Stress and Equilibrium

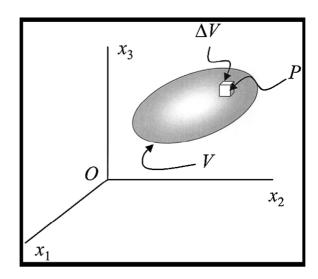
Tensoranalysis

Stress (Basic assumptions and definitions)

- In continuum mechanics a body is considered stress free if the only forces present are those inter-atomic forces required to hold the body together
- Types of forces:
 - **Body forces** i.e.: gravity, inertia; designated by vector symbol b_i (force per unit-mass) or p_i (force per unit volume); acting on all volume elements, and distributed throughout the body;
 - **Surface forces** i.e.: pressure; denoted by vector symbol f_i (force per unit area of surface across they which they act); act upon and are distributed in some fashion over a surface element of the body,

Stress (Basic assumptions and definitions)

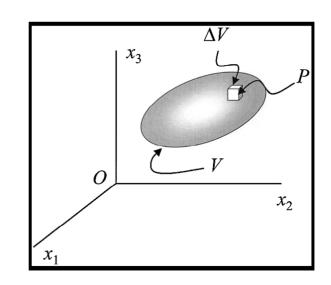
- External forces acting on a body (loads applied to the body);
- Internal forces acting between two parts of the body (forces which resist the tendency for one part of the member to be pulled away from another part).



Stress (density definition)

- In continuum mechanics we consider a material body B having a volume V enclosed by a surface S, and occupying a regular region R₀ of physical space.
- Let P be an interior point of the body located in the small element of volume ΔV and mass is ΔM. Density

$$\rho_{ave} = \frac{\Delta m}{\Delta V}$$



The density is in general a scalar function of position and time:

$$\rho = (\mathbf{x}, t)$$

Stress (density definition)

The density p at point P by the limit of this ratio as the volume shrinks to the point:

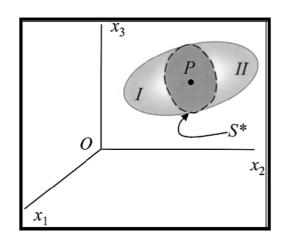
$$\rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V} = \frac{dm}{dV}$$

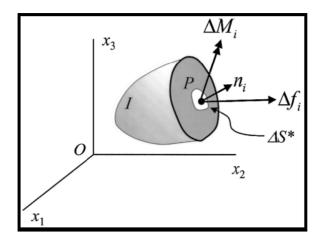
The units of density are kg/m³. Two measures of body forces, b_i having units of (N/kg), and p_i having units of (N/m³), are related through the density by the equation:

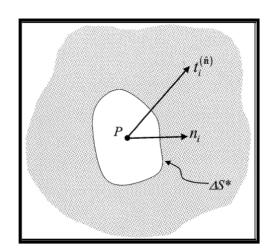
$$\rho b_i = p_i$$

Cauchy Stress Principle

• We consider a homogeneous, isotropic material body \boldsymbol{B} having a bounding surface \boldsymbol{S} , and a volume \boldsymbol{V} , which is subjected to arbitrary surface forces \boldsymbol{f}_i and body forces \boldsymbol{b}_i . Let \boldsymbol{P} be an interior point of \boldsymbol{B} and imagine a plane surface \boldsymbol{S}^* passing through point \boldsymbol{P}







