudinal strain, εx, and the inclination, θ, of the principal compressive 
stress remain constant over the depth dv      

(iii) The stress – strain relationship in compression for the diagonally cracked 
concrete is given by Eqns. 17.1 and 17.2. 

With these assumptions, the internal forces, stress and strain distributions and the 
stress resultants at a section subjected to shear only (such as at a point of 
contraflexure) are as shown in Fig. 17.4.  The Mohr’s circles for stress and strain 
states at all points on the section are shown in Fig. 17.4 (viii) and (ix).  From the 
Mohr’s circle of stress, 

θ
+

= 2 sin
2

21 ff
v   

⇒ 12 cossin
fvf −

θθ
=                                              (17.4) 

1cossin
f

db
V

vw
−

θθ
=                                    (17.5) 

The force in the transverse reinforcement balances the vertical components of the 
concrete stresses f1 and f2.  Considering equilibrium of stirrup forces and vertical 
components of  f1 and  f2 acting over the concrete area tributary to a stirrup, as shown 
in Fig. 17.4, 

) cossin( 2
1

2
2 θ−θ= ffsbfA wvv                             (17.6) 

Substituting for f2 from Eqn. 17.5, 

1tan f
db

V
sb
fA

vww

vv −θ=                                                (17.7) 

and   θ+θ= cotcot 1 vw
vvv dbf

s
dfA

V                              (17.8) 

cs VV +=                                                             (17.8a) 

where   θ= cot
s

dfA
V vvv

s                                                      (17.9) 

and  θ= cot1 vwc dbfV                                                     (17.10) 
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Fig.17.4  Modified compression field theory–Analysis for shear force V 

Equation 17.8 shows that the shear resistance consists of a part, Vs, contributed by 
the shear reinforcement, and a part, Vc, contributed by the tensile stresses in concrete. 
The part Vc depends on the average tensile stress, f1, in the diagonally cracked 
concrete.  Vs  is the same as derived earlier in Section 6.7.4.  (Strictly, the part Vs 
includes a concrete contribution arising out of the diagonal compressive stress f2 also.  
The ultimate shear strength in the conventional method [Eqn. 6.14] also has a 
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concrete contribution, however its value is derived empirically based on a safe 
limiting value for the nominal shear stress in concrete). 

The stresses f1 and f2 over a cross section [Fig. 17.4(iv) and (v)] resulting from 
shear V has a net axial resultant, Nv, given by: 

Nv = bw dv (f2 cos2θ  –  f1 sin2θ )                                 (17.11) 

There has to be longitudinal reinforcement to resist this.  With longitudinal 
reinforcement symmetrically placed at top and bottom, the tensile force in each of 
them will be 0.5 Nv.  Thus, pure shear necessitates longitudinal reinforcements as 
well.  If Asx is the total area of such reinforcement and fsx the tensile stress due to 
shear, Asx fsx = Nv, then substituting for f2 from Eqn. 17.5 into Eqn. 17.11, 

Asx fsx =Nv =V cotθ  − f1 bw dv                                    (17.12) 

In Eqns 17.8 and 17.12, f1 is the average principal tensile stress carried by the 
concrete between diagonal cracks.  Based on tests [Ref. 17.3], a relation between 
average tensile stress, f1, and corresponding average tensile strain, ε1, recommended 
in Ref. 17.1 is: 

 11 ε= cEf                 for           crεε ≤1                         (17.13) 

1

21
1

5001 ε+

αα
= crf

f        for          crεε >1                          (17.14) 

where fcr is the tensile stress at cracking and factors α1 and α2 account for the bond 
characteristics of the reinforcement and the type of loading. 

There are several other considerations in choosing the appropriate value for f1.  In 
deriving the equations above, uniform average stresses and strains have been used.  
However, the tensile stress in concrete will be zero at the crack.  There will be a 
corresponding local increase in the tensile stress in the transverse reinforcement, 
thereby providing the required tensile stress component across the crack interface.  
Once the stress in the transverse reinforcement (which is highest at the crack 
location) reaches yield, any increase in shear force can be resisted only by shear 
stresses, vci, transmitted along the crack interface [Fig. 17.5(b) and (d)].  The 
magnitude of the shear stress, vci that can be transmitted between the two sides along 
the crack interface will depend primarily on the crack width, w, [Fig. 17.5(b)].  The 
crack width, w, in turn depends on the average tensile strain, ε1, and the average 
spacing, sθ, of the diagonal cracks.  Recommended limiting value of vci to avoid 
slipping along cracks is [Ref. 17.1]: 

16
243.0

18.0

+
+

′
=

a
w

f
v c

ci                                               (17.15) 

where, a  = the maximum size of aggregate and w may be taken as the product of the 
average principal tensile strain and the average crack spacing so that: 

w = ε 1 sθ                                                        (17.16) 
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Fig.17.5  Transmission of forces across diagonal cracks 

The spacing of diagonal cracks, sθ, depends on the type, amount and distribution 
of the longitudinal and transverse reinforcements.  Expressions for estimating sθ are 
given in Ref. 17.1.  In Fig. 17.5(c), the average tensile stress in concrete, f1, is 
assumed to be developed midway between diagonal cracks.  As one moves towards 
the crack, the concrete tensile stress decreases and the slack is taken up by increases 
in transverse reinforcement stress and/or the interface shear, vci.  After yielding of 
transverse reinforcement at a crack, the limit on the stress vci that can be mobilized 
can limit the shear capacity of the member. 

Equations 17.8 and 17.12 give the shear strength and the axial tensile 
reinforcement requirements in the case of pure shear.  If three parameters, such as ε1, 
ε2, and θ are known, f1 , f2, and steel stress can be computed from the respective 
strains and the stress – strain relations, and the shear strength determined.  Stresses f1, 
f2 and fv must be within their limits.  A trial and error procedure is presented in Ref. 
17.1.  In this, trial values are selected for ε1, θ, and fv and these are adjusted until 
equilibrium, compatibility, and limiting stress conditions are met. 

(b)   Shear with Bending Moment and Axial Force 

In practice, shear occurs in combination with bending moment and, often, axial force 
as well.  Bending moment and/or axial tension increases the axial tensile strain, εx, 
reducing the shear strength.  With bending moment, the longitudinal strain, εx, and 
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the inclination θ of the principal compressive stress vary over the depth of the 
section.  Hence, a detailed analysis of a section subjected to shear, moment and axial 
force is complex [Ref. 17.4].  Therefore, recourse is made to simplifications.  One 
such procedure is to consider the stresses and strains at just one level in the beam 
depth and to calculate corresponding θ, which is then considered applicable for the 
entire depth.  Again, a trial and error process is required for a solution.  The strain 
profile over the depth (linear variation – plane section theory) and the value of θ are 
adjusted so that the stress limits are not exceeded and the internal stresses are in 
equilibrium with given bending moment, M, and axial force, N. 

