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Abstract

Water distribution systems are large and complex structures. Hence, their construction,

management and improvements are time consuming and expensive. But nearly all the

optimisation methods, whether aimed at design or operation, suffer from the need for

simulation models necessary to evaluate the performance of solutions to the problem.

These simulation models, however, are increasing in size and complexity, and especially for

operational control purposes, where there is a need to regularly update the control strategy

to account for the fluctuations in demands, the combination of a hydraulic simulation

model and optimisation is likely to be computationally excessive for all but the simplest

of networks.

The work presented in this thesis has been motivated by the need for reduced, whilst

at the same time appropriately accurate, models to replicate the complex and nonlinear

nature of water distribution systems in order to optimise their operation. This thesis

attempts to establish the ground rules to form an underpinning basis for the formulation

and subsequent evaluation of such models.

Part I of this thesis introduces some of the modelling, simulation and optimisation prob-

lems currently faced by water industry. A case study is given to emphasise one particular

subject, namely reduction of water distribution system models. A systematic research

resulted in development of a new methodology which encapsulate not only the system

mass balance but also the system energy distribution within the model reduction process.

The methodology incorporates the energy audits concepts into the model reduction al-

gorithm allowing the preservation of the original model energy distribution by imposing

new pressure constraints in the reduced model. The appropriateness of the new method-

ology is illustrated on the theoretical and industrial case studies. Outcomes from these

studies demonstrate that the new extension to the model reduction technique can simplify

the inherent complexity of water networks while preserving the completeness of original

information.

ii



iii

An underlying premise which forms a common thread running through the thesis, linking

Parts I and II, is in recognition of the need for the more efficient paradigm to model and

simulate water networks; effectively accounting for the discontinuous behaviour exhibited

by water network components.

Motivated largely by the potential of contemplating a new paradigm to water distribution

system modelling and simulation, a further major research area, which forms the basis

of Part II, leads to a study of the discrete event specification formalism and quantised

state systems to formulate a framework within which water distribution systems can be

modelled and simulated. In contrast to the classic time-slicing simulators, depending

on the numerical integration algorithms, the quantisation of system states would allow

accounting for the discontinuities exhibited by control elements in a more efficient manner,

and thereby, offer a significant increase in speed of the simulation of water network models.

The proposed approach is evaluated on a number of case studies and compared with results

obtained from the Epanet2 simulator and OpenModelica. Although the current state-of-

art of the simulation tools utilising the quantised state systems do not allow to fully

exploit their potential, the results from comparison demonstrate that, if the second or

third order quantised-based integrations are used, the quantised state systems approach

can outperform the conventional water network simulation methods in terms of simulation

accuracy and run-time.
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Chapter 1

General introduction

1.1 Introduction

The work documented in this thesis represents a first step towards developing and re-

engineering a new approach to reduce water distribution system (WDS) models for the

purpose of their subsequent use in the optimisation studies. In addition, the author has

been driven by a recognition of the acute need to redress some of the concepts and con-

templations of water networks modelling and analysis to align better with the new and

perceived emerging demands of industry. The development of such a new modelling and

simulation framework is a much larger task than that of an individual research programme,

but nevertheless the thesis does attempt to lay down some of the ground rules for such

a new development; indeed further work is continuing and is currently progressing, being

undertaken by colleagues within the Water Software Systems (WSS) group at Leicester,

UK.

This chapter is focused towards introducing the formulation of the above ideas and is

structured as follows: Firstly, an overview of the above new concepts and re-alignment for

water network analysis is developed. Then, a short review of the work to be presented is

given. The research aims and objectives are summarised in Section 1.2. To simplify the

reading of the thesis, an outline of the flow of the research carried out and the structure of

the thesis is described in Section 1.3. Section 1.4 provides a list of the author’s claims in

terms of main achievements and novel contributions to the field of hydroinformatics, to-

gether with links to the appropriate chapters where the material can be found. Section 1.5

and Section 1.6 enumerate the publications and the research projects associated with the

work presented in this thesis.

2
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1.1.1 Enhanced model reduction methodology

Water distribution systems are designed to provide water for domestic, commercial, in-

dustrial and fire fighting purposes while simultaneously satisfying demand, pressure and

water quality requirements. The typical components of WDS are reservoirs, nodes, pipes,

valves and pumps. Each of these interconnected elements is interrelated with its neigh-

bours thus the entire WDS behaviour depends on each of its elements. Nowadays, it is

common that WDS models consist of thousands of such elements to accurately replicate

hydraulic behaviour and topographical layout of real WDSs. Such models are appropriate

for simulation purposes; however, online optimisation tasks are much more computation-

ally demanding, hence, simplified models are required. There are different techniques of

model reduction; the outcome of most of these methods is a hydraulic model with a smaller

number of components than the prototype. The accuracy of the simplification depends

on the model complexity and the selected method such as skeletonization (Walski et al.,

2003; Saldarriaga et al., 2008; Iglesias-Rey et al., 2012), parameter-fitting (Anderson and

Al-Jamal, 1995), graph decomposition (Deuerlein, 2008), enhanced global gradient algo-

rithm (EGGA) (Giustolisi and Todini, 2009), metamodelling (Rao and Alvarruiz, 2007;

Broad et al., 2010; Behandish and Wu, 2014) and variables elimination (Ulanicki et al.,

1996; Alzamora et al., 2014).

While some of the techniques demonstrated a potential for implementation in real time

optimisation strategies, a more insightful analysis has exposed a potential for further im-

provements. Whereas in the aforementioned simplification methods, the obtained reduced

models replicate, to a specific degree, the original hydraulic water network characteristics,

the energy distribution of the original system is usually not considered in the simplification

process. This could cause a situation, where the pump speed required to satisfy the min-

imum pressure constraints is different for the reduced model and the original model. To

alleviate this mismatch it is proposed in this thesis to incorporate the concept of the en-

ergy audits of water networks introduced by Cabrera et al. (2010) into the model reduction

algorithm.

Use of geographic information system (GIS) and supervisory control and data acquisition

(SCADA) in water industry resulted in an increasing amount of information about actual

network topology and service that can be incorporated into a model. Hence, to ensure that

the model reduction algorithm is able to cope with complex topologies of large size networks

a research is necessary in order to improve the numerical efficiency of the algorithm.

Having in mind the properties of water networks and model reduction techniques, the

investigation to be conducted can be narrowed to the following topics: (i) an efficient way to
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manage large sparse matrices representing water distribution network (WDN) topologies,

(ii) exploitation of the multi-thread computing aimed at distributing the computational

load on multi-core processors, and (iii) analysis of water networks aimed at improving the

understanding of network functioning, and eventually, reducing the computational effort

while managing or even improving the accuracy of the model reduction algorithm. It

is apparent that none of these research directions prevails on the others, but rather their

combined development would provide means to enhance, and ultimately, create a practical,

reliable and efficient tool.

It is considered important by the author to highlight the impact of research work on

the practical systems as well as to reflect the constant motivation during this work to

appeal and collaborate with various companies and industrial bodies in order to ensure

the viability and applicability of the resulting concepts that are developed. Hence, within

this thesis the author investigates the applicability of his research findings in a real case

study of determining optimal pump schedules. The case study is based on the project

carried out by WSS aimed to optimise operation of a large-scale WDS. The data used

in the project concern an actual WDS being part of a major water company in area of

southern United Kingdom. The objective is to reduce the cost of energy used for water

pumping whilst satisfying all operational constraints, including the pressure constraints in

different parts of the water network.

1.1.2 New paradigm for water network modelling and simulation

Applying research in practice has bidirectional benefits; not only enables to evaluate the

developed concept in a real world but also it is likely that new research directions are to

be generated to solve the subsequent problems encountered in the real world experience.

Indeed, the application of research findings in the project that concerned optimisation of

operation in the real WDS has allowed the assessment of the solutions proposed by the

author in the first part of this thesis. However, the author has came across a number of

further problems still to be addressed. For example, if the calculated optimal schedules

to be applied to a real network are continuous they have to be converted to their discrete

equivalents; continuous schedules cannot be directly implemented as one cannot have e.g.

“0.7 of pump ON”, thus a further processing called discretisation is needed. But the

process of discretisation of continuous schedules presents a challenge. In (Bounds et al.,

2006) it was addressed that a discrete schedule for a pump, which is a part of a big pump

station, may differ significantly from the corresponding continuous schedule, because the

aggregated flow is achieved by a combination of many pumps. This renders research
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questions whether is it possible to convert the continuous results to the integer solutions

more effectively? Or maybe, the optimal discrete solutions can be found directly within a

time interval that allow their real-time implementation?

In addition to above questions, a number of challenges in water network analysis are

still present; e.g. majority of water pipe networks analysis methods and simulators are

based on the time-slicing approach i.e. numerical methods used in computer simulation

of a system characterised by differential equations require the system to be approximated

by discrete quantities. The solution of difference equation is calculated at fixed points

in time. However, some elements in WDN models (e.g. valves) may cause numerical

difficulties (convergence problems) in simulation due to their inherent non-smooth and

discontinuous characteristics (Filion and Karney, 2003; Afshar and Rohani, 2009; Rivera

et al., 2010; Kovalenko et al., 2010). This is mainly due to the fact that the switching

events may not happen at the pre-selected time steps and then additional intermediate

time steps need to be introduced. Such an approach is used in the water network simulator

Epanet2 which introduces the intermediate steps when simulating water network models

containing control elements.

To address the above challenges it is proposed in the second part of this thesis to model and

simulate WDSs within the discrete-event specification (DEVS) formalism framework with

use of the quantised state system (QSS) methods. Instead of the time-slicing approach

as in the majority of water network simulators, the quantisation of states approach is

to be investigated in order to obtain an asynchronous discrete-event simulation model of

WDS. Such an approach in which water distribution systems modelled within the DEVS

framework are simulated using the quantisation-based integration methods has not been

applied to WDSs.

1.2 Aims and objectives

The major aim of thesis is to consider models of WDS for control and optimal operation. To

do so a simplified model of WDS and a fast method of optimal scheduling are needed. There

are two fundamental approaches to optimal control of WDS; time based optimal scheduling

and feedback based through rules which operate on states of the system. The latter requires

efficient simulation methods considering discontinues control elements and this inspired the

author to investigate the event-based methods dedicated for hybrid systems. It is expected

that the following objectives would lead to fulfilment of the major aim. These objectives

are:
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1. To provide a broad introduction to the hydraulics theory necessary for WDS anal-

ysis, emphasised on the terminology and mathematical formulations necessary to

formulate a WDS simulation model. This objective is addressed in Chapter 2.

2. To conduct an extensive and systematic evaluation of WDS model reduction tech-

niques with the focus placed on the preservation of energy distribution of the original

model. This shall be addressed in three phases:

(a) Investigation of methods and techniques aimed to obtain a reduced WDS model

that can accurately replicate the hydraulic behaviour of the original model.

(b) Study to improve the model reduction algorithm addressing shortcomings un-

covered in the existing algorithm.

(c) Development of a software prototype to allow the utilisation of the model re-

duction algorithm in the associated research projects.

The Objective 2 is addressed mainly in Chapter 3 and partially in Chapter 4.

3. To investigate different numeric metrics for the assessment of accuracy of the model

reduction technique. This will include the hydraulic-oriented measures used to com-

pare the simplified and original models. This objective is addressed in Chapter 3.

4. To implement the extended model reduction algorithm in a widely used program-

ming language, yielding a software which may be incorporated into other WDS

management-related software. This objective is addressed in Chapter 4.

5. To test and examine the developed approach on the case study based on a real urban

water network as a proof of concept. This objective is addressed in Chapter 5.

6. To investigate alternative modelling and simulation paradigms able to handle in

a more efficient manner the inherent nonlinear and discontinuous characteristics

exhibited by some components of water distribution networks. This objective is

addressed in Chapter 6.

7. To evaluate appropriateness of the proposed modelling and simulation paradigm on

a set of representative case studies. This objective is addressed in Chapter 7.

1.3 Outline of this thesis

The description of the research and developments presented in this thesis is organised as

illustrated in Figure 1.1. The thesis comprises the following chapters and appendices:
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Chapter 1: Introduction

Chapter 2: Theoretical and
conceptual framework

Chapter 3: Energy balance
in model reduction of

water distribution systems

Chapter 4: Improving
numerical efficiency of

model reduction algorithm

Chapter 5: Application of
model reduction in optimal

scheduling

Chapter 6: Discrete-event
specification formalism and

quantised state systems

Chapter 7: Modelling and
simulations of water

distribution systems within
hybrid systems framework

Chapter 8: Conclusions and
recommendations for

further research

Appendix B: Graphical
results from simplifications

Appendix A: Mathematical
supplement

Appendix C:
Object-oriented modelling

of water networks

Appendix E: Adjustments
to optimiation model

Appendix D: Detailed
schematic

Appendix F: Discretisation
algorithm of continuous

schedules using
GAMS/CONOPT
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Figure 1.1: Schematic representation of the structure of this thesis.
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Chapter 1 corresponds to this introduction.

Chapter 2 provides the foundation required to understand the hydraulic network mod-

elling and simulation theories. This is accompanied by a literature survey highlighting

issues in the existing modelling, simulation and optimisation of WDSs.

Chapter 3 reviews the existing WDS model reduction methods through analysis of their

strengths and weaknesses. The attention is placed on the suitability of the particular

method for inclusion into the online optimisation strategy. Within this chapter a problem

of an inconsistent energy distribution in the reduced model is highlighted and solution to

this problem is proposed.

Chapter 4 describes the development of the extended model reduction application em-

phasised on the improvements to numerical efficiency of the simplification algorithm.

Chapter 5 applies the extended model reduction algorithm to a complex real case study

in the project aimed to optimise the WDS operation.

Chapter 6 gives a brief introduction to the discrete event specification formalism and

quantised systems methods. These concepts are subsequently used to propose a novel

modelling and simulation paradigm, which can, in an efficient manner, account for non-

linearites and discontinuous behaviour exhibited by components of WDS.

Chapter 7 evaluates the new approach for modelling and simulation of WDSs on a number

of representative case studies.

Chapter 8 summarises the main conclusions of author’s work in preceding chapters and

describes possible avenues for further research.

In addition to the main body of this thesis, there are several appendixes that are of interest

for the future reference:

• Appendix A contains a description of some miscellaneous mathematical theories.

• Appendix B presents graphical results from the application of the model reduction

algorithm to several case studies described in Section 3.4.2.

• Appendix C illustrates object-oriented approach to model water networks.

• Appendix D depicts a detailed schematic of the water network used as a case study

in Chapter 5.
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• Appendix E lists adjustments and modifications of the reduced model, which is

subsequently used as the optimisation model in Chapter 5.

• Appendix F offers an overview of the discretisation algorithm of continuous schedules

used in the case study described in Chapter 5.

1.4 Contributions

Throughout duration of the research programme, a number of contributions have been

made to the field of hydroinformatics. Portions of the work that were due to other indi-

viduals participating in the projects and had to be included in this thesis for the sake of

completeness, are clearly marked throughout this document including the names of the

contributors. The main contributions claimed in this thesis are however solely the work

of the author.

It is considered that there are two major contributions (one for each of Part I and Part

II of the thesis) and a number of less significant contributions which are grouped here for

Part I and Part II. These are:

Part I

Major contribution

The major contribution of Part I is the development of a new extension to the WDS

models reduction algorithm originally proposed by Ulanicki et al. (1996). The extended

methodology is based on the concept of energy audits which have been incorporated into

the model reduction algorithm allowing the preservation of the original model energy

distribution. The idea is established on the distribution of the minimum useful energy

which is depended on the minimum service pressure (Cabrera et al., 2010). The standard

model reduction algorithm has been extended to reallocate not only demand of the removed

nodes but also their minimum useful energy (pressure constraints). The simplified model

retains the original model energy distribution due to new pressure constraints. Such an

approach preserves accurately the hydraulic characteristic of the original water network.

Part of this research was published in (Skworcow et al., 2010; Paluszczyszyn et al., 2011,

2013). Details are given in Chapter 3.
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Subsidiary contributions

• An extensive evaluation of strengths and weaknesses of the existing methodologies

aimed at reduction of WDS models has been carried out. The methods have been

thoroughly evaluated, followed by an assessment of their practical application to

online optimisation of WDS operation. Details are given in Chapter 3.

• The numerical efficiency of the extended model reduction algorithm has been im-

proved. The utilisation of the parallel programming techniques and the sparse ma-

trices ordering algorithms have drastically increased the speed of the WDS model

simplification. Part of this research was published in (Paluszczyszyn et al., 2014).

Details are given in Chapter 4.

• The extended model reduction algorithm has been implemented in the C# program-

ming language, yielding a functional and reliable software that has been already used

in a number of research and commercial projects. Details are given in Chapter 4.

• The complete optimisation procedure aimed at obtaining optimal schedules for pumps

in the real urban water network has been described in details to demonstrate how

such task can been approached and solved. It has been shown that the optimal

scheduling of a complex WDN is a dynamic mixed-integer problem and its solution

has faced a number of difficulties such as a large number of discrete and continu-

ous variables, nonlinearities in the components equations, modelling uncertainties

and discretisation of continuous schedules. Part of this research was published in

(Skworcow et al., 2014b,a). Details are given in Chapter 5.

Part II

Major contribution

A new paradigm to modelling and simulation of water distribution networks is claimed as

the major contribution of Part II. The new framework has been based upon combination

of the DEVS formalism and the QSS methods. Such an approach brings many benefits

especially to modelling and simulation of hybrids systems, such WDSs, as instead of the

classical time-slicing approach in simulation, the QSS theory considers only changes in

states of the system. The results obtained from the simulators based on the QSS engine

have showed a number of advantages compared with the standard simulation packages

such as Epanet2 (Rossman, 2000b) or OpenModelica (Fritzson, 2010). The accuracy with

the DEVS and QSS approach is nearly identical to Epanet2 and OpenModelica but it took
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much less time to simulate a WDS model and the resulted data consist of a significantly

smaller number of points. Part of this research was published in (Paluszczyszyn et al.,

2012). Details are given in Chapter 7.

Subsidiary contributions

• A comparison of techniques, methods and tools as well as performance and robustness

between the quantised state systems and the classical time discrete simulation for a

number of representative water network models. Details are given in Chapter 7.

1.5 Publications

The work in this thesis has contributed in part or full to the following publications in

journals and conference proceedings:

Journal articles:

• Skworcow, P.,Paluszczyszyn, D., Ulanicki B., (2014). Pump schedules optimisa-

tion with pressure aspects in complex large-scale water distribution systems. Drink-

ing Water Engineering and Science Discussions, 7(1):121-149.

• Paluszczyszyn, D., Skworcow, P., Ulanicki, B. (2013). Online simplification of

water distribution network models for optimal scheduling. Journal of Hydroinfor-

matics, 15(3):652–665.

International conference proceedings:

• Paluszczyszyn, D., Skworcow, P., Ulanicki, B. (2014). Improving numerical effi-

ciency of water network models reduction algorithm. In Computer system engineer-

ing: Theory & Applications: 10th, 11th, 12th and 13th Polish-British Workshops,

pages 46-65, Jugów, Poland.

• Skworcow, P., Paluszczyszyn, D., Ulanicki B., Rudek, R., Belrain, T. (2014).

Optimisation of pump and valve schedules in complex large-scale water distribution

systems using GAMS modelling language. Procedia Engineering, 70(0):1566-1574.
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• Paluszczyszyn, D., Skworcow, P., Ulanicki, B. (2012). A new method of modelling

and simulation of water networks with discontinuous control elements. In Proceedings

of the 14th Water Distribution Systems Analysis, pages 158-167, Adelaide, Australia.

• Paluszczyszyn, D., Skworcow, P., Ulanicki, B. (2011). Online simplification of

water distribution network models. In Proceedings of the 11th International Confer-

ence on Computing and Control for the Water Industry, volume 3, pages 749-754,

Exeter, UK.

• Skworcow, P., Ulanicki, B., AbdelMeguid, H., Paluszczyszyn, D. (2010). Model

predictive control for energy and leakage management in water distribution systems.

In Proceedings of the UKACC International Conference on Control, pages 990-995,

Coventry, UK.

1.6 Research projects

The works presented in this thesis have been partially performed in the frameworks of the

following research projects:

• Pump scheduling planning for Affinity Water (former Veolia Water)(2012). The

project carried out by WSS aimed at possible improvements and optimisation of

the water pumping strategy for a real WDS located in the area of southern United

Kingdom. The improvements and optimisation were focused at reducing the cost of

energy used for water pumping, whilst satisfying all operational constraints, includ-

ing pressure constraints in different parts of the network. The outcomes from the

projects and author’s contributions are described in detail in Chapter 5.

• NEPTUNE (2009). Neptune was a collaborative project involving two leading UK

water service providers (Yorkshire Water Services and United Utilities), a major

provider of automation technologies (ABB) and seven UK universities including De

Montfort University. The overall aim of NEPTUNE was to advance knowledge and

understanding about water supply systems in order to develop novel, robust, prac-

tical techniques and tools to optimise, via dynamic control or otherwise, efficiency

and customer service. Author’s contribution towards the project involved modelling,

reducing and adjusting the model of water network subsequently used in the project

as a case study for the energy and leakage management within a model predictive

control framework. Section 2.5 briefly describes work carried out by the WSS group

within the Neptune project.
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• Burst detection and leakage management for Affinity Water (former Veolia Wa-

ter)(2012). The project was aimed at the development and implementation of tech-

niques to enhance the burst detection methods. Author’s major contribution was

translation a research-based methodology for bursts detection and leakage manage-

ment into an industry-viable tool. Parts of this work are included in Chapter 4.

• Development of software for energy and leakage management in water distribution

systems(2013). The HEIF (Higher Education Innovation Funding) sponsored project

aimed at design and creation of a functional software that integrates various algo-

rithms developed by the WSS group over recent years. Author’s gathered a number

of different research findings and methodologies developed by the WSS group over

the years into the unified and standalone toolkit. Parts of this work are described

in Chapter 4 but the developed toolkit was heavily utilised throughout the work

presented in this thesis.



Chapter 2

Theoretical and conceptual

framework

This chapter reviews the basic concepts and terminology used in this thesis and introduces

the notation. The main focus is placed on subjects concerning water distribution system

(WDS) that are relevant to establishing the context of the research, which breaks up in

the three modules: modelling, simulation and optimisation of WDSs. Each of these topics

is broad by itself, hence here only a general background is provided. While doing this,

attention is placed on identifying and highlighting problems that are still unsolved in WDS

analysis. In Section 2.1, some preliminaries about WDSs in general are given. Section 2.2

introduces WDS modelling issues such as WDS model formulation, nonlinearities and

discontinuities exhibited by WDS components. The aim of Section 2.3 is to provide an

overview of methods that allow the simulation of hydraulic behaviour of WDS. Also some

convergence problems of the existing methods are highlighted. Section 2.4 concentrates

mainly on the optimisation methods oriented for the improvement of design and operation

of WDSs. A survey of the optimisation methods allows the reader to identify a need

for optimisation-oriented models of WDS. To assist the reader further in understanding

the key issues/motivations, Section 2.5 explains how the study of optimisation methods

for energy and leakage management in water networks has inspired the work forming the

basis of the contents of Chapter 3 and Chapter 4. Lastly, Section 2.6 summarises this

introductory chapter.

14
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2.1 Water distribution system

The primary aim of a WDS is to deliver water from water sources to intended end points

while meeting the specified requirements in terms of water quantity, quality and pres-

sure. Typically, this is achieved by means of interconnected elements, such as pumps,

pipes, control and isolation valves, storage tanks and reservoirs. Each of these elements

is interrelated with its neighbours thus the entire WDS behaviour depends on each of its

elements.

A simple fictitious water distribution network is depicted in Figure 2.1. It is composed of

a reservoir with a pump station, a storage tank, and a number of junctions linked by pipes

and valves.

Figure 2.1: Illustrating a simple water distribution network. Although, in a real water
network water may exit the pipe at any point along its length via service lines, in the
computer models water withdrawals (demand and/or leakage) are usually aggregated at
the consumption nodes (see nodes in blue).

As illustrated in Figure 2.1, a water network is predominantly represented as collection

of hydraulic elements. Table 2.1 lists typical components of a WDS and their function.

The layout of elements maps their topographical interdependences and is often imposed

by the structure of the urban context such as roads, buildings, industrial areas, hospitals,

etc. (Todini, 2000).
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Table 2.1: Components of a water distribution system and their functions. Adapted
from (Walski et al., 2003).

Element Type Modelling purpose

Tank (variable head) Node Stores excess water within the system and re-
leases that water at times of high usage.

Reservoir (forced head) Node Provides water to the system.
Junction Node Removes (demand) or adds (inflow) water

from/to the system.
Pipe Link Conveys water from one node to another.
Pump Link Raises the hydraulic grade to overcome elevation

differences and friction losses.
Control valve Link Regulates flow or pressure in the system based

on specified criteria.

There are two main layouts of a distribution network: branched and looped (Walski et al.,

2003). Branched networks, or tree networks, are predominantly used to supply small areas,

usually with few delivery points. For areas with many service points and high demand such

as cities the looped configuration of the pipes is a more common feature of WDS. The loops

provide alternative flow pathways, hence, costumers can be supplied from more than one

direction. Looped networks can greatly improve the hydraulics of the distribution system

in order to ensure the regularity of the water supply to the final customer. However, most

of large distribution systems are essentially a combination of loops and branches with

many interconnected pipes and valves. This is a result of a trade-off between loops for

reliability and branches for infrastructure cost savings (Walski et al., 2003). A number of

examples of real-world WDS layouts are given in Section 3.4.2.

A completely satisfactory water distribution system should fulfil basic requirements such

as providing the expected quality and quantity of water during its entire lifetime for the

expected loading conditions while accommodating abnormal conditions such as breaks in

pipes, mechanical failure of pumps, valves, and control systems, including malfunctions of

storage facilities and inaccurate demand projections (Misirdali, 2003).

Hence, to effectively plan, design, maintain or optimise a water distribution system a large

number of criteria must be considered. Furthermore, the complexity of this formidable

problems may be augmented by a number of components that WDS may consist of; often

thousands or even hundreds of thousands. As a consequence, mathematical and comput-

erised representations, i.e. water network models, are used as a support for engineers to

understand the hydraulic behaviour of the particular WDS.
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In Cesario (1991) a number of different applications for WDS computer models are dis-

cussed. In general, modelling of WDS allows designers/operators to:

• understand how a WDS operates under various scenarios,

• assess the performance of a WDS in the event of various failure events e.g. pump

station could be disconnected due to reallocation or maintenance service, or a pipe

burst would require to isolate part of the network,

• review impacts of proposed operational modifications and developments,

• perform fire-flow studies,

• analyse the robustness and vulnerability of a WDS.

• detect changes and events in a WDS.

The above lists only some common issues that could be identified or addressed thanks

to modelling. Once a representative model of WDS is built it can be used for different

applications; see Table 2.2 for possible problems in WDS analysis that could be solved by

modelling.

2.2 Mathematical representation of water distribution sys-

tem

In the past, modelling of WDSs involved many steps and it was a tedious and laborious

process. With advancement in information and communications technology (ICT), GIS

and asset management systems, the process of modelling has been greatly improved as

the information about the topology and components can be derived automatically from a

GIS system. Time series data such as demands, pump flows, pressure levels or operational

schedules can be acquired from SCADA systems. Of course, no model is perfect; any

model invariably distorts in some way the very system behaviour it seeks to faithfully

represent (Filion and Karney, 2003). Thereby a further calibration stage is often needed

to decrease the mismatch between the real data and the model. Calibration is the process

of adjusting the model parameters until the model performance reasonably agrees with

measured system performance over a wide range of operating conditions (Walski et al.,

2003). Guidance for calibration procedures can be found in (Walski et al., 2003, chap.7),
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Table 2.2: Problems that could be analysed with help of modelling. Adapted from
(Pilipovic, 2004).

Domain Possible problem

Operational management

Developing and understanding of how the system operates.
Training water system operators.
Assessing the level of service.
Assessing the carrying capacity of the existing system.
Assessing the efficiency of current operational management policy.
Assessing levels of pressures at critical points within the system.
Identifying and resolving operational anomalies.
Low pressure or high pressure fluctuation problems.
Low fire flow at hydrants - if it is different from expected capacity.
Daily operational use - shutting down a section of the system due to major
breaks.
Power outage impact on pump stations.
Sizing control points subsystem metering, control valves PRV, PSV, FCV.
Sizing sprinkler systems fire service and other.
Assessing the available range of pressure at customer connections.
Real time control of the system.

Planning

Identifying the impact of future population growth on the existing system.
Identifying the impact of major new industrial or commercial developments
on the existing system.
Identifying key bottlenecks in current and future systems.
Designing the reinforcement to the existing system to meet future demand.
Designing the new distribution system.
Optimizing the capital works programs.
Assessing the new resource option.
Assessing the effects of rehabilitation techniques.
Leak control reducing losses by lowering maximum pressure.
Demand management reducing the pressure related demand by lowering ser-
vice pressure.
Sizing elements of the system to meet fire service requirements in existing and
future systems.
Assessing the value and design of distribution monitoring systems.
Contingency planning.

Legislative

Assessing levels of service, regulatory levels of service reporting, and options
for future planning based on community consultations.
Maintaining water quality within predefined regulated values.
Assessing the financial contribution required for new developments.
Water and pressure requirements for fire fighting purposes.

Water quality
Disinfectant residual assessments.
Substance tracking, determination of age of water, water blending from various
sources.
Analysing water quality contamination events.
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(Mays, 1999, chap.14) and (Speight, 2008; Hirrel, 2008; Takahashi et al., 2010) and the

references therein.

A conceptual model of a water distribution network can be presented as an input-output

system as depicted in Figure 2.2 (Ulanicka et al., 1998).

Water distribution system
model

Demands

Control schedules Outputs

Initial conditions

(+) set of mathematical equa-
tions

(+) pump schedules
(+) valve schedules
(+) source schedules

(+) water consumption

(+) heads at nodes
(+) flows in elements
(+) operating costs

(+) initial reservoir levels

Figure 2.2: A conceptual model of water distribution system. Adapted from (Ulanicka
et al., 1998).

A mathematical model of a WDS can be determined by: (i) its topology, (ii) two con-

servation laws, namely mass balance (flow continuity) at nodes and energy conservation

(head loss continuity) around hydraulic loops and paths, and (iii) equations of components

(Brdys and Ulanicki, 1994). Although, here only selected equations that are fundamental

for understanding the material in the next chapters are given. For a more comprehensive

description the reader should refer to Brdys and Ulanicki (1994).

2.2.1 Conservation of mass and energy principles

The topology of a WDN describes the connections between its components. Such structure

can be portrayed by a node-branch incidence matrix Λ, where rows and columns corre-

spond to nodes and branches (links) of the network, respectively. Two non-zero entries

for each column +1 and -1 indicate the beginning and end of the link, respectively. The
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matrix elements (λji) are defined as

λji =


+1, if flow of branch i enters node j,

0, if branch i and node j are not connected,

−1, if flow of branch i leaves node j.

(2.1)

The n× b node-branch incidence matrix Λ can be reorganised into the following form:

Λ =

[
Λr

Λc

]
(2.2)

where: Λr is nr × b fixed grade node incidence matrix, Λc is nc × b connection node

incidence matrix, b denotes the total number of branches and n, nr and nc is the total

number of nodes, reservoir nodes and junction nodes, respectively. Such formulation allows

to distinguish reservoirs and tanks from the connection and consumption nodes.

The flow continuity law states that the sum of inflows qinflow and outflows qoutflow is equal

to zero for each non-reservoir (non-storage) node.∑
qinflow +

∑
qoutflow = 0 (2.3)

For the all non-storage nodes in the water network the flow continuity law can be expressed

in a matrix form as

Λcq = d (2.4)

where q denotes the vector of branch flows and d is the vector of nodal withdrawals. Note

that Equation 2.4 is valid if the pressure-dependent leakage is not considered (Brdys and

Ulanicki, 1994).

The head loss continuity law states that the difference in energy between two points is

equal to the frictional and minor losses and, the energy added to the flow in components

between these points (Mays, 1999). This condition also requires that the sum of the head

losses around a loop must equal zero. This is represented as∑
±∆hi = 0 (2.5)

where ∆h is the head loss/gain across the i-th element of the loop.
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The head loss continuity law for all the loops in the water network can be defined in a

matrix form as

∆h = ΛTh = ΛT
r hr + ΛT

c hc (2.6)

where ∆h is the vector of branch (pipe) head losses, h is the vector of nodal heads, hr is

the vector of reservoir heads and hc is the vector of junction nodes heads.

In a water network model, links are elements where the energy balance holds, while nodes

are intended to represent those points where the mass balance holds (Berardi et al., 2010).

The next sections describe a mathematical representation of the fundamental WDS com-

ponents. Note that all lower case symbols denote time dependent variables whereas all

upper case symbols represent a fixed component value.

2.2.2 Forced-head reservoir

Forced-head reservoirs are used to model a source of water where its head remains imposed

and unaffected by water usage rate. It represents an infinite source, which means that it

can theoretically handle any inflow or outflow rate, for any length of time, without running

dry or overflowing (Walski et al., 2003). Although, in reality, there is no such thing as an

infinite source and modellers use reservoirs in situations where inflows and outflows have

little or no effect on the head at a node. By its definition reservoir in WDS models is

associated with a water surface elevation only.

2.2.3 Variable-head reservoir (tank)

Tanks are present in most real-world distribution systems. In WDS models they are asso-

ciated with a volume of water in storage, a potential energy expressed in units of pressure

that depends on the tank elevation, and a maximum flow rate at which they can feed

the network. Additionally, tanks are described by other parameters such as physical ca-

pacity, diameter (which may be water-level dependent for non-cylindrical tanks), height

and operational constraints such as minimum and maximum allowed water level. Notice

that tanks vary in shapes thereby the relationship between water surface elevation and

storage volume must be defined to capture tank’s characteristics. The fundamental func-

tions of tanks are to sustain pressure in adjoining parts of a water network and provide

an emergency storage of water.
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When a static simulation of WDS model is considered, a tank is hydraulically identical to

a reservoir. In an extended-period simulation (EPS), however, the water level in the tank

can vary over time what makes the tank a dynamical element. This dynamical nature can

be described by the following differential equation:

dhr(t)

dt
=

1

S(hr(t))
[qr(t) + dr(t)] (2.7)

where hr(t), qr(t) and dr(t) is the reservoir head, flow into the reservoir and demand

associated with the reservoir, respectively, at time instant t with S(hr(t)) denoting the

reservoir cross-sectional area for the head hr(t).

Equation 2.7 can be written in vector form as:

dhr(t)

dt
= A(hr(t))qr(t) + A(hr(t))dr(t) (2.8)

where

A(hr) =


S−1 1(hr, 1) . . . 0

0
. . . 0

0 0 S−nr
1(hr, nr)

 (2.9)

and qr(t) is the vector of reservoir inflows, dr(t) is the vector of reservoir outflows, hr

is the vector of reservoir heads, at time instant t with A(hr) denoting the matrix of

cross-sectional areas.

In contrast to a forced-head reservoir, in a tank the water level fluctuates according to

the inflow and outflow of water, which often relates to periods of heavy pumping and

high demand (Brdys and Ulanicki, 1994). This dynamical nature is a source of numerical

errors in an EPS of WDSs. In an EPS it is assumed that hydraulic conditions across a time

step are constant and Euler integration used to solve Equation 2.7 will track accurately the

amount of water flowing in and out of a tank (Filion and Karney, 2003). However, the Euler

integration calculated at the beginning of the time step does not account for continually

changing (sometimes rapidly) demands. Filion and Karney (2003) demonstrated that this

type of error can be sometimes significant and yet its very existence is often overlooked.

This error can be somewhat reduced either by calculating flows at the end of each time

step and extrapolating water levels with a modified Euler integration or by shortening

the time interval (Filion and Karney, 2003). Alternatively, in some WDS simulators (e.g.

PICCOLO) the differential Equation 2.7 is solved by using the Runge-Kutta integration

methods (U lanicki, 1993). Another method, published by van Zyl et al. (2006), is the

explicit iteration method, which attempts to decouple a network into constituent simple
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base systems and solve each system individually. This is done by integrating their linearised

dynamic tank equations explicitly. The results are then used to estimate the dynamic

behaviour of the full WDS.

Another approach proposed by Afshar and Rohani (2009) uses the modified Euler method

to discretise the differential equation governing the variation of water level in tanks to

obtain a nonlinear algebraic equation in terms of the tank head and inflow. These equations

are subsequently embedded into the nonlinear system of equations describing the water

network to obtain the final model. Next, the Newton-Raphson method of linearisation

is used for the equation governing the tank water level variation along with a gradient

formulation of the pipe networks.

2.2.4 Node

A node refers to either ends of a link. Nodes where the inflow or the outflow is known

are referred to as junction nodes. The nodes where the outflow (demand) is present are

referred to as consumption nodes. The demand at consumption nodes may vary with

time or be constant (Mays, 1999). A node element in a WDS model is associated with an

elevation.

2.2.5 Pipe

Pipes are the most abundantly occurring component of a WDS. Their primary objective is

to convey flow as it moves from one junction node to another in a network. However, while

water is transported its energy is dissipated in pipes due to friction losses. This friction

head loss in a pipe, between nodes i and j, can be expressed by a nonlinear head-flow

relationship as follows

qij = Φij (hi − hj) (2.10)

where qij is the pipe flow and Φij (hi − hj) is the nonlinear function defining the head-flow

relationship.

In literature several equations are used to describe the friction head loss along a pipe. The

most popular formulas amongst practitioners are: Manning formula (Manning, 1891),

Colebrook-White formula (Colebrook and White, 1937), Darcy-Weisbach formula (Darcy,

1857; Weisbach, 1845) and Hazen-Williams equation (Williams and Hazen, 1933). The

Manning formula has been employed extensively in open channel flow analysis. Using the

Colebrook-White head loss expression one needs to cope with a difficulty that is an implicit
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function of the friction factor solved typically by iteration (Walski et al., 2003). The Darcy-

Weisbach formula was developed using dimensional analysis. This equation, combined

with the Colebrook-White formula, is an accurate representation over wide ranges of flow

regimes, though requires more computational effort than the Hazen-Williams equation.

The Hazen-Williams formula uses a dimensionless roughness coefficient of the pipe, denoted

CHW . Higher values of CHW represent smoother pipes and lower values of CHW describe

rougher pipes, see (Walski et al., 2003, chap.2) for examples of CHW values. Comparison

of the Hazen-Williams and Darcy-Weisbach friction models can be found in (Allen, 1996;

Filion and Karney, 2003). Note that throughout this work the Hazen-Williams and Darcy-

Weisbach head loss expressions are employed as they are the predominant formulas used

by practitioners.

It is convenient to express the head loss ∆hij across a pipe located between nodes i and

j in the following general form:

∆hij = hi − hj = Rijq
β
ij (2.11)

or in terms of flow qij through the pipe

qij = Gij∆h
α
ij (2.12)

where hi and hj are the heads at nodes i and j, respectively, Rij is the pipe hydraulic

resistance, β is the flow power exponent (for Hazen-Williams equation, β = 1.852; for

Darcy-Weisbach equation, β = 2), Gij = 1/Rα is the pipe hydraulic conductance and

α = 1/β.

The hydraulic resistance Rij has the following expressions:

Hazen-Williams equation

Rij =
KLij

C1.852
HW D4.871

ij

(2.13)

where the conversion factor K is 1.21216× 1010 when qij is in l/s and the diameter

of the pipe Dij in mm. Lij is the length of the pipe in metres. The factor K is 10.69

when qij is in m3/s and the diameter Dij is in metres.

Darcy-Weisbach equation

Rij = f
8Lij
π2D5

ijg
(2.14)

where g is the gravitational acceleration constant and f is the dimensionless Darcy-

Weisbach friction factor which is a function of the Reynolds number, denoted Re,
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and the relative roughness, ε/D.

f = F
(
Re,

ε

D

)
(2.15)

The Darcy-Weisbach friction factor can be determined from the Moody diagram or

by solving the Colebrook-White equation (Walski et al., 2003). Although standard

tables do exist with roughness values for commercial pipes of different materials and

age categories, see e.g. (Mays, 1999).

