TRANSIENT STABILITY



OUTLINE

= Description of Transient Stability (TS)
= An elementary view of TS
= Methods of TS analysis
% Time-domain simulation
= Structure of power system model
“ Representation of faults



What is Transient (Angle) Stability?

The ability of the power system to maintain synchronous
operation when subjected to a severe transient disturbance
% faults on transmission circuits, transformers, buses

= |oss of generation

= loss of loads

Response involves large excursions of generator rotor angles
influenced by nonlinear power-angle relationship

Stability depends on both the initial operating state of the
system and the severity of the disturbance

Post-disturbance steady-state operating conditions usually differ
from pre-disturbance conditions



The equation of motion

An elementary principle of dynamics states that:

where:

]d25m
dt?

=Tyn—T, =T,

the total moment of inertia of the rotating masses in kg.m?
the angular displacement of the rotor with respect to a synchronously
rotating reference in mechanical radians
the mechanical torque in N.m.
the electrical torque in N.m.

accelerating torque in N.m.
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The equation of motion in per unit

Multiply both sides of the equation by o,

d?s,,
ey dt2 = W (T = Te) = Pn — Pe
where:
®, = angularspeed in mech. rad/s P., = mechanical power in W
P. = electrical power in W
2
w ) H = 1] Wmo
Basic relationships and definitions: Wm = ; Om = 5 T2 S,
) angular speed in el rad/s
angular speed in mechrad/s = ,
number of pole pairs
H = inertia constant in seconds
S, = machine rated power Kinetic energy at the rated speed (in mech. %)
S, = machine rated power in MVA H= Machine rated power
p = pole pair
®,,, = rated angular speed in mech. rad/s

®/ 6 = angular speed (in el rad/s)/
displacement angle (in el. rad)



The equation of motion in per unit
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Equal area criterion for determination of
stability

Equation of motion / swing equation in pu
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Equal area criterion for estimation of stability

If the generator (after a disturbance) settles at a stable equilibrium point, then

do B
dt
i.e. rate of change of angle with respect to time should become zero.
Hence:
dd 2nf
E: T j(pm_pe)d5 =0 - j(pm_pe)d5 =0
V
2 — — > 0: lerati
We see from the swing equation d”o — 7 f Pm — Pe) that » (Pm = Pe) aceeierdaton
dt? H (P, — Pe) < 0:deceleration

We can divide the mterval into two parts, i.e
T Critical fault clearing
\ 5 max \ angle (8,) is the angle
pe)d +‘ (pm p.)ds =0  atwhich:
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Example

A three-phase, 50 Hz, synchronous generator 1s connected to an
infinite bus through a transformer and two parallel transmission
lines. The input mechanical power to the synchronous generator
1s given as 0.8 pu. The generator supplies to the grid a complex

power of 0.8+ 0.6 pu at the rated voltage.

Find the critical clearing angle for

a) A three-phase fault at the generator terminal, where system
returns to 1ts pre-fault topology after fault clearing.

b) A three-phase fault in the middle on the second transmission
line and after the fault the second transmission line 1s
disconnected from the system.



lllustration using an example

Demonstrate the phenomenon using a very simple system and simple
models

System shown in Fig. 1

All resistances are neglected

Generator is represented by the classical model (voltage source
behind a transient reactance)

Et
Ho -
CCT #2 I

Infinite bus

Fig. 1 Single machine - infinite bus system



Pre-fault condition

CCT #1 Infinite bus E, CCT #1
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;o initial generator current =

Xr =X g+Xp+ (X1 // X2)

Ez: initial voltage at the generator terminals

Flg 2 System representation with generator
represented by classical model

The generator's electrical power output is:

P, = E).(EB -sind=P__-sind

T

With the stator resistance neglected, Pe represents the air-gap power as well as the
terminal power
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Condition during fault
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Postfault
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Power Angle Relationship
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Fig. 3 Power versus power angle relationship

= Both transmission circuits in-service: Curve 1
& operate at point "a" (Pe = Pm)
= One circuit out-of-service: Curve 2
= lower Pmax
& operate at point "b"
= higher reactance — higher 6 to transmit same power



Effects of Disturbance

= The oscillation of o is superimposed on the synchronous speed o,
= Speed deviation (A® = dd/dt ) << o,
=" the generator speed is practically equal to ®,, and the per unit (pu) air-
gap torque may be considered to be equal to the pu air-gap power

= torque and power are used interchangeably when referring to the swing

equation.

