Numerical Methods (CENG 2084) Lecture Notes

CHAPTER-V
CURVE FITTING

5.1 Introduction

Data is often given for discrete values along a continuum. However estimates of points between these
discrete values may be required. One way to do this is to formulate a function to fit these values
approximately. This application is called curve fitting. There are two general approaches to curve fitting.

The first is to derive a single curve that represents the general trend of the data. One

method of this nature is the least-squares regression. The second approach is interpolation which is a
more precise one. The basic idea is to fit a curve or a series of curves that pass directly through each of
the points.

5.2 Least squares regression
5.2.1 Linear regression
The simplest example of the least squares approximation is fitting a straight line to a set of
paired observations: (x1,y1),(X2,y2)...... (xn, yn). The mathematical expression for the straight
line is:

y=ao+ aix+e
where ao, and a1 are coefficients representing the y-intercept and the slope of the line
respectively while e is the error or residual between the model and the observations, which
can be represented as:

e =Yy -ao- aix
Thus the error is the discrepancy between the true value of y (observed value) and the
approximate value ao + a:x, predicted by the linear equation. Any strategy of approximating a
set of data by a linear equation (best fit) should minimize the sum of residuals. The least
squares fit of straight line minimizes the sum of the squares of the residuals.

S" = i efz = i (yi.mm.mred nmde!) Z (y )2 (4 ])
i=1 i=1

To determine the values of a, and a, differentiate (4.1) with respect to each coefficient

gj" = —22(}’{ —a, —ax,)

’ (4.2)

gil —ZZ[(V —-a, —ax)x]

AAIT Addis Ababa Institute of Technology 1



Numerical Methods (CENG 2084) Leauxote

Setting the derivatives equal to zero will resaltai minimum $§The equations can then be
expressed as

ZYi _Zao _zaixi =0
zyixi _zaoxi _zalxiz =0
Solving fora, anda; simultaneously
n - : !
nz X’ _(in)

a, = 9‘31>_< (4.5)

wherey and xare the means of y and x, respectively

(4.3)

Test of goodness of fit

Any line other than the one derived above givegdaisum of the squares of the residuals.
The square of the residual represents the squatesofertical distance between the data and
the straight line. The standard deviation of thgression line can be determined the
standard error of the estimate

S, =. > (4.6)

Syy quantifies the spread around the regression Tihis concept can be used to quantify the
goodness of fit. This is particularly necessary whemparing several regressions. To do this,
we return to the original data and deterntine total sum of squaregound the mean of the
dependent variable i.ey, This quantity is designatel and represents the magnitude of the
residual error associated with the dependent Varipbor to the regression. Recall tHat
characterizes the residual error that remains #fteregression.

The difference between the two quantiti€&,— S quantifies the improvement or error
reduction due to describing the data in terms efraight line rather than an average value.
The normalized difference yields

2= "5 (4.7)

wherer? is called the coefficient of determination and tHe correlation coefficient.
For linear regression r is given by

r= nz)ﬁyi _(in)(z yi) 4.8)
\/nZ:Xi2 _(in)z\/nz Yi2 _(Z yi)2

For a perfect fit r =1 and r should be close torlgood fit.
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Caution!

Although the correlation coefficient provides a dgmmeasure of goodness of fit, care should
be taken not to take for granted that the valueabse to one necessarily mean "™good fit". It
is always advised to plot the data along with tegression curve because it is possible to
obtain relatively high value of r when the relatstip between y and x is not linear.

Linearization of non-linear relationships

Linear regression provides a powerful techniqudfifing a “best” line to a data. However it

is predicated on the fact that the relationshipveet the independent and dependent variables
is linear. But usually this is not the case. Visnapection of the plot of the data will provide
useful information whether linear regression is eptable. In situations where linear
regression is inadequate other methods such asi@ulgl regression are appropriate. For
others, transformations can be used to expressatfaein a form that is compatible with linear
regression.

