
CENG 6405: Pollutant Fate and Transport 

Chapter 3 Fate and Transport in Subsurface 
Water

1. Basics of groundwater flow

2. Physical transport mechanisms in groundwater

3. Dispersion and retardation in groundwater

4. Movement of DNAPL’s and LNAPL’s
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Darcy's experiment, 1856
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3.1 Basics of groundwater



146

Darcy's experiment, 1856
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Soil Orientation doesn’t Matter

Basics of groundwater
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Q is proportional to Dh

Q

A

Q is proportional to sample cross

sectional area, Axs

Q is inversely proportional

to sample length, l
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l

Dh
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Darcy’s Law

◼ Combine and insert a constant of proportionality

Q = –KAxc[ Dh/l] 

◼ Axc = sample cross-sectional area [m2]

◼Perpendicular to flow direction

◼ K = hydraulic conductivity [m/s]

◼ Dh/l = hydraulic gradient [-]

◼ Sometimes written as Q/Axc = q = –K[Dh/l] 

◼Where q = specific discharge a.k.a. “Darcy 
velocity”

◼ Hydraulic gradient often written as a differential, 
dh/dl
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Effect of Geologic Material and Fluid property
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Q = –KAxc[dh/dl]

K is a property of the porous material = Permeability

•Re-run experiments with different geologic materials

•e.g., grain size 

•General relationship still holds – but –

•Need a new constant of proportionality (K)

•Re-run experiments with a different fluid

•e.g., petroleum, trichloroethylene, ethanol 

•General relationship still holds – but –

•Need a new constant of proportionality (K)

K is a property of the fluid = ρg/μ



How Fast is Groundwater Moving?

◼ Consider Darcy’s experiment with a vertical 
sample

Qt = –KAxs (ht/L)  Divide through by Axs:

Qt/Axs= –K (ht/L) = q [m/s]

◼ q = Specific Discharge (Darcy velocity)

Q/Axs= Axs(ho – h1)/(t1 – t0)/ Axs

q = Q/Axs= (ho – h1)/(t1 – t0)

◼ This is the velocity of water in the standpipe 
above the sample, not in the sample
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Specific Discharge – Darcy Velocity
◼ Specific discharge is an apparent velocity. Also called an 

approach velocity 

◼Does not occur in porous media

◼ It is the velocity of the water, if the aquifer had been an open 

conduit

◼“Empty bed” velocity

◼ How is groundwater velocity in the porous medium related to 

specific discharge?

◼ Consider a pipe carrying water under pressure

◼ If a pipe became half clogged, but the flow through the pipe was 

kept constant, the velocity would double.
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Q = v1Axs

v1 = Q/Axs

Q = v2(Axs /2)

v2 = 2Q/Axs



Effect of Porosity on Velocity

◼ Similarly, if the pipe was filled with sand having a porosity of 

50%, only half the area is available for flow

◼If the flow through the pipe was kept constant, the velocity 

would double

◼ The area available for flow is therefore neAxs

◼ Groundwater  velocity v = Q/Aflow = Q/neAxs = q/ne
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Q = v1Axs

v1 = Q/Axs

Q = v2(Axs /2)

v2 = 2Q/Axs

Average linear velocity

Seepage velocity  

v = Q/(neAxs )

v = –K (dh/L) /ne



Average Linear Velocity Vs Microscopic Scale 

◼ Pores have different sizes – velocity will differ in different size 
pores

◼ Water flowing near the pore walls will be slowed by viscosity, 
flow near the center of the pore throat will move fastest 

◼ Flow paths are of different lengths, and some must split and 
branch around grains

◼ Actual v will vary about the mean
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Average linear velocity

v = q/ne = –K (dh/L)/ne



Groundwater Flow Equation

◼ The cube in Figure 1 is called the 

representative elementary volume 

(REV). Its volume is equal to ΔxΔyΔz. 

The flow of water through the REV is 

expressed in terms of the discharge rate 

(q), whose magnitude in the three 

coordinates will be qx, qy, and qz. 
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◼

𝜕

𝜕𝑥
𝐾𝑥

𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑦
𝐾𝑦

𝜕ℎ

𝜕𝑦
+

𝜕

𝜕𝑧
𝐾𝑧

𝜕ℎ

𝜕𝑧
= 𝑆𝑆

𝜕ℎ

𝜕𝑡
− 𝑅∗

◼ Where 

◼Kx, Ky, and Kz are components of the hydraulic conductivity. 

◼SS specific storage ([L-1]

◼R* source/sink per unit volume of aquifer

◼ h is the Hydraulic head 
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Initial and boundary conditions

◼ For a well posed boundary value problem: (i) A solution must 

exist, (ii) The solution must be unique and (iii) The solution 

must be stable, in the sense that sufficiently small variations in 

the given data should lead to arbitrary small changes in the 

solution

◼ Initial and boundary conditions are needed for a unique solution 

of the groundwater flow equations for a specific flow domain 

of interest

◼ Initial conditions: specification of the distribution of the state 
variable (hydraulic head for the groundwater flow equation) at 
some initial time, usually at t = 0. 

