CHAPTER 4

ANALYSIS AND DESIGN
OF TWO-WAY SLABS
WITH EMPHASIS ON
EQUIVALENT FRAME
METHOD



4.0 INTRODUCTION

la) Flat plate.

i) Waffle slab,
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4.0 INTRODUCTION

® Two-way slabs transmit loads in two
directions (compare with one-way slabs)

® They are efficient, economical, and widely
used structural system

@ In practice two-way slabs take various forms

® For relatively light loads (appt bldgs), flat
plates are used.

@ For longer spans, waffle slabs (or two way
joist system) are used (formed with
fiberglass or metal “dome” forms)




4.0 INTRODUCTION

® For heavy industrial

loads, the flat slab

system shown in Figure (c) may be used

® Shear transfer to the column is accomplished
by thickening the slab near the column with
drop panels or flaring the top of the column
top to form a column capital

® Slab systems may incorporate beams
between some or all of the columns. The
resulting structure is referred to as two-way

slabs with beams.




4.1 ELASTIC ANALYSIS OF

TWO-WAY SLA

@ Elastic Analysis of S

B85

abs

® Slabs are 2D structures

® The concepts involved in the elastic analysis
is discussed in chapter 2 — Action is
proportional to action effect (F=k z)

® The same principle holds for linear elastic
analysis of slabs, bearing in mind that the
analysis is much more complicated than for

linear elements




4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

@ Slabs may be subdivided into:

Thick slabs — thickness greater than about
1/10% of the span (500 mm for a 5000 mm span)

Thick slab transmit a portion of the loads as a
flat arch and have significant in-plane-
compressive forces, with the result that the
internal resisting compressive force C is larger
than the internal tensile force T.

Thin slabs transmit a portion of the loads by

acting as a tension membrane; hence T is larger
than C

A medium thick slab does not exhibit either arch
action or membrane action and thus T=C




4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

@ Figure (next slide) shows an element cut
from a medium thick, two-way slab.

® This element is acted on by the moments
shown in Figure (a) and by shears and loads
shown in Figure (b) (Figures are separated
for clarity)

® Two types of moments m, and m, about axes
parallel to the edges, and twisting moments
m,, and m,, about axes 1 to the edges.




4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

Fig. 14-1
Moments and forces in a
medium-thick plate.




4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

®NB: m,, m,, m,,, and m,, are moments and
twisting moments per meter width

®V,, and V, are forces per meter width
® om, is change in m, over a distance of dx —»

om, = (amx jdx
OX

® Similarly 6V, is change in V, over a distance

of dy —» oV
5Vy — [Eyjdy
® and so on
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4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

® Summing vertical forces—

oV oV
—wdxdy +V, dx — {Vy + (Ey]dy}dx +V, dy — {VX + (a—xjdx}dy =0
X

oV oV
— —wdxdy —| — |dydx —| —= |dxdy =0
y(@yjy (6Xj y

N (%){ﬂj Cw o (4.1)




4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

® Summing moments about lines parallel to the
x and y axes and neglecting higher order
terms gives:

om om.. )
(—yj-l-( Y 1=V and

oy ) L ox ) 7 ... (4.2)
Com )
(amxj+ om,, v
ox ) \ oy

® It can be shown that m,, =m,, (theory of
elasticity)
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4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

@ Differentiating (4.2) and substituting in (4.1)
gives the basic equilibrium equation for
medium thick slabs:

2 (6°m o°m
8rr;x +2 Y+ = |=-w ...(4.3)
OX | OXOy oy
@ This is purely an equation of statics and

applies regardless of the behavior of the
plate material. (discuss interpretation)
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4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

® For an elastic plate, the deflection, z, can be
related to the applied load by means of:

i"z + 2 842 + i"z —_ﬂ
PN X2y oy’ T p  eeee(4:4)

or vig=_ W
D

oo Bt
@ where the plate rigidity is : D_12(1—02) ..(4.5)

® and vis Poisson's ratio

14



4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

® D is comparable to the EIl value of a unit
width of the slab
d* Z_ W

® Recall that for linear elements » —— —

dx* EI

@ Solution of the 4t order PDE for a UDL as
solved by Navier’s method is:

PR

m? n? I—x I—y
|_2+|_2
y

Ly

L,
where a, = 4 stm X sin ”ydydx
L.L 00 X y

Xy
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4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

® So in an elastic plate analysis, Eqn. (4.4) is
solved to determine the deflection, z, and
the moments are calculated from:

Y 2
m, =-D ﬂﬂ)(ﬂj

" ES oy’
= e
m, =D %H{%j . (4.6)
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4.1 ELASTIC ANALYSIS OF
TWO-WAY SLABS

® Discussion about closed form solution of the
governing PDE of elastic plates

® Discussion about non-linear material

@ Distribution of moments in slabs (qualitative
discussion)
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4.2 DISTRIBUTION OF MOMENTS IN
SLABS SUPPORTED ON STIFIF BEAMS
AND WALLS

(b] Distribution of moments at edge and middie

Fig. 13-11
Types of moment diagrams:
four-edged fixed slab. {c} Moments in strip ABC.
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4.2 DISTRIBUTION OF MOMENTS IN
SLABS SUPPORTED ON STIFIF BEAMS
AND WALLS

® The distri
presentec

® The distri

butions of moments will be
in one of two graphical treatments

bution of the negative moments,

m,, or of the positive moments, mg, along
lines across the slab will be depicted as
shown in Figure (b)

® These distributions may be shown as
continuous curves, as shown by the solid
lines and shaded areas, or as a series of
steps, as shown by the dashed line.
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4.2 DISTRIBUTION OF MOMENTS IN
SLABS SUPPORTED ON STIFIF BEAMS
AND WALLS

® The height of the curve at any point
indicates the magnitude of the moment at
that point

® Discussion why the moments m, and mg
decrease towards the support

® Occasionally, the distribution of BMs in a
strip A-B-C across the slab will be plotted as
shown in Figure (c)

® The moments will be expressed in terms of
CwL,2, where L, is the short dimension of the
panel. The unit is kNm/m
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4.3 ANALYSIS OF BEAM/WALL
SUPPORTED TWO WAY SLABS
ACCORDING TO EBCS-2 m, = o W

X

Table A-1 Bending Moment Coefficients for Rectangular Panels Supported on Four Idu
with Provision for Torslon at Corners

Long span

Values of L/L, coefficients,

Support Condition Coeff. T _ o, and a,
10 [ 1.1 ] 12 | 13| 1.4 | 1.5 |1.75] 2.0 | Foret

. ' - values of

L/L,

;' . O 0.032 | 0.037 | 0.042 | 0.046 0.050 | 0.053 | 0.059 | 0.063 0.032

4 1 ay | 0.024 | 0.028 | 0.032 | 0.035 | 0.037 | 0.040 | 0.044 | 0.048 0.024

2

PIIFIFIIIF)

Y @, | 0.039 | 0.044 | 0.048 | 0.052 | 0.055 | 0.058 | 0.063 | 0.067 |  0.03
1 2 oy | 0.029 | 0.033 | 0.036 | 0.039 | 0.041 | 0.043 | 0.047 | 0.050 0.029
V7777777777
B @ [ 0.039 | 0.049 | 0.056 | 0.062 | 0.068 [ 0.07 | 0.082 | 0.089 |  0.0%9
1 3 ¥ o | 0030 f 0036 | 0.042 | 0.047 | 0.051 | 0.055 [ 0.062 | 0.067|  o0.030
/ |
[uunnnssy @ | 0047 | 0.056 | 0.063 | 0.069 | 0.074 | 0.078 | 0.087 | 0.093 0.047
4 ay | 0036 | 0.042 | 0.047 | 0.051 | 0.055 | 0.089 | 0.065 | 0.070 |  0.036
S— a, | 0.046 | 0.050 | 0.054 | 0.057 | 0.060 | 0.062 | 0.067 | 0.070 .
5 @y | 0.034 | 0.038 | 0.040 | 0.043 | 0.045 | 0.047 | 0.050 | 0.053 | 0.0

COLPEFT 7Y

1 . ¥ S [ - f -t -1 -1-1-1-1"- 0.045 21




4.4 HISTORY OF TWO-WAY SLABS

One of the most interesting chapters in the development of reinforced concrete structures
concerns the two-way slab. Because the mechanics of slab action were not understood
when the first slabs were built, a number of patented systems developed alongside a num-
ber of semi-empirical design methods. The early American papers on slabs attracted copi-
ous and very colorful discussion, each patent holder attempting to prove that his theories
were right and that all others were wrong.

[t 1s not clear who built the first flat slabs. In their excellent review of the his-
tory of slabs, Sozen and Siess claim that the first American true flat slab was built by
C. A. P. Turner in 1906 in Minneapolis [13-1]. In the same year, Maillart built a flat slab in
Switzerland. Turner’s slabs were known as mushroom slabs because the columns flared
out to join the slab, which had steel running in bands in four directions (i.e., the two orthog-
onal directions and the diagonals). These bands draped down from the top of the slab over
the columns to the bottom of the slab at midspan. Some of the slab bars were bent down
into the columns, and other bars were bent into a circle and placed around the columns

(Fig. 13-3).
3 2



4.4 HISTORY OF TWO-WAY SLABS

The early slab buildings were built at the risk of the designer. who frequently had to
put up a bond for several years and often had to load-test the slabs before the owners would
accept them. Turner based his designs on analyses carried out by H. T. Eddy, which were
based on an incomplete plate-analysis theory. During this period, the use of the crossing-
beam analogy in design led to a mistaken feeling that only part of the load had to be carried
in each direction, so that statics somehow did not ap_ply to slab construction.
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4.4 HISTORY OF TWO-WAY SLABS

In 1914, J. R. Nichols [13-2] used statics to compute the total moment in a slab panel.
This analysis forms the basis of slab design in the current ACI Code and is presented later
in this chapter. The first sentence of his paper stated “Although statics will not suffice to
determine the stresses in a flat slab floor of reinforced concrete, it does impose certain
lower limits on these stresses.” Eddy [13-3] attacked this concept. saying “The fundamental
erroneous assumption of this paper appears in the first sentence .. .” " Turner [13-3] thought
the paper “to involve the most unique combination of multifarious absurdities imaginable
from either a logical, practical or theoretical standpoint.” A. W. Buel [13-3] stated that
he was *“unable to find a single fact in the paper nor even an explanation of facts.” Rather. he
felt that it was “contradicted by facts.” Nichols™ analysis suggested that the then current slab
designs underestimated the moments by 30 to 30 percent. The emotions expressed by the
reviewers appear to be proportional to the amount of under-design in their favorite slab
design system.

Although Nichols™ analysis is correct and generally was accepted as being correct by
the mid-1920s, it was not until 1971 that the ACI Code fully recognized it and required flat
slabs to be designed for 100 percent of the moments predicted from statics.




