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13.1

In Chapter 12, we considered Coulomb’s carth pressure theory, in which the retain-
ing wall was considered to be rough. The potential failure surfaces in the backfill were
considered to be planes. In reality, most failure surfaces in soil arc curved. Therc are
several instances where the assumption of plane failure surfaces in soil may provide
unsafe results. Examples of these cases are the estimation of passive pressure and
braced cuts. This chapter describes procedures by which passive earth pressure and
lateral earth pressure on braced cuts can be estimated using curved failure surfaces
in the soil.

Retaining Walls with Friction

In reality, retaining walls are rough, and shear forces develop between the face of the
wall and the backfill. To understand the effect of wall friction on the failure surface,
let us consider a rough retaining wall A B with a horizontal granular backfill as shown
in Figure 13.1.

In the active case (Figurc 13.1a), when the wall AB moves to a position A’B,
the soil mass in the active zone will be stretched outward. This will cause a downward
motion of the soil relative to the wall. This motion causes a downward shear on the
wall (Figure 13.1b), and it is called a positive wall friction in the active case. If 8 is
the anglc of friction between the wall and the backfill, then the resultant active force
P, will be inclined at an angle 8 to the normal drawn to the back face of the retain-
ing wall. Advanced studies show that the failure surface in the backfill can be rep-
resented by BCD, as shown in Figure 13.1a. The portion BC is curved, and the por-
tion CD of the failure surface is a straight line. Rankine’s active state exists in the
zone ACD.

Under certain conditions, if the wall shown in Figure 13.1a is forced downward
with reference to the backfill, the direction of the active force P, will change as
shown in Figure 13.1¢. This is a situation of negative wall friction (—4) in the active
case. Figure 13.1c also shows the nature of the failure surface in the backfill.

The effect of wall friction for the passive state is shown in Figures 13.1d and e.
When the wall AB is pushed to a position A’ B (Figure 13.1d), the soil in the passive
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zone will be compressed. The result is an upward motion relative to the wall. The up-
ward motion of the soil will cause an upward shear on the retaining wall (Figure 13.1e).
This is referred to as positive wall friction in the passive case. The resultant passive
force, P,, will be inclined at an angle & to the normal drawn to the back face of the
wall. The failure surface in the soil has a curved lower portion BC and a straight up-
per portion CD. Rankine’s passive state exists in the zone ACD.

If the wall shown in Figure 13.1d is forced upward relative to the backfill by a
force, then the direction of the passive force P, will change as shown in Figure 13.1f.
This is negative wall friction in the passive case (—¥6). Figure 13.1f also shows the na-
ture of the failure surface in the backfill under such a condition.

For practical considerations, in the case of loose granular backfill, the angle of
wall friction § is taken to be equal to the angle of friction of soil, ¢'. For dense granu-
lar backfills, 8 is smaller than ¢’ and is in the range of ¢'/2 = 6 = (2/3)¢'.

The assumption of plane failure surface gives reasonably good results while cal-
culating active earth pressure. However, the assumption that the failure surface is a
plane in Coulomb’ theory grossly overestimates the passive resistance of walls, par-
ticularly for 6 > ¢'/2.

Properties of a Logarithmic Spiral

The case of passive pressure shown in Figure 13.1d (case of +8) is the most common
one encountered in design and construction. Also, the curved failure surface repre-
sented by BC in Figure 13.1d is most commonly assumed to be the arc of a logarith-
mic spiral. In a similar manner, the failure surface in soil in the casc of braced cuts
(Sections 13.6 to 13.10} is also assumed to be the arc of a logarithmic spiral. Hence,
some useful ideas concerning the properties of a logarithmic spiral are described in
this section.

