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CHAPTER-V 

CURVE FITTING 

5.1 Introduction 

Data is often given for discrete values along a continuum. However estimates of points between these 

discrete values may be required. One way to do this is to formulate a function to fit these values 

approximately. This application is called curve fitting. There are two general approaches to curve fitting.  

The first is to derive a single curve that represents the general trend of the data. One 

method of this nature is the least-squares regression. The second approach is interpolation which is a 

more precise one. The basic idea is to fit a curve or a series of curves that pass directly through each of 

the points. 

 

5.2 Least squares regression 

5.2.1 Linear regression 

The simplest example of the least squares approximation is fitting a straight line to a set of 

paired observations: (x1,y1),(x2,y2)……(xn, yn). The mathematical expression for the straight 

line is:  

                                                 y = ao + a1x+ e 

where ao, and a1 are coefficients representing the y-intercept and the slope of the line 

respectively while e is the error or residual between the model and the observations, which 

can be represented as:  

                                                e = y - ao - a1x 

Thus the error is the discrepancy between the true value of y (observed value) and the 

approximate value ao + a1x, predicted by the linear equation. Any strategy of approximating a 

set of data by a linear equation (best fit) should minimize the sum of residuals. The least 

squares fit of straight line minimizes the sum of the squares of the residuals. 

 

To determine the values of ao and a1, differentiate (4.1) with respect to each coefficient 
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Setting the derivatives equal to zero will result in a minimum Sr.The equations can then be 
expressed as 

0

0
2

1

1

=−−

=−−

∑∑∑
∑∑∑

iioii

ioi

xaxaxy

xaay
                                                                      (4.3) 

 
Solving for ao and a1 simultaneously 
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where 
_

y  and 
_

xare the means of y and x, respectively 
 

Test of goodness of fit 
Any line other than the one derived above gives larger sum of the squares of the residuals. 
The square of the residual represents the square of the vertical distance between the data and 
the straight line. The standard deviation of the regression line can be determined by the 
standard error of the estimate  
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Sx/y quantifies the spread around the regression line. This concept can be used to quantify the 
goodness of fit. This is particularly necessary when comparing several regressions. To do this, 
we return to the original data and determine the total sum of squares around the mean of the 
dependent variable i.e., y. This quantity is designated St and represents the magnitude of the 
residual error associated with the dependent variable prior to the regression. Recall that Sr 
characterizes the residual error that remains after the regression.   
The difference between the two quantities, St – Sr, quantifies the improvement or error 
reduction due to describing the data in terms of a straight line rather than an average value. 
The normalized difference yields 
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where r2 is called the coefficient of determination and r is the correlation coefficient.  
For linear regression r is given by 
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For a perfect fit r =1 and r should be close to 1 for good fit.  
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Caution! 
Although the correlation coefficient provides a handy measure of goodness of fit, care should 
be taken not to take for granted that the value of r close to one necessarily mean '"good fit". It 
is always advised to plot the data along with the regression curve because it is possible to 
obtain relatively high value of r when the relationship between y and x is not linear.  
 
Linearization of non-linear relationships 
 
Linear regression provides a powerful technique for fitting a “best” line to a data. However it 
is predicated on the fact that the relationship between the independent and dependent variables 
is linear. But usually this is not the case. Visual inspection of the plot of the data will provide 
useful information whether linear regression is acceptable. In situations where linear 
regression is inadequate other methods such as polynomial regression are appropriate. For 
others, transformations can be used to express the data in a form that is compatible with linear 
regression. 
The followings are examples of functions which can be linearized 
 
i  Exponential functions 
 

xbeay 1
1=                          where a1 and b1 are constants 

 
This function can be linearized by taking the natural logarithm of both sides of the equation 
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the plot of ln y versus ln x will yield a straight line with a slope of b1 and an intercept of ln a1. 
 
