
Performance Characterization of Mobile GP-GPUs 

Fitsum Assamnew Andargie 
School of Electrical and Computer Engineering 

Addis Ababa University 
Addis Ababa, Ethiopia 

fitsum.assamnew@aait.edu.et 

Jonathan Rose 
The Edward Roger Sr. Department of Electrical and 

Computer Engineering 
University of Toronto 

Toronto, Canada 
Jonathan.Rose@ece.utoronto.ca

 
 

Abstract— As smartphones and tablets have become more 
sophisticated, they now include General Purpose Graphics 
Processing Units (GP GPUs) that can be used for computation 
beyond driving the high-resolution screens.  To use them 
effectively, the programmer needs to have a clear sense of their 
microarchitecture, which in some cases is hidden by the 
manufacturer.  In this paper we unearth key microarchitectural 
parameters of the Qualcomm Adreno 320 and 420 GP GPUs, 
present in one of the key SoCs in the industry, the Snapdragon 
series of chips. 

Keywords—smartphones; GP GPU; microarchitecture; Adreno 
GPU;OpenCL 

I.  INTRODUCTION  
Smartphones have progressed dramatically in the last few 

years, fueled by the exponential advances in semiconductor 
technology. These advances have enabled a huge number of 
applications to be developed in a broad range of areas 
including health, education, sports, music and many more.   
Some of these applications demand more performance than 
available in the phone;  for example, real-time computer vision 
applications are often not possible because they require 
processing of many pixels at acceptable frame rates.  These 
problems may be well addressed by the new General Purpose 
Graphics Processing Units (GP GPUs) that have become 
available in the the latest phone core applications processor 
chip, such as the Nvidia Tegra, Qualcomm Adreno, and the 
Imagination Technologies PowerVR IP core.  GP GPUs have 
already revolutionized scientific and high performance 
computing in desktops and servers enabled through the 
innovation of new architectures [1] and languages such as 
CUDA [2] and OpenCL [3]. 

The architecture of all GP GPUs (both desktop, server and 
the newer mobile GP GPUs) are typically highly data parallel, 
performing the same computation over different data at the 
same time.  They also make use of many independent threads 
of execution.  In this basic paradigm, the microarchitecture has 
evolved significantly in the past five years, to include various 
levels of caching and special memories.  The manufacturers of 
mobile GP GPUs, however, don’t describe many of these 
details nor do they describe or specify the performance of 
individual communication channels within the processor. 
These kinds of details, however, are essential for the 
programmer to optimize the programs written for these 
devices, where microarchitectural issues such as cache size and 
memory bandwidth will strongly influence the structure of 

efficient algorithms [4].  The microarchitectural parameters of 
desktop/server GP GPUs are well understood and revealed by 
the vendors [4], whereas mobile GP GPU microarchitectures 
are far less well documented. The purpose of this paper is to 
measure key aspects of the microarchitecture and micro-
communication channels for the Qualcomm Adreno 320 [5] 
and 420 GPUs, which exist in the widely used Snapdragon 
series of SoCs [6] used in many tablets and phones. 
Understanding these GP GPUs will enable high performance 
applications to be developed for platforms that harbor them. 

II. BACKGROUND 
Recent smartphones are equipped with many kinds of 

compute modalities that can be used to enhance application 
performance. In the Android platform, most applications are 
developed using Java that runs on top of Android’s Java 
Virtual Machine called Dalvik [7]. Developing in Java is 
sufficient for applications that are not compute intensive, but 
subsequent versions of the Android operating system include a 
just in time compiler (JIT) that improves runtime performance. 
For applications that require more performance, compute-
intensive portions of programs can be written in C or C++ and 
integrated through Android’s Java Native Interface. In addition, 
the multiple CPU cores in modern smartphone Application 
processor chips can be employed through multi-threading; 
finally there is also a small-scale vector processing capability 
present in the CPUs that can be utilized for boosting 
performance -- for example ARM’s NEON vector instruction 
set [8]. 

The next level of performance improvement can be had 
through the recent introduction of general-purpose graphics 
processors (as opposed to dedicated graphics engines) in the 
mobile processor SoCs. Applications can partition their tasks 
between the CPU and the GP GPU based on the nature of the 
task. Serial and task parallel components can be scheduled on 
the CPU while data parallel parts can run on the GP GPU. In 
early days of the mobile GP GPUs, one had to reinterpret 
general problems as graphics problems using graphics libraries, 
such as Open GL ES. But recently, general propose 
programming languages for GP GPU development such as 
CUDA [2] and OpenCL [3] can be utilized.   

