Distributed Systems
ECEG-6504

Synchronization

Surafel Lemma Abebe (Ph.D.)

Topics

* Clock synchronization

e Logical clocks

e Mutual exclusion

 Elections

Surafel Lemma Abebe (Ph. D.)

Introduction

* Whyis time important in DS?
1. To know at what time of day a particular event occurred at a
particular computer

* Example
— For auditing eCommerce transactions

2. Several algorithms depend upon clock synchronization to address
problems in distribution

* Example
— Maintaining consistency of distributed data
— Checking the authenticity of a request sent to a server
— Eliminating the processing of duplicate updates

* Reasons for problems related to time
— Measuring time is difficult due to multiple frames of reference

— Inability to timestamp events at different nodes sufficiently accurately
to know the order in which any pair of events occurred

* No absolute global time

. . Surafel Lemma Abebe (Ph. D.) 3

Clock synchronization

Problem
— In DS achieving agreement on time is not trivial

* Example: make program in UNIX

Computer on 2144 2145 2146 2147 «4— Time according
which compiler f\ : t } to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor f ¢ } 4 to local clock

runs
output.c created

. . . Surafel Lemma Abebe (Ph. D.) 4

Clock synchronization...

* Physical clocks
— Computer timer is a precisely machined quartz crystal

— When kept under tension, quartz crystals oscillate at a well-
defined frequency

— Time in computer

* With each crystal, there are two registers: a counter and a holding
register
— Each oscillation of the crystal decrements the counter by one

— When the counter gets to zero, an interrupt is generated and the counter is
reloaded from the holding register

= Used to program a timer to generate an interrupt 60 times a second or any
desired frequency

» The interrupt is called one clock tick
* At every clock tick, the interrupt service procedure adds one to the
time stored in memory
— Time is stored as the number of ticks after some known starting date and time
— CMOS RAM

. - Surafel Lemma Abebe (Ph. D.) 5

Clock synchronization...

e Physical clocks...
— UTC (Universal Coordinated Time)

Is the basis for all modern civil timekeeping (starting 1948)
Based on the number of transitions of the cesium 133 atom

To keep in phase with the sun, a leap second is introduced when
necessary
— Total number of leap seconds introduced into UTC so far is about 30

Bureau International de I'Heure (BIR)
— Announces a leap second

— Computes real time as the average of some 50 cesium-clocks around the
world

UTC is broadcasted through shortwave radio and satellite
— Satellites can give an accuracy of about £0.5 ms

Surafel Lemma Abebe (Ph. D.)

* Physical clocks...

— Clock skew
Is the difference in time values between different clocks

* Could cause failure of programs

_

Clock synchronization...

— Programs expect the time associated with different entities (e.g., file) be correct and
independent of the machine on which the time was generated

* Caused by crystals running in a slightly different rate, clock drift

— Clock drift

* The phenomenon of clocks ticking at different rates that widens the gap in

In practice: 1-x< dC/dt <1+x, x is maximum drift rate

perceived time

Clock time, C

Goal: Never let two clocks in any system differ by
more than a time units, then synchronize at least

every a/2x seconds

Surafel Lemma Abebe (Ph. D.)

dt dc _,
« dt -
g X
(\)(:_‘)0 \c}oc’
"D‘(?.‘- 00 CL: <1
oo™’
UTC, t

Clock synchronization...

* Global positioning system

— Could be used to determine one’s geographical
position on Earth and time

A

Height

[r=259 e N
X. (4.5,28.5)
I (17.8178) |

A :
. H " . E
f ‘; | \\

F,.f S (76786)\| |\

i . i '»" i
N
N Vi
3 S
- b S =
=t =
. -

N -
e g

Y

r=11.4

. . - Surafel Lemma Abebe (Ph. D.) 8

Clock synchronization...

* Global positioning system...

— Current location

* Assumptions
— The clocks in the satellites are accurate and synchronized

* Facts

— It takes a while before data on a satellite’s position reaches
the receiver

— The receiver’s clock is generally not in synch with that of a
satellite

. . Surafel Lemma Abebe (Ph. D.) 9

Clock synchronization...

e Global positioning system...

