
ACM '81, November 9-11, 1!)81 Tutorial Abstract

Metrics In Software Quality Assurance

J. E. Gaffney, Jr.
IBM Corporation

Federal Systems Division
Manassas, Va.

Abstract

The nature of "software quality ': and some software
metrics are defined an,] their relationship to
traditional software indicators such as "maintain-
ability" and "reliability" are sugges;ted. Recent
work in the field is summarized and an outlook for
software metrics in quality assurance is provided.
The material was originally presented as a tutorial
at the "ACM SIGMETRICS Workshop/Symposium on
Measurement and Evaluation of Software Quality" on
March 25, 1981.

Key words and phrases:

software quality assurance
software metrics
software research
software quality factors

Software Quality and the Quality Assurance
Organization

What is "software quality"? It is the focus of
the software quality assurance organization.
"Quality" is an aspect of (software) "product
integrity". "Product integrity" includes other
things, such as adherence to schedule and cost not
covered in the present art~9~e which are, nonethe-
less, of great importance.~±J Most simply, (soft-
ware) "quality" may be defined as "conformance to
requirements". Such "conformance" means, most
generally, that the product meets the needs of the
user and satisfies stated performance criteria.

The "user needs" that the software product is to
satisfy should be provided in written form to the
developer before he begins his design. They should
be expressed in terms of the functions that the
software product is to provide. Such a written
expression of "user needs" can be used as the

basis for discussion between user and developer
in clarifying whether a design appears appropriate
as a step in implementing the functions ~esired by
the user.

Software performance criteria can include a wide
variety of items, such as there being less than
some number of software defects being noted during
a sell-off demonstration, fewer than some stated
number of defects being found during design and/or
code inspections, etc.

Before focusing on the subject of the application
of metrics to software quality assurance, let us
briefly consider the principal functions of a
software quality assurance function. First, it
defines the standards for the software products
developed in its organizational unit. These
standards may include ones established by the
Government, by a higher organizational unit
such as a corporate or divisional headquarters,
or by the particular software quality assurance
organization itself.

The second major function of the software quality
assurance function is to specify and implement
tools or aids for assessing software product
quality. The tools may be as simple as checkoff
lists or as sophisticated as ones that automatically
count the occurrence of such software measure-
ables as the number of unique instruction types
in a program, the number of conditional jumps
in it, or other such elements that may have a
bearing on software quality.

The third major function of the software quality
assurance organization is to apply the tools to
assess the degree to which the software products
developed by its organizational unit adhere to
the standards appropriate to that product, which
it has established. The assessment may be
qualitative, such as certifying the adherence of
the software development group to certain
development approaches, such as top-down pro-
gramming and other modern programming practices.
The assessment may be quantitative, such as
recording the number of major defects (such as
a non-terminating loop) found in inspections of
the software design and/or the actual code.

1 2 6

ACM '81, November 9-11, 1981 Tutorial Abstract

Software Metrics and Quality Assurance

A software metric may be defined as "an objective,
mathematical measure of software that is sensitive

to differences in software characteristics. It
provides a quantitative measure of an attribute
which the body of software exhibits." It should be
"objective" in that it is not a measure of my
feelings or yours but is, insofar as possible, a
reproducible measure of or about the software
product of interest. The number of major defects
found during a sell-off test and a comparison of
that figure with a pre-established threshold of

"goodness" or "badness" is objective. Saying that
the software "has a lot of defects" is not. The
range of values of software metrics should reflect
differences with respect to one or more dimensions
of quality among the software products to which it

is applied.

Software development is increasingly being ac-
complished more in line with established engineering

and scientific principles and less as an art form.
Quantification of the software development process
and the resultant software product is mandatory in
order for software engineering to truly be a
scientific discipline. The use of software metrics
will contribute to this desired objective of an
increased level of quantification. Without such
quantification, the integrity of the software
product, which was considered above, cannot be what
it should or otherwise has the potential to be.

i.
What Lord Kelvin said in 1891 applies here:

"When you can measure what you are speaking
about, and express it in numbers, you know
something about it; but when you cannot 2.
measure it, when you cannot express it in
numbers, your knowledge is a meager and un-
satisfactory kind; it may be the beginning of
knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science." 3.

Or, the message to us in the software community

is:

If you can't measure it, you can't manage it. 4.

