More on OpenCL

Synchronization

* Local Memory
In a work-group it’s not pre-determined when each work-item will
execute its instructions

Consequently, almost always need work-item synchronization to
ensure correct use of local memory.

Instruction

barrier(CLK_LOCAL_MEM_FENCE);
inserts a “barrier”; no work-item (within the same work-group) is
allowed to proceed beyond this point until the rest have reached
it

Synchronization

* Already introduced barrier(); which forms a barrier — all
threads wait until every one has reached this point.

* Use CLK LOCAL MEM FENCE and CLK GLOBAL MEM FENCE to
ensure order of local/global memory read/writes resp.

* When writing conditional code, must be careful to make sure
that all threads do reach the barrier();

* Otherwise, can end up in deadlock

Typical Application

// load in data to shared memory

// synchronisation to ensure this has finished

barrier (CLK LOCAL MEM FENCE |
CLK GLOBAL MEM FENCE) ;

// now do computation using shared data

Atomic Operations

* Occasionally, an application needs work-items to update a

counter in local memory.
local int count;

if (...) count++;

* In this case, there is a problem if two (or more) work-items try
to do it at the same time

Atomic Operations

Using standard instructions, multiple work-items in the
same work-group will only update it once.

index O index 1 index 2 iIndex 3
read read read read
time
add add add add

write write write write

Atomic Operations

With atomic instructions, the read/add/write becomes a
single operation, and they happen one after the other

index O index 1 index 2 index 3

read/add/write

) read/add/write
time
read/add/write

read/add/write

Atomic Operations

* Several different atomic operations are supported, almost all only
for integers:

addition (integers and 32-bit floats)
minimum / maximum
increment / decrement
exchange / compare-and-swap
bitwise AND OR XOR

* These are
quite fast for data in local memory
slower for data in global memory
(better on new Kepler hardware)

Atomic Operations

* Compare-and-swap:
int atomic cmpxchg (volatile @ local int =*xp,
int cmp, int wval) ;

* if compare equals old value stored at address then val is
stored instead

* in either case, routine returns the value of old

* seems a bizarre routine at first sight, but can be very useful for
atomic locks

* also can be used to implement 64-bit floating point atomic
addition

Global atomic lock

// global wvariable: 0 unlocked, 1 locked
global volatile int lock=0;

kernel void kernel (...) {

- -

if (get local id(0)==0) {
// set lock
do {} while (atomic cmpxchg(&lock, 0, 1)) ;

}

// free lock
lock = O0O;

Global atomic lock

* Problem: when a work-item writes data to global memory the
order of completion is not guaranteed, so global writes may
not have completed by the time the lock is unlocked

kernel void kernel (...) {

if (get local id(0)==0) {
do {} while (atomic cmpxchg(&lock,0,1)) ;
mem fence (CLK GLOBAL MEM FENCE) ; // ordexr writg

// free lock
lock = 0;

Mem fence

* mem fence();

order all preceding global or local (or both) reads and writes

means all loads/stores committed to memory before any following
loads/stores

* mem fence write();

same as above, but only for stores
* mem fence read();

same as above, but only for loads

* Different to barrier() — non-blocking

Some Applications:

REDUCTION AND SCAN OPERATIONS

Reduction

* The most common reduction operation is computing the
sum of a large array of values:

averaging in Monte Carlo simulation

computing RMS change in finite difference
computation or an iterative solver

computing a vector dot product in a CG or GMRES
iteration

Reduction

Other common reduction operations are to compute a
MinimMum or maximum.

Key requirements for a reduction operator o are:
» commutative: aob =boa
® associative: ao (boc¢) = (aob)oc

Together, they mean that the elements can be re-arranged
and combined in any order.

(Note: in MPI there are special routines to perform
reductions over distributed arrays.)

Approach

* Will describe things for a summation reduction — the
extension to other reductions is obvious

* Assuming each thread starts with one value, the
approach is to

first add the values within each thread block, to form a
partial sum

then add together the partial sums from all of the
blocks

Local reduction

The first phase is contructing a partial sum of the values
within a work-group.

Question 1: where is the parallelism™?

