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ABSTRACT: Several probabilistic methods use risk analysis for construction net- 
working. In this study, the writers compare and evaluate five nondeterministic 
methods: (1) Program evaluation review technique (PERT); (2) probabilistic net- 
work evaluation technique (PNET); (3) narrow reliability bounds (NRB), (4) Monte 
Carlo simulation (MCS); and (5) simplified Monte Carlo simulation (SMCS). To 
compare the five methods, the writers solved 31 networks using each of the methods. 
The results obtained by each method were compared and evaluated based on the 
survival function and computer time. The writers found that PERT is the simplest 
method and yields the most optimistic results, while MCS and SMCS produce the 
most conservative result. The gap between the survival function obtained with 
PERT and that obtained with the two simulation methods (MCS and SMCS) is 
wider for positively skewed distributions of network activities. 

INTRODUCTION 

Construction operat ions  involve many uncertain variables and require  the 
use of risk analyses, which experts  employ for construction scheduling. To 
perform these risk analyses, experts  use networks to represent  the occur- 
rence of activities involved in the construction project .  A network consists 
of activities and links. Each activity represents  a significant and definable 
task in the construction project ,  while links are used to indicate the rela- 
tionships between tasks. A sequence of activities that starts with the first 
activity and ends with the last one is called a path.  Failure to complete  the 
project  on time occurs when one or more paths take longer to complete  
than expected.  

A probabil is t ic  approach incorporat ing the correlat ion among the network 
paths was introduced by Ang  (1975); and a re la ted unpubl ished study (Zaf-  
erriere 1981) per formed  an assessment of probabil is t ic  methods.  

The purpose  of our  study is to compare  the use of probabil is t ic  scheduling 
methods for risk analyses. The survival function and the computing speed 
of each nondeterminis t ic  method  were used to measure  its performance.  In 
this paper ,  the writers present  examples  of different construction networks.  
The methods included in this research are: (1) Program evaluat ion review 
technique (PERT);  (2) probabil is t ic  network evaluat ion technique (PNET);  
(3) narrow reliabil i ty bounds (NRB);  (4) Monte  Carlo simulation (MCS); 
and (5) simplified Monte  Carlo simulation (SMCS). Of these five methods,  
PERT and MCS are the most  widely used in practice. Moreover ,  some state- 
of-the-art  scheduling software use P E R T  or  MCS to per form risk analyses,  
for example,  super project  exper t  and open plan. PNET,  NRB,  and SMCS 
are relatively new and have been  used mostly in research. 

The survival f u n c t i o n - - S ( r )  = 1 - F(T), where F(T) = the cumulative 
distribution function (CDF)  of project  d u r a t i o n - - i s  used to compare  the 
results of each method.  Compute r  t ime is also measured  for each of the 
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five methods. In order to carry out the study, the writers developed several 
computer programs, and used 31 construction network cases. 

The first section of this paper covers the theoretical bases of the five risk 
analyses techniques employed. The second section contains the results of 
two case studies, and the final section includes conclusions and recommen- 
dations. 

THEORETICAL BACKGROUND 
In this section, the writers describe the theory behind the methods em- 

ployed for the study, namely, PERT,  PNET, NRB,  MCS, and SMCS. A 
more detailed description of the use of these methods for construction 
scheduling networks can be found in a study by Diaz (1989). 

Program Evaluation Review Technique (PERT) Method 
The P E R T  model is constructed according to three durations that the 

scheduler determines for each activity: optimistic, most likely, and pessi- 
mistic [ "PERT"  1958]. 

Eqs. (1) and (2) present the expected value and standard deviation for 
the duration of a given activity ( " P E R T "  1958). 

(a + 4M + b) 
t~ = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1) 

(b - a) 
s - d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

where te = expected duration, a = optimistic duration, M = most likely 
duration, b = pessimistic duration, s = standard deviation, and d = scaling 
factor. 

A value of 3.2 for d is appropriate for construction purposes (Moder 
1983). Therefore, 3.2 is used in this study as the value of d. 