2.2.6 Valve

A valve is a pipe element that can be opened and closed to different extents. Valves can

have a profound effect on the WDS hydraulic behaviour, since they may start or stop the

flow, control discharge or pressure and prevent back flow.

There are many valve types in WDN and according to Walski et al. (2003) they can be

classified into the following five general categories: (i) isolation valves, (ii) directional

valves, (iii) control valves, (iv) altitude valves and (v) air release and vacuum breaking

valves.

Isolation valves are the most common valves in a typical WDS. Their primary aim is

to provide means for manual or automatic closure of a link and thereby isolate part of

the WDS. This might be necessary in the event of an emergency e.g. a pipe burst. In

general, the isolation valves are intentionally kept in a closed position to define pressure

zone boundaries.

Directional valves are used to ensure that flow is in one direction only. If conditions exist

for flow reversal the valve will close and no flow will pass.

Control valves are utilised in water distribution systems to regulate flow rate or pressure.

A general representation of a variable control valve can be described by a standard bidi-

rectional pipe equation (see Equation 2.12) but with the conductivity controlled by the

opening coefficient Vij

qij = VijGij |hi − hj |α sign(hi − hj) (2.16)

where 0 6 Vij 6 1; i.e. valve is closed if Vij = 0 and fully open if Vij = 1.

Note that the opening coefficient does not necessarily map directly onto the operational

parameter of a real valve. It must be adequately calibrated to achieve this (Rance, 1994).
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In Equation 2.16 a modified pipe equation was used to model valves. But it is a practice

adopted especially in the water industry to describe valves with the use of minor losses.

Minor losses are due to turbulence within the bulk flow as it moves through fittings and

bends (Walski et al., 2003). The minor losses hm can be calculated by multiplying the

minor loss coefficient Kv by the velocity head, as follows

hm = Kv
v2

2g
(2.17)

where v is the flow velocity and g is the gravitational acceleration constant.

Minor loss coefficients are found experimentally, and data are available for many different

types of valves’ fittings. Alternatively, valve manufacturers often provide a chart, (see

Figure 2.3) to describe the valve’s characteristic.
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Figure 2.3: Example chart of valve characteristic curve.

A control valve can be in any one of the several states e.g. fully-open, fully-closed, active

and inactive. Note that the states terminology may vary depending on the control valve

type.

Operation of directional and control valves has a major effect on the WDS. But while

these valves greatly increase flexibility of control and management of water networks,

their inherent non-smooth and discontinuous characteristics may cause numerical difficul-

ties (convergence problems) in simulation (Walski et al., 2003). Some of these convergence
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problems are described in Rivera et al. (2010) and Kovalenko et al. (2010) and in Sec-

tion 2.3.5 of this thesis.

The following sections provide an introduction to some of the most common directional

and control valves types and their applications.

2.2.6.1 Non-return valve

A non-return valve (NRV) known also as a check valve (CV) allows only one direction of

flow. Any water flowing backwards through the valve automatically causes it to close, and

it remains closed until the flow once again begins to go through the valve in the forward

direction (Walski et al., 2003).

A NRV between an upstream node i and a downstream node j can be modelled as follows

qij =

Gij(hi − hj)α, if hi > hj

0, otherwise.
(2.18)

Check valves are often a built-in feature of pumps to prevent a backward flow when the

pump is off.

2.2.6.2 Flow control valve

A flow control valve (FCV) is a directional valve that automatically limits the flow rate to

a user-specified amount. The FCV does not guarantee that the flow will not be less than

the setting value, only that the flow will not exceed the setting value. If the flow does

not equal the setting, modelling packages will typically indicate so with a warning (Walski

et al., 2003).

The FCV is used by modellers to force the simulation to follow a set of desired (e.g.

measured in a physical WDS) flows through an element. The FCV is often placed at

outflow from forced-head reservoirs to limit the inflow to a WDN or before industrial

costumers to maintain constant flow. To model FCV, Equation 2.16 can be used.

However, implementing a FCV and also a NRV in computer programs poses a number

of issues due to the difficulty in determining states of valves a priori (Simpson, 1999)

and their non-smooth head-flow relationship. Thus, these devices are modelled using

heuristics incorporated in the hydraulic simulator. For example, in Epanet2 a FCV can be
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in ACTIVE or OPEN state (Rossman, 2000b). To determine state of a FCV, a heuristics

procedure is used that includes a predefined zone, in which status switching is prohibited

and hysteresis, i.e. valve’s status change depends on the previous valve’s status (Rivera

et al., 2010). Algorithm 1 illustrates how the FCV status is determined in Epanet2. Some

of drawbacks of such a FCV model are discussed in (Rivera et al., 2010).

Algorithm 1 Determination of the status of a flow control valve in Epanet2.

Input: Sk - current valve status, Sk−1 - previous valve status, hi and hj - heads at valve
terminals, qv - flow rate through the valve, qset - valve setting, qtol and htol - Epanet2
solver parameters that define the prohibited zone.

1: Sk ← Sk−1

2: if hi − hj < −htol or qv < −qtol then
3: Sk ← OPEN
4: else
5: if Sk = OPEN or qv > qset then
6: Sk ← ACTIV E
7: end if
8: end if

Deuerlein et al. (2009) proposed an approach to modelling NRVs and FCVs based on the

content and co-content theory. The water distribution equations are solved as a constrained

nonlinear programming problem using the loop method as a simulation model algorithm.

Giustolisi et al. (2012a) accounts for FCVs by the adjustment of the minor loss coefficient of

the valve carried out outside of the hydraulic solver thus preserving the algorithm features.

2.2.6.3 Pressure reducing valve

A pressure reducing valve (PRV) is another commonly occurring control valve in a WDS,

especially, in these with a varying topography. These types of valves are generally placed

at pressure zone boundaries to prevent the high inlet pressure passing through trough the

outlet; i.e. the PRV maintains a defined pressure at the downstream side of the valve for

all flows with a pressure lower than the user-specified value. Additionally, a PRV may be

used to control from which source of supply the flow comes to satisfy demand levels.

There are generally three different states a PRV can be in: (i) active i.e. to achieve its

pressure setting on its downstream side when the upstream pressure is above the setting,

(ii) passive i.e. fully open if the upstream pressure is below the setting and (iii) closed if

the pressure on the downstream side exceeds that on the upstream side (Rossman, 2000b).
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The PRV mathematical model is given by Equation 2.19

qij =


Gij(hset − hj)α for hj ≤ hset ≤ hi
Gij(hi − hj)α for hj < hi < hset

0 for hi > hset and hj > hset

(2.19)

where hset is the fixed PRV set point head. See Figure 2.4 for an illustration.

hi hj

controller

qij sensor

control action

hset

Figure 2.4: Model of a pressure-reducing valve.

Note that due to mathematical representation of a PRV its operation may be discontinu-

ous, given that no flow can pass under certain conditions e.g. if the downstream pressure

exceeds the head setting, hprv of the valve the PRV becomes full closed and acts as CV

preventing reverse flow. The operation of a pressure-reducing valve is depicted in Fig-

ure 2.5.

Figure 2.5: Illustrating the operation of a pressure-reducing valve.
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2.2.7 Pump/Pump station

Pump is an active element that adds energy to a WDS in order to account for friction

losses in pipes and valves and head difference in a network. Often pumps in WDS are

connected in parallel to form a pump station. Pump characteristics are often presented

by manufacturers in the form of data sheets with performance curves which graphically

illustrate head-flow, power-flow and efficiency-flow relationships. An example of such

curves is depicted in Figure 2.6.
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Figure 2.6: Example of chart of pump characteristic curves.

As can be seen in Figure 2.6 the head increase across the pump is a nonlinear function.

However, for simplicity it can be approximated by a quadratic function such as

∆h

s2
= A

( q
us

)2
+B

( q
us

)
+ C (2.20)

where A,B and C are the quadratic equation coefficients evaluated at the nominal speed,

u denotes the number of pumps that are ON, q is the pumped flow and s represents the

normalised pump speed defined as a ratio

s =
so
sn

(2.21)
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where so and sn are the operating and nominal pump speed, respectively.

Alternatively, the hydraulic characteristic of a pump group can be approximated by a

power law as described in (Ulanicki et al., 2008):

∆h

s2
= A

( q
us

)B
+ C (2.22)

where A, B, and C are the pump power law head-flow coefficients with other parameters

having the same interpretation as in Equation 2.20.

One of the most important parameters of a pump is the pump efficiency. While it is

desirable for a pump to operate near its peak efficiency η?, this is not always possible. The

pump efficiency is a function of the pump flow and the pump speed. As the pump efficiency

is often provided by manufacturers in a form of data points or a single peak efficiency

point, the pump efficiency curve needs to be approximated, e.g. using the quadratic

(Coulbeck et al., 1991) or cubic approximations (Ulanicki et al., 2008). For the quadratic

approximation the following holds

η(q, u, s) = η?
[
1−

(
q

usq?
− 1

)2 ]
(2.23)

where η is the pump/pump station efficiency, η? is the pump/pump station peak efficiency

and q? is the corresponding peak efficiency flow.

The operation of pumps significantly affects the behaviour of a WDS. Not surprisingly

the cost of pumps’ operation is one of the major factors considered when determining the

optimal operating strategy of WDS. Formulation of an optimal scheduling problem for

a WDS requires a formulae to calculate pumping cost. The pumping cost is correlated

with electrical energy consumed during pumping. The power consumed by a pump/pump

station can be expressed as:

P (q,∆h, u, s) =
ζq∆h

η
(2.24)

where ζ is the unit conversion factor.

However, in situations when the efficiency curve is approximated by a parabola that goes

trough the origin and the peak efficiency point, the above power characteristic may have a

singularity for zero efficiency flow. To prevent the singularity and to model pump efficiency

closer to reality Ulanicki et al. (2008) recommended use of a cubic approximation of the
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efficiency described by Equation 2.25.

η(q, u, s) = η?q
(q̃ − 2q?)

( q
us

)2
+
(

3 (q?)2 − q̃2
) ( q

us

)
+
(

2q̃2q? − 3 (q?)2 q̃
)

(q?)2us (q̃ − q?)2 (2.25)

where q̃ corresponds to the maximum pump flow for which the head increase across the

pump is equal to zero.

Figure 2.7 shows the difference between the quadratic and cubic efficiency approximations

based on a single peak efficiency point. It can be seen that the quadratic approximation

has zero efficiency for any flow greater than double the peak efficiency flow limiting the

operating range of the pump to 0 ≤ q ≤ 2q?. Whereas in case of the cubic approximation

the operating range is extended up to the cut-off flow q̃.
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Figure 2.7: Illustrating the quadratic and cubic approximations of the pump efficiency
when only a single peak efficiency point (q?, η?) is provided by pump’s manufacturer
(adapted from (Kahler, 2006)). q? is the pump peak efficiency flow, η? is the corresponding
peak efficiency and q̃ corresponds to the maximum pump flow for which the head increase
across the pump is equal to zero.

As the hydraulic and energy behaviour of a pump is often provided by pump manufacturers

in the form of data points, another recommendation by Ulanicki et al. (2008) is to obtain

the consumed power by a direct cubic approximation of the provided power data points
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using Equation 2.26 instead of Equation 2.24.

P (q, u, s) =

{
us3

(
E
( q
us

)3
+ F

( q
us

)2
+G q

us +H
)

for u, s > 0,

0 otherwise.
(2.26)

where E,F,G,H are the power coefficients constant for a given pump.

Note that Equation 2.26 for a pump/pump station power consumption is used in the case

study presented in Chapter 5 to determine optimal schedules for pumps and valves.

There are two basic types of pumps: (i) variable-speed pump (VSP), in which the pump

speed varies and can be subjected to external control signals and (ii) fixed-speed pump

(FSP), with a speed fixed. It is common that the number of pumps are combined in a

parallel configuration to form a pump station in order to provide reliability and flexibility;

FSP pump stations are usually used at heavy duty locations whereas VSP pump stations

are useful in applications requiring operational flexibility as they allow the control of two

factors, speed and number of pumps ON/OFF. Figure 2.8 illustrates changes in a pump

station hydraulic behaviour due to a variation of speed and pump configuration.
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Figure 2.8: Illustrating changes in the pump station performance for different values of
the normalised speed, s, and the number of pumps ON/OFF, u, factors.

2.2.8 Controls

Water networks often contain controls in order to achieve the desired behaviour of the

network (Ulanicka et al., 1998). Controls are used to automatically change the status or
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setting of an element based on the time of day, or in response to conditions within the

network e.g a FCV with predefined time-based settings or a pump controlled by a tank

level.

Controls/rules in WDS models can be represented in different ways. Some consider controls

to be separate part of the model while others consider them to be an attribute of the pipe,

pump, or valve being controlled (Walski et al., 2003). Note that controls characteristic can

be continuous or discontinuous and as such may lead to numerical difficulties in solving

water networks.

A number of examples of operational controls (#1 and #3) and time-based schedules (#2)

are given below. Figure 2.9 illustrates an effect of Control #1 on pump operation and cor-

related level of water in tank.

Control #1

PUMP 1 closed if TANK 1 level above 10

PUMP 1 open if TANK 1 level below 2

Time schedule #2

VALVE 2 setting 20 at time 11

VALVE 2 setting 22 at time 12

VALVE 2 setting 19 at time 13

Control #3

if TANK 2 level below 12 then PUMP 3 is open and VALVE 4 is closed

2.2.9 Models of water distribution networks

Combining the equations for the mass and energy conservation laws with components’

equations a mathematical model of WDS can be expressed as follows:

Λcq = d mass balance

∆h = ΛTh energy conservation

q = Φ(∆h) component equation

dhr(t)
dt = A(hr(t))qr(t) + A(hr(t))dr(t) storage-reservoir dynamics

(2.27)
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Figure 2.9: Illustrating effect of Control #1 on the PUMP 1 operation and the correlated
TANK 1 water levels.

The above model formulation is an instance of a nonlinear differential algebraic equation

(DAE) system (Brdys and Ulanicki, 1994), where the storage-reservoir dynamics equation

describes the differential part of the model and the remaining equations represent the static

part of the model. Whereas the mass balance equation is a linear algebraic equation, the

energy conservation and component equations reflect the presence of nonlinearity due to

the relationship between pipe flow rate and the pressure drop across its length. The static

and dynamic parts interact through the vectors hr, qr and dr.

Subsequently, several different models, in terms of either pressures (nodal formulation) or

flow rates (loop and pipe formulation) can be derived by mathematical manipulations.

Nodal model

The nodal model of a water network is expressed by Equation 2.28

ΛcΦ(ΛTh) = d (2.28)

where h is the vector of unknown node heads.

From the modeller perspective, it is sometimes practical to distinguish reservoirs with

forced/fixed head from the other nodes. The nodal model Equation 2.28 in such form can
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be expressed by the following equation:

ΛcΦ(ΛT
c hc + ΛT

f hf ) = d (2.29)

where Λf and hf are the incidence matrix and vector of heads of forced-head reservoirs.

For example the nodal model is used in the water network model reduction technique

described in the next chapter.

Branch flow model

This model consists of two separate set of equations to be solved simultaneously: linear

junction equations and nonlinear loop equations. In the branch flow model, the branch

flows q are the principal unknown variables.Λcq = d

ΓR(q)q =
[

∆hf

0

] (2.30)

where ∆hf is the vector of head losses for pseudo-loops (energy chains between reservoirs),

Γ is the loop-branch incidence matrix that has a row i for every loop and a column j for

every branch (link) of the water network. Two non-zero entry +1 and -1 in each row

indicate orientation of the branch to go with or against the loop orientation. The element

γij of the loop-branch incidence matrix is defined as follows

γij =


+1, if branch j is in loop i and their directions are in agreement,

0, if branch j is not in loop i,

−1, if branch j is in loop i and their directions are opposed.

(2.31)

R(q) is the link resistance matrix defined as follows

R(q) =


r1(q1) 0 · · · 0

0 r2(q2) · · · 0
...

...
. . .

...

0 0 · · · rj(qj)

 (2.32)

Once the branch flows are determined, the nodal heads can be subsequently calculated

using the component equation from Equation 2.27.
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Mixed model

In the mixed model the vector of link flows q and the vector of nodal heads h contain the

unknown variables. The model is expressed by the following equation:Λcq = d

R(q)q−ΛTh = 0
(2.33)

As it can be seen, the particular model is derived in terms of unknown nodal heads or/and

unknown branch flows. On account of nonlinearity in these equations it is not possible to

solve network analysis problems analytically; instead iterative numerical solution meth-

ods are used. Initial estimated values of pressure or flow are repeatedly adjusted until the

difference between two successive iterates is within an acceptable tolerance. Several numer-

ical iterative solution techniques have been suggested, from which the Newton-Raphson

method is the most widely used iterative solution procedure in water network analysis.

See Appendix A for the Newton-Raphson method description.

2.3 Simulation and optimisation of water distribution net-

works

Simulation of water distribution networks aims to provide solution of nonlinear and linear

equations used to formulate the mathematical representation of the WDN. Simulation is

an invaluable tool in the assessment of WDS response to different operational actions (e.g.

valves opening and closing) or control strategies prior to applying the actions to a real

water network.

The following simulation techniques can be distinguished: (i) steady-state simulation,

(ii) extended-period simulation and (iii) transient simulation. Steady-state simulations

represent a snapshot of the WDS operation i.e. demands and pressures at all nodes and

flows in all pipes do not vary in time. In real systems, however, the loading conditions and

states vary in time. Thus, to evaluate performance of a WDS over a period of time, an EPS

is used. This type of analysis considers fluctuations of water level in tanks and demands in

discrete time intervals. Notice, however, that in each time interval the system is assumed

to be in steady state. The transient simulation provides the most accurate simulation of

WDS as it considers naturally unsteady flow conditions incorporating transient analysis.
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Due to the complexity of this approach it is not yet adopted by many practitioners; mainly

limited to specialised applications such as pump design.

Simulations of WDS is not an easy task; solution cannot be obtained analytically. For tree-

shaped networks one can obtain solution simply by applying the flow continuity equation

at all the nodes but in practice WDSs are almost never pure tree-shaped. The analysis

of a looped water network presents more challenges. Although, over the last decades a

number of methods were proposed (Wood and Rayes, 1981; Ormsbee, 2006). A summary

of some of the more important methods include: (i) the Hardy Cross method (Cross,

1936), (ii) the linear theory method (Wood and Charles, 1972), (iii) the Netwon-Raphson

method (Shamir and Howard, 1968), (iv) the linear graph theory method (Kesavan and

Chandrashekar, 1972), (v) an approach involving optimisation methods (Collins et al.,

1978), (vi) the global gradient method (Todini and Pilati, 1987). An overview of some of

the most recognisable and utilised techniques is given in the subsequent sections.

2.3.1 Hardy Cross method

One of the very first methods for water network analysis was proposed by Cross (1936).

The Hardy Cross method is an early adaptation of the Newton’s method (described in

Appendix A). The method was developed before the computer age to allow the solving of

pipe networks by hand. The Hardy Cross method is briefly presented here to illustrate

the iterative approach to solve the loop equations in water networks.

If the flow rate in each pipe is approximated as q̂ and ∆q is the error in this estimation

then the actual flow rate q can be defined as follows

q = q̂ + ∆q (2.34)

Substituting Equation 2.34 to Equation 2.11 and after series of mathematical transforma-

tion (see Cross (1936) for details) leads to Equation 2.35 that forms the basis of the Hardy

Cross method.

∆qp = −
∑NP (p)

m=1 Rmq
β
m∑NP (p)

m=1 βRm|qm|β−1
(2.35)

where NP (p) is the number of pipes in loop p, Rm is the head-loss coefficient in pipe m

(in loop p), qm is the estimated flow in pipe m and ∆qp is the flow correction for the pipes

in loop p.

Recapitulating, the Hardy Cross method initially estimates the flow conditions throughout

the water network to satisfy flow continuity law at each node. As the initial approximation



Chapter 2 Theoretical and conceptual framework 39

are not likely to satisfy the head loss continuity law, corrections to discharge ∆qp are

applied for each loop to obtain zero head loss around the loop. The process is iteratively

repeated until the corrections are less than a specified value.

The method is computationally more intensive than other methods and its convergence

requires a “good” initial estimate of the flow (Mays, 1999). Thus nowadays it is used

mainly for didactic purposes.

2.3.2 Linear theory method

Wood and Charles (1972) proposed another method in which all the equations for each

loop or path are solved simultaneously to obtain the flow rate in each pipe. In this method

the linearised head loss equations form a set of linear equations which, subsequently, can be

iteratively solved for the unknown values of flow. At each iteration, the absolute differences

between successive flow estimates are computed and compared to a convergence criterion;

i.e if the differences are significant process is repeated for another iteration (Mays, 1999).

Due to combination of conservation of mass and conservation of energy equations in the

linear theory method, an initial flow balance of the nodes is no longer required, but on

the other hand the linear theory method can sometimes oscillate near the exact solution

(Wood and Charles, 1972).

2.3.3 Gradient method

With the advent of computer hardware algorithms were developed aimed to solve water

networks increasing in size and complexity. One of the most widely used algorithm, even

nowadays, was proposed by Todini and Pilati (1987) and is called the gradient method.

This method is another application of the Newton-Raphson technique. Although it takes

into account, both, nodal heads and pipe flows to simultaneously solve the equations of

conservation of mass and energy. The nonlinear energy equations are first linearised using

the Taylor series expansion to produce the overall system of linear equations:[
A11 A12

A21 0

][
q

h

]
=

[
−A10 h0

d

]
(2.36)

where A11 is the diagonal matrix containing the linearisation coefficients R|q|β−1, A12 =

AT
21 is the unknown head nodes incidence matrix, A10 is the fixed head nodes incidence

matrix, d are the nodal demands and h0 are the fixed nodal head.
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Next, the Newton-Raphson iterative technique can be obtained by differentiating both

sides [
β A11 A12

A21 0

][
dq

dh

]
=

[
dE

dd

]
(2.37)

and where
dE = A11 qk + A12 hk + A10 h0

dd = A21 qk − d
(2.38)

are the residuals to be iteratively evaluated for flows qk and heads hk at iteration k; and

β A11 is the diagonal matrix of the exponents of the pipe equations.

Subsequent updates to qk+1 = qk + dq and hk+1 = hk + dh continue until convergence is

achieved; i.e. the residuals dE and dd are reduced to zero.

Although, the gradient algorithm requires a larger set of equations to be solved than the

Hardy Cross or Linear theory methods, it has been shown to be robust and computationally

efficient (Mays, 1999; Todini, 2006a).

2.3.4 Pressure-driven simulation

Nowadays, most WDN simulation models are based on the conventional methods oriented

on demand-driven simulation, e.g. the gradient method. In demand-driven simulation an

assumption is made that outflows from nodes (demands) are fixed and are satisfied regard-

less of network pressures (Tabesh et al., 2002). This assumption simplifies the mathemat-

ical solution of the models but fails to take into account the relationship between pressure

and demand; i.e. demand should only be satisfied provided there is sufficient pressure.

Furthermore, this may lead to incongruous results while analysing the water network, es-

pecially, under subnormal pressure conditions (Tanyimboh et al., 2003). Therefore, it is

recommended that studies oriented on leakage minimisation should not relay on demand-

driven analysis, as without accurate pressure inputs it is difficult to quantify the leakage.

The simplest form of leakage-pressure relationship is represented by Equation 2.39, which

can be included in the standard hydraulic model and thereby create an extended model

suitable for pressure control and leakage analysis. Inclusion of the leakage-pressure rela-

tionship into the standard hydraulic equation will be demonstrated in Section 5.4.2.

l = Kpκ = K(h− z)κ (2.39)
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where l, p, h, z are the nodal leakage, pressure, head and elevation, respectively. K and κ

denote the leakage coefficient and the pressure exponent, respectively.

The leakage coefficient incorporates various flow-independent factors that depend on the

shape and size of the orifice. The emitter exponent represents the sensitivity of the flow

rate to pressure. The emitter exponent is often obtained experimentally and typically

varies from 0.5 (pipe bursts) to 1.5 (background leakage) and depends on the type of

leakage, shapes of holes, material of pipes and soil (Ulanicki et al., 2000; Greyvenstein and

Zyl, 2007; van Zyl and Clayton, 2007). The Equation 2.39 is often used to simulate simple

pressure-dependent emitters (Rossman, 2000b).

Thus, currently, many researchers and practitioners tend to shift towards pressure driven

analysis, which is physically more accurate, e.g. see (Tabesh et al., 2002; Todini, 2003;

Cheung et al., 2005; Todini, 2006b; Giustolisi et al., 2008; Wu et al., 2009; Siew and

Tanyimboh, 2012).

2.3.5 Simulation of water networks with controls and control devices

In real water networks the rule-based management is an indispensable element of every

day network operation. The presence of rules, control loops, control elements (pumps,

valves), time-based switching schedules even in a simple water network complicates the

numerical calculations (Brdys and Ulanicki, 1994); at any instance a control in a network

can change the state of the controlled component. Thus, simulation software need to

include mechanisms for monitoring the value of the control function c(t, x) and change

parameters of the mathematical model accordingly. This can be done by checking the

state x during the calculation time in order to execute the functions c(t, x).

This procedure, however, varies with different modelling and simulation (M&S) software.

Some algorithms carry on the status checks after each iteration or two iterations, others

check the status only after convergence is achieved (Brdys and Ulanicki, 1994). For ex-

ample, the popular hydraulic simulator Epanet2 Toolkit instead of determining the exact

time step at which the control would occur, introduces additional checks around the hy-

draulic calculation time step. If a control condition occurs, the action is applied and an

intermediate time step will be created to reflect this (Rossman, 2000a). But the quantity

of status checks can have an implication on the overall simulation time, especially for

network models with a large number of components such as PRVs, NRVs and FCVs. The

problem associated with controls and control elements in water network simulation is well
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known and addressed by a number of studies (Simpson, 1999; Andersen and Powell, 1999;

Arsene et al., 2012b).

Simpson (1999) highlighted the issue of modelling pressure regulating devices. Simpson

(1999) provided few examples of simple water networks that cannot be properly modelled

and simulated in computer programs based on the early version of Epanet2 as the under-

lying solver. The issues reported were due to fact that the valves status is not known a

priori. Simpson (1999) did not a provide remedy for these problems but rather formulated

research questions yet to be addressed.

Andersen and Powell (1999) proposed an approach based on the simultaneous loop equa-

tions and graph theory. With the use of the depth-first search (DFS) algorithm (Tarjan,

1972) a spanning tree (tree with all the vertices and some or all the edges) of a network

is created. The spanning tree is used to detect loops and pseudo-loops in the considered

network. If a loop contains a closed NRV, its operation is analysed. The NRV is then

removed from the tree and the network has to be analysed again. However, the procedure

concerning PRVs is more complex, as it is crucial for the algorithm to determine a PRV

location, membership to the particular loop and direction (relative to the loop direction).

A logical expression is proposed to determine whether or not the PRVs will affect a link in

a loop. The final solution is obtained using an algorithm based on the Netwon-Raphson

method but with a linear head loss formula for the first iteration. For the subsequent it-

erations, the Colebrook-White head loss formula is used. The algorithm solved the model

of a real network containing 26 PRVs and 4 NRVs with the convergence criterion of 10−8

for the maximum loop residual.

A similar method to that in (Andersen and Powell, 1999) was reported by Arsene et al.

(2012b), where the DFS algorithm was used to build a spanning tree, topology incidence

matrix and loop incidence matrix of the network. The obtained spanning tree is then

partially rebuilt, if necessary, to account for NRVs and pumps (closed NRVs and pumps

are handled in the same way). PRVs are treated in the same way as was proposed in

(Andersen and Powell, 1999). Comparative experiments were then performed on the real

network without and with PRV. Both networks were simulated in Epanet2 and in the

proposed loop-based simulator. The obtained convergences were similar for both hydraulic

simulators.

Gudiño Mendoza et al. (2012) presented an alternative approach for modelling and simula-

tion of WDSs. As was mentioned in Section 2.2, some elements of a WDN can exhibit both

discrete and continuous dynamics simultaneously e.g. a discrete pump control based on

the water level in the tank. Systems where discrete and continuous dynamics are present
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are called hybrid systems. Gudiño Mendoza et al. (2012) used this property and employed

timed hybrid Petri nets (THPN) as a framework within which hybrid models of WDSs

are derived from the conservation of mass and energy equations. THPNs were chosen as

they can cope with discrete and continuous dynamics. The approach proposed by Gudiño

Mendoza et al. (2012) aimed to simulate both the transient and steady-state of hydraulic

networks. First, the THPN model structure is obtained from the mass balance equations,

and subsequently updated with other model parameters obtained from the linearised en-

ergy equations. When simulating the THPN model, first the discrete events are handled

then the simulation of the continuous part is carried out. Discrete-events represent e.g.

change in valve state and as such trigger necessity to modify energy equations. Despite a

number of very promising studies a further development is needed as the method allows

to include valves and pumps only when they are connected directly to tanks. Also, PRVs

and other directional valves were not considered in the method; in fact any change in flow

direction in a pipe stops the simulation. Nevertheless, the approach is unlike other afore-

mentioned as it updates variables accordingly to the system states rather than at defined

time intervals.

2.3.6 Synopsis of simulation methods

The above overview of the steady-state solution methods provides only a brief insight

into simulation of water networks. It might not cover all the methods or the subsequent

improvements to the already discussed but highlights that WDNs need an iterative process

to be solved and that most approaches are based on the popular Newton-Raphson method.

Not surprisingly, a number of studies were conducted aimed on analysis and comparison

of the particular method, e.g. (Wood and Rayes, 1981; Salgado et al., 1988; Mays, 1999;

Todini, 2006a) and others. For example, Wood and Charles (1972) indicated that the

Newton-Raphson method solves small systems more quickly than the linear theory but

may converge very slowly for large networks. Also, poor initial conditions may lead to

convergence problems. According to Mays (1999) the linear theory algorithm suits the

best the loop equation formulation and it does not require initialization of flows. Salgado

et al. (1988) carried out a comparison of the Netwon-Raphson and linear theory methods

with the gradient algorithm on systems with time varying demand, and concluded the

gradient method to be superior to the others in each test. The computational efficiency

attributed to the gradient algorithm resulted in its application in a number of simulation

packages, e.g. Epanet2, AQUIS, HydrauliCAD.
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One recent method for extended period simulation published by (Giustolisi et al., 2012b) is

the EGGA, which attempts to decrease the total number of nodes and pipes by automat-

ically removing serial nodes i.e. nodes with only two neighbours. The reduction is done

with consideration of mass and energy balance of the original model thus the “simplified”

model very accurately resembles the full model. The maximum difference of nodal heads

was less than 0.0005m.

Sometimes, especially for old water distribution systems, the details about their infras-

tructure e.g. pipes parameters may be not available or were not updated over the years.

To enable simulation of such models with incomplete data Tanyimboh and Templeman

(1993) proposed to use the maximum entropy to estimate the most likely values of flows

in the pipes. The concept of entropy is also utilised in water distribution systems for

other purposes e.g. in network designs focused on robustness and resilience e.g. (Ang and

Jowitt, 2005; Saleh and Tanyimboh, 2014).

Another novel approach already discussed in Section 2.3.5 was presented in (Gudiño Men-

doza et al., 2012). The method treats WDS as hybrid systems and thereby uses hybrid

system frameworks for modelling and simulation purposes. The approach tried to address

the problem which is still present in simulation of WDS; i.e. the non-smoothness of the

head-flow formula and discontinuities that present a convergence challenge for any time-

slicing solver based on the Newton’s method. In fact, this problem inspired the author of

this thesis to formulate a research objective aimed at modelling and simulation of WDS

within discrete event specification (DEVS) framework with use of QSS methods. Results

from this investigation are summarised in Chapter 6 and Chapter 7.

There are approaches to utilise the event-driven modelling in water distribution systems.

However their are used to perform water quality simulation. The event-based procedure

proposed by Boulos et al. (1994) assumes that hydraulic simulation is already conducted

and all flow patterns, travel times, the network topology are always known at any point

in time during the simulation. Such simulated hydraulic model works as the input to a

scheduler which rearranges events associated with changes in water quality.

Other modern trends in simulation of water networks are to utilise the parallel computing

techniques (Alonso et al., 2000) or to include transient modelling in an EPS (Wood et al.,

2005; Jung et al., 2007b; Ebacher et al., 2011).
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2.3.7 Existing modelling and simulating software

The simulation methods presented above are foundations for development of hydraulic

simulator software. It is important, however, to highlight that in many cases the math-

ematical description of a simulation method cannot be straightforward converted into a

computer program due to many restrictions in computer hardware and programming lan-

guages’ specifications. Programmers often need to modify the original algorithm to account

for issues or restrictions e.g. memory storage limits. To address this issue Rivera et al.

(2010) and Kovalenko et al. (2010) proposed a procedure for the experimental convergence

evaluation of a hydraulic-network solver.

Currently, there are many water network modelling and simulation (M&S) programs avail-

able. Table 2.3 lists some of M&S software along with their producers and websites. Some

of them are free and open-sourced (e.g. Epanet2) while others are commercial products.

The listed programs vary significantly in offered capabilities and features; commercial

packages often offer additional capabilities beyond standard hydraulic and water quality

analysis (e.g. fire-flow modelling, transient analysis, automated calibration and optimisa-

tion).

2.3.8 Epanet2 - hydraulic simulator

Many programs from Table 2.3 are in use for years with established track record. How-

ever, especially in academia, the Epanet2 software (Rossman, 2000b) sets a standard of

hydraulic simulation as it has been used in hundreds of published applications. In the WSS

group it has been used in many research projects; the most recent publications include

e.g. (Skworcow et al., 2010; Paluszczyszyn et al., 2011; Skworcow and Ulanicki, 2011;

Paluszczyszyn et al., 2013; Skworcow et al., 2014b). Also, many other researchers em-

ployed Epanet2 in different applications e.g., (Abebe and Solomatine, 1998; Alonso et al.,

2000; Maier et al., 2003; van Zyl et al., 2004; Broad et al., 2005; Geem, 2006; Shen and

McBean, 2010; Siew and Tanyimboh, 2012).

Epanet2 performs EPS of hydraulic and water quality behaviour of the network. It al-

lows the application of one of three friction head loss formulas (Hazen-Williams, Darcy-

Weisbach and Colebrook-White) for determining pressure loss occurring in the pipes during

transport.

Epanet2 is based on the gradient method by Todini and Pilati (1987). Its simulation

routine is depicted in Figure 2.10. The routine contains two main loops; LoopA simulates



Chapter 2 Theoretical and conceptual framework 46

Table 2.3: Water distribution system modelling software. More extensive list and re-
views can be found in (Schmid, 2002) and (Balut and Urbaniak, 2011).

Software Producer Website

Aquadapt Derceto, Inc. http://www.derceto.com/Products-
Services/Derceto-Aquadapt

AquaNet INAR http://www.inar.net/products/aquanet.htm
AQUIS Schneider Electric http://www.schneider-

electric.com/products/ww/en/5100-
software/5125-information-management/61417-
aquis-software

CWSNet University of Exeter http://sourceforge.net/apps/trac/cwsnet/
ENCOMS Halcrow http://www.halcrow.com/encoms
Epanet2 US EPA http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
Eraclito PROTEO S.p.A. http://www.proteo.it/prodotti/eraclito.asp
Finesse WSS http://watersoftware.dmu.ac.uk/
H2OMAP Water Innovyze http://www.innovyze.com/products/h2omap water/
H2Onet Innovyze http://www.innovyze.com/products/h2onet/
Helix delta-Q Helix Technologies http://www.helixtech.com.au/Q2Main.aspx
HYDROFLO Tahoe Design Software http://www.tahoesoft.com/html/hydroflo.htm
Infowater Innovyze http://www.innovyze.com/products/infowater/
InfoWorks WS Innovyze http://www.innovyze.com/products/infoworks ws/
KYPIPE KYPipe LLC http://kypipe.com/kypipe
Mike Net DHI http://www.mikebydhi.com/Download/-

MIKEByDHI2014.aspx
MISER Tynemarch Systems En-

gineering Ltd.
http://www.tynemarch.co.uk/products/miser/-
miser.shtml

Netbase Crowder Consulting http://www.crowderconsult.com/netbase-water-
management-software/

optiDesigner OptiWater http://www.optiwater.com/optidesigner.html
Optimizer WDS Optimatics http://optimatics.com/software/optimizer-wds
Piccolo Safege http://www.safege.com/en/innovation/-

modelling/piccolo/
Porteau irstea http://porteau.irstea.fr/
SynerGEE GL Water http://www.gl-group.com/en/water/-

SynerGEEWater.php
Wadiso GLS Software http://www.gls.co.za/software/products/-

wadiso.html
WatDis Transparent Blue http://www.watdis.com/en/about
WaterCAD V8i Bentley http://www.bentley.com/en-

US/Products/WaterCAD/
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the water network model over a desired period of time while Loop B is responsible for

solving the system of non-linear equations.

The functions of Epanet2 software have been compiled into a library of routines, namely

Epanet2 Toolkit, that can be called from other applications. Moreover, the Epanet2

Toolkit functionalities can be extended, modified or incorporated into customised appli-

cations simplifying the process of adding of hydraulic analysis capabilities.

Note that throughout the work carried out in this thesis both Epanet2 and Epanet2 Toolkit

were heavily utilised for many purposes.

Read network

Initialisation

tcurrent <
tfinal?

End

Update demands

Compute
coefficinets

Update heads

Update flows

Update status of
valves and pumps

Convergence?

Write results

Adjust tanks,
Compute next

time step

no

yes

yes

no

Loop B

Loop A

Figure 2.10: Hydraulic simulation routine in Epanet2. Adapted from (Alonso et al.,
2000).
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2.4 Overview of optimisation methods for water distribu-

tion systems

In general, every optimisation problem is defined by two essential parts: an objective

function and a set of constraints. The objective function describes the performance cri-

teria of the system. Constraints describe the system or process that is being designed or

analysed and can be in two forms: equality constraints and inequality constraints (Mays,

1999). These constraints are typically associated with the system hydraulic requirements

such as equations of mass and energy conservation, design and/or operational parame-

ters limits, nodal pressure bounds and other parameters dependent on both pressure and

design/operational parameters (Coelho and Andrade-Campos, 2014).

A general optimisation problem can be formulated as the minimisation or maximisation

of an objective function f subject to equality and/or inequality constraints and can be

defined as follows

min (or max) f(x) (2.40)

subject to constraints

g(x) ≤ 0 (2.41)

h(x) = 0 (2.42)

where x is the vector of n decision variables x = (x1, x2, , xn), g(x) and h(x) are the vectors

of equations inequality and equality constraints, respectively.

A feasible solution of the above optimisation problem is a set of values of the decision

variables that simultaneously satisfies the defined constraints. An optimal solution is a set

of values of the decision variables that satisfies the constraints and provides an optimal

value of the objective function (Mays, 1999).

Water distribution systems are large and complex structures. Hence, their construction,

management and improvements are time consuming and expensive. Nevertheless, for the

last few decades a significant research effort was put into improving WDS efficiency and

at the same time minimising their maintenance cost. However, determining an optimal

solution for WDS design and operation is not an easy task as many factors need to be

considered e.g. cost of materials, topographical layout, energy cost while meeting the

consumer requirements such as service pressure and water quality. To add to the over-

all complexity due to fluctuating demands, the WDS operation needs to be constantly
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adjusted which usually is carried out with the use of control devices enabling different

operational modes.

In the past, design and management of water distribution networks was based on engi-

neer/operator experience. However, constantly increasing computing power resulted in

number of computerized optimisation methodologies oriented to improve design and oper-

ation of WDSs. Starting from Linear Programming (Kessler and Shamir, 1989; Samani and

Zanganeh, 2010), Dynamic Programming (Yakowitz, 1982; Cervellera et al., 2006; Ulanicki

et al., 2007), Model Predictive Control (Skworcow et al., 2010), Evolutionary Algorithms

(Murphy et al., 1993; Savić and Walters, 1997; Gupta et al., 1999), Tabu Search (Lippai

et al., 1999; Cunha and Ribeiro, 2004; Tospornsampan et al., 2007a), Simulated Annealing

(Cunha and Sousa, 1999; Tospornsampan et al., 2007b), Ant Colony optimization (Maier

et al., 2003), Shuffled Frog-Leaping (Eusuff and Lansey, 2003), Shuffled Complex Evolu-

tion (Liong and Atiquzzaman, 2004), Harmony Search (Geem, 2006), Scatter Search (Lin

et al., 2007), Particle Swarm Optimization (Montalvo et al., 2008), Cross Entropy (Perel-

man et al., 2008b), Dynamically Dimensioned Search (Tolson et al., 2009), Honey Bee

Mating optimization (Mohan and Babu, 2010), Cuckoo Search (Wang et al., 2012) and

many hybrids between them. A review of some aforementioned methods can be found in

(Coelho and Andrade-Campos, 2014; Vilanova et al., 2014).