ii  Power functions 

 2
2

bxay =  
where a2 and b2 are constant coefficients. 
This equation can be linearized by taking its base 10 logarithm to give 
      22 logloglog axby +=  
the plot of logy versus logx will yield a straight line with a slope of b2 and an intercept of log 
a2. 

 
iii  Saturation growth rate equation 
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this equation can be linearized by inverting to give 
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the plot of 1/y versus 1/x will be linear, with a slope of b3/a3 and an intercept of 1/a3. 
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In their transformed forms, these models are fit using linear regression in order to evaluate the 
constant coefficients. Then they can be transformed back to their original state and used for 
predictive purposes. 
 
Example   Find the standard "least squares line"    for the data points 

.   
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 

 
 

 

 
 
And the graph will look like:  
 
 

 
 

 
 

 
 
Error (the sum of residual’s squared) 
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4.2.2 Polynomial regression 
 
Some engineering data, although exhibiting marked pattern, is poorly represented by straight 
line. For these cases a curve would be better suited to fit the data. One of the possible ways of 
solving this kind of problems is to fit the data by a polynomial function. This is called 
polynomial regression. The least squares method can be extended to fit data to a higher-order 
polynomial. Suppose we want to fit a second order polynomial: 

exaxaay o +++= 2
21  

 

For this case the sum of the squares of the residuals is 
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Taking the derivative of the above equation with respect to each unknown coefficients of the 
polynomial gives 
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Setting these equations equal to zero and rearranging to develop the following set of equations 
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Solving for the coefficients of the quadratic regression is equivalent to solving three 
simultaneous linear equations. The techniques for solving these problems are discussed in 
chapter two. 
This discussion can easily be extended to an mth order polynomial as 

               exaxaxaay m
mo +++++= ...2

21  

Thus determination of the coefficients of an mth order polynomial is equivalent to solving a 
system of m+1 simultaneous linear equations. For this case the standard error is formulated as 
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Example  Find the standard "least squares parabola"    for the data points 
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4.2.3 Multiple linear regression 
 
A useful extension of linear regression is the case where y is a linear function of more than 
one variable, say x1 and x2,  
 

exaxaay o +++= 2211  
 

Such an equation is useful when fitting experimental data where the variable being studied is a 
function of two other variables. 
In the same manner as the previous cases the best values of the coefficients are determined by 
setting the sum of the squares of the residuals to a minimum. 
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Differentiating with respect to the unknown coefficients, we have 
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The coefficients yielding the minimum sum of the residuals are obtained by setting the partial 
derivatives equal to zero and expressing the result in a matrix form as 
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The above case can be extended to m dimension,  
 

exaxaxaay mmo +++++= ...2211  

 
where the standard error is formulated as 
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The coefficient of determination is computed as in equation (4.7). 
 
Multiple linear regression has utility in the derivation of power equations of the general form 
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Transformation of this form of equation can be achieved by taking the logarithm of the 
equation. 
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4.2.4 General linear least squares 
 
In the preceding discussions we have seen three types of regression: linear, polynomial and 
multiple linear. All these belong to the general linear least squares model given by 
 

ezazazazay mmoo +++++= ...2211                                                                  (4.9) 

 
where zo, z1, z2, .....,zm  are m+1 different functions. For multiple linear regression  
zo = 1, z1 =x1, z2 = x2, ...., zm = xm. For polynomial regression, the z's are simple monomials as 
in zo= 1, z1 = x, z2 = x2 , ..., zm = xm. 
 
The terminology linear refers only to the model's dependence on its parameters i.e., the a's. 
Equation (4.9) can be expressed in a matrix form as  
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where [z] is a matrix of calculated values of the z functions at the measured values of the 
independent variables. 
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where m is the number of variables in the model and n is the number of data points. Because 
 n ≥m+1 , most of the time [z] is not a square matrix. 
The column vector {y} contains the observed values of the dependent variable. 