PERT uses the central limit theorem (CLT) to find the expected project 
duration. The CLT indicates that for independent random variables 

E ( T )  = q + t2 + t3 + . . .  + tn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

and, 

S 2 = s ~ + s ~ + s ~ + . . .  +s~, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 

where E ( T )  = expected duration; ti = expected duration of ith activity; S 
= standard deviation of the project; and si = standard deviation of ith 
activity. 

P E R T  assumes that the network F(T)  follows a normal distribution with 
expected duration, E ( T ) ,  and standard deviation, S. Values for F ( T )  can 
be found in any published standardized normal distribution table (Patel 
1982). We also assume that F ( T )  of the network is determined exclusively 
by the expected duration and the standard deviation of the critical path. In 
this study, F ( T )  is calculated using (5), which has a maximum error of only 
0.07% (Patel 1982). The scheduler has to find the probability, S ( T ) ,  that 
the network duration will be longer than a duration, T. 

1 
F ( T )  = 1 + exp[-1.5957691(X)(1 + 0.044715(X2))] . . . . . . . . . . . . .  (5) 

and S ( T )  = 1 - F ( T )  where X = [E(T)  - t]/S. 

41 

J. Constr. Eng. Manage. 1993.119:40-57.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
 o

n 
06

/1
8/

13
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



S ( T )  is calculated for as many durations, t, as the scheduler feels nec- 
essarv. Using small differences between the durations drawing of the survival 
function (SF) curve is recommended to obtain a smooth curve. 

Probabilistic Network Evaluation Technique (PNET) 
PNET was introduced by Ang (1975). The algorithm used by PNET is 

based on the different modes of failure that a network can have. Failure, 
in this case, is the completion of a project in a time longer than the target 
duration. Each path in the network can become a mode of failure. Thus, 
the completion of a project can be delayed by one or more paths in the 
network. PNET uses the simplified solution for the combination of modes 
of failure explained in the following paragraphs. 

First, each activity in the network must have an expected time and a 
standard deviation. For comparison purposes, the writers utilized the same 
values used in PERT analyses. The CLT is applied to determine the expected 
value and standard deviation for the duration of each path. Next, the paths 
are ranked in the order of the longest duration. If two paths have the same 
duration, then the one with the highest standard deviation is assigned the 
higher rank. Eq. (6) is used to calculate the correlation coefficient between 
two paths (Ang 1975) 

R 0 = 
s~  + s ~, + . . .  + s ~  + . . .  + s?, 

S~ x Sj 
. . . . . . . . . . . . . . . . . . . . . . . .  (6) 

where Ri~ = correlation coefficient between the paths i and j; n = number 
of activities common to both paths; sk = standard deviation of the kth 
activity that is common to paths i and j; S, = standard deviation of path i; 
and Sj = standard deviation of path j. 

For every pair of paths, the correlation coefficient, Rsj, is compared with 
a correlation coefficient, Ro.  Ang indicates that a value of 0.5 for Ro is 
appropriate for construction networks (Ang 1975). If R,  is larger than the 
Ro value, the two paths are considered completely correlated, and R~ be- 
comes unitv. If R~j is smaller than the Ro value, the two paths are considered 
uncorrelated, and R~j becomes zero. The next step is to construct a corre- 
lation matrix with ones and zeroes obtained for every pair of paths. 

A network composed of 60 activities can easily have more than 100 paths. 
PNET considers that one path can represent a group of paths. If any two 
paths have a correlation coefficient value of unity, the pair will be repre- 
sented by the higher-ranked path. By repeating this for every pair of cor- 
related paths the paths that are represented by a path of higher rank are 
eliminated. This selection results in a smaller number of uncorrelated paths 
which represent the network. 

The probability, P, of the network to have a duration, T, or longer is 

P ( T )  = 1 - p ( q  < T)  x p(t2 < T)  x . . .  x p ( t .  < T)  . . . . . . . . . .  (7) 

where ti = expected duration of the ith representative path; and n = number 
of representative paths (Ang 1975). 