— Current location
e A.:unknown deviation of the receiver’s clock
° X, Y,z unknown coordinates of the receiver
* T,: timestamp on a message from a satellite |
* A=(T,on T+ A, : measured delay of a message sent by satellite |

* Measured distance to satellite | = ¢ *A, (c is speed of light,
3*10%8m/s)

 Real distance is
G=C 8- CA = xR+ (= y)P+ (@ = 2P

— If we have four satellites, we get four equations with four
unknowns allowing us to solve the coordinates for the
receiver and A,

Surafel Lemma Abebe (Ph. D.)

10

Clock synchronization...

* Berkeley algorithm
— Algorithm for internal synchronization

— Master: a coordinator computer is chosen
1. Periodically polls the slave computers whose clocks are to be synchronized
(a)
2. Theslaves send back their clock values to it (b)
3. Computes an average time

4. Tell the machines (c) to
— Advance their clock to the new time, or

— Slow down their clock until some specified reduction has been achieved

Time daemon
3:00 0 3:.05 +5

LOF LJOE SOF
(e) ()" ()
96 Bl @l

2:50 3:25 2:50 3:25 3:05 3:05
(a) (b) (c)

. . Surafel Lemma Abebe (Ph. D.) 11

Clock synchronization...

* Network protocol time (NTP)

— |s an architecture for a time service and a protocol to
distribute time information over the Internet
— Aims
* To provide a service enabling clients across the Internet to
be synchronized accurately to UTC

* To provide a reliable service that can survive lengthy losses
of connectivity

* To enable clients to resynchronize sufficiently frequently to
offset the rates of drift found in most computers

* To provide protection against interference with the time
service, whether malicious or accidental

. - Surafel Lemma Abebe (Ph. D.) 12

Clock synchronization...

 Network protocol time (NTP)...

— NTP service is provided by a network of servers
connected in logical hierarchy, called synchronization
subnet

* Primary servers

— Connected directly to a time source, e.g, radio clock receiving
UTC

— Occupy stratum 1

1
* Secondary servers N
2 2

— Synchronized with primary servers

— Occupy stratum 2 / \ \
. 3 3

* Leaf (lowest-level) servers
— Execute in users’ workstations

Arrows denote synchronization control, numbers denote strata.

. . Surafel Lemma Abebe (Ph. D.) 13

Clock synchronization...

 Network protocol time (NTP)...

— For a client to synchronize its clock with a remote
server, the client must compute

 Round trip delay, and Sener 135ms137ms -
¢ Offset - 5=65ms i

— Round trip delay e time_
deIay = (t3'to) _(tz'tl) o 2?}10ms 29183ms

— t;-t, is the time elapsed on the client side between the request
and reception of the response

— t,-t, is the time the server waited before sending the answer

— Offset

f-'1 - f--EI') + (fg - fg)
2

. . Surafel Lemma Abebe (Ph. D.) 14

g |

Clock synchronization...

e Logical clocks

— Keep track of each other’s events rather than
maintaining accurate (absolute) clock

— Observations (Lamport)

* If two processes do not interact, it is not necessary that
their clocks be synchronized

* For some processes its enough to agree on the order in
which events occur rather than exactly what time it is

. - Surafel Lemma Abebe (Ph. D.) 15

Clock synchronization...

Logical clocks — Lamport’s logical clock

— Happens-before relationship

* a—b, a happens before b

e Situations

— If aand b are events in the same process, and a comes before b,
thena - b

— If ais the event of a message being sent, and b is the event of the
message being received, thena > b

— Ifa—>bandb —>c,thena—>c

— If events a and b happen in different processes that do not
exchange messages, then neither a - b nor b - a are true

* This introduces a partial ordering of events in a system with
concurrently operating processes

Surafel Lemma Abebe (Ph. D.)

16

Clock synchronization...

e Logical clocks — Lamport’s logical clock...

— Problem

How do we maintain a global view on the system’s behavior that is
consistent with the happened-before relation?

— Solution

« Attach a timestamp C(e) to each event, e, satisfying the following
properties
P1:If aand b are events in the same process and a = b, then C(a) < C(b)

P2:If ais the sending of a message and b is the reception of that message,
then C(a) < C(b)

P3: The clock time, C, must always go forward (increasing), never backward
(decreasing)

» Correction is done only by adding a positive value

. . Surafel Lemma Abebe (Ph. D.) 17

Clock synchronization...

e Logical clocks — Lamport’s logical clock...

— Problem
* How to attach a timestamp when there is no global

clock? P, P, P,
1 L v

6 m 8 10

5| e 20

18 24| m, [30

24, 1t

30 40 50

36 48 60

42 S« ms |70

48 64 80

5 M. |72)

60 80 100

. . - Surafel Lemma Abebe (Ph. D.) 18

Clock synchronization...