The equation of the logarithmic spiral generally used in solving problems in
soil mechanics is of the form

r=r,emd (13.1)

where r = radius of the spiral
r, = starting radius atf = 0
¢’ = angle of friction of soil
6 = angle between rand r,

The basic parameters of a logarithmic spiral are shown in Figure 13.2, in which O is
the center of the spiral. The area of the sector OAB is given by

"1
A= J Er(rd()) (132)

0
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Figure 13.2
Gencral parameters of a logarithmic spiral

Substituting the values of » from Eq. (13.1) into Eq. (13.2), we get

[ 1
A= J w_’.2628 tan ¢’ d()
0 2 (4]

2 2
rn—r,

N 4 tan ¢’

(13.3)

The location of the centroid can be defined by the distances m and n (Figure 13.2),
measured from OA and OB, respectively, and can be given by the following equa-
tions (Hijab, 1956):

3
(g) (3tan¢’sinh — cosf) + 1

4 tan ¢’ o
= - 13.4
m 3r”(9tan2q§' +1) (ﬁ>2—1 ( )
rO
<r1>3 3 tan ¢’ sin 6 —jcos 8
4 tan ¢’ Py an ¢’ sin ;gcos
n=-r, T 5 (13.5)
3°9tan’ ¢’ + 1) (ﬁ) _q
r()

Another important property of the logarithmic spiral defined by Eq. (13.1) is
that any radial line makes an angle ¢’ with the normal to the curve drawn at the point
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where the radial line and the spiral intersect. This basic property is particularly use-
ful in solving problems related to lateral earth pressure.

PASSIVE EARTH PRESSURE

Procedure for Determination of Passive Earth
Pressure, P, (Cohesionless Backfill)

Figure 13.1d shows the curved failure surface in the granular backfill of a retaining
wall of height H. The shear strength of the granular backfill is expressed as

7, = o' tan ¢’ (13.6)

The curved lower portion BC of the failure wedge is an arc of a logarithmic spiral
defined by Eq. (13.1). The center of the log spiral lies on the linc CA (not necessar-
ily within the limits of points C and A). The upper portion CD is a straight line that
makes an angle of (45 — ¢'/2) degrees with the horizontal. The soil in the zone ACD
is in Rankine’s passive state.

Figure 13.3 shows the procedure for evaluating the passive resistance by trial
wedges (Terzaghi and Peck, 1967). The retaining wall is first drawn to scale as shown
in Figure 13.3a. The line C,A is drawn in such a way that it makes an angle of (45 —
¢'/2) degrees with the surface of the backfill. BC D) is a trial wedge in which BC; is
the arc of a logarithmic spiral. According to thc equation r, = re" " O, is the center
of the spiral. (Note: O,B =r,and O,C, = r; and Z/ BO|C, = 6,; refer to Figure 13.2.)

Now let us consider the stability of the soil mass ABC,C (Figure 13.3b). For
equilibrium, the following forces per unit length of the wall are to be considered:

1. Weight of the soil in zone ABC,C} = W, =(y)(Area of ABC,C})(1).
2. The vertical face, C,C/, is in the zone of Rankines passive statc; hence, the
force acting on this face is

SR ¢’
Piy = Ey(dl)“ tan‘<45 + 5) (13.7)

where d, = C,C}. P, acts horizontally at a distance of d,/3 measured verti-
cally upward from C,.

3. F, is the resultant of the shear and normal forces that act along the surface of
sliding, BC,. At any point on the curve, according to the property of the loga-
rithmic spiral, a radial line makes an angle ¢’ with the normal. Because the re-
sultant, F,, makes an angle ¢ with the normal to the spiral at its point of ap-
plication, its line of application will coincide with a radial line and will pass
through the point O;.

4. P, is the passive force per unit length of the wall. It acts at a distance of H/3
measured vertically from the bottom of the wall. The direction of the force P,
is inclined at an angle 8 with the normal drawn to the back face of the wall.

Now, taking the moments of W, Py, F;, and P, about the point O, for equi-
librium, we have

Willw) + Puaylhi] + F[0] = Pllp) (13.8)
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Figure 13.3 Passive earth pressure against retaining wall with curved failure surface
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or

1

Pl = T
Ipay

[(Wilwq, + Pl ] (13.9)

where Iy, [;, and [, are moment arms for the forces W,, P, and Py, respectively.
The preceding procedure for finding the trial passive force per unit length of
the wall is repeated for several trial wedges such as those shown in Figure 13.3c. Let
Py, Py, Py, ..., P, be the forces that correspond to trial wedges 1,2, 3,. . ., i, respec-
tively. The forces are plotted to some scale as shown in the upper part of the figure.
A smooth curve is plotted through the points 1,2, 3, ..., n. The lowest point of the
smooth curve defines the actual passive force, P,,. per unit length of the wall.