Eq. (5) provides the formula for the individual probability of each path, 
p(t~ < T)  (Patel 1982). The network SF curve is constructed by calculating 
P for a large number of durations T. 
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Narrow Reliability Bounds Method (NRB) 
The NRB method was developed for structural reliability analysis by 

Ditlevsen (1979), and was earlier applied for scheduling by Laferriere (1981). 
Like PNET, the NRB model is based on the probability of failure of each 

path. Failure occurs when the network duration is longer than a predeter- 
mined target duration. A failure mode is equivalent to a network path. Each 
path is considered to be normally distributed with expected duration, E(b), 
and standard deviation, Si. 

NRB finds two probabilities of failure for the combination of all existing 
paths: lower bound probability (PL) and upper bound probability (PU) 
(Ditlevsen 1979). 

The first step in NRB is to find the expected duration and standard 
deviation for each activity by using procedures similar to those used in 
PERT. The expected duration, E(ti), and the standard deviation, Si, of each 
path, i, are found by applying the CLT. Then, (6) is used to calculate the 
correlation coefficient, Rq, between each pair of paths i, ]. 

The purpose of the calculation of PL and PU is to find the probability 
of completing the project in a duration longer than the target duration, T 
(or probability of failure). Tmust be at least as long as the expected duration 
of the longest path. This limit is due to the geometrical nature of the NRB 
solution (Ditlevsen 1979). Ditlevsen's objective is to obtain the reliability 
of project completion. This reliability corresponds to the reliability index. 
For a more detailed discussion of this approach see Ditlevsen (1979) and 
Diaz (1989). 

Hereafter, (5) is used to calculate the individual probability of failure, 
S(T) ,  for every path. The next step is to rank the paths in the order of the 
higher probability of failure. The combined probability between the paths 
then can be represented by a two-dimensional figure with failure and success 
regions for the network (Ditlevsen 1979). 

The intersection of failure regions (Fi N/7/) has upper and lower bounds. 
The value of the lower bound, pl, of the intersection of two modes of failure 
is max (P1, P2), while the upper bound, pu, is the summation of P1 and 
P2. Eqs. (8) and (9) are used to find the value of P1 and P2 (Ditlevsen 
1979). 

_-- 1 P1 = qb(Xk)@ L (1 - Rg3('2)J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (8) 

P2 = O(Xt)O r(x  - Rk,X,)] 
L( 1 _ R b ) . , ~ ) j  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 9 )  

where k, 1 = any pair of paths; Rkt = correlation coefficient between paths 
k and l; Ark = [E(tk) - t]/S; alp(.) = standard normal distribution function. 

These upper and lower bounds-, pu and pl, are used in the following 
calculation of PL and PU. 

[ el ] 
PL = P(F1) + max O, P(F~) - X P(F~ A Fj) . . . . . . . . . . . .  (10) 

i = 2  j = l  

m m 

PU = ~ P(Fi) - ~ maxj<i P(Fi A F/) . . . . . . . . . . . . . . . . . . . . . . . .  (11) 
i = 1  i = 2  
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where P(Fi) = probability of failure of the ith ranked path; P(Fi N Fj) = 
the probability of the intersection of failure modes i and ]. 

The probability of failure P(T) of the network for the target time T is 
presented as follows: PL <- P(T) <- PU. The process described earlier for 
finding PL and PU is repeated for different target times, T, and generates 
pairs of values of (T, PL) and (T, PU) that form the SF curve of the network. 
The network is represented by two SF curves. One is constructed with PL 
values, and the second with PU values. 

Monte Carlo Simulation (MCS) Method 
MCS, a probabilistic method that includes randomness in its calculations, 

is recommended only for computer applications, due to the large number 
of calculations it requires (Diaz 1989). The model presented is a simulation 
procedure. Before running a simulation of the duration of a construction 
network the CDF of each activity is determined. 

During each replication in the simulation random values in the range (0- 
1) are assigned to the probability of completion of the activities. Once the 
CDF and the probability of completion of the activities are known, their 
durations can be determined by solving (5) for the given random probability. 
Thereafter, the duration of each path is found by summing up the durations 
of all activities in the path. The network duration is the duration of the 
longest path (Diaz 1989). 

