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 Two-way slabs transmit loads in two 

directions (compare with one-way slabs)

 They are efficient, economical, and widely 

used structural system

 In practice two-way slabs take various forms

 For relatively light loads (appt bldgs), flat 

plates are used.

 For longer spans, waffle slabs (or two way 

joist system) are used (formed with 

fiberglass or metal “dome” forms)
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 For heavy industrial loads, the flat slab 

system shown in Figure (c) may be used

 Shear transfer to the column is accomplished 

by thickening the slab near the column with 

drop panels or flaring the top of the column 

top to form a column capital

 Slab systems may incorporate beams 

between some or all of the columns. The 

resulting structure is referred to as two-way 

slabs with beams.

5



 Elastic Analysis of Slabs

 Slabs are 2D structures

 The concepts involved in the elastic analysis 

is discussed in chapter 2  Action is 

proportional to action effect (F=k z)

 The same principle holds for linear elastic 

analysis of slabs, bearing in mind that the 

analysis is much more complicated than for 

linear elements
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 Slabs may be subdivided into:
 Thick slabs  thickness greater than about 

1/10th of the span (500 mm for a 5000 mm span)

 Thick slab transmit a portion of the loads as a 
flat arch and have significant in-plane-
compressive forces, with the result that the 
internal resisting compressive force C is larger 
than the internal tensile force T.

 Thin slabs transmit a portion of the loads by 
acting as a tension membrane; hence T is larger 
than C

 A medium thick slab does not exhibit either arch 
action or membrane action and thus T=C
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 Figure (next slide) shows an element cut 

from a medium thick, two-way slab.

 This element is acted on by the moments 

shown in Figure (a) and by shears and loads 

shown in Figure (b) (Figures are separated 

for clarity)

 Two types of moments mx and my about axes 

parallel to the edges, and twisting moments 

mxy and myx about axes  to the edges.
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NB: mx, my, mxy, and myx are moments and 

twisting moments per meter width

Vy, and Vx are forces per meter width

 mx is change in mx over a distance of dx 

 Similarly Vy is change in Vy over a distance 

of dy 

 and so on
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 Summing vertical forces



 ……..(4.1)
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 Summing moments about lines parallel to the 
x and y axes and neglecting higher order 
terms gives:

....(4.2)

 It can be shown that mxy = myx (theory of 
elasticity)
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Differentiating (4.2) and substituting in (4.1) 

gives the basic equilibrium equation for 

medium thick slabs:

...(4.3)

 This is purely an equation of statics and 

applies regardless of the behavior of the 

plate material. (discuss interpretation)
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 For an elastic plate, the deflection, z, can be 

related to the applied load by means of: 

…..….(4.4)

where the plate rigidity is :                   ..(4.5)

 and n is Poisson's ratio
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D is comparable to the EI value of a unit 

width of the slab

 Recall that for linear elements 

 Solution of the 4th order PDE for a UDL as 

solved by Navier’s method is:  
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 So in an elastic plate analysis, Eqn. (4.4) is 

solved to determine the deflection, z, and 

the moments are calculated from:             

…..(4.6)
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Discussion about closed form solution of the 

governing PDE of elastic plates

Discussion about non-linear material

Distribution of moments in slabs (qualitative 

discussion)
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 The distributions of moments will be 

presented in one of two graphical treatments

 The distribution of the negative moments, 

mA, or of the positive moments, mB, along 

lines across the slab will be depicted as 

shown in Figure (b)

 These distributions may be shown as 

continuous curves, as shown by the solid 

lines and shaded areas, or as a series of 

steps, as shown by the dashed line.
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 The height of the curve at any point 

indicates the magnitude of the moment at 

that point

Discussion why the moments mA and mB

decrease towards the support

Occasionally, the distribution of BMs in a 

strip A-B-C across the slab will be plotted as 

shown in Figure (c)

 The moments will be expressed in terms of 

CwLx
2, where Lx is the short dimension of the 

panel. The unit is kNm/m
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 Four or more stages:

i. Before cracking the slab acts as an elastic 
plate, and for short time loads, the 
deformations, stresses and strains can be 
predicted from an elastic analysis.

ii. After cracking and before yielding of the 
reinforcement, the slab no longer has a 
constant stiffness, because the cracked 
regions have a lower flexural stiffness EI 
than the uncracked regions and the slab is 
no longer isotropic because the crack 
pattern may differ in the two directions. 
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 Although these conditions violate the 

assumptions in elastic theory, tests indicate  that 

the elastic theory still predicts the moments 

adequately. Generally normal building slabs are 

partially cracked under service loads.

iii. yielding of reinforcement eventually starts 

in one or more region of high moment and 

spreads through the slab as the moments 

are redistributed from yielded regions to 

areas that are still elastic. The progression 

of yielding through a slab fixed on four 

edges is illustrated in Figure (next slide)
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 With further load, the regions of yielding known 
as yield lines, divide the slab into a series of 
trapezoidal and triangular elastic plates as shown 
in Figure (d) above. The loads corresponding to 
this stage of loading can be estimated by using
yield-line analysis (plastic method analysis)

iv. Although the yield lines divide the slab to 
form a mechanism, the hinges jam with 
increased deformation, and the slab forms 
a very flat compression arch as shown in 
Figure (next slide)(avail stiff support). This 
stage of loading usually is not considered in 
design
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 Figure (next slide) shows a floor made of 

simply supported planks supported by simply 

supported beams. The floor carries a load of 

q kN/m2.

 The moment per meter width in the planks 

at section A-A is: m = ql1
2/8 kNm/m

 The total moment in the entire width of the 

floor is: MA-A = (ql2)l1
2/8 kNm

 This is the familiar equation for the 

maximum moment in a simply supported 

floor of width l2 and span l1.
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 The planks apply a uniform load of ql1/2
kN/m on each beam.

 The moment at section B-B in one beam is 
thus: M1b = (ql1/2)l2

2/8 kNm/m

 The total moment in both beams is:            
MB-B = (ql1)l2

2/8

 It is important to note that the full load was 
transferred east and west by the planks, 
causing a moment equivalent to wl1

2/8 in the 
planks where w = ql2. Then the full load was 
transferred north and south by the beams, 
causing a similar moment in the beams.
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 Exactly the same thing happens in the two way 

slab shown in Figure (next slide).

 The total moments required along sections A-A 

and B-B are: MA-A = (ql2)l1
2/8 and MB-B = (ql1)l2

2/8

 Again, the full load was transferred east and 

west and then the full load was transferred 

north and south- this time by the slab in both 

cases.

 This, of course always must be true regardless of 

whether the structure has one-way slabs and 

beams, two-way slabs or some other system
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 To emphasize load transfer mechanism in two 
way slabs using the column supported two-way 
slabs in Figure (next slide)

 If a surface load is applied, it is shared between 
imaginary slab strips la in the short direction and 
lb in the longer direction.

 Note that the portion of the load that is carried 
by the long strips lb is delivered to the beams B1, 
which in turn carries it in the short direction. 
That portion of the load plus that directly 
carried in the short direction by the slab strips 
la, sum up to 100% of the load applied to the 
panel. The same is true in the other direction
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 A similar situation is obtained in the flat 

plate floor where broad strips of the slab 

centered on the column lines in each 

direction serve the same function as the 

beams

 Therefore, for column supported 

construction (one-way or two-way), 100% of 

the applied load must be carried in each 

direction, in the case of two-way beam 

supported slabs, jointly by the slab and its 

supporting beams
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 The analysis used to derive the moments in 

two way slabs was 1st published by Nichol in 

1914.