Coefficient of Passive Earth Pressure (K,)

The passive force per unit length of a rough retaining wall with a cohesionless hori-
zontal backfill can be calculated as
1

P, = SvHIK, (13.10)

where K, = passive pressure coeflicient.

For the definition of H|, sce Figure 13.4. The variation of K, determined by
Caquot and Keriscl (1948) is also shown in Figure 13.4.

[t is important to notc that the K, values shown in Figure 13.4 are for 8/¢" = 1.
If 8/¢p" # 1, the following procedure must be used to determine K,:

Assume 6 and ¢'.

Calculate 8/¢’.

Using the ratio of /¢’ (step 2), determine the reduction factor, R, from
Table 13.1.

Determine K, from Figurc 13.4 for 6/¢p" = 1.

5. Calculate K, for the required /¢’ as

o

-

K, = (R)[K,@g-1] (13.11)

P

Shields and Tolunay (1973) improved the trial wedge solution described in Sec-
tion 13.3 by using the method of slices to consider the stability of the trial soil wedge
such as ABC|C] in Figure 13.3a. The details of the analysis are beyond the scope of
this text. However, the values of K, (passive earth pressure coefficient) obtained by
this method are given in Table 13.2, and they seem to be as good as any other set of
values available currently. Note that the values of K, shown in Table 13.1 are for re-
taining walls with a vertical back (that is, ¢ = 0 in Figure 13.3) supporting a granular
backfill with a horizontal ground surface. The passive pressure for such a case can be
given as

1
P = EyHZK,,

P
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Table 13.1 Caquot and Kerisel’s Reduction Factor, R, for Passive Pressure Calculation

5/d'
¢’ 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
10 0.978 0.962 0.946 0.929 0912 0.898 0.881 0.864
15 0.961 0.934 0.907 0.881 0.854 0.830 0.803 0.775
20 0.939 0.901 0.862 0.824 0.787 0.752 0.716 0.678
25 0912 0.860 0.808 0.759 0.711 0.666 0.620 0.574
30 0.878 0.811 0.746 0.686 0.627 0.574 0.520 0.467
35 0.836 0.752 0.674 0.603 0.536 0.475 0417 0.362
40 0.783 0.682 0.592 0.512 0.439 0.375 0.316 0.262
45 0.718 0.600 0.500 0414 0.339 0.276 0.221 0.174
Table 13.2 Shields and Tolunay’s Values of K, Based on the Method of Slices
& (deg)
¢’ (deg) 0 5 10 15 20 25 30 " 35 40 45
20 204 226 243 255 2.70
25 246 277 303 3.23 3.39 3.63
30 3.00 343 380 4.13 4.40 4.64 5.03
35 369 429 484 534 5.80 6.21 6.59 7.25
40 469 544 626 7.05 7.80 8.51 9.18 9.83 11.03
45 583 7.06 830 9.5 10.80  12.04 1326 1446 15.60 18.01

427
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Example 13.1

Consider a 3-m-high (H) retaining wall with a vertical back (6 = 0°) and a hori-
zontal granular backfill. Given: y = 15.7 kN/m?, 8 = 15°, and ¢’ = 30°. Estimate
the passive force, P, by using

a. Coulomb’s theory
b. curved failure surface assumption (Caquot and Kerisel solution)
¢. Shields and Tolunay’s solutions

Solution
a. From Eq. (12.89),

P, = 3K,yH’
From Table 12.7, for ¢’ = 30° and & = 15°, the value of K, is 4.977. Thus,

P = (5)(4.977)(15.7)(3)* = 351.6 kN/m

. From Eq. (13.10),

P

P

=3K,yH} = K, yH*>  (because 6 = 0°, H = H))

