Distributed Systems
ECEG-6504

Distributed Objects and Remote
Invocation

Surafel Lemma Abebe (Ph. D.)

Topics

e Introduction

e Remote procedure call

e Communication between distributed objects
e Events and notifications

. . - Surafel Lemma Abebe (Ph. D.) 2

_

Introduction

Applications, services

Remote invocation, indirect communication

Underlying interprocess communication primitives: Middleware
Sockets, message passing, multicast support, overlay networks layers
UDP and TCP

e Middleware

— Software that provides a programming model above the basic
building blocks of processes and message passing

— Invented to provide common services and protocols that can be
used by many different applications

— Important aspect

e Provide location transparency and independence from the details of
communication protocols, operating systems, and computer hardware

. . Surafel Lemma Abebe (Ph. D.) 3

Introduction...

e Middleware...

— Provide location transparency
e RPC

— Client that calls a procedure cannot tell whether the procedure
runs in the same process or in a different process, nor does the
client need to know the location of the server

* RMI

— The object making the invocation cannot tell whether the object
from which it invokes a method is local or remote

e Distributed event-based programs

— Objects generating events and the objects that receive
notifications of those events need not be aware of one another’s
location

. - Surafel Lemma Abebe (Ph. D.) 4

_

Introduction...

e Middleware...

— Provide independence from the details of

e Communication protocols

— The protocols that support the middleware abstractions are
independent of the underlying transport protocols

e Operating systems

— The higher-level abstractions provided by the middleware
layer are independent of the underlying operating systems

e Computer hardware
— Data representation details

. - Surafel Lemma Abebe (Ph. D.) 5

Introduction...

e Communication types
— Transient communication
e Message is not stored by the middleware

Synchronize at Synchronize at Synchronize after Both-sender and receiver should be up and
request submission request delivery processing by server running for the message to be delivered

Client I/ I/ L e Sender and receiver are coupled in time

Request . . .
----- Sl — Persistent communication
ransmission .
interrupt e Message is stored
Storage
f | . .
acily — Synchronous communication
\ /Reply e Message acknowledgement (ack)
- O e Ack at request submission and delivery are
Server Time —> controversial

e Ack after processing by server is considered
as synchronous by all

— Asynchronous communication

Surafel Lemma Abebe (Ph. D.) 6

Introduction...

e Concerned with how processes (or entities) at a higher
level of abstraction (e.g. objects) communicate in a DS

— Request-reply protocols
e Represent a pattern on top of message passing

e Supports a two-way exchange of messages as encountered in client-
server computing

— Remote procedure call (RPC) model
e Extension of the conventional procedure call model to DS

e Allows client programs to call procedures transparently in server
programs running in separate processes

— Remote method invocation (RMI)

e Extension of local method invocation that allows an object living in
one process to invoke the methods of an object living in another
process

— Indirect communication

. . Surafel Lemma Abebe (Ph. D.) 7

Remote procedure call

e Makes the programming of DS look similar to
conventional programming

— Achieve high level of distribution transparency

e Procedures on remote machines can be called as
if they are procedures in the local address space

e Birrell and Nelson [1984]
e Underlying RPC system hides

— Encoding and decoding of parameters and results

— Passing of messages and preserving of the required
semantics for the procedure call

. . Surafel Lemma Abebe (Ph. D.) 8

Remote procedure call...

e Design issues for RPC

— |ssues that are important in understanding
implementation of RPC systems

e Programming with interfaces (style of programming
promoted by RPC)

e Call semantics associated with RPC

* |ssues of transparency and how it relates to remote
procedure calls

. - Surafel Lemma Abebe (Ph. D.) 9

_

Remote procedure call...

e Design issues for RPC...

— Programming with interfaces
e Refers to the style of programming promoted by RPC

e |Interfaces are used to control the possible interactions
between modules

e |Interface of a module specifies procedures and variables that
can be accessed from other modules

* |Interfaces in DS
— Modules can run in separate processes
— Service interface

» Refers to the specification of the procedures offered by a
server, defining the types of the arguments of each of the
proc

. - Surafel Lemma Abebe (Ph. D.) 10

_

Remote procedure call...

