

Ground	Description of stratigraphic profile	Parameters		
		v _{s,30} (m/s)	NSPT (blows/30cm)	c _u (kPa)
A	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface.	> 800	-	-
в	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of metres in thickness, characterised by a gradual increase of mechanical properties with depth.	360 - 800	> 50	> 250
С	Deep deposits of dense or medium- dense sand, gravel or stiff clay with thickness from several tens to many hundreds of metres.	180 – 360	15 - 50	70 - 250
D	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil.	< 180	< 15	< 70
E	A soil profile consisting of a surface alluvium layer with v_s values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with $v_s > 800$ m/s.			
<i>S</i> 1	Deposits consisting, or containing a layer at least 10 m thick, of soft clays/silts with a high plasticity index (PI > 40) and high water content	< 100 (indicative)	-	10 - 20
S ₂	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in types $A - E$ or S_1			

Subsoi	l classification EBCS 8: 19	95
Subsoil class	Description	Site coeff.
А	Rock $v_s \ge 800$ m/s in the top 5m and stiff clay deposits $v_s \ge 400$ m/s at 10m depth	1.0
В	medium dense sand, gravel or medium stiff clays $v_s \ge 200$ m/s at 10m depth	1.2
С	Loose cohesionless soil deposits with or without some soft cohesive layers $v_s < 200 \text{ m/s}$ in the uppermost 20m	1.5
	where v_s is shear wave velocity	

Seismi	c Haza	rd Zona	ation of	selecte	d
towns u	using E	SEN 2	2015 & 1	EBCS 1	995
Town	Longitude [N]	Latitude [E]	Zone	PGA (a _o /g) ES EN 2015	PGA (a _o /g) EBCS 1995
Addis Ababa	38.7645	8.9757	3	0.1	0.05
Adama	392682	8.5386	4	0.15	0.1
Ankober	39.7710	9.5573	5	0.2	0.1
Arba Minch	37.5474	6.0030	3	0.1	0.1
Assaita	41.4713	11.5849	5	0.2	0.1
Bishoftu	38.9883	8.7468	4	0.15	0.1
Dessie	39.6707	11.0474	3	0.1	0.1
Dire Dawa	41.8389	9.5034	3	0.1	0.05
Hawassa	38.4741	7.0080	4	0.15	0.1
Jigjiga	42.7537	9.2426	3	0.1	0.03
Mekele	39.5515	13.4056	4	0.15	0.1
Semera	41.1321	11.7297	5	0.2	0.1
	Addis A	baba University, AAiT	SCEE		20

ES FN 1998-1.	2015 (HER	Cont	' d)	
ES EI (1770-1.4	2013 (. u)	
• If deep geology is n	not a cc ou	nted for, 1	the recom	mended	choice
is to use two types of	f spectra:	type 1 an	d type 2.		
 Design spectrum p 	arameter	s: Type 1			
 High and moderate 	e seismici	ty region I	$M_{s} > 5.5$		
C round trees	c	Т	T	Т	
Ground type	3	L	L	1 _d	
A (rock)	1.00	0.15	0.4	2.0	
B (Very stiff soil)	1.20	0.15	0.5	2.0	
C (medium stiff)	1.15	0.20	0.6	2.0	
D (Soft soil)	1.35	0.20	0.8	2.0	
E (thin Soft soil over rock)	1.40	0.15	0.5	2.0	
Addis A	Ababa Univer	sity, AAiT. SC	CEE		23

ES EN 1998-1:	2015 (HER	S Con	ťd)	
• Design spectrum p	arameter	s: Type 2		a	
• Low seismicity reg	gion (IVI _s	\leq 5.5); ne	ear field e	artnquak	es
Ground type	S	T _b	T _c	T _d	
A (rock)	1.00	0.05	0.25	1.20	
B (Very stiff soil)	1.35	0.05	0.25	1.20	
C (medium stiff)	1.50	0.10	0.25	1.20	
D (Soft soil)	1.80	0.10	0.30	1.20	
E (thin Soft soil over rock)	1.60	0.05	0.25	1.20	
			•		

ic analysis	and de	sign ES EI	N 2015
GULARITY	SIMPL	IFICATION	BEHAVIOR
ELEVATION	MODEL	ANALYSIS	FACTOR
Yes	Planar	Lateral force*	Reference
No	Planar	Modal	Decreased
Yes	Spatial**	Lateral force*	Reference
No	Spatial	Modal	Decreased
damental period ler specific conditio	< 2 s or 4 T _c on, planar mode	els in each direction	may be used
	GULARITY ELEVATION Yes No Yes No lamental period ler specific conditio Addis	GULARITY SIMPL ELEVATION MODEL Yes Planar No Planar Yes Spatial** No Spatial Hamental period < 2 s or 4 Tool	GULARITY SIMPLIFICATION ELEVATION MODEL ANALYSIS Yes Planar Lateral force* No Planar Modal Yes Spatial** Lateral force* No Spatial** Lateral force* No Spatial** Modal Hamental period < 2 s or 4 T _c Hamental period so the state of the state

	Conse	equence of	f struct	ural regu	larity on	
/	seism	ic design]	EBCS 8	, 1995		
	REC	GULARITY	SIMPLI	FICATION	BEHAVIOR	
	PLAN	ELEVATION	MODEL	ANALYSIS	FACTOR	
	Yes	Yes	Planar	Static*	Basic	
	Yes	No	Planar	Static*	Increased	
	No	Yes	Spatial	Static*	Basic	
	No	No	Spatial	Dynamic	Increased	
;	* Funda	mental period	< 2 seconds	nds		
		Addis	Ababa University, AAi	T. SCEE		34