From Figure 13.4, for § = 0°, 6/¢p" = 1, and ¢ = 30°, the value of K, is
6.4. From Table 13.1, for 8/¢’ = 15/30 = 0.5, the reduction factor, R, is
0.746. Thus, per Eq. (13.11),

K, = (0.746)(6.4) = 4.77

So
P, = }(4.77)(15.7)(3)* = 337 kN/m®
1
* PI) = 5 11‘yH2

From Table 13.2, for ¢’ = 30° and § = 15°, the value of K|, is 4.13. Hence,

1
P, = <5>(4.13)(15.7)(3)2 ~ 292 kN/m .

Passive Force on Walls with Earthquake Forces

The passive force on retaining walls with earthquake forces was discussed in Sec-
tion 12.15. In that analysis, the backfill was considered to be a granular soil, and the
failure surface in the backfill was assumed to be a plane. It was shown in Sections 13.3
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and 13.4 that for static conditions and when 8 > ¢b'/2, the passive foree calculated by
assuming a plane failure surface in the backfill becomes unsafe. For that reason,
Morrison and Ebeling (1995) assumed that the failure surface was an arc of a loga-
rithmic spiral as defined by Eq. (13.1). and they calculated the magnitude of passive
force by including carthquake forces (Figure 13.5). In Figure 13.5, the back face of
the retaining wall is vertical and the backfill is horizontal. Also,

I1 = hcight of retaining wall

=
1

= weight of failurc wedge
P,. = Passive force per unit length of the wall
o = angle of wall friction

horizontal component of carthquake acceleration

acccleration due to gravity, g

vertical component of carthquake acceleration

accceleration due to gravity, g

Based on Morrison and Ebcling’s analysis, the passive force can be given as

lo,
P = VK, (13.12)

Figure 13.6 shows variation of K, with k; and ¢’ for thc Mononobe—Okabe solution
[Eq. (12.92)] and for the logarithmic spiral type of failure surface analysis, with § =
2¢'13, k, = 0,0 =0° and o = 0°. As we can see from the figure, for a given value of
kj, the magnitude of K, is always larger when the failure surface is assumed to be a
plane (Mononobe-Okabe solution). This is true for all values of ¢’ Figure 13.7
shows the variation of K, with &, and & for the Mononobe—-Okabe solution and the
logarithmic spiral solution, with k, = 0,¢" = 30°,6 = 0°, e = 0°,and 6 = 0, G'12,2¢13,
and ¢'.
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13.6

BRACED CUTS

Braced Cuts— General

Frequently during the construction of foundations or utilities (such as sewers), open
trenches with vertical soil slopes are excavated. Although most of these trenches
are temporary, the sides of the cuts must be supported by proper bracing systems.
Figure 13.8 shows one of several bracing systems commonly adopted in construction
practice. The bracing consists of sheet piles, wales, and struts.




13.6 Braced Cuts— General 431

Wale Strut

Sheet pile
Wale

Sheet pile

St

(a) (b)

Figure 13.8 Braced cut: (a) cross section: (b) plan (section at X-X)

Proper design of these elements requires a knowledge of the lateral earth pres-
sure exerted on the braced walls. The magnitude of the lateral carth pressure at var-
ious depths of the cut is very much influenced by the deformation condition of the
sheeting. To understand the nature of the deformation of the braced walls, one needs
to follow the sequence of construction. Construction of the unit begins with driving
the sheetings. The top row of the wales and struts (marked A in Figure 13.8a) is em-
placed immediately after a small cut is made. This emplacement must be done im-
mediately so that the soil mass outside the cut has no time to deform and cause the
sheetings to yield. As the sequence of driving the sheetings, excavating the soil, and
placing rows of wales and struts (see B and C in Figure 13.8) continues, the sheetings
move inward at greater depths. This action is caused by greater carth pressure ex-
erted by the soil outside the cut. The deformation of the braced walls is shown by the
broken lines in Figure 13.8a. Essentially, the problem models a condition where the
walls are rotating about the level of the top row of struts. A photograph of braced
cuts made for subway construction in Chicago is shown in Figure 13.9a. Figures 13.9b
and 13.9c are photographs of two braced cuts — one in Scoul, South Korea, and the
other in Taiwan.