“Standard” summation uses an accumulator, adding one
value at a time — sequential

Parallel summation of /N values:
» first sum them in pairs to get N/2 values
® repeat the procedure until we have only one value

LLocal Reduction

Question 2: any problems with work-item divergence?

Note that not all work-items can be busy all of the time:
» N /2 operations in first phase

N /4 in second

N/8 in third

etc.

P o b

For efficiency, we want to make sure that each processing
element is either fully active or fully inactive, as far as
possible.

LLocal Reduction

Question 3: where should data be held?

Work-items need to access results produced by other
work-items:

» global device arrays would be too slow, so use local
memory

® need to think about synchronisation

LLocal Reduction

Pictorial representation of the algorithm:

AN

o & &

I

s

—
|
—

A

B

W

second half added pairwise to first half
by leading set of work-items

LLocal Reduction

kernel wvoid sum(_ global float xd sum,
__global float =«d data,
___local float =xtemp) {
int tid = get local id(O0) ;

temp[tid] = d datal[get global id(0)] ;

for (int d=get local size (0)>>1; ds>=1; d>>=1) {
barrier (CLK LOCAL MEM FENCE)
if (tid<d) temp[tid] += temp[tid+d] ;

}

if (tid==0) d sum[get group id(0)] = temp[0] ;

}

LLocal Reduction

Note:

® use of dynamic local memory — size has to be declared
when setting kernel argument

® use of barrier (CLK_LOCAL_MEM_FENCE) to make
sure previous operations have completed

» first work-item outputs final partial sum into specific
place for that work-group

Scan Operation

Given an input vector «,;. «: = 0.....1—1, the objective of a
scan operation is to compute

v = E u; forall 5 < 1.

i<j

Why is this important?

» a key part of many sorting routines

® arises also in particle filter methods in statistics
» related to solving long recurrence equations:

Un41 — (]- —An) Uy + Apty

» a good example that looks impossible to parallelise

Scan Operation

Before explaining the algorithm, here’s the “punch line”:

S

S

some parallel algorithms are tricky — don’t expect them
all to be obvious

check the OpenCL examples in the CUDA SDK, check
the literature using Google — don’t put lots of effort into
re-inventing the wheel

the relevant literature may be 20-25 years old
— back to the glory days of CRAY vector computing
and Thinking Machines’ massively-parallel CM5

Scan Operations

Similar to the global reduction, the top-level strategy is
® perform local scan within each work-group
® add on sum of all preceding work-groups

Will describe two approaches to the local scan, both similar
to the local reduction but in slightly different ways
» first approach:
o Vvery simple but O(N log V) operations
®» second approach:

o similar to binary tree summation but with both
downward and upward passes

o O(N) operations so slightly more efficient

L.ocal Scan - Version 1

EESSSER

® ® o\o§%§§\

» after n passes, each sum has local plus preceding 2" —1
values
» log, N passes, and O(/N) operations per pass
— O(N log N) operations in total

L.ocal Scan - Version 1

kernel void scan (global float xd sum,
global float «d data,
local float* temp)

{

int tid = get local id(O0) ;

temp[tid] = 4d datal[get global id(0)] ;

for (int d=1; d<get local size (0); d<<=1) {
barrier (CLK LOCAL MEM FENCE) ;
float temp2 = (tid >= d) ? temp[tid-d] : O;

barrier (CLK LOCAL MEM FENCE) ;
temp[tid] += temp?2;

L.ocal Scan - Version 1

* Notes

®» much simpler than version 2

® at most only 40% slower

® incrementis set to zero if no element to the left
® both barrier () points are needed

L.ocal Scan - Version 2

sum downwards

24

L.ocal Scan - Version 2

show only final values

24

L.ocal Scan - Version 2

start going upwards
carry straight up
sSum across

24

L.ocal Scan - Version 2

L.ocal Scan - Version 2

4 1.2 5.

L.ocal Scan - Version 2

<L 7/ 12 23

L.ocal Scan - Version 2

.0 4 ©6 7 10 12 18 23 24

L.ocal Scan - Version 2

* Notes

» not very easy to follow, maybe best to go through the
example above to check it's doing the right thing

» Iin the practical, the code puts the local scan values
back in the global device array

» however, really we need to complete the process by
performing a global scan at the higher level

