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Abstract. The calculation of hydraulic state variables for a network is an important task in managing the dis-
tribution of potable water. Over the years the mathematical modeling process has been improved by numerous
researchers for utilization in new computer applications and the more realistic modeling of water distribution
networks. But, in spite of these continuous advances, there are still a number of physical phenomena that may
not be tackled correctly by current models. This paper will take a closer look at the two modeling paradigms
given by demand- and pressure-driven modeling. The basic equations are introduced and parallels are drawn
with the optimization formulations from electrical engineering. These formulations guarantee the existence and
uniqueness of the solution. One of the central questions of the French and German research project ResiWater is
the investigation of the network resilience in the case of extreme events or disasters. Under such extraordinary
conditions where models are pushed beyond their limits, we talk about deficient network models. Examples of
deficient networks are given by highly regulated flow, leakage or pipe bursts and cases where pressure falls be-
low the vapor pressure of water. These examples will be presented and analyzed on the solvability and physical
correctness of the solution with respect to demand- and pressure-driven models.

1 Introduction

Calculating the flow in hydraulic networks has a long his-
tory starting with the work presented by Cross (1936). Today
more than ever it is an important component in managing
the distribution of potable water. Originally developed for
planning and sizing of water distribution networks (WDNs),
the applications have since been extended to areas like sen-
sor placement, leakage reduction, water security and online
system management (SmartOnlineWDN, 2017). In the appli-
cation for systems with inadequate capacity or pipe failure,
the classical demand-driven modeling (DDM) approach is
stretched to its limits. This paper is published as part of a
French–German project (ResiWater, 2017). The objective of
the ResiWater project is the evaluation and improvement of
resilience and reliability of water distribution networks in
the presence of extreme events. These events may be trig-
gered by considerable technical accidents or natural disas-

ters. The objective of this paper is to take a closer look at
advances carried out in the area of hydraulic network model-
ing with respect to the robust, pressure-driven modeling for
cases of lost connectivity in parts of the network. These zero-
flow conditions are especially demanding, since the nonlin-
ear flow problem is ill conditioned. First, in Sect. 2 the clas-
sical demand-driven modeling approach will be presented
starting from the basic methods given by Cross (1936). In
his approach the outflows at demand nodes are given as fixed
boundary conditions. Then the major developments in vari-
ational methods and optimization by authors like Birkhoff
(1963), Collins et al. (1978) and Carpentier et al. (1985) are
presented, leading to the complete definition of the primal
and dual problems. Second, in Sect. 3 the development of an
alternative modeling approach also known as pressure-driven
modeling (PDM) is presented. Based on the fact first pre-
sented by Wagner et al. (1988) that outflow at demand nodes
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is not a fixed but rather a pressure-dependent boundary con-
dition, a number of approaches have been developed. Sev-
eral authors introduced functions called pressure–outflow re-
lationships (PORs) to determine the actual flow based on the
available pressure. Early approaches as presented by Bhave
(1981) use a POR in an iterative approach to solve a series of
DDM problems while adjusting the demands to be compati-
ble with the pressure. Piller and Van Zyl (2007) presented a
mathematical formulation of the pressure-driven model that
does not rely on the definition of any pressure–outflow rela-
tionship. Instead, the authors use modified mass-balance con-
straints at consumption nodes to allow reduced demands in
case the pressure is insufficient (Piller and Van Zyl, 2009).
Recently, Elhay et al. (2015) presented a robust and rapidly
converging solution method for the pressure-driven model
based on the energy formulations presented in this article. Fi-
nally, in Sect. 4 some conclusions are given on the limitations
of existing methods and an outlook is presented on possible
improvements that are studied in the ResiWater project. In
particular, the project deals with challenges that result from
situations where the connectivity of the network is lost due to
massive system failures caused by extreme events that often
lead to insufficient pressure conditions even in the remaining
system.

2 Demand-driven modeling

2.1 Basic hydraulic equations

In hydraulic modeling the simplified topological structure of
a water distribution network is described by a directed graph.
This graph represents pipe sections as links and pipe junc-
tions as nodes. The mathematical description of this graph is
given by the incidence matrix A and is defined as

Ai,j =


−1 , if pipe j enters node i,

0 , if pipe j is not connected to node i,
+1 , if pipe j exits node i.