The followings are examples of functions which barinearized

i Exponential functions

y = ae™ wherg and h are constants

This function can be linearized by taking the naltlwgarithm of both sides of the equation

Iny=Ina, +bxlne
Iny=Ina, +bx

the plot ofin y versudn x will yield a straight line with a slope df and an intercept dh a;.

ii Power functions
y= aszz
wherea, andb, are constant coefficients.
This equation can be linearized by taking its deE&égarithm to give
logy =b, logx+loga,
the plot oflogy versudogx will yield a straight line with a slope of land an intercept dbg
az,

iii Saturation growth rate equation
_ X
y=2a, b, + x
this equation can be linearized by inverting toegiv

1.b1,1

y a X g

the plot of 1/y versus 1/x will be linear, with lage of y/azand an intercept of/a;
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In their transformed forms, these models are fingiinear regression in order to evaluate the
constant coefficients. Then they can be transforbeak to their original state and used for
predictive purposes.

Example Find the standard "least squares lit¥.= 2% + b for the data points
(-1, 100, (0, 20, (1, 7). (2, 3, (3.4, (4, 30, (5, 00, (6B, -1)

{xk} = {_l.r D.r l.r 2: 3: 4: 5: 6}
{Y}:} = {ll:l.r 9.r ?.r 5: 4: 3: D.r _l}

I

qu:}:]] 20
k=1

I

ZYI}:]] 37
k=1

= 2

2, Xpa) 9z
k=1

In

Zx[rk]] ¥y 25
k=1

¥=b +ax

The normal edquations for finding the coefficients a and b are:

(% 51(5) = (5)
The zolution is

- [)

14

45
a=-—
a8
121
b = 2=
14 ¥
The least scquares line is . 10
121 45 % »
¥z — - = g.64286- 1.60714x s
14 28
L
- - E
And the graph will look like: ¥
3 -
L
Points = {{-1, 10}, {0, 8}, {1, 7}, {&, 5}, {3 g
- : - - L L L : Iy
The "least sgquares line” is -2 > 2 "
121 45 % -E
¥ o= — - = §.64286-1.60714dx
14 28

H ) T 39
Error (the sum of residual’s squared) S (Vg - aXpg -B)° = 22 - 130286

k=1
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4.2.2 Polynomial regression

Some engineering data, although exhibiting markatem, is poorly represented by straight
line. For these cases a curve would be bettercstotéit the data. One of the possible ways of
solving this kind of problems is to fit the data hypolynomial function. This is called
polynomial regression. The least squares methodeaxtended to fit data to a higher-order
polynomial. Suppose we want to fit a second ordéyrpmial:

y=a, +ax+ax’+e

For this case the sum of the squares of the rdsittia
S = Z(Yi —a, —aX _azxiz)2

Taking the derivative of the above equation witbpext to each unknown coefficients of the
polynomial gives

0S

C=-2) (Y —a, —aX —a,x
aao Z(yl 0 a:l. i 2 |)
0S

L=-2)'x(y, —a, —ax —a,x’
631 Z |(y| 0 ai i 2 |)
gj = _22 Xiz(yi —a, — X _a-zxi2

Setting these equations equal to zero and reamgngidevelop the following set of equations
na, + (z X )3, + (Z Xiz)az = z Yi

Q- x)a, + Q. xa + (O, x)a, =2 XY,

Q- xa, + Q. x)a + (X xha, = X XY,

Solving for the coefficients of the quadratic reggien is equivalent to solving three

simultaneous linear equations. The techniques dbrirgy these problems are discussed in

chapter two.

This discussion can easily be extended to Qomer polynomial as
y=a,+ax+ax’+..+a x"+e

Thus determination of the coefficients of aff' axder polynomial is equivalent to solving a

system of m+1 simultaneous linear equations. Herdéise the standard error is formulated as

S
S = |-
X n-(m+1)
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Example Find the standard "least squares parabi@+ bx + cx' for the data points
(-1, 100, (0,9, (1, 71, (2, 5), (3, 4), (4 3), (5, 00, (6, -1)

¥ = a+hbx+c x!
The normal equations for finding the coefficients a and b are:

g Z0 =) a 32
[EEI 9z 440 h] = [ o ]
9z 440 ZE76 o 400

The =zolution is

s
a £l
Eh
bl = H
C i
2
115
a = —
21
Z6
b= -—
7
2
cC = —
3

The "least squares parabola®™ iz

118  z6x 2%
¥=—- +

2l 7

= 5.61905 - 3.71429 x + 0. 666667 x°

Points = {{-1, 10}, {0, &}, {1, 2}, {Z, 1}, {3, 0}, {4, 2}, {3, 4}, {6, 7}}

i
L] 10
[
L
2 ]
% »
4 L] L
-
. - =
-1 1 Z 2 % 5 3
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4.2.3 Multiple linear regression

A useful extension of linear regression is the calere y is a linear function of more than
one variable, saypand X%,

y=a, taXx taX, te

Such an equation is useful when fitting experimletidda where the variable being studied is a
function of two other variables.