◼ For example

◼In which f(x,y,z) is a known function, D is the flow domain.
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( ) ( ), , ,0 , , in Dh h x y z f x y z= =



◼ Boundary conditions: specification of the interaction 
between the flow domain and its surrounding environment, 
which is a mathematical representation of the physical 
reality

◼ Known water fluxes

◼ Known values of state variables, such as hydraulic head, 
that the external domain imposes on the flow regime 

◼ Different initial and boundary conditions result in different 
solutions

◼ Three mathematical boundary conditions:

1. Dirichlet : where the solution h is known

2. Neumann: where the gradient of the solution h is known

3. Cauchy: where by the solution depends on the character 
of the medium at the boundary location.
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◼ Example: 

◼Dirichilet: AB and EF boundaries

◼Neumann: BC, CD, DE and GA boundaries

◼Cauchy: FG boundary
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Dupuit assumption

◼ The boundary of an unconfined aquifer (z) is indeed the solution 

(h) that needs to be determined. 

◼ Dupuit assumptions: First developed by Dupuit (1863) and then 

advanced by Forchheimer (1930), or called Dupuit-Forchheimer 

theory

◼From observations, the slope of phreatic surface (water table) 

is very small (commonly 1/1000)

◼Two assumptions 

◼ The hydraulic gradient is equal to the slope of the free 

surface and is invariant with depth

◼ The equipotential lines are vertical, i.e., the flow lines 

are horizontal, i.e., 
𝜕𝑝

𝜕𝑧
= −𝜌𝑔
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Dupuit assumption

◼ Example : two-dimensional steady-state flow without accretion

◼ 𝑄𝑥 = −𝐾ℎ
𝑑ℎ

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≫ 𝑄𝑥𝑑𝑥 = −𝐾ℎ𝑑ℎ ≫ 𝑄𝑥 0׬

𝐿
𝑑𝑥 = −𝐾 ℎ0׬

ℎ𝐿 ℎ𝑑ℎ

◼ ≫ 𝑄𝑥 𝐿 − 0 = −𝐾
ℎ𝐿
2−ℎ0

2

2
≫ 𝑄𝑥 =

𝐾

2𝐿
ℎ0
2 − ℎ𝐿

2
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(After Bear and Verruijt, 1987)

(Dupuit equation)



Example : three-dimensional steady-state flow with accretion 

(impervious, horizontal bottom)

Mass in – mass out = D M = 0 (steady state) 

dx

dy

h

w

xq dy x dxq dy+

q = discharge 

per unit width
yq dx

y dyq dx+

• 𝐾
𝜕2ℎ2

𝜕𝑥2
+

𝜕2ℎ2

𝜕𝑦2
= −2𝑤

• w [L/T] : rate of water into or 

out of the unconfined aquifer 

per unit area of the 

unconfined aquifer i.e., w > 0 

for infiltration, w < 0 for 

evaporation 

(Adapted from Fetter, 1994)

Under Dupuit assumptions: h(x, y, z) → h(x, y) 
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Dupuit assumption



Furthermore, for one-dimensional flow, 

Eq(2) reduces to: 
𝑑2

𝑑𝑥2
ℎ2 = −

2𝑤

𝐾

(After Fetter, 1994)

BC’s :

( )

( )

1

2

0h x h

h x L h

= =

= =

( )2 2

1 2 
w

h x x c x c
K

= − + +General solution :

( )

( )

2

1 2 1

2 2

2 1
2 1

0h x h c h

h h wL
h x L h c

L K

= =  =

 −
= =  = + 

 

( )
( )

( )
2 2

1 22 2

1

h h x w
h x h L x x

L K

−
= − + −

(3)
Hence

( )
( )

( )
2 2

1 22

1

h h x w
h x h L x x

L K

−
= − + −
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ℎmax = ℎ1
2 −

ℎ1
2 − ℎ2

2 𝑑

𝐿
+
𝑤

𝐾
𝐿 − 𝑑 𝑑

𝑑 =
𝐿

2
−

𝐾

2𝐿𝑤
ℎ1
2 − ℎ2

2

Dupuit assumption
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For incompressible fluids and homogeneous and isotropic aquifers 

Mass in – mass out = D M  

dx

dy

h

xq dy x dxq dy+

(impervious, horizontal bottom)

q = discharge 

per unit widthyq dx

y dyq dx+

Under Dupuit assumptions: 

h(x,y,z) → h(x,y) 

𝜕

𝜕𝑥
ℎ
𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑦
ℎ
𝜕ℎ

𝜕𝑦
=

𝑆𝑦

𝐾

𝜕ℎ

𝜕𝑡

(Boussinesq Equation)

w
y

V
S

A h

D
= 

D
specific yield

Transient 2D unconfined flow



◼ Boussinesq equation is a non-linear PDE, which can not be 

solved analytically except under some idealized conditions

◼ Approximations: Drawdown in the aquifer is small, i.e., h  b 

(averaged thickness assumed to be constant over the aquifer)