Water distribution networks have a looped structure and
the system state is described by the potential at the nodes
(head) and the current for the links (flow). The system equa-
tions are given by the following sets of equations: first the
mass balance at every node

Aq + d = 0 (1)

and second the energy equation

1h(r,q)−AT h−ATf hf = 0. (2)

Here the incidence matrix is divided into two parts. A de-
scribes the part of the network that only contains junction
nodes, whereas Af describes the nodes with fixed potential
like reservoirs or tanks. The vectors for flow q and head h

for the unrestrained links and nodes are the variables describ-
ing the system state. Boundary conditions can be defined by

means of two parameter vectors: first, the nodal discharges at
junction nodes, also termed the demand vector d, and second,
the heads at nodes with a fixed potential hf. Finally,1h(r,q)
in the energy equation describes the head loss along a pipe
due to friction. Head loss in general is a nonlinear function
of a friction coefficient r and flow q. A generalized form of
the relation between head loss and flow is defined by Nielsen
(1989) as follows:

1h= Eq with E= r|q|α−1. (3)

The inverse relation is defined as

q = E−11h with E−1
= r−

1
α |1h|

1−α
α . (4)

The constant α has a value between 1.0 and 2.5, depend-
ing on the chosen head-loss function. Common choices for
its calculation, depending on the country, are the Prandtl–
Colebrook, Darcy–Weisbach or Hazen–Williams formulas.

2.2 Content and Co-Content models

Based on the works of Cherry (1951) and Millar (1951) for
electrical systems, Collins et al. (1978) introduced a pri-
mal and dual formulation of the hydraulic problem based
in mathematical optimization theory. These formulations are
also known as the Content and Co-Content models. How-
ever, minimization of the Co-Content Model is equivalent to
a variational approach introduced by Birkhoff (1963).

For linear systems Maxwell’s theorem states that the dis-
tribution of current or flow which gives a minimum value to
the function

F (q,h)=W − 2Ph (5)

is the only one consistent with Kirchhoff’s equations. Here
W defines the total energy lost in the system and Ph the to-
tal power taken from the fixed potential nodes. Millar (1951)
extends the theoretical framework for nonlinear systems by
dividing the energy loss into two components called the con-
tent G and co-content J . The sum of content and co-content
is equal to the total energy lost in the system.

W =G+ J (6)

For linear systems G and J are equal, thus allowing
the calculation of the system state by Eq. (5). In nonlin-
ear systems the content and co-content are defined by the
integral over an elements characteristic. This characteristic
is a function of head loss and flow and for the scope of
this paper is given by 1h−Eq = 0. Using these defini-
tions a primal and dual optimization problem can be for-
mulated for the hydraulic model with the primal functional
C(q)primal =G−Pq , respectively, with the dual functional
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CC(h)dual = J −Ph.

minimize
q

C(q)primal =

npipes∑
i=1

qi∫
0

[
rxi |xi |

α−1
−

(
ATf hf

)
i

]
dxi

subject to Aq + d = 0. (7)

minimize
h

CC(h)dual =

npipes∑
i=1

(
AT h+ATf hf

)
i∫

0

r
−

1
α

i yi |yi |
1−α
α dyi +

nnodes∑
j=1

djhj . (8)

The major benefit of this optimization is that the existence
of the solution is guaranteed due to the fact that the argu-
ment is convex and coercive and uniqueness if the argument
is strictly convex as long as the set of feasible solutions is not
empty. The proof for this has been given by Birkhoff (1963).

2.3 Alternative formulations

Carpentier et al. (1985) published a comprehensive study on
the efficiency of numerical solution strategies. The Hardy–
Cross algorithm is given by a relaxed Newton method that
solves the equations successively for each loop. An approach
to the parallel solution of the primal system is the conju-
gate gradient method, but due to the condition of the multi-
dimensional optimization problem it may become inefficient
for approaching the optimal point. In general, Newton meth-
ods are more efficient in solving the equations as they bene-
fit from quadratic convergence near the solution. Due to the
better conditioning of the Hessian matrix, the primal New-
ton method needs approximately half the number of itera-
tions compared to the dual Newton method. Todini and Ross-
man (2012) published a study classifying and comparing the
most common simultaneous solution methods for the basic
DDM equations. Both papers conclude that hybrid formu-
lations in head and flow are efficient approaches to solving
the hydraulic system. With respect to one of the most used
solution methods in hydraulic modeling, the global gradient
algorithm (GGA), we can conclude that it can also be inter-
preted as a Newton method applied to Eq. (7).