 Design issues in RPC...

— Programming with interfaces...

e Advantages of programming with interfaces in DS

— Programmers are concerned only with the abstraction offered by
the service interface and need not be aware of implementation
details

— Programmers do not need to know the programming language or
underlying platform used to implement the service

— Provides natural support for software evolution

» Implementations can change as long as the interface remains
the same

» Interface can also change as long as it remains compatible
with the original

. - Surafel Lemma Abebe (Ph. D.) 11

Remote procedure call...

 Design issues in RPC...

— Programming with interfaces...

e Distribution influence on definition of service interfaces
— Service interface cannot specify direct access to variables

» |ts not possible for a client module running in one process to
access the variables in a module in another process

— Parameter-passing mechanisms used in local procedure calls are
not suitable

» Call by reference is not supported

» Specification describes the parameters as input and output,
or both

e Sends the values
— Addresses in one process are not valid in another remote process

» Addresses cant be passed as arguments or returned as
results of calls to remote modules

. - Surafel Lemma Abebe (Ph. D.) 12

Remote procedure call...

* Design issues in RPC...

— Programming with interfaces...

 Interface definition languages (IDL)

— Designed to allow procedures implemented in different
languages to invoke one another

— Provides a notation for defining interfaces

» Used to describe input or output parameters of an operation
and corresponding types struct Person |

— Example: IDL for struct person string name;

string place;
long vear;
},.
interface PersonList {
readonly attribute string listhame;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

. . Surafel Lemma Abebe (Ph. D.) 13

Remote procedure call...

 Design issues in RPC...

— RPC call semantics

e Recap: doOperation implementation choices
— Retry request message
— Duplicate filtering
— Retransmission of results

e Combination of these choices leads to the following possible
semantics for the reliability of remote invocations as seen by

the invoker
Fault tolerance measures Call semantics
Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply
No Not applicable Not applicable Maybe
Yes No Re-execute procedure Ar-least-once
Yes Yes Retransmit reply At-most-once

. . Surafel Lemma Abebe (Ph. D.) 14

_

Remote procedure call...

 Design issues in RPC...
— RPC Ca” Semantics." Retransmit request Duplicate Re-execute procedure

message filtering or retransmit reply

o Maybe semantics No Not applicable Not applicable Maybe
— Remote procedure call may be executed once or not at all
— No fault tolerance measures are applied
— Suffers from the following types of failures
» Omission failures, if the request or result message is lost

» Crash failures when the server containing the remote
operation fails

— In an asynchronous system
» The result may arrive after the timeout

— Useful for applications in which occasional failed calls are
acceptable

. - Surafel Lemma Abebe (Ph. D.) 15

Fault tolerance measures Call semantics

Remote procedure call...

® D e S I g n I S S u e S I n R P C see Fault tolerance measures Call semantics
. Retransmit request Duplicate Re-execute procedure
— R P C Ca I | S e m a nt I C S message filtering or retransmit reply
Yes No Re-execute procedure At-least-once

e At-least-once semantics
— Invoker receives either a result or an exception
— Masks the omission failures of the request or result message
— Suffers from the following types of failures

» Crash failures when the server containing the remote
procedure fails

» Arbitrary failures — due to re-execution of a procedure
which causes wrong values to be stored or returned

— Acceptable if the operations in the server are idempotent

. - Surafel Lemma Abebe (Ph. D.) 16

Remote procedure call...

e Design issues in RPC...

— RPC call semantics...

e At-most-once semantics
— The caller receives either a result or an exception
» A procedure is executed at most once

Fault tolerance measures Call semantics
Retransmit request ~ Duplicate Re-execute procedure
message filtering or retransmit reply
Yes Yes Retransmit reply Ar-most-once

. . - Surafel Lemma Abebe (Ph. D.) 17

Remote procedure call...

 Design issues in RPC...