4.5 BEHAVIOR OF SLABS LOADED
1O FAILURE IN FLEXURE

@ Four or more stages:

1.

i.

Before cracking the slab acts as an elastic
plate, and for short time loads, the
deformations, stresses and strains can be
predicted from an elastic analysis.

After cracking and before yielding of the
reinforcement, the slab no longer has a
constant stiffness, because the cracked
regions have a lower flexural stiffness El
than the uncracked regions and the slab is
no longer isotropic because the crack
pattern may differ in the two directions.
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4.5 BEHAVIOR OF SLABS LOADED
1O FAILURE IN FLEXURE

Although these conditions violate the
assumptions in elastic theory, tests indicate that
the elastic theory still predicts the moments
adequately. Generally normal building slabs are

iil.

partially

cracked under service loads.

yielding of reinforcement eventually starts
in one or more region of high moment and
spreads through the slab as the moments

are red
areas t

istributed from yielded regions to
hat are still elastic. The progression

of yielding through a slab fixed on four
edges is illustrated in Figure (next slide)
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4.5 BEHAVIOR OF SLABS LOADED
1O FAILURE IN FLEXURE
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Centarline deflection
(a) Load-deflection diagram. by Initial yielding—Stage A.
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{c) Onset of positive moment d} Yield line mechanism—Stage C.

yielding—Stage B.
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4.5 BEHAVIOR OF SLABS LOADED
1O FAILURE IN FLEXURE

With further load, the regions of yielding known
as yield lines, divide the slab into a series of
trapezoidal and triangular elastic plates as shown
in Figure (d) above. The loads corresponding to
this stage of loading can be estimated by using
yield-line analysis (plastic method analysis)

iv. Although the yield lines divide the slab to
form a mechanism, the hinges jam with
increased deformation, and the slab forms
a very flat compression arch as shown in
Figure (next slide)(avail stiff support). This

stage of loading usually is not considered in
design
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4.5 BEHAVIOR OF SLABS LOADED
1O FAILURE IN FLEXURE

Arch thrust line
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4.5 ANALYSIS OF MOMENTS IN
TWO-WAY SLABS

@ Figure (next slide) shows a floor made of
simply supported planks supported by simply
supported beams. The floor carries a load of
q kN/m?2.

® The moment per meter width in the planks
at section A-Ais: m =ql,2/8 KNm/m

® The total moment in the entire width of the
floor is: M,_, = (ql,)I,%/8 kKNm

® This is the familiar equation for the
maximum moment in a simply supported
floor of width |, and span |,.
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4.5 ANALYSIS OF MOMENTS IN
TWO-WAY SLABS




4.5 ANALYSIS OF MOMENTS IN
TWO-WAY SLABS

® The planks apply a uniform load of gl,/2
KN/m on each beam.

® The moment at section B-B in one beam is
thus: My, = (ql,/2)1,%/8 KNm/m

® The total moment in both beams is:
Mg = (ql))1,%/8

@ It is important to note that the full load was
transferred east and west by the planks,
causing a moment equivalent to wl,%/8 in the
planks where w = gl,. Then the full load was

transferred north and south by the beams,
causing a similar moment in the beams.
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4.5 ANALYSIS OF MOMENTS IN
TWO-WAY SLABS

® Exactly the same thing happens in the two way
slab shown in Figure (next slide).

® The total moments required along sections A-A
and B-B are: M, , = (ql,)I,?/8 and Mg ; = (ql,)I,%/8

@ Again, the full load was transferred east and
west and then the full load was transferred

north and south- this time by the slab in both
cases.

@ This, of course always must be true regardless of
whether the structure has one-way slabs and
beams, two-way slabs or some other system
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4.5 ANALYSIS OF MOMENTS IN
TWO-WAY SLABS
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4.5 ANALYSIS OF MOMENTS IN
TWO-WAY SLABS

@ To emphasize load transfer mechanism in two
way slabs using the column supported two-way
slabs in Figure (next slide)

@ If a surface load is applied, it is shared between
imaginary slab strips I, in the short direction and
|, in the longer direction.

@ Note that the portion of the load that is carried
by the long strips |, is delivered to the beams B,,
which in turn carries it in the short direction.
That portion of the load plus that directly
carried in the short direction by the slab strips
|, sum up to 100% of the load applied to the
panel. The same is true in the other direction
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4.5 ANALYSIS OF MOMENTS IN

TWO-WAY SLABS

Efective beam
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4.5 ANALYSIS OF MOMENTS IN
TWO-WAY SLABS

® A similar situation is obtained in the flat
plate floor where broad strips of the slab
centered on the column lines in each
direction serve the same function as the
beams

® Therefore, for column supported
construction (one-way or two-way), 100% of
the applied load must be carried in each
direction, in the case of two-way beam
supported slabs, jointly by the slab and its
supporting beams
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

® The analysis used to derive the moments in
two way slabs was 15t published by Nichol in
1914,

® The derivation using rectangular columns
(instead of the original circular columns by
Nichol) will be shown.

@ Assume : (1) A typical rectangular, interior
panel in a large structure and (2) that all the
panels in the structure are uniformly loaded
with the same load.
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

® The two assumptions ensure that the lines of
maximum moment, and hence the lines on
which the shears and twisting moments are
equal to zero, will be lines of symmetry in
the structure.

@ This allows one to isolate the portion of the
slab shown shaded in Figure (next slide). This
portion is bounded by lines of symmetry
located at the center of panels on three
sides and along column axis on the fourth
side. Shears and twisting moments are zero
on these sections
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

A
B E1
- #/2 -
| TV A
fal2 I//// in
*

-

- /
h
i

(&) Plan of slab element.
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

f1/4
- f2
A qhiiz
o/ gc4calf2 4-‘
—ed fot————

% i L —
\ Face of column

Li A-A 01."2
™ (a0 _ geics Is M, + M, = wl,|,2/8 ?
2 2 If yes— 100% of the
(b) Side view of slab element. loading is carried in
the [, direction.
n/2 fi2 Similarly in the |,
-— - - . .
direction

isl2 ]

{¢) Plan of second slab element.
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

® The reactions to the vertical loads are

transmitted to the slab by shear around the
face of the columns. It is necessary to know,
or assume, the distribution of this shear to

compute the moments in this slab panel

® The maximum shear transfer occurs at the
corners of the column, with lesser amounts

transferred in the middle of the sides of t
column. For this reason we shall assume t

ne
nat

(3) the column reactions are concentrated at

the four corners of each column
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

@ Figure (b) shows a FBD, a side view of the
slab element with the forces and moments
acting on it

® The applied load is (wl,l,/2) at the center of
the shaded panel, minus the load on the area
occupied by the column (wc,c,/2) (..) shown
upward in the FBD is equilibrated by the
upward reaction at the corners of the
columns (wl,1,/2 —wc,c,/2).

® The total statical moment, M, is the sum of

the negative moment, M,, and the positive
moment, M,.
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

® The magnitude of M, may be obtained by
summing moments about axis A-A. —

M. =M, +M, :(Wh'z)'_l_(WClCszl

2 )4 2 )4
) (W|1|2  WCG, j C,
2 2 )2

NB: 15t term from slab load, 2" term from -ve
load on column, 3™ term from reaction at edges
of column. After simplifications —
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4.5.1 NICHOL'S ANALYSIS OF

MOMENTS IN SLABS

0

8

® Note that this is almost ec
full load is carried in the ¢

/
M =(W—'2j 2(1-23

2
wl, |}

ual to —>
esign direction l,

by a strip width equal to the width of the

panel, i.e. |,
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

® The ACI Code has simplified this expression
slightly by replacing the term in the square
bracket with | %, where | is the clear span
between the faces of the columns, given by
2
|, =1,—c, because I’ = If[l—Z Tl + (I:; j
1 1

differs only slightly from the terms in the
square bracket

® The statical moment M, = wi, | ?/8 (ACI) (A)
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4.5.1 NICHOL'S ANALYSIS OF
MOMENTS IN SLABS

@ If the equilibrium of the element shown in
Figure (c) were studied, a similar equation
for M, would result, but one having |, and |,
interchanged and c, and ¢, interchanged

® This indicates once again that the slab in flat
plates and the slabs and supporting beams in
beam supported two-way slabs must be good
for 100% of the loading in both directions.

@ Analysis of moments according to the ACl is a
unified approach that is applicable to both
flat slabs and beam-supported two-way slabs
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4.6 DISTRIBUTION OF MOMENTS IIN
SLABS SUPPORTED BY COLUMNS

@ In a plate the slab is supported directly on
the columns w/o any beams. Here the
stiffest portions of the slab are those running
from column to column along the four sides
of a panel. As a result, the moments are
largest in these parts of the slab.

® (Go to s.5)5)

® Figure (next slide) illustrates the moments in
a typical interior panel of a very large slab in
which all panels are uniformly loaded with
equal loads. The slab is supported on circular
columns with a diameter ¢ = 0.1l
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4.6 DISTRIBUTION OF MOMENTS IIN
SLABS SUPPORTED BY COLUMNS

Ag = Ac

+0.034

- 0.041

\p/ ’

(c) Curvatures and average moments
in middle strip (B-B).
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(a) Moments from elastic analysis.
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1 (b) Curvatures and average moments d) Elastic moments averaged over strips.
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4.6 DISTRIBUTION OF MOMENTS IIN
SLABS SUPPORTED BY COLUMNS

® The largest negative and positive moments
occur in the strips spanning from column to
column in Figures 4.5.1(b) and 4.5.1(c).

® The curvatures and moment diagrams are
shown for strips along lines A-A and B-B.

@ Both strips have -ve moments adjacent to
the columns and +ve moments at mid-span.

@ In Figure 4.5.1(d) the moment diagram from
4.5.1(a) is re-plotted to show the average
moments over the width of the middle and
column strips
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4.6 DISTRIBUTION OF MOMENTS IIN
SLABS SUPPORTED BY COLUMNS

® The total static moment, M,, accounted for
here is (NB: Factorx gl 2 gives moment per meter
width)

® M, = ql,2[(0.122x0.51,) + (0.041x0.5l,) +
(0.053x0.51,) + (0.034x0.51,)] = 0.125ql,I 2

® The distribution of moments given in Figure
(next slide) for a square slab supported on
rigid beams is shown in (a) with the moments
averaged over column-strip and middle-strip
bands in the same way as the flat-plate
moments shown earlier
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4.6 DISTRIBUTION OF MOMENTS IIN
SLABS SUPPORTED BY COLUMNS
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(a) Four edges fixed and supported (b} Four edges supported on flexible beams.
on nondeflecting edges.
Fig 4.5.2
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4.6 DISTRIBUTION OF MOMENTS IIN
SLABS SUPPORTED BY COLUMNS

@ In addition, the sum of the beam moments
and the column-strip slab moments has been
divided by the width of the column strip and
plotted as the total column-strip moment.