{y} T =  nyyy  ..., , , 21  

The column vector {A} contains the unknown coefficients 

{A} T=  mo aaa ,..., , 1  

the column vector {E} contains the residuals 

{E} T =  neee ,...,, 21  

The sum of the squares of the residuals can be defined as  
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This quantity can be minimized by taking its partial derivative with respect to each of the 
coefficients and setting the resulting equation equal to zero. The outcome of this process can 
be expressed in matrix form as 

[ ] [ ][ ]{ } [ ] { }{ }yZAZZ TT =  
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4.3 Interpolation 
 

In many engineering applications it is required to estimate intermediate values between 
precise data points. The most common method used is the polynomial interpolation. For n+1 
data points, there is a unique polynomial of order n that passes through all the points. 
 

f(x) = ao + a1 x + a2 x
2 + ...  +an x

n 

 

Polynomial interpolation involves the determination of that unique nth order polynomial that 
fits n+1 data points. This formula can then be used to estimate intermediate values. Although 
there is only one nth order polynomial that fits n+1 points, there are a variety of mathematical 
formats in which this polynomial can be expressed. The most widely used alternatives are the 
Newton and Lagrange interpolating polynomials. 
 

4.3.1 Newton's Divided Difference Interpolating Polynomials 
 

The simplest form of interpolation is to connect two data points with a straight line. This 
technique is called linear interpolation. Using the concept of similar triangles, 
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This is the linear interpolation formula. The notation f1(x) indicates that this is a first order 
polynomial. The term [f(x1)-f(xo)]/(x1-x0) is the finite difference approximation of the first 
derivative. The smaller the interval between the data points, the better the approximation. 
 

Approximation of a curve with a straight line can result in significant errors. A better 
approximation can be achieved if some curvature is introduced into the line connecting the 
points. If three points are available, a second order polynomial can be plotted through the data 
points. This is called a quadratic interpolating polynomial. A convenient form for this purpose 
is 
          f2(x) = bo + b1(x-xo) + b2(x-x0) (x-x1) 
 

bo can be solved for by setting x=x0, in which case bo = f2(xo) 
then f2(x) can be evaluated at x=x1 to solve for b1 
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Note that b1 represents the slope of the line between xo and x1 and b2 is similar to the finite 
difference approximation of the second derivative. 
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4.3.2 General form of Newton's Interpolating Polynomials 
 
The preceding analysis can be generalized to fit an nth order polynomial to n+1 data points. 
The nth order polynomial is  
fn(x) = b0 + b1(x-xo) + b2(x-xo)(x-x1)+ .... + bn(x-xo)(x-x1)....(x-xn-1) 
The data points can be used to evaluate the coefficients bo, b1, b2, ...., bn.  
b0 = f(xo) 
b1 = f[x1,xo] 
b2 = f[x2,x1,xo] 
. 
. 
bn = f[xn,xn-1, ..., x1,xo] 
where the bracketed function evaluations are finite divided differences. For example the first 
finite divided difference is given by 
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These differences can be used to evaluate the coefficients and then can be substituted to yield 
the interpolating polynomial 
 
fn(x) = f(xo)+(x-xo)f[x1,xo]+(x-xo)(x-x1)f[x2,x1,xo]+... + (x-xo)(x-x1)...(x-xn-1)f[xn,xn-1,..., xo]       (4.10) 
 
This is called the Newton’s divided difference interpolating polynomial. It does not require 
that the data be put in ascending order or the interval between data points to be equal. 
 
Example 1  
Form the Newton polynomials of degree  n = 1,2, 3, 4, and 5  for the function  
  over the interval    using equally spaced nodes selected from the following list   
 

  
a)   
 

 
 
 
 
b)       
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c)       
 

 
 
       

 
 
d)        
 

 
 
 
e)        

 
 

 After simplification 
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Errors in Newton's Interpolating polynomials 
 

The structure of eq(4.10) is similar to the Taylor series expansion in the sense that terms are 
added sequentially to capture the higher order behavior of the underlying function. These 
terms are finite difference approximations of the higher order derivatives. Thus if the true 
underlying function is nth order polynomial, the nth order interpolating polynomial based on 
n+1 data points will yield exact results. 