III. RELATED WORK 
Several researchers have previously tried to utilize the 

mobile GPU to boost the energy efficiency of mobile devices 

978-1-4799-7498-6/15/$31.00 ©2015 IEEE 



while performing specific applications. Pulli et. al. [9] showed 
how the original mobile (non-general purpose) GPUs can be 
used to accelerate a number of vision applications including 
object detection, object tracking, and scene modeling and 
augmented reality. They also explored the computational 
photography applications high dynamic range (HDR) imaging 
and panorama capture.  

Cheng et. al [10] used OpenGL ES to map the face 
recognition problem to a graphics-rendering paradigm.  They 
implemented the Gabor wavelet computation using the Fast 
Fourier Transform method, as part of a face recognition 
computation. The platform used in their investigation was an 
NVidia Tegra SoC with the CPU running at 1 GHz and the 
GPU running at 333MHz.  The face recognition took about 8.5 
seconds on the CPU while taking only 4.6 seconds on the GP 
GPU while consuming 16.3J of energy in contrast to the CPU 
only implementation’s 29.8J. This shows an almost 2x speed 
up was gained using the GPU while also lowering the energy 
consumption by 45.3%.  

 In similar work done by Rister et. al. [11], the Scale-
Invariant Feature Transform (SIFT) detector (which is often 
used in object detection [12]) was implemented  on a mobile 
GP GPU. In their approach, data was partitioned between the 
CPU and GP GPU giving the data parallel portion of the work 
to the GP GPU. In this work, the movement of data between 
main memory and GPU memory, is carefully minimized, as it 
is often slow. For example, they reduce the data transfer burden 
by compressing the image through by pixel reordering.  Since 
SIFT detector works on gray scale images, 4 pixels can be 
copied into one texture pixel which expects red, green, blue 
and alpha values. This reduced the data transfer requirement by 
up to four times. They also report a significant energy 
consumption reduction (87%) as compared to CPU only 
implementation when using the CPU+GPU combination. 

The SIFT detector was also implemented by Wang et. al. 
[13] using  C++ and OpenCL. In this work, the optimizations 
mentioned in the work by Rister et. al. were used with the 
addition of a fast Gaussian blur pyramid generation. With these 
optimizations, they were able to achieve about 8.5 frames per 
second for key point detection and 19 frames per second for 
descriptor generation.  A performance speed up of 1.7 times for 
key point detection as compared to an optimized C++ reference 
implementation on the CPU was achieved. In addition, energy 
consumption was reduced by 41%. 

Wang et. al. [14] implemented object removal from images 
using an exemplar-based in-painting algorithm on a mobile GP 
GPU. The object removal algorithm was implemented as a 
heterogeneous CPU-GPU application using OpenCL after 
profiling revealed the bottleneck part of the algorithm. Further 
optimizations of their implementation used processing of data 
in vector form and using data sharing by copying to local 
memory of the GPU. The heterogeneous implementation 
reduced the runtime required to about 2 seconds on the GPU 
vs. 398 seconds on the CPU (which was also coded in 
OpenCL).  

In the early days of mobile GPU acceleration the graphics-
processing language OpenGL ES was employed to make use of 
the capabilities of the mobile GPUs. This is difficult, because it 

requires reinterpreting general problems as graphics problems.  
The introduction of OpenCL recently has made this part of the 
problem easier. In addition, Computer Vision problems seem to 
be the main focus of the literature with regards to utilizing the 
general-purpose nature of the mobile GP GPUs. The reason 
behind this trend is that computer vision problems are 
computationally intensive and are data parallel, for which the 
GP GPUs are very suitable.   

IV. METHODOLOGY AND EXPERIMENTS 
Recall that the purpose of this work is to measure a specific 

mobile GP GPU architecture and to understand the capabilities 
of the underlying hardware so that applications developed for it 
can be optimized.  

We have chosen to measure two generations of Mobile 
computer systems from Qualcomm (as they are one of the 
world’s largest smartphone chipset vendors):   the Snapdragon 
S4 Pro (APQ8064) first available in 2012 [5] and the 
Snapdragon 805 (APQ8084) first available in 2014 [6].  We 
access these through tablet-based mobile development 
platforms from BSquare and Intrynsic [15]. The S4 Pro 
applications processor has four processors similar to the 
ARMv7 architecture which Qualcomm calls the Krait 200 
processor.  It runs at frequencies up to 1.5 GHz, and contains 
2GB of LPDDR2 memory running at 533MHz.  The GPU in 
the S4 Pro is one of Qualcomm’s own design, and is called the 
Adreno 320 GPU and it runs at a clock frequency 325 MHz.  
The origins of the architecture of this GPU are from the ATI 
Imageon graphics engines, which Qualcomm acquired in the 
late 2000’s.    Figure 1 shows an abstracted view of the 
processors in Qualcomm’s Snapdragon S4 Pro. 