17.1.5 Simplified Design Procedure using Modified Compression Field 
Theory 

In general shear design involves checking the adequacy of the section, selected based 
on applied flexure and axial loads, and computing the required shear reinforcements 
(both transverse and additional longitudinal) to carry the applied shear.  The nominal 
shear strength of the section can be expressed as [also Eqn. 17.8(a)]: 

V  = Vc + Vs                                                        (17.17) 

where Vc is the part contributed by tensile stresses in the concrete and Vs  is the part 
contributed by the transverse reinforcement, given by Eqn. 17.9.  Assuming that only 
the optimum amount of transverse reinforcement is used so that they yield as ultimate 
strength is reached, fv can be taken as the yield stress fy, so that: 

Vs = (Av  fy dv cotθ ) / s                                             (17.18) 

The part Vc is given by Eqn. 17.10, which may be expressed as:  

vwcc dbfV  ′β=                                                 (17.19) 

where                                          cff ′θ=β /cot1                                             (17.20) 
Computation of shear strength [Eqn. 17.17] now reduces to the determination of 

the appropriate values of θ and β to be used in Eqns.  17.18 and 17.19.  In Eqn. 
17.20, substituting for f1 from Eqn. 17.14, and assuming, fcr = 0.33 cf ′  and taking 
the factor α1α2 as equal to unity,  

)5001/(cot33.0 1ε+θ=β                                (17.21) 
If the transverse reinforcement has yielded at failure, the shear contribution Vc has 

to be maintained at the diagonal cracks by the transverse component of the interface 
shear vci [Fig. 17.5(a) and (b)].  Then: 

Vc = f1 bw dv cotθ  = vcibw dv                                  (17.22) 

⇒ f1 = vci tanθ                                                      (17.22a) 

As discussed earlier, to avoid slipping along the diagonal cracks [Fig. 17.5b], vci 

has to be within its limiting value [Eqn. 17.15].  Correspondingly, f1 and hence β 
have limiting values.  Substituting the limiting value for vci from Eqn. 17.15, the 
corresponding limit on f1 is: 
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θ

+
+

′
= tan 

16
243.0

18.0
1  

a
w

f
f c                                    (17.23) 

Substituting this value of f1 in Eqn. 17.20 yields the limiting value for β as: 

16
243.0

18.0

+
+

≤β

a
w

                                        (17.24) 

Thus the expressions for β are: 

16
243.0

18.0
5001
cot  33.0cot 

1

1

+
+

≤
ε+

θ
=

′

θ
=β

a
wf

f

c

                    (17.25) 

where, w  =  ε1 sθ is the crack width, 
 a =  maximum size of aggregate, 
 sθ  =  average spacing of diagonal cracks, and 
 ε1  =  average principal tensile strain in concrete. 

It can be seen from Eqn. 17.25 that as ε1 increases, β and Vc decreases.  ε1 will 
depend on magnitudes of εx, θ and ε2   From the Mohr’s circle of strain, the principal 
tensile strain, ε1, may be expressed as: 

ε1 = εx + (εx + ε2) cot 2θ                                      (17.26) 

For diagonally cracked concrete, ε 2 is given by Eqn. 17.2 as: 

( )max,222 /11002.0 ff−−=ε  

where  ( )1max,2 1708.0/ ε+′= cff  
and f2 may be taken conservatively (neglecting value of f1 in Eqn. 17.4) as: 

f2 = v / ( sinθ cosθ ) = v ( tanθ + cotθ ) 

Substituting these values in Eqn. 17.26, 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ε+θ+θ−−+εθ+ε=ε )1708.0)(cot(tan

'
11002.0cot 1

2
1

c
xx

f
V  

                   (17.27) 
If εx, v/  and θ are known, εcf ′ 1 can be found and β can be computed from Eqn. 

17.25 assuming crack spacing sθ and aggregate size a, if not known).  An increase in 
the strain εx results in a decrease in the shear strength.  The axial strain εx may be 
taken conservatively as the longitudinal strain in the flexural tension chord of the 
equivalent truss [Fig. 17.6].  Accordingly, at a section subjected to a bending moment 
M and axial force N, 
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ss

v
x AE

dMVN /)cot(0 +θ+
=ε                               (17.28) 

The value of th

5.

v/e parameter cf ′  can be computed knowing the applied shear 
for .  F θ is 
ch uch

 is

ce V or θ, a trial-and-error approach is needed.  The appropriate value of 
osen s  that: 
(i) f2 does not exceed f2,max   
(ii) strain in transverse reinforcement, εv, is at least equal to 0.002, and 
(iii) the shear reinforcement  near minimum 
On the above basis, Tables/graphs have been prepared giving values of θ and β 

for different combinations of v / cf ′  and εx.  For members containing at least a 
minimum amount of transverse reinforcement, for computing the β values the 
average spacing of diagonal cracks is assumed as 300 mm and the aggregate size as 
about 19 mm. 

The strain in the longitudinal reinforcement has its peak value at the crack 
location.  Consider the stress patterns for pure shear given in Fig. 17.5.  Equating the 
resultant horizontal force for the average stress condition along 1-1 (midway 
between cracks) shown
sh )

 at (c), and for the conditions at a diagonal crack along 2-2 
own at (d , if yielding of longitudinal bars at the crack is to be avoided, 

Asx fy - vci bw dv cotθ  > Asx fsx + bw dv f1                        (17.29) 

where Asx is the total area of longitudinal steel (both at top and bottom included).  
When the transverse reinforcement yields at failure, vci

A
 is given by Eqn. 17.22.  

Further, for average stress conditions, 
the ields: 

Asx fy

sx fsx is given by Eqn. 17.12.  Substituting 
se values in the above equation and simplifying y

 > V cotθ + f1 bw dv cot θ                                   (17.30) 2

w dv cotθ  from Eqn. 17.10 Substituting Vc = f1 b

Asx fy  > V cotθ + Vc cotθ 

c sSince V  + V  = V, 
Asx fy > (2V – Vs ) cotθ 

Considering the reinforcement on one side only, 
As fy > (V – 0.5Vs ) cotθ 

If stresses due to applied bending moment, M, and axial tension, N, are also 
included, to avoid yielding of the longitudinal reinforcem
side, 

ent on the flexural tension 

)5.0(5.0 s
v

ys VVN
d
MfA −++≥ cotθ                        (17.31) 

For members without transverse reinforcements, the spacing of the diagonal 
cracks will be greater than the 300 mm assumed in the above case.  For such cases 
also, tables have been prepared listing θ and β values for various combinations of 
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longitudinal strain εx and a crack spacing parameter.  In both cases, an over 
estimation of εx will give more conservative predictions of the shear strength. 

C

T = M/dv

0.5V cotθ 

0.5V cotθ 

0.5N 

0.5N 

N 

V 

M 

(a) Moment 

(b) Shear 

(c) Axial load 

ss

v
AE

M/d
x
=ε  

sAsE
V

x
θ

ε
cot.  50

=  

sAsE
N

x
 50.

