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Reliable engineering productivity measurement is a critical element of 

predictable project performance and continuous improvement. Despite the fact 

that engineering costs have risen to levels approaching 20 percent of total project 

cost on some industrial projects, engineering productivity is less well understood 

and has received less study than construction productivity. Furthermore, 

engineering productivity is a critical determinant of the final cost and schedule 

performance of a project (Chang et al. 2001). For these reasons, metrics for 

assessing productivity to drive improvement are essential, especially considering 

trends toward offshore engineering. 

 

 Applicable industry standard engineering productivity measurements must 

first be established and then applied to present day work processes before 

significant improvement and predictability of performance can be established (CII 

 vii



 

2001).  Over the years, a number of different approaches for engineering 

productivity measurement have been proposed. These approaches are discussed 

and the development of the CII Benchmarking and Metrics approach, a direct 

measurement approach, is presented for this research.  

 

This research: (1) identifies critical issues for the implementation of 

engineering productivity measurement; (2) develops an Engineering Productivity 

Measurement System (EPMS) based on real project data; and, finally (3) 

recommends a framework for future studies. 
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Chapter 1: INTRODUCTION 

1.1 PROBLEM STATEMENT 

The Construction Industry Institute (CII) was founded in 1983 to carry 

forward the recommendations of The Business Roundtable's Construction 

Industry Cost Effectiveness (CICE) Project. One of the first research efforts 

conducted by CII addressed the productivity measurement recommendations 

made in the CICE A-1 Report (BRT 1982), Measuring Productivity in 

Construction (CII 1990). However, little effort to develop an engineering 

productivity measurement system was undertaken at that time. Some twenty years 

later, the industry still struggles with this issue. In 2002, the CII Benchmarking & 

Metrics (BM&M) program undertook the task in order to establish an engineering 

productivity measurement system within its ongoing benchmarking program. 

 

Reliable engineering productivity measurement is a crucial element of 

predictable project performance and improvement. Despite the fact that 

engineering costs have risen to levels approaching 20 percent of total project cost 

on some industrial projects, engineering productivity is not as well understood as 

construction productivity and has received less study. The effective delivery of 

engineering during the project life cycle is a critical determinant of a project’s 

overall cost and schedule performance (Chang et al. 2001). Productivity 
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measurement is also key to management of the design process. Appropriate 

industry-standard engineering productivity measurements must be established and 

then applied to present day work processes before significant improvement and 

predictability of performance can be made (CII 2001).  

 

Many engineering companies measure productivity using intermediate 

deliverables such as drawings as output. Measurement of productivity using 

engineering drawings has many drawbacks, however. Metrics are difficult to 

define objectively, and computer-based engineering tools are constantly evolving 

(Chang et al. 2001).      

 

At the time this research commenced, the engineering industry had not 

developed an accepted method to measure engineering productivity. Little 

research had been done to establish a method to measure engineering productivity 

using empirical data with a set of common definitions across the industry. 

 

1.2 BACKGROUND 

 

Considering that “measurement is the first step that leads to control and 

eventually to improvement” (Harrington 1987), development of a reliable 

standard engineering productivity measurement system is a critical process in 

engineering performance evaluation and improvement. The industry needs a tool 
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to drive performance improvement through internal or external benchmarking. 

Measurement may not directly lead to performance improvement; however, 

performance improvement over time can be achieved through recognizing the 

need for improvement and by establishing quantitative goals. As an example, 

measurement and tracking of safety performance by CII member companies led to 

improvement in safety performance. CII has tracked safety performance of 

member companies since 1989. The measurement and reporting of safety metrics 

has been instrumental in driving CII efforts to improve safety performance (CII 

2005). 

1.2.1 Overview of the Construction Industry Institute 

 

CII was established at The University of Texas at Austin to address the 

need for construction research and to unify the fragmented industry. CII is a 

consortium of leading owners, engineering and construction contractors, 

suppliers, and academia working to improve the cost effectiveness of the capital 

facility project life cycle, from pre-project planning through completion and 

commissioning. By collaborating on important industry issues and by providing 

guidance on best practices developed through research, CII has evolved to be a 

principle industry forum for the engineer-procure-construct process (CII 2006a). 
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The mission of CII is to improve the safety, quality, schedule, and cost 

effectiveness of the capital investment process through research and 

implementation support for the purpose of providing a competitive advantage to 

its members in the global marketplace (CII 2006a). 

 

As of July 2007, there are 109 member organizations representing 53 

owners and 56 contractors involved in CII programs such as Research, 

Benchmarking and Metrics (BM&M), Implementation, Education, Globalization, 

and Breakthrough Strategy.  

1.2.2 Overview of the Benchmarking and Metrics Program 

 

The BM&M Committee was formed in 1994 as an ad hoc committee and 

became a standing committee of CII in 1996. The primary focus of the committee 

is the measurement of the capital facility project delivery process through survey 

of multiple performance factors and practice use implementation indices with the 

purpose of providing recommendations for continuous improvement. The 

Productivity Metrics Team began as an ad hoc group in 2000 and later 

transitioned into a standing team. The committee is currently composed of 22 

committee members and two standing teams: 1) Analysis and Questionnaire and 

2) Productivity. Other task-oriented teams such as the Annual Conference / 
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Marketing team and a Small Projects team forum on an as-needed basis to 

accomplish special initiatives like small project benchmarking.  

 

The CII BM&M survey instrument has been developed over the years 

through thorough review and incorporation of many elements derived from CII 

research and implementation documents. It is now a well-structured survey 

instrument for effective measurement of project performance and best practice 

use. The instrument evolved from a paper-based questionnaire to a secure web-

based data collection and reporting system for industry performance and practice 

use norms. The survey instrument is the primary tool of the CII BM&M program. 

Objectives of the program are listed below (CII 2002): 

 

• Establish a common set of metric definitions. 

• Establish project performance norms. 

• Establish the level of use of selected “best practices.” 

• Quantify the value of implementing CII recommended “best 

practices.” 

• Provide participating companies tools for self-analysis. 

• Facilitate the development and sharing of benchmarking knowledge 

within the construction industry. 
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• Provide a credible database that is efficient in terms of resources 

required for data submission, analysis, and the reporting of findings. 

 

The CII BM&M database currently contains 1,420 projects valued at over 

$65 billion from four industry groups: heavy industrial, light industrial, buildings, 

and infrastructure. The BM&M program collects project information on cost, 

schedule, safety, change, rework and the use of twelve best practices (Thomas et 

al. 2002).  Descriptive project information including project type, nature, impact 

factors, and project participant data are also collected. Practices that are measured 

include pre-project planning, alignment during pre-project planning, 

constructability, team building, zero accidents techniques (safety), change 

management, automation and integration (A/I) technology, materials 

management, planning for startup, quality management, international project risk 

assessment, and design for maintainability. As will be discussed later in greater 

detail, the questionnaire also surveys construction and engineering productivity 

for categories including concrete, structural steel, electrical, piping, 

instrumentation, and equipment. Construction productivity for insulation is also 

evaluated.  In recent years, the small project questionnaire and the 

pharmaceutical project questionnaire have also been developed and were 

incorporated into the CII BM&M system. These questionnaires also adopted the 
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productivity measures developed in this research; the BM&M large project 

questionnaire will be the focus of review and analysis herein, however. 

1.2.3 Engineering Productivity Metrics Initiative  

 

In 2000, a number of CII members proposed the development of a 

common set of definitions that could produce norms to measure construction 

productivity. An organized effort to measure engineering productivity on the 

same basis as construction productivity would soon follow.  The BM&M 

productivity metrics team understood that common definitions would be essential 

for successful external benchmarking, and that a system using quantity-based 

metrics rather than intermediate deliverables did not exist. Following the 

development of construction productivity metrics in 2000 and 2001, a series of 

workshops were conducted in 2002 to establish consensus definitions for six 

engineering productivity metrics categories.  

 

The BM&M productivity metrics team currently operates as a standing 

team under the CII Benchmarking and Metrics Committee. The team is staffed 

with members from the organizations as given in Table 1.1. During the course of 

the development of these metrics, several other companies participated as well. 

Additional discussion will be given in Chapter 4 on this development effort.  
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Table 1.1 Participating Organizations of Productivity Metrics Team  

 Participating Organizations 

BE&K Inc. 

Chevron Corporation 

Aramco Services Company 

Rohm and Haas Company 

Fru-Con Construction Corporation 

S&B Engineers and Constructors, Ltd. 

ALSTOM Power 

CII/ The Univ. of Texas at Austin 
 

 

1.3 RESEARCH OBJECTIVES 

 

The purpose of this research investigation was to develop a system for 

engineering productivity measurement that is suitable for benchmarking and to 

provide quantitative feedback to participants for improving their productivity 

performance. This study primarily focused on the development of a standard 

engineering productivity metrics system.  

 

More specifically, the objectives of this research are: 
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1) To establish engineering productivity metric definitions that are 

acceptable to industry. 

2) To develop a system for the implementation of these metrics. 

3) To collect a pilot set of data for preliminary validation. 

4) To identify and discuss the issues of engineering productivity 

measurement. 

5) To recommend directions for future studies. 

1.4 RESEARCH HYPOTHESIS 

 

The following hypothesis was developed in support of the research 

objectives. 

 

Engineering work-hours and design quantities provide reliable 

measures of engineering productivity. 

 

The hypothesis relates engineering work-hours to design quantities or 

more specifically, Issued for Construction (IFC) quantities. This relates 

engineering productivity to the final product as opposed to intermediate 

deliverables which can provide distorted measures, depending on the media used 

(Chang et al. 2001). The term “reliable” as used in the hypothesis should not be 

construed to indicate reliable in a statistical sense, but rather means that 
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productivity metrics based on engineering work-hours and design quantities 

provide metrics for which industry can report and which produce distributions 

which are sufficiently dependable for benchmarking purposes.   

1.5 RESEARCH SCOPE 

 

This research is limited to developing and validating an engineering 

productivity measurement system using input from participating CII companies. 

Even though CII membership represents a broad range of industry types, the 

metrics developed in this study are best suited to large industrial process projects. 

Therefore, the outputs from this research are most applicable to larger heavy 

industrial projects. Although this research focuses on the industrial sector, much 

of the system and development methodology may be applied to other sectors. 

While there are many ways to measure productivity, this system uses design 

work-hours and IFC quantities as inputs to determine productivity. 

 

Data collected for this research provide only initial validation for the 

developed engineering productivity metrics. In most cases, sufficient data will not 

be available to establish statistically significant relationships for several years. 

Another limitation of this research is its reliance on convenience sampling rather 

than true random sampling. To obtain sufficient data to support the research, CII 

volunteers provide data from available projects, a methodology which is typical 
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for most CII research. Thus, the data are not a random sample and also CII 

members may not be truly representative of the construction industry. Caution 

should therefore be exercised when interpreting finding of this research. 

Nevertheless, these analyses provide an approach that may be used for metric 

validation when additional data are available.  

1.6 ORGANIZATION OF DISSERTATION 

 

Chapter 1 presents a general overview of the problem statement, 

background, research objectives, and research scope. Following this introductory 

chapter, Chapter 2 explores some of the published research regarding construction 

and engineering productivity measurement issues. The rationale for the direction 

and approach chosen for this research is explained by review of other productivity 

studies and their strengths and weaknesses. The research approach is discussed in 

Chapter 3, including a description of CII Benchmarking & Metrics Productivity 

workshops, evaluation of other models, and the process for development of 

engineering productivity metrics.  Chapter 4 introduces the metrics for 

measuring engineering productivity developed by this research effort. In Chapter 

5, analyses of an initial data set are presented to demonstrate that these 

engineering productivity metrics can provide meaningful information for 

productivity benchmarking and to validate the methodology. Chapter 6 illustrates 
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implementation barriers for this research. Conclusions and recommendations 

follow in Chapter 7.  
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Chapter 2: RESEARCH BACKGROUND 

2.1 DEFINITION OF BENCHMARKING 
 

This section discusses the definition of benchmarking and types of 

benchmarking that are available. Among the various definitions of benchmarking, 

the CII BM&M Committee has adopted the following definition: 

“Benchmarking is a systematic process of measuring one’s performance 

against results from recognized leaders for the purpose of determining best 

practices that lead to superior performance when adapted and 

implemented.” (CII 1993; CII 2002) 

 
The construction industry has been relatively slow to adopt competitive 

benchmarking as a tool for continuous improvement whereas the manufacturing 

industry has successfully implemented benchmarking and thereby improved its 

processes and the quality of its products (Lee et al. 2005). Measurement is the key 

to benchmarking. Comparing measured performance with world-class 

performance identifies the gaps, and so the improvement journey begins. 

Performance benchmarks can be used to measure the output of business 
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processes. Therefore, “world class” represents the best performance outcomes 

anywhere in the world.  

 

Benchmarking is considered a productivity improvement tool (Jackson et 

al. 1994). Since CII started the BM&M program in 1994, it has published various 

reports to provide industry norms and to recommend the use of best practices to 

improve processes and performance. CII BM&M efforts have traditionally 

focused on performance and process benchmarking for competitive performance 

comparison benchmarking (Park 2002). Likewise, the engineering productivity 

metrics in this research enable performance benchmarking with external 

competitive benchmarks. This effort establishes a common framework for 

engineering productivity benchmarking that can be used for internal or external 

benchmarking. 

2.2 DEFINITION OF PRODUCTIVITY 
 

There are many different terms employed to define productivity (Sink 

1985). For example, productivity has been defined variously as the production 

rate, unit rate, unit cost rate, or performance factor, as well as a number of other 

terms.  
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Thomas et al. (1986) discussed the strengths and weaknesses of different 

productivity definitions. The most classical way of defining productivity is as a 

comparison of the output of the production process to the corresponding input 

(i.e., Productivity = Output/Input)  The construction industry however, uses 

input/output as a measurement of productivity, e.g., work-hours (input) per linear 

foot of pipe installed (output). The reason for this variation appears to be that 

typically the construction industry places paramount importance upon costs 

during both estimating and project execution; therefore, if productivity is reported 

as work-hours/unit, the cost engineer can easily determine project costs by 

multiplying (input/output) productivity times the estimated quantity and the wage 

rate (Thomas et al. 1986). Therefore, this research defined productivity as the 

production rate, i.e., the input work-hours divided by the output quantity.  

 

 

 

 

EEnnggiinneeeerriinngg  PPrroodduuccttiivviittyy == 
AAccttuuaall WWoorrkk--HHoouurrss**  

IIFFCC QQuuaannttiittyy DDeessiiggnneedd  

Productivity Definition in This Research

* Per Design Component

Figure 2.1 Engineering Productivity Definition for This Research 

 

As shown in Figure 2.1, this is a very basic measurement, which can be 

also called “Raw Productivity,” herein referred to as “Engineering Productivity.” 

It is measured in actual work-hours per Issued for Construction (IFC) quantity 
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designed; that is, the number of actual work-hours required for design 

components on the IFC drawings. Thus, for this system, the lower the value 

calculated for productivity, the better the productivity performance. 

2.3 PRODUCTIVITY MEASUREMENT IN SOFTWARE ENGINEERING 
 

Since software engineering is somewhat similar to engineering in the 

construction industry (Chang et al. 2001), software engineering productivity 

measurement research was reviewed. Historically, source lines of code (SLOC) 

had been used as a productivity measurement tool despite many shortcomings to 

this approach (CII 2001). One of the drawbacks is that the expressiveness of 

source code varies with language level. Software can usually be coded in a higher 

level language with less SLOC (DACS 2005). During the 1970s, the software 

industry developed the Function Point Analysis approach to overcome the 

differences among project development environmental factors such as platform, 

programming language and so on (Bok and Raman 2000).  

 

Function Points (FPs) are defined as a weighted sum of the number of 

program inputs, outputs, user inquiries, files and external interfaces.  

Productivity is measured as FP produced per person month. Standardization of 

these factors has taken tremendous effort from both academia and industry in the 

software industry (DACS 2005). Adaptation of this methodology for the 
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construction industry does not seem to be feasible, unless the industry is willing to 

spend tremendous effort to standardize virtual output units regarding each 

component’s complexity.  

2.4 PRODUCTIVITY RESEARCH IN THE CONSTRUCTION INDUSTRY 
 

Since several publications point out that productivity in construction has 

declined over the years, both industry and academia have initiated numerous 

research projects on construction productivity. Therefore, construction 

productivity is one of the richest research areas in construction management. In 

fact, the Construction Industry Cost Effectiveness (CICE) project report indicated 

that construction productivity had declined. The CICE study reviewed existing 

construction productivity measurement procedures. It then recommended that 

productivity measurement programs should be established (BRT 1982).  

 

In 1990, CII developed a productivity measurement system that included a 

reporting system, an output and input measuring system and a performance 

evaluation system to measure site-level productivity (CII 1990), but this system 

was not implemented due to lack of industry commitment and the lack of a well-

established system.  Adrian and Boyer (1976) established a productivity model 

known as the Method Productivity Delay Model (MPDM), to measure, predict, 

and improve the productivity of a given construction method. Weber and Lippiatt 
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(1983) reviewed the methods for measuring single factor productivity and total 

factor productivity in construction (Park et al. 2005). These efforts however, did 

not address engineering productivity measurements. 

 

Liou and Borcherding (1986) stated, “Productivity measurement is not a 

one-time task. Continuous measurement and comparison with other projects or 

companies are key to productivity improvement.” Thomas and Yiakoumis (1987) 

also emphasized the importance of a standardized data collection system to 

provide reliable analyses. This research recognizes that need and establishes a 

standardized data collection system for engineering productivity in order to 

compare performance with other projects or companies for continuous 

productivity measurement. 

 

The CII benchmarking productivity measurement initiative began in 2000 

with development of a common set of definitions established through input from a 

series of industry workshops attended by 30 companies.  It produced a system 

for CII to collect real project data using a standardized construction productivity 

metrics questionnaire via the secure web-based BM&M system (Park 2002, Park 

et al. 2005). This effort continues to collect construction productivity data for 

actual projects to provide reliable information for the industry. If the data 

collection effort continues to be successful, it will provide tremendous benefits 
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not only to the industry but also to academia. The construction productivity 

measurement research by CII BM&M provided a foundation for this research. 

2.5 ENGINEERING PRODUCTIVITY MEASUREMENT IN CONSTRUCTION  
 

A literature review was performed to identify previous engineering 

productivity studies relevant to this research. It revealed that there is heretofore 

little quantitative work reported on the topic of measurement for engineering 

productivity. References to productivity and/or performance of engineers are 

typically qualitative in nature, and usually include a recommendation for a given 

product. In such cases, one frequently finds references to the idea that, by making 

use of a particular technique under discussion, one can improve their engineers’ 

productivity, quality, and/or performance. There are many examples of such 

claims, and they can be found in all branches of engineering. Several papers have 

reported potential performance improvements resulting from the use of particular 

techniques (Isbell 1993; Girczyc and Carlson 1993; Graham 1990; Sackett and 

Evans 1984; Winter 1992). In these studies, there is an abundance of conclusions 

and a lack of data.  

 

Stull and Tucker (1986) attempted to make a quantitative evaluation of the 

effectiveness of the design process. Mindful of the complexity of the design effort 

for an entire project, they considered only the piping design process and the 
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subsequent erection of the piping. They selected seven parameters to describe the 

project’s design effectiveness, namely: accuracy, usability, cost of the design, 

constructability, performance against design schedule, economy of the design, and 

ease of start-up (Stull and Tucker 1986). Some of these parameters were 

evaluated quantitatively (e.g., accuracy = number of drawings requiring 

revision/total number of drawings), while others were evaluated subjectively 

using a 1 – 10 scale (e.g., constructability and usability) (Chang et al. 2001). 

However, this method lacks objectivity for the scoring of individual parameters 

(Glavan and Tucker 1991; Dumont et al. 1997; Walsh et al. 2004).   

 

2.5.1 Productivity Measurement Based on Intermediate Deliverables 

 
The majority of engineering firms today still measure productivity based 

upon the number of drawings completed using the earned value method. This 

does not provide valid productivity measurement however, because of the 

continual evolution of technology like Computer Aided Design (CAD) (CII 2001; 

Chang et al. 2001), complexity factors, and different scale issues. This system 

continues to be widely used despite its shortcomings (Chang et. al 2001), because 

project owners use this methodology to calculate progress measurement. The 

primary weakness is that the measure can be easily skewed simply by increasing 
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or decreasing the number of drawings delivered for a similar project scope (Feir 

2004). 

 

Thomas et al. (1999) developed a conceptual model for measuring the 

productivity of design professionals during the design phase based upon 

intermediate deliverables for architectural work. Unlike traditional cost 

accounting methods that rely on careful delineation of time into numerous cost 

codes, this system relies on the measurement of design output. Rules of credit and 

conversion factors were initially developed for unique classes of projects. 

However, employing this methodology has been very difficult because of a lack 

of industry consensus on defining rules of credit and conversion factors.  

Another limitation of this study is that it did not address other disciplines. 

2.5.2 Related CII Research 

 
Engineering control based on quantities is analogous to the progress 

measurement techniques used for construction activities. Diekmann and Thrush 

(1986) claimed several potential benefits for adopting this system. For instance, 

much of the subjectivity is removed from the measurement system by adopting a 

quantitative measure of progress. An additional benefit is a quantity-based 

engineering control system that puts design and construction on an equivalent 
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basis for assessment and control. This system provides an important basis for this 

research.  

 

CII has conducted two other studies on engineering productivity 

measurement: Research Team (RT) 156 and Project Team (PT) 192. In the 

following sections, those two studies are discussed in some detail.  

2.5.2.1 Research Team 156: Engineering Productivity Measurement 

 
Since CII concluded that the current practice for engineering productivity 

measurement in the construction industry did not yield satisfactory results, it 

commissioned RT 156 in 1998 to develop engineering productivity 

measurements.  

 

CII RT 156 advanced the concept of measuring engineering productivity, 

not by the traditional method of using design hours per direct engineering output 

of drawings and specifications, but by using the physical quantities to be installed 

in the field. The team concluded that the physical quantity was a better output 

measure because it: 

a. was more directly tied to the design activity, 

b. was less subject to manipulation, 

c. was already tracked in most design environments, 
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d. puts construction and design on the same basis, 

e. focuses attention on the final product (Chang et al. 2001; Walsh et 

al. 2004). 

Since a number of engineering disciplines constitute major drivers of 

performance in several industry groups, RT 156 evaluated driver disciplines for 

several industry types. Table 2.1 illustrates the matrix developed by RT 156 

where ten engineering disciplines and six industry types are recognized. The “x” 

mark denotes an engineering discipline considered a driver of performance in the 

associated industry type (Chang et al. 2001).  
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Table 2.1 Engineering Productivity Drivers by Industry (Source: CII RR 156-11) 

Light Industrial Heavy Industrial Industry → 

Discipline ↓ Process Mech. Process Mech. 
Buildings Infrastructure 

Civil/Structural   × × × × 

Architectural     ×  

Project Mgmt & 
Controls       

Mechanical 
(HVAC,  
Utilities, 
Vessels) 

   ×   

Piping (Design 
& Mechanical) ×  ×    

Manufacturing 
Process 
(Mechanical) 

 ×  ×   

Manufacturing 
Process 
(Chemical) 

×  ×    

Electrical       

Instrument/ 
Controls/ 
Automation 

× × × ×   

Other       

 

The piping discipline was selected as the experimental area because it is 

considered to have a significant impact on an industry-wide basis (Chang et al. 

2001). The team conducted a detailed evaluation of the piping design process and 

sought correlation between the engineering hours for piping design and physical 

measures of quantities. Because piping constitutes a significant portion of the 

costs in delivery of an industrial facility and has had relatively more study in 

 24



 

piping engineering and design practices, it was considered to be an important 

discipline area for metrics development. 

 

The team found good correlation between hours and the total length of 

pipe designed and the number of equipment pieces in the piping systems. 

Equipment piece count was seen as an indication of project complexity (CII 

2001). The team developed a proposed model for piping using raw productivity 

and the number of pieces of equipment with data obtained from 40 projects: 

 

Hours/ Feet of Piping = (0.44985 + 0.00134 * Number of Pieces of Equipment)  

(Source: CII 156-1) 

Raw productivity addresses the productivity of the actual work itself, by 

measuring the time required to produce designs for the physical quantities to be 

installed in the field.  However, some projects are more complex than others, so 

an adjustment to account for the scope and complexity of the project was 

suggested. In the case where the design basis is incomplete, or the client changes 

the project in midstream, the design hours may reasonably be expected to 

increase, so the quality of the input must also be considered.   

 

Finally, RT 156 realized that a possible (but undesirable) path to apparent 

productivity improvement would be to transfer design work from the design phase 
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to the construction phase of the project. Accordingly, the quality of the 

engineering deliverables must also be considered (Chang et al. 2001).  

 

Taken together, these four components provide a good understanding of 

engineering performance (Chang et al. 2001). Therefore, RT 156 proposed a 

conceptual model in which detailed design engineering productivity would consist 

of 1) a raw productivity (work-hours per designed quantity), which could be 

adjusted to account for 2) project complexity, 3) the quality of input to detailed 

design, and 4) the quality of the design output (CII 2001). Figure 2.2 represents a 

conceptual model proposed by the team. However, this model has not been fully 

developed.

 

Figure 2.2 A Conceptual Model from RT 156 (Chang et al. 2001) 

 

RT 156 suggested that the raw productivity to be used for discipline 

budgets and performance tracking should be adjusted by three Influence factors: 
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1. Input Quality Factor, which adjusts the raw productivity measures for 

the quality and completeness of the design basis. The project PDRI (Project 

Definition Rating Index) would serve well as a large part of this factor. 

2. Scope and Complexity Factor, which would account for differences in 

industry and project characteristics. 

3. Design Effectiveness Factor, which is necessary to expose the hidden 

transfer of cost from engineering to other parts of the project, usually at higher at 

overall cost. The percentage of field rework as a result of design tested against 

industry average would account for most of this factor (CII 2001; Chang et al. 

2001). 

 

2.5.2.2 Project Team 192: Engineering Productivity Measurement II  

 
Project Team (PT) 192, Engineering Productivity Measurements II was 

launched by CII in 2002 as follow-on research to RT 156. The objective of PT 

192 was to develop a standardized productivity measurement methodology.  

 

PT 192 conducted a series of discipline workshops and developed a data 

collection instrument targeting selected engineering design quantities, discipline 

hours and possible input/output measures.  The team collected 118 projects from 

14 different CII member design firms.  The team developed multiple regression 
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models for each discipline to produce “basis hours” according to selected 

quantities identified as significant and some variables industry experts believed to 

be work-hour drivers.  Basis hours are predicted discipline hours calculated from 

a multiple regression model using selected design quantities for each discipline. 

For instance, the regression model for the civil /structural basis hour is as follows: 

 

Civil/structural basis hour = (0.0161 x SF of building area) + (0.492 x CY of 

concrete) + (6.39 x tons of steel) + (3.53 x no. of deep foundations)  

(Source: CII 192-1) 

 

A productivity index for each discipline can be calculated by dividing the 

actual discipline design hours by the discipline basis hours predicted by the model 

using actual design quantities (CII 2004; Walsh et al. 2004). Figure 2.3 represents 

Productivity Index for PT 192. 

PT192 Productivity Index Definition

 (Source: CII 192-1) 

PPrroodduuccttiivviittyy  IInnddeexx  == 
DDiisscciipplliinnee AAccttuuaall HHoouurrss  

PPrroodduuccttiivviittyy BBaassiiss HHoouurrss  

Figure 2.3 PT 192 Productivity Index Definition 
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The team suggested two different methods to measure engineering 

productivity using its research findings (CII 2004).  

• The “off-the-shelf” approach: This model uses “basis hours” 

equations developed from the PT 192 data set to measure 

productivity and establish baselines. The team stated that this 

approach can be used with minimal startup costs to monitor 

projects. This method requires ascertaining average performance of 

a group of projects in order to track changes in productivity. 

• The “custom-tailored” approach: In this approach, users develop 

their own basis hour functions based on data collected from their 

own projects. A large number of variables that might be correlated 

with engineering work-hours of each discipline would need to be 

collected. The team specified that this approach may provide a 

more accurate system linked to company-specific projects or work 

processes, although it may take more effort than the off-the-shelf 

approach.  

 

Figure 2.4 depicts the suggested process described for the PT 192 

implementation approaches.  
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Step 2:
Repeat Step 1 for Current 
and Future Projects

Design
Quantities

Design Hours
by Discipline

Calculate Basis Hours
Using PT192 Factors

Productivity Index

 

 

 

 

 

 

 

 

 

Figure 2.4 Suggested Process of PT 192 Model Implementation Approaches 
(Source: CII 2004) 

Actual Hours

Basis Hours
= Avg & range

by discipline

Off-the-Shelf Approach
Collect Data on

Historical Projects

Step 3:
Trend index over time to judge impact of 
changes made to detailed engineering processes

Calculate Basis Hours
Using PT192 Factors

Step 1:
Establish Baseline 
Productivity

Custom-Tailored Approach

Collect Data on 
Historical Projects

Data Collection Instrument Including
Potentially Relevant Design Quantities

from PT 192

Repeat Methods Used by 
PT 192 to Develop Company 

Specific Correlation Equations

Step 1: Establish company-specific 
basis hour equations.

Step 2: Determine Productivity Index 
for current and future projects.

Collect Data on
Current/Future Projects

Design
Quantities

Design Hours
by Discipline

Design 
Quantities

Design Hours
by Discipline

Calculate Basis Hours 
Using Correlations

from Step 1

Productivity
Index

Actual Hours
Basis Hours=

Step 3: Trend index over time to judge 
impact of changes made to 
detailed engineering processes.
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Although the PT 192 put much effort into developing a regression model 

for each discipline to predict basis hours, the approach may not be suitable for 

individual project benchmarking. More detailed discussion for PT 192 is provided 

in Section 3.2 and Appendix B. A comparison between the PT 192 approach and 

the BM&M approach is presented in Appendix A in detail. 

2.6 LITERATURE REVIEW CONCLUSION 

 
The literature review provides background for this research by showing 

previous studies focused on construction productivity and engineering 

productivity measurement using intermediate deliverables and predictive models. 

 

 Section 2.1 introduces productivity as a benchmarking tool. Section 2.2 

discusses different definitions of productivity that have been promulgated in 

previous research efforts. The review made clear that the industry should use a 

single definition of productivity in order to develop, collect, and compare 

engineering productivity across the industry.  Section 2.3 reviews productivity 

measurement in software engineering using lines of code and Function Point 

Analysis. Section 2.4 outlines productivity research performed for construction 

and concludes that more research has been focused in this area than for 

engineering. Finally, Section 2.5 reviews various studies on engineering 

productivity measurement. Previous studies indicate that usage of intermediate 
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deliverables is not an ideal methodology to measure productivity and that IFC 

quantity is recommended as an output measure for engineering productivity 

measurement.  It is important to note however, that none of the previous studies 

developed engineering productivity metrics using direct measurement and 

common definitions.  
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Chapter 3: RESEARCH METHODOLOGY 

3.1 RESEARCH METHODOLOGY OVERVIEW 
 
This chapter describes the research methodology employed in the 

establishment of the Engineering Productivity Measurement System (EPMS).  

Figure 3.1 provides a graphical representation of the research methodology.  

Initially, a literature review was performed to identify previous studies 

relevant to this research as documented in Chapter 2.  Productivity definitions, 

productivity measurement in software engineering, and construction and 

engineering productivity measurement studies were reviewed.  

 
While reviewing engineering productivity measurement in the 

construction industry, the parallel effort of PT 192, discussed in the previous 

chapter, was ongoing within CII.  Therefore, the author reviewed its research 

process to evaluate the PT 192 models for applicability of use in a sustainable 

benchmarking program as previously discussed in Section 2.5.2. 
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Figure 3.1 Research Methodology Diagram 
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3.2 EVALUATION OF THE PT 192 MODEL FOR BENCHMARKING 
 

 During this research, the Benchmarking Productivity Metrics team 

decided to align metric development efforts with PT 192 to maximize benefits and 

minimize the duplication of effort. To assist in understanding of the BM&M and 

PT 192 scope of work, Table 3.1 provides a high-level comparison. As shown, the 

engineering productivity metrics for this research consist of concrete, structural 

steel, electrical, piping, instrumentation, and equipment. The PT 192 engineering 

productivity measurement questionnaire includes civil/structural steel, electrical, 

piping, instrumentation, mechanical (equipment), architecture, and process 

disciplines (Walsh et al. 2004). 