As in the Taylor series, a formulation of the truncation error can be obtained. Recall that the 
truncation error in Taylor series is generally expressed as 
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where ξ is somewhere in the interval xi to xi+1. For the nth order interpolating polynomial, an 
analogous relationship for error is 

))...()((
)!1(

)(
1

)1(

no

n

n xxxxxx
n

f
R −−−

+
=

+ ξ
 

where ξ is somewhere in the interval containing the unknown and the data. An alternative 
formulation which uses a finite difference to approximate the (n+1)th derivative is 

Rn = f[x,xn,xn-1, ..., xo](x-xo)(x-x1)...(x-xn) 

where f[x,xn,xn-1,...,xo] is the (n+1)th finite divided difference. The above equation can be 
solved if an additional point f(xn+1) is available in which case  

Rn ≅ f[xn+1,xn,xn-1,....,xo](x-xo)(x-x1)...(x-xn) 

The error estimate for the nth order polynomial is equivalent to the difference between the 
(n+1)th order and the n-th order prediction. 

Rn = fn+1 (x) - fn(x) 

The validity of this approach lies on the fact that the series is strongly convergent. For such 
situations the (n+1)th order prediction would be closer to the true value than the nth order 
prediction. 

 

 

 

 

 

 



Numerical Methods (CENG 2084)                                                                   Lecture Note 
 

__________________________________________________________________________  
AAiT     ADDIS ABABA INSTITITUTE OF TECHNOLOGY                                                                                         13 

 

Example 2  Investigate the error for the Newton polynomial approximations Example1. 

 

a) 

 
 

 
 

 
 
 
 
 
 

b) 

 
 

 
 

 
 
 
 
 
 
c)  
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d) 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
e) 
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4.3.3 Lagrange Interpolation Polynomials 
 

The Lagrange interpolating polynomial is a reformulation of the Newton polynomial that 
avoids the computation of divided differences. It can be represented as 
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For second order interpolating polynomials 
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As in the Newton's method the Lagrange version has an estimated error of  
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Thus if an additional point at x=x+1 is available an error estimate can be obtained. But 
because the finite differences are not employed as part of the Lagrange operation, this is rarely 
done. For cases where the order of the polynomial is not determined prior to interpolation, the 
Newton method has advantages because of the insight it provides into the behavior of the 
different order formulas.  
Higher order polynomials tend to be ill conditioned; i.e. they are highly sensitive to round-off 
error. The same order goes for higher order polynomial regression. 
Special care should be taken when interpolating polynomials are to be used for extrapolation. 
This arises because the point lies outside the base points used of the interpolation. The best 
results of interpolation are obtained when the unknown lies near the center of the base points. 
Subsequently when the point lies outside the range of the data set, the error in extrapolation 
can be very large. 
 

Example Construct three interpolating polynomials of degree  n=1  for the function        
       over [0,1].  Use the following sets of interpolation nodes. 
 
(a). Use the nodes  .   
(b). Use the nodes  .   
(c). Use the nodes  . 
 
a) 
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b) 
 

 
 
 

c) 
 

 
 

 
Note that the three polynomials of degree n = 1 are different.  The error in 
approximating f[x] will also be different. 
 

Exercise 1. Form several Lagrange polynomials of degree n = 2, 3, 4, and 5 for the 

function    over the interval    using  n+1 equally spaced nodes.  Then 
compare the four Lagrange polynomials. 
 