◼ From the Boussinesq equation

◼

𝜕

𝜕𝑥
ℎ
𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑦
ℎ
𝜕ℎ

𝜕𝑦
≅

𝜕

𝜕𝑥
𝑏
𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑦
𝑏
𝜕ℎ

𝜕𝑦
=

𝑆𝑦

𝐾

𝜕ℎ

𝜕𝑡

◼≫
𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
=

𝑆𝑦

𝐾𝑏

𝜕ℎ

𝜕𝑡

(Note that (the last equation) is similar to the 2-D flow in a 

confined aquifer, except that S, Storativity of a confined aquifer, 

is used instead of 
𝑆𝑦

𝑏
)
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◼ Conditions when Dupuit assumption does not work

◼Vertical flow is not negligible (Vertical impervious boundary; 
Crest of water table (or water divide); Seepage face

◼ Rule of thumb (Bear and Verruijt, 1987): Dupuit assumption is 
valid at distances from the downstream end larger than twice the 
average height of the flow domain. However, discharge 
calculated from Dupuit assumption is a satisfactory estimation 
for most cases
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Examples of seepage face



◼ Examples where Dupuit 
assumption is not valid
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Example 

◼ An unconfined aquifer of clean sand and gravel is located 

between two fully penetrating rivers (see the figure below) 

and has a hydraulic conductivity of 0.01 cm/s. At point C 

(100 m away from River A and at 1592 m elevation) a marsh 

land was observed during study time. A pollutant is disposed 

over the marsh land. If The water surface elevations in rivers 

A and B are 1590 m and 1585 m, respectively with the rivers 

bed level is at 1580 m elevation. Estimate:

◼The maximum elevation of the water table and the 

location of the stagnation point.

◼The travel time for the pollutant to River A (Take 

effective porosity of 0.35)
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Solution

◼ K = 0.01 cm/s = 8.64 

m/day

◼ h1 = 1590 – 1580 = 10 m

◼ h2 = 1585 – 1580 = 5 m

◼ hc = 1592 – 1580 = 12m 
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River B

River A

h1 h2

Impermeable 

400 m

C

100 m

◼ hc being greater than the two rivers elevation implies the presence 

of positive accretion w (recharge) thus a 2D Dupuit equation with 

accretion will be used. ℎ2 𝑥 = ℎ1
2 −

ℎ1
2−ℎ2

2 𝑥

𝐿
+

𝑤

𝐾
𝐿 − 𝑥 𝑥

◼ w = ??, Substituting the value of hc at x = 100m will define the w.

◼ 122 = 102 −
102−52 ×100

400
+

𝑤

8.64
400 − 100 × 100

⇒ 𝑤 = 0.018072𝑚/𝑑𝑎𝑦 = 2.09 × 10−7𝑚/𝑠



Solution 

◼ The maximum water table elevation occurs at the location of 

groundwater divide computed as:

◼ 𝑑 =
𝐿

2
−

ℎ1
2−ℎ2

2 𝐾

2𝐿𝑤
=

400

2
−

102−52 ×8.64

2×400×0.018072
= 200 − 44.8 = 155.2𝑚 from 

river A

◼ The maximum head at the divide is computed as:

◼ℎmax = ℎ1
2 −

ℎ1
2−ℎ2

2 𝑑

𝐿
+

𝑤

𝐾
𝐿 − 𝑑 𝑑 =

102 −
102−52 ×155.2

400
+

0.018072

8.64
400 − 155.2 × 155.2 = 12.26𝑚

◼ The average pore water velocity is computed using Darcy’s law:

◼𝑣𝐴 =
𝐾

𝑛𝑒

Δℎ

Δ𝑥
=

8.64

0.35

12−10

100
= 0.494𝑚/𝑑𝑎𝑦

◼ The travel time to river A: 𝑡 =
𝐿𝐴

𝑣𝐴
=

100

0.494
= 202.55𝑑𝑎𝑦𝑠
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Practice Exercise: Is the contamination a threat to River B? 



◼ Static Water Level [SWL] (ho) 
is the equilibrium water level 
before pumping commences

◼ Pumping Water Level [PWL] 
(h) is the water level during 
pumping

◼ Drawdown (s = ho - h) is the 
difference between SWL and 
PWL

◼ Well Yield (Q) is the volume of 
water pumped per unit time

◼ Specific Capacity (Q/s) is the 
yield per unit drawdown

◼ Radius of influence: the radius 
of the region beyond which no 
drawdown is observed due to the 
well.