Nearly all the optimisation methods, whether aimed for design or operation, suffer from

a need for simulation models necessary to evaluate the performance of solutions to the

problem. However, the simulation models are increasing in size and complexity as more

water utilities adopted the approach, with use of GIS and SCADA systems, to include each

component of a large system in a WDS model. For WDS design optimisation the large

models are generally acceptable, as there are seldom any limits on the computing time

available. However, for operational control purposes where there is a need to regularly

update the control strategy to account for the fluctuations in demands, the combination

of a hydraulic simulation model and optimisation is likely to be computationally excessive

for all but the simplest of networks (Jamieson et al., 2007).

This provoked a necessity for substitutes for these simulation models in order to provide

a speed-up in the optimisation process. A number of different techniques were proposed

to generate surrogates for the large models, e.g. (Saldarriaga et al., 2008; Deuerlein, 2008;

Broad et al., 2005; Ulanicki et al., 1996). Although, even with the help of those methods

in many cases preparing an optimisation-ready model is a very laborious work requiring

a deep understanding of network operation. Unfortunately, such a preparation process is

often omitted in the literature or only briefly described.
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Hence, one of the objectives of this work is to review the model reduction techniques,

focussing especially on their potential application to operational optimisation of WDSs.

The next section describes an optimisation method that initiated the need for such inves-

tigation that is carried forward to Chapter 3.

2.5 Real-time optimal operation of water distribution sys-

tems

Optimisation studies of medium and large-scale water networks are typically carried out

offline. This means that any changes to the water network may require significant changes

in the optimisation model, which leads to high cost of system maintenance.

In turn, real-time control strategies for operation of water distribution systems are con-

strained by the computational time required to find an optimal solution. A number of

studies were carried out to reduce the computational time and thereby enable a real-time

optimal control of WDS, e.g. (Rao and Salomons, 2007; Li and Baggett, 2007; Jamieson

et al., 2007; Shamir and Salomons, 2008; Pasha and Lansey, 2010; Skworcow et al., 2010;

Kang, 2014; Odan et al., 2014). While some studies proposed to use the “warm solu-

tions” (i.e. the most recent solution) in order to reduce the computational time, others

researchers recommended use of surrogate or reduced models linked with the optimisation

algorithm.

The latter approach was employed by Skworcow et al. (2010) in the study carried out in

the WSS group. Skworcow et al. (2010) proposed an online optimisation methodology for

a real-time energy and leakage management in water networks, formulated within a model

predictive control (MPC) framework. The objective was to calculate control actions, i.e.

time schedules for pumps, valves and sources, which minimise the costs associated with

energy used for water pumping and treatment and water losses due to leakage, whilst

satisfying all operational constraints. The control scheme proposed by Skworcow et al.

(2010) is illustrated in Figure 2.11.

The model predictive controller computes the control actions based on the telemetry read-

ings, provided by the SCADA systems, operational constraints, boundary conditions spec-

ified by operator and future demands predicted by the demand forecaster. Inclusion of

the model reduction module enables automatic adaptation to abnormal situations and

structural changes in a network, e.g. isolation of part of a network due to pipe burst. In

such a case an operator can change the full hydraulic model and run the model reduction
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Figure 2.11: Model predictive control scheme for the online energy and leakage man-
agement (Skworcow et al., 2010).

module to automatically produce the updated simplified model. In normal operation the

simplified model is fixed.

The approach proposed in (Skworcow et al., 2010) is model-based and water network

models can consist of thousands of elements, each described by nonlinear equation; this

along with the MPC algorithm computational complexity, created a need for simplified

models. Also the optimisation methods, aforementioned in Section 2.4, require simpli-

fied models of WDS to perform thousands of simulations in order to evaluate solutions

to the problem. Additionally, the most optimisation studies of WDS are carried out of-

fline whereas in (Skworcow et al., 2010) it was essential that the reduced model not only

preserves the original water network nonlinearities but also it should be suitable for the

online calculation.

Reduced water network model can be obtained in many ways. But, a technique chosen

for such task will have to satisfy the major requirements gathered below:

• Reduced model should accurately replicate hydraulic behaviour of the original model.

• Algorithm should perform in sufficiently short time to allow an online adaptation to

abnormal events and structural changes.

• Algorithm should keep a record how demand was aggregated and distributed in a

reduced model.
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• Algorithm should provide capability to retain components important from the oper-

ator perspective.

2.6 Summary

In this chapter the basic theory of WDS hydraulics has been presented. Although, in a

limited and concise form it should provide the reader with a foundation for understanding

the concepts and terms used in the remainder of this thesis. For a comprehensive reference

on WDSs the reader may consult (Brdys and Ulanicki, 1994). Also, excellent references

on WDSs modelling and simulation are Mays (1999) and Walski et al. (2003).

Whilst the literature review mainly concerns the principles of modelling, simulation and

optimisation of WDSs some issues in those areas have been highlighted. Firstly, in Sec-

tion 2.2 the different model structures, utilised to represent the nonlinear characteristics of

WDSs, and specificities of their components have been presented. This included reservoirs,

tanks, pumps, vales and pipes. The problems due to tank’s dynamics and non-smoothness

of directional and control valves have been described and typical difficulties highlighted.

Few modelling and simulation techniques that account for these problems have been briefly

reviewed.

In Section 2.3 aspects of WDSs simulation have also been considered. Whilst it has been

established that simulation of a WDN allows to better understand behaviour of the system

it has also been identified that simulation of devices with discontinuity attributes still

poses a challenge in WDS analysis. If the purpose of WDSs modelling and simulation is

to accurately represent hydraulic behaviour of the considered system then it is important

to select an approach that accounts for both discrete and continuous characteristics of

water networks. This is essentially the motivation behind this short review of the various

modelling and simulation approaches. It is recognised, however, that to fully address this

aspect of WDS simulation would represent a significant task in its own right. Nevertheless,

the research conducted to address the aforementioned issues is summarised in Part II.

WDSs are complex and thereby require huge investments in their construction and mainte-

nance. For these reasons, as has been shown in Section 2.4, a significant effort is put to im-

prove their efficiency by way of minimizing their cost and maximizing the benefits accrued

from them. However, optimisation of large and hydraulically complex WDSs is computa-

tionally expensive as thousands of simulations are required to evaluate the performance

of candidate solutions. To minimise the optimisation search space, reduced (optimisation-

oriented) models are utilised. But an initial review of different simplification approaches
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has risen a concern as to whether the simplified model required to simulate/replicate the

behaviour of the original system allows to capture only the key nonlinear features or also

the underlying dynamics characterising the system?

The major aim of Section 2.4 and Section 2.5 has been to aid the reader in understanding

the formulation of the above research question. The further research and developments

are continued in Part I and the corresponding appendices. It is considered important by

the author of this thesis to highlight the impact of practical systems on the research work

which is detailed here, as well as to reflect the constant motivation during this work to

appeal and collaborate with various companies and industrial bodies in order to ensure the

viability and applicability of the resulting concepts that are developed. Hence, Chapter 5

within Part I describes application of research outcomes to a real case study.
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Reduction of water distribution

system models for operational

optimisation
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Chapter 3

Energy balance in model reduction

of water distribution systems

3.1 Introduction

The aim of this chapter is an investigation and development of a model reduction tech-

nique for the purpose of an online optimal strategy for WDS operation. Section 3.2 and

Section 3.3 examine the model reduction methods available in the literature in the scope

of utilisation for real-time optimal operation studies of WDS. Once the model reduction

technique is chosen, its performance is evaluated in Section 3.4 on several models of water

networks different in size and complexity. The attention is then directed to the problem of

an inconsistent energy distribution in the reduced model that is exemplified in Section 3.5

which demonstrates that when node is removed from the network during the reduction

process its elevation and pressure constraint are often not considered. This can cause a

situation where the pump speed required to satisfy the minimum pressure constraints is

different for the reduced model and the prototype. To alleviate this mismatch, a new ex-

tension to the model reduction algorithm based on the concept of energy audits is proposed

in Section 3.6. The appropriateness of the new algorithm is initially demonstrated on a

small hypothetical case study, and subsequently, in Section 3.7, is applied to a real water

network. Section 3.7, beside the examination of the enhanced model reduction method,

investigates its applicability in a study of determining optimal pump schedules. Section 3.8

summarises this chapter.

55
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3.2 Model reduction methods

Nowadays, it is common that WDS models contain thousands of elements to accurately

replicate hydraulic behaviour and topographical layout of real systems; e.g. see large-scale

models in (Lippai, 2005; Ostfeld et al., 2008). Such models are appropriate for the simu-

lation purposes. But the optimisation tasks are much more computationally demanding,

hence simplified models are required. Especially, in online optimisation frameworks such

as in (Skworcow et al., 2010) where an optimal solution has to be obtained within the de-

fined time interval. There are different techniques of a WDS model reduction; the outcome

of most of these methods is a hydraulic model with a smaller number of components than

the prototype. The main aim of the reduced model is to preserve the nonlinearity of the

original network and approximate its operation accurately under different conditions. The

accuracy of the simplification depends on the model complexity, purpose of simplification

and the selected method such as skeletonization (Walski et al., 2003; Saldarriaga et al.,

2008; Iglesias-Rey et al., 2012), parameter-fitting (Anderson and Al-Jamal, 1995), graph

decomposition (Deuerlein, 2008), enhanced global gradient algorithm (EGGA) (Giustolisi

and Todini, 2009), metamodelling (Rao and Alvarruiz, 2007; Broad et al., 2010; Behan-

dish and Wu, 2014) and variables elimination (Ulanicki et al., 1996; Alzamora et al., 2014;

Paluszczyszyn et al., 2013). This section examines these methods in a scope of utilisa-

tion for the online optimal operation of WDSs. Note that throughout this thesis terms

reduction and simplification were used alternately to describe the process of achieving a

hydraulic model with a smaller number of components than the prototype.

3.2.1 Skeletonization

Skeletonization can be defined as a reduction of data needed to represent the hydraulic

performance of WDS without a significant loss of information (Hirrel, 2010). Skeletoniza-

tion is not a standalone method, it is rather a process that utilises various techniques,

often combined and/or applied in series to achieve a skeleton model. The widely-used

techniques are: (i) inclusion in the skeleton model only the parts of the hydraulic network

that have a significant impact on the behaviour of WDS (Walski et al., 2003) e.g. removing

all pipes that meet user-specified criteria such as diameter, roughness or other attributes,

(ii) demand aggregation for neighbouring nodes; i.e. demands for nodes with similar pres-

sure level are added and pipes between them are removed, (iii) use of equivalent pipes in

place of numbers of pipes connected in parallel and/or in series. In Figure 3.1 a graphical

representation of skeletonization techniques is presented.
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parallel pipes

Figure 3.1: Illustrating different skeletonization techniques. Adapted from (Maschler
and Savić, 1999).

In (Bahadur et al., 2006) authors combined the following techniques: selection of pipes

with certain diameter, replacement of identical pipes in series and removal of dead-end

pipes. Although, the article is focused on investigation of the skeletonization impact on the

water quality parameters, Bahadur et al. (2006) observed and highlighted issues with the

demand re-allocation when performing skeletonization; i.e. consequence of re-allocation of

system demands was a change in flows and velocities within the skeleton model.

Saldarriaga et al. (2008) presented an automated skeletonization methodology to obtain
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reduced models of WDS that can accurately reproduce both, the hydraulics and non-

permanent water quality parameters (chlorine residual) of the original model. The pro-

posed methodology was based on the resilience index concept introduced by Todini (2000);

i.e. by using the resilience index as selection criterion to remove pipes from the proto-

type, reduced models that simulate the hydraulics of the original models were achieved.

However, the method is focused on the pipes removal only and thereby it can be mainly

applied for looped pipe networks. Moreover, the achievable degree of model reduction is

not significant if pressure levels in the skeleton model are to be reflected accurately.

Another method of automatic skeletonization is described in (Hirrel, 2010). The method

combines skeletonization with graph traversal algorithms. The graph traversal process is

used to: (i) obtain flow balance and head at each node, (ii) identify all the paths in the

network and (iii) determine a head error and a total q-prime for each path. According

to Hirrel (2010) the head error is a difference between the calculated and theoretical

summation of head changes along the path. The q-prime is a slope of hydraulic grade

line versus flow relationship for a given pipe. Subsequently, the total q-prime for a path

is the sum of q-primes for all pipes in the particular path. Having obtained head error

and total q-prime, a correcting flow, to be applied to all pipes in the path, is calculated.

In general, the method is aimed to minimise hydraulic computations thanks to network

topology manipulation; i.e. every time that pipe is removed through the skeletonization

a new set of head changes and q-primes is respectively determined and stored taking into

account whether the pipe was in series, parallel or in a loop. Such approach allows to

reduce the amount of data needed to simulate the performance of a hydraulic network.

In the example in (Hirrel, 2010) a number of junctions was reduced from 4210 to 2658

and number of pipes from 3003 to 1625, and based on the used criteria the both solutions

were almost identical. However, as Hirrel (2010) pointed out, the scope of reduction is

network-specific and depends on a number of pipes that can be serialized or number of

parallel pipes that can be combined.

Jiang et al. (2012) applied skeletonization techniques to a large-scale network model con-

sisting of 600000 pipes and 550000 nodes. Due to size of the network, the model was ini-

tially split up into 10 sub-models, which after skeletonization, were subsequently merged

back into simplified version of the original model. Jiang et al. (2012) employed branch

collapsing, series and parallel pipe merging for three different pipe diameters thresholds of

300, 500, and 800 mm. The thresholds were used to determine which pipe in branches of

the network will be retained; e.g. threshold of 300 mm retains all the pipes with diameter

≥300 mm in branches. However, the pipes in loop configuration with diameter <300 mm

will be retained. Jiang et al. (2012) presented results from skeletonization for one of the
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sub-models, which contained 48660 pipes and 40178 nodes. The reduced model with pipe

diameter threshold of 300 mm contained 9901 pipes and 8113 nodes. When threshold

was set to 800 mm the scale of reduction was even greater; the reduced model consisted

of 3699 pipes and 2538 nodes. However, Jiang et al. (2012) stated that such significant

reduction affected ability of the reduced model to reflect the hydraulic behaviour of the

original model. Only the reduced model with threshold of 300 mm was accurate enough,

in terms of used criteria, to be retained. The reduced model obtained for thresholds of

500 and 800 mm were dismissed and categorised as inaccurate.

In most cases skeletonization is performed manually and accuracy of skeletonization is

depended on experience and engineering judgement of modeller. One of the first com-

mercial automatic skeletonization solution was the Skelebrator module from the Bentleys

Haestad Methods WaterGEMS software (Bentley, 2013b). Skelebrator automatically skele-

tonizes water distribution systems using a combination of the following techniques: data

scrubbing, branch trimming, series pipe removal and parallel pipes removal. According

to (Bentley, 2013a) Skelebrator allowed to the city of Toronto to save over one million

Canadian dollars by reducing complexity of physical network contained 307956 pipes to a

smaller network with one fourth the pipes, 76989.

Number of studies were conducted in order to assess skeletonization in water networks, see

(Eggener and Polkowski, 1976; Hamberg and Shamir, 1988; Cessario, 1995; Grayman and

Rhee, 2000; Bahadur et al., 2006; Jung et al., 2007a; Cantone, 2007; Cantone and Schmidt,

2009), and, in short, the following observations can be concluded. Skeletonization is not

a single process but several different low-level element removal processes that sometimes

must be applied in series. Whereas for some small water networks, including mostly pipes,

an accurate skeletonization is possible, for a large networks with complex topology, con-

sisting of tanks, pumps and varied demands, a lossless skeletonization presents a challenge.

Also, scope of model reduction via skeletonization is not significant if skeleton model is to

preserve hydraulic behaviour of a prototype. Another major drawback is that accuracy and

scope of skeletonization is network-specific what makes it very difficult to establish a set

of fixed rules for skeletonization, especially in online time-constrained WDS optimisation

studies.

3.2.2 Parameter fitting approach

In (Anderson and Al-Jamal, 1995), authors proposed a method for hydraulic network

simplification using a parameter-fitting approach. The authors’ motivation was to use

simplified model in operational studies of WDS rather than for network design purposes.
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The method proceeds as follows. Based on an expert knowledge of network operation the

topology of the simplified network is assumed in advance. Next, the pipes conductances

and the demand distribution in the simplified model are determined by minimising a mea-

sure of the difference in terms of flows between the full and simplified models performances.

The objective function for the optimisation problem is minimised using a nonlinear op-

timization technique. The proposed objective function allows to put weights on network

elements that required to be modelled more accurately than others.

Anderson and Al-Jamal (1995) claimed that they were able to reduce a model for Maiden

Lane zone in London containing 66 nodes and 112 links to 3 nodes and to 4 nodes with

errors in flow values within 5% of the values in the full model. But, they also admitted

that there are difficulties with the use of this method when non-return valves are present

in the system. Additionally, the method was tested on relatively small water network

model and, as the authors observed, when the number of nodes in a simplified network

increases the occurrence of multiple local minima becomes more likely what questions

applicability of this technique for reduction of complex WDSs. The scope and accuracy of

simplification in this method is hugely depended on the experience of the engineer, who

is determining the initial layout of the simplified network. Hence, the method cannot

be applicable in automatic reduction of WDS models but it can be used as additional

simplification procedure to increase the accuracy of the already reduced model.

3.2.3 Graph theory based approach

Due to its nature it is common to represent a water distribution system using graph the-

ory as was shown in (Kesavan and Chandrashekar, 1972; Gupta and Prasad, 2000). A

water distribution system can be modelled as a graph G(V,E) with the set of vertices/n-

odes, V , representing the water sources and consumption nodes, and the set of edges, E,

representing pipes, pumps and valves. Number of techniques from graph theory disci-

pline were utilised in WDSs analysis and modelling for different purposes: in prediction of

contamination spread (Davidson et al., 2005), sectorization (Tzatchkov et al., 2006), state

estimation (Kumar et al., 2008), operational monitoring and control (Arsene et al., 2012a),

reliability assessment (Wagner et al., 1988; Fragiadakis et al., 2013), vulnerability and ro-

bustness analysis (Yazdani and Jeffrey, 2010, 2012), sensors placement (Deuerlein et al.,

2010; Perelman and Ostfeld, 2013), district metering area (DMA) identification (Ferrari

and Becciu, 2012), design optimization (Zheng et al., 2013). However, the following graph-

theoretic applications in WDSs analysis are oriented towards methods to represent water

networks in more simplistic way and yet retain their hydraulically complex behaviour.
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Recently, the problem of WDSs security elicited an interest from researchers. To investi-

gate the impact of water contamination and to prevent such events the water distribution

system is subjected to a process called sectorization. The process aim is to identify or

divide WDS into isolated zones (sectors) where each zone is being supplied from its water

source. In (Tzatchkov et al., 2006) authors employed graph traversal algorithms such DFS

(Tarjan, 1972) and breadth-first search (BFS) (Pohl, 1969) to identify such isolated zones.

Although, the sectorization process in (Tzatchkov et al., 2006) is not aimed at reduction

the number of elements in WDS, it is rather focused on achieving a better understanding

of a particular WDS. It is easier for engineer to visually assess performance of WDS by sec-

tors whereas analysis of a complex WDS with thousands of interlinked elements presents

a challenge.

In (Di Nardo et al., 2011), and recently updated in (Di Nardo et al., 2013), enhancements

to sectorization were proposed. The method combined hydraulic simulator, graph theory

tools, and a specially developed genetic algorithm to take into account energy distribution

in WDS. Firstly, a graph of water supply system with weighted edges (links) and vertices

(nodes) is created, which subsequently is partitioned into user-defined number of sectors.

Di Nardo et al. (2013) used performance indices such network resilience (Prasad and Park,

2004), resilience deviation index (Di Nardo et al., 2013) and pressure levels at nodes to

define appropriateness and accuracy of sectorization. The sectorization was tested on two

case studies, which confirmed the effectiveness of the methodology in terms of employed

performance indices.

Another methodology of WDS partitioning, namely clustering, that utilised graph theory

principles was presented in (Perelman and Ostfeld, 2012). Using the DFS and BFS graph

algorithms a water distribution system is divided into strongly and weakly connected sub-

graphs i.e. clusters. The algorithm resulted in a connectivity matrix that can represent

the interconnections between clusters. The authors’ motivation was to provide a tool that

can support a response modelling plan in case of a contamination event.

In (Deuerlein, 2006) and (Deuerlein, 2008) a graph-theoretical decomposition concept of

the network graph of WDS was proposed. Whereas the previous graph-based works were

aimed to be applied in water network security applications the methodology in (Deuerlein,

2008) is more versatile. Deuerlein (2008) listed several potential applications such as

network connectivity analysis, identification of supply areas, water network simplification,

modified simulation and sensitivity, reliability, vulnerability of WDSs. In general, the

approach involves several graph decomposition steps to obtain a block graph of WDS.

Graph algorithms were employed to identified branched and looped sub-graphs to achieve

subsequent stages of model simplification; core of the network, core network with paths
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only and block graph. During that process demands of the root nodes are increased by

the total demand of the connected trees to ensure that the simplified network replicates

the hydraulic behaviour the total network.

Although, Deuerlein (2008) provided an example of WDS simplification but in a form

of graphical illustration not reinforced with numerical data which would allow to asses

the hydraulic accuracy of simplification by graph decomposition. It is also difficult to

assess calculation complexity of this approach without description of its implementation

framework.

3.2.4 Enhanced global gradient algorithm

In (Giustolisi et al., 2010) and (Berardi et al., 2010) authors described how a water network

simplification can be achieved by the EGGA (Giustolisi and Todini, 2009). The EGGA

simplifies the network topology by automatically removing serial nodes i.e. nodes with

only two neighbours. Such approach will then reduce the total number of nodes and

pipes. Typically in such skeletonization technique only the mass balance is considered

when distributing demand from the removed consumption nodes but in (Giustolisi et al.,

2010; Berardi et al., 2010) an energy balance was also taken into account. It was done by

introducing a hydraulic resistance correction factor into the head loss expression.

In (Giustolisi et al., 2010) the method performance was demonstrated on the water network

composed of 5 tanks, 1461 nodes and 1991 pipes. Giustolisi et al. (2010) achieved a 39%

reduction, as the simplified network was composed of 5 tanks, 783 nodes and 1313 pipes.

However, the main benefit of EGGA approach is that it preserves mass and energy balance

of the original model thus the simplified model very accurately resembles the full model.

The maximum difference of nodal heads was less than 0.0005m. Moreover as EGGA can

replace the global gradient algorithm (GGA) as a WDS simulation paradigm; the simplified

model will replicate the original model with a high accuracy for the whole period of a

considered simulation.

In more comprehensive studies in (Berardi et al., 2010) the EGGA approach was exem-

plified on a large-scale water network from (Ostfeld et al., 2008). Albeit, a successive

skeletonization step was introduced to increase the scope of reduction. Berardi et al.

(2010) added also a feature of detection of sub-systems in the simplified network which

are connected to each other by one pipe only that could be used for placement of isolation

valves.
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Despite that when using the EGGA the hydraulic accuracy of a model is not forfeited, the

scope of the reduction might be very small as it depends on the number of serial nodes in

water network. Hence, especially for looped networks, the number of elements that can

be removed will be very small.

3.2.5 Metamodeling

The objective of metamodeling is to develop and utilise computationally more efficient sur-

rogates of high-fidelity models mainly in optimisation frameworks (Razavi et al., 2012b).

Over the past decade metamodelling was used by researchers in water resources, see

(Razavi et al., 2012b) and references therein. In water resources, a metamodel serves

as a surrogate or substitute for the more complex and computationally expensive sim-

ulation model (Broad et al., 2005). Number of tools and techniques were developed to

obtain a metamodel but it is noticeable that use of artificial neural network (ANN) was

in particular interest.

In (Jamieson et al., 2007) a feasibility study is provided to determine whether real-time,

near-optimal control for water distribution network can be achieved. Jamieson et al.

(2007) encountered similar difficulties as were identified in (Skworcow et al., 2010); i.e.

impracticability of the conventional full-scale hydraulic simulation model for online optimal

control. To overcome this obstacle Jamieson et al. (2007) proposed the use of ANNs to

capture the hydraulic behaviour of a full-scale simulation model. Subsequently, such an

ANN model is the input to genetic algorithm (GA) designed specifically for a real-time

use. The proposed methodology, a combination of ANN and GA, was applied to three

case studies described in (Salomons et al., 2007; Mart́ınez et al., 2007; Rao and Salomons,

2007).

The next paragraphs, however, are focused on the utilisation of ANNs to replicate hydraulic

simulation model. This approach is described in greater detail in (Rao and Alvarruiz,

2007). An ANN is a nonlinear mathematical structure, which is capable of representing

arbitrarily complex, nonlinear processes that relate the inputs and outputs of any system

(Rao and Alvarruiz, 2007). The use of ANNs is well established in water resources, espe-

cially in prediction of demands, see (Maier and Dandy, 2000) and references therein. In

general, an ANN is an interconnected set of neurons which are usually organised in inter-

linked layers. Based on the input data, the weights of neuron connections are iteratively

adjusted by an algorithm in such a way that the output performance of the network is

improved. ANNs are widely recognized for their accuracy and robustness. They require,

however, a significant number of input/output patterns (often measured in thousands)
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for training and testing, what limit their use in large projects due to the computational

burden.

Despite this limitation, Rao and Alvarruiz (2007) decided to capture the hydraulic charac-

teristics of a WDS by means of ANNs. The approach requires a large number of simulations

of the hydraulic model to generate different combinations of initial tank-storage levels, de-

mands, pump and valve settings. These input/output data sets are then used to train and

validate the ANN model. Root mean square error (RMSE) criteria was used to measure

“goodness-of-fit” between the hydraulic simulation model and the obtained ANN model.

Such an ANN model can be used to predict future tank-storage water levels, pressures and

flow rates at critical points throughout the network.

To validate appropriateness, Rao and Alvarruiz (2007) applied this approach to the modi-

fied ‘Any Town’ water network from (Walski et al., 1987). The results were presented in a

form of plots of the pressure deviations on the selected node (most of results from the test-

ing sets were in range of ±0.1m) and the water level deviations for the chosen tank (most

of results from the testing sets were in range of ±0.03m). Unfortunately, from (Rao and

Alvarruiz, 2007) one cannot determine the time complexity of this methodology, what can

be significant knowing computational demands of ANN. Also, despite the relatively small

network (41 pipes, 19 nodes) Rao and Alvarruiz (2007) had to address few issues such

as the number of neurons in the hidden layer, the number of training sets for ANN and

whether to use of a separate ANN for each of the output variables. Additionally, reader

can also be concerned how to select critical elements for the input and output layers. The

number of such elements or inclusion of the variable-speed pumps will increase the number

of variables what in turn would have a severe impact on the computational time. More-

over, in the absence of complete information about the modelling process, the optimality

of the results cannot be assessed, and it is difficult to draw meaningful conclusion about

the performance of the proposed ANN metamodeling.

Indeed, similar issues were reported in (Mart́ınez et al., 2007), where the same ANN

approach was used in optimisation of the operation of the real water distribution system

of Valencia city in Spain. According to Mart́ınez et al. (2007) the number of neurons in

the hidden layer is somewhat subjective and usually based on experience, coupled with a

degree of experimentation. And also determining the appropriate architecture of the ANN

proved to be sometimes a frustrating procedure based on trial-and-error. The above can

introduce many uncertainties into the ANN representation of the hydraulic model and, as

noticed in (Broad et al., 2010), even a small error in metamodel can have a significant

impact on the obtained optimisation results.
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Furthermore, the approach proposed by (Rao and Alvarruiz, 2007) has another disadvan-

tage that eliminates use this technique for the control strategy described in Section 2.5.

Bowden et al. (2012) observed that ANNs are unable to reliably extrapolate beyond the

calibration range. Consequently, when deployed in real-time operation there is a need

to determine if new input patterns are representative of the data used in calibrating the

model. Truly, Rao and Salomons (2007) reported that in the event of disruption such as

a power outage, pump failure, jammed valve or pipe burst the ANN model would require

re-training what obviously increases drastically the computational time.

More comprehensive and detailed studies in using the ANN metamodels for design and

operation optimisation of WDS were conducted in (Broad et al., 2005) and (Broad et al.,

2010), respectively. The works in (Broad et al., 2005) and (Broad et al., 2010) are in

principle very similar to the aforementioned studies in (Rao and Alvarruiz, 2007; Rao and

Salomons, 2007; Mart́ınez et al., 2007). Although, both Broad et al. (2005) and Broad

et al. (2010) provided much more details and numerical results that allow to assess use of

ANN models to replicate behaviour of hydraulic simulation model. Additionally, Broad

et al. (2010) in an explicit manner addressed the issue of selection of critical points for

ANN model layers.

The main aim of (Broad et al., 2005) was a WDS design optimisation. For this purpose

authors combined ANN metamodeling with GA optimisation. The case study used to

test the approach, was the well-known and popular network of New York Tunnels (NYT).

While the obtained optimal solutions (similar to other works which considered the NYT

case study) proved the suitability of the method, Broad et al. (2005) observed several

issues in regard to the process of ANN metamodeling. A representative ANN needs a

training data to be generated from a range of different values and for different types of

variables, what became the greatest computational burden in developing the metamodel.

The training time for the ANNs developed for NYT was 16 hours. This time was elapsed

for only 5 critical nodes, and in case of more complicated WDS with 20 or 30 critical nodes,

with a separate ANN trained for each of these nodes, the computational time might be

excessive, to the point where there might be no net benefit in using a metamodeling

strategy (Broad et al., 2005). Additionally, values for ANN parameters such as number of

hidden layers or number of hidden neurons were selected by trial and error what makes

ANN metamodeling inappropriate for automatic processes. Furthermore, in (Broad et al.,

2005) it was observed that trained ANN are sensitive to initial weights in terms of accuracy

of replicating the original model. Finally, Broad et al. (2005) concluded that it is unlikely

that an ANN could be trained such that a perfect approximation of a Epanet2 model is

obtained.
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In (Broad et al., 2010) the work of Broad et al. (2005) was extended and aimed at optimal

operation of WDS. Among many enhancements to the method in (Broad et al., 2005) the

proposed methodology was applied to the real and fairly complex case study comprised

of 1730 nodes, 2097 pipes, 10 pumps, 35 valves and 4 tanks. For such complex model,

immediately a problem occurred; the time required to generate the adequate training sets

ANN might be so long that additional techniques were considered such as skeletonization

in order to reduce complexity of the initial model. Despite that Broad et al. (2010)

addressed a problem of critical points selection, the previously described issues associated

with the ANN metamodeling remained unsolved. However, Broad et al. (2010) claimed

that inaccuracies in the ANN metamodel were compensated by additional correction steps

at optimisation stage, but this makes the described ANN metamodeling appropriate to

the proposed GA optimisation only and thereby it could not be combined with other

optimisation techniques. And still it is doubtful that this improved ANN metamodeling

can be applied in real-time optimisation as it required an engineering judgement at some

stages. Although, authors achieved satisfactory solutions indicating a potential savings of

14% in combined pumping and chlorine costs for the considered case study, a further work

needs to be conducted in order to address computational issues related to ANN metamodel

development what in case of (Broad et al., 2010) took 320 h.

Odan et al. (2014) utilised metamodels in real-time operation of water distribution systems.

In contrast to aforementioned works based on ANN Odan et al. (2014) employed a self-

adaptive ANN. The adaptive merging growing algorithm (AMGA) was used to calibrate

a single hidden layer neural network. The AMGA algorithm merges and adds neurons

of the hidden layer based on the progress and learning of the neurons of that same layer

and, at the same time, and thereby avoids the trial and error process to determine the

appropriate number of neurons of the hidden layer. The AMGA-based procedure was

earlier evaluated in (Odan and Reis, 2012) on two small size water networks. While the

obtained metamodels were able to accurately replicate the considered networks in terms of

normalised root mean squared error (RMSE), the time spent on the metamodel calibration

was significant; i.e. for the model with 19 nodes, 1 reservoir, 3 tanks, 41 pipes and 3 pumps

the calibration took 100 minutes. Therefore, the optimisation strategy proposed by Odan

et al. (2014) when initially designed for a fixed-topology network may require a prolonged

metamodel recalibration when the network topology is about to change due to abnormal

events such as a power outage, pump failure, etc.

Taxonomies on metamodeling frameworks, practical details, advances, challenges, and lim-

itations are outlined by Razavi et al. (2012a) and Razavi et al. (2012b). The conclusions

drawn there are similar to the observed in the references cited and discussed in this section.
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While the purpose of using a metamodel is to reduce computational burden of optimisa-

tion the time demanding process of the metamodel development makes it not suitable for

real-time water network optimisation where adaptation to abnormal structural changes

is required. Also, numerical results in (Razavi et al., 2012a) demonstrated that meta-

modelling is not always an efficient and reliable approach to optimizing computationally

intensive problems. For simpler models, metamodelling can be very efficient and effective.

However, for complex models when computational budget is not very limited, metamod-

elling can be misleading, and better solutions were achieved with optimizers not involving

metamodels. The results in (Razavi et al., 2012a) also demonstrated that ANN are not

appropriate metamodelling tools for limited computational budgets. And indeed, Shamir

and Salomons (2008) in similar studies to those in (Rao and Salomons, 2007; Mart́ınez

et al., 2007), instead of ANN to mimic the behaviour of the simulation model used another

WDS model reduction technique called variable elimination (Ulanicki et al., 1996).

3.3 Variable elimination algorithm

The approach of variables elimination is based on a mathematical formalism initially pre-

sented in (Ulanicki et al., 1996) and recently updated in (Alzamora et al., 2014). This

mathematical method allows a reduction of water network models described by a large-

scale system of nonlinear differential algebraic equations. The approach is illustrated in

Figure 3.2 and proceeds through the following steps: full nonlinear model formulation,

model linearisation at specified operation time, linear model reduction using Gaussian

elimination and nonlinear reduced model reconstruction. The approach was successfully

implemented and tested on many water networks (Maschler and Savić, 1999; Rance et al.,

2001; Bounds et al., 2006; Perelman and Ostfeld, 2006, 2008; Shamir and Salomons, 2008;

Perelman et al., 2008a; Preis et al., 2009; Skworcow et al., 2010; Preis et al., 2011; Skworcow

et al., 2013); see Table 3.1. Especially real-time oriented studies in (Shamir and Salomons,

2008) and (Preis et al., 2009) indicate that variable elimination can be effectively applied

for real-time applications. The number of successful applications and automatic nature of

this method clearly meets the real-time optimisation requirements outlined in Section 2.5.

Full
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linear
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nation
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Figure 3.2: The variable elimination algorithm.
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As it was decided to use the variable elimination approach to reduce water distribution

network models, its description is given in a greater detail. Note that some of the following

definitions were already given in Chapter 2, but they are repeated here for the completeness

of algorithm formulation. The algorithm proposed by Ulanicki et al. (1996) proceeds as

follows:

Formulate a full nonlinear model

The mathematical model of water network used for model reduction procedure is in

the nodal form and based on the node-branch incidence matrix Λ. The matrix Λ size

is n × l, where n is the number of nodes and l is the number of links. The element

Λ(n,l) = 1 if the link l is leaving the node n and Λ(n,l) = −1 if link l is entering the

node n. All other entries are 0. The mathematical model of a water network using

the incidence matrix Λ is defined as follows:

Λq = qnod (3.1)

∆h = ΛTh (3.2)

q = Φ(∆h) (3.3)

where q denotes the vector of branch flows, qnod is the vector of nodal demands,

reservoir flows and source flows, h is the vector of node heads, ∆h is the vector of

branch head losses and Φ(∆h) = (q1(∆h1), ..., qNL(∆hNL)) is the vector of functions

defining flow-head relationship, using Hazen-Williams formula, for each branch. By

substituting Equations 3.1,3.2,3.3 the nodal model of a water network is obtained:

ΛΦ(ΛTh) = qnod (3.4)

Linearise nonlinear model

The full nonlinear water network model described with Equation 3.4 is subject to

linearisation around a user-specified operation point defined by the head h0 and

demand qnod,0. The linearisation described the relationship between small changes

in the head δh and flow δqnod around the specified operation point. This leads to

the linearised model in the following form:

Λ
dΦ

d∆h
ΛT δh = δqnod (3.5)

where

Λ
dΦ

d∆h
ΛT (3.6)
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is the symmetric (n× n) Jacobian matrix J. The non-diagonal elements of J are

Jn,m =

0.54 gn,m|h0
n − h0

m|−0.46 = g̃n,m, for m ∈M

0, for m /∈M
(3.7)

where M is the set of nodes connected to the node n and g̃n,m is the linearised link

conductance. The diagonal elements of J are the linearised node conductances

g̃n =
∑
m∈M

0.54 gn,m|h0
n − h0

m|−0.46 =
∑
m∈M

g̃n,m (3.8)

which is the sum of linearised conductances of all the links connected to the node n.

Reduce linear model using Gaussian elimination

Next, the linearised model in Equation 3.5 is reduced by means of Gaussian elimina-

tion procedure (Hammerlin and Hoffmann, 1991). Note that the Gaussian elimina-

tion is applied to the demand vector for nodes δqnod as well. During this process the

node n is removed from the linear model; the demand of this node is distributed to

the neighbouring nodes proportionately to the conductance of the connecting pipes.

Also, the pipes connecting the node n and its neighbours are removed. Finally, the

new linear conductances are recalculated.

Retrieve reduced nonlinear model from the reduced linear model

The reduced linear model retains the properties of the full linear model in the form of

reduced Jacobian matrix JS . The information contained in the simplified JS along

with the mapping between the full nonlinear model and the full linear model allows

calculation of nonlinear parameters for the simplified linear model. This property of

preservation of nonlinearities of the input model enables to approximate the input

model in a wide range of operating conditions.

Detailed illustration of the variable elimination on example water networks can be found

in (Maschler and Savić, 1999) and (Alzamora et al., 2014).

Over the time, as can be seen in Table 3.1, the variable elimination was applied in many

applications. This resulted in adaptations and improvements introduced for needs of the

particular application. Maschler and Savić (1999) tested and added pipe conductance

threshold to their implementation to remove low importance pipes. Perelman and Ostfeld

(2006) and Perelman and Ostfeld (2008) utilised DFS and BFS, graph-theory algorithms,

to identify strongly connected components in order to select critical nodes from water

quality perspective and define the order when removing nodes. Preis et al. (2009) and
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Preis et al. (2011) used different pipe diameters as a parameter to define the scope of

reduction.

3.4 Initial model reduction results

Prior the model reduction technique can be included into the control scheme described in

Section 2.5 it needs to be demonstrated that it is capable to accurately reduce various water

distribution networks within a specified time interval. Such precaution was also taken to

gain experience of difficulties that might be encountered in applying the methodology to

a real network. The following sections investigates the hydraulic accuracy of the selected

model reduction method whereas Chapter 4 focuses on the difficulties and computational

aspects encountered during the implementation.

3.4.1 Measures of quality of reduced model

It is essential that model accuracy is maintained; to validate how a reduced model replicates

the hydraulic behaviour of original model a number of metrics and tools were adapted or

designed. It should be noted that none of the following evaluation techniques is fully

conclusive in itself and it is recommended to use at least both statistical and graphical

means of models comparison. Moreover, some of the criteria are focused on comparison of

the most important elements of a hydraulic model such as tanks or pumps.

• visual evaluation

Graphical techniques in forms of time-series plots and plots of residuals, as can be

seen in example plot in Figure 3.3, are essential in reduced model evaluation as they

provide the first and often comprehensive overview of model performance.