— Transparency
e Aim is to make RPC like local procedure call, with no
distinction in syntax

— All calls to marshalling and message-passing procedures are
hidden from the programmer making the call

— Re-sending request is transparent to the caller
e Strives to offer location and access transparency

e RPCs are vulnerable to failure than local calls

— Difficult to distinguish between failure of the network and of the
remote server process

— Clients making remote calls are required to recover from such
failures

e There is a higher latency for RPC

. - Surafel Lemma Abebe (Ph. D.) 18

Remote procedure call...

 Design issues in RPC...

— Transparency...

e Suggestions

— Argus designers suggested that a caller should be able to abort a remote
procedure call that is taking too long in such a way that it has no effect on
the server [Liskov and Scheifler 1982]

— Difference between local and remote operations should be expressed at
the service interface, to allow participants to react in a consistent way to
possible partial failures [Waldoet al.1994]

— Syntax of a remote call should be different from that of a local call

e Consensus

— Syntax of remote call is the same as that of a local invocation, but that
the difference between local and remote calls should be expressed in
their interfaces

. - Surafel Lemma Abebe (Ph. D.) 19

Remote procedure call...

e Basic RPC operation

— Conventional procedural call
e Example: count=read(fd, buf, bytes)

e Steps to call a procedure
1. Caller pushes parameters onto the stack
2 Push return address on stack
3. Runread operation
4

Upon completion of read operation, put
the result in a register, remove the
return address and transfer control back
to the caller

5. Caller removes the parameters from the
stack (return the stack to the original
state)

a) The stack before the call to read

b) The stack while the called procedure
is active

Main program's
local variables

Surafel Lemma Abebe (Ph. D.)

(a)

_

Stack pointer

J

Main program's
local variables

bytes

buf

fd

return address

read's local
variables

(b)

22

Remote procedure call...

e Basic RPC operation...

— Client and server stubs
e (Calling a remote procedure is similar to calling a local procedure

e Client stub
— Similar to functions such as read
— Makes a call to the local OS
— Difference from a non-RPC calls

» It packs the parameters into a message and requests the message to
be sent to the server

» After call to send, it blocks itself until the reply comes back

» When a reply comes, it inspects the message, unpacks the result, and

copies it to the caller
Wait for result

o

Client

—

Call remote Return
procedure from call
Request Reply

Call local procedure Time ——»
and return results

. . . Surafel Lemma Abebe (Ph. D.) 23

Remote procedure call...

e Basic RPC operation...

— Client and server stub...

e Server stub
— Receives messages from the server OS
— Blocks waiting for incoming messages

— Transforms requests coming in over the network into local
procedure calls

» Unpacks the parameters from the message
» Calls the server procedure in the usual way
— When it gets control back after the call has completed
» It packs the result in a message
» Calls send to return it to the client

. . . Surafel Lemma Abebe (Ph. D.) 24

Remote procedure call...
e Basic RPC operation...

Client machine Server machine
Client process + Cliont callt Server process
. ient call 1o
Implementation 6. Stub makes
procedure of add local call to "add"
Server stb
= I, . ~ = I,
— |+ Client stub S~ —
proc: "add proc: "add
int:_val() 2. Stub builds int:_val() 3. Stub unpacks
int:__val(]) message int:__val(j) message
A
:"add"
Client OS Fnrt(:m \?au{) Server OS * E:;\(;esrr?esssage
C int: val(j) y to server stub
3. Message is sent
across the network
1. Client procedure calls client stub 6. Server returns result to stub
2. Stub builds a message, calls local OS 7. Server stub packs the message; calls
3. Client OS sends message to remote OS ON)
4. Remote OS gives message to server 8. 0OSsends message to client’s OS
stub 9. Client OS gives message to client stub
5. Server stub unpacks parameters and 10. Client stub unpacks result and
calls the server returns to the client

. . Surafel Lemma Abebe (Ph. D.) 25

Remote procedure call...

e Parameter passing
— By value

— By reference
e Difficult to achieve. Why?

e Solutions
1. Forbid pointers and reference parameters
2. Copy/restore

» Copy the variable as in call-by-value, and then copy
back after the call, i.e., overwrite the caller’s original
value

. . Surafel Lemma Abebe (Ph. D.) 26

Remote procedure call...

e Asynchronous RPC

— When there is no result to return, the strict request-reply behavior is not
necessary

— Example
* Adding entries in a DB, starting remote services, ...
— Server immediately sends a reply (ack) when it receives an RPC request

(a) Traditional RPC
(b) Asynchronous RPC

Client Wait for result Client Wait for acceptance
% N / \
Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time —» Server Call local procedure Time —»

and return results

(@) (b)

. . Surafel Lemma Abebe (Ph. D.)

