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What is groundwater?

 Equivalent terminologies: groundwater, subsurface water, 

ground water

 Definitions

Water occupying all the voids within a geologic stratum 

(Todd, 1980)

All the water found beneath the surface of the ground (Bear 

and Verruijt, 1987)

Practically, all the water beneath the water table (i.e., in the 

saturated zone) and above the water table (i.e., in the 

unsaturated zone, vadose zone, zone of aeration) are called 

groundwater. 

 Groundwater velocity is very small and depends on local 

hydrogeologic conditions , 2 m/year to 2 m/day are normal 

(Todd, 1980).
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1. Definitions of aquifers

 Aquifer, Aquitards, Aquicludes, and Aquifuges are a geological 

formation or a group of formations that can/cannot contain water, 

and that water can/cannot move within the formation

Latin: Aqui  water;  -fer  “to bear”, aquifer  “water bearer”

-tard  “slow”; -clude  “to shut or close”; -fuge  “to drive away” 

(Todd, 1980)

Formation nature Store water? Transmit water?

Aquifer Pervious Yes Yes

Aquitard Semi pervious Yes Yes but slower than 

that in an aquifer

Aquiclude Semi pervious Yes No

Aquifuge Impervious No No
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 Confined aquifer: an aquifer bounded from above and from 

below by impervious formations (aquiclude or aquifuge)

 Unconfined aquifer (phreatic aquifer or water table aquifer): 

an aquifer in which water table serves as its upper boundary 

 Perched aquifer: An unconfined aquifer which has an 

impervious layer of limited areal extent located between the 

ground surface and the water table (of the unconfined aquifer)

 Confining layer: a geologic formation that is impervious to 

water, e.g., unconsolidated soils such as silt and clay; 

consolidated bed rock such as limestone, sandstone, siltstone, 

basalt, granite, …, etc. The latter rock formations can also be 

aquifers when only consolidated formations are considered. 
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 Piezometric surface or Potentiometric surface: an 
imaginary surface connecting the water levels of a number 
of observation wells tapping into a confined aquifer. 

Note: use water table instead of piezometric surface for 

unconfined aquifers

 Artesian aquifer: a confined aquifer whose piezometric
surface is above the ground surface (i.e., water comes out 
automatically from a well in an artesian aquifer)

 Double porosity aquifer

For fractured rocks

 Matrix blocks: low permeability, high storativity

 Fractures: high permeability, low sotrativity
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Schematic of aquifers
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(After Todd, 1980)

Schematic of perched aquifers
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2. Fundamental physical properties

 Six fundamental physical properties for describing hydraulic 

aspects of saturated groundwater flow in aquifers

Three fluid properties

 Density, ρ (M/L3)

 Dynamic viscosity, μ (M/LT) (or kinematic viscosity, 

ν = μ/ρ, L2/T)

 Fluid compressibility, β (LT2/M) (or 1/Pa)

Three medium properties

 Porosity, n

 Permeability, k (L2)

 Matrix compressibility, α (LT2/M) (or 1/Pa)
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3. Porosity (pore space)

 Pore space (voids, pores, or interstices): The portion of a geologic 

formation that is not occupied by solid matter (e.g., soil grain or 

rock matrix). 

 Effective or interconnected pore space: Pores that form a 

continuous phase through which water or solute can move

 Isolated or non-inter connected pore space: Pores that are 

dispersed (scattered) over the medium. These pores cannot 

contribute to transport of matter across the porous medium. Also 

known as dead-end pores.

 Saturated zone: Aquifers in which pore space is completely filled 

with water.

 Unsaturated zone: Aquifers in which the pore space is filled 

partially with liquid phase (water), and partially with gas phase.
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 Only the connected pores (gray) can transmit water; the 

unconnected pores (white) are not a part of the effective porosity

3. Porosity (pore space)
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(After Bear and Verruijt, 1987)

Schematic of various pore space

n (d50, shape, arrangement, clay)
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 Porosity is a function of

(a) Grain size distribution: soils with uniformly distributed grains 

have larger porosities than soils with un-uniformly distributed 

grains

(b) Grain shape: Sphere-shaped grains will pack more tightly and 

have less porosity than particles of other shapes

(c) Grain arrangement: Porosities of well-rounded sediments 

range from 26% (rhombohedral packing) to 48% (cubic packing)

(d) Clays, clay-rich or organic soils have very high porosities 

because:

▪ Grain shapes are highly irregular

▪ Dispersive effect of the electrostatic charge on the surfaces 

of certain book-shaped clay minerals causes clay particles to 

be repelled by each other, resulting in high porosity.
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Unconsolidated deposits (sediments) Porosity (%)

Gravel 25-40

Sand 25-50

Silt 35-50

Clay 40-70

Rocks

Fractured basalt 5-50

Karst limestone 5-50

Sandstone 5-30

Limestone, dolomite 0-20

Shale 0-10

Fractured crystalline rock 0-10

Dense crystalline rock 0-5

(After Freeze and Cherry, 1979)
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 Porosity of rocks (Two porosities)

Primary: pore space between grains

Secondary: pore space caused by fracturing

 Sedimentary rocks (Fetter, 1994): Formed by sediments by 

digenesis. Sediments are products of weathering of rocks or 

chemically precipitated materials. Changes in sediments due to 

overlying materials and physiochemical reactions with fluid in the 

pore space result in pore space variation.

 Compaction: porosity is reduced

 Dissolution: porosity is increased

 Precipitation (e.g., cementing materials such as calcite, dolomite, 

or silica): porosity is reduced
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 Limestone and dolomites: Formed respectively by calcium 

carbonate and calcium-magnesium carbonate, which were 

originally part of an aqueous solution. These rocks may be 

dissolved in a zone of circulating groundwater, resulting in huge 

caverns that have sizes as large as a building. For example, the 

caverns at Carlsbad, New Mexico.

Bottomless Pit Hall of Giants The Big Room
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4. Hydraulic head

 Hydraulic head, h (L): For incompressible fluids (density is a 
constant) it is the sum of potential energy and pressure energy per 
unit weight of water. Sum of elevation head (z) and pressure 
head (p/γ)
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5. Hydraulic conductivity

 Fluid conductivity, K [L/T]: It is measurement of the ease of a 

particular fluid passing through the pore space of a porous 

medium (i.e., conductive properties of a porous medium for a 

particular fluid) (Hubbert, 1956). The proportionality constant in 

Darcy’s law, which depends on medium and fluid properties i.e. 

grain size, density and viscosity of fluid.