In the same manner as the previous cases the ddass\of the coefficients are determined by
setting the sum of the squares of the residuasnimum.

2

S = Z(yi =3, ~ Xy ~a,Xy)

Differentiating with respect to the unknown coe#ias, we have

0

—a:; :—22 (Y —a, —aX; —ax,)

0

% - 2yx 0 -a - -ax)
0

%:—2§:xﬁ(yi —a, = aX; — aX,;)

The coefficients yielding the minimum sum of theideials are obtained by setting the partial
derivatives equal to zero and expressing the re@salimatrix form as

n D% DX |(a >y,
DXy DX DX Xy KA =)%Y,
DXa D XaXe DX |l PR
The above case can be extended to m dimension,

y=a,+ax +a,x, +..+a x +e

where the standard error is formulated as

S
Sy = (|
A\ n-(m-1)

The coefficient of determination is computed aequation (4.7).

Multiple linear regression has utility in the dexilon of power equations of the general form

_ al,,a2 am
y=agX X ...Xy

Transformation of this form of equation can be aghd by taking the logarithm of the
equation.
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4.2.4 General linear least squares

In the preceding discussions we have seen thress tgpregression: linear, polynomial and
multiple linear. All these belong to the generakhr least squares model given by

y: aozo+a121+a222+"'+amzm+e (49)

where g, 73, 7, .....,n are m+1 different functions. For multiple lineagression
Zo=1,2 =X1, Z =Xy, ...., Zn = Xm. FOr polynomial regression, the z's are simple onuals as
iNz=1,2=X2=X, ... Z= X",

The terminology linear refers only to the modekpehdence on its parameters i.e., the a's.
Equation (4.9) can be expressed in a matrix form as

{v} =[z{A}+{E}

where [z] is a matrix of calculated values of théumctions at the measured values of the
independent variables.

2o 4y o o Iy
Zoo Ly o Iy
L Zon Zln . . Zmn B

where m is the number of variables in the modelrargdthe number of data points. Because
n>m+1 , most of the time [z] is not a square matrix.

The column vector {y} contains the observed valokEthe dependent variable.

D= 1Ya Vo e Vi

The column vector {A} contains the unknown coeféiats

A '=(a,,a,...a, |

the column vector {E} contains the residuals

{E}"=|e.e,,....8 |

The sum of the squares of the residuals can baatkés

S :i{yi _iajzjiJ

This quantity can be minimized by taking its pdrtdarivative with respect to each of the
coefficients and setting the resulting equationa¢¢o zero. The outcome of this process can
be expressed in matrix form as

[2]'[zIf A = {2 {y}
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4.3 Interpolation

In many engineering applications it is required estimate intermediate values between
precise data points. The most common method ustgk ipolynomial interpolation. For n+1
data points, there is a unique polynomial of ordérat passes through all the points.

f(X) =@+ arX + @)X + ... +a, X"

Polynomial interpolation involves the determinatioithat unique # order polynomial that
fits n+1 data points. This formula can then be usedstimate intermediate values. Although
there is only one'horder polynomial that fits n+1 points, there aneaaety of mathematical
formats in which this polynomial can be expres3édte most widely used alternatives are the
Newton and Lagrange interpolating polynomials.

4.3.1 Newton's Divided Difference Interpolating Potnomials

The simplest form of interpolation is to connecbtdata points with a straight line. This
technique is called linear interpolation. Using tieecept of similar triangles,

L00- F(x,) _ F06) = F(x,)
X=X, X — X,

which can be rearranged to yield

00 = 1)+ )
Xl - Xo
This is the linear interpolation formula. The naatf;(x) indicates that this is a first order
polynomial. The tern{f(x1)-f(x,)]/(X1-X0) is the finite difference approximation of the firs
derivative. The smaller the interval between thia g@ints, the better the approximation.