 

Table 3.1 Scope Comparison between BM&M and PT 192 Approaches 

Major Categories / 
Discipline BM&M PT192 

Concrete √  

Structural Steel √  
√  

Electrical √  √  

Piping √  √  

Instrumentation √  √  

Equipment √  √  

Architecture  √  

Process  √  
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 To examine the PT 192 statistical models for potential use within the CII 

benchmarking system, the author reviewed the procedures used by the research 

team for model development. Evaluation of PT 192 models and their applicability 

for benchmarking are discussed further in Appendix A. 

 

3.3 CII BENCHMARKING ENGINEERING PRODUCTIVITY METRICS 
WORKSHOPS 

 

A series of CII Benchmarking Productivity Metrics workshops were 

conducted to develop engineering productivity metrics. These workshops 

followed a format established in previous years for defining construction 

productivity metrics. The definitions were based on common knowledge 

reflecting the practices of industry professionals and a consensus of opinion. 

Because each organization employs a different productivity management system 

with unique definitions and categories, a consensus on definitions and categories 

was important to induce the participation of the CII member organizations and to 

provide reliable measurement results.  

 

Initial engineering productivity workshops were held in January and April 

of 2002 to establish engineering productivity categories which loosely follow 

engineering disciplines. These workshops were also used to establish the list of 

direct and indirect accounts and a set of common definitions. In these workshops, 

the following engineering productivity categories were established: 1) concrete, 2) 
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structural steel, 3) electrical, 4) piping, 5) instrumentation, and 6) equipment.  

This development effort included valuable input from many industry experts.   

Guiding principles for these workshops were: 

 

• The number of metrics categories must remain doable (five to eight); 

there was never any intent to collect 100 percent of the engineering 

effort. 

• Data collected must be auditable and repeatable. 

• The engineering definition categories should be similar to construction 

productivity metrics to prevent sub-optimizing one activity from the 

other. 

 

After the initial development of engineering productivity metrics, pilot 

data collection was conducted to receive feedback from the industry. Since some 

issues were identified during various BM&M training sessions and Benchmarking 

User’s Forums, a productivity metrics retreat was organized to resolve these 

issues. In June 2004, 27 individuals from 20 companies including some PT 192 

members met in Woodville, TX. During the workshop, methodologies to measure 

engineering productivity from a direct measurement approach versus a predicted 

approach were reviewed, and the group selected the direct measurement approach. 

Modifications were made to the BM&M questionnaire to ease the burden of data 

collection. The author assisted in various planning activities and in facilitation of 

the workshop. 
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After the productivity retreat, the engineering productivity questionnaire 

was modified to incorporate decisions from the retreat. Shortly thereafter, the 

retreat outcomes were presented at various industry forums to extend the 

opportunity to participate in the data collection initiative to other companies. In 

final form, the developed version of the BM&M engineering productivity metrics 

survey consists of 39 elements, grouped into 26 subcategories which ultimately 

roll up into six major categories. Development of engineering productivity 

metrics are further discussed in Chapter 4.  

 

3.4 DEVELOPMENT OF THE ONLINE QUESTIONNAIRE 
 

Soon after engineering productivity metrics categories and common 

definitions were developed, a paper version of the engineering productivity 

questionnaire was developed and reviewed by the Productivity Metrics team. 

Then, the questionnaire was programmed, tested, and integrated into the CII 

BM&M secure online data collection system. This allows collection for general 

project information, cost, schedule, change, rework, safety, construction 

productivity metrics and CII best practices data, ultimately providing a means for 

an assessment of a complete set of a project data. Integrating the engineering 

productivity data collection instrument into the CII BM&M web-based system 
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facilitates use of an established and proven system in previous CII BM&M 

studies. 

 

CII offers several different specialized versions of its questionnaire to 

collect project information. There are survey instruments for large and small 

projects and a special one for pharmaceutical projects. The engineering 

productivity metrics can be accessed with any version of the questionnaire, but 

only the CII BM&M large project questionnaire is provided as a reference in 

Appendix B. 

 

3.5 IDENTIFICATION OF IMPLEMENTATION BARRIERS 

 

 The author has assisted in conducting Benchmarking Associate (BMA) 

training sessions and facilitated Benchmarking User’s Forums and BM&M 

committee meetings. Through these meetings, valuable feedback from industry 

experts was received for the implementation of engineering productivity metrics. 

Many engineering firms acknowledge that they currently do not track engineering 

work-hours as defined in the questionnaire. Their control systems do not allow 

reporting of engineering work-hours per design components for historical 

projects. This was viewed as one of the most significant barriers to the success of 

this study. Further discussion on system validation and implementation issues 

including system validation will follow in Chapter 6. 
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3.6 DATA COLLECTION AND VALIDATION 

 
This data collection effort follows the guidelines established by the CII 

BM&M Committee. The first stage of data collection was initiated using a pilot 

version of the questionnaire in September 2002. Collection continued for 

approximately one year. Through this early round of data collection, feedback 

from the industry was received and used for refinement of the instrument.  

 

A second round of data collection was then performed to enrich the data 

set to allow for preliminary analysis. At the Productivity Retreat in 2004, data 

collection strategies were established by workshop participants and action items 

for the data collection effort were decided and later conducted. This effort was 

supported by special Productivity Benchmarking Associate (BMA) Training 

sessions to ensure understanding of productivity metrics and to facilitate a 

structured data collection procedure. 

 
The next step for the data collection is the validation of the data to 

minimize or eliminate ambiguous or missing data. After the validation process is 

completed, the data are officially included in the CII BM&M database for 

analysis. Data collection and validation processes are further discussed in Chapter 

5. 
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As discussed in Chapter 1, the process for data collection relied on 

convenience sampling rather than random sampling. Therefore application of 

findings from analyses of the data to the industry in general may be limited. 

Practitioners should apply caution until more data are available for further 

validation. 

3.6.1 Data Confidentiality 

 

Since productivity data are directly related to competitiveness, the data are 

considered highly confidential. The CII BM&M committee has established a strict 

Confidentiality Policy and a Code of Conduct defining appropriate use of the data 

along with the development of the construction productivity metrics system.  

These policies address the activities of the members of the Benchmarking & 

Metrics Committee and the CII staff who support the Committee’s activities. Both 

the Confidentiality Policy and the CII Benchmarking Code of Conduct can be 

found at the CII Benchmarking and Metrics website at http://www.construction-

institute.org.    

 

3.7 DATA ANALYSIS  

 

Data analysis and results should be presented in a manner that industry 

practitioners can understand without difficulty. Research experience suggests that 
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the construction industry tends to be reluctant to make decisions based upon data 

unless the organizations understand and are confident about the process of data 

analysis (Huh 2004). The data analysis commenced with presenting profiles of the 

engineering productivity dataset. Then, Box-Whisker plots were generated to 

graphically present the distribution of engineering productivity metrics for various 

categories.  

 

Correlation studies of design work-hours and IFC quantities were 

employed to examine the relationships between the two and to test the research 

hypothesis that engineering work-hours and design quantities provide reliable 

measures of engineering productivity. Theoretical background of the Box-

Whisker plot and correlation analysis are reviewed in subsequent sections. The 

data analysis is presented in Chapter 5 in detail. 

 

3.7.1 Box-Whisker Plot 

 

The Box - Whisker plot, also called a box plot, portrays the range and the 

quartiles of the data, and outliers if present.  The central portion, or the box, 

consists of the middle 50 percent of the data, from the first quartile (25th 

percentile) to the third quartile (75th percentile).  This range is also referred to as 

the inter-quartile range (IQR).  The median is drawn as a horizontal line in the 

box.  The mean, according to graphical preferences, can also be plotted.  

Plotting both the median and the mean offers an efficient way to indicate the 

 42



 

central tendency.  The whiskers extend away from the box, indicating the range 

of the data that is not considered an outlier (Agresti and Finlay 1999; Albright et 

al. 2003).  The end points of the whiskers represent the last data observation that 

falls within the 1.5 IQR fence. Mild Outliers are defined as those observations 

located between 1.5 IQR and 3.0 IQR from the box. Extreme outliers are defined 

as those observations located beyond 3.0 IQR from the box.  A sample box plot 

is included in Figure 3.2. 

 

S ample Box and Whisker Diagram

Outlier Symbol

Las t Observation below

    (Q3 + 1.5IQR)T hi r d Quartile

          ( Q3)

M edian

F i r s t  Quartile

            ( Q1)
Las t Observation above

    (Q1 - 1.5IQR)

Mean

Figure 3.2 Sample Box - Whisker Plot 

The box plot is an efficient way to present both the central tendency and 

range, which makes it extremely useful in comparing data among groups.  The 

data presented can help users compare the median, mean, and variance between 

groups, draw conclusions among the differences, and contribute to decision 
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making (Agresti and Finlay 1999; Albright et al. 2003). The Box and Whisker 

plots were generated by using MINITAB® to present the norms for productivity 

metrics and to check extreme outliers. 

 

3.7.2 Correlation Analysis 

 

Correlation analysis is conducted to determine if there is a significant 

linear relationship between engineering work-hours and IFC quantities. While 

regression in general is used to build and test a prediction model, correlation 

analysis is often applied to test the direction and strength of the linear relationship 

and to assess the feasibility of using regression analysis. The correlation 

coefficient, r, is calculated as follows: 

 

( )( )
( 1) x y

x x y y
r

n s s
− −

=
−

∑  

 

The correlation coefficient, r, is a unit-less value that always falls between 

-1 and +1. A coefficient close to 1 indicates a strong positive linear relationship 

between two random variables. A key assumption underlying the analysis is that a 

linear relationship is appropriate. The correlation results of the analysis should be 

interpreted with appropriate caution as to how well the data meet this assumption 

(Agresti and Finlay 1999; Albright et al. 2003).  
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Significance of the Pearson correlation coefficient,  can be tested. If the 

true correlation between X and Y within the general population is 

r

ρ  (rho) = 0, 

and if the size of the sample, N, on which an observed value of  is based on N 

[ 6], then the simplest formula for computing the appropriate t value to test 

significance of a correlation coefficient employs the t distribution with degree of 

freedom (N-2):  

r

≥

 

2

2
1
Nt r

r
−

=
−  

 

3.8 SUMMARY  

 

Chapter 3 discussed research methodology employed in the establishment 

of the Engineering Productivity Measurement System (EPMS) including 

evaluation of the PT 192 model, the CII BM&M engineering productivity 

workshops, development of the online questionnaire, identification of 

implementation barriers, data collection and validation, and finally data analysis 

utilized in this research. The following chapter will discuss development of the 

engineering productivity metrics. 
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Chapter 4: DEVELOPMENT OF THE ENGINEERING 

PRODUCTIVITY METRICS 

There have been many recommendations emphasizing the need for a 

standard method to measure productivity including various levels of project work 

activities for both construction and engineering productivity (Liou and 

Borcherding 1986; Thomas and Yiakoumis 1987). The CII Productivity Metrics 

team held workshops to develop a standard engineering productivity measurement 

system with input from both industry experts and academia. This chapter 

describes in detail the development workshops, direct and indirect accounts, 

levels of metrics, engineering productivity metrics, and their common definitions. 
 

4.1 ENGINEERING PRODUCTIVITY METRICS WORKSHOPS 
 

Development of suitable industry standard engineering productivity 

metrics for benchmarking was accomplished through significant effort from 

industry and academia. As noted, the engineering productivity development 

workshops followed the development of CII BM&M construction productivity 

metrics with the goal of tying engineering and construction productivity metrics 

as much as possible to improve overall work processes and not sub-optimize 

either one. Table 4.1 shows major categories for construction and engineering 

productivity metrics.  Engineering productivity consists of six major categories, 
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and construction productivity has seven, with an additional section for insulation 

which was not included in engineering since it is not a major design activity.   
 

Table 4.1 Construction and Engineering Productivity Metrics Categories  

Construction Productivity Engineering Productivity 

 Concrete  Concrete 

 Structural Steel  Structural Steel 

 Electrical  Electrical 

 Piping  Piping 

 Instrumentation  Instrumentation 

 Equipment  Equipment 

 Insulation  

 

4.1.1 Engineering Productivity Metrics Development Milestones 

As noted, a series of CII Benchmarking Productivity Metrics workshops 

was conducted to develop engineering productivity metrics. Initial engineering 

productivity workshops were held in January and April of 2002 to establish 

engineering productivity categories which loosely follow engineering disciplines. 

These workshops were also used to establish a list of direct and indirect accounts 

and a set of common definitions. The definitions were based on expert knowledge 

reflecting the practices of industry professionals and a consensus of opinion. After 
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the initial development of engineering productivity metrics, a pilot data collection 

in September 2002 commenced to receive feedback from the industry.  

 

Much feedback was collected through the pilot data collection effort at 

various BM&M training sessions and during the Benchmarking User’s Forums. 

Most input focused on data collection issues and the different research approaches 

undertaken by this research (BM&M) and PT 192. A key data collection issue 

from the initial version of the engineering productivity metrics surveys was that 

they provided only detail-level metrics without the ability to enter data at the 

rollup-level. This hindered data collection activities, considering that a quantity–

based engineering productivity was a paradigm shift for the industry, and many 

companies had difficulty providing engineering work-hours for detailed 

categories for past projects.  

 

To resolve these issues, the Productivity Metrics Retreat was planned and 

announced at a CII Board of Advisors round table discussion in Baltimore in 

April 2004. The round table discussion was conducted to explain the need for the 

Retreat and to get consensus on support from CII’s Board of Advisor Members. 

Also, a registration form for the retreat was passed out to invite companies’ 

project control managers and engineering managers who would have the authority 

to change their systems if necessary. At the same time, invitation letters were 

mailed to the prospective participants including former workshops participants, 

the CII’s Board of Advisors, engineering managers, and project control managers.  
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 In June 2004, 27 individuals from 20 companies including some PT 192 

members met in Woodville, TX. During the workshop, methodologies to measure 

engineering productivity using a direct measurement approach versus the PT 192 

predicted approach were reviewed and the direct measurement approach was 

selected. Modifications were made to the BM&M questionnaire to ease the 

burden of data collection by including rollups such as total slab and total concrete. 

The option to enter data at the major category level and sub-category level 

enables more companies to more readily participate.  

 

After the productivity retreat, the engineering productivity questionnaire 

was modified to incorporate decisions from the retreat. The outcomes were 

presented at various industry forums to extend the opportunity to participate in the 

data collection initiative to other companies. Table 4.2 summarizes the major 

activities for development of engineering productivity metrics. 
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Table 4.2 Development Milestones 

Date Outputs 

Jan 2002 Developed first cut of engineering productivity metrics   

Apr 2002 Refined engineering productivity metrics  

Sep 2002 Initiated pilot data collection 

Apr 02 – Jun 04 Alignment/integration with PT192 on engineering metrics 

Jun 2004 Productivity retreat to achieve alignment & established data 
collection plan 

Aug 2004 Established a specialized productivity training sessions. 

Feb 2005 A special paper-version productivity questionnaire mailed out 

Jun 2005 Received first significant quantities of productivity metric 
data 

 

4.1.2 Productivity Metrics Workshop Participants 

Several workshops were conducted to collect input from industry experts 

and to develop engineering productivity metrics. Productivity metrics team 

members and workshop participants discussed and established direct and indirect 

accounts, categories for the metrics, and measuring elements included in the 

engineering productivity questionnaire. A total of 28 member organizations, 

representing 11 owner companies and 17 contractor companies participated. The 

44 participants consisted of members of the BM&M Committee and other CII 

member representatives who participated in the development workshops. Table 
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4.3 shows a list of the participating organizations. The author also attended 

several workshops as a facilitator and documented and constructed the 

engineering productivity metrics questionnaire based upon input from these 

workshops. 

 
Table 4.3 Productivity Workshop Participant Companies 

Owners (11) Contractors (17) 

 
3M 
Aramco Services Company 
BP America, Inc. 
Chevron Corporation 
Conoco Inc.* 
General Motors Corporation 
GlaxoSmithKline 
Rohm and Haas Company 
Southern Company Services 
Texaco Inc.* 
The Dow Chemical Company 
 

 
Aker Kvaerner 
ALSTOM Power Inc. 
BE&K, Inc. 
Bibb & Associates (Kiewit) 
Black and Veatch 
CDI Engineering Solutions 
Flint Energy Services Ltd. 
Fluor Corporation 
Fru-Con Construction Corporation 
Jacobs Engineering  
Mustang Engineering, L.P. 
Rust Constructors Inc.* 
S&B Engineers and Constructors Ltd. 
The Shaw Group 
Washington Group International, Inc. 
Watkins Engineers & Constructors* 
Zachry Construction Corporation 

*Company names are indicated as of the time of workshops 
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4.2 ENGINEERING PRODUCTIVITY METRICS  

 

The engineering productivity metrics section of the BM&M questionnaire 

is introduced with a discussion of the direct and indirect accounts. Achieving 

industry consensus on the definitions of direct and indirect accounts was crucial to 

accomplishing research objectives since valid comparisons of data without a 

common basis can not be made. 

 

The following section discusses direct and indirect accounts, levels of 

metrics, and the developed metrics for each major category to include definitions. 

Major categories are 1) concrete, 2) structural steel, 3) electrical, 4) piping, 5) 

instrumentation, and 6) equipment. 

 

4.2.1 Direct and Indirect Accounts 

 

Early in the course of the engineering productivity workshops, the 

importance of defining direct and indirect activities was identified. A common set 

of definitions for direct and indirect accounts is critical to benchmarking success 

since productivity metrics as defined in this research are based on direct work-

hours only. Because each owner or contractor organization has different 

accounting systems, a common list of direct and indirect accounts were developed 

based on a consensus of industry experts.  
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Actual work-hours are computed by the summation of all the account 

hours listed as direct accounts in the following table. Actual work hours include 

rework hours where tracked in order to account for the whole effort required to 

produce the deliverables. Many companies do not track rework hours in 

engineering and thus cannot separate engineering rework effort. The list of direct 

and indirect accounts is presented in Table 4.4. 

 
Table 4.4 List of Direct and Indirect Accounts  

  Direct Indirect 

  Discipline Engineer   Document Control 

  Designer   Reproduction Graphics 

  Technician   Project Management 

     Project Controls (cost/schedule/estimating) 

    Project Engineer 

   Secretary/clerk 

   Procurement (supply management) 

 
  Construction Support  

(test package support, commissioning,  
etc.) 

   Quality Assurance 

    Accounting 

A
cc

ou
nt

 

    Legal 
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In the engineering productivity metrics questionnaire, detailed instruction 

is provided to explain direct and indirect accounts. Direct work-hours should 

include all hours used to produce deliverables including site investigations, 

meetings, planning, constructability, RFIs (Request for Information), and rework. 

Work-hours for operating manuals and demolition drawings are excluded.  

Engineering work-hours should be reported only for the categories requested and 

may not equal the total engineering work-hours for the project. The team did not 

intend to collect 100 percent of engineering work-hours but intended only to 

collect the engineering work-hours for the major categories shown. It is expected 

that after progress has been made in productivity metrics for the categories 

shown, other categories such as architectural finishes and process will be added. 

 

It is important to note that this research effort focused on industrial 

projects. For this reason, the following categories were excluded: architectural 

design, plumbing, process design, civil/site preparation, HVAC (Heating, 

Ventilating, and Air Conditioning), insulation and paint, and sprinkler/deluge 

systems.  When there are direct work-hours that cannot be specifically assigned 

into the provided classifications, but have not been excluded within a category, 

these work-hours should be prorated based on known work-hours or quantities as 

appropriate.  

 

Ultimately, various engineering productivity metrics and their common 

definitions were developed through a series of workshops and later refined from 

 54



 

industry feedback. These were incorporated into the engineering productivity 

questionnaire. The definitions of the metrics and detailed discussion for various 

applications follow in Section 4.3.  

 

4.2.2 Levels of Metrics  
 

This section discusses definitions of levels of metrics. Since this research 

developed six major categories and a total 49 engineering productivity metrics to 

compare with industry norms, it was quickly realized that it would be beneficial to 

develop different levels of metrics to collect engineering productivity data 

effectively. Different levels of metrics were defined to allow flexibility in terms 

of data collection and to show performance at different levels: the project level, 

the major category level, the sub-category level, and the element level. Figure 4.1 

also provides a graphical illustration of hierarchical structure for a concrete 

example. 
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Level I (Future)
(Project Level)

Level II
(Major Category Level)

Level III
(Sub-category Level)

Level IV
(Element Level)

Project

Total 
Concrete

Concrete
Structures

Piling
< 5 CY
>=5 CY

Ground & 
Supported Slabs

Area Paving
N/A

Example: Levels of Metrics for Concrete

Total 
Slabs

Total 
Foundations

Level I (Future)
(Project Level)

Level II
(Major Category Level)

Level III
(Sub-category Level)

Level IV
(Element Level)

Project

Total 
Concrete

Concrete
Structures

Piling
< 5 CY
>=5 CY

Ground & 
Supported Slabs

Area Paving
N/A

Example: Levels of Metrics for Concrete

Total 
Slabs

Total 
Foundations

 Figure 4.1 Hierarchical Structure of Metrics (Concrete Example) 

Following development of Level II, III, and IV metrics, many discussions 

focused on developing a project-level metric. The CII BM&M Productivity 

Metrics team recommended a guideline for a Level I metric. The committee 

stressed that the Level 1 metric should be easy to understand for both industry and 

academia, and that it should be a meaningful metric, that is repeatable and may 

ultimately be used for trending. This metric would serve various analyses, be 

economical to collect and produce, and would be a reasonable summary of project 

productivity. The Level I metric for engineering productivity measures will be 

developed as follow-on research and is not in the scope of this dissertation. 
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4.2.3 Metric Categories 

 

This section briefly explains the developed metrics for each major 

category from the engineering productivity development workshops. Major 

categories are 1) concrete, 2) structural steel, 3) electrical, 4) piping, 5) 

instrumentation, and 6) equipment. To assist readers’ understanding, the overall 

framework for the developed engineering productivity metrics and their 

associated levels are given in Figure 4.2. It presents various levels of engineering 

productivity metrics with Level II (major category), Level III (sub-category), and 

Level IV (element) and also summarizes the metrics and categories for 

engineering productivity. The following sections discuss engineering productivity 

metrics and common definitions in great detail for each major category. 
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Concrete 
� Total Concrete 
o Total Slabs 

• Ground and Supported Slab 
• Area Paving 

o Total Foundations  
• Piling 
• Foundation (<5 CY) 
• Foundation ( >=5CY) 

o Concrete Structures 
 
Structural Steel 
� Total Steel 
o Combined Structural Steel / Pipe 

Racks and Utility Bridges 
• Structural Steel 
• Pipe Racks and Utility 

Bridges 
o Miscellaneous Steel 

 
Electrical 
o Total Electrical Equipment 

• Electrical Equipment 600V 
and Below 

• Electrical Equipment Over 
600V 

o Conduit 
• Conduit (Linear Feet) 
• Conduit (Number of Runs) 

o Cable Tray 
o Wire and Cable  

• Wire and Cable (Linear 
Feet) 

• Wire and Cable (Number of 
Terminations) 

o Other Electric Metric 
• Lighting 

 
Piping 
� Total Piping 
o Small Bore (2-1/2” and Smaller) 
o Large Bore (3” and Lager) 
o Engineered Hangers and 

Supports 
 
Instrumentation 
o Loops 
o Tagged Devices  
o I/O  

 
Equipment 
� Total Equipment  
o Pressure Vessels 
o Atmospheric Tanks  
o Heat Transfer Equipment 
o Boiler and Fired Heaters 
o Rotating Equipment 
o Material Handling Equipment 
o Power Generation Equipment 
o Total Pulp and Paper Equipment 

• Woodyard Equipment 
• Pulp Mill Equipment 
• Bleach Plant Equipment 
• Stock Preparation Equipment 
• Wet End Equipment 
• Dryer Sections 
• Wet End Equipment including 

       Roll Wrap/Converter Equipment 
o Other Process Equipment 
o Vendor-Designed Modules and  
   Pre-Assembled Skids 

  
 

 

Figure 4.2 Engineering Productivity Metrics Categories     

Legends 
� Level II 
o Level III 

• Level IV 
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4.2.3.1 Concrete 

 

Each of the six major engineering productivity categories provides 

specific instructions for the submission of data. For example, the concrete major 

category provides the following definition: the quantity of concrete is that 

concrete that is required for the specified slab, foundation, or structure provided in 

the final issued for construction (IFC) drawings. 
 

Concrete is measured as total slabs, total foundations, and concrete 

structures such as beams and columns. Total slabs are categorized into two types: 

ground and supported slabs and area paving. Total foundations are further 

categorized as pilings (each), foundations <5 cubic yards, and foundations >= 5 

cubic yards. The output measure for pilings is each instead of cubic yards to 

follow expert opinions. Table 4.5 provides the concrete productivity metrics, their 

definitions, metrics levels, and the corresponding units. It is structured to 

resemble the questionnaire format to assist the reader’s understanding of the 

hierarchy of metrics and the definitions developed during the workshops. The 

metrics are calculated based on IFC quantity and actual work hours required for 

design.  
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Table 4.5 Concrete Productivity Metrics 

Level of 
Metrics Concrete Unit 

Ground & Supported Slabs    Hrs/CY 
IV Both slabs on ground and supported slabs IFC quantity. Engineering 

work-hours should also include hours for design of all embedments. 

Area Paving    Hrs/CY 
IV 

Paving included within the project, excluding roadways. 

Total Slabs Hrs/CY 
III Total slab quantity and work-hours only if data can not be separated 

into quantity and work-hours above. 

Piling (each)    Hrs/EA 
IV The total number of piling designed in the IFC drawings. 

Engineering work-hours include all embedments. 
Foundations (< 5CY)    (cubic yards) Hrs/CY 

IV The total CYs of foundation (<5CY); Engineering work-hours 
include all embedments. Exclude piling. 
Foundations (>= 5CY)   (cubic yards) Hrs/CY 

IV The total CYs of foundation (>=5CY); Engineering work-hours 
include all embedments. Exclude piling. 

Total Foundations (CY) (Excluding piling) Hrs/CY 
III Total Foundation quantity is cubic yards of concrete only. Total 

foundation work-hours should exclude piling quantity and work-
hours. 

Concrete Structures Hrs/CY 
III Concrete Structures include concrete structures, columns, beams, 

cooling tower basins, trenches, formed elevated slabs/structures, and 
retaining walls. 
Total Concrete Hrs/CY 
Total concrete quantity is cubic yards only, excluding piling 
quantities. The total concrete work-hours include those hours for 
total slabs, total foundations (excluding piling), and concrete 
structures. The work-hours should also include work-hours for all 
embedments.  

II 
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Various levels within each category are provided such as total concrete, 

total slabs, ground & supported slabs and area paving in order to allow flexibility 

in data entry. The pilot version of the engineering productivity metrics 

questionnaire did not allow the user to submit any data at the roll-up level such as 

Level III and Level II.  Several respondents, however, had difficulty reporting at 

the detailed levels provided because each engineering firm tracks its work-hours 

and quantities differently. The necessity for providing flexible categories to 

facilitate data collection was discussed and the  category “totals” were 

incorporated as appropriate during the Productivity Metrics Retreat in June 2004.   

 

4.2.3.2 Structural Steel 

 
Structural steel is a crucial component in construction that supports and 

transfers loads in structures and buildings. For measurement, structural steel was 

divided into structural steel, pipe racks and utility bridges, and miscellaneous 

steel. Each element was defined for collecting standard productivity data and 

definitions of elements are provided in Table 4.6. The table also lists the various 

levels of metrics and their corresponding units.  

 

These metrics are computed based on actual engineering work-hours 

including rework hours and IFC quantities for each metric. Structural steel 
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quantities are measured in tons, and the unit of engineering productivity metrics is 

hours/ton. A combined structural steel / pipe racks and utility bridges category 

was added at the request of several companies at the productivity retreat whose 

WBS (Work Breakdown Structure) systems did not separate structural steel and 

pipe racks & utility bridges.  

Table 4.6 Structural Steel Productivity Metrics 

Level of 
Metrics Structural Steel Unit 

Structural Steel Hrs/Ton 
IV Trusses, columns, girders, beams, struts, girts, purlins, vertical 

and horizontal bracing, bolts, and nuts. 

Pipe Racks & Utility Bridges Hrs/Ton 

IV Steel structures outside the physical boundaries of a major 
structure, which are used to support pipe, conduit, and/or cable 
tray.   
Combined Structural Steel / Pipe Racks & 
Utility Bridges Hrs/Ton 

III Combined structural steel and pipe racks & utility bridges if 
data cannot be separated into the quantities above. 

Miscellaneous Steel Hrs/Ton 

Handrails, toeplate, grating, checker plate, stairs, ladders, 
cages, miscellaneous platforms, pre-mounted ladders and 
platforms, miscellaneous support steel including scab on 
supports, “T” and “H” type supports, trench covers, and Q 
decking. 

III 

Total Steel Hrs/Ton 

II 
The total of structural steel, pipe racks & utility bridges, and 
miscellaneous steel from above or the total of combined 
structural steel, pipe racks & utility bridges (if not separated) 
and miscellaneous steel.  Quantities for any steel not 
included in the breakouts above, include in the total. 
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4.2.3.3 Electrical 

 

Electrical design is the engineering required to provide electricity to 

facilities and also includes the design of electrical equipment. Electrical 

engineering can be divided into five sub-categories to measure engineering 

productivity. These are electrical equipment, conduit, cable trays, wire and cable, 

and other electrical metric.  The five sub-categories are further separated into a 

total of eight elements as listed in Table 4.7. Table 4.7 also provides level of 

metrics, common definitions, and corresponding units. 

 

Quantities for these elements are measured as the quantity of each 

element, as provided in the final issued for construction (IFC) drawings. Metrics 

can be computed based on the IFC quantity of each electrical element and actual 

engineering work-hours for the components defined for each element. Quantities 

for electrical equipment and lighting fixtures are counted as the numbers shown in 

the IFC drawings.  Quantities of other metrics such as conduit, cable tray, and 

wire and cable are generally measured in linear feet. However, the number of runs 

for conduit design and the number of terminations for wire and cable are popular 

measuring units for some organizations, so the questionnaire was designed to 

collect multiple IFC units. Since the electrical section of the questionnaire has a 

number of different units for measuring engineering productivity, wire and cable 

(Hrs/LF) was determined to be representative as a Level II metric for the 
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electrical section. Common definition for the electrical elements from various 

engineering productivity metrics workshops are also defined in Table 4.7. This 

table also provides the level of the metrics and the measuring units. 
 

Table 4.7 Electrical Productivity Metrics  

Level of 
Metrics Electrical Unit 

IV Electrical Equipment 600V & Below Hrs/ EA 
IV Electrical Equipment Over 600V Hrs/ EA 

Total Electrical Equipment Hrs/ EA 

III 
Electrical equipment includes transformers, switchgear, 
uninterrupted power supply (UPS) systems, motor-control centers 
(MCC), rectifiers, motors, generators, etc.  This also includes 
work-hours for single line, elementary diagrams and studies.      

IV Linear Feet Hrs/LF 
Conduit 

Number of Runs Hrs/No. of Runs
IV Power plan, cable and conduit schedule and interconnects. 

Exposed / aboveground and underground 
Cable Tray Hrs/LF 

III Electrical and instrument cable trays, channels, supports, covers, 
etc. 

IV Linear Feet Hrs/LF Wire & Cable (w/o 
conduit or tray) Number of Terminations Hrs/No. of 

Terminations IV 
Power, control and grounding cables. 