The Snapdragon 805 system has four newer-generation 
Krait 450 processors running up to 2.5 GHz, with 3GB of 
LPDDR3 memory running at 800MHz.  It has a next-
generation Adreno 420 GPU running at twice the frequency - 
600MHz. In the following experiments we will be measuring 
the GPUs of both systems, and the contrast and improvements 
from the first to the second will be illustrated.  

 

 

 

 

 

Figure 1 - Abstracted Architecture of Qualcomm Snapdragon 
SoC 

The key parameters that will help a programmer understand 
the capability of this kind of system, that we will measure, are: 



1. The Data transfer rate between Host CPU and GP 
GPU. 

2. The structure of the memory Caching system – how 
many levels, and size of the cache at each level. 

3. The arithmetic computation performance of the GPUs. 

Each of the following subsections describes the exact 
methodology used to measure the above quantities, and then 
provides the results measured. 

A. Data Transfer Throughput Measurement 
Historically, the desktop/server GP GPUs had physically 

separate DDR DRAM memory, which was connected to the 
physically separate chips that contained the CPU (typically 
referred to as the host) and the GP GPU.  In that context data 
must be copied to the GP GPU’s memory from main memory 
and returned to the CPU main memory after computations are 
complete. These data transfers often take up a significant 
fraction of the computation time.  In this section we measure 
the transfer times for copying between the two memories.

The OpenCL APIs provided for data transfer were used to 
measure the cpu-to-gpu and gpu-to-cpu transfer rates. Table 1 
gives the result of the experiments conducted on the two tablets 
with the two generations of Qualcomm SoCs.  In the table, the 
notation c-to-g refers to a cpu-to-gpu transfer, similarly g-to-c. 
The results in Table 1 show that the explicit copy actions 
between the CPU and GPU are very slow.    

Table 1 - Measurement of Transfer Rates 

 
However, in the mobile context, with a single SoC 

connected to global memory as illustrated in Figure 1, there is 
no separate cpu or gpu memory as both the GPU and the host 
CPU use the same main memory.  This leads one to believe 
that the cpu-to-gpu copy and gpu-to-cpu copy be can avoided. 
In order to do that the OpenCL API clCreateBuffer was used 
with the CL_MEM_ALLOC_HOST_PTR flag. This does indeed 
work, and makes the explicit copy process redundant, making 
this part of the mobile GP GPU computation very efficient.  

B. Global Memory Throughput Measurement 
Access to the global external memory in a GPU (shown as 

main memory in Figure 1) is much slower compared to the 
constant, local and private memories that are on-chip within the 
GPU itself. In order to hide long latency of global memory, 
GPU memory systems have special hardware that attempts to 
combine small memory transaction from each thread into a 
single larger memory access when the data addresses are 
aligned.  These hardware units have become more 
sophisticated, allowing the memory access to be sequential or 
permuted, as long as they are within an aligned segment of 
memory. When this happens the only one memory transaction 

is issued. These are called coalesced memory accesses, and 
they are illustrated in Figure 2. The black square boxes at the 
bottom represent the individual thread access requests, and 
because they are aligned and within a single segment of 
memory, the red rectangle shows them being coalesced into a 
single access.  In the following subsections we measure the 
impact of this capability on memory throughput. 

 
Figure 2 - Coalesced Memory Access[15] 

1) Coalesced, Directly Aligned Memory Access 

In the first experiment, a single precision floating point 
array A resident in the global memory was copied to another 
array B with same size and data type.  This kernel was run with 
the global work item size (which is OpenCL’s terminology for 
number tasks of work to be done) of 67108864; this is equal to 
the size of the array. The memory allocated in the global 
memory then becomes 67108864 x 4 bytes = 256MBytes per 
array. Each work item (when it is spawned in an active thread) 
makes a single element copy between that same element of A 
and B (i.e. B[i] = A[i]). 