* Logical clocks — Lamport’s logical clock...

— Solution

* Each process P, maintains a local counter C, and updates the
counter according to the following rules
1. Before executing an event, P, increments C by 1

2. Eachtime a message m is sent by process P, the message is
assigned a timestamp ts(m)=C, (executed after Rule 1)

3. Whenever a message m is received by a process P;, P, adjusts its
local counter C to max{Cj, ts(m)}; then executes the first step
and delivers the message to the application

— Property P1 is satisfied by Rule 1, and property P2 by
Rules (2) and (3)

. . Surafel Lemma Abebe (Ph. D.) 19

Clock synchronization...

e Logical clocks — Lamport’s logical clock...

— Example
P, P, P, P, P, P,
0 0 0 0 0 0
6l m, |8 10 6l m, |8 10
i3] 16 36 i 36
18 54 m, |30 18 54 _m, [30
i) 54)
30 40 50 30 |P2 adjusts | 40 50
S S &y 551 its clock [45 i
........................... — .
12 56 1< ™5 |70 12 i< ™5 |70
48 64 80 48 69 80
i, (72) (o™, 77)
60 80 100 76| P, adjusts |85 100
its clock
@ ®)

. . - Surafel Lemma Abebe (Ph. D.) 20

Clock synchronization...

e Logical clocks — Lamport’s logical clock...
— Adjustment takes place at the middleware layer

Application layer
Application sends message \% Message is delivered to application
_ Adjust local clock Adjust local clock Middleware layer
and timestamp message

Network layer

. . Surafel Lemma Abebe (Ph. D.) 21

_

Clock synchronization...

* Logical clocks — Lamport’s logical clock...

— Totally ordered logical clocks

* Distinct events generated by different process could have
identical Lamport timestamp

e Problem
— How to create a total order on the set of events?

e Solution
— Take the identifier of the processes at which the event occurred
into account
» For event, e, at process p, with timestamp T, and event, €', at
process p; with timestamp T,, the global logical timestamp for
the events will be (T, i) and (T;, j)
» (T, i) < (Tj, j) iff either T. < T,orT,=T,and i <]

. - Surafel Lemma Abebe (Ph. D.) 22

Clock synchronization...

e Logical clocks — Lamport’s logical clock...

— Totally ordered multicasting

* Consider a database replicated across several sites for the purpose of
improved query performance

e Scenario

— P1 adds $100 to an account whose initial value is $1000, while P2 adds an
interest of 1% to the same account

* Question: What would be the balance on the account?
 Result: Replica #1 will have $1,111, while replica #2 will have $1,110

i Updatet1 L_jp_d_a_t_e_% N %

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

. . Surafel Lemma Abebe (Ph. D.) 23

Clock synchronization...

* Logical clocks — Lamport’s logical clock...

— Totally ordered multicasting...

* Problem
— Two update operations should have been performed in the same
order at each copy
* Solution

— Totally-ordered multicast, i.e., all messages are delivered in the
same order to each receiver

» Each process p. always sends timestamped message, msg;

» A multicast message is also sent to the sender and put in the
local queue, q;

» When a process, p;, receives a message, it is put into a local
queue, g, ordered according to its timestamp, and
acknowledged to every other process

— If Lamport algorithm is used, all processes will eventually have
the same copy of the local queue

. . Surafel Lemma Abebe (Ph. D.) 24

Clock synchronization...

e Logical clocks — Lamport’s logical clock...

— Totally ordered multicasting...

* p;passes a message msg; to its application if

— msg; is at the head of queue,, and acknowledged by each
other process

— For process p,, there is a message msg, in queue; with a larger
timestamp (k # i)

* Assumption

— Message from the same sender are received in the order they
were sent, i.e., FIFO order

— No message is lost, i.e., communication is reliable

. . Surafel Lemma Abebe (Ph. D.) 25

Clock synchronization...

* Logical clocks — Vector clocks P, P, P,
— Recap: Lamport logical clock ol L 0 0.
. 6l _m, |8 10
o en e £ e S
— Question I8 S |30
* Can we say if C(a) < C(b), thena -> b? |24 32| M3 |40
_ Answer 30 40| {50
36 48 60
* Not necessarily 42 @4{ 70
48 169, 80
o™ |77 %
76 85 100

— Problem

* Lamport logical clock do not capture causality
— Solution

* Vector clocks — capture potential causality

. . Surafel Lemma Abebe (Ph. D.) 26

Clock synchronization...

e Logical clocks — Vector clocks...