Other Electrical - Lighting Hrs/EA-Fixtures
IV Fixtures, conduit, wiring, panels, and control devices.  Quantity 

to be number of fixtures. 
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4.2.3.4 Piping 

 
Piping is an essential component in industrial projects and often 

considered a driver of overall productivity. Detailed instructions for piping are 

provided to increase respondents’ understanding and to emphasize the need for 

rework data as provided in Table 4.8. A standard definition to measure piping 

quantity as a “center-to-center” length was provided to respondents to ensure data 

were collected in a consistent manner. Table 4.8 gives an example of instruction 

and a standard definition of piping measurement in the questionnaire.  

Table 4.8 Piping Instructions  

Piping Instructions  

Please complete the following tables indicating quantity, 
percent hot and cold, and engineering work-hours for the 
categories appropriate to your project. Piping includes 
underground pressure pipe. Exclude tubing. If you cannot 
enter all breakouts then enter totals only. Include rework 
in the work-hours only. If the project had no work-hours 
or quantities for a category, enter none. 

Piping Instruction 

Definition of 
Piping Quantity 

The quantity of piping is that piping specified in the final 
Issued for Construction (IFC) drawings. This quantity 
should not be “cut lengths” but should be measured 
“center-to-center” through valves and fittings as with the 
quantity for the construction metric. Most “CADD dumps” 
are cut lengths. The quantity should be adjusted to be the 
length measured as noted above. 

 
Engineering productivity for the piping is measured as: small bore, large 

bore, engineered hangers and supports, and total piping. Table 4.9 shows the list 
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of piping metrics, level of metrics, common definitions for the metric and 

measuring units. Standard definitions for small bore pipe and large bore pipe are 

developed and provided in Table 4.9. Work-hours for P&ID (Piping and 

Instrumentation Diagram) are excluded from piping work-hours because P&ID 

tasks are performed very differently project to project.   

Table 4.9 Piping Productivity Metrics 

Level of 
Metrics Piping Unit 

Small Bore (2-1/2” and Smaller)  
(linear feet) Hrs/LF 

III Small bore is defined as pipe with a diameter less than or equal to 
two and one half inches. 
Large Bore (3” and Larger)     Hrs/LF (linear feet) III Large bore is defined as pipe with a diameter equal to and greater 
than three inches. 
Engineered Hangers and Supports (each) 
(Includes stress analysis) Hrs/EA 

III This is only for non-standard pipe supports and hangers IFC 
quantity and engineering work-hours including rework hours. 
Number of pipe fittings EA 

N/A Elbows, flanges, reducers, branch connection fittings e.g. o-lets, 
saddles etc., Y’s, T’s, caps, unions, couplings, etc. 
Total Piping  
(linear feet only) Hrs/LF 

II Total piping quantity is linear feet only. The total piping work-
hours include those hours for small & large bore piping, 
engineered hangers and supports and fittings. 
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The number of pipe fittings has long been considered a complexity factor 

in piping design, so the productivity metrics team also added this question to 

provide for future comprehensive analysis. 

 
Total piping can be calculated in two different ways. One approach 

includes total piping work-hours including engineered hangers and supports and 

the second includes only work-hours for total linear feet of pipe designed. This 

accommodates organizations that cannot separate design work-hours associated 

with hangers and supports. The other method measures piping productivity by 

calculating total work-hours and total linear feet of small and large bore. This 

metric is ideal for capturing the most accurate productivity for total linear feet of 

pipe designed.  

 

Information on the percent of hot and cold designed piping was also 

collected. Hot and cold piping requires special piping materials and special 

welding to prevent leaking (Turtor et al. 1998), therefore hot and cold piping 

design is expected to require more design effort. There has been no previous 

research on this topic however. This metrics system includes the percent of hot 

and cold pipe designed to identify the correlation between hot and cold piping and 

piping productivity in further studies. There were no standard definitions for hot 

and cold piping, so the group developed definitions, given in Table 4.10.  
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Table 4.10 Definitions for Hot and Cold Piping 

Hot and Cold Definition 

Hot Piping Piping that has a design temperature greater than 250 
degrees Fahrenheit 

Cold Piping Piping that has a design temperature less than minus 20 
degrees Fahrenheit. 

  

4.2.3.5 Instrumentation 

 
This section explains metrics for instrumentation. According to Sandler 

and Luckiewicz, instrumentation includes sensors, controllers, and transmitters 

between sensors and controllers (Sandler and Luckiewicz 1987). In this research, 

the instrumentation category includes: loops, tagged devices, and I/O 

(Input/Output). Instrumentation work-hours were collected differently from other 

categories because the productivity group decided that it was quite difficult to 

separate engineering work-hours associated with loops, tagged devices and I/O 

count. Therefore, instrumentation work-hours were collected as a rollup of 

instrument and control design work-hours except for Distributed Control System 

(DCS) and Programming Logic Control (PLC) configuration and programming. 

DCS/PLC programming and configuration hours are excluded because they are 

very different from project to project and are often outsourced.  
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Instrumentation productivity metrics, level of metrics, definitions for 

metrics, and units are provided in Table 4.11, which is similar to the engineering 

productivity questionnaire. Productivity for loops, tagged devices, and I/O is 

measured by total instrumentation work-hours divided by counts for each 

designed. The engineering productivity metric of tagged devices was determined 

to be a representative metric for instrumentation as a Level II metric. 
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Table 4.11 Instrumentation Productivity Metrics 

Engineering 
Work-Hours Level 

of 
Metrics 

Instrumentation IFC 
Quantity (including 

rework) 
(hours) 

Unit 

Loops (count)  

III 

* 

A loop is all sensors, wiring, control 
algorithms and actuators that are 
used to display or regulate a single 
process variable.  A loop may be 
either a control loop or an 
indication-only loop. 

Hrs/Count 

 Tagged Devices 
(count) 
The number of physical instrument 
devices that are shown on the Piping 
and Instrument Diagrams that have 
tag numbers. 

III Hrs/Count 

 Hrs/Count I/O (count) 
This includes input/output devices. The total number of local sensing 
devices and the total number of local final control devices. The list includes 
transmitters, switches, meters, thermocouples, RTD's, analyzers, pressure 
gages, temperature gages, etc. Control devices include valves, alarms, 
horns, motor starters, variable drive motor controllers, etc. 

III 

*Instrumentation engineering work-hours include all instrument and control design 
work-hours except DCS/PLC Configuration and Programming. I/O (count) includes 
the I/O that comes over digital communication interfaces from outside of the control 
system. For such interfaces, count the addressable points. For fieldbus interfaces, 
count only the devices. 
◘ DCS/PLC Design included   

DCS/PLC 
Configuration and 
Programming 

 
 

N/A N/A 

 

 

 

 70



 

 

4.2.3.6 Equipment 
 

This section presents common definitions and engineering productivity 

metrics for equipment. As discussed previously, this study follows the 

development of CII’s construction productivity metrics system, so many of the 

definitions and categories resemble those developed for construction productivity 

to allow for measurement on a similar basis. Equipment is a major part of 

industrial projects. Piping, instrumentation, and insulation are installed to connect, 

control, and insulate equipment (Park 2002). In the process industry, equipment is 

often somewhat simple, but the installation of equipment, piping, insulation, and 

instrumentation takes more time. Equipment in a paper mill however, is quite 

different from typical industrial projects and thus, pulp and paper equipment is 

separately grouped in this category.  

 

Since a unique equipment design can have multiple tagged items in the 

IFC drawings and it can be reused often, the engineering equipment section 

collects two different equipment design quantities (i.e., individually design 

quantity and total design quantity). For these reasons, the productivity group 

decided during the workshops that the total quantity and the individually designed 

quantity should both be measured and developed definitions for these terms. The 

 71



 

definitions for individually design quantity and total quantity are given in Table 

4.12.  

Table 4.12 Equipment Quantity Definitions 

Equipment Definition 

Individually 
Designed Quantity 

The individually designed quantity is defined as the 
quantity defined by unique data sheets. For instance, 
pump P201a/b is one unique data sheet, but is a total of 
two items. 

Total Quantity  

The total quantity of equipment is the quantity of tagged 
items provided in the final Issued for Construction (IFC) 
drawings, with vendor-designed skids being counted as a 
single item. 

 
Figure 4.3 provide an example of the equipment section. The equipment 

section of the questionnaire collects data for individually designed quantity, total 

quantity, engineering work-hours, and additional measures for the capacity of the 

equipment. As explained, a unique equipment design can be reused if identical 

equipment is to be installed during the construction. Although engineering 

productivity metrics for equipment can be measured by individually designed 

quantity and in total quantity, the productivity metrics using individually designed 

quantity are preferable because they capture an original design quantity. 

Additional measures for the capacity of equipment are further discussed in Table 

4.15.   
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Figure 4.3 Example of Equipment Section  

The equipment category is further divided into ten different equipment 

sub-categories.  These are 1) pressure vessels, 2) atmospheric tanks, 3) heat 

transfer equipment, 4) material handling equipment (w/drivers), 5) total pulp and 

paper, 6) boiler and fired heaters, 7) rotating equipment (w/drivers), 8) power 

generation equipment, 9) other process equipment, and 10) vendor-designed 

modules and pre-assembled skids. Tables 4.13 through 4.16 provide the complete 

list of equipment items with associated definitions, level of metrics, and 



 

measuring unit. Pulp and paper equipment is further divided into seven specific 

pulp and paper equipment elements as listed in Table 4.14. 

 

Table 4.13 Equipment Productivity Metrics I 

Level 
of 

Metrics 
Equipment Unit 

Pressure Vessels Hrs/EA 
III Tray/packed towers, columns, reactors/regenerators, and 

miscellaneous other pressure vessels. Field fabricated towers, 
columns, reactors and regenerators are to be included. 
Atmospheric Tanks Hrs/EA 

III Storage tanks, floating roof tanks, bins/hoppers/silos/cyclones, 
cryogenic & low temperature tanks and miscellaneous other 
atmospheric tanks. 
Heat Transfer Equipment Hrs/EA 

III Heat exchangers, fin fan coolers, evaporators, cooling towers and 
miscellaneous other heat transfer equipment. 
Material Handling Equipment (w/drivers) Hrs/EA 

III 
Conveyors (belt, chain, screen, rotor, etc.), cranes & hoists, 
scales, lifts, stackers, reclaimers, ship loaders, compactors, 
feeders and baggers, and miscellaneous other material handling 
equipment. 
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Table 4.14 Equipment Productivity Metrics II 

Level of 
Metrics Pulp & Paper Equipment Unit 

IV Woodyard Equipment Hrs/EA 
IV Pulp Mill Equipment Hrs/EA 
IV Bleach Plant Equipment Hrs/EA 
IV Stock Preparation Equipment Hrs/EA 
IV Wet End Equipment (through the Presses) Hrs/EA 
IV Dryer Sections Hrs/EA 

IV Dry End Equipment including Roll 
Wrap/Converter Equipment Hrs/EA 

Total Pulp & Paper 
Equipment Hrs/EA 

III 
All paper machines and miscellaneous other pulp & paper 
equipment. 

 

Table 4.15 also provides additional capacity measures for equipment.  

These additional equipment size or capacity measures were based upon a 

consensus of the industry experts and were prevailing units for the specific 

equipment items. Even though all equipment metrics are measured in hours/each, 

the size of equipment may influence the productivity rate, so the total capacity of 

the equipment is also requested to establish the relationship between equipment 

size and productivity. Total equipment is also provided as a summary metric and 

is shown in Table 4.16 since all equipment elements are measured in the same 

unit (i.e., hours per each).  
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Table 4.15 Equipment Productivity Metrics III 

Level of 
Metrics Equipment Additional 

Measures Unit 

Total
(BTU/Hr)Boiler & Fired Heaters Hrs/EA 

III Packaged boilers, field erected boilers, fired heaters, waste heat 
boilers, stand-alone stacks, and miscellaneous other boilers and 
fired heaters. 
Rotating Equipment 
(w/drivers) 

Total
(horsepower) Hrs/EA 

III 
Compressors (centrifugal/reciprocating), blowers, screw rotary 
compressors, metering/in-line pumps, pumps 
(centrifugal/reciprocating), positive displacement pumps, 
agitators, mixers, blenders and other miscellaneous compressors, 
fans and pumps. 
Power Generation 
Equipment 

Total Hrs/EA (kilo-watts)
III Gas turbines, steam turbines, diesel generators, and other 

miscellaneous power generation equipment. 
 

Table 4.16 Equipment Productivity Metrics IV 

Level of 
Metrics Equipment Unit 

Other Process Equipment Hrs/EA 
Specialty gas equipment, bulk chemical equipment, process 
equipment, particle extraction (bag houses, scrubbers, etc.), 
treatment systems (water treatment, etc.), incinerators, and 
flares/flare systems. 

III 

Vendor-Designed Modules & Pre-Assembled 
Skids Hrs/EA 

III Modules (partial units) and complete skid units. Skids & 
modules with multiple equipments are counted still as a single 
entry.  
Total Equipment  Hrs/EA 

II Total equipment count may include items not identified above.  
This is total mechanical discipline direct work-hours. 
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4.2.3.7 Rework 

Rework negatively impacts engineering productivity since work-hours are 

increased without increasing design quantities. It may be unavoidable in 

engineering activities, even though appropriate planning and complete scope 

definition may minimize design rework and its adverse impact on project 

performance within the detailed design phase.  

 
Rework hours are included in actual work hours for each section because 

some organizations do not track rework hours and can not separate them from 

actual work hours. In addition, total engineering rework hours are to be recorded 

separately, by source, if available at the end of each major category. The sources 

of total rework hours tracked include design, vendor, owner, and other. Tracking 

of rework by source was implemented after the Productivity Metrics Retreat for 

future analysis. Table 4.17 shows an example of the rework table provided in each 

major engineering productivity category in the questionnaire. 

Table 4.17 Sources of Engineering Rework-Hours 

Source of Rework-Hours for 
Concrete 

Rework-Hours 
(hours) 

 Design 
 Vendor 
 Owner 

 Other: ___________ 
 Total 
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The rework factor is a metric established to analyze rework performance 

in each category. Rework factors are calculated using the equation described 

below: 

 

Total Rework Hours i 
 

Total Actual Work Hours i 
       Productivity Rework Factor i  =  

 
where, i = category. 

 

By applying the above equation, the rework portion of each category can 

be compared. Note that lower values obtained in the rework factor indicate better 

performance.  

4.3 SUMMARY 

This chapter discussed the development of engineering productivity 

metrics including the development workshops, direct and indirect accounts, 

various levels of metrics, the developed engineering productivity metrics, and 

corresponding definitions for six major categories.  In final form, the 

engineering productivity metrics survey consists of six major categories, 26 sub-

categories, and 49 metrics. The following chapter will discuss data analysis for 

engineering productivity.  
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Chapter 5: DATA ANALYSIS 

 

This chapter presents the data collection effort, discusses descriptive 

statistics for the collected data, reviews engineering productivity metric 

distributions, and illustrates correlations between engineering work-hours and IFC 

design quantities.   

 

Section 5.1 discusses data collection, validation, and data preparation. 

Section 5.2 presents descriptive information for the projects submitted to provide 

context and understanding for the dataset. Section 5.3 provides engineering 

productivity metric distributions. The current dataset is not sufficient to establish 

reliable engineering productivity norms, but is useful in validating the overall 

research methodology. By reviewing the distributions, it can be established that 

engineering productivity can be reasonably measured using engineering work-

hours and IFC quantities, and that these metrics are collectable, analyzable, and 

meaningful. Section 5.4 examines correlation between engineering work-hours 

and IFC quantity for structural steel and piping categories, in order to validate the 

engineering productivity definition.      
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5.1 DATA COLLECTION, VALIDATION, AND PREPARATION 

5.1.1 Data Collection Effort 

 
Data collection within the industry was the most challenging part of this 

research, because this research changed the output measure from intermediate 

deliverables to IFC quantities.  This caused data collection efforts to be 

substantial and critical for the participants in this research.  

 

Data were collected from a total of 87 projects through three separate data 

collection efforts. These efforts, from 2002 to 2005, included: 1) regular 

benchmarking data collection, 2) a data collection initiative launched from the 

Productivity Retreat workshop, and 3) a special productivity data collection.  

 

At the CII Benchmarking Associate (BMA) training sessions, CII annual 

conferences, and CPI (Construction Productivity Improvement) conferences, 

engineering productivity metrics and the questionnaire were introduced. The first 

version of the engineering productivity questionnaire only allowed data entry at 

the element level (Level IV) described in Section 4.1.1. Attendees were asked to 

enter their data through the Benchmarking Central website at www.construction-

intitute.org. This belongs to the regular CII BM&M data collection. 
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A data collection initiative was launched as an outcome of the 

Productivity Retreat workshop in June 2004. After the review of the first version 

of the engineering productivity questionnaire, modifications in the questionnaire 

to add sub-category level metrics (Level III) and major category level metrics 

(Level II) made the data collection easier. The Productivity Retreat attendees from 

20 organizations planned their additional commitments for the data collection 

effort.   

 

Following the first and the second rounds of data collection efforts, the CII 

Productivity Metrics team agreed to broaden the participation and to enrich the 

engineering productivity database, ultimately establishing credible industry 

norms. In this round of data collection, minimal project information such as 

project characteristics, costs, and schedules needed to assess engineering 

productivity metrics was collected.   

5.1.2 Data Validation 

 

Once a Benchmarking Associate submitted a project, the validation 

process soon began. The main purposes of validation include 

correcting data errors, reducing omissions, and eliminating dubious 

data. To accomplish these objectives, CII Benchmarking & Metrics 

Committee has established an effective validation procedure. The 

current validation procedure is given in Figure 5.1.  
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  Figure 5.1 BM&M Validation Process  
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This process is performed among company project managers, its 

Benchmarking Associate (Company’s trained representative for benchmarking 

activities), and CII BM&M staff including benchmarking account managers, a 

research engineer, and an associate director. This process is briefly discussed 

below. 

 

1) Company project managers submitted a project to its 

Benchmarking Associate (BMA) for validation. 

2) BMA performs an internal validation to check project data 

accuracy. 

3) Based upon the internal validation, project data is either returned to 

project managers to resolve validation issues or submitted to CII. 

4) Benchmarking account managers (graduate research assistants) 

check for missing data and inconsistencies by comparing against 

database and identify validation issues. 

5) Benchmarking account managers communicate issues to BMA for 

resolution.  

6) BMA resolves validation issues with project managers. 

7) BMA provides resolution decisions to CII.  

8) If issues were not resolved, repeat 4) to 7) otherwise go to 9) 

9) Update CII online database and validation log.   
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5.1.3 Data Preparation 

 

Effective data analysis is contingent upon proper data preparation. In this 

study, engineering productivity data were recorded into the CII BM&M online 

database. Data preparation is discussed below. 

 

To conduct data analysis, the BM&M online database, including 

engineering productivity tables, were downloaded into Microsoft Visual FoxPro® 

2003. Engineering productivity tables and general BM&M metrics tables were 

imported and saved as Microsoft Access® 2003 format in order to consider user 

friendly interface. An engineering productivity metric table including necessary 

project characteristics and raw data tables for six major categories were prepared 

using Microsoft Access® 2003. Then, the tables were saved as the Microsoft 

Excel format due to its compatibility among database management programs and 

statistical packages. After preparation of the dataset, MINITAB version 14.0 was 

used for the statistical analyses.   
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5.2 DESCRIPTIVE STATISTICS: PRODUCTIVITY DATA SET 

 

A proper analysis of the data requires knowledge of descriptive 

characteristics of these projects.  Eighty-seven projects were submitted with 

engineering productivity data. The data set consists of 70 contractor projects and 

17 owner projects from 21 different organizations, as shown in Figure 5.2. The 

data set is comprised of 82 domestic projects and 5 international projects. As 

expected, most of the projects (80) submitted were from the heavy industrial 

sector, 4 were light industrial projects, and 3 were infrastructure projects. Figure 

5.3 shows the project distribution by industry group. The total project cost 

represented in the data set is $2.1 billion, with an average project cost of $26.3 

million.  Data characterizing these projects are provided in the charts and tables 

which follow. 

17

70

Owner Contractor

 
Figure 5.2 Projects Breakout 
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Figure 5.3 Engineering Productivity Dataset by Industry Group 
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The engineering productivity section is included in both the small and the 

large project BM&M questionnaires. Large projects were originally expected to 

provide the most data, but 40 projects costing less than $5 million were submitted. 

Figure 5.4 provides a graphical presentation of projects sorted by cost to illustrate 

size.  

 

The dataset may also be categorized by project nature. The projects are 

comprised of 34 modernization projects, 33 addition projects, 19 grass roots 

projects, and one maintenance project.  Figure 5.5 shows the dataset distribution 

by project nature. 
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Figure 5.4 Engineering Productivity Dataset by Project Cost 
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Figure 5.5 Engineering Productivity Dataset by Project Nature 

The project type category provides more specific project characteristics 

information than the industry group category. Oil refining and chemical 
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manufacturing projects were the two dominant project types with environmental, 

and pulp and paper projects following. Table 5.1 summarizes projects with 

engineering productivity data sorted by type.  

 

Table 5.1 Engineering Productivity Projects by Project Type 

Project Type Owner Contractor Total 

Oil Refining 0 44 44 
Chemical Mfg. 8 4 12 
Environmental 2 5 7 
Pulp and Paper 0 7 7 
Electrical (Generating) 3 1 4 
Other Heavy Industrial 0 3 3 
Pharmaceutical Mfg.  3 0 3 
Oil Exploration/Production 0 2 2 
Laboratory 1 0 1 
Natural Gas Processing 0 1 1 
Pipeline 0 1 1 
Rail 0 1 1 
Water/Wastewater 0 1 1 
Total Projects 17 70 87 

 

 88



 

Although 87 projects submitted engineering productivity data, the amount 

of data for each metric varies widely because of the different characteristics of the 

projects and the different levels of data collection.  Table 5.2 shows the number 

of projects and number of organizations which submitted data for each major 

category.  It is important to note that number of project data submitted by each 

organization is not equally distributed; due to the nature of convenience sampling, 

some participating companies submitted more data than others. Table C.1 in 

Appendix C shows the amount of data by project and metric category submitted 

by each company. The names of the companies are suppressed for confidentiality 

reasons. At the project level, 53 percent of the data were submitted by 3 

companies; however, the other 47 percent of the data are well distributed among 

the remaining 17 companies. At the category level the distributions ranged from 

24 percent of the data from 1 company and 76 percent from 14 companies for 

structural steel to 54 percent from 3 companies and 46 percent from 15 companies 

for piping. Thus, 2 or 3 companies, depending on the category have a 

disproportional influence on the data, a situation that should be improve with 

continued data collection.  
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Table 5.2 Dataset Summary Statistics for Major Metric Categories  

Data Set Number of Projects Number of Organizations 

Concrete 40 16 
Structural Steel 43 15 
Electrical 39 13 
Piping 70 18 
Instrumentation 47 19 
Equipment 52 18 
Total Projects 87 20 

 

 

5.3 PRODUCTIVITY METRICS DISTRIBUTIONS 
 

Data were collected from 21 different owner and contractor companies 

and are presented using Box-Whisker Plots in the following section. It is 

important to note that data presented in this section are aggregates of all groups, 

both owner and contractor. Although CII usually segregates owner and contractor 

data, data are combined here because productivity data for owners and contractors 

have common definitions, are not distorted by perspective issues, and more 

reliable analysis is possible with a larger sample size. Graphical representations of 

engineering productivity data are based upon engineering direct work-hours and 

IFC quantities for the various categories.  
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Of note for the distributions, engineering productivity data contain outliers 

for nearly all metrics. While the CII BM&M Committee has established rules for 

the treatment of outliers, these rules are not directly applied to the engineering 

productivity data. Since the productivity data sample was small and norms had 

not yet been established, a few outliers were removed from the sample based upon 

industry expert opinions for the highly improbable cases only. In many cases, 

when statistical outliers were believed to be valid cases by the industry experts, 

they were included for the data analysis. 
 

5.3.1 Concrete 
 

The concrete section of the survey is applicable to all industry groups 

because concrete work is one of the most common design activities for buildings 

and infrastructure projects, as well as industrial projects. The concrete section is 

divided into slabs, foundations, and concrete structures. Engineering productivity 

metrics for concrete and their definitions are provided in Table 4.5. It is important 

to note that statistical summaries produced from data analysis must be interpreted 

with caution due to the limited size of the initial data set. However, they are 

useful for establishing the methodology for analyzing and presenting engineering 

productivity data. 
 

Figure 5.6 presents a box plot for concrete slab productivity distributions 

including ground and supported slabs (Level IV), area paving (Level IV), and 

total slabs (Level III). When comparing ground and supported slabs with area 
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paving, area paving takes much less design work-hours per cubic yard (CY) of 

concrete due to less complex design than ground and supported slabs. According 

to an industry expert opinion (Kim 2007), engineering design for area paving 

tends to be very standardized and thus fewer design work-hours are required for 

the quantity of work to be installed. This box plot supports the argument that 

detailed element level (Level IV) benchmarking can provide more meaningful 

comparisons than higher category levels such as total slabs (Level III).  
 

Total slabs data can be a mixture of projects that provide both area paving 

data and ground-supported data or either of them. It can also be a roll-up of total 

slab data without Level IV data entered since data can be entered at any level.  

 

Caution should be exercised when interpreting data at the total slab level 

given the possibility of widely varying proportions of Level IV element slices. 

For an example, the n value for ground and supported slabs indicates the number 

of projects submitting data at that element level. An n value of 10 for area paving 

indicates the number of projects submitting data at Level IV. Oftentimes, the 

number of project submitting data for ground and supported slabs, and area 

paving overlap. For this reason, and the fact that data can be entered at the total 

slab level; the total slab n value may not be intuitive based on element level n 

values. 
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Figure 5.6 Concrete: Slabs Productivity 
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Figure 5.7 illustrates the engineering productivity distributions for 

concrete foundations. Foundation distributions are provided for foundations less 

than 5 CY, foundations equal to or greater than 5 CY, and total foundations. 

Piling foundations which are measured as Hrs/Ea could not be provided due to a 

small sample size and a different unit. Detailed discussion of these metrics can be 

found in Chapter 4. As shown in Figure 5.7, as expected, engineering productivity 

for larger foundations is better than that of smaller ones. It is also important to 

note that the variability in designing larger foundations is less than in smaller 

foundations. Park (2002) identified a similar tendency for productivity 

improvement with increasing foundation size in construction productivity. The 

inter-quartile range of total foundations shown as the height of the shaded box is 

located between those of foundations less than 5 CY and foundations equal or 
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greater than 5 CY as expected because it is a combination of the two datasets and 

also because data can be directly entered at the total foundation level. Outliers for 

total foundations probably show impacts of higher level data entry; these outliers 

are likely caused by data entered at the total foundations. It is important to note 

that data provided at Level III will likely have less value. In this case, due to the 

outliers in the distribution of the total foundations, it is recommended to use the 

median values for comparison purposes.  
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Figure 5.7 Concrete: Foundations Productivity 

Figure 5.8 compares distributions for total slabs, total foundations, 

concrete structures, and total concrete. Similar to Figure 5.7, these distributions in 

Figure 5.8 should be interpreted by using the median values instead of the mean 

value distorted by outliers; especially when the sample size is small. Median 
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productivity appears worse for concrete structures than for foundations and slabs. 

This might be related to design complexities and the result, therefore, follows 

general expectations. However, the differences are not likely statistically 

significant. Variability of engineering productivity is, however, greater for both 

foundations and slabs. Again, small samples may be a factor here. As discussed 

previously, the n value for total concrete is not a sum of n values from lower 

levels. 
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Figure 5.8 Concrete Productivity  

After reviewing the distributions for concrete engineering productivity 

metrics, the author can conclude that meaningful measures of engineering 

productivity can be collected with standard definitions and the categories 

classification and distributions appear to be reasonable. 
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5.3.2 Structural Steel 

 

Engineering productivity metrics for structural steel are defined for five 

different breakouts providing flexibility for data collection. As shown in Table 

4.6, metrics are provided for structural steel (Level IV), pipe racks and utility 

bridges (Level IV), combined structural steel and pipe racks and utility bridges 

(Level III), miscellaneous steel (Level III), and total steel (Level II). Common 

definitions for the structural steel metrics are provided in Table 4.6. These metrics 

mirror those collected for CII BM&M construction productivity.   

 

Figure 5.9 presents the distribution of the metrics. Miscellaneous steel 

tends to have the greatest variability among the five different metrics. This result 

can be explained because its definition includes a heterogeneous mix of all types 

of structural steel that are not classified as structural steel or pipe racks and utility 

bridges. Comparing engineering productivity for structural steel and pipe racks 

and utility bridges (Level IV metrics), structural steel tends to have better 

productivity because pipe rack and utility design practice including smaller piece 

design than that of structural steel. Thus, pipe racks and utility engineering takes 

more effort to design (Woldy 2007). It is important to note that combined 

structural steel, and pipe racks and utility bridges (Level III) metric was added at 

the productivity retreat to accommodate some companies WBS. Sample size for 

the total steel is different from sum of samples for detailed levels since a project, 
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for example, can have metric values for the structural steel and the miscellaneous 

steel. When the data were aggregated form a lower to higher level, the aggregate 

of the data may result in a changed unit rate, either from additional data at the 

higher level or from the combination of the lower levels. For this reason, outliers 

appearing at lower level may appear no longer at the higher level.  
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Figure 5.9 Structural Steel Productivity 

According to the data analysis, structural steel productivity produces more 

outliers than the other major productivity metric categories. This might be that the 

structural steel categories include more heterogeneous design items. Outlier 

projects often have very small design quantities compared to average design 

quantities. This implies that minimum design effort such as owner requirement 

 97



 

analysis, job site consideration is required in spite of small design quantity 

(Woldy 2007). In most cases, outlier data are classified as addition or 

modernization projects which require more design considerations and often have a 

relatively smaller design quantity than grass root type projects. 

 

5.3.3 Electrical 

 

The electrical section is not summarized at the major category level (Level 

II) because this section has a mixture of output units making it difficult to form an 

aggregate metric. The electrical category is divided into five subcategories: 1) 

electrical equipment, 2) conduit, 3) cable tray, 4) wire and cable, and 5) other 

electrical metrics. Conduit and wire & cable metrics each include two different 

output units. They are linear feet and number of runs for conduit and linear feet 

and number of terminations for wire and cable. During the productivity 

development workshops, the prevailing output units for these two metrics were 

different among participating companies, so two different output units are 

collected in order to accommodate participants. After review, the BM&M 

productivity team recently defined the wire and cable metric with linear feet as a 

representative metric for the electrical section.  

  

Electrical equipment is sub-divided into 1) electrical equipment 600V and 

below and 2) electrical equipment over 600V. The distributions for these metrics 

are provided in Figure 5.10. The engineering productivity for equipment 600V 
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and below is better than that of electrical equipment over 600V and has less 

variability; however, the small samples render conclusions unreliable. A total 

electrical equipment category was added to the questionnaire to accommodate 

companies whose threshold is different from 600V or those that cannot separate 

the data. Based upon the industry opinion (Woldy 2007), design for electrical 

equipment with higher voltages generally have more engineering consideration 

and takes more effort to maximize the reliability of the equipment. A project 

encompassing an outlier in Figure 5.10 has only one design quantity in electrical 

equipment over 600V, and 92 designed quantities are included in equipment 600V 

and below. However, since the metric for total electrical equipment was 

calculated by dividing the sum of engineering work-hours from the two categories 

by total design quantities (93), the outlier found in electrical equipment over 

600V is no longer an outlier in the total electrical equipment category. As 

discussed in Section 5.3.1, the total n value is not a sum of n values form lower 

levels. 
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Figure 5.10 Electrical Equipment Productivity 

The engineering productivity distributions for conduit are shown in 

Figures 5.11 and 5.12 using work-hours for linear foot and work-hours per 

number of runs respectively. Due to the different units, variance in two box- plots 

may not be directly compared. However, the reduction in variance in Figure 5.11 

may also be due to the larger sample size. More data will assist with these 

interpretations.  