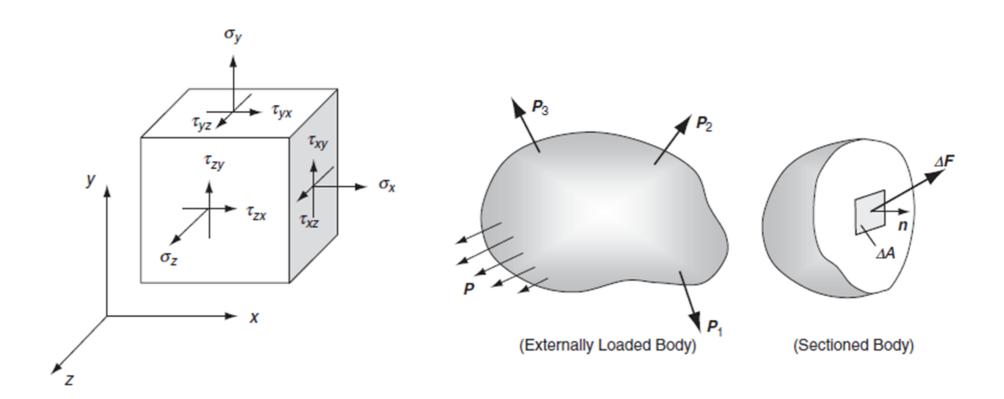
Cauchy Stress Principle

- Point P is in the small element of area ΔS^* of the cutting plane, which is defined by the unit normal pointing in the direction from Portion I into Portion II.
- The internal forces will give rise to a force distribution on ΔS^* equivalent to a resultant force Δf_i and a resultant moment ΔM_i at P.
- The Cauchy stress principle asserts that in the limit as the area ΔS^* shrinks to zero with P remaining an interior point, we obtain:

$$\lim_{\Delta S^* \to 0} \frac{\Delta f_i}{\Delta S^*} = \frac{df_i}{dS^*} = t_i^{(\hat{n})}$$

$$\lim_{\Delta S^* \to 0} \frac{\Delta M_i}{\Delta S^*} = 0$$

Components of Stress



The Stress Tensor (rectangular Cartesian components)

 Consider the traction vector of an oblique plane with arbitrary orientation; with a unit normal to the surface:

$$\boldsymbol{n} = \boldsymbol{n}_x \boldsymbol{e}_1 + \boldsymbol{n}_y \boldsymbol{e}_2 + \boldsymbol{n}_z \boldsymbol{e}_3$$

Where n_x , n_y and n_z are direction cosines of the unit vector \mathbf{n} relative to the given coordinate system.

 Force balance between tractions on the oblique and coordinate faces gives:

$$T^{n} = n_{x}T^{n}(n = e_{1}) + n_{y}T^{n}(n = e_{2}) + n_{z}T^{n}(n = e_{3})$$

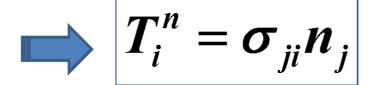
The Stress Tensor (rectangular Cartesian components)

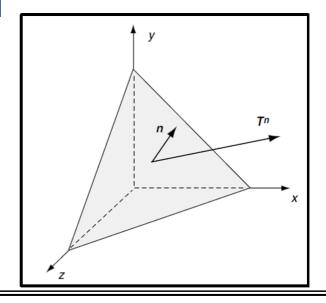
This can be written as:

$$T^{n} = (\sigma_{x} n_{x} + \tau_{yx} n_{y} + \tau_{zx} n_{z}) e_{1}$$

$$+ (\tau_{xy} n_{x} + \sigma_{y} n_{y} + \tau_{zy} n_{z}) e_{2}$$

$$+ (\tau_{xz} n_{x} + \tau_{yz} n_{y} + \sigma_{z} n_{z}) e_{3}$$





Stress Transformation

Stress components at an oblique plane with arbitrary orientation:

$$\sigma'_{ij} = Q_{ip}Q_{jq}\sigma_{pq}$$

Where the rotation matrix $Q_{ij} = \cos(x'_{i}, x_{j})$

 For the general three-dimensional case, the rotation matrix may be chosen in the form

$$Q_{ij} = \begin{bmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{bmatrix}$$

Stress Transformation

The specific translation then becomes:

$$\begin{split} \sigma_{x}^{'} &= \sigma_{x} l_{1}^{2} + \sigma_{y} m_{1}^{2} + \sigma_{z} n_{1}^{2} + 2(\tau_{xy} l_{1} m_{1} + \tau_{yz} m_{1} n_{1} + \tau_{zx} n_{1} l_{1}) \\ \sigma_{y}^{'} &= \sigma_{x} l_{2}^{2} + \sigma_{y} m_{2}^{2} + \sigma_{z} n_{2}^{2} + 2(\tau_{xy} l_{2} m_{2} + \tau_{yz} m_{2} n_{2} + \tau_{zx} n_{2} l_{2}) \\ \sigma_{z}^{'} &= \sigma_{x} l_{3}^{2} + \sigma_{y} m_{3}^{2} + \sigma_{z} n_{3}^{2} + 2(\tau_{xy} l_{3} m_{3} + \tau_{yz} m_{3} n_{3} + \tau_{zx} n_{3} l_{3}) \\ \tau_{xy}^{'} &= \sigma_{x} l_{1} l_{2} + \sigma_{y} m_{1} m_{2} + \sigma_{z} n_{1} n_{2} + \tau_{xy} (l_{1} m_{2} + m_{1} l_{2}) + \tau_{yz} (m_{1} n_{2} + n_{1} m_{2}) + \tau_{zx} (n_{1} l_{2} + l_{1} n_{2}) \\ \tau_{yz}^{'} &= \sigma_{x} l_{2} l_{3} + \sigma_{y} m_{2} m_{3} + \sigma_{z} n_{2} n_{3} + \tau_{xy} (l_{2} m_{3} + m_{2} l_{3}) + \tau_{yz} (m_{2} n_{3} + n_{2} m_{3}) + \tau_{zx} (n_{2} l_{3} + l_{2} n_{3}) \\ \tau_{zx}^{'} &= \sigma_{x} l_{3} l_{1} + \sigma_{y} m_{3} m_{1} + \sigma_{z} n_{3} n_{1} + \tau_{xy} (l_{3} m_{1} + m_{3} l_{1}) + \tau_{yz} (m_{3} n_{1} + n_{3} m_{1}) + \tau_{zx} (n_{3} l_{1} + l_{3} n_{1}) \end{split}$$

Two dimensional problems

In-plane stress components transform according to:

$$\sigma_{x}^{'} = \sigma_{x} \cos^{2} \theta + \sigma_{y} \sin^{2} \theta + 2\tau_{xy} \sin \theta \cos \theta$$

$$\sigma_{y}^{'} = \sigma_{x} \sin^{2} \theta + \sigma_{y} \cos^{2} \theta - 2\tau_{xy} \sin \theta \cos \theta$$

$$\tau_{xy}^{'} = -\sigma_{x} \sin \theta \cos \theta + \sigma_{y} \sin \theta \cos \theta + \tau_{xy} (\cos^{2} \theta - \sin^{2} \theta)$$

Commonly rewritten in terms of the double angle:

$$\sigma_{x}^{'} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\sigma_{y}^{'} = \frac{\sigma_{x} + \sigma_{y}}{2} - \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta - \tau_{xy} \sin 2\theta$$

$$\tau_{xy}^{'} = \frac{\sigma_{y} - \sigma_{x}}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

- The determination of principal stress values and principal stress directions follows precisely the procedure for determining principal values and principal directions of any symmetric second-order tensor.
- The direction determined by the unit vector n is said to be a principal direction or eigenvector of the symmetric second-order tensor σ_{ii} if there exists a parameter λ such that

$$\sigma_{ij}n_j=\lambda\cdot n_i$$

Where λ is called the principal value or eigenvalue of the tensor, and the substitution property of the Kronecker delta allows to rewrite the above equation as:

$$(\sigma_{ij} - \lambda \delta_{ij})n_j = 0$$

The above expression is simply a homogeneous system of three linear algebraic equations in the unknowns n_1 , n_2 , n_3 . The system possesses a nontrivial solution if and only if the determinant of its coefficient matrix vanishes, that is:

$$\det \left[\sigma_{ij} - \lambda \delta_{ij} \right] = 0$$

which upon expansion yields a cubic in σ (called the characteristic equation of the stress tensor)

$$\det \left[\sigma_{ij} - \lambda \delta_{ij}\right] = -\lambda^3 + I_a \lambda^2 - II_a \lambda + III_a = 0$$

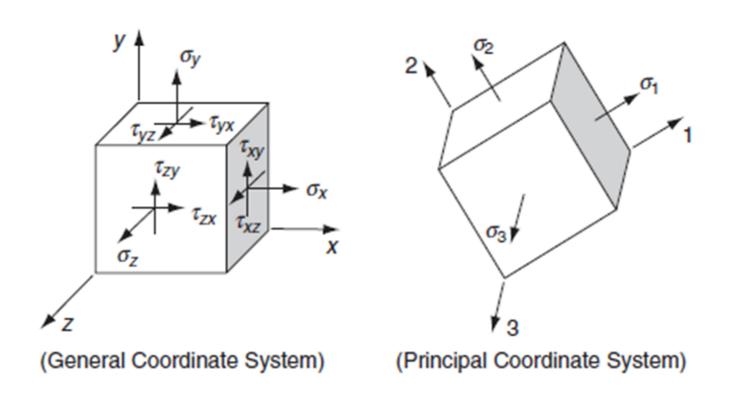
Where;