Approximation of a curve with a straight line caesult in significant errors. A better
approximation can be achieved if some curvaturnati®duced into the line connecting the
points. If three points are available, a secon@opblynomial can be plotted through the data
points. This is called a quadratic interpolatindgypomial. A convenient form for this purpose
is

B(X) = bo + b1(X-%0) + ba(X-X0) (X-X1)
b, can be solved for by setting xsm which case $= f2(Xo)
then §(x) can be evaluated at xFto solve for b

_ F(x) = f(x,)
C——
f(x,) = (%)  f(x) - f(x,)
X, =%, X, = X,
X, = X

evaluating #(x) at x=% gives b, =

0

Note that b represents the slope of the line betwegland x and b is similar to the finite
difference approximation of the second derivative.

AAIT ADDIS ABABA INSTITITUTE OF TECHNOLOGY 9



Numerical Methods (CENG 2084) Leauxote

4.3.2 General form of Newton's Interpolating Polynaials

The preceding analysis can be generalized to fit"anrder polynomial to n+1 data points.
The " order polynomial is

fa(X) = by + by (X-Xo) + B (X-Xo) (X-X1)+ ... + B(X-X0)(X-X1)....(X%n-1)

The data points can be used to evaluate the cigeffch, by, by, ...., B.

bo = f(Xo)

bl = f[Xl,Xo]

b2 = f[Xz,Xl,Xo]

Bn = f[Xn,Xn-1y «eey %,X0)
where the bracketed function evaluations are fiditeded differences. For example the first
finite divided difference is given by

The second finite divided difference is expressgd b
fx, %1 = fIx;, %]

1777

fx, %, %] =  —x
i k

Similarly the n-th finite divided difference is
FIX o Xogreen Xa ] = F1X0 00 X000 ]
Xn - XO
These differences can be used to evaluate theideatt and then can be substituted to yield
the interpolating polynomial

Xy Xy Xy Xo] =

fa(X) = F(Xo) +(X-X) F[X 2, Xo]+ (X-Xo) (X-X1)f[X 2, X1, Xo] +... + (X-X0) (X-X1)...(X-X-)f[X Xn-2,00, %] (4.10)

This is called the Newton’s divided difference mpi@ating polynomial. It does not require
that the data be put in ascending order or theviatdetween data points to be equal.

Example 1
Form the Newton polynomials of degree n = 1,24,3and 5 for the functioif[*] = Loz [x]
over the interval [*:- ¥x1 using equally spaced nodes selected from thevioilg list

[%kr ¥ bos} ={{|:|, 11, {%, CDS[%]}, {%, I:-:.s[%]}, {%, I:-:.s[%]}, {%, CDS[%]}, (1, Cc.s[l]}}

a) Nodes = {{0, 1%, f0.2, 0.95800671%}
The interwal for interpolation is [0.0,0.2].

pil=x] = 1-0.0996671x

b) Nodes = ff0, 1%, {0.2, 0.980067}, f0.4, 0.921061%}
The interwal for interpolation is [0.0,0.4].
p:l®] = 1 -0.0996671 =% - 0.435402 (-0.2 + %) =

P[] = 1-0.00198671 % 0.455402 x*
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c) Nodes = {{0, 1}, {0.2, 0.980067}, {0.4, 0.921061}, {0.6, 0.G253361}

The interwal for interpolation is [0.0,0.6].

palx] = 1-0.0996671 % - 0,485402 (—0.2 +x) x+ 0,0490076 (-0.4+x) (-0.2 +x) %

palx] = 1+0.0019339% - 0.5175807 % +0.0490076 x°

d) MNodes = ({0, 1}, {0.2, 0.950067), {0.4, 0.921061), (0.6, 0.825356), (0.8, 0.6967071}

The interwal for interpolation is [0.0,0.8].

pal] = 1-0,099667L% - 0,455402 (—0.2 +x) x+ 0.0490076 (-0.4 +x) (<0.2+x) % +0.0381225 (0.6 +x) (-0.4+x) (0.2 +x) %

palx] = 1+ 0.000104026 x - 0.50L033 x° + 0. 00326069 x° + 0.0351225 »*
e)

Modes = ({0, 1}, {0.2, 0.950067}), (0.4, 0.921061}, (0.6, 0.8255336), (0.8, 0,695707), (1., O0.54030211

The interwval for interpolation is [0.0,0.8].