The whole process is repeated as many times as necessary. A large number 
of replications, say 10,000, is needed to obtain very accurate results. A 
simulation with 1,000 replications gives satisfactory results for construction 
networking purposes and is affordable in cost (Moder 1983). To perform 
an MCS, the activities in the network are assumed to be independent. This 
means that the duration of any activity will not affect the duration of another, 

For illustration purposes the writers use triangular approximations for 
the distributions of construction activities. Figs. l(a) and 1 (b) show examples 
of triangular distributions. The optimistic, most likely, and pessimistic du- 
rations used in MCS are determined in the same way as they are in PERT, 
since these values are independent of the method used (Diaz 1989). 

After the desired number of replications have been run, the network 
durations are ranked in the order of the shortest to the longest duration. 
Since the MCS result is based on a number of replications, for example, 
1,000 (12) gives a good approximation for the probability, P, that the project 
will be completed in time, T, or longer 

Y/ 
P = I - - -  

N 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

where n = number of replications with project duration equal or smaller 
than T; and N = total number of replications. 

A large number of values for P for different values of T will guarantee 
a smooth SF curve. 

Simplified Monte Carlo Simulation (SMCS) 
Simplified Monte Carlo simulation, SMCS, simplifies the scheduling net- 

work to those activities and paths that are more likely to cause delay of the 
construction project completion. 

The SMCS method is similar to the MCS method, but elimination of 
path(s) and activities in the network is performed prior to the first repli- 
cation. Each replication involves the calculation of the duration of each 
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0 

m b Duration 

FIG. l(a). Symmetric Distribution 

a 

a m b Duration 

FIG. l(b). Asymmetric Distribution 

activitv and each path in the simplified network. The project duration for 
a particular replication is the duration of the longest path. Although with 
the SMCS method the number of calculations is considerably reduced, the 
use of a computer is recommended. 

The first step in SMCS is the calculation of the expected duration of each 
activity. Eq. (3) then is used to calculate the expected duration, E(T),  of 
the network. Those paths with an expected duration of less than Tram are 
not considered in further calculations. Eq. (13) gives the formula to deter- 
mine T,,n (Diaz 1989). 

Tm,n -- K x E ( T )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13)  

K = a coefficient that indicates how close a path must be to the critical 
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path if it is to cause the delay of the project, and can range from zero to 
one. The selection of K for a particular network is left to the scheduler's 
judgment. Since the effect of the value of K has not been extensively studied, 
the writers use a value of 2/3 for K, which results in considerable reduction 
of computing time and unnoticeable changes in accuracy compared to MCS 
(Diaz 1989). 

After T,,i, is used to filter the network paths, the network activities are 
reduced. Those activities that are absent from any of the remaining paths 
are not considered in the rest of the calculations. The result of these two 
refinements is a simplified network, which only includes activities that are 
likely to cause delay of the construction project. The simulation process 
and the procedures used to develop the network SF curve are similar to 
those of the MCS method. The only difference is that, in the SMCS method, 
the calculations are performed using the simplified network. 

CASE STUDIES 

In this study, 31 network problems extracted from various references 
were analyzed using each of the five methods. The cases ranged from ren- 
ovation projects with 15 activities to industrial projects with the number of 
activities close to 100. In some of these cases, activities represent subnet- 
works. One of the reviewers of this paper indicated that "there is a large 
gap between the theory applied to networks of 15 or 20 activities and the 
application to networks of 300 or 400 activities." The writers agree with this 
statement and for this reason we included projects that had the number of 
activities close to 100. Since some of the activities represent subnetworks 
of several activities, the complete network includes more than 100 activities. 

For each activity, the data set of the networks included optimistic du- 
ration, a, most likely duration, m, and pessimistic duration, b. Each network 
was solved for two different sets of data. The first set assumed that the 
activities involved had a symmetric distribution. The second set assumed 
positively skewed activities [see Figs. l(a) and l(b)]. The authors used their 
own judgment to determine the shape of the asymmetric distribution. 