ho

h

s

Q
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Flow to a pumping well



◼ Assumptions

Isotropic, homogeneous, infinite aquifer, 2-

D radial flow

◼ Initial Conditions

h(r,0) = ho for all r

◼ Boundary Conditions

h(,t) = ho for all t

◼ PDE: 
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕ℎ

𝜕𝑟
=

𝑆

𝑇

𝜕ℎ

𝜕𝑡

• Change the dependent variable by letting: 𝑢 =
𝑟2𝑆

4𝑇𝑡

• The ultimate solution is:ℎ𝑜 − ℎ =
𝑄

4𝜋𝑇
𝑢׬
∞ 𝑒−𝑢

𝑢
𝑑𝑢

• Where the integral is called the exponential integral written as 

the well function W(u). This is the Theis Equation

hoh

s

Q

r

b

Unsteady radial confined flow
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Theis Plot : 1/u vs W(u)

0.0

0.1

1.0

10.0

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

1/u

W
(u

)
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Cooper Jacob



◼ In  the above figure, the Theis well function W(u) is plotted 

vs. 1/u on semi-log paper.

◼ This figure shows that, for large values of 1/u, the Theis well 

function exhibits a straight-line segment. 

◼ The Jacob method is based on this phenomenon. Cooper and 

Jacob (1946) showed that, for the straight-line segment, s 

can be approximated by 

◼𝑠 =
𝑄

4𝜋𝑇
𝑊 𝑢 =

𝑄

4𝜋𝑇
ln

2.25𝑇𝑡

𝑟2𝑆
=

2.3𝑄

4𝜋𝑇
log

2.25𝑇𝑡

𝑟2𝑆

◼ with an error less than 1%, 2%, 5%, and 10% for 1/u larger 
than 30, 20, 10, and 7, respectively.

◼ The Cooper-Jacob simplification expresses drawdown (s) as 
a linear function of ln(t) or log(t).
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Cooper Jacob



Example

◼ A well (10” in diameter) is constructed 1000m from a waste 

disposal site. The well taps a confined aquifer of 25m thick, 

having T= 0.01 m2/s and S of 0.0001. 

◼If the well yield is fixed to be 100 m3/day, and operates a 

quarter of a day, is the well safe from contamination?

◼ Solution

◼ Daily requirement 100 m3, to be supplied within a quarter of a 

day, the well yield shall be 100/(6hr x 60minx 60 sec) = 

0.00463 m3/s

◼ 10’’ = 25.4 cm, Radius of the well = 0.127m
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Solution 

◼ From Cooper Jacob equation the well radius of influence 

(1000 m) would be reached at 

◼ 𝑠 =
2.3𝑄

4𝜋𝑇
log

2.25𝑇𝑡

𝑟2𝑆
⇒ 0 =

2.3𝑄

4𝜋𝑇
log

2.25𝑇𝑡

𝑟2𝑆
⇒

2.25𝑇𝑡

𝑟2𝑆
= 1

◼ 𝑡 =
𝑟2𝑆

2.25𝑇
=

10002×0.0001

2.25×0.01
= 4444.44 sec =1.2346ℎ𝑟𝑠

◼At this time the drawdown at the well location will be 

◼ 𝑠𝑤 =
2.3𝑄

4𝜋𝑇
log

2.25𝑇𝑡

𝑟𝑤
2𝑆

⇒ 𝑠𝑤 =
2.3 × 0.00463

4𝜋 × 0.01
log

2.25 × 0.01 × 4444.44

0.1272 × 0.0001

= 0.66𝑚
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Solution 

◼The average velocity of the groundwater particle would be

◼𝑣 =
𝐾

𝑛𝑒

Δℎ

Δ𝑥
=

𝑇

𝑏𝑛𝑒

Δℎ

Δ𝑥
=

0.01

25×0.35

0.66−0

1000
= 7.55 × 10−7𝑚/𝑠

◼Travel time to the well

◼𝑡 =
𝐿

𝑣
=

1000

7.55×10−7𝑠
= 1.33 × 109𝑠 = 42.02𝑦𝑒𝑎𝑟𝑠

◼ The radius of influence at the end of each pumping operation time 

i.e. 6hr (21600 sec) time would be 

◼𝑠 =
2.3𝑄

4𝜋𝑇
log

2.25𝑇𝑡

𝑟2𝑆
⇒ 0 =

2.3𝑄

4𝜋𝑇
log

2.25𝑇𝑡

𝑅2𝑆
⇒

2.25𝑇𝑡

𝑅2𝑆
= 1

⇒
2.25 × 0.01 × 21600

𝑅2 × 0.0001
= 1 ⇒ 𝑅 = 2204.541𝑚
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Solution 

◼ The drawdown in the well at 21600sec time would be 

◼𝑠𝑤 =
2.3×0.00463

4𝜋×0.01
log

2.25×0.01×21600

0.1272×0.0001
= 0.72𝑚

◼ The drawdown at the waste location

◼𝑠𝑤 =
2.3×0.00463

4𝜋×0.01
log

2.25×0.01×21600

10002×0.0001
= 0.06𝑚

◼ The average velocity of the particle at the waste location

◼𝑣 =
𝐾

𝑛𝑒

Δℎ

Δ𝑥
=

𝑇

𝑏𝑛𝑒

Δℎ

Δ𝑥
=

0.01

25×0.35

0.72−0.06

1000
= 7.55 × 10−7𝑚/𝑠

◼The travel time would be 𝑡 =
𝐿

𝑣
=

1000

7.55×10−7𝑠
= 1.33 × 109𝑠 =

42.02𝑦𝑒𝑎𝑟𝑠

◼ Since the time it take to reach the well (in both cases) is very 

long the water is safe to use.
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3.2. Physical transport mechanisms in soil