 

Work-hours/LF may be a better measurement rather than the conduit 

productivity using the number of runs since number of runs can be considered as a 

complexity factor rather than output measure (Woldy 2007; Hoenerhoff 2007). 
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Figure 5.11 Electrical: Conduit (Hrs/LF) Productivity 
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Figure 5.12 Electrical: Conduit (Hrs/No. of Runs) Productivity 
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Figure 5.13 illustrates the distribution for cable tray productivity. The 

median value of 0.514 and the mean value of 0.606 are closer than other metrics 

and this confirms to the central tendency of the distribution. Engineering 

productivity for cable trays is based on linear feet of cable tray designed. 
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Figure 5.13 Electrical: Cable Tray Productivity 

 

The box-plots for wire and cable are shown using Hrs/LF and Hrs/No. of 

Terminations in Figure 5.14 and Figure 5.15. The number of data points for the 

linear feet measure of wire and cable is about two times greater than the number 

of terminations. In other words, the linear foot is the more commonly reported 

measure for wire and cable.  Therefore, the author recommends that usage of 

wire and cable with LF based on the apparent ease of reporting.   
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Figure 5.14 Electrical: Wire and Cable (Hrs/LF) Productivity 
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Figure 5.15 Electrical: Wire and Cable (Hrs/No. of Terminations) Productivity 
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Figure 5.16 shows the distribution for the lighting productivity, which is 

skewed similar to the other metrics. The mean of lighting productivity is skewed 

because of outliers, so the median value that is not affected by outliers can be 

more meaningful. When the sample size increases with additional data collection, 

better confirmation of the central tendency of the distribution is expected.  
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Figure 5.16 Electrical: Lighting Productivity  

 

After reviewing electrical metrics, the author believes that the engineering 

productivity for electrical equipment can be measured best at Level IV rather than 

at the Level III, total electrical equipment level because the total electrical 

equipment sub-category does not differentiate equipment voltages or its design 

complexity. Generally, electrical equipment with higher voltage requires more 

 104



 

complex design codes and more arrangements. The engineering productivity of 

conduit and wire and cable can be measured better using linear feet rather than by 

number of runs or number of terminations since number of runs and number of 

terminations are more complexity measures of the design rather than output 

measures (Hoenerhoff 2007; Ebert 2007 ).  

 

5.3.4 Piping 

 
Piping may be most important discipline for assessing engineering 

productivity for industrial projects.  The piping category provides four different 

metrics: small bore (Level III), large bore (Level III), engineered hangers and 

supports (Level III), and total piping (Level II) as shown in Table 4.9. 

Figure 5.17 shows the distribution of productivity in small bore pipe 

(Level III), large bore pipe (Level III), and total piping (Level II). This figure 

includes many statistical outliers, but they were included for the analysis because 

outliers often provide very important information. The variability caused by 

outliers could be explained because this analysis did not control project types or 

complexity of the design due to sample size. The BM&M productivity metrics 

team reviewed the overall distributions and concluded that these outliers may in 

deed be valid data. Some of them have relatively small design quantities and are 

designed for extreme weather conditions.  The hot and cold percentage and the 

number of pipe fittings have been collected as complexity factors of design. 

Future analyses could provide relationships between piping engineering 
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productivity and its complexity factors. As expected, an observed difference in 

means between large bore and small bore has been identified although it was not 

statistically significant. This may change with larger samples. Similar to an 

example given in Section 5.3.2, outliers appearing at lower levels may not appear 

at the higher level such as the total piping. Engineered hangers and supports are 

separated from the piping box-plot because of different unit and scale issues, and 

are shown in Figure 5.18.  
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Figure 5.17 Piping Productivity 
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Engineered Hangers and Supports
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Figure 5.18 Piping: Engineered Hangers and Support Productivity   

5.3.5 Instrumentation 

 

As discussed in Section 4.3.2.5, instrumentation design work-hours can 

not be separated into discrete hours for loops, tagged devices, and I/O counts. 

Thus they are collected as the total instrumentation work-hours. For these reasons, 

three different instrumentation metrics were determined to provide different 

aspects of the instrumentation performance. The metrics and corresponding 

definitions for instrumentation are provided in Table 4.11. 

 

Figure 5.19 illustrates the distributions of loop (Level III), tagged devices 

(Level III), and I/O (Level III) metrics for instrumentation.  As shown in Figure 
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5.19, engineering productivity for loops has the greatest variability among the 

three metrics. The IQR (Inter Quartile Range) of the loops is much wider than that 

of tagged devices or I/O and the least data were collected for loops. Based upon 

industry expert opinions (Woldy 2007; Ebert 2007), this result is caused by 

reasons that the definition for loop provides a less objective measure than those 

for tagged devices and I/O. Thus, the author recommends that the loop count 

should be considered a complexity factor for instrumentation rather than an output 

measure. The engineering productivity distributions for the tagged devices and the 

I/O can likely serve as a better metric than that of loops because they provide 

better distributions. When more data are collected, more reliable norms can be 

established considering project characteristics. 
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Figure 5.19 Instrumentation Productivity 
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5.3.6 Equipment 
 

The equipment section provides engineering productivity metrics for a 

variety of equipment types. Equipment is a major component of industrial 

projects. Often, several pieces of equipment are tied into systems with piping, 

electrical, and instrumentation connections for control and processing. Equipment 

metrics and corresponding definitions is provided in Table 4.13 through 4.16.  

 

As previously described in Section 4.2.3.6, equipment metrics are 

calculated in two different ways: 1) using individually designed quantities and 2) 

using total quantities. The metrics using individually designed quantities serve 

better to measure engineering productivity and these metrics are presented and 

discussed herein. It is also important to note that metrics with either less than ten 

projects or from less than three companies cannot be presented due to the CII 

Confidentiality Policy that can be found at the CII Benchmarking website 

(http://www.construction-institute.org/scriptcontent/code.cfm).  Due to small sample 

sizes and the CII confidentiality Policy, the metrics for material handling 

equipment, pulp and paper equipment, power generation equipment, and other 

process equipment are excluded from the following discussion.  

 

Figure 5.20 shows the distributions for design of pressure vessels and 

atmospheric tanks. The distribution of pressure vessels shows more variability 

than that of atmospheric tanks. Equipment metrics are calculated by the number 

of pieces of equipment designed rather than total equipment size or capacity. 
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According to an industry expert, pressure vessels generally take more engineering 

work-hours to design than atmospheric tanks because the complexity of the 

pressure vessel is greater than the atmospheric tank design. Design codes are 

more complex because of high temperatures and high pressures since the pressure 

vessels require more time to interpret design codes, more calculations, and more 

safety regulations (Personal Conversation with Dr. Kirk Morrow, May 30, 2006). 

 

Figure 5.20 Equipment: Pressure Vessels and Atmospheric Tanks Productivity  

 

Figure 5.21 illustrates the box-plot of heat transfer equipment with 15 

project data points. The average hours for designing of heat transfer equipment 

takes about 83 hours each and the median value is about 67 hours each. Prior to 

this study, there were no industry-wide estimates of the average number of hours 

En
gi

ne
er

in
g 

Pr
od

uc
tiv

ity
 (

H
rs

/E
A)

Atmospheric_TanksPressure_Vessels
n=13n=17

400

300

200

100

0

Equipment: Pressure Vessels and Atmospheric Tanks Productivity
Individually Designed

Level III                                      Level III

 110



 

for the design of heat transfer equipment. However, a small sample size may 

affect reliability of the average. Continued data collection is necessary to increase 

reliability of the statistics.  
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Figure 5.21 Equipment: Heat Transfer Equipment Productivity 
 

The distributions for boiler and fired heaters, and rotating equipment 

design are shown in Figure 5.22. When examining the boiler and fired heater 

distribution, a wider range than that for any other equipment metric was observed. 

Considering that the boiler definition includes packaged boilers, field erected 

boilers, fired heaters, waste heat boilers, stand-alone stacks, and miscellaneous 

other boilers and fired heaters, engineering productivity is probably varied due to 

the many types of equipment and also the capacity differences. Additional 
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information on BTU per hour has been collected and when more data are 

available; capacity could be included to provide better comparisons.  
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Figure 5.22 Equipment: Boiler & Fired Heaters and Rotating Equipment 

Productivity 

  

Vendor designed modules and pre-assembled skids and total equipment 

distributions are presented in Figure 5.23. Generally speaking, the equipment 

section has the greatest variability among engineering metrics and this section is 

no different; therefore, additional analysis exploring the relationship between the 

average weight or the capacity of equipment and its engineering productivity 

should be considered. 
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Figure 5.23 Equipment: Modules & Pre-assembled Skids and Total Equipment 

Productivity 

 

5.4 RELATIONSHIPS BETWEEN IFC QUANTITIES AND ENGINEERING WORK-
HOURS: CORRELATION STUDIES 

 

This section examines correlation between actual work-hours and IFC 

quantities to validate the hypothesis of this research study. The hypothesis posits 

that reliable measures of engineering productivity can be established from design 

hours and design quantities. Statistically significant relationships between design 

hours and quantities lend strong support to the hypothesis. 

 

The structural steel and piping sections were selected for statistical 

analyses because these categories have a reasonable size dataset and also provide 
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different levels of metrics. Correlation analyses were performed and were 

summarized in the following sections. Scatter plots are also presented to show 

bivariate relationships between engineering work-hours and IFC quantities of in a 

graphical manner in Appendix D. 

 

It is important to note that assumption of bivariate linear relationships 

between actual engineering work-hours and IFC design quantities was made in 

the following analyses. Non-linear relationship may be possible such as learning 

curve effects; however, the author did not find strong evidences of non-linear 

relationships for these metrics. Therefore, the analyses assume linear 

relationships. 

 

5.4.1 Structural Steel 

 

The structural steel category provides Level II, III, and IV metrics with a 

relatively reasonable size dataset, enabling correlation analyses between direct 

engineering work-hours and IFC design quantities. Different levels of metrics 

were discussed in Chapter 4.2.2. Correlation analyses were performed for five 

structural steel metrics to validate the engineering productivity metric definitions 

proposed by this research. Scatter plots for these five metrics are also provided in 

Appendix D.  
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Pearson correlation analyses were conducted to examine the direction and 

strength of the linear relationship between engineering work-hours and IFC 

quantities. The results are provided in Table 5.3. As shown, the relationship 

between direct engineering work-hours and IFC quantities generally demonstrates 

a reasonable correlation coefficient between 0.492 and 0.847 with statistical 

significance at the 0.05 significance level except for that of miscellaneous steel. 

As mentioned in Chapter 4, miscellaneous steel includes many different steel 

elements which are not classified as structural steel or pipe racks and utility 

bridges and thus contribute to a weaker relationship as a result of its definition. 

The statistical significance exceeded original expectations. Pearson correlation 

assumes bivariate linear relationships. 
 

Table 5.3 Correlation Results in Structural Steel Category, Engineering Work-
hours and IFC Quantities 

Metrics n Correlation 
Coefficient P-value Level 

24 0.664 <0.001 IV Structural Steel 

Pipe Racks & Utility 
Bridges 

12 0.834 0.001 IV 

Combined Structural 
Steel / Pipe Racks & 
Utility Bridges 

30 0.760 <0.001 III 

Miscellaneous Steel 
23 

(24) 
0.492* 
(0.277) 

0.017* 
(0.189) III 

Total Steel 42 0.847 <0.001 II 

* Relationship and significance after removing a bivariate outlier 
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5.4.2 Piping 

 

Piping is a critical part of industrial projects and has considerable impacts 

on overall project outcomes to include productivity, cost, and schedule 

performance. This category was also selected for correlation analysis to test the 

hypothesis of this research. First, scatter plots of the four piping metrics are 

generated to check graphical bivariate relationships between direct engineering 

work-hours and IFC quantities and given in Appendix D. Then, correlation 

analyses were performed for small bore pipe, large bore pipe, engineered hangers 

and supports, and total piping to validate the engineering productivity metric 

definitions. 

 

Pearson correlation analyses for piping were conducted to examine the 

direction and strength of the linear relationship between engineering work-hours 

and IFC quantities. The results are summarized in Table 5.4. Statistical test results 

show that all of the piping category metrics have statistically significant 

relationships between 0.800 and 0.952 at the 0.05 significance level. Small bore 

piping has the best Pearson correlation among the four piping metrics. This may 

be explained as it has more homogenous definitions than others.  
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Table 5.4 Correlation Results in Piping Category, Engineering Work-hours and 
IFC Quantities 

Correlation 
Coefficient Metrics n P-value Level 

Small Bore  35 0.952 <0.001 III 

Large Bore  41 0.874 <0.001 III 

Engineered Hangers and 
Supports 33 0.949 <0.001 III 

Total Piping 70 0.800 <0.001 II 

 

Since statistically significant bivariate relationships for each piping 

category have been established between direct engineering work-hours and IFC 

quantities using the overall dataset, the engineering productivity metric can 

provide meaningful data to the industry.  

 

5.5 DATA ANALYSIS SUMMARY 

 
Preliminary data analysis results gathered from initial engineering 

productivity data collection have been presented. As discussed in Chapter 1, the 

research hypothesis was established to support the research objectives and provide 

preliminary validation of this research.  The hypothesis is presented below:   
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Engineering work-hours and design quantities provide reliable 

measures of engineering productivity. 

A reasonable number of the engineering productivity data points were 

collected and analyzed for each metric using the box-plot to check for the 

reasonableness of this methodology using IFC design quantities rather than 

intermediate deliverables. A methodology for establishing industry norms was 

presented and these norms will mature with further data collection. Considering 

this is the first attempt to establish, collect, and analyze engineering productivity 

data below the disciplines level with common definitions and industry consensus 

categories, preliminary data analysis suggests that meaningful metrics based on 

work-hours and IFC quantities for benchmarking are possible. Therefore, the 

author can conclude that engineering work-hours and design quantities can 

provide reliable measures of engineering productivity.    

 

The research hypothesis was also reviewed utilizing correlation analysis 

between direct engineering work-hours and IFC design quantities. Structural steel 

and piping data were utilized to test this hypothesis. The results were statistically 

significant at the 0.05 significance level except in the case of miscellaneous steel, 

and even miscellaneous steel was found to be significant after removing a 

bivariate outlier. Statistically significant bivariate relationships between direct 

engineering work-hours and IFC quantities were found for structural steel and 

piping category. This finding is very important to support the hypothesis and to 

establish the engineering productivity definition as a function of engineering 
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work-hours and IFC design quantities. This proposed metric approach is 

preferable for the industry because the metric of work-hours per drawing is 

notorious for its limited efficacy and validity. The author can conclude that this 

research method of defining the engineering productivity using IFC quantities is 

valid and can provide meaningful data when utilizing the CII common definitions.  
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Chapter 6: SYSTEM VALIDATION AND IMPLEMENTATION 
ISSUES 

After development of the EPMS (Engineering Productivity Measurement 

System) through this research, there was a need to validate and modify the 

developed system as necessary to ensure its acceptance and implementation by 

the industry. This chapter discusses system validation, implementation issues, 

resource requirements for effective implementation, and a proposed ten-step 

process for implementation.  

 

6.1 SYSTEM VALIDATION 

Through this research, EPMS, including industry consensus directs and 

indirects, engineering productivity metrics categories, the secure web-based data 

collection system, and a real-time industry report generator, has been developed.  

However, validation of the system is essential for industry acceptance and broad 

industry adaptation. Figure 6.1 illustrates the system validation process which 

includes 1) industry feedback through BMA training, industry forums, and 

conference presentations, 2) data analysis, and 3) industry acceptance and 

adaptation of the system. While system validation occurred in the EPMS 

Development stage, most of the validation occurred during Implementation.   
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Figure 6.1 System Validation Process  

6.1.1 Industry User Feedback 

 

Valuable industry feedback has been received from many different 

activities. After productivity metrics workshops and development of EPMS, pilot 

testing was conducted to validate the definitions prior to large scale data 

collection. In addition, the BM&M Productivity Metrics team regularly reviewed 

industry feedback to improve the system. Early implementation of the system 

from September 2002 to 2003 provided valuable feedback to increase its usability. 

 

As discussed previously, modification of engineering productivity metric 

such as Level III and Level II metrics were made in June 2004 at the Productivity 

Metrics Retreat for increased flexibility of data collection.  This change to the 
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system broadened industry acceptance and implementation as ease of use was 

enhanced. 

 

Following refinement of the system, special productivity metrics training 

for Benchmarking Associates was developed and implemented for increased 

understanding of metric definitions and system use. These training sessions 

continue to enhance data quality by increasing knowledge and awareness to the 

functionality of the system and acceptance of its definitions. 

 

The EPMS has been introduced to the industry at CII Annual Conferences, 

Construction Project Improvement conferences, Board of Advisor round table 

discussions, and Benchmarking User’ Forums in many locations. Most of the 

industry participants agreed that the system provides very practical information to 

the industry and improves engineering productivity measurement.    

 

6.1.2 Data Analysis 

 

Engineering productivity metric data received from the three different data 

collection efforts were analyzed as a part of the validation of the EPMS system.  

Data analysis of these metrics affirms that the data collected for the engineering 

productivity metric categories were reasonable and that the metrics with common 

definitions provided distributions that met the expectations of industry and its 

professionals.      
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As discussed in Chapter 5, analysis of engineering productivity data, 

distributions confirm that engineering productivity metrics based upon IFC 

quantities can provide reasonable measures of performance. Correlation analyses 

for structural steel and piping were performed to examine relationships between 

actual engineering work-hours and IFC designed quantities. Statistically 

significant relationships were found providing strong support for system 

validation. 

 

6.1.3 Industry Acceptance / Adaptation 

 

At the Productivity Metrics Retreat in 2004, both the EPMS and PT 192 

metrics were presented and analyzed. Comparison of the two approaches is 

discussed in Appendix A in detail. The industry preferred to implement the EPMS 

using actual work-hours and IFC design quantity for measuring engineering 

productivity despite of its relative difficulty for data collection. The industry 

experts acknowledged that this system would provide more objective measures 

for engineering productivity.    

 

In addition data from 87 projects from 20 companies have been analyzed 

during this research. The CII BM&M Committee also continues data collection 

and refinement of the system. This ongoing implementation of EPMS is expected 

to broaden industry acceptance and adaptation of the system.   
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In a summary, the Engineering Productivity Measurement System (EPMS) 

developed by the author has been validated in multiple aspects, including industry 

feedback, data analysis, and industry acceptance of EPMS. The following section 

will discuss implementation barriers and possible solutions. 

 

6.2 BARRIERS TO THE IMPLEMENTATION OF BENCHMARKING ENGINEERING 
PRODUCTIVITY  

 

The research discussed in this dissertation developed an engineering 

productivity measurement system for effective measurement of engineering 

performance. It would not be complete however, without an assessment of the 

barriers to implementation of this system. A number of barriers were identified 

through a series of workshops, productivity metrics team meetings, BMA training 

sessions and discussions with project managers during data validation. Identified 

implementation barriers are listed below: 

• Incompatible codes of accounts 

• Inadequate time-sheet programs 

• Cultural resistance  

• Confidentiality issues  

• Concerns regarding the use of the productivity data  

• Dual approaches within CII 
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The most critical barrier may be reconciling company internal accounting 

systems with CII definitions. Generally, tracking codes used by accounting 

systems within many engineering firms are not compatible with recommendations 

of this study in terms of direct / indirect accounting, units of measure, and 

definitions. This incompatibility hinders the effective collection of engineering 

work-hours in the various CII categories. Therefore, the modification of internal 

code of accounts should be considered, but this does require significant effort 

from companies to be successful. One company’s approach was to develop a 

customized query program to extract the data from their existing accounting 

program, thereby circumventing the need to overhaul their entire legacy system. 

Further, it is also recommended that a separate time sheet application should be 

developed to be compatible with the CII BM&M definitions and categories, in 

order to capture engineering work-hours. This approach may be more economical 

and viable for implementation.  

  

There may also be cultural resistance against changes to methodology for 

measuring engineering productivity. Some engineers and project managers are not 

accustomed to measuring their engineering productivity based upon IFC 

quantities. However, company leadership should explain the value of measuring 

engineering productivity and why quantity – based metrics should be used. It is 

always difficult to change daily work processes, but resistance to change should 

be minimized with support from company leadership and the project control 

group. Indeed, a discussion of the issues in tracking intermediate deliverables-
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based measurement may be enough to convince some of the advantages of the 

objective quantities approach. 

 

The requirement to report with standard definitions and categories means, 

however, that it is difficult to retrieve engineering productivity data from 

historical projects, because generally internal definitions did not match those 

promulgated by this research. Therefore, company leadership and benchmarking 

associates (BMA) will need to modify their codes of accounts for projects to be 

benchmarked so that engineering productivity data can be recorded during project 

execution for future projects.    

 

Confidentiality of productivity data was another concern expressed by the 

industry participants since productivity data are directly related to a company’s 

competitiveness in the construction market. All data from participating companies 

are considered highly confidential and the CII BM&M Committee has established 

a strict Confidentiality Policy and a Code of Conduct defining appropriate use of 

the data. These documents can be found at the CII Benchmarking and Metrics 

website at http://www.construction-institute.org. The code of conduct explicitly 

prohibits the use of data for anti-competitive practices and emphasizes that the 

data will only be published in the aggregate, to protect confidentiality. Companies 

access their own project data, but may only compare against the aggregate. The 

online benchmarking system allows flexibility to access project data in real time 

while keeping data confidential.   
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As discussed previously, two different approaches for the measurement of 

engineering productivity, (PT 192 and the BM&M approach) exist within CII. 

Some members were initially confused as to which approach their company 

should apply.  In order to minimize this confusion among CII members, the two 

teams collaborated during their research process and then presented the similarity 

and differences of the approaches at CII annual conferences, CPI conferences, 

Benchmarking User’s Forums, and BMA training sessions.  

 

This research has formed a good approach to measure engineering 

productivity with standard definitions and flexibility in data collection levels; 

however, implementation issues discussed here should not be neglected, as they 

are critical to a successful implementation of engineering productivity 

measurement and are necessary for the long-term benefits from this effort to be 

realized.   

 

6.3 PATH FORWARD: RESOURCE REQUIREMENTS FOR IMPLEMENTATION 

 

This section discusses resources required at the company level to sustain 

this research in engineering productivity metrics benchmarking. First, to build a 

successful implementation model, continuity of required resources is critical. The 

true benefits of this research will be realized through continuous benchmarking 

over time and further analysis of data. 
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The success of this effort over the long term is contingent upon bringing 

more engineering companies into this research and maintaining industry focus on 

measuring engineering productivity. Ultimately, industry-level trends for 

productivity similar to CII’s safety trend analysis will drive improvement. 

However, participating companies must provide enough resources for 

productivity metrics data collection and follow-up before significant improvement 

can be realized.   

 

6.4 A TEN-STEP PROCESS FOR IMPLEMENTATION OF ENGINEERING 
PRODUCTIVITY BENCHMARKING 

 

Real benefits of engineering productivity benchmarking can only be 

attained by a successful implementation program for productivity benchmarking 

within a company or the industry. Establishing a benchmarking program within an 

organization is a long journey to truly succeed. The previous section discusses 

barriers to the implementation of benchmarking of engineering productivity. In 

response, a guideline for establishing a successful benchmarking program was 

developed, resulting in a ten-step process for companies to implement this system. 

Figure 6.2 provides a proposed ten-step process graphically.  
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Figure 6.2 Proposed Ten-Step Implementation Process 

More specifically, this proposed Ten-Step implementation process should 

be implemented by following guidelines. 

1) Obtain buy-in from company executive management for productivity 

benchmarking. 

2) Establish a formal communication channel among Benchmarking 

Associates, project managers, and engineering discipline managers. 

3) Develop or modify internal data collection tools, such as time sheet 

programs and accounting codes to make data collection easier by 

matching with CII standard definitions and categories for external 

benchmarking. 
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4) Set up a company-level benchmarking plan to select representative 

projects to benchmark and initiate data collection at the beginning of 

each project. 

5) Annually attend CII Productivity Metrics Benchmarking Associate 

training sessions to learn about the CII productivity metrics program 

and lessons learned from other companies. 

6) Validate engineering productivity data and other necessary project 

information internally before submission to CII to assure data quality. 

7) Cooperate with the CII account manager to clarify any issues before 

final acceptance of project data. 

8) Use the company-confidential productivity key report to analyze 

performance against a similar industry data set and identify specific 

metrics or discipline areas to improve. 

9) Utilize results from the key report and provide recommendations for 

company process improvement and future project planning. 

10)  Repeat the above procedures to improve the company’s competitive 

edge within the industry.  

 

6.5 SUMMARY 

 

This Chapter has discussed the critical issues arising from the 

development of a standard engineering productivity measurement system along 

with an approach to derive real benefits from industry acceptance of the 
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methodology. System validation for EPMS has been discussed. Barriers for 

implementation have been also identified and discussed. The importance of 

continuity of required resources from industry participants was also emphasized 

in order to realize true benefits from implementation. A ten-step implementation 

process was proposed as an example of how a company may begin its 

productivity benchmarking. The next chapter will review research objectives and 

contributions. Recommendations for future studies will also be discussed.   
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Chapter 7: CONCLUSIONS AND RECOMMENDATIONS 

 

This dissertation presents and discusses the motivation, background, and 

methodology for the development of an Engineering Productivity Measurement 

System (EPMS).  The research is another important step by CII in developing 

much needed metrics for measuring and ultimately improving engineering 

productivity. 

 

This chapter completes the documentation of the research by presenting 

conclusions and recommendations. The research objectives are reviewed and 

conclusions are presented. Recommendations for future research are also 

identified. Finally, contributions of this research are discussed. 

 

7.1 REVIEW OF THE RESEARCH OBJECTIVES AND CONCLUSIONS 
 

Chapter 1 records the main objective of this study: to develop a system for 

engineering productivity measurement that is suitable for benchmarking and to 

provide quantitative feedback to participants for improving their productivity 

performance. More specifically, the aim of this research was: 
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1) To establish engineering productivity metric definitions that are 

acceptable to industry. 

2) To develop a system for the implementation of these metrics. 

3) To collect a pilot set of data for preliminary validation. 

4) To identify and discuss the implementation issues of engineering 

productivity measurement. 

5) To recommend directions for future studies. 

7.1.1 Development of Engineering Productivity Metrics 
  

The CII BM&M productivity metrics team began developing standard 

engineering productivity metrics in 2002 to provide a basis for industry to 

perform both internal and external benchmarking. A total of 44 industry experts 

from 28 member organizations participated in the development workshops. A 

metrics system of standard direct/indirect accounts, six metric categories and 49 

individual metrics were developed through a series of workshops. Revisions were 

made by gathering feedback from the industry through pilot data collection and a 

Productivity Metrics Retreat. In doing so, the main objective of this research has 

been achieved. Detailed discussion of the metric definitions is provided in 

Chapter 4 and the engineering productivity questionnaire is provided as a part of 

the CII Benchmarking Project questionnaire in Appendix B.   

 

 133



 

7.1.2 Development of Engineering Productivity Measurement System 

 

A web-based Engineering Productivity Measurement System (EPMS) has 

been developed for implementation of these metrics by the construction industry. 

To collect data for these metrics, an online database was designed and an online 

questionnaire was programmed and tested. This questionnaire was integrated into 

the CII BM&M system to enable collection of a wide range of project data to 

support analysis of the productivity metrics. The EPMS allows flexible data 

collection for engineering productivity by establishing different levels of metrics. 

The system leveraged theoretical and practical suggestions from literature review 

and expert opinions. Finally, an automated reporting system which generates 

confidential engineering productivity performance reports for each participating 

company was developed for feedback to participants.  

 

Validation of EPMS was important for industry acceptance and broad 

adaptation. Thus, the system validation process which includes industry feedback, 

data analysis, and industry acceptance and adaptation of the system were 

discussed in Chapter 6.  

 

7.1.3 Initial Data Analysis / Validation 

 

The engineering productivity data reviewed by this research consisted of a 

total of 87 projects. Preliminary data analyses were performed for initial 
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validation. The Box-Whisker plot was utilized to discuss metric distributions and 

scatter plot and Pearson correlation analyses results were provided to examine the 

relationship between engineering work-hours and IFC quantities. Findings from 

the analyses should be interpreted with caution however, since convenience 

sampling rather than true random sampling was employed.  

 

Through the pilot data collection and preliminary analysis of engineering 

productivity metrics, the following conclusions can be made: 

• A reasonable number of data points have been collected for initial 

validation. 

• Meaningful engineering productivity norms can be established at various 

levels, even considering the data input constraints of industry. 

• Significant relationships between engineering work-hours and IFC 

quantities show that quantity-based metrics are feasible for engineering 

productivity benchmarking.  

• The CII BM&M survey defines metrics at an appropriate level of detail to 

permit industry to provide data and also to produce meaningful metrics. 

 

7.1.4 Discussion of Implementation Issues for Engineering Productivity 
Measurement 

 
One of the research objectives was to identify and discuss the 

implementation issues of engineering productivity measurement. This research 

proposed a benchmarking methodology using direct engineering work-hours and 
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IFC quantities for most engineering disciplines. Barriers and issues for 

implementation of this system were identified through the research process and 

discussed along with possible solutions in Chapter 6. Valuable lessons learned 

were identified from early implementation of the metrics. Resources required for 

implementation were also discussed. The author proposed a ten-step process for 

companies to implement the EPMS as a general guideline for improvement. 

7.2 REVIEW OF RESEARCH HYPOTHESIS AND CONCLUSIONS 

 

This section provides a review of the research hypothesis established in 

Chapter 1 and relevant discussions. The research hypothesis posited that 

Engineering work-hours and design quantities provide reliable measures of 

engineering productivity. 

 

This research established a new system to measure engineering 

productivity using direct actual engineering work-hours and IFC design quantities 

below the discipline level with common definitions and industry consensus 

categories. Preliminary analysis results of a total of 87 project data gathered have 

been presented using the Box-Whisker plot to check for the reasonableness of this 

methodology in Chapter 5. This analysis showed that meaningful metrics based 

on work-hours and IFC quantities for benchmarking are possible. Therefore, the 

author can conclude that engineering work-hours and design quantities can 

provide reliable measures of engineering productivity.  
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As discussed in Section 1.4, the term “reliable” as used in the hypothesis 

should not be construed to indicate reliable in a statistical sense, but rather means 

that productivity metrics based on engineering work-hours and design quantities 

provide metrics for which industry can report and which produce distributions 

which are sufficiently dependable for benchmarking purposes.   

 

Pearson correlation analyses were preformed to examine the relationship 

between engineering work-hours and IFC design quantities for structural steel and 

piping. Statistically significant relationships between engineering work-hours and 

IFC design quantities were found. This finding is very critical to support the 

hypothesis and to establish the engineering productivity definition as a function of 

engineering work-hours and IFC design quantities. The author can conclude that 

this research method of defining the engineering productivity using IFC quantities 

is valid and can provide meaningful data with common definitions.  

 

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This dissertation demonstrates that the BM&M engineering productivity 

measurement system provides an effective benchmarking tool for the construction 

industry to measure engineering productivity. This research mainly focuses on the 

development of industry-standard engineering productivity metrics and a system 

for their use. Since this can be considered an early study of engineering 
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productivity measurement, many other studies may follow using this research as a 

basis; therefore recommendations concerning this research are provided below.  

 

Since this research produced engineering productivity metrics for six 

major categories consisting of multiple levels, development of a Level I metric 

representing overall engineering productivity performance at the project level 

would be useful to future research. To be meaningful, it should be repeatable and 

should ultimately be represented as a trend. A Level I metric should serve various 

analyses, should be economical to collect and produce, and should be a reasonable 

summary of more detailed level II through IV metrics. Additionally, the 

construction industry has lacked a valid industry-level productivity trend analysis. 

Although there is a high level productivity trend analysis provided by the BLS 

(Bureau of Labor Statistics), doubt has been cast on its accuracy because of its 

simplistic methodology. In contrast, the BM&M system can provide various 

yearly trend analyses for engineering and construction productivity both at the 

discipline level and the industry level with the development of the Level I metric 

and a more extensive dataset.   

 

Analyses of relationships among engineering productivity, project 

performance, and implementation of selected best practices are also very critical 

to understanding how engineering productivity contributes to project success. 

Information regarding other performance metrics and selected best practices are 

also collected using the engineering productivity measurement system because it 
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is integrated into the general benchmarking survey instrument. Suggested future 

analysis questions are listed below: 

• How does engineering productivity performance affect detailed-design 

phase cost growth and schedule growth? 

