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Random numbers 

Basic ingredient of discrete system simulation 

oRandom numbers are used to generate event times and other random variables 

Properties of random numbers 

oTwo important properties of a sequence of random numbers, R1, R2,…, 

 Uniformity 

 Independence 

oEach random number Ri must be an independent sample drawn from a continuous 
uniform distribution [0, 1]
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Random numbers 

Probability density function (pdf)

𝑓 𝑥 =  
1, 0 ≤ 𝑥 ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐸 𝑅 =
1

2
𝑣𝑎𝑟 𝑅 =

1

12
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Pseudo-random numbers 

“Pseudo” is used to imply that the very act of generating random number 
by a known method removes the potential for true randomness 

o If the method is known, the set of random numbers can be replicated 

The goal of any generation scheme, however, is to produce a sequence of 
numbers between [0, 1] and that imitates

o the ideal properties of uniform distribution 

o and independence 
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Pseudo-random numbers 

Numerous methods can be used to generate a random numbers

Important considerations on random number generators 
oFast (computationally efficient)

oPortable to different computers 

oSufficiently long cycle – refers to the length of the random number sequence 

oReplicable 

oApproximate the ideal statistical properties of uniformity and independence 
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Techniques for generating random numbers 

Linear congruential method 

oProduces a sequence of integer numbers Xi in the range (0, m-1) by following a 
recursive relationships

𝑋𝑖+1 = (𝑎𝑋𝑖+𝑐)𝑚𝑜𝑑 𝑚, 𝑖 = 0,1,2,…

 The initial value 𝑋0 is called the seed 

 a – multiplier 

 c- is the increment 

 C=0 →multiplicative congruential generator 

 C!=0 →mixed congruential generator 

oThe selection of the values for a, c, m and 𝑋0 drastically affects the statistical 
properties and the cycle length 
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Linear congruential method 

Given a sequences of X integer numbers in [0, m), random number 
between [0, 1) can be generated from 

𝑍𝑖 =
𝑋𝑖

𝑚

Example – x0=27, a=17, c=43 and m=100
oX1=2 → R1=2/100=0.02 
oX2=77  → R2=77/100=0.77 
oX3=52  → R3=52/100=0.52 

How closely the generated numbers R1, R2, … approximate uniformity 
and independence? 

Other properties – maximum density and maximum period 
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Linear congruential method 

I=(0, 1/m, 2/m,…,(m-1)/m)

oEach Xi is an integer in the set{0,1,2,…,m-1} → each Ri is discrete on I 

If m is a very large integer, the values assumed by Ri leave no large gaps 
on [0, 1]  (maximum density)

om=231 − 1 𝑎𝑛𝑑 𝑚 = 248 are commonly used 

Maximum period can be achieved by the proper choice of a, c, m and x0



Computer system modeling and simulation 9

Linear congruential method 

when m=2𝑏 , c ≠ 0
oThe maximum period P= m, if 

 C is relatively prime to m  (the common factor is 1)

 a=1+4k, where k is an integer 

When m=2𝑏 , 𝑐 = 0
oThe longest possible period is P=m/4, if 

 X0 is odd 

 a=3+8k  or a=5+8k,  k=0, 1,…

When m is a prime number and c=0
oThe longest possible period P=m-1, if 

 The smallest integer k such that 𝑎𝑘 − 1 is divisible by m is k=m-1
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Linear congruential method 

Example: using multiplicative congruential method find the period of the generator 
for a=13, m=26 and x0=1, 2, 3, and 4
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Linear congruential method 

Speed and efficiency

oMost digital computers use a binary representation of numbers 

oThe modulo operation can be conducted efficiently when the modulo is a power of 
2
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Combined linear congruential generators 

Combining two or more multiplicative congruential generators in such a 
way that the combined generator has good statistical properties and a 
longer period 

oLet Xi,1, Xi,1, Xi,2,…, Xi,𝑘 be the ith output from k different multiplicative  
congruential generators 

Xi =  𝑗=1
𝑘 (−1)𝑗−1Xi,𝑗 mod m1 − 1

Ri =  

Xi

m1
Xi> 0

m1−1

m1
Xi= 0

P=
(m1−1)(m2−1)….(mk−1)

2𝑘−1
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Combined linear congruential generators 

Example: 

o k=2, 

om1=2,147,483,563, a1=40,014

om2=2,147,483,399 and a2=40,692

oThe combined generator has period =2*1018
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Test for random numbers 

Desirable properties – uniformity and independence 

To check on whether these desirable properties have been achieved, a 
number of tests can be performed 
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Frequency test 

For uniformity test

oKolmogorov-smirnov test

oChi-square test

Both methods measure the degree of agreement between

oThe distribution of a sample of generated random numbers 

oAnd theoretical uniform distribution 

Both tests are based on the null hypothesis of no significant difference 
between the sample distribution and the theoretical distribution 
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Kolmogorov-smirnov test 

Compares the continuous CDF, F(x), of the uniform distribution with the 
empirical CDF, 𝑆𝑁(𝑥), of the sample of N observation 

oF(x)=x, 0≤x ≤1

o If the samples from the random-number generator are R1,R2,…,RN, then the 
empirical CDF is 

𝑆𝑁 𝑥 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅1,𝑅2,…,𝑅𝑁 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒≤𝑥