◼ Advective Transport (Jc): is the passive transport of dissolved 

constituents with the flowing water. In this case, water and the 

solutes move at the same average rate:

◼𝐽𝑐 = 𝐽𝑤𝐶 = −𝐶 𝐾 ℎ
𝑑ℎ

𝑑𝑥

◼ Where C is the volume-averaged solute concentration, Jc is the 

solute flux, and Jw is the water flux (Darcy velocity, represents 

the flow velocity averaged over an entire cross sectional area). 

◼ To estimate solute travel or arrival times, the mean pore water 

velocity (u) is used: 𝑢 =
𝐽𝑤

𝜃

◼θ is the water content

◼ Thus solute flux may also be characterized as: 𝐽𝑐 = 𝑢𝜃𝐶
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◼ In bulk water at rest is given by Fick's Law: 𝐽𝑑 = −𝐷𝑜
𝑑𝐶

𝑑𝑥

◼where Do is the diffusion coefficient in bulk water. 

◼ The diffusion coefficient in porous media is less than Do. Because 

air and solid particles form barriers to liquid diffusion, the 

apparent soil-liquid diffusivity (Ds [L2/t]) is a function of the 

available path for diffusion determined by the tortuosity T(θ).

◼ Tortuosity T(θ), results from the geometry of the medium (i.e., 

texture and structure) and the volumetric water content. (E.g. Jury 

et al, 1991):

◼ 𝐷𝑠 = 𝐷𝑜𝜃𝑇 𝜃 = 𝐷𝑜
𝜃 10/3

𝑛2
Where n is porosity.

◼ The flux of diffusing solutes in an unsaturated porous medium is 

thus:𝐽𝑑 = −𝐷𝑠
𝜕𝐶

𝜕𝑥
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Diffusive Transport (Jd)



◼ Differences in flow velocities at the pore scale (due to different 

pore sizes and shapes) cause the solute to be transported at 

different rates and thus lead to mixing (or dispersion) of an 

incoming solution within an antecedent solution. 

◼ The process is macroscopically similar to mixing by diffusion 

(thermal motion); however, it is passive (i.e., not driven by 

concentration gradients) and is entirely dependent on water 

flow. The solute flux due to mechanical (or hydrodynamic) 

dispersion (Jh) is described by an equation similar to Fick's 

Law for diffusion:

◼𝐽ℎ = −𝐷ℎ
𝜕𝐶

𝜕𝑥

◼where Dh is the hydrodynamic dispersion coefficient (L2/T)
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◼ Dh is dependent on the interstitial pore water flow velocity (u

[L/T]), and on the dispersivity (λ [L]) of the soil (a function 

of pore sizes and shapes) accordingly:

◼𝐷ℎ = 𝜆
𝐽𝑤

𝜃

𝑁
= 𝜆𝑢𝑁

◼ where N is an empirical factor usually assumed to equal 1

(i.e., a linear dependency of Dh on u). The value of λ may 

range from 1 cm in small columns to a few meters in field 

experiments. In most cases the relative effect of 

hydrodynamic dispersion can exceed that of diffusion.

◼ Because of the macroscopic similarity between diffusion and 

hydrodynamic dispersion, it is common to combine their 

coefficients (assuming that they are additive) in to a 

diffusion-dispersion coefficient (De): 𝐷𝑒 𝜃, 𝑢 = 𝐷𝑠 + 𝐷ℎ
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The Advection-dispersion equation

◼ The ADE for conservative Solutes: The total flux of dissolved 

solutes in soil (Js) is the result of combined transport by the 

three mechanisms discussed above, and may be described by 

the convection dispersion model:

◼𝐽𝑠 = −𝐷𝑒
𝜕𝐶

𝜕𝑥
+ 𝐽𝑤𝐶

◼ Where Js is the total mass of solute transported across a unit 

cross-sectional area of soil per unit time, Jw is the water flux 

(Darcian flux), De is the combined diffusion-dispersion 

coefficient, and c/x is the spatial solute gradient. 

◼ De is dominated by the dispersion process under most flow 

conditions.
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◼ Combining the above equation with the continuity equation 

(conservation of mass) yields:

◼

𝜕 𝜃𝐶

𝜕𝑡
= −

𝜕𝐽𝑠

𝜕𝑥
=

𝜕

𝜕𝑥
𝐷𝑒

𝜕𝐶

𝜕𝑥
− 𝐽𝑤𝐶

◼ Assuming steady state water flow in a homogeneous soil 

profile (Jw and θ are constant in time and space), reduces the 

above equation to the familiar form of the advection-dispersion 

equation for conservative (inert and non-adsorbing) solutes:

◼𝑅
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
− 𝑢

𝜕𝐶

𝜕𝑥
Equation A

◼where D = De/θ, u = Jw/θ, and R is known as the 

retardation factor which in this case is simply R=1.