® The distribution of moments in Figure
4.5.1(d) of the flat plates closely resembles
the distribution of middle-strip and total
column-strip moments in Figure 4.5.2 (a).

® An intermediate case in which the beam
stiffness, I,, equal the stiffness, I, of a slab
of width, |,, is shown in Figure 4.5.2 (b).
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4.6 DISTRIBUTION OF MOMENTS IIN
SLABS SUPPORTED BY COLUMNS

@ Although the division of moments b/n slab
and beams differs, the distribution of the
total moments is again similar to that shown
in Figures (d) and (a)

® The slab design procedures in the ACI Code
take advantage of this similarity in the
distributions of the total moments by
presenting a unified design procedure for the
whole spectrum of slab and edge-beam
stiffness from slabs supported on isolated
columns to slabs supported on stiff beams in
two directions
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4.7 DESIGN OF SLABS

® Two slab design procedures are allowed by
the ACI (EBCS EN 1992-1-1). These are the
direct design method and the equivalent
frame design method. The two methods
differ primarily in the way in which the slab
moments are computed.

® The calculation of the moments in the direct
design method is based on the statical
moment M,. (M, = wi,[.,2/8 (ACI) (A))

® In this method, the slab is considered panel
by panel, and Eq. (A) is used to compute the
total moment in each panel
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4.7 DESIGN OF SLABS

@ The statical moment is then divided up b/n
positive and negative moments, and these
are divided b/n middle strip and column
strips.

@ In the equivalent frame method, the slab is
divided into a series of two-dimensional
frames, and the positive and negative
moments are computed via an elastic frame
analysis. Once the +ve and -ve moments are
known, they are divided up b/n middle strips
and column strips in exactly the same way as
in the direct design methods.
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4.7.1 BEAM-TO-SLAB STIFFNESS
TJ@Q Ol

@ Slabs are frequently built with beams from
column to column around the perimeter of
the building. These beams act to stiffen the
edge of the slab and help to reduce the
deflections of the exterior panels of the
slabs. (Very heavily loaded slabs and long-
span waffle slabs sometimes have beams
joining all columns in the structure)
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4.7.1 BEAM-TO-SLAB STIFFNESS
TH@Q Ol

® The effects of beam stiffness on deflections
and the distribution of moments are
expressed as a function of oy, defined as the
flexural stiffness, 4El/l, of the beam divided
oy the flexural stiffness of a width of slab
bounded by the centerlines of the adjacent
panels on each side of the beam.

®as = (4El,/1)/ (4E | /1)
® Since the length, |, of the beam and the slab
are equal, this quantity is simplified and

expressed in the Code (ACI) as:
© 0 = (Ecblb)/(Ecsls)
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4.7.1 BEAM-TO-SLAB STIFFNESS
TH@Q Ol

@ If there is no beam, o, = 0. (mostly the case
except at the edges where beams are provided
for stiffening edge panels)

@ The sections considered in computing I, and I
are shown in Figure (next slide). (NB. Span
direction is ;)

@ ACI, Section 14.2.4 defines a beam in monolithic
or fully composite construction as the beam
stem plus a portion of the slab on each side of
the beam extending a distance equal to the
projection of the beam above or below the slab
whichever is greater , but not greater than four
times the slab thickness (next next slide).
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4.7.1 BEAM-TO-SLAB STIFFNESS
TH@Q Ol
7771 -

(a) Section for Ip—Edge beam.

(N N

(b) Section for Is—Edge beam.

B2 iz

{ VY g \
Fig. Beam and slab
SeCtionS for (c) Section for Ip—Interior beam.
calculations of o

\ L LN

Fig. 13-17 i
Beam and slab sections for
calculations of ag. {d) Section for ig—Interior beam,
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4.7.1 BEAM-TO-SLAB STIFFNESS
TH@Q Ol

hy, but not more

than 4h bw + 2hy, but not more
/ than by + 2(4h}
//
by

— ] 3 e

Fig. 13-18 hy
Cross section of beams as

defined in ACI Code
Section 13.2.4.
Governing

projection
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4.7.1 BEAM-TO-SLAB STIFFNESS
TH@Q Ol

@ Example: Calculation of o for an edge beam
® Go to S.66

® A 200 mm-thick slab is provided with an edge
beam that has a total depth of 400 mm and a
width of 300 mm as shown in Figure (next
slide). The slab and beam were cast
monolithically and have the same concrete
strength and the same E.. Compute o.
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4.7.1 BEAM-TO-SLAB STIFFNESS
TH@Q Ol

| =20t 6m -
| ﬁ pn200mm h
A00mm  win MIZZZ7 77777777777 77777777 7T A

_T_ "j i2in. 300mMm |

—

{a) Section through edge of slab.

300mm 200mm

12in. [ 8in.

200mm s.n.J:_ / "/ 1
200mm  gin| A///

(b) Edge beam.

3150mm
126 in. N
Fig: o, calculation i
S LSS Sl A N
Fig. 13-19 ]
Slab for Example 13.1. (c} Section of slab.
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4.7.1 BEAM-TO-SLAB STIFFNESS
TH@Q Ol

® Solution:

® (lf = Ib/IS

® (1) Compute l,: The cross section of the
beam is as shown in Figure (slide above). The
centroid of the beam is located 175 mm from
the top of the slab. — moment of inertia of
the beam is: I, = (300x4003/12)

+(300x400)x25%+ (200x2003)/12) +

(200x200)x75% = 2.0333x10° mm*

® (2) Compute I: 1. = 3150x2003/12 = 2.1x10°
mm?*

® (3) compute o, = 2.0333x10°/2.1x10° = 0.968
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4.7.2 MINIMUM TIHICKNESSES OFF
TWO-WAY SLABS

@ ACI code defines minimum thicknesses that
are generally sufficient to limit slab
deflections to acceptable values (same as in
EBCS-2). Thinner slabs can be used if it can
be shown that the computed slab deflections
will not be excessive.

® Slabs without beams between interior
columns....... (SI Version)

® Slabs with beams between the interior
supports........ (S| Version)
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4.8 DIRECT DESIGN METHOD

The direct-design method also could have been called “the direct-analysis method,”
because this method essentially prescribes values for moments in various parts of the slab
panel without the need for a structural analysis. The reader should be aware that this design
method was ntroduced 1n an era when most engineering calculations were made with a
slide rule and computer software was not available to do the repetitive calculations re-
quired to analyze a continuous-floor slab system. Thus, for continuous slab panels with
relatively uniform lengths and subjected to distributed loading, a series of moment coeffi-
cients were developed that would lead to safe flexural designs of two-way floor systems,
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4.8.1 LIMITATIONS ON THE USE OF
THE DIRECT DESIGN METHOD

® Limitations on the use of the DDM

1) there must be a minimum of 3 continuous
spans in each direction. Thus a nine-panel
structure (3 by 3) is the smallest that can
be divided.

2) rectangular panels must have a long-
span/short-span ratio not greater than 2.
one-way action predominates as the span
ratio reaches and exceeds 2

3) successive span lengths in each direction
shall not differ by more than one-third of
the longer span
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4.8.1 LIMITATIONS ON THE USE OF
THE DIRECT DESIGN METHOD

4)

columns may be offset from the basic
rectangular grid of the building by up to 0.1
times the span parallel to the offset

all loads must be due to gravity only. The
direct design method can not be used for
unbraced laterally loaded frames, foundation
mats, or prestressed slabs.

the service live load shall not exceed two
times the service dead load.

for a panel with beams b/n supports on all
sides, the relative stiffness of the beams in the
two | directions given by (agl;%)/ (apls?) shall
not be less than 0.2 or greater than § (a is the
beam-to-slab stiffness ratio defined earlier

68




4.8.2 DISTRIBUTION OF MOMENTS
WITHIN PANELS-SLABS W/O BEAMS
B/N ALL SUPPORTS

@ For design, the slab is considered to be a
series of frames in the two directions, as
shown in Figure (next slide). These frames
extend to the middle of the panels on each
side of the column

@ In each span of each of the frames, it is
necessary to compute the total statical
moment M_: M, = q,,L,2/8; where q, =
factored load; |, = transverse width of the
strip; L, = clear span between columns
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4.8.2 DISTRIBUTION OF MOMENTS
WITHIN PANELS-SLABS W/O BEAMS
B/N ALL SUPPORTS

Column
strip

Spandrel beam
A~ in edge frame

Fig: Division of
slab into frames
for design
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4.8.2 DISTRIBUTION OF MOMENTS
WITHIN PANELS-SLABS W/O BEAMS
B/N ALL SUPPORTS

® Example: Compute the statical moment, M_,
in the slab panels in Figure (next 2 slides).
The slab is 200 mm thick and supports a live
load of 4.53 kN/m?

® Sol: (1) Compute the design load: q4 =
1.3x0.2x25 + 1.6x4.54 = 14.76 kN/m?

® (2) Consider panel A spanning from column 1
to column 2. Slab panel A is shown shaded in
Figure (next slide). The moments computed
here would be used to design the
reinforcement parallel to lines 1-2 in this panel
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4.8.2 DISTRIBUTION OF MOMENTS
WITHIN PANELS-SLABS W/O BEAMS
B/N ALL SUPPORTS

e : e
(N :-. ..:-"

/ PPPPP A ?15n00 mm

7 Tk

600 mm %l |~ | 500 mm
24 in. L 20 in.

S _ o r ./- & —1

- '20.'2’
//l/yx/y/ 6000 mm
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4.8.2 DISTRIBUTION OF MOMENTS
WITHIN PANELS-SLABS W/O BEAMS
B/N ALL SUPPORTS

® Now M, = (q4l,)L.2/8; where | = clear span of
slab panel = 6.5-1/2(0.5)-1/2(0.6) = 5.95m ;
l, = width of panel = 6.5/2 + 6.0/2 = 6.25m
— M, = (14.76x6.25x5.95%)/8 = 381 kNm

@ Consider panel B, spanning from column 1 to
column 4 (next slide). The moments
computed here would be used to design the
reinforcement parallel to lines 1-4 in this
panel. For the purpose of computing |, the
circular supports are replaced by equivalent

square columns having a side length ¢, =
0.886d..
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4.8.2 DISTRIBUTION OF MOMENTS
WITHIN PANELS-SLABS W/O BEAMS
B/N ALL SUPPORTS

LoRy

' 18.61 ft
n / Panel B
/
2212 6000 mm
20 ft
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4.8.2 DISTRIBUTION OF MOMENTS
WITHIN PANELS-SLABS W/O BEAMS
B/N ALL SUPPORTS

®— | =6.0-1/2(0.3)-1/2(0.886x0.6) = 5.59m;
L, =5.8/2 + 6.5/2 = 6.15m; M, = (14.76 x 6.15
x 5.592)/8 = 331 kNm

@ Now the total statical moment will be
divided between the negative and positive
sections of the panel
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4.8.3 POSITIVE AND NEGATIVE
MOMENTS IN PANELS

@ In the DDM, the total factored statical
moment M, is divided into +ve and -ve

factored moments according to the rules
given in ACI Code, Section 14.6.30.