The amount of hardware parallelism in the computation can 
be controlled by setting the number of active threads available 
in a work group, called the work group size in OpenCL 
terminology.  For the Adreno 320 GP GPU (in the 8064 chip) 
this work group size ranges from 1 to a maximum of 128, and 
for the Adreno 420 the maximum is 512.  This number 
represents the number of parallel tasks that can be in flight at 
any given time; note that a smaller number are actually 
executing in a given specific moment of time.  (The latter 
number is dictated by the amount of parallel hardware, whereas 
the maximums are likely dictated by task queue sizes in the 
GPU).  To be clear, if the work group size is set to 1, then very 
little parallelism is possible, as a small portion of the GPU’s is 
being used.  When more threads are available, more memory 
accesses are being made at the same time by the GPU. As 
described above, we should able to see the ability of the GP 
GPU to coalesce these aligned, small memory accesses into 
larger block requests to the external memory, making them far 
more efficient. In order to show the progressive effect of this 
coalescing capability, we ran a series of experiments on both 
GPUs, varying the work group size, from 1 to the maximum, as 
shown in Figure 3.  This figure plots the achieved memory 
throughput vs. the number of threads available. 

The immediate observation from the Figure is that the memory 
throughput increases significantly as the size of work group 
increases up to a limit. For the Adreno 320 GPU this limit is 
roughly when the maximum number of threads is 64 (for a total 

Data 
Type 

APQ8064  (MByte/s) 
(Adreno 320/Krait 200)

APQ8084 (MByte/s) 
(Adreno 420/Krait 450)

c-to-g g-to-c c-to-g 

float 1522 264 97 532 



throughput of 2 GBytes/s), and for the Adreno 420 the limit is 
128 threads and a total throughput of 4 GBytes/s).  

 

Figure 3 - Memory Throughput for Coalesced Accesses 

2) Global Memory Access with Shifts 
In the previous section the copy between arrays is perfectly 

aligned (i.e. B[i] = A[i]).  That makes the coalesced memory 
accesses align to the natural memory block boundaries of the 
SoC. In this section we change the copy to have a shift between 
the two arrays, with a shift amount k, and hence the copy code 
is B[i] = A[i + k]. The shift k in accessing A means that a 
coalesced memory access will cross the internal memory block 
boundaries and require that the coalesced access be split, into 
two or more accesses, significantly affecting performance. 

Shift sizes of k = 0 to 32 with increments of 1 were used. 
The kernel execution time was measured for each shift size 
while keeping workgroup size fixed at the maximum for each 
GPU – 128 for the Adreno 320 and 512 for Adreno 420. The 
results of the experiment are depicted in Figure 4. This figure 
illustrates the effect of alignment – in the few cases where 
more than one coalesced memory access is needed, throughput 
is reduced. 

 
Figure 4 - Memory Access with Shifts 

3) Global Memory Access with Strides 
Another typical kind of memory access is called strided 

memory access in which array indexes are a constant multiple, 
m, away from each other.  To be specific, the array B is copied 
from array A in the following manner: B[i] = A[i * m]. 

As the size of m increases, the gap between two accessed 
memory locations widens significantly which quickly breaches 
the memory block boundaries. As a result of this, fewer 
memory accesses are coalesced and more memory transactions 
will be issued. The same array size was used as before; we also 
measure the effect of work group size. Figure 5 shows memory 
throughput as a function of m and workgroup size. 

The results shown in Figure 5 show that memory accessed 
with large strides result in many memory transactions hence 
lower throughput. This is behavior is observed for both GP-
GPUs tested. Therefore, this memory access pattern should be 
avoided. In case it could not be avoided, then optimization 
techniques such as using the relatively fast local memory of the 
GPU as a cache should be implemented.  

 
Figure 5 - Global Memory Access with Strides 

C. Global Memory Read Latency 
The global memory read latency is the time it takes to read an 
integer from memory; this helps to reveal optimizations in the 
memory system of the GPU, giving insights into its caching 
structures.  The basic structure of the measurement is to read 
all elements of an array, and to measure the read time of the 
accesses.  The array size is varied from small (and so likely to 
fit all inside a cache) to much larger than all the levels of 
cache.  The locality of the accesses is destroyed by making 
essentially random consecutive accesses, guaranteeing cache 
misses once the array size is large enough.  The code illustrated 
in Figure 6 is used for this task. It is a version of pointer 
chasing construct usually used in such measurements [4].  