 The derivation using rectangular columns 

(instead of the original circular columns by 

Nichol) will be shown.

 Assume : (1) A typical rectangular, interior 

panel in a large structure and (2) that all the 

panels in the structure are uniformly loaded 

with the same load.
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 The two assumptions ensure that the lines of 
maximum moment, and hence the lines on 
which the shears and twisting moments are 
equal to zero, will be lines of symmetry in 
the structure.

 This allows one to isolate the portion of the 
slab shown shaded in Figure (next slide). This 
portion is bounded by lines of symmetry 
located at the center of panels on three 
sides and along column axis on the fourth 
side. Shears and twisting moments are zero 
on these sections
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Is M1 + M2 = wl2l1
2/8 ?

If yes 100% of the 

loading is carried in 

the l1 direction. 

Similarly in the l2
direction



 The reactions to the vertical loads are 

transmitted to the slab by shear around the 

face of the columns. It is necessary to know, 

or assume, the distribution of this shear to 

compute the moments in this slab panel

 The maximum shear transfer occurs at the 

corners of the column, with lesser amounts 

transferred in the middle of the sides of the 

column. For this reason we shall assume that 

(3) the column reactions are concentrated at 

the four corners of each column
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 Figure (b) shows a FBD, a side view of the 
slab element with the forces and moments 
acting on it

 The applied load is (wl1l2/2) at the center of 
the shaded panel, minus the load on the area 
occupied by the column (wc1c2/2) () shown 
upward in the FBD is equilibrated by the 
upward reaction at the corners of the 
columns (wl1l2/2 – wc1c2/2).

 The total statical moment, Mo, is the sum of 
the negative moment, M1, and the positive 
moment, M2.
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 The magnitude of Mo may be obtained by 

summing moments about axis A-A. 

 NB: 1st term from slab load, 2nd term from -ve 

load on column, 3rd term from reaction at edges 

of column. After simplifications 
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Note that this is almost equal to 

full load is carried in the design direction l1

by a strip width equal to the width of the 

panel, i.e. l2
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 The ACI Code has simplified this expression 

slightly by replacing the term in the square 

bracket with ln
2, where ln is the clear span 

between the faces of the columns, given by 

because

differs only slightly from the terms in the 

square bracket

 The statical moment Mo = wl2ln
2/8 (ACI) (A)
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 If the equilibrium of the element shown in 

Figure (c) were studied, a similar equation 

for Mo would result, but one having l1 and l2

interchanged and c1 and c2 interchanged

 This indicates once again that the slab in flat 

plates and the slabs and supporting beams in 

beam supported two-way slabs must be good 

for 100% of the loading in both directions.

 Analysis of moments according to the ACI is a 

unified approach that is applicable to both 

flat slabs and beam-supported two-way slabs
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 In a plate the slab is supported directly on 
the columns w/o any beams. Here the 
stiffest portions of the slab are those running 
from column to column along the four sides 
of a panel. As a result, the moments are 
largest in these parts of the slab.

 (Go to s.55)

 Figure (next slide) illustrates the moments in 
a typical interior panel of a very large slab in 
which all panels are uniformly loaded with 
equal loads. The slab is supported on circular 
columns with a diameter c = 0.1l
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 The largest negative and positive moments 

occur in the strips spanning from column to 

column in Figures 4.5.1(b) and 4.5.1(c).

 The curvatures and moment diagrams are 

shown for strips along lines A-A and B-B.

 Both strips have –ve moments adjacent to 

the columns and +ve moments at mid-span.

 In Figure 4.5.1(d) the moment diagram from 

4.5.1(a) is re-plotted to show the average 

moments over the width of the middle and 

column strips
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 The total static moment, Mo, accounted for 

here is (NB: Factor qln
2 gives moment per meter 

width)

Mo = qln
2[(0.1220.5l2) + (0.0410.5l2) + 

(0.0530.5l2) + (0.0340.5l2)] = 0.125ql2ln
2

 The distribution of moments given in Figure 

(next slide) for a square slab supported on 

rigid beams is shown in (a) with the moments 

averaged over column-strip and middle-strip 

bands in the same way as the flat-plate 

moments shown earlier
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Fig 4.5.2



 In addition, the sum of the beam moments 

and the column-strip slab moments has been 

divided by the width of the column strip and 

plotted as the total column-strip moment.

 The distribution of moments in Figure 

4.5.1(d) of the flat plates closely resembles 

the distribution of middle-strip and total 

column-strip moments in Figure 4.5.2 (a).

 An intermediate case in which the beam 

stiffness, Ib, equal the stiffness, Is, of a slab 

of width, l2, is shown in Figure 4.5.2 (b).
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 Although the division of moments b/n slab 
and beams differs, the distribution of the 
total moments is again similar to that shown 
in Figures (d) and (a)

 The slab design procedures in the ACI Code 
take advantage of this similarity in the 
distributions of the total moments by 
presenting a unified design procedure for the 
whole spectrum of slab and edge-beam 
stiffness from slabs supported on isolated 
columns to slabs supported on stiff beams in 
two directions
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 Two slab design procedures are allowed by 
the ACI (EBCS EN 1992-1-1). These are the 
direct design method and the equivalent 
frame design method. The two methods 
differ primarily in the way in which the slab 
moments are computed.

 The calculation of the moments in the direct 
design method is based on the statical 
moment Mo. (Mo = wl2ln

2/8 (ACI) (A))

 In this method, the slab is considered panel 
by panel, and Eq. (A) is used to compute the 
total moment in each panel
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 The statical moment is then divided up b/n 
positive and negative moments, and these 
are divided b/n middle strip and column 
strips.

 In the equivalent frame method, the slab is 
divided into a series of two-dimensional 
frames, and the positive and negative
moments are computed via an elastic frame 
analysis. Once the +ve and –ve moments are 
known, they are divided up b/n middle strips 
and column strips in exactly the same way as 
in the direct design methods.

56



 Slabs are frequently built with beams from 

column to column around the perimeter of 

the building. These beams act to stiffen the 

edge of the slab and help to reduce the 

deflections of the exterior panels of the 

slabs. (Very heavily loaded slabs and long-

span waffle slabs sometimes have beams 

joining all columns in the structure)
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 The effects of beam stiffness on deflections 
and the distribution of moments are 
expressed as a function of f, defined as the 
flexural stiffness, 4EI/l, of the beam divided 
by the flexural stiffness of a width of slab 
bounded by the centerlines of the adjacent 
panels on each side of the beam.

f = (4EcbIb/l)/(4EcsIs/l)

 Since the length, l, of the beam and the slab 
are equal, this quantity is simplified and 
expressed in the Code (ACI) as:

f = (EcbIb)/(EcsIs)
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 If there is no beam, f = 0. (mostly the case 
except at the edges where beams are provided 
for stiffening edge panels)

 The sections considered in computing Ib and Is
are shown in Figure (next slide). (NB. Span 
direction is l1)

 ACI, Section 14.2.4 defines a beam in monolithic 
or fully composite construction as the beam 
stem plus a portion of the slab on each side of 
the beam extending a distance equal to the 
projection of the beam above or below the slab 
whichever is greater , but not greater than four 
times the slab thickness (next next slide).
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Fig. Beam and slab 

sections for 

calculations of f
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Governing 
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 Example: Calculation of  for an edge beam

Go to S.66

 A 200 mm-thick slab is provided with an edge 

beam that has a total depth of 400 mm and a 

width of 300 mm as shown in Figure (next 

slide). The slab and beam were cast 

monolithically and have the same concrete 

strength and the same Ec. Compute f.
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 Solution:

f = Ib/Is
 (1) Compute Ib: The cross section of the 

beam is as shown in Figure (slide above). The 
centroid of the beam is located 175 mm from 
the top of the slab.  moment of inertia of 
the beam is: Ib = (3004003/12) 
+(300400)252+ (2002003)/12) + 
(200200)752 = 2.0333109 mm4

 (2) Compute Is: Is = 31502003/12 = 2.1109

mm4

 (3) compute f = 2.0333109/2.1109 = 0.968
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 ACI code defines minimum thicknesses that 

are generally sufficient to limit slab 

deflections to acceptable values (same as in 

EBCS-2). Thinner slabs can be used if it can 

be shown that the computed slab deflections 

will not be excessive.