$$I_{a} = \sigma_{ii}$$

$$II_{a} = \frac{1}{2} \left(\sigma_{ii} \sigma_{jj} - \sigma_{ij} \sigma_{ij} \right)$$

$$III_{a} = \det \left[\sigma_{ij} \right]$$

• The scalars I_{α} , II_{α} , and III_{α} are called the fundamental invariants of the stress tensor σ_{ij} and do not change value under coordinate transformation

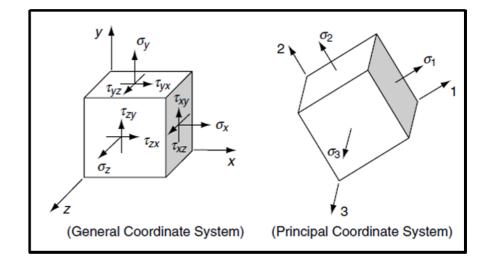


- By denoting the principal directions $\mathbf{n_1}$, $\mathbf{n_2}$, $\mathbf{n_3}$ corresponding to the principal values λ_1 , λ_2 , λ_3 three possibilities arise:
 - All three principal values distinct; thus, the three corresponding principal directions are unique (except for sense)
 - II. Two principal values equal ($\lambda_1 \neq \lambda_2 = \lambda_3$); the principal direction n_1 is unique (except for sense), and every direction perpendicular to n_1 is a principal direction associated with λ_2 , λ_3 .
 - III. All three principal values equal; every direction is principal, and the tensor is isotropic.

With respect to principal axes the stress tensor reduces to the diagonal form

$$oldsymbol{\sigma}_{ij} = egin{bmatrix} oldsymbol{\lambda}_1 & oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\lambda}_2 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{\lambda}_3 \end{bmatrix}$$

and the stress invariants can be expressed as:

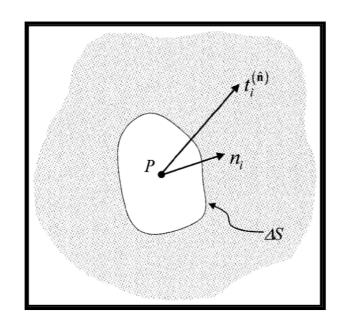


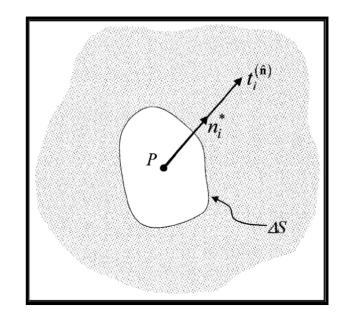
$$I_a = \lambda_1 + \lambda_2 + \lambda_3$$

$$II_a = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1$$

$$III_a = \lambda_1 \lambda_2 \lambda_3$$

The eigenvalues have important extremal properties. If we arbitrarily rank the principal values such that $\lambda_1 > \lambda_2 > \lambda_3$, then λ_1 will be the largest of all possible diagonal elements, while λ_3 will be the smallest diagonal element possible.





Normal and Shear Stress Components

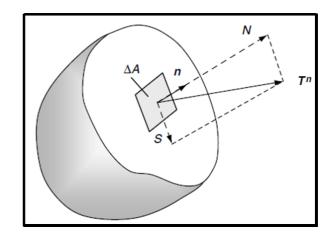
Consider the general traction vector Tⁿ
 Let N and S be the traction vector's normal and shear components

$$N = T^{n}.n$$

$$S = \left(\left|T^{n}\right|^{2} - N^{2}\right)^{1/2}$$

$$N = T^{n}.n = T_{i}^{n}.n_{i} = \sigma_{ji}n_{j}n_{i}$$

$$N = \sigma_{1}n_{1}^{2} + \sigma_{2}n_{2}^{2} + \sigma_{3}n_{3}^{2}$$



Using the above relations;

$$N = T^{n}.n$$

$$N = \sigma_{1}n_{1}^{2} + \sigma_{2}n_{2}^{2} + \sigma_{3}n_{3}^{2}$$

$$S^{2} + N^{2} = \sigma_{1}^{2}n_{1}^{2} + \sigma_{2}^{2}n_{2}^{2} + \sigma_{3}^{2}n_{3}^{2}$$
In addition;
$$1 = n_{1}^{2} + n_{2}^{2} + n_{3}^{2}$$

