CENG 6606: GROUNDWATER HYDRAULICS, Practice exercise 2

- 1. A 1m diameter well penetrates vertically through a confined aquifer 30 m thick. When the well is pumped at 113 m³/hr, the drawdown in a well 15 m away is 1.8 m; in another well 50 m away, it is 0.5 m. what is the approximate head in the pumping well for steady state conditions and what is the approximate drawdown in the well? Also compute the Transmissivity of the aquifer and the radius of influence. Take the initial piezometric level as 40 m above the datum.
- 2. A well 0.5 m in diameter penetrates 33 m below the static water table. After a long period of pumping at a rate of 80 m³/hr, the drawdown in the wells at 18 and 45 m from the pumped well were found to be 1.8 and 1.1 m, respectively.
 - a. What is the approximate drawdown in the pumped well?
 - b. Determine the radius of influence of the pumping well
- 3. A well penetrating a confined aquifer is pumped at a uniform rate of 6807 m^3 /day. Drawdown during the pumping test are measured in the pumping well of 0.127m radius is listed below.
 - a. Using Theis method determine T and S for this confined aquifer.
 - b. Rework (a) using Cooper Jacob method
 - c. Determine the transmissivity from the residual drawdown analysis

t (min)	s (m)										
0	0	70	79.91	960	83.42	2400	84.45	3780	83.87	4336	14.3
1	41.02	80	80.12	1020	83.47	2460	84.45	3840	84.06	4338	14.1
2	56.37	90	80.62	1080	83.82	2520	84.46	3900	84.14	4340	14
3	64.97	100	80.74	1140	83.87	2580	84.46	3960	84.29	4345	13.6
4	69.27	120	80.87	1200	84.07	2640	84.47	4020	84.42	4350	13.2
5	71.82	140	81.14	1260	84.16	2700	84.47	4080	84.44	4355	13
6	73.42	160	81.41	1320	84.34	2760	84.47	4140	84.47	4360	12.9
7	74.87	180	81.69	1440	84.38	2820	84.48	4200	84.65	4365	12.7
8	75.19	210	81.92	1500	84.4	2880	84.49	4260	84.47	4370	12.6
9	75.72	240	81.95	1560	84.42	2940	84.49	4320	84.5	4380	12.4
10	76.37	270	81.98	1620	84.42	3000	84.35	4320	84.5	4390	12.1
12	76.89	300	82	1680	84.42	3060	84.41	4321	42.7	4400	12
14	77.27	330	82.14	1740	84.43	3120	84.42	4322	24.8	4410	11.8
16	77.77	360	82.16	1800	84.43	3180	84.44	4323	19.6	4420	11.8
18	77.87	420	82.16	1860	84.43	3240	84.4	4324	18.3	4440	11.7
20	78.07	480	82.17	1920	84.43	3300	84.31	4325	17.4		
25	78.42	540	82.37	1980	84.44	3360	84.33	4326	16.7		
30	78.77	600	82.56	2040	84.44	3420	84.26	4327	16.3		
35	79.07	660	82.59	2100	84.44	3480	84.18	4328	15.9		
40	79.29	720	83.07	2160	84.44	3540	84.21	4329	15.7		
45	79.39	780	83.47	2220	84.45	3600	84.15	4330	15.5		
50	79.69	840	83.42	2280	84.45	3660	84.09	4332	14.8		
60	79.87	900	83.27	2340	84.45	3720	84.01	4334	14.6		

4. A pumping test was done to determine the aquifer characteristics of a certain site. The observed drawdown, after 1 day of pumping at three observation wells, was as shown in the Table below. The well yield was 100 liter per second.

Distance (m)	10	20	40
Drawdown (m)	4	3	2

- a. Estimate the Transmissivity and Storativity of the aquifer.
- b. What would be the well efficiency, if the pumping well diameter is 20 cm and the drawdown observed after 1 day is 11 meter?
- 5. A 0.5 m diameter well (200m from a river) is pumping at an unknown rate from a confined aquifer (see the figure below). The aquifer properties are $T = 432 \text{ m}^2/\text{day}$ and S = 0.0004. After 8 hours of pumping, the drawdown in the observation well (60 m from the fault) is 8 m. Compute the rate of pumping and the drawdown in the pumped well. What is the effect of the River on drawdown in the observation and pumping well?