® These are illustrated in the Figure (next
slide)

® In interior spans, 65% of M, is assigned to the
negative moment region and 35% to the +ve
moment region

® The exterior end of an exterior span has
considerably less fixity than the end at the
interior support.
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4.8.3 POSITIVE AND NEGATIVE
MOMENTS IN PANELS

0.35 t0 0.63 M, 0.35 M,

[ | )
3
.

00085 My [ v M, \q V Mo M \<d 0.65M,
-——______ --__J____- ’ ¢
0t00.65M, o . o *-T[/:h. o ° —
.65 19 0,73, M 0.65 M
Extetli_or |$|:na1r31 2 Interior span ©
(see Table 13- Interior span
Fig. 13.22 Exterior span P

Assignment of positive- and negative-moment regions.

Assignment of positive- and negative-moment regions
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4.8.3 POSITIVE AND NEGATIVE
MOMENTS IN PANELS

@ The division of M, in an end span into +ve and -
ve moment regions is given in Table 14.2 (next
slide). In this table, “exterior edge
unrestrained” refers to a slab whose edge rests
on, but is not attached to, for example, a
masonry wall. “Exterior edge fully restrained”
refers to a slab whose exterior edge is supported
by, and is continuous with, a concrete wall with
a flexural stiffness as large or larger than that of
the slab. If the computed -ve moments on two
sides of an interior support are different, the -ve
moment section of the slab is designed for the
larger of the two.
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4.8.3 POSITIVE AND NEGATIVE
MOMENTS IN PANELS

TABLE 13-2 Distribution of Total Factored Static Moment, M , in anlExterior Sglanl

(3) (4)
(2) Slab without Beams (5)
(1) Slab with between Interior Supports Exterior Edge
Exterior Edge Beams between Without With Fully
Unrestrained All Supports Edge Beam Edge Beam Restrained
Interior 0.75 0.70 0.70 0.70 0.65
Negative
Factored
Moment
Midspan 0.63 0.57 0.52 0.50 0.35
Positive
Factored
Moment
Exterior 0 0.16 0.26 0.30 0.65
Negative
Factored
Moment

Source: AC| Code Section 13.6.3.3.
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4.8.4 DEFINITION OF COLUMN
STRIPS AND MIDDLE STRIPS

® The moments vary continuously across the
width of the slab panels. To aid in steel
placement, the design moments are
averaged over the width of column strips
over the columns and middle strips between
the column strips — define column and
middle strips

® Column strips in both directions extend one-
fourth of the smaller span, | .., each way
from the column line.

® Middle strips are the strips between the
column strips.
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4.8.4 DEFINITION OF COLUMN

lmax
Pmax
Middle strips Column\
< : ED A Fg &
o ~ <P \ %
l fmin | ! '
min
i
P - ey
3 S 37
fmin/4 fmin/4 fminr“‘__l Tmin/4
Column strips 'l
{a) Short direction of panel,
Column
A A s strip
~q7 A/ L
fmin/d
, Middle
i . strip
fmini4
S
Fig. 13-23
Definitions of columns and
middle strips. {b} Long direction of panel.
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

@ ACI Section 14.6.4 defines the fraction of the
negative and positive moments assigned to
the columns strips. The remaining amount of
negative and positive moment is assigned to
the adjacent half-middle strips. Table (next
slide) gives the percentage distribution of -ve
factored moment to the column strip at all
interior supports

® The division is a function of (a(,/[,),which
depends on the aspect ratio of the panel,
l,/1;, and the relative stiffness, a.,, of the
beams (if any) spanning parallel to and
within the column strip
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

TABLE 13-3 Percentage Distribution of Interior Negative Factored
Moment to Column Strip

(10, 0.5 1.0 2.0

(a'flfg/fl) =0 75 75 75
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

@ For floor systems w/o interior beams,
(aq41;,/1;) is taken equal to zero, since oy, = 0.
In this case 75% of the negative moment is
distributed in the column strip, and the
remaining 25% is divided equally b/n the two
adjacent half middle strips

® For cases where a beam is present in a
column strip (spanning in the direction of L)
and (asl,/1;)= 1.0, the second row in table
14.3 applies.

® For 0<(ay4l,/1;)<1.0 —use linear interpolation
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

® Table 13-4 gives the percentage distribution of
+ve factored moment to the column strip at mid
span for both interior and exterior spans.

@ For floor systems w/o interior beams, 60% of the
+ve moment is assigned to the column strip and
the remaining 40% is divided equally b/n the
adjacent half middle strips.

@ If a beam is present in the column strip
(spanning in the direction of l,), either the
percentages in the 2" row or a linear
interpolation b/n the percentages given in the
15t or 2" row in Table 13-4 will apply
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

TABLE 13-4 Percentage Distribution of Midspan Positive
Factored Moment to Column Strip

(/¢ 0.5 1.0 2.0

({Ifl’ngfl) =0 60 60 60
(apilally) = 1.0 90 75 45
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

@ At an exterior edge, the division of the
exterior-end factored negative moment
distributed to the column and middle strips
spanning 1 to the edge also depends on the
torsional stiffness of the edge beam,
calculated as the shear modulus, G, times

t
d
S

S
t

ne torsional constant of the edge beam, C,
ivided by the flexural stiffness of the slab
panning | to the edge beam (i.e., El for a
lab having a width equal to the length of

ne edge beam from the center of one span

to the center of the other span) designated
by B, (see next slide)
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

___—> Edge beam

\\_/////////////%/////////’_,. /

(d} Section for Ig—Interior beam.

Width of slab for the calculation of relative torsional
stiffness 3, of edge beam
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

® Assuming that v=0 —> G = E/2 so that [, =
(E.,C/2E_|

CS S)

® The term C is the torsional constant of the
edge beam which is calculated by subdividing
the cross section into rectangles and carrying
out the summation: C=X[(1-0.63x/y)x3y/3];
where x = shorter side of a rectangle and y =
longer side (NB: Several possible combination
of rectangles have to be tried to get the
maximum value of C. To do so wide
rectangles should be made as large as
possible. See Slide 90)
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

Fig. 13-24

Division of edge members
for calculation of torsional
constant, C.

7

¥

N\

\&

(b)
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

® Table 13-5 gives percentage distribution of
negative factored moment to column strip at
exterior supports. The set up of this table is
similar to the previous ones (tables 14.3 and
14.4) with the addition of two rows to account
for presence or absence of an edge beam
working in torsion to transfer some of the slab
negative moment into the column.

@ When there is no edge beam (B, = 0), all of the
negative moment is assigned to the column
strips. This is reasonable because there is no
torsional edge member to transfer moment from
the middle strips all the way back to the
columns.
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

TABLE 13-5 Percentage Distribution of Exterior Negative Factored
Moment to Column Strip

05/, 0.5 1.0 2.0
(apibafty) =0 B, =0 100 100 100
B, =25 75 75 75
(ap1la/ty) = 1.0 B, =0 100 100 100
B, =125 90 75 45
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

@ If a stiff beam is present (B, > 2.5), table
gives specific percentages to be assigned to
the column strip, depending on the value of
ag; and the /1 ratio, as was done in the
previous tables.

@ For values of 3, between 2.5 and 0.0 and
values of (apl,/1;) b/n 1.0 and 0.0, two or
three levels of linear interpolation may be
required to determine the percentage
distribution of negative moment assigned to
the column strip.
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4.8.5 DISTRIBUTION OF MOMENTS B/N
MIDDLE STRIPS AND COLUMN STRIPS

@ If a beam is present in the column strip
(spanning in the direction of |,), a portion of
the column-strip moment is assigned to the
beam (ACI Code, Section 14.6.5).

® If the beam has (a4l,/1;) > 1, 85% of the
column-strip moment is assigned to the beam
and 15% to the slab.
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4.8.6 EXAMPLE

® Calculation of moments in an exterior
panel of a flat plate

® The slab is 200 mm thick and supports a
superimposed service dead load of 1.2 kN/m?
and a service live load of 3 kN/mZ. the beam
is 300 mm wide by 400 mm in overall depth
and is cast monolithically with the slab.

® Go to S.159

® (1) Compute the factored loads: Let q4 = 12
kKN/m?
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4.8.6 EXAMPLE

G Columns

MTZ\ 0.35m
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l‘/ overall depth
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Calculation of moments in an end span—Example 13-4.

(b) Distribution of total
negative and positive

moments.
\Qq -160
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4.8.6 EXAMPLE

® (2) Compute the moments in span BE.

® — (a) Compute |, and |, and divide the slab
into middle and column strips. — |, = 6.5-
1/2(0.35)-1/2(0.4) = 6.125m; |, = 5.75m. The
column strip extends the smaller of |,/4 or
l;/4 on each side of the column centerline.
— The column strip extends 6/4 =1.5m
toward AD and 5.5/4 = 1.275 m toward CF
from line BE as shown in Slide 96. — The
total width of the column strip is 2.875 m.
The half middle strip b/n BE and CF has a
width of 1.375 m, and the other one is 1.5 m
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4.8.6 EXAMPLE

® — (b) Compute M_;: M, = q4L,1.2/8 =
12x5.85%6.1252/8 = 324.6 KNm

® — (c) Divide M, into positive and negative
moments. The distribution of the total
factored moment to the negative and the
positive moment regions is as given in Table
13-2 under the column “slabs w/o0 beams b/n
interior supports with edge beam”
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4.8.6 EXAMPLE

® From Table 13-2, the total moment is divided
as follows:

—Interior negative: M= 0.70M, = -226.5 KNm
—Positive: M = 0.50M, = +161.8 KNm
—Exterior negative: M = 0.30M, = -97.1 KNm

® (d) Divide the moments b/n the column and
middle strips

Interior negative moments (Table 13-3): This
division is a function of ayl,/l,, which is equal to
zero, since there are no beams || to BE

— Interior column-strip negative moment: 0.75x -
226.5 = -169.9 kKNm = -59.1 KNm/m width of column
strip
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4.8.6 EXAMPLE

—Interior middle-strip negative moment = -56.6 kNm.
Half of this goes to each of the half middle strips
Positive moments: (Table 13-4) :

—Column-strip positive moment: 0.60x161.8 = 97.1
KNm— 34.8 kNm/m

—Middle-strip positive moment = 64.7 kNm. Half of

this goes to each half-middle strip.
Exterior negative moment: From ACI| Section
14.6.4.2, the exterior negative moment is
divided as a function of ol,/l; (again equal to
zero, since there is no beam || to l,) and B,. See
next slide for attached torsional member for
which B, will be calculated
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4.8.6 EXAMPLE

\_\.-—- 500 mm

300 mm 200 mm
12 8" 20" .
[ [
<200 Tém 4 /////
L 8”
400 mm /
16 ! i /
‘ N
200 mm g~ \
1 \
. 300 mm

Fig. 13-30 o 127
Slab, column, and edge beam "
for Example 13-4. (a) Attached torsional member. (b} Attached torsional member.
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4.8.6 EXAMPLE

For Fig (a): C=[(1-0.63x300/400)3003x400/3+(1-
0.63x200/200)200°x200/3] = 2096.3x10® mm*

For Fig (b): C = 1461.3x10® mm*. The larger of
the values is used; — C = 2096.3x10® mm?*

|, the moment of inertia of the strip of slab being
designhed, which has b=5.75m and h=200mm.