The deformation of a braced wall differs from the deformation condition of a
retaining wall in that, in a braced wall, the rotation is about the top. For this rcason,
neither Coulomb’s nor Rankine’s theory will give the actual earth pressure distribu-
tion. This fact is illustrated in Figure 13.10 on page 433, in which AB is a frictionless
wall with a granular soil backfill. When the wall deforms to position AB’, failure sur-
face BC develops. Because the upper portion of the soil mass in the zone ABC does
not undergo sufficient deformation, it does not pass into Rankine’s active state. The
sliding surface BC intersects the ground surface almost at 90°7 The corresponding
earth pressure will be somewhat parabolic, like ach shown in Figure 13.10b. With this
type of pressure distribution, the point of application of the resultant active thrust
P,, will be at a height of n,H measured from the bottom of the wall, with n, > 1 (for
triangular pressure distribution n, = }). Theoretical evaluation and field measure-
ments have shown that »n, could be as high as 0.55.
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(b)

Figure 13.9 Braced cuts: (a) Chicago subway construction (courtesy of Ralph B. Peck);
(b) in Seoul, South Korea (courtesy of E. C. Shin, University of Inchon, South Korea); (¢) in
Taiwan (courtesy of Richard Tsai, C&M Hi-Tech Engineering Co., Ltd., Taipei, Taiwan)
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Figure 13.10 Earth pressure distribution against a wall with rotation about the top
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Figure 13.11 shows the laboratory observations of Sherif and Fang (1984) re-
lated to the distribution of the horizontal component of the lateral carth pressure on
a model retaining wall with a dry granular backfill rotating about the top. This figure
clearly demonstrates the nonhydrostatic distribution of the lateral earth pressure for
this type of wall movement.

Determination of Active Thrust on Bracing
Systems of Open Cuts in Granular Soil

The active thrust on the bracing system of open cuts can be theoretically estimated
by using trial wedges and Terzaghi’s general wedge theory (1941). The basic proce-
dure for determination of the active thrust arc described in this section.

Figure 13.12ashows a braced wall A B of height A that deforms by rotating about
its top. The wall is assumed to be rough, with the angle of wall friction equal to 8.
The point of application of the active thrust (that is, n,H) is assumed to be known.
The curve of sliding is assumed to be an arc of a logarithmic spiral. As we discussed
in the preceding section, the curve of sliding intersects the horizontal ground surface
at 90°. To proceed with the trial wedge solution, let us select a point b,. From b, a
line b that makes an angle ¢’ with the ground surface is drawn. (Note that ¢’ =
effective angle of friction of the soil.) The arc of the logarithmic spiral, b, B, which
defines the curve of sliding for this trial, can now be drawn, with the center of the spi-
ral (point O)) located on the line b b}. Note that the equation for the logarithmic spi-
ral is given by r; = r,e” ™% and, in this case, O,b, = r, and O,B = r,. Also, it is in-
teresting to see that the horizontal line that represents the ground surface is the
normal to the curve of sliding at the point b, and that O, is a radial line. The angle
between them is equal to ¢', which agrees with the property of the spiral.

To look at the equilibrium of the failure wedge, let us consider the following
forces per unit length of the braced wall:

1. W, = the weight of the wedge ABb, = (Area of ABb,) X (v) X (1).

2. P; = the active thrust acting at a point n,/ measured vertically upward from
the bottom of the cut and inclined at an angle 8 with the horizontal.
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3. F, = the resultant of the shear and normal forces that act along the trial failure
surface. The line of action of the force F, will pass through the point O;.

Now, taking the moments of these torces about Oy, we have
Willww) + Fi0) = P[lpyy] =0

or
B Wilw,

(13.13)

1
lpq

where /yy;, and I, are the moment arms for the forces W, and Py, respectively.
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This procedure of finding the active thrust can now be repeated for several
wedges such as ABb,, ABb,, . . ., ABb, (Figure 13.12b). Note that the centers of
the logarithmic spiral arcs will lie on lines b,b3, bybs, . . ., b,b;,, respectively. The ac-
tive thrusts Py, P,, P;, ..., P, derived from the trial wedges are plotted to some scale
in the upper portion of Figure 13.12b. The maximum point of the smooth curve
drawn through these points will yield the desired maximum active thrust, P, on the
braced wall.