 Slabs without beams between interior 

columns……. (SI Version)

 Slabs with beams between the interior 

supports…….. (SI Version)
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 Limitations on the use of the DDM

1) there must be a minimum of 3 continuous 
spans in each direction. Thus a nine-panel 
structure (3 by 3) is the smallest that can 
be divided.

2) rectangular panels must have a long-
span/short-span ratio not greater than 2. 
one-way action predominates as the span 
ratio reaches and exceeds 2

3) successive span lengths in each direction 
shall not differ by more than one-third of 
the longer span
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4) columns may be offset from the basic 
rectangular grid of the building by up to 0.1 
times the span parallel to the offset

5) all loads must be due to gravity only. The 
direct design method can not be used for 
unbraced laterally loaded frames, foundation 
mats, or prestressed slabs.

6) the service live load shall not exceed two 
times the service dead load.

7) for a panel with beams b/n supports on all 
sides, the relative stiffness of the beams in the 
two  directions given by (f1l2

2)/(f2l1
2) shall 

not be less than 0.2 or greater than 5. ( is the 
beam-to-slab stiffness ratio defined earlier
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 For design, the slab is considered to be a 

series of frames in the two directions, as 

shown in Figure (next slide). These frames 

extend to the middle of the panels on each 

side of the column

 In each span of each of the frames, it is 

necessary to compute the total statical 

moment Mo: Mo = qul2ln
2/8; where qu = 

factored load; l2 = transverse width of the 

strip; ln = clear span between columns
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 Example: Compute the statical moment, Mo, 

in the slab panels in Figure (next 2 slides). 

The slab is 200 mm thick and supports a live 

load of 4.53 kN/m2

 Sol: (1) Compute the design load: qd = 

1.30.225 + 1.64.54 = 14.76 kN/m2

 (2) Consider panel A spanning from column 1 

to column 2. Slab panel A is shown shaded in 

Figure (next slide). The moments computed 

here would be used to design the 

reinforcement parallel to lines 1-2 in this panel 
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Now Mo = (qdl2)ln
2/8; where ln = clear span of 

slab panel = 6.5-1/2(0.5)-1/2(0.6) = 5.95m ; 
l2 = width of panel = 6.5/2 + 6.0/2 = 6.25m 
 Mo = (14.766.255.952)/8 = 381 kNm

 Consider panel B, spanning from column 1 to 
column 4 (next slide). The moments 
computed here would be used to design the 
reinforcement parallel to lines 1-4 in this 
panel. For the purpose of computing ln, the 
circular supports are replaced by equivalent 
square columns having a side length c1 = 
0.886dc.
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 ln = 6.0-1/2(0.3)-1/2(0.8860.6) = 5.59m; 

l2 = 5.8/2 + 6.5/2 = 6.15m; Mo = (14.76  6.15 

 5.592)/8 = 331 kNm

Now the total statical moment will be 

divided between the negative and positive 

sections of the panel
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 In the DDM, the total factored statical 
moment Mo is divided into +ve and –ve 
factored moments according to the rules 
given in ACI Code, Section 14.6.30.

 These are illustrated in the Figure (next 
slide) 

 In interior spans, 65% of Mo is assigned to the 
negative moment region and 35% to the +ve 
moment region

 The exterior end of an exterior span has 
considerably less fixity than the end at the 
interior support.
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 The division of Mo in an end span into +ve and –

ve moment regions is given in Table 14.2 (next 

slide). In this table, “exterior edge 

unrestrained” refers to a slab whose edge rests 

on, but is not attached to, for example, a 

masonry wall. “Exterior edge fully restrained” 

refers to a slab whose exterior edge is supported 

by, and is continuous with, a concrete wall with 

a flexural stiffness as large or larger than that of 

the slab. If the computed –ve moments on two 

sides of an interior support are different, the –ve 

moment section of the slab is designed for the 

larger of the two.
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 The moments vary continuously across the 
width of the slab panels. To aid in steel 
placement, the design moments are 
averaged over the width of column strips 
over the columns and middle strips between 
the column strips  define column and 
middle strips

 Column strips in both directions extend one-
fourth of the smaller span, lmin, each way 
from the column line.

Middle strips are the strips between the 
column strips.
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 ACI Section 14.6.4 defines the fraction of the 
negative and positive moments assigned to 
the columns strips. The remaining amount of 
negative and positive moment is assigned to 
the adjacent half-middle strips. Table (next 
slide) gives the percentage distribution of –ve 
factored moment to the column strip at all 
interior supports

 The division is a function of (f1l2/l1),which 
depends on the aspect ratio of the panel, 
l2/l1, and the relative stiffness, f1, of the 
beams (if any) spanning parallel to and 
within the column strip
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 For floor systems w/o interior beams,

(f1l2/l1) is taken equal to zero, since f1 = 0. 

In this case 75% of the negative moment is 

distributed in the column strip, and the 

remaining 25% is divided equally b/n the two 

adjacent half middle strips

 For cases where a beam is present in a 

column strip (spanning in the direction of l1) 

and (f1l2/l1) 1.0, the second row in table 

14.3 applies.

 For 0(f1l2/l1)1.0 use linear interpolation

84



 Table 13-4 gives the percentage distribution of 

+ve factored moment to the column strip at mid 

span for both interior and exterior spans.

 For floor systems w/o interior beams, 60% of the 

+ve moment is assigned to the column strip and 

the remaining 40% is divided equally b/n the 

adjacent half middle strips.

 If a beam is present in the column strip 

(spanning in the direction of l1), either the 

percentages in the 2nd row or a linear 

interpolation b/n the percentages given in the 

1st or 2nd row in Table 13-4 will apply
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 At an exterior edge, the division of the 
exterior-end factored negative moment 
distributed to the column and middle strips 
spanning  to the edge also depends on the 
torsional stiffness of the edge beam, 
calculated as the shear modulus, G, times 
the torsional constant of the edge beam, C, 
divided by the flexural stiffness of the slab 
spanning  to the edge beam (i.e., EI for a 
slab having a width equal to the length of 
the edge beam from the center of one span 
to the center of the other span) designated 
by t (see next slide)
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 Assuming that n = 0  G = E/2 so that t = 
(EcbC/2EcsIs)

 The term C is the torsional constant of the 
edge beam which is calculated by subdividing 
the cross section into rectangles and carrying 
out the summation: C=[(1-0.63x/y)x3y/3]; 
where x = shorter side of a rectangle and y = 
longer side (NB: Several possible combination 
of rectangles have to be tried to get the 
maximum value of C. To do so wide 
rectangles should be made as large as 
possible. See Slide 90)
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 Table 13-5 gives percentage distribution of 
negative factored moment to column strip at 
exterior supports. The set up of this table is 
similar to the previous ones (tables 14.3 and 
14.4) with the addition of two rows to account 
for presence or absence of an edge beam 
working in torsion to transfer some of the slab 
negative moment into the column.