— 1,=5750%2003/12 = 3834.3x10% mm*

Since f, is the same in the slab and beam, E_=E_ and

B.=2096.3x10° /(2x 3834.3x10°) = 0.273
Interpolating in Table 13-5, we have:

For B,=0 — 100% to column strip

For B=2.5 — 75% to column strip

— for 3,=0.273 — 97.3% to column strip and we have:
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4.8.6 EXAMPLE

Exterior column-strip negative moment: 0.973(-97.1)=
-94.5 kNm = -32.9 kNm/m

Exterior middle-strip negative moment: -2.6 KNm
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4.8.7 MOMENTS IN COLUMNS AND
TRANSFER OF MOMENTS TO COLUMNS

® Exterior Columns: When design is carried out by
the DDM, ACI specifies that the moment that is
transferred from a slab w/o interior beams to an
edge column is 0.26 to 0.30 M, as given in Table
13-2.

® This moment is used to compute the shear
stresses due to moment transfer to the edge
column (discussed later)

® The exterior negative moment from the DDM
calculation is divided b/n the columns above and
below the slab in proportion to the column
stiffness, 4El/l. the resulting column moments
are used in the design of the columns
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4.8.7 MOMENTS IN COLUMNS AND
TRANSFER OF MOMENTS TO COLUMNS

@ Interior Columns: At interior supports the
column moments are determined from
unbalanced moment resulting from an
uneven distribution of live load.

® The unbalanced moment is computed by
assuming that the longer span adjacent to
the column is loaded with the factored dead
load and half the factored live load, while

the shorter span carries only the factored
dead load




4.8.7 MOMENTS IN COLUMNS AND
TRANSFER OF MOMENTS TO COLUMNS

® The total unbalanced negative moment at
the joint is thus: M = 0.65(1/8){(w4+0.5w,)¢,¢ 2
- W ¢, (¢ )?}; where w, and w, refer to the
factored dead and live loads on the longer
span and w', ¢,, and ¢ refer to the shorter

span adjacent to the column

@ A portion of the unbalanced moment is
distributed to the slabs and the rest goes to
the columns. —ACI gives M_, = 0.07{(w4+
0.5W)) 66,2 - W't 5(¢ )3




4.8.8 DESIGN OF EDGE BEAMS FOR
SHEAR AND MOMENT

® When a slab panel contains a beam, either
an edge beam or an interior beam b/n the
columns, the moments in the panel are
divided b/n the slab and the beam the same
way the moments are divided b/n the slab
and the beam for interior beams (refer to
literature (Macgregor) as alternative to
designh of two-way beam supported slabs
using the coefficients in EBCS-2).

107



4.9 SHEAR STRENGTIH IN TWO-WAY
SLABS

® A shear failure in a beam results from an
inclined crack caused by flexural and
shearing stresses. This crack starts at the
tensile face of a beam and extends
diagonally to the compression zone.

@ In the case of a two-way slab or footing, the
two shear-failure mechanisms shown in
Figure (next slide) are possible.

® One-way shear or beam-action shear (Fig a)
involves an inclined crack extending across
the entire width of the structure.
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4.9 SHEAR STRENGTIH IN TWO-WAY

SLABS

® Two-way shear or punching shear involves a
truncated cone or pyramid-shaped surface

around the column as

shown in Fig b.

Generally, the punching-shear capacity of a
slab or footing will be considerably less than

the one-way shear ca
@ This section is limitec

Dacity.
to footings and slabs

w/0 beams. Refer to

literature (Macgregor)

for shear strength of slabs with beams.
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4.9 SHEAR STRENGTIH IN TWO-WAY
SLABS

Inclined crack

Pyramid-shaped
failure surface

(a) One-way sheaar. (b} Two-way shear.

Fig. 13-52 (a) One-way shear

Shear failure in a slah.

(b)Two -way shear
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4.9 SHEAR STRENGTIH IN TWO-WAY
SLABS

@ Behavior of slabs failing in two way shear

® As discussed in DDM, the maximum moments in a
uniformly loaded plate occur around the columns
and lead to a circular crack around each column.
After additional loading, the cracks necessary to
form a fan yield-line mechanism develop (see
next slide), and at about the same time, inclined
or shear cracks form on the truncated conical

surface shown in Fig b. These cracks can be shown
in Fig (slide after next), which shows a slab that has
been sawn through along two sides of the column
after the slab had failed in two-way shear
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4.9 SHEAR STRENGTIH IN TWO-WAY
SLABS

MNegative moment
yield lines
(cracks on top of slab)

Positive moment
«—yield lines
(cracks on bottom of slab)

{a} Fan yield line at column in a flat plate.

Fan yield line at a column in a flat plate
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4.9 SHEAR STRENGTIH IN TWO-WAY
SLABS

Inclined cracks in
a slab after shear
failure

Fig. 13-53

Inclined cracks in a slab after
a shear failure. (Photograph
courtesy of J. G. MacGregor.)

113



4.9 SHEAR STRENGTIH IN TWO-WAY
SLABS

® Alexander and Simonds used the truss model

in Fig (see next slide) to analyze punching-
shear failures. Prior to the formation of the
inclined cracks shown in Fig 13-53, the shear
is transferred by shear stresses in the
concrete. Once the cracks have formed, only
relatively small shear stresses can be
transferred across them. Now the majority of
the vertical shear is transferred by inclined
struts A-B and C-D extending from the
compression zone at the bottom of the slab
to the reinforcement at the top of the slab.
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4.9 SHEAR STRENGTIH IN TWO-WAY
SLABS

Fig. 13-54
Truss model for shear trans-
fer at an interior column.
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4.9 SHEAR STRENGTIH IN TWO-WAY
SLABS

® Similar struts exist on all four sides of the
column. The horizontal component of the
force in the struts causes a change in the
force in the reinforcement at A and D, and
the vertical pushes up on the bar and is
resisted by the tensile stresses in the
concrete b/n the bars. Eventually, this
concrete cracks in the plane of the bars, and
a punching failure results.

@ Such a failure occurs suddenly, with little, if
any, warning.
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4.9 DESIGN OF TWO-WAY SHEAR

® We wi
w/0 a
when

|l consider the case of shear transfer
ppreciable moment transfer. The case
both shear and moment are transferred

from the slab to the column is discussed in
subsequent sections.

® Locati

on of critical perimeters

Two-way shear is assumed critical on a vertical
section through the slab or footing extending
around the column. According to the ACl at d/2

1.5d

according to EBCS-2. See Figs (next slides)

117




4.9 DESIGN OF TWO-WAY SHEAR

d/2 (1.5d)
{__* _ —|l di2~ / — N\
M- 7O
I _F_L_d-r::m mn \ }

M —
W .
) Critical shear
N perimeter

Fig. Location of critical
shear perimeter

Fig. 13-55
Location of crtical shear

perimeters.

Critical shear
perimeter
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4.9 DESIGN OF TWO-WAY SHEAR

Critical sections for slabs with drop panels

When high shear forces are being transferred at a
slab-column connection, the slab shear strength
can be increased locally by using a drop panel to
locally increase the thickness of the slab. ACI
requires that the total thickness of the slab and
drop panel to be at least 1.25 times the thickness
of the slab adjacent to the drop panel.

In slab with drop panels, two critical sections
should be considered, as shown in Figure (next
slide)
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4.9 DESIGN OF TWO-WAY SHEAR

(a) Section through a drop panel

(@) Section through drap panel,

S —— z/_ Edge of drop

panel

|
| ___(_1-1/2 /lrEdg of drop panel
| J e /].OHIE l
Fig. Critical sections in a slab | | ] e
with drop panels : | = | I d,/2
' |
Fig. 13-56 | |
Critical sections in a slab - - .
with drop panels. {b) Gritical sections,

(b) Critical sections
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4.9 DESIGN OF TWO-WAY SHEAR

If a drop panel is also used to control deflections
or reduce the amount of flexural reinforcement
required in the slab, the drop panel must satisfy
the length requirements given in AC| Code,
Section 14.2.5.

Critical sections near holes and at edges

When openings are located at less than 10 times
the slab thickness from a column, ACI Code
Section 11.11.6 requires that the critical
perimeter be reduced as shown in Figure (next
slide)
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4.9 DESIGN OF TWO-WAY SHEAR

meffectlve'naffe cive %ms
- .
m;&] Q] [ Regard as
. L_Tm‘w L___\@\ ——_1 free edge
(a) openings L
Edge of slab
a Edgcors.'ab?
e
} -l dalr--.'
(b) Critical perimet ér"f'A and B do hiof —
exceed the greater of,4h.0

da rot Excendhe greater of 4h or 25

«eas; £AgE Of slab

A A

Fig. Effects of
openings and edges on -
the critical shear N J 7
perimeter I —

| |

Hamansuicss (C) Critical perimeter if A exceeds the

on the critical shear perimeter. {€) Criical perimeters If A &xceeds ihe grealer of 4k or 2y, but H‘d&es not.

greater of 4h or 2¢, but B does not
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4.9 DESIGN OF TWO-WAY SHEAR

Tributary areas for shear in two-way slabs

For uniformly loaded two-way slabs, the
tributary areas used to calculate V, are bounded
by lines of zero shear. For interior panels, these
lines can be assumed to pass through the center
of the panel. For edge panels, lines of zero shear
are approximately at 0.42l to 0.451 from the
center of the exterior column, where l is the
span measured from center-to-center of the cols.
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4.9 DESIGN OF TWO-WAY SHEAR

However to be conservative in design, ACl Code
Section 8.4.3 requires that the exterior supports
must resist a shear force due to loads acting on
half of the span (0.51). Also to account for the
larger tributary area for the 15t interior support,
ACl Code, Section 8.4.3 requires that the shear
force from loads acting on half the span must be
increased by 15%. See Figure (next slide)
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4.9 DESIGN OF TWO-WAY SHEAR

Tributary area for

two-way shear- col 2 Critical section
1 2 —> for one way
T | [e—ai2 4
j;;/ fi_J | « shear- col 4
FaE H e Critical sastion for
T k I\_ \ d ESHL_%I:? shear-
O 55 Ti{:utarﬁra@u:ary arca} Wﬁf [ 4
° 0.5¢ for two-way 7| 1w0-ﬁway shear-column 2
shear-co lumin 1 . [
1 TINNSNNL LA
Tricutary area for
O‘ 5(X1 . 1 5)5 0.5 (%1.15) € I/twu—war: smi‘ar-cnlumn 3
| ' ibuitary area for

{way shear-col 3

£ i -
\Trmm\a:__m >_) [rifutary ?]rea for
one-way shear-column ' - -
L\\_ d TN oneg-way shear-col 5
’] CrlTi{;BR 55 E
Fig. 13-38

Critical sections and tributary SECT Fn] tlca l. SeCtlon

areas for shear in a flat plate.