𝑁
oAs N becomes larger, 𝑆𝑁 𝑥 should become a better approximation to F(x)
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Kolmogorov-smirnov test 

The Kolmogorov test is based on the larges absolute deviation between 
F(x) and 𝑆𝑁 𝑥 over the range of the random variable 

D=max |F(x)-𝑆𝑁(𝑥)|

D is compared with the largest theoretical deviation for N instances 
generated by an ideal generator 

Critical values for the D distribution are usually tabulated as a function of 
N and for specific levels of significance 
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Kolmogorov-smirnov test 

The test procedure follows these steps 

1. Rank the data from smallest to largest. Let R(i) denote the ith smallest 
observation, so that 

𝑅(1)≤𝑅(2) ≤ …. ≤𝑅(𝑁)

2. Compute 

𝐷+ = max
1≤𝑖≤𝑁

𝑖

𝑁
−𝑅(𝑖)

𝐷− = max
1≤𝑖≤𝑁

𝑅(𝑖) −
𝑖−1

𝑁

3. Compute D=max(𝐷+, 𝐷−)
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Kolmogorov-smirnov test 

𝐷+

𝐷−

𝐹(𝑥)

𝑥
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Kolmogorov-smirnov test 

4. Locate the value 𝐷α for the specified significance level α and the given 
sample size N

5. If D>𝐷α → the null hypothesis that the data are a sample from a 
uniform distribution is rejected. If D ≤𝐷α , concludes that no difference 
has been detected 
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Kolmogorov-smirnov test 

Kolmogorov test critical values 
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Kolmogorov-smirnov test

Example: suppose five number 0.44, 0.81, 0.14, 0.04, 0.93 were 
generated 

oD=max(0.26, 0.21)=0.26

oValue of D obtained from table for α=0.05 and N=5 is 0.565

o 0.26<0.565
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Chi-square test 

The chi-square test uses the sample statistic 

𝑋0
2 =  𝑖=1

𝑛 𝑂𝑖−𝐸𝑖
2

𝐸𝑖

oWhere 𝑂𝑖 and 𝐸𝑖 are the observed number and the expected number, respectively, 
in the ith class 

o n  is the number of classes 

For uniform distribution, the expected number in each class is given by 

𝐸𝑖=
𝑁

𝑛
where N is the total number of observations 

It can be shown that the sampling distribution of 𝑋0
2 is approximately the 

chi-square distribution with n-1 degrees of freedom 
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Chi-square test 

Percentage points of the Chi-square distribution with v degree of freedom 



Computer system modeling and simulation 25

Chi-square test 

Example: use the chi-square test with α=0.005 test 

o n=10 intervals [0, 0.1), [0.1, 0.2), …, [0.9, 1)

oN=100
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Chi-square test 

Computation for Chi-square test

o 𝑋0
2=3.4 is much smaller than  𝑋0.05,9

2 =16.9 => the null hypothesis for a uniform 
distribution is not rejected 
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Uniformity test 

Both Kolmogorov and chi-square are acceptable for testing the 

uniformity of a sample of data – provided that the sample size is large

Kolmogorov test is more powerful of the two 

Furthermore, Kolmogorov test can be applied to small sample size, chi-

square is valid only for large samples (n>50)
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Test for autocorrelation 

Test of autocorrelation is concerned about the dependence between 
numbers in a sequence 

Example: consider the following sequence of numbers

oThe 5th, 10th and so on indicates a very large number in that position – the numbers 
in the sequence might be related 
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Test for autocorrelation 

Computing the autocorrelation between every m numbers, starting with 
the ith number 

The autocorrelation ρ𝑖𝑚 between the following numbers would be of 
interest:

𝑅𝑖 , 𝑅𝑖+𝑚, 𝑅𝑖+2𝑚, … , 𝑅𝑖+(𝑀+1)𝑚

oM is the largest integer such that 𝑖 + (𝑀 + 1)𝑚 ≤ N, N is the total value in the 
sequence 
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Test for autocorrelation 

A nonzero autocorrelation implies a lack of independence 

For large values of M, the distribution estimator of ρ𝑖𝑚, denoted  ρ𝑖𝑚, is 
approximately normal if the values 𝑅𝑖 , 𝑅𝑖+𝑚, 𝑅𝑖+2𝑚, … , 𝑅𝑖+(𝑀+1)𝑚 are 

uncorrelated 

The test statistic can be formed as follows 

𝑍0 =
 ρ𝑖𝑚

σ ρ𝑖𝑚

Which is distributed normally with a mean of zero and variance of 1 
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Test for autocorrelation 

The formula for  ρ𝑖𝑚 in the slightly different form and the standard 
deviation of the estimator are given by 

 ρ𝑖𝑚 =
1

𝑀+1
 𝑘=0
𝑀 𝑅𝑖 , 𝑅𝑖+ 𝑘+1 𝑚 − 0.25

σ  ρ𝑖𝑚 =
13𝑀+7

12(𝑀+1)

After computing 𝑍0, do not reject the null hypothesis of independence if 

−𝑧α/2 ≤ 𝑍0≤ 𝑧α/2
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Test for autocorrelation 

Example: test whether the 3rd, 8th, 13th , and son on, numbers in the sequence are autocorrelated

using α=0.05

o i=3, m=5, M=4

The hypothesis of independence 

cannot be rejected on the basis of 

this test 