◼ 𝐶 𝑥, 𝑡 =
𝑀

𝐴

1

4𝜋
𝐷

𝑅
𝑡

exp −
𝑥−

𝑢

𝑅
𝑡
2

4
𝐷

𝑅
𝑡
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Flux and Resident Concentrations

◼ In solving transport problems there are two chemical 

concentrations of interest: 

◼ (i) the total resident concentration, denoted as cr, which is the 

mass of solute per volume of soil; and 

◼ (ii) the flux concentration, cf, which is the ratio of the solute 

mass flux (Js) to the water flux (Jw), i.e., cf=Js/Jw. 

◼ The difference between these two concentrations may be 

illustrated by the outcome of a hypothetical measurement of 

the effluent leaving a soil column vs. the solution 

concentration at a given soil volume within the column. This 

is somewhat analogous to the relationship between changes 

in volumetric water content and the water flux leaving a soil 

volume.
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Flux and Resident Concentrations

◼ These concentrations are related through the solute continuity 

equation (for an inert solute assuming vertical flow along z):

◼

𝜕𝑐𝑟

𝜕𝑡
= −

𝜕𝐽𝑠

𝜕𝑧
, 𝐽𝑠 = 𝑐𝑓𝐽𝑤

◼ and under steady state flow conditions:

◼

𝜕𝑐𝑟

𝜕𝑡
+ 𝐽𝑤

𝜕𝑐𝑓

𝜕𝑧
= 0

◼ An alternative representation was given by van Genuchten

and Wierenga (1986): 𝑐𝑓 = 𝑐𝑟 −
𝐷

𝑢

𝜕𝑐𝑟

𝜕𝑡

◼ It useful to note, however, that the difference between cr and 

cf can be ignored for D/(uL) < 1 and at depths z > ut where t 

is the time of observation (Parker and van Genuchten, 1984).
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Example

◼ A1000kg spill of a contaminant into an aquifer has occurred. 

The spill was short and over a small area having hydraulic 

conductivity of 500m/d, effective porosity of 0.3, diffusivity 

of 10-9 m2/s and dispersivity (λ) of 0.01 m. You have a depth 

to water measurement at 100m east of the spill 1m and at 200 

m west of the spill it is 2m. The surface elevation is flat. 

There are two drinking wells, one 2 m east of the spill and 

another is 500 m west of the spill. Calculate the 

concentrations that will arrive at these wells.
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K = 500 m/d, λ = 0.01m, Ds =10-9m2/s, ne = 0.3



Solution: 

◼ Given: M = 1000 Kg; K = 500 m/d; ne = 0.3

◼ Depth at -100 m 1m and at 200 m 2.0 m (taking the waste 

disposal site as the origin and positive direction towards the 

west).

◼ The equation to solve is

◼ Calculate Darcy velocity:

◼ The average linear velocity would be u = q/ne = 1.667/0.3 = 

5.5556 m/day

◼ Hydrodynamic dispersion coefficient (D): = Diffusivity (Ds) + 

Dispersive coefficient (λu) = 10-9 m2/s + 0.01m x 5.5556 

m/(86400 s) =  10-9 + 6.43 x 10-7 = 6.431 x 10-7 m2/s = 5.5556 

10-2 m/d (note Ds is basically negligible)
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𝑅
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
− 𝑢

𝜕𝐶

𝜕𝑥

𝑞 = −𝐾
Δℎ

Δ𝑙
= −500𝑚/𝑑 ×

1 − 2

300
= 1.667𝑚/𝑑



Solution

◼ Retardation (nothing is given) take it to be R = 1 

◼ The solution to the above equation for instantaneous injection of 

waste (1000kg) is given by

◼ 𝐶 𝑥, 𝑡 =
𝑀

𝐴

1

4𝜋
𝐷

𝑅
𝑡

exp −
𝑥−

𝑢

𝑅
𝑡
2

4
𝐷

𝑅
𝑡

=
1000

𝐴

1

4𝜋×
0.0556

1
𝑡

exp −
𝑥−

5.556

1
𝑡
2

4×
0.0556

1
𝑡

◼ The concentration per unit area of the aquifer would be

◼𝐶 𝑥, 𝑡 =
1000

4𝜋×0.0556𝑡
exp −

𝑥−5.556𝑡 2

4×0.0556𝑡

◼ Case 1 at 2m east of the waste x = -2 m will be substituted

◼ Case 2 at 500m west of the waste x = 500 m will be substituted
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Solution 

◼ The concentration profiles with time is as shown in the 

following figures
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3. Dispersion and Retardation in soil