• mean relative error (MRE) and mean weighted relative error (MWRE)

Hydraulic performance is best described by flow values on links and pressure values

at nodes (Anderson and Al-Jamal, 1995). Therefore the mean relative error (MRE),

utilised inter alia in the calibration study in (Takahashi et al., 2010), compares flow

and pressure series from original and simplified model. The MRE is calculated as

follows

MRE =
1

n

n∑
i=1

∣∣∣∣oi − sioi

∣∣∣∣× 100% (3.9)
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Figure 3.3: An example of a typical plot used for the visual inspection of the simplifi-
cation algorithm accuracy.

where oi is either the pressure or flow in the original model, si is the corresponding

pressure or flow in the simplified model, i is the i-th sample of series and n is the

number of samples. The MRE is used mostly in comparisons of flows and pressure in

critical elements. Albeit, to take into account junctions or links with greater impor-

tance to model hydraulic performance the mean weighted relative error (MWRE),

defined in (Takahashi et al., 2010), can be employed:

MWRE =

nMRE∑
j=1

pjMREj

nMRE∑
j=1

pj

(3.10)

where MREj is the mean relative error for series j and nMRE is the number of series

available. The weighting factor pj can be used to indicate importance of series j to

the overall hydraulic performance of a model.

• mean absolute error (MAE) and RMSE

Although, MRE is a useful and practical indicator in model evaluation, sometimes,

due to its ‘relativity’ and unitless expression it might be misinterpreted; i.e. produc-

ing large error when comparing very small values. Therefore, to aid in analysis of the



Chapter 3 Energy balance in model reduction of water distribution systems 73

results, indices that indicate error in the units (or squared units) are included. These

are the mean absolute error (MAE) and the RMSE in which values of 0 indicate a

perfect fit.

MAE =
1

n

n∑
i=1

|oi − si| (3.11)

RMSE =

√√√√ 1

n

n∑
i=1

(oi − si)2 (3.12)

• mass balance error (MBE)

One important measure of accuracy is connected with the flows from different sources

within the system (Anderson and Al-Jamal, 1995). While the model reduction tech-

nique, employed in this work, ensures that total demand in reduced model is unaf-

fected, the inflows from sources to satisfy this demand might vary. For this reason,

the mass balance error (MBE), shown in Equation 3.13, is used to compare the

reservoirs and tanks flow balance in the original and the reduced model. The flow

is integrated over the time horizon of extended period simulation and a difference

between flows in original and reduced models is calculated.

MBE =

tp∑
i=1

(oi − si)× tk (3.13)

where oi is the flow in the original model, si is the corresponding flow in the simplified

model, i is the i-th sample of series, tp is the final simulation step, and tk is the time

interval of simulation.

• tank relative error (TRE)

Tanks represent system states and thereby they are important elements in a hydraulic

model. Consequently, it is critical that tanks performance in original and reduced

model resemble each other; often pump operation is governed by tank water level,

hence, a small error in the tank level might lead to serious consequences. One way

to deal with this issue is to convert such water-level based control rules for pumps

into their time-based schedules equivalents.

However, to evaluate quality of a reduced model, in the scope of tank operation,

the tank relative error (TRE) is introduced in Equation 3.14. The tank flow is

integrated over the time horizon of extended period simulation and denoted by TOq

for the original model and TSq for the reduced model. The difference between the
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volumes is calculated with respect to the tank’s physical capacity Tv.

TRE =

∣∣TOq − TSq ∣∣
Tv

× 100% (3.14)

• goodness of fit (NSE) or (R2)

Another mathematical measure of how well reduced model reflects hydraulic be-

haviour of original model is “goodness of fit” statistic often referred in the literature

as Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) or R2. NSE is widely

used in comparison of flows, especially in hydrological models assessment; see (Mori-

asi et al., 2007; Krause et al., 2005) and the references therein. In this work, NSE is

utilised mainly to compare flows of pumps and valves in original and reduced mod-

els, and sporadically, in comparison of reservoir/tanks head trajectories. The NSE

formula is given in Equation 3.15. NSE ranges from −∞ to 1; where 1 indicates

an ideal fit. Table 3.2 displays performance ratings recommendations established

to measure quality of hydraulic resemblance of evaluated element. Note that NSE

ranges in Table 3.2 are established for the optimisation study described in Chapter 5

and the recommendations should be adjusted based on the purpose of employing

model reduction algorithm.

NSE = R2 = 1−

n∑
i=1

(oi − si)2

n∑
i=1

(oi − ō)2

(3.15)

where

ō =
1

n

n∑
i=1

oi is the mean of trajectory oi in original model,

si is the trajectory in the simplified model, i is the i-th sample of the trajectory and

n is the number of samples.

Table 3.2: Recommended performance ratings for the R2 (NSE) statistic.

Performance rating NSE (R2)

Very good 0.85 < NSE ≤ 1
Good 0.7 < NSE ≤ 0.85

Satisfactory 0.6 < NSE ≤ 0.7
Unsatisfactory NSE ≤ 0.6
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• scope of reduction

The ratio of the number of elements in reduced model to the number of elements in

original model, expressed in percentages, is used to quantify the scope of reduction. It

is expected, that for complex water networks with many pumps, tanks and valves the

scope of reduction might not be very significant. In contrast, the scope of reduction

for water networks based on pipes only should be close to 99%.

• run-time time

It is necessary to measure time taken by the process of simplification. The run-

time may not play important role in off-line studies but the real-time studies require

that the simplification is be completed within the defined time interval. This time

constraint may affect the quality of the reduced model as it may imply a trade-off

between the further model simplification and the model accuracy.

Following the recommendations in (Legates and McCabe, 1999) a complete assessment of

reduced model performance should include at least one “goodness-of-fit” or relative error

measure (e.g., mean relative error (MRE) or Nash-Sutcliffe efficiency (NSE)) and at least

one absolute error measure (e.g., RMSE or mean absolute error (MAE)) with additional

supporting information such as plot of time series or residuals.

3.4.2 Results from simplification of several water network models

The implemented model reduction application was tested on water network models with

different sizes, topologies and complexities. The details of the networks and results of sim-

plification are summarised in Table 3.3. Note that except Epanet Net3 all other models

listed in Table 3.3 are models of real water distribution systems. However, due to confi-

dentiality issues and also for more convenient model identification the used model names

are fictional.

Figures from 3.4 to 3.9 depict models’ layouts before and after simplification. Additionally,

in Appendix B, several simulated trajectories for each water network are included for more

extensive comparison.

The results presented in Table 3.3 and Appendix B show that the variable elimination

algorithm can reduce a complex water distribution network and still preserve its hydraulic

behaviour. It should be highlighted that none of these models were manually prepared

for the model reduction; i.e. no consideration was taken to identify and retain important

elements in the particular model. The original models stored in the Epanet2 inp-format file
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Table 3.3: Performance of model reduction application for several different water net-
works. All performance criteria were averaged for the particular water network. The
relative criteria R2 and MRE were shown only if can be calculated for over 95% of con-
sidered elements. (?) Note that included run-times were obtained with use of the model
reduction application described in Chapter 4.

Component Original Reduced Scope of MBE TRE R2 MAE MRE RMSE Run-time?

model model reduction
statistics statistics % Ml/day % m or l/s % m or l/s s

Epanet Net3 ≤ 1
Junctions 92 12 86.96 - - 0.987 0.072 1.820 0.095

Pipes 117 21 82.05 - - - - - -
Reservoirs 2 2 0.00 0.045 - - - - -

Tanks 3 3 0.00 -0.030 1.094 0.976 - - -
Pumps 2 2 0.00 - - 1.000 0.063 - 0.130
Valves 0 0 0.00 - - - - - -

Rio ≤ 1
Junctions 164 3 98.17 - - 1.000 0.000 0.000 0.000

Pipes 200 3 98.50 - - - - - -
Reservoirs 1 1 0.00 0.000 - - - - -

Tanks 1 1 0.00 0.000 0.000 1.000 - - -
Pumps 1 1 0.00 - - 1.000 0.000 - 0.000
Valves 0 0 0.00 - - - - - -

Machu Picchu ≤ 1
Junctions 922 589 36.12 - - 1.000 0.000 0.216 0.001

Pipes 690 618 10.43 - - - - - -
Reservoirs 2 2 0.00 0.000 - - - - -

Tanks 0 0 0.00 - - - - - -
Pumps 0 0 0.00 - - - - - -
Valves 289 289 0.00 - - 0.967 0.001 116.573 0.002

Rlyeh ≤ 1
Junctions 1009 39 96.13 - - 0.763 0.223 0.574 0.295

Pipes 1102 64 94.19 - - - - - -
Reservoirs 2 2 0.00 0.000 - - - - -

Tanks 3 3 0.00 0.000 0.018 0.998 - - -
Pumps 1 1 0.00 - - 1.000 0.005 - 0.013
Valves 11 11 0.00 - - 0.961 0.012 1.411 0.016

Cydonia 5
Junctions 3535 1022 71.09 - - 0.886 0.196 191.967 0.865

Pipes 3279 1337 59.23 - - - - - -
Reservoirs 5 5 0.00 -0.001 - 1.000 - - -

Tanks 12 12 0.00 0.003 1.224 0.888 - - -
Pumps 19 19 0.00 - - 0.965 0.995 - 1.258
Valves 417 417 0.00 - - 0.288 0.272 1920.204 0.433

Ankh-Morpork 45
Junctions 12828 7738 39.68 - - 0.999 0.006 0.023 0.012

Pipes 9419 6796 27.85 - - - - - -
Reservoirs 1 1 0.00 -0.002 - 1.000 - - -

Tanks 3 3 0.00 0.001 0.011 1.000 - - -
Pumps 17 17 0.00 - - 1.000 0.003 0.007 0.003
Valves 3858 3858 0.00 - - 0.816 0.003 5.62e+10 0.004



Chapter 3 Energy balance in model reduction of water distribution systems 77

(a) Original model. (b) Reduced model.

Figure 3.4: Net3 network layout in the original and reduced model.

(a) Original model. (b) Reduced model.

Figure 3.5: Rio network layout in the original and reduced model.

were subjected to reduction directly without any modifications. Therefore it is expected

that pre-processed models would resemble the original model even more accurately. Some

ideas of model preparation are given in Chapter 5.

The algorithm performed very well for the tree-shaped networks such as Rio, but even for

the looped water networks such as Rlyeh the reduction obtained a satisfactory hydraulic

resemblance. Even for complex networks with a large number of valves such as Machu

Picchu or Ankh-Morpork the results of reduction were surprisingly very accurate. But on
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(a) Original model. (b) Reduced model.

Figure 3.6: Machu Picchu network layout in the original and reduced model.

(a) Original model. (b) Reduced model.

Figure 3.7: Rlyeh network layout in the original and reduced model.
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(a) Original model. (b) Reduced model.

Figure 3.8: Cydonia network layout in the original and reduced model.

(a) Original model. (b) Reduced model.

Figure 3.9: Ankh-Morpork network layout in the original and reduced model.



Chapter 3 Energy balance in model reduction of water distribution systems 80

the other hand due to a large number of valves that are automatically retained the scope

of reduction was much smaller than in other networks.

The worst results were obtained for Cydonia network. However, the original model Cydo-

nia simulated in Epanet2 reported dozens of warnings hence it was expected that obtained

accuracy would not be in order with the other networks.

Other factors that significantly deteriorate the model reduction accuracy are control rules

incorporated in the model. The pump or valve control based on the tank level might lead to

significant discrepancy between the models as even small difference in tank level can switch

off/on the control element in the preceding or succeeding time step. Such control rules

significantly decreased the accuracy in case of reduction of the Net3 and Rlyeh models.

Therefore it is recommended to replace such tank-based control rules with time schedules

in order to achieve a more accurate reduced model.

It is important to point out that simplification accuracy is also affected by selection of the

operating point for linearisation (Zehnpfund and Ulanicki, 1993). In the WDS simplifica-

tion studies in this thesis a recommendation from (Alzamora et al., 2014) was followed;

i.e. operating point should be representative for normal operations of the network and

should be chosen for average demand conditions while keeping at least one pumping unit

working at each pumping station in order to avoid zero flow pipes. For small networks

determining the operating point is a simple task but for large water networks few runs of

simplification algorithm is sometimes needed to obtain the most satisfactory point.

It should be highlighted that the reduced topologies preserved the original networks layout.

The retained critical elements are easy to identify, hence, the further analyses on the

simplified network will be more convenient as it enhances understanding of actual network

functioning.

As was aforementioned the model reduction algorithm performed as expected; i.e. all the

reduced models adequately replicate hydraulic behaviour of the original model in terms

of employed metrics. Although, not all the measures of quality of the reduced model

proposed in Section 3.4.1 were found practical and conclusive. Especially, the MRE, used

by Takahashi et al. (2010) in calibration study, was found impractical and misleading.

Firstly, it cannot be calculated for time series with zero value, and secondly, due to its

relativity a large error can be obtained as can bee seen in Figure 3.10 which shows flow

time series for a valve in the original and reduced Ankh-Morpork models. Despite that

the MAE and RMSE are very small the MRE is very large. Thereby, the average MRE in

case of Ankh-Morpork simplification is in magnitude of 5.62e+10 while in fact the reduced
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model was resembling the original model very accurately as can be seen in Table 3.3 and

Section B.6. The same occurred for MRE calculated for the Cydonia network.

The relative goodness-of-fit R2(NSE) was found much more reliable and evidential, how-

ever it is recommended to used it in conjunction with other metrics such MAE and RMSE

as sometimes R2 can be also deceptive as shown in Figure 3.11.
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Figure 3.10: Illustrating the drawback of mean relative error. This plot depicts the
valve’s flows from the original and reduced Ankh-Morpork models. While the RMSE and
MAE criteria indicate a very small discrepancy between depicted trajectories, the MRE
suggested a huge difference between the compared flows.

3.4.3 Adaptation to abnormal situations and topographical changes

One of the main goals of the considered application was an automatic model simplification

that would account for structural changes to the water network in real-time. Many abnor-

mal situations could occur in a real water network e.g. pump station could be disconnected

due to reallocation or maintenance service, tank could be under maintenance service or

a pipe burst would require to isolate part of the network. Also control actions that are

necessary to manage a water distribution system can result in changes of the connectivity

of the network.
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Figure 3.11: Illustrating drawback of R2. The R2 = 1 indicates a perfect fit but MAE
and visual inspection clearly demonstrate a quite significant mismatch in terms of the
flow rate magnitude.

The idea of the optimisation scheme, shown Figure 2.11, is that operator could modify the

original model structure in response to the occurrence of the abnormal situation. Such

modified model is subsequently simplified within time interval required to calculate new

optimal schedules.

Figure 3.12 illustrates the Epanet2 Net3 benchmark model. It also depicts reduced models

in response to abnormal structural changes. Figure 3.12a depicts the outcome of simplifi-

cation of the original model. Figure 3.12b shows a reduced model structure when Pump

10 is out of service due to power supply failure. The reduced model in Figure 3.12c is a

result of Tank 2 being removed from the original network due to e.g. maintenance service.

3.4.4 Energy distribution problem

Initially, only the hydraulic comparison was performed in order to validate accuracy of

the reduced models. However, while determining the optimal pumps operation for the

simplified water network in (Skworcow et al., 2010) it was observed that the energy distri-

bution was different in the full and the simplified models (Paluszczyszyn et al., 2011). The

reason was that the nodes elevation and the pressure constraints are not considered in the
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(a) Topology of the original model. (b) “Standard” topology of the reduced model.

(c) Topology of the reduced model when Pump 10 was
removed.

(d) Topology of the reduced model when Tank 2 was
removed.

Figure 3.12: Illustrating the adaptation to structural changes occurred in the Net3
water network.

model reduction algorithm. Subsequently, the pump speed required to satisfy minimum

pressure constraints might be different for the reduced model and the prototype. This

affects especially tree-shaped parts of WDS where pumps are pumping directly to satisfy

demand. Such parts of water network, after simplification, are typically represented by a

single node with the demand aggregated from the removed nodes. Similar observations

were reported by Giustolisi and Todini (2009) and resulted in formulation of the EGGA

to account for errors in energy balance equations of the standard GGA.

Therefore, to increase accuracy of the optimisation studies with the use of reduced water
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network models apart from hydraulic characteristics the energy balance should also be

considered. The energy distribution aspect might be a significant factor when calculating

optimal schedules for control elements, especially when demands at the removed nodes are

being distributed in isolation from minimum service pressure constraints.

3.5 Aspect of energy distribution

To demonstrate the problem further consider a hypothetical and leak-free water network

shown in Figure 3.13a. The network includes a reservoir with a water level fixed on 0

m and a variable-speed pump which pumps directly to the demands on nodes 3, 4 and 5

whilst satisfying the minimum pressure constraint of pmin =16 m at all nodes. The pump

is described by the hydraulic curve hp = 53.33− 0.005334q2 and all the pipes are 1000 m

long, with 300 mm diameter and the HazenWilliams factor of 100. The pressure values

as shown in Figure 3.13 were calculated using Epanet2. The nodal elevations and base

demands are shown in Table 3.4. The EPS was conducted over 24 h with time step of 1 h.

Table 3.4: Nodal elevations and base demands.

Node Elevation [m] Demand [m3/s]

2 0 0
3 10 0.01
4 20 0.01
5 30 0.01

Figure 3.13b illustrates the outcome of simplification when node 3 was selected for reten-

tion. The algorithm has removed nodes 4 and 5 and transferred the demands to node 3.

When both networks were compared the water volume and energy balance were similar

as well as pressure and flow values in the retained components. However, the optimal

pump control solutions for the two models are different if the original pressure constraints

of 16 m are used. The full model still would maintain the pressure of 16 m at node 5

whereas in case (b) where the pressure at node 3 was 37.41 m; an optimisation algorithm

would detect an excess of the energy supplied by the pump to the system and lower the

pump speed to meet the requirements for the minimum service pressure of 16 m at node

3 (see Figure 3.14). Figures 3.13c and 3.13d show cases when nodes 4 and 5 were kept,

respectively. In Figure 3.14 can be seen that the pump curve for the case (d) is the closest

to the original pump head curve. Therefore only selection of the highest node 5 would

give a similar optimal solution as the full model.
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Figure 3.14: The original and adjusted pump head-flow curves to meet the service
pressure constraint of 16m. s is the normalised pump speed.

To investigate this problem further an energy audit was carried out for the original and

the reduced models. The energy audit was based on the concepts proposed in (Cabrera

et al., 2010) and further extended in (de Souza et al., 2011; Bolognesi et al., 2014; Cabrera

et al., 2014).

The methodology to perform an energy audit, proposed by Cabrera et al. (2010), includes

the identification and quantification of all elements that either supply energy or consume

energy to/from the water network. Elements like reservoirs or tanks supply energy in

form of potential energy associated with the head of water. Also the work done by pumps

introduces energy to the network. The energy output is due to energy delivered to users

(this term refers to energy delivered to consumption nodes), energy dissipated due to

friction and energy losses through leaks.

Here, only a concise description of the methodology and mathematical definitions of energy

terms is given. For a more informative description with applications the reader should refer

to (Cabrera et al., 2010; Bolognesi et al., 2014; Cabrera et al., 2014).

In (Cabrera et al., 2010) the following energies have been identified:

• Input energy supplied by the reservoirs

ER(tp) = γ
R∑
i=1

[ tp∑
tk=t1

QRi(tk)HRi(tk)

]
∆t (3.16)



Chapter 3 Energy balance in model reduction of water distribution systems 87

where γ is the water specific weight, R is the number of reservoirs, tp is the total

simulation time, tk is the time interval of the simulation, QRi(tk) is the reservoir i

inflow to the network at time tk, HRi(tk) is the reservoir i piezometric head at time

tk and ∆t is the time interval of integration (∆t = tk+1 − tk).

• Energy introduced by pumps

EP (tp) = γ

P∑
i=1

[ tp∑
tk=t1

QPi(tk)HPi(tk)

]
∆t (3.17)

where P is the number of pumps, QPi(tk) is the pump i flow rate at time tk, HPi(tk)

is the head added by pump i at time tk.

• Energy supplied to users

EU (tp) = γ

U∑
i=1

[ tp∑
tk=t1

dUi(tk)HUi(tk)

]
∆t (3.18)

where U is the number of demand nodes, dUi(tk) is the node i demand at time tk

and HUi(tk) is the node i piezometric head at time tk.

• Energy outgoing due to leaks

EL(tp) = γ
L∑
i=1

[ tp∑
tk=t1

qLi(tk)HLi(tk)

]
∆t (3.19)

where L is the number of nodes with leaks, qLi(tk) is the leak’s flow rate at the node

i at time tk and HLi(tk) is the node i piezometric head at time tk.

• Energy dissipated in links

ED(tp) = γ
D∑
i=1

{ tp∑
tk=t1

[qDi(tk) + qLi(tk)] ∆hDi(tk)

}
∆t (3.20)

where D is the number of links, qDi(tk) + qLi(tk) is the link i flow rate including a

leaked flow rate before leaking out and ∆hDi(tk) is the link i headloss at time tk.

• Tanks’ energy compensation

∆ET (tp) =

T∑
i=1

[ET i(tp)− ET i(t1)] = γ
T∑
i=1

{
Ai
[
z2
i (tp)− z2

i (t1)
]
/2
}

(3.21)



Chapter 3 Energy balance in model reduction of water distribution systems 88

where T is the number of tanks, Ai is the cross-sectional area of tank i and zi(t1)

and zi(tp) are the water levels in tank i at initial and final time, respectively.

The energy balance for a water network, in the specified period tp, combined all the above

energies and is defined as follows:

ER(tp) + EP (tp) = EU (tp) + EL(tp) + ED(tp) + ∆ET (tp) (3.22)

Some of performance indicators developed in (Cabrera et al., 2010) demanded to introduce

a theoretic energy called a minimum useful energy. Its purpose is to indicate a minimum

energy required to deliver water to users under specified minimum service pressure.

• Minimum useful energy

EUmin(tp) = γ

U∑
i=1

[ tp∑
tk=t1

dUi(tk)HUmini(tk)

]
∆t (3.23)

where HUmini is defined by HUmini = ei + pmin/γ and ei is the node i elevation with

reference to the network’s lowest elevation and pmin represents the minimum level

of service pressure.

Beside the energy audit concept, Cabrera et al. (2010) defined a number of performance

indicators in order to identify or diagnose weaknesses of the considered network. Table 3.5

lists the performance indicators that were adapted to compare both original and reduced

models in terms of energy distribution. I1 is the ratio between the real energy entering

the system, and the minimum useful energy. I5 is the direct ratio between the energy

delivered to users, and the minimum useful energy. I5 shows how average pressure levels

are meeting the minimum pressure constraints. I5 < 1 shows that average pressure levels

are insufficient and below minimum standards. In turn, I5 > 1 indicates that the pressure

is kept above the minimum standards. A value closer to 1 indicates greater efficiency in

satisfying the minimum pressure constraint. However, it is needed to highlight that even

for I5 > 1, at some nodes the pressure standard may not be satisfied (Cabrera et al., 2010).

In order to preserve original energy distribution in the reduced models the calculated

energy indicators should be approximately the same for both, the full model and the cor-

responding simplified model. The energy audits and associated performance indicators

for the four cases considered in Figure 3.13 are summarised in Table 3.6. The conclusion
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Table 3.5: Energy efficiency indicators. Where ER is the input energy supplied by the
reservoirs, EP is the energy introduced by pumps, EU is the energy supplied to users and
EUmin

is the minimum useful energy.

Indicator Definition

Excess of supplied energy I1 = (ER(tp) + EP (tp))/EUmin(tp)
Excess of energy delivered to users I5 = EU (tp)/EUmin(tp)

from energy audits was much the same as from the pump head curves illustrated in Fig-

ure 3.14; i.e while energy balance was kept almost the same, the energy EUmin associated

with minimum service pressure was different for each case. Thereby the indicators I1 and

I5 were different for all three cases of the simplified models. It is evident that the model

reduction algorithm does not consider the energy distribution what may lead to incorrect

results in pump scheduling, hence an extension to the algorithm is needed.

Table 3.6: The energy audit carried out for all four cases illustrated in Figure 3.13.

Energies [kWh/day] Models
a b c d

EU 345.74 348.70 346.48 346.85
ER 0 0 0 0
EP 356.96 356.96 356.96 356.96
ED 11.22 8.27 10.49 10.11
EUmin 264.78 191.23 244.46 286.06
EB = ER + EP − EU − ED 0 0 0 0

I1 1.35 1.87 1.46 1.25
I5 1.31 1.82 1.42 1.21

3.6 Extension to model reduction algorithm

In order to retain the input model energy distribution an extension to the original simpli-

fication procedure, given in (Ulanicki et al., 1996; Alzamora et al., 2014), was proposed.

The following steps were introduced by the author of this thesis into the WDS model

reduction algorithm:

1. Perform an initial energy audit for the original water network as in (Cabrera et al.,

2010).
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2. Calculate the minimum useful energy EiUmin
for the each node i ∈ U .

EiUmin
= γ

[ tp∑
tk=t1

di(tk)Hmini(tk)

]
∆t,∀i ∈ U (3.24)

where U is the number of demand nodes.

3. The resulting vector of minimum useful energies is subjected to the Gaussian elim-

ination in a similar way as the vector of nodal demands i.e. the nodal minimum

useful energy EiUmin
is distributed to the neighbouring nodes proportionally to the

pipes’ conductance.

4. Calculate a new minimum pressure constraint pSimin
for each node to which any

demand was transferred to.

pSimin
=

ESiUmin

γDS
i ∆t

− ei, ∀i ∈ US (3.25)

where US is the number of nodes in the simplified model, ESUmin
is the new i nodal

minimum required energy obtained via Gaussian elimination, DS
i is the new total

demand at the node i and ei is the node i elevation with reference to the lowest point

in the water network.

5. Carry out an energy audit for the simplified network and compare it with the initial

audit.

The above methodology was applied to the example water network illustrated in Fig-

ure 3.13. The results are shown in Table 3.7. It can be seen that the EUmin and indicators

I1 and I5 for the simplified networks (b, c and d) are almost the same as for the original

network (a). It can also be observed that before it would be recommended to keep the

highest located node in the network to maintain initial energy distribution, whereas for

the modified reduction process with inclusion of the additional steps which modify the

pressure constraints the need to select such node is unnecessary. This makes the extended

model reduction algorithm a straightforward process where no manual network analysis

pre-processing is required to preserve the energy distribution.

Table 3.8 contains the new service pressure constraints calculated for each node. Such set

of pressure constraints can be sent to the controller as the modified operational constraints.



Chapter 3 Energy balance in model reduction of water distribution systems 91

Table 3.7: The energy audit with EUmin included in the reduction process.

Energies [kWh/day] Models
a b c d

EU 345.74 348.70 346.48 346.85
ER 0 0 0 0
EP 356.96 356.96 356.96 356.96
ED 11.22 8.27 10.49 10.11
EUmin 264.78 264.78 264.76 264.79
EB = ER + EP − EU − ED 0 0 0 0

I1 1.35 1.35 1.35 1.35
I5 1.31 1.32 1.31 1.31

Table 3.8: New calculated pressure constraints to be imposed on the remaining nodes
for the all four cases.

Minimum service pressure [m] Models
a b c d

p2min 16 16 26.031 28.612
p3min 16 25.999 - -
p4min 16 - 17.596 -
p5min 16 - - 8.295

3.7 Case study - a small water network

The proposed methodology was applied to a model of a small DMA depicted in Fig-

ure 3.15a. The structural characteristic is similar to that in Figure 3.13a i.e. the pump is

delivering water directly to the demand nodes. This leak-free network contains 165 nodes

with a typical diurnal domestic demand pattern, 201 pipes with different length, diameter

and Hazen-Williams coefficient parameters, 1 pump and 1 reservoir. The minimum service

pressure of 20 m is assumed the same for all nodes. The EPS was conducted over a period

of 24 h with the time step of 1 h.

The simplifications and energy audits were performed for the set of 10 representative nodes.

The arbitrarily selected set of nodes from which a single node to be retained was selected

vary in elevation with reference to the reservoir and in location in the water network model

(see Figure 3.15a). The original network was simplified 10 times, resulting each time with

the same topology illustrated in Figure 3.15b. The average run-time of simplification

process was less than 1 second. The energy audits calculated for each simplified model

are summarised in Table 3.9. Columns numbered from 1 to 10 correspond to nodes from

Figure 3.15a selected to be retained in the simplified model.
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(a) (b)

Figure 3.15: The water network model before (a) and after (b) simplification. Numbers
indicate a single node to be retained, varied in elevation with reference to the reservoir
and in location in the water network.

In Table 3.9 the performance indicators I1, I5 and minimum useful energy EUmin , calcu-

lated for a standard model reduction procedure (i.e. not considering energy) in most cases

significantly differs from the benchmarks values of I1 = 1.37, I5 = 1.35 and EUmin = 215.91

kWh/day.

It is worth to highlight that the case with node 10 retained, which represents a case

when no node has been selected to retain except nodes connected to the control elements,

EUmin = 77.12 kWh/day, I1 = I5 = 3.84 are almost three times higher when compared

to the original water network. Such an excess of potentially recoverable energy I1 =

3.84, depended on the minimum pressure constraint pmin, would mislead the optimiser

and thereby the found optimal solution applied to the original water network would not

guarantee the minimum service pressure.

Intuition suggests to keep the highest node, 1, which energy audits values are the closest to

the original water network and indeed it is a standard practice to locate pressure sensors

at the highest nodes in a DMA in pressure control schemes. However, when a water
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network contains many nodes with similar elevations the selection of the best node would

be difficult. Columns labelled 5,6,7 and 8 in Table 3.9 illustrate such a case. The four

nodes share the same elevation but their energy distribution and performance indicators

are different. However, when the aspect of energy distribution is taken into account during

the water network simplification a selection of nodes is not needed but then new pressure

constraints must be imposed on those nodes. In all cases the simplified minimum useful

energy was ESUmin
= 215.91 kWh/day ensuring that the ratio of water energy introduced

to the network to energy required to deliver water under minimum service pressure was

kept the same (see bottom rows in Table 3.9).

3.8 Summary

This chapter has investigated various model reduction techniques that can be applied to

models of WDSs in order to provide a tool for better understanding of water network

functioning and also to decrease the computational burden associated with optimisation

of WDS design and operation. The literature review conducted in Section 3.2 has revealed

benefits and drawbacks of these techniques.

While some of the techniques demonstrated a potential for implementation in a real time

optimisation strategies the one which has been found fast, practical and reliable was the

variable elimination method proposed by Ulanicki et al. (1996). Its algorithmic formulation

and proven record of successful applications made it a natural choice for a model reduction

technique that can meet criteria outlined earlier in Section 2.5.

However, more insightful analysis conducted in Section 3.5 has exposed a potential for fur-

ther improvement of this model reduction technique. Whereas in the original simplification

method proposed by Ulanicki et al. (1996), the reduced model represented accurately the

original hydraulic water network characteristics, the energy distribution was not preserved.

This could cause a situation, where the pump speed required to satisfy specified minimum

pressure constraints is different for the reduced model and the original model. This prob-

lem and its consequences have been illustrated in Section 3.5.

In the penultimate section a methodology based on the energy audits concepts has been

incorporated into the model reduction algorithm allowing the preservation of the original

model energy distribution. The idea is based on the distribution of minimum useful en-

ergy which is depended on the minimum service pressure. The standard model reduction

algorithm has been extended to reallocate not only demand of the removed nodes but

also their minimum useful energy (pressure constraints). The simplified model kept the
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original model energy distribution due to new pressure constraints. Such an approach

preserves both the hydraulic and the energetic characteristic of the original water network

and therefore met the requirements of the control strategy designed for a water network

optimal scheduling.

Finally, this new contribution has been evaluated on the theoretical case study and the

model of a small DMA. Especially, the evaluation in Section 3.7 has demonstrated the

suitability of the proposed approach; the simplified model kept the original model energy

distribution due to new pressure constraints. Hence, the new extension to the model reduc-

tion technique can simplify the inherent complexity of water networks while preserving the

completeness of original information in order to perform correct successive optimisation.



Chapter 4

Improving numerical efficiency of

model reduction algorithm

4.1 Introduction

The research outcomes of the extended model reduction algorithm developed in Chapter 3

yielded promising results. Hence, it was then decided to transform the extended algorithm

into industry-viable software.

Initially, the aim of implementation was to provide means to evaluate research outcomes

on the range of theoretical and real-world models. However, from the beginning it was

evident that the model reduction algorithm would be needed for other R&D projects

carried out in WSS e.g. it was essential for the research study described in Section 2.5

and in Chapter 5. Therefore, much effort was directed to produce a software up to the

standard that resembles an off-the-shelf product.

Research described in this chapter was mainly generated from the necessity to improve the

numerical efficiency of the algorithm. Use of GIS and SCADA in water industry resulted

in an increasing amount of information about actual network topology and service that

can be incorporated into a model. Hence, to ensure that the model reduction application

would be able to cope with complex topologies of large size networks an investigation was

carried out focused on: (i) an efficient way to manage large sparse matrices representing

WDN topologies, (ii) exploitation of multi-thread computing aimed at distributing the

computational load on multi-core processors, and (iii) analysis of water networks aimed

96
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at improving the understanding of network functioning, and eventually, reducing the com-

putational effort while managing or even improving the accuracy of the extended model

reduction algorithm. It was apparent that none of these research directions prevails on

the others, but rather their combined development would provide means to enhance, and

ultimately, create a practical, reliable and efficient tool.

The following sections, 4.2 and 4.3, gather all the requirements and necessary tools re-

quired to carry out the implementation. Section 4.4 outlines an initial design of the

implementation process and reveals some arisen computational issues to be investigated.

Section 4.5 focuses on the computational aspects arisen throughout the software develop-

ment. The last section presents and briefly describes features of the final WDN model

reduction application.

4.2 Application requirements

At this stage all the requirements already outlined in Section 2.5 and partially mentioned

in Chapter 3 are gathered to formulate a foundation upon which the development will be

carried out. Such synopsis would allow to identify not only necessary tools needed in the

development process but also areas where a further research is likely to be conducted.

The following requirements were identified for the model reduction application:

Real-time or near real-time model reduction Online optimisation techniques em-

ployed in WSS research projects required that the process of WDN reduction is

performed in real-time or near real-time.

Demand distribution log During the simplification process, nodes are removed and

associated demands are redistributed based on the removed pipes’ conductance. For

the optimal scheduling purposes it was necessary to log the demands reallocation due

to the need for online demand predictions and updates based on real-time telemetry;

e.g. such information was necessary in the case study described in Chapter 5.

Energy distribution Operational optimisation techniques usually aim to calculate op-

timal control schedules for pumps and therefore it is crucial to preserve the energy

distribution of a original water network.

Interaction with hydraulic simulator A hydraulic simulator is an essential tool, espe-

cially at the initial stage of the simplification process as it provides hydraulic results
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of the extended period simulation. It was decided to use Epanet2 Toolkit software

as the hydraulic simulator. Hence, an interface between Epanet2 Toolkit and the

created application was required to automatically read hydraulic data results from

simulation.

User interface User interface should be plain, transparent and intuitive to ease the whole

process of model reduction. Also, it should allow to define the scope of the simpli-

fication i.e. user should be able to select the WDN elements to be retained in the

reduced model.

4.3 Tools and software employed

It was demonstrated in Section 3.4.2 that the simplification algorithm performed with

a sufficient accuracy. But because the model reduction algorithm involved a number of

matrix operations with time complexity of order O(n3) for the n×n matrix, the calculation

time for large-scale networks (more than 10000 elements) could take up to several hours

what is too long for utilisation in real-time applications.

Nowadays, modern computers have two or more CPU cores that allow multiple threads

to be executed simultaneously. Moreover, computers in the near future are expected to

have significantly more cores (Microsoft, 2012). To take advantage of this advent in IT

hardware it was decided to parallelise sections of the module algorithm code with a large

number of matrix operations. The workload for these compute-intensive operations was

distributed among multiple processors. For this purpose a workstation powered by the six-

core Intelr CoreTM i7 980X processor was provided as a host to perform all the necessary

calculations.

The implementation was carried out with utilisation of the Microsoft Visual Studio 2010

package. Visual Studio 2010 comes with an integrated support for the .NET 4.0 frame-

work, which enhanced the parallel programming by providing a new runtime, new class

library types and new diagnostic tools (Microsoft, 2012). These features allowed for the

implementation of the scalable parallel C# code without having to work directly with

threads or a thread pool and and hence provide means for improving the performance of

numerical calculations.

To represent a water network in a computerised form an object-oriented programming

framework (Ten Dyke and Kunz, 1989) was used. The object-oriented programming
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paradigm is, nowadays, one of the most used and established programming language mod-

els, also utilised in creating of software for WDS analysis, e.g. see (van Zyl et al., 2003;

Guidolin et al., 2010; van Zyl and Chang, 2010; Piller et al., 2011). Figure C.1 illustrates

water network data modelled with the object-oriented approach.

The input data for the model reduction algorithm are water network topology and simu-

lated hydraulic behaviour of the considered water distribution network. For this purpose

the open-source Epanet2 Toolkit (Rossman, 2000a) was used as a hydraulic simulator to

perform an extended period simulation of WDN hydraulic behaviour. The library consists

of set of procedures that allow to run/stop simulation, modify simulation and network

parameters and read/save the simulation data. The Epanet2 Toolkit provided also a com-

patibility with “.inp” (INP) format as it is a commonly recognized file format used to

store water network models. Unfortunately functionalities of this library are limited and

a number of additional C# scripts were written to enable a dynamical hydraulic data

export.

The structure of matrix representing a water distribution network is naturally sparse.

Therefore, in order to exploit this sparsity feature additional open-source libraries, Math.NET

Numerics (http://mathnetnumerics.codeplex.com/ ), were investigated to provide sparse

matrix operations and storage implementations.

4.4 Model reduction process

The overview of the overall model reduction process is illustrated in Figure 4.1.

At first, a water network model stored in the INP file format is simulated with the aid of

Epanet2 Toolkit to obtain the hydraulic results. Next, the water network model is being

inspected to locate any rules or controls associated with the water network elements.

Complex and large water networks modelled in Epanet2 often contain rules and controls

that can decrease the accuracy of the simplification. It is highly recommended to eliminate

the controls and rules and instead use time patterns resulting from the simulation of the

original model (with control and rules) and associate the patterns with the water network

elements. Such an approach serves as a hydraulic benchmark when original and reduced

models are compared. Note that in Epanet2 user can associate rules or controls with

pipes, transforming them in fact into valves. Since no time patterns can be assigned to

the pipe, such rules or controls cannot be automatically eliminated. All components with

controls/rules that could not be replaced with a time pattern are automatically selected

for retention.
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Figure 4.1: The overall process of the extended model reduction algorithm.

At the preparation stage the initial energy audit of the considered water network is carried

out as described in (Cabrera et al., 2010) and Section 3.5.

The model preparation stage involves also a selection of other important hydraulic elements

to be retained. Initially, it was assumed that operator, based on his knowledge about the

particular WDS would choose network elements with a significant importance in order

to preserve hydraulic characteristics for wide range of operating conditions. But, even

though that this operation needs to be done once for the particular model, it could be a

difficult and time consuming task. Hence, the model reduction process would not be fully

automatic as required.

Although a typical hydraulic simulation model contains thousands of pipes but only several

tanks, pumps or control valves. Therefore, it is an adopted strategy here to reduce the

number of pipes and nodes only and retain all other important elements. The identified

non-pipe components of a WDS are listed in Table 4.1. The default is to retain all these

elements, but alternatively, user can define a list of additional elements not to be removed.

To help out user in a decision-making process which elements should be additionally re-

tained to replicate more accurate the hydraulic behaviour and layout of original water

network few tools were introduced at the preparation stage. They allow to select nodes,

based on their degree; i.e number of neighbours, or select pipes based on their diameter, an

approach adapted inter alia by Preis et al. (2009). Nodes with many neighbours are often
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Table 4.1: Important elements in water distribution network.

Water distribution network elements

Tanks (variable head)
Reservoirs (fixed head)
Pumps
Valves
Pipes with associated controls or rules
Nodes connected to any of the above

selected for pressure logger locations. In turn, large diameter pipes often form skeleton of

the network. Hence, option to preserve critical nodes and large diameter pipes provides

means to retain layout of the network, which is important in WDN design optimisations.

Taking into account the aforementioned considerations, the input model is split up into the

two sub-models. Sub-model A, containing pipes and nodes, is subjected to the extended

reduction algorithm described in Section 3.6 and afterwards, reunited with the other part

containing non-pipe and important elements (Sub-model B) to form the complete reduced

model, which is saved in the INP file format. Additional output files contain the demand

distribution log and new operational pressure constraints.

