

High speed computer networks

Asynchronous transfer mode (ATM)

Sosina M. Addis Ababa institute of technology (AAiT) 2012 E.C.

Overview

Asynchronous transfer mode
Protocol architecture
Logical connection
ATM cells

Asynchronous transfer mode (ATM)

Asynchronous Transfer Mode (ATM) is the cell relay protocol designed by the ATM Forum and adopted by the ITU-T

Asynchronous vs. synchronous transfer

ATM

□Frames of varying size

✓ Difficult to provide consistent data rate

✓ E.g., multiplexing using different frame sizes

Audio and video frames ordinarily are small - mixing with data traffic often creates unacceptable delays

✓ Making the shared frame links unusable for audio and video information

Cell networks

Many of the problems associated with frame internetworking are solved by adopting a concept called cell networking

A cell is a small data unit of fixed size

ATM Protocol architecture

ATM is a cell-switched network

Similar to packet switching using X.25 and frame relay

- ✓ ATM involves the transfer of data in discrete chunks
- ✓ Allows multiple logical connections to be multiplexed over a single physical interface

ATM Protocol architecture

Protocol architecture

Illustrates the basic architecture for an interface between user and network

- ✓ The physical layer involves the specification of a transmission medium and a signal encoding scheme
- ✓ Two layers of the protocol architecture relate to ATM functions
 - ATM layer common to all services that provides packet transfer capabilities
 - ATM adaptation layer (AAL) that is service dependent

ATM layer defines:

 \checkmark the transmission of data in fixed-size cells

 \checkmark the use of logical connections

AAL layer

✓ Used to support information transfer protocols not based on ATM

✓ maps higher-layer information into ATM cells to be transported over an ATM network

✓ collects information from ATM cells for delivery to higher layers

Three separate planes

- ✓ User plane: for user information transfer
- ✓ **Control plane:** Performs call control and connection control functions

✓ Management plane:

- plane management performs management functions related to a system as a whole and provides coordination between all the planes
- layer management performs management functions relating to resources and parameters residing in its protocol entities

ATM logical connection

- The logical connection in ATM are referred as **virtual channel connections** (VCCs)
 - ✓ VCC (Virtual Channel Connection): a logical connection analogous to virtual circuit in X.25 or data link connection in FR
 - ✓ A VCC is set up between *two end users* through the network
 - ✓ VCCs are also used for *user-network exchange* (control signaling) and *network-network exchange* (network management and routing)

virtual path connection (VPC)

- \checkmark A bundle of VCCs that have the same endpoints
- ✓ The virtual path technique helps contain the control cost by grouping connections sharing common paths through the network into a single unit

□VCC and VPC are full-duplex connections

 However, the channel or path bandwidth and other traffic parameters can be configured to be different in the transmit and receive directions

ATM logical connection

Transmission path: a physical connection between end points

Simplified network architecture

✓ Network transport functions can be separated into virtual channel and virtual path

□Increased network performance and reliability

✓ The network deals with fewer, aggregated entities

Reduced processing and short connection setup time

- ✓ The addition of new virtual channels to an existing virtual path involves minimal processing
 - new virtual channel connections can be established by executing simple control

Call Establishment Using Virtual Paths

Between end users

 \checkmark to carry end-to-end user data

 \checkmark to carry control signaling between end users

Between an end user and a network entity

✓ Used for user-to-network control signaling

Between two network entities

✓ Used for network traffic management and routing functions

VP/VC characteristics

□ITU-T Recommendation I.150 lists the following as characteristics of virtual channel connections

- ✓ Quality of service (QoS): A user of a VCC is provided with a QoS specified by parameters such as cell loss ratio and cell delay variation.
- ✓ Cell sequence integrity: The sequence of transmitted cells within a VCC is preserved.
- ✓ Traffic parameter negotiation and usage monitoring:
 - Traffic parameters (such as average rate, peak rate, burstiness, and peak duration) can be negotiated between a user and the network for each VCC
 - monitors the input of cells to the VCC, to ensure that the negotiated parameters are not violated

✓ Virtual connections

- Switched VCC: an on-demand connection, which requires a call control signaling for setup and tearing down
- Semipermanent VCC is of long duration and is set up by configuration or network management action.