=ε  

As 

θ 

 

patibility, etc.  At the same time, to 
k s of simplifying 

• ent yields, working out the equations for 

Fig.17.6  Longitudinal strain at flexural tension steel level 

Summary 
This method aims to arrive at more rational solutions by considering such aspects as 
influence of cracking on compressive strength, the tensile strength of cracked 
concrete, variable angle of inclination of principal stresses, influence of shear on 
stresses in longitudinal reinforcements, strain com
ma e the procedure tractable and suitable for a code format, a serie
assumptions are made.  These include  
• neglect of the redistribution of shear stress,  
• assumption of uniform shear stress distribution over the depth,  
• consideration of the stresses and strains at only one level in the cross section and 

applying the results to the entire section,  
• taking the longitudinal strain at the flexural tension steel level,  
• assumption of a constant crack spacing of 300 mm for all beams with shear 

reinforcement,  
assumption that the shear reinforcem
pure shear and accounting for effects of flexure and axial load by modifying 
longitudinal steel strain only.  
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Despite the above simplifying assumptions, a closed form solution is not possible 
and a trial-and-error approach involving complex equations, tables and charts are 
used.  Even so, modification factors have to be applied in some cases, as with the 
constant 1.3 in Eqn. 17.33.  Unfortunately, the objective for rigour is compromised 
by the need to introduce so many assumptions.  Indeed, the traditional method uses 
far less and more justifiable assumptions and is supported by the sound concepts of 
the Strut-and-Tie model.  In any case, IS Code does not specify Compression Field 
Theory as a method for design in shear.  For these reasons, the authors do not 
recommend this as a standard method for design especially in the Indian context.  

below an rked out later [Ex. 17.1]. 

ry.  One 
of 

However, the topic has been included as it is a relatively recent theoretical 
development.  For the sake of completeness, the CSA Code provisions are given 

d an example wo

17.1.6 CSA Code Provisions for Shear Design by the Compression 
Field Theory 

IS 456:2000 does not include any provision based on compression field theo
the Codes which introduced the compression field theory for shear design early on 

is the Canadian Standards Association (CSA) Standard CSA A23.3-94: Design of 
Concrete Structures.  The provisions in that Code are briefly discussed here. 

CSA Standard uses the cylinder strength cf ′  as the specified concrete strength.  
To relate this to the cube strength, Eqn. 2.3 may be used.  Moreover, this Code uses 
material resistance factors of φc = 0.6 for concrete and φs = 0.85 for reinforcing bars.  
These material resistance factors correspond to the inverse of the partial safety 
fac

The procedure designated as “general method” 
(Cl. 11.4) follows the simplified procedure describ

ntrolling design equation is: 

tors for materials, γ, referred to in Section 3.6.2.  The factor λ accounts for the 
effects of concrete density on tensile strength and other properties; [see also Section 
6.9.2]. 

for shear design in CSA A23.3–94 
ed in Section 17.1.5.  The load and 

resistance factors are also incorporated.  The co

fsgcgrg VVVV ≥+=                                            (17.32) 

here, 
 ete, 
 Vsg is the factored shear resistance provid
 V   is the factored shear force at the secti

 density concrete 

w Vrg  is the factored shear resistance, 
Vcg is the factored shear resistance attributed to concr

ed by the shear reinforcement,  
on, and f

λ       is the factor to account for low

vwcccg dbfV ′= βλφ3.1                                           (17.33) 
For stirrups perpendicular to beam axis: 

dfA
s

V vysv
sg

θφ cot
 =                                           (17.34)

For transverse reinforcement inclined at an angle α  to the longitudinal axis, 

s
dfA

V vysv
sg

αα+θφ
=

sin)cot(cot
                        (17.35) 
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The factor 1.3 in Eqn. 17.33 compensates for the low value of φc and partially 
offsets the conservatism of this method.  The expressions for  Vsg  are the same as 
those derived on the basis of the truss model in Se
ensure that the transverse reinforcement will yield pr
co

ction 6.7.4 [Eqns. 6.18(a)].  To 
ior to the crushing of the 

ncrete in the web in diagonal compression, Vrg is limited to: 

vwccrg dbfV ′≤ φ25.0                                         (17.36) 

Tables and graphs are presented in the Code for determining values of β and θ for 
sections with and without the minimum amount of 
sections with transverse reinforcement, the table 

transverse reinforcements.  For 
is in terms of parameters  

vf /(λ φc cf ′ ), where vf is the factored shear stress, and 
tension steel level.  For evaluating these parameters, 

                   

εx, the longitudinal strain at the 

)/( vwvf dbVv =                   (17.37) 
and 

)/(]/)cot(5.0[ ssvfffx AEdMVN +θ+=ε                 (17.38) 

≤ 0.002 

as per CSA Code 
Cl.11.4.7, and εx. 

Longitudinal reinforcement is to be designed for the combined effects of flexure, 
axial load and shear.  Accordingly, as in Eqn. 17.31, at all sections, 

For sections without the minimum transverse reinforcement, the parameters to be 
used are the crack spacing parameter, sz, determination of which is 

θ−++≥ cot)5.0(5.0/ sgffvfys VVNdMfA                    (17.39) 

 

dv /tanθ 

θ 

A B

Vf

Avφsfy dv /(s 

Design shear 
(average) 

Factored 
shear force 

of Eqn. 17.39 may be satisfied by extending the flexural tension reinforcement a 

 
Fig. 17.7  Design for average shear over length  dvcotθ 

In the case of members not subjected to significant axial tension, the requirement 
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distance of dv cotθ beyond the location needed for flexure alone [compare with Fig. 
6.10(a)].  Similarly computation similar to development of Eqn. 6.21 [Fig. 6.10(b)] 
with diagonal crack at angle θ will show that at exterior direct bearing supports, the 
bottom longitudinal reinforcement should be capable of r
the inside edge of the bearing area, given by: 

esisting a tensile force T at 

fsgf NVVT 5.0cot)5.0( +θ−=                                 (17.40) 

Shear failure by yielding of transverse reinforcements involves the reinforcements 
over a length of about dv cotθ, as can be seen in Fig. 17.7.  Accordingly, the CSA 
Code (Cl. 11.4.8) permits the provision of transverse reinforcement over such lengths 

th. 

reinforcement required for torsion [see Section 7.4.2  and Fig. 7.6].  On this basis, the 
factored torsional resistance of the section, Trg, is giv

based on the average requirement for this leng

17.1.7 Combined Shear and Torsion 

The shear stress due to torsion and the shear stress due to transverse shear are 
additive on one side of the cross section and they counteract on the opposite side.  
The transverse reinforcement is designed considering the side where the stresses are 
additive.  The Code requires that the transverse reinforcement provided shall be at 
least equal to the sum of that required for the shear and the coexisting torsion.  The 
equations presented in Section 17.1.6 above are used to compute the area of 
transverse reinforcement required for shear.  Equations based on the space truss 
analogy, with cracks making an angle θ with the longitudinal axis, and assuming that 
cracked concrete carries no tension, are used for the computation of the transverse 

en by [see Eqns. 7.12 and 7.13]: 

θ
φ

= cot2
s

fA
AT yts

o                                          (17.41) 

Here At is the area of one leg of closed transverse torsion reinforcement The area 
enclosed by shear flow path, Ao, is to be taken as 0.85 Aoh, where Aoh is the area 
enclosed by centerline of exterior closed transverse torsion reinforcement.  Angle θ is 
to be determined from tables and graphs given in the Code, as explained in Section 
17

e torsional shear is uniform over the thickness 
[Chapter 7].  Hence for box type sections, the factored shear stress due to combined 
shear, Vf, and torsion, Tf, is given by: 

.1.6.  To determine θ, the factored shear stress, vf, and the longitudinal strain, εx, 
are required. 