Kim and Preber (1969) determined the values of P,/0.5yH? for braced excava-
tions for various values of ¢', 8, and n,. These values are given in Table 13.3. In gen-
eral, the average magnitude of P, is about 10% greater when the wall rotation is
about the top as compared with the value obtained by Coulomb’s active earth pres-
sure theory.

Table 13.3 P,/0.5yH’ Against ¢', 8, and n, (¢’ = 0) for Braced Cuts*

P,/0.5yH? P,/0.5yH?
& 5 oy b
(deg) (deg) n,=03 n,=04 n,=05 n,=06 (deqg) (deg) n,=03 n,=04 n,=05 n,=06
10 0 0.653 0.734 0.840 0.983 35 0 0.247 0.267 0.290 0.318
5 0.623 0.700 0.799 0.933 5 0.239 0.258 0.280 0.318
10 0.610 0.685 0.783 0.916 10 0.234 0.252 0.273 0.300
g 9
15 0 0.542 0.602 0.679 0.778 13 0.231 0.249 0.270 0.296

20 0.231 0.248 0.269 0.295
25 0.232 0.250 0.271 0.297
30 0.236 0.254 0.276 0.302
35 0.243 0.262 0.284 0.312

5 0.518 0.575 0.646 0.739
10 0.505 0.559 0.629 0.719
15 (.499 0.554 .623 0.714

20 0 0.499 0.495 0.551 0.622
5 0.430 0.473 0.526 .593

10 0.419 0.460 0.511 0.575

15 0.413 0.454 0.504 0.568

20 0.413 0.454 0.504 0.569

40 0 0.198 0.213 0.230 0.252
5 0.192 0.206 0.223 0.244

10 0.189 0.202 0.219 0.238

15 0.187 0.200 0.216 0.236

20 0.187 0.200 0.216 0.235

25 0 0.371 0.405 (.447 0.499 25 0.188 0.202 0.218 0.237
5 0.356 0.389 0.428 0.477 30 0.192 0.205 0.222 0.241

10 0.347 0.378 0.416 0.464 35 0.197 0.211 0.228 0.248

15 0.342 0.373 0.410 0.457 40 0.205 0.220 0.237 0.259

20 0.341 0.372 0.409 0.456

25 0344 0375 0.413 0461 45 0 0.156 0.167 0.180 0.196

5 0.152 0.163 0.175 0.190

30 0 0.304 0.330 0.361 0.400 10 0.150 0.160 0.172 0.187
5 0.293 0.318 0.347 0.384 15 0.148 0.159 0.171 0.185

10 0.286 0.310 0.339 0.374 20 0.149 0.159 0.171 0.185

15 0.282 0.306 0.334 0.368 25 0.150 0.160 0.173 0.187

20 0.281 0.305 0.332 0.367 30 0.153 0.164 0.176 0.190

25 0.284 0.307 0.335 0.370 35 0.158 0.168 0.181 0.196

30 0.289 0.313 0.341 0.377 40 0.164 0.175 0.188 0.204

45 0.173 0.184 0.198 0.213

* After Kim and Preber (1969)
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Table 13.4 Values of P,/0.5yH? for Cuts in a ¢’-¢’ Soil
with the Assumption ¢, = ¢'(tan 8/tan ¢')*

n,=03 n,=04 n,=05
o and and and
(deg) ¢'/yH=0.1 c'/yH=0.1 c¢/yH=101
' =15°
0 0.254 0.285 0.322
5 0.214 0.240 0.270
10 0.187 0.210 0.238
15 0.169 0.191 0.218
¢ =20°
0 0.191 0.210 0.236
5 0.160 0.179 0.200
10 0.140 0.156 0.173
15 0.122 0.127 0.154
20 0.113 0.124 0.140
¢ = 25°
0 0.138 0.150 0.167
5 0.116 0.128 0.141
10 0.099 0.110 0.122
15 0.085 0.095 0.106
20 0.074 0.083 0.093
25 0.065 0.074 0.083
¢ = 30°
0 0.093 0.103 0.113
5 0.078 0.086 0.094
10 0.066 0.073 0.080
15 0.056 0.060 0.067
20 0.047 0.051 0.056
25 0.036 0.042 0.047
30 0.029 0.033 0.038

