EXCITATION SYSTEMS

OUTLINE

- Functions and Performance Requirements
- Elements of an Excitation System
- Types of Excitation Systems
- Control and Protection Functions
- Modeling of Excitation Systems

Functions of the excitation system

- The functions of an excitation system are
 - to provide direct current to the synchronous generator field winding, and
 - to perform control and protective functions essential to the satisfactory operation of the power system

The performance requirements of the excitation system are determined by a) Generator considerations:

- supply and adjust field current as the generator output varies within its continuous capability
- respond to transient disturbances with field forcing consistent with the generator short term capabilities:
 - rotor insulation failure due to high field voltage
 - rotor heating due to high field current
 - stator heating due to high VAR loading
 - heating due to excess flux (volts/Hz)

b) Power system considerations:

 contribute to effective control of system voltage and improvement of system stability

Elements of an Excitation System

Fig. 1 Components of an excitation system

- 1. Exciter: provides dc power to the generator field winding
- 2. <u>Regulator</u>: processes and amplifies input control signals to a level and form appropriate for control of the exciter
- 3. <u>Terminal voltage transducer and load compensator</u>: senses generator terminal voltage, rectifies and filters it to dc quantity and compares with a reference; load comp may be provided if desired to hold voltage at a remote point
- 4. <u>Power system stabilizer</u>: provides additional input signal to the regulator to damp power system oscillations
- 5. <u>Limiters and protective circuits</u>: ensure that the capability limits of exciter and generator are not exceeded

Types of Excitation Systems

Classified into three broad categories based on the excitation power source:

- DC excitation systems
- AC excitation systems
- Static excitation systems

DC Excitation Systems

- utilize dc generators as source of power; driven by a motor or the shaft of main generator; self or separately excited
- represent early systems (1920s to 1960s); lost favor in the mid-1960s because of large size; superseded by ac exciter
- voltage regulators range from the early non-continuous rheostatic type to the later system using magnetic rotating amplifiers

DC Excitation System

Fig. 2 DC excitation system with amplidyne voltage regulators

- An amplidyne is an electromechanical amplifier.
- It consists of an electric motor driving a DC generator.
- The signal to be amplified is applied to the generator's field winding, and its output voltage is an amplified copy of the field current.
- The amplidyne is used in industry in high power servo and control systems, to amplify low power control signals.
 - It is now mostly obsolete.

Fig. 2 shows a simplified schematic of a typical dc excitation system with an amplidyne voltage regulator

- self-excited dc exciter supplies current to the main generator field through slip rings
- exciter field controlled by an amplidyne which provides incremental changes to the field in a buck-boost scheme
- the exciter output provides rest of its own field by self-excitation

AC Excitation System

- use ac machines (alternators) as source of power
- usually, the exciter is on the same shaft as the turbinegenerator
- the ac output of exciter is rectified by either controlled or non-controlled rectifiers
- rectifiers may be stationary or rotating
- early systems used a combination of magnetic and rotating amplifiers as regulators; most new systems use electronic amplifier regulators

AC Excitation System

Fig. 3 Field controlled alternator rectifier excitation system

- dc output to the main generator field supplied through slip rings
- when non-controlled rectifiers are used, the regulator controls the field of the ac exciter;

AC Excitation System

Fig. 4 Alternator supplied controlled-rectifier excitation system

 When controlled rectifiers are used, the regulator directly controls the dc output voltage of the exciter

Rotating Excitation System

Fig. 5 Brushless excitation system

- the need for slip rings and brushes is eliminated; such systems are called brushless excitation systems
- they were developed to avoid problems with the use of brushes perceived to exist when supplying the high field currents of large generators
- they do not allow direct measurement of generator field current or voltage

Static Excitation System

- all components are static or stationary
- supply dc directly to the field of the main generator through slip rings
- the power supply to the rectifiers is from the main generator or the station auxiliary bus

Potential source for controlled rectifier

Figure 6: Potential-source controlled-rectifier excitation system

- excitation power is supplied through a transformer from the main generator terminals
- regulated by a controlled rectifier
- commonly known as bus-fed or transformer-fed static excitation system
- very small inherent time constant
- maximum exciter output voltage is dependent on input ac voltage;
 during system faults the available ceiling voltage is reduced

Compound-source rectifier system

- power to the exciter is formed by utilizing current as well as voltage of the main generator
- achieved through a power potential transformer (PPT) and a saturable current transformer (SCT)
- the regulator controls the exciter output through controlled saturation of excitation transformer
- during a system fault, with depressed generator voltage, the current input enables the exciter to provide high field forcing capability

Fig. 7: Compound-source rectifier excitation system

Compound-controlled rectifier system

- utilizes controlled rectifiers in the exciter output circuits and the compounding of voltage and current within the generator stator
- result is a high initial response static system with full "fault-on" forcing capability

Figure 8: GENERREX compound-controlled rectifier excitation system ©IEEE1976

Control and Protective Functions

- A modern excitation control system is much more than a simple voltage regulator
- It includes a number of control, limiting and protective functions which assist in fulfilling the performance requirements identified earlier
- Figure 9 illustrates the nature of these functions and the manner in which they interface with each other

- Field shorting circuits are applicable to ac and static exciters only
- ** Some systems have open loop dc regulator
- *** Max. exc. limiter may also be used with dc regulator

Figure 9: Excitation system control and protective circuits

Control and Protective Functions

Control, limiting and protective functions:

- any given system may include only some or all of these functions depending on the specific application and the type of exciter
- control functions regulate specific quantities at the desired level
- limiting functions prevent certain quantities from exceeding set limits
- if any of the limiters fail, then protective functions remove appropriate components or the unit from service

AC Regulator:

- basic function is to maintain generator stator voltage
- in addition, other auxiliaries act through the ac regulator

DC Regulator:

 holds constant generator field voltage (manual control) used for testing and startup, and when ac regulator is faulty

Modeling of Excitation Systems

IEEE Recommended Practice for Excitation System Models for Power System Stability Studies