Fig. Critical sections and tributary areas
for shear in a flat plate
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4.9 DESIGN OF TWO-WAY SHEAR

Design Equations: Two-way shear with
negligible moment transfer

Lateral loads and unbalanced floor loads, on a
flat-plate building require that both moments
and shears be transferred from the slab to the
columns. In the case of interior columns in a
braced flat-plate building, the worst loading case
for shear generally corresponds to a negligible
moment transfer from the slab to the column.
Similarly, columns generally transfer little or no
moment to footings

Design for two-way shear w/o moment transfer is
carried out by using EBCS-2 Eq (...)
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® 6.4 Punching
® 6.4.1 General

@ (1)P The rules in this section complement those
given in 6.2 (Shear) and cover punching shear in
solid slabs, waffle slabs with solid areas over
columns, and foundations.

@ (2)P Punching shear can result from a
concentrated load or reaction acting on a
relatively small area, called the loaded area A4
of a slab or foundation.

® (3) An appropriate verification model for
checking punching failure at the ULS is shown in
Figure (next slide)
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

2 s
a) Section - o

O=arctan(1/2)= | €

)

26.6°
- basic control
section
- basic control
area Aont

- basic control

perimeter, u,
IE| - loaded area

Ajoad
rem - further control

perimeter

Fig: Verification model for punching shear at the ultimate limit state
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ (4) The shear resistance should be checked
along defined control perimeters

® (5) The rules in 6.4 are principally
formulated for the case of uniformly
distributed loading. In special case, such as
footings, the load within the control
perimeter adds to the resistance of the
structural system, and may be subtracted
when determining the design punching shear
stress
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4.9 DESIGN OF TWO-WAY SHEAR

ACCORDING 1O EC2

® 6.4.2 Load distribution and basic control

perimeter

® (1) The basic control perimeter u; may
normally be taken to be at a distance 2.0d
from the loaded area and should be
constructed so as to minimize its length (see
Figure next slide). The effective depth of the

slab is assumed constant
be taken as: deg = (d, + C
d, are the effective dept

and may normally
,)/2; where d, and
ns of the

reinforcement in two ort

nogonal directions
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

Fig: Typical basic control perimeters around loaded areas

Figure 6.13
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ (2) Control perimeters at a distance less than 2d
should be considered where the concentrated
force is opposed by a high distributed pressure
(e.g. soil pressure in a base), or by the effects of
a load or reaction within a distance 2d of the
periphery of area of application of the force

@ (3) For loaded areas situated near openings, if
the shortest distance b/n the perimeter of the
loaded area and the edge of the opening does
not exceed 6d, that part of the control
perimeter contained b/n two tangents drawn to
the outline of the opening from the center of the
loaded area is considered to be ineffective (SNS)
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

2d < 6d L b

6> 6

| 5 fﬂ‘f
""‘m « I Viee)
; LR —

Fig: Control perimeter near an opening
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ (4) For a loaded area situated near an edge
or a corner, the control perimeter should be
taken as shown in Figure (SNS), if this gives a
perimeter (excluding the unsupported edges)
smaller than that obtained from (1) and (2)

above.
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

RNEL 0 Jad ~u,

1 1 |
', U 1 42
___-—#r ____...’! P
A

Fig: Control perimeters for loaded areas close to or at edge or corner

Figure 6.15
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ (5) For loaded areas situated near or on an
edge or corner, i.e. at a distance smaller
than d, special edge reinforcement should
always be provided, see 9.4.1.4

@ (6) The control section is that which follows
the control perimeter and extends over the
effective depth d. For slabs of constant
depth, the control section is 1 to the middle
plane of the slab. For slabs or footings of
variable depth, the effective depth may be
assumed to be the depth at the perimeter of
the loaded area

136



4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® (7) Further perimeters, u;, inside and outside
the control area should have the same shape
as the basic control perimeter.

@ (8) For slabs with circular column heads for
which ¢, < 2h, (see Fig next slide) a check of
the punching shear stresses according to
6.4.3 is only required on the control section
outside the column head. The distance of
this section from the centroid of the column
r.ont May be taken as: r_, = 2d + ¢, + 0.5¢;
where ¢, is the distance from the column
face to the edge of the column head and c is
the diameter of a circular column

137



4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

Ie i " e ] !
hy 3 C e i A0 3 hy
] ii L:‘\l i
0 =arctan (1/2) ¢h =2.0 hy H B
= 26.6° R \
STl 44 <2.0 hy
A | - basic control
section
B | - Loaded area
Ajcad

Fig: Slab with enlarged column head where ¢, < 2.0 hy
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ For a rectangular column with a rectangular
head with ¢, < 2d and overall dimensions ¢,
and ¢, (¢, = ¢; +2441 6 = C; +24;, ¢ < ¢), the
value r_,. may be taken as the lesser of: r
=2d + 0.56/(¢; ¢) and r., = 2d + 0.69 ¢,

@ (9) For slabs with enlarged column heads
where ¢, > 2h,, (see Figure NS) the critical

sections both within the head and in the slab
should be checked.

® (10) The provisions of 6.4.2 and 6.4.3 also
apply for checks within the column head with
d taken as d, according to Figure in NS.

cont
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

0 = 26.6° / R
<>

A | - basic control

sactions for

circular columns

B | - Loaded area
Ajoad

Fig: Slab with enlarged column head where ¢, > 2(d+hy)
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ (11) For circular columns the distances from
the centroid of the column to the control
sections in Figure (SPS) may be taken as:
rcont,ext = ZH + 2d + O°5C; rcont,int = Z(d + hH) +
0.5c

® 6.4.3 Punching shear calculation

@ (1)P The design procedure for punching shear
is based on checks at a series of control
sections, which have a similar shape as the
basic control section. The following design
shear stresses, per unit area along the
control sections, are defined:
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® Vey ¢ 1S the design value of the punching shear
resistance of a slab w/o punching shear
reinforcement along the control section
considered

® Vey.cs 1S the design value of the punching
shear resistance of a slab with punching
shear reinforcement along the control
section considered

® Ve max 1S the design value of the maximum
punching shear resistance along the control
section considered
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® (2) The following checks should be carried
out;

(a) At the column perimeter, or the perimeter of
the loaded area, the maximum punching shear
stress should not be exceeded: — Vg4 < Vpy max

(b) Punching shear reinforcement is not
necessary if: Vgq < Vpq ¢

(c) Where vg4 exceeds the value vgq . for the
control section considered, punching shear

reinforcement should be provided according to
6.4.5
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® (3) where the support reaction is eccentric with
regard to the control perimeter, the maximum
shear stress should be taken as: vg, = B(Vg4/ud);
where d is mean effective depth of slab, taken
as (d, +d,)/2; u; is length of control perimeter
being considered; and f3 is given by: f =1 +
K(Mgg/Veg) (U /Wy) Eq.(6.39); where u, is the
length of the basic control perimeter; k is a
coefficient dependent on the ratios b/n the
column dimensions ¢, and ¢,: its value is a
function of the proportions of the unbalanced
moment transmitted by uneven shear and by
bending and torsion (see Table 6.2)
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® W, corresponds to a distribution of shear as

shown in Figure (SNS) and is a function of the
basic control perimeter u;: W, = |e | de;

where d¢ is the a length increment of the
perimeter; and e is the distance of d¢ from

the axis about which the moment Mg, acts.

@ Table 6.2: Values of k for rectangular
loaded areas

m

0.45 0.70 0.80
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

Fig: Shear distribution due to an unbalanced moment at
a slab-internal column connection
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® For a rectangular column: W, = (c,%/2) + ¢,C,
+ 4c,d + 16d* + 2ndc,; where ¢, is the column
dimension parallel to the eccentricity of the
load; and ¢, is the column dimension L to the
eccentricity of the load.

® For internal columns (3 follows from: =1 +
0.67(e/(D+4d))

® For an internal rectangular column where the
loading is eccentric to both axes, the
following approximate expression for  may
be used: p =1+ 1.8(/(e,/b,)* + (€,/b,)?; where
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® e, and e, are the eccentricities Mg/ Vg4 along
y and z axes respectively; b, and b, is the
dimensions of the control perimeter (see
figure 6.13); D is the diameter of the circular
column. (Note: e, results from a moment about the z
axis and e, from a moment about the y axis)

@ (4) For edge column connections, where the
eccentricity 1L to the slab edge jresulting
from a moment about an axis | | to the slab
edge) is toward the interior and there is no
ecc | |to the edge, the punching force may
be considered to be uniformly distributed
along the control perimeter u,” (See NS).
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

SO,5C1
i ' T 7 )
)
. | 2d 7 - T“‘Fs1,5d
| y | ,S0,5Cz
/ 4 | C1 | A
/ / = — U= 4 2d
/ i :\u1* \’ 4
/ f_- 2d
’/ r %
g s g <1:5d
B e <0,5¢

a) edge column b) corner column

Figure 6.20: Equivalent control perimeter u4-
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ Where there are ecc in both orthogonal
directions, 3 may be determined using the
following expression: § = (u,/u,*) +
k(u;/W,)e,,; where u, is the full control
perimeter (see Fig 6.15); u,* is the reduced
control perimeter (See Fig 6.20 (a)); e, is
the ecc | | to the slab edge resulting from a
moment about an axis L to the slab edge; k
may be determined from Table 6.2 with the
ratio c,/c, replaced by c,/2¢c,; and W, is
calculated for the full perimeter (see fig 6.13
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® For a rectangular column as shown in Figure
6.20(a): W, = (c,%/4) + c,c, + 4c,d + 8d? +
ndc,

@ If the ecc L to the slab edge is not toward
the interior, Expression (6.39) applies. When
calculating W, the ecc e should be measured
from the centroid of the control perimeter.

® (5) For corner column connections, where
the ecc is toward the interior of the slab, it
is assumed that the punching force is
uniformly distributed along the reduced
control perimeter u1*, as defined in Fig 6.20b
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ The B-value may then be considered as: B =
u,/u,*. If the ecc is toward the exterior,
Expression (6.39) applies

@ (6) For structures where the lateral stability
does not depend on frame action b/n the
slabs and the columns, and where the
adjacent spans do not differ in length by
more than 25%, approximate values for 3
may be used ( = 1.15 for internal columns; 3
= 1.4 for edge columns).
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® (7) Where a concentrated load is applied
close to a flat slab column support, the
resistance enhancement according to
6.2.2(5) is not valid and should not be
included.