— A vector clock for a system of N processes is an array of N
integers

— Each process keeps its own vector clock, V,, which it uses to
timestamp local events

— Properties

* V[i] is the number of events that have occurred so far at p, i.e., V[i] is
the local logical clock at process p,

* IfV|[j] = kthen p, knows that k events have occurred at p;, i.e., it is p;’s
knowledge of the local time at p;

— Processes piggyback vector timestamps on the messages they
send to one another

. . Surafel Lemma Abebe (Ph. D.) 27

Clock synchronization...

* Logical clocks — Vector clocks...

— Rules for updating the clocks
R1: Initially, V.[j]=0, fori, j=1,2,...,N
R2: Just before p, timestamps an event, e, it sets V,[i]=V [i] + 1
R3: p; includes the value ts(m) =V. in every message it sends (ts = timestamp)

R4: When p, receives a timestamp ts(m) in a message, it sets V,[j]l=max{V.[j], ts[j]),
forj=1,2,...,N

R5: When a process p;delivers a message m that it received from p; to the
application, it increments V 1 by1

— Example (1.0.0) (20.0)
p N
a b m
(210 (220 _ Physical
8 ¢ - ftime
(0,0,1)
73 ®
e

. . . Surafel Lemma Abebe (Ph. D.) 28

Clock synchronization...

* Logical clocks — Vector clocks...
— ts(m)l[i]-1
* denotes the number of events processed at p, that causally precede m
— Vilj] (i#j)
* isthe number of events that have occurred at p; and have potentially
affected p,

— Comparing vector timestamps
e V=Viff V[jl= V'[j] forj=1,2,.,N 100 200)
« VViffV[jl<V[j]lforj=1,2,.,N af—* ¢
e V<ViffVsVandVzV 210 (220 il

pe . a ™ fime
- Examp|e (0,0,1) (2,2,2)
V(a) < V(f) => a >f 7 ° -

y f
* Neither V(c) £ V(e) nor V(e)< V(c) hence c | | e

. . . Surafel Lemma Abebe (Ph. D.) 29

Clock synchronization...

e Logical clocks — Vector clocks...

— Causally ordered multicasting

* We can now ensure that a message is delivered only if all causally
preceding messages have already been delivered

* Assumption
— Messages are multicast within a group of processes

» If two messages are not related, they could be delivered at any
order at different locations

— Clocks are adjusted when sending and receiving messages, i.e.,
» p,increments V[i] only when sending a message
» p,adjusts V,when receiving a message (i.e., no change to V/[j])

* p,delays delivery of the message, m, from p, to the application
layer until
— ts(m)[i] = V|[i] +1
— ts(m)[k] < V,[k] for k # i

. . Surafel Lemma Abebe (Ph. D.) 30

Clock synchronization...

* Logical clocks — Vector clocks...

— Causal ordered multicasting...

 Example 1
— Assumption: Originally all VC, have a O vector
— Delivery of m* at P,

* Example 2
— Take VC, =[0,2,2], ts(m)=[1,3,0] from P,

» What information does P, have and what will it do when
receiving m from P,?

VG, = (1,0,0) VC, = (1,1,0)
1

P l |
P1 : “:
/ S m*
VG =(1.1.0) VC, = (1,1,0)
P, l !

- = VC,=(0,0,0) VC,=(1,0,0)
. . Surafel Lemma Abebe (Ph. D.) 31

Clock synchronization...

e Logical clocks — Vector clocks...

— Disadvantage of vector timestamps (compared with Lamport
timestamps)

* Vector timestamps take up an amount of storage and message payload
proportional to number of processes

* Performance is dictated by the weakest link

— Support to totally-ordered and causally-ordered multicasting

* In middleware (as part of message-communication layer) vs in application
— Cons
» Only potential causality is captured => overly restrictive + efficiency problem

» Not all causality may be captured (e.g., causality due to external
communication)

— Pros
» Convenience for the developer

. - Surafel Lemma Abebe (Ph. D.) 32

_

Mutual exclusion

 Fundamental to DS is concurrency and collaboration among
multiple processes

* Processes need to simultaneously access the same resource

* Problem: Concurrent access could corrupt resource or make it
inconsistent

 Solution: Mutual exclusion

— A condition in which there is a set of processes, only one of which is
able to access a given resource or perform a given function at any time
— Implementations
* Centralized algorithms
* Decentralized algorithms
* Distributed algorithms

. - Surafel Lemma Abebe (Ph. D.) 33

_

Mutual exclusion...

e Centralized algorithm

— One process is elected as the coordinator
— ldea
* Send a request message to the coordinator stating which resource a
process wants to access and asking for permission (a and b in the fig.)