6. Compare the four cases that are depicted below where a 1 m diameter well fully/partially penetrates vertically through a confined aquifer whose thickness is 28 m. Comment on their relative efficiencies by evaluating the specific capacity for each case.

7. The following curve is from a pumping test where a well was pumped at a rate of 12.5 liters per second. Drawdown as shown below was measured in an observation well 75 m away from the pumping well. The geologist's log of the well is: 0-7 m: Clayey soil; 7-23.5 m: Fractured Dolomite; 23.5-55 m: Dense Shale; 55-66 m: Sandstone; and66-67 m: Shale, limey. A steel well casing was grouted to a depth of 55 m and the well was extended as an open boring past that point. Assume the well is fully penetrating and no external leakage is occurring.

- a) Is the aquifer confined or unconfined? (Give reason/s)
- b) Determine the Storativity, Storage coefficient, Transmissivity and Hydraulic conductivity of the aquifer.
- 8. A pump test (PW₁) with discharge capacity of 45 lit/s is conducted in a confined aquifer to estimate the rate of pumping of a pumping well (PW₂) (**Figure below**). The log time (t) vs. draw down (s) obtained at the location of the observation well (OW) is approximated by $s = \log(t) 2.05$ where t is in seconds and s is in meters. Determine the Pumping rate from PW₂. The storativity and transmissivity of the aquifer is 0.02 m²/s and 0.004, respectively.

- 10. Groundwater is pumped from a confined aquifer. The pumping discharge is 314.2 m³/day. The saturated depth of the aquifer is 50 m; the hydraulic conductivity of the aquifer equals 10 m/day and the storage coefficient of the aquifer is 0.0001. A river (R) is located at a distance of 70.8 m of the pumping station, and the midpoint of a nature reserve (NR) is located at a distance of 500 m from the pumping well.
- a. Determine the lowering of the hydraulic head as a function of time in the midpoint of the nature reserve given the setup shown below.
- b. What would be the drawdown variation, if there is a fault (impermeable geologic medium) at the location of the river?
- c. What do you observe from the results of the above questions?

9. A step drawdown test was carried out on a pumping well and the relation between the discharge Q (in m³/day) the corresponding specific capacity (Sc) could be approximated by

$$Sc = \frac{10^6}{800 + 2Q}$$
. What is the well's efficiency?

- 10. The step draw-down test carried out in a pumping well has resulted in a relation given by: s/Q = 3 + 0.005Q; where s is the drawdown in meters and Q is the well yield. Determine the well's efficiency.
- 11. Suppose that from a step test we have determined the value of *Specific capacity* = $320 \text{ m}^3/\text{d/m}$ of drawdown. And the static water level (SWL) in the borehole lies at 5 m below ground level (m bgl), and we want at least 2 m of water in the hole above the pump during operation for safety reasons (you should never pump dry!). If the client insists on a yield of $2000 \text{ m}^3/\text{d}$. Decide on the length of the rising main to use.
- 12. A pumping test was done to determine the aquifer characteristics of a certain site. The observed drawdown, after 1 day of pumping at three observation wells that are placed at different distance from the pumping well, was as shown in the Table below. The discharge observed was 100 liter per second.

Distance	1	10	100
Drawdown	4	3	2

- a. Estimate the Transmissivity and Storativity of the aquifer. (10 %)
- b. What would be the well efficiency, if the pumping well diameter is 20 cm and the drawdown observed after 1 day is 11 meter? What is your recommendation on the well? (10 %)
- 13. A pump test (on PW₁) with discharge capacity of 45 lit/s is conducted in a confined aquifer to estimate the rate of pumping in PW₂ well (**Figure below**). The log time (t) vs. draw down (s) obtained at the location of the observation well (OW) is found to be 0.5 m. Determine the Pumping rate from PW₂. The storativity and transmissivity of the aquifer are $0.02 \text{ m}^2/\text{s}$ and 0.004, respectively. (25%)