In this study, the writers considered the original expected duration as m. 
The a and b values were found using the following formulas: 

B = 3.2 x S + a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

b - m = m - a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15) 

b - m = 2 x (m - a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16) 

Eq. (14) is derived from (2). Eqs. (15) and (16) were developed from the 
geometry of the distributions in Figs. l(a) and l(b). The symmetric set uses 
Eqs. (14) and (15) while the asymmetric set uses (14) and (16) (Diaz 1989). 

In this section, two case studies are presented: ANG1 (Ang 1975) and 
OBRIEN6 (O'Brien 1984). Since the references provided only the most 
likely duration, rn, of the activities, the writers, for the purpose of this study, 
used their judgment to provide values for a and b. For each case, a graphic 
shows the network SF curves obtained when using each of the methods 
studied. For the MCS and SMCS methods 1,000 replications were run, which 
is the number of replications recommended (Moder 1983). Common random 
numbers were not used to compare MCS against SMCS, since the networks 
used in the simulation of the same case study are different. 
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Case Study ANG1 and ANGIB 
The case study ANG1 consists of a highway project network (see Fig. 2) 

(Ang 1975). Case ANG1B follows the same description as ANG1. The 
difference falls in the shape of the CDF of the activities. The writers chose 
this problem as the first case since it has been used in other studies that 
compared several probabilistic scheduling methods (Ang 1975; Laferriere 
1981). A symmetric CDF was assumed for each activity [see Fig. l(a)]. A 
computer program calculated the mean and standard deviation. Fig. 3 pre- 
sents the results obtained by all the five methods. 

The PERT results are the most liberal, and the SMCS the most conser- 
vative. The PNET curve, which falls between the PERT and the MCS curves 
but very close to the MCS curve, is the only curve to fall between the lower 
and upper bounds that were obtained with the NRB method. 

For case ANG1B, an asymmetric CDF (positively skewed) for every 
activity was assumed. See Fig. 4 for the SF curve of this case. Also, for case 
ANG1B, the results are more conservative than those of ANG1. The PERT 
curve is the most liberal, the MCS curve the most conservative, and the 
PNET curve falls midway between the PERT and the MCS curves. The 
PNET curve is also the only curve to fall between the lower and upper 
bounds obtained with the NRB method. The gap between the MCS and 
SMCS curves, and the other curves is more pronounced in the case of 
ANG1B than in ANG1. In ANG1B, as well as in ANG1, the lower bound 
becomes closer to the PERT curve as the probability value became closer 
to 0.5. 

Case Study OBRIEN6 and OBRIEN6B 
Case study OBRIEN6 and OBRIEN6B relates to the construction of a 

small industrial building for a company (O'Brien 1984). Case OBRIEN6B 
follows the same description as OBRIEN6. The difference falls in the shape 
of the CDF of the activities. The network includes only major field activities. 
Figs. 5 -7  present this case in a form similar to case ANG1 and ANG1B. 

For OBRIEN6, the PERT curve is the most liberal curve and the upper 
bound the most conservative (see Fig. 6). The PNET curve is halfway 
between the MCS and PERT curves. The PERT, PNET, and lower bound 
curves are very similar for probabilities lower than 0.25. The MCS and 
SMCS curves are, once again, very similar. 

For case OBRIEN6B, an asymmetric CDF (positively skewed) for every 
activity was assumed. As in OBRIEN6, the PERT curve is the most liberal 
curve (see Fig. 7). The MCS and SMCS curves are the most conservative. 
The PNET curve falls between the MCS and the PERT curves but closer 
to that of PERT. The PNET curve is also the only curve to fall between 
the lower and upper bounds. The MCS and SMCS curves are, again, very 
close to each other. The gap between the MCS and SMCS curves, and the 
other curves, is quite pronounced in this case. 