* After Kim and Preber (1969)

13.8 Determination of Active Thrust on Bracing
Systems for Cuts in Cohesive Soil

Using the principles of the general wedge theory, we can also determine the active
thrust on bracing systems for cuts made in ¢’-¢’ soil. Table 13.4 gives the variation of
P, in a nondimensional form for various values of ¢', 8, n,, and ¢’/yH.

For the ¢ = 0 condition, ¢ = ¢,. For this condition, it can be shown (Das and
Seeley, 1975) that

e 1 2
Po= o Py (0.677 — KN.)yH (13.14)
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13.9

where

N, = (;1“7) (13.15)

K = f<§~> (13.16)

H

where ¢, = adhesion along the face of sheet piles.
The values of K are
cﬂ
@)«

0 2.762
05 3.056
0 3.143

Pressure Variation for Design of
Sheetings, Struts, and Wales

The active thrust against sheeting in a braced cut, calculated by using the general
wedge theory, does not explain the variation of the earth pressure with depth that is
necessary for design work. An important difference between bracings in open cuts
and retaining walls is that retaining walls fail as single units, whereas bracings in an
open cut undergo progressive failure where one or more struts fail at one time.
Empirical lateral pressure diagrams against sheetings for the design of bracing
systems have been given by Peck (1969). These pressure diagrams for cuts in sand,
soft to medium clay, and stiff clay are given in Figure 13.13. Strut loads may be de-
termined by assuming that the vertical members are hinged at each strut level except

d¢y
, o, =YH(1- 1) G =0.2vH to 0.4vH
a,=0.65yHun?(45 - ) — %
for Yf; >4 tor Y(T <4

> |

Ky

0.25H

¥
H : ""%:, ‘,«’ l ”
- 0.75H [

Soft to medium clay Stiff clay
(b) ©

Figure 13.13 Peck’s pressure diagrams for design of bracing systems
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Figure 13.14 Determination of strut loads from empirical lateral pressure diagrams

the topmost and bottommost ones (Figure 13.14). Example 13.2 illustrates the pro-
cedure for the calculation of strut loads.

Example 13.2

A 7-m-deep braced cut in sand is shown in Figure 13.15. In the plan, the struts are
placed at s = 2 m center to center. Using Peck’s empirical pressure diagram, cal-
culate the design strut loads.

| Sm >
I'm Sand
o 0'=30°
A e - y=16 kN/m3
2m
2m
C X
2m ’}
4
Bottom of cut

Figure 13.15 Braced cut in sand
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B,

. B, Y plocbr ey R

'

Figure 13.16 Calculation of strut loads from pressure envelope
Solution
Refer to Figure 13.13a. For the lateral earth pressure diagram,
2 ¢/ 2 30 2
o, = 0.65yH tan| 45 — 5 = (0.65)(16)(7)tan"| 45 — 5 = 2427 kN/m

Assume that the sheeting is hinged at strut level B. Now refer to the diagram in
Figure 13.16 We need to find reactions at A, B, B;, and C. Taking the moment
about By, we have

2A = (2427)(3)(3); A =5461kN/m
Hence,
B, = (24.27)(3) — 54.61 = 18.2kN/m

Again, taking the moment about B,, we have

2C = (24.27)(4)(3)

C = 97.08 kN/m
So
B, = (2427)(4) — 97.08 =0

SR

The strut loads are as follows: :

%

Atlevel A: (A)(s) = (54.61)(2) = 109.22 kN
Atlevel B: (B, + B,)(s) = (182 + 0)(2) = 36.4 kN
Atlevel C: (C)(s) = (97.08)(2) = 194.16 kN .
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13.10