 If the fluid is water K is hydraulic conductivity

2Cd g
K






C: shape factor, a medium property

d: representative grain diameter, a medium property

: fluid density, g: gravity

γ = ρg: specific weight of fluid, driving force exerted by gravity on a unit 

volume of the fluid ([γ] = kg/m3  m/s2 = (kg  m/s2)/m3 = N/m3 = force per 

unit volume)

μ: Dynamic viscosity (resistance of the fluid to shearing)
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(After Bear and Verruijt, 1987)

(Aquifer) (Aquitard, aquiclude) (Aquifuge)
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 Hydraulic conductivity as a tensor

 Tensor

Zero-order: a scalar such as hydraulic head, a single-valued 

quantity

First-order: a vector such as velocity, having 3 components

Second-order: a tensor such as hydraulic conductivity, having 

9 components
xx xy xz

yx yy yz

zx zy zz

K K K

K K K

K K K

 
 

  
 
 

K

 Symmetric hydraulic conductivity : Kij = Kji (i  j)

 Principal hydraulic conductivity: the coordinate system aligns 

along  the principal axes of K such that Kij = 0 (i  j)

 Isotropic hydraulic conductivity: the value of K does not depend 

on direction, i.e., Kij = 0 (i  j), and Kii = K
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Hydraulic conductivity Tensor

 Contravariant and covariant tensors
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 Determination of hydraulic conductivity

Theoretical calculation 

 k = Cd2  K=kg/

 Few estimates are reliable because of the difficulty of 
including all possible variables in porous media

Laboratory measurements

 Permeameter (Fetter, 1994)

 Constant head experiment: For non cohesive 
sediments, such as sand and rocks because of the 
required duration for experiment is short

 Falling head experiment: For cohesive sediments with 
a low permeability, such as clay and silt

Field measurements

 Pumping test, slug test

 Tracer test
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 Heterogeneity and anisotropy 

Heterogeneity: K(x1)  K(x2), x1  x2

 Layered sediments, e.g., sedimentary rocks and 

unconsolidated marine deposits

 Spatial discontinuity, e.g., the presence of faults or 

large-scale stratigraphic features

Evidences from stochastic studies 

 Hydraulic conductivity tends to be log-normally 

distributed

 Y = log10K has standard deviation in the range 0.5 ~1.5, 

meaning K values in most geological formations show 

variations of 1 – 2 orders of magnitude (Freeze, 1975)

----------------------------------------------------------------------------------------------------------------------------- --------------------------------

Freeze, R. A., A stochastic-Conceptual Analysis of One-Dimensional Groundwater Flow in Nonuniform Homogeneous Media, Water Resources 

Research, Vol. 11, No. 5, pp.725-741, 1975.
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Example: (Fetter, 1994) Find the geometric mean of the 

following set of hydraulic conductivity values and compare it to 

the arithmetic mean :  K (cm/s) = 2.17  10-2 , 2.58  10-2 , 2.55 

10-3 , 1.67  10-1 , 9.50  10-4 ; Sum of K (cm/s) = 2.18  10-1

Solution : 
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1 1
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1
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5

1 2.18 10
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 



Which is the best estimate and why? (think)
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Answer 

 1.67  10-1 , 

 2.58  10-2 , 

 2.17  10-2 , 

 2.55  10-3 , 

 9.50  10-4

1.18  10-2 Geometric mean

4.36  10-2 Arithmetic mean

 Note that arithmetic mean of hydraulic conductivity is dominated 

by the largest value of K. If observed values of  hydraulic 

conductivity have orders of magnitude differences then the 

arithmetic mean would be significantly different from the 

geometric one. The locations with small values of hydraulic 

conductivity have significant impacts to solute transport than to 

groundwater flow estimations. Thus, it is more favorable to use 

the geometric mean instead of an arithmetic one in groundwater 

hydrology. 
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 Anisotropy 

Hydraulic conductivity depends on the direction of measurement, 

e.g., Kx  Kz

Principal directions of hydraulic conductivity: the directions at 

which hydraulic conductivity attains its maximum and minimum 

values, which are always perpendicular to one another.

 Four cases
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Transmissivity (T)
 Definition: The rate (Q) at which water is transmitted through a 

unit width (Δy = 1) of aquifer under a unit hydraulic gradient (h 

=1). 

 in which b is the “saturated thickness” of aquifer

 Transmissivity is well defined for the analysis of well hydraulics

in a confined aquifer in which the flow field is essentially 

horizontal and two-dimensional, in which b is the (average) 

thickness of the aquifer between upper and lower confining layers

 It is, however, not well defined in unconfined aquifer but is still 

commonly used. In this case, the saturated thickness is the height 

of the water table above the top of the underlying aquitard

(impervious layer) that bounds the aquifer

   

hThKb
z

Q

zbhKAhKvAQ







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Impervious

b Confined aquifer

Confining layer

T = Kb

Schematic representation of the definition of transmissivity

(Adapted from Freeze and Cherry, 1979)

Note that transmissivities greater than 0.015 m2/s represent good aquifers 

for water well exploitation (Freeze and Cherry, 1979)

Impervious

b
Unconfined aquifer

Water table
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6. Storage capacity

 Specific storage (specific storativity), Ss (1/L)

 Definition: the amount of water released from (or added to) 

storage per unit decline (or unit rise) in hydraulic head from 

unit volume of saturated aquifer .
water

s

aquifer

V
S

V h




 

 Storativity (Storage coefficient), S: is the amount of water 

released from (or added to) storage per unit decline (or unit rise) 

in hydraulic head normal to the unit surface area of saturated 

aquifer

 Similar to transmissivity, storativity is developed primarily for the 

analysis of well hydraulics in a confined aquifer

water
s

aquifer

V
S S b

A h


 

 
b is the saturated thickness of the aquifer
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 Storativity of a confined aquifer: Water is released from a 

confined aquifer via

Expansion of water due to decline of hydraulic head

Release of pore water due to compaction of soil skeleton that is 

again induced by the decline of hydraulic head

 In general, storage coefficients for a confined aquifer are small, in 

the range of 0.005 to 0.00005 (Freeze and Cherry, 1979)

 Storativity of an unconfined aquifer: Water is released in 

unconfined aquifer via 

Primary release: storage from the decline of water table, which 

is generally known as specific yield, Sy

Secondary release: the expansion of water and expel of water 

from aquifer compaction

S = Sy + hSs, h is the saturated thickness of the unconfined 

aquifer . The usual range of Sy is 0.01 ~ 0.30.
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 It is customarily to approximate the storativity of an unconfined 

aquifer by its specific yield.

 Specific yield, Sy: The ratio of the volume of water that drains 

from a saturated aquifer due to the attraction of gravity to the total 

volume of the aquifer. This is also called gravity drainage.

 Specific retention (Sr): the volume of water retained in an aquifer 

per unit area per unit drop of the water table after drainage has 

stopped, which is hold between soil particles by surface tension. 

Hence, the smaller the particle size, the larger the surface tension 

and the larger the specific retention

Specific retention is responsible for the volume of water a soil 

can retain against gravity drainage.