 When there is no edge beam (t = 0), all of the 
negative moment is assigned to the column 
strips. This is reasonable because there is no 
torsional edge member to transfer moment from 
the middle strips all the way back to the 
columns.

91



92



 If a stiff beam is present (t  2.5), table 

gives specific percentages to be assigned to 

the column strip, depending on the value of 

f1 and the l2/l1 ratio, as was done in the 

previous tables.

 For values of t between 2.5 and 0.0 and 

values of (f1l2/l1) b/n 1.0 and 0.0, two or 

three levels of linear interpolation may be 

required to determine the percentage 

distribution of negative moment assigned to 

the column strip.
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 If a beam is present in the column strip 

(spanning in the direction of l1), a portion of 

the column-strip moment is assigned to the 

beam (ACI Code, Section 14.6.5).

 If the beam has (f1l2/l1) > 1, 85% of the 

column-strip moment is assigned to the beam 

and 15% to the slab. 
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Calculation of moments in an exterior 

panel of a flat plate

 The slab is 200 mm thick and supports a 

superimposed service dead load of 1.2 kN/m2

and a service live load of 3 kN/m2. the beam 

is 300 mm wide by 400 mm in overall depth 

and is cast monolithically with the slab.

Go to S.159

 (1) Compute the factored loads: Let qd = 12 

kN/m2
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 (2) Compute the moments  in span BE.

 (a) Compute ln and l2 and divide the slab 
into middle and column strips.  ln = 6.5-
1/2(0.35)-1/2(0.4) = 6.125m; l2 = 5.75m. The 
column strip extends the smaller of l2/4 or 
l1/4 on each side of the column centerline. 
 The column strip extends 6/4 = 1.5 m 
toward AD and 5.5/4 = 1.275 m toward CF 
from line BE as shown in Slide 96.  The 
total width of the column strip is 2.875 m. 
The half middle strip b/n BE and CF has a 
width of 1.375 m, and the other one is 1.5 m
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 (b) Compute Mo: Mo = qdl2ln
2/8 = 

125.856.1252/8 = 324.6 kNm

 (c) Divide Mo into positive and negative 

moments. The distribution of the total 

factored moment to the negative and the 

positive moment regions is as given in Table 

13-2 under the column “slabs w/o beams b/n 

interior supports with edge beam”
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 From Table 13-2, the total moment is divided 
as follows:
 Interior negative: Mu= 0.70Mo = -226.5 KNm

 Positive: Mu= 0.50Mo = +161.8 KNm

 Exterior negative: Mu= 0.30Mo = -97.1 KNm

 (d) Divide the moments b/n the column and 
middle strips
 Interior negative moments (Table 13-3): This 

division is a function of f1l2/l1, which is equal to 
zero, since there are no beams to BE
  Interior column-strip negative moment: 0.75 -

226.5 = -169.9 kNm = -59.1 kNm/m width of column 
strip
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 Interior middle-strip negative moment = -56.6 kNm. 

Half of this goes to each of the half middle strips

 Positive moments: (Table 13-4) : 

 Column-strip positive moment: 0.60161.8 = 97.1 

kNm 34.8 kNm/m

 Middle-strip positive moment = 64.7 kNm. Half of 

this goes to each half-middle strip.

 Exterior negative moment: From ACI Section 

14.6.4.2, the exterior negative moment is 

divided as a function of f1l2/l1 (again equal to 

zero, since there is no beam to l1) and t. See 

next slide for attached torsional member for 

which t will be calculated
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 For Fig (a): C=[(1-0.63300/400)3003400/3+(1-

0.63200/200)2003200/3] = 2096.3106 mm4

 For Fig (b): C = 1461.3106 mm4. The larger of 

the values is used;  C = 2096.3106 mm4

 Is the moment of inertia of the strip of slab being 

designed, which has b=5.75m and h=200mm.

  Is=57502003/12 = 3834.3106 mm4

 Since fck is the same in the slab and beam, Ecb=Ecs and 

t= 2096.3106 /(2 3834.3106) = 0.273

 Interpolating in Table 13-5, we have:

 For t=0  100% to column strip

 For t=2.5  75% to column strip

  for t=0.273  97.3% to column strip and we have:
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 Exterior column-strip negative moment: 0.973(-97.1)= 

-94.5 kNm = -32.9 kNm/m

 Exterior middle-strip negative moment: -2.6 kNm
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 Exterior Columns: When design is carried out by 
the DDM, ACI specifies that the moment that is 
transferred from a slab w/o interior beams to an 
edge column is 0.26 to 0.30 Mo, as given in Table 
13-2.

 This moment is used to compute the shear 
stresses due to moment transfer to the edge 
column (discussed later)

 The exterior negative moment from the DDM 
calculation is divided b/n the columns above and 
below the slab in proportion to the column 
stiffness, 4EI/l. the resulting column moments 
are used in the design of the columns

104



 Interior Columns: At interior supports the 

column moments are determined from 

unbalanced moment resulting from an 

uneven distribution of live load.

 The unbalanced moment is computed by 

assuming that the longer span adjacent to 

the column is loaded with the factored dead 

load and half the factored live load, while 

the shorter span carries only the factored 

dead load



 The total unbalanced negative moment at 
the joint is thus: M = 0.65(1/8){(wd+0.5wl)l2ln

2

– w’
dl

’
2(l

’
n)

2}; where wd and wl refer to the 

factored dead and live loads on the longer 
span and w’

d, l
’
2, and l’n refer to the shorter 

span adjacent to the column

 A portion of the unbalanced moment is 

distributed to the slabs and the rest goes to 

the columns. ACI gives Mcol = 0.07{(wd+ 
0.5wl) l2ln

2 – w’
dl

’
2(l

’
n)

2}



When a slab panel contains a beam, either 

an edge beam or an interior beam b/n the 

columns, the moments in the panel are 

divided b/n the slab and the beam the same 

way the moments are divided b/n the slab 

and the beam for interior beams (refer to 

literature (Macgregor) as alternative to 

design of two-way beam supported slabs 

using the coefficients in EBCS-2).
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 A shear failure in a beam results from an 

inclined crack caused by flexural and 

shearing stresses. This crack starts at the 

tensile face of a beam and extends 

diagonally to the compression zone.

 In the case of a two-way slab or footing, the 

two shear-failure mechanisms shown in 

Figure (next slide) are possible.

One-way shear or beam-action shear (Fig a) 

involves an inclined crack extending across 

the entire width of the structure.
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 Two-way shear or punching shear involves a 

truncated cone or pyramid-shaped surface 

around the column as shown in Fig b. 

Generally, the punching-shear capacity of a 

slab or footing will be considerably less than 

the one-way shear capacity. 

 This section is limited to footings and slabs 

w/o beams. Refer to literature (Macgregor) 

for shear strength of slabs with beams.
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 Behavior of slabs failing in two way shear

 As discussed in DDM, the maximum moments in a 

uniformly loaded plate occur around the columns 

and lead to a circular crack around each column. 