After sinplification
pelx] = 1-0.000045L164% - 0.499448 x° - 0. 00225618 %° + 0. 0460466 x* - 0. 00395205 x°

f[x] = Cos[x]
pr[x] = 1-0.0996671x

1-0.0996671x-0.455402 (-0.2+x) x

b [x]
pal®] = 1-0.0996671% - 0. 488402 (-0.2 +%) X+ 0.0490076 (-0.4+ %) (-0.2 + %) X

1+0.000104026 % 0.501033 %% +0.00326069 %% + 0.03581225 %

bafx]

pslx] = 1-0.0000451164% - 0. 499445 x° - 0. 00228615 % + 0. 0460466 x* - 0. 00396205 x°
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Errors in Newton's Interpolating polynomials

The structure of eq(4.10) is similar to the Tayderies expansion in the sense that terms are
added sequentially to capture the higher order \nehaf the underlying function. These
terms are finite difference approximations of thghler order derivatives. Thus if the true
underlying function is  order polynomial, the"horder interpolating polynomial based on
n+1 data points will yield exact results.

As in the Taylor series, a formulation of the tratian error can be obtained. Recall that the
truncation error in Taylor series is generally egsed as

f (n+1) (E) (X
(n+1)!

n+l

i+1_Xi)

Rn:

whereé is somewhere in the interval to x.1. For the i order interpolating polynomial, an
analogous relationship for error is

f (&) (x—

Gy TR TR) ) X)

Rn:

where§ is somewhere in the interval containing the unkmamd the data. An alternative
formulation which uses a finite difference to appmeate the (n+1Y derivative is

Rn = X, Xn,X0-1s +or %] (X-X0) (X-X0)....(X-%)

where f[X,%,Xn-1,.--,%] IS the (n+1)th finite divided difference. The afeoequation can be
solved if an additional point f(x;) is available in which case

R X041, %0, X0-15 - %] (X-X0) (X-X0).. .. (X-%)

The error estimate for the"rorder polynomial is equivalent to the differencstviieen the
(n+1)" order and the n-th order prediction.

R, = fn+1 (X) - F(X)

The validity of this approach lies on the fact ttia¢ series is strongly convergent. For such
situations the (n+1) order prediction would be closer to the true valben the R order
prediction.

AAIT ADDIS ABABA INSTITITUTE OF TECHNOLOGY 12
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Example 2 Investigate the error for the Newton polynomial @pgmations Examplel.

a)

£[x] = Co=[x]
The interwal for interpolation is [0.0, 0.2].
Graph of the error e;[=] = £[x]-p1[x]
Extrema for e;[x] iz {0.00437039}
|ep[x]]| = 0.00497059

b)
f[x] = Co=z[x]
The interwal for interpolation is [0.0, 0.4].
Graph of the error e;[x] = £[x]-p:[x]
Extrema for e;[x] are [0.0000576035, -0.0001164691
|e:[x]| = 0.000116469

.nos

ooz

ooz

ool

o_0ooosf

-0.a0oasE

-0.0001f

c)
o.opooz|
ol 0l 0lE 0
-0 0000E
-0 noooaf
-0._00006F
£x] = Coz[x]

The interwal for interpolation is [0.0, 0.6].
Graph of the error e;[=x] = £[x]-p:[x]

Extrema for es[x] are {-0.0000642451, 0.0000357062, —0.0000624925)

les[=]] = 0.0000642451

AAIT ADDIS ABABA INSTITITUTE OF TECHNOLOGY
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d)

ax10”8

2x10°

zxl0”

1x1078 /\
"z 0. L& 0.a 1
-1x1078

-zxl0”

