


Stress (Basic assumptions and definitions)

* In continuum mechanics a body is considered
stress free if the only forces present are those
inter-atomic forces required to hold the body
together

* Types of forces:

— Body forces i.e.: gravity, inertia; designated by
vector symbol b; (force per unit-mass) or p;
(force per unit volume); acting on all volume
elements, and distributed throughout the
body;

— Surface forces i.e.: pressure; denoted by
vector symbol f; (force per unit area of surface
across they which they act); act upon and are
distributed in some fashion over a surface
element of the body,
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Stress (Basic assumptions and definitions)

— External forces acting on a body
(loads applied to the body);

— Internal forces acting between two
parts of the body (forces which
resist the tendency for one part of
the member to be pulled away
from another part).
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Stress (density definition)

* In continuum mechanics we consider a
material body B having a volume V X3 .
enclosed by a surface S, and occupying a @“
regular region R, of physical space.

* Let P be an interior point of the body
located in the small element of volume AV
and mass is AM. Density

The density is in general

a scalar function of
_ Am position and time:
pave o
AV p=(x.1)
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Stress (density definition)

The density p at point P by the limit of this ratio as the volume
shrinks to the point:

Am  dm
o= lm —

AV=>0 AV dV

The units of density are kg/m3. Two measures of body forces, b.

having units of (N/kg), and p, having units of (N/m?3), are related
through the density by the equation:

pbz' = P
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Cauchy Stress Principle

* We consider a homogeneous, isotropic material body
B having a bounding surface S, and a volume V, which
is subjected to arbitrary surface forces f; and body
forces b,. Let P be an interior point of B and imagine a
plane surface $* passing through point P
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Cauchy Stress Principle

* Point P is in the small element of area AS* of the cutting plane,
which is defined by the unit normal pointing in the direction from

Portion | into Portion Il .

* The internal forces will give rise to a force distribution on
AS*equivalent to a resultant force Af, and a resultant moment

AM. at P.

* The Cauchy stress principle asserts that in the limit as the area
AS* shrinks to zero with P remaining an interior point, we obtain:

A, _df,

.

lim

A0 AST dS

[

/

(1)

AM .

lim .
AS™ =0 AS

l:O
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Components of Stress
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1
(Externally Loaded Body) (Sectioned Body)
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The Stress Tensor (rectangular Cartesian components)

* Consider the traction vector of an oblique y
plane with arbitrary orientation; with a unit
normal to the surface:

n=ne +ne,+n.e;

Where n,, n, and n, are direction cosines of the unit vector n
relative to the given coordinate system.

* Force balance between tractions on the oblique and coordinate
faces gives:

T"=nT"(n=e)+nT"(n=e,)+nT"(n=e;)
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The Stress Tensor (rectangular Cartesian components)

This can be written as:

n —
=(o.n, +7 .10 +7, .1)e

+(t _n +to,n, +7, n, e,

xy'x

+(T N, +T, N0, +0.1)e,

X X

m) I =o0;n, :
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Stress Transformation

* Stress components at an oblique plane with arbitrary
orientation:

O-l;,- — Qip ja© pq
Where the rotation matrix Q; = cos (x’,x;)

* For the general three-dimensional case, the rotation matrix
may be chosen in the form

[, m n
Q,=|l, m, n,
_l3 m; n;
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Stress Transformation

* The specific translation then becomes:

0, = G5 + aym} + and + Atghimy + Tzminy 4 toemly)
a", = a_‘.lg + a_\.mg + a_.ng + 2t lomy + Ty-many + T cmylh)
a = 0'_‘.1_% -+ a_\.m_% + azni + 2t lsms + ty-mznz + tom3l3)
r_'“_ = ol + aymymy + a.nyny + T (Lhma + myb) + t(myny + nyma) + t(nylr + 1na)
r;.: = a.hly + aymamy + a-mn3 + T (bhmsy + mal3) + ty(many + noms) + 1 (nalz + lhng)

r':r = 031y + aymamy + a.n3ny + T (my + msly) + ty-(m3ny + n3my) + t(n3ly + lzny)
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Two dimensional problems

In-plane stress components transform according to:
o, =0,c08" 0+0,sin’ @ +2r, sinfcosd
v ) 2 .
o,=0,sin" 0+0 cos" 0-2r sinfcosl
7, =—0,sinfcosf+0, sinfcosd+7,,(cos’ @—sin’ O)

 Commonly rewritten in terms of the double angle:

. o.,+0, 0.-0, .
o, = + cos20+ 7 _ sin26
y
2 2
. o.+t0. O -0 .
o =——2%_ % Ye0s20—-7_5sin26
y 2 Xy

. o, .
Ty ="y —sin260 + 7, cos 26
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Principal Stresses, Principal Stress Directions

* The determination of principal stress values and principal stress
directions follows precisely the procedure for determining
principal values and principal directions of any symmetric
second-order tensor.

* The direction determined by the unit vector n is said to be a
principal direction or eigenvector of the symmetric second-
order tensor o; if there exists a parameter A such that

O'ijnj=/1-nl.

