Numerical Methods (CENG 2084) Lecture Note

CHAPTER-I

MATHEMATICAL MODELLING

INTRODUCTION
GENERAL

Numerical methods are techniques by which matheadgtroblems are formulated so that they can
be solved with arithmetic operations. Although éare many kinds of numerical methods, they
have common characteristics: they invariably ineollarge numbers of tedious arithmetic
calculations. It is little wonder that with the @dopment of fast, efficient digital computers, tioée
of numerical methods in engineering problem solViag increased dramatically in recent years.

The reasons why we should study numerical methmbecause:
1. Numerical methods are extremely powerful probseiving tools.
2. During your career, you may often have occasionse commercially available
prepackaged, or “canned”, computer prograrasitivolve numerical methods.
3. Many problems cannot be appreciated using chpragrams.
4. They are efficient vehicles for learning to esenputers.
5. They provide a vehicle for you to reinforce yomderstanding of mathematics.

Mathematical Modelling

A mathematical model is an abstract model that uses mathematical layggia describe the
behaviour of a system. Mathematiaalodels are used particularly in the natural sciences and
engineering disciplines (such as physics, biolamd electrical engineering) but also in the social
sciences (such as economics, sociology and pdlisceence); physicists, engineers, computer
scientists, and economists use mathematical mougds extensively.

Often when engineers analyze a system to be ctedrot optimized, they use a mathematical model.
In analysis, engineers can build a descriptive rhoflthe system as a hypothesis of how the system
could work, or try to estimate how an unforeseeaent could affect the system. Similarly, in
control of a system, engineers can try out diffecemtrol approaches in simulations.

A mathematical model usually describes a systema gt of variables and a set of equations that
establish relationships between the variables.vBh@es of the variables can be practically anything
real or integer numbers, logical values or charact®r example. The variables represent some
properties of the system, for example, measurettsysutputs often in the form of signals, timing
data, counters, event occurrence (yes/no). Thalactadel is the set of functions that describe the
relations between the different variables.

A mathematical model can be represented as a tunattielationship of the form

Dependent variable = f( independent variablgarameters, forcing functions)
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Where:

- The dependent (state) variabledbaracteristic that usually reflects the  bebaor state
of the system.

- The independent (decision) variatdee usually dimensions such as time and spang al
which the system’s behavior is determined.

- The parameters (constants) ateat@fe of the system’s properties or composition.

- The forcing functions are externméluences acting up on the system.

Mathematical modeling and Engineering problem solvig

Knowing and understanding are prerequisites foreffective implementation of any tool. This is

particularly true when using computers to solveieegring problems. Although they have great
potential utility, computers are practically usslegithout a fundamental understanding of how
engineering systems work.

Mathematical modelings have a rule in engineeringplem solving. A mathematical model is
defined as a formulation or equation that expresisesssential features of a physical system or

process in mathematical terms.

The engineering problem solving process is desgrityethe following diagram.
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Classifying mathematical models
Mathematical models can be classified in severgswsome of which are described below.

1. Linear vs. nonlinear. Mathematical models are usually composed by bkt which are
abstractions of quantities of interest in the desd systems, and operators that act on these
variables, which can be algebraic operators, fonsti differential operators, etc. If all the
operators in a mathematical model present line#ingyresulting mathematical model is defined as
linear. A model is considered to be nonlinear otl&z. In a mathematical programming model, if
the objective functions and constraints are repiteskeentirely by linear equations, then the model
is regarded as a linear model. If one or more @& dbjective functions or constraints are
represented with a nonlinear equation, then theetnsedknown as a nonlinear model.

2. Deterministic vs. probabilistic (stochastic) A deterministic model is one in which every sét o
variable states is uniquely determined by pararsetethe model and by sets of previous states of
these variables. Therefore, deterministic modelfopma the same way for a given set of initial
conditions. Conversely, in a stochastic model, oamaess is present, and variable states are not
described by unique values, but rather by prolgidistributions.

3. Static vs. dynamic A static model does not account for the elemdninoe, while a dynamic
model does. Dynamic models typically are represemigh difference equations or differential
equations.