 

__kernel void d_ MeasureMemoryLatency  
(__global unsigned int *A, int 
dataSize,int iterations) 
{ 
 unsigned int j=0; 
 for(int i=0;i<iterations;i++) 
 {repeat128(j=A[j];);} 
 A[dataSize-1]=j; 
} 

Figure 6 - Code For Memory Latency Measurement



The measurement was done for the CPUs (the Krait 200 and 
Krait 450) as well as the GPUs for comparison. Figure 7 
shows the CPU results and Figure 8 shows the GPU latency. 

 
  

 

 

 

 
 

 
 

Figure 7 – CPU Main Memory Read Latency 

Figure 7 suggests that the Krait 200 and the Krait 450 
processors have two levels of cache, and the sizes did not 
change across the generations: they both have 16 KByte L1 
Cache and 512 KByte  L2 cache.   This can be seen by the 
jumps in latency measurement at these values on the X-axis. 

The GPUs also appear to have two levels of cache; the 
Adreno 320’s L1 is 32Kbytes and a 512Kbyte L2 cache.  We 
suspect that this cache is shared with the Krait 200 CPU, as 
they are the same size and are quite large.   The Adreno 420 L1 
cache is smaller, at 16Kbytes, but it contains its own L2 Cache 
at 128 Kbytes, separate from the Krait 450 CPU’s L2 Cache. 

The CPUs and the GPUs all share the same global memory, 
as illustrated in Figure 1, but the latency to global memory is 
not the same.  For example, the Adreno 320 global memory 
latency, shown at the right side of Figure 8 is approximately 
859ns, whereas the CPU global memory latency is about 
100ns. These results point to the need to use the Global 
Memory sparingly or find ways to minimize the latency 
penalty associated with it.   

D. Arithmetic Operation Latency  
The actual computation speed of the GPU is crucial in 

achieving its high performance.  In this experiment, the latency 
of the basic arithmetic operations (+, -, *, /) is measured for the 
integer and floating-point data types. The measurement is done 
following the algorithm shown in Figure 9.  Two variables, a 
and b, are instantiated in the private memory (registers) of the 
GPU to reduce the memory access latency. The result of the 
operation is computed in a in a cumulative way so that the 
instructions run are processor bound. That is, since a and b are 
in registers, it is assumed a is moved to the accumulator once 
and the value of b is operated on a repeatedly as shown. Also 
the kernels are compiled with all compiler optimizations 
disabled. One other thing to note is that the kernels are run on a 
single processing element on the GPU.  The same code was run 

for the CPUs (Krait 450 and Krait 200) as well for comparison. 
The code for the CPU was compiled with the default GCC 
optimizations.  

Figure 8 - GPU Global Memory Read Latency 

 
 
 
__kernel void 
d_measureArithmetic[DataType][Operator] 
(int iterations,__global float *result) 
{ 
 DataType a=Const1; 
 DataType b=Const2; 
 for(int i=0;i<iterations;i++) 
 { 
  repeat128(a=a[Operator]b;); 
 } 
result[0]=a; 
} 

Figure 9 - Code for Arithmetic Latency Measurement 

This measurement was run on both systems. Table 2 and 
Table 3 show the time it takes to complete a single operation 
for integer and floating-point data types in nano seconds.  It 
can be seen that the newer GPU i.e Adreno 420 has superior 
integer and floating-point performance when compared to the 
Adreno 320 GPU.  Interestingly the GPU’s floating-point 
performance and integer arithmetic performance are very 
similar.  For both integer and floating-point, addition and 
subtraction operations were the fastest followed by 
multiplication. The division operation consistently took a 
significantly longer time in all cases except on the Krait 200 
Integer arithmetic. Repeated Integer divisions quickly reach a 
zero value and all subsequent divisions will have a zero 
nominator. This leads one to believe that there exists a clever 
hardware optimization that removes the further division 
operations in the case of the Krait 200 CPU. Notice that the 
CPU is more than 10 times faster than the GPU, so the amount 
of parallelism used in the GPU must be enough to overcome 
that difference to make using it worthwhile. 