✓ VPI restriction – One or more virtual channel identifiers may be reserved for network use (VCCs used for network management)

Control signaling

A mechanism for the establishment and release of VPCs and VCCs

□VCC establishment/release

- ✓ Semi-permanent VCCs no control signaling is required
- Meta-signaling channel used to set up VCCs that can be used for call control signaling
- \checkmark The meta-signaling channel can also be used to set up
 - A user-to-network signaling virtual channel
 - can then be used to set up VCCs to carry user data
 - A user-to-user signaling virtual channel
 - can then be used to allow the two end users, without network intervention, to establish and release user-to-user VCCs to carry user data
 - Such a channel must be set up within a pre-established VPC

□VPC establishment/release

- ✓ Semi-permanent VPC- no signaling
- ✓ Customer controlled
 - the customer uses a signaling VCC to request the VPC from the network
- ✓ Network controlled
 - The network establishes a VPC for its own convenience
 - The path may be network-to-network, user-to-network, or user-to-user.

ATM cells

The asynchronous transfer mode makes use of fixed-size cells

☐ fixed-size cells

- ✓ May reduce queuing delay for a high-priority cell
- ✓ With fixed-size cells, it is easier to implement the switching mechanism in hardware

ATM headers

Generic flow control

- ✓ used for control of cell flow only at the local usernetwork interface
- \checkmark alleviates short-term overload conditions in the network

Virtual Path Identifier (VPI)

Virtual Channel Identifier (VCI)

Payload type

✓ user information, network management and maintenance information

Cell loss priority (CLP)

✓ provide guidance to the network in the event of congestion

Header error control

- Contains eight check bits which are used for checking the header
- \checkmark The payload of an ATM cell is not checked for errors

- An ATM network is designed to be able to transfer many different types of traffic simultaneously, including real-time flows such as voice and video
 - ✓ Each is handled as a stream of 53-octet cells traveling through a virtual channel
 - ✓ But, the way in which each data flow is handled within the network depends on the **characteristics of the traffic flow** and **the requirements of the application**

ATM service categories

Real time service

✓ Audio and video have a strict constraint on delay and the variability of the delay

✓ Interactive applications have tight constraints on delay

Constant Bit Rate (CBR)

✓ It is used by applications that require a fixed data rate that is continuously available during the connection lifetime and a relatively tight upper bound on transfer delay

- \checkmark commonly used for uncompressed audio and video information
- \checkmark E.g. videoconferencing, interactive audio

Real-Time Variable Bit Rate (rt-VBR)

- ✓ intended for time-sensitive applications; i.e., those requiring tightly constrained delay and delay variation
- ✓ For example, the standard approach to video compression results in a sequence of image frames of varying sizes. Because real-time video requires a uniform frame transmission rate, the actual data rate varies

Non-Real-Time Services

✓ intended for applications that have bursty traffic characteristics and do not have tight constraints on delay and delay variation

Non-Real-Time Variable Bit Rate (nrt-VBR)

- ✓ The end system specifies a *peak cell rate, a sustainable or average cell rate*, and a measure of how bursty or clumped the cells may be.
- ✓ With this information, the network can *allocate resources to provide relatively low delay and minimal cell loss*
- ✓ nrt-VBR service can be used for data transfers that have critical response time requirements. E.g., include airline reservations, banking transactions, and process monitoring.

Unspecified Bit Rate (UBR)

- \checkmark suitable for applications that can tolerate variable delays and some cell losses
- ✓ With UBR, cells are forwarded on a first-in-first-out (FIFO) basis using the capacity not consumed by other services
- ✓ Best effort service- e.g. Text/data/image transfer

Available Bit Rate (ABR)

- An application using ABR specifies a *peak cell rate (PCR)* and *a minimum cell rate (MCR)* that it requires
- ✓The network allocates resources so that all ABR applications receive at least their MCR capacity
- ✓ Any capacity not used by ABR sources remains available for UBR traffic
- ✓ The ABR mechanism uses explicit feedback to sources to assure that capacity is fairly allocated

ATM vs. frame relay

ATM

- designed to be convenient for hardware implementation - cost is higher compared to frame relay
- ✓ 8 bit of error control field in header part of ATM cell is used for error control.
 Provides flow control at user to network interface (UNI) level only
- ✓ Supports quantifiable QoS
- ✓ Frame size is fixed in ATM networks. Therefore it gives less processing overhead.
- ✓ The cell transfer speed of ATM is high

Frame relay

- ✓ software controlled less expensive
- ✓ does not provide flow control or error control. These functions must be supported by upper layers.
- ✓ Carry traffic in the form of data only
- ✓ Do not support quantifiable QoS
- ✓ Frame size is variable in frame relay networks. Therefore it gives medium processing overhead
- ✓ Frame transfer speed is low