Numerical Methods (CENG 2084) Leauxote

CHAPTER -III
LINEAR ALGEBRAIC EQUATIONS

3.1Introduction

In this chapter, we will deal with the case of deti@ing the values of, x, ,..., X, that
simultaneously satisfy the set of equations:

fl(xl,xz,... xn)=0
fz(xl,xz,... xn)=0 (3.1)
fn(xl,xz,...,xn)=0
In particular we will considdinear algebraic equations which are of the form:
&,,% T apX, to.taX, =b
A, X ta,X, +...+a, X, =b, (3.2)

a X ta X, +...ta,, X, =b,

nin“*n

where tha's are constant coefficients, thes are constants, and is the number of
equations.

The above system of linear equations may also ieewin matrix form as:

[Afx}={8B} (3.3)

where[A] is annby n square matrix of coefficients (called ttmefficient matrix),

&; Ay - &,y
[ A] _|81 8n - 8y
ain a2n e ann

{B} is ann by 1 column vector of constants,

{8} =[b, b, .. b,]
and{Xx} is ann by 1 column vector of unknowns:

Xp=bu % ox

3.2Non - Computer methods

There are some non-computer methods which are tesedlve small (< 3) sets of
simultaneous equations that do not require a coenput
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3.2.1 The Graphical Method
Plotting the graphs (straight lines) and finding goint of intersection of the graphs.
3.2.2 Cramer's Rule

Cramer's rule states that the solution of a sdéinefr equations given in Eq. 3.3 can be
give as:

where D is the determinant of the coefficient matfi&|, and D, is the determinant of
the matrix obtained by replacing the coefficientsttee unknownx; in the coefficient
matrix by the constants , b,, ..., b,. For examplex, can be obtained as:

b a, aj
b2 a22 a23
_ b3 A, 83
D
For more than three equations, Cramer's rule besdomaractical because, as the number

of equations increase, the determinants are timstouing to evaluate by hand (or by
computer). Consequently, more efficient alternatiaee used.

3.2.3 Elimination of Unknowns

The basic strategy is to multiply the equationscbgstants so that one of the unknowns
will be eliminated when the equations are combiridte result is a single equation that
can be solved for the remaining unknown. This ¢emtbe substituted into either of the
original equations to compute the other variable.

The elimination of unknowns can be extended toesgstwith more than two or three
equations. However, the numerous calculationsatetequired for larger systems make
the method extremely tedious to implement by hadhowever, the technique can be
formalized and readily programmed for the computer.

3.3 Gauss Elimination
3.3.1 Description of the method

The approach is designed to solve a general setezgfuations:

a X X+ ta X, =b (3.5a)
a, X ta,X, +..+a,, X, =D, (3.5b)
a. X ta, X, +..+a, X =Db, (3.5¢0)
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Thenaive Gauss eliminationmethod consists of two phases:
1. Forward Elimination: The first step is designed to reduce the setgohgons to an
upper triangular system. The initial step will lmedliminate the first unknowx,

from the second through th€" equations. To do this, multiply Eq. (3.5a) hy,/a,,
to give:

a a a
A%+ aApX, Tty X, =—2h (3.6)
ey, 07 a, a,

Now this equation can be subtracted from Eq. 5ve:

a a a
(azz _a_ﬂaizsz +"'+(a2n _fjainxn = b2 _fbl
11 1 1

or
a,X, +....ta, X, =D,
where the prime indicates that the elements haga blanged from their original values.

The procedure is then repeated for the remainingtens. For instance, Eq. (3.5a) can

be multiplied bya,,/a,; and the result subtracted from the third equatRepeating the
procedure for the remaining equations resultsenfolowing modified system:

a X tapX, tagX ot X, =b (3.7a)
a,X, T auX; ...t a, X, =, (3.7b)
ApX, T AEX; Fo A X, = b (3.7¢)
aLX, +a.X, +..+a x, =b} (3.7d)

For the foregoing steps, Eq.(3.5a) is called pinot equation, and a,, is the pivot
coefficient or element.

Now repeat the above to eliminate the second unknfram Eg. (3.7c) through Eq.

(3.7d). To this multiply Eq. (3.7b) ka},/a,,, and subtract the result from Eq. (3.7c).