27

Remote procedure call...

e Deferred synchronous RPC
— Useful when a reply will be returned but the client is not prepared to wait for it
— Implemented using two asynchronous RPCs

— First asynchronous RPC
* The client submits the job and continues after it gets an ack
— Second asynchronous RPC

* Server calls the client to hand over the result
e C(lient can also do a (non)blocking poll at the server to see whether results are available

Wait for Interrupt client
acceptance
Client eeptan \
/ \
Call remote Feturn | rot
rom ca eturn
procedure results Acknowledge
Accept
Request request
Server --------—------- -
Call local procedure N\ Time —»
Call client with
one-way RPC

. . Surafel Lemma Abebe (Ph. D.) 28

Remote procedure call...

 Process of writing an

RPC client and server
— Distributed computing env. (DCE)

— Uuidgen
* Generates a
prototype IDL file

Interface

definition file

IDL compiler

Client code

Client stub

Header

Server stub

Server code

C compiler

C compiler

\ 4 Y

Client Client stub
object file object file
\ 4 -
- Runtime

Linker library

\ 4
Client
binary

Surafel Lemma Abebe (Ph. D.)

7

[C compiler | C compiler
Y \ 4

Server stub
object file

Server
object file

Runtime
library

A4

Linker

A 4

Server
binary

29

Remote procedure call...

e Binding a client to a server in DCE

— To allow a client to call a server, the server needs to be
registered and prepared to accept calls
— Locating a server is done in two steps
e |ocate the server’s machine

e Locate the server (i.e., the correct process) on the machine
=> The client needs to know the end point on the server machine

Client machine

Directory machine

Directory
server iy

Server machine

Client

e

3 Lookup7, @ter service

5. Do RPC

—

4. Ask for endpoint

Server

—

> poe |

VAL

daemon

1. Register endpoint

D

™. Endpoint

Surafel Lemma Abebe (Ph. D.)

table 30

Communication between
distributed objects

Communication between distributed objects is addressed by means
of RMI
RMI (Remote Method Invocation)

— Closely related to RPC but extended into the world of distributed
objects

— A calling object can invoke a method in a potentially remote object
— Underlying details are hidden from the user

Communalities between RMI and RPC
— Both support programming with interfaces
— Both are constructed on top of request-reply protocols
— Both can offer a range of call semantics such as at-least-once

— Both offer similar level of transparency

e i.e., local and remote calls employ the same syntax but remote interfaces
typically expose the distributed nature of the underlying call

. Surafel Lemma Abebe (Ph. D.) 31

Communication between
distributed objects...
e Differences between RPC and RMI

— Programmer is able to use the full expressive
power and related methodologies of object-
oriented programming

— All objects have unique object references, which
can be passed as parameters

— RMI also allows passing parameters by object
reference

. . Surafel Lemma Abebe (Ph. D.) 32

Communication between
distributed objects...

e Design issues for RMI

— RMI shares the same design issues as RPC in terms
of

e Programming with interfaces
e Call semantics
e Level of transparency
— Added design issues are related to

e Object model
e Transition from objects to distributed objects

. . Surafel Lemma Abebe (Ph. D.) 33

Communication between
distributed objects...

e (Object model

— key feature of an object
e Encapsulates data, called the state
e QOperations on the data, called the methods
— Some OO languages allow object’s data to be accessed directly

— In distributed object system, an object’s data should be accessible only
via its methods

— Object reference
e Used to access an object
e Could be assigned to variables, passed as arguments, ...
e Object reference and the method name are used to invoke a method

— Interfaces

e Provides a definition of the signatures of a set of methods

e A class may implement several interfaces, and the methods of an interface
may be implemented by any class

. . Surafel Lemma Abebe (Ph. D.) 34

Communication between -
distributed objects...

e (Object model...

