Computer system modeling and simulation

6. Simulation output analysis

Sosina M. Addis Ababa institute of technology (AAiT) 2012 E.C. In real-world simulation applications, estimating the appropriate distribution for input parameters is a major task

Development of a useful model of input data

• Collect data from the real system of interest

• Identify a probability distribution to represent the input process

- Choose parameters that determine a specific instance of the distribution family
 - The parameters can be estimated from the data, if available
- Evaluate the chosen distribution and the associated parameters for goodness of fit
 - chi-square and the Kolmogorov-Smirnov tests are standard goodness-of-fit tests

Output analysis is the examination of data generated by a simulation
 to predict the performance of a system
 to compare the performance of two or more alternative system designs

The Simulation

Receives as inputs parameters represented by random variables
produces outputs

Compute mean value and an estimation error

Type of simulation

Terminating simulation

- \circ Runs for some duration of time T_E , where E is a specified event or set of events that stops the simulation
 - Starts with a well specified initial conditions
 - Ends at stopping time T_E
- Dependency from the initial conditions

□Non-terminating simulation

- Runs continuously, or at least over a very long period of time
- Initial conditions and simulation period defined by the analyst
- Study the steady state properties of the system properties that are not influenced by the initial condition of the model

□Model outputs consist of one or more random variables

Example- *M*/*G*/1 queueing

• Poisson arrival rate = 0.1 per minute and service time $\mu = 9.5$, s = 1.75• System performance: long-run mean queue length, Lq(t)

• Suppose we run a single simulation for a total of 5000 minutes

- Divide the time interval [0, 5000) into 5 equal subintervals of 1000 minutes
- Run 3 independent replications

Stochastic nature of output data

Example- *M*/*G*/1 queueing

Batchine	-	Replication		
Interval (Minutes)	Batch, j	I, Y _{1j}	2, Y _{2j}	3, Y _{3j}
[0, 1000)	1	3.61	2.91	7.67
[1000, 2000)	2	3.21	9.00	19.53
[2000, 3000)	3	2.18	16.15	20.36
[3000, 4000)	4	6.92	24.53	8.11
[4000, 5000)	5	2.82	25.19	12.62
[0, 5000)		$\bar{Y}_{1} = 3.75$	$\bar{Y}_{2} = 15.56$	$\bar{Y}_{3} = 13.66$

- variability in stochastic simulation both within a single replication and across different replications
- The average across 3 replications can be regarded as independent observations, but averages within a replication are not

Measures of performance and their estimation

Point estimation

The point estimator of \$\theta\$ based on the data \$\{Y_1, \ldots, Y_n\}\$
Discrete time data - \$\theta\$ = \$\frac{1}{n}\$\sum_{i=1}^n Y_i\$ where \$\theta\$ =sample mean on a sample size \$n\$
Continuous time data - \$\theta\$ = \$\frac{1}{T_E}\$\int_0^{T_E}\$Y(t)\$dt
The point estimator \$\theta\$ is said to be unbiased for \$\theta\$ if
\$E(\theta)\$ = \$\theta\$

An estimation of the error we make when we estimate the average value X of a random quantity using an averaging process over a limited number of samples and replications

Hypothesis

- The observation process is stationary
- $_{\odot}$ X has a mean μ and standard deviation σ
- o n independent observations of X (x1, x2,...,xn)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Then the mean of $E(\overline{X}) = \mu$ and $SD(\overline{X}) = \sigma / \sqrt{n}$

○ Central limit theorem – for large n, the estimate is normally distributed

Example- 10000 Exponential random variate samples of size n = 9 and 10 000 samples of size n = 36

Transform N(
$$\mu$$
, σ / \sqrt{n}) to N(0,1)

$$z = \frac{x - \mu}{\sigma / \sqrt{n}}$$

• Z is used to evaluate the error in the estimation

Example

The probability that z is in the interval $[-z_{1-\alpha/2}, z_{1+\alpha/2}]$ is $(1-\alpha)$

The central limit theorem is valid only for large n (>30)

□For n<30, student t distribution with n-1 degrees of freedom is used

$$P\left\{\bar{x} - t\alpha_{/_{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t\alpha_{/_{2}, n-1} \frac{s}{\sqrt{n}}\right\} = 1 - \alpha$$
$$\Box t\alpha_{/_{2}, n-1} \frac{s}{\sqrt{n}} - \text{ is a measure of error}$$

□9 simulation runs provided the following results

$$\bar{x} = 65, \ E(\sum_{i=1}^{9}(x-\bar{x})^2) = 3560$$

• Compute 90% and 99% confidence intervals

- Variance =3560/8=445
- 90% confidence interval
 - ✓ Student t with 8 degrees of freedom

✓ 1-
$$\alpha = 0.9, \frac{\alpha}{2} = 0.05$$

- ✓ Use the value $t_{0.05, 8}$
- $\checkmark I_{0.9} = [51.92, 78.08]$

The theory of confidence intervals assumes

• The process is stationary

• The observations are independent

□ Identifying the stationarity conditions – removing the transient

□Long simulation runs - to collect significant samples

Several independent simulation runs – to collect independent samples

❑Visual inspection and heuristics to identify to warm-up periodo the variance of the measures during the transient is higher than at steady-state

Solutions

- Long runs: running a simulation for a long time, the effect of the warp-up phase over the performance measures is reduced
- Selection of initial conditions near to the steady-state conditions

o Initial data removal

- Given n observations, remove the first k observations
- removal of samples collected during the warm-up transient will change the average of the remaining data, while removing samples during the steady-state will not influence too much the average

Compute the mean

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$$
$$\overline{x_k} = \frac{1}{n-k} \sum_{j=k+1}^{n} x_j$$

Compute the relative variation

$$R_k = \frac{\overline{x_k} - \overline{x}}{\overline{x}}$$

 \Box After drawing a graph of R_k as a function of k, choose the value of k