Perform a similar elimination for the remaining atjans to yield

A% tapX, HaX, tatagX, =h
ApX, T Xy T+ A, X, =D

" " N

a33x3 +"'+a3nxn - b3

n /] — I
arX, +...tan, X, =b}

nn--n

where the double prime indicates that the elenteente been modified twice.

The procedure can be continued using the remaipivgt equations. The final
manipulation in the sequence is to use (he 1)th equation to eliminate the_, term
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from the nth equation. At this point, the system will have bé@msformed to an upper
triangular system:

a, X tapX, tagX, tota X, =by, (3.8a)
Xy T BxXs Tt By X, =y (3.8b)

a’g3x3 +"'+a’;nxn :b:”:’ (380)

“alrx, = b (3.80)

2. Back Substitution: Eq. (3.8d) can now be solved fay:

br(1n —1)
X0 = ()

(3.9)

This result can be back substituted into fme-1)th equation to solve for,_,. The

procedure, which is repeated to evaluate the rengais, can be represented by the
following formula:

bi(i -1) _ Z aigi —1))(j

X = ';ifll) fori=n-1n-2,...1 (3.10)
a;

3.3.2Pitfalls of Gauss Elimination

Whereas there are many systems of equations timabeasolved with naive Gauss
elimination, there are some pitfalls that must gl@ed before writing general computer
program to implement the method.

i, Division by Zero

The primary reason that the foregoing techniqueaited "naive" is that during both
elimination and back-substitution phases, it issgae that a division by zero can occur.
Problems also arise when the coefficient is veogelto zero. The technique foting
(to be discussed later) has been developed t@ajhadvoid these problems.

ii, Round-off Errors

The problem of round-off errors can become pardidylimportant when large numbers
of equations are to be solved. A rough rule of thumthat round-off errors may be
important when dealing with 100 or more equatidnsany event, one should always
substitute the answers back into the original egnatto check whether a substantial
error has occurred.
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iii, Il conditioned Systems

lll-conditioned systems are those where a smalhgban coefficients in large changes in
the solution. An alternative interpretation of aétbnditioning is that a wide range of
answers can approximately satisfy the equations.

An ill-conditioned system is one with a determinantthe coefficient matrix close to
zero. It is difficult to specify how close to zetioe determinant must be to indicate ill-
conditioning. This is complicated by the fact thlaé determinant can be changed by
multiplying one or more of the equations by a s¢atgor without changing the solution.
One way to avoid this difficulty is to scale theuatjons so that the maximum element in
any row is equal to 1 (This process is calealing).

iv, Singular Systems

The system is singular when at least two of theatgus are identical. In such cases, we
would lose one degree of freedom, and would beirtea&lith impossible case afi—1
equations inn unknowns. Such cases might not be obvious paatiguivhen dealing
with large equation sets. Consequently, it would rbee to have some way of
automatically detecting singularity. The answethis problem is neatly offered by the
fact that the determinant of a singular systener® zThis idea can, in turn, be connected
to Gauss elimination by recognizing that after ¢ienination step, the determinant can
be evaluated as the product of the diagonal elesn&hus, a computer algorithm can test
to discern whether a zero diagonal element is ededtiring the elimination stage.

3.3.3Techniques for Improving Solutions

1. Use of more significant figures.
2. Pivoting: can be partial or complete.

Partial Pivoting: Determine the largest available coefficient i ttolumn below the
pivot element. The rows are then switched so that largest element is the pivot
element.

Complete Pivoting: When columns as well as rows are switched.

3. Scaling: Scaling is the process by which the maximum efgritea row is made to be
1 by dividing the equation by the largest coefintie

Gauss-Jordan Elimination

Gauss-Jordan is a variation of the Gauss eliminafithe major difference is that when
an unknown is eliminated in the Gauss-Jordan methad eliminated from all other

equations rather than just the subsequent onesddition, all rows are normalized by
dividing them by their pivot elements. Thus, thanalation step results in an identity
matrix rather than a triangular matrix. Thus, baadkstitution is not necessary.

The method is attributed to Johann Carl Friedrichu$3 (1777-1855) and Wilhelm

Jordan(1842 to 1899).
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Example Use the Gauss-Jordan elimination method to solditear system

1 & 3
-3 1 45
2 4 -1

3
-2

H1
Hi
Hz

First form the augmented matri¥ = [A, B]

1 2 3 3
H:[—Sl b —2]:

2 4 -1 -1

Then perform Gauss-Jordan elimination.