— Actions
e Initiated by an object invoking a method in another object

e Effects of invoking a method
— State of the receiver may be changed
— A new object may be instantiated
— Aninvocation could invoke a method in another object

— Exceptions

e Provide a clean way to deal with errors and unexpected events without
complicating the code

e A block of code could throw an exception
=> control passes to another block of code that catches the exception
NB. Control doesn’t return to the place where the exception was thrown

— Garbage collection
e Used to free a memory space used by objects that are no longer used

e If the language doesn’t support it, the programmer has to deal with it
- Example: C++

. . Surafel Lemma Abebe (Ph. D.) 35

Communication between -
distributed objects...

e Distributed objects

— Object-based programs are logically partitioned which supports
physical distribution of objects

— Usually adopt client-server architecture

* Methods of objects on servers are invoked using RMI
— Supports heterogeneity
e Steps
— Clients send the RMI request in a message to a server
— The server executes the invoked method of the object
— The server returns the result to the client in another message

— Other architectural models
e Objects in servers could also become clients of objects in other servers
e Objects can be replicated
e Objects can be migrated
— Having client and server objects in different processes enforces
encapsulation
e The state of an object can be accessed only by the methods of the object
e Objects can protect their instance variables from concurrent access

. . Surafel Lemma Abebe (Ph. D.)

36

Communication between. =
distributed objects...

e Distributed object models...

— Terminologies
e Remote Method Invocation
— Method invocations between objects in different processes (e.g., B and F)
e Local Method Invocations
— Method invocations between objects in the same process (e.g., C and D)

e Remote objects
— Objects that can receive remote invocations

\ e
remote \c.% SO C :
invocation x“\, o2 ~_local ~ t
""n— remote
B loca invocation | invocation . F
e mvocatlon L—;

__J_—|D

. - Surafel Lemma Abebe (Ph. D.) 37

. - Surafel Lemma Abebe (Ph. D.)

Communication between -
distributed objects...

Distributed object models...
— Actions

e Initiated by a method invocation

e Remote invocations could lead to the instantiation of new objects
— Exceptions
e RMl should be able to raise additional exceptions that are related to
distribution
- E.g., timeout
— Distributed garbage collection

e Achieved by cooperation between the existing local garbage collector and an

added module that carries out a form of distributed garbage collection
e Its usually based on reference counting

remote
invocation

mstantlate mstanhate

du b

remote
invocation

38

Communication between
distributed objects...

e Distributed object models...

— Fundamental concepts

e Remote object references

— Extends object references

— Is an identifier that can be used throughout a DS to refer to a particular
unique remote object

— Other objects can invoke the methods of a remote object if they have
access to its remote object reference

— Can be passed as arguments

e Remote interfaces
— Used by remote objects to specify which of its methods can be invoked
remotely
— IDL is used to define remote interfaces
— An interface may be implemented by several objects

— Separation of interfaces and the object implementation allows to place
an interface at one machine, while the object itself could reside on

another machine

. . Surafel Lemma Abebe (Ph. D.) 39

Communication between. =
distributed objects...

e Distributed objects...

— When a client binds to a distributed object, an implementation of the
objects interface, called proxy, is loaded into the client’s address space
— Skeleton
e |sthe server stub

e Contains incomplete code in the form of a language specific class that needs
to be further specialized by the developer

— State of the object is not distributed or its hidden from the developer

Client machine Server machine
| Object
Client Server
R State
Same —
Client [—_———I interface Jiik E:‘ D Method
in:fokes P as object
h :ﬁ\
0 : el = s
invokes ——] |
Proxy same method Skeleton
at object Jll
Client 0S8 i Server OS

Network \
Marshalied invocation

is passed across network
. - Surafel Lemma Abebe (Ph. D.) 40

Communication between
distributed objects...

e Distributed object models...

