
More	on	OpenCL



Synchronization
• Local Memory
• In a work-group it’s not pre-determined when each work-item will 

execute its instructions
• Consequently, almost always need work-item synchronization to 

ensure correct use of local memory.
• Instruction

• barrier(CLK_LOCAL_MEM_FENCE);
• inserts a “barrier”; no work-item (within the same work-group) is 

allowed to proceed beyond this point until the rest have reached 
it



Synchronization
• Already introduced barrier(); which forms a barrier – all 

threads wait until every one has reached this point.
• Use CLK LOCAL MEM FENCE and CLK GLOBAL MEM FENCE to 

ensure order of local/global memory read/writes resp.
• When writing conditional code, must be careful to make sure 

that all threads do reach the barrier();
• Otherwise, can end up in deadlock



Typical	Application



Atomic	Operations
• Occasionally, an application needs work-items to update a 

counter in local memory.

• In this case, there is a problem if two (or more) work-items try 
to do it at the same time



Atomic	Operations



Atomic	Operations



Atomic	Operations
• Several different atomic operations are supported, almost all only 

for integers:
• addition (integers and 32-bit floats)
• minimum / maximum
• increment / decrement
• exchange / compare-and-swap
• bitwise AND OR XOR

• These are
• quite fast for data in local memory
• slower for data in global memory
• (better on new Kepler hardware)



Atomic	Operations
• Compare-and-swap:

• if compare equals old value stored at address then val is 
stored instead

• in either case, routine returns the value of old
• seems a bizarre routine at first sight, but can be very useful for 

atomic locks
• also can be used to implement 64-bit floating point atomic 

addition



Global	atomic	lock



Global	atomic	lock
• Problem: when a work-item writes data to global memory the 

order of completion is not guaranteed, so global writes may 
not have completed by the time the lock is unlocked



Mem_fence
• mem fence();
• order all preceding global or local (or both) reads and writes

• means all loads/stores committed to memory before any following 
loads/stores

• mem fence write();
• same as above, but only for stores

• mem fence read();
• same as above, but only for loads

• Different to barrier() – non-blocking



REDUCTION	AND	SCANOPERATIONS
Some Applications:



Reduction
• The most common reduction operation is computing the 

sum of a large array of values:
• averaging in Monte Carlo simulation
• computing RMS change in finite difference 

computation or an iterative solver
• computing a vector dot product in a CG or GMRES 

iteration



Reduction



Approach
• Will describe things for a summation reduction – the 

extension to other reductions is obvious
• Assuming each thread starts with one value, the 

approach is to 
• first add the values within each thread block, to form a 

partial sum
• then add together the partial sums from all of the 

blocks



Local	reduction



Local	Reduction



Local	Reduction



Local	Reduction



Local	Reduction



Local	Reduction



Scan	Operation



Scan	Operation



Scan	Operations



Local	Scan	– Version	1



Local	Scan	– Version	1



Local	Scan	– Version	1
• Notes



Local	Scan	– Version	2





Local	Scan	– Version	2



Local	Scan	– Version	2



Local	Scan	– Version	2



Local	Scan	– Version	2



Local	Scan	– Version	2



Local	Scan	– Version	2



Local	Scan	– Version	2
• Notes



Questions?????