Maximum specific yield occurs in sediments in the medium-to-

coarse sand-size range (0.5 to 1.0 mm).
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(After Freeze and Cherry, 1979)

Schematic representation of storativity in confined and unconfined aquifers

Aquifer remains 

saturated in spite of the 

decline of piezometric

surface

Aquifer above the original water 

table becomes unsaturated as the 

water table declines to a new 

level
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 The physical phenomena related to the reduction of aquifer volume 

due to a stress applied to a unit mass of saturated medium

Compression of the water in the pores 

Compression of the individual soil grains (negligible in practice)

A rearrangement of soil grains into a more tightly packed 

configuration

 Definition : ratio of strain to stress

Physical meaning : the change of volume of a material due to 

the change of stress applied to that material, with a unit of 

1/[stress] (or 1/[pressure])

 Two compressibility in groundwater Hydraulics

Water compressibility

Aquifer compressibility

Compressibility (Freeze and Cherry): 
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Aquifer storativity

 Storativity: The amount of water per unit surface area of 
saturated aquifer released from (or added to) storage per unit 
decline (or unit rise) in hydraulic head normal to that surface

 Mechanisms

Elastic expansion of water

Compaction of solid matrix

Drainage from pore space between the initial and final water 
tables (primarily for unconfined aquifers), i.e., specific yield 
Sy

 Used in two-dimensional, transient groundwater flow equations

 Definition (for both confined and unconfined aquifers)

 
 

 

water
s

aquifer

b x ,y

s

b x ,y

V
S S b

A h

S x,y,z dz


 

 

 
2

1

(for constant aquifer thickness)

(for variable aquifer thickness)

(Note again that storativity is dimensionless)
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Aquifer storativity/Hydraulic Diffusivity

1. Specific retention increases with 

decreasing grain size

2. Maximum Sy occurs in 

medium-to-coarse sand soils. 

(After Bear and Verruijt, 1987)

 Hydraulic diffusivity: D (L2/T)

Represent the diffusive characteristics of groundwater

s

T K
D

S S
 
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7. Porous Vs Fractured media

 Porous media

Continuum media

A multiphase medium with at least one solid phase and one 

fluid phase (Greenkorn, 1983; Yeh, 1999)

 Soils 

 Wood, asphalts

 Skin, hair, feathers, teeth, and lungs

 ceramics, contact lenses, membranes

 Fractured media

Discrete media

 Fractured rocks (sedimentary, crystalline, argillaceous)

Fractured porous media: discrete media with porous solid 

matrix
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Porous Vs fractured media

 Soil (Jury, Gardner, and Gardner, 1991a)

A granular material that is a heterogeneous mixture of solid, 

liquid, and gaseous material

 Solid phase: it has mineral portion containing particles of varying 

sizes, shapes, and chemical composition and organic portion

containing a diverse population of live, active organisms as well as 

plant and animal residues in different stages of decomposition

 Liquid phase: It consists of the soil water held by forces in the 

soil matrix and varies significantly in mobility depending on its 

location and Solute materials contained in soil water, coming  from 

dissolution of soil mineral phase or from the soil surface.

----------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------
aJury, W. A., W. R. Gardner, and W. H. Gardner, Soil Physics, 5th ed., John Wiley & Sons, New York, 1991
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Porous Vs Fractured media

 Gaseous (vapor) phase

 CO2 and O2: mutually complementary gases in soil, depending on 
plant respiration and biological activity

 Water vapor : formed by the evaporation process in unsaturated 
soil

 Volatile organic compounds (VOC) : gas phase of VOC’s

Examples of porous media: Beach sand; Sand stone; Lime stone; Dry bread; Wood; Lung
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Porous Vs Fractured media

Examples of fractured media
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Porous Vs Fractured media
 Heterogeneity and associated length scales: A porous system is 

inherently heterogeneous. Mathematically, we can represent 

heterogeneity as; Z(x1)  Z(x2) in which Z is a general medium 

property, e.g., hydraulic conductivity

 Four length scales of heterogeneity

Microscopic : at the level of pores or grains of the medium

Macroscopic: at the level of core plugs

Megascopic: at the level of the entire reservoirs which may 

have large fractures and faults.

Gigascopic: heterogeneities at this scale may contain many 

megascopically heterogeneous reservoirs. 

 Note that not all the four heterogeneities are important to all 

porous media. 
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Porous Vs Fractured media

 Any property of a medium is an average taken over a suitably 

selected volume of the medium, which is generally called 

representative elementary volume (REV)

 Concept of REV: Dimension and physical meaning

(After Bear and Verruijt, 1987)
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Porous Vs Fractured media

 Heterogeneities are spatially correlated at all scales

Fractal theories can be used to tell the dependence of 

property values in various regions of the medium on the 

length scale of observation

 Long-range correlation of medium properties leads to the 

spatial variation of interconnectivity of various regions of the 

medium

Percolation theories can be used to tell how the 

interconnectivity of various regions of a given system 

affects its overall properties

Spatial variation of interconnectivity is more significant in 

fractured media than in porous media

 Porous media is the focus of this course
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8. Driving forces of groundwater flow

 Moisture distribution
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Types of water Bonding

a) Pendular-looks like bridge, but particles not immersed in 

liquid

b) Funicular-thicker bridges but not completely filled

c) Capillary-particles at edge of cluster not completely wetted 

by liquid

d) Droplet-all particles completely wet
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 Figure shows qualitative relationships between water content 

(pendular, funicular and saturated cases) and driving forces 

(surface tension, gravity and pressure head). 
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Groundwater Hydraulics

Chapter  2 – Groundwater motion
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Q is proportional to h

Q

A

Q is proportional to cross

sectional area, Axs

Q is inversely 

proportional

to sample length, lQ

l

h

Q
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Darcy’s Law

 Combine and insert a constant of proportionality

Q = –KAxc [h/l] 

 Axc = sample cross-sectional area [m2]

perpendicular to flow direction

 K = hydraulic conductivity [m/s]

 h/l = hydraulic gradient [-]

l measured along the flow direction

 Sometimes written as Q/Axc = q = –K[h/l] 

Where q = specific discharge a.k.a. “Darcy 
velocity”

 Hydraulic gradient often written as a differential, dh/dl
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Effect of Geologic Material

Q = –KAxc[dh/dl]

K is a property of the porous material

▪Re-run experiments with different geologic materials

▪e.g., grain size 

▪General relationship still holds – but –

▪Need a new constant of proportionality (K)
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Effect of Fluid Properties

▪Re-run experiments with a different fluid

▪e.g. petroleum, trichloroethylene, ethanol 

▪General relationship still holds – but –

▪Need a new constant of proportionality (K) 

Q = –KAxc[dh/dl]