For thin walled tubular sections, th

2
oh

hf

vw

f
f

Adb
v +=                                  (17.42) 

For other cross sectional shapes, such as a rectangle, torsional shear stress at first 
(diagonal) c

pTV

racking varies over the section from zero to a maximum, with the 
possibility for considerable redistribution.  To allow for this, the factored shear stress 
is taken as: 
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2

2

2

⎟
⎟
⎞

⎜
⎜
⎛

+⎟⎟
⎞

⎜⎜
⎛

= hff pTV
v                                (17.43) 

⎠⎝⎠⎝ ohvw Adb

where ph is the perimeter of the centerline of the closed transverse torsion 
reinforcement.  The longitudinal strain, εx, may be taken as 0.002, or alternatively 
computed from Eqn. 17.44 below: 

0
2

cot5.05.0
0

2 +⎟⎟
⎠

⎜⎜
⎝

+θ+

=ε
v

h
ff

x
dA

VN
9.0

2

≥

⎞⎛

ss

f

AE

Mp

               (17.44) 

Similarly, allowing for torsion also, the longitudinal reinforcement is to be 
proportioned such that: 

( )
2

2 45.0
⎟⎟
⎞

⎜⎜
⎛

+
Tp fh      (17.45) 

tru

ts, concentrated loads, or abrupt changes in cross 
ection [refer Fig. 17.8].  Insightful designers have always used this concept for 
esign in special situations, such as openings in webs of beams, corbels, end blocks 

in prestressed concrete beams, etc.  

02 ⎠⎝ Ad f

17.2 DESIGN USING STRUT-AND-TIE MODEL 

The strut-and-tie concept was mentioned in Section 15.2.3.  Reinforced concrete 
members or portions of them can be analyzed, designed and detailed by idealizing 
them as composed of a series of reinforcing steel tensile ties and concrete 
compressive struts, interconnected at nodes to form a truss capable of transmitting 
the loads to the supports.  This strut-and-tie concept is depicted in Fig. 17.8.  It is a 
very basic concept in structural design that, for transferring a system of loads to the 
supports, any stable skeletal framework such as a truss, grid, arch or catenary, 
compatible with the actual deformation pattern, may be delineated, and the members 
and their joints designed for the resulting forces thereon.  The skeleton (or 

5.0cot5.0 −θ++≥φ VVN
M

fA sgff
f

yss

ss/arch/catenary) may be either explicit and externally visible, as in a real truss, or 
implicit and embedded within a member, as in the case of the truss analogy for shear 
design of concrete beams [Fig. 6.9] and the truss analogy for plate girder design.   

For a given structure and loading, a number of different strut-and-tie arrangements 
are conceivable.  Thus, for a deep beam, for instance, it is possible to conceive a 
triangulated truss, a tied arch or a strutted catenary, as depicted Fig. 17.9, for the 
purpose of modeling the skeletal load transfer scheme and for designing accordingly.  
The optimum design is the one that is economic, has stability, adequate reserve 
strength and ductility, and meets the serviceability conditions satisfactorily.  Usually, 
the model involving the most direct load path to supports and relatively large angles 
between the strut and tie at nodes will be more efficient.  This is a very simple and 
handy concept for design and detailing, particularly in regions with discontinuities, 
such as locations adjacent to suppor
s
d
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support  
region 

Effective 
concrete area 
for tie force 

Tie 
Struts

Tie 

corbelabrupt change of 
section near support 

deep beam with 
concentrated loads 

(a)

(b)

(c)
 

Fig. 17.8  Examples of the strut-and-tie (truss) concept of load transfer 
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(b) tied arch(a) deep beam

(d) strutted catenary(c) triangulated truss
 

Truss  load transfer schemes for the cases shown in Fig. 17.8(a) are 
show i
methods members and their joints (node regions) must 
have e
the iden nd their design is fairly 
strai -
such as ermination of 
appropriate member cross sectional areas and node dimensions is not so simple, 
especially for the compressive struts and nodes.  Furthermore, the concrete in the 
struts may have tensile cracking parallel to its axis and the nodes may be under 
biaxial or triaxial states of stress.  Although IS 456:2000 (Cl. 28) recommends the 
strut-and-tie model for design of corbels, no guidelines are given for determination of 
concrete strut and node dimensions and for the allowable stresses.  Hence, the 
following general guidelines, which are based on CSA Standard A23.3-94, may be 
helpful here†: 

1. The stress distribution in the cross section of a truss member may be 
assumed to be uniform, so that the member force will act along the member 
centerline. 

2. All member forces, loads, and reactions meeting at a node must form a 
system of concurrent forces. 

3. The node region is bounded by sections of the members meeting at the node 
and

4. The member section areas and the node dimensions should be adequate to 
carry the loads without exceeding the stress limits applicable. 

                                                          

Fig. 17.9  Strut-and-tie model — Alternative schemes of load transfer 

 models for
n n Fig. 17.8(b).  The forces in the truss members can be computed using 

 of truss analysis.  The truss 
 ad quate strength to carry and transmit these forces.  In the case of a real truss, 

tification of the member areas and joint details, a
ght forward.  However, in the case of an implicit truss embedded in concrete 

the one shown in Fig. 18.8(b) and (c) and Fig. 17.10, the det

 the load or reaction bearing area, if applicable. 

 
† Note that in using these provisions and the associated limiting stresses borrowed from the 
Canadian Code, concrete strength is the cylinder strength and material resistance factors are to 
be used with characteristic strengths [see also Section 6.9.2] 
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(i) struts, ties and nodal zones 

tie 

tension ties 0.6 φcfc′ 
0.75φcfc′ 

0.85φcfc′′ 

Nodal 
zone Compression strut, 

f2 <  f2,max 

effective concrete 
area for tie force 

(ii)

T

Area outside “truss”, nominal 
reinforcement required 

 

Fig. 17.10  Identification of Strut-and-Tie members and nodes 

ain 
plane" is not applicable have to be proportioned for shear and torsion using the strut-
and-tie model.  Such regions include areas of static or geometric discontinuities, deep 
beams and corbels [Fig. 17.8].  

The tension reinforcement forms the effective tension tie and hence its required 
area, Ast, is obtained as the tie force divided by φsfy.  This reinforcement has to be so 
distributed as to give adequate dimensions for the nodes and joining compressive 
struts to carry their respective forces satisfactorily [Fig 17.10].  This reinforcement 
must be anchored by appropriate embedment lengths, hooks, or mechanical devices 
so that it is capable of developing the required stress at the inner edge of the node 
region [Chapter 8].  For straight bars, if the extension beyond the inner edge of the 
node region, x, is less than the development length, ld, of the bar, the bar stress has to 
be limited to fy (x /ld). 

The cross sectional area of the strut has to be computed based on the guidelines 
given above and considering the concrete area available, as well as the anchorage 
conditions at the end of the strut.  A few typical cases are depicted in Fig. 17.11.   