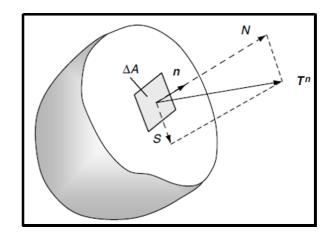
Mohr's Circles for Stress

Solving for the unknowns n_1^2 , n_2^2 and n_3^2

$$n_1^2 = \frac{S^2 + (N - \sigma_2)(N - \sigma_3)}{(\sigma_1 - \sigma_2)(\sigma_1 - \sigma_3)}$$

$$n_2^2 = \frac{S^2 + (N - \sigma_3)(N - \sigma_1)}{(\sigma_2 - \sigma_3)(\sigma_2 - \sigma_1)}$$

$$n_3^2 = \frac{S^2 + (N - \sigma_1)(N - \sigma_2)}{(\sigma_3 - \sigma_1)(\sigma_3 - \sigma_2)}$$



• We can rank the principal stresses as $\sigma_1 > \sigma_2 > \sigma_3$.

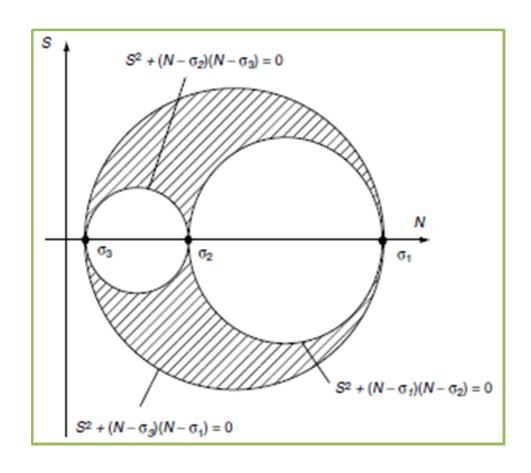
$$S^{2} + (N - \sigma_{2})(N - \sigma_{3}) \ge 0$$

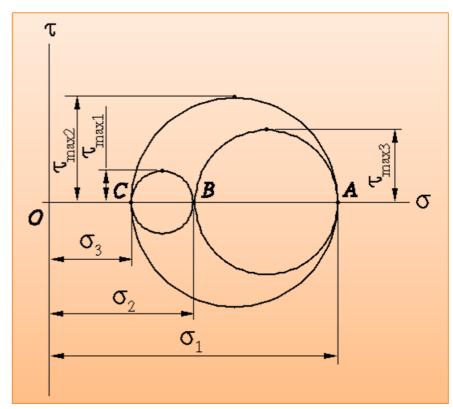
$$S^{2} + (N - \sigma_{3})(N - \sigma_{1}) \le 0$$

$$S^{2} + (N - \sigma_{1})(N - \sigma_{2}) \ge 0$$

 For the equality case, the above equations represent three circles in S-N coordinate system

Mohr's Circles for Stress

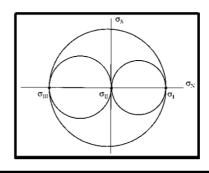


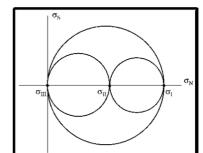


Plane Stress

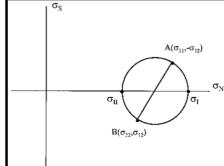
$$\left[\boldsymbol{\sigma}_{ij}^{*} \right] = \begin{bmatrix} \boldsymbol{\sigma}_{(1)} & 0 & 0 \\ 0 & \boldsymbol{\sigma}_{(2)} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\sigma_{II}$$
 σ_{I}