K is a property of the fluid
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Intrinsic Permeability - Ki

 Separate the effects of the fluid and the porous 
medium 

 K = (porous medium property) x (fluid property) 

 Porous medium property: Ki = intrinsic permeability

Essentially a function of pore opening size 

Think of it as a 'friction' term

 K = Ki x fluid driving force/fluid resisting force

 Fluid driving force = specific weight

 Fluid resisting force = dynamic viscosity

K = Ki [g/]
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Darcy’s Law - Units

 Q = -KAxc[dh/dl]

 Solve for K: 

Where:

 dh/dl is dimensionless

 Q  [m3 s–1]

 Axc [m2]

 Therefore, 

dhA

Qdl
K

xc



Since the fluid we consider 

most frequently (certainly in 

this course) is water, we 

almost always be using 

hydraulic conductivity (K)
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
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Intrinsic Permeability - Units

 Write as: Q = –Ki(g/)Axc[dh/dl]

 Solve for Ki

Where:

 Q  [m3 s–1]

 Axc [m2]

   [kg m–3] 

 g  [m s–2] 

   [kg m–1 s–1]

 Therefore,  2
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Magnitude of Intrinsic Permeability

 (g/) is a large number

For water at 15 oC, g/ = 999.1 x 9.81/0.0011 = 
8,910,155 [1/(m-s)]

 If K = 1 m/s then, Ki = K/(g/)  = 1.12x10-7 m2

 Therefore we usually use a smaller unit –

1 Darcy = 9.87x10-9 cm2

 This course: typically use hydraulic conductivity 
(K)

 Contaminant transport, petroleum geology: Ki is 
important
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Effect of Temperature

 Density and viscosity ( and ) for water are a 
function of temperature 

 K is therefore a function of temperature, but 

 Ki is NOT a function of temperature 

More fundamental unit controlling flow

 Lab standards are run at 60 oF (15.6 oC)

For most of the remainder of the course, we will 
assume that temperature is 15.6 oC

 So, how does K vary as a function of temperature??
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K = Ki(g/)
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Effect of T on K

K = Ki(g/)
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Ki in Rocks

 Primary openings 
Formed as the rock forms - e.g. the initial porosity of the 
pre-cementation sediments

Ki in sedimentary rocks is the Ki of the sediments from 
which they form

Crystalline rocks (igneous, metamorphic): Low primary 
permeability (possible exception: some igneous rocks with 
interconnected pores)

 Secondary openings (after the rock formed)
Fractures

Dissolution
 Along fractures, bedding planes

 Important for chemically precipitated rocks - limestone, dolostone, 
gypsum, halite

Weathering 
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Estimating K

Note the ENORMOUS

variability in Hydraulic 

Conductivity!!!

Ki

(1) past experience

0.86 m/d
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Estimating K, Ki

(2) Empirical Relations to Grain Size

 Where K is hydraulic 

conductivity in cm/sec

 d10 is the effective grain 

size 

10%of the soil by 

weight is finer in grain 

size, 90% is coarser

 C is an empirical 

coefficient

Soil Type C

Very fine sand, poorly sorted 40-80

Fine sand with appreciable fines 40-80

Medium sand, well sorted 80-120

Coarse sand, poorly sorted 80-120

Coarse sand, well sorted, clean 120-150

K is proportional to the 

square of grain size

Hazen's Formula

K = C (d10)
2
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▪Some other examples of empirical relations….

▪ Krumbein and Monk (from the oil industry):

▪Where ki = intrinsic permeability (in darcies); C0 = an 

empirical constant ~760 darcies/mm; c = an empirical 

constant ~ 1.31; D50 = median diameter of sediment (in 

mm); σφ = standard deviation of grain size in φ units

▪

▪Where K = hydraulic conductivity in ft/day; C = a shape 

factor  (40000 for glass spheres, 100 for immature {poorly 

sorted} sediments); j = 2.0 for glass spheres; j = 1.5 for 

immature sediments




c

i eDCk 2

500 )(

jDCK )( 50

62



▪Kozeney (1927)

▪Where Ki = intrinsic permeability (in darcies); C = an 

empirical constant ~0.5, 0.562, & 0.597 for circular, 

square, and equilateral triangular pore openings; n = 

porosity; S* = specific surface - interstitial surface areas 

of pores per unit bulk volume of the medium.

▪Kozeny-Carmen Bear (1972)

▪Where K = hydraulic conductivity; ρw = fluid density; 

μ = fluid viscosity; g = gravitational constant; dm = any 

representative grain size; n = porosity
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Measuring K 

(3) Constant Head Permeameter 

 Basically, redo Darcy's experiments:

Darcy's Law

Q = KAxc[- h/L]

Rearrange, solve for K

K = –[QL][Axch]-1

L

Continuous 

Supply

Overflow

Volume/time

= Q

 h

Cross-Sectional Area, A
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Constant Head Permeameter Test Protocols

 Good for relatively coarse grained material with relatively 

high hydraulic conductivity

 Keep h at reasonable field conditions   

(< 1/2 L)

 Be certain that no air is trapped in the sample 

Air bubbles will act as impermeable lenses

Fill slowly from the bottom to force air upwards

De-gas water

 Design test, so all parameters can be measured accurately

 Design test, so it can be conducted in a reasonable 

amount of time
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Constant Head Permeameter Test Design
 K = –QL / [Ah] = –(Vol/time)*L / [Ah]

 Solve for time = –(L*Vol) / [KAh]

 Trial Design:

L = 10 cm long; Axs = 5 cm2 ; Head difference (h) = – 5 
cm; K = 10-1 cm/sec (~ coarse sand); Volume 
collected = 100 ml;

 Time = 10x100/(0.10x5x5) = 400 s
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Measuring K 
(3) Falling Head Permeameter

Stand pipe with

cross-sectional Area of a

Head falls from h0 at t0 to 

h1 to t1

Sample with cross-sectional Area Axs

L

h0
h1

Datum: z = 0; P = 0
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Falling Head Permeameter Analysis

 Apply to fine grained soils

Constant head permeameter test inaccurate, lengthy

 Mass balance – standpipe

Q = dV/dt = a (dh/dt)

 Darcy’s Law – sample

Q = –KAxs(h/L)

 Set Q equal

a (dh/dt) = –KAxs(h/L)

Set datum at outlet

Therefore, houtlet = 0 and

h = houtlet – h = –h

At t = to

h = houtlet – ho = –ho

At t = t1

h = houtlet – h1 = –h1
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Falling Head Permeameter Analysis

 Combine mass balance and Darcy’s Law

a (dh/dt) = –KAxs(h/L)

 Separate variables and integrate

 
11 t

t

xs

h

h oo

dt
aL

KA

h

dh
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h oxso )(
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
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Falling Head Permeameter Test Design

 Solve for time = 

 Trial Design:

L = 10 cm 

Axs = 10 cm2 

Stand pipe a = 0.5 cm2 

ho = 20 cm; h1 = 19 cm

K = 10-3 cm/sec (~ fine sand with silt)

 Time =

1

1 ln
h

h

KA

aL
tt o

xs

o 

s6.25
19

20
ln

10001.0

105.0
1 




 ott
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Example of the use of Darcy's Law

▪How much water is flowing from the pool into the river per second 

over a 50 m stretch?