-3 1 5 -z

1 2 3 3
24—1—1]

=)
-]

14 7

1 28 3 3
DD—?—?]

=)
~
)

1

1 0o-11
DD—?—?]

olrao-1
ool 1

1 00 2]

Hence, the solution is ¥ o=

LU-Decomposition
Gauss elimination is a sound way to solve systeématgebraic equations of the form

[A(x}={B} (3.11)
However, it becomes inefficient when solving eqordi with the same coefficie@tsﬂ,
but with different right-hand side constants.

LU decomposition methods separate the time-consuming elimination of therimz{A]
from the manipulations of the right-hand giB. Thus, oncdA] has been
"decomposed”, multiple right-hand side vectors lsarvaluated in an efficient manner.
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3.5.1Derivation of LU Decomposition Method
EqQ. (2.11) can be rearranged to give:

[Afx}-{B}=0 (3.12)
Suppose that Eq. (3.12) could be expressed aspar triangular system:

ull u12 LI13 Xl dl
Uy Uy [1 % p =190, (3.13)
0 0 ugyllX d,

Eq. (3.13) can also be expressed in matrix notatiehrearranged to give:
uEx}-{p}=0 (3.14)

Now, assume that there is a lower diagonal matiilk &s on the diagonal,

1 00
[L]=]1,, 1 © (3.15)

|31 |32 1

that has the property that when Eq. (3.14) is pigphied by it, Eq. (3.12) is the result.

That is,
[L{uKx}-{oh = [Afx}-[8] (3.16)
If this equation holds, it follows that
(Lu]=[A (3.17)
and
LD} ={8} (3.18)

A two-step strategy (see Fig. 3.1) for obtainingusons can be based on Egs. (3.14),

(3.17) and (3.18):

1. LU decomposition step. [A] is factored or decomposed into the Iov{lb} and upper
[U] triangular matrices.

2. Substitution step. [L] and [U] are used to determine a solutifX} for a right-hand
side{B}. This step itself consists of two steps. First, @ql8) is used to generate an

intermediate vector by forward substitution. Th#ére result is substituted into Eq.
(3.14) which can be solved by back substitutiod Xdr.
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(Al {x} = {8}

(a) Decomposition
] }L]

l

o) ={8

1 (b) Forward

o]

>8Jbstitution

RICERCS

X} =
I (c) Backward
[X]

J

Fig. 3.1 Sepsin LU Decomposition

o=
-2
L]

Example Given ]

Find matriced. andU so thatLU = A.

1 00yv74 2 3 4 2z 3

010_314]=_314]

oo 1llz acs Z2 45
1 Ov¢4 2 3 1 2 3
2 5 &5

-4 DD?T=[-314
o o1/lz a =5 2 45
1 4 2 3

_: 0 5o 423
4 i 4 = |-3 1 4
L o1)jo 3 % 2 45
& &

140 4z 3 4 2 3
2

-3 1 [D%Lf]:[_314
2 2 )lo o -a 2 45
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Hence,
4 2 03
L= [|-3 1 4
2 4 &
1 ]
2
L= "% 1
i £ 3
& 5
4 2 3
5 i5
T_T = D ? T
oo -4

Gauss-Seidel Method

Iteration is a popular technique finding roots qtiations. Generalization of fixed point

iteration can be applied to systems of linear eqnatto produce accurate results. The
Gauss-Seidel mehtod is the most common iterativianadeand is attributed to Philipp

Ludwig von Seide(1821-1896).

Consider that the nxn square mathixs split into three parts, the main diagobBabelow
diagonalL and above diagonél We haveA = D - L - U.

31,1 a1,z a1,z - Alni 31 ,n1 31,0
.1 s,z Ar,x o Bpnor A .n-1 Az .n
A= 2,0 B2 Ar2 o Hpap fpanal Arn
8n-¢,1 8n-i,: 8pozr o Bnin-t Ancgn-l Snoin
4r1,1 3n1,& 8nl,2 0 Gnlonet 3nln-l Snclin
3n,1 Bn,2 8n,2 o Bnonei 8n,n-1 Bn,n
a1 0 o 0 0 0
0 az,: 0O 0 0 0
0 0 as. 0 0 0
D= S : :
0 0 0 - @n_ganet 0 0
0 0 o 0 An_1,n1 O
0 0 o 0 0 ann
0 -&,:; -&1,:; - -81,qn¢ -F]nl -8,n
o o -83,2 o =8ppp -8rpl -81.n
] ] ] - —8zqp-i  —8pmnol 0 —8i,n
o o o o -8n_¢,;n-l —8n_im
0 0 0 0 0 —-8n_1.n
0 0 0 0 0 0
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0 0 0 u] 0 0