• How does engineering productivity affect overall project cost growth 

and schedule growth? 

• How does engineering productivity impact construction productivity? 

• What is the effect of automation and integrated technologies on 

engineering productivity? 

• How do front end planning and the use of the Project Definition Rating 

Index (PDRI) (CII 1996; CII 2006b) impact engineering productivity? 

 

This research primarily focused on development of engineering 

productivity measures for the detailed-design phase. However, numerous factors 

likely affect engineering productivity and future data collection with other 

pertinent data would enable analyses of these factors. Some suggested analysis 

topics are listed below:    

• What is the ratio of indirect to direct engineering hours and how does 

it affect engineering productivity metrics performance? 

• What is the relationship between change orders during the detailed-

design phase and engineering productivity? 

• How do different complexity factors affect engineering productivity?  
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7.3.1 Engineering Productivity Factors 
 

During this research, several workshops with industry experts were 

conducted to gain consensus on common definitions and engineering productivity 

categories. In these workshops, there were some discussions of engineering 

productivity drivers such as project complexity factors and use of information 

management systems. The scope of this research was limited to development of a 

quantity-based metrics system for measuring engineering productivity and 

therefore this research does not provide an analysis of engineering productivity 

drivers. Those who measure their productivity through the CII BM&M system 

would benefit by analyzing their results with industry norms in terms of various 

extant conditions to identify their strengths and shortcomings. This is a critical 

step for improving future performance. Further research into identification of the 

drivers for engineering productivity improvement is warranted.  
 

For future research, it is useful to document potential characteristics or 

practices that were discussed during various industry workshops, Benchmarking 

Associates (BMA) training sessions, and CII Board of Advisor (BOA) round table 

discussions that may correlate with engineering productivity. A summary of these 

potential factors are listed below: 

 

• Project complexity: Overall project complexity and/or complexity 

for each engineering discipline  

 140



 

• Automation of engineering activities and how well technologies 

are integrated across the various activities 

• Percentage of design reuse 

• Project characteristics (i.e., grass roots, modernization, and 

addition) 

• Project size (small project vs. large project) 

• Contract types (reimbursable vs. lump-sum) 

• Utilization of off-shore engineering 

• Completeness of project scope definition before the detailed design 

phase 

• Use of change management practices  

• Difference among industry groups (heavy industrial, light 

industrial, buildings, and infrastructure) 

 

Although the CII Benchmarking & Metrics questionnaire collects data for 

many of these possible project characteristics or factors, the impact on 

engineering productivity performance is not yet well understood, and the small 

sample size makes it difficult to analyze comprehensively the quantitative impact 

on engineering productivity. The research of the various impacts on engineering 

productivity using a larger dataset and input from industry experts is 

recommended.     
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7.4 RESEARCH CONTRIBUTIONS 

 

The primary contribution to the construction industry from this research is   

the establishment of a standard engineering productivity measurement system. 

This system includes a common set of definitions and a list of direct and indirect 

accounts. These metrics allow an organization to determine its productivity at the 

work package level and in many cases, the discipline level. Other contributions 

are: 

 

1) Direct and indirect accounts were developed. 

2) Metric definitions for six categories consisting of many of the 

engineering disciplines were established. 

3) A web-based system for implementation of engineering productivity 

measurement has been developed and has been incorporated into the 

CII Benchmarking & Metrics system. 

4) Preliminary validation of metric definitions has been performed. 

5) Recommendations for future research were made. 
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Appendix A: Comparison of CII Benchmarking vs. PT 192 
Approaches  
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Comparison of CII Benchmarking vs. PT 192 Approaches  

 

 Increased attention has been given in recent years to developing 

engineering productivity measures. As mentioned in Chapter 3.2, Project Team 

192 (PT 192) was funded by CII to develop engineering productivity metrics. The 

team’s research approach was to compare actual design hours to predicted design 

hours based on select quantities. This is different from the direct measurement 

approach taken by the CII BM&M research. The PT 192 team and the BM&M 

Productivity Metrics team each initiated its own research for engineering 

productivity measurement in 2002. Both systems utilized quantity-based metrics 

rather than intermediate deliverables, but they have little in common beyond this. 

Since these approaches are perhaps the most rigorous to date for developing 

engineering productivity metrics, a comparison of the two is useful. 

 
Engineering productivity metrics for BM&M research were produced for 

the concrete, structural steel, electrical, piping, instrumentation, and equipment 

disciplines. The PT 192 engineering productivity measurement research produced 

indices for civil, electrical, piping, instrumentation, mechanical (equipment), 

architecture, and process disciplines (Walsh et al. 2004). These categories were 

shown in Table 3.1.  
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Table A.1 provides a summary of comparisons on different aspects of the 

PT 192 and BM&M approaches. Detailed discussion of the comparison attributes 

follows the table. 
 

Table A.1 PT 192 vs. BM&M Comparison 

Attributes PT 192 BM&M 

Level of Measurement discipline  flexible levels, generally 
below discipline 

indirect measurement 
using predictive models direct measurement Measurement 

actual discipline hours/ 
productivity basis hours 

actual work-hours/ Productivity Definition IFC quantity 
past projects + current 
projects 

current and future 
projects Data Collection 

Types of Metrics relative  absolute  

Accuracy likely less  potentially better  

Consistency likely weaker  potentially better  

relatively easy (off-the-
shelf) Ease of Implementation relatively difficult more difficult (custom-
tailored) 

Level II through IV 
when data available possible at the discipline 

and project level Trend Analysis 
Level I when developed 

Future Utility limited  flexible 

Individual Project 
Benchmarking 

Individual and Groups of 
Projects Groups of Projects 

 

Level of Measurement: Comparison of the levels of measurement offered 

by the two approaches reveals that PT 192 approach can produce its productivity 
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index at only discipline level (Walsh et al. 2004) while the BM&M approach can 

measure and compare engineering productivity at various levels from Level IV 

(element level) to Level II (discipline or major category level). The BM&M 

approach can measure productivity to Level II at present, but has the potential to 

extend to Level I in the future. In brief, the BM&M approach provides more 

detailed levels of comparison of engineering productivity.  Figure A.1 provides 

an illustration of level of measurement for the two teams. 

 

Element Level (Level IV)

Sub-Category Level (Level III)

 (Level II)
Discipline Level

Major Category Level

Project 
Level

Benchmarking 
Approach

PT 192 
Approach

Future Work

(Level I)

 
Figure A.1 Level of Measurement for the Two Teams 
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Measurement and Productivity Definition: Considering measurement 

methodologies, Figure A.2 provides a graphical illustration of the two teams’ 

different methodologies. The PT 192 methodology can be classified as an indirect 

measurement system where the team collected numerous designed quantities and 

overall discipline engineering work-hours for use in regression models. After the 

development of regression models for predicting total discipline work-hours 

(basis-hours) for selected design quantity variables, a productivity index for each 

discipline was calculated as a ratio between actual discipline work-hours and the 

predicted work-hours from the regression model for each discipline (Walsh et al. 

2004). In contrast, the Benchmarking (direct measurement) approach measures 

direct engineering work-hours and IFC design component quantities at the same 

level, which enables the direct measurement of engineering productivity. Figure 

A.2 illustrates the two different approaches for the civil discipline example for PT 

192 and the concrete category for Benchmarking. 
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CCoommppoonneenntt ppeerr IIFFCC  DDrraawwiinngg  

Wk-Hrs

CCYY  

BBeenncchhmmaarrkkiinngg  

SSllaabbss 
((22))  

FFoouunnddaattiioonnss  
((33))  

CCoonnccrreettee 
SSttrruuccttuurree  

CCoonnccrreettee CCaatteeggoorryy  
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CCYY 

Wk-Hrs
CCYY  

            PPTT  119922  
CCiivviill  DDiisscciipplliinnee  

CCoonnccrreettee  

SStteeeell  

RReeggrreessssiioonn 
MMooddeell  

NNoo..  ooff  DDeeeepp  
FFoouunnddaattiioonn

BBuuiillddiinngg 
AArreeaa  ((SS..FF))  

WWoorrkk--HHoouurrss 
Basis Hours

 
Figure A.2 PT 192 and Benchmarking Approaches 
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Data Collection: The PT 192 and BM&M teams approached data 

collection quite differently. PT 192 collected its project data mostly from past 

projects, primarily due to its short data collection time frame. The BM&M data 

collection effort instead focused on only current projects and future projects 

because it was difficult to collect engineering productivity data from past projects 

due to the unavailability of data using the standard definitions promulgated by the 

team.  

 

Types of Metrics: The metrics from PT 192 can be classified as relative 

metrics, but the metrics for BM&M can be classified as absolute metrics. Since 

the PT 192 metrics are a ratio of actual discipline work-hours and predicted 

discipline work-hours, the calculated PI is a relative metric. BM&M engineering 

productivity is measured in actual engineering work-hours per IFC quantity 

designed, so it is not a relative metric, but an absolute one.  
 

Accuracy: Since engineering productivity is a performance metric, it must 

be emphasized that it requires a certain level of accuracy. Regarding accuracy of 

the PT 192 metrics, many concerns are raised due to the regression models for 

prediction of productivity. It is of paramount importance to assess the accuracy of 

the predicted basis hours since they act as “the industry norms” for producing the 

PT 192 Productivity Indices. As described by the model development 

documentation, the team included non-significant variables, in some cases, and 
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may have failed to remove highly correlated variables that cause collinearity 

(Kelly 2004a). These variables were not removed for conceptual reasons (Walsh 

et al. 2004). The inclusion of insignificant variables also contributes to the 

inaccuracy of the predictions of basis hours. In addition, the team may have 

eliminated significant negative coefficient variables from the multiple regression 

models for conceptual reasons, and this could lessen the ability to maximize the 

predictability of the basis hour forecasts (Kelly 2004a; Kelly 2004b). The PT 192 

metrics therefore may not offer an appropriate level of accuracy for a productivity 

index, due to the relatively large standard error of the estimate (Walsh et al. 2004) 

from the prediction model and reasons cited above. The BM&M engineering 

productivity does not include any predicted values for calculating its engineering 

productivity and can provide more accurate comparisons against the industry 

norms. The possibility of measurement error for engineering productivity data 

collection could theoretically produce inaccuracy as in any measurement survey. 
 

Consistency: The consistency of the PT 192 Productivity Index as a result 

may be weaker than that of BM&M because the PT 192 index includes a basis 

hour from the prediction model that includes the large standard of errors, which 

are ignored when calculating its PI (Productivity Index), while the BM&M 

approach does not include any predicted error to produce its engineering 

productivity.  Values for its numerator and denominator are actual project data 

which may have measurement errors however, if participants do not report 

according to the standard definitions. This can be a problem, however, since it is 
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uncertain how successful companies will be at separating directs and indirects for 

reporting at the design component level. 

 

Ease of Implementation: The PT 192 “off-the-shelf” approach is 

relatively easier than the BM&M approach. The “off-the-shelf” approach uses 

“basis hours” equations developed from the PT 192 data set to measure 

productivity and establish baselines (CII 2004). Implementation using the PT-192 

“custom-tailored” approach is likely to be more difficult than that of the BM&M 

approach since an organization should repeat the research process of PT 192, 

including the prediction model development. The only benefit for this approach is 

that the compared dataset can be more homogeneous than that of the “off-the-

shelf” approach. The “custom-tailored” approach is that users develop their own 

basis hour functions based on data collected from their own projects (CII 2004).   

 

Implementation of the BM&M approach can be relatively difficult during 

the early phase of engineering productivity benchmarking implementation. 

Companies must attend a CII BM&M productivity training session and provide 

their project data based upon the CII common definitions and standard categories. 

Once the tracking system is in place however, the application of continuous 

benchmarking activities for engineering productivity is manageable, and leads to 

quick comparisons against the BM&M database. 
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Trend Analysis: Trend analyses are possible for both PT 192 and BM&M 

approaches, but a big difference exists between the two approaches. According to 

PT 192 literature, trend analysis for its productivity indices is possible at the 

discipline level and project level (Walsh et al. 2004). The BM&M approach can 

produce trend analysis at various levels of metrics such as Level II, Level III, and 

Level IV. Assuming continuous data collection using the BM&M approach, trend 

analysis of engineering productivity is even possible for different project 

characteristics. Trend analysis for Level I metric is possible with further 

development of Level I metric. For these reasons, the BM&M approach can 

provide more flexible trend analysis of engineering productivity than heretofore 

available.  

  

Future Utility: The BM&M engineering productivity can be easily 

converted into project costs derived from the CII industry norms. This process is 

shown in Figure A.3. The system can be utilized as checking for the detailed 

estimation and reviewing bidding packages, not for actual estimation however.  
 

2) Total Design Work-Hours =

1) Engineering Productivity = Actual Work-Hours
IFC Quantity Designed

X Total IFC Quantities

Actual Work-Hours
IFC Quantity Designed

X Total IFC Quantities∑ ( )

3) Direct Design Cost = Total Design Work-Hours x Avg. Wages per Hours

4) Project Cost = Direct Design Cost + Direct Design Cost  x Indirect Ratio
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1) Engineering Productivity = Actual Work-Hours
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X Total IFC Quantities

Actual Work-Hours
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3) Direct Design Cost = Total Design Work-Hours x Avg. Wages per Hours

4) Project Cost = Direct Design Cost + Direct Design Cost  x Indirect Ratio

2) Total Design Work-Hours =
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IFC Quantity Designed

X Total IFC Quantities1) Engineering Productivity = Actual Work-Hours
IFC Quantity Designed

X Total IFC Quantities

Actual Work-Hours
IFC Quantity Designed

X Total IFC Quantities∑ ( )

3) Direct Design Cost = Total Design Work-Hours x Avg. Wages per Hours

4) Project Cost = Direct Design Cost + Direct Design Cost  x Indirect Ratio

Figure A.3. Example for Project Cost Conversion 
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Benchmarking: Finally, the PT 192 approach is not applicable for 

individual project benchmarking, and the BM&M approach is more suitable for 

individual project benchmarking and even for company-level benchmarking.  

 

As a result of the comparisons discussed in this section, the author 

concluded that the usage of PT 192 models to measure engineering productivity 

was unsuitable for individual project-level benchmarking, and the BM&M model 

offers a better solution. 
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Appendix B: CII Benchmarking & Metrics Questionnaire 

Contractor Large Project Questionnaire version 8.0 
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Contractor Questionnaire version 8.0 
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Contractor Questionnaire Version 8.0
 

1. General Information Form 
Your Company Name: ____________________________________ 
Project ID: _____________________________________________ 
Please provide the Name that you will use to refer to this Project: _________________
Project Location: Domestic (US States or Canadian Territories) __________________ 
Project Location: International (Country) ____________________________________ 
Contact Person: (Name of knowledgeable person) _____________________________ 
Contact's Phone: ___________________________________ 
Contact's Fax: _____________________________________ 
Contact's E-mail Address: ____________________________ 
Is the owner of this project Public sector owner◘ Private sector owner ◘ 

 

1.1. Project Description 
 

Principle Type of Project: 

Choose a Project Type which best describes the project from the categories below. If 
the project is a mixture of two or more of those listed, select the principle type. If the 
project type does not appear in the list, select other under the appropriate industry 
group and specify the project type. 

Heavy Industrial Light Industrial 

Chemical Manufacturing  Automotive Manufacturing  
Electrical (Generating)  Consumer Products Manufacturing  
Environmental  Foods  
Metals Refining/Processing  Microelectronics Manufacturing  
Mining  Office Products Manufacturing  
Natural Gas Processing  Pharmaceutical Manufacturing  
Oil Exploration/Production  Pharmaceutical Labs  
Oil Refining  Clean Room (Hi-Tech)  
Pulp and Paper  Other Light Industrial  
Pipeline   
Gas Distribution    
Other Heavy Industrial    
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Buildings Infrastructure 
Communications Center  Airport  
Dormitory/Hotel/Housing/Residential  Electrical Distribution  
Low rise Office (≤3 floors)   Flood Control  
High rise Office (>3 floors)   Highway  
Hospital  Marine Facilities  
Laboratory  Navigation  
Maintenance Facilities   Rail  
Parking Garage   Tunneling  
Physical Fitness Center   Water/Wastewater  
Restaurant/Nightclub   Telecom, Wide Area Network   
Retail Building   Other Infrastructure   
School    
Warehouse    
Prison    
Movie Theatre     
Courthouse    
Embassy    
Other Buildings   

If other, please describe: _____________________________ 

 

1.2. Project Nature  

From the list below select the category that best describes the nature of this project. If 
your project is a combination of these natures, select the category that you would like 
your project to be benchmarked against. Please see the glossary for definitions. 

The Project Nature was:   Grass Roots 
 Modernization 
 Addition 
 Other Project Nature (Please describe):  
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1.3. Project Drivers 

a. Project Drivers 

Select the primary driver influencing the execution of this project. Assume safety is a 
given for all projects. 

The primary driver was:  Cost 
 Schedule 
 Meeting Product Specifications 
 Production Capacity  
 Other (Please describe): 
 No primary driver  

b. Turnarounds/Shutdowns/Outages 

Construction performance (cost, schedule and quality) during project turnarounds, 
shutdowns, and outages may be impacted by schedule demands of the turnaround. These 
turnarounds may be scheduled or unscheduled. Please complete the blocks below to 
indicate the percentage of construction work completed during turnaround.  

1. Percent construction during scheduled turnaround:          % 
2. Percent construction during unscheduled turnaround:    % 
3. Percent construction during non-turnaround:                   % 

          Note: the percentages should add up to 100 % 
 

c. Percent Modularization  
Choose a percentage value that best describes the level of modularization (offsite 
construction) used. This value should be determined as a ratio of the cost of all modules 
divided by total installed cost.  
 

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
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1.4. Typical Project 
Projects submitted for benchmarking should be representative of the typical project that 
you execute, i.e., not impacted by extraordinary factors that might influence 
performance or practice use metrics. If the project is not representative, it can still be 
submitted to be scored, however, please let us know by checking the appropriate box 
below. 

 
◘ Typical    ◘ Not Typical  
If project is not typical, please provide reason: 

                                                                                                                                              . 
 
 
     

1.5. PIP Implementation Questions for Heavy Industrial Projects 
 

 Criteria (Heavy Industry Project only) 
Strongly
Disagree 

Disagree Neutral Agree Strongly 
Agree 

NA / 
UNK 

  0 1 2 3 4  

A The project was executed with internal owner 
engineering standards and specifications. ◘ ◘ ◘ ◘ ◘ ◘ 

B The project was executed with contractor 
engineering standards and specifications. ◘ ◘ ◘ ◘ ◘ ◘ 

C 
The project was executed using industry 
consortia engineering practices for standards 
and specifications. 

◘ ◘ ◘ ◘ ◘ ◘ 

D 
The project was executed using Process 
Industry Practices (PIP) standards and 
specifications. 

◘ ◘ ◘ ◘ ◘ ◘ 
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1.6. Project Delivery System  

Please choose the project delivery system from those listed below that most closely 
characterizes the delivery system used for your project. If more than one delivery system 
was used, select the primary system.  

Delivery System Description 

 Traditional Design-
Bid-Build 

Serial sequence of design and construction phases; Owner 
contracts separately with designer and constructor.  

 
Design-Build (or EPC) Overlapped sequence of design and construction phase; 

procurement normally begins during design; owner contracts 
with Design-Build (or EPC) contractor. 

 

CM @ Risk Overlapped sequence of design and construction phases; 
procurement normally begins during design; owner contracts 
separately with designer and CM @ Risk (constructor). CM 
holds the contracts. 

 

Multiple Design-Build Overlapped sequence of design and construction phases; 
procurement normally begins during design; owner contracts 
with two Design-Build (or EPC) contractors, one for process 
and one for facilities. 

 

Parallel Primes Overlapped sequence of design and construction phases; 
Procurement normally begins during design. Owner 
contracts separately with designer and multiple prime 
constructors. 

 

Did you use a Construction Manager not @Risk in conjunction with the selected delivery 
system? 
Yes________________        

No________________           

1.7. Project Complexity  

Choose a value that best describes the level of complexity for this project as compared to 
other projects from all the companies within the same industry sector. For example, if this 
is a heavy industrial project, how does it compare in complexity to other heavy industrial 
projects? Use the definitions below as general guidelines. 

• Low - Characterized by the use of no unproven technology, small number of process 
steps, small facility size or process capacity, previously used facility configuration or 
geometry, proven construction methods, etc. 

• High- Characterized by the use of unproven technology, an unusually large number 
of process steps, large facility size or process capacity, new facility configuration or 
geometry, new construction methods, etc. 

Low Average High 

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
1 2 3 4 5 6 7 8 9 10 
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1.8. Project Scope 
 
Please provide a brief description of the project scope (what is actually being designed / 
constructed), limit your response to 200 words. 
 
…............................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
…............................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
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1.9. Project Participation 
Please provide information about the functions performed your company.  

Indicate the function(s) your company performed and the approximate percent of that 
function. For each function, indicate the principle contract type in use at the completion 
of the work. Also, indicate if the contract contained incentives.  

Project participant information will be collected over a series of several pages.  

Project Functions: Identify the Function performed by each project participant. 
Functions include: 

• Pre-Project Planning  
• Design  
• Procurement - Equipment  
• Procurement - Bulks  
• Construction Support 

• Demolition/Abatement 
• General/Prime Contracting  
• Project Management 
• Construction Management 
• Startup Support 

Principle Type of Contract for each company: Unit price refers to a price for in place 
units of work and does not refer to hourly charges for skill categories or time card mark-
ups. Hourly rate payment schedules should be categorized as cost reimbursable. The 
contract type for your own company's contribution will be recorded as In House.  

• Cost Reimbursable/Target Price 
• Guaranteed Maximum Price 
• In House 
• Lump Sum 
• Unit Price 

 
Contract Incentives: Please indicate whether cost, schedule, safety, and quality
incentives were used. Incentives may be positive (a financial incentive for attaining an 
objective), negative (a financial disincentive for failure to achieve an objective), or both. 
Indicate "none" if no incentives were used for a category. 
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Project Participants Screen 1 – Identification of Participants 

 
Is the Owner of this project a CII member company? 

◘ Yes ◘ No  
Is your company an Alliance Partner with the Owner of this project? 

◘ Yes ◘ No  
 
Project Participants Screen 2 – Input Participant Data 

 
 
Project Participants Screen 3 – Final Printable Results Screen 
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1.10. Union / non-union work force 
Please indicate the percentage of Union Labor employed for the following disciplines. 
 

Discipline Percentage Union Work Force 

Concrete 
                    % 
◘ NA  ◘Unknown 

Structural Steel 
                    % 
◘ NA  ◘Unknown 

Electrical 
                    % 
◘ NA  ◘Unknown 

Piping 
                    % 
◘ NA  ◘Unknown 

Instrumentation 
                    % 
◘ NA  ◘Unknown 

Equipment 
                    % 
◘ NA  ◘Unknown 

Insulation 
                    % 
◘ NA  ◘Unknown 
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2. Performance 

2.1. Budgeted and Actual Project Costs by Phase 
 

Please indicate the Budgeted (Baseline) and Actual Project Costs by phase:  

1. Only enter data for your scope of work.  
2. Budget amounts should include contingency and correspond to the estimate at 

time of contract award. This is the original baseline budget, and should not be 
updated to include any changes. Change data are collected in a later section. 
Metrics definitions specifically address changes as appropriate. 

3. Click on the project phase links below for phase definitions and typical cost 
elements.  

4. If this project did not include a particular phase, please select N/A. 
5. The total project budget amount should be the planned expenses of all phases 

performed by your company, including amounts for in-house salaries, overhead, 
travel, excluding the cost of land. 

6. The total actual project cost should be the actual project costs for phases 
performed by your company, including amounts expended for in-house salaries, 
overhead, travel, excluding the cost of land.  

7. If you know total contract costs but have incomplete phase information, you 
may enter as much phase information as you know and override the automatic 
totaling function by manually filling in the total project cost. As long as you don't 
click back into a phase field, your total will be accepted and recorded. 

8. Enter cost in U.S. Dollars, if currency conversion is required; use the 
exchange rate at the midpoint of the project. 

Project Phase 
Baseline Budget 

(Including 
Contingency) 

Amount of 
Contingency  

in Budget 
Actual Phase Cost 

   
Pre-Project Planning ◘ NA  ◘Unknown ◘NA  ◘Unknown ◘NA  ◘Unknown 

   
Detail Design ◘ NA  ◘Unknown ◘NA  ◘Unknown ◘NA  ◘Unknown 

   
Procurement ◘ NA  ◘Unknown ◘NA  ◘Unknown ◘NA  ◘Unknown 

   
Demolition/Abatement ◘ NA  ◘Unknown ◘NA  ◘Unknown ◘NA  ◘Unknown 

   
Construction ◘ NA  ◘Unknown ◘NA  ◘Unknown ◘NA  ◘Unknown 

   
Startup ◘ NA  ◘Unknown ◘NA  ◘Unknown ◘NA  ◘Unknown 
Total Project    
If you track the cost of construction management, please provide it. $______________ 
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Actual Total Cost of Major Equipment
 
The purpose of this question is to determine the extent to which the overall project cost 
is driven by the purchase of major equipment. Please see the Equipment Reference Table 
provided below. Record the total purchase cost of major equipment for this project. 
Exclude costs for field services, bulk construction equipment (such as valves, bus duct 
etc.) and off-the-shelf equipment. 
 
$______________    ◘ N/A    ◘ Unknown 
 

Equipment Reference Table 
Examples of  
Major Equipment 

Kinds of Equipment Covered 
 

HVAC Systems   Prefabricated air supply houses 
Columns and Pressure Vessels  Towers, columns, reactors, unfired pressure vessels, bulk 

storage spheres, and unfired kilns; includes internals such 
as trays and packing. 

Tanks Atmospheric storage tanks, bins, hoppers, and silos. 
Exchangers 
 

Heat transfer equipment: tubular exchangers, condensers, 
evaporators, reboilers, coolers (including fin-fan coolers 
and coolingtowers). 

Direct-fired Equipment 
 

Fired heaters, furnaces, boilers, kilns, and dryers, including 
associated equipment such as super-heaters, air preheaters, 
burners, stacks, flues, draft fans and drivers, etc. 

Pumps  All types of liquid pumps and drivers. 
Vacuum Equipment Mechanical vacuum pumps, ejectors, and other vacuum 

producing apparatus and integral auxiliary equipment. 
Motors 600V and above 
Electricity Generation and 
Transmission 

Major electrical items (e.g., unit substations, transformers, 
switch gear, motor-control centers, batteries, battery 
chargers, turbines, diesel generators). 

Materials-Handling Equipment 
 

Conveyers, cranes, hoists, chutes, feeders, scales and other 
weighing devices, packaging machines, and lift trucks. 

Package Units 
 

Integrated systems bought as a package (e.g., air dryers, air 
compressors, refrigeration systems, ion exchange systems, 
etc.). 

Special Processing Equipment 
 

Agitators, crushers, pulverizers, blenders, separators, 
cyclones, filters, centrifuges, mixers, dryers, extruders, 
fermenters, reactors, pulp and paper, and other such 
machinery with their drivers. 
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2.2. Planned and Actual Project Schedule 
 

Please indicate your company's Planned Baseline and Actual Project Schedule by phase:  
1. The dates for the planned schedule should be those in effect at the estimate time of 

contract award. If you cannot provide an exact day for either the planned or actual, 
estimate to the nearest week.   

2. Click on the project phase links below for a description of starting and stopping 
points for each phase.  

3. If this project did not involve a particular phase please select N/A. 
4. If you have incomplete phase information, please enter as much phase 

information as you know. You must enter overall project start and stop dates, 
however. They will not be calculated from phase data. 

 
% Design Complete 

 
What percentage of detailed design workhours was completed prior 
to total project budget authorization?  

 
            % 
◘ Unknown 

What percentage of detailed design workhours was completed prior 
to start of the construction phase?  

 
            % 
◘ Unknown 

 

Baseline Schedule Actual Schedule 
Project Phase Start 

mm/dd/yyyy 
Stop 

mm/dd/yyyy 
Start 

mm/dd/yyyy 
Stop 

mm/dd/yyyy 
    Pre-Project Planning 
◘NA  ◘Unknown ◘NA  ◘Unknown  ◘NA  ◘Unknown ◘NA  ◘Unknown  

    Detail Design 
◘NA  ◘Unknown ◘NA  ◘Unknown  ◘NA  ◘Unknown ◘NA  ◘Unknown 

    Procurement 
◘NA  ◘Unknown ◘NA  ◘Unknown  ◘NA  ◘Unknown ◘NA  ◘Unknown 

    Demolition/Abatement 
◘NA  ◘Unknown ◘NA  ◘Unknown  ◘NA  ◘Unknown ◘NA  ◘Unknown 

    Construction 
◘NA  ◘Unknown ◘NA  ◘Unknown  ◘NA  ◘Unknown ◘NA  ◘Unknown 

    Startup 
◘NA  ◘Unknown ◘NA  ◘Unknown  ◘NA  ◘Unknown ◘NA  ◘Unknown 

    Your Project Start and 
Stop dates ◘Unknown ◘Unknown ◘Unknown ◘Unknown 
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2.3. Project Development Changes and Scope Changes 
 

Please record the changes to your project by phase in the table provided below. For each 
phase indicate the total number, the net cost impact, and the net schedule impact resulting 
from project development changes and scope changes. Either the owner or contractor 
may initiate changes.  

Project Development Changes include those changes required to execute the original 
scope of work or obtain original process basis.  

Scope Changes include changes in the base scope of work or process basis.  

1. Changes should be included in the phase in which they were initiated. Click on 
the project phase links below for assistance in classifying the changes by project 
phase. If you cannot provide the requested change information by phase but 
can provide the information for the total project, please fill in the totals field 
manually, thereby overriding the totaling function. As long as you don’t click 
back into a phase field, your total will be accepted and recoded.   

2. Following the cost and schedule impacts, indicate whether the impact was an 
increase (Inc.) or decrease (Dec.). If no change orders were granted during a 
phase, write "0" in the "Total Number" columns.   
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2.4. Field Rework 
 
Did you track field rework for this project?  
 
 ◘Yes     ◘No    ◘Unknown  
 

1. Please indicate the Direct Cost and Schedule Impact of Field Rework for each 
source shown below. The direct cost of field rework relates to all costs needed 
to perform the rework itself.  

2. If there was no direct cost of field rework for a category, please enter “0”. 
3. If you cannot provide the requested information by source, but can provide 

the total for the project, please click unknown in the source fields and enter the 
project total. This will override the totaling function. As long as you don’t click 
back into a phase field, your total will be accepted and recorded. 

. 

Source of Field Rework Direct Cost  
of Field Rework 

Schedule Impact of 
Field Rework  

(weeks) 

 
Design  

$       
◘Unknown 

      
◘Unknown 

 
Vendor  

$       
◘Unknown 

      
◘Unknown 

Owner  
$       
◘Unknown 

      
◘Unknown 

Contractor  
$       
◘Unknown 

      
◘Unknown 

Other 
$       
◘Unknown 

      
◘Unknown 

Total $             
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3.  Practices 

3.1. Pre Project Planning  
Pre-Project Planning involves the process of developing sufficient strategic information 
that owners can address risk and decide to commit resources to maximize the chance for 
a successful project. Pre-project planning includes putting together the project team, 
selecting technology, selecting project site, developing project scope, and developing 
project alternatives. Pre-project planning is often perceived as synonymous with front-
end loading, front-end planning, feasibility analysis, and conceptual planning.  
Your Pre-Project Planning score is based on your response to the questions below (4 for 
owners or 6 for contractors) and to select questions from the PDRI (Project Definition 
Rating Index) which follows.  If you use the PDRI as part of your project planning 
process, please respond to the following questions and then complete the PDRI (either 
Industrial, Building, or both) which follow.  If you do not desire to use the full PDRI(s), 
you may obtain your Pre-Project Planning score by completing the questions below (4 for 
owners or 6 for contractors) and completing only the PDRI questions that are highlighted 
by italics.  You will obtain the same Pre-Project Planning score that you would have 
received if you completed the full PDRI.  Those completing the full PDRI(s) will also 
receive their score(s) on the 0 to 1000 scale used for PDRI assessments. 
 