After additional loading, the cracks necessary to 

form a fan yield-line mechanism develop (see 

next slide), and at about the same time, inclined 

or shear cracks form on the truncated conical 

surface shown in Fig b. These cracks can be shown 

in Fig (slide after next), which shows a slab that has 

been sawn through along two sides of the column 

after the slab had failed in two-way shear
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 Alexander and Simonds used the truss model 

in Fig (see next slide) to analyze punching-

shear failures. Prior to the formation of the 

inclined cracks shown in Fig 13-53, the shear 

is transferred by shear stresses in the 

concrete. Once the cracks have formed, only 

relatively small shear stresses can be 

transferred across them. Now the majority of 

the vertical shear is transferred by inclined 

struts A-B and C-D extending from the 

compression zone at the bottom of the slab 

to the reinforcement at the top of the slab.
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 Similar struts exist on all four sides of the 

column. The horizontal component of the 

force in the struts causes a change in the 

force in the reinforcement at A and D, and 

the vertical pushes up on the bar and is 

resisted by the tensile stresses in the 

concrete b/n the bars. Eventually, this 

concrete cracks in the plane of the bars, and 

a punching failure results.

 Such a failure occurs suddenly, with little, if 

any, warning.
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We will consider the case of shear transfer 

w/o appreciable moment transfer. The case 

when both shear and moment are transferred 

from the slab to the column is discussed in 

subsequent sections.

 Location of critical perimeters

 Two-way shear is assumed critical on a vertical 

section through the slab or footing extending 

around the column. According to the ACI at d/2 

1.5d according to EBCS-2. See Figs (next slides)
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 Critical sections for slabs with drop panels

 When high shear forces are being transferred at a 

slab-column connection, the slab shear strength 

can be increased locally by using a drop panel to 

locally increase the thickness of the slab. ACI 

requires that the total thickness of the slab and 

drop panel to be at least 1.25 times the thickness 

of the slab adjacent to the drop panel.

 In slab with drop panels, two critical sections 

should be considered, as shown in Figure (next 

slide)
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 If a drop panel is also used to control deflections 

or reduce the amount of flexural reinforcement 

required in the slab, the drop panel must satisfy 

the length requirements given in ACI Code, 

Section 14.2.5.

 Critical sections near holes and at edges

 When openings are located at less than 10 times 

the slab thickness from a column, ACI Code 

Section 11.11.6 requires that the critical 

perimeter be reduced as shown in Figure (next 

slide)
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 Tributary areas for shear in two-way slabs

 For uniformly loaded two-way slabs, the 

tributary areas used to calculate Vu are bounded 

by lines of zero shear. For interior panels, these 

lines can be assumed to pass through the center

of the panel. For edge panels, lines of zero shear 

are approximately at 0.42l to 0.45l from the 

center of the exterior column, where l is the 

span measured from center-to-center of the cols. 

123



 However to be conservative in design, ACI Code 

Section 8.4.3 requires that the exterior supports 

must resist a shear force due to loads acting on 

half of the span (0.5l). Also to account for the 

larger tributary area for the 1st interior support, 

ACI Code, Section 8.4.3 requires that the shear 

force from loads acting on half the span must be 

increased by 15%. See Figure (next slide)
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 Design Equations: Two-way shear with 

negligible moment transfer

 Lateral loads and unbalanced floor loads, on a 

flat-plate building require that both moments 

and shears be transferred from the slab to the 

columns. In the case of interior columns in a 

braced flat-plate building, the worst loading case 

for shear generally corresponds to a negligible 

moment transfer from the slab to the column. 

Similarly, columns generally transfer little or no 

moment to footings

 Design for two-way shear w/o moment transfer is 

carried out by using EBCS-2 Eq (…)
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 6.4 Punching

 6.4.1 General

 (1)P The rules in this section complement those 
given in 6.2 (Shear) and cover punching shear in 
solid slabs, waffle slabs with solid areas over 
columns, and foundations.

 (2)P Punching shear can result from a 
concentrated load or reaction acting on a 
relatively small area, called the loaded area Aload

of a slab or foundation.

 (3) An appropriate verification model for 
checking punching failure at the ULS is shown in 
Figure (next slide)
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 (4) The shear resistance should be checked 

along defined control perimeters

 (5) The rules in 6.4 are principally 

formulated for the case of uniformly 

distributed loading. In special case, such as 

footings, the load within the control 

perimeter adds to the resistance of the 

structural system, and may be subtracted 

when determining the design punching shear 

stress
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 6.4.2 Load distribution and basic control 

perimeter

 (1) The basic control perimeter u1 may 

normally be taken to be at a distance 2.0d 

from the loaded area and should be 

constructed so as to minimize its length (see 

Figure next slide). The effective depth of the 

slab is assumed constant and may normally 

be taken as: deff = (dy + dz)/2; where dy and 

dz are the effective depths of the 

reinforcement in two orthogonal directions
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 (2) Control perimeters at a distance less than 2d 
should be considered where the concentrated 
force is opposed by a high distributed pressure 
(e.g. soil pressure in a base), or by the effects of 
a load or reaction within a distance 2d of the 
periphery of area of application of the force

 (3) For loaded areas situated near openings, if 
the shortest distance b/n the perimeter of the 
loaded area and the edge of the opening does 
not exceed 6d, that part of the control 
perimeter contained b/n two tangents drawn to 
the outline of the opening from the center of the 
loaded area is considered to be ineffective (SNS)
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 (4) For a loaded area situated near an edge 

or a corner, the control perimeter should be 

taken as shown in Figure (SNS), if this gives a 

perimeter (excluding the unsupported edges) 

smaller than that obtained from (1) and (2) 

above.
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 (5) For loaded areas situated near or on an 
edge or corner, i.e. at a distance smaller 
than d, special edge reinforcement should 
always be provided, see 9.4.1.4

 (6) The control section is that which follows 
the control perimeter and extends over the 
effective depth d. For slabs of constant 
depth, the control section is  to the middle 
plane of the slab. For slabs or footings of 
variable depth, the effective depth may be 
assumed to be the depth at the perimeter of 
the loaded area
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 (7) Further perimeters, ui, inside and outside 
the control area should have the same shape 
as the basic control perimeter.

 (8) For slabs with circular column heads for 
which lh  2hH (see Fig next slide) a check of 
the punching shear stresses according to 
6.4.3 is only required on the control section 
outside the column head. The distance of 
this section from the centroid of the column 
rcont may be taken as: rcont = 2d + lH + 0.5c; 
where lH is the distance from the column 
face to the edge of the column head and c is 
the diameter of a circular column

137



138



 For a rectangular column with a rectangular 
head with lh  2d and overall dimensions l1
and l2 (l1 = c1 +2lH1, l2 = c2 +2lH2, l1  l2), the 
value rcont may be taken as the lesser of: rcont

= 2d + 0.56√(l1 l2) and rcont = 2d + 0.69 l1

 (9) For slabs with enlarged column heads 
where lh  2hH (see Figure NS) the critical 
sections both within the head and in the slab 
should be checked.