Flexural members may be designed for shear and torsion using the strut-and-tie 
model.  Further, regions of members where the assumption "plane sections rem
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6 db

lb 

(c) Strut anchored by  
        bearing plate and strut 

ha 

(a)  Strut anchored by reinforcement 

la 

≤ 6 db

db 

la sin θ

θ

db

θ 

lb sin θ + ha cos θ

0.5 ha

(b) Strut anchored by bearing plate and  
        reinforcement 

lb

θ
da 

lb sin θ + da cos θ 

 
Fig. 17.11 Compressive strut dimensions 

The strut is likely to have tension cracks developed parallel to its axis [Fig. 17.12]
so, the allowable compressive stress in the strut has to take this into accoun

.  
If t 
[S a 
str 1 
an

ection 17.1.3].  If a tie reinforcement is crossing a strut [Fig. 17.10] and has 
ain εs = fs /Es along the tie, the principal strains in the concrete at this location, ε
d ε2, must be compatible with εs.  On this basis, and assuming that the maximum 

principal compressive strain, ε2, in the direction of the strut equals 0.002, the 
following equations may be used for the limiting compressive stress in concrete strut, 
fcu.  

ccu ε+
c f 

f
f ′≤

′
= 0.85               

1708.0 1
                         (17.46) 

εε +=whe
and s is
tie and ε

If the compressive strut is reinforced for compression with bars having an area  
Ass, placed parallel to the strut axis and detailed so as to develop its yield strength, fy, 
the limiting strength of the strut is given by : 

re, sss θε1 cot)002.0( +                                (17.47) 
θ   the smallest angle between the compressive strut and the adjoining tensile 

2

s is the tensile strain in this tie. 
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yssscucc fAfA φφ +                                                 (17.48) 

Concrete in the nodal zone is subjected to multidirectional compression, where the 
struts and ties of the truss meet.  The allowable compressive stress in these regions 
are dependant on the degree of confinement and the adverse effects of tensile 
straining caused by anchoring of tension ties in this region, if any.  The effective area 
of the node zone can be increased and the stresses in the region reduced by 
increasing the size of the bearing plates, by increasing the section dimensions of the 
compressive struts, and by increasing the effective anchorage area of tension ties.  
Unless special confining reinforcement is provided, the compressive stresses in the 
concrete in the node regions are limited to the maximum values given below:  

(a) 0.85φc fc'  in node regions bounded by compressive struts and bearing areas  
(b) 0.75φc fc' in node regions anchoring a tension tie in only one direction; and 
(c) 0.65φc fc' in node regions anchoring tension ties in more than one direction. 

Examples of zones to which each of these limits apply are identified in Fig. 
17.10(i).  In most s ompression strut is 
limited to a maximum of f  [Eqn. 17.46], the compressive stress on the face of the 
no

y the stress limits given 
above. 

ituations, since compressive stress in the c
2,max

dal region bearing against a compression strut will be within safe limits.  The 
stress limits in the node region may be considered satisfied if: 

1. The bearing stress due to concentrated loads or reactions does not exceed 
the limits given above, and 

2. The tie reinforcement is uniformly distributed over an effective area of 
concrete at least equal to the tie force divided b

 f

Tension tie

Compression 

f2θs

ε2 = - 0.002
strut 

εs = fs / Es

ε1 
ε1 = εs + (εs + 0.002

f2 
 ) / tan2θs 

 

Fig. 17.12 Strain conditions in concrete strut 

The strut-and-tie portion identified and discussed so far leaves large areas of 
concrete in the member, outside the truss, unreinforced [see Fig. 17.10(i)].  In order 
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to control crack widths and to impart some ductility to the member, the Code also 
requires forcing bars near each face.  Such 
reinforce be not less than 0.002 times the gross concrete area in each 
dir

EX

placing of an orthogonal grid of rein
ment should 

ection, and should have a maximum spacing of 300 mm. 

AMPLE 17.1 

De n in Fig. 17.13(a) using the 
General Method.  Assume that the flexural reinforcement consists of 6 No. 30 bars 
(No. 30 bar has a nominal diameter of 29.9 mm and area of 700 mm2), curtailed as 
shown in the figure. The shear force envelope may be assumed linear, varying from 
257 kN at centre of support to 44.6 kN at mid-span as shown in Fig 17.13(b). 
Concrete has a cylinder strength of 20 MPa. 

SOLUTION†

Shear force diagram 
The factored shear force envelope is shown in Fig. 17.13(b). 

Check adequacy of the section 
Near the support section, where the shear is maximum,  

d = 434 mm, bw = 300 mm, dv = 0.9 d = 391 mm 
Admissible maximum Vrg is given by Eqn. 17.36 
Vrg,max = 0.25 φc fc' bw dv  

 = 0.25 × 0.6 × 20 × 300 × 391 × 10-3  
 = 351.9 kN 

The maximum shear at the critical section near the support, distant dv from the 
face of the support is  
Vf  =  44.6 + (257 – 44.6) (4 - 0.12 - 0.391) / 4  
     = 230 kN    <   Vrg,max  OK 

                  

sign the shear reinforcement for the T – beam show

                                         
† Note that the reference to Code clause in this example refers to CSA A23.3-94. The solution 
here is given only to demonstrat bles for values of θ and β given 
in the Canadian Code are not reproduced here, the reader may not be able to adopt this method 
for design. 

e the procedure.  Since the Ta
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LL = 44.6 kN/m DL = 19.6 kN/m

434

2260

 

Di

spacing limited to 600mm and 0.7d 
ii)  d  <  V , spacing limited to 300mm and 0.35d 

• C

Fig. 17.13  Example 17.1 

fferent zones for shear reinforcement and spacing. 
As per CSA A23.3-94, shear reinforcement and spacing restrictions are: 

(i) Vf  ≤ 0.5Vc, No shear reinforcement required 
(ii) 0.5Vc < Vf  < 0.1 λ φc fc' bw dv, 
(i  0.1 λ φc fc' bw v f

alculation of V  [CSA A23.3-94 Cl. 11.2.8.2] c

  vwccc dbf ′= λφ2.0   V

 = 0.2 × 1.0 × 0.6 × 20 × 300 × 434 × 10-3  
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 = 69.87 kN 
Since the minimum Vf = 44.6 kN is greater than 0.5Vc calculated above, 
shear reinforcement is required throughout the length of the beam. 

• S
r Cl. 11.2.11(a) - 600mm 

pan, or a distance 
t. 

d 
De

• C itic om face (or 371+120 = 511mm from centre) 

 determined from Table 11.1 of CSA A23.3-94.  
For th h f   = Vf /(bw dv)   

6 × 20)  

e entire span.  Accordingly,  
  

s value of θ, εx is calculated as: 

which he value 0.001 assumed.  Choosing from the table the value 
1139 < 0.0015 assumed and 

hence

The factored shear resistance contributed by concrete is [Eqn. 17.33] 
Vcg  = 1.3 × 1.0 × 0.6 × 0.100 ×

pacing limitations 
equirements [CSA A23.3-94 The normal spacing 

and 0.7 d] applies where 
Vf   <  0.1 λ φc fc' bw dv   
 =  0.1 × 1.0 × 0.6 × 20 × 300 × 406 × 10-3  
 = 146 kN 
The location where Vf  = 146 kN is given by   
(146 – 44.6) × 4000 /(257 – 44.6) = 1910 mm from mids

f 1970 mm from face of supporo
W re V  > 146 khe f N, spacing limits are 300 mm and 0.35

sign o stf irrups 
r al section at dv = 391 mm fr

of support, where Vf = 230 kN.  
The parameters θ and β are to be

is t e factored shear stress is  v
 =  230 × 10 /(300 ×391)  
 = 1.96 MPa 

Factored shear stress ratio,  
     vf  /(λ φc fc') = 1.96 / (1.0 × 0.