Dr. ESAYAS G. 14



Principal Stresses, Principal Stress Directions

Where A is called the principal value or eigenvalue of the
tensor, and the substitution property of the Kronecker delta
allows to rewrite the above equation as:

(o;.j _/15:7)”1' =0

The above expression is simply a homogeneous system of
three linear algebraic equations in the unknowns n,, n,, n..
The system possesses a nontrivial solution if and only if the
determinant of its coefficient matrix vanishes , that is:

det[al.j — /’L5ijJ= 0
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Principal Stresses, Principal Stress Directions

which upon expansion yields a cubic in o (called the characteristic
equation of the stress tensor)

detlo, — A6, |= -2 + 1,2 -1, A+, =0

Where;

1 =o0.

a i

1 = %(O-iio-jj — O-ijo-ij)

a

11, = det|o, |
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Principal Stresses, Principal Stress Directions

* Thescalars !, Il_, and lll  are called the fundamental invariants
of the stress tensor ¢;; and do not change value under
coordinate transformation

7 -

X
T2x .~
e /o

(General Coordinate System) (Principal Coordinate System)
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Principal Stresses, Principal Stress Directions

* By denoting the principal directions n,, n,, n; corresponding
to the principal values A, A,, A, three possibilities arise:

l. All three principal values distinct; thus, the three
corresponding principal directions are unique (except for
sense)

Il. Two principal values equal (A, # A, = A; ); the principal
direction n, is unique (except for sense), and every
direction perpendicular to n, is a principal direction
associated with A, A..

l1l. All three principal values equal; every direction is
principal, and the tensor is isotropic.
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Principal Stresses, Principal Stress Directions

With respect to principal axes the stress tensor reduces to the
diagonal form

1

A
0
0

ij

y) 0 ryz?'* ?” ek

0 4,
; /s
(

General Coordinate System) (Principal Coordinate System)

and the stress invariants can be

expressed as:
I, =4 +4,+4,
I, =AA,+A4,A, + A4,
I, =AA,A,
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Principal Stresses, Principal Stress Directions

The eigenvalues have important extremal properties. If we
arbitrarily rank the principal values such that A, > A, > A, , then
A, will be the largest of all possible diagonal elements, while A,
will be the smallest diagonal element possible.
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Normal and Shear Stress Components

* Consider the general traction vector T
Let N and S be the traction vector’s normal

and shear components
n
N=T"n
1/2 * Using the above relations;
( ] N=T".n

N = T n:T n _O_ n n N=01n12+02n22+03n§
’ S+ N2 =o’n’ +olnl + on’
2
N = On, +C)'27’l2 -I-O'?,)Vl3 In addition;

1=n +nl+n
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Mohr’s Circles for Stress

Solving for the unknowns n 2, n,? and n;?
2 _ s +(N_0'2)(N_0'3)
P =
(0-1 —0, )(0'1 _0-3)
2 _ N +(N_03)(N_0'1)
(0-2 —0; )(0'2 _0'1)

»_S*+(N-0,)(N-0,)
P (0-3 _0-1)(0'3 _0-2)

* We can rank the principal stresses as o, > 7, > 0.
S’+(N-0,)(N-0,)20
S*+(N-0,)(N-0,)<0
S*+(N-0,)(N-0,)20

» For the equality case, the above equations represent three circles in S-N coordinate
system
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Mohr’s Circles for Stress

S2+(N-6)(N-Gq) =0

1

m
T

$2 +(N

/7
-
Tmax’&

ﬂ-..‘..o.“‘-
2
T =
o
eai-3nel

4

/ 82 +(N-0)(N-065)=0

4

G9(N-a,)=0

Y
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Plane Stress

a
S
A
A
z

_0'(1) O 0] @“ﬁ A
[‘7 ;]= 0 0 0 ol
0 0 0 w V
[ ] 0, 0, 0] 2
0,1=|0y 0, 0 e
0 0 0 NAVARS
i i w

O12

X

921

Dr. ESAYAS G.



Example

EXAMPLE -1:Stress Transformation

For the following state of stress, determine the principal stresses and directions and find
. » » ’ l
the traction vector on a plane with unit normal n = (0,1,1)/v2.

311
ey=1|1 0 2
1 20

The pnncipal stress problem is started by calculating the three invanants, giving
the result ) =3, h = —6, I3 = —8. This yiclds the followming chamcteristic cqua-
tion:

— +37 +66-8=0

The roots of this equation are found tobe ¢ = 4, 1, — 2. Back-substituting the first root
into the fundamental system (see 1.6.1) gives
B "(1“ + n(zll

n‘," - 4n(:" +20" =0

(n
n

+2® =0

+200 —4n’ =0

Solving this system, the normalized principal direction is found to be n? = (2, 1, 1)/
V6. In similar fashion the other two princpal directions are n® = (-1, 1, 1)/
V3, i =0, -1, 1)/V2.

The traction vector on the specified plane is calculated by using the relation

3011 0 2/\2
=110 2| /V2|=|2/V2
I 2 (] l f \"‘E 2’1'.\-/‘-.)

Dr. ESAYAS G.

Stress and Equilibrium

25



Deviator and Spherical Stress

It is often convenient to decompose the stress in to two parts, called the spherical and
deviatoric stresses

g.._la S o =1(0' +0,,+0 )=10'
ij 3 1O M= 3\ 22 337 3V ki
o, 0 0
[O'ij]= 0O o, 0
0 0 o,

While the deviatoric stress becomes:

" 1

" The spherical stress is an isotropic tensor.

" The principal directions of the deviatoric stress are the same as those of the stress
tensor.
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Equilibrium equations

= Consider a closed sub-domain with volume V and surface S
within a body in equilibrium.

" For static equilibrium the forces acting on this region are
balanced and thus the resultant force mush vanish.

([ 7vas ]I =

S o n,dS + HL FdV =0

Applying the divergence theorem;
|[] (0, +F)dv=0

Because the region V is arbitrary and the integrand is continuous,
then by the zero-value theorem, the integrand must vanish:
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Equilibrium equations

(0., +F)=0

JisJ

The above equation represents the three scalar equations of
equilibrium;

All elasticity stress fields must satisfy these relations in order to
be in static equilibrium.

L4 S —E 4l =0
ox 0y 0z
Jor., Ooc, Ot
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