 (10) The provisions of 6.4.2 and 6.4.3 also 
apply for checks within the column head with 
d taken as dH according to Figure in NS.
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 (11) For circular columns the distances from 
the centroid of the column to the control 
sections in Figure (SPS) may be taken as: 
rcont,ext = lH + 2d + 0.5c; rcont,int = 2(d + hH) + 
0.5c

 6.4.3 Punching shear calculation

 (1)P The design procedure for punching shear 
is based on checks at a series of control 
sections, which have a similar shape as the 
basic control section. The following design 
shear stresses, per unit area along the 
control sections, are defined:
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 vRd,c is the design value of the punching shear 

resistance of a slab w/o punching shear 

reinforcement along the control section 

considered

 vRd,cs is the design value of the punching 

shear resistance of a slab with punching 

shear reinforcement along the control 

section considered

 vRd,max is the design value of the maximum 

punching shear resistance along the control 

section considered
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 (2) The following checks should be carried 

out;

 (a) At the column perimeter, or the perimeter of 

the loaded area, the maximum punching shear 

stress should not be exceeded:  vEd < vRd,max

 (b) Punching shear reinforcement is not 

necessary if: vEd < vRd,c

 (c) Where vEd exceeds the value vRd,c for the 

control section considered, punching shear 

reinforcement should be provided according to 

6.4.5
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 (3) where the support reaction is eccentric with 

regard to the control perimeter, the maximum 

shear stress should be taken as: vEd = (VEd/uid); 

where d is mean effective depth of slab, taken 

as (dy + dz)/2; ui is length of control perimeter 

being considered; and  is given by:  = 1 + 

k(MEd/VEd)(u1/W1) Eq.(6.39); where u1 is the 

length of the basic control perimeter; k is a 

coefficient dependent on the ratios b/n the 

column dimensions c1 and c2: its value is a 

function of the proportions of the unbalanced 

moment transmitted by uneven shear and by 

bending and torsion (see Table 6.2)
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W1 corresponds to a distribution of shear as 

shown in Figure (SNS) and is a function of the 
basic control perimeter u1: W1 = 

0

uedl; 

where dl is the a length increment of the 

perimeter; and e is the distance of dl from 

the axis about which the moment MEd acts.

Table 6.2: Values of k for rectangular 

loaded areas
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c1/c2  0.5 1.0 2.0  4.0

k 0.45 0.60 0.70 0.80
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Fig: Shear distribution due to an unbalanced moment at 

a slab-internal column connection



 For a rectangular column: W1 = (c1
2/2) + c1c2

+ 4c2d + 16d2 + 2dc1; where c1 is the column 

dimension parallel to the eccentricity of the 

load; and c2 is the column dimension  to the 

eccentricity of the load.

 For internal columns  follows from:  = 1 + 

0.6(e/(D+4d))

 For an internal rectangular column where the 

loading is eccentric to both axes, the 

following approximate expression for  may 

be used:  = 1 + 1.8(√(ey/bz)
2 + (ez/by)

2; where
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 ey and ez are the eccentricities MEd/VEd along 
y and z axes respectively; by and bz is the 
dimensions of the control perimeter (see 
figure 6.13); D is the diameter of the circular 
column. (Note: ey results from a moment about the z 
axis and ez from a moment about the y axis)

 (4) For edge column connections, where the 
eccentricity  to the slab edge (resulting 
from a moment about an axis  to the slab 
edge) is toward the interior and there is no 
ecc to the edge, the punching force may 
be considered to be uniformly distributed 
along the control perimeter u1

* (See NS).
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Where there are ecc in both orthogonal 

directions,  may be determined using the 

following expression:  = (u1/u1*) + 

k(u1/W1)epar; where u1 is the full control 

perimeter (see Fig 6.15); u1* is the reduced 

control perimeter (See Fig 6.20 (a)); epar is 

the ecc to the slab edge resulting from a 

moment about an axis  to the slab edge; k 

may be determined from Table 6.2 with the 

ratio c1/c2 replaced by c1/2c2; and W1 is 

calculated for the full perimeter (see fig 6.13
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 For a rectangular column as shown in Figure 
6.20(a): W1 = (c2

2/4) + c1c2 + 4c1d + 8d2 + 
dc2

 If the ecc  to the slab edge is not toward 
the interior, Expression (6.39) applies. When 
calculating W1 the ecc e should be measured 
from the centroid of the control perimeter.

 (5) For corner column connections, where 
the ecc is toward the interior of the slab, it 
is assumed that the punching force is 
uniformly distributed along the reduced 
control perimeter u1*, as defined in Fig 6.20b
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 The -value may then be considered as:  = 

u1/u1*. If the ecc is toward the exterior, 

Expression (6.39) applies

 (6) For structures where the lateral stability 

does not depend on frame action b/n the 

slabs and the columns, and where the 

adjacent spans do not differ in length by 

more than 25%, approximate values for 

may be used ( = 1.15 for internal columns; 

= 1.4 for edge columns).
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 (7) Where a concentrated load is applied 
close to a flat slab column support, the 
resistance enhancement according to 
6.2.2(5) is not valid and should not be 
included.

 (8)The punching shear force VEd in a 
foundation slab may be reduced due to the 
favorable action of the soil pressure.

 (9) The vertical component Vpd resulting from 
inclined prestressing tendons crossing the 
control section may be taken into account as 
a favorable action where relevant.
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 6.4.4 Punching shear resistance for slabs or 
column bases w/o shear reinforcement

 (1) The punching shear resistance of a slab 
should be assessed for the basic control section 
according to 6.4.2. The design punching stress 
(resistance) is given by: vRd,c = CRd,ck(100lfck)

1/3

+ 0.10cp  (vmin + 0.10cp); where fck is n MPa; k 
= 1 + √(200/d)  2.0 d in mm; l = √(ly lz) 
0.02; ly, lz relate to the bonded tension steel in 
the y- and z- directions respectively. The values 
ly, lz) should be calculated as mean values 
taking into account a slab width equal to the 
column width plus 3d each side.
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cp= (cy + cz)/2; where cy, cz are the 

normal concrete stresses in the critical 

section in y- and z-directions (MPa, positive 

if compression): cy= NEd,y/Acy and cy= 

NEd,z/Acz where NEd,y, NEd,z/ are the 

longitudinal forces across the full bay for 

internal columns and the longitudinal forces 

across the control section for edge columns. 

The force may be from a load or prestressing 

action; Ac is the area of concrete according 

to the definition of NEd(Note: the values of 

CRd,c and vmin for use in a Country may…
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 The recommended value for CRd,c is 0.18/c

and that for vmin is given by Expression (6.3N)

 (2) The punching resistance of column bases 
should be verified at control perimeters 
within 2d from the periphery of the column. 
The lowest value of resistance found in this 
way should control the design. For concertric
loading the net applied force is: VEd,red = VEd -
VEd; where VEd is the column load; and Ved

is the net upward force within the control 
perimeter considered, i.e., upward pressure 
from soil minus self weight of base
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 vEd = VEd,red/ud

 vRd = CRd,ck(100fck)
1/3 + 2d/a  vmin  (2d/a) ; 

where a is the distance from the periphery of 

the column to the control perimeter 

considered; CRd,c defined in 6.4.4(1); vmin

defined in 6.4.4(1)

 For eccentric loading: vEd = (VEd,red/ud)[1 + 

k(MEdu/VEd,redW)]; where k is defined in 

6.4.3(4)
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 6.4.5 Punching shear resistance of slabs or 

column  bases with shear reinforcement

 Read!
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 4.10.0 Equivalent-Frame Methods

 The ACI Code presents two general methods 
for calculating the longitudinal distribution 
of moments in two-way slab systems. These 
are the direct-design method and the 
equivalent-frame methods.