= 0.163  
Longitudinal strain is given by Eqn. 17.38,  

εx  = ( 0.5 Vf cotθ + Mf /dv ) / (Es As ), 
where Mf  is the bending moment at the critical section at 391 mm from the 
support, corresponding to the load causing maximum shear at this section.  
However, for convenience and to be conservative, this moment is taken here as 
the moment with full load on th

Mf  = 64.2 × (4 × 0.511 – 0.5112 /2 ) 
 =  122.8 kN⋅m 
εx  = (0.5 × 230 × 103 cotθ  + 122.8 × 106 / 391) / (200 000 × 2100) 
 = ( 0.274 cotθ  + 0.748 ) × 10-3

Since θ is not yet known, a trial and error procedure is needed.  It is conservative 
to overestimate εx.  For vf /(λ φc fc') ≤ 0.200 and εx ≤ 0.001, Table 11.1 of the Code 
CSA A23.3-94 gives θ  = 34.5o.  With thi

 εx  = ( 0.274 cot 34.5o + 0.748) × 10-3   
 =  1.147 × 10-3  
 is greater than t

for  εx ≤ 0.0015, θ  = 35o and corresponding εx = 0.00
 OK.  For this, from Table 11.1, β = 0.100. 

 20 × 300 × 391 × 10-3  
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  = 40.9 kN 
The factored shear resistance to be provided by stirrups is 

Vsg = Vf  - Vcg   
 =  230 – 40.9  =  189.1 kN 

ps placed perpendicular to beam axis, the required 
spaci

sg
o

As V is given by 300 mm or  

 the face of support, and the 
upto this location.  Therefore, provide the first 

stirru e face of the support, followed by 13 more 
stirru overing a total length of 2025 mm from the face of the 

m face of support 
length of dv 

558 mm (although both dv and θ 
will v esigning for every discrete lengths 

rt is  

.3-94, θ  = 
38o.  Corresponding to this, εx  = 1.458 × 10-3 which is less than the 0.0015 

Assuming No. 10 U stirru
ng is given by [Eqn. 17.34] 

cotθ ) /V   s  = (φs Av fy dv 
 = (0.85 × 200 × 400 × 391 cot 35 ) / 189 100 
 = 201 mm 

f  > 146 kN, the limiting spacing 
0.35 d = 0.35 × 434 = 152 mm 

Hence, the limiting spacing controls, and a spacing of 150 mm is selected.  The 
shear force is 146 kN at a distance of 1970 mm from
limiting spacing is applicable 

p at a distance of 75 mm from th
ps at 150 mm, c

support.   
• Section at 2.3 m fro
The C
cotθ.  Here, d  cotθ is in the range of 391cot35° = 

ode permits the design of stirrups for the average shear over a 
v

ary slightly along the span).  In practice, d
of dv cotθ  is not warranted.  In this example, the next section for design is taken at 
a distance of 2 m from face of support (which is approximately 558/2 mm from 
the location of the last stirrup designed.  

The shear at 2.3 m from face (or 2.42 m from centre) of suppo
Vf  = 44.6 + (257 – 44.6) (4 –2.42) / 4   
     = 128.5 kN. 

The bending moment corresponding to this shear is,  
Mf = 19.6 × 4 × 2.42 – 19.6 × 2.422 / 2 + 44.6 × 5.582 × 2.42 /(8 × 2)  
 = 342.4 kN⋅m. 

At 2.3 m from face of support, there are 5 No. 30 bars and effective depth is 
different from at support.  Here, conservatively, the effective depth at mid-span, 
equal to 406 mm will be used for this section also.  Corresponding  
dv = 0.9 × 406 = 365 mm. 
Factored shear stress ratio,  

vf /(λ φc fc')  = 128.5 × 103 /(300 × 365 × 1.0 × 0.6 × 20) = 0.098 
Longitudinal strain is  

εx = (0.5 × 128.5 × 103 cotθ + 342.4 × 106 /365)/ (200 000 × 3500)  
    = (0.092 cotθ  + 1.340) × 103

For vf /(λ φc fc') < 0.100 and εx < 0.0015, from Table 11.1 of CSA A23
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assumed and hence OK. Correspo 43.  
h due to concrete, 

× 0 × 0.6 × .143 ×

nding β = 0.1
Shear strengt

Vcg  = 1.3  1.  0  20 × 30 × 365 × 10-3

 = 54
 s 12 4.6 9 k

Spacing of stirrups is,  
(0.85  400 5 co )/ 73  430 m

Th mum  in t ion en 
 mm o = 0. 6 = m.

Hence, the limi cin l rem g porti f the be ere, 
fro ast sti ead d , 7  stirrup y be provided at a 

 longitudinal reinforcements 
Out o id-span, one is terminated at a distance of 2260 mm 
and t ente respectively.  
Allowing for the effects of shear, the re tension 

s y y

rce at 

dv from 
rminated and the mid-span 

suppo
(m) 

 (kN) As 
(mm2) 

0   
      

Shear due to
.62 kN 

tirrups is 8.5 – 5 2  = 73. N. 

s = × 200 ×  × 36 t 38o 900  = m 
e maxi spacing his reg is giv by  

600 r 0.7 d 7 × 40  284 m   
ting spa
rrup alr

g contro
y provi

s for the 
ed earlier

ainin
 more

ons o
s ma

am.  H
m the l

uniform spacing of 265 mm, which results in the last stirrup being placed at mid-
span.  The arrangement of stirrups is shown in Fig. 17.13(a).  

Check adequacy of
f the 6 – No. 30 bars at m
wo more at a distance of 860 mm from the c r of support, 

quired factored resistance of 
reinforcement is given by  
Ns = Mf  / dv + (Vf  - 0.5 Vsg ) cotθ 
or, with the stress in steel fully developed to fy , the required area of steel is given 
by  As = N  / f .  The stress f  will be developed in a bar at a distance equal to the 
development length, ld, from the free end. 
The loading conditions for the maximum moment and the maximum shear fo
a sect m Mion are different, and the combination to be checked is the maximu f and 
concurrently occurring Vf and vice versa.  However, in this example, the 
maximum moment Mf and the shear Vf determined from the shear envelope in Fig. 
17.13(b) will be taken together for the checking.  The section at a distance 
the face of the support, the sections were bars are te
sectio  are shown in Table 17.1. n will be investigated.  The calculations

Table 17.1 

Distance of 
section 
from M

rt C/L 
(kN⋅m (kN) 

f

)
Vf dv

(mm) 
Vsg θ 

(degrees) 

Required 

0.511 122.8 230 391 189.1 35 1269 
0.8 37 60 197.1 211 391 168.9 1680 
2.260 416.4 137 371   90.4 39 3089 
4.000 513.6   44.6   365.4 Nil 43 3633 
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The terminated bars will be fully effective only at a distance ld from the free end.  
For No. 30 bottom bars in regions containing minimum stirrups, from Table 12.1 
of CSA A23.3-94, 

ld =  0.45k1 k2 k3 k4 fy db / cf ′  

   =  0.45 × 1.0 × 1.0 × 1.0 ×1.0 × 400 × 30 / 20  = 1207 mm 

The required As and the actual area provided are presented graphically in 
Fig. 17.13c.  The longitudinal reinforcement provided is OK. 