4.5 Improving numerical efficiency of simplification algo-

rithm

Once the overall simplification process was implemented it was subsequently tested on

a number of water network models. While the achieved results were satisfactory from

the hydraulic perspective, the computational time required to reduce large and medium

size networks was in order of hours. Obviously such long computational time is not suit-

able for online optimisation strategies therefore the attention was directed to improve the

numerical efficiency of simplification algorithm. The following computational aspects of

the implementation were investigated in order to reduce the overall time of the model

reduction process.

4.5.1 Parallel programming

Firstly, the focus was placed on the performance of matrix operations. The model re-

duction algorithm involved a number of matrix multiplications thereby the speed of these
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calculations is factor with a profound influence on the total algorithm calculation time.

It was decided to investigate suitability of the model reduction algorithm for a parallel

programming and thereby exploit the potential of recent multi-core CPUs. The parallel

programming is often employed for highly compute-intensive algorithms. It follows the

basic idea of decomposition or division of data to be computed asynchronously by each

processors. The process of decomposition is dependable on algorithm to be parallelised

and type of parallel computing architecture. A number of concurrent programming models

were developed over the years e.g. message passing interface (MPI) or multi-threading (see

(Rauber and Rnger, 2010) for details). In general, all of them have a static or dynamic

period for partitioning or dividing data quantity to be computed in each processor and,

eventually, a subsequent utilisation period of intermediate computations to compute the

final result.

There is universal agreement that writing multi-threaded code is difficult (Sutter and

Larus, 2005). For example, consider snippets of C# code in Listings 4.1 and 4.2 that show

sequential and parallel matrices multiplication using the multidimensional arrays (in this

case two-dimensional arrays). While the numerical results of both codes are the same the

way they are obtained is different as the order of iterations in the parallel variant is not

necessarily sequential as can be seen in Figure 4.2. Hence, a careful consideration needs

to be done while paralleling any algorithm. In fact many algorithms are not suitable for

parallelisation as their overall efficiency might not be improved due to the required inter-

core communication. For more information about the concurrent programming see e.g.

(Pacheco, 2011) and references therein.

Fortunately, .NET 4.0 Framework enhanced the parallel programming by providing a new

runtime, new class library types and new diagnostic tools (Microsoft, 2012). These fea-

tures allowed the implementation of the scalable parallel C# code without having to work

directly with threads or a thread pool.

Listing 4.1: Sequential multiplication of multidimensional arrays in C#.

for (int i = 0; i < size; i++)

{

for (int j = 0; j < size; j++)

{

double tmp = 0;

for (int k = 0; k < size; k++)

{

tmp += m1[k, i] * m2[j , k];

}

result[j,i] = tmp;
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}

}

Listing 4.2: Parallel multiplication of multidimensional arrays in C#.

Parallel.For(0, size , i =>

{

for (int j = 0; j < size; j++)

{

double tmp = 0;

for (int k = 0; k < size; k++)

{

tmp += m1[k, i] * m2[j , k];

}

result[j,i] = tmp;

}

});


1.801 1.432 1.353 1.544

1.525 0.946 1.257 1.068

2.079 1.3610 1.5411 1.2312

1.1413 0.8014 0.8215 1.0216


(a) Sequential


1.802 1.435 1.359 1.5410

1.521 0.943 1.257 1.0614

2.074 1.368 1.5411 1.2312

1.146 0.8013 0.8215 1.0216


(b) Parallel

Figure 4.2: Result matrices obtained from multiplication of two 4×4 matrices with use
of the code in Listings 4.1 and 4.2. Note that subscript values correspond to the order of
filling in the result matrices.

Hence, only the most compute-intense and suitable parts of the model reduction algorithm

were subjected to parallelisation. This includes calculation of the Jacobian matrix of a

considered system and inner loops of the Gaussian elimination process. The inclusion of

the parallel programming techniques drastically reduced the algorithm calculation time.

Table 4.2 contains the simplification run-times for a medium size network which contained

3535 nodes, 3279 pipes, 12 tanks, 5 reservoirs, 19 pumps and 418 valves.

The obtained times of for model reduction were satisfactory for the requirements of the

control strategy described in Section 2.5. The models to be considered in that study

would be significantly smaller in size than model used as a benchmark in Table 4.2. The

calculation time to perform all optimisation computations was under 4 minutes on average

and was never longer than 5 minutes (Skworcow et al., 2010). Hence, the achieved times of

less than 15 minutes to reduce much more complex model is more than adequate to perform

all computations (model reduction and optimisation) within the desired time interval of 1

hour.
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Table 4.2: Times taken to complete the simplification process for a medium-sized water
network. The benchmark network contained 3535 nodes, 3279 pipes, 12 tanks, 5 reservoirs,
19 pumps and 418 valves.

CPU threads Simplification run-time Reduction of run-time
[s] [%]

1 5761 0
2 4417 23.33
4 2217 61.52
12 758 86.84

4.5.2 Matrix storage

Recall from Section 2.2 that topology of water network can be represented as an incidence

matrix that describes the connectivity between pipes and nodes. Such a representation

is also useful for the implementation purposes as the network topology can be explicitly

stored in one of the available data structures in the C# language specification.

The considered C# data structures were single-dimensional arrays, multi-dimensional ar-

rays and jagged arrays (arrays of arrays). A single-dimensional array is a list of variables

where access to its elements is trough an index. A multi-dimensional array has two or

more dimensions, and an individual element is accessed through the combination of two

or more indices. A jagged array is an array of arrays in which the length of each array can

differ. Jagged array elements are accessed also with two or more indices (Schildt, 2010).

As incidence matrices for water network topology are usually sparse (see Figure 4.3) it was

decided to examine potential of the external C# library, Math.NET Numerics. This free

library aims to provide methods and algorithms for numerical computations in science and

supports both dense and sparse matrices (Math.NET Numerics, 2013). Sparse matrices in

Math.NET Numerics are represented in the 3-array compressed-sparse-row (CSR) format

(Farzaneh et al., 2009).

The initial choice for a matrix representation were the the multi-dimensional arrays. Using

multi-dimensional arrays a real matrix data structure can be constructed using a two-

dimensional array, one dimension for rows and another one for columns. However, their

overall poor performance forced a need for more effective way to store and multiply sparse

matrices.

One of the techniques often used by programmers to speed up matrix operations is flat-

tening i.e. representation of multi-dimensional arrays using single-dimensional arrays.
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Figure 4.3: Sparsity of incidence matrices constructed from the topologies of water
networks used in Section 3.4.2. Note that “sparsity” is defined as the ratio nzeros

(n×m) ×100%,

where nzeros is the number of zero entries for the n×m matrix.

Flattening multi-dimensional array into single-dimensional array could benefit in better

performance as in the .NET Framework single-dimensional arrays have faster access to

their elements, due to optimizations in Common Language Runtime (CLR). Also, usage

of jagged arrays instead multi-dimensional arrays could improve matrix computations as

jagged arrays are made of single-dimensional arrays.

The results of this examination are presented in Table 4.3. Table 4.3 shows average times

taken to multiply sparse matrices constructed from the real water network topologies.

Table 4.3: Testing of performance of different C# implementations of matrices multi-
plication.

Matrix storage and 166×166 sparse matrix 3552×3552 sparse matrix
multiplication with 566 non-zero elements with 10005 non-zero elements
implementation Average time from 1000 runs [s] Average time from 10 runs [s]

1-D Arrays 0.0239 386.751
1-D Arrays (parallel programming) 0.0066 71.958
2-D Arrays 0.0493 395.336
2-D Arrays (parallel programming) 0.0132 74.770
Dense Matrix (Math.NET Numerics) 0.0095 60.879
Sparse Matrix (Math.NET Numerics) 0.2201 1467.963
Jagged Arrays 0.0289 896.050
Jagged Arrays (parallel programming) 0.0065 151.934
Jagged Arrays, (single-indexing access,
ijk order, parallel programming)

0.0050 20.247
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It can be seen that in all cases the introduction of parallel programming decreased the

calculation time; in some cases even five times.

For the small matrix (166 × 166) the single-dimensional (1-D) arrays outperforms the two-

dimensional (2-D) arrays, but for the large matrix the difference between these approaches

is not so evident.

Also, the potential of the external C# library (Math.NET Numerics, 2013) was examined.

Unfortunately, while the Math.NET dense matrices were fast especially for larger matrices

the Math.NET sparse matrices due to its CSR format were slowest among the tested

approaches. But, on the other hand the storage space of the Math.NET sparse matrix was

the smallest.

The jagged arrays performed similar to 1-D arrays in case of 166×166 sparse matrix.

But, for 3552×3552 sparse matrix the jagged arrays performed slower. Nonetheless, the

jagged arrays were considered to be replacement for the multidimensional arrays rather

than 1-D arrays. The main reason is behind this is the maximum storage space for C#

data structures. The maximum-object size in CLR in .NET 4.0 Framework is limited to

2 GB for 32-bit application (Microsoft, 2013). Moreover, due to CLR memory overheads

the actual memory limit is around 1.3 GB (Ayucar, 2013). Tests performed on the host

machine reveal the memory allocation limits for data C# data structures (see Table 4.4).

As can be seen in Table 4.4 the jagged arrays allowed to allocate the biggest amount of

Table 4.4: Memory allocation limits for C# data structures. Tests were performed on
the workstation with 4 GB RAM. Note that in C# size of double type is 8 bytes.

Data Maximum allocated memory Maximum size of n× n matrix
structure [Megabytes] of double elements

2D array 1001 11185
Flatten array 1183 12160
Jagged arrays 1530 13829

memory. It is because due to memory fragmentation it is easier to find available memory

for jagged arrays, i.e. it is more likely that there will be number of blocks of smaller size

available than a single, continuous block of the full size of the array which is required to

allocate single and multi-dimensional arrays.

Moreover, the performance of jagged arrays can be improved even more by employing

techniques of single-indexing and ordering indices ijk for matrix multiplication (see (Golub

and Van Loan, 2012; Momerath, 2011) for details). These modifications allowed a further
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reduction of the calculation time for matrices multiplication when using the jagged arrays

(see the bottom row in Table 4.3).

The combination of parallel programming and jagged arrays (single-indexing access, ijk-

order) reduced the overall simplification time of the benchmark water network used in

Table 4.2 to 95 seconds, achieving a 99.98% decrease with the respect to the initial time.

More methods or tools such as cache optimisation (Lam et al., 1991), Compute Unified

Device Architecture(CUDA) (Vazquez et al., 2011) or native libraries can be introduced for

further improvement of jagged arrays performance. However, it was decided that further

research in this direction would not provide enough gain for the effort needed. Therefore,

it was decided to seek for other numerical techniques that can increase speed of calculation

in the most compute-intensive algorithm of the model reduction procedure; i.e. Gaussian

elimination.

4.5.3 Node removal ordering

The Gaussian elimination (Higham, 2011) is the most compute-intensive procedure of

the model reduction algorithm. When dense matrices are considered one iteration of

the Gaussian elimination uses O(n2) arithmetic operations and as n iterations must be

performed resulting this procedure needs O(n3) arithmetic operations to complete (Lovász

and Gács, 1999).

Since its introduction, Gaussian elimination and its performance is in a very strong interest

for researchers from many disciplines, especially in areas where Gaussian elimination is

applied to a sparse matrix. Many variations were developed over the years, often designed

for a particular application (Grcar, 2011; Donfack et al., 2014). The variant of Gaussian

elimination used in the model reduction algorithm is given in Algorithm 2. Algorithm 2

has three nested loops with loop indices denoted k,i,j.

Saad (2003) noted that Gaussian elimination on the original matrix results in disastrous

fill-ins. Fill-ins are additional non-zeros generated during the elimination. To illustrate

this consider a simple network in Figure 4.4. Nodes b, d and e are to be deleted from

the network. When the process of removal starts from node b and then in order d and e,

additional links (indicated by dotted lines) are created between any two nodes that were

adjacent to removed node. For bde order five links (fill-ins) were created, see Figure 4.4a.

Whereas when starting removal from node e and then d and b only one fill-in (between a

and c) was added, see Figure 4.4b.
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Algorithm 2 Gaussian elimination used in model reduction

Require: J, n, nr . J - Jacobian matrix, n - number of nodes, nr - number of nodes to
remove

1: for k = n to n− nr do
2: if Jkk 6= 0 then
3: for i = 1 to k do
4: Jik ← mik = Jik/Jkk
5: end for
6: for i = 1 to k do
7: for j = 1 to k do
8: Jij = Jij −mik × Jkj
9: end for

10: end for
11: end if
12: end for

a

b

c

d e1

2
4

3
5

(a) Order of removal: bde. #fill-ins = 5

a

b

c

d e1

(b) Order of removal: edb. #fill-ins = 1

Figure 4.4: Change in the number of generated fill-ins (additional links indicated by
the dotted lines) due to the order of nodes removal.

Therefore, the aim of the most researchers is to produce much less fill-ins during Gaussian

elimination and thereby reduce computation time and storage space. To address the prob-

lem of fill-ins a common-used technique called reordering can be applied to sparse matrices

(Pissanetzky, 1984). The idea is to permute the sparse matrix’s rows or columns or both.

By applying reordering algorithms, the zero and non-zero elements of a sparse matrix are

rearranged such that the Gaussian elimination deals with it much more efficiently.

The amount of fill-ins depends on the chosen ordering (Pissanetzky, 1984). Because the

fill-in minimisation is impossible to solve in practice heuristics are used (Davis, 2006).

The most widely recognised and applied ordering algorithms are Cuthill-McKee (CMK)

(Cuthill and McKee, 1969), reversed Cuthill-McKee (RCMK) (George, 1971), minimum
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degree (MD) (George and Liu, 1989), Gibbs-Pool-Stockmeyer (GPS) (Gibbs et al., 1976a)

and nested dissection (ND) (George, 1973). More details about the ordering algorithms

can be found in (Gibbs et al., 1976b; Pissanetzky, 1984; George et al., 1994; Davis, 2006).

Nevertheless, following George (1971) observations that reversed Cuthill-McKee ordering

yields a better scheme for sparse Gaussian elimination it was decided to incorporate RCMK

to reorder Jacobian matrix prior Gaussian elimination. The original RCMK algorithm goal

is to order nodes locally so that the adjacent nodes are ordered as close as possible.

Another algorithm chosen for a closer investigation was the MD as it is perhaps the most

popular strategy for reduction of amount of fill-ins during sparse Gaussian elimination

(Saad, 2003) (For example the MD is utilised in Epanet2). This strategy selects the

node with the smallest degree as the next pivot row which introduces the least number

of non-zeros that will be introduced at the corresponding step of Gaussian elimination

(Pissanetzky, 1984).

Note that Gaussian elimination, seen in Algorithm 2, is applied from the bottom in the

simplification algorithm, hence the obtained RCMK and MD orderings were reversed ac-

cordingly (RCMK becomes CMK).

The CMK algorithm used to reorder nodes prior calculation of Jacobian matrix is given

in Algorithm 3 (Saad, 2003). Its queue-based implementation was adapted for water

network model reduction i.e. only nodes to be removed are ordered. Also MD, given in

Algorithm 4 (Amestoy et al., 1996), was modified in the same way. The effectiveness of

CMK algorithm depends critically on the choice of starting node. The starting node may

be one of minimum degree (Pissanetzky, 1984) or pseudo-peripheral node as proposed by

George et al. (1994). Here, the latter heuristic was implemented to determine the best

starting node for CMK ordering.

A comparison of original and ordered Jacobian matrices is shown in Figure 4.5. The

original Jacobian matrix J used in this illustration was obtained from the Rio network,

see Section 3.4.2. CMK ordering transformed the structure of the original sparse matrix

J shown in Figure 4.5a into a band diagonal form as depicted in Figure 4.5c. While CMK

is oriented on sparse matrix profile reduction the MD aims in reduction of number of

fill-ins. Hence, they ordered structures are clearly distinctive; compare Figure 4.5c and

Figure 4.5e.

The right hand plots depict the respective Jacobian matrices after Gaussian elimination.

It can been clearly seen that level of fill-ins, 1212, in the reduced unordered matrix JS is

much higher than for the ordered versions; 755 for CMK and 544 for MD, respectively.
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(a) Unordered Jacobian matrix J .
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(b) Matrix JS after Gaussian elimination.
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(c) Reversed Cuthill-McKee ordering of Jacobian ma-
trix JRCM .

0 50 100 150

0

20

40

60

80

100

120

140

160

nz = 755

(d) Matrix JS
RCM after Gaussian elimination.

0 50 100 150

0

20

40

60

80

100

120

140

160

nz = 566

(e) Minimum degree ordering of Jacobian matrix
JMD.
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(f) Matrix JS
MD after Gaussian elimination.

Figure 4.5: Illustrating the original and ordered Jacobian matrices for Rio network and
difference between them in terms of number of fill-ins after Gaussian elimination.
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Algorithm 3 Cuthill-McKee ordering of nodes prior to Gaussian elimination

Require: V . Set of all nodes
1: K ⊂ V . Subset of nodes to be kept
2: R ⊂ V . Subset nodes to be removed
3: Find n0 ∈ R . Find starting node n0

4: Q = {n0} . Queue of nodes
5: π = ∅ . Set of ordered nodes
6: while NotEmpty(Q) do
7: node = Q.Dequeue
8: if node /∈ π then
9: π.Append(node)

10: Sort(node.neighbours) . Sort all node neighbours based on their degree
11: for all neighbours do
12: if neighbour /∈ π then
13: Q.Enqueue(neighbour)
14: end if
15: end for
16: end if
17: end while
18: return K ∪ π

Algorithm 4 Minimum degree ordering of nodes prior to Gaussian elimination

Require: V . Set of all nodes
1: K ⊂ V . Subset of nodes to be kept
2: R ⊂ V = {1 . . . n} . Subset nodes to be removed
3: π = ∅ . Set of ordered nodes
4: for i = 1 to n do
5: Create elimination graph
6: Findnode x ∈ Rwithminimumdegree
7: π(i) = x
8: Ri+1 = Ri − {x}
9: end for

10: return K ∪ π

The reduction of fill-ins was proved correct when the number of calculations (multiplica-

tions and divisions) was tracked. The MD ordering resulted in the smallest number of

calculations needed during Gaussian elimination, see Table 4.5.

Although the post-elimination matrices have a completely different structure there is no

difference between the reduced networks. The obtained numerical results were the same

in the parts of “reduced” Jacobian matrices that will be used in the next step to recreate

the simplified nonlinear water networks.
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Table 4.5: Number of calculations needed to complete Gaussian elimination for un-
ordered and ordered matrices.

Ordering algorithm Number of calculations

unordered 25704
reversed Cuthill-McKee 17794

minimum degree 15318

Ultimately, the choice whether to use of ordering algorithm is determined by size of the

water network to be simplified. For water network models with the number of nodes

n < 500 no ordering is applied. For larger problems the CMK ordering is chosen; despite

it is not optimal it is very fast and easy to implement. Time complexity of CMK for a

dense matrix is O(qmaxm) where qmax is the maximum degree of any node and m is the

number of links (edges) (George and Liu, 1981). However, for sparse matrices the CMK

time complexity is reduced to O(n) (Pedroche et al., 2012). Whereas in case of MD its

worst-case requires a O(n2m) runtime (Heggernes et al., 2001); for sparse problems MD

has also much better runtime but as observed by Benzi (2002) and Duff and Meurant

(1989) MD does not always succeed and can produce ordering worse than original while

CMK ordering is found to be equivalent or slightly better than the natural ordering.

However, the biggest profit from the ordering was reduction of time needed for Gaussian

elimination. When the model reduction algorithm was applied to the benchmark network

used in Table 4.2, but preceded with CMK or MD ordering of Jacobian matrix, the com-

putational time was reduced to less than 5 seconds. Of course, much more research can be

done in this area and investigate other reordering techniques such GPS, ND, approximate

minimum degree (Amestoy et al., 1996), and their variations. But, such research would

be beyond scope of this work. Nevertheless, it might form an interesting study to inves-

tigate effects of different orderings on performance of processing water network graphs

represented by sparse matrices.

4.6 Model reduction application

The simplification process, illustrated in Figure 4.1, evolved throughout its implementation

into a more sophisticated and extended tool. The final implementation took into account

the outcomes from investigation of parallel programming, storage structures for sparse

matrices and nodes pre-ordering.
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The final application was developed to facilitate the extended simplification process of

water distribution networks. The application was compiled to meet the software require-

ments, and specifically, to test in practice the research elaborated in Chapter 3. The

present tool aims at returning a simplified WDN topology which can be still used to per-

form hydraulic simulation. The application can be used either as a standalone application

or as an embedded module in other applications. Indeed, it forms a key module of Finesse

2 software, the successor of Finesses software (description can be found in (Rance et al.,

2001)), currently being developed by the WSS members.

The main user workspace of the application is pictured in Figure 4.6. The workspace

includes the following elements: network map window, menu bar, status bar and water

network elements selection toolbox. A concise description of main elements is provided in

the next paragraphs.

The menu bar located at the top of workspace contains a collection of menus used to

control the application. It provides standard commands for opening, closing, printing and

setting application preferences. The menu bar includes also commands to launch tools

such as water network energy audit, network system flow and scaling of total network

demand.

The network map window provides means to display a schematic diagram of the objects

comprising a water distribution network. The displayed topology is created upon data

read from the corresponding .inp file. The crucial elements (Table 4.1) selected to retain

are displayed by using different colors. Additionally, the existing objects can be clicked on

for marking/unmarking. The map can be printed, zoomed and panned from one position

to another. Nodes and links can be drawn at different sizes with ID labels and numerical

property values displayed.

The elements selection toolbox is located on the panel right to the network map window.

It provides features to mark nodes based on their degree and/or mark pipes based on

diameter ranges. Note that all elements listed in Table 4.1 are marked automatically and

cannot be unmarked.

The model reduction sub-window allows to choose the operating point for linearisation

and provides means to log whole simplification process, log demand redistribution, save

new pressure constraints and open the simplified model in Epanet2.

Since its development the model reduction application has been used to reduce many WDN

models and has proven to be a practical and reliable tool. An example of utilisation the

model reduction application is given in Chapter 5, where it has been used in a practical
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Figure 4.6: Illustrating the main window of the developed application.
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project focused on determining optimal schedules for control elements in a real large-scale

water network exhibiting highly complex topology.

Nevertheless, despite of that this is the first version of the software it has already demon-

strated potential to be used in practice not only by academics but also by practitioners.

4.7 Summary

This chapter has dealt with the implementation and further improvement of the extended

model reduction algorithm elaborated in Chapter 3. The process of design and develop-

ment of the research software has been presented with the focus places on the emerged

computational research aspects. While all the initial tasks and requirements set for the

program have been accomplished, it has been decided to conduct a further research in the

computer science areas in order to develop a tool that can actually be used in practical

WDSs operation optimisation projects.

Hence, different implementation approaches and their limitations have been investigated.

The implementation and graphical user interface (GUI) were coded in the C# program-

ming language. The Epanet2 Toolkit has been used as a hydraulic simulator to perform

an extended period simulation of WDN hydraulic behaviour. Parallel programming tech-

niques have been employed to distribute workload of the algorithm across multiple CPU

cores which nowadays are present in majority of PCs. The limitations of available data

structures to store the matrix representation of water networks along with the benefits

of sparse matrix reordering prior Gaussian elimination have been examined. The utilisa-

tion of parallel programming techniques and the sparse matrices ordering algorithms have

drastically increased the speed of the model simplification.

There are algorithms that work well for theoretical and small systems (see Section 3.2)

but they often do not consider practical constraints, hence, they are not actually suitable

for real systems, whereas in this work, which started with a theoretical study, a practical

tool was created. The developed software is able to simplify the water network model,

consisted of several thousands elements, within seconds of calculation time. The advantage

of this near real-time model reduction is that can be used to manage abnormal situations

and structural changes in a water network, e.g. isolation of part of the network due to a

pipe burst. In such case an operator can change the full hydraulic model and run model

reduction software to automatically produce the updated simplified model.
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The WDN model reduction software could be integrated with other concepts applied to the

WDNs or it can be used as a standalone tool for the purpose of the model simplification

only. The present tool aims at returning a simplified WDN topology which can be still used

to perform hydraulic simulation. Although not necessarily relevant for the simplification

process, the features of energy balance audit, system flow audit and scaling of total system

demand may prove to be useful and applicable for other research purposes.



Chapter 5

Application of the extended model

reduction in optimal scheduling

5.1 Introduction

The newly extended model reduction procedure introduced in Chapter 3 and implemented

in Chapter 4 was so far evaluated mostly on the small-scale and hypothetical WDSs. This

chapter describes application of the extended reduction method to a real large-scale water

network. The study is based on the project carried out by WSS, aimed at optimisation of

operation of the considered WDS. The data used in the project concern an actual WDS

being part of a major water company in area of southern United Kingdom. The objective

was to reduce the cost of energy used for water pumping whilst satisfying all operational

constraints, including the pressure constraints in different parts of the water network. The

topology of the considered WDS, namely Water Network , is illustrated in Figure 5.1.

The considered WDS includes complex structures and interactions between pump stations,

e.g. pump stations in series without an intermediate tank, pump stations with by-passes,

mixture of fixed-speed and variable-speed pump stations, valves diverting the flow from

one pump station into many tanks, PRVs fed from booster pumps or a booster pump fed

from a PRV. Hence, it will provide an excellent base for application of the extended model

reduction technique.

The main intention in this chapter is to describe in details a procedure how the problem

of optimal scheduling in a WDS can be approached and solved. Whilst doing this an

emphasis is placed on the importance of appropriate pressure constraints while calculating

117
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Figure 5.1: Model of Water Network in Epanet2.

optimal schedules for pumps in a real WDS. Note that in this chapter only fraction of

results from the optimisation study is presented. More details can be found in (Skworcow

et al., 2013) and (Skworcow et al., 2014a).

The research described in this chapter is a result of joint efforts of the author of this thesis

and Dr Piotr Skworcow, a member of the WSS group. The specific contributions to the

content of this chapter are summarised in Table 5.1.

The reminder of this chapter is organised as follows. Section 5.2 describes the overall

methodology. In Section 5.3 details about obtaining the optimisation-ready model are

given. Section 5.4 provides mathematical background of the methodology along with
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Table 5.1: Contributions to the content of this chapter by the author (column ‘A’) and
by Dr Piotr Skworcow (column ‘S’).

Description of contribution A S

Model understanding x
Development of model operation diagram x
Model simplification x
Model adjustments for optimisation requirements x
Generation of topology in the GAMS language x
Development and implementation of optimisation method x
Optimisation studies x x
Discretisation algorithm x
Results description and presentation x x

outcomes from the optimisation of schedules for pumps. The emphasise is placed on

the demonstration of the impact of pressure constraints on the calculated schedules for

pumps. In Section 5.5 a problem associated with discretisation of continuous schedules is

highlighted. Finally, Section 5.6 provides summary of this chapter.

5.2 Methodology overview

The proposed method for combined energy and pressure management, based on formulat-

ing and solving an optimisation problem, is an extension of the pump scheduling algorithms

described in (Ulanicki et al., 1999; Bounds et al., 2006; Ulanicki et al., 2007; Skworcow

et al., 2010). In contrast to the online optimisation method reported in (Skworcow et al.,

2010) here an off-line optimisation study is considered. The concept behind the approach

described in (Skworcow et al., 2010) is shown in Figure 5.2 which illustrates how the exces-

sive pumping contributes to a high total cost in two ways. Firstly, it leads to exaggerated

energy usage, secondly, it induces high pressure, hence increased leakage, which means

that more water needs to be pumped and taken from sources. Therefore the optimiser, by

minimising the total cost, attempts to reduce both the energy usage and the leakage.

The optimisation methodology described in this chapter is model-based and, as such, re-

quires a hydraulic model of the network. Such a hydraulic model is usually developed

in a modelling environment such as Epanet2, Aquis, Infoworks etc. and consists of three

main components: (i) boundary conditions (sources and exports), (ii) a hydraulic nonlin-

ear network made up of pipes, pumps, valves, and (iii) reservoir dynamics. In order to

reduce the size of the optimisation problem the full hydraulic model is simplified using
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Figure 5.2: Illustrating how excessive pumping contributes to high total cost.

the reduction algorithm from Section 3.6. In the simplified model all reservoirs and all

control elements, such as pumps and valves, remain unchanged, but the number of pipes

and nodes is significantly reduced.

Subsequently, using the reduced hydraulic model and operational constraints an optimal

network scheduling problem is generated in a mathematical modelling language, GAMS

(Brooke et al., 1998), which calls up a nonlinear programming solver, CONOPT (Drud,

1992) to calculate a continuous optimisation solution. CONOPT is a nonlinear program-

ming solver, which uses a generalised reduced gradient algorithm. An optimal solution is

then fed back from CONOPT for analysis and/or further processing. The overall optimi-

sation process is depicted in Figure 5.3.

In the considered optimisation problem some of the decision variables are continuous (e.g.

water production, pump speed, and valve position) and some are integer (e.g. number

of pumps switched ON). Problems containing both continuous and integer variables are

called mixed-integer problems and are hard to solve numerically. Continuous relaxation of

integer variables (e.g. allowing 2.5 pumps ON) enables network scheduling to be treated

initially as a continuous optimisation problem solved by a nonlinear programming algo-

rithm. Subsequently, the continuous solution can be transformed into an integer solution

by manual post-processing, or by further optimisation. For example, the result “2.5 pumps

ON” can be realised by a combination of 2 and 3 pumps switched over the time step.
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Scheduling program

Configuration data

Reduced water network GAMS

CONOPT

Outputs (+) optimal control schedules

(+) Epanet2 input file (inp for-
mat)
(+) Epanet2 simulation results
file (bin format)

(+) electricity tariffs
(+) time-series files describing
initial schedules
(+) configuration files
(+) operational constraints

(+) optimisation problem for-
mulation

(+) Nonlinear programming
solver

Figure 5.3: Overall optimisation process.

5.3 Modelling for optimal scheduling

5.3.1 Water network model

The water network model provided by the water company, henceforth referred as Water

Network , was in the Epanet2 format (Rossman, 2000b) and contains 12363 nodes, 12923

pipes, 4 (fixed-head) reservoirs, 9 (variable-head) tanks, 10 pumps and 315 valves. The

average demand in Water Network is 451 l/s (39 Ml/day). The considered WDN includes

complex structures and interactions between pumps, e.g. pumps in series without an in-

termediate tank, pumps with by-passes, mixture of fixed-speed and variable-speed pumps,

valves diverting the flow from one pump station into many tanks, PRVs fed from booster

pumps or a booster pump fed from a PRV. Hence, to get a better understanding of Water

Network operation a diagram, shown in Figure 5.4, was produced. More detailed diagram

is provided in Appendix D.

The major source of water in the network is Reservoir 2. In the provided model Reservoir

2 has the head defined as a time pattern in order to model the head from the water

treatment works, namely WTW 1. (Note that throughout the project the initial model

was several times updated with additional data from the water company e.g. in the final

optimisation model, Reservoir 2 was replaced with a pump station including 5 pumps

and a buffer tank. More details about modelling of the inflow from WTW 1 are given
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Figure 5.4: Initial schematic of Water Network .

in Section 5.3.2.3.) Another inflow to the system is from Reservoir 3 with an imposed

fixed head of 118 m. The remaining two reservoirs are disconnected from the system i.e.

pipelines connecting Reservoir 1 and Reservoir 4 are permanently closed. It was assumed

that they work as redundant reservoirs and should not be used in this optimisation study.

The major pumps in the provided model are Pump 1A, Pump 1B and Pump 2 with the

average flows of 197 l/s, 106 l/s and 103 l/s, respectively. Daily operation of all the pumps

is described in Section 5.3.1.3.

The model includes 315 valves (CVs are not included in this count): 272 TCVs, 42 PRVs

and 1 FCV. Details about the valves operation are given in Section 5.3.1.4.
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Two time-based control rules are included in the model. The first rule controls flow of

TCV 1 towards Tank 6. The second control rule is applied to a pipe which along with

FCV 1 forms Pump 1B by-pass.

No major exports were found in the model.

All time patterns in the original model used the 15 minutes sampling interval. Note that

“time pattern” is specific to Epanet2 software and it allows to vary demands at the nodes

in a periodic way over the course of a day (Rossman, 2000b).

5.3.1.1 Water network operation

From the network topology, illustrated in Figure D.1, and results of simulation performed

in the Epanet2 simulator the following 1-day snapshot of the system operation was con-

cluded.

A part of the inflow from WTW 1, controlled by TCV 1, flows “gravitationally” towards

Tank 6. However, the most of the inflow from WTW 1 flows towards Pump 1A and Pump

1B. Pump 1B pumps water towards Tank 5 and Pump 1A distributes the water flow via

the booster pump, Pump 2, towards the tanks Tank 1A, Tank 1B, Tank 2A and Tank 2B.

Note that to deliver water to the tanks Tank 2A and Tank 2B the booster pump, Pump

5B, is employed.

Reservoir 3 along with Tank 3 and Pump 4 form a subsystem that have very little inter-

action with the main water distribution system.

Two small, 0.25 Ml tanks, Tank 4A and Tank 4B along with Pump 3A, Pump 3B and

Pump 7 are used to supply water to highly elevated part of the network.

The next sections describes in greater detail the hydraulic parameters and results of a

hydraulic simulation for the crucial system elements such reservoirs, tanks, pumps and

valves.

5.3.1.2 Reservoirs and tanks

The original model includes 4 (forced-head) reservoirs and 9 (variable-head) tanks. The

reservoirs and tanks parameters are listed in Table 5.2. Only Reservoir 2 and Reservoir

3 are sources of water for the systems. The pipelines connected to Reservoir 1 and

Reservoir 4 are closed. It was assumed that these disconnected reservoirs might work as
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redundant reservoirs to be used in emergency cases and should not be considered in this

study. Figure 5.5 illustrates the head trajectories and outflows from the reservoirs.

Table 5.2: Reservoirs and tanks parameters.

Name Diameter Cross-sectional Total Elevation Initial Operational constraints
[m] area [m2] volume [Ml] [m] level [m] Min. [m] Max. [m]

Reservoir 1 - - - 31.9 - - -
Reservoir 2 - - - 115.48 - - -
Reservoir 3 - - - 118.00 - - -
Reservoir 4 - - - 88.43 - - -
Tank 1A 53.52 2249.45 10.28 97.87 3.17 0 4.57
Tank 1B 56.16 2473.12 11.50 97.79 3.34 0 4.65
Tank 2A 15.34 184.78 0.85 122.05 0 0 4.6
Tank 2B 18.87 279.57 1.30 122 3.3 0 4.65
Tank 3 41.70 1365.52 5.98 82.12 2.66 0 4.38
Tank 4A 9.73 74.41 0.25 172.47 2.50 0 3.36
Tank 4B 9.73 74.41 0.25 172.57 2.40 0 3.36
Tank 5 35.68 999.99 4.50 92.5 2.24 0 4.5
Tank 6 42.89 1444.44 6.50 63.79 3.45 0 4.5

Figure 5.6 depicts the head changes and net inflows of the tanks. Investigation of the

simulation results and the model topology revealed that the following pairs of tanks: Tank

1A and Tank 1B, Tank 2A and Tank 2B, Tank 4A and Tank 4B are interlinked; i.e.

the water level trajectories in the interlinked tanks are correlated, see Figure 5.6a and

Figure 5.6b, and, Figure 5.6e and Figure 5.6f, respectively. Hence, it was considered that

these pairs of tanks could be merged to reduce number of variables for the optimisation

algorithm.

5.3.1.3 Pumps

The provided model contains 10 pumps. All the pumps were provided with the hydraulic

curves (head versus flow relation). The model analysis revealed that all the pumps are

modelled as separate pumps; no pump stations were found. Note that, based on the

subsequent updates from the water company, in the final optimisation model the pumps’

configurations were significantly modified to reflect more accurately the real Water Net-

work operation. Details of these modifications are given in Section 5.3.2.3.

Figure 5.7 illustrates the pumps’ operation for the period of 24 hours. Note that in

Figure 5.7 the control schedule for a single pump corresponds to the normalised pump

speed.
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(a) Operation of Reservoir 1.
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(b) Operation of Reservoir 2.
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(c) Operation of Reservoir 3.
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(d) Operation of Reservoir 4.

Figure 5.5: Operation of forced-head reservoirs in Water Network . The “mass balance”
annotation represents the total daily inflow to the water distribution system. Note that
there is no inflow to the system from Reservoir 4 and the inflow from Reservoir 1 is
negligible.

5.3.1.4 Valves

Water Network model contains of 347 valves. Table 5.3 provides an overview of the valve

types used in the model.

Table 5.3: Valves in Water Network .

Type Quantity

flow control valve (FCV) 1
pressure reducing valve (PRV) 42

throttle control valve (TCV) 272
check valve (CV) 32

Total 347
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(a) Operation of Tank 1A.
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(b) Operation of Tank 1B.
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(c) Operation of Tank 2B.
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(d) Operation of Tank 3.
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(e) Operation of Tank 4A.
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(f) Operation of Tank 4B.
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(g) Operation of Tank 5.
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(h) Operation of Tank 6.

Figure 5.6: Operation of tanks in Water Network . The “mass balance” calculated for
the period of 24 hours, indicates a difference between the initial and the final water level
in the tank. The positive mass balance means that the tank is filling up. Consequently,
the negative mass balance indicates that the tank is emptying. Tank 2A is connected to
the system via a closed pipe therefore its operation is omitted here.
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(a) Operation of Pump 1A.

0 5 10 15 20 25

0

100

200

F
lo

w
[l
/s

]

Time [h]
0 5 10 15 20 25

0

0.5

1

C
o

n
tr

o
l 
sc

h
e

d
u

le

 

 

Flow

Control schedule

(b) Operation of Pump 1B.
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(c) Operation of Pump 2.
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(d) Operation of Pump 3A.
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(e) Operation of Pump 3B.
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(f) Operation of Pump 4.
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(g) Operation of Pump 5B.
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(h) Operation of Pump 6.

Figure 5.7: Operation of pumps in Water Network . Pump 5A and Pump 7 are omitted
in this Figure as their average flow is less than 0.2 l/s. Note that the term “control
schedule” in this figure corresponds to the normalised pump speed.
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The majority of the TCV valves, 258, were modelled with a fixed setting of 1e9. From the

simulator perspective these valves are almost closed; i.e. the average flow through them

is negligible (≤ 0.01 l/s). Furthermore, remaining 14 TCVs have the setting parameter

fixed for the simulation period. Hence, from simulation perspective such valves are not

distinguishable from pipes. Therefore, it was proposed to either convert TCVs to equiv-

alent pipes or remove “closed” valves in order to reduce the number of variables for the

optimisation algorithm.

The model contains 42 PRVs. As PRVs are crucial elements of water distribution networks

their performance was carefully investigated. Analysis revealed a number of issues with

the pressure in the network and PRV settings, e.g. in a number of PRVs, their threshold

was set to 44m but pressure at its inlet was below 44m over 3 hours.

Many valves remained fully closed for the 24h simulation period. Therefore, to reduce the

number of retained elements in the simplified model, it was proposed to remove the closed

valves from the model.

Two valves in the system, FCV 1 and TCV 1 were controlled via pre-defined time-based

schedules as shown in Figure 5.8.
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(a) Operation of FCV 1.
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(b) Operation of TCV 1.

Figure 5.8: Operation of the time-controlled valves in Water Network . Note that for
FCV term “setting” refers to allowed flow trough the valve and for throttle control valve
(TCV) term “setting” refers to minor head loss coefficient of the valve.

5.3.1.5 Electricity tariff

The electricity tariff used in this case study was extracted from the provided data and is

illustrated in Figure 5.9.
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Figure 5.9: Electricity tariff to be used in the optimisation study.

5.3.2 Process of Water Network model reduction.

To reduce the size of the optimisation problem the model needed to be reduced. The

model reduction process applied to Water Network proceeds trough three stages: model

preparation, model reduction and final adjustments to optimisation model.