▪h = –5 m (head decreases in the direction of flow)

▪l = 100 m; h/l = –0.05

▪Axc = b x w = 2 m x 50 m = 100 m2

▪K = 10–4 cm/sec

▪Q = –10–4 cm/sec x 100 m2 x 1002 cm2/m2 x (–0.05) = 5 cm3/s

Q = –KAxs( h/L)

w =50 m

h = 25 m

L = 100 m

Pool
h = 20 m

River

b = 2 m

K = 10–4 cm/sec

PERPENDICULAR to the 

direction of flow!
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Other Ways to Express Flow

Flow per Unit Width

 What is the flow through the aquifer per unit width (per 

cm)?

Q = –KAxs(h/l) Axs = b x w

Q = –K(b x w)(h/l) divide both sides by w

Q/w = –Kb(h/l)

 Q/w = –10–4 cm/sec x 2 m x 100 cm/m x (–.05)=

= 0.001 [cm3 s–1 cm–1] 
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Other Ways to Express Flow

Flow per Unit Width per Unit Gradient

 What is the flow through the aquifer per unit width (per cm) 

per unit hydraulic gradient? 

This is a measure often used to compare aquifers.

Q = –K(b x w)(h/l) divide both sides by w

Q/w = –Kb(h/l) divide both sides by (h/l)

(Q/w)/(h/l) = –Kb

 (Q/w )/(h/l) = –10–4 cm/sec x 2 m x 100 cm/m =

= 0.02 [cm2 s–1]
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Transmissivity (T)

 The rate at which water is transmitted through a unit width 
of aquifer under a unit hydraulic gradient

 Our last calculation (flux per unit width per unit hydraulic 
gradient) 

 A common unit in hydrogeology 

Q = –KAxs(h/l) Axs = b x w

Q = –K(b x w)(h/l) divide both sides by w

Q/w = –K(b )(h/l) divide both sides by –h/l

Q/w/(–h/l) = Kb 

T = Kb ▪K is the hydraulic conductivity

▪b is the aquifer thickness
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Transmissivity (T)

 For confined aquifers, b is the aquifer thickness (may 
vary in space)  

 For unconfined aquifers, b is not as well defined, since it 
can also change with position and through time 

use b as the saturated thickness

 Alternate way of expressing Darcy's Law 

Q = –KAxs(h/l)

Q = –K(b x w)(h/l)

Q = –Tw(h/l)

 w is the aquifer width (horizontal dimension 
perpendicular to flow)

 Units: (volume/time)/length (gallons/day/foot) or

 Units: length2/time [m2/s]
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Gradients in Hydraulic Head

 We measure gradients in 
head using piezometers

 We can map these as shown

 We often observe changes 
in head gradient

 What aquifer properties can 
cause changes in these 
gradients?

190

180

150

100

High Gradient

Low Gradient

Flow

Hydraulic gradient = h/l
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Head Gradient

 Head profile for homogeneous material

 Slope is constant

Flow

hT
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Effect of K on Change in Head Gradient

 Length, L, from A to B and B to C is same

 Width, w,  to the page is constant

 Thickness, b, at A, B & C is the same

 Q1 = Q2 by continuity (mass balance)

 Let K2 = 2K1

 How does head vary? (What is the profile?)

Flow

A B C
aquifer 1

low K

aquifer 2

high K

Q1 Q2
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Head Profile (Effect of K)

 By continuity, Q1= Q2

 Write Darcy’s Law

–K1A1 (h/l)1 = –K2A2 (h/l)2

 Cancel like terms, A, l

 Substitute K2 = 2K1

K1 h1 = K2 h2 = 2K1 h2

 Cancel K1; therefore, 

h1 = 2 h2

 Determine h1 and h2 

hT = h1 + h2 = 2 h2 + h2 = 3 h2  

h2 = hT /3

h1 = 2 hT /3

Flow

A B C

aquifer 1

low K

aquifer 2

high K

Q1 Q2
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Change in K can cause Change in Head Gradient

Head loss is greater 

in low K unit

Flow

A B C
aquifer 1

low K

aquifer 2

high K

hT /3

2 hT /3
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Effect of b on Change in Head Gradient

 Length, L, from A to B and B to C is same

 Width, w,  to the page is constant

 Hydraulic conductivity, K, is the same

 Q1 = Q2 by continuity (mass balance)

 Let b2 = 2b1; therefore A2 = 2A1

 How does head vary? (What is the profile?)

Flow

A

B C

aquifer 1

Small b

aquifer 2

Large b
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 By continuity, Q1= Q2

 Write Darcy’s Law

–K1A1 (h/l)1 = –K2A2 (h/l)2

 Cancel like terms, substitute A2 = 2A1

A1 h1 = A2 h2 = 2A1 h2

 Therefore, 

h1 = 2 h2

 Determine dh1 and dh2 

hT = h1 + h2 = 2 h2 + h2 = 3 h2  

h2 = hT /3

h1 = 2 hT /3

Flow

A

B C

aquifer 1

Small b

aquifer 2

Large b

Head Profile (Effect of b)
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Changes in b can cause Changes in Head Gradient

Head loss is greater 

for smaller thickness

ΔhT /3

2ΔhT /3

Flow

aquifer 1

Small b

aquifer 2

Large b
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Head Distribution Reflects Transmissivity, T, 

not hydraulic conductivity K

 Groundwater computer models 
calculate the distribution of 
hydraulic head, try to match 
measured and calculated head 

 Note that the head distribution 
reflects T, not K

 You can’t determine K and b
separately from head distribution 
(or hydraulic gradient) 
measurements. Must know one 
to calculate the other
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How Fast is Groundwater Moving?

 Consider Darcy’s experiment with a vertical 

sample

Qt = –KAxs (ht/L)  Divide through by Axs:

Qt/Axs= –K (ht/L) = q [m/s]

q = Specific Discharge (Darcy velocity)

Q/Axs= Axs(ho – h1)/(t1 – t0)/ Axs

q = Q/Axs= (ho – h1)/(t1 – t0)

t0

t1

Qt

Axs

ho

h1
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Specific Discharge – Darcy Velocity

 Darcy Velocity is the velocity of water in the standpipe 

above the sample, not in the sample

 Specific discharge is an apparent velocity

Does not occur in porous media

 Also called an approach velocity 

 It is the velocity of the water, IF the aquifer had been an 

open conduit

“Empty bed” velocity

86



How Fast is Groundwater Moving?