Dynamic Earth Pressure Distribution
Behind a Wall Rotating about the Top

Lateral earth pressure on braced cutsis essentially a problem in which the wall rotates
about the top. On the basis of laboratory model test results, Sherif and Fang (1984)
reported the dynamic earth pressure distribution behind a rigid retaining wall (H =
I m) with dense sand as backfill material and rotation about its top. Figure 13.17
shows a plot of o, cos & versus depth for various values of &, (for k, = 0). The mag-
nitude of active thrust, P,,, can be obtained from the equation

i
P, cos8 = j (o}, cos 8) dz

ae
8]

or

i
P, = *--J (o), cos &) dz (13.17)

4]

For a given value of k,,, the magnitude of P, is 15 to 20% higher than that obtained
by using Eq. (12.72) (i.c., the case of wall rotation about the bottom).

o',cosd (kN/m?)

200
g 400
5
=
a
v
a8 600
800

1000

8 10
I
— Model test results
in dense sand
(Sherif and Fang, 1984)
y=1599 kN/m* - 10
k=0
!
/ ' —
/ Sand H 20 £
I ty
/
~ — 30
s k=052
\\
\\
~
. ~ RS
\\kh =0.26 S k=04
N | Moo
10 20 30 40 50 60 70

1b/in?

Figure 13.17 Dynamic lateral earth presure distribution behind a rigid model retaining wall rotating
about the top



442 Chapter 13 Lateral Earth Pressure— Curved Failure Surface

13.11

With the model test results just described, Sherif and Fang (1984) suggested
that the location of the point of application of P, with the wall rotating about the
top may be assumed to be 0.55H measured from the bottom of the wall.

Summary

This chapter covers two major topics: (a) estimation of passive pressure using curved
failure surface in soil; and (b) lateral earth pressure on braced cuts using the general
wedge theory and pressure envelopes for design of struts, wales, and sheet piles.

Passive pressure calculations using curved failure surface is essential for the
case in which 8 > ¢'/2, since plane failure surface assumption provides results on the
unsafe side for design.

In the case of braced cuts, although the general wedge theory provides the
force per unit length of the cut, it does not provide the nature of distribution of earth
pressure with depth. For that reason, pressure envelopes are necessary for practical
design.

Problems

13.1 Draw a logarithmic spiral according to the equation r = r,e’ @ with 9
varying from 0° to 180°. Use ¢’ = 40° and r, = 30 mm.

13.2 Refer to Figure 13.18. If H = 6 m, the density of soil (p) = 1850 kg/m’, and
the angle of wall friction (8) = 17.5°, determine the passive force, P, per
unit length of the wall. Use Caquot and Kerisel’s solution.

13.3 Repeat Problem 13.2 with the following data: H = 10 ft, y = 110 Ib/fe, & = 14°.

13.4 A retaining wall has a vertical back face with a horizontal granular backfill.
Given that

height of retaining wall = 15 ft
unit weight of soil = 100 Ib/ft’
soil friction angle, ¢’ = 30°

8 =2/3¢,
¢ =0
calculate the passive force per foot length of the wall using Table 13.2.
T |
i
> (’14— Sand
L 8=10°
H f' Unit weight =y (or density = p)
1 ! ¢'=0
9'=35°

8 (wall friction)

Figure 13.18




13.5

13.6

13.7

~
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Refer to Figure 13.5. Given that H = 5m, y = 16 kKN/m?, ¢’ = 30°,

k, =0, and &, = 0.3,

a. Calculate P,, for the retaining wall using the Mononobe ~Okabe solution
(Section 12.15);

b. Calculate P, for the retaining wall using the logarithmic spiral solution
(Section 13.5).

Using the theory described in the section on general wedge theory, deter-

mine the active thrust, P,, for the braced wall shown in Figure 13.19.

The elevation and plan of a bracing system for an open cut in sand are

shown in Figure 13.20. Assuming y,,,q = 105 Ib/ft* and ¢’ = 38°, determine

the strut loads.

= 15°

¥=16.0 kN/m?
=0
’ 0'=30°

Struts—
8 ft center
to center

(a) Section

(b) Plan

Figure 13.20
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