Equation of Motion or Swing Equation:

2H d°5,
w, dt?
where:
Pm = mechanical power input (pu)
Pmax = maximum electrical power output (pm)
H = inertia constant (MWs/MVA)

0 = rotor angle (elec. radians)
t = time (s)

=P —P_ .sino



Response to a Fault

= |llustrate the equal area criterion using the following system:
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{a) Single line diagram {b) Equivalent circuit

Examine the impact on stability of different fault clearing times



Stable Case

= |llustrate the equal area criterion using the following system:

Response to a fault cleared in t_ seconds - stable case



Stable Case

Pre-disturbance:

=  both circuits in service : Pe = Pm, 6 = 60

= operating point a

During fault:

= operating point moves fromatob

= jinertia prevents 6 from changing instantaneously
=  Pm > Pe - rotor accelerates to operating point c
Post Fault:

= faulted circuit is tripped, operating point shifts to d
= Pe >Pm - rotor decelerates

= rotor speed > w, - 6 increases

= operating point moves from d to e such that A1 = A2
= ate,speed=wyandd =56,

" Pe >Pm - rotor decelerates; speed below w,

= § decreases and operating point retraces e to d

= with no damping, rotor continues to oscillate



Unstable Case

P Al > A2

P, - pre-fault

P, - during
fault

I (sec)r

Response to a fault cleared in t., seconds - unstable case



Unstable Case

Area A2 above Pm is less than Al

When the operating point reaches e, the kinetic energy gained during
the accelerating period has not yet been completely expended

= the speed is still greater than w, and 6 continues to increase

Beyond point e, Pe<Pm, - rotor begins to accelerate again

The rotor speed and angle continue to increase leading to loss of
synchronism



Factors Influencing Transient Stability

a. How heavily the generator is initially loaded.

The generator output during the fault. This depends on the
fault location and type.

c. The fault clearing time.
d. The post-fault transmission system reactance.

e. The generator reactance. A lower reactance increases peak
power and reduces initial rotor angle.

f. The generator inertia. The higher the inertia, the slower the
rate of change angle. This reduces the kinetic energy gained
during fault, i.e. area Al is reduced.

g. The generator internal voltage magnitude (E’). This depends on
the field excitation.

h. The infinite bus voltage magnitude E;.



Practical Method of Transient Stability
Analysis

Practical power systems have complex network structures

Accurate analysis of transient stability requires detailed models
for:

= generating unit and controls

= voltage dependent load characteristics

® HVDC converters, FACTs devices, etc.

At present, the most practical available method of transient

stability analysis is time domain simulation:

= solution of nonlinear differential equations and algebraic
equations

= step-by-step numerical integration techniques

= complimented by efficient techniques for solving non-linear
highly sparse algebraic equations




Numerical Integration Methods

= Differential equations to be solved are nonlinear ordinary

differential equations with known initial values:
dx

— = f(x,t
rriapA G
x is the state vector of n dependent variables,

t is the independent variable (time)

Objective: solve x as a function of t, with the initial values of x and
t equal to x, and t,, respectively.

Methods:
Euler's Method
Modified Euler's Method
Runge-Kutta (R-K) Methods
Trapezoidal Rule



Simulation of Power System Dynamic
Response

Structure of the Power System Model:

Components:

= Synchronous generators, and the associated excitation systems
and prime movers

=" |nterconnecting transmission network including static loads

* |nduction and synchronous motor loads

= Other devices such as HVDC converters and SVCs

Monitored Information:

= Basic stability information

= Bus voltages

= Line flows

= Performance of protective relaying, particularly transmission
line protection




Simulation of Power System Dynamic
Response

Stator equations and | Eg. E;

axes transformation | [, [

rotor circuit

equations

System

Excitation

Acceleration or
swing equation
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Individual machine
reference frame: d-g

Algebraic equations
Differential equations

x I
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Transmission _1'__} Other generators
network [
equations :
including _:_I Motors
static loads [

I
L. Other dynamic
-.._L...:} devices, e.g.,
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Structure of the complete power system model for transient stability analysis



Simulation of Power System Dynamic
Response

Models used must be appropriate for transient stability analysis

transmission network and machine stator transients are neglected

= dynamics of machine rotors and rotor circuits, excitation
systems, prime movers and other devices such as HVDC
converters are represented

= Equations must be organized in a form suitable for numerical
integration

Large set of ordinary differential equations and large sparse
algebraic equations
= differential-algebraic initial value problem



Overall System Equations

= Equations for each dynamic device:
Xq = fa(xq, Va)
Ig = ga(xq, Vq)
where
X4 = state vector of individual device
I; = R and / components of current injection from
the device into the network
V, = R and I components of bus voltage

Network equation:
I=Yy\V
where
Y\ = network mode admittance matrix
| = node current vector
V = node voltage vector



Overall System Equations

Overall system equations:
comprises a set of first order differentials

x=f(xV)
and a set of algebraic equations
1(x,V) =YyV

where
X = state vector of the system
V = bus voltage vector
| = current injection vector
Time t does not appear explicitly in the above equations explicitly

Many approaches for solving these equations characterized by:

a. The manner of interface between the differential an algebraic equations:
partitioned or simultaneous

b. Integration method used

c. Method used for solving the algebraic equations:
— Gauss-Seidel method based on admittance matrix
— direct solution using sparsity oriented triangular factorization
— iterative solution using Newton-Raphson method