 Equivalent-frame methods are intended for 
use in analyzing moments in any practical 
slab-column frame. Their scope is thus wider 
than the direct-design method, which is 
subject to the limitations presented in 
Section 13-7.
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 In the direct-design method, the statical 
moment M0, is calculated for each slab span. 
This moment is then distributed b/n positive-
and negative- moment regions using arbitrary 
moment coefficients, which are adjusted to 
reflect pattern loadings.

 For equivalent-frame methods, a stiffness 
analyses of a slab-column frame is used to 
determine the longitudinal distribution of 
bending moments, including possible pattern 
loadings. The transverse distribution of 
moments to column and middle strips, is the 
same for both methods
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4.10.1 Classic Equivalent-Frame Analysis 
of Slab Systems for Vertical Loads

 The slab is divided into a series of equivalent 
frames running in two directions of the building 
as shown in Figure (SNS).

 These frames consist of the slab, any beams that 
are present, and columns above and below the 
slab.

 For gravity load analysis, the code allows 
analysis of entire equivalent frame extending 
over the height of the building, or each floor can 
be considered separately with the far ends of 
the columns being fixed.
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 The original derivation of the classic equivalent-
frame method assumed that the moment 
distribution would be the calculation procedure 
used to analyze the continuous-slab system, so 
some of the concepts in the method are 
awkward to adapt to other methods of analysis.

 (i) Calculation of Stiffness, Carryover, and 
Fixed-End Moments

 In the moment distribution method, it is 
necessary to compute flexural stiffnesses, K; 
carry-over factors, COF; distribution factors, DF; 
and fixed-end moments, for each members in 
the structure (read..)
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 In the equivalent-frame method, the increased 

stiffness of members within the column-slab 

joint region is accounted for, as is the variation 

in cross section at drop panels. As a result, all 

members have a stiffer section at each end, as 

shown in Figure (SNS)

 (ii) Properties of Slab-Beams

 The horizontal members in the equivalent frame 

are referred to as slab-beams. These consist of 

either only a slab, or a slab and a drop panel, or 

a slab with a beam running parallel to the 

equivalent frame

164



165

Fig. 13-31 Variation in stiffness along a span

(b) Distribution of EI along slab



 ACI Code Section 14.7.3 explains how these 

nonprismatic beams are to be modeled for 

analysis: (Read)

 The application of the approach is illustrated 

in Figures (SNS). Tables A-14 through A-16 etc 

present moment-distribution constants for 

flat plates and for slabs with drop panels.

 Example- Calculation of the Moment-

Distribution Constants for Flat-Plate Floor 

(Read pp 670, and 672)

166



167

(c) Cross section used to 

compute I1-Section A-A

(d) Cross section used to 

compute I2-Section B-B

EI1
EI2

Fig. 13-32 EI values for a 

slab with a drop panel

l2

l2
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l2

l2

EI2 EI1

h1 h2

h3

(c) Cross section used to 

compute I1-Section C-C

(d) Cross section used to compute I1-Section D-D

(b) Variation of EI along 

slab beam



 (iii) Properties of Columns

 In computing the stiffnesses and carryover 

factors for columns, ACI Code Section 14.7.4 

states the following:

 1. The moment of inertia of columns at any 

section outside of the joints or column 

capitals may be based on the gross area of 

the concrete, allowing for variations in the 

actual moment of inertia due to changes in 

the column cross section along the length of 

the column (SNS) (read)
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lc EccIc

I=

I=

EccIc

I=

I=

Column stiffness 

diagram

Column stiffness 

diagram

Fig. 13-37 Sections 

for the calculations 

of column stiffness



 (iv) Torsional Members and Equivalent 
Columns

When the beam and column frame shown in 
Figure (SNS) is loaded, the ends of the 
column and beam undergo equal rotations 
where they meet at the joint. If the flexural 
stiffness, K=M/, is known for the two 
members, it is possible to calculate the joint 
rotations and the end moments in the 
members. Similarly, in the case shown in 
Figure (b), the ends of the slab and the wall 
both undergo equal end rotations when the 
slab is loaded

171



172




A

A

C

Attached torsional 

member

Fig. 13-38 Frame 

action and twisting 

of edge member 

A

A’
C

B

B’

D
(c) Slab column 

frame

(b) Slab and wall 

frame

(a) Beam and 

column frame



When a flat plate is connected to a column, 

as shown in Fig(c), the end rotation of the 

column is equal to the end rotation of the 

strip of slab C-D, which is attached to the 

column.

 The rotation at A of the strip A-B is greater 

than the rotation at point C, however, 

because there is less restraint to the rotation 

of the slab at this point

 In effect the edge of the slab is twisted, as 

shown in Fig (d)
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 As a result, the average rotation of the edge of 
the slab is greater than the rotation of the end 
of the column

 To account for this effect in slab analysis, the 
column is assumed to be attached to the slab-
beam by the transverse torsional members A-C 
and C-A’. One way of including these members in 
the analysis is by use of the concept of an 
equivalent column, which is a single element 
consisting of the columns above and below the 
floor and attached torsional members, as shown 
in Figure (d).

 Go to S.187
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 The stiffness of the equivalent column, Kec, 
represents the combined stiffness of the columns 
and attached torsional members:
 Kec = M/(average rotation of the edge beam)

 The flexibility of the equivalent column, 1/Kec, is 
equal to the average rotation of the joint b/n 
the “edge beam” and the rest of the slab when a 
unit moment is transferred from the slab to the 
equivalent column.

 This average rotation is the rotation of the end 
of the columns, c, plus the average twist of the 
beam, t,avg, with both computed for a unit 
moment
 ec = c + t,avg

175



 The value of c for a unit moment is 1/Kc, 

where Kc refers to the sum of the flexural 

stiffnesses of the columns above and below 

the slab.

 Similarly, the value t,avg for a unit moment is 

1/Kt, where Kt is the torsional stiffness of the 

attached torsional members. Substituting:
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 If the torsional stiffness of the attached torsional 
members is small, Kec will be much smaller than 
Kc

 The derivation of the torsional stiffness of the 
torsional members (or edge beams) is illustrated 
in Figure (SNS).

 Figure (a) shows an equivalent column with 
attached torsional members that extend halfway 
to the next column in each direction.

 A unit torque, T=1, is applied to the equivalent 
column with half going to each arm. Linear 
torque distribution t, per unit length is assumed 
as shown in Figure (b)
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2/l2

(b) Distribution of torque per unit 

length

(c) Torque diagram

(d) Angle change per unit length

Fig. 13-39 Calculation of Kt

T=1/2

=

l2



 The applied torques give rise to the twisting-
moment diagram shown in Figure (c). Because 
half of the torque is applied to each arm, the 
maximum twisting moment is ½.

 The twist angle per unit length is shown in Figure 
(d). This is calculated by dividing the twisting 
moment at any point by CG, the product of the 
torsional constant, C (similar to a polar moment 
of inertia), and the modulus of rigidity, G.

 The total twist of the end of an arm relative to 
the column is the summation of the twists per 
unit length and is equal to the area of the 
diagram in Figure (d) (diagram is parabolic) 
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 Area equals 1/3 of the height times the length of 
the diagram 

 Replacing G with E/2

 This is the rotation of the end of the arm. The 
rotation required for use in Eqn above is the 
average rotation of the arm, which is assumed to 
be a third of the end rotations.
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

 Finally, the torsional stiffness of one arm is 

calculated as Kt=M/t,avg, where the moment 

resisted by one arm is taken as ½, giving:

 ACI expresses the torsional stiffness of the 

two arms as 
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

 For a corner column there is only one term in 

the summation.