® (8)The punching shear force Vg, in a
foundation slab may be reduced due to the
favorable action of the soil pressure.

® (9) The vertical component V, resulting from
inclined prestressing tendons crossing the
control section may be taken into account as
a favorable action where relevant.
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® 6.4.4 Punching shear resistance for slabs or
column bases w/o shear reinforcement

@ (1) The punching shear resistance of a slab
should be assessed for the basic control section
according to 6.4.2. The design punching stress
(res1stance) is given by: vpy . = Crq K(100pf)"°
+0.100,, = (Vpin + 0.100,); where fcklsnMPa K
=1+ f(ZOO/d) <2.0dinmm; p, = f(pNx p,) <
0.02; p,, p,, relate to the bonded tension steel in
the y- and Z- directions respectively. The values
Py» P) Should be calculated as mean values
taking into account a slab width equal to the
column width plus 3d each side.

154



4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® 6= (O * O,)/2; Where 6, o, are the
normal concrete stresses in the critical
section in y- and z-directions (MPa, positive
if compression): 6.,= Ng4 /A, and o=
Neg ./ A, Where Ney o, Ney ./ are the
longitudinal forces across the full bay for
internal columns and the longitudinal forces
across the control section for edge columns.
The force may be from a load or prestressing
action; A_ is the area of concrete according
to the definition of N 4(Note: the values of

Crac and v, for use in a Country may...
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® The recommended value for Cgy . is 0.18/y,
and that for v .. is given by Expression (6.3N)

® (2) The punching resistance of column bases
should be verified at control perimeters
within 2d from the periphery of the column.
The lowest value of resistance found in this
way should control the design. For concertric
loading the net applied force is: Vgy g = Vgq -
AVg4; where Vg, is the column load; and AV,
is the net upward force within the control
perimeter considered, i.e., upward pressure
from soil minus self weight of base
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® Veg = Vid,req/ Ud

® Vpg = Crq K(100pf )13 + 2d/a > v, x (2d/a) ;
where a is the distance from the periphery of
the column to the control perimeter

considered; C,  defined in 6.4.4(1); v,
defined in 6.4.4(1)

® For eccentric loading: Vg4 = (Viq oq/ud)[1 +
K(Mgqu/Veq (egW)]; Where k is defined in
6.4.3(4)

157




4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

® 6.4.5 Punching shear resistance of slabs or
column bases with shear reinforcement

® Read!
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4.10 EQUIVALENT-FRAME METHODS

® 4.10.0 Equivalent-Frame Methods

® The ACI Code presents two general methods
for calculating the longitudinal distribution
of moments in two-way slab systems. These
are the direct-desigh method and the
equivalent-frame methods.

® Equivalent-frame methods are intended for
use in analyzing moments in any practical
slab-column frame. Their scope is thus wider
than the direct-design method, which is
subject to the limitations presented in
Section 13-7.
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4.10 EQUIVALENT-FRAME METHODS

@ In the direct-desigh method, the statical
moment M,, is calculated for each slab span.
This moment is then distributed b/n positive-
and negative- moment regions using arbitrary
moment coefficients, which are adjusted to
reflect pattern loadings.

® For equivalent-frame methods, a stiffness
analyses of a slab-column frame is used to
determine the longitudinal distribution of
bending moments, including possible pattern
loadings. The transverse distribution of
moments to column and middle strips, is the
same for both methods
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4.10 EQUIVALENT-FRAME METHODS

©4.10.1 Classic Equivalent-Frame Analysis
of Slab Systems for Vertical Loads

® The slab is divided into a series of equivalent
frames running in two directions of the building
as shown in Figure (SNS).

® These frames consist of the slab, any beams that

are present, and columns above and below the
slab.

® For gravity load analysis, the code allows
analysis of entire equivalent frame extending
over the height of the building, or each floor can
be considered separately with the far ends of
the columns being fixed.
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4.10 EQUIVALENT-FRAME METHODS

Column
strip

A

Spandrel beam
A~ in edge frame

Fig. 13-20
Division of slab into frames
for design.
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4.10 EQUIVALENT-FRAME METHODS

@ The original derivation of the classic equivalent-
frame method assumed that the moment
distribution would be the calculation procedure
used to analyze the continuous-slab system, so
some of the concepts in the method are
awkward to adapt to other methods of analysis.

@ (i) Calculation of Stiffness, Carryover, and
Fixed-End Moments

® In the moment distribution method, it is
necessary to compute flexural stiffnesses, K;
carry-over factors, COF; distribution factors, DF;
and fixed-end moments, for each members in
the structure (read..)
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4.10 EQUIVALENT-FRAME METHODS

@ In the equivalent-frame method, the increased
stiffness of members within the column-slab
joint region is accounted for, as is the variation
in cross section at drop panels. As a result, all
members have a stiffer section at each end, as
shown in Figure (SNS)

@ (ii) Properties of Slab-Beams

® The horizontal members in the equivalent frame
are referred to as slab-beams. These consist of
either only a slab, or a slab and a drop panel, or
a slab with a beam running parallel to the
equivalent frame
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(a) Slab A-B.

— —
Els ] l Ely
Els
v Elq !

Fig. 13-31 T
Variation in stiffness along a . . .
span. (b) Distribution of Efalong siab. (D) Distribution of El along slab

Fig. 13-31 Variation in stiffness along a span
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@ ACI Code Section 14.7.3 explains how these
nonprismatic beams are to be modeled for

analysis: (Read)

@ The application of the approach is illustrated
in Figures (SNS). Tables A-14 through A-16 etc
present moment-distribution constants for
flat plates and for slabs with drop panels.

® Example- Calculation of the Moment-
Distribution Constants for Flat-Plate Floor

(Read

pp 670, and 672)
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(b) Variation in El along slab-beam. Z
| B
. _l
L

b, :
{c) Cross section used in compute [y—Section A-A. (C) CrOSS SeCtlon used to

: | %, compute |,-Section A-A
Fig. 13-32 El values fora [y - |

o By
f

. | _ __I
slab with a drop panel f LT—'_
:leidlh of drop panel
Fig. 13-32 ) .
o O S W ross seston used 10 compute —sesnon -5 () COSS se€ction used to

compute |,-Section B-B
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R I'_
— e—C Cq—==

(a) Slab with beams in two directions.

e ol

(1 — ealin)? v Elz - E|1 El,
(1 - calip)?
(b) Variation of El along Ej o ez
slab beam — e A

(b) Variation in E/ along slab beam. P
|

] ¢h1 ‘hz
|

: h.f  LJi__h
(C) CrOSS SeCtlon u%:e(,c!ssts tion used to compuil t1—8ection C-C _T_ 2

compute |,-Section C-C 6 .
Fig. 13-33 hs h3
EI values for a slab and
beam. d) Cross section used to corppute l»—Section D-D .
(cf) Cross section used to compute |;-Section D-D
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4.9 DESIGN OF TWO-WAY SHEAR
ACCORDING 1O EC2

@ (iii) Properties of Columns

® In computing the stiffnesses and carryover
factors for columns, ACl Code Section 14.7.4
states the following:

@ 1. The moment of inertia of columns at any
section outside of the joints or column
capitals may be based on the gross area of
the concrete, allowing for variations in the
actual moment of inertia due to changes in
the column cross section along the length of
the column (SNS) (read)
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’Ixr-_— ***** —_13::?—_!1&%':00 | o S— — p— ‘r=°°|=OO

e & Eccle [ el Eccle
Y o __“,::L"Hmol:OO e ——— — — f=m|=OO

(a) Slab system Column stiffness (b) Slab system with Clolumn stiffness
without beams. diagram column capitals. diagram .
Column stiffness Column stiffness
diagram diagram
\ 17T )
= ——— = ——CcJi-- S R e A i T

Fig. 13-37 Sections = —
for the calculations 6 Euole Bottom of slab-
. beam at joint
of column stiffness '
Top of slab-beam

—— Y — = 1l—c ==
F‘___L,'_\.L_' i E‘ _____ i —1— I=w
Fig. 13-37 =

€e [

i i (c) Slab system with Column stiffness J—-“—L—FL—V‘—L )
Sections for .lhe calculations drop panels. diagram (d) Slab system Column stiffness
of column stiffness, K. with beams. diagram
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® (iv) Torsional Members and Equivalent
Columns

® When the beam and column frame shown in
Figure (SNS) is loaded, the ends of the
column and beam undergo equal rotations
where they meet at the joint. If the flexural
stiffness, K=M/0, is known for the two
members, it is possible to calculate the joint
rotations and the end moments in the
members. Similarly, in the case shown in
Figure (b), the ends of the slab and the wall
both undergo equal end rotations when the
slab is loaded
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0 %
(a) Beam and

CO l u m n fra raT] eén and column frame.

(b) Slab and wal\.@ |

aaaaaaaaaaaaaaaaaaa A '
frame

(c) Slab column &%
frame

member
Fig. 13-38 Frame
action and twisting e
Of edge member edge member.
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® When a flat plate is connected to a column,
as shown in Fig(c), the end rotation of the
column is equal to the end rotation of the
strip of slab C-D, which is attached to the
column.

@ The rotation at A of the strip A-B is greater
than the rotation at point C, however,
because there is less restraint to the rotation
of the slab at this point

® In effect the edge of the slab is twisted, as
shown in Fig (d)
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® As a result, the average rotation of the edge of
the slab is greater than the rotation of the end
of the column

@ To account for this effect in slab analysis, the
column is assumed to be attached to the slab-
beam by the transverse torsional members A-C
and C-A’. One way of including these members in
the analysis is by use of the concept of an
equivalent column, which is a single element
consisting of the columns above and below the
floor and attached torsional members, as shown
in Figure (d).

® Go to 5.187
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® The stiffness of the equivalent column, K_,

represents the combined stiffness of the columns
and attached torsional members:

K.. = M/(average rotation of the edge beam)

@ The flexibility of the equivalent column, 1/K,_., is
equal to the average rotation of the joint b/n
the “edge beam” and the rest of the slab when a
unit moment is transferred from the slab to the
equivalent column.

@ This average rotation is the rotation of the end
of the columns, 6., plus the average twist of the
beam, 0 with both computed for a unit
moment

9ec - ec + et,avg

t,avg’
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® The value of 0, for a unit moment is 1/ZK_,
where XK_ refers to the sum of the flexural
stiffnesses of the columns above and below
the slab.

® Similarly, the value 0, ,,, for a unit moment is
1/K;, where K, is the torsional stiffness of the

attached torsional members. Substituting:

1 1 1
Kee 2K. K
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@ If the torsional stiffness of the attached torsional
members is small, K_. will be much smaller than
YK,

@ The derivation of the torsional stiffness of the
torsional members (or edge beams) is illustrated
in Figure (SNS).