However, in recent years new publications have shown that
the loop method gives an efficient alternative to the hybrid
approaches. Elhay et al. (2014) use a tree–cotree decomposi-
tion and take advantage of the fact that loop methods are null
space methods. Alvarruiz et al. (2015) have shown that loops
can be defined without tree–cotree decomposition to increase
the sparsity of the iteration matrix. Abraham and Stoianov
(2015) conclude that loop methods are more efficient than
GGA in most of the cases if minimal loops are defined and
partial update of head losses and matrix products are used to
further reduce computational complexity.

3 Pressure-driven modeling

The demand-driven modeling approach has considerable
shortcomings under complex boundary conditions and is not
able to realistically model mechanisms that are driven by
pressure differences. Two of the most important phenomena
are pressure-dependent demands at consumption nodes and
pressure-dependent leakage for pipe ruptures.

3.1 Pressure-driven boundary conditions

In the case of pressure-dependent demand, experience has
shown that under certain conditions the demand-driven
model can lead to non-physical solutions. This is the case
in pressure-deficient networks where, under realistic condi-
tions, the demand cannot be met at certain consumer nodes.
From hydrostatics, it is known that the maximum flow vol-
ume depends on the difference between the nodal and at-
mospheric pressure. To take this into account the pressure-
driven modeling approach relaxes the demand boundary con-
ditions and the fixed consumption is replaced by the set of
inequality conditions 0≤ d ≤ ds. They state that the actual
discharge at the node is in the range of zero and the desired
service demand based on the state of the network.

By far the most popular approach to handle the degree of
freedom introduced by the pressure-dependent formulation
is the introduction of an emitter function c(h) that quantifies
discharges based on the present head.

One of the first publications on the topic by Bhave (1981)
uses the Heaviside function as an emitter function. This
means that for a head lower than the nodes elevation there
is no supply and for a head above a particular level the full
demand is met. Wagner et al. (1988) introduced a more real-
istic model based on the hydrostatic equations for a free-flow
boundary condition. This leads to the Wagner function:

c(h)=


0 , if h≤ hm,(
h−hm

hs−hm

) 1
2
d , if hm ≤ h≤ hs,

d , if hs ≤ h.

(9)

This equation complies with the inequality conditions and is
based on a physical model for the outflow. In Eq. (9) h is
the calculated head. The minimum head necessary is given
by hm. In general the minimum head is defined by the nodal
elevation. The required head for servicing the full requested
demand is defined by hs. Tanyimboh et al. (2003) give a good
overview of alternative formulations for the pressure–outflow
relation. Although the definition of an emitter function is a
popular way of dealing with the challenge, there exist ap-
proaches for pressure-dependent demand without the specific
definition of an emitter.

In the case of pressure-dependent discharges for pipe rup-
tures, Schwaller and Van Zyl (2014) describe a concept
called fixed and varied area discharge (FAVAD) which de-
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fines an orifice function as follows.

c(h)= Cd
√

2g
(
A0h

0.5
+mh1.5

)
(10)

Here Cd is a discharge coefficient, g is the gravitational con-
stant, A0 is the area of the opening if no head is present
and m is a linear value describing the growth in leak area.
In contrast to the demand emitter function, this orifice func-
tion defines not only the discharge based on the pressure,
but also the change in area for the rupture due to the elas-
ticity of materials and the pressure. Giustolisi et al. (2008)
apply pressure-dependent demands and background leakage
based on the formulation by Germanopoulos (1985) to the
hydraulic state equations.

3.2 Pressure-driven problem description

Using a general emitter function, a modified set of equations
has been published by Piller et al. (2003).

Aq + c(h)= 0 (11)

1h(r,q)−AT h−ATf hf = 0 (12)

As for the demand-driven model, it is also possible to for-
mulate the content and co-content problems for the pressure-
driven approach. Following Piller et al. (2003), the Content
Model is defined by

minimize
q

C(q)primal =

npipes∑
i=1

qi∫
0

[
rxi |xi |

α−1
−

(
ATf hf

)
i

]
dxi

+

nnodes∑
j=1

(−Aq)j∫
0

c−1
j (d) dd

subject to 0≤ Aq ≤ d. (13)

The pressure-dependent Co-Content Model is given as

minimize
h

CC(h)dual =

npipes∑
i=1

(
AT h+ATf hf

)
i∫

0

r
−

1
α

i yi |yi |
1−α
α dyi

+

nnodes∑
j=1

hj∫
hmj

cj (h) dh. (14)