5.3.2.1 Model preparation

The model preparation stage involves an analysis of Water Network operation and identi-

fication of the important water network hydraulic elements to be retained. As a result, a

number of issues were identified that needed to be addressed in order to meet the require-

ments of the simplification method. The changes and modifications to the model were as

follows:

• The simplification algorithm requests a model described using the Hazen-Williams

head loss formula. Therefore, the model was converted from the Darcy-Weisbach

formula to the Hazen-Williams formula. However, as the conversion procedure from

Darcy-Weisbach to Hazen-Williams is less accurate for low flows and it was carried

out at the operating point when at least one of major pumps was ON. Hence, the

obtained reduced model shall be sufficiently accurate for all operating condition

present in the considered system.
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• Reservoir 1 and Reservoir 4 are connected to the system via permanently closed

pipelines. It was assumed that they should not be used in the optimisation study

and they were removed from the model.

• The negative pressure level for Reservoir 2. The reservoir elevation was changed

to account for the negative pressure. The pattern associated with Reservoir 2 was

respectively scaled.

• Water Network model includes a time-based control applied to a pipe. A time-

controlled pipe cannot be included in an optimisation model. Pipes are not control-

lable elements as their head loss characteristic is fixed. The control rule was saved

as a time-pattern and transferred to the adjacent FCV.

• All the permanently closed valves and pipes in the model were removed.

• Epanet2 reported model unbalanced or model unstable errors when e.g. a closed pipe

was removed from the system. It was assumed that the source of problem was not

in the model itself but in the Epanet2 computational engine. Epanet2 hydraulic

options were iteratively adjusted in order to improve the stability of the model. The

maximum number of trials used to solve the nonlinear equations that govern network

hydraulics at a given point in time was increased to 500 and the convergence criterion

used to signal that a solution has been found to the nonlinear equations was set to

0.005.

• TCVs set to work as isolation valves were either removed or replaced with equivalent

pipes.

• Head losses at fixed-open TCVs were minimal and the valves could simply be re-

moved, however in the study they were replaced by pipes which gave the same head

loss at the representative operating point.

• A number of issues with a pressure in the network and the PRVs settings, e.g. PRV

threshold was set 44m but pressure at its inlet is below 44m during 3 hours. The

performance of each PRV was investigated to determine its importance to the system.

The valve with low importance were either removed or converted to equivalent pipes.

• TCV 1 was converted to equivalent FCV.
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5.3.2.2 Model simplification

The prepared hydraulic model was simplified using the module reduction algorithm de-

scribed in Chapter 4. In the reduced model all reservoirs and all control elements, such

as pumps and valves, remained unchanged, but the number of pipes and nodes was sig-

nificantly reduced. It should be noted that the connections (pipes) generated by module

reduction algorithm may not represent actual physical pipes. However, as described in

Section 3.3, the parameters of these connections were computed such that the simplified

and full models were equivalent mathematically.

The model reduction algorithm requires an operation point around which the model will

be linearised. Following the recommendation in (Alzamora et al., 2014) that the operating

point should be representative for normal operations of the network and should be chosen

for average demand conditions while keeping at least one pumping unit working at each

pumping station, the operating point was defined at 12:30 hour.

The outcome of the simplification method was a reduced model, depicted in Figure 5.10.

From Table 5.4 can been seen that almost 98% elements (mostly pipes and junctions) were

removed.

Table 5.4: Comparative statistics between the original and reduced models of Water
Network .

Component Original Reduced Scope of MBE TRE R2 MAE MRE RMSE
model model reduction

statistics statistics % Ml/day % m or l/s % m or l/s

Junctions 12363 164 98.67 - - - 0.864 2.311 1.066
Pipes 12923 335 97.41 - - - - - -

Reservoirs 4 2 50.00 0.338 - 1 - - -
Tanks 9 9 0.00 -0.075 3.365 0.886 - - -

Pumps 10 10 0.00 - - 0.986 1.315 - 1.657
Valves 315 43 86.35 - - - 1.029 - 1.226

Comparisons of the simulated pumps’ operations in both models, original and simpli-

fied, are depicted in Figures from 5.11 to 5.18. The R2 indicator calculated for the flow

trajectories of each pump showed that the reduced model replicates the pumps’ original

performance with an appropriate accuracy that meets the requirements of the optimal

scheduling method.

Subsequently, the simulated tanks’ trajectories were compared (see Figures from 5.19 to

5.29). It can been seen from the illustrated trajectories and calculated indicators that the

reduced model adequately replicates the hydraulic behaviour of the original model. The
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Figure 5.10: The reduced model of Water Network in Epanet2.

most significant discrepancy found was in the trajectories for Tank 5, see Figure 5.28. The

main reason behind such discrepancy were structural changes to Pump Station 1 in the

reduced model due to nodes and pipes removal. However, it should be highlighted that the

Tank 5 trajectory in the original Epanet2 model was in fact not corresponding to the data

provided subsequently by the water company in the form of screenshots from the SCADA

system. Additionally, in the original model Tank 5 was empty at 20:45, what was resulting

in negative pressures at nodes nearby the tank. Therefore, as Tank 5 trajectory in the

simplified model was closer to the more recent data from the SCADA system and the tank

was not emptying, it was decided to accept this discrepancy in the reduced model.
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Figure 5.11: Performance of Pump 1A in the original and simplified model. The term
“control schedule” corresponds to the pump normalised speed.
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Figure 5.12: Performance of Pump 1B in the original and simplified model.
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Figure 5.13: Performance of Pump 2 in the original and simplified model.
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Figure 5.14: Performance of Pump 3A in the original and simplified model.
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Figure 5.15: Performance of Pump 3B in the original and simplified model.
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Figure 5.16: Performance of Pump 4 in the original and simplified model.
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Figure 5.17: Performance of Pump 5B in the original and simplified model.
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Figure 5.18: Performance of Pump 6 in the original and simplified model.
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Figure 5.19: Comparison of simulated trajectories for Reservoir 2.
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Figure 5.20: Comparison of simulated trajectories for Reservoir 3.
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Figure 5.21: Comparison of simulated trajectories for Tank 1A.
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Figure 5.22: Comparison of simulated trajectories for Tank 1B.
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Figure 5.23: Comparison of simulated trajectories for Tank 2A.
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Figure 5.24: Comparison of simulated trajectories for Tank 2B.
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Figure 5.25: Comparison of simulated trajectories for Tank 3.
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Figure 5.26: Comparison of simulated trajectories for Tank 4A.
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Figure 5.27: Comparison of simulated trajectories for Tank 4B.
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Figure 5.28: Comparison of simulated trajectories for Tank 5.
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Figure 5.29: Comparison of simulated trajectories for Tank 6.



Chapter 5 Application of the extended model reduction in optimal scheduling 143

5.3.2.3 Optimisation model

Following the meeting with the water company engineers several additional discrepancies

were found between the provided Epanet2 model operation and the real Water Network

operation. In particular, the pump stations parameters, structure and schedules differed

significantly from the real operation of Water Network . To accommodate the updates

the modifications listed in Appendix E were applied to the reduced model. The updated

reduced model was subsequently adjusted to meet the optimisation method requirements.

The final optimisation model contains 131 junctions, 1 reservoir, 6 tanks, 197 pipes, 13

pumps and 35 valves. The schematic of the final network configuration is depicted in

Figure 5.30. The hydraulic parameters of the pumps and tanks in the optimisation model

are given in Tables 5.5 and 5.6. The head-flow and power characteristics for each pump

in the optimisation model are illustrated in Figure 5.31.

5.4 Optimal network scheduling: continuous optimisation

Network scheduling calculates least-cost operational schedules for pumps, valves and treat-

ment works for a given period of time, typically 24 hours or 7 days. The decision variables

are the operational schedules for control components, such as pumps, controllable valves

and water works outputs. The scheduling problem was succinctly expressed as: min-

imise (pumping cost + treatment cost), subject to the network equations and operational

constraints. The problem has the following three elements: (i) objective function, (ii)

hydraulic model of the network and (iii) operational constraints. These three elements of

the problem are discussed in the following sections.

5.4.1 Objective function

The objective function to be minimised is the total energy cost for water treatment and

pumping. Pumping cost depends on the efficiency of the pumps used and the electricity

power tariff over the pumping duration. The tariff is usually a function of time with

cheaper and more expensive periods. For given time step τc, the objective function, φ,

considered over a given time horizon [k0, kf ] is given by the following equation expressed

in discrete-time:
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Figure 5.30: Schematic of the final Water Network configuration.
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Figure 5.31: Hydraulic and power characteristics of pumps in the optimisation model.
Note that the characteristics are plotted from equations listed in Table 5.6. Pump hy-
draulic and power curves equations were interpolated from points provided in the Epanet2
model and pumps catalogues.
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Table 5.6: Pumps in the optimisation model.

Name Type Pump Head-flow Power consumption
station curve equation

Pump 1A FSP 1 h = −0.0004q2 + 0.035q + 34.1 p = 0.18q + 24.6
Pump 1B FSP 1 h = −0.0004q2 + 0.035q + 34.1 p = 0.18q + 24.6
Pump 1C FSP 1 h = −0.0004q2 + 0.035q + 34.1 p = 0.18q + 24.6
Pump 5B VSP - h = −0.0147q2 + 0.302q + 49.4 p = 0.32q + 6.3
Pump 2A VSP 2 h = −0.0014q2 + 0.070q + 56.5 p = 0.35q + 22.9
Pump 2B VSP 2 h = −0.0014q2 + 0.070q + 56.5 p = 0.35q + 22.9
Pump 4 VSP - h = −0.0919q2 + 0.904q + 71.1 p = 0.38q + 5.9
Pump 6 VSP - h = −0.1330q2 + 0.524q + 16.5 p = 0.10q + 0.5
Pump 8A VSP 3 h = −0.0005q2 − 0.016q + 148.8 p = 0.84q + 115.2
Pump 8B VSP 3 h = −0.0005q2 − 0.016q + 148.8 p = 0.84q + 115.2
Pump 8C VSP 3 h = −0.0005q2 − 0.016q + 148.8 p = 0.84q + 115.2
Pump 8D VSP 3 h = −0.0005q2 − 0.016q + 148.8 p = 0.84q + 115.2
Pump 8E VSP 3 h = −0.0005q2 − 0.016q + 148.8 p = 0.84q + 115.2

φ =

∑
i∈Jp

kf∑
k=k0

γp,i(k)Pi +
∑
j∈Js

kf∑
k=k0

γs,j(k)qs,j(k)

 τc (5.1)

where Jp is the set of indices for pump stations and Js is the set of indices for treatment

works. The function γp,i(k) represents the electrical tariff. The treatment cost for each

treatment works j is proportional to the flow output qs,j(k) with the unit price of γs,j(k).

The term Pi represents the electrical power consumed by pump station i.

To model electricity usage, instead of using a pump efficiency equation, a direct modelling

of pump station power was employed as discussed in (Ulanicki et al., 2008). However,

the equation was rearranged as proposed in (Skworcow et al., 2013) to allow zero pumps

switched on, without introducing if-else formulas:

P (k)u(k)2 = Eq(k)3 + Fq(k)2u(k)s(k) +Gq(k)u(k)2s(k)2 +Hu(k)3s(k)3 (5.2)

where E,F,G,H are the power coefficients constant for given pump station, q is the flow,

P is the consumed power, s is the speed normalised to a nominal speed for which the

pump hydraulic curve was obtained (see Equation 2.21). Additionally it is imposed for all

pump stations that P (k) ≥ 0, so when all pumps in a given pump station are switched

off (i.e. u(k) = 0) the solver (due to minimising the cost) assigns P (k) = 0 for this pump

station. Finally, Ulanicki et al. (2008) demonstrated that accurate approximation of the

mechanical power data points can be done with use of 3rd order polynomial. However,

as can be seen in Ulanicki et al. (2008) approximated curve often resembles straight line
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thereby the coefficients E and F in Equation 5.2 can be neglected as they are small

compared to G and H. Hence, to make a large-scale model easier to solve it was assumed

that E = 0 and F = 0, i.e. consumed power depends linearly on the pump station flow.

5.4.2 Model of water distribution system

Each network component has a hydraulic equation. The fundamental requirement in an

optimal scheduling problem is that all calculated variables satisfy the hydraulic model

equations. The network equations are non-linear and play the role of equality constraints

in the optimisation problem. The network equations used to describe reservoir dynamics,

components hydraulics and mass balance at reservoirs were described in details in Chap-

ter 2 and (Brdys and Ulanicki, 1994; Ulanicki et al., 2007). Since leakage is assumed to

be at connection nodes, the equation to describe mass balance at connection nodes was

modified to include the leakage term:

Λcq(k) + dc(k) + lc(k) = 0 (5.3)

where Λc is the node branch incidence matrix, q is the vector of branch flows, dc denotes

the vector of demands and lc denotes the vector of leakages calculated as:

lc(k) = pα(k)κ (5.4)

with p denoting the vector of node pressures, α ∈ 〈0.5, 1.5〉 denoting the leakage exponent

and κ denoting the vector of leakage coefficients, see (Ulanicki et al., 2000) for details.

Note that pα denotes each element of vector p raised to the power of α.

5.4.3 Operational constraints

In addition to equality constraints described by the hydraulic model equations, operational

constraints were applied to keep the system-state within its feasible range. Practical

requirements were translated from the linguistic statements into mathematical inequalities.

The typical requirements of network scheduling are concerned with variable-head reservoir

levels in order to prevent emptying or overflowing, and to maintain adequate storage for

emergency purposes.
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Similar constraints were applied to the heads at critical connection nodes in order to

maintain required pressures throughout the water network. Another important constraint

was on the final water level of variable-head reservoirs, such that the final level is not

smaller than the initial level; without such constraint least-cost optimisation would result

in emptying of reservoirs. The control variables such as the number of pumps switched

ON, pump speeds or valve opening, were also constrained by lower and upper constraints

determined by the features of the control components.

5.4.4 Scenarios description

The water company suggested a number of different scenarios that varied in the number

of allowed pumps in pump stations, constraints on pumps’ speed, tanks’ maximum and

minimum levels and valves’ flow. However, two scenarios presented here were chosen

to illustrate the significance of pressure constraints on critical nodes in an optimisation

study based on a reduced model of water distribution network. Both scenarios followed

the general assumptions described in the next paragraphs, but differ in terms of pressure

constraints on selected nodes. In Scenario 1, the pressure constraints on selected nodes

in the reduced model were set to 15 m, which was the global minimum service pressure

in the original Water Network , whereas in Scenario 2 the pressure constraints on selected

nodes were calculated with a consideration of the energy distribution as was described in

Chapter 3.

In both scenarios a full tank capacity was allowed, i.e. the minimum and maximum allowed

levels for each tank were as their physical limits given in the Epanet2 model, see Table 5.5.

The initial tank level for each tank was assumed to be as in Table 5.5. It was assumed

that the final tank level has to be at least as the initial tank level.

Additionally, it was assumed that the maximum allowed flow through each of Pump Station

1 valves (diverting the flow towards either Pump Station 2 or Tank 5 ) is 300 l/s, while the

maximum allowed flow through valve controlling flow towards Tank 6 was assumed to be 90

l/s. These assumptions were made based on observations of flows in the provided Epanet2

model. In all the pumping stations all pumps were allowed to be ON. Minimum and

maximum normalised speed constraints for variable speed pumps were assumed based on

observations of pump operation in the provided Epanet2 model and are given in Table 5.7.

Note, that minimum and maximum normalised speed constraints for the pumps 4 and 6

were extended as these pumps will be used to highlight the impact of the new pressure

constraints calculated for the critical nodes in order to keep the original model energy

distribution.
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Table 5.7: Normalised pump speed constraints used in scenarios.

Pump station/Pump Min Max

Pump Station 2 0.4 1
Pump Station 3 0.7 1
Pump 4 0.1 1.2
Pump 5B 0.7 1
Pump 6 0.1 1.2

In this study, the pressure-dependent leakage was not considered since leakage data was not

provided. Since the pressure dependent leakage was not included in the model, changing

of the PRV setpoints does not affect the water losses and hence does not affect the cost

(see Figure 5.2). Furthermore, for some PRVs the inlet pressure is lower than the required

outlet pressured; this means that during the optimisation it is not possible to find a feasible

solution, since the PRV equation enforces the inlet head to be higher than the outlet head

if the flow through the PRV is greater than zero. For these reasons the minimum pressure

constraints at non-tank nodes have been removed, thus the PRV setpoints calculated by

the optimiser are not relevant and are not illustrated here.

Consequently, the number of nodes where the pressure constraints could be imposed was

limited. It was decided to use parts of Water Network where pumps were pumping directly

to demand; e.g. Pump 4 and Pump 6. The district metering areas behind the chosen

pumps, after the model reduction process, were reduced to a single node with the demand

aggregated from the removed nodes. It was noted that whereas Pump 6 was pumping

uphill, Pump 4, atypically, was pumping downhill. Also, Pump 4 hydraulic characteristics

significantly exceeded the actual flow requirements for the supplied area. As the original

Water Network represents only a single day snapshot of this complex WDN, it was assumed

that area supplied by Pump 4 could contain an industrial unit, of which demands were

not included in the original Water Network . The pumps configuration and nodes were the

new pressure constraints will be imposed are illustrated in Figure 5.32.

5.4.5 Continuous optimisation outcomes

Subsequently, using the reduced hydraulic model with constraints, the optimal network

scheduling problem was generated in a mathematical modelling language, GAMS (Brooke

et al., 1998), which called up a nonlinear programming solver, CONOPT (Drud, 1992), to

calculate an optimal continuous solution.
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(a) Pump 4 configuration. (b) Pump 6 configuration.

Figure 5.32: Illustration of Pump 4 and Pump 6 configuration after model reduction
process. The p1, p2 and p3 are the pressure constraints imposed on the selected nodes P4
and P6 in the Scenario 1,2 and 3, respectively.

For both scenarios, the continuous optimisation resulted in a set of optimal heads, flows

and schedules while satisfying operating constraints. Thanks to reduced optimisation

model of Water Network the continuous optimisation process took only few minutes for

the 24 h horizon and up to an hour for the 7 day period. Note that only comparison the

costs between different scenarios was possible. The comparison to actual operation cost

of Water Network could not be done, since not enough sufficient data about the current

operation was received from the water company.

Figure 5.33 shows that the continuous head trajectories for all the tanks were kept within

their operating constraints. It can be observed that in these 24 h horizon scenarios it was

not possible to fully utilise the allowed capacity of the large tanks and their levels were far

from the allowed limits. This was due to the restriction that the final tank level must be

at least as the initial tank level. However, for scenarios with 7 days horizon, most tanks

hit their upper or lower allowed limits. These scenarios are not included in this work but

some of the results can be found in Skworcow et al. (2014a).

It can be noticed in Figure 5.33f that the final level in Buffer Tank is noticeable higher

than its initial level. However, since the flow from WTW 1 is modelled as forced inflow into

Buffer Tank, the head produced by WTW 1 is ‘free’ from the optimisation perspective.

Consequently, it can be observed that in both scenarios the 24h horizon does not allow

to change Buffer Tank water level considerably, thereby the final water level is closer to

its allowed upper limit. It also can be noticed that when Buffer Tank is initially filling

up, at the same time water needs to be delivered south to satisfy the demands, thus the

level in Tank 6 initially needs to decrease; as can be seen in the plots the flow through
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valve towards Tank 6 (see Figure 5.34) is negligible during the period when Buffer Tank

is filling up.

It can be observed in both scenarios that the most intensive pumping, both in terms of

number of pumps ON and pump speed, occurred in the cheapest tariff period. In the most

expensive tariff period the speed of variable speed pumps was reduced (e.g. Pump Station

3, see Figure 5.35c) and/or the number of pumps ON was decreased (e.g. Pump Station 3

in Figure 5.35b). Furthermore, interactions between pumping stations connected in series

(i.e. Pump Station 3, Pump Station 1 and Pump Station 2 ) can be observed in the plots;

e.g. when a pump in Pump Station 1 was OFF, the speed of Pump Station 2 or Pump

Station 3 was increased to produce the required flow and head increase. In both scenarios

the main pump station, Pump Station 3, used all allowed pumps but the speed varied

considerably during the considered 24h horizon.

The daily cost for the main pumps and thereby the total cost does not differ significantly

in both scenarios, see Figure 5.36. However, operations of the pumps directly affected by

the pressure constraints vary in each scenario.

In Scenario 1 the pressure constraints on the nodes P4 and P6 were the same i.e 15 m

and it resulted in the total pumping cost of £802.38. As it was mentioned, Pump 4

hydraulic performance is more than adequate to satisfy the demand located downhill so it

was excepted that the pump would operate at low speed and indeed the calculated optimal

speed is below 0.4 of its normalised speed, see Figure 5.35d. In turn, Pump 6, which is

pumping uphill, is noticeably more active, even hitting its maximum allowed speed.

In Scenario 2, new pressure constraints, calculated in order to reflect the energy distri-

bution in the original Water Network , were imposed on nodes P4 and P6. New pressure

constraints were: 6.97 m for the node P4 and 23.23 m for the node P6. As a consequence,

the total pumping cost increased slightly to £803.59. The impact of new pressure con-

straints on the total cost does not seem to be significant in this particular network. This

mainly due to fact that the considered pumps are the smallest in Water Network . How-

ever, the impact on the operation of the Pump 4 and Pump 6 is much more visible as

shown in Figures 5.35d and 5.35f.

Pump 4 lowers its speed as pressure under which the water have to be delivered drops from

15 m to 6.97 m. In contrast, Pump 6 had to increase its speed to satisfy a new pressure

constraint of 23.23m. Hence, the daily cost for Pump 4 decreased about 19% whereas the

operation cost of Pump 6 increased significantly; i.e. 116% as can bee seen in Figure 5.36.
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(a) Water levels in the merged Tank 1A and Tank
1B.
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(b) Water levels in the merged Tank 2A and Tank
2B.
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(c) Water levels in Tank 3.
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(d) Water levels in Tank 5.
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(e) Water levels in Tank 6.
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Figure 5.33: Continuous optimisation results for the tanks.
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Figure 5.34: Continuous optimisation results for the valves.

As it was highlighted in (Bunn and Reynolds, 2009) pumps usually do not operate in

isolation; it is typical that any change in the operating duty of one pump may affect the

suction or discharge pressure of other pumps connected to the same pipe system. Indeed,

in this study was observed that a change in operation, even for relatively small pumps

such Pump 4 and Pump 6, affected the operation of the major pump stations.

The scenarios outcomes confirmed a profound effect of the pressure constraints in the opti-

misation of pump schedules in water distribution network and also highlighted the impor-

tance of preserving of the energy distribution of the original network in order to not mislead

the optimiser when calculating of optimal schedules. And yet in many works regarding

pump operation optimisation the pressure constraints on the critical nodes do not consider

the original model energy distribution. Broad et al. (2010) during the skeletonization pro-

cess aggregated the demand from the removed nodes to the nearest nodes but it was done

without consideration of the model energy balance. Instead, the pre-optimisation pressure

constraints resulted from Epanet2 simulation were used. Such straightforward reduction

of water distribution network model will reduce the computational cost of optimisation,

but without the relevant pressure constraints it will not provide an accurate representation

of the original model. And thereby, the optimal schedules applied to operation of a real

WDN might not be appropriate and corrections from the operator would be necessary.
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(a) Optimised operations of Pump Station 1.
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(b) Optimised operations of Pump Station 2.
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(c) Optimised operations of Pump Station 3.
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(d) Optimised operations of Pump 4.
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(e) Optimised operations of Pump 5B.
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(f) Optimised operations of Pump 6.

Figure 5.35: Continuous optimisation results for the pumps.
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Figure 5.36: Illustrating the cost of optimised pumping for each pump and the total
cost of pumping in each scenario. Note the daily cost of Pump 5B operation (not included
in this plot) was £14.61 and was the same in each scenario.

5.5 Discretisation of continuous schedules

To apply the optimal schedules to a real network the continuous outcomes from the opti-

misation have to be converted to their discrete equivalents. Continuous schedules cannot

be directly implemented in the form shown in Section 5.4.5 as one cannot have e.g. “0.7

of pump ON”, thus a further processing called discretisation needs to be performed.

The process of discretisation of continuous schedules presents a challenge. Bounds et al.

(2006) reported that a discrete schedule for a pump, which is a part of a big pump station,

may differ significantly from the corresponding continuous schedule, because the aggre-

gated flow is achieved by a combination of many pumps. In contrast, for a small isolated

pump station, the discrete schedule can closely follow the continuous solution. Also, ac-

cording to Bounds et al. (2006), for a variable speed pump, varying the speed of the pump

can enable a closer approximation of the continuous solution. The discretisation issue is
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also present in the pipe design problem, e.g. Cunha and Sousa (2001) highlighted that con-

version of the optimal continuous pipe diameters into commercial discrete equivalents may

deteriorate the quality of a solution and could not always guarantee a feasible solution.

A number of approaches to schedules discretisation can be found in literature (Garcia

et al., 2013; Kotsiantis and Kanellopoulos, 2006). Also many meta-heuristic algorithms,

such as the genetic algorithm (Murphy et al., 1993), simulated annealing (Cunha and

Sousa, 1999), tabu search (Lippai et al., 1999), harmony search (Geem, 2006) are able to

find directly discrete solutions. However, most of the listed meta-heuristics algorithms have

been applied to the water distribution networks mostly operated gravitationally without

utilisation of the pumps. And even if they consider pumps in the system, the case studies

are rather small; see e.g (Farmani et al., 2005; Geem, 2009).

Therefore a new discretisation algorithm of continuous schedules have to be developed.

The method employed in this work was developed with usage of GAMS/CONOPT and is

described in Appendix F.

5.6 Summary

The main aim of the project, partially presented in this chapter, was to model and optimise

a large-scale water distribution network in order to reduce the total operating costs. The

complete optimisation procedure has been described in details to demonstrate how the

problem has been approached and solved. It has been shown that the optimal scheduling of

a complex WDN is a dynamic mixed-integer problem and its solution has faced a number of

difficulties: (i) a large number of discrete and continuous variables, (ii) nonlinearities in the

components equations, (iii) modelling uncertainties and (iv) discretisation of continuous

schedules.

The optimisation method, utilised in this chapter, has taken into account the nonlinear

characteristics of the system as well as the mass balance for reservoirs. It has also employed

the extended model reduction algorithm to reduce the number of elements in order to solve

the optimisation problem more easily and computationally effective. The reduced model

not only has provided a significant speed increase of the optimisation process but it has

enabled the calculation of optimal schedules; if the full model has been considered there

would be just to many of decision variables.

A number of scenarios requested by the water company have resulted in continuous opti-

mised schedules. Subsequently, continuous optimal solution for pump control has formed
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the basis for a mixed-integer solution which finally has led to a full set of hydraulic results

including optimal heads, flows and schedules. However, in this chapter only a fraction of

obtained results have been presented. The scenarios described have been rather focused

on the application of the extended model reduction method, introduced in Chapter 3, to

the real case study.

The modified reduction technique has allowed the preservation of the original model hy-

draulic complexity and energy distribution and thereby has ensured that the computed

optimised schedules for pumps will deliver water whilst satisfying the minimum service

pressure limits. However, due to nature of the model, i.e. major pumps were connected

and working in series, the impact of new pressure constraints on the total optimised cost

has not been significant but still noticeable. Nonetheless, for the pumps pumping directly

to demand the optimal schedules in the presented scenarios differed drastically with respect

to each other.

The model reduction software, developed in Chapter 4, has proved to be very practical

tool, enabling reduction of a complex and large water distribution system in a matter of

seconds. The software is especially recommended for optimal pump scheduling in large and

compound WDS with many interactions between control elements and various constraints.
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Chapter 6

Discrete-event specification

formalism and quantised state

systems

This part of the thesis tries to open a new paradigm for modelling and simulation of water

distribution systems (WDS). It is proposed within this chapter to model and simulate

WDSs within the discrete-event specification (DEVS) formalism framework with use of

the quantised state systems (QSS) methods. It was highlighted in Chapter 2 that in WDS

discrete and continuous dynamics can be exhibited simultaneously e.g. a discrete pump

control based on the water level in a tank. Systems, such as WDS, where discrete and

continuous dynamics are present are called hybrid systems. Majority of water network

simulators use a time-slicing approach, typical for simulation of continuous systems, here

quantisation of the states is proposed leading to an asynchronous discrete-event simulation

model. Such an approach in which hybrid systems modelled within the DEVS framework

are simulated using the quantisation-based integration methods has not been applied to

WDSs. Section 6.1 provides an epitome of numerical difficulties may be encountered in

WDSs simulation. Next, an explanatory introduction is given to the DEVS theory and

the QSS methods in Section 6.2 and Section 6.3, respectively. Section 6.4 illustrates

properties of the QSS on a simple nonlinear system. Section 6.5 provides arguments

towards utilisation of the DEVS and QSS concepts in modelling and simulation of water

distribution systems. The conclusions to this chapter are given in Section 6.6.
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6.1 Time-slicing simulation of water networks

Recall from Section 2.3 that simulation of a WDS uses a mathematical representation

of its nonlinear dynamics and offers a better understanding of the system behaviour.

Subsequently, such an enhanced understanding enables potential improvements to WDN

operation and/or design. The steady-state simulation is achieved by solving a set of hy-

draulic equations that include the mass and energy conservation principles. Many methods

were developed for solving these equations; some of them were described in Section 2.3.

Along with development of the methods for water pipe network analysis dozens hydraulic

simulators were created. Table 2.3 lists some of them.

But majority of water networks analysis methods and simulators are based on a time slicing

approach i.e. numerical methods, used in computer simulation of a system characterised

by differential equations (e.g. tank dynamics), require the system to be approximated by

discrete quantities. The solution of difference equation is calculated at fixed points in time.

This feature of mapping a discrete time set to a continuous state set made the discrete

time approach to simulation applicable in many fields including water networks analysis.

However, it is assumed that, in EPS of water networks, the system is in a steady state

between successive time stamps. But in fact, a real WDS continually adjusts itself in

response to changing requirements of the users. This rises an important issue about

the model fidelity of hydraulic behaviour of a real WDS; especially a WDS with pumps

operation based on the water level in tanks, as if the time interval is not appropriate the

events that actually happened in the real water network might be overlooked. Figure 6.1

illustrates variation of water level in a fictitious tank for different time intervals. It is

evident that length of the time interval effects significantly the hydraulic simulation results.

Furthermore, some elements included in a WDN model (see Table 6.1) may cause numerical

difficulties (convergence problems) in simulation due to their inherent non-smooth and

discontinuous characteristics (Filion and Karney, 2003; Afshar and Rohani, 2009; Rivera

et al., 2010; Kovalenko et al., 2010). For example, serious convergence problems may be

encountered when simulating in Epanet2 a complex and large-scale WDN consisting of

hundreds of elements such as those listed in Table 6.1. This is mainly due to the fact

that switching events may not happen at the pre-selected time steps and then additional

intermediate time steps need to be introduced. Such an approach is used in the water

network simulator Epanet2 which introduces the intermediate steps when simulating water

network models containing control elements.
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Figure 6.1: Illustrating the impact of different sampling time on hydraulic analysis
results in Epanet2.

Table 6.1: Examples of non-smooth and discontinuous elements in water distribution
systems.

Water distribution network components

control valves (e.g. PRV, NRV, altitude control valve (ACV), pressure
sustaining valve (PSV))

pump controlled by tank level

pump controlled by many tanks’ levels and time

control expressed as a computer program

In order to perform a more accurate state calculation an approach based on a discrete

event solution can be used. Two aspects of the system can be made discrete, time and

state (Nutaro, 2005). These two types of discretisations are illustrated in Figure 6.2. In

the discrete event approach due to the event-dependent time advance, only important

simulation points regarding the dynamics of the system are simulated, while idle periods

of the system (intervals where no changes in states occur) are simply skipped whereas in

the fixed-increment approach time advance also simulates inactive periods (Beltrame and

Cellier, 2006).
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(a) Continuous (b) Discrete time (c) Discrete state

Figure 6.2: Time and state discretisation of a continuous system.

Discrete-event systems may be modelled using Petri nets (Petri, 1962), finite-state ma-

chines (Gill, 1962), Markov chains (Norris, 1998), state charts (Harel, 1987) or the DEVS

formalism (Zeigler, 1976). The latter will be presented in a greater detail in the next sec-

tions as the DEVS formalism is a general and established framework that provides means

to simulate hybrid systems.

6.2 Discrete-event specification formalism

DEVS is a modular and hierarchical formalism, introduced by Zeigler (1976), for modelling

discrete-event systems. DEVS can represents systems whose input/output behaviour can

be described by sequence of events with the condition that the state has a finite number of

changes in any finite interval of time. A DEVS model processes an input event trajectory

and based on that trajectory and its own initial conditions, it produces an output event

trajectory (see Figure 6.3).

Figure 6.3: Input/output behaviour of DEVS model.

Since its introduction the DEVS formalism was employed in many applications and fields

e.g. model of human liver, sand pile model, model of forest fires spreading, snowflake

formation, robot path planning, highway toll station management and many more (see

(Wainer, 2009) for more details and examples). Furthermore, many extensions and modi-

fication to DEVS were proposed over the years. Extensions to the DEVS formalism include:
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Parallel DEVS (Chow and Zeigler, 1994), RT-DEVS for real-time discrete-event systems

(Hong et al., 1997), Cell-DEVS for cellular automata (Wainer, 2004), Fuzzy-DEVS (Kwon

et al., 1996) and Dynamic Structuring DEVS (Barros, 1995).

DEVS uses two types of structures to describe a discrete event system: (i) atomic mod-

els describe behaviour of elementary components whereas (ii) coupled models describe

collections of interacting elementary components.

A DEVS atomic model is defined by the following tuple of seven elements (Zeigler et al.,

2000, Chapter 4):

M = 〈X,Y, S, δint, δext, λ, ta〉 (6.1)

where:

• X is the set of input values.

• Y is the set of output values.

• S is the set of states.

• δint : S → S is the internal transition function. It is executed as soon as the system

has elapsed the time indicated by the time-advance function.

• δext : Q × X → S is the external transition function. It is executed after having

received an external event x ∈ X. Q is the set of total states defined as

Q = {(s, e) : s ∈ S, 0 ≤ e ≤ ta (s)},

and e is the time elapsed since the last state transition. For example, if the system

adopted state 5 at time t = 4 and an external event with the value x = 7 is received

at time t = 6.2 then the new state is computed by s = δext(5, 2.2, 7).

• λ : S → Y is the output function which specifies the output values due to the internal

transitions. Note that the output function is active only before internal transitions

(external transitions do no generate any output).

• ta : S → R+
0 ∪ {∞} is the so-called time-advance function that defines the time

interval during which the model will remain in each state if no external event occurs.

For example, if at time t = 4 the system is in state s = 5 and the value of ta(s =

5) = 6 then system will change its state at time t = 10. However, if in meantime an

external event arrives at time t = 7 which will change system state to s = 8 then

new time when the system will change is computed by t = 7 + ta(s = 8).
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Figure 6.4: Example of state transitions in an atomic DEVS model. The received
external inputs are in the uppermost graph. The graph in the middle shows the state
trajectories of the system. The lowermost graph illustrates the produced outputs.

Figure 6.4 depicts the mechanism of state transitions of an atomic DEVS model. Appar-

ently, the system starts in state s3 and changes to state s2 after the time advance ta(s3)

has been elapsed. Right before executing the internal transition, it generates the output

y1. The external event x1 occurs before e reaches ta(s2), hence the system interrupts its

current behaviour and instantaneously changes its state to s4, this time however through

the external transition. Note that no output is produced. When the time advance of state

ta(s4) has been elapsed, it produces an output y2, executes the internal transition again

and thereby goes to state s1.

The main advantage of the DEVS formalism is that atomic models can be coupled in a

hierarchical way i.e. the coupled model could be defined as a set of atomic or coupled

models. Therefore even complex structure can be modelled as a coupled structure of

simpler ones. It is only possible because DEVS models are closed under coupling (Cellier

and Kofman, 2006), which means that a coupled model can can be described by the same

functions as an atomic model (i.e. internal, external, time-advance and lambda functions).
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Considering water network modelling the network elements such as pipes, valves, pumps

could be defined as atomic models or coupled models forming a coupled model of a DMA.

There are basically two different ways of coupling DEVS models: (i) using translation

functions between subsystems (see (Zeigler et al., 2000, Chap.7) for details) or (ii) utilising

of input and output ports. The first one is the most general but the second is simpler and

more adequate to the simulation of continuous systems (Kofman, 2003).

Model B

Model A

Coupled model CM

Figure 6.5: A coupled DEVS model.

A coupled DEVS model illustrated in Figure 6.5 is the outcome of coupling the models

Model A and Model B by means of their ports, i.e. one of the output ports of Model A is

connected to the input port of Model B, the output port of Model B is connected to the

input port of Model A.

The utilisation of ports, however, requires an additional naming scheme to identify the port

in which the event is coming. This can be done by introducing to the input and output

events a new number, word or symbol representing the port associated with the event.

Then, the coupling between different systems is indicated by enumerating the connections

to describe it. An internal connection involves an input and an output port corresponding

to different models. In the context of hierarchical coupling, there are also connections from

the output ports of the subsystems to the output ports of the network, namely external

output connections, and connections from the input ports of the network to the input

ports of the subsystems, namely external input connections (Kofman, 2003).

Hence, when example in Figure 6.5 is considered the internal connections can be repre-

sented by [(A, 2), (B, 1)]. Other connections are [(B, 1), (A, 1)], [(CM, 1), (A, 1)], [(B, 1),

(CM, 2)], etc. According to the closure property of DEVS model, the Model CM can be

also used as an atomic DEVS and it can be coupled with other atomic or coupled models.

Beside the hierarchical construction of the models and well defined concept of coupling of

components another important feature of the DEVS formalism is its ability to simulate
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large and complex models in a efficient way. To simulate DEVS models Zeigler et al.

(2000) proposed a framework consisting of an abstract simulator. The concept mirrors the

hierarchical structure of the DEVS model being simulated with a hierarchical framework

of simulator objects. Hence, each atomic model has a corresponding DEVS simulator and

a DEVS coordinator corresponds to each coupled model. At the top of the hierarchy, a

root coordinator is in charge to control the progress of the simulation. See Figure 6.6

which illustrates such a mapping.

Coordinator 2

Coordinator 1

Root
coordinator

Simulator 3

Simulator 1 Simulator 2

Coupled model 2

Coupled model 1

Atomic model 1

Atomic model 2

Atomic model 3

Figure 6.6: Mapping a hierarchical DEVS model onto a hierarchical simulator.

According to Kofman (2003) the simulation of a coupled DEVS model can be outlined as

follows:

1. Search for the atomic model that is the next to execute an internal transition. Call

it d∗ and let tn be the time of the mentioned transition.

2. Advance the simulation time t to t = tn and execute the internal transition function

of d∗.

3. Propagate the output event produced by d∗ to all the atomic models connected to

it executing the corresponding external transition functions. Then, go back to the

step 1.

The simulation of all simulator objects in the consecutive layers is coordinated by a system

of messages transmitted between the associated simulators and coordinators. There are

two types of messages between coordinators and simulators that are sent up and down
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the simulators tree. (i) Messages sent by coordinators to their children triggering the

execution of different functions (δint, δext, λ). (ii) When a simulator executes a transition

that generates the output it sends the output value to its parent coordinator. Also, when

an output event produced by one of its children has to be propagated outside the coupled

model, the coordinator sends a message to its own parent coordinator carrying the output

value.

Each simulator or coordinator has a local variable tn which indicates the occurrence time

of its next internal transition. In the simulators, tn is calculated using the time advance

function. In the coordinators, it is the minimum tn of their children. Thus, the tn of

the coordinator in the top is the time in which the next event of the entire system will

occur. Finally, the root coordinator only looks at this time, advances the global time

t to this value and then it emits a message to its child triggering the execution of the

next transition. This cycle is repeated until end of simulation is achieved. A more formal

description of the simulation algorithm can be found in (Kofman et al., 2003; Zeigler et al.,

2000).

This type of simulation has a interesting and very practical property i.e. each DEVS model,

whether atomic or coupled, and the associated simulator is independent from other models.

For example, if one of the atomic models in the system has its time advance set to big

value or infinite the simulation will not spend any calculation with it as such atomic model

will not affect other models within the system. This property of independence is especially

useful in simulation of sparse systems (Kofman et al., 2003).