_ai.-l ] ] 0 ] ]

—ﬁgrl —ﬁgrg n} n] n} n}

L = : : : . : : :
-8n_¢,1 —8n.i,: —8nogr o ] 0 0

-8r1,1 -3pl,: —&nl,: 0 —8nolned n n

-8n,1  —fn,z -8n,2 -+ =8n,n¢  —8ppo1 O

The solution to the linear systeax=B can be obtained starting with, and using
iteration scheme

Pr.a = Mz Py + C;

where
M= (D-L)U

and
C:=(D-LI 7B

A sufficient condition for the method to be appbéais thatA is strictlydiagonally
dominant.

Examplel Use Gauss-Seidel iteration to solve the linearesyst

7 -2z 1 2y im 3
208 3 1| |#: -z
10 5 z||lwe| T | s
0oz -1 4) lxy, 4

Try 10 iterations.

The system can be expressed as

7 -2 1 2yim 3
2 8 3 L||m -z
Lo 5 z2f|x| " |5
0 oz -1 4)lxg 4

Using 10 iterations we have:

Py = {0, -1, 1, 1}

Py = {-0.285714, —0.678571, 0.542857, 1,475}
Py = {-0.264286, -0.571875, 0.357143, 1.37522)
Py = {-0.178763, -0.511141, 0.414158, 1.35911}
Py = {-0.164951, —0.53396, 0.423366, 1.372682)
P = {-0.176704, -0.536189, 0.415531, 1.37198}
P = {-0.17595, —0.533326, 0.416013, 1.37067}
Py = {-0.174557, —-0.533624, 0.416762, 1,371}
P; = {-0.175145, —0.533875, 0.41657, 1.37108}
Pg = {-0.175211, —-0.533796, 0.416526, 1.37105)

Fig = {-0.175168, -0.533784, 0.416555, 1.37103)
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Hence,

3.00001
-1.9333]1
a.

4.

A X =

For the purpose of hand calculation let's see 3ddelinear equations containing 3
unknowns.

&% +apX, X, =h
8, % 8,,X, +a,X; = b,

A50% +85,X, +agX%; = by

If the diagonal elements are all nonzero, thet fguation can be solved fqr, the
second fox, and the third fox, to yield:

X, = b, —ay,X, —asX @)
a,
b, —a,,X —a,X
X2 - 2 21al 23713 (b)
22
X, = b, —a;,X —a,X, (©)

853

Seps to be followed

I.  Using the initial guesx,= x,= 0 solve forx, from (a)

ii. Using the values ok, from step and x,= 0 solve forx, from (b)
iii.  Using the value o, from step and that ofx, from stepii solve forx, from (c)
iv. Using the value ok, from stepii and that ok, from stepiii solve for x, from (a)
v. Using the value ok, from stepv and that ofx, from stepiii solve for x, from(b)
vi. Using the value of from stepiv and that ofx, from stepv solve for x, from(c)
vii. Repeat the process until the required accuracghieeed.
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Example 2Use the Gauss-Seidel method to obtain the solofitime following system of
linear equations.

X, =X, + X, =4
X +3X, + X, =2
=X +X, +4%, =3

+ [—
Solving for:  x, fromeql x = LS)%
X, fromeq2 x, = 2_)(1—3_)(3

+ -
X, fromeq3 x, = ?’XlTXZ

Executing the above steps repetitively we will hthefollowing result.

X1 X2 X3
0.8 0.4 0.85
0.71 0.146667 0.890833

0.651167 0.152667 0.874625
0.655608 0.156589 0.874755
0.656367 0.156293 0.875019
0.656255 0.156242 0.875003
0.656248 0.15625 0.875
0.65625 0.15625 0.875
0.65625 0.15625 0.875

As we can see the values start to repeat afteB'thiteration hence we can stop the
calculation and take the final values as the smhutif the linear system of equations.

Hence, X, =0.65625
X, = 0.15625
X;= 0.875
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