Contractor Question Only 
 
Select the response below that best describes your company’s participation in the pre-
project planning effort. 
Did your company participate in the pre-project planning effort? 

Yes, as the pre-project planner.  ◘ 
Yes, as a consultant.  ◘ 
No, my company did not participate in the preplanning effort. Please skip 
following Pre-Project Planning questions and continue with the next best       
practice (Team Building).  

◘ 

Contractor Question Only 
 
Did your company formally assess the quality of the pre-project planning effort?  
      
Yes ◘ No ◘  

 
Owner and Contractor Questions 
 
Select a number below that best describes the composition of the pre-project planning 
team using the scale and definitions provided. 

 
Poor Average Excellent 

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
1 2 3 4 5 6 7 8 9 10 
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1. Excellent – Highly skilled and experienced members with authority; 
representation from business, project management, technical disciplines, and 
operations; able to respond to both business and project objectives.  

2. Poor – Members with a poor combination of skill or experience that lack 
authority; insufficient representation from business, project management, 
technical disciplines, and operations; unable to respond to both business and 
project objectives. 

Select a number below that best describes the technology evaluation performed for 
this project during Pre-Project Planning. 

Poor Average Excellent 

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
1 2 3 4 5 6 7 8 9 10 

1. Excellent – Thorough and detailed identification and analysis of existing and 
emerging technologies for feasibility and compatibility with corporate business 
and operations objectives. Scale-up problems and hands-on process experience 
were considered.  

2. Poor – Poor or no technology evaluation. 

Select a number below that best describes the evaluation of alternate siting locations. 

Poor Average Excellent 

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
1 2 3 4 5 6 7 8 9 10 

1. Excellent – Thorough and detailed assessment of relative strengths and 
weaknesses of alternate locations to meet owner requirements. 

2. Poor – Poor or no evaluation of alternate siting locations. 

Select a number below that best describes the risk analysis performed for project 
alternatives. 

Poor Average Excellent 

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
1 2 3 4 5 6 7 8 9 10 

1. Excellent – Risks associated with the selected project alternatives were identified 
and analyzed. These analyses included financial/business, regulatory, project and 
operational risk categories in order to minimize the impacts of risks on project 
success.  

Poor – Poor or no risk analysis performed for project alternatives. 
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3.1.1.  Full Building PDRI 
 
Was a Front End Loading Index used to determine the quality of Pre-Project Planning for 
this project? (Includes PDRI, FEL, or an in-house developed system.)  
Yes ◘ No ◘  

Was the Project Definition Rating Index (PDRI) utilized on this project?  
Yes ◘ No ◘  

If yes, please copy your original responses to the PDRI below, if not, please fill in the 
PDRI below using existing, available information. 
Please complete the following matrix using the appropriate definition levels given 
below. Indicate how well defined each element was prior to the total project budget 
authorization by selecting the appropriate definition level. 

1. Complete definition  
2. Minor deficiencies  
3. Some deficiencies  
4. Major deficiencies  
5. Incomplete or poor definition  
6. Not Applicable  
7. Unknown  

Note: If this is an infrastructure project some of the following elements may not apply to 
your project. Please fill in "Not Applicable" to indicate if any element does not apply to 
your project. Italicized questions will be scored for your Pre-Project Planning Score 

A. Business Strategy (1) Complete <---------->Poor (5)  
A1. Building Use 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
A2. Business Justification 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
A3. Business Plan 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
A4. Economic Analysis 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
A5. Facility Requirements 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
A6. Future Expansion/Alternate 
Consideration 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

A7. Site Selection Consideration 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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A8. Project Objectives Statement 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
B. Owner Philosophies (1) Complete <---------->Poor (5) 

B1. Reliability Philosophy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B2. Maintenance Philosophy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B3. Operating Philosophy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B4. Design Philosophy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

C. Project Requirements (1) Complete <---------->Poor (5) 
C1. Value-Analysis Process 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
C2. Project Design Criteria 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
C3. Evaluation of Existing Facilities 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
C4. Scope of Work Overview 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
C5. Project Schedule 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
C6. Project Cost Estimate 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
D. Site Information (1) Complete <---------->Poor (5) 

D1. Site Layout 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D2. Site Surveys 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D3. Civil/Geotechnical Information 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D4. Governing Regulatory Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D5. Environmental Assessment 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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D6. Utility Sources with Supply Conditions 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D7. Site Life Safety Considerations 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D8. Special Water and Waste Treatment 
Requirements 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

E. Building Programming (1) Complete <---------->Poor (5) 
E1. Program Statement 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
E2. Building Summary Space List 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
E3. Overall Adjacency Diagrams 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
E4. Stacking Diagrams 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
E5. Growth and Phased Development 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
E6. Circulation and Open Space Requirements 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
E7. Functional Relationship Diagrams/Room by 
Room 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

E8. Loading/Unloading/Storage Facilities 
Requirements 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

E9. Transportation Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

E10. Building Finishes 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

E11. Room Data Sheets 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

E12. Furnishings, Equipment, and Built-Ins 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

E13. Window Treatment 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F. Building/Project Design Parameters (1) Complete <---------->Poor (5) 
F1. Civil/Site Design 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
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F2. Architectural Design 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F3. Structural Design 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F4. Mechanical Design  1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F5. Electrical Design 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F6. Building Life Safety Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F7. Constructability Analysis 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F8. Technological Sophistication 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G. Equipment (1) Complete <---------->Poor (5) 
G1. Equipment List 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
G2. Equipment Location Drawings 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
G3. Equipment Utility Requirements/TD>  1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
H. Procurement Strategy (1) Complete <---------->Poor (5) 

H1. Identify Long-Lead/Critical Equip. and 
Materials 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

H2. Procurement Procedures and Plans 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

J. Deliverables (1) Complete <---------->Poor (5) 
J1. CADD/Model Requirements 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
J2. Documentation/Deliverables 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
K. Project Control (1) Complete <---------->Poor (5) 

K1. Project Quality Assurance and Control 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

K2. Project Cost Control 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 



 
 

K3. Project Schedule Control 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

K4. Risk Management 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

K5. Safety Procedures 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

L. Project Execution Plan (1) Complete <---------->Poor (5) 

L1. Project Organization 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

L2. Owner Approval Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

L3. Project Delivery Method 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

L4. Design/Construction Plan & Approach 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

L5. Substantial Completion Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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3.1.2.  Full Industrial PDRI 
 
Was a Front End Loading Index used to determine the quality of Pre-Project Planning for 
this project? (Includes PDRI, FEL, or an in-house developed system.)  
Yes ◘ No ◘  

Was the Project Definition Rating Index (PDRI) utilized on this project?  
Yes ◘ No ◘  

Please complete the following matrix using the appropriate definition levels given 
below. Indicate how well defined each element was prior to the total project budget 
authorization by selecting the appropriate definition level. 

1. Complete definition  
2. Minor deficiencies  
3. Some deficiencies  
4. Major deficiencies  
5. Incomplete or poor definition  
6. Not Applicable  
7. Unknown  

Note: If this is an infrastructure project some of the following elements may not apply to 
your project. Please fill in "Not Applicable" to indicate if any element does not apply to 
your project. Italicized questions will be scored for your Pre-Project Planning Score 
 

Industrial PDRI Definition Level at Authorization 

A. Manufacturing Objectives Criteria   (1) Complete <---------->Poor (5) 

A1. Reliability Philosophy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

A2. Maintenance Philosophy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

A3. Operating Philosophy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B. Business Objectives (1) Complete <---------->Poor (5) 

B1. Products 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B2. Market Strategy  1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B3. Project Strategy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B4. Affordability/Feasibility 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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B5. Capacities 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B6. Future Expansion Considerations 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B7. Expected Project Life Cycle 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

B8. Social Issues 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

C. Basic Data Research & Development (1) Complete <---------->Poor (5) 

C1. Technology 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

C2. Processes 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D. Project Scope (1) Complete <---------->Poor (5) 

D1. Project Objectives Statement  Yes No NA UNK
◘ ◘ ◘ ◘  

D2. Project Design Criteria 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D3. Site Characteristics Available vs. 
Required  

Yes No NA UNK
◘ ◘ ◘ ◘  

D4. Dismantling and Demolition 
Requirements  

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D5. Lead/Discipline Scope of Work 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

D6. Project Schedule  Yes No NA UNK
◘ ◘ ◘ ◘  

E. Value Engineering (1) Complete <---------->Poor (5) 

E1. Process Simplification  Yes No NA UNK
◘ ◘ ◘ ◘  

E2. Design & Material Alternatives  Yes No NA UNK
◘ ◘ ◘ ◘  

E3. Design for Constructability Analysis 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F. Site Information (1) Complete <---------->Poor (5) 
F1. Site Location Yes No NA UNK

◘ ◘ ◘ ◘  
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F2. Surveys & Soil Tests 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F3. Environmental Assessment 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F4. Permit Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F5. Utility Sources with Supply 
Conditions 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

F6. Fire Protection & Safety 
Considerations 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G. Process/Mechanical  (1) Complete <---------->Poor (5) 

G1. Process Flow Sheets 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G2. Heat & Material Balances 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G3. Piping & Instrumentation Diagrams 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G4. Process Safety Management 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G5. Utility Flow Diagrams 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G6. Specifications 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G7. Piping System Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G8. Plot Plan 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G9. Mechanical Equipment List 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G10. Line List 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G11. Tie-In List 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

G12. Piping Specialty Items List 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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G13. Instrument Index 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

H. Equipment Scope (1) Complete <---------->Poor (5) 
H1. Equipment Status 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
H2. Equipment Location Drawings 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
H3. Equipment Utility Requirements 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
I. Civil, Structural, & Architectural (1) Complete <---------->Poor (5) 

I1. Civil/Structural Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

I2. Architectural Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

J. Infrastructure (1) Complete <---------->Poor (5) 

Water Treatment Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

J2. Loading/Unloading/Storage Facilities 
Requirements 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

J3. Transportation Requirements  Yes No NA UNK
◘ ◘ ◘ ◘  

K. Instrument & Electrical (1) Complete <---------->Poor (5) 

K1. Control Philosophy 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

K2. Logic Diagrams  Yes No NA UNK
◘ ◘ ◘ ◘  

K3. Electrical Area Classifications 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

K4. Substation Requirements Power 
Sources Identification 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

K5. Electric Single Line Diagrams 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

K6. Instrument & Electrical Specifications 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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L. Procurement Strategy (1) Complete <---------->Poor (5) 
L1. Identify Long Lead/Critical Equip. & 1 2 3 4 5 NA UNK 
Materials ◘ ◘ ◘ ◘ ◘ ◘ ◘  
L2. Procurement Procedures and Plans 1 2 3 4 5 NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘  
L3. Procurement Responsibility Matrix  Yes No NA UNK

◘ ◘ ◘ ◘  
M. Deliverables (1) Complete <---------->Poor (5) 

M1. CADD/Model Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

M2. Deliverables Defined 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

M3. Distribution Matrix  Yes No NA UNK
◘ ◘ ◘ ◘  

N. Project Control (1) Complete <---------->Poor (5) 

N1. Project Control Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

N2. Project Accounting Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

N3. Risk Analysis  Yes No NA UNK
◘ ◘ ◘ ◘  

P. Project Execution Plan (1) Complete <---------->Poor (5) 

P1. Owner Approval Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

P2. Engineering/Construction Plan & 
Approach 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

P3. Shut Down/Turn-Around 
Requirements  

Yes No NA UNK
◘ ◘ ◘ ◘  

P4. Pre-Commissioned Turnover 
Sequence Requirements 

1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

P5. Startup Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

P6. Training Requirements 1 2 3 4 5 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 



 
 

 

3.2. Team Building  
 
Team Building is a project-focused process that builds and develops shared goals, 
interdependence, trust and commitment, and accountability among team members and 
that seeks to improve team members problem-solving skills. 
Unless otherwise indicated, for each question select the single most appropriate response. 
 
1. To what extent was a formal team building process used for this project? 
 

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
2. To what extent did upper management support the formal team building process (e.g. 

funding, training, etc.)? 
 

Not at all  Moderately  Extensively No formal team 
building used  

0 1 2 3 4 NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘ 
 
3. What was the level of involvement in the team building process of a facilitator who 

was external to this project? 
 

None  Moderate  Extensive   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
4. To what extent were objectives of the team building process documented and clearly 

defined? 
 

Very poorly 
or not at all  Moderately  Very well   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
5. To what extent were objectives of the team building process achieved? 
 

Not at all  Moderately  Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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6. To what extent were new team members integrated into team building activities? 
  

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
7. For each project phase, please indicate the extent that your company was involved in 

the team building process using a scale from 0 to 4, with 0 indicating not at all and 4 
indicating extensively.  

 
        Not at all                                  Extensively 
• Pre-Project Planning 0 1 2 3 4 NA UNK 
 ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
• Design 0 1 2 3 4 NA UNK 
 ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
• Procurement 0 1 2 3 4 NA UNK 
 ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
• Construction 0 1 2 3 4 NA UNK 
 ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
• Startup 0 1 2 3 4 NA UNK 
 ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
 
8. Please indicate the parties involved in the team building process? (Check all that 

apply) 
 
◘Owner ◘Major Suppliers 
◘Engineer(s) & Designer(s) ◘ Subcontractor(s) 
◘Constructor(s) ◘Construction Manager 
◘ Regulator(s) ◘Other. If other, please specify: 
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3.3. Alignment during Pre-Project Planning 
 
Alignment is the condition where appropriate project participants are working within 
acceptable tolerances to develop and meet a uniformly defined and understood set of 
project objectives. 
 
For each question, select the single most appropriate response as it pertains to the pre-
project planning phase of the project. 
 
1. How appropriately were stakeholders (individuals and organizations who are involved 

in or may be affected by project activities) represented on the Project Team (e.g., 
operations, business management, construction, security, etc.)? 

 
Poorly  Moderately  Very well   

0 1 2 3 4 NA / UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
 
2. How effective was project leadership in aligning team members to meet project 

objectives? 
 

Not at all  Moderately  Yes, very well   
0 1 2 3 4 NA / UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
 
3. How well were project objectives defined and prioritized (cost, quality, security & 

schedule)? 
 

Poorly  Moderately  Very well   
0 1 2 3 4 NA / UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
 
4. How effective was the communication within the team? 
 

Not at all  Moderately  Very   
0 1 2 3 4 NA / UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
 
5. How effective was the communication with stakeholders? 
 

Not at all  Moderately  Very   
0 1 2 3 4 NA / UNK 
◘ ◘ ◘ ◘ ◘ ◘ 
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6. How effective were team meetings in achieving project objectives? 
 

Not at all  Moderately  Very 
productive   

0 1 2 3 4 NA / UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
 
7. To what extent was a clear reward & recognition system implemented to meet 

identified project objectives? 
 

Not at all  Moderately  Very well   
0 1 2 3 4 NA / UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
 
8. How effectively were planning tools (e.g., aide-memoirs, analysis techniques, 

checklists, simulations, software programs, and work flow diagrams used to plan, 
develop, control and manage projects) used to promote alignment?  

 
Not at all  Moderately  Very well   

0 1 2 3 4 NA / UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
 

 185



 
 

3.4. Constructability  
 
Constructability is the effective and timely integration of construction knowledge into the 
conceptual planning, design, construction and field operations of a project to achieve the 
overall project objectives with the best possible time and accuracy, at the most cost-
effective levels. 
For each question select the single most appropriate response. 
 
1. To what extent was constructability implemented on this project? 
 

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
2. To what extent was constructability an element addressed in this project’s formal 

written execution plan? 
 

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
 3. Which of the following best describes how constructability principles were 

emphasized and communicated on this project? (Select only one) 
 
◘No effort to emphasize and communicate 
◘Minimum effort through informal means such as on-the-job training 
◘Moderate effort as a component of ongoing management training (e.g. part of 
     project management conference) 
◘Substantial effort through structured and dedicated formal constructability 
     training  
◘Not Applicable 
◘Unknown 

 
4. On what basis was a constructability coordinator assigned to this project? (Select only 

one) 
 
◘ No coordinator assigned 
◘Assigned as a part-time responsibility 
◘Assigned as a full-time responsibility 
◘Not Applicable 
◘Unknown 
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5. Which of the following best describes the constructability program documentation for 
this project? (Select only one) 

 
◘None; no documentation existed. 
◘Limited reference in any source (e.g. CII reference) 
◘Project level constructability documents exist; may be included in other 
     corporate documents 
◘Project constructability manual is available, but neither widely used nor 
     updated 
◘Project constructability manual is available, widely used and 
     periodically updated 
◘Not Applicable 
◘Unknown 

 
6. Which of the following best describes the method(s) used to track lessons learned and 

saving/effects on this project due to the constructability program? (Select only one) 
 
◘No tracking was used. 
◘Ideas were conveyed via word of mouth and personal interaction; 
     limited tracking of saving/effects 
◘Some individual documentation existed; selected tracking of  
     saving/ effects 
◘System existed for capture and communication of lessons learned; 
     extensive tracking of saving/effects 
◘Not Applicable 
◘Unknown 

 
7. Please indicate the earliest time period of the first project meeting that deliberately and 

explicitly focused on constructability. Place a check below the earliest time period 
(Select only one). 

 

Pre-Project Planning Detail Design/ 
Procurement Construction 

Early Middle Late Early Middle Late Early Middle Late 
NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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3.5. Materials Management 
 
Materials management is an integrated process for planning and controlling all necessary 
efforts to make certain that the quality and quantity of materials and equipment are 
appropriately specified in a timely manner, are obtained at a reasonable cost, and are 
available when needed. The materials management systems combine and integrate the 
takeoff, vendor evaluation, purchasing, expediting, warehousing, distribution, and 
disposing of materials functions. 
Unless otherwise indicated, select the single most appropriate response for each question. 

1. To what extent did this project have a designated materials management organization that 
was integrated across project teams? 

 
Not at all    Fully   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
2. How comprehensive was the written materials management plan for this project in 

addressing elements such as project goals, responsibility, cost & schedule, and 
transportation? 

 
Not at all    Very 

Comprehensive
  

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
3. How extensively was the written materials management plan utilized throughout the life 

of the project?  
 

Not at all    Very   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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4. How adequate was the plan for addressing the effects of change orders on materials 
management? 

 
Not at all    Very   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
5. How extensively was an automated system (or integrated set of computer systems) used 

to identify, track, report, and facilitate control of project material throughout the life of 
the project? 

 
Not at all    Very   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
6. How effective was site materials management during the construction phase? 

 
Not at all    Very   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

7. How effective was the materials tracking and reporting system? 
 

Not at all    Very   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
8. How effective were purchasing plans & procedures over the life of the project? 
 

Not at all    Very   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

9. How effective were receipt and inspection procedures for critical materials and 
equipment? 

 
Not at all    Very   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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10. How adequate was the pre-qualification process for securing the appropriate suppliers of 
major equipment and materials? 

 
Not at all    Very   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
11. To what extent did the materials management plan utilize quality management practices? 
 

Not at all    Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
12. How well were QA/QC plans implemented with the suppliers of major equipment and 

materials? 
Not at all    Very   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

13. Were there other activities that critically impacted your materials management? 
 

No Yes NA UNK 
◘ ◘ ◘ ◘  

If yes, please list the activities and indicate whether the impact was positive or negative. 
 
__________________________________

Negative Positive
◘ ◘  
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3.6. Project Change Management  
 
Change Management is the process of incorporating a balanced change culture of 
recognition, planning and evaluation of project changes in an organization to effectively 
manage project changes. 
Unless otherwise indicated, select the single most appropriate response for each question. 
 

1.  To what extent was a formal documented change management process used to 
actively manage changes on this project? Please answer for each phase.  

        Not at all     Moderately        Extensively 
• Detailed Design 0 1 2 3 4 NA UNK 
 ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
• Construction 0 1 2 3 4 NA UNK 
 ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
• Startup 0 1 2 3 4 NA UNK 
 ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

                

2. How often were major changes (i.e., those that exceed a project threshold) required to 
go through a formal change justification procedure? 

 
Not at all  Sometimes  Always   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

3. Was authorization for change required before implementation?  

No  Sometimes  Always   
0 1 2 3 4 NA UNK
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◘ ◘ ◘ ◘ ◘ ◘ ◘ 

4. How timely was communication of change information to the proper disciplines and 
project participants?    

Not at all  Moderately  Very   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

                 



 
 

 5. How well did the project contract identify the primary components and procedures of    
the project change management system?         

Not at all  Moderately  Very well   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

6. To what extent were areas susceptible to change identified and evaluated for risk 
during review of the project design basis?           

Not at all  Moderately  Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

7. To what extent were changes on this project evaluated against the business drivers and 
success criteria for the project? 

Not at all  Moderately  Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

8. At what point were the criteria for change approval established and communicated to 
all project participants? Place a check below the earliest time period (Select only one). 

 

Pre-Project Planning Detail Design/ 
Procurement Construction 

Early Middle Late Early Middle Late Early Middle Late 
NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
   

9. How often were changes managed against a baseline established at authorization or 
contract award?   

Not at all  Sometimes  Always   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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10. At project close-out, how extensive was the evaluation of changes and their impact 

on the project cost and schedule performance for future use as lessons learned? 

                          
Not at all  Moderately  Very   

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

11. Did project personnel settle, authorize, and execute change orders on this project in 

a timely manner? 

Not at all   Sometimes Always   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
12. To what extent does the formal change management process establish plans for 

mitigating cost and schedule impacts? 

 

Not at all   Partially Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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3.7. Zero Accident Techniques  
 
Zero accident techniques include the site specific safety programs and implementation, 
auditing and incentive efforts to create a project environment and a level of training that 
embraces the mind set that all accidents are preventable and that zero accidents is an 
obtainable goal. 
For each question, select the single most appropriate response. 
 
1. To what extent has an overall project safety plan been implemented? 
 

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
2. To what extent was safety a priority topic at pre-construction and construction 

meetings? 
 

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
3. To what extent was pre-task planning for safety conducted by contractor foremen or 

other site managers? 
 

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
4. How often were safety toolbox meetings held? 
 

None Monthly Bi-weekly Weekly Daily NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
5. How often were safety audits performed by corporate safety personnel?  
 

Annually or 
Less frequently Quarterly Monthly Biweekly Weekly NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘ 
 
6. Which of the following best describes the time commitment of the site safety 

supervisor for this project? 
 

No site safety 
supervisor 

Part-time 
function 

Full-time 
function NA UNK 

◘ ◘ ◘ ◘ ◘ 
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7. Overall how many workers per safety person were typically on site? 
 

Over 200 151 to 200 71 to 150 21 to 70 1 to 20 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
8. What type of job-specific safety orientation was conducted for new contractor and 

subcontractor employees? 
   

None Informal Formal NA UNK 
◘ ◘ ◘ ◘ ◘ 

 
9. On average how much ongoing formal safety training did workers receive each month? 
 

None Less than 
1 hr 

1 hr but 
less than  

4 hrs 

4 hr but 
less than 

7 hrs 
Over 7 hrs NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘ 
 
10. To what extent were safety incentives used? 
 

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
11. To what extent was safety performance utilized as criterion for contractor 

/subcontractor selection? 
 

Not at all  Moderately  Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
12. How often were accidents formally investigated? 
 

Not at all  Sometimes  Always   

0 1 2 3 4 No accidents 
occurred UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘ 
 
13. How often were near-misses formally investigated? 
 

Not at all  Sometimes  Always   

0 1 2 3 4 None 
occurred UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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14. How extensively was senior company management typically involved in the 
investigation of accidents? 

 
Not at all  Moderately  Extensively   

0 1 2 3 4 No accidents 
occurred UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘ 
 
15. Were pre-employment substance abuse tests for contractor employees conducted? 
 

Never Sometimes Usually Always NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
16. Were contractor employees randomly screened for alcohol and drugs?  
 

Not at all Once a 
year or less  

Twice a 
year or 
more 

Quarterly or 
more 

Monthly or 
more NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘ 
 
17. Were substance abuse tests conducted after accidents? 
 

Never Sometimes Usually Always No accidents occurred UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
18. Were reasonable cause substance abuse tests for contractor employees conducted? 
 

Never Sometimes Usually Always NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ 

 
Reasonable cause test: An employee who is reasonably suspected of using alcohol or 
illegal drugs in the workplace or performing official duties while under the influence of 
alcohol or illegal drugs will be required to undergo an alcohol and drug test. 
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3.8. Quality Management  
 
Quality Management incorporates all activities conducted to improve the efficiency, 
contract compliance and cost effectiveness of design, engineering, procurement, QA/QC, 
construction, and start-up elements of construction projects. 
Unless otherwise indicated, select the single most appropriate response for each question. 
 
1. To what extent did your company implement a formal corporate Quality Management 

System (QMS)? 
 
     Not at all                                                            Fully Implemented 

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
2. (Owner Only) Rate the degree to which the engineering/construction QMS was considered 

in the selection process. 
 
  Not at all                            Moderate                           Extensive 

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
3. To what extent were specific quality management goals & objectives included in the prime 

contract? 
 
   Not at all                                                                     Entirely  

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
4. How extensively were quality management goals and objectives used to determine project 

reimbursement (e.g. Incentives)? 
    
   Not at all                          Moderately                       Extensively 

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
 
5. Is the Quality Management System a budgeted item? 
 

No Yes NA UNK 
◘ ◘ ◘ ◘  
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6. To what degree was a formal project Quality Management System used on this project? 
 
    Not at all                                                                  Extensively 

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
7. Please indicate the earliest time period of the project that quality management planning 

was initiated. Place a check below the earliest time period.  
         

Pre-Project Planning Detail Design/ 
Procurement Construction 

Early Middle Late Early Middle Late Early Middle Late 
NA UNK

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘  
 
 

8. How well was the Quality Management System communicated to key project personnel?  
 
  Not at all                                                                     Very well 

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
9. To what extent was the Quality Management System implemented by key project 

personnel? 
    
    Not at all                                                                   Very well 

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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10. To what extent were the following elements or resources used to implement the 
Quality Management system on this project? 

 
 Not Used                Extensively Used  
• External quality services 0 1 2 3 4 NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘  
• Internal quality manager 0 1 2 3 4 NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘  
• Discipline-specific quality program 0 1 2 3 4 NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘  
• Owner’s procedures 0 1 2 3 4 NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘  
• Contractor’s procedures 0 1 2 3 4 NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘  
 

11. Does the QA/QC manager for this project have external certification? 
 

No Yes NA UNK 
◘ ◘ ◘ ◘  

 
12. To what extent were corrective actions implemented for root cause quality defects? 
  
     Not at all                           Partially                            Fully 

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

13. Which of the following quality management techniques were used on this project by 
your company? Check all that apply: 

 
_____ Statistical methods 
_____ Audits 
_____ Quality cost tracking 
_____ Quality circles/quality improvement teams 
_____ Quality goals 
_____ Team building / alignment 
_____ Customer satisfaction measurement 
_____ Quality assurance & quality control requirements 
_____ Post project review 
_____ Rejection rate analysis 
_____ Reference documented quality policies and procedures (Quality manual, etc.) 
_____ Lessons learned systems 
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14. What are the primary sources of quality problems on this project?  
      Check all that apply: 
 

_____ Design Engineering 
_____ Contractual 
_____ Procurement/Materials Management 
_____ Specifications 
_____ Sub-Contracted scope of services 
_____ Craft Labor 
_____ Civil/Concrete 
_____ Mechanical/Equipment 
_____ Electrical/Instrumentation 
_____ Piping 
_____ Fit-up or Welding 
_____ Start-up/Turnover of System 
_____ Other(s) 
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3.9. Automation/Integration (AI) Technology  
 

This section addresses the degree of automation/level of use and integration of 
automated systems for specific tasks/work functions common to most projects.  Using 
the first matrix, please assess the degree of automation and level of use only.  Using the 
second matrix, please assess the level of integration of these automated systems among 
the tasks/work functions. 
 
Referring to the use levels below, indicate how well for this project, the tasks/work 
functions were automated. Select the single most appropriate use level for the task/work 
functions listed. 
 
USE LEVELS 

• Level 1(None/Minimal): Little or no utilization beyond e-mail. 
• Level 2 (Some): “Office” equivalent software, 2D CAD for detailed design. 
• Level 3 (Moderate): Standalone electronic/automated engineering discipline (3D 

CAD) and project services systems. 
• Level 4 (Nearly Full): Some automated input/output from multiple databases 

with automated engineering discipline design and project services systems.  
• Level 5 (Full): Fully or nearly fully automated systems dominate execution of all 

work functions.  
 

Automation of Task/Work Functions 

                                                                 Use Level 
Task/Work Functions 1 2 3 4 5 NA UNK 

Business planning and analysis ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Conceptual definition & design ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Project (discipline) definition & facility design ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Supply management ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Project management  

   Coordination system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

   Communications system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

   Cost system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

   Schedule system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

   Quality system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Off-site/pre-construction ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Construction ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
As-built documentation ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Facility start-up & life cycle support ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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Referring to the use levels below, indicate how well for this project, the tasks/work 
functions were integrated across all other work functions. Select the single most 
appropriate integration level for the task/work functions listed. 
 
USE LEVELS 

• Level 1(None/Minimal): Little or no integration of electronic 
systems/applications. 

• Level 2 (Some): Manual transfer of information via hardcopy of email. 
• Level 3 (Moderate): Manual and some electronic transfer between automated 

systems. 
• Level 4 (Nearly Full): Most systems are integrated with significant human 

intervention for tracking inputs/outputs. 
• Level 5 (Full): All information is stored on a network system accessible to all 

automation systems and users.  All routine communications are automated. The 
automated process and discipline design systems are fully integrated into 3D 
design, supply management, and project services systems (cost, schedule, quality, 
and safety). 

Integration of Task/Work Functions 

                                                   Integration Level 
Task/Work Functions 1 2 3 4 5 NA UNK 

Business planning & analysis ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Conceptual definition & design ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Project (discipline) definition & facility design ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Supply management ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Project management  

   Coordination system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

   Communications system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

   Cost system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

   Schedule system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

   Quality system ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Off-site/pre construction ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Construction ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
As-built documentation ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
Facility start-up & life cycle support ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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3.10. Planning for Startup 
Startup is the transitional phase between plant construction completion and commercial 
operations, including all of the activities that bridge these two phases. Planning for Startup 
consists of a sequence of activities that begins during requirements definition and extends 
through initial operations. This section assesses the level of Startup Planning by evaluating 
the degree of implementation of specific activities throughout the various phases of a 
project.  
Please select the single most appropriate response to each question below. 
 
1. How well were startup objectives communicated? 
 

Not at all    Very well   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
2. To what extent was a formal startup execution plan implemented? 
 

Not at all           Very extensive  
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
3. To what extent were commissioning plans developed during planning for startup? 
 

None were 
developed 

   Developed for 
All systems 

  

0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
 

4. How clearly were startup team key roles & responsibilities communicated?  
 

Not at all    Very   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
 
5. To what extent was the startup schedule logic based on systems and sub-systems? 
 
 

Not at all    Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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6. To what extent was the startup schedule logic aligned with the EPC schedule? 
 

Not at all    Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
7. To what extent were startup needs incorporated in procurement requirements? 
 

Not at all    Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
8. To what extent were suppliers for startup services pre-qualified? 
 

Not at all    Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
9. Please indicate the earliest time period of the first project meeting that deliberately and 

explicitly focused on planning for startup. Place a check below the earliest time period 
(Select only one). 

 

Pre-Project Planning Detail Design/ 
Procurement Construction 

Early Middle Late Early Middle Late Early Middle Late 
NA UNK 

◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘  
 
 
10. How often were the startup risks assessed? 
 

Not at all  Sometimes  Continuously   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
 
11. To what extent was formal operator/maintenance training conducted? 
 

Not at all    Extensively   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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12. How extensive was the system turnover plan? 
 

Not at all    Very   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  

 
13. To what extent were startup and Process Safety Management (PSM) procedures 

communicated? 
 

Not at all    Fully   
0 1 2 3 4 NA UNK 
◘ ◘ ◘ ◘ ◘ ◘ ◘  
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4.  Engineering Productivity Metrics 

General Instructions 
 
CII currently has two approaches to measuring engineering productivity. Direct measures 
developed by the CII Benchmarking & Metrics Committee are captured in the sections
below as work-hours and quantities to produce ratios of inputs to outputs. Indices
developed by Project Team 192 use selected quantities and reported discipline work-
hours to establish discipline level metrics from predictive equations.  Both systems are in
validation and benchmarking participants are encouraged to submit data where possible
to produce metrics using both approaches until sufficient data are available to assess a 
preferred method.  
 