* Coordinator could

1. Send back a reply granting permission
2. Deny permission by

a) Not sending a reply, thus blocking the requesting process
b) Send back a reply saying ”permission denied”

©® @ @@

e l OK Request Release
No reply
/ Queue is @
empt
Coordinator PYY

@) (b) (c)

. . Surafel Lemma Abebe (Ph. D.) 34

_

Mutual exclusion...

* Centralized algorithm...

— Advantage

* Its fair
— Requests are granted in the order in which they are received
— No starvation

* Easy to implement

* Requires three messages per use of a resource (request,
grant, release)

— Disadvantage
* Coordinator is single point of failure

 Difficult to distinguish a dead coordinator from “permission
denied”

» Single coordinator can become a performance bottleneck

. - Surafel Lemma Abebe (Ph. D.) 35

Mutual exclusion...

* Decentralized algorithms
— Voting algorithm

e Assumes every resource is replicated n times, with each
replica having its own coordinator

» Access to a resource requires a majority vote m > n/2

— The coordinator notifies the requester when it has been denied
access as well as when it is granted

— Requester must “count the votes”, and decide whether or not overall
permission has been granted or denied

* If a process (requester) gets fewer than m votes it will
wait for a random time and then ask again

. . Surafel Lemma Abebe (Ph. D.) 36

Mutual exclusion...

e Decentralized algorithms...

— Voting algorithm...

* Assumption

— When a coordinator crashes, it recovers quickly but will have forgotten
any vote it gave before it crashed

» Problem: It could grant permission to other requester again
(but this is less probable)

* Advantage
— Less vulnerable to failures of a single coordinator

e Disadvantage
— If a resource is in high demand, multiple requests will be generated
— It’s possible that processes will wait a long time to get permission
— Could lead to dead lock

. . Surafel Lemma Abebe (Ph. D.) 37

Mutual exclusion...

e Distributed algorithm

— Ricart and Agrawala’s algorithm

* Requires that there be a total ordering of all events in
the system
=> No ambiguity on which event happens first
— Could be achieved using Lamport’s logical clock algorithm

* Assumption

— Communication is reliable, i.e., no message is lost

. . Surafel Lemma Abebe (Ph. D.) 38

Mutual exclusion...

e Distributed algorithm...

— Ricart and Agrawala’s algorithm...
* How it works

— When a process wants to access a shared resource, it builds a message
containing

» Name of the resource
» Its process ID
» Current (logical) time
— Message is sent to all processes, including itself
— Process replies an OK message, i.e., grants access, to a request only when

1.

The receiver is not accessing the resource and doesn’t want to
access it

The receiver process is waiting for the resource, but has lower
priority (known through comparison of timestamp)

For all other cases, the request is queued

Surafel Lemma Abebe (Ph. D.) 39

Mutual exclusion...

e Distributed algorithm...

— Ricart and Agrawala’s algorithm...

* Example

— Process 0 and 2 sends a request to access a resource at the
same time. Process 1 is not interested on the resource

Accesses
resource

8
()

Surafel Lemma Abebe (Ph. D.)

OK
Accesses
resource

(c)

40

_

Mutual exclusion...

* Distributed algorithm...

— Ricart and Agrawala’s algorithm...

* Number of messages required per entry is 2(n-1), n = total number
of processes

e Advantage
— Mutual exclusion is guaranteed without deadlock or starvation
— No single point of failure

* Disadvantage
— n points of failure
» Could be addressed if the receiver always sends a reply (grant or deny)

— Either multicast communication must be used or each process must
maintain the group membership

» Works best with small groups of processes that never change their
group membership

— All processes are involved in the decision (if one process has a performance
issue its likely that others will have too)

. . Surafel Lemma Abebe (Ph. D.) 41

Mutual exclusion...

e Distributed algorithm...