RESULTS 

In this paper, the authors applied PERT, PNET, NRB, MCS, and SMCS 
to 31 network cases, and used computer programs to test the five different 
approaches. Specific observations for two of the case studies and general 
observations for the 31 cases are discussed here. 
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Influence of Activities Distributions 
There are consistent differences between the results obtained for a set 

with asymmetric (positively skewed) activity distributions and a set with 
symmetric activity distributions. The difference between the SF curves of 
the network using MCS and SMCS methods, and the SF curves using PERT, 
PNET, or NRB, is more noticeable in the network with asymmetric activity 
distributions. The results of MCS and SMCS tend to be much mor~ con- 
servative than the results obtained with the other three methods. This dif- 
ference is due to the fact that PERT, P N E T ,  and NRB use the expected 
duration, E(t), and standard deviation, S, as parameters of the activities 
distributions; and these three methods do not account for the skewness of 
the activity distributions. On the other hand, the MCS and SMCS methods 
have the ability to simulate the skewness of the activity distributions. 

Discussion of Probability of Failure 
The PERT method consistently derives a liberal probability of failure, 

P(T),  for a network. This is evident in all 31 case studies. In some networks, 
value of P(T) obtained with PERT is much lower than in the other methods. 
The difference between the value of P(T) obtained by PERT, and that 
obtained by other methods, is higher when the network has several critical 
or near-critical paths. PERT's  liberal results are due to the fact that PERT 
uses exclusively the expected longest path to calculate the probability of 
failure. 

PNET yields a value of P(T) higher than or equal to PERT in every case. 
In some cases, the SF curve obtained with PNET is similar to that obtained 
with MCS. In most cases, the value of P(T) obtained with PNET falls 
between the lower and upper bounds found with the NRB method. From 
these observations, it can be seen that PNET gives better results than PERT 
because PNET considers the existence of more than one path. 

The relative pessimism in the value of P(T) obtained by PNET does not 
seem consistent. Sometimes the SF curve obtained with PNET is close to 
that obtained with PERT, and other times it is closer to the MCS result 
(see Figs. 6 and 7). 

The writers found that the correlation coefficient Ro determines whether 
the result is liberal or conservative. In regard to choosing a Ro value, there 
are several considerations that a scheduler should keep in mind. A starting 
Ro value of 0.5 is fine for many networks; however, for some networks a 
higher Ro value is more convenient. If most of the paths in the network 
are closely correlated (share a large number of activities), Ro values between 
0.60 and 0.85 give results closer to MCS results; however, if the Ro value 
is high, the results can become very conservative. Until more research is 
done about the effect of Ro, the writers suggest solving the problem using 
two different values of Ro, and using judgment to arrive at an appropriate 
answer. 

Although the objective of this study did not include a parametric study 
of Ro, the writers noted that one of the case studies was particularly sensitive 
to the Ro value. For that case, the writers used two slightly different values 
of Ro (0.83 and 0.85). The SF curve was very liberal for 0.83 and very 
conservative for 0.85. This difference is due to the large number of pairs 
of paths that gave correlation values between 0.83 and 0.85. 

The NRB method gives consistent results in the upper tail of the network 
SF curve. In that region of the SF curve, the lower and upper bounds are 
very close to each other. The lower and upper bounds obtained with NRB 
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do not represent the complete SF curve of the network, since the NRB 
model can only find the probability of failure for target durations larger 
than the project expected duration. Although NRB is only useful for the 
upper tail, it seems to be very accurate for values of P(T) lower than 5%. 
For higher values of P(T), the results are at least as optimistic as those 
obtained with PNET or PERT. NRB has the advantage of providing the 
lower and upper bounds. 

In most cases, MCS results in a more conservative value of P(T) than 
that obtained with the three previous methods. This is because MCS con- 
siders every path and activity in the network as a potential cause of failure 
for completion of the project in a given time. MCS also has the capability 
of limiting the network duration to a maximum pessimistic duration. This 
maximum duration is the summation of the b of the critical activities. The 
probability for completion of a project in a time longer than the maximum 
duration is zero. On the other hand, the previous three methods (PERT, 
PNET, and NRB) use a normal distribution for the network SF curve. Any 
normal distribution has tails that go to the infinite. In this case, the maximum 
duration would be infinite; in the real world, however, no construction 
project lasts forever. 