— Object forms in DS
e Compile-time object
— Directly related to language-level objects
— An object is defined as an instance of a class

— Makes development of distributed applications easier

» Compiling class definition results in code that allows to
instantiate objects

» An interface could be compiled into client-side and server-
side stubs

» Developer is unaware of the distribution of objects, but sees
only the code

— Drawback
» Dependency on programming language

. . Surafel Lemma Abebe (Ph. D.) 41

Communication between
distributed objects...

e Distributed object models...

— Object forms in DS...

e Runtime objects
— Objects are constructed at runtime

— Its independent of the programming language in which the
distributed application is written

— How objects are actually implemented is left open
» E.g., Clibrary containing a number of functions

» How the implementation appear to be an object depends on
the approach used

» Common approach used is object adapter

e E.g., dynamically binds to a C library and opens an
associated data file representing an object’s current
state

. . Surafel Lemma Abebe (Ph. D.) 42

Communication between -
distributed objects...

e Distributed object models...

— Object forms in DS...

e Persistent object

— Continues to exist even if it is not currently contained in the
address space of any server process

— The object’s state could be stored on a secondary storage

e Transient object
— Exists as long as the server that is hosting the object exists

e Reading assighment
— Implementation of RMI

. - Surafel Lemma Abebe (Ph. D.) 43

Events and notifications

e |dea behind the use of events
— One object can react to a change occurring in another object

e Example
— Interactive application: actions performed on objects
e Notification of events are asynchronous and determined by
their receivers
e Distributed event-based systems
— Extend the local event model

— Allow multiple objects at different locations to be notified of
events taking place at an object

— Use publish-subscribe paradigm
e Publishers publish structured events to an event service
e Subscribers express interest in particular events through subscriptions

. . Surafel Lemma Abebe (Ph. D.) 56

_

Events and notifications...

e Publish-subscribe...

— Publish-subscribe system
» Matches subscriptions against published events
» Ensures the correct delivery of event notification

— Is a one-to-many communication paradigm
e Event is delivered to potentially many subscribers

— Main characteristics

* Heterogeneity

— Components in a DS that were not designed to interoperate can be made to
work together

— A way to standardize communication
e Asynchronicity
— Notifications are sent asynchronously by event-generating publishers
— Publishers and subscribers are decoupled
— No need for a publisher to wait for each subscriber, subscribers come and go

. - Surafel Lemma Abebe (Ph. D.) 57

_

ublishers Subscribers

Events and notifications...

subscripe(ti)
publishiel)

publish{e2) subscribe(t2)

e Programming model

— Operations
e publish(e)
— Publishers disseminate an event, e
e subscribe(f)
- f=filter, a pattern defined over a set of all possible events
— Subscribers express interest in a set of events through subscription
— Expressiveness of a filter is determined by the subscription model
e notify(e)
— Used to deliver events
e unsubscribe(f)
— Subscribers could revoke their interest
e advertise(f)
— Used to declare the nature of future events
— Defined in terms of events of interest
e unadvertise(f)
— Used to revoke advertisements

. . Surafel Lemma Abebe (Ph. D.) 59

Publish-subscribe system

notifyel)
advertise(t1)

Events and notifications...

e Programming model...

— Subscription models

e Channel-based

— Publishers publish events to named channels and subscribers subscribe to
one of these named channels to receive all events sent to that channel

— Primitive scheme and the only one that defines a physical channel
— Other schemes employ some form of filtering over the content
e Topic-based (subject-based)
— Assumption: each notification is expressed in terms of a number of fields,
with one field denoting the topic

» Topics are explicitly declared here (vs. implicit definition in channel-
base)

— Subscriptions are defined in terms of the topic of interest
— Can be enhanced using hierarchical organization of topics
» E.g., topic X and topic X/Y, subscribers of Y will be notified only for Y

. . Surafel Lemma Abebe (Ph. D.) 60

Events and notifications...

Programming model...

