
More	on	OpenCL



Synchronization
• Local Memory
• In a work-group it’s not pre-determined when each work-item will 

execute its instructions
• Consequently, almost always need work-item synchronization to 

ensure correct use of local memory.
• Instruction

• barrier(CLK_LOCAL_MEM_FENCE);
• inserts a “barrier”; no work-item (within the same work-group) is 

allowed to proceed beyond this point until the rest have reached 
it



Synchronization
• Already introduced barrier(); which forms a barrier – all 

threads wait until every one has reached this point.
• Use CLK LOCAL MEM FENCE and CLK GLOBAL MEM FENCE to 

ensure order of local/global memory read/writes resp.
• When writing conditional code, must be careful to make sure 

that all threads do reach the barrier();
• Otherwise, can end up in deadlock



Typical	Application



Atomic	Operations
• Occasionally, an application needs work-items to update a 

counter in local memory.

• In this case, there is a problem if two (or more) work-items try 
to do it at the same time
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Atomic	Operations
• Several different atomic operations are supported, almost all only 

for integers:
• addition (integers and 32-bit floats)
• minimum / maximum
• increment / decrement
• exchange / compare-and-swap
• bitwise AND OR XOR

• These are
• quite fast for data in local memory
• slower for data in global memory
• (better on new Kepler hardware)



Atomic	Operations
• Compare-and-swap:

• if compare equals old value stored at address then val is 
stored instead

• in either case, routine returns the value of old
• seems a bizarre routine at first sight, but can be very useful for 

atomic locks
• also can be used to implement 64-bit floating point atomic 

addition



Global	atomic	lock



Global	atomic	lock
• Problem: when a work-item writes data to global memory the 

order of completion is not guaranteed, so global writes may 
not have completed by the time the lock is unlocked



Mem_fence
• mem fence();
• order all preceding global or local (or both) reads and writes

• means all loads/stores committed to memory before any following 
loads/stores

• mem fence write();
• same as above, but only for stores

• mem fence read();
• same as above, but only for loads

• Different to barrier() – non-blocking



REDUCTION	AND	SCANOPERATIONS
Some Applications:



Reduction
• The most common reduction operation is computing the 

sum of a large array of values:
• averaging in Monte Carlo simulation
• computing RMS change in finite difference 

computation or an iterative solver
• computing a vector dot product in a CG or GMRES 

iteration



Reduction



Approach
• Will describe things for a summation reduction – the 

extension to other reductions is obvious
• Assuming each thread starts with one value, the 

approach is to 
• first add the values within each thread block, to form a 

partial sum
• then add together the partial sums from all of the 

blocks



Local	reduction
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Local	Reduction
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Local	Scan	– Version	1
• Notes
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Local	Scan	– Version	2
• Notes



Questions?????