Example 2.  Investigate the error for the Lagrange polynomial approximations of degree  n = 
2, 3, 4, and 5 in Exercise 1. 
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4.3.4 Spline Interpolation 
 

Employing high-order polynomial functions can lead to erroneous results because of round-
off error and overshoot. An alternative to this approach is to apply lower order polynomials to 
subsets of data points. Such connecting polynomials are called spline functions. The functions 
are so constructed that the connections between adjacent equations are visually smooth. 
 

i.  Linear splines 
 
The simplest connection between two points is a straight line. The first order splines for a 
group of ordered data points can be defined as a set of linear functions, 
 

f(x) = f(xo) + mo(x-x0)                x0≤ x ≤ x1 

f(x) = f(x1) + m1(x-x1)                x1≤ x ≤ x2 
    . 
   . 
  . 

f(x) = f(xn-1) + mn-1(x-xn-1)                xn-1≤ x ≤ xn 
 

where mi is the slope of the straight line connecting the points: 
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The disadvantage of first order splines is that they are not smooth. The slope changes abruptly 
at the knots i.e., the first derivative of the function is discontinuous at these points. 
 
 

ii. Quadratic Splines 
 
To ensure the mth order derivatives are continuous at the knots, a spline of atleast m+1 order 
must be used. Cubic splines ensure that the first and second derivatives are continuous at the 
knots. Third and higher derivatives may be discontinuous but cannot be detected visually and 
consequently are ignored. 
 

The derivation of cubic splines can be facilitated by understanding the concepts of second 
order interpolating polynomial (quadratic spline). 
The objective in quadratic splines is to derive a second order polynomial for each interval 
between the data points. The polynomial for each interval can be represented generally as 
 

   fi(x) = aix
2 +bix + ci 

 

for n+1 data points there are n intervals and consequently 3n unknown coefficients to 
evaluate. There fore, 3n equations are required to solve the problem. These equations are 
obtained from: 
 

1. The function values of adjacent polynomials must be equal at the interior knots: 
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for i= 2 to n. Because only interior points are used, this provides 2n-2 conditions. 

2. The first and last functions must pass through the end points. This gives two additional 
equations: 
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3. The first derivatives at the interior knots must be equal 
 

iiiiii bxabxa +=+ −−−− 1111 22  
 

for i = 2 to n this provides n-1 conditions. 
 

4. Assume that the second derivative is zero at the first point. Because the second derivative 
the quadratic equation is 2ai this condition is mathematically expressed as 
             a1 = 0 

This means that the first two points are connected by a straight line. 
 
 

iii. Cubic Splines 
 

The objective in cubic splines is to derive a third order polynomial for each interval between 
knots, as in 
 

iiiii dxcxbxaxf +++= 23)(  
 

For n+1 data points there are n intervals and therefore 4n unknowns. The required 4n 
conditions are obtained from: 
 

1. the function values at the interior knots must be equal (2n-2 conditions) 
2. the first and last functions must pass through the end points ( 2 conditions) 
3. The third derivatives at the interior knots must be equal  (n-1 conditions) 
4. the second derivatives at the interior knots must be equal ( n-1 conditions) 
5. The second derivatives at the end knots are zero ( 2 conditions) 

 
Alternative technique for cubic spline 
The second derivatives of the cubic curves in each interval between the knots are straight 
lines. These lines can be represented by a first order Lagrange interpolating polynomial: 
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This equation can be integrated twice to yield an expression for fi(x). By applying the 
condition that the function values at the interior knots must be the same the following cubic 
equation results: 
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This equation contains only two unknowns-the second derivatives at the end of each interval. 
The second derivatives can be evaluated by invoking the condition that the first derivatives at 
the knots must be continuous. The above equation can be differentiated to give an expression 
for the first derivative. Setting the first derivatives for the (i-1)th and the ith intervals equal , we 
have 
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If this equation is written for all the interior knots, n-1 simultaneous equations result with n-1 
unknowns. 
 
 
Example   Construct the natural cubic spline for the points  
 

 , that has the endpoint constraints    
.  

 

 
 

 
 

 
 

 
 