— Subscription models...

e Content-based
— Generalization of topic-based approaches

— Allows expression of subscription over a range of fields in an event
notification

— Is a query defined in terms of composition of constraints over the values
of event attributes

» E.g., event related to the topic X, where it has A and B as its field
values

e Type-based
— Linked with object-based approaches
— Subscriptions are defined in terms of types of events
— Matching is defined in terms of types or subtypes of the given filter
— Advantage:
» Could be integrated in programming language
» Could check type correctness of subscriptions

. - Surafel Lemma Abebe (Ph. D.) 61

_

Events and notifications...

e Programming model...

— Subscription models...

e Example of experimental models
— Context-based subscription

» Context and context awareness in mobile and ubiquitous
computing
» Context

* Aspect of the physical circumstances of relevance to the
system behavior

e E.g., location
— Concept-based subscription

» Filters are expressed in terms of semantics and syntax of
events

. - Surafel Lemma Abebe (Ph. D.) 62

Events and notifications...

e Implementation issues
— Centralized implementation

Simplest approach
Central server acts as an event broker

Publishers publish events and optionally send advertisements to
the broker

Subscribers send subscriptions to the broker and receive
notifications in return

Interaction with the broker is through a series of point to point
messages
Disadvantage
— Lacks resilience and scalability
— Centralized broker
» Single point for potential system failure
» Performance bottleneck

Surafel Lemma Abebe (Ph. D.) 63

Events and notifications...

e Implementation issues...

— Distributed implementation
e Centralized broker is replaced by a network of brokers
e Has the potential to survive node failure

Publishers Subscribers
Broker network
P1

S1

Po |

Sp

P3

3

. . Surafel Lemma Abebe (Ph. D.) 64

L
Events and notifications...

— Publish-subscribe architecture — — — — — — —

: :
[] [] I |
* Implementation issues... e | (o) e Yoo)
I |
I I
I |

— Overall system architecture
e Network protocols Overlay netuorks EAEDEEDICD
\ /

— Communicationservices == @ ~——————————— — — — — —

® TO p |aye r' Network protocols @ (IP mcasD <8[]2.1 1 g) (MAC bcag)

— Implements matching
— Ensures that events match a given subscription

e Event routing

— Performs the task of ensuring that event notifications are routed as
efficiently as possible to appropriate subscribers

— For content-based approaches, its called content based routing (CBR)
e QOverlay networks
— Used to setup appropriate networks of brokers or peer-to-peer structures

. - Surafel Lemma Abebe (Ph. D.) 65

Events and notifications...

Implementation issues...

— Principles behind content-based routing

e Flooding

— Sends an event notification to all nodes in the network and then
carries out the appropriate matching at the subscriber end

— Could be used to send subscriptions back to all possible
publishers with the matching carried out at the publishing end

» Matched events are sent directly to the relevant subscribers
using point-to-point communication

— Could be implemented
» Using an underlying broadcast or multicast facility or

» By arranging brokers in an acyclic graph in which each
forwards incoming event notification to all its neighbors

— Disadvantage
» Could result in a lot of unnecessary network traffic

. Surafel Lemma Abebe (Ph. D.) 66

Events and notifications...

e Implementation issues...

— Principles behind content-based routing...
e Filtering
— Applies filtering in the network brokers

» Filtering-based routing

— Brokers forward notifications through the network only where there is a
path to a valid subscriber

» Achieved by propagating subscription information through the
network

— Each node maintains a neighbors list containing
» List of all connected neighbors in the network of brokers

» A subscription list containing a list of all directly connected
subscribers serviced by this node

» A routing table, which maintains a list of neighbors and valid
subscriptions for that pathway

— Implements a matching function that returns a set of nodes where a
notification matches the subscription

. . Surafel Lemma Abebe (Ph. D.) 67

_

Events and notifications...

e Implementation issues...

— Principles behind content-based routing...

e Gossip-based

— Operate by nodes in the network periodically and
probabilistically exchanging events (or data) with neighboring
nodes

— Pure gossip-based approach is an alternative strategy for
implementing flooding

. - Surafel Lemma Abebe (Ph. D.) 68