-zx10 ®

f[x] = Co=z[x]
The interwal for interpolation is [0.0, 0.8].
Graph of the error eg[=] = £[x]-pa[x]
Extrema for eg[x] are {-3.25851x10"%, 1.40342.10°%, —1.52922% 10°%, 4.23054% 107
leq[x]| = 4.23054:107°

e)

1_z5xlo OF

110”5

7. 5x107F

Fxln”"

z.5m107"

-z 5x107

f[x] = Co=z[x]
The interwal for interpolation is [0.0, 1.0].
Graph of the error eg[x] = £[x]-ps[x]
Extrema For eg[x] are {1.34999:107°%, —3.97654% 1077, 2.72539 %107, —3.84527 = 107", 1.26163= 107"
les[x]| = 1.34999:10°
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4.3.3 Lagrange Interpolation Polynomials

The Lagrange interpolating polynomial is a reforatidn of the Newton polynomial that
avoids the computation of divided differences.alh de represented as

,00= Y LX)

where
noX-—X
Li(x) = I_! J
120 % =X
JE)
wherell designates the "product of."
for linear interpolation

X=X X=X
f = Lf + o f
100 = 106+ ()
For second order interpolating polynomials
fz(x) - (X_ Xl)(x_ XZ) f(XO) + (X_ Xo)(x_ XZ) f(Xl) + (X_ Xo)(x_ Xl) f(xz)
(Xo _X1)(Xo _Xz) (Xl _Xo)(xl _Xz) (Xz _Xo)(xz _Xl)
As in the Newton's method the Lagrange versioramasstimated error of

Ry = 1008, %101 0 %)

Thus if an additional point at x=x+1 is available arror estimate can be obtained. But
because the finite differences are not employquhasof the Lagrange operation, this is rarely
done. For cases where the order of the polynomiabt determined prior to interpolation, the
Newton method has advantages because of the insightvides into the behavior of the
different order formulas.

Higher order polynomials tend to be ill conditioned. they are highly sensitive to round-off
error. The same order goes for higher order polyabragression.

Special care should be taken when interpolatingrmohials are to be used for extrapolation.
This arises because the point lies outside the pas#s used of the interpolation. The best
results of interpolation are obtained when the wmkmlies near the center of the base points.
Subsequently when the point lies outside the rarigbe data set, the error in extrapolation
can be very large.

Example Construct three interpolating polynomials of degre€l for the function
£ix] = Caa[x] over [0,1]. Use the following sets of ingelation nodes.

(). Use the node{0- 0, £[0.0]} and {1.0, £[1.0]}

(b). Use the node:{0-L £[0.1]} and {0.9, £[0.9]}
(C). Use the node: {0- 146447, £[0.146447]} and {0.853553, £[0. 8535531}

a)

f(x] = Coz[x]

MNodez = {{0.,1.}, {1.,0.54030211
prlx] = -1. (-1. +%) +0.540302 (0. +x)
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b)
fx] = Co=z[x]
Nodes = {{0.1, 0.995004}, {0.9, 0.62161}}
g [x] = -1.24376 (0.9 +x) +0.777012 (0.1 + X)
c)
f[x] = Co=z[x]
Nodes = {{0.146447, 0.989296}, {0.853553, 0.65731}}
ty[x] = -1.39908 (-0.853553 +x) +0.929577 (-0.146447 + x)
Note that the three polynomials of degree n = 1 addferent. The error in

approximating f[x] will also be different.

Exercise 1. Form several Lagrange polynomials of degreen =324, and 5 for the

function £lx1="Co3[x] over the intervall® 11 using n+l1 equally spaced nodes. Then
compare the four Lagrange polynomials.

Example 2. Investigate the error for the Lagrange polynomgbroximations of degree n =
2,3,4,and 5 in Exercise 1.
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4.3.4 Spline Interpolation

Employing high-order polynomial functions can lgaderroneous results because of round-
off error and overshoot. An alternative to this rgeh is to apply lower order polynomials to

subsets of data points. Such connecting polynorai@<salled spline functions. The functions

are so constructed that the connections betweeace] equations are visually smooth.

i. Linear splines

The simplest connection between two points is aigiit line. The first order splines for a
group of ordered data points can be defined as @f §aear functions,

f(X) = (%) + Mo(X-X%0) XX
f(X) = f(x1) + my(X-x1) XX
f(X) = (1) + Moa(X-%02) X1< X < X

where mis the slope of the straight line connecting tbm{s:

— f(xi+1)_ f(Xi)
rni B Xi+lXi

The disadvantage of first order splines is thay e not smooth. The slope changes abruptly
at the knots i.e., the first derivative of the ftion is discontinuous at these points.

ii. Quadratic Splines

To ensure the forder derivatives are continuous at the knotgliaes of atleast m+1 order
must be used. Cubic splines ensure that the indtsacond derivatives are continuous at the
knots. Third and higher derivatives may be diseardus but cannot be detected visually and
consequently are ignored.