 
 



Table 2 – Integer Arithmetic Latency Measurements  

 

Table 3 – Floating Point Arithmetic Latency Measurements  

 

V. CONCLUSION 
We have shown various performance measurements of the 

memory and computational systems of two modern Mobile GP 
GPUs. It is interesting to see that because the CPU and GPU 
are integrated into a single chip, they can access the same main 
memory, eliminating the need for transfers between these two 
that are required in desktop/server CPU/GPU systems.  The 
second result shows the impact of coordinating memory 
accesses on effective memory bandwidth, and it is significant. 
We determine the size and nature of the cache hierarchies that 
were not apparent in any of the specifications of the SoCs. In 
addition, the arithmetic operations latency was measured in the 
CPU and GPU; while the CPU is significantly faster, the GPU 
makes up for this with much larger parallelism.  It is important 
to know the difference in speed in order to gauge at what level 
parallelism there would be a benefit to using the GPU. It was 
also clear from our experiments that the 8084 SoC has better 
performance than its predecessor. We believe the insights 
gained in this work will be useful in efficiently programming 
these devices. We plan to do this in an upcoming 
implementation of a computer-vision object detector. 

REFERENCES 
 

[1] Owens, John D., David Luebke, Naga Govindaraju, Mark Harris, Jens 
Krüger, Aaron E. Lefohn, and Timothy J. Purcell. "A Survey of 
general‐purpose computation on graphics hardware." In Computer 
graphics forum, vol. 26, no. 1, pp. 80-113. Blackwell Publishing Ltd, 
2007. 

[2] Nvidia, C. U. D. A. "Programming guide." (2008). 
[3] Khronos OpenCL Working Group, “The OpenCL Specification”, 

Version 2.0, 2014  
[4]  Wong, Henry, M-M. Papadopoulou, Maryam Sadooghi-Alvandi, and 

Andreas Moshovos. "Demystifying GPU microarchitecture through 
microbenchmarking." In Performance Analysis of Systems & Software 
(ISPASS), 2010 IEEE International Symposium on, pp. 235-246. IEEE, 
2010. 

[5] Qualcomm Inc., Snapdragon S4 Processors: System on Chip Solutions 
for a New Moble Age, White paper, 2011 

[6] Qualcomm Inc., Snapdragon 805 Processor. 
https://www.qualcomm.com/products/snapdragon/processors/805 
(accessed April 17, 2014) 

[7] Ehringer, David. "The dalvik virtual machine architecture." Techn. 
report (March 2010) (2010). 

[8] Arm Ltd., Introducing NEON™ Development Article, 2009 
[9] Pulli, Kari, Wei-Chao Chen, Natasha Gelfand, Radek Grzeszczuk, 

Marius Tico, Ramakrishna Vedantham, Xianglin Wang, and Yingen 
Xiong. "Mobile visual computing." In Ubiquitous Virtual Reality, 2009. 
ISUVR'09. International Symposium on, pp. 3-6. IEEE, 2009. 

[10] Cheng, Kwang-Ting, and Yi-Chu Wang. "Using mobile GPU for 
general-purpose computing–a case study of face recognition on 
smartphones." In VLSI Design, Automation and Test (VLSI-DAT), 
2011 International Symposium on, pp. 1-4. IEEE, 2011. 

[11] Rister, Blaine, Guohui Wang, Michael Wu, and Joseph R. Cavallaro. "A 
fast and efficient SIFT detector using the mobile GPU." In Acoustics, 
Speech and Signal Processing (ICASSP), 2013 IEEE International 
Conference on, pp. 2674-2678. IEEE, 2013. 

[12] Lowe, David G. "Object recognition from local scale-invariant features." 
InComputer vision, 1999. The proceedings of the seventh IEEE 
international conference on, vol. 2, pp. 1150-1157. Ieee, 1999. 

[13] Wang, Guohui, Blaine Rister, and Joseph R. Cavallaro. "Workload 
analysis and efficient OpenCL-based implementation of SIFT algorithm 
on a smartphone." InProceedings in IEEE global conference signal and 
information processing (GlobalSIP), pp. 759-762. 2013. 

[14] Wang, Guohui, Yingen Xiong, Jay Yun, and Joseph R. Cavallaro. 
"Accelerating computer vision algorithms using OpenCL framework on 
the mobile GPU-a case study." In Acoustics, Speech and Signal 
Processing (ICASSP), 2013 IEEE International Conference on, pp. 
2629-2633. IEEE, 2013. 

[15] MDP Tablet based on the Qualcomm® Snapdragon™ 805 Processor by 
Qualcomm Technologies, Inc., http://www.intrinsyc.com/snapdragon-
development-platforms/mdp-805-tablet/,(accessed April 19, 2014) 

 

Integer 
Adreno 
320(ns)  

Krait 
200(ns) 

Adreno 
420(ns) 

Krait 
450(ns) 

Addition 142 29 86 8 

Subtraction 143 28 86 8 

Multiplication 180 21 94 8 

Division 737 12 315 13 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


