
OpenCL
Optimization

1



Optimization	Strategies
• Maximize parallel execution
• Exposing data parallelism in algorithms
• Choosing execution configuration
• Overlap memory transfer with computation

• Maximize memory bandwidth
• Keep the hardware busy

• Maximize instruction throughput
• Get the job done with as few clock cycles as possible

2



Memory	Optimization
• Minimize host-device data transfer
• Coalesce global memory access
• Use local memory as a cache

3



Minimizing	host-device	data	
transfer
• Host device data transfer has much lower bandwidth than global 

memory access.
• 8 GB/s (PCIe,x16 Gen2) vs 141 GB/s (GTX 280)
• 32 GB/s (PCIe,x16 Gen3) vs 320 GB/s (GTX 1080)

• Minimize transfer
• Intermediate data can be allocated, operated, de-allocated directly 

on the GPU
• Sometimes it’s even better to recompute on GPU, or call kernels that 

do not have performance gains
• Group transfers
• One large transfer much better than many small ones 4



Coalescing	
• Global memory latency: 400-600 cycles.
• The single most important performance consideration!

• Global memory access by threads of a half warp can be 
coalesced to one transaction for word of size 8-bit, 16-bit, 32-
bit, 64-bit or two transactions for 128-bit. 

• Global memory can be viewed as composing aligned segments 
of 16 and 32 words.

5



Coalescing	Compute	Capability	
1.0	and	1.1
• K-th thread in a half warp must access the k-th word in a 

segment; however, not all threads need to participate

16 transactions

16 transactions

1 transaction

6



Coalescing	in	Compute	
Capability	1.2	and	1.3
• Coalescing for any pattern of access that fits into a segment 

size
• # of transactions = # of accessed segments

7



Example	of	Misaligned	Accesses

GTX280 (compute capability 1.3) 
drops by a factor of 1.7 while FX 5600 
(compute capability 1.0) drops by a 
factor of 8. 8



Example	of	Strided Accesses

Large strides often arise in applications. 
However, strides can be avoided using 
local memory.

Stride 2

9



Local	Memory
• Latency ~100x smaller than global memory

• Cache data to reduce global memory access

• Use local memory to avoid non-coalesced global memory 
access

• Threads can cooperate through local memory
10



Caching Example 1:	Matrix	
Multiplication

C=AxB
Uncached version

Every thread corresponds to 
one entry in C.

11



Matrix	Multiplication	…

12



Matrix	Multiplication
• Cached and coalesced

13



Matrix	Multiplication

14



Bank	Conflicts
• A 2nd order effect compared to global memory 

coalescing
• Local memory is divide into banks.
• Successive 32-bit words assigned to successive 

banks
• Number of banks = 16 for CC 1.x
• R/W different banks can be performed 

simultaneously.
• Bank conflict: two R/W fall in the same bank, the 

access will be serialized.
• Thus, accessing should be designed to avoid bank 

conflict

Local memory

15



Work-group	Heuristics
• # of work-groups > # of SM (Compute Units)
• Each SM has at least one work-group to execute
• # of work-groups / # of SM > 2
• Multiple work-groups can run concurrently on an SM
• Work on another work-group if one work-group is waiting on 

barrier
• # of work-groups / # of SM > 100 to scale well to future 

device
16



Work-item	Heuristics	
• The number of work-items per work-group should be a 

multiple of 32 (warp size for nvidia gpus or preffered
workgroup multiple)

• Want as many warps running as possible to hide latencies
• Minimum: 64
• Larger, e.g. 256 may be better
• Depends on the problem, do experiments!

17



Occupancy
• Hide latency: thread instructions are executed sequentially. 

So executing other warps when one warp is paused is the 
only way to hide latencies and keep the hardware busy

• Occupancy: ratio of active warps per SM to the maximum 
number of allowed warps
• 32 in GT 200, 24 in GeForce 8 and 9-series.

18



Global	Memory	Latency	Hiding

• Enough warps can hide the latency of global memory access

• We need 400/4 = 100 arithmetic instructions to hide the 
latency. For example, assume the code has 8 arithmetic 
instructions (4 cycle) for every one global memory access 
(~400 cycles). Thus 100/8~13 warps would be enough. This 
corresponds to 54% occupancy.

19



Register	Dependency	Latency	Hiding	

• If an instruction uses a result stored in a register written by 
an instruction before it, this is ~ 24 cycles latency

• So, we need 24/4=6 warps to hide register dependency 
latency. This corresponds to 25% occupancy

20



Occupancy	Considerations

• Increase occupancy to achieve latency hiding
• After some point (e.g. 50%), further increase in occupancy 

won’t lead to performance increase
• Occupancy is limited by resource usage: 
• Registers – eg. 8K
• Local memory –eg. 32K 
• Scheduling hardware

21



Resource	Limitation	on	Occupancy

• Work-groups on a SM partition registers and local memory
• If every thread uses 10 registers and every work-group has 

256 work-items, then 3 work-groups use 256*10*3 < 8192. A 
100% occupancy can be achieved. 

• However, if every thread uses 11 registers, since 256*11*3 > 
8192, only 2 work-groups are allowed. So occupancy is 
reduced to 66%!

• But, if work-group has 128 work-items, since 128*11*5 < 
8192, occupancy can be 83%. 22



Other	Resource	Limitations	on	Occupancy

• Maximum number of warps.

• Maximum number of work-groups per SM: 8

• So occupancy calculation in realistic case is complicated

23



Instruction	Throughput

• Throughput: # of instructions per cycle
• In SIMT architecture, if T is the number of operations per 

clock cycle
SM Throughtput = T/WarpSize

• Maximizing throughput: using smaller number of cycles to 
get the job done

24



Arithmetic	Instruction	
Throughput
• Int, and float add, shift, min, max, and float mul, mad: T = 8
• Int divide and modulo are expensive
• Avoid automatic conversion of double to float
• Adding “f” to floating literals (e.g. 1.0f) because the default is 

double

25



Memory	Instructions

• Use local memory to reduce global memory access
• Increase algorithm’s arithmetic intensity (the ratio of 

arithmetic to global memory access instructions). The higher 
of this ratio, the fewer of warps are required to hide global 
memory latency.

26



Control	Flow

• If branching happens within a warp, different execution 
paths must be serialized, increasing the total number of 
instructions.

• No penalty if different warps diverge
• No divergence if controlling condition depends only on 

local_id/warp_size

27



QUESTIONS?? 28