 How is groundwater velocity in the porous medium 

related to specific discharge?

 Consider a pipe carrying water under pressure

 If a pipe became half clogged, but the flow through 

the pipe was kept constant, the velocity would 

double.

Q = v1Axs

v1 = Q/Axs

Q = v2(Axs /2)

v2 = 2Q/Axs
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Effect of Porosity on Velocity

 Similarly, if the pipe was filled with sand having a porosity of 

50%, only half the area is available for flow

If the flow through the pipe was kept constant, the velocity 

would double

 The area available for flow is therefore neAxs

 Groundwater  velocity v = Q/Aflow = Q/neAxs = q/ne

Q = v1Axs

v1 = Q/Axs

Q = v2(Axs /2)

v2 = 2Q/Axs

Average linear velocity

Seepage velocity  

v = Q/neAxs

v = –K/ne(dh/L)
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Average Linear Velocity Vs Microscopic Scale 

 Pores have different sizes – velocity will differ in different size 
pores

 Water flowing near the pore walls will be slowed by viscosity, 
flow near the center of the pore throat will move fastest 

 Flow paths are of different lengths, and some must split and 
branch around grains

 Actual v will vary about the mean

89
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Flow Across Layers – Effective K

Flow

A B Caquifer 1 aquifer 2

dh1

dh2

l1 l2
l

dh1 + dh2 = dhT
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 Continuity: Q1= Q2

 Head: dh1  + dh2 = dhT

 Flow path: l1  + l2 = l

 Darcy’s Law – solve for Keff

21

21

ll

dhdh
AK

l

dh
AKQ eff

T
eff






)(

)(

21

21

dhdhA

llQ
Keff






1

1
1

AK

Ql
dh 

1

1
1

l

dh
AKQ 


























2

2

1

1

2

2

1

1

21 )(

K

l

K

l

l

K

l

K

l

ll
Keff

• Darcy’s Law – solve for dh1 and dh2

• Substitute

Flow

A B Caquifer 1 aquifer 2

dh1

dh2

l1 l2
l

Flow
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Flow Along Layers – Effective K

Aquifer 1

Aquifer 2

b1

b2

dhT

B

Head loss in each layer

is the same

l

92



 Continuity: Q1+ Q2 = QT

 Head: dh1  = dh2 = dhT

 Flow area: b1w + b2w = A

 Darcy’s Law – solve for Keff

L
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wbbKQ T
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• Darcy’s Law – solve for Q1

• Substitute Q1+ Q2 = QT

aquifer 1

aquifer 2

b1

b2

dhT

B

Head loss in each layer

is the same

L
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Vertical vs Horizontal K

 Vertical flow – across layers

 Horizontal flow – along layers

 Example

K1 = 1 and K2 = 100 m/d

b1 = 2 and b2 = 2 m

 Find Keff for horizontal and vertical flow

 For vertical K (Flow across layers)

 For horizontal K (Flow along Layers)

b1

b2

B

]m/d[98.1

100

2

1

2

4)(

2

2

1

1

21 


























K

b

K

b

bb
Keff

]m/d[5.50
4

210021

)( 21

1111 








bb

bKbK
Keff

94



Vertical vs Horizontal K

 Vertical effective conductivity is dominated by the 

layer having the lowest K

 Horizontal effective conductivity is dominated by 

the high K layer

 Horizontal effective K is much larger than the 

vertical effective K

b1

b2

b3

B
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 Two conceptual views of groundwater:

Aquifer system view point

Flow system view point

 The aquifer view point:

Is based on the concept of confined and unconfined aquifers. 

Is especially suited to analysis of flow to pumping wells 

Is the basis for many analytical solutions including those of 

Theim, Theis and Jacob. 

The groundwater flow assumed to be strictly horizontal through 

aquifers and strictly vertical through confining beds.

Is used to simulate two dimensional horizontal flow.

 In the flow system view point equipotential lines pass through all 
geologic units, both aquifers and confining beds.

2. Governing equation
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SAND

SAND

CLAY

BED ROCK

Layer 1

Layer 3

Layer 2

BED ROCK

Unconfined Aqui.

Confined Aqui.

Confining Bed

BED ROCK

Equipotential lines

The geologic system

The aquifer 

System view point

The flow system 

view point

Modified from Anderson and Woessner, 1992
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 The governing equation for water flow in saturated 

medium can be obtained by combining a special form of 

Darcy’s law (derived from the water phase momentum 

balance) and the continuity equation written for the water 

phase. 

 The derivation is traditionally done by referring to a cube 

of porous material (Figure 1) that is large enough to be 

representative of the properties of the porous medium and 

yet small enough so that the change of head within the 

volume is relatively small (Anderson and Woessner, 

1992).
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Groundwater Flow Equation

 Figure 1 Representative elementary volume used in the 

derivation

 The cube in Figure 1 is called the representative elementary 

volume (REV). Its volume is equal to ΔxΔyΔz. The flow of 

water through the REV is expressed in terms of the discharge 

rate (q), whose magnitude in the three coordinates will be qx, 

qy, and qz.  
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 The water balance equation (conservation 

of mass) states that:

Mass Out – Mass In = Change of the 

Mass in storage

 Consider flow along the y-axis of the REV. 

Influx to REV occurs through the face xz

and is equal to (qy)in. Flux out is (qy)out. 

 
zyx

y

inyouty qq




 ,,

zyx

y

y

q






 The volumetric flow rate along y-axis is:

 This can also be written as:

 Dropping the ‘in’ and ‘out’ subscripts, the change in flow 

rate through the REV along the y-axis is:

 
zxinyouty qq  ,,
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 Similar expression can be written for the change in flow rate 

along the x- and z- axes. The total change in flow rate is 

equal to the rate of change in storage:

 The existence of sink (e.g. a pumping well) or source of 

water (e.g. injection well or some other source of recharge) 

within the REV is undeniable. The volumetric inflow rate 

of such sources is represented by R*xyz. Here the R* is 

defined to be intrinsically positive when it is a source of 

water; therefore it is added to the right hand side of Eq. 1. 

Therefore Eq. 1 becomes:
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 The change in storage is represented by specific storage 

(SS). It is defined as the volume of water released from 

storage per unit change in head (h) per unit volume of 

aquifer (Anderson and Woessner, 1992) i.e.

 The sign convention is that the V is intrinsically positive 

when the h is negative, in other words, water is released 

from the REV when head decreases. 

 The rate of change in storage in REV will be:

 Combining Eq. 2 and Eq. 3:
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 Darcy law is used to set the relationship between q and h. 