 The cross section of the torsional members is 

defined in ACI Code Section 13.7.5 and is 

illustrated in Figure (SNS)
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 The constant C in Eqns above is calculated by 

subdividing the cross section into rectangles 

and carrying the out the summation

 Where x is the shorter side of a rectangle and y is the 

longer side.

 Read example 13-7 and 13-8 –Calculation of 

Kt, Kc, and Kec
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 If a beam parallel to the l1 direction (a beam 
along C-D in Figure 13-38) frames into the 
column, a major fraction of the exterior 
negative moment is transferred directly to 
the column w/o involving the attached 
torsional member. In such a case, Kec

underestimates the stiffness of the column.

 This is allowed for empirically by multiplying 
Kt by the ratio Isb/Is, where Isb is the moment 
of inertia of the slab and beam together and 
Is is the moment of inertia of the slab 
neglecting the beam stem (ACI Code 
Section13.7.5.2)
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 Arrangement of live loads for structural analysis and 
moments at face of supports  See example 13-9 for 
Analysis of a Flat-Plate using the Classic Equivalent-
Frame Method

 Distribution of Moments to Column Strips, Middle 
Strips, and Beams
 Once the negative and positive moments have been 

determined for each equivalent frame, these are 
distributed to column and middle strips in the same way 
as in the DDM.

 For panels with beams b/n the columns on all sides, the 
distribution of moments to the column and middle strips 
according to ACI Code Sections 13.6.4 and 13.6.6 is valid 
only if f1l2

2/f2l1
2 falls b/n 0.2 and 5.0. Cases falling 

outside of this range tend to approach one-way action, 
and other methods of slab analysis are required
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 4.10.2 Use of Computers for an Equivalent-
Frame Analysis

 The classic EFM was derived by assuming that 
the structural analysis would be carried out by 
hand using the moment-distribution method.

 Thus tables were developed to evaluate fixed-
end moments, stiffnesses, and equivalent-
column stiffnesses for use in such analysis

 If standard frame analysis software based on the 
stiffness method is to be used, the torsional 
member (and the resulting equivalent-column 
stiffness) defined in the classic EFM will need to 
be incorporated into the stiffness of either the 
slab-beam or column elements.
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 The general research direction has been to 
modify the stiffness of the slab-beam element by 
defining an effective slab width to reduce the 
element stiffness, particularly at connections.

 The frame analysis results for gravity loading, 
obtained using the modified slab-beam 
elements, should be in reasonable agreement
with those obtained from the classic EFM.

 Several researchers have worked on the 
development of effective slab width models that 
could be used to define the stiffness of an 
equivalent beam in a standard frame analysis 
program for the analysis of slab-column frame 
subjected to combined vertical and lateral 
loading. (based on plate theory and exp results)
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Hueste and Wight the 1st step in building a 

slab-column frame analysis model is to select 

an effective slab width that is a fraction, , 

of the total slab width, l2 (avg) as shown in 

Figs. 13-34 and 13-35 (SNS).

 A wide range of  values have been 

suggested by various researchers, but Wight

prefers to simply use  = 0.5 for all positive-

bending regions and for negative-bending

regions at interior supports.
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 For negative-bending regions at exterior 

supports, the effective slab width depends 

on the torsional stiffness at the edge of the 

slab.

 If no edge beam is present, then an  value 

of 0.2 is recommended.

 If an edge beam is present and has a 

torsional stiffness such that t, as defined in 

Eqn (13-12), is greater than or equal to 2.5, 

then the recommended  value is 0.5
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 If the value of t is b/n 0.0 and 2.5, a linear 

interpolation can be used to find an  value 

b/n 0.2 and 0.5.

 For low values of , the effective slab width 

should not be taken to be less than the 

column width, c2, plus one-half of the 

column total depth, c1, on each side of the 

column (Fig. 13-48).

 For slab-column frame along a column line at 

the edge of a floor plan, the effective slab 

widths are reduced accordingly.
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 The resulting models for one exterior and one 

interior column line is shown in Fig. 13-49

 As indicated in Fig. 13-49, the negative-bending 

region at the exterior connection is assumed to 
extend over 20 percent (0.2l1) of the span. The 

authors recommend that the same assumption be 

used for negative-bending regions at all interior 

and exterior connections.

 This assumption essentially creates extra node 

points within the span and becomes important 

when assigning cracked-stiffness values to the 

positive and negative moment regions
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 After the effective slab width, l2, has been 
established, the gross moment of inertia for 
the slab-beam can be calculated using either 
a section similar to Fig. 13-32 c (if no beam 
is present) or a section similar to that in Fig 
13-33c (if a beam is present). For both cases, 
the effective slab width, l2, is to be used in 
place of the l2 value shown in those figures.

 If a drop panel is present in the negative-
bending region, then a section similar to that 
used in Fig. 13-32d (with l2, in place of l2) is 
to be used. Read more.
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 A final modification is to be made to the slab-
beam stiffness to account for flexural cracking. 
In general, the cracked moment of inertia for a 
slab-beam section, Icr, is some fraction of the 
gross moment of inertia for that section. 
Because slabs normally have lower 
reinforcement ratios than beams, their cracked 
moment of inertia is usually a smaller fraction of 
the gross moment of inertia than for a typical 
beam section. However, because large portions 
along the slab-beam will remain uncracked and 
the flexural cracks that do occur usually will not 
propagate over the entire width of the slab, an 
effective moment of inertia, Ie, needs to be 
defined for different portions of the slab-beam 
span.
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 Commonly, a factor  is used to define the 
effective moment of inertia as some fraction 
of the gross moment of inertia (Ie = Ig). For 
all positive-bending regions of the slab, the 
author recommends =0.5.

 Because larger moments typically occur near 
interior connections, and in order to not 
overestimate the slab-to-edge beam-to-
column stiffness at an exterior connection, 
whether or not an edge beam is present, the 
author recommends a  factor of 0.33 for all 
negative bending regions. (see summary SNS)
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 For analysis of post-tensioned slabs, wight etal 
have recommended the use of a  value equal to 
0.67 because of the reduced flexural cracking 
expected in a post tensioned slab.

 For a gravity load analysis, the slab-beam 
elements can be assembled with column 
elements that extend one story above and one 
story below the floor system (F9g 13-50), as 
permitted by ACI Code Section 13.7.2.5

 The column lengths should be set equal to the 
center-to-center dimensions from one floor level 
to the next, and the gross moment of inertia of 
the column sections can be used as input to the 
structural analysis software. (moment at face of 
support etc. Read)
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Analysis of Slab-Column Frames for 

Combined Gravity and Lateral Loads

 A frame consisting of columns and either flat 

plates or flat slabs but lacking shear walls or 

other bracing elements is inefficient in 

resisting lateral loads and may be subject to 

significant lateral drift deflections.

 As a result, slab-column frame structures of 

more than two or three stories are generally 

braced by shear walls.
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 When unbraced slab-column frames are used, it 
is necessary to analyze equivalent frame 
structures for both gravity and lateral loads.

 The general equivalent-frame analysis method 
discussed previously can be used by simply 
extending the slab-column frame over the full 
height of the structure, as shown in Fig. 13-51.

 In order not to overestimate the lateral stiffness 
of the slab-column frame (and thus 
underestimate the lateral deflections), the 
author recommends that the effective moment 
of inertia of the column sections should be taken 
as 70 percent of the gross moment of inertia, as 
required in ACI Code Section 10.10.4.1 for 
lateral stability analysis.
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