4. Lumped parameters vs. distributed parameters|If the model is homogeneous (consistent state
throughout the entire system) the parameters an@dd. If the model is heterogeneous (varying
state within the system), then the parameters iagtaldited. Distributed parameters are typically
represented with partial differential equations.t i$ usually appropriate to make some
approximations to reduce the model to a sensibte. sengineers often can accept some
approximations in order to get a more robust antple model. For example Newton's second law
of motion is an approximated model of the real @o8till, Newton's model is quite sufficient for
most ordinary-life situations, that is, as longpasticle speeds are well below the speed of light,
and we study macro-particles only.

Newton formulated his second laws of motion, whstdtes that the time rate of change of momentum
of a body is equal to the resultant force actingt.on

The mathematical expression or model of the setamds the well-known equation
F=ma ()

Where F = net force acting on tbdyo(N)
m = mass of the object (kg)
a = its acceleration (m/g)

The second law can be rewritten in the format shbelow by simply dividing both sides by m to
give
a=F/m (2)
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where: a = the dependent variable reflectingsirstem’s behavior
F = the forcing function &
m = a parameter representing property of the syste

Eqgn. (2) has several characteristic that are &mtmathematical models of the physical world:

1. It describes a natural process or system in mattiegthterms.
2. It represents an idealization and simplificationmesxlity

3. Finally, it yields reproductive results and consaufly, can be used for predictive purposes.

Model evaluation

An important part of the modeling process is thaleation of an acquired modélow do we know

if a mathematical model describes the system WélI8 is not an easy question to answer. Usually
the engineer has a set of measurements from thensyghich are used in creating the model. Then,
if the model was built well, the model will adegelgtshow the relations between system variables
for the measurements at hand. The question thesmescHow do we know that the measurement
data are a representative set of possible valugs@s the model describe well the properties of the
system between the measurement data (interpolatidags the model describe well events outside
the measurement data (extrapolation)? A commonoapfris to split the measured data into two
parts; training data and verification data. Thenirey data are used twain the model, that is, to
estimate the model parameters. The verificatiora dak used to evaluate model performance.
Assuming that the training data and verificationadare not the same, we can assume that if the
model describes the verification data well, them mfiodel describes the real system well. However,
this still leaves thextrapolation questiompen. How well does this model describe eventsioet
the measured data? Consider again the above midelton made his measurements without
advanced equipment, so he could not measure prepeftparticles travelling at speeds close to the
speed of light. Likewise, he did not measure therenments of molecules and other small particles,
but macro particles only. It is then not surpristhgt his model does not extrapolate well into ¢hes

domains, even though his model is quite sufficfenbrdinary life physics.
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Approximations and Round —off errors

Numerical technique yield usually estimates that@ose to the exact analytical solution. There is
a discrepancy, or error, because the numerical adethvolved an approximation. For many
applied engineering problems we cannot computetlgxtie error associated with our numerical
methods. In these cases we must settle for appabxins or estimates of the errors.

Numerical errors arise from the use of approxinregito represent exact mathematical operations
and quantities. These include truncation errorschvts the discrepancy introduced by the fact that
numerical methods may employ approximations toesgmt exact mathematical operations and
quantities, and round-off errors, which result wmemmbers having limited significant figures are
used to represent exact numbers.

Absolute and Relative Errors

The relationship between the exact, or true, resutthe approximation can be formulated as:-
True value = approximation value + error;
Absolute error = true value — approximation value

A shortcoming of this definition is that it takes account of the order of the magnitude of the
value under examination. One way to account fomtlagnitudes of the quantities being evaluated
Is to normalize the error to the true value, as in

true error . .
Ei= ——— where-Etrue fractional relative error
true value
true error . .
&= —————— *100% where, - is the true percent relative error.
true value

The relative error is sometimes is important toagégeling on how significant an error is.
However, in real-world applications, we will obvily not know the true answer a prior. For these
situations, an alternative is to normalize thereusing the best available estimate of the truaezal

Still in some applications the solution of a givenoblem is obtained through successive
approximation. In such cases the value at the éadyiteration apart from the last approximation
of the final approximate solution.