Darcy law in three dimension is written as (Anderson and 

Woessner, 1992):

 Substituting these expressions in Eq. A.4 the desired 

groundwater flow equation is formulated:

 Where Kx, Ky, and Kz are components of the hydraulic 

conductivity.
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 In the above derivation it is assumed that Kx, 

Ky, and Kz are collinear to the x, y- and z- axes. 

 If the geology is such that it is not possible to 

align the principal direction of the hydraulic 

conductivity tensor with the rectilinear 

coordinate system, a modified form of equation 

that utilizes the hydraulic conductivity tensor is 

required. 

 By using a global coordinate system for the 

entire problem domain and a local coordinate 

system for each REV in the grid, the off 

diagonal terms in the hydraulic conductivity 

tensor could have zero value (Anderson and 

Woessner, 1992).
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 The x-z coordinate system 
is aligned with the principal 
directions of the hydraulic 
conductivity tensor.

kz

kx
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z

 A global coordinate system (x-z) 
is defined. Local coordinates (x'-
z') are aligned with the principal 
directions of the local hydraulic 
conductivity tensor.
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3. Initial and boundary conditions
 For a well posed boundary value problem: (i) A solution 

must exist, (ii) The solution must be unique and (iii) The 

solution must be stable, in the sense that sufficiently small 

variations in the given data should lead to arbitrary small 

changes in the solution

 Initial and boundary conditions are needed for a unique 

solution of the groundwater flow equations (second-order 

partial differential equations) for a specific flow domain of 

interest

 Initial conditions: specification of the distribution of the 
state variable (hydraulic head for the groundwater flow 
equation) at some initial time, usually at t = 0. 

 For example

 in which f(x,y,z) is a known function, D is the flow domain.
   , , ,0 , , in Dh h x y z f x y z 
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 Boundary conditions: specification of the interaction 
between the flow domain and its surrounding 
environment, which is a mathematical representation of 
the physical reality

 Known water fluxes

 Known values of state variables, such as hydraulic 
head, that the external domain imposes on the flow 
regime 

 Different initial and boundary conditions result in 
different solutions

 Three mathematical boundary conditions:

1. Dirichlet

2. Neumann

3. Cauchy
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 Three mathematical boundary conditions

Dirichlet condition (boundary condition of the first 
kind): the fluid pressure (or hydraulic head) is specified 
as a known function of space and time. 

 This occurs whenever the porous medium flow 
domain is in contact with a body of open water (AB, 
EG surfaces)

   

   

,t , on B

, , on B

p f t

h t g t





x x

x x

 Special case : Equipotential boundary

f and g are two known functions
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 Neumann condition (boundary condition of the second 
kind): the pressure gradient (or hydraulic gradient), or a 
linear combination of their components, is specified as a 
known function of space and time on the boundary.

 This occurs when constant flux (discharge) is seen 
across a certain portion of the boundary (BE). 

 Thus an impervious boundary (Boundary along AG) is 
Neumann boundary with flux equal to zero.

m(x, t) is a known function  Bontxmqr ,
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 Cauchy, Mixed boundary condition, boundary condition 
of the third kind) : the condition which specifies the 
information on the relationship between the state 
variable and its derivatives

 This occurs when the porous medium domain is in 
contact with a body of water continuum (or another 
porous medium domain) through a relatively thin semi 
pervious layer separating the two domains (e.g., FG in 
the bottom figure)
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Analytical Method Example:

 The ends A and B of a soil column, 200 cm long, have head 

at 0 cm and 40 cm until steady state prevails. If the head of 

the ends are changed to 0 cm. Find the head distribution in 

the soil column at any time t. Take Ss as 10-3 and K as 10-5 

cm/s.
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The general solution would be
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4. Dupuit assumption

 The boundary of an unconfined aquifer (z) is indeed the 

solution (h) that needs to be determined. 

 Dupuit assumptions: First developed by Dupuit (1863) and 

then advanced by Forchheimer (1930), or called Dupuit-

Forchheimer theory

From observations, the slope of phreatic surface (water 

table) is very small (commonly 1/1000)

Two assumptions 

 The hydraulic gradient is equal to the slope of the 

free surface and is invariant with depth

 The equipotential lines are vertical, i.e., the flow 

lines are horizontal, i.e., p
g

z



 


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a. The real flow field with non-

vertical equipotential lines 

near the water table

b. The flow field obtained by the 

Dupuit assumption, i.e., 

vertical equipotential lines

For small , sin  can be replaced by tan , then

tans x

dh
q q K K

dx
     (for h = h(x))
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(A) For horizontal bottom and 3-D steady-state, free surface flows

   , , ,h x y z h x y because the assumption of vertical equipotential lines

(or horizontal flows)

x

y

h
q K

x

h
q K

y

K h


 


  


 



q  or / =
x

y

h
Q KWh

x
or KWh h

h
Q K

W Kh h

Wh
y


 


   







 

QQ

in which 
x y

 
  

 
i j

   Note that for 1-D flows, ,  and  is replaced by 
d

h x y h x
dx

 
  

 

2
yx

QQ L

W W W T

     
        

      

Q
Note that discharge per unit width

(W is the width of the unconfined aquifer)

116



Example : two-dimensional steady-state flow without 

accretion 

(After Bear and Verruijt, 1987)
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(Dupuit equation)

(Qx = flow per unit width)
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Example : three-dimensional steady-state flow with accretion 

(impervious, horizontal bottom)

Mass in – mass out =  M = 0 (steady state) 

dx

dy

h

w

xq dy x dxq dy

q = discharge 

per unit width
yq dx

y dyq dx

w [L/T] : rate of water into or out 

of the unconfined aquifer per unit 

area of the unconfined aquifer i.e., 

w > 0 for infiltration, w < 0 for 

evaporation 

(Adapted from Fetter, 1994)

Under Dupuit assumptions : h(x, y, z)  h(x, y) 
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Furthermore, for one-dimensional 

flows, Eq(2) reduces to 

(After Fetter, 1994)
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From Eq. (3)
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 Hence, the water table surface is a hyperbola with 

maximum elevation occurs at

 The location of maximum h occurs to the left of the 

midpoint if h2 < h1, or to the right if h2 > h1. 