Please enter data at the most detailed level possible to produce the most meaningful
metrics. If you cannot input data for the breakouts, please enter totals where possible.  To
keep the system as simple as possible and to minimize user burden, a toggle switch is 
provided at the end of most sections to enable input for production of the PT 192 indices.
The PT 192 additional questions are additive; therefore to produce the PT 192 indices,
you must also enter as a minimum the category totals for each section. All metrics are in
the validation stage; therefore the user should apply caution when interpreting results
produced.  The PT 192 indices should be interpreted for groups of projects only, not
individual projects. For more discussion on the use of these indices, please see IR- 192-2. 
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Instructions for Computation of Work-Hours and Rework-Hours 

Work-hours are computed by the summation of all the account hours that are listed as 
Direct in the following table. All the account hours listed as Indirect are to be excluded
from the work-hours that are submitted in the productivity data for the following sections. 
 
Direct work-hours should include all detailed design hours used to produce 
deliverables including site investigations, meetings, planning, constructability, RFIs, 
etc., and rework. Specifically exclude work-hours for operating manuals and demolition 
drawings.  Engineering work-hours reported should only be for the categories requested 
and may not equal the total engineering work-hours for the project.  
 
Exclude the following categories: architectural design, plumbing, process design, 
civil/site prep, HVAC, insulation and paint, sprinkler/deluge systems, etc.  Within a 
category, direct work-hours that cannot be specifically assigned into the provided 
classifications, and have not been excluded, should be prorated based on known work-
hours or quantities as appropriate. Please review this table completely before providing 
data in the following sections. 
 

  Direct Indirect 

  Discipline Engineer   Document Control 

  Designer   Reproduction Graphics 

  Technician   Project Management 

     Project Controls (cost/schedule/estimating) 

    Project Engineer 

   Secretary/clerk 

   Procurement (supply management) 

   Construction Support  
  (test package support, commissioning, etc.)

   Quality Assurance 

    Accounting 

A
cc

ou
nt

 

    Legal 
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4.1. Concrete 

Instructions 
Please complete the following tables indicating quantity and engineering work-hours for 
the categories appropriate to your project. If you cannot enter all data then enter totals 
only. Include rework in the work-hours only. If the project had no workhours or 
quantities for a category, enter none. 
 

 
) 

The quantity of concrete is that concrete that is required for the specified slab, 
foundation, or structure provided in the final Issued for Construction (IFC) drawings. 
 
Refer to the section “Instructions for Computation of Work-Hours and Rework-Hours” 
for a detailed listing of direct hours to be included and indirect hours that are to be 
excluded from the computation of the work-hours.   
 
Which design platform was used for this category in this project?  Check all that apply. 

2D  (    ) 
3D  (    ) 

 
 

Slabs None IFC Quantity 
(cubic yards) 

Engineering Work-Hours 
(including rework)

(hours
   Ground & Supported Slabs    
   Area Paving     

Total Slabs  
 

  

Foundations None IFC Quantity 
Engineering Work-Hours 

(including rework)
(hours

 
) 

   Piling (each)    
   Foundations (< 5CY)  
   (cubic yards) 

   

   Foundations (>= 5CY)  
   (cubic yards) 

   

Total Foundations (CY) 
(Excluding piling) 

   

 

Concrete Structures None IFC Quantity 
(cubic yards) 

Engineering Work-Hours 
(including rework) 

(hours) 

Concrete Structures  
   

Concrete Structures include concrete structures, columns, beams, cooling tower basins, 
trenches, formed elevated slabs/structures, and retaining walls. 
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Total Concrete None IFC Quantity 
(cubic yards) 

Engineering Work-Hours 
(including rework) 

(hours) 

Total Concrete 
   

 
 
 
Rework-Hours 
Please provide rework hours, if available. If you can not provide source breakout, then 
enter total only. 
 

Source of Rework-Hours 
for Concrete 

Rework-Hours 
(hours) 

Design  
Vendor  
Owner  

       Other: _______________  
Total  

 
 
PT 192 Metrics (Concrete): 
Please enter total quantity of concrete(CY) excluding deep foundations: _____________ 

 

PT 192 Metrics (Civil):  

Please enter the following data: 
 

- Civil Structural total work-hours: ___________________    
- Total building area(SF):___________________________ 
- Number of piers and caissons (Each): ________________ 
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4.2. Structural Steel 

Instructions 
Please complete the following tables indicating quantity and engineering work-hours for 
the categories appropriate to your project. If possible, separate data for structural steel, 
pipe racks & utility bridges and miscellaneous steel. If you can not separate structural 
steel from pipe racks & utility bridges, combine these data in the space provided below.  
If you cannot enter all data then enter totals only. Include rework in the work-hours only.  
If the project had no workhours or quantities for a category, enter none. 
 
The quantity of steel is that quantity of steel provided in the final Issued for Construction 
(IFC) drawings. 
 
Refer to the section “Instructions for Computation of Work-Hours and Rework-Hours” 
for an additional detailed listing of direct hours to be included and indirect hours that are 
to be excluded from the computation of the work-hours. 
 
Which design platform was used for this category in this project?  Check all that apply. 

2D  (    ) 
3D  (    ) 

 

Structural Steel None IFC Quantity 
(tons) 

Engineering Work-Hours 
(including rework) 

) (hours
Structural Steel     
This includes trusses, columns, girders, beams, struts, girts, purlins, vertical and horizontal 
bracing, bolts, and nuts. 
Pipe Racks & Utility    
Bridges   

  

This includes steel structures outside the physical boundaries of a major structure, which are 
used to support pipe, conduit, and/or cable tray.   

Combined 
Structural Steel / Pipe 
Racks & Utility    
Bridges* 

   

* Enter combined structural steel and pipe racks & utility bridges if you cannot separate the 
quantities above. 

Miscellaneous Steel    

This includes handrails, toeplate, grating, checker plate, stairs, ladders, cages, miscellaneous 
platforms, pre-mounted ladders and platforms, miscellaneous support steel including scab on 
supports, “T” and “H” type supports, trench covers, and Q decking. 

Total Steel 
   

This is the total of structural steel, pipe racks & utility bridges, and miscellaneous steel from 
above or the total of combined structural steel, pipe racks & utility bridges (if not separated) 
and miscellaneous steel.  If you have quantities for steel not included in the breakouts above, 
include them in the totals here. 
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Rework-Hours 
Please provide rework hours, if available. If you can not provide source breakout, then 
enter total only. 
 
 

Source of Rework-Hours 
for Steel 

Rework- Hours 
(hours) 

Design  
Vendor  
Owner  

Other: _______________  
Total  
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4.3. Electrical 

Instructions 
Please complete the following tables indicating quantity and engineering work-hours for 
the categories appropriate to your project. If you cannot enter all data then enter totals 
only. Include rework in the work-hours only. If the project had no workhours or 
quantities for a category, enter none. 
 

• Total Direct Engineering Electrical Work-Hours for This Project _________  
• Total Connected Horsepower of Motors _________ 
• Number of Motors _________ 
• Total KVA Load of Project _________ 

 
The quantity of electrical equipment, conduit, cable trays, wire, termination, and lighting 
fixtures are the quantity of each provided in the final Issued for Construction (IFC) 
drawings.   
 
Refer to the section “Instructions for Computation of Work-Hours and Rework-Hours” 
for an additional detailed listing of direct hours to be included and indirect hours that are 
to be excluded from the computation of the work-hours.  
 
Which design platform was used for this category in this project?  Check all that apply. 

2D  (    ) 
3D  (    ) 

 

Electrical Equipment None
IFC 

Quantity
(each) 

Engineering Work-Hours 
(including rework) 

(hours) 
Electrical Equipment 600V & Below    

Electrical Equipment Over 600V    
Electrical equipment includes transformers, switchgear, UPS systems, MCCs, rectifiers, 
motors, generators, etc.  This also includes work-hours for single line, elementary diagrams 
and studies.                                                            
Total Electrical Equipment    

 

Conduit None IFC 
Quantity 

Engineering Work-Hours 
(including rework) 

(hours) 

Linear Feet  
 

Conduit 
Number of Runs   

 

This includes power plan, cable and conduit schedule and interconnects. Exposed / 
aboveground and underground 
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Cable Tray None IFC Quantity 
(linear feet) 

Engineering Work-Hours 
(including rework) 

(hours) 
Cable Tray    
This includes electrical and instrument cable trays, channels, supports, covers, etc.  

 

Wire & Cable None IFC 
Quantity 

Engineering Work-Hours 
(including rework) 

(hours) 
Linear Feet   

Wire & Cable  
(w/o conduit or tray) Number of 

Terminations   
 

This includes power, control and grounding cables.  

 

Other Electrical Metric None IFC Quantity 
(each-Fixtures) 

Engineering Work-Hours 
(including rework) 

(hours) 
Lighting    

This includes fixtures, conduit, wiring, panels, and control devices.  Quantity to be number of 
fixtures. 

 
Rework-Hours 
Please provide rework hours, if available. If you can not provide source breakout, then 
enter total only. 
 

Source of Rework-Hours 
for Electrical 

Rework-Hours 
(hours) 

Design  
Vendor  
Owner  

Other: _______________  
Total  

PT 192 Metrics (Electrical):  

Please enter the Number of Generators (EA): ______________ 
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4.4. Piping 

Instructions 
Please complete the following tables indicating quantity, percent hot and cold, and 
engineering work-hours for the categories appropriate to your project. Piping includes 
under ground pressure pipe. Exclude tubing. If you cannot enter all data then enter totals 
only. Include rework in the work-hours only. If the project had no workhours or 
quantities for a category, enter none. 
 
The quantity of piping is that piping specified in the final Issued for Construction (IFC) 
drawings. This quantity should not be “cut lengths” but should be measured “center-to-
center” through valves and fittings as with the quantity for the construction metric. Most 
“CADD dumps” are cut lengths. The quantity should be adjusted to be the length 
measured as noted above. 
 
Refer to the section “Instructions for Computation of Work-Hours and Rework-Hours” 
for an additional detailed listing of direct hours to be included and indirect hours that are 
to be excluded from the computation of the work-hours.   
 
Which design platform was used for this category in this project?  Check all that apply. 

2D  (    ) 
3D  (    ) 

Piping None 
IFC 

Quantity
 

Percent 
Hot and 
Cold (%) 

Engineering Work-Hours 
(including rework) 

(hours) 

Small Bore  
(2-1/2” and Smaller) 
(linear feet) 

    

Large Bore 
(3” and Larger) 
(linear feet) 

  
  

Engineered Hangers and 
Supports (each) 
(Includes stress analysis) 

 
  

 

Number of pipe fittings*     

Total Piping 
(linear feet only) 

 
  

 

* Elbows, flanges, reducers, branch connection fittings e.g. o-lets, saddles etc., Y’s, T’s, caps, 
unions, couplings, etc. 
** Total piping quantity is linear feet only. The total piping work-hours include those hours for 
small & large bore piping, engineered hangers and supports and fittings.
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Rework-Hours 
Please provide rework hours, if available. If you can not provide source breakout, then 
enter total only. 
 

Source of Rework-Hours 
for Piping 

Rework- Hours  
(hours) 

Design  
Vendor  
Owner  

Other: _______________  
Total  

 
PT 192 Metrics (Piping):  
Please enter total direct engineering piping work-hours: _______________ 
 
Please enter Total Hangers and Supports (engineered & standard): 
_________________________ 
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4.5. Instrumentation 

Instructions 
Please complete the following tables indicating quantity and engineering work-hours for 
the categories appropriate to your project. If you cannot enter all data then enter totals 
only. Include rework in the work-hours only. If the project had no workhours or 
quantities for a category, enter none. 
 
The quantity of instrumentation is that quantity provided in the final Issued for 
Construction  (IFC) drawings. 
 
Refer to the section “Instructions for Computation of Work-Hours and Rework-Hours” 
for an additional detailed listing of direct hours to be included and indirect hours that are 
to be excluded from the computation of the work-hours.   
 
Which design platform was used for this category in this project?  Check all that apply. 

2D  (    ) 
3D  (    ) 

 

Instrumentation None IFC Quantity 
Engineering Work-Hours 

(including rework) 
(hours) 

Loops (count) 
 

Tagged Devices (count)   
I/O (count)   

 

This includes all instrument and control design work-hours except DCS/PLC Configuration 
and Programming. I/O (count) includes the I/O that comes over digital communication 
interfaces from outside of the control system. For such interfaces, count the addressable points. 
For fieldbus interfaces, count only the devices. 
◘  DCS/PLC Design included 
DCS/PLC Configuration 
and Programming  

  

 
Rework-Hours 
Please provide rework hours, if available. If you can not provide source breakout, then 
enter total only. 
 

Source of Rework-Hours 
for Instrumentation 

Rework-Hours 
(hours) 

Design  
Vendor  
Owner  

Other: _______________  
Total  

PT 192 Metrics (Instrumentation):  
Total direct engineering instrumentation work-hours: __________________ 
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4.6. Equipment 

Instructions 
Please complete the following tables indicating quantity and engineering work-hours for 
the categories appropriate to your project. If you cannot enter all data then enter totals 
only. Include rework in the work-hours only. If the project had no workhours or 
quantities for a category, enter none. 
 
The Total Quantity of equipment is the quantity of tagged items provided in the final 
Issued for Construction (IFC) drawings with vendor designed skids being counted as a 
single item.  The Individually Designed quantity is the quantity defined by unique data 
sheets.  For example, pump P201a/b is one unique data sheet, but is a total of two items. 
 
These hours include only mechanical discipline hours. 
 
Refer to the section “Instructions for Computation of Work-Hours and Rework-Hours” 
for an additional detailed listing of direct hours to be included and indirect hours that are 
to be excluded from the computation of the work-hours. 
 
Which design platform was used for this category in this project?  Check all that apply. 

2D  (    ) 
3D  (    ) 

 

None 
Individually 

Designed 
(each) 

Total 
Quantity 

(each) 

Engineering Work-Hours 
(including rework) 

(hours) Pressure Vessels 

    
This includes tray/packed towers, columns, reactors/regenerators, and miscellaneous other 
pressure vessels.  
Field fabricated towers, columns, reactors and regenerators are to be included. 

 

None 
Individually 

Designed 
(each) 

Total 
Quantity 

(each) 

Engineering Work-Hours 
(including rework)

(hours) 
 Atmospheric Tanks 

    
This includes storage tanks, floating roof tanks, bins/hoppers/silos/cyclones, cryogenic & low 
temperature tanks and miscellaneous other atmospheric tanks. 

 

None 
Individually 

Designed 
(each) 

Total 
Quantity 

(each) 

Engineering Work-Hours 
(including rework)

(hours) 
 Heat Transfer 

Equipment 
    

This includes heat exchangers, fin fan coolers, evaporators, cooling towers and 
miscellaneous other heat transfer equipment. 
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None 
Individually 

Designed 
(each) 

Total 
Quantity

(each) 

Engineering  
Work-Hours 

(including rework) 
(hours) 

Total 
(BTU/Hr) 

 
Boiler & Fired 

Heaters 
     

This includes packaged boilers, field erected boilers, fired heaters, waste heat boilers, stand-
alone stacks, and miscellaneous other boilers and fired heaters. 

 

None 
Individually 

Designed 
(each) 

Total 
Quantity

(each) 

Engineering  
Work-Hours 

(including rework)
(hours) 

Total 
(horsepower)  

Rotating 
Equipment 
(w/drivers) 

     
This includes compressors (centrifugal/reciprocating), blowers, screw rotary compressors, 
metering/in-line pumps, pumps (centrifugal/reciprocating), positive displacement pumps, 
agitators, mixers, blenders and other miscellaneous compressors, fans and pumps. 

 

None
Individually 

Designed 
(each) 

Total 
Quantity 

(each) 

Engineering Work-Hours 
(including rework)

(hours) 
 Material Handling 

Equipment 
(w/drivers) 

    
This includes conveyors (belt, chain, screen, rotor, etc.), cranes & hoists, scales, lifts, 
stackers, reclaimers, ship loaders, compactors, feeders and baggers, and miscellaneous other 
material handling equipment. 

 

None 
Individually 

Designed 
(each) 

Total 
Quantity

(each) 

Engineering Work-
Hours 

(including rework)
(hours)) 

Total 
(kilo-watts)  

Power 
Generation 
Equipment 

     
This includes gas turbines, steam turbines, diesel generators, and other miscellaneous power 
generation equipment. 
 

Pulp & Paper Equipment None 
Individually 

Designed 
(each) 

Total 
Quantity

(each) 

Engineering  
Work-Hours 

(including rework)
(hours) 

 

Woodyard Equipment     
Pulp Mill Equipment     
Bleach Plant Equipment     
Stock Preparation Equipment     
Wet End Equipment (through 
the Presses)   

  

Dryer Sections     

Dry End Equipment including 
Roll Wrap/Converter 
Equipment 

  
  

Total Pulp & Paper 
Equipment   

  

This includes all paper machines and miscellaneous other pulp & paper equipment. 
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None 
Individually 

Designed 
(each) 

Total 
Quantity 

(each) 

Engineering Work-Hours 
(including rework) 

(hours) 
Other Process 

Equipment 
    

This includes specialty gas equipment, bulk chemical equipment, process equipment, particle 
extraction (bag houses, scrubbers, etc.), treatment systems (water treatment, etc.), 
incinerators, and flares/flare systems. 

 

None 
Individually 

Designed 
(each) 

Total 
Quantity 

(each) 

Engineering Work-Hours 
(including rework)

(hours) 
 Vendor-Designed 

Modules & Pre-
Assembled Skids 

    
This includes modules (partial units) and complete skids units. 

 

None 
Individually 

Designed 
(each) 

Total 
Quantity 

(each) 

Engineering Work-Hours 
(including rework)

(hours)** 
 Total Equipment 

Count* 
    

Skids & modules with multiple equipments are counted still as a single entry.  
* Total equipment count may include items not identified above.  
** This is total mechanical discipline direct work-hours. 

 
Rework-Hours 
Please provide rework hours, if available. If you can not provide source breakout, then 
enter total only. 
 

Source of Rework-Hours 
for Equipment 

Rework-Hours 
(hours) 

Design  
Vendor  
Owner  

Other: _______________  
Total  
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 5.  Construction Productivity Metrics 
Instructions for Computation of Actual Work-Hours and Rework-Hours 
Actual work-hours are computed by the summation of all the account hours that are listed 
as Direct in the following table. All the account hours listed as Indirect are to be 
excluded from the actual work-hours that are submitted in the productivity data for the 
following sections.   Actual work-hours should include hours for rework.  If you track 
actual rework-hours, please record this information at the end of each section where 
requested.  Please review this table completely before providing data in the following 
sections. 
 
  Direct Indirect 

 Direct Craft Labor  Accounting  Procurement 
 Foreman  Area Superintendent  Process Equipment Maintenance
 General Foreman  Assistant Project Manager  Project Controls 
 Load and Haul  Bus Drivers  Project Manager 
 Oilers  Clerical  QA/QC 
 Operating Engineer  Craft Planners  Quantity Surveyors 
 Safety Meetings  Craft Superintendent  Receive and Offload 
 Scaffolding  Craft Training  Recruiting 
 Truck Drivers Direct  Crane Setup/take down  Safety 
   Document Control  Safety Barricades 
   Drug Testing  Security 
   Equipment Coordinator  Show-up Time 
   Evacuation Time  Site Construction Manager 
   Field Administration Staff  Site Maintenance 
   Field Engineer-Project  Subcontract Administrator 
   Field Staff (Hourly)  Supervision (Hourly) 
   Field Staff (Salary)  Surveying Crews 
   Fire Watch  Temporary Facilities 
   Flag Person  Temporary Utilities 
   General Superintendent  Test Welders 
   Hole Watch  Tool Room 
   Janitorial  Truck Drivers Indirect 

A
cc

ou
nt

 

   Job Clean-Up  Warehouse 
   Master Mechanic  Warehousing  
   Material Control  Water Hauling 
   Mobilization   
   Nomex Distribution   
   Orientation Time   

   Payroll Clerks/ 
Timekeepers   
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5.1 Concrete 

Instructions 
Please complete the following tables indicating installed neat quantity and work-hours 
(including rework) for the categories appropriate to your project and indicate if the work 
performed for each category was subcontracted or not. If work performed for a category 
was both subcontracted and in-house, indicate the type that was more predominate. Also, 
please record the total rework-hours with source information if available where requested 
at the end of the section. 
 
Include work-hours for the following selected activities: 
Loading material at the jobsite yard, hauling to, and unloading at the job work site; local 
layout, excavation and backfill, fabrication, installation, stripping and cleaning forms; 
field installation of reinforcing material; field installation of all embeds; all concrete 
pours, curing, finishing, rubbing, mud mats; and anchor bolt installation.  
 
Do not include work hours for: 
Piling, drilled piers, well points and major de-watering, concrete fireproofing, batch 
plants, non-permanent roads and facilities, third party testing, mass excavations, rock 
excavations, site survey, q-deck, sheet piles, earthwork shoring, cold pour preparation, 
grouting, pre-cast tees, panels, decks, vaults, manholes, etc.  

Definitions 
The Installed Neat Quantity of concrete is that concrete that is required for the specified 
slab, foundation, or structure provided in the project’s plans and specifications and does 
not include any quantity of concrete that is used due to rework. 
Refer to the section “Instructions for Computation of Actual Work-Hours and 
Rework-Hours” for an additional detailed listing of direct hours to be included and 
indirect hours that are to be excluded from the computation of the actual work-hours.   

 

Slabs None Subcontracted
(Yes or No)

Installed 
Quantity 

  (cubic yards) 

Actual Work-Hours
(including rework)

(hours) 
On-Grade     
Elevated Slabs/On 
Deck 

    

Area Paving     
Total Slabs     
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None Subcontracted
(Yes or No)

Installed 
Quantity 

 (cubic yards) 

Actual Work-Hours 
(including rework) 

(hours) 
Foundations 

 < 5 cubic yards     
 5 – 20 cubic yards     

   21– 50 cubic yards   
 > 50 cubic yards     

    Total Foundations 
 

Concrete 
Structures None Subcontracted

(Yes or No) 
Installed 
Quantity 

 (cubic yards) 

Actual Work-Hours 
(including rework) 

(hours) 
Concrete Structures     
This Includes concrete structures, columns, beams, cooling tower basins, trenches, 
formed elevated slabs/structures, and retaining walls. 

 

Total Concrete  None Subcontracted
(Yes or No) 

Installed 
Quantity 

Actual Work-Hours 
(including rework) 

 (cubic yards) (hours) 
    Total Concrete 

 
Rework-Hours 
 

Source of Rework-Hours 
for Concrete 

Rework-Work 
(hours) 

Design  
Vendor  
Owner  

Contractor  
Other  
Total  
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5.2 Structural Steel 

Instructions 
Please complete the following tables indicating installed quantity and work-hours 
(including rework) for the categories appropriate to your project and indicate if the work 
performed for each category was subcontracted or not. If work performed for a category 
was both subcontracted and in-house, indicate the type that was more predominate. Also, 
please record the total rework-hours with source information if available where requested 
at the end of the section. 
 
This includes work-hours for the following selected activities:  
Shake-out, transporting, erection, plumbing, leveling, bolting, and welding.  
 
Do not include work-hours for:  
Fabrication, demolition, and architectural work, such as roofing, siding and vents.  

Definitions 
The Installed Quantity of steel is that quantity of steel provided in the project’s plans 
and specifications and does not include any quantity of steel that is used due to rework. 
Refer to the section “Instructions for Computation of Actual Work-Hours and 
Rework-Hours” for an additional detailed listing of direct hours to be included and 
indirect hours that are to be excluded from the computation of the actual work-hours.  
 

Structural Steel None Subcontracted
(Yes or No)

Installed 
Quantity 

Actual Work-Hours 
(including rework) 

 (tons) (hours) 
Structural Steel     
This includes trusses, columns, girders, beams, struts, girts, purlins, vertical and 
horizontal bracing, bolts, and nuts. 
Pipe Racks & 
Utility Bridges     
This includes steel structures outside the physical boundaries of a major structure, 
which is used to support pipe, conduit, and/or cable tray. 

    Miscellaneous Steel 
This includes handrails, toeplate, grating, checker plate, stairs, ladders, cages, 
miscellaneous platforms, pre-mounted ladders and platforms, miscellaneous support 
steel including scab on supports, “T” and “H” type supports, trench covers, and Q 
decking. 

    Total Structural 
Steel 
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Rework-Hours 

 
Source of Rework-Hours 

for Steel 
Rework-Hours 

(hours) 
Design  
Vendor  
Owner  

Contractor  
Other  
Total  
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5.3. Electrical 
 

Instructions 
Please complete the following tables indicating installed quantity and work-hours 
(including rework) for the categories appropriate to your project and indicate if the work 
performed for each category was subcontracted or not. If work performed for a category 
was both subcontracted and in-house, indicate the type that was more predominate.  
Also, please record the total rework-hours with source information if available where 
requested at the end of the section. 
 
This includes work-hours for the following selected activities:  
Installation, testing, labeling, etc. 

Definitions 
The Installed Quantity of electrical equipment, devices, conduit and cable trays are the 
quantity of each provided in the project’s plans and specifications and does not include 
any quantity that is used due to rework. 
 
Refer to the section “Instructions for Computation of Actual Work-Hours and 
Rework-Hours” for an additional detailed listing of direct hours to be included and 
indirect hours that are to be excluded from the computation of the actual work-hours.   
 
- Total Direct Electrical Work-Hours for This Project _________  
- Total Connected Horsepower of Motors _________ 
- Number of Motors _________ 
- Total KVA Load of Project _________ 
 
Electrical 
Equipment 
and Devices 

None 
Installed 
Quantity 

Actual Work-Hours Subcontracted
(Yes or No)  (each) 

(including rework) 
(hours) 

Panels and Small 
Devices 

    

This includes all labor for the installation of lighting and power panels, dry type 
transformers, control stations (pushbuttons, small local panels, etc.), welding 
receptacles and their supports.  Count includes only actual electrical devices - not 
supports. 
Electrical Equipment 
 600V & Below 

    

Electrical Equipment  
Over 600V 

    

Total Electrical 
Equipment     

This includes all labor for the installation of transformers, switchgear, UPS systems, 
MCCs, DCS/PLC racks and panels, etc.                    
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Instructions for calculation of Weighted-Average Diameter of Conduit (Hyperlink) 
 

Conduit None Subcontracted
(Yes or No) 

Installed 
Quantity 

(lineal feet) 

Actual Work-
Hours 

(including 
rework) 
(hours) 

Exposed or Aboveground 
Conduit 

    

This includes all labor for installation of conduit, hangers, supports, fittings, flexible 
connections, marking, grounding jumpers, seals, boxes, etc. 
This excludes lighting conduit. 
Underground, Duct Bank or 
Embedded Conduit 

    

This includes all labor for installation of conduit, supports, grounding jumpers, etc. 
Does not include excavation, backfill, concrete, manholes, etc. 
Total Conduit     

  
Instructions for calculation of Weighted-Average Size of Cable Tray (Hyperlink) 
 

Cable Tray None Subcontracted
Weighted 

Average Size 
(width in 
inches) 

Installed 
Quantity 

(lineal 
feet) 

Actual Work 
Hours 

(including 
rework) (Yes or No) 

(hours) 
     Cable Tray 

This includes all labor for the installation of tray, channel, supports, covers, grounding 
jumpers, marking, etc.  It does not include fire stop or cable tray for instrument wire 
and cable. 

 

None Subcontracted
(Yes or No) 

Installed 
Quantity 

(lineal feet) 

Actual Work-
Hours 

(including 
rework) 
(hours) 

Wire and Cable 

    Power and Control Cable - 
600V & below 
This includes all labor for the installation, termination, labeling, and testing of 600V 
and below power and control cable.  It does not include heat-tracing cable. 

    Power Cable – 5 & 15KV 
This includes all labor for the installation, termination, labeling, and testing of medium 
voltage power cables. 
Total Wire and Cable      
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Actual Work-
Hours 

(including 
rework) 

Sub-
contracted 
(Yes or No) 

Installed 
Quantity Other Electrical None 

 
(hours) 

   Lighting (each-Fixtures)  
This includes all labor for the installation of fixtures (including lamps and supports) 
and for the installation of conduit and wiring from the lighting panel to the fixtures. 
Includes any control equipment, switches, conduit, wiring and accessories installed on 
the load side of the lighting panel.  Installation of lighting panels is included in Panels 
and Small Devices and power feeder wiring for the panel is included in Power and 
Control Cable - 600V. 
Grounding (lineal feet)     
This includes all the labor for the installation of cable, ground rods, connectors and all 
accessories for the installation of conduit and wiring from the lighting panel to the 
fixtures. Includes work hours for the installation of ground cables pulled into cable 
trays, duct banks, and installed exposed in electric or other rooms. The footage is based 
on the total footage of ground cable installed. 
Electrical Heat Tracing 
(lineal feet) 

    

This includes the labor for the installation of electric heat trace cable, power feeds to 
the cable, control accessories, end of line devices, connectors, tape or other 
strapping/support materials, and any other items needed to complete the heat trace 
system.  Footage is based on the lineal footage of process and utility piping heat 
traced. 

 

Rework-Hours 

 
Source of Rework-Hours 

for Electrical 
Rework-Hours 

(hours) 
Design  
Vendor  
Owner  

Contractor  
Other  
Total  
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5.4. Piping 

Instructions 
Please complete the following tables indicating the weighted-average diameter in inches, 
the installed quantity, percent shop fabricated, percent hot and cold, and work-hours 
(including rework) for the categories appropriate to your project and indicate if the work 
performed for each category was subcontracted or not. If work performed for a category 
was both subcontracted and in-house, indicate the type that was more predominate.  
Also, please record the total rework-hours with source information if available where 
requested at the end of the section. 
 
Include work-hours for the following selected activities:  
Erecting and installing large bore piping, including welding, valves, in-line specials, 
flushing/hydro testing, tie-ins (excluding hot taps), material handling (from the laydown 
yard to the field), in-line devices, specialties, equipment operators, and hangers & 
supports.  
 
Do not include work-hours for:  
Non-destructive evaluation (NDE), steam tracing, stress relieving, underground piping, 
offloading pipe as it is received, commissioning, and field fabrication of large bore.  
Definitions 
The Installed Quantity of piping is that piping specified in the project’s plans and 
specifications and does not include any quantity of piping that is used due to rework. 
 
Refer to the section “Instructions for Computation of Actual Work-Hours and 
Rework-Hours” for an additional detailed listing of direct hours to be included and 
indirect hours that are to be excluded from the computation of the actual work-hours.   
Instructions for calculation of Small Bore Weighted-Average Diameter (Hyperlink) 

 
Small Bore (2-1/2” and Smaller) 
- Field and Shop Fabricated and Field Run (Excludes Tubing) 

Small Bore None 
Sub-

contracted 
Weighted- 
Average 
Diameter 
(inches) 

Installed 
Quantity 

(lineal 
feet) 

Actual 
Work-
Hours 

(including 
rework) 

(Yes or 
No) 

(hours) 

Percent 
Shop 

Fabricated 
(%) 

Carbon Steel       
  Stainless Steel     

Chrome       
Other Alloys       
Total Small 
Bore 
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In the following sections for large bore piping the following definitions apply for hot and 
cold piping.  Hot piping is that piping which has a design temperature greater than 250 
degrees Fahrenheit. Cold piping is that piping which has a design temperature less than 
minus 20 degrees Fahrenheit. 
 