◼ In some cases we may consider changes in the mass of solute 

adsorbed onto the solid soil matrix. The adsorbed mass is given 

by ρbs, where ρb is the soil’s bulk density and s is the adsorbed 

concentration (mass of solute per mass of soil). The modified 

continuity equation (including the adsorbed solute) is given as:

◼

𝜕 𝜃𝐶+𝜌𝑏𝑠

𝜕𝑡
=

𝜕

𝜕𝑥
𝐷𝑒

𝜕𝐶

𝜕𝑥
− 𝐽𝑤𝐶

◼ Often, the mass of the adsorbed solute can be related to its 

concentration in the solution by an adsorption isotherm. In its 

simplest form, s and C are assumed to be related by a linear (or 

linearized) equilibrium isotherm given by:

◼𝑠 = 𝑘𝑑𝐶, 

◼Where kd is known as the distribution coefficient.
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Retardation factor

◼ Under steady state water flow conditions where Jw and θ are 

constant in time and space, and with a linear adsorption 

isotherm (eq. above), the resulting ADE is identical to 

equation A. 

◼𝑅
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
− 𝑢

𝜕𝐶

𝜕𝑥
, where D = De/θ, u = Jw/θ

◼ Except the retardation factor, R, is now defined as:

◼𝑅 = 1 +
𝜌𝑏𝑘𝑑

𝜃

◼ Note that, if there are no interactions between the soil and the 

solute, then kd = 0 and R = 1.
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The ADE with Chemical and Biological Degradation

◼ In some cases the transported solute undergoes chemical or 

biological degradation (e.g., radioactive decay or microbial 

transformation). It is useful to distinguish between processes 

taking place in the solution and on the solid phase. The liquid 

phase continuity equation is given by (van Genuchten and 

Wagenet, 1989):

◼

𝜕 𝜃𝐶

𝜕𝑡
= −

𝜕𝐽𝑠

𝜕𝑥
− 𝐽𝑎 − 𝜃𝜇𝑙𝐶

◼ where C is volume averaged concentration (i.e., cr), Ja is the 

transfer rate from the soil solution to the sorbed phase [ML-3T-1], 

Js is the solute flux density [ML-2T-1], and μl is a first-order 

decay coefficient [T-1] which satisfies: dC/dt = -μlC. 

◼ Combining: 
𝜕 𝜃𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
𝐷𝑒

𝜕𝐶

𝜕𝑥
− 𝐽𝑤𝐶 − 𝐽𝑎 − 𝜃𝜇𝑙𝐶
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ADE with …

◼ A similar mass balance for the sorbed phase yields:

◼𝜌𝑏
𝜕𝑠

𝜕𝑡
= 𝐽𝑎 − 𝜌𝑏𝜇𝑠𝑠

◼ Where s is the sorbed concentration, and μs is a first-order 

decay coefficient [T-1] for the sorbed phase (i.e., ds/dt = -ρss). 

◼ Combining the above equations yields:

◼

𝜕 𝜃𝐶+𝜌𝑏𝑠

𝜕𝑡
=

𝜕

𝜕𝑥
𝐷𝑒

𝜕𝐶

𝜕𝑥
− 𝐽𝑤𝐶 − 𝜃𝜇𝑙𝐶 − 𝜌𝑏𝜇𝑠𝑠

◼ The above equation may be reduced to a slightly modified ADE

◼𝑅
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
− 𝑢

𝜕𝐶

𝜕𝑥
− 𝜇𝐶

◼𝐶 𝑥, 𝑡 =
𝑀

𝐴

1

4𝜋
𝐷

𝑅
𝑡

exp −
𝑥−

𝑢

𝑅
𝑡
2
+4

𝐷𝜇

𝑅2
𝑡

4
𝐷

𝑅
𝑡
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ADE with …

◼ Assuming a linear sorption process (i.e., s = kdC) yields a 

retardation factor, R, 

◼𝑅 = 1 +
𝜌𝑏𝑘𝑑

𝜃

◼ And introducing an effective degradation constant, μ, as:

◼𝜇 = 𝜇𝑙 +
𝜌𝑏𝜇𝑠𝑘𝑑

𝜃

◼ In cases where :μl=μs, μ in the above equation reduces to:

◼μ = μlR.
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Mobile-Immobile Model and Effects of Soil Structure

◼ Preferential flow of solute often yields highly asymmetrical 

break through curves (BTC’s). The reasons behind this 

phenomenon are the large differences in transport pathways 

in the media.

◼ In aggregated soils, there are large pores associated with 

intra-aggregate porosity and a small inter-aggregate pore 

system. The result is an incomplete mixing between these 

pore systems, which causes “tailing” (slow arrival of solutes 

transported through the inter-aggregate pore system). 

◼ Pore water velocity may also influence “tailing”. Tailing 

becomes more pronounced as pore water velocity decreases. 