@ Figure (a) shows an equivalent column with
attached torsional members that extend halfway
to the next column in each direction.

® A unit torque, T=1, is applied to the equivalent
column with half going to each arm. Linear
torque distribution t, per unit length is assumed
as shown in Figure (b)
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2

(&12) (1 — colby) s (B12) (1 — c2tiz)

-
e

T

{a) Column and attached torsional member.

/fm m\l\l\h\ " 24

(b) Distribution of torque per unit length along column center line.

(b) Distribution of torque per unit

length
T=12(1 - calef Toe T=1 /2

{c) Torque dlagram

(c) Torque diagram

Fig. 13-39 Calculatlon of Kt /‘ = 0=

(From [13-17].) (d) Angle change per unit length.

d) Angle change per unit length
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® The applied torques give rise to the twisting-
moment diagram shown in Figure (c). Because
half of the torque is applied to each arm, the
maximum twisting moment is 2.

® The twist angle per unit length is shown in Figure
(d). This is calculated by dividing the twisting
moment at any point by CG, the product of the
torsional constant, C (similar to a polar moment
of inertia), and the modulus of rigidity, G.

® The total twist of the end of an arm relative to
the column is the summation of the twists per
unit length and is equal to the area of the
diagram in Figure (d) (diagram is parabolic) —»
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® Area equals 1/3 of the height times the length of
the diagram —

1(1-c, /L) (1, (., ¢
G end =73 1-—=
e 3 2cc (200

Replacing G with E/2

o _ll-cyll)’
t,end —
| 6CE

@ This is the rotation of the end of the arm. The
rotation required for use in Eqn above is the
average rotation of the arm, which is assumed to
be a third of the end rotations.
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®— L (1—c,/1y)?
Lavd — 18CE

@ Finally, the torsional stiffness of one arm is
calculated as Ki=M/0, ,,,, where the moment
resisted by one arm is taken as 2, giving:

9EC

L(1-cy/15)°

@ ACI expresses the torsional stiffness of the
two arms as —

Ki(one—arm) =
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9E..C
® —> Kt:Z _CS e
(L, /1)

@ For a corner column there is only one term in
the summation.

® The cross section of the torsional members is
defined in AC| Code Section 13.7.5 and is
illustrated in Figure (SNS)
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Fig. 13-40 . e e
Torsional members. (From bw + 2hw = b + B | £

[13-15], courtesy of the Port- ! ' —
land Cement Association.) Caondition (c) Condition (b)
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® The constant C in Egns a

RAME METIHODS

bove is calculated by

subdividing the cross section into rectangles

and carrying the out the

X, Xy
C = Z[(l 063y 3)

® Where x is the shorter side of
longer side.

summation

a rectangle and y is the

@ Read example 13-7 and 13-8 -Calculation of

K, 2K, and K.
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@ If a beam parallel to the ¢, direction (a beam
along C-D in Figure 13-38) frames into the
column, a major fraction of the exterior
negative moment is transferred directly to
the column w/o involving the attached
torsional member. In such a case, K.,
underestimates the stiffness of the column.

® This is allowed for empirically by multiplying
K. by the ratio I, /1, where |, is the moment
of inertia of the slab and beam together and
. is the moment of inertia of the slab
neglecting the beam stem (ACI Code
Section13.7.5.2)
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® Arrangement of live loads for structural analysis and
moments at face of supports — See example 13-9 for
Analysis of a Flat-Plate using the Classic Equivalent-
Frame Method

@ Distribution of Moments to Column Strips, Middle
Strips, and Beams

Once the negative and positive moments have been
determined for each equivalent frame, these are
distributed to column and middle strips in the same way
as in the DDM.

For panels with beams b/n the columns on all sides, the
distribution of moments to the column and middle strips
according to ACl Code Sections 13.6.4 and 13.6.6 is valid
only if a2/ opl,% falls b/n 0.2 and 5.0. Cases falling
outside of this range tend to approach one-way action,
and other methods of slab analysis are required
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® 4.10.2 Use of Computers for an Equivalent-
Frame Analysis

® The classic EFM was derived by assuming that
the structural analysis would be carried out by
hand using the moment-distribution method.

® Thus tables were developed to evaluate fixed-
end moments, stiffnesses, and equivalent-
column stiffnesses for use in such analysis

@ If standard frame analysis software based on the
stiffness method is to be used, the torsional
member (and the resulting equivalent-column
stiffness) defined in the classic EFM will need to
be incorporated into the stiffness of either the
slab-beam or column elements.
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@ The general research direction has been to
modify the stiffness of the slab-beam element by
defining an effective slab width to reduce the
element stiffness, particularly at connections.

® The frame analysis results for gravity loading,
obtained using the modified slab-beam
elements, should be in reasonable agreement
with those obtained from the classic EFM.

@ Several researchers have worked on the
development of effective slab width models that
could be used to define the stiffness of an
equivalent beam in a standard frame analysis
program for the analysis of slab-column frame
subjected to combined vertical and lateral
loading. (based on plate theory and exp results)
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® Hueste and Wight— the 15t step in building a
slab-column frame analysis model is to select
an effective slab width that is a fraction, a,
of the total slab width, |, (avg) as shown in
Figs. 13-34 and 13-35 (SNS).

® A wide range of a values have been
suggested by various researchers, but Wight
prefers to simply use o = 0.5 for all positive-
bending regions and for negative-bending
regions at interior supports.
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[+ .
— Baly+f+ain, — Jat+ Zrain,
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17 ft 9in. 20 ft B 17 ft 9in.
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Fig. 13-49
Effective slab width, a{,, and locations for intermediate nodes along the span.

190



4.10 EQUIVALENT-FRAME METHODS

c + Effective slab width

Fig. 13-48 /
Minimum value for effective ¥
slab width at exterior B cy/2 1 cy/2 R

slab-to-column connections.
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® For negative-bending regions at exterior
supports, the effective slab width depends

on the torsional stiffness at the edge of the
slab.

@ If no edge beam is present, then an o value
of 0.2 is recommended.

@ If an edge beam is present and has a
torsional stiffness such that f,, as defined in
Eqgn (13-12), is greater than or equal to 2.5,
then the recommended o value is 0.5
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@ If the value of B, is b/n 0.0 and 2.5, a linear

interpolation can be used to find an a value
b/n 0.2 and 0.5.

® For low values of a, the effective slab width
should not be taken to be less than the

CcoO
CcoO
CcoO

lumn width, c,, plus one-half of the
lumn total depth, c,, on each side of the

umn (Fig. 13-48).

® For slab-column frame along a column line at
the edge of a floor plan, the effective slab
widths are reduced accordingly.
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@ The resulting models for one exterior and one
interior column line is shown in Fig. 13-49

@ As indicated in Fig. 13-49, the negative-bending
region at the exterior connection is assumed to
extend over 20 percent (0.2¢,) of the span. The
authors recommend that the same assumption be
used for negative-bending regions at all interior
and exterior connections.

@ This assumption essentially creates extra node
points within the span and becomes important
when assigning cracked-stiffness values to the
positive and negative moment regions
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@ After the effective slab width, a¢,, has been
established, the gross moment of inertia for
the slab-beam can be calculated using either
a section similar to Fig. 13-32 c (if no beam
is present) or a section similar to that in Fig
13-33c (if a beam is present). For both cases,
the effective slab width, as,, is to be used in

place of the ¢, value shown in those figures.

@ If a drop panel is present in the negative-
bending region, then a section similar to that
used in Fig. 13-32d (with a¢,, in place of ¢) is
to be used. Read more.
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@ A final modification is to be made to the slab-
beam stiffness to account for flexural cracking.
In general, the cracked moment of inertia for a
slab-beam section, |, is some fraction of the
gross moment of inertia for that section.

Because slabs normally have lower
reinforcement ratios than beams, their cracked
moment of inertia is usually a smaller fraction of
the gross moment of inertia than for a typical
beam section. However, because large portions
along the slab-beam will remain uncracked and
the flexural cracks that do occur usually will not
propagate over the entire width of the slab, an
effective moment of inertia, |, needs to be
defined for different portlons of the slab-beam
span.
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® Commonly, a factor 3 is used to define the
effective moment of inertia as some fraction
of the gross moment of inertia (I, = Bl,). For
all positive-bending regions of the slaé the
author recommends [3=0.5.

@ Because larger moments typically occur near
interior connections, and in order to not
overestimate the slab-to-edge beam-to-
column stiffness at an exterior connection,
whether or not an edge beam is present, the
author recommends a 3 factor of 0.33 for all
negative bending regions. (see summary SNS)

197



4.10 EQUIVALENT-FRAME METHODS

TABLE 13-7 Recommended a and B Values for the Flexural Stiffness
of Slab-Beam Elements

Region of the Slab a-Value B-Value
(For Effective Width a {5) (For I = B Iy)

Positive-bending regions 0.5 0.5

Negative-bending regions

(interior columns) 0.5 0.33

Negative-bending regions 0.2t00.5

(exterior columns) (function of edge beam stiffness) 0.33
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® For analysis of post-tensioned slabs, wight etal
have recommended the use of a 3 value equal to
0.67 because of the reduced flexural cracking
expected in a post tensioned slab.

® For a gravity load analysis, the slab-beam
elements can be assembled with column
elements that extend one story above and one
story below the floor system (F9g 13-50), as
permitted by ACI Code Section 13.7.2.5

® The column lengths should be set equal to the
center-to-center dimensions from one floor level
to the next, and the gross moment of inertia of
the column sections can be used as input to the
structural analysis software. (moment at face of
support etc. Read)
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Example 13-10.
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@ Analysis of Slab-Column Frames for
Combined Gravity and Lateral Loads

@ A frame consisting of columns and either flat

plates or flat slabs

but lacking shear walls or

other bracing elements is inefficient in
resisting lateral loads and may be subject to

significant lateral ¢

® As a result, slab-co
more than two or t

rift deflections.
lumn frame structures of

nree stories are generally

braced by shear walls.
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® When unbraced slab-column frames are used, it
is necessary to analyze equivalent frame
structures for both gravity and lateral loads.

@ The general equivalent-frame analysis method
discussed previously can be used by simply
extending the slab-column frame over the full
height of the structure, as shown in Fig. 13-51.

@ In order not to overestimate the lateral stiffness
of the slab-column frame (and thus
underestimate the lateral deflections), the
author recommends that the effective moment
of inertia of the column sections should be taken
as /0 percent of the gross moment of inertia, as
required in ACI Code Section 10.10.4.1 for
lateral stability analysis.
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WorE (e o —+» *—

Fig. 13-51
Equivalent-frame model for -
analysis of slab—column

frame subjected to gravity
and lateral loads. 77 77 77 77
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