Check adequacy of reinforcement at exterior support (CSA A23.3-94 
Cl.11.4.9.4) 

Tensile force to be resisted at the inside edge of bearing area is [Eqn. 17.40] 
T = ( Vf  - 0.5 Vsg ) cotθ  = (230 - 0.5 × 189.1) cot 35o=  193.4 kN 

If the bar is provided straight and the cover at the edge is 40 mm, the available 
development length up to the inside edge of the bearing area is = 240 – 40 = 
200 mm.  
The stress that can be developed at the inside edge is  

fs  = (200 / 1207) × 400  = 66.3 MPa.  
Hence, the force that can be resisted is As fs = 2100 × 66.3 × 10-3 = 139 kN. 
This is inadequate.  Hence the bars may be provided with hooks so as to develop a 
stress of at least 193.4 × 103 / 2100 = 92 MPa. 
Providing the bars continued over the support region with standard 90o hooks, the 
development length, ldh , is given by [CSA A23.3-94 Cl. 12.5] 

  ldh = 100 db / cf ′   

 = 100 × 30 / 20  = 671 mm 
The stress developed in the bars at the inside edge of bearing area is  

400 × ( 200 / 671 ) = 119 MPa > 92 MPa,          OK. 

gs and structures in the 
area, according to occupancy groups. The standard IS 1642 [Ref. 17.6] classifies the 

Note that in Fig. 17.13(c), the stresses in the bars are taken as fully developed over a length 
of 671 mm for the bars at the support and over a length of 1207 mm for the terminated bars. 

17.3 FIRE RESISTANCE 

17.3.1   Introduction  

The purpose of this Section is to make the reader aware of the need to consider the 
fire resistance aspect and the related requirements of the applicable building codes, 
where these can be critical, while designing reinforced concrete structures. It is not 
the intent here to deal with the behaviour of structures in real fire situations. The 
objective is only to present some basic information, in order to aid the designer in 
considering fire hazards and certain fire protection features which could be kept in 
perspective while doing the structural design and detailing. Indian standard IS 1641 
[Ref. 17.5] classifies buildings according to the use or the character of occupancy 
into 9 groups. Further, the city or area is to be demarcated into distinct Fire Zones 
(numbered 1 – 3) based on fire hazard inherent in the buildin
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typ

erected in different Fire zones [Ref. 17.5].  The fire resistance ratings for 
structural and non-structural members for various Types of construction are specified 

rating and T  among the four. 
Fire resistance generally refers to the property of a material or assembly to 

om it.  As applied to elements of buildings or a 

mation 
so

des, 
mns from all sides.  The end of the test is reached and 

the most highly fire resistant structural material used in 
co

ins.  Concrete in which the coarse aggregate is limestone, 
calcareous gravel, sandstone, blast furnace slag or similar dense material containing 

es of construction, according to fire resistance ratings, into four categories – Type 
1 to Type 4. Restrictions are imposed on admissible Type of construction for new 
buildings 

in IS 1642 (Table 1, Ref. 17.6).  Type 1 construction has the highest fire resistance 
ype 4 the lowest

withstand fire or give protection fr
structure, it is characterized by the resistance to flame penetration, heat 
transmission and failure.  Fire resistance rating is the time in hours or fraction 
thereof that a material or assembly of materials will withstand the passage of flame 
and transmission of heat when exposed to fire under specified conditions of test and 
performance criteria (or as determined by extension or interpretation of infor

 derived).  
The fire resistance rating of building components is determined by standard fire 

resistance test.  In such tests, a building assembly such as a portion of a floor, wall, 
roof or column is subjected to increasing temperatures that vary with time, 
approximating the conditions which would prevail during a fire within a moderate 
size compartment having a relatively small amount of ventilation.  Floor and roof 
specimens are exposed to the fire from below, beams from the bottom and si
walls from one side and colu
the fire endurance of the specimen established when (i) specified rise in temperature 
of unexposed surface, (ii) flame penetration to the unexposed surface through cracks 
or fissures or (iii) failure to sustain specified load occurs.  In general, fire resistance 
of concrete floor/roof assemblies and walls is governed by heat transmission (i.e. the 
temperature of the unexposed surface rises by/to a specified value), and columns and 
beams by failure to sustain the applied load, or beam reinforcement temperature 
rising to a limiting value.  A standard fire resistance test is specified in IS 3809 [Ref. 
17.7].  The designer has also the option to use ratings assigned to common 
assemblies and members in various codes such as Ref. 17.8.  

Fire resistance of concrete elements depends upon details such as member size, 
cover to steel, reinforcement detailing and type of aggregate (normal weight or light 
weight).  

17.3.2 Factors which influence Fire Resistance Ratings of RC 
Assemblies  

Type of Concrete and Aggregates 
Concrete is one of 

nstruction. However, the properties of concrete and reinforcing steel do change 
significantly at high temperatures caused by fire. For both materials, at high 
temperatures, the strength and modulus of elasticity are reduced, the coefficient of 
expansion increases, and creep and stress relaxations are considerably higher. 

The compressive strength of concrete during fire exposure mainly depends upon 
the aggregate it conta



824   REINFORCED  CONCRETE  DESIGN 

not more than 30% quartz performs better during fire exposure, compared with 
or other 

gregate concretes.  

eel and Cover 
slower for hot rolled reinforcing 

er 
pro

Th

concrete with coarse aggregate such as granite, quartzite, siliceous gravel 
dense materials containing more than 30% quartz.  In general, low-density aggregate 
concretes exhibit better fire performance than natural stone ag
Member Size and Detailing 
Other things being equal, the larger the thickness or overall cross-section of an 
assembly, the greater its fire resistance rating. In slab-like members, such as floors, 
roofs and walls, the rating can be improved by increasing the thickness. For beams 
and columns, larger cross sections suffer less average concrete strength loss than 
smaller ones for a given period of fire exposure, as the larger sections take longer to 
heat up. Where a plaster finish is used, the plaster thickness can be included in the 
member thickness for fire resistance requirements. In the case of sections containing 
cores or voids, an equivalent thickness of the slab must be used. For hollow-core 
concrete slabs and panels having a uniform thickness and cores of constant cross 
section throughout their length, the equivalent thickness to be used may be obtained 
by dividing the net cross sectional area of the slab or panel by its width. 
Reinforcing St
The loss of strength at high temperatures will be 
steel than for cold worked steel and prestressing tendons. Since the load carrying 
capacity of a member depends largely upon the tensile strength of the reinforcement 
in it, its fire resistance rating depends upon the type of reinforcing steel and the level 
of stress in the steel. 

The rate at which heat reaches the reinforcement in a member and hence the loss 
of strength of the reinforcement is inversely proportional to the concrete cov

vided.  It should be noted that while plaster thickness, where provided, cannot be 
reckoned as part of cover for meeting the durability requirements (Table 16 of Code), 
it can be included in the cover thickness for meeting the fire resistance requirements 
(Table 16A of Code).  
Continuity and Restraint (structural system) 

is depends on (1) boundary conditions and (2) type of structural element. 