— A Token ring algorithm

* Processes are organized in a logical ring, and let a token
be passed between them

* Its important for a process to know who is next in line
after itself (not the order)

PPPPPPPY

(@) (b)

. . Surafel Lemma Abebe (Ph. D.) 42

Mutual exclusion...

e Distributed algorithm...
— A Token ring algorithm...

* How it works
— When the ring is initialized, process 0 is given a token

» The token is passed from process k to process k+1
(modulo ring size)

— When a process acquires the token from its neighbor, it checks
if it needs to access the shared resource

» If yes, it goes ahead and passes the token to the next
process when it finishes

» If not, the token is passed to the next process in the ring

. . Surafel Lemma Abebe (Ph. D.) 43

Mutual exclusion...

* Distributed algorithm...

— A Token ring algorithm...

e Advantage
— No starvation can occur

e Disadvantage
— Difficult to detect when a token is lost
— Process could crash
» Could be detected
* if acknowledgement is sent
* When a neighbor wants to give it a token
— Consumes network bandwidth

. . - Surafel Lemma Abebe (Ph. D.) 44

Mutual exclusion...

 Comparison of the algorithms

— Assumption: Messages are passed sequentially over a network

Algorithm

of msgs per

entry and exit of

Delay before | Example problems
entry (in msg

Centralized

Decentralized

Ricart and
Agrawala’s

Token ring

a critical section times)
3 2 Coordinator crash
2mk+ m, k=#of 2mk Starvation, low efficiency
attempts
2(n-1) 2(n-1) Crash of any process
1to oo Oton-1 Lost token, process could
crash
Surafel Lemma Abebe (Ph. D.) 45

Elections

* Many distributed algorithms require one process to act as a coordinator,
initiator, or perform some special role

— Example
* Berkley algorithm, Centralized mutual exclusion

* Question
— How to elect this special process dynamically?

* Assumptions
— Every process knows the process number of every other process
— A process doesn’t know which processes are up or down

e @Goal

— Ensure that when an election starts, it concludes with all processes agreeing
on who the new coordinator is to be

. . Surafel Lemma Abebe (Ph. D.) 46

Election...

* The bully algorithm

— Initiates an election when any process notices that the
coordinator is no longer responding to a request

— Gives priority to processes with higher weights (e.g.
process numbers)

— Election is held by a process p as follows
1. psends an election message to all processes with higher
number (priority)

2. If no one responds, p wins the election and becomes
coordinator and sends a victory message to all other
processes

3. If one of the processes with higher priority are up, it sends
a take-over message to p. p will then be out of the race

. - Surafel Lemma Abebe (Ph. D.) 47

Election...

* The bully algorithm...

— A process can get an election message from one
of its lower-numbered (priority) colleagues at
anytime
* |f alive, the receiver sends an OK message back to the

sender and holds an election (if it didn’t hold one
before)

— If a process that was down comes back up, it
holds an election

. - Surafel Lemma Abebe (Ph. D.) 48

Election...

* The bully algorithm...

— Example
* Process 4 notices that the coordinator process 7 is down
©,
@ ok @ ectiol
4 V< OK @
© ®
Previous@)rdinalor
@) has C[E;;hed
®
@) @OK
@ %‘D @4 Coordinator
© ®
X

(e)
. . - Surafel Lemma Abebe (Ph. D.) 49

Election...

* Ring algorithm
— Goal

* To elect a single process with the highest priority as the
coordinator

— Assumption

* The processes are physically or logically ordered, so
that each process knows who its successor is
— Token is not used

. . Surafel Lemma Abebe (Ph. D.) 50

Election...

e Ring algorithm...

— Election can be initiate by any process, p, which notices
that the coordinator is not functioning
* Process, p, starts election by sending an election message that

contains its process number to its successor
— If successor is down, it is passed on to the next successor

* If a message is passed on, the sender adds its own process number
to the list in the message

— When it gets to the initiator, the message contains list of processes that
are up (in the ring)

* The initiator sends a coordinator message around the ring
containing a list of all living processes. The one with the highest
process number (priority) is elected as coordinator

. . Surafel Lemma Abebe (Ph. D.) 51

Election...

* Ring algorithm...

— Example

* Process 2 and 5 simultaneously notices that the coordinator
process 7 is not responding

— Question. Does it matter if two processes initiate an election
simultaneously?

Election message

Previous coordinator
has crashed

No response (6

(5]

. . - Surafel Lemma Abebe (Ph. D.) 52