Software metrics are of interest for several reasons.
Numerical measures of the software product can be
transformed to indicators, such as "reliability"
and "maintainability" of interest to both users and 5.
software development management. Some of these
measures are defined in the section, "Some Software
Metric~"~ A number of indicators, as defined by
McCall "2~ are presented in the section, "Quality
Factors and Metrics". Also, software metrics are

of interest because they might suggest modification
to the software development process. For example,
the number of conditional jumps used should be 7.
minimized because the amount of development testing
required is proportional to that figure.

The quantitative evaluation of software quality can 8.
address two principal problem types encountered in
software products:

9.
A. Those problems having to do with the static

aspects of software and which are addressable
(at least potentially) by software based/or

"program linguistics" oriented metrics. Such
metrics are the subject of the remainder of
this presentation.

B. Those problems having to do with the dynamic
aspects of software, such as that a program
is difficult to operate and/or to integrate
with other programs. Such problems are not
considered further in this presentation.

Quality Factors and Metrics

Software quality focuses on the degree of correct-

ness of an implementation of a function conceived
to "meet the user's needs" (see above). It also is
concerned with the "goodness" of such an implementation.
Ideally, this measure of "goodness" should be
quantifiable, indicating how well the software is

designed and coded according to measurable,
quantifiable criteria. This is where "metrics" fit

into software quality assurance. They should relate
to software quality "attributes" or "factors" of

interest acknowledged by the community of software
developers and users.

J. A. McCall (2) has listed some "software qualify

factors", some of which can be related to "software
metrics", as is done for two of then, "maintainability"
and "testability", in the section, "Some Software
Metrics". McCall's "software quality factors"
(using his definitions) are:

Correctness Extent to which a program
satisfies its specifications
and fulfills the user's
mission objectives.

Reliability Extend to which a program
can be expected to perform
its intended function with
required precision.

Efficiency The amount of computing
resources and code required
by a program to perform a
function.

Integrity Extent to which access to

software or data by un-
authorized persons can be
controlled.

Usability

6. Maintainability

Effort required to learn,
operate, prepare input, and
interpret output of program.

Effort required to locate
and fix an error in an
operational program.

Testability Effort required to test a
program to insure it performs
its intended function.

Flexibility Effort required to modify
an operational program.

Portability Effort required to transfer
a program from one hardware
configuration and/or software
system environment to another.

127

ACM '81, November 9-11, 1981 Tutorial Abstract

i0. Reusability Extent to which a program

can be used in other appli-
cations--related to the
packaging and scope of the
functions that programs
perform.

ii. Interoperability Effort required to couple
one system with another.

G. J. Myers (3) has defined some other items which
certainly can be considered "software quality
factors" in the same sense that the eleven cited
above are. They are:

Coupling - The degree of interconnectedness of
modules

Strength - The degree of cohensiveness of a module

These measures related to the degree of propagation
of changes, and h~e, "maintainability". Cruick-
shank and Gaffney" ~have developed quantitative
measures of these items.

Some Software Metrics

In this section, several important metrics are de-
fined and an example of the relationship between
then and some of the qualitative "software quality
factors" (defined above) is provided. Some of the
basic wo~.done by the late Professor Maurice
Halstead") of Purdue University in software metrics
is briefly summarized.

Among the metrics developed by Halstead are these
four:

1. Potential Volume
or Intelligence

2. Volume

~he minimum amount of
"information" an algorithm;
function of conceptually
unique number of inputs
and outputs to a software
procedure or module. Its
unit is "bits" or "binary
digits".

The actual amount of infor-
mation a program; a function
of the unique number of
operators (instructions)
and a unique number of
operands (data labels)
used. Its unit is "bits".

3.

4.

Difficulty (or
What Might be
Called, "Expan-
sion Ratio")

Effort

Volume/Intelligence; the
"size" of the program
relative to its minimum
"size", a measure of re-
dundancy.

Volume times difficulty;
relates to the difficulty
a person finds in under-
standing a program; relates
to the degree of difficulty
one may find in modifying a
program; also relates to
error proneness of a pro-
gram.