Instructions for calculation of ISBL and OSBL Large Bore Weighted-Average Diameter 
(Hyperlink) 
 
Inside Battery Limits (ISBL) Large Bore (3” and Larger) (Excludes Tubing) 

Large Bore 
(ISBL) 

Weighted
-Average 
Diameter 
(inches) 

Average 
Wall 

Thickness 
(schedule) 

Installed 
Quantity  

(lineal 
feet) 

Actual 
Work-
Hours 

(including 
rework) 
(hours) 

% Shop 
Fabricated 

(%) 

% Hot 
and 
Cold 
(%) 

Carbon Steel       
Stainless Steel       
Chrome       

      Other Alloys 
      Total Large 

Bore (ISBL) 
 
Outside Battery Limits (OSBL) Large Bore (3” and Larger) (Excludes Tubing) 

Large Bore 
(OSBL) 

Weighted
-Average 
Diameter 
(inches) 

Average 
Wall 

Thickness 
(schedule) 

Installed 
Quantity  

(lineal 
feet) 

Actual 
Work-
Hours 

(including 
rework) 
(hours) 

% Shop 
Fabricated 

(%) 

% Hot 
and 
Cold 
(%) 

Carbon Steel       
Stainless Steel       

      Chrome 
      Other Alloys 
      Total Large 

Bore (OSBL) 
 

Rework-Hours 
Source of Rework-Hours 

for Piping 
Rework-Hours 

(hours) 
Design  
Vendor  
Owner  

Contractor  
Other  
Total  
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5.5 Instrumentation 

Instructions 
Please complete the following tables indicating installed quantity and work-hours 
(including rework) for the categories appropriate to your project and indicate if the work 
performed for each category was subcontracted or not. If work performed for a category 
was both subcontracted and in-house, indicate the type that was more predominate. Also, 
please record the total rework-hours with source information if available where requested 
at the end of the section. 
 
This includes work-hours for the following selected activities:  
Installation, calibration, testing, check out, and otherwise field certify the devices.  A 
device is a physical device that has a tag number.  This category includes process 
tubing, instrument air tubing, cable trays, conduits, instrument wire and cable, junction 
boxes, etc.  
 
Do not include work-hours for:  
DCS, software, installation of in-line devices, programming and configuration.  

Definitions  
The Installed Quantity of instrumentation is that quantity provided in the project’s plans 
and specifications and does not include any quantity of instrumentation that is used due 
to rework. 
Refer to the section “Instructions for Computation of Actual Work-Hours and 
Rework-Hours” for an additional detailed listing of direct hours to be included and 
indirect hours that are to be excluded from the computation of the actual work-hours.   
 

Instrumentation 
Installed 
Quantity 

 

Actual Work-
Hours 

None Subcontracted
(Yes or No) (including 

rework) 
(hours) 

    Loops (count) 
  Devices  

(Instruments, count) 
  

Unit of measure:  Dual – Each based on loop check quantity. 
Each based on field-installed devices. 
Instrumentation wire and 
cable (lineal feet) 

    

 230



 
 

Rework-Hours 
Source of Rework-Hours 

for Instrumentation 
Rework-Hours 

(hours) 
Design  
Vendor  
Owner  

Contractor  
Other  
Total  
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5.6 Equipment 

Instructions 
Please complete the following tables indicating installed quantity and work-hours 
(including rework) for the categories appropriate to your project and indicate if the work 
performed for each category was subcontracted or not. If work performed for a category 
was both subcontracted and in-house, indicate the type that was more predominate. If 
equipment is preassembled on-skids – Do not include in the equipment count. Also, 
please record the total rework-hours with source information if available where requested 
at the end of the section. 

Definitions 
The Installed Quantity of equipment is that quantity provided in the project’s plans and 
specifications and does not include any quantity of equipment that is used due to rework. 
Refer to the section “Instructions for Computation of Actual Work-Hours and 
Rework-Hours” for an additional detailed listing of direct hours to be included and 
indirect hours that are to be excluded from the computation of the actual work-hours.   
 

None 
Sub-

contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Actual Total 
Weight Work-Hours Pressure Vessels (including rework) 

(hours) (tons) 

Pressure Vessels      
This includes tray/packed towers, columns, reactors/regenerators, and miscellaneous other 
pressure vessels. Work-hours should include installation of trays and packing if installed in the 
field. Field fabricated towers, columns, reactors and regenerators are not to be included. 

 

None 
Sub-

contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Actual Atmospheric 
Tanks – Shop 

Fabricated 

Total 
Capacity Work-Hours 

(including rework) 
(hours) (tons) 

Atmospheric Tanks 
– Shop Fabricated 

     

This includes storage tanks, floating roof tanks, bins/hoppers/silos/cyclones, cryogenic & low 
temperature tanks and miscellaneous other atmospheric tanks. Include all shop built-up and 
field-erected tanks.  Excluded are field fabricated and assembled tanks. 

 
Actual Atmospheric 

Tanks – Field 
Fabricated 

None 
Sub-

contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Work-Hours 
(including rework) 

(hours) 

Total 
Capacity 

(tons) 

Atmospheric Tanks 
–Field Fabricated 

     

This includes storage tanks, floating roof tanks, bins/hoppers/silos/cyclones, cryogenic and low 
temperature tanks, and other miscellaneous atmospheric tanks. 
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Actual 

Heat Transfer 
Equipment None 

Sub-
contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Work-Hours 
(including rework) 

(hours) 

Total 
Weight 
(tons) 

Heat Transfer 
Equipment 

     

This includes heat exchangers, fin fan coolers, evaporators, package cooling towers and 
miscellaneous other heat transfer equipment. 

 

None 
Sub-

contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Actual 
Boiler & Fired 

Heaters 
Total Work-Hours 

(including rework) 
(hours) 

(MBTU) 

Boiler & Fired 
Heaters 

     

This includes packaged boilers, field erected boilers, fired heaters, waste heat boilers, stand-
alone stacks, and miscellaneous other boilers and fired heaters. 

 
Actual Rotating 

Equipment 
(w/drivers) 

None 
Sub-

contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Work-Hours 
(including rework) 

(hours) 

Total 
(horse-
power) 

Rotating Equipment 
(w/drivers) 

     

This includes compressors (centrifugal/reciprocating), blowers, screw rotary compressors, 
metering/in-line pumps, pumps (centrifugal/reciprocating), positive displacement pumps, 
agitators, mixers, blenders and other miscellaneous compressors, fans and pumps. 

 
Actual Material Handling 

Equipment 
(w/drivers) 

None 
Sub-

contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Total 
Weight 
(tons) 

Work-Hours 
(including rework) 

(hours) 
Material Handling 
Equipment 
(w/drivers) 

  
   

This includes conveyors (belt, chain, screen, rotor, etc.), cranes & hoists, scales, lifts, stackers, 
reclaimers, ship loaders, compactors, feeders and baggers, and miscellaneous other material 
handling equipment. 

 

None 
Sub-

contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Actual 
Power Generation 

Equipment 
Work-Hours 

(including rework) 
(hours) 

Total 
(kilo-
watts) 

Power Generation 
Equipment 

     

This includes gas turbines, steam turbines, diesel generators, and other miscellaneous power 
generation equipment. 
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Pulp & Paper 
Equipment None 

Sub-
contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Actual 
Work-Hours 

(including rework) 
(hours) 

Total 
Weight 
(tons) 

Woodyard 
Equipment 

     

Pulp Mill 
Equipment 

     

Bleach Plant 
Equipment 

     

Stock Preparation 
Equipment 

     

Wet End 
Equipment (through 
the Presses) 

  
   

     Dryer Sections 
Dry End Equipment 
including Roll 
Wrap/Converter 
Equipment 

  

   

Total Pulp & 
Paper Equipment 

     

This includes all paper machines and miscellaneous other pulp & paper equipment. 
 

Other Process 
Equipment None 

Sub-
contracted 
(Yes or No) 

Installed 
Quantity 
(each) 

Actual Total 
Weight 
(tons) 

Work-Hours 
(including rework) 

(hours) 
   Other Process 

Equipment 
  

This includes specialty gas equipment, bulk chemical equipment, process equipment, particle 
extraction (bag houses, scrubbers, etc.), treatment systems (water treatment, etc.), incinerators, 
and flares/flare systems. 

 
Installed 
Quantity 
(each) 

Actual Modules & 
Pre-Assembled 

Skids 

Sub-
contracted 
(Yes or No) 

Total 
Weight 
(tons) 

Work-Hours None (including rework) 
(hours) 

Modules &   
   Pre-Assembled 

Skids 
This includes modules (partial units) and complete skids units.  
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Rework-Hours 

 
Source of Rework-Hours 

for Equipment 
Rework-Hours 

(hours) 
Design  
Vendor  
Owner  

Contractor  
Other  
Total  
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5.7 Insulation 

Instructions 
Please complete the following tables indicating average thickness or diameter, installed 
quantity, and work-hours (including rework) for the categories appropriate to your 
project and indicate if the work performed for each category was subcontracted or not. If 
work performed for a category was both subcontracted and in-house, indicate the type 
that was more predominate.  Also, please record the total rework-hours with source 
information if available where requested at the end of the section. 

Definitions 
The Installed Quantity of insulation is that quantity of insulation that is required for the 
equipment and piping provided in the project’s plans and specifications and does not 
include any quantity of insulation that is used due to rework. 

 
Refer to the section “Instructions for Computation of Actual Work-Hours and 
Rework-Hours” for an additional detailed listing of direct hours to be included and 
indirect hours that are to be excluded from the computation of the actual work-hours.   

 

Equipment 
This includes work-hours for the following selected activities:  
Installation of insulation, jacketing overall vessels, tanks, exchangers, etc.; installation of 
equipment blankets for pumps, exchangers, etc.; material handling.   
 

Insulation None Subcontracted
(Yes or No) 

Average 
Thickness 
(inches) 

Installed 
Quantity 

(square feet of 
insulated 

area) 

Actual Work-
Hours 

(including 
rework) 
(hours) 

Equipment      
 
 
 
 
Piping 
This includes work-hours for the following selected activities:  
Installation of insulation and jacketing over pipe, valves and fittings; installation 
of valve insulation blankets and flange insulation.   
 

Instructions for calculation of Weighted-Average Diameter of Piping with 
Insulation (Hyperlink) 
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Actual 
Work-
Hours 

Weighted
-Average 
Diameter 
(inches) 

Installed 
Quantity 

(equivalent 
linear feet) 

None 
Sub-

contracted Average 
Thickness 
(inches) 

Insulation (Yes or 
No) 

(including 
rework) 
(hours) 

      Piping 
ELF – Equivalent Linear Feet of insulation applied to piping.  Multiple layers count 
only one time in linear footage. 

 
Rework-Hours 
 

Source of Rework-Hours 
for Insulation 

Rework-Hours 
(hours) 

 Design 
 Vendor 

Owner  
Contractor  

Other  
Total  
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6. CLOSEOUT 

6.1. Workhours and Accident Data  

On January 31st, 2002 OSHA instituted significant changes to safety record 
keeping and reporting requirements.  Please refer to OSHA for the new rules and 
definitions.  A good comparison of the old and new rules may be found at: 

http://www.osha.gov/recordkeeping/RKside-by-side.html   and 

http://www.osha.gov/recordkeeping/RKmajorchanges.html  

The CII Benchmarking committee has redesigned the safety performance section 
so that you may report incidences accurately whether you are using the old OSHA 
200 or the new OSHA 300 log. 

For your Direct – Hire Employees and your Subcontractor Employees: 

In the spaces below, please record the Total OSHA Number of Recordable 
Incident Cases.  From that number, please break down the Number of 
Injuries, the Number of Illnesses and the Number of Fatalities.  Also record 
the Total Number of OSHA DART Cases, broken out by the Number of 
Days Away Cases and the Number of Restricted/Transfer Cases.   

Next please record the number of Near Misses, the Total Site Workhours, the 
Percentage of Overtime Hours, and the Number of Hours in Your Normal 
Work Week. 

1. Use the U.S. Department of Labor's OSHA definitions for recordable 
injuries and lost workday cases among this project's workers. If you do 
not track in accordance with these definitions, click Unknown in the boxes 
below.  

2. A consolidated project OSHA 300 log is the best source for the data.  

 
 
 

 

 238

http://www.osha.gov/recordkeeping/RKside-by-side.html
http://www.osha.gov/recordkeeping/RKmajorchanges.html


 
 

6.1.1. YOUR DIRECT-HIRE EMPLOYEES 

Total OSHA Number 
Recordable Incident Cases 
(Injuries, Illnesses, Fatalities, 
Transfers and Restrictions) 

Please breakdown the 
total number of 
Recordable Incident 
Cases by: 

Number of OSHA DART 
Cases 
(Days Away, Restricted or 
Transferred)  

 
________ Total Recordables 
             
   ◘Unknown 

________ Injuries 
________ Illnesses 
________ Fatalities 
 
   ◘Unknown 

________ Days Away Cases
________ Restricted Cases 
         Transfer Cases 
 
   ◘Unknown 

Near Misses 

Near Misses are common at many worksites. They do not result in injury-but they may 
cause property damage. If, say, an employee had been in a slightly different position or 
place, or the equipment or product placement had been to the left or right, serious 
injury and/or damages could have resulted. A lot depends on sheer luck and 
circumstance (Heberle, 1998). 
 
How many near misses occurred?   _____________________  
   ◘ Unknown 

 
Total Site Workhours  ____________________ 
   ◘ Unknown 
Percentage of Overtime Hours 
What percentages of the workhours were “overtime” - above your normal work week? 
If the actual percentage cannot be calculated, please provide your best assessment. 
Answer Unknown only if you cannot make a reasonable assessment. 
                (%) 
 
   ◘ Unknown 
Hours in Normal Work Week 
Please indicate the number of hours in your normal work week. 
                              
 
   ◘ Unknown 
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6.1.2. SUBCONTRACTOR EMPLOYEES 

Total OSHA Number 
Recordable Incident Cases 
(Injuries, Illnesses, 
Fatalities, Transfers and 
Restrictions) 

Please breakdown the 
total number of 
Recordable Incident 
Cases by: 

Number of OSHA DART 
Cases 
(Days Away, Restricted or 
Transferred)  

 ________ Injuries ________ Days Away Cases 
________ Total Recordables ________ Illnesses ________ Restricted Cases 

         Transfer Cases              ________ Fatalities 
   
   ◘Unknown    ◘ Unknown    ◘ Unknown 

Near Misses 

Near Misses are common at many worksites. They do not result in injury-but they may 
cause property damage. If, say, an employee had been in a slightly different position or 
place, or the equipment or product placement had been to the left or right, serious injury 
and/or damages could have resulted. A lot depends on sheer luck and circumstance 
(Heberle, 1998). 
 
How many near misses occurred?   _____________________                     
◘ Unknown 

Total Site Workhours  ____________________ 
 
   ◘ Unknown 
Percentage of Overtime Hours 
What percentages of the workhours were “overtime” - above your normal work week? If 
the actual percentage cannot be calculated, please provide your best assessment. Answer 
Unknown only if you cannot make a reasonable assessment. 
                      (%) 
 
   ◘ Unknown 
Hours in Normal Work Week 
Please indicate the number of hours in your normal work week. 
                              
 
   ◘ Unknown 
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6.2. Project Environment Impacts 
 
The following section is intended to assess whether environmental factors 
adversely or positively affected project performance beyond the conditions for 
which you planned. 
 
Impacts may be assessed ranging from “highly negative”, to “highly positive”.  
If the factor was adequately planned for, please indicate “As Planned”.  If it was 
not planned for, please indicate the impact, positive or negative. Negative impacts 
adversely affect the metrics and positive impacts favorably affect the metrics. 
 
Weather  
◘ N/A ◘ UNK 

 
 
Labor Skill  
◘ N/A ◘ UNK  

 
 
Labor Availability  
◘ N/A ◘ UNK 
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Materials Availability 
◘ N/A ◘ UNK 

 
 
Site Conditions  
◘ N/A ◘ UNK 

 
 
Complexity  
◘ N/A ◘ UNK 

 
 
Regulatory Requirements  
◘ N/A ◘ UNK 
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Project Team Experience  
◘ N/A ◘ UNK 

 
 
Project Team Turnover  
◘ N/A ◘ UNK 

 
 
Detailed Engineering Design Location (Use of Offshore Engineering) 
◘ N/A ◘ UNK 

 
 
Business Market Conditions  
◘ N/A ◘ UNK 
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Coordination with Plant Shutdown  
◘ N/A ◘ UNK 
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6.3. Practices Wrap-up 
 
Please evaluate the overall effectiveness for each practice you used in this 
project. 
 
Pre-Project Planning 
 

Pre-Project Planning involves the process of developing sufficient strategic 
information that owners can address risk and decide to commit resources to 
maximize the chance for a successful project. Pre-project planning includes 
putting together the project team, selecting technology, selecting project site, 
developing project scope, and developing project alternatives. Pre-project 
planning is often perceived as synonymous with front-end loading, front-end 
planning, feasibility analysis, and conceptual planning.  
 
On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of Pre-Project Planning on this 
project. 
 

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
Team Building 
 
Team Building is a project-focused process that builds and develops shared goals, 
interdependence, trust and commitment, and accountability among team members 
and that seeks to improve team members problem-solving skills. 
 
On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of Team Building on this 
project. 
 

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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Alignment during Pre-Project Planning 
 
Alignment is the condition where appropriate project participants are working 
within acceptable tolerances to develop and meet a uniformly defined and 
understood set of project objectives. 
 
On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of Alignment during Pre-
Project Planning Practices on this project.  
 

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
Constructability 
 
Constructability is the effective and timely integration of construction knowledge 
into the conceptual planning, design, construction and field operations of a project 
to achieve the overall project objectives with the best possible time and accuracy, 
at the most cost-effective levels. 
 
On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of Constructability on this 
project. 
 

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
Materials Management 
 

Materials management is an integrated process for planning and controlling all 
necessary efforts to make certain that the quality and quantity of materials and 
equipment are appropriately specified in a timely manner, are obtained at a 
reasonable cost, and are available when needed. The materials management 
systems combine and integrate the takeoff, vendor evaluation, purchasing, 
expediting, warehousing, distribution, and disposing of materials functions. 
 
On a scale of 0 to 10, with 0 indicating no effectiveness and 10 indicating 
excellent effectiveness please rate the overall effectiveness of Materials 
Management on this project. 
 

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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Change Management 
 
Change Management is the process of incorporating a balanced change culture of 
recognition, planning and evaluation of project changes in an organization to 
effectively manage project changes.  
 
On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of Project Change Management 
on this project.  

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
Zero Accident Techniques 
 
Zero accident techniques include the site specific safety programs and 
implementation, auditing and incentive efforts to create a project environment and 
a level of training that embraces the mind set that all accidents are preventable 
and that zero accidents is an obtainable goal. 
 
On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of the Safety Program on this 
project. 
 

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
Quality Management 
 

Quality Management incorporates all activities conducted to improve the 
efficiency, contract compliance and cost effectiveness of design, engineering, 
procurement, QA/QC, construction, and start-up elements of construction 
projects. 
 

On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of Quality Management on this 
project. 
 

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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Automation/Integration (AI) Technology 
 
The Automation and Integration Technology practice addresses the degree of 
automation/level of use and integration of automated systems for predefined 
tasks/work functions common to most projects. 
 
On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of Automation/Integration 
Technology Practices on this project.  

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 

 
Planning for Startup 
 
Startup is the transitional phase between plant construction completion and 
commercial operations, including all of the activities that bridge these two phases. 
Planning for Startup consists of a sequence of activities that begins during 
requirements definition and extends through initial operations. This section 
assesses the level of Startup Planning by evaluating the degree of implementation 
of specific activities throughout the various phases of a project.  
 
On a scale of 0 to 10, with 0 indicating not effective and 10 indicating very 
effective, please assess the overall effectiveness of the Planning for Startup 
process on this project. 
 

0 1 2 3 4 5 6 7 8 9 10 NA UNK
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 
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Appendix C: Data Submission by Company  
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Table C.1A Engineering Productivity Data Submission by Company  

 

Company Projects Pct Ground Slab Pct Area paving Pct Total Slab Pct 

Company A 3 3.45% 1 6.25%   0.00% 1 4.55% 

Company B 1 1.15%   0.00%   0.00%   0.00% 

Company C 1 1.15% 1 6.25%   0.00% 1 4.55% 

Company D 5 5.75%   0.00%   0.00%   0.00% 

Company E 11 12.64% 4 25.00% 1 10.00% 5 22.73%

Company F 17 19.54%   0.00%   0.00%   0.00% 

Company G 1 1.15% 1 6.25%   0.00% 1 4.55% 

Company H 3 3.45%   0.00%   0.00%   0.00% 

Company I 5 5.75%   0.00%   0.00%   0.00% 

Company J 1 1.15%   0.00% 1 10.00% 1 4.55% 

Company K 2 2.30% 1 6.25% 1 10.00% 2 9.09% 

Company L 3 3.45% 2 12.50% 1 10.00% 2 9.09% 

Company M 1 1.15%   0.00% 1 10.00% 1 4.55% 

Company N 2 2.30%   0.00%   0.00%   0.00% 

Company O 3 3.45% 2 12.50% 2 20.00% 2 9.09% 

Company P 4 4.60% 3 18.75% 1 10.00% 3 13.64%

Company Q 18 20.69%   0.00%   0.00%   0.00% 

Company R 4 4.60% 1 6.25% 2 20.00% 3 13.64%

Company S 1 1.15%   0.00%   0.00%   0.00% 

Company T 1 1.15%   0.00%   0.00%   0.00% 

Grand Total 87 100.00% 16 100.00% 10 100.00% 22 100.00%

# of companies 20   9   8   10   
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Table C.1B Engineering Productivity Data Submission by Company  

 

Company Total 
Foundation Pct Concrete 

Structures  Total 
Concrete Pct Total 

Steel Pct 

Company A   0.00% 1 7.69% 1 2.50% 3 7.14% 

Company B   0.00%   0.00%   0.00%   0.00% 

Company C   0.00%   0.00% 1 2.50%   0.00% 

Company D   0.00%   0.00%   0.00% 3 7.14% 

Company E 3 17.65% 4 30.77% 8 20.00% 10 23.81% 

Company F   0.00%   0.00%   0.00%   0.00% 

Company G 1 5.88%   0.00% 1 2.50%   0.00% 

Company H   0.00%   0.00% 1 2.50% 2 4.76% 

Company I   0.00%   0.00% 1 2.50% 1 2.38% 

Company J 1 5.88% 1 7.69% 1 2.50% 1 2.38% 

Company K 2 11.76% 1 7.69% 2 5.00% 2 4.76% 

Company L 2 11.76% 1 7.69% 3 7.50% 3 7.14% 

Company M   0.00% 1 7.69% 1 2.50% 1 2.38% 

Company N   0.00% 1 7.69% 1 2.50% 2 4.76% 

Company O 2 11.76% 1 7.69% 2 5.00% 3 7.14% 

Company P 2 11.76%   0.00% 3 7.50% 3 7.14% 

Company Q   0.00%   0.00% 9 22.50% 3 7.14% 

Company R 4 23.53% 2 15.38% 4 10.00% 4 9.52% 

Company S   0.00%   0.00%   0.00%   0.00% 

Company T   0.00%   0.00% 1 2.50% 1 2.38% 

Grand Total 17 100.00% 13 100.00% 40 100.00% 42 100.00%

# of companies 8   8   15   14   
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Table C.1C Engineering Productivity Data Submission by Company  

 

Company 
Electrical 

Equipment 
=<600V 

Pct 
Electrical 

Equipment 
>600V 

Pct 
Total 

Electrical 
Equipment 

Pct 

Company A 2 11.11%   0.00% 2 8.70% 

Company B   0.00%   0.00%   0.00% 

Company C   0.00%   0.00%   0.00% 

Company D 1 5.56%   0.00% 1 4.35% 

Company E 3 16.67%   0.00% 3 13.04% 

Company F   0.00%   0.00%   0.00% 

Company G   0.00%   0.00%   0.00% 

Company H   0.00%   0.00%   0.00% 

Company I   0.00%   0.00%   0.00% 

Company J 1 5.56% 1 9.09% 1 4.35% 

Company K 2 11.11% 2 18.18% 2 8.70% 

Company L 1 5.56% 2 18.18% 2 8.70% 

Company M 1 5.56% 1 9.09% 1 4.35% 

Company N 1 5.56% 1 9.09% 1 4.35% 

Company O 1 5.56% 1 9.09% 1 4.35% 

Company P 2 11.11%   0.00% 2 8.70% 

Company Q   0.00%   0.00% 3 13.04% 

Company R 3 16.67% 3 27.27% 4 17.39% 

Company S   0.00%   0.00%   0.00% 

Company T   0.00%   0.00%   0.00% 

Grand Total 18 100.00% 11 100.00% 23 100.00% 

# of companies 10   7   11   
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Table C.1D Engineering Productivity Data Submission by Company  

 

Company Conduit 
(LF) Pct 

Conduit 
(No. of 
Runs) 

Pct Wire and 
Cable (LF) Pct 

Wire and Cable 
(No. of 

Termination) 
Pct 

Company A 1 2.78% 1 8.33% 2 5.26% 2 10.53% 

Company B   0.00%   0.00%   0.00%   0.00% 

Company C   0.00%   0.00%   0.00%   0.00% 

Company D   0.00%   0.00%   0.00%   0.00% 

Company E 8 22.22% 2 16.67% 9 23.68% 4 21.05% 

Company F 1 2.78% 1 8.33% 1 2.63% 1 5.26% 

Company G   0.00%   0.00%   0.00%   0.00% 

Company H   0.00%   0.00%   0.00%   0.00% 

Company I   0.00%   0.00%   0.00%   0.00% 

Company J 1 2.78%   0.00% 1 2.63%   0.00% 

Company K 2 5.56%   0.00% 2 5.26% 1 5.26% 

Company L 2 5.56% 2 16.67% 3 7.89% 3 15.79% 

Company M 1 2.78% 1 8.33% 1 2.63% 1 5.26% 

Company N 1 2.78%   0.00% 2 5.26% 1 5.26% 

Company O 1 2.78% 1 8.33% 1 2.63% 1 5.26% 

Company P 2 5.56% 2 16.67%   0.00% 1 5.26% 

Company Q 12 33.33%   0.00% 12 31.58% 1 5.26% 

Company R 4 11.11% 2 16.67% 4 10.53% 3 15.79% 

Company S   0.00%   0.00%   0.00%   0.00% 

Company T   0.00%   0.00%   0.00%   0.00% 

Grand Total 36 100.00% 12 100.00% 38 100.00% 19 100.00%

# of companies 11   7   10   10   
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Table C.1E Engineering Productivity Data Submission by Company  

 

Company Lighting Pct Small Bore Pct Large 
Bore Pct Total 

Piping Pct 

Company A 2 9.09% 2 5.56% 3 7.32% 3 4.35% 

Company B  0.00%  0.00%  0.00%  0.00% 

Company C  0.00% 1 2.78% 1 2.44% 1 1.45% 

Company D  0.00% 4 11.11% 4 9.76% 4 5.80% 

Company E 6 27.27% 4 11.11% 4 9.76% 11 15.94% 

Company F  0.00% 12 33.33% 16 39.02% 16 23.19% 

Company G  0.00%  0.00%  0.00%  0.00% 

Company H  0.00%  0.00%  0.00% 2 2.90% 

Company I  0.00%  0.00%  0.00% 3 4.35% 

Company J 1 4.55% 1 2.78% 1 2.44% 1 1.45% 

Company K 2 9.09% 1 2.78% 1 2.44% 2 2.90% 

Company L 3 13.64% 2 5.56% 2 4.88% 3 4.35% 

Company M 1 4.55% 1 2.78% 1 2.44% 1 1.45% 

Company N 2 9.09% 2 5.56% 2 4.88% 2 2.90% 

Company O 1 4.55% 2 5.56% 2 4.88% 3 4.35% 

Company P 1 4.55% 2 5.56% 2 4.88% 2 2.90% 

Company Q  0.00%  0.00%  0.00% 10 14.49% 

Company R 3 13.64% 2 5.56% 2 4.88% 4 5.80% 

Company S  0.00%  0.00%  0.00% 1 1.45% 

Company T  0.00%  0.00%  0.00% 1 1.45% 

Grand Total 22 100.00% 36 100.00% 41 100.00% 70 100.00% 

# of companies 9  13  13  17  
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Table C.1F Engineering Productivity Data Submission by Company  

 

Company Loops Pct Tagged 
Devices Pct I/O Pct 

Company A 1 3.23% 2 4.35% 1 2.70% 

Company B   0.00% 1 2.17% 1 2.70% 

Company C 1 3.23% 1 2.17% 1 2.70% 

Company D   0.00% 4 8.70% 5 13.51% 

Company E 7 22.58% 9 19.57% 5 13.51% 

Company F   0.00%   0.00%   0.00% 

Company G 1 3.23% 1 2.17% 1 2.70% 

Company H   0.00% 1 2.17%   0.00% 

Company I   0.00% 1 2.17%   0.00% 

Company J 1 3.23% 1 2.17% 1 2.70% 

Company K 2 6.45% 2 4.35% 1 2.70% 

Company L 3 9.68% 3 6.52% 3 8.11% 

Company M 1 3.23% 1 2.17% 1 2.70% 

Company N   0.00% 2 4.35% 1 2.70% 

Company O 2 6.45% 3 6.52% 3 8.11% 

Company P 2 6.45% 2 4.35% 2 5.41% 

Company Q 6 19.35% 8 17.39% 6 16.22% 

Company R 2 6.45% 3 6.52% 4 10.81% 

Company S 1 3.23% 1 2.17% 1 2.70% 

Company T 1 3.23% 1 2.17%   0.00% 

Grand Total 31 100.00% 47 100.00% 37 100.00% 

# of companies 13   18   15   
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Table C.1G Engineering Productivity Data Submission by Company  

 
Total Equipment 

(Individually 
Designed) 

Pct Total Equipment 
(Total Quantity) Pct Company 

Company A 1 2.44% 1 1.89% 

Company B   0.00% 1 1.89% 

Company C 1 2.44% 1 1.89% 

Company D   0.00%   0.00% 

Company E 6 14.63% 6 11.32% 

Company F 12 29.27% 12 22.64% 

Company G   0.00%   0.00% 

Company H   0.00% 1 1.89% 

Company I   0.00% 4 7.55% 

Company J 1 2.44% 1 1.89% 

Company K 2 4.88% 2 3.77% 

Company L 3 7.32% 3 5.66% 

Company M 1 2.44% 1 1.89% 

Company N 2 4.88% 2 3.77% 

Company O 2 4.88% 2 3.77% 

Company P 3 7.32% 3 5.66% 

Company Q 6 14.63% 9 16.98% 

Company R   0.00% 2 3.77% 

Company S 1 2.44% 1 1.89% 

Company T   0.00% 1 1.89% 

Grand Total 41 100.00% 53 100.00% 

# of companies 12   17   
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Appendix D: Scatter Plots between Eng. Work-Hours and IFC 
Quantities 
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Structral Steel IFC Quantities (Tons)
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Figure D.1 Scatter Plot of Structural Steel Eng. Wk-Hrs vs. IFC Quantities 

 

Pipe Racks & Utility Bridges IFC Quantities (tons)
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Figure D.2 Scatter Plot of Pipe Racks & Utility Bridges Eng. Wk-Hrs vs. IFC 

Quantities 
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Combined SS / PR & UB IFC Quantities (tons)
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Figure D.3 Scatter Plot of Combined Structural Steel / Pipe Racks & Utility    
Bridges Eng. Wk-Hrs vs. IFC Quantities 

 

Miscellaneous Steel IFC Quantities (tons)
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Figure D.4 Scatter Plot of Miscellaneous Steel Eng. Wk-Hrs vs. IFC Quantities 

 

Total Steel IFC Quantities (tons)
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Figure D.5 Scatter Plot of Total Steel Eng. Wk-Hrs vs. IFC Quantities 
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Small Bore Pipe IFC Quantity (LF)
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Figure D.6 Scatter Plot of Small Bore Pipe Eng. Wk-Hrs vs. IFC Quantities 

 

Large Bore IFC Quantity (LF)
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Figure D.7 Scatter Plot of Large Bore Pipe Eng. Wk-Hrs vs. IFC Quantities 
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Engineered Hangers and Supports IFC Quantity (EA)
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Figure D.8 Scatter Plot of Engineered Hangers and Supports Eng. Wk-Hrs vs. 
IFC Quantities 
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