Initially, the DEVS theory was employed mainly for discrete systems as they can be

naturally and straightforward represented by sequences of events. Continuous systems

can also be represented in DEVS formalism but they need to be a priori approximated

by conventional numerical integration methods such as Euler, Runge Kutta etc (Bergero

and Kofman, 2011). However, continuous systems can be also approximated by state

quantisation and thereby systems that exhibit both continuous and discrete characteristics

can be modelled and simulated within the DEVS framework.

6.3 Quantised state systems

In order to obtain a DEVS model of a continuous system a quantisation-based integra-

tion technique can be used to transform the considered continuous system into a system

described by a sequence of events. The idea to approximate a continuous system by a

discrete-event simulation is based on a quantisation function that enables transformation
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the continuous state variables into the quantised discrete valued variables. The idea ini-

tially introduced in (Zeigler and Lee, 1998) was later reformulated in (Kofman and Junco,

2001) and defined as the QSS methods.

The purpose of employing the QSS methods is to provide means to simulate the continuous

part of the WDS model formulated within the DEVS framework, i.e. reservoirs dynamics.

The QSS methods can be defined as follows (Cellier and Kofman, 2006)

Consider the time-invariant state equation system

ẋ(t) = f [x(t),u(t)], (6.2)

where x(t) is the state vector and u(t) is the known piecewise constant input trajectory.

The QSS method integrates an approximate system which is called the quantised state

system.

ẋ(t) ≈ f[q(t),u(t)], (6.3)

where q(t) is the quantised version of the state vector x(t). The q(t) and x(t) are related

components by hysteretic quantisation function (i.e each component of qi(t) is related to

the corresponding state variable xi(t) by a hysteretic quantisation function). A simple

quantisation function could be:

q(t) = floor (x(t)) (6.4)

where floor(x) is the largest integer not greater than x.

Selection of the quantisation function is often arbitrarily but it is important to highlight

that wrong quantisation function can yield to illegitimate model (Cellier and Kofman,

2006) i.e. performing an infinite number of transitions in a finite time interval. To ad-

dress this problem Kofman and Junco (2001) introduced a hysteresis to the quantisation

function. According to (Cellier and Kofman, 2006) the definition of such a hysteretic

quantisation function is as follows:

Definition 6.1. Let Q = {Q0, Q1, . . . , Qr} be a set of real numbers, where Qk−1 < Qk

with 1 ≤ k ≤ r. Let Ω to be set of piecewise continuous trajectories, and let x ∈ Ω be

a continuous trajectory. The mapping b : Ω → Ω is a hysteretic quantisation function if
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trajectory q = b(x) satisfies:

q(t) =



Qm if t = t0

Qk+1 if x(t) = Qk+1 ∧ q(t−) = Qk ∧ k < r

Qk−1 if x(t) = Qk − ε ∧ q(t−) = Qk ∧ k > r

q(t−) otherwise

(6.5)

and:

m =


0 if x(t0) < Q0,

r if x(t0) ≥ Qr
j ifQj ≤ x(t0) < Qj+1

The discrete values Qk are called quantisation levels and the distance Qk+1−Qk is defined

as the quantum, which is usually constant. ε is the width of the hysteresis window. Q0

and Qr are the lower and upper saturation values, respectively.

Figure 6.7 depicts a block diagram of a QSS system. Figure 6.8 illustrates a standard

quantization function q(t) with uniform quantisation intervals, obtained with a hysteresis

window ε. Depending on quantisation method the quantisation function can be piecewise

constant (QSS1) (Kofman and Junco, 2001), linear (QSS2) (Kofman, 2002) or parabolic

(QSS3) (Kofman, 2006). The family of QSS methods include also methods for stiff systems:

Backward QSS and Linearly Implicit QSS (Migoni et al., 2013).

x1

xn

q1

q(t)

qn

u(t) ∫

∫
f1

fn

quantisation
function

quantisation
function

Figure 6.7: Block diagram of a QSS system (Kofman and Junco, 2001).

The QSS-based algorithms are of particular interest for the simulation of systems exhibiting

discontinuities, as state events can be handled much more efficiently by state-quantisation
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Figure 6.8: Typical quantisation function with uniform quantisation levels (Kofman
and Junco, 2001).

algorithms compared to time-slicing algorithms. Hence, the QSS methods are well suited

for the simulation of hybrid systems such as water distribution systems. Moreover, the

QSS-based solvers are very promising for the simulation of large-scale models, as they

exploit the sparsity inherent in these models naturally and directly. Again, this property

of the QSS methods should be beneficial in simulation of water networks as they models

are often large and sparse. Additionally, QSS provides features that ensure convergence

and stability even for nonlinear systems (Cellier and Kofman, 2006). The QSS can be

easily implemented within the DEVS formalism therefore the entire WDN can be modelled

within a unified framework.

6.4 Illustrative example

In order to illustrate properties of the QSS methods consider a simple system with three

states h1, h2 and h3 representing heads of three cylindrical tanks with different diameters

of 5, 20 and 40 m respectively. Note that for simplicity reasons these tanks are assumed

to be independent. The differential equations describing dynamics of these tanks are as
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follows:

dh1(t)

dt
=

1

π × 2.52
[−q (t)] (6.6)

dh2(t)

dt
=

1

π × 102
[−2q (t)] (6.7)

dh3(t)

dt
=

1

π × 202
[−q (t)] (6.8)

where q is outflow from the tanks.

This system was simulated using the QSS2 method and the quantum of 0.001 for all

states. The heads’ trajectories obtained from simulation, with initial heads of h1(0) = 15,

h2(0)=10 and h3(0) = 7, are depicted in Figure 6.9.
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Figure 6.9: Illustrating properties of the QSS2 method on the example of simple non-
linear system.

It can be seen that the QSS2 method adapts to the different tanks dynamics by scheduling
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more integrator events when the trajectory has a high curvature, while the number of inte-

grations decrease as the trajectory resembles a straight line. This example also illustrates

the asynchronous property of the QSS methods as the variable h1 changed its state 45

times while the variables h2 and h3 changed 14 and 6 times, respectively. In simulation

of water distribution systems with a large number of tanks with different dynamics the

asynchronous property might be especially useful; tanks’ states will evolve individually as

there is no need to update them simultaneously.

6.5 Modelling and simulation of WDS with DEVS and QSS

concepts

Section 6.1 emphasised the use of time-slicing approach in the majority of water network

simulators. However, the drawbacks correlated to such an approach in simulation of hybrid

systems were highlighted throughout this thesis (see Section 2.3 and Section 5.5). In sum-

mary, these problems are: non-smooth and discontinuous characteristics of components,

controls based on the system states and issues with discretisation of continuous optimal

schedules.

To address these issues, here quantisation of the states is proposed to create an asyn-

chronous discrete-event simulation model of WDS. Such an approach in which hybrid

system modelled within the DEVS framework is simulated using the quantisation-based

integration methods has not been applied to WDSs. Having in mind the properties of

the DEVS and QSS concepts, it is believed, that they shall naturally accommodate the

asynchronous, concurrent and nonlinear nature of WDSs and therefore offer new contribu-

tions to the area of WDS modelling and simulation. Further investigation of the proposed

approach, with the use of benchmark models available in the literature, is continued in

the Chapter 7.

6.6 Summary

This chapter has introduced the reader to an alternative modelling and simulation (M&S)

framework based upon combination of the DEVS formalism and the QSS methods. Such an

approach brings many benefits especially to modelling and simulation of hybrids systems,

such as WDSs, as in contrast to the classical time-slicing approach, the QSS methods

consider only changes in states of the system.
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Prior introduction to the DEVS theory, Section 6.1 has provided a synopsis of still present

issues in modelling and simulation of WDSs. The highlighted problems have provoked

investigation for a M&S framework that can accommodate an asynchronous, concurrent

and nonlinear nature of WDSs.

The description of the DEVS and QSS concepts has been been given in Sections 6.2 and

6.3, respectively. The argument behind selection of the DEVS formalism has been that it is

a formal M&S framework with established history and hundreds of applications. But what

distinguish DEVS from other M&S paradigms is the separation modelling from simulation

and built-in support for hierarchical, modular model development thanks to well defined

coupling of components. However, the DEVS theory initially developed for discrete-time

systems required additional technique in order to simulate the continuous parts of hybrid

systems. Help came with introduction of the QSS methods which can be employed in a

discrete event simulation of continuous systems. DEVS with QSS methods provide means

to represent a full range of dynamic systems. While the focus of these sections has been

put on the illustrative way to present DEVS and QSS concepts the reader may consult

two excellent positions on these subjects (Zeigler et al., 2000) and (Cellier and Kofman,

2006).

The introduction to DEVS and QSS concepts has been followed by an illustrative example

given in Section 6.4. This example has illustrated performance of the QSS methods when

simulated a simple system. The simulation outcomes have shown that in QSS each state

variable is updated independently from all others, whenever it crosses through the next

quantisation threshold, and also, each variable changes only at event times, i.e., when a

state variable changes its quantisation level. These features of QSS shall offer increase in

the computational efficiency when simulating hybrid systems with discontinuous compo-

nents. Based on these preliminary considerations the next objective is the investigation of

the proposed approach with the use of benchmark WDS models available in the literature.



Chapter 7

Modelling and simulations of

water distribution systems within

hybrid systems framework

In this chapter the results obtained from the simulations of water networks using the

time-slicing and QSS methods are presented and discussed. The goal is to compare the

simulation run-times and the hydraulic accuracy of the DEVS and QSS approach against

the conventional time-slicing methods. More specifically, the different QSS methods in QSS

Solver and PowerDEVS against the differential algebraic system solver (DASSL) solver of

OpenModelica and Epanet2 simulation engine. The benchmark problems described in

this chapter includes a number of representative WDSs found in the literature. However,

prior evaluation of the proposed approach on the benchmark models, the investigation

is carried out to establish the appropriate modelling and simulation environment for the

DEVS formalism and the QSS methods. Section 7.1 describes this process. The following

sections, 7.2, 7.3, 7.4 and 7.5 use the benchmark models for the systematic investigation

of the accuracy and the performance of simulators. As the benchmark models are differ-

ent in terms of size and complexity, the systematic investigation can reveal bottlenecks

and shortcomings in the proposed approach. Section 7.6 provides the discussion of the

outcomes and Section 7.7 concludes this chapter.

175
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7.1 Modelling and simulation environments

Throughout the work described in this chapter a number of software environments and

tools were used. While some of the investigated tools were fully developed and supported

other were still in the development phase. Such tools offer only limited functionalities and

often were released without manuals what significantly hindered work with them.

The final list of modelling and simulation environments includes: (i) Epanet2, (ii) Pow-

erDEVS, (iii) QSS Solver and (iv) OpenModelica. Brief descriptions of these software

along with reasoning behind their selection are given in the latter part of this section.

7.1.1 Epanet2

Epanet2 (Rossman, 2000b) is one of the most recognised water network solver in the water

distribution research area. Within this chapter, the water network models simulated in

Epanet2 are used as the benchmarks in terms of hydraulics. Note that Epanet2 was already

described in Section 2.3.8. The Epanet2 version used was 2.00.12.

7.1.2 PowerDEVS

Since introduction of the DEVS formalism several implementations of this theoretical con-

cept have been developed: DEVSim++ (Kim, 1994), DEVS-Java (Zeigler and Sarjoughian,

2000), CD++ (Wainer et al., 2001), JDEVS (Filippi et al., 2002), DEVS-C++ (Cho and

Cho, 1997), ADEVS (Nutaro, 1999) ModelicaDEVS (Beltrame and Cellier, 2006), Pow-

erDEVS (Bergero and Kofman, 2011) and many others. Most of them have been designed

to simulate purely discrete systems but some, e.g. PowerDEVS, integrate the QSS meth-

ods, and thereby, enabling the modelling and simulation of hybrid systems.

PowerDEVS is a general-purpose modelling and simulation (M&S) software tool oriented

towards the simulation of hybrid systems within the DEVS framework. PowerDEVS was

one of the first, and nowadays one of the most advanced tools that allows the implemen-

tation and simulation of DEVS models. Its graphical user interface (GUI) provides user

with graphical libraries of different blocks (e.g. sine, nonlinear function, ramp) that en-

able a quick modelling of basic systems. PowerDEVS has been successfully employed in

modelling and simulation of electronic circuits (Capocchi et al., 2007) and power systems

(Tang and Shu, 2008). Another feature is the interconnection between PowerDEVS and

the numerical package Scilab (Campbell et al., 2006). PowerDEVS simulations can make
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use of Scilab workspace variables and functions. In turn, Scilab can be used for further

processing and analysis results from the PowerDEVS simulation (Bergero and Kofman,

2011). However, modelling complex systems with thousands of elements with use of the

diagram blocks can present a challenge for a PowerDEVS modeller. Also, with no man-

ual the further modifications to the existing blocks is inconvenient and troublesome. The

PowerDEVS version used was 2.3rev930.

7.1.3 OpenModelica

In addition to Epanet2, it was decided to establish the computational implementation

of the benchmark networks with use of the Modelica object-oriented modelling language.

Modelica is a free modelling language that supports the equation-based, object-oriented

modelling methodology, and facilitates the description of large and complex systems. Mod-

els can be described in a hierarchical and modular fashion, interconnecting components

similarly to the topological structure of the real system. These features along with ex-

tensive the Modelica libraries provide several modelling formalisms and ability to develop

multi-domain models. In this chapter, an open-source OpenModelica (Fritzson, 2010) is

used to investigate the performance of DASSL (Petzold, 1982) numerical engine in simula-

tion of WDSs. DASSL uses the backward differentiation formulas of orders one through five

and it solves the nonlinear system at each time-step by Newton’s method. In the following

section the simulation outcomes from OpenModelica with the use of DASSL is often used

as the “analytical” benchmark against the other approaches. The OpenModelica version

used was 1.9.1Beta2.

7.1.4 QSS Solver

For simplicity reasons, the most of QSS implementations were incorporated into the dis-

crete event simulation engines such as DEVS, e.g. the QSS methods in PowerDEVS. Such

an approach, however, is not fully efficient due to increased computational load within

discrete event simulation mechanism. To overcome this problem Fernández and Kofman

(2014) created a stand-alone QSS Solver. To model a system in QSS Solver one needs to

use the µModelica language, a subset of the standard Modelica language. This tool is,

however, still under development and a number functionalities such as linking to external

libraries with nonlinear equations solvers were not available at the time of writing this

thesis.
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Table 7.1 includes a summary of the simulators features. It is important to highlight that

simulators with the QSS-based integration do not support solving of simultaneous DAEs.

The implications of this are discussed in the further part of this chapter.

7.1.5 Hardware

Simulations within this chapter were performed on a PC workstation powered by Intel

i5-2500K processor and 8GB of RAM. The measured CPU time should not be considered

as an absolute ground-truth since it will vary from one computer system to another, but

the relative ordering of the methods is expected to remain the same.

7.2 Case study A: A basic network

At first, a very simple water network was considered to investigate different approaches to

modelling and simulation in the described environments. The structure of the WDS model,

namely Network A, is shown in Figure 7.1a. It is a simplified version of the case study

utilised by Gupta and Bhave (1996); Tabesh et al. (2002); Cheung et al. (2005); Gupta

et al. (2013). Network A contains a tank, pipe and node. In this example, the tank’s

water level changes over 24 hour period due to the diurnal demand at the consumption

node. Data of the water network elements are listed in Table 7.2.

Among the employed M&S software, Epanet2, as a tool dedicated to simulation of WDSs,

offers the easiest way to model Network A. PowerDEVS as a general purpose M&S tool

also provides a GUI where models can be built graphically. But not surprisingly, as it was

not developed for water research domain, modelling even a simple water network requires

more effort than in Epanet2. Although, PowerDEVS enables creation of a customised

library to speed-up the modelling process but definition of a new library might be error-

prone and rather cumbersome as only a very limited manual to PowerDEVS is provided.

Network A modelled in PowerDEVS is depicted in Figure 7.1b.

The OpenModelica environment is the most advanced amongst the described tools. Simi-

larly to PowerDEVS user can build models with use of graphical blocks but its strength is

in the equation-based modelling that enables a direct transformation from the mathemat-

ical representation of systems. Hence, in OpenModelica different types of WDS models;

i.e. nodal, branch flow or mixed can be defined in a convenient way.
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(a) Epanet2

(b) PowerDEVS

Figure 7.1: Network A modelled in Epanet2 and PowerDEVS.

Table 7.2: Nodes and links in Network A.

Tanks Elevation [m] Diameter [m] Initial level [m]

T1 10 20 20

Nodes Elevation [m] Demand [m3/s]

N1 0 0.01

Pipes Length [m] Diameter [m] Roughness (Hazen-Williams)

P1 1000 0.3 100
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Definition of models in QSS Solver is also the equation-based but in contrast to Open-

Modelica the order of equations is important; equations must be given in an explicit

ordinary differential equation (ODE) form. To ease conversion from the differential alge-

braic equation (DAE) representation of the system to the ODE form, the developers of

QSS Solver employed the built-in algorithms of the OpenModelica compiler (OMC) which

simplify expressions and sort the equations. This feature of QSS Solver, however, was

not fully-functional at time of writing this thesis and DAEs describing WDS models were

transformed into the ODE form by author of this thesis manually.

Network A in the Modelica and µModelica standard are listed in Listings 7.1 and 7.2,

respectively.

Listing 7.1: OpenModelica model of Network A.

model TankSimpleModel

// Parameters

Real L = 1000 "Pipe length [m]";

Real D = 0.3 "Pipe diameter [m]";

Real C = 100 "Pipe roughness";

Real T0 = 20 "Initial water level in tank [m]";

Real Td = 20 "Tank diameter [m]";

Real Te = 10 "Tank elevation [m]";

Real d = 0.01 "Demand [m^3/s]";

Real R,A "Resistance , Cross -sectional area";

// Variables

Real dh1 "Pipe 1 headloss";

Real q1 "Pipe 1 flow";

Real h1,h(start = 20) "Node 1 head , Tank level";

equation

R = 10.69 * L / C ^ 1.852 / D ^ 4.871 "Resistance";

A = 3.14159 * (Td / 2) ^ 2;

// Mass balance

q1 - d = 0;

// Energy equations

dh1 = R * q1 * abs(q1) ^ 0.852;

h1 = h + Te - dh1;

// Component equation

der(h) = 1 / A * (0 - d);

end TankSimpleModel;

Listing 7.2: QSS Solver model of Network A.

model tanksimplemodel

annotation(

experiment(

description="Tank Simple model",

solver=QSS ,

StartTime=0,

StopTime =86400 ,

Tolerance =1e-1,
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AbsTolerance =1e-9,

QssSettings= "

output ht;

output h1;

"

));

// Parameters

Real L, D, C, Td , Te, d, R, A ;

// Variables

Real dh1 ;

Real q1;

Real h1;

Real h(start = 20);

Real ht;

equation

L = 1000;

D = 0.3;

C = 100;

Td = 20 ;

Te = 10 ;

d = 0.01 ;

R = 10.69 * L / C ^ 1.852 / D ^ 4.871 ;

A = 3.14159 * (Td / 2) ^ 2;

// Mass balance

q1 = 0+d;

// Energy equations

dh1 = R * q1 * abs(q1) ^ 0.852;

h1 = h + Te - dh1;

// Component equation

der(h) = 1 / A * (0 - d);

ht = h + Te;

end tanksimplemodel;

The above representations of Network A were subsequently simulated within their respec-

tive simulation environments. Table 7.3 presents results from those simulations. The

simulations and results were compared in terms of the time required for simulation, num-

ber of resulting points, and the hydraulic accuracy with respect to simulation performed

in Epanet2 or Epanet2 Toolkit. The number of resulting points indicates a number of

elements in the result vector. To assess the hydraulic accuracy plots of heads and flows

were used.

The simulations were carried out for different tolerance (Epanet2 and OpenModelica) and

quantum (PowerDEVS and QSS Solver) values to investigate their impact on the above

comparison criteria.

To obtain the simulation time in Epanet2 a Matlab-based script was used to measure

via Epanet2 Toolkit the average time for 10 successive simulation runs. The simulation
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times for PowerDEVS, OpenModelica and QSS Solver were read directly from their sim-

ulation log files. The simulation times given in Table 7.3 refer to the simulation process

only; time for saving result data is not included. Note that the number of output points

in OpenModelica is user-depended; in this case the number of requested points was 24.

OpenModelica and QSS Solver log the simulation time with a millisecond accuracy whereas

in PowerDEVS the logged times are given with the C++ float number precision.

Table 7.3: Comparison of simulations for Network A. (?)Note that the number of output
points in OpenModelica is user-depended.

Simulator Sampling time Tolerance/ Number of output Run-time
[s] Quantum points [s]

Epanet2
3600 1e-3 24 0.009
60 1e-3 1440 0.0046

PowerDEVS

- 1e-1 2 <1e-13
- 1e-2 15 <1e-13
- 1e-3 148 <1e-13
- 1e-4 1480 <1e-13
- 1e-5 14794 0.875

QSS Solver

- 1e-1 2 <1e-1
- 1e-2 15 <1e-1
- 1e-3 148 <1e-1
- 1e-4 1480 <1e-1
- 1e-5 14794 <1e-1

OpenModelica
1 1e-3 27? 0.0048
1 1e-6 27? 0.0088

As can be seen in Figure 7.2, the tank’s trajectories obtained from the employed tools

were identical. However, Table 7.3 demonstrates that the simulation run-times differs

significantly between the used simulation engines. Simulations of Network A with use of

the QSS methods were faster than with use of the classical time-slicing engines, except the

PowerDEVS case when quantum parameter was set to 1e-5.

Although at this stage, it was difficult to notice any difference between the simulators in

terms of the simulation run-times or hydraulic accuracy, this case study provided invaluable

know-how knowledge which ease the implementation of the subsequent benchmark models.
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Figure 7.2: Head trajectories for tank T1 obtained from different simulators.

7.3 Case study B: Network with pump and tank

The next water network considered for a preliminary investigation is illustrated in Fig-

ure 7.3. The aim of this theoretical WDN, henceforth referred as Network B, is to provide

with water to an industrial user. The parameters of Network B elements are given in

Table 7.4 and Table 7.5. The fixed-speed pump in the network is controlled by the water

level in the cylindrical tank. The pump was set to be switched off when the water level

in the tank reaches 6 metres and switched on when the water level drops below 6 me-

tres. This was done intentionally, to observe how the classical approach, represented by

Epanet2, and the proposed DEVS + QSS combination, represented by PowerDEVS, can

cope with a frequent switching. The corresponding models in Epanet2 and PowerDEVS

are illustrated in Figure 7.4a and Figure 7.4b, respectively.

Figure 7.3: Illustrating a simple water distribution system.
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Table 7.4: Nodes in Network B.

Tanks & Reservoirs Elevation [m] Diameter [m] Initial level [m]

T1 10 10 1

R1 0

Nodes Elevation [m] Demand [m3/h]

N1 0 50

Table 7.5: Links in Network B.

Pipes Length [m] Diameter [m] Hazen-Williams factor

P1 1 1 100

Pumps Equation Initial status

PMP1 h = 80 − 0.002q2 closed

While such a frequent switching may seem to be unrealistic when water distribution net-

works are concerned, the author of this thesis came across a real water network, in which

pump controlled by water level is switched on/off frequently, e.g. in Skworcow et al. (2009)

every 7 to 30 minutes. Furthermore, this shall evaluate the ability of simulators to detect

events and assess their respective computational efficiency when simulating such a system.

(a) Epanet2 (b) PowerDEVS

Figure 7.4: Network B modelled in Epanet2 and PowerDEVS.

The extended period simulations of the models, illustrated in Figure 7.4, were performed

for a period of 24 hours. The simulations in Epanet2 were carried out with the hydraulic

steps of 1 hour and 1 min. The simulations in PowerDEVS were performed with the

relative quantum step of 0.001.
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The results from Epanet2 with the hydraulic step of 1 min and PowerDEVS were very

similar when the pump flow and tank’s water level where compared. Although, in Epanet2

detection of the event’s time to switch on/off the pump was slightly inaccurate due to

the sampling time. However, when the Epanet2 simulation was run again but with the

hydraulic step of 1 hour, which is typical in WDS simulations, the pump missed the event

where it should be switched on. This behaviour is depicted in Figure 7.5.

It was previously described in Section 2.3.5 that one way to achieve a more precise sim-

ulation of WDS is to reduce the length of time interval accordingly. Another technique,

employed inter alia by Epanet2, is to introduce additional intermediate checks around the

hydraulic calculation time step (Rossman, 2000a). Unfortunately, the standard Epanet2

does not provide access to such simulation data. Instead, the Epanet2 Toolkit can be

used to extract the simulation data with the intermediate steps included. The trajecto-

ries obtained from Epanet2 Toolkit (with usage of intermediate steps) and PowerDEVS

simulations were nearly identical as can be seen in Figures 7.5, 7.6 and 7.7. However,

the consequence of introduction the intermediated steps was that the number of resulting

points in the Epanet2 hydraulic results increased drastically. Table 7.6 shows the length

of resulting vectors for both simulators. PowerDEVS requires significantly less points to

simulate the hydraulic behaviour with the same accuracy as Epanet2. Moreover Epanet2

simulated the model in ∼1400 milliseconds whereas PowerDEVS simulated the model in

∼630 milliseconds.
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Figure 7.5: The upper plot shows the pump flow simulated in Epanet2 whereas the
bottom plot shows a zoomed section around the time stamp of 16 hours.
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Figure 7.6: The upper plot shows the pump flow simulated in PowerDEVS whereas the
bottom plot shows a zoomed section around the time stamp of 16 hours.
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Figure 7.7: The upper plot depicts comparison of the water levels in the tank T1 resulted
from three simulations. The bottom plot shows a zoomed section around time stamp of
16 hours.
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Table 7.6: Number of resulting points for the head and flow variables.

Variable Epanet2 Toolkit PowerDEVS
(with intermediate steps)

tank’s head 3555 1408
pump’s flow 3555 2999

Based on the obtained results from the PowerDEVS and Epanet2 simulators, it can be

concluded that, a WDS with discontinuous elements can be simulated in PowerDEVS with

a similar accuracy as in Epanet2, which for many years set the benchmark in terms of WDS

analysis. But while Epanet2 needed introduction of the intermediate steps to simulate the

considered WDS accurately the DEVS and QSS-based approach naturally accommodated

asynchronous, concurrent and nonlinear nature of WDSs.

For the next tests, the pump behaviour, in Network B, was changed i.e. the pump was

set to operate when the water level in tank reaches 15 m and when the water level drops

below 10 m the pump was switched off. Additionally, OpenModelica and QSS Solver were

included to model Network B. The respective models of Network B in OpenModelica and

QSS Solver are presented in Listings 7.3 and 7.4, respectively.

Listing 7.3: OpenModelica model of Network B.

model oneTankAndPump

Real qp,ht(start = 11),u,h1,dh1;

initial algorithm

u:=0;

equation

h1 = ht - dh1;

dh1 = 50 ^ 1.852 * 1.21216 * 10 ^ 10 * 1 / 100 ^ 1.852 / 1000 ^ 4.871;

der(ht) = 1 / 3.14159 / 25 * (qp - 50);

algorithm

if u == 0 then

qp:=0;

else

qp:=sqrt ((80 - ht) / 0.002);

end if;

when ht > 15 then

u:=0;

end when;

when ht < 10 then

u:=1;

end when;

end oneTankAndPump;

Listing 7.4: QSS Solver model of Network B.

model oneTankAndPump
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annotation(

experiment(

description="",

solver=QSS ,

StartTime=0,

StopTime =24,

Tolerance =1e-3,

AbsTolerance =1e-9,

QssSettings= "

output ht;

output qp;

output h1;

"

));

Real ht(start = 11);

Real qp;

Real dh1;

Real h1;

discrete Real demand;

discrete Real u;

initial algorithm

u:=0;

demand :=1;

equation

qp = u*sqrt ((80-ht )/0.002);

der(ht )=1/3.14159/25*(qp -50* demand );

dh1=demand ^1.852*1.21216*10^10*1 / 100^1.852 / 1000^4.871;

h1=ht-dh1;

algorithm

when ht >15 then

u:=0;

end when;

when ht <10 then

u:=1;

end when;

end oneTankAndPump;

Table 7.7 presents the simulation results from all the simulators. The comparison includes

the measured simulation run-time and the number of result points for different settings of

their respective tolerance/quantum parameter.

In the time-slicing environments, Epanet2 and OpenModelica, shorter step length or in-

creased tolerance precision improved simulation accuracy (see Figure 7.8), but, as a result

of these changes, the simulation run-times were longer. Yet, all simulations in Epanet2 and

OpenModelica took only several milliseconds, with OpenModelica insignificantly slower.

When the time-slicing simulators were compared against the QSS-based simulators in

terms of the simulation run-time, it was noticed, that for the QSS quantum parameter
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Table 7.7: Comparison of simulations for Network B.

Simulator Interval time Tolerance/ Number of output points Run-time
[s] Quantum [s]

Epanet2
3600 1e-3 24 0.0011
60 1e-3 1440 0.0069

PowerDEVS

- 1e-1 19 <1e-13
- 1e-2 180 <1e-13
- 1e-3 1850 0.215
- 1e-4 18534 2.62
- 1e-5 185388 28.2

QSS Solver

- 1e-1 19 <1e-3
- 1e-2 180 <1e-3
- 1e-3 1850 <1e-3
- 1e-4 18534 0.0156
- 1e-5 185388 0.0468

OpenModelica 3600 1e-3 46 0.0049
3600 1e-6 46 0.0072

≥1e-3 the time-slicing approaches were significantly slower, but once the QSS quantum de-

creased to ≤1e-4 the simulations in PowerDEVS and QSS Solver lasted drastically longer.

It is noticeable especially in the PowerDEVS simulations. Such a large overhead is ex-

pected to be due to message mechanism of the DEVS simulation engine as highlighted by

Bergero et al. (2012), what encouraged Bergero et al. (2012) to develop a stand-alone QSS

Solver.

From Table 7.7 in can be observed that in simulations involving the QSS methods the

number of resulting points increased reverse proportionally to the quantisation step value.

This was expected, as in approaches involving the QSS methods, the choice of the quan-

tisation step is both reverse proportional to the simulation time and directly proportional

to the quantisation error (Capocchi et al., 2009).

It is worth to highlight that when performing simulations in OpenModelica, 24 result

points were requested but the output file contained 46 points. This is due to switching

events around which OpenModelica engine introduced additional points to determine the

accurate time of the event.

Since the state trajectories of the model cannot be computed analytically, the accuracy

of the particular simulation can only be approximated. For this purpose, results form
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simulations were plotted in Figure 7.8 for a graphical inspection. Figure 7.8 illustrates the

head changes in tank over the period of 24 hours.

It was decided to use results from OpenModelica as a benchmark, instead the results

from Epanet2, as nowadays, DASSL represents state-of-art multi-purpose DAE solver used

in many commercial simulation environments e.g. in Dymola (Dassault Systems, 2014)

whereas Epanet2, despite its established position, has not been improved for years.

It can be clearly seen that simulations with the QSS methods with the quantisation step

of 1e-1 and 1e-2 are imprecise. This is because the QSS method used in the simulation was

a first-order accurate. In this method, abbreviated QSS1, to achieve a small simulation

error the tolerance needs to be decreased but then the number of output points will be

larger. Also, the Epanet2 simulation with the sampling time of 1 hour cannot be treated

as accurate when compared against the OpenModelica results

For a more detailed inspection the plot was zoomed around area of the first switching event

occurrence (around 1h 34min). The zoomed section is pictured in Figure 7.9. Amongst the

plotted trajectories only the QSS-based simulation with the quantum of 1e-5 detected the

event at the same time as the reference time resulted from the OpenModelica simulation.

Although, time of event occurrence in QSS 1e-5 was identical with the benchmark time

this resulted in the longer simulation run-time and larger number of output points than

other solutions.

The Epanet2 simulation with the interval time of 1 min along with the simulation in QSS

Solver with the quantisation step of 1e-4 were ranked second when the precision of event’s

time detection was considered. They were followed by simulation in QSS Solver with the

quantisation step of 1e-3. The differences in terms of event’s detection time with respect

to the OpenModelica benchmark time are shown in Table 7.8.

Table 7.8: Differences in terms of event’s time detection.

Simulator Event time Difference
[hh:mm:ss] [hh:mm:ss]

OpenModelica 01:34:25 -
QSS 1e-3 01:35:34 +00:01:09
QSS 1e-4 01:34:34 +00:00:09
QSS 1e-5 01:34:25 00:00:00

Epanet2 1min 01:34:00 -00:00:25

At this stage, the event-domain methods were not outperforming the classical time-domain

approaches when simulation of Network B was considered. While the first-order QSS
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Figure 7.8: Simulation results for Network B depicting the tank’s head trajectories.
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Figure 7.9: Simulation results for Network B depicting a zoomed section of the tank’s
head trajectories.

method was capable to simulate accurately the considered system it required a longer

simulation run-time and produced a large number of output points. Choosing the quan-

tisation step is not a straightforward task as its value is both reverse proportional to the

simulation time and directly proportional to the quantisation error.

One way to determine the quantisation step is to know the signal magnitude and to divide

it by a reasonable number to obtain acceptable results. Other solution, is to use a method

defined in (Cellier and Kofman, 2006), which allows to calculate the quantisation step

based on the error rate defined by the user. However, the recommenced approach is to use

higher order QSS methods, especially the third order method since it provides the smaller

simulation time and it gives more freedom in the choice of the quantisation step without

any impact on the quantisation error (Kofman, 2006).

In QSS2 (Kofman, 2002), the quantised state variables evolve in a piecewise linear way with

the state variables following piecewise parabolic trajectories. In the third-order extension,

QSS3 (Kofman, 2006), the quantised states follow piecewise parabolic trajectories, while

the states themselves exhibit piecewise cubic trajectories.

Results from the simulations in QSS Solver with the higher order QSS methods are pre-

sented in Table 7.9, Figure 7.10 and Figure 7.11.
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Table 7.9: Comparison of simulations with QSS1, QSS2 and QSS3 methods.

QSS method Quantum Number of output points Run-time [s]

QSS1

1e-1 19 <1e-3
1e-2 180 <1e-3
1e-3 1850 <1e-3
1e-4 18534 0.0156
1e-5 185388 0.0468

QSS2

1e-1 6 <1e-3
1e-2 9 <1e-3
1e-3 14 <1e-3
1e-4 30 <1e-3
1e-5 80 <1e-3

QSS3

1e-1 6 <1e-3
1e-2 9 <1e-3
1e-3 10 <1e-3
1e-4 17 <1e-3
1e-5 22 <1e-3
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Figure 7.10: Comparison of QSS2 against OpenModelica.
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Figure 7.11: Comparison of QSS3 against OpenModelica.

QSS2 and QSS3 methods not only significantly decreased the simulation run-times, but

also, they were much more accurate than the QSS1 method. Additionally, even for quan-

tum values ≤1e-4, the number of the output points was significantly smaller than in the

discrete-time simulators. While the first order state integration algorithm, QSS1, did not

bring significant improvement over the classical time-discrete methods the higher order

QSS methods outperformed the time-domain-based simulators; QSS2 and QSS3 algorithms

can achieve a good accuracy without excessive increment in the number of steps.

7.4 Case study C: A looped network

So far only tree shaped water networks were considered in simulations with use of the QSS

algorithms. This study, depicted in Figure 7.12, considers a one-loop WDN, which consists

of three junctions, four pipes and a tank with the parameters as listed in Table 7.10 and

Table 7.11. Such a model, hereafter referred as Network C, is often used in the literature to

illustrate the convergence properties of different algorithms when solving water networks,

see e.g. (Ulanicka et al., 1998) or (Larock et al., 2000).

In this network, described by Equations 7.1 - 7.6, the head loss in the pipe that connects the

tank to the network can first be determined, and subsequently, this value can be subtracted

from the tank’s water surface elevation to determine head at node N1, see Equation 7.2.
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Figure 7.12: Model of Network C in Epanet2. Note that displayed numeric values refer
to flows [l/s] in pipes and heads [m] at nodes.

Table 7.10: Nodes in Network C.

Tanks Elevation [m] Diameter [m] Initial level [m]

T1 10.14688 20 10

Nodes Elevation [m] Demand [m3/s]

N1 0 0

N2 0 0.01

N3 0 0

Table 7.11: Links in Network C.

Pipes Length [m] Diameter [m] Hazen-Williams factor

P0 1000 0.3 100

P1 1000 0.3 100

P2 1000 0.3 100

P3 1000 0.3 100

The next step, however, requires the remaining set of nonlinear equations to be solved

simultaneously as they form an algebraic loop and thereby cannot be causalised.

dht
dt

=
1

S
(0− d) (7.1)

h1 +Rq0|q0|0.852 + ht = 0 (7.2)

q1 +G(h3 − h2)|h3 − h2|−0.46 = d (7.3)

q2 −G(h3 − h2)|h3 − h2|−0.46 = 0 (7.4)

h1 −Rq1|q1|0.852 − h3 = 0 (7.5)

h1 −Rq2|q2|0.852 − h2 = 0 (7.6)
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The simulation engines in Epanet2 and OpenModelica solve such problems using the New-

ton iterations, see Appendix A. Epanet2 model in Figure 7.12 is simulated with use of the

simulation routine shown in Figure 2.10. In OpenModelica the equations 7.1-7.6 can be

directly rewritten using OpenModelica syntax as shown in Listing 7.5. Such a model is

then subjected to equations sorting procedures before the Newton method is applied.

Listing 7.5: OpenModelica model of Network C.

model networkC

Real q0,q1 ,q2,h1,h2 ,h3,ht(start = 20.14688);

equation

q0 = 0.01;

q1 + 0.02813 * (h3 - h2) * abs(h3 - h2) ^ ( -0.46) = 0.01;

q2 - 0.02813 * (h3 - h2) * abs(h3 - h2) ^ ( -0.46) = 0;

h2 + 744.59 * q1 * abs(q1) ^ 0.852 = h1;

h3 + 744.59 * q2 * abs(q2) ^ 0.852 = h1;

der(ht) = 1 / (3.14159 * 10 ^ 2) * ( -0.01);

h1 + 744.59 * q0 * abs(q0) ^ 0.852 = ht;

end networkC;

However, when Network C was converted into a block diagram representation in Pow-

erDEVS a problem was encountered. Due to the algebraic loop, the resulting PowerDEVS

model turned out to be illegitimate. To address the algebraic loop problem Cellier and

Kofman (2006) proposed a solution in form of a new Loop Breaking atomic model. Its

task is to generate an output if and only if the difference between actual and previous

outputs does not exceed a threshold of tolerance specified by user. But the Loop Breaking

model has some drawbacks i.e. introduction of ill-conditioning simulation cycles and need

to define tolerance (Capocchi et al., 2009). To circumvent these issues Capocchi et al.

(2009) proposed replacement of Loop Breaking atomic model with coupled model of the

first order low pass filter. But also in this solution the filter weighting coefficient needs to

be determined in advance.

Hence, in order to simulate Network C in PowerDEVS, author of this thesis proposed

to mimic idea of Implicit Block from the PowerDEVS continuous systems library and

invoke a call to external function. But instead of solving just one nonlinear equation like

Implicit Block does, the called external function will solve a set of nonlinnear equation

simultaneously.

For this purpose, an external function was written in C++ and linked with the additional

libraries from GNU Scientific Library (GSL) (Galassi et al., 2013). GSL prowides with

access to a number of root-finding algorithms such as Powell’s hybrid method (Powell,

1964), standard Newton’s method and their modifications. The external solver of nonlin-

ear equations circumvented the limitations of PowerDEVS making it possible to simulate
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Network C despite the existing restrictions. Network C represented by block diagrams in

PowerDEVS is illustrated in Figure 7.13.

Unfortunately, the µModelica restrictions require models to be described by casual equa-

tions, and thereby models with algebraic loops cannot be modelled straightforward. Ac-

cording to Bergero et al. (2012) the extended OMC should be able to convert full Modelica

models into their µModelica equivalents but the converted µModelica models were not

replicating the original. Also, the QSS Solver version used in this work was unable to

link with the GSL libraries and therefore the written function to solve nonlinear equations

could not be used within QSS Solver.

Figure 7.13: Model of Network C in PowerDEVS.

In this example, only a static simulation was performed to investigate whether DEVS and

QSS approach is able simulate a WDS in the loop configuration. Table 7.12 shows that

obtained flows q1 and q2 and heads h2 and h3 are identical in all the simulators.