Among the metrics developed by others are these
three:

5. Division

6. Information
Flow
Complexity

Proportion or number of con-
ditional jumps; relates to
testing effort; inversely pro-
portional to overall produc-
tivity; a measure of control
complexity. Var$~s work~,

including McCabe "~, ~n ~'~,
Paige" ", and Gaffney'-', have
indicated its significance.

Length of procedur e (number
of instructions) times the
square of the number of possible
combination of an input source
to an output ~tination.
Kafura et al. (-v" have developed
this metric.

A metric of particular significance to questions
relating to software maintenance is:

7. Proportion
of Modules
Changed in
an Update

A measure of complexity of the
software; relates to difficulty
in modifying the software (main-

This m "c was de- tenance). ~
veloped by Belady . It appears
to be related to "coupling" and
"strength" (see above), perhaps
quantifying them to some extent
as they deal with questions
about propagation of changes.

Various metrics of the group defined above can be
related to "software quality factors," such as
listed earlier. One can think of an hierarchy in
increasing order of detail and quantifiability. An
example of such an hierarchy is where the complex
concept of "maintainability" is repetitively de-
composed until it is described by various metr~
in this case, 'Effort' and 'Division'. Gordon")
showed a relationship between 'effort' and the
'understandability' of a program, which is a major
attribute of 'maintainability'.

In the remainder of this section, mathematical
definitions of the four Halstead metrics qualitatively
defined earlier in this section are provided.

Consider a program to be composed of a sequence of
'operators' and 'operands' For example, in the
instruction "ADD A", 'ADD~5would be an operator and
'A' an operand. Halstead () made the following
definitions.

n I = No. of operator types used.
n~ = No. of operand types used.
n ~ minimum no. of operand types (= the conceptually

unique no. of inputs and outputs)
n = n_ + n 2 = Total 'vocabulary' size.
N 1 T~tal no. of operators used.
N Total no. of operands used.

N 2 N 1 + N 2

Then, he mathematically defined the first of the
metrics given above as:

1 2 8

ACM '81, November 9-11, 1981 Tutorlal Abstract

I. Potential volume, V*=(2+np*)logg(2+np*), the i.
minimum program size, a m~asure-of tNe
instrinsic 'size' of the algorithm to be pro-
grammed.

2.
2. Volume, V=NLOG2n A measure of program size.

3. Difficulty (D) or expansion ratio = V/V*.
3.

4. Effort = V x D = No. of decisions required to
develop the program.

4.
Some Recent Metrics Work

A great deal of work is being done with software
metrics in various universities and industrial
organizations. Some of this work as applied to 5.
software quality assurance is summarized below:

i. Fitsos and Smith, IBM, GPD, Santa Teresa -
Demonstrated a strong relationship between
'Difficulty' metric and number of defects
in code.

2. Kafura, Iowa State (I0) - Developed 'information

flow' metric, found high correlation with
number of defects.

(13)
3. Ottenstein, Michigan Technological Univ.

- Estimated number of defects in code as function
of 'program volume' metric.

4. Bailey and Dingee, Bell Labs., Denver (14) -
Applied 'software science' metrics to some
switching system software, found defects not
to be a linear function of 'program volume'
metric. 4.

5. Gaffney, IBM, FSD, Manassas (15) - Applied
'software science' metrics to some signal
processing and control software, found potential 5.
for 'goodness/badness' relations, found
relation between 'volume' and 'potential volume'
metrics and number of conditio~ jumps and.A.
hence, testability (per McCabe "-~ and Paige[~)).

6. Belady, IBM, Research, Yorktown Hts. (II) -
Developing measures of software complexity and

progressive deterioration based on propagation
of changes.

7. Basili, Univ. of Maryland (16) - Determining

relationships among various software metrics
with software engineering laboratory data.

Outlook for Software Metrics In Quality Assurance

Metrics are promising and are potentially very
valuable for providing a basis for objective com-
parison of software products and possibly for
providing a basis for establishing standards of
'goodness/badness' They should prove useful in

'softwa ~defect models supplementing the ~ count' ,
such as developed by Musa 5).

Much work is yet to be done for metrics to be
extensively applied on a practical basis in the
software development and maintenance environments.
Areas in which work needs to be done include:

Refining the metrics and selecting the most
valuable ones; standardizing a set to be used,
if possible.

Establishing the validity of the metrics used
in a particular environment in which they are
employed.

Establishing 'goodness/badness' thresholds for
the metrics used.