◼ A theoretical approach to quantify “tailing”, assumes the 

existence of exchange between rapidly flowing regions and 

stagnant zones.
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◼ The model can be describe with two fractions of soil water - a 

mobile phase, θm, and an immobile (stagnant) phase, θim = θ - θm. 

The total solute mass is a weighted sum: CT=Cmθm + Cimθim. 

◼ The governing equation for mobile-immobile (MIM) solute 

transport is (van Genuchten and Wierenga, 1976):

◼𝜃𝑚
𝜕𝐶𝑚

𝜕𝑡
+ 𝜃𝑖𝑚

𝜕𝐶𝑖𝑚

𝜕𝑡
= 𝜃𝑚𝐷

𝜕2𝐶𝑚

𝜕𝑥2
− 𝑢𝑚𝜃𝑚

𝜕𝐶𝑚

𝜕𝑥

◼ and the rate-limited transfer between the mobile and immobile 

phases is given by:

◼𝜃𝑖𝑚
𝜕𝐶𝑖𝑚

𝜕𝑡
= 𝛼 𝐶𝑚 − 𝐶𝑖𝑚

◼ where α is a mass transfer coefficient [T-1].
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◼ A scheme of unsaturated 

aggregated media (a) 

actual distribution, and (b) 

a simplified representation 

(van Genuchten and 

Wierenga, 1976).
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4. Movement of DNAPL’s and LNAPL’s

◼ Multi-phase transport involves the gas phase and one or more 

liquid phases. 

◼ The movement of a chemical which occurred in two 

immiscible fluids, viz., water and the gas phase is the common 

multi-phase transport phenomenon in the subsurface. 

◼ Flow and transport processes become even more complicated 

when we deal with the simultaneous movement of two 

immiscible liquids, with or without the presence of a gas 

phase, as it occurs during spills of nonaqueous phase liquids 

(NAPLs). 

◼ NAPLs which are denser than water are known as dense 

NAPLs (DNAPLs) and NAPLs which are lighter than water 

are known as light NAPLs (LNAPLs).
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Dense Non-Aqueous Phase Liquids

◼ NAPLs –

◼Insoluble in water and 

◼Separate phase

◼ Dense NAPLs –

◼More dense than water

◼Chlorinated hydrocarbons

◼ Trichloroethylene-TCE

◼ Tetrachloroethylene-

PCE

◼ Density increases with 

increasing halogenation

Density difference of 0.1% causes 

sinking
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Light Non-Aqueous Phase Liquids
◼ Light NAPLs

◼Lighter than water

◼Petroleum hydrocarbons 

◼ Oil

◼ Gasoline

◼ Density difference 

between water and NAPL 

of 1% can influence flow

◼ Low viscosity NAPLs

migrate more rapidly than 

high viscosity NAPLs

201



◼ The main reason for distinguishing between LNAPLs and 

DNAPLs is that a LNAPL plume tends to "float" in the 

vicinity of the groundwater table whereas a DNAPL plume 

tends to "sink" into the aquifer bottom

◼ While LNAPLs and DNAPLs behave quite differently near 

the capillary fringe and below the groundwater table, their 

general behavior in the unsaturated zone is quite similar. 

◼ Both types of NAPLs generally migrate downward in the 

unsaturated zone under the actions of gravity and capillarity 

(surface tension effects), and may even spread out over lenses 

of low-hydraulic-conductivity materials.
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◼ As the spill progresses downward through the unsaturated 

zone, some residual NAPL is retained around the soil grains 

and trapped in the pore spaces due to surface tension effects. 

◼ If a sufficiently large quantity of NAPL enters the subsurface, 

it will eventually reach the capillary fringe. 

◼ LNAPL will accumulate at the water table, while DNAPL 

will penetrate the water table, 

◼ If DNAPL’s pressure exceeds the required displacement 

pressure, it accumulates over less permeable lenses or layers 

or at the bottom of the aquifer. 

◼ In either case, a certain amount of NAPL will be immobilized 

in the unsaturated and saturated zones as residual NAPL. 
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◼ The residual NAPL will then act as a source of subsurface 

contamination due to the dissolution of the residual NAPL 

into the flowing groundwater or into the recharge water 

infiltrating at the surface. 

◼ The mobile (free-phase) NAPL, which accumulates on the 

water table or over layers or lenses of low permeability 

material, will also act as a source of groundwater 

contamination due to dissolution of the NAPL, Which may 

act as a source of contamination for many years

◼ While the mobile (free-phase) NAPLs may be pumped out of 

an aquifer by means of wells, the immobile residual NAPLs 

can only be removed by special means such as steam 

injection or surfactant-aided mobilization. 
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◼ The spatial distribution of a LNAPL plume will be greatly 

affected by the fluctuations of the water table. 

◼ The distribution of the LNAPL in turn affects its rate of 

dissolution and the behavior of the resulting dissolved 

contaminant plume. 

◼ The spatial variations of the aquifer material properties also 

play an important role in the behavior of both LNAPL and 

DNAPL plumes.
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