• Fire endurance of statically determinate beams and slabs 
Consider a simply supported reinforced concrete beam, subject to a uniformly 
distributed load.  If the underside of the beam is exposed to fire, this side will expand 
more than the top, resulting in additional curvature and hence deflection of the beam.  

ned, no additional stress due to such deformation is likely 

d restraints in such a beam will delay the 
collapse, as it induces a compressive stress in the steel (and a membrane tension or 
catenary effect at large deflections); this beneficial effect, however, does not occur in 

If the member is not restrai
to be induced (when the temperature gradient across the depth is linear).  The 
compressive strength of concrete and tensile strength of steel will decrease with 
increase in temperature, and flexural collapse occurs at a ‘critical temperature’ when 
the material strength (usually that of steel) lowers to such an extent as to eliminate 
the margin of safety.  The presence of en
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the case of a cantilever or if the top surface of the simply supported member is 
subject to fire. 

• Fire endurance of continuous beams and slabs 
Structures that are continuous or otherwise statically indeterminate undergo changes 
in stresses when subjected to fire.  Such changes in stress result from temperature 
induced deformations which may be restrained, or changes in strength of materials at 
high temperatures, or both.  The continuous system may fail either by the critical 
temperature being reached in the reinforcement in the exposed side or by 
temperature-induced additional stress in the reinforcement in the unexposed side.   

Consider a multi-span continuous beam, whose underside is exposed to fire.  The 
bottom of the beam gets hotter than the top and tends to expand more than the top.  
This differential expansion, under restrained conditions, results in increase in 
hogging (negative) moments at the interior supports and decrease in sagging 
(positive) moments in the span regions [Ref. 17.9].   

The cover specified by IS 456 for a continuous system for the same endurance 
rating is less than that for a simply supported system in view of the redundancy in the 
continuous system.  The nominal cover for reinforcement to be provided also 
depends on the dimensions of the structural element, which govern the rate at which 
the temperature of steel increases.   

Fire Protection Measures 
Occasionally, members or assemblies may be provided with fire protection 
treatments such as plasterboard layers, lightweight aggregate gypsum plaster, fire 
resistant false ceiling, fire resistant finishes, sprayed fireproofing, etc. When used, 
contribution of such treatments to the fire resistance must be assessed separately 

s with such materials. 

requirements for fire resistance are often 
overlooked. As already indicated, the two important design parameters are the 

 thickness in the case of slab-like members) and cover 
to reinforcement. The thickness controls transmission of heat and the cover structural 
integrity. 

The Code (Cl. 21) states that “a structure or structural element required to have 
fire resistance should be designed to possess an appropriate degree of resistance to 
flame penetration; heat transmission and failure”.  However, except for giving the 
minimum requirements of concrete cover and member dimensions for normal-weight 
aggregate concrete members to have the required fire resistance (Cl. 21.2), the Code 
does not cover any aspect of uired fire resistance ratings.  
Minimum requirements of me r for normal-weight 

e required fire resistance are given in 
.  

ed in the Code (Cl. 26.4.2) to meet 
du .  

based on test result

17.3.3 Code Requirements 

In the design of concrete structures, 

member dimensions (especially

 design to achieve the req
mber dimensions and concrete cove

aggregate concrete members so as to have th
pectivelyFig. 1 and Table 16A of the Code res

It is emphasized that the nominal cover specifi
rability requirements may not be sufficient to meet required fire resistance rating
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Ho ever, too large a cover (in excw ess of 40 mm for beams and 35 mm for slabs), 
esp y lead to spalling of 
the  give 
pro ).  Such are the cases falling below the 
bo he required cover 
exceeds 60mm, wire mesh reinforcement with 1.57 mm diameter wire and 100 mm 

corporated midway in the concrete cover to retain the concrete in 

ecially over closely spaced grid type reinforcement layers, ma
 cover concrete.  In such cases, additional measures should be adopted to
tection against spalling (Code Cl. 21.3.1

ld line in Table 16A of Code.  In column members, when t

openings may be in
position. 

EXAMPLE 17.2 

Determine the fire resistance rating of the floor slab designed in Example 5.2. 

SOLUTION 

Assume the concrete as normal-weight. 

 

  cross section 

clear cover 
30 mm 200 mm

 

Fig. 17.14  Example 17.2 

e 7.14 

F
R

• 
C m.  The slab is simply supported. 
R ode, the cover is > 25 mm, but less than 35 mm. 
T
H  is 1.5 hours. 

EXA

Th  slab cross section is shown in Fig. 1
• Rating for transmission of heat: 

rom the design, thickness of slab = 200 mm.  
ating for transfer of heat, as per Fig.1 of Code (as D > 170 mm) is 4 hours (+). 
Rating for structural integrity: 
lear concrete cover = 30 m
eferring to Table 16A of C
he rating for this cover is 1.5 hours (+). 
ence, structural integrity governs, and the rating

MPLE 17.3 

Determine the fire resistance rating of the beam and slab floor designed in Example 
e concrete as normal-weight. 

The relevant floor system dimensions are shown in Fig. 17.13 

11.6. Assume th

SOLUTION 
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Fig. 17.15  Example 17.3 

• Fire resistance of the beam section 
 beam is continuousT .  For 30 mm cover, from Table 16A of Code, the fire 

resistance rating is 2 hours.  Width of beam is 400 mm.  Rating for this, 
1 of Code is in excess 

he
from 

ig.

 of the slab 

rom

hu

PROBL

ha
General 

REVIEW

17.2 itional method 

17.3 ss-strain relationship of concrete with cracks 

7.5 Give examples where the Strut-and-Tie Model is most appropriate for 
design? 

17.6 What are the design considerations in design using the Strut-and-Tie model? 
17.7 In a test for fire resistance of a building component, what are the limiting 

endurance criteria? 
17.8 What are the factors that influence fire resistance ratings of reinforced 

concrete assemblies? 
17.9 How can the fire resistance of an already cast floor system improved? 

F of 4 hours.  Hence the beam qualifies for a rating of 2 
hours  

• Fire resistance
From Fig. 1 of Code, for 180 mm thick normal-weight aggregate concrete, rating 
to resist transfer of heat is in excess of 4 hours. 

 Table 16A, for a clear cover of 20 mmF , for continuous slab, the rating is 
1.5 hours.  Hence, the structural rating controls for the slab and is 1.5 hours. 

s, the total floor assembly quT alifies for a rating of 1.5 hours. 

EMS 

See C pters 6 and 7 for problems on shear and torsion design, to be solved using the 
Method. 

 QUESTIONS 

17.1 Explain Tension Field Theory.  Where is it applicable? 
How does the Compression Field Theory differ from the trad
of design for shear? 
How does the compressive stre
parallel to the compression differ from that of uncracked concrete?  What is 
the maximum strength of such cracked concrete? 

17.4 Enumerate the assumptions used in the Modified Compression Field Theory 
and critically evaluate them. 

1

 cross section of floor 

clear cover 
20mm 

550

400

6000

clear cover 
30mm

side cover 
> 30mm 

180
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