Applying metrics at the software design stage
if possible (a greater payoff is potentially
possible due to less expense for earlier
modifiability).

Building up a base of metrics application
experience on a set of programs of application
size (not just 'toy programs').

6. Conducting cost-benefit analyses of metrics
applications.

7. Obtaining acceptance of the utility of metrics
by the software development community.

Some 'social' issues in the practical application
of software quality metrics are:

i. There is no accepted measurement practice

2. Analysts and programmers are often relatively
autonomous

3. Management has a need for control

There is resistance to quantitative measure
of one's work product by most software pro-
fessionals

Often, there is organizational inertia and
resistance to change in the way in which
business is done

6. Who should do the measuring?

7. Who should use the measures?

8. How should the measures be used?

Summary

Software "quality" is an aspect of "product integrity"
definition of a "software metric" was given and

several "metrics" were defined. The utility of
"metrics" including the quantification of certain
attributes of software "quality factors", such as
"maintainability" was outlined Mathematical
definitions of four of the metrics developed by
Halstead were provided. Some recent work in the software
metrics field related to software quality was
summarized. An outlook for the application of
software metrics in quality assurance was provided;
their use is promising but much work needs to be
done if their full potential is to be realized.

1 2 9

ACM '81, November 9-11, 1981 Tutorial Abstract..

i.

Bibliography 15.

Bersoff, E., Henderson, V., Siegel, S. "Software
Configuration Management, An Investment
in Product Integrity," Prentice-E1all, 1980.

2. McCall, J.A., "An Introduction to Software 16.
Quality Metrics," In J. D. Cooper and
M. J. Fisher (Eds), "Software Quality
Management," Petrocelli, 1979.

3.

4.

5.

6.

7.

8.

9.

i0.

ii.

12.

13.

14.

Myers, G. J., "Reliable Software Through Com-
posite Design," Petrocelli/Charter, 1975.

Cruickshank, R. and Gaffney, J., "Measuring the
Development Process: Software Design
Coupling and Strength Metrics;" The Fifth
Annual Software Engineering Workshop,
November, 1980, NASA Goddard Space Flight
Center.

Halstead, M., "Elements of Software Science,"
Elsevier,]977.

McCabe, T., "A Complexity Measure," "IEEE
Transactions on Software Engineering,"
December, 1976, pg. 308.

Chen, E., "Program Complexity and Programmer
Productivity," "IEEE Transactions on
Software Engineering," May, 1978, pg. 187.

Paige, M., "An Analytical Approach to Software
Testing," Proceedings of the "IEEE Computer
Software and Applications Conference,"
October, 1978, pg. 527.

Gaffney, J., "Program Control Complexity and
ProductivitF," Proceedings of thc "IEEE
Workshop on Quantitative Software Models,"
October, 1979, pg. 140.

Kafura, D., Harris, K., I1enry, S., "On the
Relationship Among Three Software Metrics,"
Proceedings of the "1981 ACM Workshop/
Symposium on Measurement and Evaluation
of Software Quality," March, 1981 (ACM
SIGMETRICS, Volume I0, Number i; Spring,
1981), pg. 81.

Belady, L., "An Anti-Complexity Experiment,"
IEEE Workshop on Quantitative Software
Models, October, 1979, pg. 128.

Gordon, R., "A Measure of Mental Effort Related
to Program Clarity," Ph.D. Thesis,
Purdue University, 1977; University
Microfilms International.

Ottenstein, L., "Predicting Software Development
Errors Using Software Science Parameters,"
1981 ACM Workshop, op. cit., pg. 157.

Bailey, C., and Dingee, W., "A Software Study
Using Halstead Metrics," 1981 ACM Workshop,
op. cit., pg. 189.

17.

Gaffney, J., "Software Metrics: A key to
Improved Software Development Management,"
"Computer Science and Statistics", 13th
Symposium on the Interface" (at Carnegie-
Mellon University), March, 1981, to be
in proceedings published by Springer-Verlag.

Basili, V., and Phillips, T-Y, "Evaluating and
Comparing Software Metrics in the Soft-
ware Engineering Lab," 1981 ACM Workshop,
op. cir., pg. 95.

Musa, J., "Software Reliability Measurement,"
"The Journal of Systems and Software I,
1980, pg. 223.

130