     
2

2 2 2 2 2 22
2 1 1 2 2 1

max max 2
+ ,

2 2 2 4 4

K h h h h K h hL wL
x h

wL K wL

  
   

impervious

h1
h2

L/2

xmax

w

impervious

h1
h2

L/2

xmax

w

122



From Eq(3) and if w = 0 then
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Hence, the water table surface is a parabola with a positive 

slope when h2 > h1, or a negative slope when h2 < h1
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 Transient 2-D unconfined flows

For incompressible fluids and homogeneous and isotropic aquifers 

Mass in – mass out =  M  

dx

dy

h

xq dy x dxq dy

(impervious, horizontal bottom)

q = discharge 

per unit widthyq dx

y dyq dx

Under Dupuit assumptions: h(x,y,z) 

h(x,y) 
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x x x

y y y

y

x

x x dx y

x d

y dy

q q

x

y

y y dy

q q

dy t dy t dx t t S dxdy h

h h
tdy Kh K h

x x

h h
tdx Kh K h S dxdy h

y y

h

q q

K

q q

h
x

    



 







 



        

 
     

       
     

  

 
 

             
     

 
 

 


 

 y

y

Sh h h
h h

x x y

h h
dxdy K h dxdy S dxdy

x y

y K

y t

t

      
    

 

    

  

    
  

  





  

 Boussinesq equation

w
y

V
S

A h


 


specific yield

(4)


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 Boussinesq equation is a non-linear PDE, which can not be solved 

analytically except under some idealized conditions

 Approximations: Drawdown in the aquifer is small, i.e., h  b 

(averaged thickness assumed to be constant over the aquifer)

From (4): 

2 2

2 2

y

y

Sh h h h h
h h b b

x x y y x

S

x y y K

h h h

x y Kb t

t

         



    
         

      

 
  

      

  



(5) 

(Note that (5) is similar to the 2-D flow in a confined aquifer, 

except that S, Storativity of a confined aquifer, is used instead of 

Sy)
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 Conditions when Dupuit assumption does not work

 Vertical flow is not negligible (Vertical impervious boundary; 
Crest of water table (or water divide); Seepage face

 Rule of thumb (Bear and Verruijt, 1987): Dupuit assumption is 
valid at distances from the downstream end larger than twice the 
average height of the flow domain. However, discharge calculated 
from Dupuit assumption is a satisfactory estimation for most cases

Examples of seepage face
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 Examples where Dupuit 

assumption is not valid

128



Example : (Problem 2.14, Bear and Verruijt, 1987)

(a) Determine Q if K = 18 m/d

(b) Repeat (a) if K = 30 m/d from x = 0 to 

x = 800 m, and K = 10 m/d for the 

remaining 400 m.

Solution :
x

z = -10 m

40 m
30 m

water table

Q

(a) Because the flow field is steady-state, Q is a constant. Hence

2 2 2
218 40 30

5.25 /
2 2 1200

dh K dh
Q Kh m d

dx dx


      

(b) The hydraulic head at x = 800 must be continuous. Furthermore, Q is a constant because 

the flow field is steady-state. Hence

2 2 2 2

1 2

2

30 40 10 30

2 800 2 400

36.33

5.25 /

dh dh h h
Q Kh Kh

dx dx

h m

Q m d

    
          

   

 

 
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▪ Graphically, the equation can be represented by two sets of 

curves known as ‘Equipotential line’ and ‘flow lines’, that 

intersect at right angles. The combined representation of two 

sets of lines is called a flow net. With the help of a flow net, the 

groundwater flow problems can be analyzed. 

5. Flow net

 The 2D steady state Groundwater flow equation in isotropic and 

homogeneous porous medium  can be expressed by Laplace’s 

Equation:

0
2

2

2

2











y

h

x

h
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 Equipotential line: A line on which values of hydraulic head 
are the same.

Potential of groundwater ϕ = h = mechanical energy 
(pressure energy + elevation energy) per unit mass of 
groundwater. Equipotential lines are always perpendicular 
to the direction of h, no matter the isotropy of the medium

 Flow line (Fetter, 1994): An imaginary line that traces the path 
that a particle of groundwater would follow as it flows through 
an aquifer.

Flow lines will cross equipotential lines at right angles in an 
isotropic aquifer

Flow lines will cross the equipotential lines at an angle 
dictated by the degree of anisotropy and the orientation of 
h to the hydraulic conductivity tensor ellipsoid

Flow lines are parallel to h in isotropic media but not in 
anisotropic media
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KmH
Q

n


Q : flow per unit width [L2/T]

K : homogeneous/isotropic hydraulic conductivity [L/T]

m : # of stream tubes (flow tubes, i.e., area between two adjacent 

flow lines)

n : # of divisions of head in the flow net
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 Darcy’s equation: v = ki; where k is hydraulic conductivity (m/s) 

and i (= Δh/Δl) is hydraulic gradient. The seepage flow q, through 

a cross sectional area A is computed as; q = vA = kiA.

 In the flow net case: for a single net A = bX1 = b; q = kbΔh/Δl, 

but Δh = H/Nd where Nd is the number of equipotential drops; and 

H is the head difference between the initial and end section along 

the groundwater flow direction.

 The total discharge per unit width Q = Nf(q) = NfkbH/(NdΔl); 

however if the flow net is drawn so that b≈Δl, Q = kHNf/Nd

Where Nf is the number of flow tubes.

Flow

Equipotential 
Δl b
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Boundary conditions Vs flow lines

 Boundary conditions vs flow lines and equipotential lines

 No-flow boundary (Neumann): Adjacent flow lines are parallel 
to this boundary, and equipotential lines are perpendicular to this 
boundary

 Constant-head boundary (Dirichlet): This boundary represents 
an equipotential line and adjacent equipotential lines are parallel 
to this boundary. Flow lines will intersect the constant-head 
boundary at right angles

 Water-table boundary: the water table, in general, is neither a 
flow line nor an equipotential line. It is a line where head is 
known. If Dupuit assumption is valid, equipotential lines are 
vertical and flow lines are horizontal. If there is recharge or 
discharge across the water table, flow lines will be at an oblique 
angle to the water table.
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Three BC’s vs flow lines and equipotential lines

(After Freeze and Cherry, 1979)
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Flow nets for anisotropic media

 For isotropic soil the flow net is orthogonal; however the flow 

net in case of anisotropic soil is not orthogonal. Thus the two 

dimensional seepage flow equation is not a Laplace equation. 

 As the permeability is different in the two directions. For 

example in horizontally stratified aquifers, the horizontal 

permeability is usually greater than the vertical. Thus the 

seepage flow equation in an isotropic soils will be:

0
2

2

2

2











y

h
k

x

h
k yx

• However this equation can be modified to work as 

Laplace equation as:
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 For example if kx = 4ky; xt = x/2; The section of the 

medium is transformed by halving the horizontal 

dimension. Draw the flow net for the transformed section 

then transfer the flow net back to the original section.

0

;0

2

2

2

2

2

2

2

2





















y

h

x

h

kkxxlet
y

h

x

h

k

k

t

xyt

y

x
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Steps:

1. Transform the coordinates according 

to a specific scaling

2. Construct a flow net for the 

transformed, isotropic medium

3. Invert the scaling ratio

The total discharge per unit 

width:

Q = NfkbH/(NdΔl); 

Where k = (kxky)
1/2
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6. Approaches to groundwater flow analysis in fractured aquifers
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