Table 7.12: Network C static simulation results.

Simulator q1 q2 h2 h3

[m3/s] [m3/s] [m] [m]

Epanet2 0.005925 0.004075 19.944 19.972
OpenModelica 0.005925 0.004075 19.944 19.972
PowerDEVS 0.005925 0.004075 19.944 19.972

7.5 Case study D: Epanet2 Net 1 example

The next water network used to evaluate the proposed methodology is depicted in Fig-

ure 7.14. It is an example of water network taken from the Epanet2 manual (Rossman,

2000b). This network was used in a number of studies for different purposes, see e.g.
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(Tabesh and Dolatkhahi, 2006; Cabrera et al., 2010). The data of all the components are

listed in Table 7.13 and Table 7.14.

Figure 7.14: Model of Network D in Epanet2.

The network, referred henceforth as Network D, was simulated for the period of 24 hours.

This example enabled to investigate the ability of the new paradigm to perform the extend

period simulation of the looped WDS. Moreover, in Network D two different event types

occurs: (i) time scheduled events as the demand allocated to the consumption nodes varies

over the 24 hour period as is shown in Figure 7.15 and (ii) events due to changes in tank

water level that govern the operation of the pump; i.e. the pump P1 is switched off when

the water level in the tank T1 reaches 42.672 m and switched on when the water level

drops below 33.528 m.

A similar approach to that for Network C has been employed to model and simulate

Network D in PowerDEVS; i.e. a block diagram has been developed that calls the external

C++ function to solve a set of nonlinear equations. Network D represented by block

diagrams in PowerDEVS is illustrated in Figure 7.16. The Check level block detects when

the water level hits the values which will switch on or off the pump. The demand over the

24 hour period has been predefined in the Scilab workspace and accessed from the model

perspective via the Demand pattern block.
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Table 7.13: Nodes in Network D.

Reservoirs Elevation [m] Initial head [m]

R1 243.8 243.8

Tanks Elevation [m] Diameter [m] Initial level [m]

T1 259.08 15.3924 36.576

Nodes Elevation [m] Demand [l/s]

10 216.41 0.00

11 216.41 9.46

12 213.36 9.46

13 211.84 6.31

21 213.36 9.46

22 211.84 12.62

23 210.31 9.46

31 213.36 6.31

32 216.41 6.31

Table 7.14: Links in Network D.

Pipes Length [m] Diameter [mm] Hazen-Williams factor

10 3209.544 457.2 100

11 1609.344 355.6 100

12 1609.344 254 100

21 1609.344 254 100

22 1609.344 304.8 100

31 1609.344 152.4 100

110 60.96 457.2 100

111 1609.344 254 100

112 1609.344 304.8 100

113 1609.344 203.2 100

121 1609.344 203.2 100

122 1609.344 152.4 100

Pumps Equation Initial status

P1 h = 101.6 − 0.002839q2 closed
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Figure 7.15: Demand pattern in network D.

Figure 7.16: Model of Network D in PowerDEVS.

Network D in OpenModelica was modelled as set of equations with utilisation of the when

... then and if ... then statements to account for the time and state events. However, due

to lengthy code the OpenModelica listing for Network D is omitted here.

For the purpose of comparison, Network D was simulated in Epanet2 with the 1 hour

and 1 min time intervals, in PowerDEVS with use of the QSS1 method with the different

quantum values, and in OpenModelica with the 1 s time interval. The results from the

simulations are presented in Table 7.15 and Figure 7.17. Table 7.15 shows run-times and

number of result points for each simulation and Figure 7.17 displays tank trajectories

obtained from different simulation engines. It can been seen that the trajectories from
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nearly all the simulators are aligned and the events when the water level in tank reaches

the operational constraints occurred at the similar time.

It is important to highlight, that to perform a hydraulic simulation of Network D in Pow-

erDEVS with a satisfactory precision (i.e. to be in order with the benchmark simulation

from OpenModelica), the quantum has to be set to 1e-4. The consequence of this, despite

a smaller number of results points, was the much longer simulation run-time as can be

seen in Table 7.15. It was assumed this was due to the drawback of the DEVS formalism,

reported by Fernández and Kofman (2014), which is related to a number of messages sent

between the atomic and coupled models.

Nevertheless, it is envisaged that with a new version of QSS Solver, which enables the

use of external function and libraries, the simulation of Network D with use of the higher

order QSS methods would result in a significant decrease of the simulation run-times.

Table 7.15: Network D simulation run-times.

Simulator Interval time Tolerance/ Number of output points Run-time
[s] Quantum [s]

Epanet2
3600 1e-3 24 0.0035
60 1e-3 1440 0.0398

PowerDEVS
- 1e-3 64 0.192
- 1e-4 618 1.053
- 1e-5 6157 9.981

OpenModelica 1 1e-6 1475 0.1348

7.6 Discussion

In the preceding sections it has been demonstrated that the functionalities included in

the PowerDEVS and QSS Solver can be used to model water distribution systems using

the QSS integration algorithms. The construction of models using PowerDEVS is close to

the Simulink modelling paradigm; one needs to build a model using the blocks from the

provided libraries. While the block diagrams are very convenient for modelling of simple

physical systems they have been found not necessarily the most suitable tool for large

systems such as water distribution networks. The additional drawback of PowerDEVS

blocks paradigm is that it can only model systems that have been transformed into a

block diagram. Unfortunately, it is not always straightforward to obtain the block diagram

representation of a system. This problem is associated with the DEVS formalism, given
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Figure 7.17: Simulation results for Network D depicting the tank’s head trajectories.

the fact that DEVS models impose a certain input-output direction on the data flow of

the simulation (Beltrame and Cellier, 2006).

Models of water networks in OpenModelica and QSS Solver can be build from their formal

specification; i.e. WDS models have been implemented by describing their elements and

the mass and energy conservation principles with the Modelica equation-based syntax. A

significant limitation of QSS Solver is that it uses µModelica, a subset of the Modelica

language, and the systems described by the DAE equations need to be transformed into

the ODE form.

Another remark on PowerDEVS and QSS Solver is that they both do not facilitate solvers

for sets of simultaneous nonlinear equations. This has hindered the process of simulation

and additional external functions have been created by the author of this thesis to overcome

this obstacle. Although, the development of additional functionalities for these simulators

has been laborious and cumbersome as developers of PowerDEVS have not provided with

a manual and QSS Solver is still in a development stage and thereby not fully functional.
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Nevertheless, the implementation for several WDS models has permitted to test the QSS

methods and appreciate their computational efficiency and accuracy.

At first, in Section 7.2, a simple WDS model has been used to illustrate modelling ap-

proaches in each of the employed software. This preliminary study has demonstrated

that the QSS methods can achieve the same accuracy like in the classical time-slicing

engines, represented by Epanet2 and OpenModelica, but it can be noticeable faster when

the simulation run-times are considered.

In Section 7.3 the water network used for the evaluation of the proposed frameworks has

comprised a discontinuous element in form of the pump operated based on the level of

water in the tank. It has been assumed that this case study would ideally suit for simu-

lations with the use of QSS methods, in which state variables (e.g. water level in tank)

are updated only when the change is more than the defined quantum value. Indeed, the

initial test based upon of frequent switching of the pump have illustrated asynchronism

and efficiency of the QSS methods. The subsequent evaluations, with the pump operated

on the water level margin, have demonstrated that the QSS methods competes well against

conventional simulators in terms of accuracy. From a functional level the use of the QSS

methods is analogous to ordinary time-discrete methods; if a reasonably small quantisa-

tion step is chosen then the algorithm provides a simulated trajectory that is sufficiently

consistent with the analytical solution. However, the smaller quantum have resulted in

increasing the simulation time. This has been especially visible in case of PowerDEVS

simulations, in which the large number of integrator model activations has lead to the

increased traffic within the DEVS simulation tree. Nevertheless, when the higher order

QSS methods, QSS2 and QSS3, were employed the simulation run-time have decreased

drastically while obtaining the same accuracy as the benchmark simulation performed in

OpenModelica. It has been clearly seen that the higher order QSS methods are more

efficient than conventional discrete-time solvers.

Next, in Section 7.4, the focus has been placed on the water network in a loop configu-

ration to appreciate ability of the simulation environments to solve nonlinear equations

simultaneously. While Epanet2 and OpenModelica have already built-in algorithms to

solve such sets of equations (based on Newton method) the PowerDEVS and QSS Solver

simulators do not provide such functionalities. To overcome this the author of this thesis

has written external C/C++ functions in order to solve nonlinear equations via Newton

iteration. In PowerDEVS calls to the solver have been implemented from within a block

digram. Unfortunately, the QSS Solver version used has not allowed to call the external

functions or link additional libraries. Nonetheless, Network C has been successfully solved

in Epanet2, OpenModelica and PowerDEVS obtaining identical results in each simulator.
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In Section 7.5 the water network simulated with DEVS and QSS concepts has comprised

all the characteristics of the previous case studies i.e. tank dynamics, pump operated on

the tank levels, looped configuration and demand pattern varied over period of time. With

the Network D model created in PowerDEVS it has been demonstrated that the proposed

DEVS and QSS approach can successfully simulate a fairly complex WDS model. The

hydraulic results obtained in PowerDEVS have been in line with those obtained from

Epanet2 and OpenModelica. However, simulations in PowerDEVS have been the slowest

amongst the simulators as because of the implementations issues only the QSS1 method

was used. Additionally, in PowerDEVS the QSS methods were implemented within DEVS

formalism framework, which added additional overheads to the simulation run-times.

Nevertheless, it has been shown that water distribution systems can be modelled in the

DEVS formalism framework with use of QSS methods. However, the current state-of-art

of the associated tools do not allow to exploit fully the potential of the QSS methods. To

fully appreciate the efficiency of the QSS methods a simulation tool must be developed

dedicated explicitly to model and simulate water distribution networks.

7.7 Summary

Within this chapter the DEVS and QSS approach has been applied to model and simu-

late WDSs. Also, in the background, the implementation and issues with the used tools

has been described such as algebraic loops, solving set of nonlinear equations and use

of external libraries. The simulators that have been used in this study include Epanet2

and OpenModelica for the time-based domain and PowerDEVS and QSS Solver for the

event-based domain.

It has been shown that DEVS-based environment allows the modelling and the simulation

of WDSs. The results presented have demonstrated that the QSS methods compete well

against time-slicing approach on the WDS simulation problem.

However, there still remain open problems to be addressed in the future. The proposed

framework has been evaluated on few examples. A larger set of models has to be simulated

and tested for correctness, as well as efficiency, of the approach. Especially the large-scale

hybrid models, because their dynamics, should uncover the power and efficiency of the

QSS methods. To this end, the simulators based on the QSS engine have to be extended

(e.g. with DAE solvers) to handle more complex systems.
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Chapter 8

Conclusions and recommendations

for further work

This chapter summarises the work within this thesis and discusses the key outcomes of the

conducted research. Section 8.1 contains a summary of the work presented in this thesis.

The conclusions and research contributions for the entire thesis are listed in Section 8.2.

Recommendations for further work are presented in Section 8.3.

8.1 Research summary

The opening chapter, Chapter 1, provided a brief introduction to the subject of water

distribution systems, establishing the context for a new approach to reduce water dis-

tribution systems models by means of energy audits, and a new approach to model and

simulate water networks within hybrid systems framework. The objectives of the thesis

were outlined in Section 1.2. These objectives were fulfilled in the consequent chapters.

Additionally, the first chapter outlined the organisation of material within the thesis and

provided the author’s contributions towards the field of hydroinformatics. The chapter

concluded with a list of publications and research projects related to this thesis.

In Chapter 2, the reader has been provided with an extended theoretical and conceptual

introduction to the subjects concerning water distribution systems that were relevant to

the context of the research. Apart from the introduction to water distribution systems,

the conducted literature review emphasised the problems that are still unsolved in WDS

analysis. In particular: (i) questionable accuracy of numerical integration methods used

207
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to solve tank dynamics, (ii) non-smoothness and discontinuity exhibited by water network

elements pose a challenge for time-domain solvers, (iii) appropriate substitutes for the full

simulation models are still needed in optimisation studies.

Chapter 3 opened Part I of this thesis with investigation of methods aimed at simplifica-

tion of WDS models. The conducted review revealed the benefits and drawbacks of the

considered techniques. The methods were examined in the scope of their suitability for

online operation optimisation strategies. In particular, the method proposed by Ulanicki

et al. (1996), was examined in depth. The method was evaluated on a number of real

water networks in terms of the proposed assessment criteria. An interesting discovery of

the investigation conducted was the identification of a previously unrecognised problem

i.e. an inconsistent energy distribution in the reduced model. It was exemplified that

the node’s elevation and pressure constraint was not considered when removing from a

WDS model during the simplification process. This can cause a situation where the pump

speed required to satisfy minimum pressure constraints is different for the reduced model

and the prototype. To address this problem a new extension was proposed to the model

reduction algorithm based on the energy audits. The idea was established on the distri-

bution of minimum useful energy which is depended on the minimum service pressure.

The standard model reduction algorithm was extended to reallocate not only demand of

the removed nodes but also their minimum useful energy (pressure constraints). In such

a way, the simplified model kept the original model energy distribution due to new pres-

sure constraints. The appropriateness of the new algorithm was firstly demonstrated on a

small hypothetical case study, and subsequently, applied to a larger network. This novel

extension to the model reduction algorithm has been claimed by author of this thesis as

the first major contribution to the field of hydroinformatics.

In Chapter 4, the computational aspects of the model reduction algorithm were consid-

ered. The literature review in Chapter 3 revealed that many optimisations studies for

either design or operation of WDS were restricted to relatively small and often hypothet-

ical water networks. The optimisation studies of large size water networks were hindered

by the scale and complexity of the models, which nowadays may be composed of thousands

or hundreds thousands components. This poses serious numerical problems in terms of

computational efficiency for the WDS model reduction algorithms. The above challenges

motivated author of this thesis to carry out a research oriented towards reduction of the

computational time of the algorithm extended in Chapter 3. It was decided to exploit

multi-thread computing and distribute the computational load of the algorithm on the

multi-core processors. With the use of parallel programming techniques and appropriate
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data structure (single-indexed jagged arrays) for sparse matrices, the reduction in the algo-

rithm’s computational time was evident; the initial simplification time of 5761 seconds for

the benchmark network was reduced to 95 seconds, achieving a 99.98% reduction. Further

reduction in the algorithm’s computational time was obtained by employing the reordering

algorithms dedicated to sparse matrices. With use of the Cuthill-McKee algorithm the

incidence matrix representing water network was rearranged for the purpose of subsequent

Gaussian elimination. With the above techniques incorporated into implementation of the

extended model reduction algorithm, the initial simplification time of 5761 seconds was

further reduced to just under 5 seconds, achieving a 99.999% decrease. However because

the parallel programming is hardware-dependent, i.e. if target computer has only one

core no improvement will be provided, it is recommended that future modifications to the

simplification algorithm should first consider the reordering algorithms. Additionally, it is

worth to highlight that along with the research carried out in Chapter 4 a software was

developed by author of this thesis that has already been used in a number of projects and

has proven to be a practical and reliable tool that can be used not only by academics but

also by professionals.

It was considered important by the author of this thesis to highlight the impact of practical

systems on the research work which was described in this thesis, as well as to reflect the

constant motivation during this work to appeal and collaborate with various companies

and industrial bodies in order to ensure the viability and applicability of the resulting

concepts that were developed. Hence, Chapter 5 within Part I described the application

of the research outcomes from Chapter 3 and Chapter 4 to a real case study. The case

study was based on the project carried out by WSS aimed at optimisation of operation

of a large-scale WDS. The data used in the project concerned an actual WDS being

part of a major water company in the area of southern United Kingdom. The objective

was to reduce the cost of energy used for water pumping whilst satisfying all operational

constraints, including the pressure constraints in different parts of the water network. The

major aim of Chapter 5 was to describe the complete optimisation procedure in details to

demonstrate how the optimal scheduling problem can be approached and solved. It has

been shown that the optimal scheduling of a complex WDN is a dynamic mixed-integer

problem and its solution faced a number of difficulties: (i) a large number of discrete

and continuous variables, (ii) nonlinearities in the components equations, (iii) modelling

uncertainties and (iv) discretisation of continuous schedules. This case study employed the

extended model reduction algorithm to reduce the number of elements in order to solve

the optimisation problem more easily and computationally effective. The reduced model

not only provided a significant speed-up in the optimisation process but it enabled the

calculation of optimal schedules; if the full simulation model was considered there would
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be just to many of decision variables. By the preservation of the original model hydraulic

complexity and energy distribution, the extended reduction technique ensured that the

computed optimised schedules for pumps will deliver water whilst satisfying the minimum

service pressure limits.

Part II of this thesis described the research focused towards an efficient paradigm to model

and simulate water networks; effectively accounting for the discontinuous behaviour exhib-

ited by water network components. The study was based on the discrete event specification

formalism and quantised state systems, as in contrast to the classic time-slicing simula-

tors, depending on the numerical integration algorithms, the quantisation of system states

can account for the discontinuities in a more efficient manner. The chapter opened with

a discussion of key issues in simulations of systems with discontinuities and highlighted

problems occurred by the classical discrete-time techniques when addressing these issues.

Next, an explanatory description of DEVS and QSS highlighted their properties relevant

to the specific needs of water network analysis.

In Chapter 7, a comparative study on hybrid systems modelling approach and simulation

performance compared to traditional time-discrete methods was given for a number of rep-

resentative WDS models. For the purpose of comparison, four different simulators were

utilised, Epanet2 and OpenModelica for the time-based domain; PowerDEVS and QSS

Solver for the event-based domain. Each simulator provided different functionalities and

approaches to modelling and simulation of systems. The used benchmark models com-

prised all the characteristics of a typical water system; i.e. tank dynamics, pump operated

on the tank levels, looped configuration and demand pattern varied over a period of time.

Based on the simulation outcomes from PowerDEVS and QSS Solver it was found that the

QSS methods lead to almost the same results compared to those obtained with Epanet2

and OpenModelica as long as appropriate parameters of quantiser are selected. From a

functional level the use of the QSS methods was found analogous to ordinary time-discrete

methods; if a reasonably small quantisation step was chosen then the algorithm provided

a simulated trajectory that was sufficiently consistent with the benchmark solution from

OpenModelica. However, the smaller quantum resulted in increasing the simulation time.

But what differentiate the QSS methods compared to time-slicing methods is their inher-

ent ability to detect discontinuities, and if the higher order QSS methods are used, the

QSS approach can outperform the conventional methods in terms of simulation accuracy

and run-time. Hence, the conclusion is that the accuracy of QSS-based integration method

is enough to simulate the asynchronous, concurrent and nonlinear nature of water distri-

bution systems. However, the current state-of-art of the associated tools do not allow

to exploit fully the potential of the QSS methods. To fully appreciate the efficiency of
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the QSS methods a simulation tool must be developed dedicated explicitly to model and

simulate water distribution networks. This new paradigm for modelling and simulation of

water distribution systems with use of the QSS methods has been claimed by author of

this thesis as the second major contribution to the field of hydroinformatics.

8.2 Conclusions

The conclusions reached in the development of this dissertation are the following:

• The optimisation of large and hydraulically complex WDSs is computationally ex-

pensive as thousands of simulations are required to evaluate the performance of

candidate solutions. To minimise the optimisation search space, reduced models or

surrogates are utilised. Especially, in online optimisation frameworks where an op-

timal solution has to be obtained within the defined time interval. The accuracy of

the simplification depends on the model complexity, purpose of simplification and

the selected method.

• A number of model reduction techniques have been reviewed in the scope of utili-

sation for real-time optimal WDS operation studies leading to observations that (i)

skeletonization is not an automatic process and the scope of reduction is limited

if the key features of the original model are to be retained; (ii) parameter-fitting

requires a user-based assumption about the initial topology which is subsequently

adjusted; (iii) ANN-based metamodeling is significantly burdened with the compu-

tational cost and thereby not applicable for other than small systems; (iv) variable

elimination is practical and fast but it fails to account for energy distribution of the

original model.

• To address these shortfalls an extension was proposed to the variable elimination

algorithm based on the energy audits concepts. The energy audits concept has been

incorporated into the variable reduction algorithm allowing the preservation of the

original model energy distribution. The idea is based on the distribution of minimum

useful energy which is depended on the minimum service pressure. The original

variable elimination algorithm has been extended to reallocate not only demand

of the removed nodes but also their minimum useful energy (pressure constraints).

Hence, the simplified model can keep the original model energy distribution due to

new pressure constraints. The extended variable elimination algorithm preserves

accurately the hydraulic characteristic of the original water network and therefore

enable a correct optimisation of the water network operation.
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• To ensure that the extended variable elimination algorithm would be able to reduce

large size networks with complex topologies within the specified real-time interval,

further improvements have been introduced to the algorithm. (i) Distribution the

computational load on multi-core processors, (ii) exploitation of the inherent sparsity

of matrices representing WDS topologies and (iii) employing the matrix reordering

algorithms have drastically reduced the model reduction run-time; from the initial

5761 seconds to just under 5 seconds for the benchmark model used.

• A new software has been designed and developed to support the conducted research.

The developed software includes functionalities of the extended model reduction

algorithm and is able to simplify the water network model, consisted of several

thousands elements, within seconds of calculation time. The advantage of this near

real-time model reduction is that can be used to manage abnormal situations and

structural changes in a water network, e.g. isolation of part of the network due to

a pipe burst. In such case an operator can change the full hydraulic model and run

model reduction software to automatically produce the updated simplified model.

• The developed model reduction application has been used to reduce many WDS

models and has proven to be a practical and reliable tool. An example of utilisation

the model reduction application is given in Chapter 5, where it has been used in a

practical project focused on determining optimal schedules for control elements in a

real large-scale water network exhibiting highly complex topology. The optimisation

method, utilised in Chapter 5, has taken into account the nonlinear characteristics

of the system as well as the mass balance for reservoirs. It has also employed the

extended model reduction algorithm to reduce the number of elements in order to

solve the optimisation problem more easily and computationally effective. The re-

duced model not only has provided a significant speed increase of the optimisation

process but it has enabled the calculation of optimal schedules; if the full model

has been considered there would be just to many of decision variables. The modi-

fied reduction technique has allowed the preservation of the original model hydraulic

complexity and energy distribution and thereby has ensured that the computed op-

timised schedules for pumps will deliver water whilst satisfying the minimum service

pressure limits.

• Majority of water networks analysis methods and simulators are based on a time

slicing approach i.e. numerical methods, used in computer simulation of a system

characterised by differential equations (e.g. tank dynamics), require the system to

be approximated by discrete quantities. The solution of difference equation is cal-

culated at fixed points in time. However, it is assumed that, in the extended-period
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simulation of water networks, the system is in a steady state between successive time

stamps. But in fact, a real WDS continually adjusts itself in response to changing

requirements of the users. This rises an important issue about the model fidelity of

hydraulic behaviour of a real WDS; especially a WDS with pumps operation based

on the water level in tanks, as if the time interval is not appropriate the events that

actually happened in the real water network might be overlooked. Furthermore,

some elements included in a WDN model may cause numerical difficulties (conver-

gence problems) in simulation due to their inherent non-smooth and discontinuous

characteristics.

• To address these issues, the quantisation of the states has been proposed to create

an asynchronous discrete-event simulation model of WDS. In contrast to the clas-

sic time-slicing simulators, depending on the numerical integration algorithms, the

quantisation of system states allows to account for the discontinuities exhibited by

control elements in a more efficient manner, and thereby, offer a significant increase

in speed of the simulation of water network models. The proposed approach has

been evaluated on a number of case studies and compared with results obtained

from the Epanet2 simulator and OpenModelica. Although the current state-of-art

of the simulation tools utilising the quantised state systems do not allow to fully

exploit their potential, the results from comparison demonstrate that, if the second

or third order quantised-based integrations are used, the quantised state systems ap-

proach can outperform the conventional water network simulation methods in terms

of simulation accuracy and run-time.

8.3 Recommendations for further research

It is considered that the work described in this thesis represents opening chapters for

further extensions to (i) the model reduction algorithm and (ii) modelling and simulation

of water distribution systems with use of the quantised state systems. Indeed, further

work based on the outcome of this research is continuing and is currently progressing,

being undertaken by colleagues within the WSS group at De Montfort University. The

findings made in this thesis have also supported the development of scope for further work.

The key areas of further work developing contributions to the field of hydroinfotmatics are

listed and discussed below.
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8.3.1 Potential further work of Part I

Although, the particular model reduction algorithm, investigated in Part I, is an estab-

lished research topic in field of hydroinformatics, it is believed, there are still available

opportunities for research in this area. Immediate potential areas for further work are

described as follows:

Proposal 1 Identification of critical elements for purpose of water network models reduc-

tion

At the current stage the model reduction algorithm, described in Chapter 3, retains all the

reservoirs, tanks, valves, pumps and nodes at valves and pumps terminals. Additionally,

the algorithm can retain all the nodes that have the number of neighbouring nodes equal

or bigger than the user-specified threshold. Finally, the user can indicate directly which

element of the original water network should be retained. However, there is ongoing

research focused the on ranking of elements of water networks for different purposes e.g.

Yazdani and Jeffrey (2010) and Yazdani and Jeffrey (2012) applied graph theory in the

analysis of structural vulnerability and robustness of WDSs, Michaud and Apostolakis

(2006) introduced a scenario-based methodology to rank elements of water network and

Izquierdo et al. (2008) focused on pipes, assessing their relative importance regarding the

water distribution process. Enhanced identification of critical elements will undoubtedly

lead to a further refinement and inevitable improvement of the reduced models.

Proposal 2 Further reduction of the simplification algorithm’s computational time

The proposed use of concurrent programming, exploitation of sparsity and reordering al-

gorithms investigated in Chapter 4, should be further explored aiming at reduction of the

computational time of the simplification algorithm as it is likely that future water net-

work models will grow in size and complexity. Especially, an interesting study could be

investigation of different reorderings on performance of processing water network graphs

represented by sparse matrices. Also, there is a number of articles with techniques dedi-

cated for parallerisation of Gaussian elimination that might be worth to explore with the

hope to achieve further reduction in the Gaussian elimination computational time, see e.g.

(Demmel et al., 1999; McGinn and Shaw, 2002; Michailidis and Margaritis, 2011).

8.3.2 Potential further work of Part II

The second Part, being a new research topic in WSS, De Montfort University, and a

relatively new research topic in the water community, still leaves room for a great deal of
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further exciting research work to be carried out. A short description of items of further

work identified by the author are summarised in the following:

Proposal 3 Fully-functional hydraulic simulator with utilisation of the QSS concepts

The simulation study in Chapter 7, as previously stated, is considered here as being only

a preliminary study. It would be interesting to extend the simulations to a wider set of

benchmark models and investigate potential of the higher order QSS methods. The final

aim would obviously be a fully-functional hydraulic simulator based on the QSS integration

algorithms. A basic interaction scheme for the proposed simulator is depicted in Figure 8.1.

Such an aim, if proved to be realisable, would be the most rewarding achievement from a

scientific and practical point of view.

wds.inp
Model in
Epanet2
format

wds.mo
Model in
Modelica
format

QSS
Solver

Simulation
results

DAE
solver

Parser

Figure 8.1: Hydraulic simulator with use of the QSS methods - a basic interaction
scheme.

Proposal 4 Inclusion of water quality modelling and simulation

One of the major improvement to the paradigm based on the QSS methods would be

inclusion of water quality elements to formulate a complete modelling and simulation

approach for municipal water networks. This proposal is closely related to Proposal 3

and hopefully they will lead to an industrial viable open source platform for water network

analysis.
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Mathematical supplement

This appendix provides some miscellaneous prerequisite mathematical theory.

A.1 Newton-Raphson method

The Newton-Raphson or Newton method is for solving equations of the form f(x) = 0. It

is a very efficient iterative technique for solving equations numerically. However, it should

to be noted that the Newton algorithm cannot guarantee convergence (it is very specific

to the initial guess x0 (Brenan et al., 1989)).

The Newton-Raphson method is based on the simple idea of linear approximation and is

defined as follows:

Let x0 be a good initial estimate of the root r of the f(x) = 0 and let r = x0 +h. Since the

true root is r, and h = r− x0, the number h measures how far the estimate x0 is from the

truth. Since h is “small”, a linear (tangent line) approximation can be used to conclude

that

0 = f(r) = f(x0 + h) ≈ f(x0) + hf ′(x0) (A.1)

and therefore, unless f ′(x0) is close to 0,

h ≈ − f(x0)

f ′(x0)
(A.2)

it follows that

r = x0 + h ≈ x0 −
f(x0)

f ′(x0)
(A.3)
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This leads to the next estimates

x1 = x0 −
f(x0)

f ′(x0)
(A.4)

x2 = x1 −
f(x1)

f ′(x1)
(A.5)

... (A.6)

xn+1 = xn −
f(xn)

f ′(xn)
(A.7)

where xn is the current estimate and xn+1 is the next estimate.

The Newton-Raphson method can solve also a system of nonlinear equations:

f1(x1, x2, . . . , xn) = 0 (A.8)

f2(x1, x2, . . . , xn) = 0 (A.9)

... (A.10)

fn(x1, x2, . . . , xn) = 0 (A.11)

Note that the number of unknowns equals the number of equations. The above set of

equationw can be rewritten using vector notation as:

f(x) = 0 (A.12)

where x = (x1, x2, . . . , xn)T and f(x) = (f1(x), f2(x), . . . , fn(x))T .

The Newton-Raphson iteration for this system is

xn+1 = x− J−1f(xn) (A.13)

where J is a Jacobian matrix i.e. a matrix of all first-order partial derivatives of the vector

function f regarding the vector x. An n× n Jacobian matrix J has the form:

J =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 (A.14)
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Graphical results from

simplifications

B.1 Epanet Net3

0 5 10 15 20 25

44

45

46

47

H
e

a
d

 [
m

]

Time [h]
0 5 10 15 20 25

−100

0

100

200

F
lo

w
 [

l/
s]

Tank 1

 

 

Original net inflow

Reduced net inflow

Tank flow disparity

Original tank trajectory

Reduced tank trajectory

MBE = −0.088 [Ml/day]

TRE = 1.71 [%]       

R
2
 = 1.00           

Figure B.1: Simulated trajectories for the selected tank in the original and reduced
Net3 model.
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Figure B.2: Simulated trajectories for the selected reservoir in the original and reduced
Net3 model.
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Figure B.3: Simulated trajectories for the selected reservoir in the original and reduced
Net3 model.
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Figure B.4: Simulated trajectories for the selected tank in the original and reduced
Net3 model.
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Figure B.5: Simulated trajectories for the selected pump in the original and reduced
Net3 model.
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B.2 Rio
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Figure B.6: Simulated trajectories for the selected node in the original and reduced Rio
model.
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Figure B.7: Simulated trajectories for the selected reservoir in the original and reduced
Rio model.
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Figure B.8: Simulated trajectories for the selected pump in the original and reduced
Rio model.
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Figure B.9: Simulated trajectories for the selected tank in the original and reduced Rio
model.
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B.3 Machu Picchu
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Figure B.10: Simulated trajectories for the selected reservoir in the original and reduced
Machu Picchu model.
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Figure B.11: Simulated trajectories for the selected valve in the original and reduced
Machu Picchu model.
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Figure B.12: Simulated trajectories for the selected valve in the original and reduced
Machu Picchu model.
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Figure B.13: Simulated trajectories for the selected valve in the original and reduced
Machu Picchu model.
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B.4 Rlyeh
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Figure B.14: Simulated trajectories for the selected reservoir in the original and reduced
Rlyeh model.
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Figure B.15: Simulated trajectories for the selected tank in the original and reduced
Rlyeh model.
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Figure B.16: Simulated trajectories for the selected tank in the original and reduced
Rlyeh model.
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Figure B.17: Simulated trajectories for the selected pump in the original and reduced
Rlyeh model.



Appendix B Graphical results from simplifications 228

0 5 10 15 20 25

0

2

4

6

8

10

12

F
lo

w
[l
/s

]

PRV
7

Time [h]

 

 

Original model

Simplified model

MAE = 0.00 [l/s]

R
2
 = 1.00      

Figure B.18: Simulated trajectories for the selected PRV in the original and reduced
Rlyeh model.
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Figure B.19: Simulated trajectories for the selected PRV in the original and reduced
Rlyeh model.
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B.5 Cydonia
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Figure B.20: Simulated trajectories for the selected reservoir in the original and reduced
Cydonia model.
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Figure B.21: Simulated trajectories for the selected reservoir in the original and reduced
Cydonia model.
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Figure B.22: Simulated trajectories for the selected tank in the original and reduced
Cydonia model.
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Figure B.23: Simulated trajectories for the selected tank in the original and reduced
Cydonia model.
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Figure B.24: Simulated trajectories for the selected tank in the original and reduced
Cydonia model.
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Figure B.25: Simulated trajectories for the selected pump in the original and reduced
Cydonia model.
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B.6 Ankh-Morpork
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Figure B.26: Simulated trajectories for the selected reservoir in the original and reduced
Ankh-Morpork model.
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Figure B.27: Simulated trajectories for the selected tank in the original and reduced
Ankh-Morpork model.
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Figure B.28: Simulated trajectories for the selected tank in the original and reduced
Ankh-Morpork model.
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Figure B.29: Simulated trajectories for the selected pump in the original and reduced
Ankh-Morpork model.
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Object-oriented modelling of

water networks
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Appendix D

Detailed schematic

236





Appendix E

Adjustments to optimisation

model

The modifications and adjustments to the reduced model include:

• Pump Station 1

Based upon the update from the water company the way Pump 1A and Pump 1B

were modelled in the provided Epanet2 model was different than in reality. In the

model only 2 pumps were included and they were set to work independently of each

other while in reality Pump 1A and Pump 1B are part of pump station, namely

Pump Station 1. Moreover the pumps were set to be variable speed pumps whereas,

during the meeting, it was clarified that these pumps are in fact fixed speed pumps.

The modified structure for Pump Station 1 is depicted in Figure E.1. Three pumps

with the same hydraulic characteristics were combined into a pump station. Note

that due to no data from the water company, the performance curve h = f(q) for

the pumps were calculated from the performance curves of Pump 1A and Pump

1B provided in the original model; i.e. the flow and head points (qnewi , hnewi ) of

the new performance curve, illustrated in Figure E.2, were calculated as follows

(
q1Ai +q1Bi

3 ,
h1Ai +h1Bi

2 ). Two FCVs were included into Pump Station 1 to control flows

towards Tank 5 and Pump Station 2.

• Pump Station 3

In the provided original Epanet2 model Pump Station 3 was modelled as Reservoir

2 with a pre-defined time-based pressure pattern. However, based upon updates

from the water company engineers is was concluded that the structure for this pump

238
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Figure E.1: New structure of Pump station 1.
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Figure E.2: New hydraulic curve applied to all three pumps in Pump Station 1. The
new hydraulic curve was calculated from the hydraulic curves for pumps 1A and 1B.
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station is as illustrated in Figure E.3. The pump station includes 5 variable-speed

pumps with hydraulic characteristics extracted from the provided data sheet.

Figure E.3: The updated structure of the inflow from WTW 1 including Buffer tank
and Pump Station 3.

• Water Treatment Works, WTW 1

As Reservoir 2 was replaced with Pump Station 3 a new source of water, namely

WTW 1, was added to the model, see Figure E.3. WTW 1 contains: (i) source node

with a fixed inlet to the system of 425 l/s and (ii) a buffer tank with parameters as

in Table 5.5. Note that in the original model the average inflow from Reservoir 2

reservoir was 441 l/s, but this resulted in the WDS receiving too much water and

the final level (i.e. at the end of 24 h horizon) in some tanks was significantly higher

than the initial level; for 7-days simulation this resulted in overfilling of these tanks.

For this reason the value of inflow of 425 l/s was chosen such that the overall system

received an adequate amount of water.

• Pump station 2

In the original model Pump Station 2 included only 1 pump, Pump 2. The updated

Pump Station 2, depicted in Figure E.4 contains 2 pumps and the by-pass FCV.

It was assumed that Pump 2 performance curve described combined performances

of real pumps. Hence, the performance curve for the new pumps 2A and 2B was

calculated using hydraulics principles for the parallel pumps.
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Figure E.4: New structure of Pump Station 2.

• Interlinked tanks

The aim of employing the model reduction algorithm was to reduce the number of

nodes and pipes. However it is also possible to replace the number of tanks situated

in a close proximity by equivalent one water storage. Hence, pairs of Tank 1A and

Tank 1B ; and Tank 2A and Tank 2B were merged. The parameters of the new tanks

were adjusted as follows:

t∗A = t1A + t2A, t∗d = 2

√
t∗A
π , t∗e = t1e+t2e

2 , t∗i =
t1i +t2i

2 , t∗m = t1m+t2m
2

where t∗ is a new merged tank, t1 and t2 are the tanks to be merged, and A, d,

e, i, m are the tanks’ parameters; cross-sectional area, diameter, elevation, initial

water level, maximum water level, respectively. Table 5.5 contains parameters for

the merged tanks.

• Issue with a highly elevated area

Pump 3A and Pump 3B operate at 1.2 of normal speed, if this speed was reduced

even by 1% the pumps could not deliver head and the whole model was unbalanced.

More detailed analysis of this area led to conclusion that only a small fraction of

the total daily demand was delivered there therefore the whole area of the following

pumps and tanks: Pump 3A, Pump 3B, Pump 7, Tank 4A, Tank 4B was removed

along with the neighbouring nodes and pipes. Any demand found on the removed
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nodes was transferred to the adjacent retained nodes. The retained pumps are listed

in Table 5.6.

• Pump 5A

The average flow trough Pump 5A is less than 0.2 l/s. Furthermore, the pump is

supplying water to few consumption nodes only. Therefore due to a low importance

to the whole system performance the pump was removed and demand from the nodes

was transferred to adjacent retained nodes.

• Pumps’ power characteristics

The objective function, defined in Section 5.4.1, requires power characteristics for

each pump. As the model provided by water company, does not contain such details

the power characteristics were adopted from the data sheets for similar pumps. The

approximated linear equations of power characteristics for each pump are listed in

Table 5.6.

• Pumps type undefined

From the provided data it could not be determined whether pump is a variable-speed

or fixed-speed type. The pump types were assumed as listed in Table 5.6.

• Control schedules

The defined control schedules and rules were removed.



Appendix F

Discretisation algorithm of

continuous schedules using

GAMS/CONOPT

The methodology can be summarised as follows:

1. Load continuous optimisation results produced by GAMS/CONOPT.

2. For each pump station round the continuous pump control (i.e. number of pumps

ON) to an integer number, while calculating an accumulated rounding error at each

time step. The accumulated rounding error is used at subsequent time steps to

decide whether the number of pumps ON should be rounded up or down.

3. Generate GAMS code with number of pumps ON for each pump station and at each

times step being fixed, i.e. as calculated in the above step. Initial conditions for all

flows and pressures in the network are as calculated by GAMS/CONOPT during the

continuous optimisation. Note that in this GAMS code the number of pumps ON for

each pump station and at each times step are no longer decision variables but forced

parameters. However, the solver (CONOPT) can still change pump speed and can

adjust valve flow to match the integer number of pumps ON. The cost function to

be minimised and the constraints are the same as in the continuous optimisation.

4. Call GAMS/CONOPT and subsequently load the results of integer optimised solu-

tion.
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5. In the continuous optimisation pump station flow can be zero only when all pumps

in this station are off. However, in integer optimisation it may rarely happen that

pump station control is forced to have e.g. 1 pump ON during a particular time

step, but this pump is unable to deliver the required head at that time step, hence

the pump flow is zero. If such event occurs, the above steps 3 and 4 are repeated,

but at the time steps when the resulting pump station flow was zero, the number of

pumps ON is forced to be zero.
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van Zyl, J., Savić, D. A., and Walters, G. A. (2004). Operational optimization of wa-

ter distribution systems using a hybrid genetic algorithm. Journal of water resources

planning and management, 130(2):160–170.

Vazquez, F., Fernandez, J. J., and Garzon, E. M. (2011). A new approach for sparse

matrix vector product on NVIDIA GPUs. Concurrency and Computation: Practice and

Experience, 23(8):815–826.

Vilanova, N., Ricardo, M., Balestieri, P., and Antônio, J. (2014). Energy and hydraulic
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