4 Deficient networks

From the literature the notion of deficient networks can take
a number of different definitions. These definitions may be

divided into model, mathematical and physical deficiencies.
Model deficiencies are errors in the creation, conversion or
transfer of the network graph. A mathematical deficiency can
be defined as a maximally connected network where, due to
some boundary condition, the set of feasible solutions is re-
duced to the empty set or the solution is not unique. In con-
trast to mathematical deficiencies, in the case of a hydraulic
deficiency a unique solution exists, but it is physically incor-
rect. With respect to the two modeling paradigms presented
in Sects. 2 and 3, different phenomena have to be classified as
deficient. In the following a number of deficiency phenom-
ena of special interest for the ResiWater project are presented
and evaluated with respect to demand- and pressure-driven
modeling.

Conflicting constraints. The first scenario is given if the
boundary conditions are in conflict for certain parts of the
network. This occurs if flow-regulating devices are incor-
porated into the model and introduce additional constraints
to the mathematical model. In unfortunate cases these con-
straints may conflict with the demand request of the con-
sumption nodes. Simply put, the flow entering a region of the
network is not satisfying the required demand. In demand-
driven modeling this reduces the set of feasible solutions for
the optimization problem defined in Eqs. (7) or (8) to zero, as
demonstrated by Deuerlein et al. (2012). Deuerlein also sug-
gests an algorithm to determine whether a feasible solution
exists for the particular scenario. Looking at the pressure-
dependent calculation of the same system, it can be shown
that by relaxing the demand boundary conditions the system
becomes solvable again, but the consumers will be supplied
with a reduced flow.

Ambiguous constraints. Another example of a mathe-
matical deficiency is given if the boundary condition allows
for an infinite number of solutions. In their article Gorev et al.
(2016) describe a scenario where two flow control valves
(FCVs) are installed in series. In this case the two FCVs cre-
ate a combined head loss, but due to the ambiguous nature of
this problem an infinite number of solutions exist, and it is
impossible to determine which of the two FCVs contributes
how much. This phenomenon is not addressed by DDM or
PDM approaches.

Pipe rupture. With respect to resilience, phenomena like
pipe rupture or bursts are of special interest. In these cases the
massive water loss dominates the flow in the network. Recent
research has shown that the fixed and varied area discharge
model as described in Eq. (10) provides a good description of
leakage behavior of elastic materials (Van Zyl et al., 2011).
Due to the pressure-dependent nature of the phenomenon in
demand-driven modeling it is not possible to adequately han-
dle the problem. In contrast, similarly to the pressure-driven
demand, it is possible to solve these problems in the PDM
framework.

Low-pressure zones. The fourth scenario is correlated
with the occurrence of low-pressure zones in the network.
This may for instance be triggered by a pipe burst and the
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subsequent pressure loss. Looking at current demand and
pressure-driven models this behavior is not taken into ac-
count. In the case of zero or negative pressure, software pack-
ages like Porteau (Piller et al., 2011) and EPANet (Rossman,
2000) will give a warning notifying the user that pressure
dropped below zero, but the hydraulic connection is still in-
tact and disconnected network parts will still be supplied. A
conceptually simple way to solve this problem in the PDM
framework may be implemented by an iterative approach that
analyzes the pressure on every node and deletes all links con-
nected to the deficient ones. A different approach has been
proposed by Piller and Van Zyl (2009). They introduce an ad-
ditional constraint to the optimization formulation described
in Sect. 3 that reduces the flow in deficient pipes to zero.

5 Conclusions

In conclusion, this paper has given a summary of the current
state of water distribution network modeling, looking into the
classical approaches using mass balance and energy equa-
tions, as well as optimization approaches that allow one to
make assumptions about the properties of the solution space.
These formulations have been given for both the framework
of demand-driven modeling with very strict constraints and
pressure-driven modeling where the constraints have been re-
laxed to give more realistic results.

Looking at the two modeling paradigms, four phenom-
ena of deficient networks of interest to the ResiWater Project
have been analyzed with respect to solvability and physical
accuracy. It can be concluded that, although the pressure-
driven approach is far superior to demand-driven modeling
in cases like pressure-controlled demands and leakage, there
still exist model deficiencies in cases where pressure drops
below a physically realistic level.
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