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Optimization	Strategies
• Maximize parallel execution
• Exposing data parallelism in algorithms
• Choosing execution configuration
• Overlap memory transfer with computation

• Maximize memory bandwidth
• Keep the hardware busy

• Maximize instruction throughput
• Get the job done with as few clock cycles as possible
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Memory	Optimization
• Minimize host-device data transfer
• Coalesce global memory access
• Use local memory as a cache
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Minimizing	host-device	data	
transfer
• Host device data transfer has much lower bandwidth than global 

memory access.
• 8 GB/s (PCIe,x16 Gen2) vs 141 GB/s (GTX 280)
• 32 GB/s (PCIe,x16 Gen3) vs 320 GB/s (GTX 1080)

• Minimize transfer
• Intermediate data can be allocated, operated, de-allocated directly 

on the GPU
• Sometimes it’s even better to recompute on GPU, or call kernels that 

do not have performance gains
• Group transfers
• One large transfer much better than many small ones 4



Coalescing	
• Global memory latency: 400-600 cycles.
• The single most important performance consideration!

• Global memory access by threads of a half warp can be 
coalesced to one transaction for word of size 8-bit, 16-bit, 32-
bit, 64-bit or two transactions for 128-bit. 

• Global memory can be viewed as composing aligned segments 
of 16 and 32 words.
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Coalescing	Compute	Capability	
1.0	and	1.1
• K-th thread in a half warp must access the k-th word in a 

segment; however, not all threads need to participate

16 transactions

16 transactions

1 transaction
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Coalescing	in	Compute	
Capability	1.2	and	1.3
• Coalescing for any pattern of access that fits into a segment 

size
• # of transactions = # of accessed segments
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Example	of	Misaligned	Accesses

GTX280 (compute capability 1.3) 
drops by a factor of 1.7 while FX 5600 
(compute capability 1.0) drops by a 
factor of 8. 8



Example	of	Strided Accesses

Large strides often arise in applications. 
However, strides can be avoided using 
local memory.

Stride 2
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Local	Memory
• Latency ~100x smaller than global memory

• Cache data to reduce global memory access

• Use local memory to avoid non-coalesced global memory 
access

• Threads can cooperate through local memory
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Caching Example 1:	Matrix	
Multiplication

C=AxB
Uncached version

Every thread corresponds to 
one entry in C.
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Matrix	Multiplication	…
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Matrix	Multiplication
• Cached and coalesced
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Matrix	Multiplication
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Bank	Conflicts
• A 2nd order effect compared to global memory 

coalescing
• Local memory is divide into banks.
• Successive 32-bit words assigned to successive 

banks
• Number of banks = 16 for CC 1.x
• R/W different banks can be performed 

simultaneously.
• Bank conflict: two R/W fall in the same bank, the 

access will be serialized.
• Thus, accessing should be designed to avoid bank 

conflict

Local memory
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Work-group	Heuristics
• # of work-groups > # of SM (Compute Units)
• Each SM has at least one work-group to execute
• # of work-groups / # of SM > 2
• Multiple work-groups can run concurrently on an SM
• Work on another work-group if one work-group is waiting on 

barrier
• # of work-groups / # of SM > 100 to scale well to future 

device
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Work-item	Heuristics	
• The number of work-items per work-group should be a 

multiple of 32 (warp size for nvidia gpus or preffered
workgroup multiple)

• Want as many warps running as possible to hide latencies
• Minimum: 64
• Larger, e.g. 256 may be better
• Depends on the problem, do experiments!
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Occupancy
• Hide latency: thread instructions are executed sequentially. 

So executing other warps when one warp is paused is the 
only way to hide latencies and keep the hardware busy

• Occupancy: ratio of active warps per SM to the maximum 
number of allowed warps
• 32 in GT 200, 24 in GeForce 8 and 9-series.
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Global	Memory	Latency	Hiding

• Enough warps can hide the latency of global memory access

• We need 400/4 = 100 arithmetic instructions to hide the 
latency. For example, assume the code has 8 arithmetic 
instructions (4 cycle) for every one global memory access 
(~400 cycles). Thus 100/8~13 warps would be enough. This 
corresponds to 54% occupancy.
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Register	Dependency	Latency	Hiding	

• If an instruction uses a result stored in a register written by 
an instruction before it, this is ~ 24 cycles latency

• So, we need 24/4=6 warps to hide register dependency 
latency. This corresponds to 25% occupancy
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Occupancy	Considerations

• Increase occupancy to achieve latency hiding
• After some point (e.g. 50%), further increase in occupancy 

won’t lead to performance increase
• Occupancy is limited by resource usage: 
• Registers – eg. 8K
• Local memory –eg. 32K 
• Scheduling hardware
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Resource	Limitation	on	Occupancy

• Work-groups on a SM partition registers and local memory
• If every thread uses 10 registers and every work-group has 

256 work-items, then 3 work-groups use 256*10*3 < 8192. A 
100% occupancy can be achieved. 

• However, if every thread uses 11 registers, since 256*11*3 > 
8192, only 2 work-groups are allowed. So occupancy is 
reduced to 66%!

• But, if work-group has 128 work-items, since 128*11*5 < 
8192, occupancy can be 83%. 22



Other	Resource	Limitations	on	Occupancy

• Maximum number of warps.

• Maximum number of work-groups per SM: 8

• So occupancy calculation in realistic case is complicated
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Instruction	Throughput

• Throughput: # of instructions per cycle
• In SIMT architecture, if T is the number of operations per 

clock cycle
SM Throughtput = T/WarpSize

• Maximizing throughput: using smaller number of cycles to 
get the job done
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Arithmetic	Instruction	
Throughput
• Int, and float add, shift, min, max, and float mul, mad: T = 8
• Int divide and modulo are expensive
• Avoid automatic conversion of double to float
• Adding “f” to floating literals (e.g. 1.0f) because the default is 

double
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Memory	Instructions

• Use local memory to reduce global memory access
• Increase algorithm’s arithmetic intensity (the ratio of 

arithmetic to global memory access instructions). The higher 
of this ratio, the fewer of warps are required to hide global 
memory latency.
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Control	Flow

• If branching happens within a warp, different execution 
paths must be serialized, increasing the total number of 
instructions.

• No penalty if different warps diverge
• No divergence if controlling condition depends only on 

local_id/warp_size
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QUESTIONS?? 28