The derivation of cubic splines can be facilitated understanding the concepts of second
order interpolating polynomial (quadratic spline).

The objective in quadratic splines is to deriveeaosd order polynomial for each interval
between the data points. The polynomial for eatdrwal can be represented generally as

fi(x) = ax? +bix + G

for n+1 data points there are n intervals and aumsetly 3n unknown coefficients to
evaluate. There fore, 3n equations are requiredotee the problem. These equations are
obtained from:

1. The function values of adjacent polynomials musétpeal at the interior knots:
a_, X% +hyX, +¢ = f(x.,)

6¥Xi2—1 +hx, +¢ = f(x,)
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for i= 2 to n. Because only interior points aredjgis provides 2n-2 conditions.
2. The first and last functions must pass througheheé points. This gives two additional
equations:

X, thx, +¢ = f(x,)
ax: +bx, +c, = f(x,)

3. The first derivatives at the interior knots musteogial
2a,,%., b, =2ax_, +b
for i = 2 to n this provides n-1 conditions.

4. Assume that the second derivative is zero at tisé ffioint. Because the second derivative
the quadratic equation &g this condition is mathematically expressed as
a = 0
This means that the first two points are connebied straight line.

iii. Cubic Splines
The objective in cubic splines is to derive a thorder polynomial for each interval between
knots, as in

f,()=ax’+hx* +cx+d

For n+1l data points there are n intervals and tbere4n unknowns. The required 4n
conditions are obtained from:

1. the function values at the interior knots must tpeat (2n-2 conditions)

2. the first and last functions must pass throughetin points ( 2 conditions)
3. The third derivatives at the interior knots musel@al (n-1 conditions)
4. the second derivatives at the interior knots mestdual ( n-1 conditions)
5. The second derivatives at the end knots are z2rofditions)

Alternative technique for cubic spline
The second derivatives of the cubic curves in aatdrval between the knots are straight
lines. These lines can be represented by a fidgrdragrange interpolating polynomial:

f(x)—f(x.l) +f<)X Al

|—l |—1

This equation can be integrated twice to yield apression forfi(x). By applying the
condition that the function values at the intekoots must be the same the following cubic
equation results:
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o) o s, ) o fOe) ) m X)) |
fi (X) B G(Xi _Xi—l) (Xi X) * 6(Xi _Xi—l) (X Xi_l) ' X = X4 6 (Xi X)
f(x) _ f"(Xi)(Xi ~ %) (X_Xi—l)
X = X4 6

This equation contains only two unknowns-the seaterivatives at the end of each interval.
The second derivatives can be evaluated by invatkiageondition that the first derivatives at
the knots must be continuous. The above equatinrbeaifferentiated to give an expression
for the first derivative. Setting the first deriixats for the (i-1%' and the} intervals equal , we
have

(6 = %) T (%) + 20X = %) T (%) + (X = %) (%)

° ®  [f(x- f(x)]
X

= [F(% = OO+
Xig =% X —

i—1

If this equation is written for all the interior &ts, n-1 simultaneous equations result with n-1
unknowns.

Example Construct the natural cubic spline for the points

@, Ly, 1, 0y, (2, 0, (3, 1), (4, 20, (5, 20, (6, 1) "that has the endpoint constraints
§'' (01 =0and ' (B) = 0

data points = {{0., 1.1, {1., 0.}, {2., 0.0, §3., 1.0, {4., 2.1, {5, 2.1, 6., 1.11

The =zpline coefficients are

o 0.6 -0.2
1. 1.2 1] -0.2
Z. 0.6 -0.6 a
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