Hence in such cases an estimate of the errorgatrt of iteration, is made based on approximate
values of the present and previous iteration. TibeegAbsolute error Eangrelative error Ecan be
calculated as:-

E.= present approximation — previous approximation

__ (present approximation - previous approximation)

Er_

presentapproximation

zgnew_xold) * 100%

new
X

An approximate percentage relative error can beutated as;
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If the approximation is greater than the true vathe error is negative. Often, when performing
computations, we may not be concerned with the gighe error, but we are interested in whether
the percent absolute value is lower than the gereor tolerance value or not.

Truncation errors and the Taylor series

Truncation errors are those that result from usamg approximation in place of an exact
mathematical procedure. Mathematical formulatioat tis used widely in numerical methods to
express functions in an approximate fashion isTdndor series.

Taylor series provide a means to predict a functaoe at one point in terms of the function value
and its derivatives at another point. In particuthe theorem states that any smooth function can
be approximated as a polynomial.

The complete Taylor series expansion is expressed a

F(Xr) = FO6)+ £ () (X -xi)+¥(xiﬂ_xi)z L)

(R AR (1)

Note that Eq.1-1 is an infinite series; the remimigem is included to account all the terms from
n+1 to infinity

(n+1)
R =1 &y (1-2)

~ (n+1)!

In general the rorder Taylor series expansion will be exact fondrorder polynomial. For other
differentiable and continuous functions, such agoeentials and sinusoids, a finite number of
terms will not yield an exact estimate. The inasiof few more terms will result in an
approximation that is close enough to the trueesétw practical purposes. The assessment of how
many terms are required to get “close enough” selaon the remainder term of the expansion.
Equation 1-2 is useful to get insight to truncaterors. We can choose how far away from x we
want to evaluate f(x), and we can control the numiifeterms we include in the expansion.
Accordingly Eqn.1-2 is usually expressed as

R, =0(h") (1-3)

whereh = x.+1 —x ,the nomenclature O{f) means that the truncation error is of the ordér"&"

That is, the error is proportional to the step $izaised to the (n+T)power.
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Example 1
Use zero — through®order Taylor series expansion, Fi6), use a base poirt 4.

f(x) = X*+3X%+2x+5

Solution
f(4)=125, f'(4)=74, £"(4)=30, £"(4)=6 and all other higher derivatives df{x) at x = 4
are zero.

f(x+h)= f(x)+ f'(x)h+ f"(x)5+f

XxX=4;h=6-4 =2

Since fourth and higher derivatives <b(x) are zero ak = 4The Taylor series fd(x) at point
x=4 is given by

f(av2)= f(a)+ 1(go+ (@5 + (42

£(6) =125+ 74(2) + 3‘%) ¥ 6(2??) a

=125+148+60+ 8
= 341

Example 2

The Taylor series foe*at point x = Qis given by
2 3 4 5

« X X' X
e =1+X+—+—+—+—+--.
|

3 4 5
What is the truncation (true) error in the repréagon of €' if only four terms of the series are
used?

Solution

a) If only four terms of the series are used, then
2 X3
e =1l+X+—+—
2 3
2 3
e =141+1 41
2 3

= 2.66667

The truncation (true) error would be the unusethseof the Taylor series, which then are

4 5
X X
E =—+—+...

‘4 8

L 0.0516152
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b) As you can see in the previous example that bytpkiore terms, the error bounds
decrease and hence you have a better estimagé. of

How many terms it would require to get an approxioraof €' within a magnitude of true error of
less thad0™° ?

Solution

Using (n +1) terms of the Taylor series gives an error bound of
R (%)= (=h)"™ oy (©)
(n +1)!
x=0h=1f(x)=¢"

0= G2 e

e
(n+1)

Since
X<c<x+h
O0<c<0+1
O<cx<l

1
D) <|R,(0)} <

e
(n+1)!

So if we want to find out how many terms it wouédhjuire to get an approximation ef within a
magnitude of true error of less tHaR®,

e _10°®
(n+1)!

(n+1)!>10%

(n+1)!>10°x3 (as we do not know the value ebut it is less than 3).
n=9

So 9 terms or more will get within an error ofL0™® in its value.
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