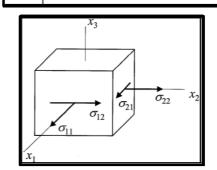




$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & 0 \\ \sigma_{21} & \sigma_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$



$$\left. \begin{array}{l} \sigma_{(1)} \\ \sigma_{(2)} \end{array} \right\} = \frac{\sigma_{11} + \sigma_{22}}{2} \pm \sqrt{\frac{\sigma_{11} - \sigma_{22}}{2} + {\sigma_{12}}^2}$$



Example

EXAMPLE -1: Stress Transformation

For the following state of stress, determine the principal stresses and directions and find the traction vector on a plane with unit normal $\mathbf{n} = (0, 1, 1)/\sqrt{2}$.

$$\sigma_{ij} = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$

The principal stress problem is started by calculating the three invariants, giving the result $I_1 = 3$, $I_2 = -6$, $I_3 = -8$. This yields the following characteristic equation:

$$-\sigma^3 + 3\sigma^2 + 6\sigma - 8 = 0$$

The roots of this equation are found to be $\sigma = 4, 1, -2$. Back-substituting the first root into the fundamental system (see 1.6.1) gives

$$-n_1^{(1)} + n_2^{(1)} + n_3^{(1)} = 0$$

$$n_1^{(1)} - 4n_2^{(1)} + 2n_3^{(1)} = 0$$

$$n_1^{(1)} + 2n_2^{(1)} - 4n_3^{(1)} = 0$$

Solving this system, the normalized principal direction is found to be $\mathbf{n}^{(1)} = (2, 1, 1)/\sqrt{6}$. In similar fashion the other two principal directions are $\mathbf{n}^{(2)} = (-1, 1, 1)/\sqrt{3}$, $\mathbf{n}^{(3)} = (0, -1, 1)/\sqrt{2}$.

The traction vector on the specified plane is calculated by using the relation

$$T_i^n = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 2/\sqrt{2} \\ 2/\sqrt{2} \\ 2/\sqrt{2} \end{bmatrix}$$

Deviator and Spherical Stress

It is often convenient to decompose the stress in to two parts, called the spherical and deviatoric stresses

$$\overline{\sigma}_{ij} = \frac{1}{3}\sigma_{kk}\delta_{ij} \qquad \sigma_M = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}) = \frac{1}{3}\sigma_{kk}$$

$$egin{bmatrix} oldsymbol{\sigma}_{ij} \end{bmatrix} = egin{bmatrix} oldsymbol{\sigma}_M & oldsymbol{0} & oldsymbol{\sigma}_M & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{\sigma}_M \end{bmatrix}$$

While the deviatoric stress becomes:

$$\stackrel{\wedge}{oldsymbol{\sigma}}_{ij} = oldsymbol{\sigma}_{ij} - rac{1}{3} oldsymbol{\sigma}_{kk} oldsymbol{\delta}_{ij}$$

- The spherical stress is an isotropic tensor.
- The principal directions of the deviatoric stress are the same as those of the stress tensor.

Equilibrium equations

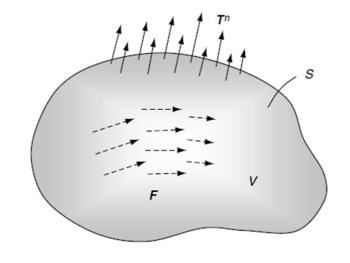
- Consider a closed sub-domain with volume V and surface S within a body in equilibrium.
- For static equilibrium the forces acting on this region are balanced and thus the resultant force mush vanish.

$$\iint_{S} T_{i}^{n} dS + \iiint_{V} F_{i} dV = \mathbf{0}$$

$$\iint_{S} \sigma_{ji} n_{j} dS + \iiint_{V} F_{i} dV = \mathbf{0}$$

Applying the divergence theorem;

$$\iiint_{V} (\sigma_{ji,j} + F_i) dV = \mathbf{0}$$



Because the region V is arbitrary and the integrand is continuous, then by the zero-value theorem, the integrand must vanish:

Equilibrium equations

$$(\boldsymbol{\sigma}_{ji,j} + F_i) = \mathbf{0}$$

The above equation represents the three scalar equations of equilibrium;

All elasticity stress fields must satisfy these relations in order to be in static equilibrium.

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_{x} = \mathbf{0}$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + F_{y} = \mathbf{0}$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} + F_{z} = \mathbf{0}$$