Importation factors	ance classes and importance	ce
Importance class	Buildings	Importance factor
I	Bldgs of minor importance for public safety, e.g. agricultural bldgs., etc.	0.8
II	ordinary buildings not belonging to other categories	1.0
III	Bldgs whose collapse results in serious consequence, e.g. schools, assembly halls,	1.2
IV	Bldgs whose integrity during EQ is of vital importance, e.g. hospitals, fire stations, power plants, etc	1.4
	Addis Ababa University, AAiT. SCEE	40

Behavior factors		
 The upper limit value of the behavior energy dissipation capacity, shall be des q = q₀ k_w ≥ 1.5 Basic value of the behavior factor q₀ for elevation 	factor q to rived as or buildings	account for regular in
STRUCTURAL TYPE	DCM	DCH
Frame system, dual system, coupled wall system	$3.0\alpha_u/\alpha_1$	$4.5\alpha_u/\alpha_1$
Uncoupled wall system	3.0	$4.0\alpha_u/\alpha_1$
Torsionally flexible system	2.0	3.0
Inverted pendulum system	1.5	2.0
 α₁ is the value by which the seismic actio first reach the flexural resistance in any m α_u is the value by which the seismic actio form plastic hinge in a number section le Addis Ababa University, AAiT. SCEE 	n is multiplie nember n is multiplie ading to inst	ed in order to ed in order to ability.

Jetailing rul	es - colun	nns	
Table 3.4.4 EN 1998 rules for d	etailing and dimensionin	ng of primary colum	ns (secondary one
	DCH	DCM	DCL
Cross-section sides, h_c , $b_c \ge$	0.25m; h _v /10 if θ=Pδ/Vh>0.1 ⁽¹⁾		
"critical region" length ⁽¹⁾ ≥	1.5h _c , 1.5b _c , 0.6m, I _d /5	h _c , b _c , 0.45m, I _o /6	h _c , b _c
	Longitudinal bars (L):	
Pmin	1%		0.1Nd/Acfyd, 0.2%(
ρ _{max}	4%		4% ⁽⁰⁾
d _{bL} ≥		8mm	
bars per side ≥	3		2
Spacing between restrained bars	≤150mm	≤200mm	-
Distance of unrestrained bar from nearest restrained nearest restrained bar		≤150mm	

	co corur		in uj
	Transverse bars (v	v):	
Outside critical regions:			
d _{bw} ≥		6mm, d _{bL} /4	
spacing s _w ≤	20d _{bL} , h _c , b _c ,	, <mark>400mm</mark>	12d _{bL} , 0.6h _c , 0.6b _c , 240mm
at lap splices, if d _{bL} >14mm: s _w ≤	12d _{bL}	, 0.6h _c , 0.6b _c , 240mn	n
Within critical regions: ⁽²⁾			
d _{bw} ≥ ⁽³⁾	6mm, 0.4(fyd/fywd) ^{1/2} dbL	6mm	, d _{bL} /4
S _w ≤ ^{(3).(4)}	6d _{bL} , b _o /3, 125mm	8d _{bL} , b _o /2, 175mm	-
⊛ _{wd} ≥ ⁽⁵⁾	0.08		-
$\alpha \omega_{wd} \ge (4).(5).(6).(7)$	30μ _φ ν _d ε _{sy.d} b _o /b _o -0.035		-
In critical region at column base:			
ω _{wd} ≥	0.12	0.08	-
α	30μ _φ v _d ε _{sy,d} b _d	′b₀-0.035	-

Truly biaxial, or ur ≤ 0.55 Shear design:	miaxial with ($M_z/0.7$, N_z) ≤ 0.65	, (M _y /0.7, N) -
≤ 0.55 Shear design:	<mark>≤ 0.65</mark>	-
Shear design:		
$1.3 \frac{\sum M_{Rc}^{ords}}{l_{cl}}^{(11)}$	$1.1 \frac{\sum M_{Rc}^{ends}}{l_{cl}} $ ⁽¹¹⁾	from analysis for design seismic action plus gravity
s in EC2: V _{Rd,max} =0.3(1-f _{ck} (MPa)/250)bwozfc	sin2ô, 1≤cotô≤2.5
As in EC2: V _{Rd,s} =b _w z	ρ _w f _{ywd} cotδ+N _{Ed} (h-x)/l _d	¹³⁾ , 1≤cotδ≤2 .5
5	I.5 <u>I.5</u> in EC2: V _{Rd,max} =0.3(As in EC2: V _{Rd,s} =b _w z	$\frac{1.5 - \frac{1}{l_{cl}}}{l_{cl}} = \frac{1.1 - \frac{1}{l_{cl}}}{l_{cl}}$ s in EC2: V _{Rd,max} =0.3(1-f _{ck} (MPa)/250)b _{wc} zf _{cd} As in EC2: V _{Rd,s} =b _w zρ _w f _{ywd} cotô+N _{Ed} (h-x)/l _{cl}

75

- Buildings with irregular shape, change in mass from floor to floor, variable stiffness with height, and unusual setbacks, although aesthetically appealing unfortunately do not perform well in during EQs. UBC requires all irregular buildings with few exceptions use dynamic analysis.
- If a static analysis shows that the storey drifts are substantially linear, then the building can be categorized as vertically regular. Thus it is the drift that determines vertical irregularity, not the plan view.

Addis Ababa University, AAiT. SCEE

International Building Code, IBC 2006		
• Fundamental period estimation		
$T_1 = C_t h_n^{\star}$		
Where C _t and x are defined as:		
Structure type	C_t	X
Steel moment resisting frames	0.075	0.8
Concrete moment resisting frames	0.05	0.9
Eccentrically braced frames	0.075	0.75
All other structural systems	0.05	0.75