The SMCS method gives results similar to those obtained with the MCS 
method. In the networks analyzed, there is no tendency for the SMCS results 
to be more liberal than those obtained with the MCS method. Therefore, 
a simplified network can accurately represent a project network. This leads 
to the conclusion that the duration of some activities has little or no impact 
on the final duration of the network. The writers expected that this method 
would offer results close to those obtained with MCS, but slightly more on 
the liberal side. This expectation was based on the simplified network of 
the SMCS method. In every case, the SF curves obtained with the two 
methods was very similar. When determining the value of K for SMCS: the 
smaller the value of K, the closer Tmi,, is to zero, and the closer the result 
of SMCS is to the result of MCS; the higher the value of K, the closer Trnin 
is to the critical path, therefore, the closer the result of SMCS is to the 
PERT result and the higher the reduction in computer time is. A value of 
2/3 for K seems adequate for most construction networks. 

The writers also noted that in some cases the results obtained with SMCS 
were more conservative than those obtained with MCS. In theory, the results 
of MCS should be more conservative than the results of SMCS due to the 
simplification involved in SMCS. The writers concluded that the cause of 
conservative results of SMCS was the randomness involved in the simulation 
process. To obtain better results with MCS as well as with SMCS, the writers 
recommend using at least 10,000 replications for the simulation. 

CONCLUSIONS AND RECOMMENDATIONS 

Five nondeterministic methods for construction networks were evaluated: 
program evaluation review technique (PERT), probabilistic network eval- 
uation technique (PNET), narrow reliability bounds (NRB), Monte Carlo 
simulation (MCS), and simplified Monte Carlo simulation (SMCS). Thirty- 
one case studies were solved by each of the methods. This paper shows the 
results of two case studies. 

PERT is the simplest method and consistently derives a liberal probability 
of failure, P(T), for a network. PNET yields values of P(T) greater than 
or equal to PERT in every case. The relative pessimism of PNET fluctuates 
and is sensitive to the value of Ro. NRB provides lower and upper bounds 
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for the probability of the failure. Although NRB is useful only for the upper 
tail of the SF curve, the results are very close to the MCS results for values 
of P(T) lower than 5%. In most cases, MCS results in more conservative 
values of P(T)  than the other methods, and SMCS provides results very 
similar to MCS. The difference in the results obtained by the two simulation 
methods, MCS and SMCS, and the other three methods, PERT,  PNET,  
NRB,  is more evident when the activities in the network have positively 
skewed distributions. 

This study raises several questions that may be answered in future re- 
search. The writers believe that a parametric study of the influence of the 
value of Ro in the results of PNET could be of great value. The writers 
agree with the reviewers' comments suggesting a study of the correlation 
between the float time and the probability of failure in the future. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

a = optimistic activity duration; 
b = pessimistic activity duration; 
d = scaling factor; 

E(T)  = expected project duration; 
F(T) = cumulative distribution function of project duration; 

K = project duration coefficient for SMCS; 
M = most likely activity duration; 
N = number of replications; 
n = number of replications with project duration equal or smaller than 

T; 
P = probability of project late completion; 

P1 = intermediate value used in NRB;  
P2 = intermediate value used in NRB;  
PL = project lower-bound probability of failure; 
PU = project upper-bound probability of failure; 

P(Fi) = probability of failure of ith ranked path; 
P(T)  = probability of having project duration larger than T; 

p = probability; 
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Pl 
pu 
Rij 
Ro 

S 
Si 

S(T) 
S 
Si 
T 

~min 
t~ 
ti 

X 

= path lower bound;  
= path upper  bound;  
= correlat ion coefficient between paths i and j ;  
= correlat ion coefficient used in PNET;  
= project  s tandard  deviat ion;  
= s tandard deviat ion of  path  i; 
= survival function of project  durat ion;  
= activity s tandard deviat ion;  
= s tandard deviat ion of  the ith activity; 
= goal project  durat ion;  
= minimum path durat ion;  
= expected activity durat ion;  
-- durat ion of  the ith activity; and 
= value from standard normal  distribution. 
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